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Zusammenfassung

Diese Arbeit befasst sich mit Untersuchung der Hölder Calmness, eines Stabi-
litätskonzeptes, das man als Verallgemeinerung des Begriffs der Calmness erhält.
Ausgehend von Charakterisierungen dieser Eigenschaft für Niveaumengen von
Funktionen, werden, unter der Voraussetzung der Hölder Calmness, Prozedu-
ren zur Bestimmung von Elementen dieser Mengen analysiert. Ebenso werden
hinreichende Bedingungen für Hölder Calmness studiert.
Da Hölder Calmness (nichtleerer) Lösungsmengen endlicher Ungleichungssys-

teme mittels (lokaler) Fehlerabschätzungen beschrieben werden kann, werden
auch Erweiterungen der lokalen zu globalen Ergebnissen diskutiert.
Als Anwendung betrachten wir speziell den Fall von Niveaumengen von Po-

lynomen bzw. allgemeine Lösungsmengen polynomialer Gleichungen und Un-
gleichungen. Eine konkrete Frage, die wir beantworten wollen, ist die nach dem
Zusammenhang zwischen dem größten Grad der beteiligten Polynome sowie dem
Typ, d.h. dem auftretenden Exponenten, der Hölder Calmness des entsprechen-
den Systems.

Schlagworte: Hölder Calmness, Stabilität, Fehlerabschätzung, Polynomiale Un-
gleichungssysteme, Hörmander-Łojasiewicz-Ungleichung.
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Abstract

This thesis is concerned with an analysis of Hölder calmness, a stability prop-
erty derived from the concept of calmness. On the basis of its characterization
for (sub)level sets, we will cogitate about procedures to determine points in such
sets under a Hölder calmness assumption. Also sufficient conditions for Hölder
calmness of (sub)level sets and of inequality systems will be given and examined.
Further, since Hölder calmness of (nonempty) solution sets of finite inequality

systems may be described in terms of (local) error bounds, we will as well amplify
the local propositions to global ones.
As an application we investigate the case of (sub)level sets of polynomials and

of general solution sets of polynomial equations and inequalities. A concrete
question we want to answer here is, in which way the maximal degree of the
involved polynomials is connected to the exponent of Hölder calmness or of the
error bound for the system in question.

Key words: Hölder calmness, stability, error bounds, polynomial inequality
systems, Hörmander-Łojasiewicz inequality.
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1 Introduction

An interesting topic regarding optimization programming is the question of (at least
local) stability of solutions. This is due to the fact that the parameters and initial
values may be not known exactly or cannot be determined accurate, in particular
in the case of multilevel programming where one uses preliminary results to solve
a problem. So, what one wants to have, is that perturbations of the parameters
in the program will only cause predictable changes on the solution. Or, said with
other words, that the magnitude of perturbation gives a bound on the change of the
solutions of a perturbed problem.
There are several concepts of stability – one of them is calmness, a kind of weak

local upper Lipschitz property (cf. [KK02b] for a deeper insight). Various Lipschitzian
properties in terms of several generalized derivatives have been studied in [RW98] and
[KK06].
Now, since we are talking about calmness as a Lipschitz type property, a manifest

idea is to generalize this notion to Hölder characteristics, which was also recently
done by Kummer [Kum09]. Earlier investigations on this topic have been done by Alt
[Alt83], Klatte [Kla85], [Kla94] and Gfrerer [Gfr87] and derived sufficient conditions
for Hölder type stability with exponent q = 1

2 .
A subject closely related to the above topic of stability are error bounds. Here

one is interested in measuring the distance to whatever solution set using easy to
calculate residual functions related to the given problem. Hence we want to have some
proposition stating that points almost meeting the given conditions are also close to a
solution. The motivation to study this arises from contemplating about termination
criteria in computer implementations of iterative algorithms. (A summary of the
theory and application of error bounds may be found in the survey paper of Pang
[Pan97].)
Usually the sets in question are described in terms of inequalities and equations

– and also many mathematical optimization programs can be treated as such (for
instance think about linear programming problems in primal-dual form, nonlinear
complementarity problems or general nonlinear optimization programs for differen-
tiable functions via KKT optimality conditions). So we consider systems of type

g(x) ≤ 0, h(x) = 0 where g = (g1, . . . , gm), h = (h1, . . . , hmh) : X → R,

with nonempty solution set S. An obvious residual function then is

r(x) = ‖max{0, g(x)}‖+ ‖h(x)‖,
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and we want to have some conclusion like

∀x ∈ K ⊂ X : dist(x, S) ≤ Lr(x)q,

where L > 0 and q ∈ (0, 1] are constants.
The well known paper of Hoffman [Hof52] was the first work on this field and he

showed that for (finite) systems of affine functions on X = Rn the above error bound
statement holds with K = Rn and q = 1. This result yields just (global) calmness
for S : Rk → Rn with S(p1, p2) := {x ∈ Rn | g(x) ≤ p1, h(x) = p2 } at any point
(0, x̄) ∈ gphS.
But in general the exponent q is less than 1 (if it exists at all) – even for (sub)level

sets of monomials in one dimension – so here at most Hölder calmness is possible.
Using the Hörmander-Łojasiewicz inequality Luo/Luo [LL94] and Luo/Pang [LP94]
proved Hölder calmness for systems of polynomials and also analytic functions. But
since the Hörmander-Łojasiewicz inequality is based on the Tarski-Seidenberg princi-
ple one only knows that there is an exponent for Hölder calmness but cannot specify
it exactly this way.

This work is structured as follows:
In Chapter 2 we introduce the necessary notion and give the basic definitions.

Chapter 3 contains an overview of several results regarding error bounds and a brief
inspection of the Hörmander-Łojasiewicz inequality, including a crash course to semi-
algebraic sets and the Tarski-Seidenberg principle (see Section 3.3). The main pur-
pose of this chapter is to review this (mathematically elegant) approach to general
Hölder calmness in view of its usage to find concrete exponents. Unfortunately we
will see that it is not possible to get an satisfying explicite magnitude this way (cf.
Proposition 18 and the subsequent comment).
The first main part of the thesis is Chapter 4 where we analyze conditions and

characterizations of Hölder calmness. On the basis of a characterization of (local)
Hölder calmness for (sub)level sets given by Kummer [Kum09], we present a global
characterization (Theorem 25), thus augmenting results of Wu and Ye [WY02a] as
well as Ng and Zheng [NZ00] (Section 4.1).
Using this characterizations we then cogitate about procedures to determine points

in (sub)level sets under the calmness [q] assumption and also without this premise
(Sections 4.2 and 4.3). Particular interesting results are the characterization of Hölder
calmness via some relative slack condition (Theorem 30) and that one may character-
ize Hölder calmness via linear convergence of appropriate algorithms (cf. in particular
Lemma 32 and Algorithm 4). Since the considered algorithms need starting points
nearby, we also analyzed what would happen for arbitrary starting points (Theorem
33). Moreover we apply the theory to necessary optimality conditions, gaining that
for KKT points calmness [q] does not depend on the description of the KKT set
(Lemma 34) and that – under additional conditions – the aforementioned algorithm
computes Fritz-John points (Lemma 35).
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Afterwards we will shortly contemplate about crucial index sets for Hölder calm-
ness of inequality systems (Section 4.4), prior to specifying and examining sufficient
conditions for Hölder calmness of (sub)level sets and of systems of inequations (Sec-
tion 4.5). The obtained results generalize prior statements of Wu and Ye [WY02a] for
convex systems to the non-convex case also (Theorems 40 and 41). Based on these
findings we then get a sufficient condition for calmness [1/d] of d-times continuously
differentiable functions (Lemma 45, offering a sufficient condition for the general de-
scending requirement (4.71)). This is the result which than bridges to Chapter 5. As
a specific conclusion before giving way to the next chapter we will get that for C2

functions with regular Hessian it holds calmness [1
2 ] (Corollary 46).

In Chapter 5 we apply our findings to the case of (sub)level sets of polynomials and
to general solution sets of polynomial equations and inequalities. First we get that
quadratic polynomials have at least calm [1

2 ] level sets (Theorem 49). Then, based
on propositions achieved by Ng and Zheng [NZ00], we generalize this to a global
error bound for (sub)level sets of quadratic polynomials with exponent 1

2 , where we
especially go into detail with respect to the constant L, which may be computed
(Theorem 50).
Subsequently we use this result to show that over compact sets there is an quadratic

error bound for systems of one quadratic and finitely many affine functions (Theorem
56). In contrast to prior statements of Luo, Pang and Ralph [LPR96] we do not
need any nonnegativity condition here, and unlike to an analogous result of Luo and
Sturm [LS00] we have a direct proof, which also allows to figure out the constant L.
Insofar those propositions are put into bigger framework. On the way we alternatively
prove known results of Luo and Sturm [LS00] and of Luo, Pang and Ralph [LPR96]
(Corollaries 54 and 55).
Unfortunately one cannot gain such general statement as mentioned before for

(sub)level sets of polynomials of degree 4 and greater or systems containing more
than one quadratic function (see Examples 12 and 16). And we did not find any
result for (sub)level sets of cubic polynomials.





2 Notation and definitions

2.1 Basic notation

Let X and P be Banach spaces. We write ‖·‖ for the norm, d(·,·) for the (induced)
distance and dist(y,M) := inf { d(y, ỹ) | ỹ ∈M } for the distance between a point y
and a subset M of the respect space, where dist(y, ∅) := +∞. Further let

B(x, ε) := { y | d(y, x) ≤ ε }

denote the the closed ball with radius ε around x, and for subsets M we put

B(M, ε) :=
⋃
x∈M

B(x, ε),

which is M with some additional ε-neighbourhood. In any case we may use some
subscript to indicate the underlying space or norm – in particular for subspaces Y of
X it is BY the closed ball in Y w.r.t. the induced distance dY . Moreover ‖·‖2 will
denote the Euclidean and ‖·‖∞ the maximum norm in finite dimension.
Writing F : X ⇒ P , we mean that F is a multifunction between the two spaces,

i.e. F (x) ⊆ P for x ∈ X and we denominate by domF := {x ∈ X | F (x) 6= ∅ } the
domain of F and by gphF := { (x, p) ∈ X × P | p ∈ F (x) } its graph.
Another notation used at times in this paper is o(t), which denotes a quantity of

type limt→0+
o(t)
t = 0.

In addition, for any real number a and any vector x = (x1, . . . , xn) ∈ Rn, we define
a+ = max{0, a} and x+ = (x+

1 , . . . , x
+
n ) respectively.

Several derivative notions

As usual we write ∂ig for the i-th partial derivative of a function g : Rn → R, Dg for
its Fréchet derivative or the Jacobian, and D2g for its second Fréchet derivative or
the Hessian. Clarke’s generalized Jacobian is denoted by ∂Clg. Also we will use the
lower subderivative1

d−g(x)(u) := lim inf
t→0+
u′→u

g(x+ tu′)− g(x)
t

,

1Here we follow the notation of [RW98]. For a reflection about the several names see [RW98, p.
345].
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and the (one-sided) directional derivative

g′i(x;u) := lim
t→0+

gi(x+ tu)− gi(x)
t

.

