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Resúm 

La societat es cada dia més conscient de la escassetat i els canvis ambientals. Per lo que 

les empreses químiques tenen la necessitat d’adaptar i desarrollar processos químics més 

sostenibles. Llavors s’ha creat una clara demanda dins de la comunitat científica en 

desarrollar eines sistemàtiques per aconseguir reduccions en els costos de producció i en 

el impacte ambiental en els processos químics. 

Aquesta Tesis introdueix un nou mecanisme per el disseny de processos químics més 

sostenibles. El sistema que es presenta està basat en l’ús combinat de simulació de 

processos, eines d’optimització multi-objectiu, anàlisis econòmic, anàlisis de cicle de vida i 

sistemes de suport a la presa de decisions. L’estratègia presentada es utilitzada en la 

resolució de problemes complexes, per el que serà també necessari desarrollar nous 

algoritmes i estratègies de descomposició per dividir el problema original, en sub-

problemes els quals seran més manejables, per obtindre el disseny òptim del procés.  

La Tesis es presentada utilitzant sis articles que han estat publicats en diferents revistes 

científiques internacionals. La primera part, la qual inclou dos publicacions, està enfocada 

en el disseny de bioprocessos sostenibles, ja que aquestos processos han guanyat molt 

interès en el mercat degut al seu alt valor. En el 1r treball, s’ha estudiat la maximització 

del Valor Actual Net en la producció de l’amino-acid L-Lyisne. El problema es formulat 

com un problema d’optimització dinàmica entera mixta, el qual es soluciona mitjançant 

un mètode de descomposició que itera entre els sub-problemes esclau i el mestre. 

L’optimització dinàmica del problema esclau es resolta mitjançant un algoritme 

seqüencial que integra el simulador de procés (SuperPro Designer®) amb un solver de 

problemes de programació no lineal implementat en Matlab®. En el segon article, el 

problema d’optimització permet una resolució conjunta dels aspectes econòmics i 

ambientals del procés. En aquest cas s’optimitza el Valor Actual Net conjuntament amb 

diversos indicadors ambientals. La solución del problema es presentada mitjançant 

diverses corbes de Pareto, i en elles s’aplica l’anàlisi de components principals per tal de 

trobar objectius redundants entre els diversos indicadors ambientals. 
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Degut a que la demanda d’energia a incrementat dràsticament durant els últims anys, 

l’anàlisi energètic en els processos industrial ha guanyat molt interès. Es per tant, que en 

aquesta segona part de la Tesis està enfocada en el disseny òptim de cicles 

termodinàmics. En aquesta secció s’han publicat dos articles. En el primer dels articles 

d’aquesta segona part es presenta un mètode per el disseny òptim de cicles d’absorció 

d’ammonia-aigua a condicions de refredament i de refrigeració, tenint en compte l’anàlisi 

econòmic i ambiental. El problema es plantejat com un problema de programació no-

lineal entera amb multiples objectius i es resolt amb una estratègia d’aproximació 

exterior. En el segon article, s’aplica una estratègia similar al primer però a diversos cicles 

termodinàmics. En aquest article es demostren les capacitats del mètode amb diversos 

cicles termodinàmics. Entre ells un cicle Rankine de 10 MW modelat en Aspen Hysys® i un 

cicle d’absorció d’ammonia-aigua de 90 kW modelat en Aspen Plus®. 

La producció de biocombustibles segueix creixent a nivell mundial a una gran velocitat. 

Per tant, en la tercera part d’aquesta Tesis, hem aplicat tècniques matemàtiques a 

desenvolupar processos de producció de biocombustibles. Aquesta tercera part inclou 

novament dos publicacions. En el primer treball s’adreça el problema de reduirl impacte 

ambiental de les plantes de producció de biodiesel mitjançant la inclusió de panels solar 

per la generació del vapor utilitzat en la planta. Per dur a terme l’estudi s’utilitza un 

model de sistemes d’energia solar que inclou emmagatzematge d’energia implementat 

en GAMS®. Aquest model es combinat amb un model de simulació rigorós Aspen Plus® de 

la planta de biodiesel. En el problema el sistema d’energia solar té en compte la 

minimització del cost i del potencial d'escalfament global de la planta. En el segon treball, 

el problema adreça el disseny multi-objectiu d’una planta de producció de bio etanol 

combinada amb un sistema de panels solars per la generació de vapor en la planta.  

En general, es pot considerar que la Tesis presenta un marc interessant en l’àmbit del 

disseny òptim de processos sostenibles. Els resultants numèrics mostren com es possible 

aconseguir millores ambientals i econòmiques utilitzant aquest procés rigorós. 

Addicionalment, aquest mètode ha estat aplicat a diferents tipus de processos com: 

bioprocesos, cicles termodinàmics i bio combustibles. Aquest mètode serà molt útil per 

els prenedors de decisions a fi d'avaluar la topologia i les condicions de funcionament en 

l'enginyeria de procés. 
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Resumen 

La sociedad es cada día más consciente de la escasez i los cambios ambientales. Por lo 

que las empresas químicas tienen la necesidad de adaptarse y desarrollar procesos 

químicos más sostenibles. Entonces se ha creado una clara demanda dentro de la 

comunidad científica en desarrollar herramientas sistemáticas para conseguir reducciones 

en los costos y en el impacto ambiental de los procesos químicos. 

Esta Tesis introduce un nuevo mecanismo para el diseño de procesos químicos más 

sostenibles. El sistema que se presenta esta basado en el uso combinado de simulación 

de procesos, herramientas de optimización multi objetivo, análisis económico, análisis de 

ciclo de vida i sistemas de soporte a la toma de decisiones. La estrategia presentada es 

utilizada en la resolución de problemas complejos, por lo que será también necesario 

desarrollar nuevos algoritmos y estrategias de descomposición para dividir el problema 

original, en sub-problemas los cuales serán más manejables, para obtener el diseño 

óptimo del proceso.  

La Tesis es presentada utilizando seis artículos que han estado publicados en diferentes 

revistas científicas internacionales. La primera parte, la cual incluye dos publicaciones, 

esta enfocada en el diseño de bioprocessos sostenibles, ya que estos procesos han 

ganado mucho interés en el mercado debido a su alto valor. En el primer trabajo, se ha 

estudiado la maximización del Valor Actual Neto en la producción de l’amino-acido L-

Lyisne. El problema es formulado como un problema de optimización dinámica entera 

mixta, el cual es solucionado mediante un método de descomposición que itera entre los 

sub-problemas esclavo i maestro. La optimización dinámica del problema esclavo es 

resulta mediante un algoritmo secuencial que integra el simulador de proceso (SuperPro 

Designer®) con un solver de problemas de programación no lineal implementado en 

Matlab®. En el segundo artículo, el problema de optimización permite una resolución 

conjunta de los aspectos económicos y ambientales del proceso. En este caso se optimiza 

el Valor Actual Neto conjuntamente con diferentes indicadores ambientales. La solución 

del problema es presentada mediante diferentes curvas de Pareto, y en ellas se aplica el 

análisis de componentes principales. 
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Debido a que la demanda de energía a incrementado drásticamente durante los últimos 

años, el análisis energético en los procesos industriales ha ganado mucho interés. Es por 

eso que en esta segunda parte de la Tesis nos enfocamos en el diseño óptimo de ciclos 

termodinámicos. En esta sección se han publicado dos artículos. En el primero de los 

artículos de esta segunda parte se presenta un método para el diseño óptimo de ciclos de 

absorción de amonio-agua a condiciones de enfriamiento y de refrigeración, teniendo en 

cuenta el análisis económico y ambiental. El problema es planteado como un problema 

de programación no-lineal entera con múltiples objetivos. En el segundo, aplica una 

estrategia similar al primero pero a diversos cicles termodinámicos. En este se 

demuestran las capacidades del método con diversos ciclos termodinámicos. Entre ellos 

un ciclo Rankine de 10 MW modelado en Aspen Hysys® y un cicle de absorción de 

amonio-agua de 90 kW modelado en Aspen Plus®. 

La producción de biocombustibles sigue creciendo a nivel mundial a una gran velocidad. 

Por tanto, en la tercera parte de la Tesis, hemos aplicado herramientas matemáticas a 

desarrollar procesos de producción de biocombustibles. Esta tercera parte incluye 

nuevamente dos publicaciones. En el primer trabajo el problema es el de reducir el 

impacto ambiental de les plantas de producción de biodiesel mediante la inclusión de 

paneles solares para la generación de vapor utilizado en planta. Para realizar este estudio 

se utiliza un modelo de sistemas de energía solar en GAMS®. Este modelo es combinado 

con un modelo de simulación riguroso Aspen Plus® de la planta de biodiesel. En el 

problema el sistema de energía solar tiene en cuenta la minimización del coste y del 

potencial de calentamiento global de la planta. En el segundo trabajo, el problema es el 

diseño multi-objectivo de una planta de producción de bioetanol combinada con un 

sistema de paneles solares para la generación de vapor en la planta.  

En general, se puede considerar que la Tesis presenta un marco interesante en el ámbito 

del diseño optimo de procesos sostenibles. Los resultados numéricos muestran cómo es 

posible conseguir mejoras ambientales y económicas utilizando estos procesos rigurosos. 

Adicionalmente, este método ha sido aplicado a diferentes tipos de procesos com0: 

bioprocesos, cicles termodinámicos i biocombustibles. Este método será muy útil para los 

tomadores de decisiones a fin de evaluar la topología y las condiciones de 

funcionamiento en la ingeniería de proceso. 
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Summary 

The society is every day more conscious about the scarce of resources, the global 

economy, and environmental changes. Hence, chemical companies have the necessity to 

be adapted and develop more sustainable processes. There is a clear demanding to the 

scientific community to develop systematic tools to achieve reductions in the production 

costs as well as the associated environmental impact in order to develop decision support 

tools for the design of chemical plants. 

This thesis introduces a novel framework for the optimal design of sustainable chemical 

processes. Our approach combines process simulation, multi-objective optimization tools 

(MOO), economic analysis, life cycle assessment (LCA) and decision support systems 

(DSS). The developed strategy will be used to solve very complex problems. For that it will 

be necessary to develop new algorithms and decomposition strategies to divide the 

original problem in more manageable sub-problems, to obtain the optimum design of the 

process. The capabilities of the methodology will be tested in different processes along 

the Ph.D Thesis. 

This PhD dissertation is presented using six articles that have been published in different 

international peer reviewed journals. The first part, which includes two publications, is 

focused in the development of sustainable bioprocesses, as these processes have recently 

gained wider interest for their potential to produce high-value products. In the first work, 

we studied the maximization of the Net Present Value (NPV) in the production of the 

amino acid L-lysine. The design task is mathematically formulated as a MIDO problem, 

which is solved by a decomposition method that iterates between primal and master sub-

problems. The dynamic optimization primal sub-problems are solved via a sequential 

approach that integrates the process simulator SuperPro Designer® with an external NLP 

solver implemented in Matlab®, while the task of the master problem is to decide on the 

value of the integer variables. In the second work, the optimization allows for the 

simultaneous consideration of economic and environmental concerns. We optimize in 

this case the economic (NPV) and different environmental indicators. The solution is given 

by various bi-objective Pareto sets, and then we applied principal component analysis 
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(PCA) in order to find redundant objective functions between the environmental 

indicators. 

Because the energy demand has drastically increased over the last few years, the 

energetic analysis of industrial processes has gained wider interest. Hence, we focused in 

the second part of the thesis in the optimal design of thermodynamic cycles. In this 

section, we published two papers. In the first article of the second part we present a 

method for the optimal design of ammonia-water absorption cycles for cooling and 

refrigeration applications with economic and environmental concerns. The design task is 

posed as a moMINLP and it is solved with an outer-approximation (OA) strategy. In the 

second article, we expand our work to different thermodynamic cycles.  We demonstrate 

the capabilities of the approach with a 10 MW Rankine cycle modelled in Aspen Hysys® 

and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus®. 

Biofuels production worldwide is continuing to grow at very rapid pace. Hence, in the 

third part of the thesis, we applied the techniques developed in different biofuels 

production processes. This third part includes two publications. In the first work  

we address the problem of reducing the environmental impact of biodiesel plants 

through their integration with a solar thermal energy system that generates steam. A 

mathematical model of the solar energy system that includes energy storage is 

programmed and coupled with a rigorous simulation model of the biodiesel facility 

developed in Aspen Plus®. The solar energy system accounts for the simultaneous 

minimization of cost and global warming potential. In the second work, we address MOO 

of a corn-based bioethanol plant coupled with solar assisted steam generation system 

with heat storage. Our approach relies on the combined use of process simulation, 

rigorous optimization tools and, economic and energetic plant analysis. 

Overall, we can consider that this thesis presents an interesting framework for the 

optimal design of sustainable chemical processes. Numerical results show that it is 

possible to achieve environmental and cost saving using this rigorous approach. 

Additionally, this approach has been applied in very different type of processes, such as: 

bioprocesses, thermodynamic cycles and biofuels. This methodology will be very useful 

for decision-makers in order to evaluate the topology and operating conditions in process 

system engineering. 
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1. Introduction 
 

1.1. Research scope and objectives 
 

Sustainability has recently gained wider interest in process systems engineering (PSE). 

As a result, intensive research effort is currently being devoted towards the 

incorporation of environmental criteria in the decision-making process. This general 

trend has motivated the development of systematic strategic for quantifying and 

minimizing the environmental impact of process industries (Grossmann & Guillén-

Gosálbez, 2010).   

The main approaches to synthesizing standard chemical process flowsheets are based 

on (1) the use of heuristics (e.g. hierarchical decomposition (Douglas 1988)), (2) the 

development of physical insights (e.g. pinch analysis (Linnhoff, 1993)), and (3) the 

optimization of superstructures (Grossmann, Caballero & Yeomans, 1999).  

The overwhelming majority of the works in the optimization of superstructures follow 

the so called simultaneous approach, which relies on formulating algebraic 

optimization models described in an explicit form. For simplicity purposes, most of 

these formulations contain short-cut models that avoid the numerical difficulties 

stemming from highly nonlinear equations. These simplified formulations provide 

“good” approximations when certain assumptions hold, but can lead to large 

numerical errors otherwise. Sequential process simulation models are more difficult to 

optimize due to the presence of nonconvexities of different types, but provide more 

accurate results. The pivotal idea of the simulation-optimization methods is also used 

in a variety of chemical engineering applications, including the design of systems such 

as: heat exchangers and chemical reactions (Diwekar et al. 1992; Reneaume et al. 

1995; Kravanja & Grossmann 1996), design of chemical plants (Díaz and Bandoni 1996; 

Kim et al. 2010) and distillation columns (Caballero et al. 2005). An efficient solution 

method is presented for tackling these problems based on decomposing them into two 

sub-levels between which an algorithm iterates until a stopping criterion is satisfied. 
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This algorithm performs the calculations using both a process simulation and an 

external optimizer.  However this strategies it was never used for minimizing the 

environmental impact. 

At this point there still very few papers that have reported the use of process synthesis 

techniques with the explicit incorporation of sustaianablity issues. The combined use 

of optimization tools and environmental impact indicators, has recently attracted an 

increasing attention in PSE. This approach, was formally introduced by Azapagic and 

Clift (1999a). This methodology couples life cycle assessment (LCA) principles, used to 

quantify the environmental performance of a process, with multi-objective 

optimization (MOO) tools. Examples of this general approach can be found in the 

works by Azapagic and Clift (1999b) (production of boron compounds), Alexander et al. 

(2000) (nitric acid plant), Kahn et al.(2001) (production of vinyl chloride monomer), 

Baratto et al. (2005) (design of auxiliary power units), Carvalho et al. (2006) (design of 

a methyl tertiary butyl ether plant), Guillen-Gosalbez et al. (2008) (optimization of the 

hydrodealkylation of toluene), Gebreslassie et al. (2009) (design of absorption cooling 

systems),Kikuchi et al (2010) (production of biomass-derived polypropylene), and the 

design of chemical supply chains (Hugo and Pistikopoulos 2005, Guillen-Gosalbez and 

Grossmann 2009), among some others. 

In particular this thesis will focus on introducing a methodology for processes synthesis 

based on the combined use of process simulation, multi-objective optimization tools 

(MOO), economic analysis, life cycle assessment (LCA) and decision support systems 

(DSS). The developed strategy will lead to complex formulations, such as: mixed-

integer non-linear programming (MINLP) and mixed-integer dynamic optimization 

(MIDO). New algorithms and decomposite strategies will be devised in order to 

expedite their solution. The capabilities of the methodology will be tested in different 

chemical process along the Ph.D Thesis; firstly it is study the optimal design of 

biotechnological facilities, the second part is focused in the study of thermodynamic 

cycles, then we move to the economic, environmental and enegetic balance of biofuel 

production process, the fourth part is focused in the optimization and heat intgreation 
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of basic chemicals manufacture process, and finally we optimize a wastewater 

treatment plant. 

This thesis aims is providing a novel framework for the optimal design of sustainable 

chemical process, which will be useful for decision-makers in order to take chemical 

process operation and topological design. Therefore, such general aim can be 

formalized in four specific objectives as follows: 

   

• Propose a novel framework based on the combined use of process simulation, 

multi-objective optimization tools (MOO), economic analysis, life cycle 

assessment (LCA) and decision support systems (DSS). 

• Implement a method which is able to achieve significant reductions in their 

production costs along with the associated environmental impact.  

• Developed new algorithms and decomposition strategies in order to expedite 

the solution of the problem.  

• Use the approach presented in different type of chemical processes, such as: 

bioprocesses, thermodynamic cycles and biofuels. 

 

1.2. Chemical process design 

The main goal of a process chemical engineer is to create and design processes to 

manufacture chemicals. The process design task is very important for the company 

because it incurs in the 80% of the subsequent costs of the project. In the past, the 

major approaches in process design were based on rules of thumb and the major goal 

was to reduce the plant cost. However, more recent trend has been present more 

rigorous methods based on mathematical programming techniques. Additionally, we 

now focus in the design of environmentally conscious chemical process taken also into 

account the economic analyses of the plant. 

Chemical plant 

Chemical plants are a series of ordered operations that take raw materials and convert 

them into desired products, salable by-products and unwanted wastes. See Figure 1. 
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Figure 1. Chemical process 

 

The main chemical processes operations are: feed storage, feed preparation, reaction, 

product purification and product packaging. However, among these main steps there 

are many different unit procedures and equipments, such as: tanks, mixers, splitters, 

separators, heat exchangers, columns, reactors, pumps, compressors, etc. 

 

Classification of chemical processes 

Normally, the chemical processes are classified based on the type of chemical 

component that you produce. The main chemical processes in the industry are: basic 

chemicals, fuel processing, biofuels processing, plastic processing, consumer goods, 

bioprocesses, waste water treatment, mineral processing, air pollution, pulp and 

paper, pharmaceutical, thermodynamic cycles and others. In this PhD dissertation we  

used three different types of chemical processes to test and present the systematic 

method developed. The processes that we used are: bioprocesses, thermodynamic 

cycles and biofuel processing: 

 

• Bioprocess can be seen as a special type of chemical processes that employs 

microorganisms to produce a wide variety of biochemical products (antibiotics, 

proteins, amino acids, enzymes, etc). Although they share some common features 

with general chemical processes, typical bioprocesses differ in process structure 

and operating constraints when compared with the former ones (Heinzle et al., 

2006a). 
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• Energy, we focused here in absorption cycles and Rankine power cycles. 

Absorption cycles use a mixture of a refrigerant and an absorbent. The most widely 

employed mixtures are water-lithium bromide (water as refrigerant) and ammonia-

water (ammonia as refrigerant). Absorption cooling systems may use low grade 

heat sources as energy input in order to produce cooling thereby leading to less 

global warming emissions. Rankine power cycles most commonly uses water, 

although other types of inorganic (ammonia, ammonia/ water, etc) and organic 

fluids (hydrocarbons, fluorocarbons, siloxanes, etc) can be used. The main 

advantage of organic working fluids in Rankine cycles is that they can be driven at 

lower temperatures than similar cycles using water and also in many cases 

superheating is not necessary.  

• Biofuels are aimed at replacing mainly the conventional liquid fuels like diesel 

and petrol. The two most common and successful biofuels are biodiesel and 

bioethanol. They are classified as primary and secondary. The 1
st

  generation 

biofuels are usually produced from sugars grains or seeds and requires a simple 

process to produce biofuel. The 2
nd

  generation liquid biofuels are produced from 

lignocellulosic biomass, that means that are using non-edible residues of food 

crop production and non-edible whole plant biomass, so has the advantage to 

limit the direct food versus fuel competition, a problem associated to the 1
st

  

generation. The use of 3
rd

  generation biofuels specifically derived from microbes 

and microalgae, therefore, is considered to be a viable alternative energy 

resource without the associated problems that using first and second-generation 

biofuels bring. 

1.3. Chemical process modeling and simulation 

In PSE modeling is of paramount importance. Flexible modeling environments will be 

required that can accommodate a greater variety of models, ranging from molecular 

level to macroscopic systems. This implies being able to pose from the simple algebraic 

to the more complex partial differential algebraic models, both in pure equation form 

and with mixed procedures. The capability of automating problem formulation 
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through higher level physical descriptions should also be an area of potentially great 

impact. 

Process simulation is used to determine the size of equipment in a chemical plant, the 

amount of energy needed, the overall yield, and the magnitude of the waste streams. 

Because the results of process simulation depend upon thermodynamics and transport 

processes, the mathematical models are complicated and would be time-consuming to 

solve without a computer. 

1.3.1. Process simulators 

Exist a wider variety of commercial process simulators, some of the with powerful 

tools for the calculation of industrial processes, with a large data base, equipment 

embedded models and libraries for the thermodynamic blanaces. Some of these 

process simulators are: Aspen Plus (Aspen Technologies, USA), Hysys (Hyprotech, 

Canada), SuperPro Desginer (Intelligen, USA), Chemcad (Chemistations, USA) and Pro II 

(Simulation Sciences, USA). 

• Aspen Plus is a market-leading process modeling tool for conceptual design, 

optimization, and performance monitoring for the chemical, polymer, specialty 

chemical, metals and minerals, and coal power industries. 

• Aspen Hysys is a market-leading process modeling tool for conceptual design, 

optimization, business planning, asset management, and performance monitoring 

for oil & gas production, gas processing, petroleum refining, and air separation 

industries. 

• SuperPro Designer facilitates modeling, evaluation and optimization of integrated 

processes in a wide range of industries (Pharmaceutical, Biotech, Specialty 

Chemical, Food, Consumer Goods, Mineral Processing, Microelectronics, Water 

Purification, Wastewater Treatment, Air Pollution Control, etc.). The combination 

of manufacturing and environmental operation models in the same package 

enables the user to concurrently design and evaluate manufacturing and end-of-

pipe treatment processes and practice waste minimization via pollution prevention 
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as well as pollution control.  SuperPro Designer is a valuable tool for engineers and 

scientists in process development, process engineering, and manufacturing. It is 

also a valuable tool for professionals dealing with environmental issues (e.g., 

wastewater treatment, air pollution control, waste minimization, pollution 

prevention). SuperPro provides under a single umbrella modeling of manufacturing 

and end-of-pipe treatment processes, project economic evaluation, and 

environmental impact assessment. 

 

1.4. Sustainability assessment 

Sustainability has recently emerged as a key issue in PSE. Nowadays, three dimensions 

(economic, environmental, and social development) constitute sustainability. 

 
Figure 2. The three pillars of sustainability 

 

1.4.1. Economic assessment 

We provide a basic description of economic assessment and several tools for cost and 

profitability analysis that are usually applied during process development. There are 

already a number of books, especially in the chemical engineering field, that cover cost 

and profitability assessment in detail. 

As the objective function for our problem, we normally use the maximization of the 

net present value (NPV) or the minimization of the total annualized cost (TAC). In both 

cases the first step is the estimation of the capital cost, which includes the plant 

investment and operating costs. 
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1.4.1.1. Capital-cost estimation 

Capital cost is the total amount of money that has to be spent to supply the necessary 

plant, plus the working capital that is handed for the operation of the facility. 

 

1.4.1.2. Capital Investment Costs 

The capital investment cost estimation is based on the cost of the necessary 

equipment for the process. The most accurate estimate is to obtain a quote from a 

vendor, however for conceptual designs we normally use equipment correlations 

costs. Additionally to the price of the piece of equipment, sometimes we have also to 

add the cost of transportation and installation. Moreover we have also to take into 

account if there are auxiliary equipments that are necessary. Finally the estimation of 

the total includes part of the equipment costs, the installation, process piping, 

instrumentation/control, insulation, electrical systems, building, yard improvement 

and auxiliary facilites.  And the engineering, construction and land. 

 

Operating costs 

Operating costs can divided into variable, fixed and plant overhead costs. Variable 

costs largely depend on the amount of product that is produced. In contrast, the fixed 

costs are largely independent of the production operations. However, there are 

additional expenses necessary to run a plant, e.g. storage facilities or safety 

measurements. These expenses are summarized under the plant overhead costs or 

factory expenses. 

• Raw materials: The list of raw materials and the amounts consumed are 

obtained from the material balance of the process. The raw material cost is 

derived by multiplying the amount by its prices.  

• Utilities: The energy is provided mainly by electricity, steam and cooling water. 

• Others: Other operating costs are: consumables, labor, operating supplies, 

laboratory, waste treatment, royalty expenses. 
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1.4.1.3. Total annualized cost 

The total annualized cost (TAC) accounts for the capital cost and operating cost. 

 

1.4.1.4. Revenues 

The revenue is the sum of all sales of the main and side products of a process within a 

certain time period. For a single-product facility. 

 

1.4.1.5. Profitability analysis 

There are a number of indices that are used to evaluate the profitability of a process. 

 

• Gross profit, is the annual revenue rj minus the annual total product cost cj. 

 

jjj crG −=  

 

• Net profit, is the gross profit minus the income tax. 

 

)1·()1()·( φφ −=−−= jjjj GcrN  

 

• Net cash flow, is the sum of net profit and the depreciation dj. 

 

jjj dNA −=  

 

• Return of investment, is the ratio of profit to investment and measures how 

effectively the company uses its invested capital to generate profit. It is usually 

calculated using the net profit and the total capital investment (TCI) and is 

shown as a percentage value: 

 

100·
TCI

N
ROI

j
=  

 

• Payback period (PBP), is the length of time necessary to pay out the capital 

investment by using the annual net cash flow that returns to the company’s 

capital reservoir. 

 

jA

DFC
PBP =  

 

• Net present value (NPV), considers the time-value of the earned money. 
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1.4.2. Environmental assessment 

The increased awareness of the importance of environmental protection, and the 

possible impacts associated with products, both manufactured and consumed, has 

increased interest in the development of methods to better understand and address 

these impacts. One of the techniques being developed for this purpose is life cycle 

assessment (LCA). 

The LCA methodology serves two major purposes. The first one is to quantify and 

evaluate the environmental performance of a process from “cradle-to-grave” in order 

to help decision makers to choose between different processes and processing routes. 

The second one is to assist in the identification of alternatives for environmental 

improvements. This second goal is particularly important for process designers, as it 

helps to identify possible modifications to reduce the environmental impact of the 

system.  

 

The LCA methodology (ISO 14040. 1997) that enables the computation of the 

environmental impact of the process is applied in four phases (Consoli et al. 1993): 

 

1. Goal and scope definition. This is the first stage of the LCA. At this point, we must 

define the system boundaries of the system, the functional unit, the methodology 

used to quantify the impact and the data and assumptions required to perform the 

LCA. In this work we address the analysis of a bioprocess production plant. The 

functional unit of the system is a fixed amount of final product. The environmental 

impact is assessed according to the Eco-indicator 99 methodology (Consultants 2000), 

which follows LCA principles. 

 

2. Life cycle inventory analysis (LCI). This phase quantifies the input and output flows 

(i.e., life cycle inventory, denoted by the continuous variable LCIb) associated with the 

operation and construction of the cycles. The damage during the operation phase is 

given by the natural gas and electricity consumption rates, which are retrieved from 

the process simulation. This information is translated into the corresponding LCI using 

environmental databases. The LCI of the construction phase is approximated by the LCI 
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of the mass of steel contained in the process units. This LCI is determined from some 

variables of the simulation models using sizing correlations. 

  

3. Life Cycle Impact Assessment (LCIA). This phase translates the LCI into the 

corresponding environmental damages (denoted by the continuous variable DAMd). 

Damage factors (dfbd) for different environmental burdens (i.e., LCI entries) are 

available in the literature (Pre-consultants et al., 2000). 

 

dLCIdfDAM
b

bdbd ∀=∑ ·,  

4. Life cycle Interpretation. In this phase, the LCA results are analyzed and a set of 

conclusions and recommendations are formulated. In this work, this step is carried out 

in the post optimal analysis of the optimal solutions found.  

 

LCA does not provide any systematic procedure to generate alternatives for 

environmental improvements. To overcome this drawback, it has been proposed in the 

literature to couple LCA with optimization tools (Azapagic and Clift 1999a). One of the 

limitations of the combined use of LCA and optimization techniques is that the 

complexity of the solution methods for MOO grows rapidly in size with the number of 

objectives. In this paper, we explore the use of PCA in order to ameliorate the 

complexity of the problem. 

 

1.4.3. Assessing social aspects 

In order to identify relevant social and to compile a set of indicators, four basic 

perspectives on technology assessment have been taken into consideration. The 

typical indicators are: health and safety, quality of working conditions, employment, 

education training, knowledge management, innovation potential, product acceptance 

and societal benefit and societal dialogue. 

However none of these indicators it is used yet in the optimization environment for 

plant design. 
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1.4.4. Interactions between the different sustainability dimensions 

The plant capacity is defined for an expected market demand and development that 

many be interpreted in a societal context and has a strong impact on the economic 

success of process. The economic success is also influenced by the technological 

development of the company and its competitors. The general economic development 

influences product sales, which also has a strong social component. Furthermore, 

government policies and legal constraints have an effect on the process.  

 

1.5. Optimization theory and methods 

 
In this thesis, the decision making process for the optimal design of sustainable 

chemical process is tackled by means of optimization, also termed as mathematical 

programming. Indeed, optimization is a wide discipline which aims at systematically 

finding the best solution of a problem, represented as variable values, according to 

specified criteria, expressed in terms of objective functions, by fulfilling, if necessary, a 

given set of constraints. Therefore, the problem representation must be firstly 

formalized, specifically as a mathematical mode, and next optimized. 

Regarding mathematical models, they can be classified according to different features. 

For example, deterministic models are those whose parameter values are assumed to 

know with certainty, whereas stochastic models involve quantities known only in 

probability. Additionally, models may be either lineal or non-lineal, in the former case 

the model equations are algebraic expressions which may contain constants and the 

product of a constant and a single variable, whereas in the latter, non-linear functions 

are also included. Moreover, they may be classified as dynamic or static, depending on 

whether the variables change over time or not, respectively. 
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Table 1. Classification of mathematical programming techniques 

 Variables Equations Nº OF 
Diff eq. 

 Discrete Continuous Linear Non linear 1 >1 

Linnear programming (LP) N Y Y N Y N N 

Mixed integer linear 

programming (MILP) 

Y Y Y N Y N N 

Non linear programming 

(NLP) 

N Y O Y Y N N 

Mixed integer non linear 

programming (MINLP) 

Y Y O Y Y N N 

Dynamic optimization 

(DO) 

N Y O O Y N Y 

Mixed integer dynamic 

optimization (MIDO) 

Y Y O O Y N Y 

Multi-objective 

optimization (MOO) 

O Y O O N Y O 

 

1.5.1. Features of mathematical programming 

The general expression of mathematical programming problem is given by the 

following equation: 
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Where f(x,y) represents the objective function. Equations h(x,y)=0 and g(x,y)≤0 are 

explicit external constraints added to the problem. The continuous design variables are 

given by x, and y represents discrete variables. 

In general, three basic steps may be identified when formulating a mathematical 

problem: (i) identifying all restrictions and formulating all corresponding constraints in 

terms of linear, non linear or dynamic equations equalities or inequalities; and (iii) 

identifying and formulating the objective(s) as function of the decision variables to be 

optimized (either minimized or maximized). 

 

1.5.2. Rigorous optimization methods 

Continuous optimization includes linear programming (LP) and non-linear 

programming (NLP). Discrete problems are classified into mixed-integer linear 

programming (MILP) and mixed-integer non-linear programming (MINLP). 
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Linear programming (LP) 

LP problems are when all decision variables are continuous and the objective function 

and constrains of the problem are linear function of the decision variables. 
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The standard method to solve (LP) is the simplex method (Dantzing ,1963), although 

interior point methods have become quite advanced and competitive for highly 

constrained problems (Wright, 1996).  

Many refinements have been developed over the last three decades for the simplex 

method, and most of the current commercial computer codes (e.g., OSL, CPLEX, 

LINDO) are based on this method. 

 

Non linear programming (NLP) 

In this case, the problem corresponds to equation 3.3, where in general f(x), h(x), g(x) 

are nonlinear functions. 
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A key characteristic of problem (NLP) is whether it is convex or not. If NLP is a convex 

problem, than any local solution is also a global solution to NLP. If it is not convex the 

algorithm can only satisfies local solutions.  

 

The more efficient NLP methods solve this problem by determining directly a point 

that satisfies the Karush-Kuhn-Tucker conditions. Within constrained nonlinear 

optimization programs, three main numerical algorithms can be distinguished: 

• Sequential quadratic programming (SQP). It is one of the most popular NLP 

algorithm because it has fast convergence properties and can be tailored to a 
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wide variety of problem structures. Some examples of commercial codes which 

apply the SQP algorithm are fmincon or SNOPT. 

• Interior point methods. This method relaxes the complmentary conditions and 

solves a set of relaxed problems. Some commercial codes are IPOPOT or 

KNITRO. 

• Nested projection methods. These methods are useful for NLPs with nonlinear 

objectives and constraints where it is important for the solver to remain close 

to feasible over the course of iterations. MINOS, CONOPT or LANCELOT are 

available codes based on nested and gradient projection. 

 

Mixed integer linear programming (MILP) 

This is an extension of the LP problem where a subset of the variables is restricted to 

integer values (most commonly to 0-1). The general form of the MILP problem is given 

by, equation 3.3. 
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Two powerful solution procedures for MILP are the Branch and Bound (B&B), and the 

Cutting Plane methods. Specifically, the B&B method consists of an implicit 

enumeration approach and it is the most effective and widely used technique for 

solving MILP. The B&B method starts with solving the LP relaxation. If the optimal 

solution to the relaxed LP is integer-valued, the optimal solution to the LP relaxation is 

also optimal to the MILP. However, such condition is mostly unlikely and the MILP is 

partitioned into a number of subproblems that are generally smaller in size or easier to 

solver than the original problem. In contrast, the basic idea of the Cutting Plane 

method consists of changing the boundaries of the convex set of the relaxed LP 

feasible region by adding cuts, i.e. additional linear constraints, so that the optimal 

extreme point becomes all-integer when all such cuts are added. Therefore, when 

enough such cuts are added, the new optimal extreme point of the sliced feasible 

region becomes all-integer, and is optimal to the MILP. 
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CPLEX is one of the most sophisticated existing packages for integer programming. 

Other computer packages are OSL, LINDO or ZOOM. 

 

Mixed integer non-linear programming (MINLP) 

MINLP models typically arise in synthesis and design problems, and in planning and 

scheduling problems. MINLP problems are usually the hardest to solve unless a special 

structure can be exploited. The following particular formulation, which is linear in the 

0-1 variables and linear/nonlinear in the continuous variables. 
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In these MINLP formulations, continuous variables are used to represent the materials 

and energy flows as well as operating conditions (temperatures, pressures, 

concentrations, etc.) whereas binary variables are employed to denote the existence 

of the equipment units. The resulting MINLP formulations can be solved by methods 

such as branch and bound (BB) (Borchers and Mitchell 1994), Generalized Benders 

Decomposition (GBD) (Geoffrion 1972), outer-approximation (OA) (Duran and 

Grossmann 1986), extended cutting planes (Westerlund and Petterson 1995) and 

LP/NLP based branch and bound (Quesada and Grossmann 1992). 

 

1.5.3. Dynamic optimization 

Chemical processes are modeled dynamically using DAEs, consisting of differential 

equations that describe the dynamic behavior of the system, such as mass and energy 

balances, and algebraic equations that ensure physical and thermodynamic relations. 

Typical applications include control and scheduling of batch processes; startup, upset, 

shutdown and transient analysis; safety duties and the evaluation of control schemes. 

 

Mixed integer dynamic optimization (MIDO) problem 

In mathematical terms, a MIDO problem can be posed as follows: 
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In this formulation, hd=0 and ha=0 represent the system of differential-algebraic 

equations (DAEs) that describe the dynamic system whose initial conditions are h0=0. 

hp=0 and gp≤0 enforce conditions that must be satisfied at specific time instances, 

whereas hq=0 and gq ≤0 are time invariant equality and inequality constraints, 

respectively. xd(t) and xa(t) denote the differential state and algebraic variables of the 

dynamic system,  u(t) is the vector of time-varying control variables, d is the vector of 

time-invariant continuous search variables and y are the binary variables, which in our 

case are assumed to be time invariant.  

 

1.5.3. Computer solving algorithms 

One of the most important tools of this work is the computer solving algorithms used 

to solve the problems presented. Most of the algorithms used were implemented in 

Matlab (i.e. fmincon and fminsearch), in Tomlab but executed in Matlab (i.e. SNOPT, 

CONOPT, CPLEX) or in Gams (i.e. SNOPT, CONOPT and CPLEX). 

In the 1st article is used an Outer-approximation (OA) strategy which decomposes the 

problem into levels a primal NLP and a master MILP. The primal NLP was solved using 

fmincon and the master MILP with CPLEX implementd in Gams. In the 2nd article 

similar OA strategy is used but in this case the NLP was solved using SNOPT and the 

MILP with CPLEX with CPLEX but implemented in this case in Tomlab. Similar strategy is 

used to solve the moMINLP in the 3rd article. In the 4th article we used SNOPT to solve 
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the moNLP problem and SNOPT and CPLEX for the moMINLP. Finally in the articles 5
th

 

and 6
th

 is used CONOPT to solve the biNLP problems. 

 

• Fmincon attempts to find a constrained minimum of a scalar function of several 

variables starting at an initial estimate. This is generally referred to 

as constrained nonlinear optimization or nonlinear programming. 

• Fminsearch finds the minimum of a scalar function of several variables, starting at 

an initial estimate. This is generally referred to as unconstrained nonlinear 

optimization. 

• SNOPT (for 'Sparse Nonlinear OPTimizer') is a software package for solving large-

scale optimization problems written by Philip Gill, Walter Murray and Michael 

Saunders. It is especially effective for nonlinear problems whose functions and 

gradients are expensive to evaluate. The functions should be smooth but need not 

be convex. 

• CONOPT has a fast method for _nding a _rst feasible solution that is particularly 

well suited for models with few degrees of freedom. If you have a model with 

roughly the same number of constraints as variable you should try CONOPT. 

CONOPT can also be used to solve square systems of equations without an 

objective function corresponding to the GAMS model class CNS - Constrained 

Nonlinear System. 

• CPLEX Optimizer solves integer programming problems, very large linear 

programming problems using either primal or dual variants of the simplex 

method or the barrier interior point method, convex and non-convex quadratic 

programming problems, and convex quadratically constrained problems (solved 

via Second-order cone programming, or SOCP). 
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1.6. Decision support systems 

 

In industry, decisions must be continuously taken under multiple and usually 

conflicting criteria. Precisely, multicriteria decision making (MCDM) is a discipline that 

deals with the methodology and theory to treat complex problems entailing conflicting 

objectives, such as cost, performance, reliability, safety, sustainability and productivity 

among other (Wiecek et al., 2008).  

Multi-objective optimization (MOO) is an area of MCDM which aims at finding suitable 

solutions of mathematical programs with multiple objectives. This thesis applies 

multiobjective programming techniques to obtain solutions of multiobjective 

problems, and uses some criteria of multiple criteria decision analysis to reach 

objectively good solutions. 

For the calculation of the Pareto set, two main methods exist in the literature. These 

are the Є-constraint and the weighted-sum methodology. 

 

1.5.4.1. Є-constraint methodology 

This method is based on formulating an auxiliary model (MA), which is obtained by 

transferring one of the objectives of the original problem (M) to additional constraints. 

This constraint imposes an upper limit on the value of the secondary objective. Model 

(MA) is then solved for different values of the auxiliary parameter Є in order to 

generate the entire Pareto set of solutions. 

Thus, if (MA) is solved for all possible values of Є and the resulting solutions are 

unique, then these solutions represent the entire Pareto set of solutions of the original 

multi-objective problem. If the solutions to MA are not unique for some values of Є, 

then the Pareto points must be picked by direct comparison. 

 

1.5.4.2. Weighting-sum methodology 

The fundamental philosophy of the adaptive weighted sum method is to adaptively 

refine the Pareto front. In then first stage, the method determines a rough profile of 

the Pareto front. By estimating the size of each Pareto match (line segment in the case 
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of two-dimensional problems), the regions for further refinement in the objective 

space are determined. In the subsequent stage, only these regions are specified as 

feasible domains for sub-optimization by assigning additional constraints. In the bi-

objective adaptive weighted sum method, the feasible domain for further exploration 

is determined by specifying two inequality constraints. The usual weighted sum 

method is then performed as sub-optimization in these feasible domains obtaining 

more Pareto optimal solutions. When a new set of Pareto optimal solutions are 

determined, the Pareto patch size estimation is again performed to determine the 

regions for further refinement. 
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Abstract

In this work, we present a systematic method for the optimal development of bio-

processes that relies on the combined use of simulation packages and optimization

tools. One of the main advantages of our method is that it allows for the simultane-

ous optimization of all the individual components of a bioprocess, including the main

upstream and downstream units. The design task is mathematically formulated as a

mixed-integer dynamic optimization (MIDO) problem, which is solved by a decom-

position method that iterates between primal and master sub-problems. The primal

dynamic optimization problem optimizes the operating conditions, bioreactor kinet-

ics and equipment sizes, whereas the master levels entails the solution of a tailored

mixed-integer linear programming (MILP) model that decides on the values of the in-

teger variables (i.e., number of equipments in parallel and topological decisions). The

dynamic optimization primal sub-problems are solved via a sequential approach that

integrates the process simulator SuperPro Designer with an external NLP solver im-

plemented in Matlab. The capabilities of the proposed methodology are illustrated

through its application to a typical fermentation process and to the production of the

amino acid L-lysine.

Keywords: hybrid simulation-optimization; mixed-integer dynamic optimization; biotech-

nological processes; L-lysine.
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1 INTRODUCTION

Because of their potential to produce high-value products in human health and care, biopro-

cesses have recently gained wider interest. The recent boost in competitiveness for customers

and new products experienced in this sector has created a clear need for modeling and op-

timization tools to assist decision-makers in the early stages of the process development.

A bioprocess is a special type of chemical process that produces biochemical products (e.g.

antibiotics, proteins, amino acids, etc.) from microorganisms or enzymes. Bioprocesses share

some common features with general chemical processes, but differ in their kinetics of prod-

uct formation, process structure (unit operations and procedures) and operating constraints

(Heinzle et al. 2006a).

Optimization approaches devised so far in biotechnology have primarily focused on the

bioreactor step. Cuthrell and Biegler (1989) optimized a fed-batch reactor for penicillin

production with a solution strategy based on successive quadratic programming (SQP) and

orthogonal collocation on finite elements. Carrasco and Banga (1997) addressed the dy-

namic optimization of batch and fed-batch reactors using stochastic optimization algorithms.

More recently, Banga et al. (2005) introduced a new solution method for this problem based

on control parameterization, whereas Sarkar and Modak (2005) proposed the use of genetic

algorithms in this context. For an extensive review of dynamic optimization of bioreactors,

the reader is referred to Banga et al. (2003).

Another area related with the bioreactor step that has received attention in the literature

is the optimization of metabolic networks. Raghunathan et al. (2003) addressed the data

reconciliation and parameter estimation problems in metabolic networks, whereas Guillen-

Gosalbez and Sorribas (2009) and Pozo et al. (2010) have proposed deterministic global

optimization techniques for kinetic models of metabolic networks that assist in biotechno-

logical and evolutive studies.

In contrast to these approaches, the optimization of complete bioprocesses considering all

their individual steps has received very little attention to date. This can be attributed to

3
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the fact that these problems lead to complex formulations that integrate structural and op-

erating decisions, some of which change over time. To the best of our knowledge, the work

by Groep et al. (2000), is the only one that addressed the optimization of a entire bioprocess

(i.e., production of an intracellular enzyme alcohol dehydrogenase). This pioneering work

has two main limitations: (i) it assumed a fixed plant topology; and (ii) it applied a simple

sensitivity analysis to optimize the operating variables of the process that is not guaranteed

to converge to a local (or global) optimum.

Hence, it seems clear that the rich theory available for synthesizing standard chemical pro-

cess flowsheets has not been applied to the same extent to their biochemical counterparts.

In fact, the design of bioprocess flowsheets is nowadays typically accomplished by empirical

and/or intuitive methods such as rules of thumb or simple heuristics (Petrides et al. 1996,

Koulouris et al. 2000, Wong et al. 2004 and Petrides et al. 2006) that are likely to lead to

sub-optimal process alternatives.

With this observation in mind, the aim of this paper is to present a systematic tool for the

design of bioprocesses that relies on the combined use of simulation and optimization tech-

niques. More precisely, the design task is formulated as a mixed-integer dynamic optimiza-

tion (MIDO) problem, which is solved by a hybrid simulation-optimization decomposition

method that exploits the complementary strengths of optimization tools (i.e., nonlinear pro-

gramming, NLP, and mixed-integer linear programming, MILP) and commercial bioprocess

simulators (i.e., SuperPro Designer). Our methodology has been tested using two different

examples: a typical fermentation process and the production of the amino acid L-Lysine.

2 PROBLEM STATEMENT

The problem addressed in this article can be formally stated as follows. Given are the demand

and prices of final products, cost parameters, including capital investment and operating cost

data (i.e., raw materials and utilities cost), time horizon, thermodynamic properties and per-
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formance models of the equipment units embedded in the flowsheet, including the bioreactor

kinetics. The goal of the analysis is to determine the optimal process design, including type

and size of process units (e.g., centrifuge, decanter, filtration, etc.), number of equipment

units in parallel and operating conditions (concentrations, flow rates, temperatures, etc.)

that maximize a given economic performance indicator over a specified time horizon.

In this work, we consider single-product batch plants that can operate with more than one

equipment unit (in parallel) per stage. The equipment units in parallel are assumed to be of

the same size and operating under the same process conditions. The unit yields are described

through nonlinear process models that may require the solution of differential-algebraic equa-

tions (DAEs). The operating times and batch sizes are regarded as continuous variables to be

optimized rather than as fixed parameters. It should be emphasized that many bioprocesses

follow this general pattern, such as the production of penicillin, citric and pyruvic acid,

vitamin riboflavin, human serum and insulin, monoclonal antibodies, and plasmid DNA,

among many others. It is also important to clarify that in this work the emphasis is on the

optimization of the operating conditions and topology of these processes, rather than on the

solution of the scheduling problem associated with complex bioprocess batch facilities. The

reader is referred to the review paper by Mendez et al. (2006) for more details on general

scheduling approaches, the overwhelming majority of which assume fixed operating times

and process yields.

3 MATHEMATICAL FORMULATION

Most bioreactors in commercial bioprocesses operate in batch or fed-batch mode. Thus,

the reaction kinetics of the biochemical conversions, catalysed either by single enzymes or

by cells, are the cornerstones of a bioprocess synthesis problem. The design task requires

therefore the simultaneous solution of a mixed-integer non-linear programming (MINLP)

synthesis models with embedded DAEs. This gives rise to mixed-integer dynamic optimiza-

5
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tion (MIDO) problems, the solution of which is a highly difficult task (Bansal et al. 2003).

So far, MIDO algorithms have been applied to the integrated design and control of process

plants (Pistikopoulos et al. 2004), simultaneous scheduling and optimal control of reactors

(Terrazas-Moreno et al. 2007) and optimization of hybrid systems (Allgor and Barton 1999).

However, to our knowledge, they have never been applied to the optimization of a complete

biotechnological process model.

In mathematical terms, the synthesis of biotechnological processes can be posed as a MIDO

problem. In this work, we apply the following notation taken from Bansal et al. (2003),

which may be simplified in some cases according to the features of the design problem being

addressed.

min
u(t),d,y

J(ẋd(tf ), xd(tf ), xa(tf ), u(tf ), d, y, tf )

s.t. hd(ẋd(t), xd(t), xa(t), u(t), d, y, t) = 0 ∀t ∈ [t0, tf ]

ha(xd(t), xa(t), u(t), d, y, t) = 0 ∀t ∈ [t0, tf ]

h0(ẋd(t0), xd(t0), xa(t0), u(t0), d, y, t0) = 0

hp(ẋd(ti), xd(ti), xa(ti), u(ti), d, y, ti) = 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

gp(ẋd(ti), xd(ti), xa(ti), u(ti), d, y, ti) ≤ 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

hq(d, y) = 0

gq(d, y) ≤ 0

(1)

In this formulation, hd = 0 and ha = 0 represent the set of differential-algebraic equations

(DAEs) that describe the dynamic system whose initial conditions are h0 = 0. hp = 0 and

gp ≤ 0 enforce conditions that must be satisfied at specific time instances, whereas hq = 0

and gq ≤ 0 are time invariant equality and inequality constraints, respectively. xd(t) and

xa(t) denote the differential state and algebraic variables of the dynamic system, u(t) is the

vector of time-varying control variables, d is the vector of time-invariant continuous search

variables and y are the binary variables, which in our case are assumed to be time invariant.
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Note that the embedded DAE system is required in order to model the bioreactor kinetics.

The binary variables are necessary for representing the different topological decisions, such as

the number of equipment units in parallel or the selection of different alternative units in the

process. The vector y of binary variables contains M·N components, where M represents the

different types of process units and N the maximum number of equipment units in parallel.

The component ym,n of this vector takes the value of 1 if n equipment units in parallel of

type m are selected, and 0 otherwise. Note that the logical relationships among the binary

variables describing connections and interactions between the units in the superstructure are

expressed also via constraints hq = 0.

There are currently two major approaches to solve MIDO problems. The first type relies on

converting the MIDO problem into a finite-dimensional MINLP by complete discretization

using techniques such as orthogonal collocation on finite elements (Balakrishna and Biegler,

1993). The resulting MINLP can then be solved by classical MINLP methods. The second

class of MIDO algorithms, to which the strategy presented in this work belongs, is based

on the use of reduced space methods (Allgor and Barton, 1999). These techniques rely on

decomposing the problem into a series of primal dynamic optimization sub-problems with

fixed binary variables, and master MILP sub-problems that predict new values of the binary

variables for the primal sub-problems.

In complete discretization approaches, the MINLP resulting from the discretization tends to

be very large even for relatively small problems, as this approach requires a large number of

variables and constraints in order to approximate the solution of the DAE system. On the

other hand, in reduced space methods, the difficulty arises in the definition of the master

MILP sub-problem. This master problem is typically created by either approximating the

nonlinear objective function and constraints by first order linearizations (i.e., supporting

hyperplanes) or by deriving Benders cuts from the solution of the primal problem and as-

sociated dual information. In the section that follows, we introduce a customized reduced

space method for the solution of MIDO problems arising in the design of bioprocesses that
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integrates optimization tools with a bioprocess simulator.

4 SOLUTION PROCEDURE

The solution strategy developed in this work is a reduced space method inspired by the

works by Diwekar et al. (1992), Kravanja and Grossmann (1996) and Caballero et al. (2005).

The key ideas of the approach presented are: (i) to integrate mathematical programming

tools with a standard bioprocess simulator in the context of a reduced space method for

MIDOs; and (ii) to derive a tailored master MILP formulation that exploits the structure of

the problem.

The proposed algorithm iterates between master and primal sub-problems, as shown in

Figure 1. The primal level entails the solution of a dynamic nonlinear programming sub-

problem, in which the integer decisions, mainly the number of equipments in parallel, are

fixed. As discussed in section 5, the solution of this sub-problem requires calculations per-

formed by the bioprocess simulator. On the other hand, the task of the customized master

problem is to decide on the value of the integer variables. The algorithm solves iteratively

both sub-problems until a termination criterion is satisfied. A stopping criterion that tends

to work very well in practice consists of stopping as soon as the primal sub-problems start

worsening (i.e. the current primal sub-problem yields an optimal objective function that

is worse than the previous one). The main features of these sub-problems are described in

detail in the next sub-sections.

(Figure 1 could be placed here)
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4.1 Primal sub-problem

The primal level entails the solution of a dynamic optimization problem at iteration k of the

algorithm for fixed values of the binary variable k:

min
u(t),d,y

J(ẋd(tf ), xd(tf ), xa(tf ), u(tf ), d, y, tf )

s.t. hd(ẋd(t), xd(t), xa(t), u(t), d, y, t) = 0 ∀t ∈ [t0, tf ]

ha(xd(t), xa(t), u(t), d, y, t) = 0 ∀t ∈ [t0, tf ]

h0(ẋd(t0), xd(t0), xa(t0), u(t0), d, y, t0) = 0

hp(ẋd(ti), xd(ti), xa(ti), u(ti), d, y, ti) = 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

gp(ẋd(ti), xd(ti), xa(ti), u(ti), d, y, ti) ≤ 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

hq(d, y) = 0

gq(d, y) ≤ 0

(2)

In the context of our algorithm, this primal sub-problem is solved by parameterizing the

control variables, u(t) , in terms of time-invariant parameters (reduced space discretisation

or control vector parameterisation). Then, for given u(t) and values of the remaining search

variables, d (e.g., equipment sizes, operating conditions, etc.) the DAE system is integrated

by the process simulator, which in addition to solving the bioreactor kinetics, it calculates

mass and energy balances and key economic parameters of the entire process. As will be

discussed later on, in some cases it might be necessary to introduce an intermediate module

that couples the model implemented in the bioprocess simulator with an external ODE solver

algorithm (e.g., implicit Runge-Kutta method). This allows dealing with complex kinetic

models that cannot be directly implemented in the process simulator. An external NLP

solver is finally employed for searching the values of the control and design variables that

maximize the NPV. To accomplish this task, it is necessary to obtain gradient information

with respect to the objective function and constraints through finite difference perturbations.
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(Figure 2 could be placed here)

Figure 2 outlines the solution procedure of the primal sub-problem. One of the main advan-

tages of the approach presented is that it benefits from the unit operations models already

implemented in the bioprocess simulator, which avoids having to define them in an explicit

form (i.e., equation oriented). This issue facilitates to a large extent the implementation

step, as it allows optimizing bioprocess models that are already implemented in the simu-

lator without having to define the associated process and economic equations in an explicit

way.

Note that due to the structure of the implicit models in a process simulator, the equations

hq(d, y) = 0 are eliminated by expressing dependent variables z in terms of decision vari-

ables v, that is hq(v, z, y) = 0 ⇒ z = ϕq(v). Therefore, the NLP subproblem as it arises in

a process simulator for fixed binary variables is indeed given as follows:

min
u(t),d,y

J(ẋd(tf ), xd(tf ), xa(tf ), u(tf ), v, ϕ(v), y, tf )

s.t. hd(ẋd(t), xd(t), xa(t), u(t), v, ϕ(v), y, t) = 0 ∀t ∈ [t0, tf ]

ha(xd(t), xa(t), u(t), v, ϕ(v), y, t) = 0 ∀t ∈ [t0, tf ]

h0(ẋd(t0), xd(t0), xa(t0), u(t0), v, ϕ(v), y, t0) = 0

hp(ẋd(ti), xd(ti), xa(ti), u(ti), v, ϕ(v), y, ti) = 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

gp(ẋd(ti), xd(ti), xa(ti), u(ti), v, ϕ(v), y, ti) ≤ 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

hq(v, ϕ(v), y) = 0

gq(v, ϕ(v), y) ≤ 0

(3)

A very important point in the method is that the process simulator must converge at each

time the solver sends a set of values for the design variables. Otherwise the overall procedure

will fail. One way to ensure convergence consists of adding slack variables and a penalty to
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the objective function (Viswanathan and Grossmann 1990). This gives rise to the following

primal sub-problem:

min
u(t),d,y

J(ẋd(tf ), xd(tf ), xa(tf ), u(tf ), v, ϕ(v), y, tf )

+
∏T (s+hp + s−hp + sgp + s+hq + s−hp + sgq)

s.t. hd(ẋd(t), xd(t), xa(t), u(t), v, ϕ(v), y, t) = 0 ∀t ∈ [t0, tf ]

ha(xd(t), xa(t), u(t), v, ϕ(v), y, t) = 0 ∀t ∈ [t0, tf ]

h0(ẋd(t0), xd(t0), xa(t0), u(t0), v, ϕ(v), y, t0) = 0

hp(ẋd(ti), xd(ti), xa(ti), u(ti), v, ϕ(v), y, ti) + s+hp − s−hp = 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

gp(ẋd(ti), xd(ti), xa(ti), u(ti), v, ϕ(v), y, ti)− sgp ≤ 0 ∀ti ∈ [t0, tf ] i = 1, ..., I

hq(v, ϕ(v), y) + s+hp − s−hp = 0

gq(v, ϕ(v), y)− sgq ≤ 0

(4)

where
∏

is a penalty parameter vector whose value is finite but chosen to be sufficient large,

whereas s+hp, s
−
hp, sgp, s

+
hq, s

−
hp and sgq are vectors of positive variables.

4.2 4.2. Master sub-problem

The goal of the master problem is to provide a new set of values for the binary variables that

yield better results than the previous one. Here, we present a tailored master MILP that

exploits the structure of the problem. Note that due to the presence of nonconvexities in

the model, it is not guaranteed that this master MILP will provide a rigorous lower bound

on the global optimal solution of the problem.

To generate the master MILP, the design variables are fixed to the optimal value obtained

in the latest NLP solved at iteration k of the algorithm, and a series of simulation problems

are calculated. The master MILP takes the following form:
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min
u(t),d,y

η +ΠT (sgp + shq + sgq)

s.t. η ≥ Jk +

(
∂J

∂v

)
|k (v − v̂k) +

∑
j

(
∂J

∂uj

)
|k (uj − ûj

k) + ∆Jk · y

0 ≥ T k
p

{
hk
p +

(
∂hp

∂v

)
|k (v − v̂k) +

∑
j

(
∂hp

∂uj

)
|k (uj − ûk

j ) + ∆hk
p · y

}
sgp ≥ gkp +

(
∂gp
∂v

)
|k (v − v̂k) +

∑
j

(
∂gp
∂uj

)
|k (uj − ûj

k) + ∆gkp · y

shq ≥ T k
q

{
hk
q +

(
∂hq

∂v

)
|k (v − v̂k) + ∆hk

q · y
}

sgq ≥ gkq +

(
∂gq
∂v

)
|k (v − v̂k) + ∆gkq · y

T k
p =


−1 if λk

p < 0

0 if λk
p = 0

1 if λk
p > 0

T k
q =


−1 if λk

q < 0

0 if λk
q = 0

1 if λk
q > 0

(5)

The objective function is formed by the auxiliary variable η and a penalty for constraint

violation Π that multiplies the slack variables. The linearizations of the objective function

and time variant constraints contain three main terms corresponding to: the design variables

(v̂k), control variables (ûj
k) and the binary variables representing the topological alternatives

(y). Note that the control variables uj are parameterized by means of a piecewise constant

profile defined on J sub-intervals. On the other hand, the time invariant constraints only

consider, the design and topological decisions. In this formulation, λk
p and λk

q represent the

Lagrangean multipliers associated with the time-invariant and time-variant equality con-

straints, respectively, of the NLP solved at in iteration k of the algorithm. These values are

used to correctly relax the equalities into inequalities.

A key issue in this master MILP is how to obtain the derivatives of the objective function

and constraints with respect to the decision variables. The derivatives of the continuous

variables are approximated by perturbing them in the optimal solution of the NLP problem.
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On the other hand, the partial derivatives with respect to the binary variables, which do not

appear explicitly in the MIDO formulation, are determined by running several simulations

for different topologies. Note that at each iteration, we need the derivatives of the objec-

tive function and the constraints with respect to all the components ym,n of the vector of

binary variables. This requires performing at most (depending on the allowable interconec-

tions between the equipment units) M·N-1 simulations, in each of which we concentrate on

changing one single process unit, while keeping the remaining topological decisions fixed.

More precisely, we select one process unit m at a time, and run several simulations, each

corresponding to a different number n of equipment units in parallel (i.e., from zero, the

unit does not exist, up to the maximum number of equipment units in parallel) and leav-

ing the remaining topological decisions unchanged. In performing this step, we discard two

types of topological alternatives: (i) those that violate the logical relationships among the

binary variables describing allowable connections and interactions between the units, which

are expressed via constraints hq = 0; and (ii) those that are likely to lead to sub-optimal

alternatives. To identify topologies of type (ii), we apply a heuristic rule that removes those

process alternatives that place equipments in parallel in units others than the bottleneck of

the topology found in iteration k. Note that all these simulations can be performed very effi-

ciently because the starting point is the optimal solution of the NLPk. Note that to keep the

production rate constant in all the simulations, which allows for a fair comparison between

the different alternatives being assessed, it is necessary to adjust the input flow rates to the

units according to the yields and number of equipment units in parallel. This step can be

easily performed with the process simulator assuming that all the process yields remain the

same as in the optimal solution of the NLP solved in the previous iteration of the algorithm.

It should be noted that all the linear constraints are accumulated in the master MILP, this

means that at iteration k, the problem includes the constraints generated at the kth iteration

plus all the constraints of all previous iterations. In all cases, after determining the new set of

values of the binary variables, the primal problem is solved again, and the overall procedure
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is repeated until the termination criterion is satisfied.

4.3 Remarks

• At this point, time varying binary variables are not considered.

• All the required parameters to simulate the bioprocess are initialized in the simula-

tor environment (i.e., properties of the components, equipment parameters, economic

parameters, etc.). Also, the number of equipment units in parallel must be specified

every time the simulation model is solved.

• The problem addressed in this work can be seen as a special case of the design of

single product multi-stage batch plants (see Biegler et al. 1997). Note, however, that

in standard scheduling formulations the operating times are assumed to be constant

and the process models linear, whereas our approach accounts for variable operating

times and nonlinear process models, including the kinetics of the bioreaction.

• Integer cuts can be added to the master problem in order to avoid the repetition of

solution explored so far in the primal problem.

• Note that in each iteration of the algorithm we generate linearizations for the process

models of both, the existing and non-existing equipment units.

5 RESULTS

The capabilities of the proposed approach are illustrated through two case studies. The

implementation of the overall method is discussed in first place, whereas the case studies are

described next.
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5.1 Computer architecture / implementation

The model of the biotechnological plant is developed using SuperPro Designer, (Intelligen,

NJ), a process simulation tool in which the mass and energy balances as well as the calcula-

tion of the key economic indicators are implemented. Note, however, that any other process

simulator could be used for the same purpose.

The capabilities of this process simulator are enhanced by coupling it with a dynamic model

of the bioreactor coded in Matlab and connected with SuperPro Designer, using the Com-

ponent Object Module (COM) technology implemented in the Pro-Designer COM Server.

The kinetic model of the bioreactor is solved by the odefun function of Matlab. Most of

the problems are solved using ode45, which is based on an explicit Runge-Kutta formula,

the Dormant-Prince Pair (Forsythe et al. 1977). For stiff problem, the ode15s algorithm

(Shampine, 1994) can be employed.

As NLP solvers, we use the fmincon function that implements a sequential quadratic pro-

gramming (SQP) method. The Hessian of the Lagrangian is updated using the BFGS formula

(Powell, 1978). The master MILP is implemented in GAMS and solved with CPLEX. The

termination criterion applied in the numerical examples is the NLP worsening (i.e., the al-

gorithm stops when the NLPs start to deteriorate). In order to communicate both software

packages, we use the interface GAMS-Matlab developed by Ferris (2010).

Note that the function fmincon minimizes a given objective function. In our case, we reverse

the sign of the NPV in order to pose the problem as a minimization one.

5.2 Case Study I. A basic fermentation process

We first consider a basic illustrative example of a hypothetical fermentation process (Figure

3). The process includes two steps: a reaction that takes place in a fermentor, and a separa-

tion that is performed in either a decanter, a centrifuge or a filter. In the reaction-phase, the

initial substrate dissolved in water reacts with oxygen forming product A and by-products

(waste). In the second stage, the product is separated to obtain pure A. The production
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recipe involves the following operations: charge of water (time neglected), charge of sub-

strate (time neglected), heating (60 min), charge of inoculum (time neglected), fermentation

(time to be optimized), cooling (60 min) and transfer out (time neglected) carried out in the

reactor; and a separation task whose time depends on the equipment used (decanting 120

min, centrifugation 100 min, and filtration 130 min).

Substrate and water are charged at 25oC. Then the mixture is heated until the optimal

growth temperature (i.e., 37oC) using steam at 152oC, with an efficiency of 80% in the heat

transfer. The inocolum is added when the optimal temperature is reached. The reaction is an

aerobic fermentation carried out at constant temperature that is modeled by a Monod-type

kinetics of the following form:

µ = µmax
S

KM+S
(6)

where µ is the rate of formation of biomass expressed in g/l·h, S is the concentration of

substrate in g/l and KM and µmax are kinetic parameters that take a value of 0.2 h−1 and 35

g/l, respectively. The reaction requires an aeration stream of 0.5 VVM (i.e., volume of air

per volume of liquid per min). Chilled water is used to remove the metabolic heat (reaction

enthalpy equals -15,478 kJ/kg). The stoichiometry of the reaction is as follows:

100 kg Substrate + 70 kg O2 → 28 kg Biomass + 70 kg CO2 + 60 kg H2O + 2 kg A + 10

kg waste

The final mixture is cooled down to 25oC, using chilled water and assuming an efficiency

of 90% in the heat transfer. The mixture is then transferred to the separation equipment,

where a percentage of A is separated from the remaining compounds yielding a final product

with a purity of 100%. The efficiency in the decanter and filter is 90% (i.e., 90% of A is
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retained and 10% is lost), whereas that of the centrifuge is 92%.

(Figure 3 could be placed here)

The design objective is to maximize the NPV assuming a fixed demand of 2025 kg/year

of A. The entire process is modeled using SuperPro Designer, the kinetic model and the

NLP solver are implemented in Matlab, whereas the master MILP is coded in GAMS. The

bioreactor is modeled as a stoichiometric reactor in SuperPro Designer, whose conversion is

provided by Matlab after integrating the DAE system that describes the kinetic model. The

NLP solver is also implemented in Matlab, whereas the master MILP is solved with CPLEX

interfacing with GAMS. As NLP solver, we use a gradient based method (i.e., SQP). The

continuous decision variables to be optimized are the initial substrate concentration and the

reaction time. The integer decision variables represent the number of equipment units in

parallel, as well as the selection of a specific separation unit (i.e., decanter, centrifuge and

filter) in the downstream section. The NPV calculations are performed with the default pa-

rameters used in SuperPro Designer, and assuming that the facility dependent capital costs

are zero.

A preliminary analysis of the process is performed prior to the application of the optimization

algorithm. Figures fig:figure4a and fig:figure4b show the dependency of the concentration of

A in the reactor and total number of batches with respect to the reaction time and initial

substrate concentration for a demand of 2025 kg/year. As observed, by increasing the reac-

tion time, higher concentrations of A per batch (but fewer number of batches) are obtained.

Similarly, increasing the initial substrate concentration leads to higher concentrations of A

in each batch. However, as shown in Figure fig:figure5, the completion time of the reaction

(i.e., time required to achieve the total depletion of the substrate) increases with the initial

substrate concentration. Hence, increasing the substrate concentration indirectly diminishes

the total number of batches produced per year. The task of the optimization algorithm is
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therefore to find the proper values of substrate concentration and reaction time and the plant

topology that minimize the negative value of the NPV.

(Figure 4 could be placed here)

(Figure 5 could be placed here)

The algorithm is next applied to the problem. It converges after 2 major iterations and 12.46

CPU seconds on a computer AMD PhenomTM 8600B, Triple-Core Processor 2.29GHz and

3.23 GB of RAM memory.

(Table 1 could be placed here)

Table 2 shows the starting point and the optimized values obtained. In the base case, the

concentration of glucose is 53.47 g/l, the reaction time is 15.27 hours and only one single

equipment is placed in each stage and the separation unit used is the decanter. In the opti-

mized case, the initial concentration of glucose attains its upper bound (i.e. 80 g/l) and the

reaction time is 16.18 hours. As observed, the NPV is maximized by increasing the initial

substrate concentration up to its upper bound, and by making the reaction time equal to

the completion reaction time. By doing so, the water added to the reactor is minimized, and

hence its size. This solution does not imply the use of equipment units in parallel either,

and the separation unit selected for the optimal design is the decanter. The reason for this

is that the decanter is cheaper than the centrifuge (where two units have to be placed in

parallel) and the filter. However, for smaller A production rates the centrifuge becomes the

best alternative.

With these changes, the NPV is increased by 4.71% (i.e., from 20,870 M$ to 21,854 M$).

Note that increasing the initial concentration of substrate leads to larger batch throughputs

and lower volumes and capital investment. On the other hand, it also leads to larger cycle
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times, and hence, fewer batches per year. Particularly, in the optimized solution the reactor

volume is reduced by 29% (from 7,675 l in the base case, to 5,454 l in the optimal case) and

the total capital investment by 4.5%.

(Table 2 could be placed here)

5.3 Case study II. Production of L-lysine

As second example, we study the production of the amino acid L-Lysine. This product is

mainly used as an animal dees additive (for more details the reader is referred to Pfefferle

et al. 2003).

This is indeed a more difficult problem that requires the solution of a complex kinetic biore-

actor model. The associated flowsheet (see Figure 6) comprises ten major processing units

that are aggregated into three different sections: upstream, fermentation and downstream.

The upstream processing includes all unit operations required to prepare the feed streams.

In this section, the nutrients are mixed in a blending tank and mixed with water before being

sterilized and transferred to the fermentor. When the reaction is completed, the mixture is

transferred to a stabilization vessel and then filtered. The permeate is pumped to an evap-

oration unit that removes most of the water content. The broth is finally spray-dried and

processed to granules. For biomass removal, we consider the following process alternatives:

a rotary vacuum filtration, a micro filtration and a centrifugation.

(Figure 6 could be placed here)

The bioprocess includes a fed-batch reactor that uses a genetically modified microorganism

(i.e., Corynebacterium glutamicum). The main reactants are threonine, nutrients (glucose,

NH4OH and KH2PO4), and oxygen. The set of equations describing the reaction kinetics

and the associated data are taken from the literature (Heinzle et al. 2006b and Büchs 1994).
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A demand of 6,202 tones Lysine/ year is considered.

The application of our algorithm to this example follows the same implementation scheme

discussed in previous sections. Particularly, the bioreactor model that accounts for the kinet-

ics of the lysine production is implemented in Matlab and solved by the ODE solver ode15s.

The decision variables are the initial concentrations of threonine and glucose, initial volume

of the fermentor (i.e., amount of raw materials fed to the bioreactor) and reaction time,

which are the ones with a larger impact on the performance of the process. The discrete

variables represent the number of equipment units in parallel and process units used for the

biomass removal.

Figures 7 and 8 show the results of coupling the bioreactor model with the process model

for a fixed topology with one fermentor in parallel and a rotatory vacuum filter. Specifically,

in Figure 7a, the unit production cost, the space-time-yield (STY ) (i.e., mass of L-lysine

produced per unit of volume and time in the bioreactor) and the overall yield (Yoa) (mass of

L-lysine produced per mass of glucose consumed) are plotted versus the initial concentration

of threonine. In Figure 7b, the same variables are plotted versus the initial concentration

of glucose, and in Figures 8a and 8b versus the initial fermentor volume and reaction time

respectively.

In all cases, we only change one decision variable at a time maintaining the remaining ones

constant (1.62 g/l Threonine, 48.72 g/l glucose, 310.34 m3 initial fermentor volume and

71.01 h of reaction time). Let us clarify that all these points violate the demand satisfaction

constraint (i.e., production equals the demand of 6,202 tones L-lysine/year).

(Figure 7 could be placed here)

(Figure 8 could be placed here)

As observed in Figures 7 and 8, the selected variables have a large impact on the bioreactor

performance. Within the investigated range of the decision variables, the economical objec-
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tive function is highly dependent on the STY and Yoa. Note that the economic performance

of the process depends to a large extent on the capital investment and operating costs. The

former term is mainly influenced by the STY . Specifically, larger STY values lead to lower

equipment sizes. On the other hand, the operating costs are mainly affected by the Yoa, since

this variable has a large impact on the amount of raw materials consumed.

Higher initial concentrations of threonine increase the STY , but decrease the Yoa. With

regard to the glucose, the maximum STY and Yoa are both found at high initial glucose

concentration. The initial reaction volume is the decision variable with the smallest effect

on the STY and Yoa. Finally, longer times lead to high values of STY and Yoa and lower

unit production costs.

We studied the effect of the integer decisions (number of reactors and separators for biomass

removal) on the performance of the plant for a given set of initial conditions (1.62 g/l Thre-

onine, 48.72 g/l glucose, 310.34 m3 initial fermentor volume and 71.01 h of reaction time).

Increasing the number of reactor units leads to more batches, and hence smaller equipment

units. For biomass removal, three options are presented: a rotary vacuum filter(RVF), a

microfilter(MF) and a centrifuge(CF). For the RVF and MF, the operation time is 8h and

for the centrifuge 6h. The efficiencies of these units are: 98.5% (RVF), 93.6% (MF) and

99.6% (CF).