2.2 Hölder calmness

Stability analysis is interested in the stability of local solutions x ∈ X of generalized
equations p ∈ F (x) for given canonical parameters p ∈ P , where F : X ⇒ P is a
closed multifunction, i.e. gphF is closed2. Or to put it into other words the problem
setting is:

For a given closed multifunction F : X ⇒ P and a parameter p ∈ P
find some x ∈ X such that p ∈ F (x).

(2.1)

For functions f : X → P one identifies f(x) and F (x) = {f(x)}. Then F is closed in
particular for continuous f and one is directly in the setting in this case.
To analyze stability one studies the behaviour of the solution sets to (2.1)

S(p) := F−1(p) = {x ∈ X | p ∈ F (x) }

near some particular solution.

Remark 1. If S is a solution set for some inequality system g(x) ≤ 0 and h(x) = 0
where g = (g1, . . . , gm), h = (h1, . . . , hmh) are functions with values in R, then S is
closed if g is lower semicontinuous and h continuous.

An overview to several notions of stability can be found in the book of Klatte
and Kummer [KK02b]. In this work we will only consider a stability property called
calmness.

Following [KK02b] we say for S : P ⇒ X and (p̄, x̄) ∈ gphS:

Definition 1. S is calm at (p̄, x̄), iff exist ε, δ, L > 0 such that for all p ∈ B(p̄, δ)
holds

S(p) ∩B(x̄, ε) ⊂ B(S(p̄), L ‖p− p̄‖), i.e.

∀x ∈ S(p) ∩B(x̄, ε) : dist(x, S(p̄)) ≤ L ‖p− p̄‖ . (2.2)

The constant L is called the rank of calmness.
Note. Let us denote here by the way that calmness is the weakest of all Lipschitz
type stability conditions which is also a constraint qualification, i.e. guarantees that
the existence of KKT points is necessary for solutions of optimization problems with

2In particular this definition yields that F is closed iff F−1 is closed.
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standard constraints – which is (beside its relation to error bounds) another important
motivation to study calmness in the first place.

We may generalize this definition to a Hölder type characteristic in the familiar
way (cf. [Kum09] as well):

Definition 2. S is called Hölder calm with exponent q or calm [q] at (p̄, x̄), iff exist
q ∈ (0, 1], ε, δ, L > 0 such that for all p ∈ B(p̄, δ) holds

S(p) ∩B(x̄, ε) ⊂ B(S(p̄), L ‖p− p̄‖q), i.e.

∀x ∈ S(p) ∩B(x̄, ε) : dist(x, S(p̄)) ≤ L ‖p− p̄‖q . (2.3)

Remark 2. Obviously, if a multifunction S is calm [q] at (p̄, x̄) ∈ gphS then S is
also calm [q′] at (p̄, x̄) ∈ gphS for every 0 < q′ ≤ q ≤ 1.

Remark 3. Definition 2 is equivalent to the existence of some q ∈ (0, 1], ε, δ, L > 0
such that for all p ∈ B(p̄, δ) holds

x ∈ S(p) ∩B(x̄, ε)→ S(p̄) ∩B(x, L ‖p− p̄‖q) 6= ∅,

i.e. ∀x ∈ S(p) ∩B(x̄, ε)∃x′ ∈ S(p̄) : ‖x− x′‖ ≤ L ‖p− p̄‖q .

Remark 4. If x̄ ∈ intS(p̄) then S is trivially calm [q] (for any q) at (p̄, x̄), since
then one may just choose ε > 0 s.t. B(x̄, ε) ⊂ S(p̄) and hence ∀x ∈ B(x̄, ε) :
dist(x, S(p̄)) = 0.
Thus in the following we will always consider x̄ ∈ S(p̄)\intS(p̄) without saying so

explicitly.

Remark 5. One easily sees that S is not calm [q] at (p̄, x̄) ∈ gphS if and only if

∃ {(pk, xk)} ⊂ gphS :
(
∀ k ∈ N : xk 6= x̄ ∧ pk 6= p̄

)
∧
(
(pk, xk)→ (p̄, x̄)

)
∧
(
∀ ξk ∈ argmin

ξ∈S(p̄)
‖xk − ξ‖ : ‖pk − p̄‖

‖xk − ξk‖1/q
→ 0

)
.

Remark 6. Another trivial statement (following directly from the definition) is that
a multifunction S is calm [q] at some point (p̄, x̄) ∈ gphS if

∃λ, ε, δ > 0 ∀ p ∈ B(p̄, δ)\{p̄} ∀x ∈ S(p) ∩B(x̄, ε) : λ‖x− x̄‖ ≤ ‖p− p̄‖q. (2.4)

2.3 Polynomials
Notation. We call α = (α1, . . . , αn) ∈ Nn

0 a multiindex, the length of α is |α| =∑n
i=1 αi and we define Md

n := {α ∈ Nn
0 | |α| = d } and M≤dn :=

⋃d
i=0M

i
n to be the set

of all multiindices with length d and length at most d, respectively.
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Note. The set Md
n has

(n+d−1
d

)
= (n+d−1)!

d!(n−1)! elements.

Notation. A real monomial on Rn is any function h : Rn → R of the form

h(x) = a · xα := a ·
n∏
i=1

xαii (a ∈ R\{0}).

The length of α then is called the total degree of the monomial.
Now h : Rn → R is called a polynomial if it is a sum of monomials, i.e. if there are

(different) multiindices α1, . . . αl ∈ Nn
0 such that

h(x) =
l∑

i=1
aαix

αi (aαi ∈ R\{0}).

The degree of a polynomial is the largest total degree d of the involved monomials.
If we put aα = aαi for α = αi and aα = 0 else, then we may write h as

h(x) =
∑

α∈M≤dn

aαx
α or shortly h(x) =

∑
|α|≤d

aαx
α.

Finally, we call a polynomial h homogeneous if its monomials with nonzero coefficients
all have the same total degree, i.e. if it has the form

h(x) =
∑
α∈Md

n

aαx
α =

∑
|α|=d

aαx
α

for some d ∈ N0.

Note. If h is a homogeneous polynomial of degree d than h is a homogeneous function
of degree d, i.e. h(rx) = rdh(x) for all x ∈ Rn and r ∈ R.



3 Error bounds for systems of
inequalities and equalities

3.1 Known general results
Consider the following inequality system in finite dimension

gi(x) ≤ 0, i = 1, . . . ,m, and hj(x) = 0, j = 1, . . . ,mh, (3.1)

for functions gi, hj : Rn → R and let S be the solution set of this system, which is
assumed to be nonempty. We will denote the vector functions g = (g1, . . . , gm) and
h = (h1, . . . , hmh).
For stability analysis the question arises whether or not and under which conditions

an error bound of (3.1) in terms of some residual function exists, that is:
Are there positive constants L, q and a subset T of Rn such that with the residual

r(x), which is a non-negative valued vector function fulfilling »r(x) = 0 if and only if
x ∈ S«, holds

∀x ∈ T : dist(x, S) ≤ L‖r(x)‖q ? (3.2)

A natural and popular choice for the residual function is

r(x) := (g1(x)+, . . . , gm(x)+, |h1(x)|, . . . , |hmh(x)|)

which leads to ‖r(x)‖ = ‖
(
g(x)+, h(x)

)
‖ or (in finite dimension) equivalently to

‖g(x)+‖+ ‖h(x)‖.

The first publication dealing with error bounds is the paper of Hoffman [Hof52]. He
showed

Proposition 1 (Hoffman’s error bound). If g and h are affine linear functions, i.e.
g(x) = Ax + a and h(x) = Bx + b for some matrices A, B and vectors a, b of
appropriate dimensions1, then there exists some constant L > 0 depending on A and
B only such that (for arbitrary norm)

∀x ∈ Rn : dist(x, S) ≤ L(‖(Ax+ a)+‖+ ‖Bx+ b‖). (3.3)

But such simple bound does not hold even for (general) polynomial mappings:
1In fact Hoffman originally considered only systems of linear inequalities, but as every system of

equalities may be written as two systems of inequalities one gets the given result.
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Example 1. Let g : R → R be given by g(x) = xd, with 1 < d ∈ N, and S :=
{x | g(x) ≤ 0 }. Then clearly S = {0} if d is even and S = R−0 if d is odd. So, given
any x ∈ R, we have

dist(x, S) =


|x|, if d is even
0, if d is odd and x ≤ 0
|x|, if d is odd and x > 0

and

|g(x)+| =


|x|d, if d is even
0, if d is odd and x ≤ 0
|x|d, if d is odd and x > 0

So for all x ∈ R holds dist(x, S) ≤ |g(x)+|1/d, but there is no L > 0 such that
dist(x, S) ≤ L|g(x)+| for all x near the origin:
Assuming this, it would follow that there is some ε > 0 such that in particular
|x| ≤ L|x|d for all 0 < x < ε, i.e. L ≥ 1

|x|d−1 −−−→
x→0

∞, which is a contradiction.

Moreover the following example due to Luo and Pang (see [LP94, Example 4.3]
and [LPR96, 2.3.14 Example]) shows that in general the error bound is only local:

Example 2. For the solution set S := { (x1, x2) | x1x2 = 0,−x1 ≤ 0,−x2 + 1 ≤ 0 } =
{ (0, x2) | x2 ≥ 1 } holds:

dist((t, 0), S) = t for t ≥ 1 and maximum-norm,

but
‖(x1x2,−x1,−x2 + 1)(t, 0)+‖∞ = 1.

Nevertheless there are general propositions regarding error bounds of solution sets
of polynomial systems.
For the case of a single real polynomial h : Rn → R Hörmander [Hör58, Lemma 1

and 2] proved

Proposition 2 (Hörmander’s error bound). There are positive constants L, q and a
(possibly negative) constant q′ such that (for the Euclidean norm ‖·‖2)

∀x ∈ Rn : dist2(x, S) ≤ L(1 + ‖x‖22)q′ |h(x)|q. (3.4)

This was extended by Luo and Luo [LL94, Theorem 2.2] to sets S given by sys-
tems of polynomial equalities and inequalities. Considering the new polynomial
f : Rn+m → R given by

f(x, z) =
m∑
i=1

(gi(x) + z2
i )2 +

mh∑
j=1

hj(x)2 (3.5)
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and using that x ∈ S iff f(x, z) = 0 for zi = zi(x) =
√

(−gi(x))+, they obtained –
applying Hörmander’s result2

Proposition 3 (Luo/Luo error bound). There exist constants L > 0, q > 0 and
q′ ≥ 0 such that

∀x ∈ Rn : dist2(x, S) ≤ L(1 + ‖x‖2)q′(‖g(x)+‖2 + ‖h(x)‖2)q. (3.6)

Remark 7. Obviously results (3.4) and (3.6) can be written in terms of arbitrary
compact subsets, i.e. for any compact K exist positive L and q such that

∀x ∈ K : dist2(x, S) ≤ L|h(x)|q, and

∀x ∈ K : dist2(x, S) ≤ L(‖g(x)+‖2 + ‖h(x)‖2)q, respectively.