The preliminary analysis presented above provides some insight into the problem but cannot

lead in itself to optimal solutions. The task of the optimization algorithm is to perform an

exhaustive search in the entire parameters space. Two constraints are considered: produc-

tion less or equal than the demand and a specification on the final concentration of L-lysine

(i.e., the mass fraction should be in the range 0.36-0.76 as suggested by Stevens and Blinder

1999).

The algorithm converged in 4 major iterations and 194.90 CPU seconds on the same com-

puter as before.
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(Table 3 could be placed here)

Table 4 summarizes the base case, which has been taken from Heinzle et al. (2006b), as

starting point to initialize the overall solution procedure we use this base case solution but

considering a different topology (i.e., no reactors in parallel and a rotary vacuum filtration

for the biomass removal). As observed, NPV increases by 13.77% compared to the base

case (195,688 M$ vs. 172,003 M$). This is accomplished by using two fermentors instead

of three (as was the case in the base solution adapted from Heinzle et al. 2006b) and also

by properly adjusting the operating conditions of the fed-batch reactor and the rest of the

upstream and downstream equipment capacities. Particularly, in the optimal solution, the

initial concentrations of glucose and threonine are higher than in the other cases. These new

conditions increase both the STY and Yoa. The increase in the STY leads to a reduction

of the equipment sizes and the associated capital investment. On the other hand, increase-

ing the Yoa reduces the raw materials consumption, and therefore the operating cost. As a

result, the total capital investment and operating costs are reduced by 21.5% (79.885M$ vs

101.766M$) and 16.9% (8.830M$/year vs. 10.631M$/year) respectively, while keeping the

production rate constants (6,202 tones L-lysine/year).

(Table 4 could be placed here)

6 Conclusions

This work has introduced a systematic strategy to assist in the development of biotechno-

logical processes that allows to optimize the operating conditions and topology of the entire

bioprocess. The proposed method relies on a reduced space MIDO algorithm that integrates

commercial process simulators (SuperPro Designer) with optimization tools (Matlab and

GAMS).
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The capabilities of the method presented have been tested in two biotechnological exam-

ples: a typical fermentation process, and the production of the amino acid L-lysine. From

numerical results, we concluded that it is possible to significantly improve the economic per-

formance of bioprocesses by optimizing them as a whole. Particularly, larger benefits can

be attained by properly adjusting the operating conditions and equipment sizes of all the

units embedded in the flowsheet. One of the main advantages of our approach is that it

makes use of a standard bioprocess simulation package, that implements the main process

and economic equations. This largely simplifies the modeling and economic analysis of the

whole plant, allowing for the optimization of a wide range of bioprocess facilities.
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NOMENCLATURE

Abbreviatures

CF centrifuge

COM component Object Module

DAEs differential-algebraic equations

MF microfilter

MIDO mixed-integer dynamic optimization

MILP mixed-integer linear programming

MINLP mixed-integer non-linear programming

NLP non-linear programming

ODE ordinary differential equation

RVF rotary vacuum filter

SQP successive quadratic programming

STY space time yield (g/L·h)

Yoa overall yield (g/g)

Indices

a algebraic

d differential

f final

i intermedium

m type unit selected

n units in parallel

k iterations

p equality

q inequality

0 intial

Variables
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KM substrate concentration at half max. rate (g/l)

NPV Net Present Value ($)

S Substrate concentration (g/l)

STY Space-time yield (g/l·h)

VVM Volume of air per volume of liquid per min

Yoa Overall-yield (g/g)

µ specific growth rate (g/l·h)

µmax maximum specific growth rate (g/l·h)

Bioreaction parameters

cL oxygen concentration (g/L)

cP product concentration (g/L)

cS substrate concentration (g/L)

cSF substrate concentration in the feed (g/L)

csIN initial substrate concentration (g/L)

cThr threonine concentration (g/L)

cx biomass concentration (g/L)

F rate of feed (feed rate) (L/h) or (m3/h)

KLa specific mass transfer coefficient (1/h)

KIP product inhibition constant (g/L)

KIThr threonine inhibition constant (g/L)

KO substrate oxygen affinity constant (g/L)

KPS product affinity constant (g/L)

Ks substrate carbon source affinity constant (g/L)

KThr substrate threonine affinity constant (g/L)

LO2 oxygen solubility (mol/L/bar)

mo specific oxygen consumption for maintenance (g/L)

ms specific substrate consumption for maintenance (g/L)
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OTR oxygen transfer rate (mol/L·h)

PR reactor pressure (bar)

rp rate of lysine production (g/L·h)

STY space time yield (g/L·h)

t time (h)

V fermenter filling volume (m3)

yl mole fraction of oxygen in the liquid phase (mol/mol)

yo2 mole fraction of oxygen in the gas phase (mol/mol)

Yoa overall yield (g/g)

YP/O product yield per amount of oxygen (g/g)

YP/S product yield per amount of substrate (g/g)

Yx/s biomass yield per amount of substrate (g/g)

Yx/o biomass yield per amount of oxygen (g/g)

Yx/Thr biomass yield per amount of threonine (g/g)

ap growth-associated coefficient for product synthesis (g/g)

ßp non-growth-associated coefficient for product synthesis (g/g·h)

µ specific growth rate (1/h)

µmax maximum specific growth rate (1/h)
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A Biochemical reaction model for a fed-batch reactor

to produce L-lysine

Mass balance for glucose dcs
dt

= − 1
YX/S

· µ · cx − 1
YP/S

· rp · cx −ms · cx + F
V
(cSF − cs)

Mass balance for oxygen dcL
dt

= − 1
YX/O

· µ · cx − 1
YP/O

· rp · cx −ms · cx +OTR

Mass balance for threonine dcThr

dt
= − 1

YX/Thr
· µ · cx − F

V
(cThr)

Mass balance for biomass dcx
dt

= µ · cx − F
V
· cx

Mass balance for lysine dcP
dt

= rP · cx − F
V
· cP

Mass balance for the fermenter volume dV
dt

= F

Kinetic model for oxygen transfer OTR = kLa · LO2 · pR · (yO2 − yL)

Kinetic model for growth µ = µmax · cs
cs+Ks

· cL
cL+KO

· cL
cL+KThr

Kinetic model for lysine formation rP = (αP · µ+ βP ) · cs
cs+KPS

· cL
cL+KO

· KIThr

cThr+KIThr
· KIP

cP+KIP

Overall yield Yoa =
cp

cSIN

Space-time yield STY = cP
t
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Table 1: Progress of iterations of MIDO algorithm in the optimization of component A
production plant

Iteration Number NLP1 MILP1 NLP2
Discrete decisions
Fermentors 1 2 2
Equipment separation phase Decanter Decanter Decanter
Objective function
Jk [$] 2.18·107 2.79·107 1.90·107
CPU time [s] 5.59 0.15 6.87
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Table 2: Results of the optimization of component A production plant
Initial Point Optimal Point

Net present value [M$] 20,870 21,854
Total capital investment [M$] 6.164 5.874
Operating cost [M$/year] 2.962 2.758
Production rate [kg A/year] 2,025 2,025
Unit production cost [$/kg A] 1.462 1.362
Batch throughput [kg A/batch] 5.84 6.16
Recipe batch time [h] 19.27 20.18
Recipe cycle time [h] 17.27 18.18
Annual operating time [h] 5,994 5,984
Number of batches per year 347 329
Substrate concentration [g/l] 53.47 80.00
Reaction time [h] 15.27 16.18
Fermentors 1 1
Fermentor volume [l] 7675.89 5454.16
Separator Decanter Decanter
Volume separator [l] 97.32 56.47
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Table 3: Progress of iterations of MIDO algorithm in the optimization of L-lysine production
plant
Iteration Number NLP1 MILP1 NLP2 MILP2 NLP3 MILP3 NLP4
Discrete decisions
Fermentors 1 2 2 2 2 3 3
Equipment separation phase MF MF MF RVF RVF RVF RVF
Objective function
Jk [$] 7.01·107 2.00·108 1.66·108 1.85·108 1.95·108 2.26·108 1.82·108
CPU time [s] 55.34 0.21 44.04 0.17 41.20 0.19 53.75
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Table 4: Results of the optimization of L-lysine production plant
Base Case Initial Point Optimal Point

Net present value [M$] 172,003 59,276 195,688
Total capital investment [M$] 101.766 55.369 79.885
Operating cost [M$/year] 10.631 4.854 8.830
Production rate [tones L-lysine/year] 6,202 2,611 6,202
Unit Production cost [$/kg L-lysine] 1.71 1.86 1.42
Batch Throughput [tons L-lysine/batch] 29.674 27.783 44.300
Recipe Batch time [h] 111.07 110.46 137.67
Recipe Cycle time [h] 37.51 83.51 55.81
Number of batches per year 209 94 140
Concentration Threonine [g/l] 1.62 1.62 1.92
Concentration Glucose [g/l] 48.72 48.72 94.61
Initial Volume Ferment [m3] 310.34 310.34 282.77
Reaction time [h] 71.01 71.01 97.16
Fermentors 3 1 2
Space-time yield [g/l·h] 1.022 1.022 1.103
Overall yield [g/g] 0.299 0.299 0.316
Separator RVF MF RVF
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Figure 1: Flowchart of the proposed algorithm
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Figure 2: Main steps in the resolution of the NLP sub-problem
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Figure 3: Process flow diagram of a typical ferementation process
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Figure 6: L-lysine production plant (adapted from Heinzle et al.,2006)
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44

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



240 260 280 300 320 340 360 380 400
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Initial reaction volume [m3]

U
ni

t p
ro

du
ct

io
n 

co
st

 [$
/k

g]

S
pa

ce
−

tim
e 

yi
el

d 
(S

T
Y

) 
[g

/L
 h

] &
O

ve
ra

ll 
yi

el
d 

(Y
oa

) 
[g

/g
]

 

 

Unit Cost
STY
Yoa

0

0.75

0.90

1.05

1.20

0.30

0.15

0

0.45

0.60

(a) Relationship between the unit production cost, STY and Yoa and
the initial reactor volume, maintaining the rest of the decision variables
constant

40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

Reaction time [h]

U
ni

t p
ro

du
ct

io
n 

co
st

 [$
/k

g]

S
pa

ce
−

tim
e 

yi
el

d 
(S

T
Y

) 
[g

/l·
h]

 &
O

ve
ra

ll 
yi

el
d 

(Y
oa

) 
[g

/g
]

 

 

Unit Cost
STY
Yoa

0

0.20

0.40

0.80

1.00

1.20

0.60

(b) Relationship between the unit production cost, STY and Yoa and the
initial reaction time, maintaining the rest of the decision variables constant

Figure 8: Preliminary analysis of the decision variables in case study 2

45

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



 

Article 2 
Authors:  R. Brunet, G. Guillén-Gosálbez, L. Jiménez. 

Title: Cleaner design of single-product biotechnological facilities through the 

integration of process simulation, multi-objective optimization, LCA and 

principal component analysis. 

Journal: Industrial & Engineering Chemistry Research 

Volume: 51 (1) Pages: 410-424 Year: 2012 

ISI category: Chemical Engineering AIF:  0.608 
Impact Index:  2.071  
Position in the category:  29/135 (Q1) 

Cites: - 

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Cleaner design of single-product
biotechnological facilities through the

integration of process simulation,
multi-objective optimization, LCA and

principal component analysis

Robert Brunet, Gonzalo Guillén-Gosálbez∗and Laureano Jiménez
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Abstract

Bioprocesses have been typically optimized according to their economic perfor-

mance. In this work we present a novel framework for their optimal design that allows

for the simultaneous consideration of economic and environmental concerns. Our ap-

proach relies on the combined use of simulation packages, multi-objective optimization

(MOO), life cycle assessment (LCA) and principal component analysis (PCA). The

capabilities of the proposed methodology are illustrated through its application to the

production of the amino acid L-lysine.

Keywords: combined simulation-optimization, biotechnological processes, multi-objective

optimization, life cycle assessment, principal component analysis
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1 Introduction

Sustainability has recently gained wider interest in process systems engineering (PSE). As

a result, intensive research effort is currently being devoted towards the incorporation of

environmental criteria in the decision-making process. This general trend has motivated

the development of systematic strategies for quantifying and minimizing the environmental

impact of process industries [1].

An overwhelming majority of the methods that provide decision-support for environ-

mentally conscious process design have focused on the chemical sector. In contrast, the

optimization of biotechnological facilities with environmental concerns has received little at-

tention to date. In the recent past, these processes have become increasingly important,

due to their potential to produce high-value products in human health and care applica-

tions. Hence, there is a clear need for developing systematic tools to reduce their cost and

environmental impact.

Optimization approaches devised so far in biotechnology have primarily focused on im-

proving the economic performance, paying special attention to the bioreactor step. Cuthrell

and Biegler [2] optimized a fed-batch reactor for penicillin production with a solution strategy

based on successive quadratic programming (SQP) and orthogonal collocation on finite ele-

ments. Carrasco and Banga [3] addressed the dynamic optimization of batch and fed-batch

reactors using stochastic optimization algorithms. More recently, Banga et al. [4] introduced

a new solution method for this problem based on control parametrization, whereas Sarkar

and Modak [5] proposed the use of genetic algorithms in the same context.

The optimization of complete bioprocesses considering all their individual steps has re-

ceived less attention to date. Groep et al. [6] applied a simple sensitivity analysis to optimize

a typical enzyme production process. Pinto et al. [7] proposed a model that simultaneously

optimizes the process variables and structure of a multi-product batch plant that produces re-

combinant proteins. Montanga et al. [8] applied generalized disjunctive programming (GDP)

in the synthesis of insulin plants.
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The environmental impact of bioprocesses was traditionally neglected in all of these ap-

proaches, mainly because of their small scale in comparison with their petrochemical counter-

parts. It was not until the Environmental Protection Agency (EPA) increased the regulatory

controls in the bioprocess industry, when authors such as Konopacz [9] started to highlight

the importance of assessing their environmental performance. To the best of our knowledge,

the work by Steffens et al. [10] was the first to address the optimal design of a biotechno-

logical plant (penicillin manufacturing) with economic and environmental criteria. Dietz et

al. [11] optimized also a multi-product batch plant for proteins production, using genetic

algorithms. The aforementioned optimization works focused on assessing the environmental

performance at the plant level. This approach can lead to solutions that shift environmental

burdens from one echelon of the bioprocess supply chain to another, thereby increasing the

overall damage. Further, these methods restrict the environmental analysis to one single

environmental indicator, neglecting other damage categories. This simplification may even-

tually result in solutions in which one environmental impact is decreased at the expense of

increasing other damages. To the best of our knowledge, there is one single contribution

in the literature by Jimenez-Gonzalez and Woodley [12] that applies life cycle assessment

(LCA) principles to bioprocess industries. This work, however, is somehow limited, as it

focuses on assessing the envirnomental performance of a bioprocess but it does not include

any systematic procedure to minimize it.

In this work we introduce a novel framework for the optimal development of biotechno-

logical processes with economic and environmental concerns that overcomes the limitations

mentioned above. More precisely, we present advances in the following two fronts: (i) the

combined use of optimization tools (i.e., multi-objective mixed-integer nonlinear program-

ming (moMINLP) techniques), commercial simulation packages (i.e., SuperPro Designer),

and LCA principles within a unified framework; and (ii) the use of PCA as an effective

tool to uncover and visualize the results of the multi-objective optimization (MOO) problem

arising in the design of these facilities. Our method has been tested in a typical fermentation
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process, the production of the amino acid L-Lysine.

2 Problem Statement

The problem addressed in this work can be formally stated as follows. Given are the annual

production demand, final product prices, cost parameters (capital investment and operat-

ing cost), time horizon, thermodynamic properties, performance models of the equipment

units embedded in the flowsheet and LCA data (i.e., life cycle inventory of emissions and

feedstock requirements and parameters of the damage model). The goal is to determine

the optimal process design, including equipment sizes, structural alternatives and operating

conditions (concentrations, flow rates, temperatures, etc.) that maximizes a given economic

performance indicator and minimizes the associated environmental impact.

We consider single-product batch plants that can operate with more than one equipment

unit (in parallel) per stage. It is assumed that parallel equipment units have the same size

and operating conditions and that they operate out of phase with respect to the first unit,

that is, they start operating after the starting time of the first unit. This allows reducing

the cycle time of the process. Further details on this topic can be found in Biegler et al.

[14]. As opposed to standard scheduling models, we consider that the operating times and

batch sizes are continuous variables to be optimized rather than fixed parameters. It should

be emphasized that several bioprocesses follow this general pattern, such as the production

of penicillin, citric acid, pyruvic acid, vitamin riboflavin, human serum and insulin, mon-

oclonal antibodies, and plasmid DNA, among many others. Hence, the complexity of the

design task largely comes from the need to optimize nonlinear process models describing

the equipment units operation, some of which may involve systems of ordinary differential

equations (ODEs), and not from the combinatorial nature of the batch facility itself.
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3 Proposed approach: integration of process simula-

tion, MOO, LCA and PCA

As mentioned before, our solution method integrates several engineering tools within a uni-

fied framework. In this section we first describe the MOO model. It is constructed combining

explicit constraints defined in an algebraic modeling system with implicit equations imple-

mented in the simulation package. We will then provide details on the inclusion of LCA

principles within the mathematical formulation and present a method for its efficient solu-

tion. We end this section with a discussion on the use of PCA to analyze and interpret the

results generated by the MOO.

3.1 3.1. Simulation-optimization model

Most MOO approaches used in process design rely on monolithic algebraic formulations that

embed ”short-cut” models. These methods cannot handle some unit operations, such as non-

ideal distillation columns, reactors with complex kinetics, etc. In this work, we integrate

process simulation packages with MOO tools to address the optimization of bioprocesses,

including all their individual steps.

In mathematical terms, the synthesis of biotechnological processes with environmental

concerns can be formulated as a moMINLP problem with the following form:

min
xD

U = {f1(x, u, xD), ..., fm(x, u, xD)}

s.t. hI(x, u, xD) = 0

hE(x, u, xD) = 0

gE(x, u, xD) ≤ 0

Here f1 represents the economic objective function, whereas f2 to fm denote the set of en-

vironmental metrics. Equations hI are implicit constraints solved by the process simulator,

whereas hE and gE are explicit external constraints. The continuous design variables corre-
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spond to xD, whereas x denotes the remaining process variables calculated by the simulator,

and u represents fixed parameters not modified during the calculations. Note that xD in-

cludes both, continuous variables (pressures, temperatures, flow rates, etc.), and discrete

variables such as the type and number of equipment units in parallel.

Note that we assume herein that all model parameters can be perfectly known in advance

(i.e., they are deterministic). Uncertainty sources could be however incorporated into the

formulation in a manner similar as done before by the authors [15] [16].

3.2. Integration of life cycle assessment principles

In this work we follow a combined approach that integrates process simulation and MOO

with LCA principles. Process simulation is employed to perform mass and energy balances

that provide the amount of raw materials, energy consumed, emissions released and waste

generated by the bioprocess. This information is further translated into life cycle emissions

and feedstock requirements using an environmental database (i.e., Ecoinvent Database [17])

that stores information related to common industrial processes found in Europe. In the last

step, these data are translated into impact using a damage assessment model.

Note that Life cycle assessment [18] is a well established methodology for environmental

assessment. There is a research journal devoted entirely to LCA (International Journal of

LCA) and there are many environmental studies reported in other journals that employ

this methodology. In our work, we follow the Eco-indicator 99 methodology, an LCA-based

metric that quantifies the impact considering all the stages in the life cycle of a process.

The combined use of MOO and LCA, which was formally introduced by Azapagic and

Clift [19], has recently attracted an increasing attention in PSE. This methodology couples

LCA principles, used to quantify the environmental performance of a process, with opti-

mization tools. Examples of this general approach can be found in the works by Azapagic

and Clift [20] (production of boron compounds), Alexander et al. [21] (design of a nitric

acid plant), Khan et al. [22] (production of vinyl chloride monomer), Baratto et al. [23]
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(design of auxiliary power units), Carvalho et al. [24] (design of a methyl tertiary butyl

ether plant), Guillén-Gosálbez et al. [25] (optimization of the hydrodealkylation of toluene

process), Gebreslassie et al. [26] (design of absorption cooling systems), Kikuchi et al. [27]

(production of biomass-derived polypropylene) and Hugo et al. [28], Guillén-Gosálbez and

Grossmann [16] and Puigjaner and Guillén-Gosálbez [29] (design of chemical supply chains),

among some others. Further, case studies on the combined use of process simulation and

LCA are available in Azapagic et al. [30] and Bojarski et al. [31].

The LCA methodology (ISO 14040:2006) that enables the computation of the environ-

mental impact of the process is applied in four phases:

1. Goal and scope definition. This is the first stage of the LCA. At this point, we

must define the system boundaries of the system, the functional unit, the methodology used

to quantify the impact and the data and assumptions required to perform the LCA. In this

work we address the analysis of a bioprocess production plant. The functional unit of the

system is a fixed amount of final product. The environmental impact is assessed according

to the Eco-indicator 99 methodology [32], which follows LCA principles.

2. Life cycle inventory analysis (LCI). To calculate the entries of the life cycle

inventory of emissions and feedstock requirements (continuous variable LCIb) we proceed

as follows. We first extract from the simulation model the relevant streams crossing the

boundaries of the system. Raw materials, energy and utilities consumed are regarded as

inputs, whereas byproducts and waste generated are outputs from the system. In addition,

the simulation package provides the amount of steel required for the construction of the

equipment units embedded in the flowsheet. All this information is translated into the

corresponding life cycle emissions and feedstock requirements using standard environmental

databases [17].

3. Life Cycle Impact Assessment (LCIA). In this phase, the environmental bur-

dens are translated into a set of impacts. Specifically, the damage caused in each impact

category damd is determined from the life cycle inventory entries (i.e., emissions and feed-
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stock requirements) (continuous variable LCIb) and the corresponding set of damage factors

(parameter dfb,d).

damd =
∑
b

dfb,d · LCIb ∀d

The impact is assessed according to the Eco-Indicator 99 methodology (Eco-99) [32],

which considers 10 environmental impacts that are further aggregated into the following

damage categories: damage to human health (HH), damage to ecosystem quality (EQ) and

depletion of resources (DR). Note that here we do not determine the final ECO-99 value

with a specific normalization and weighting factors [32]. Instead we analyze each of its three

damage categories separately.

4. Life cycle Interpretation. In the last LCA phase, the results are analyzed, and

a set of conclusions and recommendations are formulated. In the context of our approach,

this phase is carried out in the post-optimal analysis of the solutions of the MOO problem.

One of the limitations of the combined use of LCA and optimization techniques is that the

generation and interpretation of solutions become more complex as one increases the num-

ber of environmental objectives. In this work we explore the use of PCA to analyze the

results of the MOO. As we will discuss later in the article, this technique allows uncover-

ing relationships between environmental impacts, thereby facilitating the decision-making

process.

4 Solution procedure

The solution of the MOO problem is given by a set of Pareto optimal process designs,

each one achieving a unique combination of environmental and economic performance. In

this work we solve this problem via the epsilon constraint method [33] although any other

method could be used for the same purpose. This strategy is based on formulating an aux-
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iliary model, where one objective is kept in the objective function (let us say objective one)

and the remaining ones are transferred to auxiliary constraints.

min
xD

z = f1(x, u, xD)

s.t. fo(x, u, xD) ≤ ϵo o = 2, ...,m

ϵo ≤ ϵo ≤ ϵo o = 2, ...,m

hI(x, u, xD) = 0

hE(x, u, xD) = 0

gE(x, u, xD) ≤ 0

In this model, f1 is the economic objective function, whereas f2 to fm denote the LCA

metrics. Note that the environmental objectives have been transferred to a set of inequality

constraints that include an auxiliary epsilon parameter ϵ. The original problem is first

solved by optimizing each single scalar objective separately. This provides the lower and

upper bounds of the epsilon interval. This interval is then split into a given number of sub-

intervals, for which the original model is calculated. The solutions obtained following this

procedure are finally filtered applying the dominance concept.

For solving each single-objective problem, we use an approach inspired by the works of

Caballero et al. [34]. Our strategy relies on decomposing the problem into two hierarchical

levels: a primal NLP and a master MILP, as shown in Figure 1 (more details can be found in

the work by Brunet et al. [35]). The primal level entails the solution of a NLP sub-problem, in

which the integer decisions (number of equipment units in parallel and topological decisions)

are fixed. The solution of this sub-problem requires calculations performed by the bioprocess

simulator. On the other hand, the task of the customized master problem is to decide on

the value of the integer variables. The algorithm solves iteratively both sub-problems until

a termination criterion is satisfied (e.g. the current primal sub-problem yields an optimal

objective function that is worse than the previous one). We next describe each level of the

algorithm in more detail.
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(Figure 1 could be placed here)

4.1. Primal sub-problem

The primal level entails the solution of a NLP sub-problem at iteration k of the algorithm for

fixed values of the binary variables. This NLP is calculated by coupling the NLP solver with

a process simulator, which calculates mass, energy and economic balances. This approach

takes advantage of the customized process unit models already implemented in the bioprocess

simulator, thereby avoiding their definition in an explicit form (i.e. equation oriented).

If the process simulator does not converge when the solver sends a set of design variables,

then the complete procedure fails. To avoid this, the problem is modified to properly handle

infeasible solutions. This is done by adding slack variables and an exact penalty to the

objective function, as shown in the following formulation:

min
xD

z = f1(x, u, xD) +
∏
(s+ s1 + s2 + s3)

s.t. fo(x, u, xD) ≤ ϵo + s1 o = 2, ...,m

ϵo ≤ ϵo ≤ ϵo o = 2, ...,m

hI(x, u, xD) = 0

hE(x, u, xD) + s2 − s3 = 0

gE(x, u, xD) ≤ s

s ≥ 0; s1 ≥ 0; s2 ≥ 0; s3 ≥ 0;

where
∏

is a penalty parameter vector, and s, s1, s2 and s3 are vectors of positive slack

variables.

All the required parameters to simulate the bioprocess are initialized in the simulation

environment (i.e., properties of the components, equipment parameters, economic data, etc.).

Also, the number of equipment units in parallel must be specified for each solution being
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optimized.

4.2. Master sub-problem

The goal of the master problem is to provide a new set of values for the binary variables that

lead to better results than the previous solution. Here, we present a tailored master MILP

that exploits the problem structure. Note that due to the presence of nonconvexities in the

NLP, the master MILP is not guaranteed to provide a rigorous lower bound on the optimal

solution. We define the following sets at iteration k of the algorithm:

T = {i|i is a potential bioprocess configuration}

Tk = {i|i is a potential bioprocess configuration that can be obtained by performing}

one single structural modification on the design obtained at iteration k of the algorithm

EQ = {j|j is an external equality constraint (explicit constraint)}

IEQ = {j|j is an external inequality constraint (explicit constraint)}

D = {n|n is a design variable (independent variable)}

To generate the master problem, the design variables xD are fixed to the optimal value

obtained in the latest k iteration of the algorithm and a series of simulation problems are

solved. Particularly, we run i simulations, each one corresponding to a different possible

topology. The following notation is used in the master problem:

∆objki,o = Difference between the objective function o at iteration k of the NLP

and the objective function associated with the new topology i

∆gki,j = Difference between the values of the inequality constraint j for the

new topology i and its value in the original NLP k problem

∆hk
Ei,j

= Difference between the values of the external equality constraint j

in the new topology i and its value in the original NLP k problem

Hence, the master MILP takes the following form:
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min α+
∏

(
m∑
o=2

s1o +
∑

j∈IEQ

s2j +
∑
j∈EQ

s3j)

s.t. fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

D

(xDn − xk
D) +

∑
i∈T,k

Wi ·∆objki,o ≤ α o = 1

fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

D

(xDn − xk
D) +

∑
i∈T,k

Wi ·∆objki,o ≤ ϵo + s1o o = 2, ...,m

(xk, uk, xk
D) +

∑
n

(
∂gj
∂xDn

)
xDn=xi

D

(xDn − xk
D) +

∑
i∈T,k

Wi ·∆gki,j ≤ s2j ∀j ∈ IEQ

sign(λk
j )hEj

(xk, uk, xk
D) +

∑
n

(
∂hEj

∂xDn

)
xDn=xi

D

(xDn − xk
D) +

∑
i∈T,k

Wi ·∆hk
Ei,j

≤ s3j ∀j ∈ EQ

k = 1, 2, 3, ..., K

s1o ≥ 0 s2j ≥ 0 s3j ≥ 0

∑
i

Wi = 1 i ∈ T

Wi ∈ {0, 1}


The objective function of the master problem is formed by an auxiliary variable α and a

penalty for constraint violation
∏

that multiplies the slack variables s1, s2 and s3. The first

inequality constraint is formed by three terms: (i) the objective function value at iteration

k of the algorithm, (ii) the linearizations of the objective function with respect to the design

variables (iii) and the contribution of changing the current topology, by either adding an

extra equipment unit in parallel or replacing an existing unit by another one. This last term

is the product of binary variable Wi that is one if topology modification i is implemented

and zero otherwise, with the the parameter ∆objki , which accounts for the change in the

objective function value when topology i is implemented. External inequality (IEQ) and

equality (EQ) constraints are handled following a similar procedure. sign(λk
j ) refers to the
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sign of the Lagrange multiplier of the NLP solved at iteration k of the algorithm. This value

is used to correctly relax the equalities into inequalities.

It should be noted that linear constraints are accumulated in the master MILP, this

means that at iteration k, the problem includes constraints generated at the current and past

iteration. In all cases, after determining the new set of values for the binary variables, the

primal problem is solved again, and the overall procedure is repeated until the termination

criterion is satisfied. Integer cuts can be added to the master problem in order to avoid

repetition of solutions explored so far in the primal problem.

Regarding the implicit constraints, it is important to remark that these sets of equations

are solved by the process simulator and their derivatives are calculated using finite differences.

4.3. Interpretation of results: principal component analysis

Most approaches based on MOO applied in green engineering restrict the environmental

analysis to two objectives (economic vs environmental performance). This is mainly due

to the large computational cost and difficulty in visualization of the objective space when

more than two environmental metrics are optimized. The use of PCA allows uncovering

relationships between environmental metrics thereby facilitating the task of decision-makers

during the analysis and calculation of the Pareto set.

PCA is a multivariate technique that allows to reduce the dimensionality of a data set

without disturbing its main features. Here we will concentrate on using this technique to

shed light on the Pareto structure of MOO problems where several environmental metrics are

simultaneously minimized. The application of PCA in LCA studies was first introduced in the

context of waste water treatment plants and mussel cultivation by Gutierrez et al. [36], who

investigated the relationships between different LCA metrics. Deb and Saxena [37] proposed

the use of PCA for reducing the dimensionality of MOO problems by identifying redundant

objectives using the coefficients of the objectives in the principal components calculated from

the PCA. Despite these contributions, to the best of our knowledge, PCA, has been never
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used together with MOO in the context of environmental problems. PCA is particularly

appealing for our purposes because it reduces the complexity of the MOO results, thereby

facilitating the decision-making process. This provides a sound basis to identify redundant

environmental metrics that can be left out of the problem without significant changes in its

structure. This makes it easier to generate and analyze the Pareto set of solutions, tasks

that are difficult to accomplish when many LCA metrics are simultaneously optimized.

Hence, the solutions of the MOO model generated using the algorithm described above

are further analyzed using PCA. Note that the number of points in the PCA corresponds to

the number of Pareto solutions, whereas the number of variables is given by the number of

objectives. The goal of PCA is to identify a set of uncorrelated variables (i.e., objectives)

from a wider set of correlated variables. Different methods have been proposed so far to

accomplish this task (see Gutierrez et al. [36]). In this work, without loss of generality, we

will use the approach introduced by Deb and Saxena [37], who proposed several rules to

identify redundant objectives based on the analysis of the eigenvectors of the correlation

matrix calculated from the efficient solutions of the MOO problem (further details on these

rules are available in the original work).

The application of PCA to the results of the MOO allows to focus our attention on a

reduced number of environmental metrics, thereby facilitating the post-optimal analysis of

the Pareto set. Note that the integration of PCA and MOO can also be done in an iterative

manner, as suggested by Deb and Saxena [37]. That is, generating Pareto solutions in a

high dimensional space and gradually decreasing the number of objectives until no further

reductions in the dimensionality of the problem is possible. We should remark that our

methodology is general enough to be applied to any chemical plant, so it is not restricted only

to bioprocesses. Hence, our approach can be easily adapted to other processes by selecting

a suitable process simulator capable of reproducing the unit operations of the system in an

accurate manner.
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5 Results and discussion

The capabilities of the proposed approach are illustrated through the production of the amino

acid L-lysine. The implementation of the overall method is discussed first before presenting

the case study.

5.1. Computer implementation

The model of the biotechnological plant is developed using SuperPro Designer (Intelligen,

NJ), a process simulation tool in which mass and energy balances as well as economic cal-

culations are implemented. The process simulator is coupled with external modules that

implement the bioreactor model and the LCA calculations. These modules are coded in

Matlab and connected with SuperPro Designer using the Component Object Module (COM)

technology available in the Pro-Designer COM Server. Note that the models embedded in

the simulation include detailed equations of the system, so they are not approximated short-

cut models. In practice, it would be necessary to validate these models with plant data by

means of parameter estimation techniques in order to obtain an accurate representation of

the system.

As NLP solver, we used SNOPT, which is accessed via the Tomlab modeling system sup-

ported by Matlab. This solver is especially effective for nonlinear problems whose functions

and gradients are expensive to evaluate [38]. The master MILP problem is implemented in

GAMS and solved with CPLEX. In order to communicate both software packages, we use the

interface GAMS-Matlab developed by Ferris et al. [39]. The PCA analysis is implemented

in the statistical toolbox available in Matlab.

(Figure 2 could be placed here)
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5.2. Case study: L-lysine process production

5.2.1. General description of the process

The process chosen for illustrative purposes is the production of the amino acid L-lyisine.

This product is mainly used as an animal feed additive (an extensive overview of this process

can be found in Pfefferle et al. [40]).

The associated flowsheet (see Figure 3) comprises ten major process units that are aggre-

gated into three different sections: upstream, fermentation and downstream. The upstream

processing includes all unit operations required to prepare the feed streams. In this section,

the nutrients are mixed with water in a blending tank before being sterilized and transferred

to the fermentor. When the reaction is completed, the mixture is transferred to a stabiliza-

tion vessel and then filtered. The permeate is pumped to an evaporation unit that removes

most of the water content. The broth is finally spray-dried and processed to granules. For

biomass removal, we consider the following process alternatives: a rotary vacuum filtration

(RVF), a micro filtration (MF) and a centrifuge (CF).

(Figure 3 could be placed here)

The bioprocess includes a fed-batch reactor that uses a genetically modified microor-

ganism (Cornyebacterium glutamicum). The reactants are threonine, nutrients (glucose,

KH2PO4 and NH4OH) and oxygen. In the first reaction-step, glucose is consumed for

L-lysine production, microorganism growth and maintenance. In this stage, threonine is

consumed only for microorganism growth. After glucose depletion, the fed-batch operation

starts with the addition of new glucose feed-rate controlled by the dissolved oxygen (DO2)

(fixed at 25% of air saturation). When all threonine is consumed, the cell growth stops and

L-lysine synthesis is enhanced. The set of equations describing the reaction kinetics and the

associated data are taken from the literature [41] [42]. A demand of 6,202 tones L-lysine/year
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with a given desired purity is considered.

For the sake of brevity, details on the LCA calculations required to assess the environ-

mental performance are given in Appendix A.

5.2.2. Preliminary analysis

A preliminary analysis of the process is performed prior to the application of the optimization

algorithm. This analysis is aimed at enhancing our understanding on how the operating vari-

ables influence the economic and environmental performance (i.e, NPV, HH, EQ and DR).

The decision variables selected for the analysis are the initial concentrations of threonine

and glucose, initial volume of the fermentor (i.e., amount of raw materials fed to the biore-

actor) and reaction time. Discrete variables model the number of equipment units working

in parallel, as well as the selection of a specific equipment unit for biomass removal.

Figures 4 and 5 show the results of the process model for a fixed topology with one

fermentor in parallel and a rotary vacuum filter for biomass removal. Specifically, the unit

production cost, environmental impact per kg of L-lysine produced (EI), space-time-yield

(STY ) (i.e., mass of L-lysine produced per unit of volume and time in the bioreactor) and

Overall yield (Yoa) (mass of L-lysine produced per mass of glucose consumed) are plotted

versus the continuous decisions variables. In all these cases, one decision variable is changed

at a time, keeping the remaining ones constant (i.e., 1.62 g/l of threonine, 48.72 g/l of glu-

cose, 310.34 m3 of initial fermentor volume and 71.01 h of reaction time). Let us clarify that

these points do not satisfy the demand satisfaction constraint (i.e., production equals the

demand of 6,202 tones L-lysine/year), but are generated to gain insight into the process.

(Figure 4 could be placed here)

(Figure 5 could be placed here)

Within the investigated range of the decision variables, it is noticed that the economic
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objective functions are highly dependent on the STY and Yoa. The economic performance

is given by the capital investment and operating costs. The capital investment is influenced

by the STY . Larger STY values lead to lower equipment sizes. On the other hand, the

operating costs are mainly affected by the Yoa, since this variable has a large impact on the

amount of raw materials consumed. Regarding the environmental objective, it is mainly

affected by the Yoa. Particularly, larger Yoa values lead to lower consumption rates of raw

materials for a fixed amount of L-lysine produced, and therefore to less impact.

Higher initial concentrations of threonine increase the STY and decrease the Yoa. With

regard to the glucose, the maximum STY and Yoa values are both found at high initial

glucose concentration levels. The initial reaction volume is the decision variable with the

smallest effect on the STY and Yoa. Finally, longer reaction times lead to high values of

STY and Yoa and small production costs.

Figure 6 shows the relationship between the STY and Yoa and the economic and envi-

ronmental performance. The figure confirms that at higher STY values the cost per unit

produced is decreased while the environmental impact is increased. The opposite situation

occurs when the Yoa is increased.

(Figure 6 could be placed here)

The preliminary analysis presented above provides some insight into the problem, but

does not lead to optimal solutions. The section that follows describes how our approach

takes a step forward by identifying the values of the decision variables that simultaneously

optimize the economic and environmental performance.

5.2.3. Multi-objective optimization

We first solve the problem maximizing the NPV as single objective. We use the base case

configuration and operating conditions provided by Heinzle et al. [41] as starting point to
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initialize the overall solution procedure and also for comparison purposes. This solution

entails three reactors in parallel and the use of the RVF for the separation. Recall that the

decision variables to be optimized are the initial concentrations of threonine and glucose,

initial volume of the fermentor, and reaction time (continuous variables) and number of

equipment units working in parallel, and selection of a specific equipment unit for biomass

removal (discrete variables).

Table 1 displays the values of the main variables associated with each design. As observed,

our final solution increases by 13.77% the NPV as compared to the base case (195,688M$

vs. 172,003M$). This is accomplished by using two fermentors in parallel instead of three,

and also by adjusting the operating conditions of the plant. Particularly, in the optimal

solution, the initial concentrations of glucose and threonine are higher than in the base case.

These new conditions increase both the STY and Yoa. Increasing the STY has the effect

of reducing the equipment sizes and associated capital investment. On the other hand, by

increasing the Yoa it is possible to reduce the raw materials consumption, and therefore the

operating cost. As a result, the total capital investment and operating costs are reduced

by 21.5% (79,885M$ vs. 101,766M$) and 16.9% (8,830M$/year vs. 10,631M$/year) respec-

tively, keeping the production rate constant (6,202 tones L-lysine/year). In addition, the

environmental impact in all the damage categories is also reduced (6.79% in HH, 0.05% in

EQ and 11.52% in DR).

(Table 1 could be placed here)

Figure 7 shows, for the maximum NPV solution, the main sources of impact affecting each

damage category. Particularly, we consider the following contributors to the environmental

impact (see Appendix A for details): (1) water, (2) glucose, (3) threonine, (4) KH2PO4, (5)

NH4OH, (6) steam, (7) process water, (8) CO2, (9) biomass, (10) electricity and (11) steel.
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(Figure 7 could be placed here)

As seen, glucose is the major source of impact in all of the cases. Note that bioprocesses

are characterized by small consumption rates of utilities. Because of this, the main source

of impact is typically given by a raw material, like glucose in our case. This is an interesting

observation, since the impact associated with raw materials is typically neglected in many

environmental assessment methodologies that focus on evaluating the emissions released

and waste generated at the plant level. Hence, decreasing the glucose consumption allows to

diminish the impact in all damage categories. This can be accomplished by increasing the

overall yield (Yoa) in the reaction step. Particularly, in the damage to ecosystem quality (EQ)

and depletion of resources (DR), the percentages of impact associated with raw materials

consumption are 93.48% and 87.69%, respectively. For the damage to human health (HH),

the consumption of raw materials has a percentual impact of 75.06%.

We generate next a set of Pareto solutions for the 4-objective problem that will be

used for the PCA study. For simplicity, we obtain these solutions by solving three bi-

objective problems, in which we optimize the NPV versus each individual damage category

separately. Note, however, that other Pareto solutions could also be generated by imposing

different epsilon limits on the environmental objectives. It takes around 3,500 to 4,000 CPU

seconds to generate 10 Pareto solutions of each 2-dimensional Pareto set on a computer

AMD PhenomTM 8600B, with a Triple-Core Processor 2.29GHz and 3.23 GB of RAM.

We should clarify that simulations fail mainly when there are recycle streams or unit

operations that cannot fulfill the required specifications. The case studies addressed in this

work did not have these features, and for this reason convergence was not an issue. In general,

however, recycled streams can be partitioned into two streams, forcing the properties of both

sub-streams to match using equality constraints that are handled by the external NLP solver.

Note that it is always better to handle the specifications externally by the NLP in order to

avoid convergence difficulties in the process simulator.
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The results of the aforementioned bi-criteria problems are shown in Figures 8-10. As

observed, there is a clear trade-off between the economic indicator and each of the environ-

mental categories, since reductions in the environmental impact can only be attained at the

expense of decreasing the NPV.

Figure 8 represents the Pareto solutions of the bi-objective optimization problem NPV vs

HH. The HH index is reduced by 6.69% (19,589 kpoints vs 20,382 kpoints) along the Pareto

curve. This is accomplished by reducing the concentrations of threonine and glucose, which in

turn increases the Yoa of the reaction and decreases the consumption of raw materials. On the

other hand, the NPV is decreased by 3.89% (187,396M$ vs 195,517M$). Low concentrations

of threonine and glucose lead to slower reaction rates. Hence, to satisfy the total production,

the model is forced to select larger volumes in the equipment units, which results in a higher

capital investment. The initial concentrations of glucose and threonine for the maximum

NPV solution are 94.63 g/l and 1.92 g/l, respectively, and 87.28 g/l and 1.16 g/l for the

minimum HH. In addition, the reactor volume is increased from 283.52m3 to 398.76m3 and

the reaction time is reduced from 97.16 h to 91.82 h as we move from the maximum NPV to

the minimum HH solution. Note that all the Pareto solutions involve the same configuration

(2 reactors in parallel and a rotary vacuum filtration).

In Figure 9, the EQ is reduced by 10.10% (8,549 kpoints vs 9,509 kpoints) along the

Pareto curve, whereas the NPV is decreased by 11.32% (173,383M$ vs 195,517M$). Simi-

larly, as in the previous case, we find that solutions with large NPV values involve higher

glucose and threonine concentrations, smaller bioreactor sizes and longer reaction times,

whereas lower environmental impacts are obtained doing the opposite. In this case, two

different configurations of the plant are identified: one implying 2 reactors in parallel for

solutions with higher NPV, and another one with 3 reactors in parallel for solutions with

lower environmental impact. Hence, lower concentrations of threonine and glucose are com-

pensated by placing more reactors in parallel, which allows to decrease the cycle time of the

plant. All Pareto solutions use a rotary vacuum filtration for the biomass removal.
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Finally Figure 10 shows the Pareto solutions that trade-off NPV vs DR. In this MOO

problem the DR is decreased by 8.17% (25,613 kpoints vs 26,893 kpoints) and the NPV by

11.32% (173,383M$ vs 195,517M$). Further inspection of the results reveals similar insights,

regarding the operating conditions, as in the previous cases.

(Figure 8 could be placed here)

(Figure 9 could be placed here)

(Figure 10 could be placed here)

Table 2 summarizes the main features of the maximum NPV and minimum HH, EQ and

DR solutions. Note that the plant topology in the minimum EQ and DR solutions entails 3

reactors in parallel. In contrast, the minimum HH leads to 2 reactors in parallel. This is due

to the fact that the stainless steel production has a large contribution in damage category

HH and a small one in EQ and DR.

(Table 2 could be placed here)

Figure 11 depicts all Pareto solutions in a parallel coordinates plot, which is a useful

graphical tool to display data sets of large dimension. The figure shows in the x axis the

set of objective functions and in the y axis the normalized value attained by each solution

in every criterion. The normalization is performed by dividing each objective function value

by its maximum value attained over the entire data set. Note that each line in the plot rep-

resents a different Pareto solution, entailing a topology and set of operating conditions, that

connects the performance obtained by that design in each objective. As observed, all envi-

ronmental impacts are somehow equivalent, since they tend to behave in a similar manner.

Moreover, the largest reductions in environmental impact are attained in the EQ category

(10.10%), followed by DR (8.17%) and finally by HH (3.59%). These environmental savings
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are obtained at the expense of reducing the NPV by 11.32%. Further, it is clearly shown

how there is a trade-off between the NPV and LCA impacts since alternatives with better

NPV values lead in turn to larger LCA impacts.

(Figure 11 could be placed here)

5.2.4. Principal component analysis

PCA is applied next to the Pareto solutions obtained in the previous section. The 3 bi-

objective problems provides a total of 30 solution points that are stored in matrix M (see

Table 3).

(Table 3 could be placed here)

The correlation matrix is first computed in order to reveal whether there exists correla-

tion between objectives (see Table 4). This information is valuable in assessing whether a

reduction in the number of objectives is possible using PCA methodology.

(Table 4 could be placed here)

The correlation between the environmental metrics is particularly strong. Henceforth, it

is expected that the PCA will allow significant reductions in the number of objectives.

We next standardize matrix M1 so that its centroid equals zero. This is accomplished

by subtracting the mean from each measurement. At this point, the principal components

are computed together with the associated eigenvalues by solving an eigenvector-eigenvalue

problem. The results are given in Table 5.
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(Table 5 could be placed here)

Figure 12 depicts the objectives (vectors) and Pareto points (dots) in the space of the two

first PCs. Note that the projections of the vectors representing the environmental impact

categories onto the PC1 axis are all negative, whereas that of the NPV is positive, confirming

the existence of a clear trade-off between them. In addition, the projections of the vectors

associated with the environmental metrics fall within the same region, which indicates a

strong correlation between them. The coefficient of HH in PC3 has opposite sign than those

associated with EQ and DR. A possible explanation for this is that, as already mentioned, the

minimization of HH produces a different topological alternative (i.e., two reactors in parallel)

than that associated with the minimum EQ and DR solutions (i.e., three reactors in parallel).

(Figure 12 could be placed here)

The heuristic proposed by Deb and Saxena [37] is next applied to the PCA results.

We start by analyzing the first principal component, identifying the objectives with the

most positive (NPV) and most negative (EQ) values. These objectives will be kept in the

analysis. Since with this first PC we do not achieve the threshold cut of 95.00% (as suggested

by the same authors), we continue with the analysis of the second PC. In this case, all the

components of the eigenvector are positive, so we select the objective with the most positive

value (NPV). Since, the cumulative variance of PC2 (99.73%) exceeds the TC, no further

PCs are analyzed.

The outcome of the PCA analysis therefore suggests to keep NPV and EQ as main

objectives and discard the others. This result is consistent with what we observed in the

parallel coordinates plot. This reduction in environmental objectives simplifies to a large

extent the analysis of the Pareto set, since decision-makers can now focus on optimizing and

analyzing the system on the basis of a single environmental indicator.
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Regarding the number of points required by the PCA, there are different rules to deter-

mine the minimum number of samples for stable PCA results. Note that when the variables

(i.e., objectives) are highly correlated, like in our case, it is possible to use PCA even when

the number of samples is small.

6 CONCLUSIONS

This work has introduced a novel framework to assist the development of biotechnological

processes . The proposed algorithm integrates process simulation, multi-objective optimiza-

tion (MOO) tools, life cycle assessment (LCA) and principal component analysis (PCA).

The capabilities of this method have been tested in a typical fermentation process and

the production of the amino acid L-lysine. From numerical results, we concluded that it is

possible to significantly improve the economic and environmental performance of bioprocesses

by optimizing them as a whole. Particularly, larger benefits can be attained by properly

adjusting the operating conditions and equipment sizes of all units embedded in the flowsheet.

The main contributions of our approach are the use of a bioprocess simulation package,

in which the process performance and economic equations are already implemented, the

integration of LCA analysis in this context and the use of dimensionality reduction techniques

based on PCA for identifying redundant LCA metrics. Future work will focus on exploring

the use of surrogate or short-cut modeling to optimize the process model, thereby reducing

the associated complexity.

Acknowledgements

The authors wish to acknowledge support from the Spanish Ministry of Education and

Science (projects DPI2008-04099 and CTQ2009-14420-C02) and the Spanish Ministry of

External Affairs (projects A/023551/09 and HS2007-0006).

26

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



References

[1] Grossmann, I.E.; Guillén-Gosálbez, G. Scope for the application of mathematical pro-

gramming techniques in the synthesis and planning of sustainable processes.Computers

and Chemical Engineering. 2010,34,1365-1376.

[2] Cuthrell, J.E.; Biegler, L.T. Simultaneous optimization and solution methods for batch

reactor control profiles.Computers and Chemical Engineering. 1989,13,49-62.

[3] Carrasco, E.F.; Banga, J.R. Dynamic optimization of batch reactors using adaptive

stochastic algorithms.Ind.Eng.Chem.Res. 1997,36,2252-2261.

[4] Banga, J.R.; Balsa-Canto, E.; Moles C.G.; Alonso, A.A. Dynamic optimization

of bioprocesses: Efficient and robust numerical strategies.Journal of Biotechnology.

2005,117,407-419.

[5] Sarkar, D.; Modak, J.M. Pareto-optimal solutions for multi-objective optimization of

fed-batch bioreactors using nondominated sorting genetic algorithm.Chemical Engineer-

ing Science. 2005,60,481-492.

[6] Groep M,E.; Gregory M,E.; Kershenbaum L,S.; Bogle, D. Performance model-

ing and simulation of biochemical process sequences with interacting unit opera-

tions.Biotechnology and bioengineering. 2000,67,300-311.

[7] Pinto, J.M.; Montagna, J.M. Vecchietti, A.R.; Iribarren, O.A.; Asenjo. J.A. Pro-

cess performance models in the optimization of multiproduct protein production

plants.Biotechnology and bioengineering. 2001,74,451-465.

[8] Montagna J,M.; Iribarren, O.A. Vecchietti, A.R.; Synthesis of biotechnological processes

using generalized disjunctive programming.Ind.Eng.Chem.Res. 2004,43,4220-4232.

[9] Konopacz, R.F. Environmental impacts upon biotechnology facility design. A review of

27

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Chiron’s recent environmental impact report for a biotechnology facility.Annals of the

New York Academy of Sciences. 1991,646,381-384.

[10] Steffens, M.A.; Fraga, E.S.; Bogle, D. Multicriteria process synthesis for gener-

ating sustainable and economic bioprocesses.Computers and Chemical Engineering.

1999,23,1455-1467.

[11] Dietz, A.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. Multiobjective optimiza-

tion for multiproduct batch plant design under economic and environmental considera-

tions.Computers and Chemical Engineering. 2006,30,599-613.

[12] Jimenez-Gonzalez, C. Woodley, J.M.; Bioprocesses: Modeling needs for process evalua-

tion and sustainability assessment. Chem.Eng.Res.Des. 2010,34,1009-1017.

[14] Biegler, L.T.; Grossmann I.E.; Westerberg A.W. Systematic Methods of Chemical Pro-

cess Design.Prentice Hall. 1999.

[14] Biegler, L.T.; Grossmann I.E.; Westerberg A.W. Systematic Methods of Chemical Pro-

cess Design.Prentice Hall. 1999.

[15] Guillén, G.; Mele, F.D.; Espuña, A.; Puigjaner, L. Addressing the design of chemical

supply chains under demand uncertainty.Ind.Eng.Chem.Res. 2006,45,7566-7581.

[16] Guillén-Gosálbez, G.; Grossmann, I.E. Optimal design and planning of sustainable

chemical supply chains under uncertainty.AIChE Journal. 2009,55,99-121.

[17] Swiss Center for Life Cycle Inventories (http://www.ecoinvent.ch/).

[18] Consoli F., Allen D., Boustead I., Fava J., Franklin W., Jensen A.A. (1993) A code of

practice. Guidelines for life-cycle assessment. Pensacola, USA:SETAC.

[19] Azapagic, A.; Clift, R. Application of life cycle assessment to process optimisa-

tion.Computers and Chemical Engineering. 1999,23,1509-1526.

28

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



[20] Azapagic, A.; Clift, R. Life cycle assessment and multiobjective optimisation.Journal

of Cleaner Production. 1999,7,135-143.

[21] Alexander, B.; Barton, G.; Petrie, J.; Romagnoli, J. Process synthesis and optimisation

tools for environmental design: Methodology and structure.Computers and Chemical

Engineering. 2000,24,1195-2000.

[22] Khan, F.I.; Natrajan, B.R.; Revathi, P. A new methodology for cleaner and greener

process design.Journal of Loss Prevention in the Process Industries. 2001,14,307-328.

[23] Baratto, F.; Diwekar, U.M.; Manca, D. Impacts assessment and tradeoffs of fuel cell

based auxiliary power units Part II. Environmental and health impacts, LCA, and

multi-objective optimization.Journal of Power Sources. 2005,139,214-222.

[24] Carvalho, A.; Gani, R.; Matos, H. Design of sustainable processes: Systematic genera-

tion and evaluation of alternatives.Computer Aided Chemical Engineering. 2006,21,817-

822.

[25] Guillén-Gosálbez, G.; Caballero, J.A.; Jiménez, L.; Application of life cycle assessment
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NOMENCLATURE

Abbreviatures

CF Centrifuge

COM Component Object Module

DR Depletion of Resources

EQP Environmental Protection Agency

EQ Damage to Ecosystem Quality

EI Environmental impact

GDP Generalized Disjunctive Programming

HH Damage to Human Health

LCA Life-Cycle Assessment

MF microfilter

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Non-Linear Programming

moMINLP Multi-Objective Mixed-Integer Non-Linear Programming

MOO Multi-Objective Optimization

NLP Non-Linear Programming

NPV Net Present Value

ODEs Ordinary differential equations

RVF Rotary Vacuum Filtration

PC Principal Component

PCA Principal Component Analysis

PSE Process Systems Engineering

SQP Successive Quadratic Programming

STY Space Time Yield

Yoa Overall yield
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A Life Cycle Assessment of the L-lysine production

plant

The environmental performance of the L-lysine production is quantified according to the

LCA methodology (ISO 14040), which is combined with process simulation and MOO in a

way similar as done before by the authors (Bojarski et al. [31]) . The method is applied in

four phases:

1.Goal and scope definition:

• The functional unit was set to 76.470 tones of L-lysine produced over a time horizon

of 15 years.

• The system under study comprises the three stages of the bioprocess: upstream, biore-

action and downstream. Every stream crossing this boundary is regarded as an input

or output of our system.

(Figure 12 could be placed here)

• We perform a cradle to gate study that covers all the activities from the extraction of

raw materials to the production of L-lysine.

• The environmental impact is determined using the Eco-Indicator 99 (Eco99) frame-

work, which includes 10 impact categories that are divided into 3 specific damage cat-

egories: damage to human health (carcinogenics, climate change, ionizing radiation,

ozone depletion and respiratory effects), damage to ecosystem quality (acidification

and eutrophication, ecotoxicity and land occupation) and damage to natural resources

(fossil fuels and mineral extraction).

• We consider the following sources of impact:

Raw materials (inputs): threonine, nutrients (glucose, KH2PO4 and NH4OH) and

water.
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Utilities (inputs): electricity, steam and cooling water.

Stainless steel contained in the equipment units (input).

Waste and emissions generated (outputs): biomass, CO2 and water.

2.Life cycle inventory analysis (LCI):

• The quantification of the mass and energy streams crossing the boundaries of the sys-

tem is performed using the bioprocess simulator. The input streams of energy and

mass are translated into the corresponding emissions and feedstock requirements using

the Eco-invent database [17]. For those components that are not in the database, it

is necessary to move one step backward and analyze their production process. Partic-

ularly, individual LCA analysis are performed on the following components: glucose,

threonine, KH2PO4 and NH4OH. The following assumptions are made:

Glucose is produced by saccharifying liquefied starch (see Miyawaki et al. [43]).

Threonine is obtained by the aerobic fermentation of glucose using Escherichia Coli

(see Furukawa et al. [44]).

KH2PO4 is produced from KCl and H3PO4 (see Rubin et al. [45]).

NH4OH is obtained from ammonia and ultra-pure water (see Mulle et al. [46]).

3.Life cycle impact assessment (LCIA):

• The damage caused in each impact category (damd) is determined from the entries

of the life cycle inventory of emissions and feedstock requirements (LCIb) and corre-

sponding set of damage factors (dfbd) as follows.

damd =
∑
b

dfb,d · LCIb ∀d

• The damage factors have been retrieved from the Eco-Indicator 99 methodology report

[32]. The results of the LCIA are shown in Tables 6 to 8.
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(Table 6 could be placed here)

(Table 7 could be placed here)

(Table 8 could be placed here)

4.Life cycle interpretation: As mentioned previously, the interpretation is performed in

the post-optimal analysis of the Pareto solutions. This step is assissted by the use of PCA.
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Table 1: Results of the economic optimization of L-lysine production plant

Variables Base Case Optimal Point

Net present value [M$] 172,003 195,688

Total capital investment [M$] 101,766 79,885

Operating cost [M$/year] 10,631 8,830

Production rate [tones MP/year] 6,202 6,202

Unit Production cost [$/kg MP] 1.71 1.42

Batch Throughput [tons MP/batch] 29.67 44.30

Recipe Batch time [h] 111.07 137.67

Recipe Cycle time [h] 37.51 55.81

Number of batches per year 209 140

Concentration Glucose [g/l] 48.72 94.61

Concentration Threonine [g/l] 1.61 1.92

Initial Volume Ferment [m3] 310.34 282.77

Reaction time [h] 71.01 97.16

Fermentors [equip.] 3 2

Separator RVF RVF

Space-time yield [g/l·h] 1.022 1.103

Overall yield [g/g] 0.299 0.316

Separator RVF RVF

Human Health [Kpoints] 21,866 20,382

Ecosystem Quality [Kpoints] 9,514 9,509

Depletion Resources [Kpoints] 31,526 27,893
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Table 2: Results of the optimization of the L-lysine production plant for different objective
functions

Variables max NPV min HH min EQ min DR

Net present value [M$] 195,688 187,396 173,383 173,494

Human Health [Kpoints] 20,382 19,589 19,747 19,751

Ecosystem Quality [Kpoints] 9,509 8,778 8,549 8,557

Depletion Resources [Kpoints] 27,893 26,154 25,613 25,605

Concentration Glucose [g/l] 94.61 87,28 89,98 89.05

Concentration Threonine [g/l] 1.92 1.16 0.96 0.96

Initial Volume Ferment [m3] 282.77 398.76 398.66 396.79

Reaction time [h] 97.162 91.82 95.89 95.97

Fermentors [equip.] 2 2 3 3

Separator RVF RVF RVF RVF

Space-time yield [g/l·h] 1.103 0.914 0.859 0.859

Overall yield [g/g] 0.316 0.348 0.372 0.371
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Table 3: Solutions matrix of the original 2-dimensional problems

NPV [$] HH [Points] EQ [Points] DR [Points]

195,517,044 20,382,538 9,509,658 27,893,721

195,395,664 20,237,840 9,391,320 27,586,280

195,385,792 20,230,751 9,411,804 27,643,591

195,357,969 20,244,053 9,403,678 27,619,686

194,979,665 20,135,339 9,311,688 27,383,932

194,894,646 20,127,492 9,293,449 27,338,871

194,837,412 20,119,418 9,285,589 27,318,468

194,353,704 20,045,055 9,217,483 27,153,293

194,111,849 20,007,873 9,183,431 27,070,706

194,111,849 20,007,873 9,183,431 27,070,706

193,369,855 19,948,318 9,102,053 26,879,839

193,368,848 19,926,575 9,089,258 26,847,424

193,368,848 19,926,575 9,089,258 26,847,424

192,756,629 19,892,174 9,031,156 26,718,450

191,718,388 19,849,783 8,986,662 26,615,911

190,862,157 19,801,882 8,918,681 26,460,176

190,067,928 19,772,992 8,884,066 26,384,397

189,233,790 19,712,545 8,848,803 26,304,523

188,137,027 19,648,861 8,805,609 26,207,369

187,871,528 19,624,164 8,803,842 26,198,934

187,493,393 19,607,484 8,779,456 26,148,359

187,396,749 19,589,390 8,778,137 26,154,129

176,940,713 19,797,523 8,755,592 26,060,850

176,098,812 19,803,393 8,722,428 25,981,318

174,935,488 19,781,882 8,648,755 25,832,539

174,267,079 19,776,669 8,613,143 25,756,435

173,493,733 19,751,395 8,557,266 25,605,575

173,383,255 19,747,784 8,549,283 25,613,317
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Table 4: Correlation matrix

NPV HH EQ DR

NPV 1.0000 -0.6201 -0.8617 -0.8599

HH - 1.0000 0.9241 0.9248

EQ - - 1.0000 0.9997

DR - - - 1.0000

40

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Table 5: PCs (presented in decreasing order of their eigenvalues) and other relevant data
computed from the correlation matrix

PC NPV HH EQ DR Variance Percentage Cumulative

1 0.4612 -0.4812 -0.5272 -0.5271 3.5873 89.680 89.68

2 0.7643 0.6421 0.0390 0.0436 0.4020 10.050 99.73

3 0.4504 -0.5966 0.4503 0.4883 0.0105 0.262 99.99

4 -0.0146 0.0140 -0.7195 0.6942 0.0003 0.007 100.00
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Table 6: Results of the LCIA using eco-indicator 99, (H/A)/ Human health

Components Carcinogenics Climate Change Ionising Radiation Ozone Depletion Respiratory effects

Points/kg Points/kg Points/kg Points/kg Points/kg

Water 2.87 · 10−6 4.35 · 10−6 4.17 · 10−6 1.63 · 10−8 1.32 · 10−5

Glucose 7.28 · 10−3 1.89 · 10−2 1.89 · 10−3 3.40 · 10−5 1.60 · 10−2

Threonine 4.90 · 10−2 1.26 · 10−1 1.27 · 10−2 2.29 · 10−4 1.08 · 10−1

KH2PO4 1.36 · 10−2 1.06 · 10−1 1.05 · 10−3 5.27 · 10−5 2.87 · 10−1

NH4OH 1.20 · 10−3 5.59 · 10−3 2.76 · 10−5 4.14 · 10−6 1.18 · 10−2

CO2 0 5.45 · 10−3 0 0 0

Biomass 0 1.06 · 10−2 0 0 0

Steam 1.04 · 10−4 1.27 · 10−3 1.91 · 10−6 7.78 · 10−7 1.56 · 10−3

Process Water 2.87 · 10−6 4.35 · 10−6 4.17 · 10−7 1.63 · 10−8 1.32 · 10−5

Electricity *kWh 1.29 · 10−3 4.07 · 10−3 8.94 · 10−5 5.41 · 10−7 1.01 · 10−5

Steel 6.32 · 10−3 1.31 · 10−2 4.51 · 10−4 4.55 · 10−6 8.01 · 10−2
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Table 7: Results of the LCIA using eco-indicator 99,(H/A)/ Ecosystem quality

Components Acidification Ecotoxicity Land Occupation

Points/kg Points/kg Points/kg

Water 9.52 · 10−7 1.80 · 10−6 1.70 · 10−6

Glucose 1.88 · 10−2 9.71 · 10−3 2.37 · 10−3

Threonine 1.26 · 10−1 6.51 · 10−2 1.60 · 10−2

KH2PO4 2.16 · 10−2 3.40 · 10−2 6.21 · 10−2

NH4OH 7.20 · 10−4 3.22 · 10−3 7.51 · 10−4

CO2 0 0 0

Biomass 0 0 0

Steam 1.21 · 10−4 2.85 · 10−4 8.60 · 10−5

Process Water 9.52 · 10−7 1.80 · 10−6 1.70 · 10−6

Electricity *kWh 9.88 · 10−4 2.14 · 10−4 4.64 · 10−4

Steel 2.71 · 10−3 7.45 · 10−2 3.73 · 10−3
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Table 8: Results of the LCIA using eco-indicator 99, (H/A)/ Damage resources

Components Fossil Fuels Mineral Extraction

Points/kg Points/kg

Water 1.55 · 10−5 1.27 · 10−6

Glucose 3.67 · 10−2 7.75 · 10−3

Threonine 2.47 · 10−1 5.19 · 10−2

KH2PO4 1.87 1.50 · 10−2

NH4OH 6.20 · 10−2 7.04 · 10−4

CO2 0 0

Biomass 0 0

Steam 1.24 · 10−2 8.87 · 10−6

Process Water 1.55 · 10−5 1.27 · 10−6

Electricity *kWh 1.01 · 10−2 5.85 · 10−5

Steel 5.93 · 10−2 7.42 · 10−2
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Figure 1: Flowchart of the proposed algorithm
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Figure 2: Details on the implementation details of the algorithm
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Figure 3: L-lysine production plant (adapted from Heinzle et al.,2006)
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pact, STY and Yoa and the initial glucose concentration (CSin), maintain-
ing the rest of the decision variables constant

Figure 4: Preliminary analysis of the decision variables
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Figure 6: Relationship between the reaction output variables and the economic and environ-
mental performance
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Figure 7: Breakdown of the main sources of impact contributing to the different environ-
mental impact categories
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Figure 13: Inputs/outputs of mass and energy considered in the LCA analysis
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Abstract

This work addresses the optimal design of ammonia-water absorption cycles for cool-

ing and refrigeration applications with economic and environmental concerns. Our

approach combines the capabilities of process simulation, multi-objective optimiza-

tion (MOO), cost analysis and life cycle assessment (LCA). The design task is posed in

mathematical terms as a multi-objective mixed-integer nonlinear programming (moMINLP)

that seeks to minimize the total annualized cost and environmental impact of the cy-

cle. This moMINLP is solved by an outer-approximation strategy that iterates between

primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored

mixed-integer linear programming (MILP) model. The capabilities of our approach

are illustrated through its application to an ammonia-water absorption cycle used in

cooling and refrigeration applications.

Keywords: Process simulation; multi-objective optimization; absorption cycle; cost anal-

ysis; life cycle assessment
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1 INTRODUCTION

The worldwide cooling demand has drastically increased over the last few years, which has

led to the installation of a large number of air conditioning systems (Balaras et al. 2007

and Henning 2007). This has resulted in a dramatic rise in electricity consumption, which is

nowadays mostly generated from fossil fuels. This trend has caused important environmental

problems such as: ozone layer depletion and global warming. In this general context, there is

a clear need to develop environmentally friendly and energy efficient technologies in order to

minimize the environmental impact of cooling applications. Particularly, absorption systems

have emerged as a promising alternative to conventional compression cycles (Herold 1996,

McMullan 2002 and Florides et al. 2002), since they can use low grade energy sources that

are environmentally friendlier.

Absorption machines use a mixture of a refrigerant and an absorbent. The most widely

employed mixtures are ammonia-water (ammonia as refrigerant) and water-lithium bromide

(water as refrigerant). An important difference between absorption and compression refrig-

eration systems lies in the energy source. Compression systems require electrical energy for

its operation, whereas absorption systems can use low grade heat sources as energy input.

Therefore solar energy or waste heat (Keil et al., 2008), can be used for saving up to 50%

of the primary energy required for the provision of useful heat (Ziegler et al., 1993). Energy

conservation via waste heat recovery has been the focus of increasing interest in the literature

(Erickson et al., 2004). These systems can reduce global warming emissions (Darwish et al.,

2008) and mitigate as well to the ozone layer depletion. They show a high reliability and a

silent and vibration free operation. Unfortunately, absorption cycles require more units than

compression cycles, which leads to larger capital investments.

Finding ways to improve the efficiency of absorption systems has recently attracted an in-

creasing interest (Darwish et al., 2008). In order to promote the use of absorption systems

and to ensure their competitiveness with respect to conventional compression systems, it is

still necessary to find ways to further improve their performance and reduce their cost. This

3

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



can be accomplished by developing systematic strategies to assist in their design. Thermoe-

conomic optimization is well suited to address this problem, since it allows performing energy

and economic analysis for different configurations and operating conditions in a systematic

and rigorous manner (Misra et al. 2005, Misra et al. 2006, Selbas 2006 and Kizilkan et al.

2007).

Particularly, methods based on mathematical programming have recently gained wider in-

terest in the optimization of cooling systems. Most of these approaches have focused on

optimizing the economic performance of ammonia-water absorption refrigeration systems

(AWRS). One of the first optimization models for absorption cycles was the one intro-

duced by Fernandez-Seara et al. (2003). More recently, Chavez-Islas & Heard (2009a) and

(2009b) presented an equation-oriented method and a mixed-integer nonlinear programming

(MINLP) model for the economical optimization of these systems. The same authors intro-

duced a MINLP that considers different types of heat exchangers Chavez-Islas et al. (2009c).

Gebreslassie et al. (2009a) addressed the optimization of a simplified AWRS considering un-

certainties in the economic parameters.

These works focused on optimizing the economic performance as unique criterion. New

trends have motivated the development of systematic strategies for optimizing the environ-

mental impact of thermodynamic cycles along with their economic performance. Particularly,

a promising strategy to accomplish this task relies on combining multi-objective optimiza-

tion (MOO) tools with economic analysis and life cycle assessment (LCA) principles. This

approach allows automating the search for alternatives leading to life cycle environmental

savings (see Azapagic & Clift 1999a). The overwhelming majority of this type of strategies

that provide decision-support for environmentally conscious process designs have focused on

the chemical sector. In contrast, these techniques have not been used to the same extent

in energy applications. Particular examples on the combined use of LCA and MOO can be

found in the works by Azapagic & Clift (1999b) (production of boron compounds), Alexander

et al. (2000) (design of a nitric acid plant), Carvalho et al. (2006) (design of a methyl tertiary
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butyl ether plant), Guillen-Gosalbez et al. (2008) (optimization of the hydrodealkylation of

toluene) among some others.

Hence, the optimization of energy systems, and in particular, of cooling and refrigeration

cycles with environmental concerns has received little attention to date. To the best our

knowledge, Gebreslassie et al. (2009b) were the first ones to address the multi-objective

optimization of absorption cycles with economic and environmental concerns. The main

limitation of this work is that it relies on ”short-cut” models of the process units, that

is, on simplified equations used to predict their performance. This simplification was orig-

inally aimed at avoiding the numerical difficulties associated with the nonlinearities and

nonconvexities resulting from the detailed formulation of the thermodynamic equations of

the process units of the cycle. These simplified models work reasonably well within a given

range of operating conditions, but may perform poorly outside these intervals. Particularly,

the generator of the cycle is a key unit that requires the use of complex thermodynamic

packages for predicting the liquid-vapor equilibrium and stream properties (e.g., enthalpies,

vapor pressures, etc.). Attempting to model this unit by short-cut formulations may lead to

poor predictions, especially when working under refrigeration conditions.

This work introduces a systematic tool for the optimal design of absorption systems that

aims to overcome the limitations mentioned above. Our approach is based on the combined

use of process simulation and optimization tools (Diwekar et al., 1992; Reneaume et al.,

1995; Kravanja & Grossmann, 1996; Diaz and Bandoni, 1996; Caballero et al., 2005; Kim

et al., 2010; Brunet et al., 2012a). One of the main advantages of our strategy is the use

of detailed process models of the cycle, including a rigorous tray-by-tray formulation of the

rectification column, all of which are implemented in a commercial process simulator (i.e.,

Aspen Plus). This avoids the definition of the underlying equations of the process units in

an explicit form, taking advantage of the customized unit operations models and tailored

solution algorithms already implemented in the process simulator. Further, our method im-

proves the robustness and numerical performance of the optimization algorithm, which is
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likely to fail even in identifying an initial feasible solution when using a simultaneous (i.e.,

equation oriented) approach.

The design task is posed in mathematical terms as a multi-objective mixed-integer nonlinear

programming (moMINLP) problem that accounts simultaneously for the minimization of

the total annualized cost (TAC) and environmental impact (EI). The environmental impact

is quantified by applying LCA principles, an approach that provides solutions in which the

overall damage to the environment is globally minimized.

The methodology presented is intended to promote a more sustainable design of absorption

cycles. Our method has been tested using an AWRS at cooling and refrigeration conditions.

Numerical results demonstrate that the method presented can identify solutions in which the

environmental impact is reduced at a marginal increase in cost. The remainder of this article

is organized as follows. We formally introduce the problem of interest first. The model is

then presented and the solution procedure is described afterwards. Some numerical results

are then provided, and the conclusions are finally drawn in the last section of the paper.