Remark 8. Independently of Hörmander, Łojasiewicz [Łoj59, 17. Théorème p. 124]
– previously announced without a proof in [Łoj58] – gave a bound similar to (3.4)
even for a single analytic function, stating that for each compact subset K of Rn
exist L > 0 and q > 0 such that

∀x ∈ K : dist2(x, S) ≤ L|h(x)|q. (3.7)

Using construction (3.5) Luo and Pang [LP94, Theorem 2.2] generalized this to sets
defined by analytic equations and inequations, concluding that for every compact
K ⊂ Rn exist positive constants L, q such that

∀x ∈ K : dist2(x, S) ≤ L(‖g(x)+‖2 + ‖h(x)‖2)q. (3.8)

Remark 9. Although (3.4), (3.6), (3.7) and (3.8) were proved for the Euclidean
norm only3, by equivalence of norms in finite dimension, these propositions certainly
hold for arbitrary norms.

We have the following connection between error bounds and calmness [q]:

Lemma 4. Let S(p1, p2) := {x ∈ Rn | g(x) ≤ p1 ∧ h(x) = p2 } with g = (g1, . . . , gm)
lower semicontinuous and h = (h1, . . . , hmh) continuous functions into R.
Then (the closed multifunction) S is calm [q] at (0, x̄) ∈ gphS if and only if

∃ ε > 0, L > 0 ∀x ∈ B(x̄, ε) : dist(x, S(0)) ≤ L
(
‖g(x)+‖+ ‖h(x)‖

)q
;

where 0 < q ≤ 1.
2Actually [LL94, Theorem 2.1] – which is the presentation of Hörmander’s proposition in the paper

of Luo and Luo – does not mention the square of ‖x‖2 in (3.4), which is then also ‘lost’ in (3.6). But
this is of course not a problem since 1 + ‖x‖2 ≤ (1 + ‖x‖)2.

3This is mainly because the proof of the Hörmander-Łojasiewicz inequality for semialgebraic sets is
based on elimination of quantifiers over real closed fields and one may write (in-)equalities regarding
‖ · ‖2 easily as polynomial (in-)equalities (using ‖ · ‖2

2).



12 3 Error bounds for systems of inequalities and equalities

Proof.
(⇐) Take any p = (p1, p2) ∈ Rm+mh and x ∈ S(p) ∩B(x̄, ε). If p1i ≤ 0 we then

have gi(x)+ = 0 and else 0 ≤ gi(x)+ ≤ p1i, so in any case ‖g(x)+‖ ≤ ‖p1‖ and further
h(x) = p2, i.e. ‖h(x)‖ = ‖p2‖.
Hence by assumption

dist(x, S(0)) ≤ L (‖p1‖+ ‖p2‖)q ≤ 2qL‖p‖q.

(⇒) Since S is calm [q] at (0, x̄) we find ε, δ, L > 0 s.t.

∀ p ∈ B(0, δ) ∀x ∈ S(p) ∩B(x̄, ε) : dist(x, S(0)) ≤ L‖p‖q.

Put ε̄ := min{ε, δ, 1} and let x ∈ B(x̄, ε̄). If ‖
(
g(x)+, h(x)

)
‖ ≤ ε̄ ≤ δ we thus have

dist(x, S(0)) ≤ L‖
(
g(x)+, h(x)

)
‖q ≤ L1

(
‖g(x)+‖+ ‖h(x)‖

)q
,

for some L1 > 0 independent of x.4 Else it holds

dist(x, S(0)) ≤ ‖x− x̄‖ ≤ ε̄ ≤ ‖
(
g(x)+, h(x)

)
‖.

And since in the case ‖
(
g(x)+, h(x)

)
‖ ≥ 1 it is ‖

(
g(x)+, h(x)

)
‖q ≥ 1 as well and else

‖
(
g(x)+, h(x)

)
‖ ≤ ‖

(
g(x)+, h(x)

)
‖q, this yields

dist(x, S(0)) ≤ L2
(
‖g(x)+‖+ ‖h(x)‖

)q
.

Thus we conclude:

∀x ∈ B(x̄, ε̄) : dist(x, S(0)) ≤ max{L1, L2}
(
‖g(x)+‖+ ‖h(x)‖

)q
.

Remark 10. Note that, for closed multifunctions S given as a solution set of in-
equalities and equations, to characterize calmness [q] at (0, x̄) ∈ gphS one doesn’t
need to consider only points with small function values (as the definition of Hölder
calmness would suggest).
Also, if we abandon the demand for total closedness of S and conform with closed-

ness of the set S(0) then we won’t need continuous functions hi but lower semicon-
tinuous |hi| (because hi(x) = 0 iff |hi(x)| ≤ 0).

A direct corollary of Lemma 4 for (sub)level sets is

Corollary 5. Let g : X → R be lower semicontinuous with g(x̄) = 0 for some x̄ ∈ X.
Then its sublevel set map S(p) = {x | g(x) ≤ p } is calm [q] at (0, x̄) if and only if

∃ ε > 0 ∃L > 0 ∀x ∈ B(x̄, ε) : dist(x, S(0)) ≤ L(g(x)+)q; (3.9)
4For ‖ · ‖ = ‖ · ‖1 we would have L1 = L and thus the inequality follows from the equivalence of

norms in Rk.
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or equivalently (since S is closed)5

∃ ε > 0 ∃L > 0 ∀x ∈ B(x̄, ε)\S(0) ∃x′ ∈ S(0) : ‖x− x′‖ ≤ Lg(x)q. (3.10)

And calmness [q] of level set maps S(p) = {x | h(x) = p } for continuous functions
h : X → R is equivalent to

∃ ε > 0 ∃L > 0 ∀x ∈ B(x̄, ε) : dist(x, S(0)) ≤ L|h(x)|q. (3.11)

Remark 11. Note that there is a strong connection between Hölder calmness of the
level set S=(p) = {x | h(x) = p } and the sublevel set S≤(p) = {x | h(x) ≤ p } for
continuous functions h:
Obviously it is S= ⊂ S≤. Hence, if S=(p) is calm [q] at (0, x̄), then we have

dist(x, S≤(0)) ≤ dist(x, S=(0)) ≤ L|h(x)|q = L(h(x)+)q for all x /∈ S≤(0) near x̄, i.e.
we have also calmness [q] of S≤(p) at (0, x̄).

Using the result of Luo and Luo we finally get

Corollary 6. For every S(p1, p2) := {x ∈ Rn | g(x) ≤ p1 ∧ h(x) = p2 }, where g =
(g1, . . . , gm) and h = (h1, . . . , hmh) are real polynomials on Rn, exists some q > 0
such that S is calm [q] at (0, x̄) for every x̄ ∈ S(0).

Proof. If S(0) is empty this is a tautology. So let’s suppose S(0) 6= ∅. Then by (3.6)
there exist L̃, q, q′ > 0 such that for every x ∈ Rn holds

dist(x, S(0)) ≤ L̃(1 + ‖x‖)q′(‖g(x)+‖+ ‖h(x)‖)q.

Now take any x̄ ∈ S(0), ε > 0 and (p1, p2) ∈ Rm×Rmh , x ∈ S(p1, p2)∩B(x̄, ε). Since
‖x‖ ≤ ε+ ‖x̄‖ and ‖p1‖+ ‖p2‖ ≤ 2‖(p1, p2)‖ we get

dist(x, S(0)) ≤ L̃(1 + ε+ ‖x̄‖)q′(‖p1‖+ ‖p2‖)q ≤ L‖(p1, p2)‖q (3.12)

where L = L̃(1 + ε+ ‖x̄‖)q′2q.

Remark 12. Of course, using the Łojasiewicz result and [LL94, Theorem 2.2], Corol-
lary 6 is equally true for analytic functions.

But note that such result does not hold in general for (sub)level sets of general C∞
functions:

Example 3. Consider the non-analytic C∞ function

g(x) =
{
e−(1/x2), x 6= 0
0, x = 0.

5Note that now only x /∈ S(0) near x̄ are considered and thus in particular g(x) > 0 is already
ensured.
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Since S(0) := {x ∈ R | g(x) ≤ 0 } = {0} it is dist(x, S(0)) = |x| for all x ∈ R. So
due to limx→0

|x|r

e−(1/x2) = limy→∞
e(y2)

yr = ∞ for each r > 0, S(p) cannot be Hölder
calm at (0, 0).

The above Lemma 4 (and its corollary 5) states that calmness [q] is a local error
bound property with exponent q. If one assumes a system of convex functions on
Rn then it holds even a global equivalence (the next Lemma and its proof are an
adaption of [Li97, Theorem 3.3]):

Lemma 7. Let gi : Rn → R, i = 1, . . . ,m, be convex functions. Then the multifunc-
tion S defined as S(p) := {x ∈ Rn |

∧n
i=1(gi(x) ≤ pi) } and with S(0) 6= ∅ is calm [q]

at every point (0, x̄) ∈ gphS if and only if for any compact set K ⊂ Rn exists some
constant LK > 0 such that

∀x ∈ K : dist(x, S(0)) ≤ LK‖g(x)+‖q. (3.13)

Proof. The backward direction is clearly true, so we consider calmness [q] at every
(0, x̄) ∈ gphS, i.e. (by Lemma 4) for each x̄ ∈ S(0) there are εx̄, Lx̄ > 0 s.t.

∀x ∈ B(x̄, εx̄) : dist(x, S(0)) ≤ Lx̄‖g(x)+‖q. (3.14)

Now fix x∗ ∈ S(0) and y∗ ∈ K (w.l.o.g. K 6= ∅ because then (3.13) is trivially true).
Set r := sup { ‖y − y∗‖ | y ∈ K } and define

Sr := {x ∈ S(0) | ‖x‖ ≤ 2(r + ‖y∗‖) + ‖x∗‖ } ,

which is a compact set. Obviously Sr ⊂
⋃
x̄∈Sr B

o(x̄, εx̄) and so by compactness there
are points x̄1, . . . , x̄k ∈ Sr fulfilling

Sr ⊂
k⋃
j=1

Bo(x̄j , εx̄j ). (3.15)

Now for x ∈ Rn let x′ denote a nearest element in S(0), i.e. x′ ∈ S(0) and ‖x−x′‖ =
dist(x, S(0)). Then for any x ∈ K we have

‖x′‖ ≤ ‖x‖+ ‖x− x′‖ ≤ ‖x− y∗‖+ ‖y∗‖+ ‖x− x∗‖
≤ r + ‖y∗‖+ ‖x‖+ ‖x∗‖ ≤ 2(r + ‖y∗‖) + ‖x∗‖,

i.e. x′ ∈ Sr and hence by (3.15) it is x′ ∈ Bo(x̄j , εx̄j ) for some j = 1, . . . , k.
Since Bo(x̄j , εx̄j ) is an open set, there exists θ ∈ (0, 1) such that

xθ := θx+ (1− θ)x′ ∈ Bo(x̄j , εx̄j ).

By (3.14) we obtain
dist(xθ, S(0)) ≤ Lx̄j‖g(xθ)+‖q.
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Because of convexity of the gi and since gi(x′) ≤ 0 for all i, we get

gi(xθ) ≤ θgi(x) + (1− θ)gi(x′) ≤ θgi(x),

and hence
‖g(xθ)+‖ ≤ θ‖g(x)+‖.