2 PROBLEM STATEMENT

We consider a single effect AWRS. We describe the system first and then formally state the

problem of interest.

2.1 System description

Figure 1 depicts the single effect AWRS under study. The system can either be used to pro-

vide chilled water for cooling applications (10oC to 5oC), or a solution with 95% of ethylene

glycol for refrigeration applications (-5oC to -10oC). The basic components are the absorber

(A), condenser (C), rectification column (RC), and evaporator (E). The cycle also includes

the refrigerant subcooler (SC), refrigerant expansion valve (VLV1), solution heat exchanger

(SHX), solution pump (P), and solution expansion valve (VLV2). The cycle works at two
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pressure levels. The equipment units operating at a high pressure are the solution heat

exchanger, rectification column and condenser. In contrast, the refrigerant subcooler, the

evaporator and absorber work at a low pressure.

The system operation is as follows. The refrigerant in the vapor phase (12) coming from

the subcooler (SC) is mixed with the expanded stream (6) coming from the solution heat

exchanger (SHX). The resulting stream (13) is absorbed in the absorber (A) by the weak

solution (W1). The strong solution (1) leaving the absorber is preheated in the solution heat

exchanger (SHX). The solution (3) enters the rectification column (RC). Vapor refrigerant

(7) from the top of the rectification column (RC) condenses completely in the condenser (C).

The liquid refrigerant (8) from the condenser is then subcooled (9) in the subcooler (SC)

by the superheating stream (11) that comes from the evaporator (E). The refrigerant (10)

passes through the refrigerant expansion valve (VLV1) and enters the evaporator (E). The

weak liquid solution (4) from the bottom of the rectification column (RC) is cooled in the

heat exchanger (SHX) and sent to the expansion valve (VLV2). The resulting stream (6) is

mixed with the refrigerant vapor (12). Note that streams W1-W6 are external heat transfer

fluids. The useful output energy is given by the heat extracted from the evaporator (E). The

driving energy is the heat supplied to the generator. Heat is dissipated in the absorber (A),

the condenser (C), and in the partial condenser of the rectification column (RC).

(Figure 1 could be placed here)

It is assumed that the system works under steady state conditions. Pressure losses are ne-

glected. Adiabatic valves are considered. The refrigerant is assumed to leave the condenser,

absorber and bottom of the rectification column as saturated liquid. Heat losses are sup-

posed to reduce the coefficient of performance (COP) by 10%. Note, COP is a term that

represents the ratio of the heat delivered divided by the energy input to the system.
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2.2 Problem definition

The problem addressed in this article can be formally stated as follows. Given are the

cooling capacity of the system, inlet and outlet temperatures of the external fluids, overall

heat transfer coefficients of the heat exchangers, cost parameters (capital investment and

operating cost data), time horizon, thermodynamic properties, performance models of the

equipment units embedded in the system and LCA related information (i.e., life cycle in-

ventory of emissions and feedstock requirements, and parameters of the damage model).

The goal of the analysis is to determine the optimal process design, including equipment

sizes, structural alternatives (i.e., number of trays) in the rectification column and operating

conditions that minimize the total annualized cost and associated environmental impact of

the system. Note that the problem is multi-objective in nature. Hence, we expect to obtain

a set of alternative solutions representing the optimal trade-off between the economic and

environmental performance rather than a single point.

3 MATHEMATICAL FORMUALTION

The design of the absorption cooling and refrigeration system with economic and environ-

mental concerns can be formulated as a moMINLP problem with the following form:

(M)min
xD

U = {f1(x, u, xD), ..., fn(x, u, xD)}

s.t. hI(x, u, xD) = 0

hE(x, u, xD) = 0

gE(x, u, xD) ≤ 0

(1)

In model (M), f1 represents the economic objective function, whereas f2 to fn denote the

set of environmental metrics. Equations hI are implicit equations solved by the process

simulator, whereas hE and gE are explicit external equality and inequality constraints. The
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continuous design variables are given by xD, whereas x denotes the remaining process vari-

ables calculated by the simulator, and u represents fixed parameters not modified during

the calculations. Note that xD includes both continuous variables (pressures, temperatures,

flow rates, etc.) and discrete variables. The latter denotes the number of trays and the feed

stage selected for the rectification column.

3.1 Objective functions

Model (M) seeks to optimize simultaneously the TAC and EI of the absorption cycle. Details

on the calculation of each objective function are provided next.

3.1.1 Economic objective function (Total annualized cost)

The TAC accounts for the annual capital cost (CF ) and operating costs (CO).

TAC = CO + CF (2)

The annual capital cost cost (CF ) includes the cost of the rectification column (CRC), heat

exchangers (CHX), and the pump (CP ). The valves and mixer cost are neglected. The total

equipment cost is multiplied by the capital recovery factor (crf) (see equation 3), which is

a function of the interest rate (parameter i) and life time (parameter t) of the absorption

cycle expressed in years. (see equation 4).

CF = (CRC + CHX + CP )crf (3)

crf =

(
i(1 + i)t

(1 + i)t − 1

)
(4)

The rectification column cost (equation 5) is determined using the correlations developed by

Guthrie (1996). The heat exchangers cost (equation 6) is estimated according to the work

by Kizilkan et al. (2007), whereas the pump cost (equation 7) is calculated as proposed by
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Siddiqui (1997).

CRC =

(
M&S

280

)
(101.9Diam1.066H0.802)(2.18 + 2Fc)χeuro (5)

CHX =
∑

u∈HX

(c1 · Amu + c2) (6)

CP = c3 ·Wp0.4 (7)

Where M&S is a cost factor, Diam is diameter of the column and H is the height of the

column both in ft, Fc is a cost factor that depends on the type of column and χeuro is the

conversion from dollars to euros. HX denotes the set of equipment units m that are heat

exchangers, c1 and c2 are cost parameters, Am is the area of heat exchanger m. CP denotes

de cost of the pump, Wp is the power of the pump and c3 is a cost parameter.

The area of a heat exchanger u (u ∈ HX) is calculated from the logarithmic mean temper-

ature difference (∆T lm
u ), the overall heat transfer coefficient (Uhu) and the heat duty (Qu)

as follows:

Amu =

(
Qu

Uhu∆T lm
j

)
∀u ∈ HX (8)

The operating cost (CO) accounts for the cost of the steam used in the rectification column

as well as the electricity consumed by the pump. The cooling water cost is neglected.

CO =
∑
u∈U

(Qu · cq +Wu · cw) · top (9)

In equation 9 Qu [MW] is the thermal power supplied to equipment unit u, Wu [MW] is the

electrical power required by the equipment unit, top [h] is the total annual operation time

and cq [e/MWh] and cw [e/MWh] are the unit costs for heat and electricity respectively.

Note that Qu and Wu are provided by the process simulator.
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3.1.2 Environmental objective function (Eco-indicator 99)

The environmental impact is quantified following LCA principles, similarly as done before

by the authors in other works (Puigjaner & Guillen-Gosalbez, 2008; Guillen-Gosalbez et al.,

2008; Guillen-Gosalbez & Grossmann , 2009, 2010; Brunet et al., 2012b). Further details on

the calculations are provided in the Appendix.

4 SOLUTION PROCEDURE

Our approach integrates process simulators, MOO, cost analysis and LCA within a single

framework. Figure 2 summarizes the solution procedure proposed to tackle the problem.

The moMINLP is solved via the ϵ-constraint method (Haimes et al. 1971; Mavrotas 2009).

This strategy is based on formulating an auxiliary model where one objective is kept in the

objective function (without loss of generality, say objective 1) and the remaining ones are

transferred to auxiliary constraints. This single objective problem is then iteratively solved

for different values of the auxiliary epsilon parameters.

(MA)min
xD

z = {f1(x, u, xD)}

s.t. fo(x, u, xD) ≤ ϵo o = 2, ..., n

hI(x, u, xD) = 0

hE(x, u, xD) = 0

gE(x, u, xD) ≤ 0

(10)

In model (MA), f1 is the economic objective function, whereas f2 to fn denote the LCA

metrics. As observed, the LCA metrics have been transferred to auxiliary inequality con-

straints bounded by ϵ parameters. The original problem is first solved by optimizing each

single scalar objective separately. This provides the lower and upper bounds of each epsilon

interval. This interval is split into a number of sub-intervals, for which the original model is

calculated.
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Each single-objective problem is solved following a decomposition approach inspired by the

work by Caballero et al. (2005). More precisely, we make use of an outer-approximation

solution procedure that decomposes the original problem into two hierarchical levels: a pri-

mal non-linear programming (NLP) model and a master mixed-integer linear programming

(MILP) problem, between which the algorithm iterates until a termination criterion is satis-

fied. Particularly, a termination criterion that works well in practice is to stop when the NLP

of the primal level starts worsening. Note that there are two nested loops in the algorithm.

The inner loop solves the auxiliary single objective epsilon constraint problems, whereas the

outer loop proposes iteratively new values for the epsilon parameter and finally ends the

overall procedure when the desired number of Pareto points are generated. One of the main

advantages of this approach is that it ensures that the solution found are at least locally

optimally, as oppose to other meta-heuristic approaches that do not show this property.

Besides, the overall solution procedure takes advantage of the thermodynamic packages and

mass and energy equations defined in the process simulator, avoiding their definition in an

explicit form. We provide next details on each level of the algorithm.

(Figure 2 could be placed here)

4.1 Primal sub-problem

The primal level entails the solution of a NLP sub-problem at iteration k of the algorithm

for fixed values of the binary variables. The NLP is solved by integrating the process simu-

lator (Aspen Plus) with a gradient-based solver. This approach exploits the benefits of the

customized process unit models implemented in the process simulator, which avoids their

definition in an explicit form (i.e. equation oriented). At each iteration, the gradient based

NLP solver calculates the derivatives of the objective function and constraints with respect

to the design decision variables. At the optimal solution of the NLP, this information is used
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to generate the master problem.

A key issue in the method proposed is that the process simulator must converge at each time

the solver sends a set of design variables. To ensure this, the NLP is modified to handle

infeasible solutions by adding slack variables and an exact penalty to the objective function.

Hence, the modified NLP takes the following form:

min
xD

z = f1(x, u, xD) +
∏
(s1 + s2 + s3 + s4)

s.t. fo(x, u, xD) ≤ ϵo + s1 o = 2, ..., n

ϵo ≤ ϵo ≤ ϵo o = 2, ..., n

hI(x, u, xD) = 0

hE(x, u, xD) + s2 − s3 = 0

gE(x, u, xD) ≤ s4

s1 ≥ 0; s2 ≥ 0; s3 ≥ 0; s4 ≥ 0;

(11)

Where
∏

is a penalty parameter vector, and s1, s2, s3 and s4 are vectors of positive slack

variables. All the required parameters to simulate the absorption cycle are initialized in the

simulation environment: properties of the components, equipment parameters and binary

variables (i.e., number of trays and feed stage in the rectification column).

4.2 Master sub-problem

The master problem provides a new set of values for the binary variables that are likely to

yield better results than the previous one. Due to the presence of nonconvexities in the NLP,

it is not guaranteed that the master MILP will provide a rigorous lower bound on the global

optimal solution.

The master MILP is derived in each iteration by linearizing the objective function and con-

straints of the NLP at its optimal solution. The resulting MILP subproblem can be solved

by standard MIP solution algorithms that implement efficient branch and cut methods (e.g,

CPLEX, GUROBI, etc.).
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To generate the master problem, the design variables xD are fixed to the optimal value ob-

tained in the latest NLP k iteration of the algorithm, and a series of simulation problems are

solved. We define the following sets at iteration k of the algorithm that will be used in the

MILP formulation:

T = {i|i is a potential column configuration}

Tk = {i|i is a rectification column configuration, entailing a given number of trays

and a specific feed stage}

EQ = {j|j is an external (explicit) equality constraint)}

IEQ = {j|j is an external (explicit) inequality constraint}

In addition, the following notation is used in the master problem:

∆objki,o = Difference between the objective function o at iteration k of the NLP

and the objective function associated with the new rectification column design i

∆gki,j = Difference between the values of the inequality constraint j for the

new rectification column design i and the constraint j in the original NLP k problem

∆hk
Ei,j

= Difference between the values of the external equality constraint j

new rectification column design i and the constraint j in the original NLP k problem

The master MILP takes the following form:
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min α+
∏

(
n∑

o=2

s1o +
∑

j∈IEQ

s2j +
∑
j∈EQ

s3j)

s.t. fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆objki,o ≤ α o = 1

fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆objki,o ≤ ϵo + s1o o = 2, ..., n

gj(x
k, uk, xk

D) +
∑
n

(
∂gj
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆gki,j ≤ s2j ∀j ∈ IEQ

sign(λk
j )hEj

(xk, uk, xk
D) +

∑
n

(
∂hEj

∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆hk
Ei,j

≤ s3j ∀j ∈ EQ

k = 1, 2, 3, ..., K
s1o ≥ 0 s2j ≥ 0 s3j ≥ 0∑
i∈T

yi = 1

yi ∈ {0, 1}


(12)

The objective function of the master problem is formed by an auxiliary variable α and a

penalty for constraint violation
∏

that multiplies the slack variables. The first constraint is

formed by three terms: (i) the objective function value at iteration k of the algorithm, (ii)

the linearization with respect to design variables and (iii) the contribution topological mod-

ification by changing the current rectification column by either adding or removing stages in

the column or changing the feed stage. This last term makes use of binary variable yi, which

is 1 if topological modification i in the rectification column is implemented and 0 otherwise.

In addition, parameter ∆objki,o accounts for the change in objective function o when topology

i is implemented. External inequality (IEQ) and equality (EQ) constraints are handled fol-

lowing a similar procedure. Parameter sign(λk
j ) denotes the sign of the Lagrange multiplier

of the NLP solved at iteration k of the algorithm. This value is used to correctly relax the
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equalities into inequalities. Note that the values of ∆objki,o, ∆gki,j and ∆hk
Ei,j

are obtained by

fixing design variables xD to their optimal value in the latest k iteration and then solving

a series of i simulations, each one corresponding to a different possible rectification column

configuration. Figure 3 provides an illustrative example on how these terms are defined.

(Figure 3 could be placed here)

It should be noted that all the linear constraints are accumulated in the master MILP, which

means that at iteration k, the problem includes the constraints generated at this iteration

and all the constraints from previous iterations. The primal problem is solved again for the

new set of values of binary variables predicted by the master MILP and the overall procedure

is repeated until the termination criterion is satisfied. Integer cuts can be also added to the

master problem in order to avoid the repetition of solutions explored so far in the primal

problem. Note, Wi are structural rectification column combinations if the value is 1, we

select that structural topology is selected.

Regarding the implicit constraints, it is important to remark that these sets of equations are

solved by the process simulator. Their derivatives, which are used to construct the master

problem, are calculated via finite differences.

5 RESULTS AND DISCUSSION

The capabilities of our approach are illustrated through its application to the design of

an absorption cooling system. We describe first the implementation details of the overall

procedure and then present some numerical results.
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5.1 Computer implementation

The mathematical model of the ammonia-water absorption system is based on that intro-

duced by (Gebreslassie et al., 2009a). We use the process simulator Aspen Plus (2011) to

simulate the AWRS. This software package allow an easy modeling of the system, as it imple-

ments thermodynamic correlations, built-in models for a variety of unit operations and mass

and energy balances. This approach has been already followed by other authors in literature.

Particularly, Zhang & Lior (2007) developed a model in Aspen Plus of a combined power and

refrigeration cycle and validated it with the International Institute of Refrigeration (1994).

In the same line, Vidal et al. (2006) simulated a combined power and refrigeration cycle

using the RKS-EOS in Aspen Plus, finding good agreement with other results available in

the literature (Kalina & Leibowitz, 1998; Zheng et al., 2002; Zhang & Lior, 2004, 2005) as

well as with experimental data (Gomez et al., 2005).

Specifically, we simulate the generator of the absorption cycle as a multistage rectification

column with a partial condenser using a rigorous tray-by-tray model of the rectification col-

umn, as proposed by (Darwish et al., 2008). The absorber (A), condenser (C), evaporator

(E), refrigerant subcooler (SC) and solution heat exchanger (SHX) are simulated in Aspen

Plus using the MheatX model. The RadFrac model was selected for the rectification column.

The working fluid is a water-ammonia mixture. The Redlich-Kwong-Soave equation of state

was employed to calculate the thermodynamic properties of the ammonia-water mixture in

vapour phase. For the simulation of the liquid mixture, the Non-Random Two Liquid model

(NRTL) was employed.

The process simulators is connected with Matlab (2011), in which the main code of the

algorithm was implemented. This software gets the values of the dependent variables (e.g.,

temperature, pressure, mass and energy flows) from the process simulator at each iteration

of the algorithm. Note, the SNOPT solver and Aspen Plus-Matlab were linked by a COM

interface. The GAMS and Matlab connection were developed using text files.

As NLP solver, we used SNOPT (Holmström et al., 2009a), which was accessed via the
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Tomlab (2009) modeling system supported by Matlab. This solver is particularly suited

for nonlinear problems whose functions and gradients are expensive to evaluate (Gill et al.,

2002). The master MILP sub-problem was solved using the MIP solver CPLEX (Holmström

et al., 2009b), accessed via Tomlab. Figure 4 outlines the computer architecture of the solu-

tion algorithm proposed.

(Figure 4 could be placed here)

5.2 Numerical results

The design problem aims to determine the optimal operating conditions of the cycle (mainly

external and internal fluids flow rates, equipments sizing and system pressures) and rectifi-

cation column characteristics (number of trays, the feed tray, reboiler duty and reflux ratio)

that minimize simultaneously the total annualized cost and environmental impact given a

fixed cooling capacity of 90kW. Two different sets of working conditions (corresponding to

cooling and refrigeration applications) were studied. The ammonia-water absorption system

provides 90 kW of cooling power using chilling water that is cooled down from 10oC to 5oC in

the evaporator at cooling conditions. The same cooling demand is provided at refrigeration

conditions, using in this case a solution of 95% ethyleneglycol that is cooled down from -5oC

to -10oC.

The moMINLP features 10 design variables: 8 continuous and 2 discrete. In addition, it

includes 5 nonlinear inequality constraints. Recall that the remaining process variables and

constraints are defined in an implicit form using the process simulator Aspen Plus. The

algorithm takes around 2,500 to 3,000 CPU seconds to generate 10 Pareto solutions on a

computer AMD PhenomTM 8600B, Triple-Core Processor 2.29GHz and 3.23 GB of RAM.

The same design decision variables are optimized at cooling and refrigeration conditions.

The degrees of freedom (i.e., external continuous variables of the model) are the rectification
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column reboiler duty, the high and low pressures of the system, mass flow rate and mass

fraction of stream 1, temperature at the outlet of the hot side of the SHX (temperature 5),

temperature at the outlet of the hot side of the SC (temperature 9) and reflux ratio in the

rectification column. Discrete decision variables correspond to the number of trays and feed

stage in the rectification column. Hence, the model has in total 10 degrees of freedom. The

economic data used in the analysis are shown in Table 1.

(Table 1 could be placed here)

In addition, Table 2 displays the environmental data, which have been retrieved from the

Ecoinvent database. Recall that the LCA impact is assessed using the Eco-Indicator 99

methodology (see Apendix A).

(Table 2 could be placed here)

Figure 5 depicts the Pareto curves obtained for the absorption machine at cooling and re-

frigeration conditions. Particularly, 10 Pareto solutions were generated for each case. Note

that each point entails different values for the design and operating conditions.

As observed, the slope of the Pareto curve is smooth from point 1 (minimum EI) to point 4,

and then increases from point 4 to point 10 (minimum cost). Hence, it seems convenient to

choose optimal trade off solutions close to point 4, in which significant environmental savings

can be obtained at a marginal increase in cost.

(Figure 5 could be placed here)

Table 3 shows the decision variables values corresponding to the extreme points (i.e., mini-

mum environmental impact and minimum cost) at cooling and refrigeration conditions. Both
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designs primarily differ in the duty provided to the system. Particularly, the reboiler duty

in the minimum environmental impact design is significantly lower than in the minimum

cost solution in both cases: at cooling (130.5 kW vs. 142.3 kW) and refrigeration conditions

(173.3kW vs. 197.7kW). This is because the environmental impact is highly dependent on

the steam supplied to the reboiler. As observed, the minimum impact solution shows bet-

ter COP, that is, the energy is used more efficiently, thereby leading to less environmental

impact. These low reboiler duties are obtained at the expense of larger exchange areas that

increase the total cost. In the first case (at cooling conditions), all Pareto points involve a

rectification column with one single stage. In the second case (at refrigeration conditions)

all the solutions lead to a rectification column with 3 stages, with the feed stage placed in

the first tray starting from the bottom of the column.

(Table 3 could be placed here)

As observed in Table 4, in the first case (at cooling conditions) the TAC is reduced by 9.35%

(23,445 e/year vs 21,916 e/year) along the Pareto curve by reducing the total equipment

area by 31.0% (129.23 m2 vs 89.13 m2). This is accomplished by providing more duty to

the system, which decreases the COP and the areas of the heat exchangers (i.e., absorber,

condenser and evaporator). In this second case, (at refrigeration conditions) the TAC is

reduced by 10.90% (32,293 e/year vs 28,771 e/year). Similar observations are obtained in

this second case. Particularly, the total equipment area is reduced by 41.2% (175.9 m2 vs

103.5 m2). More duty is in turn provided to the system, and the COP is decreased. Further,

the environmental impact is reduced by 7.82% (16,926 points vs 15,453 points) at cooling

conditions and by 11.27% (23,451 points vs. 20,807 points) at refrigeration conditions. In

both cases, the minimum cost design leads to lower COP , requiring more steam than the

minimum EI design. This leads to higher operational cost. The total area of the equipment

units, however, is reduced by 31.1% (129.3 m2 vs 89.1 m2) resulting in a significantly lower
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capital cost and total TAC.

(Table 4 could be placed here)

Figures 6 and 7 provide a breakdown of the environmental impact for the Pareto extreme

solutions (min TAC and min EI) at cooling and refrigeration conditions. As can be seen,

most of the environmental impact is due to the steam consumption. This is consistent with

the results obtained previously, in which the total impact was minimized by reducing the re-

boiler duty. Furthermore, it is also noticed that the environmental indicator with the largest

contribution to the total impact is the extraction of fossil fuels.

(Figure 6 could be placed here)

(Figure 7 could be placed here)

As observed in the Pareto curves as well as in Tables 3 and 4, both the cost and environmental

impact are larger at refrigeration conditions. The minimum TAC is 23.8% higher (28,771

e/year vs. 21,916 e/year) and the environmental impact is 25.02% higher (20,807 Points

vs. 15,601 Points). This is due to the fact that refrigeration conditions require more duty

and larger areas of the equipment units.

6 CONCLUSIONS

This work has introduced a systematic method to assist decision makers in the design of

environmentally conscious ammonia-water absorption machines for cooling and refrigeration

applications. The approach presented shows three main advantages compared to other meth-

ods available in the literature: (1) it uses detailed process models implemented in a process

simulator that are optimized with an external solver, (2) it applies rigorous deterministic
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mathematical programming techniques that ensure the (local) optimality of the solutions

found, and (3) it quantifies the environmental impact of the system over its entire life cycle

by applying LCA principles.

A rigorous solution approach has been presented that decomposes the model into two hier-

archical levels between which the algorithm iterates. The capabilities of this method have

been tested in an ammonia-water absorption machine for cooling and refrigeration purposes.

Numerical results demonstrate that it is possible to significantly improve the environmental

performance of thermodynamic cycles by compromising the cost to a certain extent. This

is accomplished by properly adjusting the operating conditions and equipment sizes of all

their units.
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Guillen-Gosalbez, G., Caballero, J.A., Jiménez, L. (2008). Application of life cycle assessment

to the structural optimization of process flowsheets. Industrial & Egineering Chemistry

Research,47, 777-789.

Guillen-Gosalbez, G., & Grossmann I.E. (2009). Optimal design and planning of sustainable

chemical supply chains under uncertainty. AIChE Journal,55, 99-121.

Guillen-Gosalbez, G., & Grossmann I.E. (2010). A global optimization strategy for the envi-

25

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



ronmentally conscious design of chemical supply chains under uncertainty in the damage

assessment model. Computers and Chemical Engineering,34, 42-58.

Guthrie, K.M. (1996). Data and techniques for preliminary capital cost estimating. Chemical

Engineering,24, 114-142.

Haimes, Y., Lasdon, L., & Wismer D. (1971). On a bicriterion formulaiton of the problems of

integrated system identification and system optimization. IEEE Transaction on systems,1,

296-297.

Henning, H.M. (2007). Solar assisted air conditioning of buildings - an overview. Applied

Thermal Engineering,27, 1734-1749.

Herold, K.E., Radermacher, R., & Klein S.A. (1996). Absorption chillers and heat pumps.

CRC Press.
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NOMENCLATURE

Sets/Indices

B environmental burdens (i.e., feedstock requirements, emissions and waste)

D decision variables

E equality constrains

I inequality constraints

i topology

j external equality and inequality constraints

j∈ EQ external (explicit) equality constraint

j∈ IEQ external (explicit) inequality constraint

k iteration

o objective functions

u∈HX heat exchangers

u∈U equipment units

Abbreviations

A Absorber

AWRS Ammonia-water absorption refrigeration system

C Condenser

COP Coefficient of performance

E Evaporator

Eco99 Eco-Indicator 99

EI Environmental Impact

LCA Life cycle assessment

LCI Life cycle inventory

MILP Mixed-integer linear programming

MINLP Mixed-integer non-linear programming

moMINLP Multi-objective mixed-integer non-linear programming
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MOO Multi-objective optimization

NLP Non-linear programming

P Pump

RC Rectification column

SC Refrigerant subcooler

SHX Solution heat exchanger

TAC Total annualized cost

VLV1 Refrigerant expansion valve

VLV2 Solution expansion valve

Variables

Am Area heat exchanger of unit u (m2)

CHX Cost heat exchanger (e)

CP Cost pump (e)

CRC Cost rectification column (e)

CF Annual capital cost (e)

Cb Exchange are (m2)

Cu Cost of the unit (e)

CO Operating cost (e/yr)

DAMd Environmental damages (Points)

Diam Diameter of rectification column (m)

DAMd Damage in a given category d (Points)

dfb,d Damage in category d per unit of b (Points/kg)

EI Environmental impact (Points)

H Height of the rectification column (m)

LCIb Life cycle inventory entry associated with b (kg)

Qu Heat transfer of unit m (kW)

Wu Mechanical power of unit u (kW)
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δT lm
m Logarithmic mean temperature difference of unit m (K)

α Auxiliary variable∏
Penalty value for the constraint violation

Parameters

c1 Cost parameter (e/m2)

c2 Cost parameter (e)

c3 Cost parameter (e/kW)

cq Unitary cost of steam (e/MJ)

cw Unitary cost of electricity (e/MW h)

crf Capital recovery factor

Fc Cost factor that depends on the type of column

fd Coefficient of the design type

fp Coefficient of the design type

fm Coefficient of the material construction

M&S Marshal & Swift equipment cost index

n Number of objective functions

top Operational hours (h/yr)

Uhu Overall heat transfer coefficient of unit m (kW/m2K)

χeuro Conversion from dollars to euros (e/$)
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A Life Cycle Assessment of the thermodynamic cycles

We use, the LCA methodology (ISO 14044. 2006) to determine the environmental impact

of the cycle. This methodology is applied in four phases. Next, we describe these phases in

the context of our approach.

1. Goal and scope definition. In this first stage, we define the system boundaries,

the functional unit, and the impact categories. The system under study in this work is the

absorption cycle shown in Figure 1, which is used for cooling and/or refrigeration applica-

tions. The functional unit is a given cooling capacity. The environmental impact is measured

according to the Eco-Indicator 99 methodology (Eco-99) PRé-Consultants (2000).

2. Inventory analysis. This second LCA phase provides an output the life cycle inventory

(LCI) of emissions and feedstock requirements associated with the process under study. To

this end, we first quantify the mass and energy streams crossing the system boundaries. In

our case, these streams are provided by the process simulator, and are further translated

into the corresponding emissions, waste and feedstock requirements using standard environ-

mental databases.

Particularly, we consider three main sources of impact: generation of natural gas (used in

the boiler), electricity (consumed in the pumps), and stainless steel (employed in the con-

struction of the equipment units). The consumption rates of natural gas and electricity are

retrieved from Aspen Plus. The capacity of the equipment units is used to estimate the mass

of stainless steel they contain (see (?)). Hence, the impact associated with the construction

of an equipment unit is approximated by that associated with the generation of the corre-

sponding amount of steel. Data retrieved from eco-invent PRé-Consultants (2000) is used

to perform these calculations.

3. Impact assessment. The Life Cycle Impact Assessment (LCIA) phase translates the

LCI data into the corresponding environmental impacts. The damage in a given category

(DAMd) is determined from the life cycle inventory entries (LCIb) and corresponding set of

damage factors (dfbd). Therefore, Eco-indicator 99 is the sum of the 10 impact categories.
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DAMd =
∑
b∈d

dfbd · LCIb ∀d ∈ D

4. Interpretation. In the last LCA phase, the results are analyzed and a set of con-

clusions and recommendations are formulated. Our approach provides as output a set of

Pareto optimal solutions that trade-off the economic and environmental performance. The

interpretation phase is therefore performed in the post-optimal analysis of these solutions.
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B Operating values in the extreme points

Tables 5 and 6 summarize the solutions of the extreme Pareto points (minimum cost and

minimum environmental impact) at cooling and refrigeration conditions. The information

given includes the thermodynamic properties of each state point of the cycle, the pressure,

temperature, ammonia composition, mass flow rates and enthalpy.

(Table 5 could be placed here)

(Table 6 could be placed here)
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Table 1: Economic data of the absorption cooling cycle Gebreslassie et al. (2009a)

Heat transfer coefficient U (kW/m2 K)
Absorber 800
Condenser 500
Evaporator 1100
Rectification column 1300
Subcooler 1000
Solution heat exchanger 700
Absorber 800
Cost parameters
M&S (-) 1092
Fc($/ft

2) 5.97
c1(e/m

2) 561.62
c2(e) 268.45
c3(e/kW ) 630.00
deuro(e/$) 0.704
Cost data
Unitary cost of heat (e/MWh) 27.00
Unitary cost of electricity (e/MWh) 100.00
Interest rate (%) 10
Operation time per year (h) 4000
Amortization period (yr) 15
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Table 2: Environmental data of the absorption cooling cycle Gebreslassie et al. (2009a)
Impact category Steam [Points/kg] Electricity [Points/kWh] Steel [Points/kg]

1 Carcinogencis 1.18 · 10−4 4.36 · 10−4 6.32 · 10−3

2 Climate change 1.60 · 10−3 3.61 · 10−6 1.31 · 10−2

3 Ionising radiation 1.13 · 10−3 8.24 · 10−4 4.51 · 10−4

4 Ozone depletion 2.10 · 10−6 1.21 · 10−4 4.55 · 10−6

5 Respiratory effects 7.87 · 10−7 1.35 · 10−6 8.01 · 10−2

6 Acidification 1.21 · 10−4 2.81 · 10−4 2.71 · 10−3

7 Ecotoxicity 2.80 · 10−3 1.67 · 10−4 7.45 · 10−2

8 Land occupation 8.58 · 10−5 4.68 · 10−4 3.73 · 10−3

9 Fossil fuels 1.25 · 10−2 1.20 · 10−3 5.93 · 10−2

10 Mineral extraction 8.82 · 10−6 5.70 · 10−6 7.42 · 10−2
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Table 3: Comparison between the decision variables in the base case and the optimal solution
Design Reb.Duty PHigh PLow m1 x1 ∆TSHX ∆TSC RR

[kW] [bar] [bar] [kg/s] [kgNH3/kgtot] [oC] [oC] [−]
Cooling
ECO99 130.5 12.94 5.00 0.330 0.545 38.05 21.77 0.042
Cost 142.3 13.32 4.42 0.309 0.510 41.53 20.20 0.057
Refrigeration
ECO99 173.3 12.91 2.75 0.580 0.400 37.25 0.00 0.233
Cost 197.6 13.89 2.53 0.454 0.391 43.52 5.68 0.235
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Table 4: Comparison between the output variables in the base case and the optimal solution
Design COP TAC CF CO AT Steam Electricity ECO99

[-] [e/year] [e/year] [e/year] [m2] [kg/year] [MJ/year] [Points/year]
Cooling
ECO99 0.686 23,445 13,334 10,105 129.3 829,668 10,453 15,453
Cost 0.629 21,916 14,534 7,382 89.1 904,972 10,790 16,926
Refrigeration
ECO99 0.516 32,293 18,262 14,031 175.9 1,101,775 15,577 20,807
Cost 0.453 28,771 20,133 8,537 103.5 1,256,111 13,548 23,451

40

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Table 5: Thermodynamic properties and mass flow rates of the minimum cost and minimum
environmental impact design at cooling conditions
State Point P [bar] T [oC] x[kg/kg] m[kg/s] h[kJ/kg]
1 4.48//5.00 33.77//33.59 0.514//0.545 0.309//0.330 -88.28//-86.75
2 13.28//12.94 34.11//33.89 0.514//0.545 0.309//0.330 -86.02//-84.69
3 13.28//12.94 82.21//74.88 0.514//0.545 0.309//0.330 256.5//217.5
4 13.28//12.94 120.30//107.23 0.316//0.360 0.219//0.240 429.3//326.8
5 13.28//12.94 41.15//38.05 0.316//0.360 0.219//0.240 -19.81//-47.57
6 4.48//5.00 41.24//38.23 0.316//0.360 0.219//0.240 -20.19//-47.92
7 13.28//12.94 56.08//49.27 0.997//0.997 0.090//0.090 1358//1340
8 13.28//12.94 34.62//33.68 0.997//0.997 0.090//0.090 1293//1293
9 13.28//12.94 20.20//21.77 0.997//0.997 0.090//0.090 94.75//102.2
10 4.48//5.00 1.27//4.33 0.997//0.997 0.090//0.090 1270//1273
11 4.48//5.00 3.78//6.00 0.997//0.997 0.090//0.090 1276//1278
12 4.48//5.00 30.44//30.14 0.997//0.997 0.090//0.090 1342//1338
13 4.48//5.00 55.46//52.49 0.514//0.545 0.309//0.330 308.4//290.0
w1 1.00//1.00 27.00//27.00 - 3.730//3.534 113.3//113.3
W2 1.00//1.00 35.00//35.00 - 3.730//3.534 146.8//146.7
W3 1.00//1.00 27.00//27.00 - 3.085//3.047 113.3//113.3
W4 1.00//1.00 35.00//35.00 - 3.085//3.047 146.8//146.8
W5 1.00//1.00 10.00//10.00 - 4.770//4.770 41.88//41.88
W6 1.00//1.00 5.00//5.00 - 4.770//4.770 20.83//20.83
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Table 6: Thermodynamic properties and mass flow rates of the minimum cost and minimum
environmental impact design at refrigeration conditions
State Point P [bar] T [oC] x[kg/kg] m[kg/s] h[kJ/kg]
1 2.54//2.75 33.35//34.48 0.391//0.400 0.455//0.580 -77.78//-74.93
2 13.89//12.91 33.60//34.70 0.391//0.400 0.455//0.580 -75.67//-73.07
3 13.89//12.91 111.65//104.01 0.391//0.400 0.455//0.580 427.8//365.3
4 13.89//12.91 148.70//125.93 0.242//0.291 0.365//0.491 698.6//468.2
5 13.89//12,.91 43.52//37.25 0.242//0.291 0.365//0.491 27.23//-24.2
6 2.54//2.75 43.66//37.36 0.242//0.291 0.365//0.491 26.84//-24.63
7 13.89//12.91 64.14//49.55 0.999//0.999 0.090//0.089 1382//1342
8 13.89//12.91 36.24//33.60 0.999//0.999 0.090//0.089 694.4//1063
9 13.89//12.91 5.68//0.00 0.999//0.999 0.090//0.089 23.84//-0.218
10 2.54//2.75 -13.21//-11.32 0.999//0.999 0.090//0.089 -63.19//516.7
11 2.54//2.75 -11.74//-11.03 0.999//0.999 0.090//0.089 1180//1164
12 2.54//2.75 34.72//32.18 0.999//0.999 0.090//0.089 1369//1358
13 2.54//2.75 53.48//47.59 0.391//0.400 0.455//0.580 220.0//112.7
W1 1.00//1.00 27.00//27.00 - 4.398//3.852 113.3//113.3
W2 1.00//1.00 35.00//35.00 - 4.398//3.852 146.8//146.8
W3 1.00//1.00 27.00//27.00 - 3.090//3.022 113.3//113.3
W4 1.00//1.00 35.00//35.00 - 3.090//3.022 146.8//146.8
W5 1.00//1.00 -5.00//-5.00 - 8.591//8.591 -21.38//-21.38
W6 1.00//1.00 -10.01//-10.01 - 8.591//8.591 -42.58//-42.58
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Figure 1: Ammonia-water absorption cycle
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Figure 2: Flowchart of the proposed algorithm
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Figure 3: Details on the definition of binary variables in the MILP (inspired in the work by
Caballero et al.(Caballero et al., 2005))

46

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Figure 4: Main steps of the solution algorithm proposed
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Figure 5: Pareto set of solutions for the absorption cycle
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(a) Breakdown of the Annualized Environmental Impact for the solutions
of the minimum TAC at cooling conditions

(b) Breakdown of the Annualized Environmental Impact for the solutions
of the minimum EI at cooling conditions

Figure 6: Breakdown of the Annualized Environmental Impact at cooling conditions
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(a) Breakdown of the Annualized Environmental Impact for the solutions
of the minimum TAC at refrigeration conditions

(b) Breakdown of the Annualized Environmental Impact for the solutions
of the minimum EI refrigeration conditions

Figure 7: Breakdown of the Annualized Environmental Impact at refrigeration conditions
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Abstract

This work presents a computational approach for the simultaneous minimization of

the total cost and environmental impact of thermodynamic cycles. Our method com-

bines process simulation, multi-objective optimization and life cycle assessment (LCA)

within a unified framework that identifies in a systematic manner optimal design and

operating conditions according to several economic and LCA impacts. Our approach

takes advantages of the complementary strengths of process simulation (in which mass,

energy balances and thermodynamic calculations are implemented in an easy manner)

and rigorous deterministic optimization tools. We demonstrate the capabilities of this

strategy by means of two case studies in which we address the design of a 10MW

Rankine cycle modeled in Aspen Hysys, and a 90kW ammonia-water absorption cool-

ing cycle implemented in Aspen Plus. Numerical results show that it is possible to

achieve environmental and cost savings using our rigorous approach.