Moreover we have by definition of xθ and with xθ
′ ∈ S(0) selected to be a nearest

point to xθ in S(0)

‖x− x′‖ ≤ ‖x− xθ ′‖ ≤ ‖x− xθ‖+ ‖xθ − x′‖ = (1− θ)‖x− x′‖+ ‖xθ − xθ ′‖,

which implies
θ dist(x, S(0)) ≤ dist(xθ, S(0)).

So, for LK := θq−1 maxj=1,...,k Lx̄j , it follows

dist(x, S(0)) ≤ θ−1 dist(xθ, S(0)) ≤ θ−1 max
j=1,...,k

Lx̄j‖g(xθ)+‖q ≤ LK‖g(x)+‖q.

Remark 13. The only part we need convexity in the above proof is for the estimate
‖g(xθ)+‖ ≤ θ‖g(x)+‖. So, if we get this in a different way, Lemma 7 holds for general
systems of continuous functions on Rn.

3.2 Hunting q

An interesting question is whether there is a connection between the maximal degree
of the polynomials defining S as in the corollary and the exponent of Hölder calmness
– and what this relation looks like.
By (3.3) we have calmness for affine functions (i.e. both the maximal degree and

the exponent are 1) and Example 1 may indicate that a similar relation holds even
for greater degrees of the polynomials involved, meaning that if the maximal degree
is d then one has Hölder calmness with exponent 1/d.
In the first subsection we will analyze the one-dimensional case, where we will

easily get the result as aforementioned. In the case of more than one dimension we
will then show that the same result may be attained for some very special cases, but
also that it is not possible to generalize the Hoffman proof for linear functions to
general polynomials – not even homogeneous ones. (As will be demonstrated in the
subsequent Chapter 5 this is not by chance.)

3.2.1 The one-dimensional case

Let h(x) :=
∑d
i=0 aix

i be a one-dimensional polynomial with degree d ∈ N, i.e. ad 6= 0.
In particular thus h is not constant.
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Lemma 8. For every root x̄ of h there is some c > 0 such that for all x near x̄

|h(x)| ≥ c · |x− x̄|d.

Proof. The inequality holds trivially for x = x̄, so let x 6= x̄. It is clear that h(x) =
(x − x̄)k · p(x) for some 1 ≤ k ≤ d and a real polynomial p with deg p = d − k and
p(x̄) 6= 0.
For k = d thus p(x) is nonzero but constant, which yields for all x ∈ R that
|h(x)| = c |x− x̄|d with c = |p(x)|.
Now let k < d. Then

|h(x)|
|x− x̄|d

= |x− x̄|
k

|x− x̄|d
|p(x)| = 1

|x− x̄|d−k
|p(x)| −−−→

x→x̄
∞;

so there is some ε > 0 such that |h(x)| ≥ |x− x̄|d for all x ∈ [x̄− ε, x̄+ ε].

Corollary 9. Let h be a real polynomial of degree d > 0 and S the set of its real
roots. Further let K be a compact subset of R such that S ∩K 6= ∅.
Under these conditions there is some L > 0 such that

∀x ∈ K : dist(x, S ∩K) ≤ L |h(x)|
1
d .

Proof. Let S ∩K = {x̄1, . . . , x̄k} with x̄i < x̄i+1, i = 1, . . . , k − 1.
First assumeK = [a, b]. We separate this closed interval into the closed subintervals

K1 := [a, x̄2+x̄1
2 ], Ki := [ x̄i−1+x̄i

2 , x̄i+x̄i+1
2 ], i = 2, . . . , k− 1, and Kk := [ x̄k−1+x̄k

2 , b]. By
Lemma 8, for each x̄i, there are εi and ci > 0 such that

∀x ∈ (x̄i − εi, x̄i + εi) : ci |x− x̄i|d ≤ |h(x)|.

Now the sets Ei := Ki \ (x̄i − εi, x̄i + εi) are compact and thus mi := minx∈Ei
|h(x)|
|x−x̄i|d

exists. Moreover mi > 0, because h(x) 6= 0 on Ei by construction. Here we put
mi = +∞ if Ei = ∅.
With λi = min{ci,mi} > 0 it follows

∀x ∈ Ki : λi |x− x̄i|d ≤ |h(x)|,

and, because of dist(x, S ∩ K) = |x − x̄i| for all x ∈ Ki, we have, setting L :=
maxi=1,...,k λ

−1
i , that

∀x ∈ K : dist(x, S ∩K) ≤ L |h(x)|
1
d .

In the general case K =
⋃s
j=1[aj , bj ] with bj < aj+1, j = 1, . . . , s − 1, it holds by

the above part
∀x ∈ [aj , bj ] : dist(x, S ∩ [aj , bj ]) ≤ Lj |h(x)|

1
d
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for some Lj > 0. As S ∩K ⊃ S ∩ [aj , bj ] this yields

∀x ∈ [aj , bj ] : dist(x, S ∩K) ≤ Lj |h(x)|
1
d

and thus, for L = maxj Lj , we get

∀x ∈ K : dist(x, S ∩K) ≤ L |h(x)|
1
d .

As a consequence of this ‘global’ statement we obtain

Corollary 10. Let h be a real polynomial of degree d > 0. Then the level set S(p) :=
{x ∈ R | h(x) = p } is Hölder calm with exponent q = 1

d at (0, x̄) for every x̄ ∈ S(0).

Note. If h ≡ 0 then S(p) = ∅ for all p 6= 0 and we have (proper) calmness. And if
h ≡ c 6= 0 then S(0) = ∅, so there is no x̄ ∈ S(0).

Proof. Let h 6≡ 0 and consider any x̄ ∈ S(0) (if S(0) = ∅ we are already done). As
the set S(0) of zeros of h in R has at most d elements, there is some B(x̄, ε) which
does not contain any other element of S(0) than x̄ itself. By the above proposition
thus there is some L > 0 such that L|h(x)|1/d ≥ dist(x, S(0)∩B(x̄, ε)) ≥ dist(x, S(0))
for all x ∈ B(x̄, ε).

Remark 14. Unfortunately we cannot use the proof of Corollary 10 in more than
one dimension, because in general we cannot separate the roots of polynomials in
higher dimension (just take h(x) = x1x2 to see this) and it does not hold a statement
similar to Lemma 8 as the following example shows:

Example 4. Consider h : R2 → R defined by h(x) = x2
1x2−x4

2. Then for x = (ε2, ε)
with ε ∈ (0, 1) it holds:

|h(x)| = |ε4ε− ε4| = ε4(1− ε) < ε4 = | − x4
2|,

i.e. it is not true that |h(x)| =
∣∣∣∑|α|≤d aαxα∣∣∣ ≥ ∣∣∣∑|α|=d aα(x− x̄)α

∣∣∣ for all x near
x̄ = 0.

Another statement about estimates regarding roots of real polynomials in one vari-
able is the following proposition, which (together with its proof) is cited from the
monograph of Coste [Cos00] (cf. [Cos02] as well):

Proposition 11 ([Cos02, Proposition 1.3]). Take h as above to be a real polynomial
in one variable of degree d. Then for every root z ∈ C of h one has the estimate

|z| ≤ max
i=0,...,d−1

(
d
|ai|
|ad|

)1/(d−i)
.
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Proof. Set M := maxi=0,...,d−1
(
d |ai||ad|

)1/(d−i)
. Then for all x ∈ C with |x| > M it is

of course |ai| < |ad|
d |x|

d−i for each i = 0, . . . , d− 1. Hence it holds∣∣∣∣∣
d−1∑
i=0

aix
i

∣∣∣∣∣ ≤
d−1∑
i=0
|ai||x|i < |ad||x|d = |adxd|,

and thus h(x) 6= 0.

3.2.2 More than one dimension

Lemma 12. Let the monomial h : Rn → R be given by h(x) = a ·
∏n
i=1 x

αi
i with a 6= 0

and total degree d greater than zero. Then exists L > 0 such that for each x ∈ Rn
holds

dist(x, S(0)) ≤ L|h(x)|1/d;

so in particular S(p) := {x ∈ Rn | h(x) = p } is calm [1/d] at (0, x̄) for every x̄ ∈
S(0).

Proof. Put I = { i | αi 6= 0 } which is not empty since d =
∑n
i=1 αi > 0. It holds for

every x ∈ Rn

|h(x)| = |a|
n∏
i=1
|xi|αi = |a|

∏
i∈I
|xi|αi ≥ |a|(min

i∈I
|xi|)

∑
i∈I αi = |a|(min

i∈I
|xi|)d

Further it is S(0) = {x |
∨
i∈I xi = 0 } and thus dist(x, S(0)) = mini∈I |xi| for all

x ∈ Rn.
So we have for all x ∈ Rn

dist(x, S(0))d ≤ |a|−1|h(x)|;

which yields the proposition for L = |a|−
1
d .

But what about general polynomials or at least homogeneous ones? Hoffman’s
proof [Hof52] of (3.3) is based on two lemmas of Agmon [Agm54, Lemma 2.2 and
2.3]. Maybe one could modify them in an appropriate manner? If we adapt [Agm54,
Lemma 2.3] to the case of a level set of one homogeneous polynomial, we get the
following

Lemma 13. Let S = {x ∈ Rn | h(x) :=
∑
|α|=d aαx

α = 0 } where d ∈ N, α ∈ Nn
0 .

Then exists c > 0 such that for all x ∈ E = {x ∈ Rn | x /∈ S ∧ dist(x, S) = ‖x‖ }
holds

c · dist(x, S)d ≤ |h(x)|. (3.16)

Note. Of course 0 ∈ S, so dist(x, S) = ‖x‖ just means that 0 is the point of S nearest
to x.
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Proof. Consider E1 := E ∩ bdB(0, 1) = {x ∈ Rn | dist(x, S) = ‖x‖ ∧ ‖x‖ = 1 }. It
holds6 x ∈ E iff x

‖x‖ ∈ E1, so E1 6= ∅ if we assume E to be nonempty. And moreover
E1 ⊂ Rn is bounded and closed, i.e. compact.
As f(x) := |h(x)| is continuous thus there exists x̃ ∈ E1 with f(x̃) = minx∈E1 f(x).

In particular x̃ /∈ S, so c := f(x̃) > 0, which yields that f(x) ≥ c > 0 for all x ∈ E1.
Thus f( x

‖x‖) ≥ c > 0 for all x ∈ E. And since

f
( x

‖x‖

)
=
∣∣∣ ∑
|α|=d

aα
( x

‖x‖

)α∣∣∣ = 1
‖x‖d

∣∣∣ ∑
|α|=d

aαx
α
∣∣∣

we get (3.16) for every x ∈ E.

But regrettably one cannot guarantee E 6= ∅ for degrees d greater than 1, so we
don’t even have an useful proposition here7 – not mentioning other problems arising
when trying to use this lemma for some adaption of Hoffman’s proof in the case d > 1.

Example 5. Consider the solution set

S = {x = (x1, x2) ∈ R2 | x1x2 = 0 } = { (x1, x2) ∈ R2 | x1 = 0 ∨ x2 = 0 }

and let x = (x1, x2) /∈ S. Since (0, x2), (x1, 0) ∈ S and ‖x− (0, x2)‖ = |x1| as well as
‖x− (x1, 0)‖ = |x2|, we get dist(x, S) ≤ mini=1,2 |xi|. But

‖x‖k = k

√
|x1|k + |x2|k > min

i=1,2
|xi|

for each x /∈ S, 1 ≤ k <∞.
In the remaining case ‖ · ‖∞ we take

S = {x = (x1, x2) ∈ R2 | x2
1 − x2

2 = 0 } = { (x1, x2) ∈ R2 | x1 = x2 ∨ x1 = −x2 } .

Then for all x = (x1, x2) /∈ S it holds ‖x‖∞ = maxi |xi| > mini |xi|. Because y =
(1

2(x1−x2),−1
2(x1−x2)) ∈ S, it follows dist(x, S) ≤ ‖x−y‖∞ ≤ 1

2(|x1|+|x2|) < ‖x‖∞.

We end this little hunt for the exponent at this point, and will come to more
coherent approaches. But we already want to underline here that the statement of
Lemma 12 is not true in such general form for even general homogeneous polynomials
of degree at least 4 (cf. Example 13).

6It is x /∈ S iff 1
‖x‖d h(x) 6= 0 iff h(x/‖x‖) 6= 0 iff x/‖x‖ /∈ S; and dist(x, S) = ‖x‖ iff

dist(x/‖x‖, S) = 1 for x /∈ S.
7In the linear case S is a hyperplane, so nonemptiness is clear.



20 3 Error bounds for systems of inequalities and equalities

3.3 The Tarski-Seidenberg principle

As the proof of Corollary 6 (which showed Hölder calmness for systems of polynomi-
als) is in the end based on Proposition 2 (Hörmander’s error bound), an analysis of
the proof of this result may give an answer to our question concerning the connec-
tion between the maximal degree of the polynomial system and the exponent of the
regarding Hölder calmness.
The main tool Hörmander used is the so called Tarski-Seidenberg principle. This

principle was first announced by Tarski without a proof in [Tar31], but the publication
of a proof lasted until [Tar48]. Later Seidenberg [Sei54] gave a new approach, which
is the base for today’s versions of the principle used in algebraic geometry. This
versions may also be given under the name Projection theorem for semialgebraic sets,
Quantifier elimination over real closed fields or Transfer principle.
In the following we want to analyze this approach in order to see what kind of

results we may expect with respect to concrete conclusions about exponents. To do
so we reproduce parts of [Cos02] in order to give a short introduction into the theory
of real algebraic geometry as far as it affects our topic; for further references see
[BPR06], [Cos00], [Cos02], [BCR98], [BR90] and [ABR96].
The statements in this area of mathematics are usually made for arbitrary real

closed fields. But as we are not interested in such generalization we will consider here
only the standard real closed field – the real numbers R.

Definition 3 (Algebraic and semialgebraic sets and functions). Let R[X1, . . . , Xn]
denote as customary the set of real polynomials on Rn. For any finite subset P of
R[X1, . . . , Xn] the set of zeros of P in Rn is defined as

Z(P) :=
{
x ∈ Rn

∣∣∣ ∧
h∈P

h(x) = 0
}
.

Such Z(P) are called the algebraic sets of Rn.

Note. Using the common construction h = h2
1 + . . .+ h2

m one can write any algebraic
set Z({h1, . . . , hm}) as the set of zeros of only one polynomial.

A basic semialgebraic set of Rn is any set of the form{
x ∈ Rn

∣∣∣∣ h(x) = 0 ∧
∧
g∈Q

g(x) < 0
}

where h ∈ R[X1, . . . , Xn] and Q a finite subset of R[X1, . . . , Xn].

Note. By the above note it is clear that sets of the form{
x ∈ Rn

∣∣∣∣ ∧h∈P
h(x) = 0 ∧

∧
g∈Q

g(x) < 0
}
,

with P,Q ⊂ R[X1, . . . , Xn] finite, are basic semialgebraic sets as well.
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Now a subset ofRn is called semialgebraic if it is a finite union of basic semialgebraic
sets.
Note. The family of semialgebraic sets is closed under the Boolean operations (com-
plementing, finite unions and finite intersections) and is the smallest such family of
subsets of Rn containing all algebraic sets.
Let M ⊂ Rm, N ⊂ Rn be two semialgebraic sets. A mapping ϕ : M → N is called

a semialgebraic function if its graph is a semialgebraic set in Rm+n.

To dive (just a little bit) deeper into the below propositions, we also need some
precise conception of what is meant by a first-order formula of the language of ordered
fields with parameters in R (FO formula for short).

Definition 4 (First-order formulas). FO formulas are obtained by the following
rules:

1. If p ∈ R[X1, . . . , Xn], then p(x) = 0 and p(x) < 0 are FO formulas.

2. If φ and ψ are FO formulas, then “φ and ψ”, “φ or ψ” and “not φ” (denoted as
φ ∧ ψ, φ ∨ ψ and ¬φ, respectively) are FO formulas.

3. If φ is a FO formula and x a variable ranging over R, then ∃xφ and ∀xφ are
FO formulas.

Here the formulas achieved by using only rules 1 and 2 are called quantifier-free.

Note. Directly by definition one sees that for semialgebraic sets A ⊂ Rn we can write
the property x ∈ A using a quantifier-free formula φ(x) – namely φ represents the
(finite) “or”-union of the quantifier-free formulas defining the basis sets needed to
describe A. Thus in this case we may interpret x ∈ A directly as a quantifier-free
formula.
Moreover every quantifier-free formula defines a semialgebraic set, which can be

seen by bringing the formula into disjunctive normal form.
Together we have that A ⊂ Rn is semialgebraic if and only if there is a quantifier-

free formula φ(x1, . . . , xn) such that

x ∈ A⇐⇒ φ(x).

Having the above notation the Tarski-Seidenberg principle may be stated in the
following form:

Proposition 14 (Tarski-Seidenberg principle; [Cos02, Theorem 2.6]). For every first-
order formula φ(x1, . . . , xn) – having quantifiers or not – the set S = {x ∈ Rn | φ(x) }
is semialgebraic.

This may be reformulated as: Every FO formula is equivalent to a quantifier-free
formula, i.e. it is possible to eliminate the quantifiers.
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Based on Tarski-Seidenberg we are able to prove the Hörmander-Łojasiewicz inequal-
ity which gives information concerning the relative growth rate of two arbitrary con-
tinuous semialgebraic functions. Beforehand we shall estimate the rate of growth of
a semialgebraic function in one variable.

Proposition 15 ([Cos02, Proposition 2.11]). Let ϕ : (a,∞)→ R be a semialgebraic
function8. Then exist b ≥ a and N ∈ N such that

∀ x ∈ (b,∞) : |ϕ(x)| ≤ xN . (3.17)

Proof. By assumption gphϕ is a semialgebraic subset of R2 and thus for some semial-
gebraic sets Gi := { (x, y) ∈ R2 | hi(x, y) = 0 ∧

∧ki
j=1 gij(x, y) < 0 }, where hi and gij

are real polynomials, it is

gphϕ =
s⋃
i=1

Gi.

Here for every polynomial hi it holds deg hi(x, ·) > 0 for all x ∈ domϕ; otherwise there
would be some index i0 with (x0, y0) ∈ Gi0 and deg hi0(x0, ·) = 0, i.e. hi0(x0, y) =
const for all y. And since the finitely many continuous gi0j fulfill gi0j(x0, y0) < 0,
there is some ε > 0 s.t. gi0j(x0, y) < 0 for every index j and each y ∈ (y0 − ε, y0 + ε).
Together we would have (x0, y) ∈ gphϕ for y ∈ (y0 − ε, y0 + ε), which contradicts
that ϕ is a function into R.
Now put

h(x, y) :=
s∏
i=1

hi(x, y) =
d∑
j=0

aj(x)yj

for some d > 0 and ad 6≡ 0. Because ad is a polynomial in one variable it has only
finitely many roots and we may choose c ≥ a big enough such that ad(x) 6= 0 for all
x ∈ (c,∞).
Since ϕ(x) is a root of h(x, ·), Proposition 11 yields

∀x ∈ (c,∞) : |ϕ(x)| ≤ max
i=0,...,d−1

(
d
|ai(x)|
|ad(x)|

) 1
d−i

.

With ai(x) =
∑li
j=0 αijx

j we have |ai(x)| ≤
∑li
j=0 |αij ||x|li for |x| ≥ 1 and |ai(x)| ≥

1
2 |αdld ||x|

ld whenever |x| is large enough, and so it follows for some c̃ ≥ max{1, c}
that with M := maxi=0,...,d−1

∑li
j=0 |αij | and m := maxi=0,...,d−1

li
ld

it holds9 for each
i = 0, . . . , d− 1 and all x ∈ (c̃,∞)

(
d
|ai(x)|
|ad(x)|

) 1
d−i
≤
(

2dM
|αdld |

xm
) 1
d−i

≤ max
{

2dM
|αdld |

, 1
}
xm.

8Not necessarily a continuous one.
9Depending on the structure of the ai(x) there may be of course much better estimates.
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Taking b = max
{
c̃,max

{
2dM
|αdld |

, 1
}}

and m+ 1 ≤ N ∈ N we thus get (3.17).

Note. Note that in the above proof the strict inequalities do not play any role con-
cerning the values of b or N . Only the equations describing the particular basic
semialgebraic sets composing gphϕ are important.
Moreover, by construction of the polynomial h, the degree of its coefficients ai(x)

may be quite large – depending on the number s of necessary basic sets Gi and the
degree (with respect to x) of the respective polynomials hi.

Proposition 16 (Hörmander-Łojasiewicz inequality; [Cos02, Theorem 2.12]). Let
K ⊂ Rn be a compact semialgebraic set, and let f, g : K → R be continuous semi-
algebraic functions such that

∀x ∈ K : (g(x) = 0→ f(x) = 0) .

Then there exist an integer N ∈ N and a constant C ≥ 0, such that

∀x ∈ K : |f(x)|N ≤ C|g(x)|.

Proof. For t > 0, set Ft := {x ∈ K | t|f(x)| = 1 }. Note that, since Ft is closed in K,
this set is compact, and because of

Ft =
{
x ∈ Rn

∣∣∣ x ∈ K ∧ ((x, 1
t ) ∈ gph f ∨ (x,−1

t ) ∈ gph f
) }

it is also semialgebraic.
In the case Ft 6= ∅, by our precondition, the function g does not vanish on Ft and

the continuous (and semialgebraic) map G(x) := 1
g(x) has a maximum on Ft, which

we denote θ(t). If Ft = ∅, we set θ(t) = 0.
The so defined function θ : (0,∞) → R is semialgebraic because of the Tarski-

Seidenberg principle and

gph θ =
{

(t, α) ∈ R×R
∣∣∣∣ t > 0 ∧

((
α = max

x∈Ft
G(x)

)
∨
(
¬∃x ∈ Ft ∧ α = 0

)) }
,

where α = maxx∈Ft G(x) stands for (∀x ∈ Ft ∀α′ : (x, α′) ∈ gphG→ α′ ≤ α)∧(∃x ∈
Ft : (x, α) ∈ gphG).
By Proposition 15, there exist b > 0 and N ∈ N such that

∀ t > b : |θ(t)| ≤ tN ,

which is equivalent to

∀x ∈ K :
(

0 < |f(x)| < 1
b
→ 1
|g(x)| ≤

1
|f(x)|N

)
.
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If we set D to be the maximum of the continuous function |f(x)|N
|g(x)| on the compact

set Kb := {x ∈ K | |f(x)| ≥ 1/b } (observe that on this set the function g does not
vanish because of our precondition) and define C := max{D, 1}, we obtain

|f(x)|N ≤ C|g(x)|

for all x ∈ K.