Keywords: Process simulation; Optimization; Rankine cycle; Absorption cycle; Cost anal-

ysis; Life cycle assessment
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1 INTRODUCTION

The energetic and economic analysis of industrial processes has gained wider interest in

recent years. This has been motivated by the need to use the resources available nowadays

more efficiently. In this context, process optimization has emerged as an effective tool for

reducing energy consumption and improving efficiency in process industries. Multi-objective

optimization (MOO), in particular, offers decision makers a suitable framework to identify

the set of operating conditions and design variables that simultaneously improve the economic

and environmental performance of a system[1].

Thermodynamic cycles are widely used in energy conversion processes. They are often

found in daily life, but have the drawback of requiring large amounts of energy to operate.

By optimizing power generation cycles, (e.g Rankine cycle) it is possible to increase their

efficiency and reduce the associated global warming emissions [2]. Cooling cycles can also

benefit from the application of rigorous optimization tools. Increments of up to 50% in their

coefficient of performance (COP) have been reported [3], which leads to significant savings

in primary energy sources [4].

A variety of optimization approaches have been applied to thermodynamic cycles. Some

studies in power cycles focus on the minimization of a single indicator, such as the net

present value (NPV), total plant cost (TPC) [5, 6], and cycle efficiency [7–10]. In cooling

cycles, some models were devised to optimize the COP and cooling load [3]. The applica-

tion of MOO to thermodynamic cycles, however, has been quite scarce. The simultaneous

optimization of the exergetic efficiency and the TPC in power generation systems was stud-

ied by Becerra-Lopez and Golding [11] and Dipama et al. [2]. Pelet et al. [12] optimized a

superstructure of energy systems considering the cost and CO2 emissions. In the context of

cooling cycles, Gebreslassie et al. [13, 14] proposed a multi-objective non-linear programming

(moNLP) problem for the design of an ammonia-water absorption cycle considering the cost

and life cycle assessment (LCA) performance [15, 16].

The overwhelming majority of the works mentioned above follow the so called simultaneous
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approach, which relies on formulating algebraic optimization models described in an explicit

form. For simplicity, most of these formulations contain short-cut models that avoid the

numerical difficulties associated with handling nonlinear equations. These simplified for-

mulations provide ”good” approximations when certain assumptions hold, but can lead to

large numerical errors otherwise. Sequential process simulation models are more difficult to

optimize due to the presence of nonconvexities of different types, but provide more accurate

results. Another limitation of the works mentioned above is that those that account for

environmental concerns restrict the analysis to a single environmental indicator, neglecting

the effects caused in other environmental damages.

This work applies a combined approach that takes advantage of the complementary strengths

of sequential modular process simulators (e.g. Aspen Hysys and Aspen Plus), optimization

tools (e.g. SNOPT and CPLEX) and LCA. The pivotal idea of our method is to opti-

mize modular simulation models of thermodynamic cycles using an external deterministic

optimizer that is guaranteed to converge to an optimal solution. Our approach is inspired

by other simulation-optimization methods used in a variety of chemical engineering appli-

cations, including the design of systems such as: heat exchangers and chemical reactions

[17–19], chemical plants [20, 21], distillation columns [22], and biotechnological processes

[23]. An efficient solution method is presented for tackling these problems based on de-

composing them into two sub-levels between which an algorithm iterates until a stopping

criterion is satisfied. This algorithm performs the calculations using both a process simula-

tion and an external optimizer.

The final goal of our analysis is to identify the design and operating conditions of different

thermodynamic cycles that simultaneously minimize the total annualized cost (TAC) and

environmental impact (EI). We demonstrate the capabilities of this methodology through its

application to the design of two cycles: a steam Rankine cycle and an ammonia-water absorp-

tion cycle. The optimization of the steam Rankine cycle is formulated as a moNLP problem,

which is optimized with a Successive Quadratic Programming (SQP) solver that interacts at
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each iteration with the process simulator of choice. The optimization of the absorption cycle

gives rise to a multi-objective mixed-integer non-linear programming (moMINLP) problem,

in which binary variables are employed to model the number of trays in the desorber.

2 PROBLEM STATEMENT

As previously mentioned, we will focus herein on two energy conversion cycles: a steam

Rankine cycle for power generation and an ammonia-water absorption cooling cycle. Note,

however, that the approach presented is general enough to be adapted to any other energy

system. We provide next a brief description of each of these systems before immersion into

a detailed mathematical formulation.

Rankine Cycle

We consider a reheat-regenerative power cycle with one closed and one open feedwater heater

(see Figure 1). The system contains one boiler, one turbine, a condenser, two pumps, and

two shell-tube heat exchangers. Water is used as working fluid in the cycle. The boiler is

assumed to operate with natural gas. The combustion gases behave as air. For the condenser

as well as the heat exchangers, we use shell-tube heat exchangers.

(Figure 1 could be placed here)

Absorption cycle

We consider the single effect ammonia-water absorption cooling cycle described by Gebres-

lassie et al. [13, 14] (see Figure 2). The absorption cycle provides chilled water at 5 oC. The

equipment units are the absorber (A), condenser (C), rectification column (RC), evaporator

(E), subcooler (SC), refrigerant expansion valve (VLV1), solution heat exchanger (SHX), so-

lution pump (P), and solution expansion valve (VLV2). It is assumed that the system works
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under steady state conditions. Heat and pressure losses are neglected. Adiabatic valves are

considered. The refrigerant leaves the condenser, absorber and bottom of the generator as

saturated liquid.

(Figure 2 could be placed here)

Problem definition

The problems can be formally stated as follows. In the case of the Rankine cycle, we are

given the flowsheet arrangement, net power yield, turbines and pumps efficiencies, overall

heat transfer coefficients, thermodynamic properties, cost estimation correlations, economic

parameters and environmental indicators. For the absorption cycle, we need to specify as

well the cooling capacity, and inlet and outlet temperatures of the external fluids.

The goal of our study is to identify the optimal design and operating conditions that simul-

taneously minimize the TAC and the following damage impact indicators: damage to human

health (HH), damage to ecosystem quality (EQ) and depletion of resources (DR).

3 METHODOLOGY

This section describes the approach proposed to tackle the problems described above. A

general mathematical formulation is first presented. We then describe how the economic and

environmental objective functions are calculated. The solution procedure and the computer

implementation are finally discussed.

3.1 Mathematical formulation

The design of thermodynamic cycles with economic and environmental concerns can be

expressed in mathematical terms as a moMINLP. We solve this model using the ϵ constraint

method [24, 25]. This technique is based on calculating a set of single-objective models
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in which one objective is kept in the objective function while the others are transferred to

auxiliary constraints and forced to be lower than a set of epsilon parameters:

min
xD

z = {f1(x, u, xD)}

s.t. fo(x, u, xD) ≤ ϵo o = 2, ..., n

hI(x, u, xD) = 0

hE(x, u, xD) = 0

gE(x, u, xD) ≤ 0

(1)

Where f1 is the economic objective function, and f2 to fn denote the LCA metrics. ϵ is

an auxiliary parameter that bounds the values of the objectives transferred to the auxiliary

inequality constraints. Equations hI are implicit equations implemented in the process sim-

ulator, whereas hE and gE are explicit constraints that ensure certain process conditions.

The form of these equations depends on the system under study.

The design variables are denoted by xD, while other process variables are represented by x.

Finally, u denotes parameters not modified during the calculations. It is important to note

that xD include only continuous variables in the case of the Rankine cycle, while in the case

of the absorption cycle it includes both, continuous and integers (i.e., number of trays and

feed tray in the absorber).

3.2 Objective functions

The model presented, seeks to optimize simultaneously the TAC and environmental impact.

We describe next how these indicators are calculated.
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3.2.1 Economic indicator (Total annualized cost)

The TAC of the thermodynamic cycles is given by equation 2.

TAC = CO + CF · crf (2)

Where CO and CF are the operating and fixed costs, and crf is the capital recovery factor,

which is a function of the interest rate (parameter i) and the lifetime of the cycle (parameter

t) expressed in years (see equation 3).

crf =

(
i(1 + i)t

(1 + i)t − 1

)
(3)

The operation cost, denoted by CO, accounts for the cost of the energy and electricity

required to operate the cycle.

CO =
∑
u∈U

(Qu · cq +Wu · cw) · top (4)

In this equation, Qu [MW] is the thermal power supplied to equipment unit U , Wu [MW] is

the electrical power required by equipment unit, top [h] is the total annual operation time

and cq [e/MWh] and cw [e/MWh] are the unit costs for heat and electricity respectively.

Note that Qu and Wu are provided by the process simulator.

Equation 5 determines the total fixed cost (CF ) which accounts for the cost of the main

equipment units of the cycle (Cu) which includes the equipment and maintenance cost, which

are determined using the costing correlations described in sections 4.1 and 4.2.

CF =
∑
u∈U

Cu (5)
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3.2.2 Environmental indicator (Damage categories)

The environmental impact is quantified following LCA principles, similarly as done before

by the authors in other works [23]. Further details on the calculations are provided in the

Appendix.

3.3 Solution procedure

3.3.1 ϵ-constraint methodology

The solution of model is given by a set of Pareto points representing the optimal compromise

between the objectives considered in the model. These points are generated combining the ϵ-

constraint method [24, 25] with a tailored decomposition algorithm that integrates simulation

and optimization tools.

The solution method proposed is shown in Figure 3. It comprises two nested loops: an outer

loop in which epsilon values on the environmental impacts are defined, and an inner loop

that solves each single-objective problem. We provide next details on the inner loop of the

algorithm.

3.3.2. Simulation-optimization approach

The solution strategy for solving each single-objective problem relies on an outer approxima-

tion [26] scheme that decomposes each model into two hierarchical levels: a primal non-linear

programming (NLP) sub-problem and a master mixed-integer linear programming (MILP)

sub-problem. The algorithm iterates between these levels until a termination criterion is

satisfied.

The master MILP is constructed using information provided by the primal NLP. This primal

NLP is solved integrating a deterministic gradient-based method with the process simulator.

The binary variables are thus handled by the MILP, while the NLP provides the optimal

values of the continuous variables for a fixed set of binaries. This strategy is inspired by
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previous simulation-optimization approaches applied in chemical engineering [17–23]. The

main advantage of this method is that it ensures convergence to a local (or global) optimum,

as opposed to heuristic-based approaches that are unable to guarantee the optimality of the

solutions calculated.

(Figure 3 could be placed here)

Primal NLP sub-problem

This level optimizes the continuous decision variables of the NLP sub-problem for fixed values

of the binary variables predicted by the master sub-problem (equation 6). This procedure is

repeated iteratively for different values of the binary variables until a termination criterion

is met. The NLP sub-problems are solved using a gradient-based SQP solver that iterates

with the simulation package in order to obtain information on the derivatives of the decision

variables with respect the objective function and constraints.

Slack variables are used to relax the external equality and inequality constraints, which avoids

unconvergencies in the slave problem. Potential intermediate unfeasible points are thus

handled externally by the optimization algorithm. These slacks are penalized in the objective

function. This approach avoids unfeasible simulation runs, preventing the algorithm from
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ending prematurely. The modified objective function is expressed as follows.

min
xD

z = f1(x, u, xD) +
∏
(s1 + s2 + s3 + s4)

s.t. fo(x, u, xD) ≤ ϵo + s1 o = 2, ..., n

ϵo ≤ ϵo ≤ ϵo o = 2, ..., n

hI(x, u, xD) = 0

hE(x, u, xD) + s2 − s3 = 0

gE(x, u, xD) ≤ s4

s1 ≥ 0; s2 ≥ 0; s3 ≥ 0; s4 ≥ 0;

(6)

Where
∏

is a penalty parameter vector, and s1, s2, s3 and s4 are vectors of positive slack

variables.

Master MILP sub-problem

The master sub-problem provides new values for the binary variables that are expected to

yield better results than previous solutions. Note that this master MILP is only required

in the case of the absorption cycle, in which the number of trays of the desorber must be

decided. In contrast, the optimization of the Rankine cycle can be solved as an NLP.

To construct the master MILP, we use the derivatives of the objective function and con-

straints of the NLP sub-problem at the optimal NLP solution of the previous iteration. Due

to the presence of non-convexities in the NLP, the master MILP is not guaranteed to pro-

vide a rigorous lower bound on the global optimum. The following notation is defined in the

MILP at iteration k of the algorithm:
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T = {i|i is a potential column configuration}

Tk = {i|i is a rectification column configuration, entailing a given number of trays

and a specific feed stage}

EQ = {j|j is an external (explicit) equality constraint)}

IEQ = {j|j is an external (explicit) inequality constraint}

∆objki,o = Difference between the objective function o at iteration k of the NLP

and the objective function associated with the new rectification column design i

∆gki,j = Difference between the values of the inequality constraint j for the

new rectification column design i and the constraint j in the original NLP k problem

∆hk
Ei,j

= Difference between the values of the external equality constraint j

new rectification column design i and the constraint j in the original NLP k problem

The master MILP takes the following form:

min α+
∏

(
n∑

o=2

s1o +
∑

j∈IEQ

s2j +
∑
j∈EQ

s3j)

s.t. fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆objki,o ≤ α o = 1

fo(x
k, uk, xk

D) +
∑
n

(
∂fo
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆objki,o ≤ ϵo + s1o o = 2, ..., n

gj(x
k, uk, xk

D) +
∑
n

(
∂gj
∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆gki,j ≤ s2j ∀j ∈ IEQ

sign(λk
j )hEj

(xk, uk, xk
D) +

∑
n

(
∂hEj

∂xDn

)
xDn=xi

Dn

(xDn − xk
Dn

) +
∑
i∈Tk

yi ·∆hk
Ei,j

≤ s3j ∀j ∈ EQ

k = 1, 2, 3, ..., K
s1o ≥ 0 s2j ≥ 0 s3j ≥ 0∑
i∈T

yi = 1

yi ∈ {0, 1}


(7)
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The objective function of the MILP contains an auxiliary variable (α) and a penalty value for

constraint violation (
∏
) that multiplies the slack variables. The first constraint is formed

by three terms: (i) the objective function value at iteration k of the algorithm, (ii) the

linearization performed on the design variables, and (iii) the contribution of changing the

current distillation column characteristics, by either adding or removing stages in the col-

umn or changing the feed stage. This last term is the product of the binary variable yi

(that is 1 if topological modification i is implemented and 0 otherwise) with the parameter

∆objki,o. The latter accounts for the change in the objective function value when topology i

is implemented. Figure 4 provides an illustrative example on how these terms are defined.

(Figure 4 could be placed here)

External inequality (IEQ) and equality (EQ) constraints are handled following a similar pro-

cedure. sign(λk
j ) refers to the sign of the Lagrange multiplier of constraint j at iteration

k. This value is used to correctly relax equalities into inequalities [27]. Note that linear

constraints are accumulated in the master MILP, so at iteration k, the problem includes

constraints from current and previous iterations.

After determining the new set of values for the binary variables, the primal problem is solved

again, and the overall procedure is repeated until the termination criterion is satisfied. Inte-

ger cuts can be added to the master MILP in order to avoid repetition of solutions explored

so far in previous iterations. Implicit constraints are handled by the process simulator and

their derivatives are obtained by finite differences.

Note that the complexity of the overall solution procedure grows rapidly with the number of

environmental objectives. In cases with a large number of objectives, we might be interested

in applying dimensionality reduction methods to keep the problem in a manageable size

[28–30].
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3.4. Computational implementation

We use the process simulators Aspen Hysys [31] and Aspen Plus [32] to simulate the ther-

modynamic cycles. These software packages allow an easy modeling of the cycles, as they

implement thermodynamic correlations, built-in models for a variety of unit operations and

mass and energy balances. These process simulators were connected with Matlab [33], in

which the main code of the algorithm was implemented. This software gets the values of the

dependent variables (e.g., temperature, pressure, mass and energy flows) from the process

simulators at each iteration of the algorithm.

As NLP solver, we used SNOPT [34], which was accessed via the Tomlab [35] modeling

system supported by Matlab. This solver is particularly suited for nonlinear problems whose

functions and gradients are expensive to evaluate [36]. The master MILP sub-problem was

solved using the MIP solver CPLEX [37], accessed via Tomlab. Figure 5 outlines the com-

puter architecture of the solution algorithm proposed.

(Figure 5 could be placed here)

4 Case studies

Two thermodynamic cycles were studied, a steam Rankine cycle and an ammonia-water ab-

sorption cycle. Both systems were simulated using standard commercial process simulators,

thereby avoiding the definition of the thermodynamic equations in an explicit form.

4.1 Case study I: Steam Rankine cycle

System description

The first case study addresses the design of a 10 MW steam Rankine cycle (see Figure 6) taken

from Moran and Shapiro [38]. The cycle was simulated in Aspen Hysys under steady state
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conditions. Heat and pressure losses were neglected. Adiabatic efficiencies in turbines and

pumps were set to 75% [39]. An adiabatic expansion valve was considered in the calculations.

(Figure 6 could be placed here)

System modeling

The properties of water, selected as the working fluid of the cycle, were calculated using the

ASME steam tables. The boiler and reboiler operate with natural gas. The composition of

the combustion gases in the boiler and reboiler is unknown, but we assume that they behave

as air, which was modeled using UNIQUAC. For the condenser, heat exchanger, boiler and

reboiler simulation, we considered shell-tube heat exchangers, which were modeled using the

weighted model built-in Aspen Hysys. The boiler and reboiler were simulated as separated

heat exchangers. The same approach was applied to the turbine. The mixer was modeled

as an open flow heat exchanger that mixes streams at different temperatures.

Objective functions

The heat cost was set to 25 e/MWh, and the operation time was 4,000 hours per year. The

energy flows in the boiler and reboiler were retrieved from Aspen Hysys. The cost of the

expansion valves and mixer were neglected. Table 1 shows the cost estimation correlations

used for the remaining equipment units [39–41].

(Table 1 could be placed here)

The environmental impact of the operation phase was determined from the energy flows

imported from Aspen Hysys. To calculate the environmental impact of the construction

phase, we considered only the turbine and heat exchangers (heat exchanger, condenser,

boiler and reboiler). The mass of steel from tubes, pumps, valves and other equipments in
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the cycle were neglected. The amount of stainless steel contained in the heat exchangers was

determined from the exchange area assuming a thickness of 1/4 inches. The weight of the

turbine was assumed to be equal to 10 tons (typical weight of a 10 MW turbine [42]).

4.2. Case Study II: Absorption cooling cycle

System description

The second example studies a 90 kW single effect ammonia-water absorption cooling cycle

(see Figure 7). This cycle is discussed in detail in Gebreslassie et al. [13, 14]. The absorption

cycle provides water at 5oC.

(Figure 7 could be placed here)

System modeling

The Redlich-Kwong-Soave equation of state was selected to model the ammonia-water mix-

ture in vapor phase [43]. For the simulation of the liquid mixture, the Non-Random Two

Liquid model was employed. The absorber, condenser, evaporator, subcooler and solution

heat exchanger were simulated using the MheatX model. The desorber was simulated with

a rigorous tray-by-tray distillation column model.

Objective functions

The operational costs were calculated with equation 4, assuming an electricity cost of 100

e/MWh, a heat cost of 25 e/MWh, and an operation time of 4,000 hours per year. The

energy flows (electricity and heat) in the pump and desorber were retrieved from Aspen Plus.

The cost correlations are given in Table 2 [44–46].

(Table 2 could be placed here)
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The energy flows were retrieved from the process simulator (in this case Aspen Plus). The

mass of steel contained in the pipes, valves and other equipments in the cycle were neglected.

The mass of steel contained in the heat exchangers was calculated following the same ap-

proach as in case study 1. The mass of steel from the desorber was determined approximating

the distillation column by a cylinder. The dimensions of the desorber were imported from

the process simulator.

5 RESULTS AND DISCUSSION

The design problem aims to determine the optimal operating conditions of the cycle (fluid

flow rates, equipment sizing and system pressures and temperatures) that minimize simul-

taneously the economic indicator (TAC) and different impact categories (HH, EQ and DR)

given a fixed energy capacity of the cycle.

We generated in both cases a set of Pareto solutions that we obtained for simplicity mini-

mizing the TAC versus each individual damage category separately.

5.1. Case study I: Steam Rankine cycle

We first studied a 10MW Rankine cycle. The problem was solved as a moNLP with the

following 11 design continuous variables: mass flow passing through the cycle (mass flow

1), temperatures of streams 1 and 4, pressure of stream 1, outlet pressure of the turbines

(pressures 2, 3, 5 and 6) and outlet temperature of the heat exchangers (temperature B1

and B2). In addition, the model includes 5 nonlinear inequality constraints: power equal or

higher than 10MW, and a minimum temperature difference of 10oC in the heat exchangers.

The remaining process variables and constraints are defined in an implicit form using the

process simulator (Aspen Hysys). The algorithm takes around 600 to 1,000 CPU seconds

to generate 10 Pareto solutions of each 2-dimensional Pareto set on a computer AMD Phe-

nomTM 8600B, with a Triple-Core Processor 2.29GHz and 3.23 GB of RAM.
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Three bi-criteria Pareto sets were generated optimizing the TAC against each single damage

impact category separately (see Figure 8). Figure 8 represents the Pareto solutions of the

three bi-objective optimization problem TAC vs HH, TAC vs EQ and TAC vs DR. As ob-

served, the impact in damage category HH was reduced by 2.40% (334.89 kPoints vs 342.93

kPoints) along the Pareto curve. This was accomplished by increasing the heat exchanger

areas, thereby reducing the natural gas consumption. This led in turn to an increase of

3.65% in the TAC (3,491 Me/yr vs. 3,619 Me/yr). In addition, the EQ was reduced by

2.38% (336.52 kPoints vs 344.55 kPoints) along the Pareto curve at the expense of increasing

the TAC by 3.84% (3,491 Me/yr vs. 3,625 Me/yr). Note that in both cases, solutions with

lower TAC entail larger natural gas consumption rates and smaller equipments. Finally we

analyze the trade-off solutions between TAC vs DR. Here, the DR was decreased by 2.22%

(2,873.06 kPoints vs 2,941.19 kPoints) while the TAC was increased by 4.44% (3,491 Me/yr

vs 3,646 Me/yr). Further inspection of the results reveals similar insights, regarding oper-

ating conditions and design characteristics, as in the previous cases.

(Figure 8 could be placed here)

Figure 9 depicts the Pareto solutions in a parallel coordinates plot, which is a useful graphical

tool to display data sets of large dimension. The figure shows in the x axis the set of objec-

tive functions (TAC, HH, EQ and DR) and in the y axis the normalized value attained by

each solution in every criterion. The normalization was performed by dividing each objective

function value by its maximum over the entire set. Note that each line in the plot represents

a different Pareto solution, entailing a set of operating conditions. As observed, all environ-

mental impacts are somehow equivalent, since they tend to behave similarly. Moreover, all

of the impacts are conflictive with the TAC of the cycle. This is because reductions in the

environmental impact are achieved at the expenses of increasing the cost.
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(Figure 9 could be placed here)

Table 3 shows the details of the corresponding extreme points (i.e., minimum TAC and mini-

mum environmental damage). First is presented the decision variables values in the extreme

solutions, which differ mainly in the mass flow rate and temperature of stream 1, and the

pressure in the turbines. The mass flow rate of stream 1 in the minimum cost solution is

greater than in the minimum environmental impact. This is because larger mass flow rates

require more natural gas to evaporate water in the boiler and reboiler. The temperature

of stream 1 in the economic optimum is lower than in the environmental optimum. More-

over, the pressure drop in the turbine is lower in the minimum cost solution, which leads

to smaller turbines and investment costs. Table 3 also displays the heat exchangers areas

and the energy consumption (heat and electricity) of the extreme solutions. As observed,

the heat exchangers area in the economic optimum is between 5 and 11% smaller than in

the minimum environmental impact solutions. Regarding the use of energy, the use of heat

and electricity in the minimum impact designs is between 1 and 3.5% smaller than in the

economic optimum.

(Table 3 could be placed here)

The objective function values of the extreme designs are compared in Table 4. Note that

impacts HH, EQ and DR were decreased by up to 2.40%, 2.38% and 2.22% respectively.

(Table 4 could be placed here)
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5.2. Case study II: Absorption refrigeration cycle

A moMINLP model of the 90 kW absorption cycle was developed. This formulation featured

10 design variables, 8 continuous and 2 discrete, and 4 nonlinear inequality constraints. The

continuous variables denote the reboiler duty in the desorber, the high and low pressure of

the system, the mass flow and mass fraction of stream 1, the temperature at the outlet of the

hot side of unit SHX (temperature 5), the temperature at the outlet of the hot side of the

SC unit (temperature 9), and the reflux ratio in the desorber. Discrete variables model the

number of trays and the feed tray in the desorber. Inequality constraints impose a minimum

cooling capacity and minimum temperature difference between the inlet and outlet external

flows. The remaining process variables and constraints were implemented in the process

simulator, in this case Aspen Plus. The algorithm took around 2,500 to 3,000 CPU seconds

to generate 10 Pareto solutions on the same computer as before.

Figure 10 depicts the Pareto solutions of the three bi-objective optimization problems: TAC

vs HH, TAC vs EQ and TAC vs DR. The HH index is reduced by 5.84% (2,734 points vs

2,584 points) along the Pareto curve. This is accomplished by reducing the steam provided to

the cycle. On the other hand, the TAC is increased by 4.66% (21,917 e/yr vs. 22,940 e/yr).

The steam consumption is reduced by increasing the heat exchanger areas, which leads to

larger capital investments. Concerning the EQ, this is reduced by 6.82% (2,740 points vs

2,565 points) along the Pareto curve, whereas the TAC is increased by 4.71% (21,917 e/yr

vs. 22,951 e/yr). Finally, DR is decreased by 7.03% (10,497 points vs 11,228 points), while

the TAC is increased by 4.73% (21,917 e/yr vs 22,954 e/yr). Note that all the Pareto

solutions involve the same configuration in the rectification column (1 single stage).

(Figure 10 could be placed here)

The Pareto solutions obtained in the bi-criteria problems were plotted in a parallel coordi-

nates plot (see Figure 11). Similar conclusions as in the Rankine cycle are obtained.
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(Figure 11 could be placed here)

As observed, the environmental impacts are somehow redundant, since when one is mini-

mized the others are also decreased. This is because all the damages are highly dependent on

the steam consumption. Further, they are all conflictive with the cost as their minimization

increases the cost of the cycle.

Table 5 shows the details corresponding to the extreme points (i.e., minimum TAC and

minimum environmental damage indicators). As in the previous case, the minimum TAC

design differs considerably from the minimum environmental impact alternatives. The main

difference concerns the duty provided to the system (140kW vs. 131kW). The explanation

for this is that the environmental impacts are highly dependent on the steam supplied to the

reboiler. The extreme designs differ also in the reflux ratio of the rectification column and

the temperatures of stream 5 and 9. With regard to the discrete variables, all of the designs

lead to a rectification column with one single stage. In the minimum TAC, the energy con-

sumption rate in the reboiler and reflux ratio in the rectification column are larger than in

the minimum impact one. The coefficient of performance (COP), exchange area of the heat

exchangers (and mass of stainless steel), electricity consumed in the pumps and amount of

steam consumed by the reboiler in each solution.

(Table 5 could be placed here)

As observed, solutions with minimum impact show larger COP values and greater exchanger

areas. The exchange area in these solutions is approximately 31% greater than in the min-

imum TAC design. This is due to the fact that the contribution of the mass of steel to

the total impact is rather small. Regarding the use of energy, the minimum TAC solu-

tion consumes approximately 8% more steam and 4% more electricity than the minimum
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environmental impact one. Hence, the impact caused during the operation phase is more

significant than that associated with the construction phase. Particularly, the construction

of the equipment units contributes around 4% to the total EI. As observed in Table 6, the

TAC in the minimum cost solution is 4.67%, 4.71% and 4.73% lower than in the optimal

HH, EQ and DR solutions, respectively. Moreover, HH, EQ and NR can be reduced by up

to 5.80%, 6.82%, and 6.96%, respectively, compared to the minimum TAC solution.

(Table 6 could be placed here)

6 CONCLUSIONS

This work has introduced a computational approach for the optimal design of thermody-

namic cycles considering economic and environmental concerns. Our approach combines

simulation packages with rigorous deterministic mathematical programming tools and LCA

analysis. The capabilities of this approach were tested in two thermodynamic cycles: a steam

power cycle and an ammonia-water absorption cooling cycle, for which we minimized the

total annualized cost and a set of environmental impacts measured in three LCA damage

categories.

Numerical results showed that the environmental performance of thermodynamic cycles can

be improved by compromising their economic performance. We also found that the main

contribution to the total impact is the operation phase. The optimization of the individual

damage categories produces similar results, indicating redundancies between them.
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Nomenclature

Sets/Indices

D decision variables

E equality constrains

I inequality constraints

i topology

j external equality and inequality constraints

j∈ EQ external (explicit) equality constraint

j∈ IEQ external (explicit) inequality constraint

k iteration

o objective functions

u∈HX heat exchangers

u∈U equipment units

Abbreviations

A Absorber

C Condenser

COP Coefficient of performance

DR Depletion natural resources

E Evaporator

EI Environmental impact

EQ Damage to ecosystem quality

HH Damage to human health

LCA Life cycle assessment

LCI Life cycle inventory analysis

MILP Mixed-integer linear programming

moMINLP Multi-objective mixed-integer non-linear programming

moNLP Multi-objective non-linear programming
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MOO Multi-objective optimization

NLP Non-linear programming

NPV Net present value

P Pump

RC Rectification column

SC Refrigerant subcooler

SHX Solution heat exchanger

SQP Successive quadratic programming

TAC Total annualized cost

TPC Total plant cost

VLV1 Refrigerant expansion valve

VLV2 Solution expansion valve

Variables

Am Area heat exchanger of unit m (m2)

CF Fixed cost (e)

Cb Exchange are (m2)

Cu Cost of the unit (e)

CO Operating cost (e/yr)

DAMd Environmental damages (Points)

Diam Diameter of rectification column (m)

H Height of the rectification column (m)

LCIb Input and output flows (kg/yr)

Qu Heat transfer of unit u (kW)

TAC Total annualized cost (e/year)

Wu Mechanical power of unit u (kW)

α Auxiliary variable∏
Penalty value for the constraint violation
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Parameters

c1 Cost parameter (e/m2)

c2 Cost parameter (e)

c3 Cost parameter (e/kW)

cq Unitary cost of steam (e/MJ)

cw Unitary cost of electricity (e/MW h)

crf Capital recovery factor

dfbd Damage factors (Points/kg)

deuro Conversion from dollars to euros (e/$)

Fc Cost factor that depends on the type of column

fd Coefficient of the design type

fp Coefficient of the design type

fm Coefficient of the material construction

M&S Cost factor

top Operational hours (h/yr)
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A Life Cycle Assessment of the thermodynamic cycles

The environmental impact is quantified following LCA principles, in a similar manner as

done before by the authors in other works [47–50]. The LCA comprises four phases [51]: 1.

Goal and scope definition. This phase defines the system boundaries, functional unit,

assumptions made and type of impact assessed. The system boundaries correspond to the

limits of the energy system. The functional unit is a given amount of power/cool generated.

We quantify the impact in three categories: damage to human health (HH), damage to

ecosystem quality (EQ), and damage due to depletion of natural resources (DR).

2. Life cycle inventory analysis (LCI). This phase quantifies the input and output

flows associated with the operation and construction of the cycles. The damage during the

operation phase is given by the natural gas and electricity consumption rates, which are

retrieved from the process simulation. This information is translated into the corresponding

LCI using environmental databases. The LCI of the construction phase is approximated by

the LCI of the mass of steel contained in the process units.

3. Life Cycle Impact Assessment. This phase translates the LCI into the corresponding

environmental damages (denoted by the continuous variable DAMd) using damage factors

(dfb,d) available in the literature [16].

DAMd =
∑
b∈B

dfb,d · LCIb ∀d ∈ D (8)

4. Life Cycle Interpretation. In this phase, the LCA results are analyzed and a set of

conclusions and recommendations are formulated. In this work, this step is carried out in

the post optimal analysis of the optimal solutions found.
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Table 1: Cost correlations used in the Rankine cycle
Equipment Correlation Reference
Boiler and reboiler CB = fm(1 + fd+ fp) · (QB)

0.86 Walas [40]
Condenser and heat exchanger CHX = fd · fm · fp · Cb Evans et al. [41]
Turbine CT = 4750 · (WT )

0.75 Nafey [39]
Pumps CP = 3500 · (WP )

0.47 Nafey [39]
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Table 2: Cost correlations used in the absorption cooling cycle
Equipment Correlation Reference

Desorber CRC =

(
M&S

280

)
(101.9Diam1.066H0.802)(2.18 + 2Fc)deuro Guthrie [44]

Heat exchangers CHX2 =
∑

u∈HX

(c1Amu∈HX + c2) Kizilkan et al. [45]

Pump CP = c3W
0.4
P Siddiqui [46]
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Table 3: Details of the extreme solutions. Case study I: Rankine cycle
Variable min TAC min HH min EQ min DR
Mass flow stream 1 [kg/s] 9.33 8.78 8.82 8.90
Temperature of stream 1 [oC] 516.43 587.30 577.85 571.55
Pressure of stream 1 [kPa] 8,550.08 8,878.49 8,860.25 8,805.51
Pressure of stream 2 [kPa] 2,300.00 2,269.70 2,274.19 2,276.43
Pressure of stream 3 [kPa] 737.29 698.34 703.54 707.00
Pressure of stream 5 [kPa] 329.92 301.20 304.74 307.58
Pressure of stream 6 [kPa] 8.80 7.00 7.23 7.40
Temperature of stream 4 [oC] 496.09 493.99 494.39 494.46
Temperature of stream 11 [oC] 205.19 215.15 214.66 212.94
Temperature of combustion gases B1 [oC] 250.00 249.90 249.91 249.92
Temperature of combustion gases B2 [oC] 278.69 300.00 295.56 295.26
Area of the boiler and reboiler [m2] 160.82 165.47 165.73 166.59
Area of the condenser [m2] 133.14 149.11 149.96 152.63
Area of the Heat Exchangers [m2] 60.41 63.44 63.60 64.17
Steam [tones] 3.96 · 108 3.89 · 108 3.89 · 108 3.88 · 108
Electricity [MJ] 1.48 · 106 1.43 · 106 1.43 · 106 1.42 · 106

36

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Table 4: Extreme solutions. Case study I: Rankine cycle
Objective function min TAC min HH min EQ min DR
TAC [e/yr] 3,491,584 3,619,084 3,625,842 3,646,903
HH [Points] 342,931 334,887 334,952 334,987
EQ [Points] 344,555 336,547 336,518 336,586
DR [Points] 2,941,189 2,877,357 2,876,312 2,873,056
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Table 5: Details of the extreme solutions. Case study II: Absorption cycle
Variable min TAC min HH min EQ min DR
Reboiler duty [kW] 140.39 131.79 131.05 131.11
High pressure [bar] 13.28 12.95 12.96 12.95
Low pressure [bar] 4.48 4.82 4.97 4.93
Mass flow of stream 1 [kg/s] 0.32 0.33 0.33 0.33
Ammonia fraction of stream 1 0.51 0.53 0.54 0.54
Temperature of stream 5 [oC] 41.15 38.27 38.20 38.16
Temperature of stream 9 [oC] 20.20 21.45 22.80 22.08
Reflux ratio (mass) 0.055 0.043 0.042 0.042
Number of trays 1 1 1 1
Feed tray 1 1 1 1
COP 0.63 0.67 0.68 0.68
Total exchange Area [m2] 89.13 119.77 120.26 120.34
Steam [kg] 904,972 838,389 837,074 836,897
Electricity [MJ] 10,895 10,454 10,544 10,542
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Table 6: Extreme solutions. Case study II: Absorption cycle
Objective function min TAC min HH min EQ min DR
TAC [e/yr] 21,917 22,940 22,951 22,954
HH [points] 2,734 2,584 2,593 2,593
EQ [points] 2,740 2,582 2,565 2,578
DR [points] 11,228 10,568 10,552 10,497
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Figure 1: Steam Rankine cycle
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Figure 2: Ammonia-water absorption cycle
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Figure 3: Flowchart of the proposed outer-approximation algorithm
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Figure 4: Details on the definition of binary variables in the MILP (inspired in the work by
Caballero et al.[22])
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Figure 5: Main steps of the solution algorithm proposed
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Figure 6: Steam Rankine cycle simulated in Aspen Hysys
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Figure 7: Ammonia-water absorption cycle simulated in Aspen Plus
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Figure 8: Total annualized cost vs impact damage categories. Case study I: Rankine Cycle
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Figure 9: Parallel coordinates plot. Case study I: Rankine Cycle. Objective functions: Total
annualized cost (TAC), damage to human health (HH), damage to ecosystem quality (EQ),
and depletion of natural resources (DR).
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Figure 10: Total Annualized cost vs impact damage categories. Case study II: Absorption
cycle
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Abstract

In this work, we address the problem of reducing the environmental impact of biodiesel

plants through their integration with a solar thermal energy system that generates

steam. A mathematical model of the solar energy system that includes energy storage

is constructed and coupled with a rigorous simulation model of the biodiesel facility

developed in Aspen Plus. The solar energy system model takes the form of a bi-criteria

nonlinear programming (biNLP) formulation that accounts for the simultaneous min-

imization of cost and global warming potential (GWP). A detailed cost and environ-

mental analysis of the integrated facility is presented based on data available in the

literature. The environmental impact is quantified in terms of contribution to GWP

using the CML2001 methodology, a framework based on life cycle assessment (LCA)

principles. Numerical results indicate that it is possible to reduce the current natural

gas consumption required in the biodiesel facility by more than 94.87% compared to

the initial basic design, which results in an improvement of 19.88% in green house gases

(GHG) emissions.