Note. Here the compact set Kb is not relevant for the exponent N , it only impacts
the constant C. The exponent depends solely on the semialgebraic function θ.
As a corollary of the Hörmander-Łojasiewicz inequality and the fact that dist(·, S)

is semialgebraic for semialgebraic sets S (see below), we get the original Hörmander
result (cf. Proposition 2), here stated again in a slightly different way:

Corollary 17. For a polynomial g : Rn → R with zero set S = {x | g(x) = 0 } and
a compact semialgebraic set K ⊂ Rn there are L > 0 and N ∈ N such that

∀x ∈ K : dist(x, S)N ≤ L |g(x)|. (3.18)

So what do we learn about the exponent N? Examining the aforementioned proofs
we see that the description of gph θ ⊂ R2 by a quantifier-free formula plays the
important role. Getting it is usually not so easy, but we may state a general first-
order formula (amplifying the construction given in the proof of Proposition 16):
It is (t, α) ∈ gph θ if and only if

− t < 0 ∧
(((
∀x ∀α′ : x ∈ Ft ∧ (x, α′) ∈ gph (1/g)→ α′ ≤ α

)
∧(

∃x : x ∈ Ft ∧ (x, α) ∈ gph (1/g)
))
∨
(
∀x : x /∈ Ft ∧ α = 0

))
,

where (x, α) ∈ gph (1/g) means the polynomial α g(x) = 1 and x ∈ Ft stands for
(x, 1/t) ∈ gph dist2(·, S), i.e.

(
∀ y : g(y) = 0→ 1 ≤ t2

∑
(xi − yi)2

)
∧(

∀β :
(
∀ y : g(y) = 0→ β2 ≤

∑
(xi − yi)2)→ βt ≤ 1

)
.

Now we need to apply elimination of quantifiers to this formula. Doing so the degree
and number of involved polynomials in general increases. To our knowledge the
best known bound of this increase was given by Basu, Pollack and Roy in [BPR96,
Theorem 1.3.1] and states:

Proposition 18. If d is the maximal degree of the s polynomials in a FO formula
with quantifiers, then – using an algorithm of quantifier elimination – the degree of
the polynomials in the quantifier free formula is at most dE0 and their quantity does
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not exceed sE1dE2 with E0 depending on the number of bound variables and E1, E2
dependant on the total number of variables (bound and free).

Now, as seen in the proof of Proposition 15, both the number and degree10 of the
polynomials involved in the FO formula given above blow up the exponent N . So
even for the solution set of one single linear equation the exponent one gets using
the quantifier elimination approach may be large – even though we know that N = 1
suffices.

10Checking the formula we see at a glance that the maximal degree is at least 2 – because of
t2
∑

(xi − yi)2 it is even 4.





4 Hölder calmness – conditions and
characterizations

In this chapter we will collect several useful propositions regarding calmness [q] of
multifunctions S : P ⇒ X and in particular (sub-)level sets – or lower level sets as
they were called in [RW98] – of lower semicontinuous functions from X to R. These
statements will give us a handy tool for the analyzation of the exponent of Hölder
calmness for (sub)level sets of polynomials in Chapter 5, but they are also important
results in the context of stability of solution sets of (in)equality systems.
The first characterization is Lemma 2.2 in [Kum09] – a similar statement was

already given for q = 1 in [KK02a, Lemma 3.2] – and shows that calmness [q] is a
monotonicity property with respect to two canonically assigned Lipschitz functions:
the distance of x to S(p̄)

dist(x, S(p̄))

and the graph-distance

ψS(x, p) := dist((p, x), gphS),

defined via d((p, x), (p′, x′)) = max{d(p, p′), d(x, x′)} or some equivalent metric in
P ×X.
Lemma 19 ([Kum09, Lemma 2.2]). Let 0 < q ≤ 1. Then the multifunction S is
calm [q] at (p̄, x̄) ∈ gphS if and only if

∃ ε > 0 ∃α > 0 ∀x ∈ B(x̄, ε) : α dist(x, S(p̄)) ≤ ψS(x, p̄)q. (4.1)

Note. In other words, calmness [q] at (p̄, x̄) is violated iff

0 < ψS(xk, p̄)q = o
(
dist(xk, S(p̄))

)
holds for some sequence xk → x̄, (4.2)

where ψS(xk, p̄)q = o
(
dist(xk, S(p̄))

)
means that ψS(xk,p̄)q

dist(xk,S(p̄)) −−−→k→∞
0.

Let’s recapitulate the proof:

Proof. Let (4.1) hold true. Given x ∈ S(p) ∩B(x̄, ε), it is

ψS(x, p̄)q ≤ d((p̄, x), (p, x))q = ‖p− p̄‖q

and, in consequence, α dist(x, S(p̄)) ≤ ‖p − p̄‖q, which yields calmness [q] with rank
L = 1

α .
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Conversely, let (4.1) be violated, which means that (4.2) is true. Now, given any
positive δk < ψS(xk, p̄)q, we find (pk, ξk) ∈ gphS such that

d((pk, ξk), (p̄, xk))q < ψS(xk, p̄)q + δk < 2 · ψS(xk, p̄)q =: bk.

By definition of d((pk, ξk), (p̄, xk)) thus also d(ξk, xk)q < bk and ‖pk − p̄‖q < bk hold
true. In addition, the triangle inequality dist(xk, S(p̄)) ≤ d(xk, ξk) + dist(ξk, S(p̄))
yields

dist(ξk, S(p̄)) ≥ dist(xk, S(p̄))− d(ξk, xk) > dist(xk, S(p̄))− b1/qk .

Note that, because of bk = o
(
dist(xk, S(p̄))

)
as well, we may choose in particular a

subsequence s.t. bk < dist(xk, S(p̄)) for all k ∈ N.
As 0 < q ≤ 1 we get b1/qk ≤ bk for bk ≤ 1 and so we obtain for ξk ∈ S(pk):

‖pk − p̄‖q

dist(ξk, S(p̄)) <
bk

dist(xk, S(p̄))− b1/qk

≤ bk
dist(xk, S(p̄))− bk

→ 0 as k →∞.

Hence, since ξk → x̄ and ξk ∈ S(pk) the map S cannot be calm [q] at (p̄, x̄).

Remark 15. Since it is dist(x, S(p̄)) = 0 = ψS(x, p̄) for x ∈ S(p̄), term (4.1) may
be equivalently written as

∃ ε > 0 ∃α > 0 ∀x ∈ B(x̄, ε) : x /∈ S(p̄)→ α dist(x, S(p̄)) ≤ ψS(x, p̄)q, (4.3)

which is – by closedness of gphS – the same as

∃ ε > 0 ∃α > 0 ∀x ∈ B(x̄, ε) : ψS(x, p̄) > 0→ α dist(x, S(p̄)) ≤ ψS(x, p̄)q. (4.4)

Finally, with any locally Lipschitzian function φ : X → R such that

c1φ(x) ≤ ψS(x, p̄) ≤ c2φ(x) for x near x̄ and certain constants 0 < c1 ≤ c2 (4.5)

and with the sublevel set mapping

Σ(r) = {x ∈ X | φ(x) ≤ r } , (4.6)

we can conclude that calmness [q] for any closed multifunction coincides with calmness
[q] of a Lipschitzian inequality, i.e. it holds (cf. [Kum09, Corollary 2.3] as well)

Corollary 20. A multifunction S is calm [q] at (p̄, x̄) ∈ gphS ⊂ P ×X if and only
if the sublevel set map Σ of some Lipschitz function φ satisfying (4.5) is calm [q] at
(0, x̄) ∈ R×X.

Note. In particular, we may put φ(x) = ψS(x, p̄), so considering such calmness [q]
problems is an all-purpose tool.
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Proof. (4.5) yields ψS(x, p̄) = 0 ⇐⇒ φ(x) = 0, so S(p̄) = Σ(0) and dist(x, S(p̄)) =
dist(x,Σ(0)). Thus one easily sees – using again (4.5) – that the equivalent condition
(4.4) for calmness [q] of S at (p̄, x̄) is equivalent to

∃ ε > 0, α′ > 0 s.t. ∀x ∈ B(x̄, ε) with φ(x) > 0 : α′ dist(x,Σ(0)) ≤ φ(x)q.

and we are done by Corollary 5.

Remark 16. Notice – using Corollary 5 and S(0) = Sq(0) – that calmness [q] of
sublevel set maps S(r) = {x ∈ X | φ(x) ≤ r } at (0, x̄) coincides with proper calmness
of same rank of the mapping

r 7→ Sq(r) := {x ∈ X | (φ(x)+)q ≤ r } . (4.7)

However in general (φ(·)+)q is no longer locally Lipschitz even though φ was.

Corollary 21. Let gi : X → R, i = 1, . . . ,m, lower semicontinuous functions,
S(p) = {x ∈ X |

∧m
i=1 gi(x) ≤ pi } where p = (p1, . . . , pm) ∈ Rm, and x̄ ∈ S(0).

Then for f := maxi=1,...,m gi the sublevel set mapping Sf (r) = {x | f(x) ≤ r } is
calm [q] at (0, x̄) ∈ R × X with rank L on B(x̄, ε) if and only if so is S at (0, x̄) ∈
Rm ×X.

Proof. First note that f as a max-function of l.s.c. functions is as well l.s.c. So by
Lemma 4 calmness [q] of Sf at (0, x̄) means

∃ ε > 0 ∃L > 0 ∀x ∈ B(x̄, ε) : dist(x, Sf (0)) ≤ L(f(x)+)q.

Since Sf (0) = S(0) we thus have

dist(x, S(0)) ≤ L(f(x)+)q = L( max
i=1,...,m

gi(x)+)q ≤ L( max
i=1,...,m

|pi|)q = L ‖p‖q∞

whenever x ∈ S(p) ∩B(x̄, ε).
On the other hand, if S is calm [q] at (0, x̄) we have by Lemma 19

∃ ε > 0 ∃L > 0 ∀x ∈ B(x̄, ε) : dist(x, S(0)) ≤ LψS(x, 0)q.

And since ψS(x, 0) ≤ maxi=1,...,m gi(x)+ = f(x)+ as well as Sf (0) = S(0) this yields
calmness [q] of Sf .

Remark 17. In particular the corollary yields:
S(p) = {x ∈ X |

∧m
i=1 gi(x) ≤ pi } is calm [q] at (0, x̄) ∈ gphS if and only if

Sf+(r) = {x | f+(x) ≤ r } is calm [q] at (0, x̄) ∈ gphSf+ for f+(x) := maxi gi(x)+.
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4.1 The basic theorem

Before we will present one theorem which plays a central role in our argumentation,
we show two easy but nevertheless useful technical lemmas.
The first one is that calmness [q] of sublevel set maps is stable under translation:

Lemma 22. Let X be a Banach space and g : X → R l.s.c. with g(x̄) = 0. Further
let L > 0, q > 0 and ε ∈ (0,∞] be given. Then for the translation f(x) := g(x̄ − x)
and the sublevel sets Sg(p) = {x ∈ X | g(x) ≤ p } and Sf (p) = {x ∈ X | f(x) ≤ p }
the following propositions are equivalent (here B(x,∞) := X):

(i) ∀x ∈ B(x̄, ε) : dist(x, Sg(0)) ≤ L
(
g(x)+)q;

(ii) ∀x ∈ B(0, ε) : dist(x, Sf (0)) ≤ L
(
f(x)+)q.

By Corollary 5 this means in particular that Sf (p) is calm [q] at (0, x̄) iff Sg(p) is
calm [q] at (0, 0) (without changing ε).

Proof. This holds true because x ∈ B(0, ε) iff (x̄−x) ∈ B(x̄, ε) and dist(x̄−x, Sg(0)) =
dist(x, Sf (0)) (and vice versa).1

And secondly we give a condition under which one may extend calmness [q] from
subspaces to the whole space:

Lemma 23. Let X be a Hilbert space and g : X → R lower semicontinuous with
g(0) = 0. Further let X1 be a subspace of X such that for some constant c > 0 and
for all x1 ∈ X1 and x2 ∈ X2 := X⊥1 holds

1. g(x1) ≤ 0 =⇒ g(x1 + x2) ≤ 0 and

2. g(x1) > 0 =⇒ c · g(x1 + x2) ≥ g(x1).

Then (with distances induced by the scalar product) the property

∀x1 ∈ B(0, ε) : dist(x1, SX1(0)) ≤ L
(
g(x1)+

)q
yields

∀x ∈ B(0, ε) : dist(x, S(0)) ≤ L
(
g(x)+

)q
;

where L > 0, q > 0, ε ∈ (0,∞] are constants, and SX1(p) = {x1 ∈ X1 | g(x1) ≤ p } as
well as S(p) = {x ∈ X | g(x) ≤ p } as usual.
So in particular, under the given conditions, calmness [q] of SX1 on X1 at (0, 0)

implies calmness [q] of S at (0, 0).
1Note that g(x) = f(x̄− x) iff f(x) = g(x̄− x). And of course the translation f is also l.s.c since

we have for l.s.c. functions g and continuous functions h that g ◦ h is l.s.c. as well.
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Note. The conditions 1. and 2. particularly mean that g(x1) ≤ 0 ⇔ g(x1 + x2) ≤ 0
for all x1 ∈ X1 and x2 ∈ X⊥1 and thus – since g(0) = 0 was assumed – moreover
g(x2) ≤ 0 for every x2 ∈ X⊥1 , which is rather restrictive.
Nevertheless the lemma will prove usefull later for a calmness [1/2] result of qua-

dratic polynomials (see Theorem 49).

Proof. Let X1 as requested. Then by assumption it holds

∀x1 ∈ BX1(0, ε) \ SX1(0) ∃x′1 ∈ SX1(0) :
∥∥x1 − x′

∥∥
2 ≤ Lg(x1)q.

Now let z ∈ B(0, ε) ⊂ X = X1 ⊕ X⊥1 . Then there are (unique) x1 ∈ X1 and
x2 ∈ X⊥1 such that z = x1 + x2 and ‖z‖22 = ‖x1‖22 + ‖x2‖22, which yields in particular
x1 ∈ BX1(0, ε).
Further if g(z) > 0 it is g(x1) > 0, so there is some x′1 ∈ SX1(0) as above. Now

x′1 ∈ SX1(0) means g(x′1) ≤ 0 and thus by our premise g(x′1 + x2) ≤ 0, i.e. z′ =
x′1 + x2 ∈ S(0). So finally we get ‖z − z′‖2 = ‖x1 − x′1‖2 ≤ Lg(x1)q ≤ Lcqg(z)q.

Both above lemmas will become useful later to prove some of the central conclusions
in Chapter 5 (cf. Theorems 49 and 50).

The following theorem is Proposition 3.4 in [Kum09]. For the case of proper calmness
(q = 1) such statements may be found in [KK09] as well. For sake of completeness
(and as there is some slight change in the formulation) we will give a comprehensive
proof of said proposition, adapting the ideas of [Kum09, Section 2.4].

Theorem 24 ([Kum09, Proposition 3.4]). Let X be a Banach space and g : X → R

lower semicontinuous with g(x̄) = 0.
Then the sublevel set map S(p) = {x ∈ X | g(x) ≤ p } is calm [q] at (0, x̄) if and

only if

∃ ε, λ > 0 ∀x ∈ B(x̄, ε)\S(0) ∃x′ ∈ X : (g(x′)+)q − g(x)q < −λ‖x− x′‖; (4.8)

or equivalently

∃ ε, λ > 0 ∀x ∈ B(x̄, ε)\S(0) ∃x′ ∈ X : ‖x− x′‖ < λ−1
(
(g(x′)+)q − g(x)q

)
. (4.9)

Further, under condition (4.8), the rank of calmness [q] obtained is λ−1 (or greater).

Proof.
(⇒) S is calm [q] with rank L means by Corollary 5 that there is some ε > 0 s.t.

∀x ∈ B(x̄, ε)\S(0) ∃x′ ∈ S(0) : ‖x− x′‖ ≤ Lg(x)q.

Fix any x ∈ B(x̄, ε)\S(0) and the associated x′. Then g(x)q > λ‖x − x′‖ for every
0 < λ < L−1. As g(x′) ≤ 0, i.e. g(x′)+ = 0, this yields (g(x′)+)q−g(x)q < −λ‖x−x′‖.
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(⇐) Consider (4.8) and let some δ > 0 with λ−1δq ≤ 1
2ε and arbitrary p ∈ B(0, δ)

and x ∈ S(p) ∩B(x̄, 1
2ε) be given. For p ≤ 0 trivially holds dist(x, S(0)) = 0 ≤ L · |p|q

for any L > 0, so regard 0 < p ≤ δ.
Next we will, starting with (p1, x1) := (p, x) ∈ gphS, inductively construct a

sequence {(pk, xk)} in gphS such that for all k > 1 hold the following properties

(i) 0 ≤ pk ≤ pk−1

(ii) pqk + λ‖xk − xk−1‖ ≤ pqk−1

(iii) pqk + λ‖xk − xk−1‖ < µ(pk−1, xk−1) + 1
k−1

where
µ(p, x) := inf { p̃q + λ‖x̃− x‖ | (p̃, x̃) ∈ gphS ∧ 0 ≤ p̃ ≤ p } .

So let (p1, x1), . . . , (pk, xk) ∈ gphS with the above properties be given – at least
the starting point (p1, x1) is given anyway – and construct (pk+1, xk+1):
First note that x1, . . . , xk ∈ B(x̄, ε) as x1 ∈ B(x̄, 1

2ε) by assumption and

‖xk − x1‖ ≤
k−1∑
j=1
‖xj+1 − xj‖ ≤

(ii)
λ−1

k−1∑
j=1

(
pqj − p

q
j+1

)
= λ−1

(
pq1 − p

q
k+1

)
≤ λ−1pq1 ≤ λ

−1δq ≤ 1
2ε.

(4.10)

If now 0 < g(xk) then by (4.8) there is some x′ s.t.

(g(x′)+)q + λ‖xk − x′‖ < g(xk)q. (4.11)

Thus in particular 0 ≤ g(x′)+ < g(xk) ≤ pk. As (g(x′)+, x′) ∈ gphS thus µ(pk, xk)
exists, so one finds a tuple (pk+1, xk+1) ∈ gphS with 0 ≤ pk+1 ≤ pk such that

pqk+1 + λ‖xk+1 − xk‖ −
1
k
< µ(pk, xk)

and
pqk+1 + λ‖xk+1 − xk‖ ≤ (g(x′)+)q + λ‖x′ − xk‖ < pqk.

For the case g(xk) ≤ 0 we just put (pk+1, xk+1) = (0, xk) which yields pqk+1+λ‖xk+1−
xk‖ = 0. In any case (pk+1, xk+1) fulfills the desired properties.
By (4.10) in particular we have

∑k
j=1 ‖xj+1 − xj‖ ≤ λ−1pq1 for every k ≥ 1, i.e.

∞∑
j=1
‖xj+1 − xj‖ ≤ λ−1pq1,

and thus {xk} is a Cauchy sequence which converges towards some ξ in the complete
space X, moreover ξ ∈ B(x̄, ε) as {xk} ⊂ B(x̄, ε). Additionally, as 0 ≤ pk+1 ≤ pk,
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there is some η ≥ 0 with pk ↘ η. And since S is closed, we have (η, ξ) ∈ gphS which
means g(ξ) ≤ η.
Now, for g(ξ) ≤ 0 it holds

dist(x, S(0)) ≤ ‖x− ξ‖ = ‖x1 − ξ‖ ≤ λ−1pq1 = λ−1pq, (4.12)

so we are done if η = 0.
Suppose 0 < g(ξ) ≤ η. Hence, using condition (4.8) as above, we find some

(p̃, x̃) ∈ gphS with 0 ≤ p̃ ≤ η such that p̃q +λ‖x̃− ξ‖ < ηq. In particular there exists
α > 0 s.t.

p̃q + λ‖x̃− ξ‖ < ηq − α,

so ‖x̃− xk‖ → ‖x̃− ξ‖ yields for k large enough that

p̃q + λ‖x̃− xk‖ < ηq − α. (4.13)

On the other hand, since 0 ≤ p̃ ≤ η ≤ pk, it is

µ(pk, xk) ≤ p̃q + λ‖x̃− xk‖ (4.14)

for every k.
So (iii), (4.14) and (4.13) imply that

pqk+1 ≤ p
q
k+1 + λ‖xk+1 − xk‖ < µ(pk, xk) + 1

k
< ηq − α+ 1

k
≤ ηq − α

2 < ηq

for every large k. But this contradicts 0 ≤ η ≤ pk for all k.

Remark 18. Remark 6 indicates that it is sufficient to show that for every xk → x̄
with xk 6= x̄, 0 < g(xk) and limk→∞ g(xk)q‖xk − x̄‖−1 = 0 exists x′k s.t. (g(x′k)+)q −
g(xk)q < −λ‖xk − x′‖ in order to prove calmness [q] of sublevel set maps S as in
Theorem 24.
Checking the proof of Theorem 24 one sees that there is a global variant of said

theorem. Similar propositions were proved by Wu and Ye [WY02a, Theorem 5] and
by Ng and Zheng [NZ00, Theorem 1, Corollary 1 and Corollary 2], where the latter
needed some additional requirements (see as well [NZ01] for corresponding results for
exponent q = 1).
Theorem 25. Let again X be a Banach space, g : X → R lower semicontinuous and
S(p) = {x ∈ X | g(x) ≤ p } where S(0) 6= ∅. Further let L > 0 and q > 0 be given
such that

∀x ∈ X\S(0) ∃x′ ∈ X : ‖x− x′‖ < L
(
g(x)q − (g(x′)+)q

)
. (4.15)

Then
∀x ∈ X : dist(x, S(0)) ≤ L

(
g(x)+

)q
.
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Note. There is also some kind of backward direction: Since S(0) is closed, property
(4.15) is true if dist(x, S(0)) < L

(
g(x)+)q for each x ∈ X.