Keywords: Biodiesel; Vegetable oil; Solar panels; Economic analysis; Life cycle assess-

ment.
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1 INTRODUCTION1

Petroleum-based fuels play a vital role in industrial development, transportation, agricultural2

sector and many other human needs [1]. Unfortunately, they contribute to global warming3

and related environmental problems. This has boosted research over the last few decades4

on the development of fuel production processes based on renewable biological materials as5

feedstock [2].6

One of these alternatives that has recently gained wider interest is biodiesel. This fuel, which7

contains mostly fatty acid methyl (or ethyl) esters, is usually obtained from oils or fats via8

transesterification [3]. Feedstocks for biodiesel include animal fats, vegetable oils, soy, rape-9

seed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, pongamia10

pinnata and algae [4]. Biodiesel is nowadays the most common biofuel in Europe. Its main11

advantage is that it shows similar composition and properties (viscosity and volatility) than12

fossil/mineral diesel. Because of this, it can be used in standard diesel engines without13

the need of making any modification [5]. As a result of these advantageous characteristics,14

biodiesel has become a serious candidate to substitute fossil fuels. However, the final adop-15

tion of this fuel in the market place still depends on whether it can be economically and16

environmentally competitive [6].17

Process simulation has been used in the literature to assess the potential economic and en-18

vironmental benefits of biodiesel production. Zhang et al. [7] were the first to use process19

simulators (Aspen Plus) to estimate the production costs of four different biodiesel processes.20

More recently, Haas et al. [8], West et al. [9], Apostolakou et al. [10], and Sotoft et al. [11]21

compared the economical benefits of different biodiesel production processes from vegetables22

and waste oils using Aspen Hysys and Aspen Plus. Morais et al. [12] used process simulation23

and life cycle assessment (LCA) to perform an environmental evaluation of three process de-24

sign alternatives for biodiesel production from waste vegetable oils. Pokoo-Aikins et al. [13]25

presented an analysis of biodiesel production from algae grown through carbon sequestra-26

tion. Chouinard-Dussault et al. [14] presented a method which is enable to considerate of27
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several levels of process integration while tracking the process economics and the reduction28

of the net greenhouse gas emissions.29

Very few studies have addressed the optimization of biodiesel facilities using mathematical30

programming. Panichelli and Gnansounou [15] developed a non-linear programming (NLP)31

model for the reduction of green house gas (GHG) effects in biodiesel plants. Sanchez et32

al. [16] presented a heat integration strategy based on pinch analysis to reduce the energy33

consumed in biodiesel production from microalgae. Other works on optimization of biofuels34

facilities have focused on bioethanol plants. Karuppiah et al. [17] were the first to propose35

a superstructure optimization approach for the optimal design of corn-based ethanol plants.36

Grossmann and Martin [18] presented a general approach based on mathematical program-37

ming techniques for energy and water optimization in biofuel plants. More recently, Martin38

and Grossmann [19] and Martin and Grossmann [20] presented an optimization approach for39

the energy reduction in bioethanol production processes via gasification and hydrolosis of40

switchgrass. Ojeda et al. [21] presented a combined process engineering and exergy analysis41

to evaluate different routes of bioethanol production from lignocellulosic biomass.42

The aforementioned works focused on improving the biofuel production process by changing43

the operating conditions and structural configuration of the plant. We investigate herein an44

alternative approach to improve the performance of biodiesel plants that consists of coupling45

them with renewable energy sources. In a recent work, Lewis and Nocera [22] highlighted the46

benefits of integrating solar energy with other technologies. Shinnar and Citro [23] claimed47

that solar thermal energy can be an environmentally friendly and economically competitive48

electric source. More recently, Gebresslassie et al. [24] addressed the minimization of the life49

cycle impact of cooling systems using solar collectors, while Salcedo et al. [25] developed a50

model for the optimization of reverse osmosis desalination plants coupled with solar Rankine51

cycles. Tora and El-Halwagi [26] presented an integration of solar energy into absorption52

refrigerators and industrial processes and also, Tora and El-Halwagi [27] presented an inte-53

grated conceptual design of solar-assisted trigeneration systems54
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Despite being a promising alternative, to the best of our knowledge, no work has addressed55

the use of renewable energy sources in the production of biofuels. In this work we fill this56

research gap by proposing a systematic framework to assess the potential economic and envi-57

ronmental benefits of using solar thermal energy in a biofuel production facility. Numerical58

results show that it is possible to reduce the impact of these facilities by coupling them with59

a renewable energy source.60

2 PROCESS DESCRIPTION61

2.1. Biodiesel production from vegetable oil62

We consider a standard facility for biodiesel production from vegetable oil. The most com-63

mon way to produce biodiesel is by transesterification, which involves a catalyzed chemical64

reaction using vegetable oil and an alcohol (e.g. methanol) that yields fatty acid alkyl65

esters (i.e. biodiesel) and glycerol. Transesterification reactions can be alkali-catalyzed,66

acid-catalyzed or enzyme-catalyzed. Particularly, we focus here on the alkali-catalysed pro-67

duction of biodiesel from vegetable oil [7].68

The associated flowsheet (see Figure 1) comprises 7 major processing units that are ag-69

gregated into three different sections: upstream, transesterification and downstream. The70

upstream processing includes all unit operations required to prepare the feed streams. In71

this section, the alcohol (methanol), catalyst (sodium hydroxide) and water are mixed in a72

tank before being transferred to the reactor in which the oil is added (vegetable oil).73

The reaction of oil with methanol takes place in a continuous stirred-tank reactor (TRANS)74

at 60◦C and 400 kPa. The catalyst contains 1.78% (w/w) of sodium hydroxide, and the75

alcohol used is methanol. The molar ratio of the reaction is 6:1 (A:O). We assume that a76

95% of the oil is converted to FAME, producing glycerol as by-product.77

The output stream from the reactor (REACOUT) is fed to the methanol distillation column78

(MEOHCOL). In MEOHCOL, pure methanol containing 94% of the total methanol is ob-79
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tained in the top. This stream (MEOHREC) is then recycled and mixed with fresh make-up80

methanol before being charged into the reactor.81

Stream EST1 obtained in the bottom of the distillation column MEOHCOL, is introduced82

in a water washing unit. The goal of this step is to separate the FAME from the glycerol,83

methanol and catalyst by adding water.84

The resulting FAME stream EST4 is purified in a FAME distillation column (ESTCOL) to85

reach the final FAME purity specifications (purity greater than 99.6%). Water and methanol86

are removed as vent gases (stream MEOHWAT). FAME product is obtained as a liquid dis-87

tillate (194◦C and 10kPa). In the bottom of the distillation column, stream OILREC1, is88

recycled to be treated again in the reactor (TRANS).89

Stream AQU1 leaving unit WASHCOOL is fed to the neutralization reactor NEUTR where90

sodium hydroxide is removed by adding phosphoric acid. The resulting Na3PO4, stream91

(AQU2) is removed in a gravity separator (FILTER). Stream AQU3 with a purity of 85%92

in glycerol is purified in the distillation column (GLYRCOOL) to reach the specification93

(weight content greater than 92%).94

95

(Figure 1 could be placed here)96

97

2.2. Integrated solar assisted steam generation system98

To decrease the energy needed to generate the necessary amount of steam consumed by the99

plant. We propose to couple the biodiesel facility with a solar assisted steam generation100

system with heat storage. Figure 2 shows a sketch of the steam generation system proposed,101

in which the biodiesel plant is coupled with the solar thermal system.102

103

(Figure 2 could be placed here)104

105
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The solar thermal unit provides heat to the evaporator in order to satisfy the energy demand106

of the biodiesel plant. Parabolic trough collectors are employed to transfer solar energy to107

the heating mineral oil. A gas fire heater (GFH) is coupled with the solar collectors and108

used as a back up system in order to cope with the intermittent radiation and maintain the109

oil temperature constant. This oil is used in the boiler to generate steam.110

Thermal energy storage (TES) is integrated in the system to use the solar energy more111

efficiently. A molten-salt thermocline is considered for the thermal storage system. Molten112

salt is thus used as heat transfer fluid (HTF) that transports thermal energy between the113

storage unit and the remaining parts of the power system (e.g., collector field, GFH and114

boiler).115

3 MODELING APPROACH116

The design of the integrated facility could be accomplished following a superstructure op-117

timization approach. This methodology relies on formulating a mixed-integer nonlinear118

programming (MINLP) model, where continuous variables represent process conditions (i.e.,119

temperature, pressures, concentrations, etc.), while integers denote the existence of equip-120

ment units. Most MINLP models used in process design make use of short-cut methods to121

describe the performance of the process units. Hence, the ability to screen a large number122

of potential designs and identify the best one comes at the cost of using approximated mod-123

els. Simulation-optimization tools aim at overcoming this limitation [28–34]. This second124

approach relies on optimizing a rigorous process model, which is implemented in a process125

simulator, using an external optimization tool. While this strategy has proved efficient for126

handling processes with complex unit operations, it still shows some limitations. Particu-127

larly, one major problem is that the process simulator may fail to convergence during the128

optimization task.129

To surmount this difficulty to the extent possible, in this work we follow a two-step approach130
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in which the optimization of the integrated system is performed in two sequential phases. A131

rigorous simulation model is first constructed using a standard process simulator (i.e. Aspen132

Plus). The steam generation system is then optimized in a later step. The outcome of the133

optimization is combined afterwards with the simulation results, which provides the perfor-134

mance of the overall integrated system. In our approach the emphasis is therefore on the135

optimization of the solar system, rather than on obtaining an optimal flowsheet configura-136

tion. The goal is to enhance the performance of existing biodiesel facilities for which accurate137

process models fitted with real process data might be available, by coupling them with a138

solar system. The interest here is therefore on assessing the economic and environmental139

performance of the integrated facility rather than on developing an efficient solution method140

for the optimization of such a system. The sections that follow describe the modeling tools141

applied to each part of the process.142

3.1. Process model of the biodiesel plant143

The commercial simulator Aspen Plus is used to solve the steady state material and energy144

balances of a biodiesel production process plant with a capacity of 9,141,561 kg/year.145

Some thermodynamic properties not available in the component library of Aspen Plus were146

estimated based on the molecular structure. Due to the presence of highly polar compo-147

nents, we used a combination of the NRTL (Non-Random Two Liquid) and UNIQUAC148

(Universal QUAsiChemical) thermodynamic/activity models to predict the activity coeffi-149

cients. Some components not directly available in the process simulator were approximated150

by other similar chemicals available in the database. The vegetable oil was modeled as151

triolein, the biodiesel product (FAME) as methyl-oleate, and the by-product glycerol as152

glycerol. Sodium hydroxide, phosphoric acid and sodium phosphate were modeled using the153

physical properties of water. We made this assumption, because the reaction kinetics and154

electrolyte chemistry are not modeled in details and the best alternative was using physical155

property data for water, but with their correct molecular weights.156
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The transesterification process was modeled using a stoichiometric reactor (RStoic). The157

methanol recovery, catalyst removal and glycerol purification were modeled using a rigorous158

multi-stage distillation model (RadFrac), while for the water washing we used a liquid-liquid159

extractor, and for the catalyst removal we use firstly a neutralizer modeled as a RStoic and160

a filter modeled as a Flash.161

3.2. Mathematical formulation of the solar energy system162

The model of the energy system is based on mass and energy balances. These equations,163

which ensure mass and energy conservation, are applied to each unit of the system. The164

mass balance is defined by equation 1:165

∑

i∈INk

mi,t · χi,p,t −
∑

i∈OUTk

mi,t · χi,p,t = 0 ∀k, p, t (1)

where INk and OUTk are the sets of streams entering and leaving unit k respectively, mi,t is166

the mass flow rate of stream i in period t, and χi,p,t is the mass fraction of component p in167

stream i in period t. The total summation of the mass fractions of components p in every168

stream i must equal 1 (see equation 2):169

∑

p

χi,p,t = 1 ∀i, t (2)

The energy balance is defined by equation 3:170

∑

i∈INk

mi,t · hi,t −
∑

i∈OUTk

mi,t · hi,t +Qk,t −Wk,t = 0 ∀k, t (3)

where hi,t is the enthalpy of stream i in period t, Qk,t is the thermal power supplied to unit171
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k in period t, and Wk,t is the mechanical power output of unit k in period t.172

In the model of the solar assisted steam generation system with heat storage, we use the173

following energy balance (see Figure 3):174

175

(Figure 3 could be placed here)176

177

Qk,t +Qk′,t +Qk′′,t−1 = Qk′′,t +Qk′′′,t k = COL, k′ = GFH, k′′ = TES, k′′′ = E, ∀t

(4)

where QCOL,t is the thermal energy captured by the collectors, QGFH,t is the energy provided178

by the fossil fuel combusted in the GFH, QTES,t is the thermal energy accumulated in the179

storage at the end of period t and QB,t is the energy required by the evaporator.180

The maximum amount of thermal energy that can be accumulated is given by the maximum181

storage capacity CAP:182

QTES,t ≤ CAP ∀t (5)

The heat captured in the solar collectors is calculated from equation 6:183

Qk,t = Gt · Ak · ηk,t k = COL, ∀t (6)

where Gt represents the solar radiation, which depends on the time period of the day and184

month. The daily solar radiation expressed in MJ/m2 day is available for different locations185

in Catalonia [38]. The efficiency of the medium-high temperature parabolic trough collectors186
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ηcol is calculated according to the work by Bruno et al. [39] (equation 7):187

ηk,t = η0t − a1(T
av
t − T amb

t )− a2(
Tav
t

−Tamb
t

Gt
)− a3(

Tav
t

−Tamb
t

Gt
) k = COL, ∀t (7)

where η0t is the collector optical efficiency, a1, a2, a3 are coefficients, T amb
t is the ambient188

temperature in time period t, and T av
t is the average temperature of the solar collector, which189

is determined by equation 8:190

T av
t =

TOUTk
−TINk

2
k = COL, ∀t (8)

The heat produced by the combustion of natural gas in the heater is given by equation 9:191

Qk,t = mk · LHV · ηk k = GFH, ∀t (9)

In this equation, mNG is the mass flow rate of natural gas, LHV is the lower heating value192

of natural gas, and ηGFH is the thermal efficiency of the natural gas heater.193

3.3. Economic and environmental assessment194

The economic objective function is the Net Present Value (NPV), which is obtained from195

the sum of the net profit in year j plus the depreciation. The economic assessment is based196

on the costs analysis of Haas et al. [8], Apostolakou et al. [10], Zhang et al. [40]. Further197

information on this issue is presented in section 4.1 and Appendix A.198

With regard to the environmental impact, it is assessed following LCA principles similarly199
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as done in other works [41–45].200

CML =
∑

b∈B

dfb · LCIb (10)

Where, parameter b represents each component of the system, LCIb is the life cycle and dfb201

are the damage factors. Further details on the LCA analysis of the biodiesel plant are given202

in Appendix B.203

3.4. Bi-criteria nonlinear programming (biNLP) model204

The design of the integrated system with economic and environmental concerns can be205

expressed in mathematical terms as a biNLP. We solve this model using the ε constraint206

method [46, 47]. This technique is based on calculating a set of single-objective models207

in which one objective is kept in the objective function while the others are transferred to208

auxiliary constraints and forced to be lower than a set of epsilon parameters:209

min
xD

z = f1(x, y)

s.t. f2(x, y) ≤ ε

f1(x, y) = fP
1
(xP , yP ) + fS

1
(xS)

f2(x, y) = fP
2
(xP , yP ) + fS

2
(xS)

hP (xP , yP ) = 0

hS(xS) = 0

gP (x
P , yP ) ≤ 0

gS(x
S) ≤ 0

(11)

The economic objective function, represented by f1, is quantified using the NPV while f2210

quantifies the impact according to the CML2001 methodology. ε is an auxiliary parameter211
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that bounds the values of the objectives transferred to the auxiliary inequality constraints,212

while x and y represent continuous and discrete variables defined for the plant and solar213

assisted system (xP , yP and xS, respectively). For simplicity, in this formulation, we fully214

decouple the optimization of the plant and the steam generating system. Furthermore, we215

consider that the plant will not be modified, so variables xP and yP are fixed, while variables216

xS are optimized using a gradient-based method.217

4 NUMERICAL RESULTS218

We study the design of a solar assisted biodiesel from vegetable oil production plant consid-219

ering weather data of Tarragona (Spain). We first present the economic and environmental220

analysis of the base case, a biodiesel plant in which the heat capacity is generated by a gas221

fire heater. We will then analyze the alternative system in which the solar assisted steam222

generation with heat storage is used to cover the steam required for the plant. Finally,223

we present the Pareto curve of the biodiesel plant integrated with the solar assisted steam224

generation system.225

4.1. Case Study: Biodiesel production from vegetable oil226

Economic analysis227

For the sake of brevity, details on the economic calculations are given in Appendix A.228

In the base case, we assumed that all the energy required is generated by the GFH, as in229

conventional steam generation systems. The capital costs of the plant are summarized in230

Table 1. The estimated total capital cost of the 9,233,040 kg/year biodiesel production plant231

is 3,323 M$. The cost of the process equipments is 1,095 M$, with the most expensive equip-232

ments being the 4 distillation columns and the transesterification reactor.233

234

(Table 1 could be placed here)235
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236

The projected annual operating costs are shown in Table 2. The raw materials purchases237

are the most significant contribution to the total cost, and in particular the oil purchases238

(2,856 M$/year), which represents a 88.5% of the raw materials cost (3,226 M$/year), and a239

54.2% of the total operating costs (5,273 M$/year). The utilities cost is 692 M$/year, which240

represents a 13.1% of the total cost .241

242

(Table 2 could be placed here)243

244

With the cost and the incomes we can finally determine the NPV (see Appendix A). Ta-245

ble 3 shows the NPV value and the most significant items related with the economic analysis.246

247

(Table 3 could be placed here)248

249

Environmental analysis250

Details on the environmental calculations are given in Appendix B. The CML2001 GWP251

100a methodology has been applied considering a lifetime of the plant of 25 years. The252

results are shown in Table 4. The total environmental impact is 232,608,592 kgCO2eq, most253

of which (70.2%) comes from the vegetable oil consumption. Additionally, the consumption254

of methanol, steam and natural gas contribute significantly to the total impact. The natural255

gas used for steam generation represents 21.0% of the total impact, which confirms that there256

is a large potential for environmental improvements using solar energy. The main sources of257

impact in this LCA analysis are: (1)vegetable oil, (2)methanol, (3)NaOH, (4)H3PO4, (5)wa-258

ter, (6)electricity, (7)steam, (8)natural gas and (9)steel.259

260

(Table 4 could be placed here)261
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262

4.2. Optimal design of the solar assisted biodiesel production263

from vegetable oil264

In this section we present the optimal results of the biodiesel production plant from veg-265

etable oil coupled with a solar assisted steam generation system with heat storage. We first266

describe the biNLP optimization of the solar assisted steam generation system and then we267

present the Pareto set of solutions of the integrated system.268

The model of the solar system was coded in GAMS and solved with CONOPT3. The solver269

algorithm took around 23.5 seconds to generate 10 Pareto solutions on a computer AMD270

PhenomTM 86000B, with Triple-Core Processor 2.29GHz and 3.23 GB of RAM.271

272

Solar assisted steam generation system273

We first solved the optimization problem of the steam generation system by minimizing274

the specific total cost (STC) of the system against the environmental impact of the natural275

gas (EING) used for the steam generation. Each objective function (STC and EING) was276

firstly optimized separately, which provided the limits of the ε interval. This interval was277

divided into a set of sub-intervals, and the model was then calculated for the limits of each278

of them. Figure 4 shows the Pareto set of optimal solutions of the steam generation system.279

Every point of this set represents an optimal design and associated operating conditions that280

leads to a specific economic and environmental performance. Note that an improvement in281

one criterion can only be achieved at the expense of worsening the other. Particularly, the282

maximum economic profitability solution shows the worst impact (design A) and vice versa283

(design B). The STC is equal to 27,247,466 $ in point A, and 714,250,600 $ in design B284

(i.e., 25 times larger) whereas the EING is reduced by 94.88% from 2,215,654 kgCO2eq to285

113,429 kgCO2eq when moving from A to B. The specific cost of intermediate design C is286
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1.31% higher than that of design A (30,835,420 $ vs 27,247,466 $), while the environmental287

impact is reduced by 86.70% (294,587 kgCO2eq vs 2,215,654 kgCO2eq), thereby making this288

solution quite appealing.289

290

(Figure 4 could be placed here)291

292

Further analysis of the Pareto set reveals that the environmental impact is reduced by in-293

creasing the solar collectors area, as shown in Figure 5. The minimum STC design uses294

only the GFH, and for this reason the environmental impact is so high. Design B implies295

a larger collector area (i.e., 625,773 m2). This larger area leads to significant reductions in296

energy consumption, but at the expense of compromising the STC. Design C leads to a solar297

collector area of 19,539 m2 and a natural gas consumption of 322,751 kg/year, 86% lower298

than the natural gas consumption in the design A (2,427,475 kg/year).299

300

(Figure 5 could be placed here)301

302

Solar assisted biodiesel production from vegetable oil303

Figure 6 shows the Pareto curve of the NPV of the whole plant. The EI index is reduced304

by 19.88% (232,608,592 kgCO2eq vs. 186,356,418 kgCO2eq) along the Pareto curve. This is305

accomplished by reducing the consumption of natural gas. However, the NPV is decreased306

drastically from design A to B (24,683,025 $ vs -99,271,720 $), this is because the solar307

collector area in the minimum EI is very large and the total capital investment required to308

produce all the steam for the plant just using solar collectors is very expensive. In contrast,309

design C has similar plant profitability as design A (23,293,750 $ vs 24,683,025 $), but the310

environmental impact in C is 17.02% lower than the environmental impact in A (193,018,984311

kgCO2eq vs 232,608,592 kgCO2eq). This is because in design C, we use 15,857 m2 of solar312
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collectors and we save a 81.21% of natural gas compared to design A.313

314

(Figure 6 could be placed here)315

316

Figure 7 shows, for the maximum NPV and minimum EI solutions, the main sources of GHG317

emissions. Particulary we consider the following contributors to the environmental impact318

(see Appendix B for details): vegetable oil, methanol, NaOH, H3PO4, water, electricity,319

steam, natural gas and steel. As seen all the impact indicators remain constant but the320

natural gas is reduced by 94.88%321

322

(Figure 7 could be placed here)323

324

Finally, Table 5 summarizes the main characteristics of designs A, B and C. As observed, in325

design A, the NPV takes the maximum value. Mainly, because the total capital investment326

is the lowest (no collectors are installed). In design B the NPV is dramatically decreased,327

since generating the steam with just solar collectors leads to a very large area up to 500,000328

m2 and therefore to a prohibitive capital investment. In design C the NPV is very similar as329

in design A because the increase in capital cost is offset by the decrease in operating cost.330

Concerning the environmental impact, design B leads to the best results but at the expense331

of a large drop in NPV. In contrast, design C attains similar reductions in impact while still332

showing a good NPV value.333

334

(Table 5 could be placed here)335

336
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5 Conclusions337

In this work we have proposed a systematic method based on the combined used of process338

simulation and mathematical programming techniques, for the optimal design of biodiesel339

processes with economic and environmental concerns. The design task was formulated as340

biNLP that minimizes simultaneously the net present value (NPV) and the environmental341

impact (EI). The latter criterion was quantified over the entire life cycle of the plant using342

the CML2001 methodology, which follows LCA principles.343

The capabilities of the approach presented were tested in the design of a 9,233,040 kg/year344

alkali-catalyzed biodiesel process using vegetable oil and considering weather data of Tar-345

ragona. A set of Pareto solutions were generated using the ε constraint methodology. The346

results obtained show that is possible to achieve reductions in CO2 emissions of up to 19.88347

% with respect to the maximum profitability design. This is achieved at the expense of re-348

ducing the NPV. In the Pareto set obtained we identified three designs of particular interest:349

the maximum (NPV) design, the minimum (EI) design, and an intermediate design with350

similar plant profitability as maximum NPV design (23,293,750 $ vs 24,683,025 $) but lower351

environmental impact (193,018,984 kgCO2eq vs 232,608,592 kgCO2eq).352

As seen, our method provides a comprehensive framework for the design of biodiesel plants353

integrated with solar energy that systematically identifies the best process alternatives in354

terms of economic and environmental performance. This information is valuable for decision-355

makers, as it allows them to adopt more sustainable technological alternatives for biodiesel356

processes. We also want to remark that the method presented in this paper, can be used for357

the optimal design of other chemical processes.358
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A Appendix A. Economic balance of the biodiesel pro-363

duction plant coupled with solar assisted steam gen-364

eration system365

To assess the economic performance of the biodiesel production plant; the first step is to366

estimate the total cost (CT), equation 12. This is divided in two parts, the capital investment367

(CI), which is usually based on the cost of the equipments, and the operating costs (CO),368

which can be calculated from different items such as: raw materials, energy, etc.369

CT = CI + CO (12)

The correlations used for the calculation of the equipments investment costs are given in370

terms of different design variables. For most of the equipments (reactors, centrifuges, mix-371

ers, flash, heat exchangers, distillation columns and storage tanks) the correlations are based372

on the volumetric flowrates (V qe). Other equipments embedded in the process flow diagram373

such as expansion valves or pumps were not considered in the cost estimation because of its374

low impact in the total cost of the process. The cost correlations were taken from Haas et375

al. [8], Zhang et al. [40] and Apostolakou et al. [10].376

377

(Table 6 could be placed here)378

379

Table 6 summarizes the calculations of the equipment costs. Ce is the equipment cost, e380

represents an equipment unit, BMe is a cost factor of the equipment, Ve is the volume of the381

equipment, AHX is the area of the heat exchangers, QFF is the volumetric flow rate of the382

centrifuge, c represents a distillation column, Hc is the height of the distillation column, Dc383

is the diameter of the distillation column and Nc is the number of stages in the distillation384
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column.385

Along with the cost of the equipments, other factors have to be included into the estimated386

CI. These include items such as installation, process piping, instrumentation/control, insu-387

lation, electrical systems, buildings and auxiliary facilities and safety features. The sum of388

these, plus the cost of the purchased equipment are added together to make the total plant389

direct cost TPDC. Finally, components such as the cost of engineering, construction, the390

contingency, and the land are applied to the total plant indirect cost TPIC.391

CI = TPDC + TPIC (13)

The CO refers to the cost of the raw materials and utilities required to operate the cycle.392

The raw materials cost (Crm) is the cost of vegetable oil, methanol, catalyst, HCL, NaOH393

and water (equation 14). The cost of the utilities (Cut) is the cost of cold water, electricity394

and natural gas (equation 15).395

Crm =
∑

rm

(crm ·mrm) · top (14)

Cut =
∑

ut

(cut ·mut) · top (15)

In equation 15, crm is the price of the raw material and mrm is the mass flowrate in kg/year396

of the raw materials, cut is the price of the utilities, mut is the annual utility consumption and397

top is the total annual operation time in hours. Note that mrm and mut are provided by the398

process simulator. Table 7 lists the cost values of the raw materials and utilities of the system:399

400
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(Table 7 could be placed here)401

402

In addition to the raw materials (Crm) and utilities cost (Cut), the operational cost also403

includes the cost of labor (Cl), supplies (Cs) and general work (Cgw).404

CO = Crm+ Cut+ Cl + Cs+ Cgw (16)

The annual total product cost ctpj is the operating cost (CO) plus the capital cost of the405

(CI) of the year j:406

ctpj = CIj + COj (17)

The annual revenues (rj) is the sum of all sales of the main and by-products of a the biodiesel407

process in the year j:408

rj = mj · prj (18)

where mj is the amount of product sold in year j and prj is the price of the product in year409

j.410

Then, it is calculated the net profit in year j (Nj), which is the annual revenue rj minus the411

annual total cost ctpj including the depreciation and minus the income tax determined by412

the tax rate φ:413

Nj = (rj − ctpj) · (1− φ) (19)
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Finally, the economic objective function is the net present value (NPV), this parameter414

measures the profitability of the plant and it is equal to the sum of the net profit in year j415

plus the depreciation dj.416

NPV =
J∑

j=1

Nj + dj

(1 + ir)j
(20)
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B Appendix B. Environmental analysis of the biodiesel417

production plant coupled with solar assisted steam418

generation system419

The environmental performance of the biodiesel production is quantified according to the420

LCA methodology (ISO 14040), which is combined with process simulation and MOO in a421

way similar as done before by the authors (Bojarski et al. [48]) . The method is applied in422

four phases:423

1.Goal and scope definition:424

• We perform a cradle to gate study that covers all the activities from the extraction of425

raw materials to the production of alkali-catalyzed biodiesel.426

• The functional unit was set to 9.233.040 kg/year alkali-catalyzed biodiesel produced427

over a time horizon of 25 years.428

• The system under study comprises three stages: upstream, transesterification and429

downstream. Every stream crossing this boundary is regarded as an input or output430

of our system.431

• The environmental impact is determined using the CML2001 framework.432

• We consider the following sources of impact:433

Raw materials (inputs): vegetable oil, methanol, NaOH, H3PO4 and water.434

Utilities (inputs): electricity, cooling water and natural gas.435

Stainless steel contained in the equipment units (input).436

2.Life cycle inventory analysis (LCI):437

• The quantification of the mass and energy streams crossing the boundaries of the438

system is performed using the process simulator (Aspen Plus). The input streams439
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of energy and mass are translated into the corresponding emissions and feedstock440

requirements using the Eco-invent database.441

3.Life cycle impact assessment (LCIA):442

• The global warming potential (GWP) is determined from the entries of the life cycle443

inventory of emissions and feedstock requirements (LCIb) and corresponding set of444

damage factors (dfbd) as follows.445

CML =
∑

b∈B

dfb · LCIb (21)

4.Life cycle interpretation: As mentioned previously, the interpretation is performed in446

the post-optimal analysis of the Pareto solutions.447
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Nomenclature575

Sets/Indices

B environmental burdens indexed by b

i streams

j year

k units

P plant variables

p components

rm raw materials

S solar system variables

t time period

ut utilities

Abbreviatures

biNLP bi-criteria nonlinear programming

COL solar collectors

E evaporator

EI environmental impact

EING environmental impact natural gas

GWP global warming potential

LCA life cycle assessment

GFH gas fire heater

GHG green house gases

HTF heat transfer fluid

MINLP mixed-integer nonlinear programming

NLP non-linear programming

NPV net present value

STC specific total cost
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TES Thermal energy storage

Variables

A solar collector area

c cost

CI capital investment

Cl cost labor

Cgw cost general work

CML environmental impact CML2001

Crm Raw materials cost

CO operating cost

Cs cost supplies

ctp total product cost

CT total cost

Cut utilities cost

d depreciation

df damage factors of component b

G solar radiation

LCI component inventory

m mass flow

N annual net profit

NPV Net present value

pr price of the product

Q thermal power

r annual revenues

Tamb ambient temperature

Tav average temperature

TPDC total plant direct cost
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TPIC total plant indirect cost

V volume of the equipment

Vq volumetric flowrates

W mechanical power

x continuous variables

y integer variables

η collector optical efficiency

ε auxiliary parameter

χ mass fraction

Parameters

a1 solar collector coefficient

a2 solar collector coefficient

a3 solar collector coefficient

CAP maximum storage capacity

LHV lower heating value of natural gas

ir interest rate

top operation time
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Table 1: Capital costs summary of the biodiesel production process
Item Costs[$]
Process equipment
Tanks 235,977
Mixers 68,532
Transesterification Reactor 106,066
Methanol distillation tower 121,305
Glycerol distillation column 104,901
Biodiesel distillation column 131,126
Pumps 42,000
Heat Exchangers 81,132
Others 159,137
Utility equipment 230,806
Installation & Other costs 1,996,567
Total Capital Investment 3,323,190
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Table 2: Operating costs summary of biodiesel production process
Item Costs[$/yr]
Raw materials
Methanol 243,776
NaOH 49,360
Oil 2,856,000
H3PO4 52,800
Water 254

3,202,190
Utilities
Cold water 5,725
Electricity 457
Wastewater treatment 50,000
Natural gas 636,054

692,237
Other costs 1,354,302
Operating Costs 5,248,729
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Table 3: Executive economic summary of biodiesel production process
Item Biodiesel process
Net Present Value [$] 24,683,026
Total Capital Investment [$] 3,323,190
Operating Cost [$/yr] 5,248,729
Production Rate [kg/ yr] 9,233,040
Unit Production Cost [$/kg] 0.59
Unit Selling Price [$/kg] 0.91
Total revenues[$] 145,841,164
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Table 4: Results of the LCA of biodiesel production process using CML2001
Source Mass GWP100a Impact

kg/25years kgCO2eq/kg kgCO2eq/25years
Vegetable Oil 166,320,000 0.9815 166,256,386
Methanol 20,627,200 0.7373 15,207,816
NaOH 1,760,000 1.2432 2,188,032
H3PO4 8,800,000 0.3289 2,894,232
Water 15,840,000 0.0007 10,746
Electricity [kWh] 92,928 0.6180 57,427
Natural Gas 53.404.450 0.9127 48,744,378
Steel [m2] 800 311.97 249,576
Total 232,608,592
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Table 5: Economic and environmental summary of the different design alternatives proposed
Item Design A Design B Design C
Net Present Value [$] 24,683,025 -99,271,729 23,293,750
CML-2001 [kgCO2eq] 232,608,592 186,356,418 193,018,984
Total Capital Investment [$] 3,213,600 27,522,639 4,095,862
Operating Cost [$/yr] 5,284,729 17,792,926 5,211,284
Production Rate [kg/ yr] 9,233,040 9,233,040 9,233,040
Unit Production Cost [$/kg] 0.59 1.32 0.61
Unit Selling Price [$/kg] 0.91 0.91 0.91
Total revenues[$] 145,841,164 145,841,164 145,841,164
Area solar panels [m2] 0 625,773 19,539
Natural gas consumed [kg/yr] 2,427,475 124,112 433,996
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Table 6: Equipment cost correlations used in the biodiesel production
Equipment Correlation
Storage tanks C0

ST = BMST · (250000 + 94.2 · VST )
Mixers C0

M = BMM · (12080 · V 0.525
M )

Reactors C0

R = BMR · (15000.55R )
Heat exchangers C0

HX = BMHX · (2320 · A0.65
HX)

Centrifuges C0

FF = BMFF · (28100 ·Q0.574
FF )

Flash C0

D = BMD · (6500 · V 0.62)
Distillation columns C0

T = BMT · (4555 ·H0.81
C ·D1.05

C + 380 ·N0.81
C ·D1.55

C )
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Table 7: Raw materials and utility price used in the biodiesel production
Item Cost
Vegetable Oil 0.420 $/kg
Methanol 0.286 $/kg
Sodium methylate 0.980 $/kg
Hydrochloric acid 0.132 $/kg
Water 0.353 $/MT
Natural gas 4.80 $/ft3

Electricity 0.91 $/kWh
Process water 0.353 $/MT
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Figure 1: Flowsheet for the production of biodiesel from vegetable oil
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Figure 2: Solar assisted steam generation system with heat storage
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Figure 3: Energy balance applied to the storage system

46

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



Figure 4: Pareto set of optimal solutions in the solar assisted steam generation system
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Figure 5: Specific total cost and environmental impact versus solar collector area
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Figure 6: Pareto set of optimal solutions in the biodiesel production plant
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Figure 7: Breakdown of main sources of impact contributing to different environmental im-
pact categories: (1)vegetable oil, (2)methanol, (3)NaOH, (4)H3PO4, (5)water, (6)electricity,
(7)steam, (8)natural gas and (9)steel
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Abstract

In this work, we address the multi-objective optimization (MOO) of a corn-based

bioethanol plant coupled with a solar assisted steam generation system with heat stor-

age. Our approach relies on the combined use of process simulation, rigorous optimiza-

tion tools and, economic and energetic plant analysis. The design task is posed as a

bi-criteria nonlinear programming (biNLP) problem that considers the simultaneous

optimization of the plant profitability and the energy consumption. The capabilities of

the proposed methodology are illustrated through a fixed production of 120 kton/year

corn-based bioethanol considering weather data of Tarragona (Spain).

Keywords: Bioethanol; Corn dry-grind; Solar panels; cost analysis; energy consumption.

2

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



1 INTRODUCTION1

The continued use of fossil fuels to meet the majority of the world’s energy demand is2

threatened by increasing concentrations of CO2 in the atmosphere and concerns over global3

warming. The combustion of fossil fuels is responsible for 73% of the CO2 production [1].4

To reduce the net contribution of GHGs to the atmosphere, bioethanol has been recognized5

as a potential alternative to petroleum-derived transportation fuels [2].6

Bioethanol is the most important biofuel today with a worldwide output of about 32 million7

tones in 2006 [3]. Bioethanol is a liquid biofuel which can be produced from a large variety8

of natural renewable materials and conversion technologies. The corn dry-grind process is9

the most widely used method in the U.S. for generating fuel ethanol by fermentation of grain10

[4]. However, corn grain as other first generation bioethanol processes has raised questions11

regarding its feasibility as an alternative fuel in terms of low Net Energy Balance (NEB)12

because of the high energy input required to produce corn and to convert it into ethanol13

[5, 6].14

In order to analyze the potential economic, environmental and/or energetic benefits of15

bioethanol production processes, several works have used process simulation techniques.16

Kwiatkowski et al. [7] presented a process in SuperPro Designer of the fermentation of corn17

dry-grind for the production of ethanol. Quintero et al. [8] presented an economical and18

environmental comparative study between fuel ethanol production from sugarcane and corn19

using Aspen Plus. Dias et al. [9] simulate different scenarios of the bioethanol production20

from sugarcane using SuperPro Designer. More recently, Tasic and Veljkovic [10] developed21

a simulation model for fuel ethanol production from potato tubers using Aspen Plus.22

Apart from these works based on simulation, there are other contributions that address23

the optimal design of bioethanol production processes using ”short-cut” models of the pro-24

cess units, that is, simplified equations employed to predict their performance processes.25

Karuppiah et al. [12], was the first to propose a superstructure optimization approach for26

the optimal design of corn-based ethanol plants. Grossmann and Martin [13], presented a27
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general approach based on mathematical programming techniques for the energy and water28

optimization in biofuel plants. Martin and Grossmann [14, 15], presented also an optimiza-29

tion approach for energy reduction in bioethanol production processes via gasification and30

hydrolosis of switchgrass.31

As it can be seen, many approaches have focused on minimizing energy consumption in32

biofuels facilities. Pimentel [5] was the first to address this issue in bioethanol produc-33

tion plants, calculating an energy consumption of 75,118 Btu/gal of bioethanol from corn.34

Shapouri et al. [6] estimates a lower energy consumption of 51,779 Btu/gal in the corn-based35

bioethanol production. Wang et al. [16] presented a process with a significant energy reduc-36

tion compared to the previous ones, 38,323 Btu/gal. Finally, Martin and Grossmann [14],37

used mathematical programming techniques for the minimization of the energy consumption,38

which was reduced to 19,996 Btu/gal.39

The aforementioned works focused on improving the bioethanol production process by chang-40

ing the operating conditions and structural configuration of the plant. An alternative ap-41

proach to improve the performance of bioethanol plants consists of coupling them with42

renewable energy sources. In a recent work, Lewis and Nocera [17] highlighted the benefits43

of integrating solar energy with other technologies. Shinnar and Citro [18] claimed that44

solar thermal (ST) energy can be an environmentally friendly and economically competitive45

electric source. More recently, Gebresslassie et al. [19] addressed the minimization of the life46

cycle impact in cooling systems using solar collectors, while Salcedo et al. [20] developed a47

model for the optimization of reverse osmosis desalination plants coupled with solar Rankine48

cycles.49

With all of these observations in mind, the aim of this paper is to present a systematic method50

for the optimal design of corn-based bioethanol facilities considering economic, environmen-51

tal and energetic performance concerns in the decision-making process. Our approach relies52

on the combined use of process simulation, optimization tools and economic and energetic53

analysis within a unified framework. The optimization problem is formulated as a bi-criteria54

4
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nonlinear program (biNLP), involving economic and energetic objective functions. The solu-55

tion approach presented combines process simulators (SuperPro Designer) and optimization56

software (Matlab and GAMS) in an integrated framework. The optimization algorithm pro-57

vides as output a bi-objective optimization set of Pareto solutions representing the optimal58

compromise between plant profitability and energetic consumption. The methodology pre-59

sented has been tested in a corn-based bioethanol production, considering weather data of60

Tarragona (Spain), for the solar collectors.61

2 PROCESS DESCRIPTION62

As already mentioned, our approach includes both a simulation model and an optimization63

model. The first is used to estimate the performance of the biofuel plant, while the second64

allows to determine the energy savings by coupling the production facility with solar collec-65

tors and energy storage. The simulation model has been implemented in SuperPro, and it is66

based on the one proposed by Kwiatkowski et al. [7]. In contrast, the optimization model has67

been developed in GAMS. We describe in detail next each of this models and then describe68

how they have been combined.69

2.1. Bioethanol production from dry grind70

We consider a facility for bioethanol production from corn to ethanol. There are two gen-71

eral manners of processing corn to produce ethanol: wet milling and dry grind. The corn72

dry-grind process is the most widely used method in the U.S. for generating fuel ethanol by73

fermentation of grain, because dry-grind processes are less capital and energy intensive than74

their wet mill counterparts. The corn-based bioethanol production process comprises six-75

stages: milling, liquidification, saccharification, fermentation, distillation and dehydration.76

A simplified flow diagram of the process is shown in Figure 1.77

78
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(Figure 1 could be placed here)79

80

In the milling stage (Stage 1) of the dry-grind process, corn grain is cleaned in a hammer81

(104M) mill and sent through weighing tanks to the liquefaction step (Stage 2). To begin82

this section, the measured ground corn is sent to a slurry tank (307V) and is slurried with83

alpha-amylase, ammonia and lime. The mixture is then gelatinized using a ”jet-cooker”84

and hydrolyzed with thermostable alpha-amylase into oligosaccharides, in the liquefaction85

equipment (310V).86

In the saccharification (Stage 3) the conversion of the oligosaccharides by glucoamylase to87

glucose takes place. This is done in the saccharification reactor (321V) where we add g-88

amylase and sulfuric acid. The reaction is performed at 61oC with a ph of 4.5 and takes 589

hours. Following the saccharification reaction, the slurry is transferred to the fermentation90

vessel (405V). In the fermentation stage (Stage 4) the glucose iis converted into ethanol. The91

residence time is 68 hours, with a working volume of 83% in the fermentors.92

The beer from the fermentation is then sent through a degasser drum (408E) to flash off the93

vapor (412V). The vapor stream (S-128) is primarily ethanol and water with some residual94

carbon dioxide. The stream is then condensed and recombined with a liquid stream prior to95

being sent to the distillation (Stage 5).96

The first step in the distillation stage is the ethanol recovery in the beer column (501T). This97

unit recovers nearly all of the ethanol produced during the fermentation. The recovery of the98

ethanol from the beer column (501T) is accomplished through the combined action of the99

rectifier (503T), stripper (507T) and molecular sieve (504X). The distillate of the rectifier,100

containing primarily ethanol, feeds the molecular sieves, which captures the last bit of water,101

creating 99.6% pure ethanol. Molecular sieves are composed of a microporous substance,102

designed to separate small molecules from larger ones via a sieving action. Finally, the main103

product, fuel ethanol, is produced after mixing the refined ethanol with approximately 5%104

denaturant (gasoline) and is held in the product tank (513V) prior to transport out for sale105
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as a motor fuel additive. Concerning the by-products, the mixture of the non-fermentable106

material from the bottom of the beer column (501T) is fed to the whole stillage tank (601V).107

Then goes to the centrifuge (603) where 83% of the water content is removed. The liquid108

product from the centrifuge is split and used as backset. The concentrate from the evaporator109

(607Ev), is mixed with the wet distiller’s grains coming from the distiller conveyor (604MH).110

The mixture goes to the drum dryer which reduces the moisture content of the mixture of111

wet grains and evaporator concentrate from 63.7% to 9.9%, and this becomes the coproduct112

known as distiller’s dried grains with solubles (DDGS).113

2.2. Integrated solar assisted steam generation system114

One of the main sources of environmental impact in the process described above is the energy115

consumption in the reboilers of the distillation columns. According to our simulation, this116

consumption is 12.239 BTU/gal.117

To decrease the energy requirements to generate steam, we propose to couple the facility118

with a solar assisted steam generation system with heat storage. Figure 2 shows a sketch119

of the steam generation system proposed, which is integrated with the bioethanol plant,120

thereby reducing the energy needs and associated impact.121

122

(Figure 2 could be placed here)123

124

The solar thermal unit provides heat to the evaporator in order to satisfy the energy demand125

of the bioethanol plant. Parabolic trough collectors are employed to transfer solar energy to126

the heat mineral oil. A gas fire heater (GFH) is coupled with the solar collectors as a back127

up system in order to cope with the intermittent radiation and maintain the oil temperature128

constant. This oil is used in the boiler to generate steam.129

A thermal energy storage (TES) is integrated in the system to use the solar energy more130

efficiently. Particulary, molten-salt thermocline is considered. Particulary, molten salt is131
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used as the heat transfer fluid (HTF) that transports thermal energy between the storage132

unit and the remaining parts of the power system (e.g., collector field, GFH and boiler).133

3 PROPOSED APPROACH134

The design of the integrated facility could be accomplished following a superstructure op-135

timization approach. This methodology relies on formulating a mixed-integer non-linear136

programming (MINLP) model, where continuous variables represent process conditions (i.e.,137

temperature, pressures, concentrations, etc.), while binary variables denote the existence of138

a process unit in the flowsheet. This approach makes use of short-cut models to describe139

the performance of the process units. Hence, the ability to handle a large number of po-140

tential designs comes at the cost of using approximated models. An alternative approach141

to circumvent this limitation consists of combining simulation and optimization tools (see142

[21–23]). This approach optimizes a rigorous process model, which is implemented in a pro-143

cess simulator, using an external optimization tool. While this strategy has proved efficient144

for handling processes with complex unit operations, it still shows some limitations. Par-145

ticularly, one mayor issue concerns the convergence problems that may arise in the process146

simulator during the optimization task.147

In this work, the optimization of the integrated system is performed in two sequential steps.148

A rigorous simulation model is first constructed in SuperPro Designer. The optimization of149

the steam generation system is then implemented in GAMS. The outcome of the optimiza-150

tion is combined with the simulation results, which provides the performance of the overall151

integrated system. Note that the emphasis here is on assessing the economic and energetic152

performance of the integrated facility rather than on developing an efficient solution method153

for the optimization of such a system.154

We therefore assume that the bioethanol plant is already under operation, and focus on155

optimizing the solar system that will power the reboilers of the facility. We should clarify156
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that while the optimization of the integrated system could be in principle addressed using157

either a simultaneous (i.e., MINLP) or sequential approach (i.e., simulation-optimization),158

it would lead to a highly complex model. The optimization of the combined biofuel facility159

with solar collectors is therefore out of the scope of this contribution, but will be the focus of160

future work. Finally, let us note that this general approach can be applied to other chemical161

processes, and it is therefore not restricted only to biofuels plants.162

Note that, the following sections describes the modeling tools applied to each part of the163

process.164

3.1. Process model of the bioethanol plant165

As already mentioned, our approach includes both a simulation model and an optimization166

model. The first is used to estimate the performance of the biofuel plant, while the second167

allows to determine the energy savings by coupling the production facility with solar collec-168

tors and energy storage. The simulation model has been implemented in SuperPro, and it169

is based on the one proposed by Kwiatkowski et al. [7]. In contrast, the optimization model170

has been developed in GAMS.171

The process simulator (SuperPro Designer) quantifies the energy requirements, and yield of172

each major piece of equipment for the specified operating scenario. Volumes, compositions,173

and other physical characteristics of input and output streams are also determined. This174

information becomes the basis for the calculation of utility consumptions and purchased175

equipment costs for each equipment item.176

Non-starch polysaccharides are made up of corn fiber (pericarp and endosperm fiber) and177

other potentially valuable or fermentable components. Other solids include: cleaning com-178

pounds, minerals, and other residual matter in the process. Although corn was used as179

the basis for this process, other agricultural products high in starch may also be input to180

the model, though the process may require the user to adjust the given unit operations or181

incorporate new operations to accommodate the new feed.182
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3.2. Mathematical formulation of the solar energy system183

The model of the energy system is based on mass and energy balances. These equations,184

which ensure mass and energy conservation, are applied to each unit of the system. The185

mass balance is defined by equation 1:186

∑
i∈INk

mi,t · xi,p,t −
∑

i∈OUTk

mi,t · xi,p,t = 0 ∀k, p, t (1)

where INk and OUTk are the sets of streams entering and leaving unit k respectively, mi,t is187

the mass flow rate of stream i in period t, and xi,p,t is the mass fraction of component p in188

stream i in period t. The total summation of the mass fractions of components p in every189

stream i must equal 1 (see equation 2):190

∑
p

xi,p,t = 1 ∀i, t (2)

The mass balance is defined by equation 3:191

∑
i∈INk

mi,t · hi,t −
∑

i∈OUTk

mi,t · hi,t +Qk,t −Wk,t = 0 ∀k, t (3)

where hi,t is the enthalpy of stream i in period t, Qk,t is the thermal power supplied to unit192

k in period t, and Wk,t is the mechanical power output of unit k in period t.193

In the model of the solar assisted steam generation system with heat storage, we define the194

following energy balance (see Figure 3):195

10

UNIVERSITAT ROVIRA I VIRGILI 
OPTIMAL DESIGN OF SUSTAINABLE CHEMICAL PROCESSES VIA  A COMBINED SIMULATION 
OPTIMIZATION APPROACH 
Robert Brunet Solé 
Dipòsit Legal: T. 458-2013 
 



196

Qk,t +Qk′,t +Qk′′,t−1 = Qk′′,t +Qk′′′,t k = COL, k′ = GFH, k′′ = TES, k′′′ = E, ∀t

(4)

where QCOL,t is the thermal energy captured by the collectors, QGFH,t is the energy provided197

by the fossil fuel combusted in the GFH, QE,t is the thermal energy accumulated in the198

storage at the end of period t and QB,t is the energy required by the evaporator.199

The maximum amount of thermal energy that can be accumulated is given by the maximum200

storage capacity CAP:201

QTES,t ≤ CAP ∀t (5)

The heat produced in the solar collectors is calculated from equation 6:202

Qk,t = Gt · Ak · ηk,t k = COL, ∀t (6)

where Gt represents the solar radiation, which depends on the time period of the day and203

month. The daily solar radiation expressed in MJ/m2 day is available for different locations204

in Catalonia [24]. The efficiency of the medium-high temperature parabolic trough collectors205

ηcol is calculated according to the work by Bruno et al. [25] (equation 7):206

ηk,t = η0t − a1(T
av
t − T amb

t )− a2(
Tav
t −Tamb

t

Gt
)− a3(

Tav
t −Tamb

t

Gt
) k = COL, ∀t (7)
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where η0t is the collector optical efficiency, a1, a2, a3 are coefficients, T amb
t is the ambient207

temperature in time period t, and T av
t is the average temperature of the solar collector, which208

is determined by equation 8:209

T av
t =

TOUTk
−TINk

2
k = COL, ∀t (8)

The heat produced by the combustion of natural gas in the heater is given by equation 9:210

Qk,t = mk · LHV · ηk k = GFH, ∀t (9)

In this equation, mNG is the mass flow rate of natural gas, LHV is the lower heating value211

of natural gas, and ηGFH is the thermal efficiency of the natural gas heater.212

3.3. Economic and energetic analysis213

The economic objective function is the Net Present Value (NPV), which quantifies the plant214

profitability and it is equal to the sum of the net profit in year j plus the depreciation:215

J∑
j=1

Nj + dj
(1 + ir)j

(10)

Where Nj is the annual gross profit minus the income tax, dj is the depreciation of that216

year, parameter ir is the interest rate and j is the number of year that the plant is working,217

in this case 25. This economic assessment is based on the costs analysis of Henderson et al.218

[26], Tiffany et al. [27], Bryan and Bryan [28].219

With regard to the energy costs, the total amount of energy input into the process compared220

to the energy released by burning the resulting ethanol fuel is known as the ethanol fuel221
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energy balance (sometimes called ”Net energy gain”) and studied as part of the wider field222

of energy economics.223

3.4. Bi-criteria nonlinear programming (biNLP) model224

The design of the integrated system with economic and environmental concerns can be225

expressed in mathematical terms as a biNLP. We solve this model using the ε constraint226

method [29, 32]. This technique is based on calculating a set of single-objective models227

in which one objective is kept in the objective function while the others are transferred to228

auxiliary constraints and forced to be lower than a set of epsilon parameters:229

min
xD

z = f1(x, y)

s.t. f2(x, y) ≤ ε

ε ≤ ε ≤ ε

f1(x, y) = fP
1 (x

P , yP ) + fS
1 (x

S)

f1(x, y) = fP
2 (x

P , yP ) + fS
2 (x

S)

hP (xP , yP ) = 0

hS(xS) = 0

gP (x
P , yP ) ≤ 0

gS(x
S) ≤ 0

(11)

The economic objective function, represented by f1, is quantified using the NPV while f2230

quantifies the impact according to the energy consumption. ε is an auxiliary parameter that231

bounds the values of the objectives transferred to the auxiliary inequality constraints. While232

x and y represent continuous and discrete variables defined for the plant and solar assisted233

system (xP , yP and xS, respectively). For simplicity, in this formulation, we fully decouple234

the optimization of the plant and the steam generating system. Furthermore, we consider235

that the plant will not be modified, so variables xP and yP are fixed, while variables xS are236
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optimized using a gradient-based method. This reflects the situation in which we aim to237

retrofit an existing facility by adding the energy system but without changing neither the238

operating conditions nor the topology of the plant.239

4 NUMERICAL RESULTS240

We study the design of a solar assisted dry-grind bioethanol production plant considering241

weather data of Tarragona (Spain). We first present the economic and energetic analysis242

of the base case, a bioethanol plant in which the heat capacity is generated by the GFH.243

We will then analyze the alternative system proposed here in which the solar assisted steam244

generation with heat storage is used to cover the steam required by the plant. We finally245

discuss the Pareto curve of optimal results of the bioethanol plant integrated with the solar246

assisted generation system.247

4.1. Dry-grind bioethanol production248

Economic analysis249

The presented ethanol cost information, is based on equipment and operating costs. It is250

used general accepted methods for conduction conceptual technical and economic methods251

in the process industry [31, 33, 34]. The purchased costs for the major equipment items252

were based on budgetary quotations from equipment suppliers and erectors. Other sources253

of equipment pricing that were used included Richardson’s Process Plant Construction Es-254

timating Standards 2001, SuperPro Designer and Chemcost. Additional literature on the255

construction of ethanol plants is available as well in [26–28]. However, for the sake of brevity,256

the details on the economic balances calculations are given in Appendix A.257

The capital costs calculated are summarized in Table 1. The estimated total capital cost of258

the 119,171,463 kg/year dry-grind bioethanol production was 60.52 MM$. The cost of the259

process equipments is 19.03 MM$, the most expensive equipments are the transesterification260
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reactor (2.81 MM$) and the molecular sieve (1.72 MM$). The utility equipment used in261

the process are summarized separately, these equipments are the cooling tower, the steam262

generation system, the instrument air system and the electrical system. The total cost of263

the utility equipment is 4.24 MM$. Additionally other costs are taken into account such as264

the installation cost and miscellaneous cost.265

266

(Table 1 could be placed here)267

268

The plant operating costs are based on material and utility costs. Costs agree with actual269

production cost information collected in surveys conducted by USDA [6]. Ethanol dry-grind270

plant operates 24 h/day, with time set aside for maintenance and repairs. A basis of 330271

days per year (7920 h) operating time was used for this model, and the nominal capacity of272

the plant is approximately 35,837 kg/h of corn.273

The projected annual operating costs for the modeled biodiesel production facility are shown274

in Table 2. The cost of raw materials is the most significant, specially the cost of the275

corn (50.57 MM$/year) which represents the 92.96% of the raw materials total cost (54,40276

MM$/year) and 57.83% of the total operational costs (80.27 MM$/year). The other raw277

materials are: lime, ammonia, alpha-amylase, glucoamylase, sulfuric acid, caustic, yeast,278

water and octane. The cost of utilities is 15.11 MM$/year, which accounts for the following279

utilities: steam, cold water, electricity, wastewater treatment and natural gas. Finally other280

costs such as: miscellaneous, maintenance, operating labor, lab costs, supervision, capital281

charges and insurance are taken into account.282

283

(Table 2 could be placed here)284

285

Table 3 shows the NPV of the plant along with the most significant items related with the286

economic analysis.287
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288

(Table 3 could be placed here)289

290

Energetic analysis291

We studied the operating energy analysis to produce one gallon of bioethanol. In the ener-292

getic analysis we considered all the raw materials present in the system and the energy of293

the unit procedure in the system. The energy required to obtain one gallon of bioethanol294

is 24.681 Btu. The raw materials represents, the 16.32% of the total energy required for295

the bioethanol production. Most of the energy 39.38% is wasted in the reboiler of the beer296

column, rectifier and stripping.297

298

(Table 4 could be placed here)299

300

4.2. Optimal design of the solar assisted dry-grind bioethanol301

production302

In this section we present the optimal results of the dry-grind bioethanol production plant303

coupled with solar assisted steam generation with heat storage. We first describe the biNLP304

optimization of the solar assisted steam generation system and the detailed study of the305

variables that most influenced in the bi-criterion optimization. Then, we present the Pareto306

set of solutions of the completed system with heat storage.307

The process model was implemented in SuperPro Designer, whereas the biNLP model of the308

solar system was coded in GAMS and solved with CONOPT3. The algorithm took around309

23.5 sec to generate 10 Pareto solutions on a computer AMD PhenomTM 86000B, with310

Triple-Core Processor 2.29GHz and 3.23 GB of RAM.311

Figure 4 shows the Pareto curve of the NPV of the plant, including the steam generation312
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system and the energy consumed per gallon of bioethanol produced (NRG). The NRG con-313

sumed is reduced by 29.79% (27.309 Btu/gal vs. 19.173 Btu/gal) along the Pareto curve.314

This is accomplished by reducing the consumption of the natural gas. However, the NPV315

is dramatically decreases from design A to B (92,752,281 vs− 328, 817, 003), this is because316

the solar collector area in the minimum NRG is very large and the total capital investment317

to produce all the steam for the plant just using solar collectors is very expensive. However,318

design C, has similar plant profitability as design A (92,752,281 vs75, 610, 887), but the main319

factor is that the environmental impact in C is 25.87% lower than the environmental impact320

in A (27.309 Btu/gal vs 20.244 Btu/gal), this is because in design C, we use 71,053m2 of321

solar collectors and we save the 45.20% of natural gas used in design A.322

323

(Figure 3 could be placed here)324

325

Finally, Table 8 summarizes the main characteristics of designs A, B and C. As observed, in326

the design A, the NPV is the highest. Mainly, because the total capital investment is lower.327

In design B the NPV is dramatically decreased, to the point that the profitability of the plant328

is negative. This is because to generate almost all of the steam with just solar collectors, you329

need a very high area, up to 5,000,000m2 and the cost of this technology is therefore very330

high. In the design C the NPV is very similar to that associated with the design A because331

on the one hand the total capital investment is increased but on the other the operating332

costs are decreased. Concerning the NRG, in design A the natural gas consumed is very333

high compared to that associated with the other 2 designs. Design C consumes consumes334

more natural gas, but the difference has not a big impact in the final NRG. In light of these335

results, solution C seems to be more appealing.336

337

(Table 5 could be placed here)338

339
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5 Conclusions340

In this work we have proposed a systematic method based on the combined used of process341

simulation and mathematical programming techniques, for the optimal design of dry-grind342

bioethanol production processes with economic, environmental and energetic concerns. The343

design task was formulated as biNLP that minimizes simultaneously the net present value344

(NPV) and energetic consumption (NRG).345

The capabilities of the approach presented were tested in the design of a 120 kton/year dry-346

grind corn-to-ethanol production plant considering weather data of Tarragona (Spain). The347

Pareto solutions set were generated using the epsilon constraint methodology. The results348

obtained show that is possible to achieve reductions in the energetic consumption with re-349

spect to the maximum profitability design. This is acomplished at the expense of reducing350

the drastically the NPV.351

As it can be seen, our method provides a comprehensive framework for the design of352

bioethanol plants integrated with solar energy that systematically identifies the best process353

alternatives in terms of economic, environmental and energetic performance. This informa-354

tion is valuable for decision-makers, as it allows them to adopt more sustainable technological355

alternatives for bioethanol processes.356
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Nomenclature447

Sets/Indices

i streams

j year

k units

P plant variables

p components

rm raw materials

S solar system variables

t time period

ut utilities

Abbreviatures

biNLP bi-criteria nonlinear programming

COL solar collectors

DDGS Distiller dried grains with solubes

E evaporator

GFH gas fire heater

GHG green house gases

HTF heat transfer fluid

MINLP mixed-integer nonlinear programming

NEB Net Energy Balance

NLP non-linear programming

NPV net present value

ST Solar Thermal

TES Thermal energy storage

Variables

A solar collector area
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d depreciation

df damage factors of component b

G solar radiation

m mass flow

N annual net profit

NPV Net present value

Q thermal power

r annual revenues

Tamb ambient temperature

Tav average temperature

V volume of the equipment

Vq volumetric flowrates

W mechanical power

x continuous variables

y integer variables

η collector optical efficiency

ε auxiliary parameter

x mass fraction

Parameters

a1 solar collector coefficient

a2 solar collector coefficient

a3 solar collector coefficient

CAP maximum storage capacity

LHV lower heating value of natural gas

ir interest rate

top operation time
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Table 1: Capital costs summary of the bioethanol production process
Item Costs[$]
Process equipment
Grain Handling (101MH) 121,000
Corn Storage (102V) 979,000
Cleaning (103MH) 61,000
Hammer Mill (104M) 98,000
Batch Weighing (106W) 51,000
Slurry Mixer (307V) 69,000
Liquefaction (310V) 161,000
Saccharification (321V) 103,000
Fermenter (405V) 2,812,000
Degasser (412V) 62,000
Beer Column (501T) 597,000
Rectifier (503T) 254,000
Molecular Sieve (504X) 1,718,000
Scrubber (409V) 91,000
Stripping (507T) 168,000
Centrifuge (603X) 825,000
Evaporator (607Ev) 3,418,000
DDGS Dryer (610D) 2,278,000
Thermal Oxidizer (611X) 925,000
DDGS Handling (612MH) 123,000
Total Tanks 1,340,000
Total Heat exchangers 2,380,000
Total Pumps 311,000

19,028,000
Utility equipment
Cooling tower 1,003,880
Steam generation 2,522,388
Instrument air system 144,417
Electrical system 577,682

4,248,376
Other cost
Installation 34,914,564
Miscellaneous 2,327,637

37,242,201
Total Capital Investment 60,518,577
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Table 2: Operating costs summary of the bioethanol production process
Item Costs[$/yr]
Raw materials
Corn 39,437
Lime 161,334
Ammonia 578,562
Alpha-amylase 835,669
Sulfuric Acid 80,667
Caustic 223,296
Yeast 179,426
Water 7,037
Octane 1,722,266

54,395,407
Utilities
Steam 5,510,241
Cold water 4,348,379
Electricity 1,461,453
Natural gas 4,140,705

15,110,779
Other costs
Miscellaneous 5,439,541
Maintenance 5,439,541
Operating Labor 1,760,000
Lab Costs 352,000
Supervision 352,000
Overheads 880,000
Capital Charges 8,159,311
Insurance 2,175,816

24,558,209
Operating Costs 94,064,209
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Table 3: Executive economic summary of the bioethanol production process
Item Bioethanol process
Net Present Value [$] 116,379,916
Total Capital Investment [$] 60,518,577
Operating Cost [$/yr] 94,064,209
Production Rate [kg/ yr] 119,171,463
Unit Production Cost [$/kg] 0.67
Unit Selling Price [$/kg] 0.69
Total revenues[$] 81,826,000
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Table 4: Energy balance of the bioethanol production process
Item Energy consumed [BTU/gal]
Raw materials
Corn 1,924.46
Alpha-amylase 23.83
Ammonia 5.19
Lime 3.10
G-amylase 4.64
Sulfuric Acid 3,11
Caustic 877.67
Yeast 1.44
Water 1,215.06
Octane 18.89

4,057.38
Process equipment
Grain Handling (101MH) 65.74
Cleaning (103MH) 18.84
Hammer Mill (104M) 212.15
Slurry Mixer (307V) 7.79
Liquefaction (310V) 51.71
Saccharification (321V) 1.15
Fermenter (405V) 164.57
Degasser (412V) 36.60
Beer Column/Condenser (501T) 3,568.40
Beer Column/Reboiler (501T) 7,978.75
RECTIFIER/Condenser (501T) 1,595.30
Rectifier /Reboiler (501T) 2,130.59
Molecular Sieve (504X) 9.76
Scrubber (409V) 73.88
Stripping/Condenser (507T) 1,595.30
Stripping/Reboiler (507T) 2,130.59
Centrifuge (603X) 87.43
Evaporator (607Ev) 2,940.46
DDGS Dryer (610D) 640.50
Thermal Oxidizer (611X) 157.92
DDGS Handling (612MH) 25.08
Total Heat exchangers 158.60
Total Pumps 50.16

23,251.27
Energy Balance 27,309.00
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Table 5: Economic and energetic summary of the bioethanol process
Item Design A Design B Design C
Net Present Value [$] 92,752,281 -328,817,003 75,610,887
Energy consumed [Btu/gal] 27,309 19,179 20,244
Total Capital Investment [$] 37,159,397 316,441,020 44,862,192
Operating Cost [$/yr] 63,021,995 79,893,062 62,606,124
Production Rate [kg/ yr] 119,171,463 119,171,463 119,171,463
Unit Production Cost [$/kg] 0.67 1.12 0.68
Unit Selling Price [$/kg] 0.69 0.69 0.69
Total revenues[$] 81,826,000 81,826,000 81,826,000
Area solar panels [m2] 0 5,430,794 71,053
Natural gas consumed [kg/yr] 22,066,980 10,570,180 12,102,040
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Figure 1: Flowsheet for the corn-based bioethanol production model
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Figure 2: Solar assisted steam generation system with heat storage
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Figure 3: Pareto set of optimal solutions in the bioethanol production plant
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3. Conclusions and future work 

This thesis introduces a novel framework for the optimal design of sustainable chemical 

processes. The methodology presented combines process simulation, multi-objective 

optimization tools (MOO), economic analysis, life cycle assessment (LCA) and decision 

support systems (DSS). Numerical results show that it is possible to achieve 

environmental and cost saving using this rigorous approach in different types of chemical 

processes. We consider that the method presented will very useful for decision-makers in 

order to evaluate new technologies to improve their chemical process and operation 

designs.  

Additionally, the developed strategy is used to solve very complex problems. For that it 

was necessary to develop new algorithms and decomposition strategies to divide the 

original problem in more manageable sub-problems, to obtain the optimum design of the 

process. Therefore, in this PhD dissertation is also presented new strategies to solve 

complex mathematical problems. 

The PhD dissertation is divided in three parts: introduction, articles and conclusions. In 

the introduction is presented the background of the thesis and in articles is presented the 

main core. Six articles have been published in different international peer reviewed 

journals. 

The 1st article, titled (Hybrid simulation-optimization based approach for the optimal 

design of single-product biotechnological processes), introduces a systematic strategy to 

assist in the development of biotechnological processes, the nobility of this strategy is 

that combines the process simulator SuperPro Designer with optimization 

toolsimplemented in Matlab and Gams. In this case the problem has only one objective 

function the NPV, which is increased by 13.77% compared to the base case (195,688 M$ 

vs. 172,003 M$). 

In the 2nd article (Cleaner design of single-product biotechnological facilities through the 

integration of process simulation, multiobjective optimization, life cycle assessment, and 

principal component analysis) we introduces a novel framework that integrates process 

simulation, multi-objective optimization, economical analysis, LCA and principal 
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component analysis. This new method is tested in the same bioprocess model as before, 

the NPV is still increased by 13.77% compared to the base case and the environmental 

impact categories are decreased by 10.10% (damage to ecosystem quality), 8.17% 

(depletion resources) and 3.59% (damage to human health) compared to the maximum 

NPV solution. 

In the 3rd article (Combined simulation-optimization methodology for the design of 

environmental conscious absorption systems) we address the optimal design of ammonia-

water absorption cycles for cooling and refrigeration applications with economic and 

environmental concerns. This is the first work that this strategy is applied in this type of 

systems. At cooling conditions the total annualized cost (TAC) is reduced by 9.35% (23,445 

€/year vs. 21,916 €/year) along the Pareto curve and the environmental impact (EI) is 

reduced by 7.28% (16,927 points vs. 15,435 points). At refrigeration conditions the TAC is 

reduced by 10.90% (32,293 €/year vs. 28,771 €/year) and the EI is reduced by 11.27% 

(23,451 points vs. 20,807 points). 

In the 4th article (Minimization of the LCA impact of thermodynamic cycles using a 

combined simulation-optimization approach) we present a computational approach for 

the simultaneous minimization of the total cost and environmental impact of 

thermodynamic cycles. The method is similar to the one presented in the 3rd article but in 

this case we tested with a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW 

ammonia-water absorption cooling cycle implemented in Aspen Plus. 

In the 5th article (Reducing the environmental impact of biodiesel production from 

vegetable oil using a solar assisted steam generation system with heat storage), we 

address the problem of reducing the environmental impact of biodiesel production 

plants. Here we present a new approach were we combine a process model of the plant 

with a model of a solar assisted steam generation system in Gams, we optimize the 

second in order to obtain environmental saving in the integrated system. The results 

obtained show that is possible to achieve reductions in CO2 emissions of up to 19.88%. 

In the 6th article (Minimization of the energy consumption in bioethanol production using 

a solar assisted steam generation system with heat storage) it is used a similar strategy as 

in the article 5th, but in this case we analyze the energy reduction in corn-based 
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bioethanol plant, we demonstrate that is possible to reduce 25.87% the energy 

consumption by integrating with a solar assisted steam generation system with heat 

storage. 

We can conclude that this thesis brings new methods for the design of economic and 

environmental conscious chemical processes and it has been tested with different types 

of chemical processes. 

As any PhD dissertation, the work does not finish here. There are many works and project 

to continue in this line: 

• The presented methodology can be tested for the optimal design of other chemical 

processes such as: basic chemicals, fuel processing, plastic processing, consumer goods, 

waste water treatment, mineral processing, air pollution, pulp and paper, 

pharmaceutical among others. 

• Use this methodology to improve the process operation conditions in a real case of 

study and see the improvements in the economic and environmental way. 
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