Proof. Use the construction in the proof of Theorem 24 starting with (p1, x1) :=
(g(x), x) if x ∈ X \ S(0) and putting λ = L−1.

Remark 19. Theorem 25 is also true for level set maps S(p) = {x | h(x) = p }
where h : Rn → R is such that |h| is a lower semicontinuous function2. Just put
g(x) := |h(x)| and note Sg(p) := {x | g(x) ≤ p } is closed as well as Sg(0) = S(0) to
see this.

4.2 Iteration schemes for Hölder calmness
Klatte and Kummer [KK09] gave some algorithmic approach to describe Aubin prop-
erty and calmness, which is partially extended in [Kum09] to the Hölder-type setting
used here. We want to generalize the given procedures and algorithms to characterize
calmness [q].

Remark 20. If one replaces “calmness [q]” with

∃ ε ∈ (0,∞] ∃L > 0 ∀x ∈ B(x̄, ε)\S(0) : dist(x, S(0)) ≤ L
(
g(x)+

)q
,

then all propositions of this section remain true in their corresponding global form.

We start our examination of iteration schemes with the following remark:

Remark 21. The characteristic condition (4.8) for calmness [q] of a sublevel set is
of course equivalent to

∃ ε, λ > 0 ∀x ∈ B(x̄, ε)\S(0) ∃u ∈ B(0, 1), t > 0 :(
g(x+ tu)+

)q
− g(x)q < −λt;

(4.16)

and the inequation
(
g(x+ tu)+)q − g(x)q < −λt implies in particular t < λ−1g(x)q.

Having this we can characterize calmness [q] using the following algorithm:

Algorithm 1. Let x1 ∈ X and λ1 = 1 be given.
Step k ≥ 1:
IF g(xk) ≤ 0 THEN put (xk+1, λk+1) = (xk, λk);
ELSE find u ∈ X and t ∈ R such that

‖u‖ ≤ 1,
0 < t ≤ λ−1

k g(xk)q,(
g(xk + tu)+

)q
− g(xk)q ≤ −λkt.

(4.17)

2For some example where |h| is l.s.c. but h is not see for instance [WY02b, Example 3.1].
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IF (u, t) exists THEN put xk+1 = xk + tu and λk+1 = λk;
ELSE put xk+1 = xk and λk+1 = 1

2λk.
Put k := k + 1 and repeat.

Lemma 26. Let g : X → R be continuous and g(x̄) = 0. Then its sublevel set S is
calm [q] at (0, x̄) if and only if exist α ∈ (0, 1) and β > 0 such that λk ≥ α holds for
every step k of Algorithm 1 for each initial point satisfying ‖x1 − x̄‖ ≤ β.
In this situation, the sequence {xk} generated by Algorithm 1 converges to some

ξ ∈ S(0) and it holds
‖ξ − x1‖ ≤ α−1

(
g(x1)+

)q
. (4.18)

Proof.
(⇐) Having α, β as required, condition (4.16) is satisfied for 0 < λ < α and every

x = x1 ∈ B(x̄, β). Hence S has the claimed calmness property.
(⇒) Consider λ ∈ (0, 1) and ε > 0 such that for all x ∈ B(x̄, ε) with g(x) > 0 exist

u ∈ B(0, 1) and t > 0 satisfying (4.16). Then this condition holds in particular for
the largest λn := 2−n ≤ λ. Additionally, by continuity of g and since g(x̄) = 0, there
exists some 0 < β < 1

2ε such that λ−1g(x)q ≤ 1
2ε for all x ∈ B(x̄, β) \ S(0).

Thus, as shown in the sufficiency part of the proof to Theorem 24, the algorithm
produces a sequence {(xk, λk)} with λk ≥ λn =: α and xk → ξ ∈ S(0) provided that
‖x1 − x̄‖ ≤ β. The estimate (4.18) is then given by (4.12).

A drawback of Algorithm 1 is that it might be difficult to find suitable u and t or
to find out that they do not exist. In the following we will try to overcome this.
As above the proof of Theorem 27 below will show that, having a certain condition,

one may, by the successive assignment x 7→ x′ = x + tu, construct a converging
sequence which yields calmness [q] and vice versa.

Theorem 27. Let g : X → R be l.s.c. with g(x̄) = 0. Then its sublevel set S is calm
[q] at (0, x̄) if and only if

∃λ ∈ (0, 1] ∃ ε > 0 ∀x ∈ B(x̄, ε)\S(0) ∃u ∈ B(0, 1), t > 0 :
g(x+ tu)− g(x) ≤ −λg(x) and t ≤ λ−1g(x)q.

(4.19)

Note. It suffices to consider λ ∈ (0, 1) only in property (4.19), because if it holds
with λ ≥ 1 then g(x + tu) − g(x) ≤ −λg(x) directly yields g(x + tu) ≤ 0 and thus
dist(x, S(0)) ≤ t ≤ g(x)q.

Proof.
(⇒) Suppose calmness [q] of S with rank L. So (cf. Lemma 5), given x ∈ B(x̄, ε) \

S(0) with ε > 0 sufficiently small, one finds ξ ∈ S(0) such that ‖x− ξ‖ ≤ Lg(x)q.
Now put t = ‖ξ − x‖ and u = ξ−x

t . Then t ≤ Lg(x)q and hence also t ≤ λ−1g(x)q
for any fixed 0 < λ ≤ min{L−1, 1}. And moreover, since λ ≤ 1, we get

g(x+ tu)− g(x) = g(ξ)− g(x) ≤ −g(x) ≤ −λg(x).
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(⇐) Let 0 < δ ≤
(

1
2λε(1− (1− λ)q)

)1/q
. Then for any p ∈ B(0, δ) and each

x ∈ B(x̄, 1
2ε) ∩ S(p) with g(x) > 0 we argue as follows:

Set θ := 1 − λ ∈ (0, 1). Then, taking x1 := x as a starting point, we construct a
sequence {xk} ⊂ B(0, ε) with

g(xk+1) ≤ θg(xk) ≤ θkg(x1) and 0 < tk ≤ λ−1g(xk)q ≤ λ−1
(
θk−1g(x1)

)q
, (4.20)

selecting related uk and tk from (4.19) and setting xk+1 = xk + tkuk. Here (4.20)
follows directly from (4.19) if xk ∈ B(x̄, ε) for each k ∈ N. And this is ensured by

‖xk+1 − xk‖ ≤ tk ≤ λ−1
(
θk−1g(x1)

)q
= λ−1(θq)k−1g(x1)q

and
g(x1) ≤ p ≤ δ ≤

(1
2λε(1− θ

q)
)1/q

,

which yield

‖xk+1 − x1‖ ≤
k∑
j=1
‖xj+1 − xj‖ ≤ λ−1g(x1)q

k∑
j=1

(θq)j−1

≤ λ−1g(x1)q 1
1− θq ≤

1
2ε,

(4.21)

so together with x1 ∈ B(x̄, 1
2ε) it is xk+1 ∈ B(x̄, ε) for each k ∈ N.

Now (4.20) yields that tk tends to zero and so the sequence {xk} is a Cauchy
sequence in the complete space X, i.e. ξ = limk→∞ xk exists. So in particular
lim infk→∞ g(xk) = g(ξ), directly by lower semicontinuity of g. As by (4.20) it more-
over is limk→∞ g(xk) = 0, we get ξ ∈ S(0).
So, checking (4.21), we finally have the Hölder estimate

dist(x, S(0)) ≤ ‖x− ξ‖ = ‖x1 − ξ‖ ≤
1

λ(1− θq) g(x)q, (4.22)

i.e. calmness [q] holds.

Note. For continuous g we do not need to consider 0 < δ ≤
(

1
2λε(1− (1− λ)q)

)1/q

(as in the above proof for the l.s.c. case), since – because of g(x̄) = 0 – then exists
some 0 < ε′ < 1

2ε such that

λ−1g(x)q 1
1− θq <

1
2ε whenever ‖x− x̄‖ ≤ ε′; (4.23)

so here we may restrict our reasoning to x ∈ B(x̄, ε′).
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Remark 22 (Modification). If (g+)q is Lipschitz continuous near x̄ then one gets
the additional estimate λg(x)q ≤ t in (4.19), i.e. in this case the condition reads

∃λ ∈ (0, 1] ∃ ε > 0 ∀x ∈ B(x̄, ε)\S(0) ∃u ∈ B(0, 1), t > 0 :
g(x+ tu)− g(x) ≤ −λg(x) and λg(x)q ≤ t ≤ λ−1g(x)q,

(4.24)

by the following consideration:
Of course (4.24) is stronger than (4.19), so we only have to show that it is as well

implied by calmness [q] (under the given additional Lipschitz property): As in the
necessity part of the proof of Theorem 27 we get for any given x ∈ B(x̄, ε)\S(0) some
u ∈ B(0, 1) and t > 0 s.t. g(x+ tu) = 0, g(x+ tu)− g(x) ≤ −λg(x) and t ≤ λ−1g(x)q.
Now let C > 0 be a Lipschitz constant of (g+)q near x̄. Then (decreasing ε if

necessary to reach the zone of Lipschitz continuity), because λ ∈ (0, 1], it holds

0 < λg(x)q ≤ g(x)q − g(x+ tu)q = |g(x)q − g(x+ tu)q| ≤ Ct‖u‖ ≤ Ct.

This ensures t ≥ λ
C g(x)q, and so, after replacing λ with λ′ = min{λ,C−1λ}, property

(4.19) plus λ′g(x)q ≤ t is satisfied.

In particular, for (locally) Lipschitz g+ condition (4.19) may be substituted for

∃λ ∈ (0, 1] ∃ ε > 0 ∀x ∈ B(x̄, ε)\S(0) ∃u ∈ B(0, 1), t > 0 :
g(x+ tu)− g(x) ≤ −λg(x) and λg(x) ≤ t ≤ λ−1g(x)q.

(4.25)

Remark 23 (Applying generalized derivatives). While the first condition of (4.19)
is a usual descent condition, the second one does not appear in the context of known
generalized derivatives or co-derivatives for (multi-)functions. It is needed to obtain
a convergent sequence {xk}. So it may be not surprising that all sufficient (Hölder)
calmness conditions (cf. also Section 4.5) based on known concepts of generalized
(co-)derivatives for arbitrary functions or multifunctions, are not necessary – even for
finite dimension.

In consequence of Theorem 27 calmness [q] of sublevel sets (for l.s.c. functions) can
be characterized by the following iteration scheme:

Algorithm 2. Let x1 ∈ X and λ1 = 1 be given.
Step k ≥ 1:
IF g(xk) ≤ 0 THEN put (xk+1, λk+1) = (xk, λk);
ELSE find u ∈ X and t ∈ R such that

‖u‖ ≤ 1,
0 < t ≤ λ−1

k g(xk)q,
g(xk + tu)− g(xk) ≤ −λkg(xk).

(4.26)
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IF (u, t) exists THEN put xk+1 = xk + tu and λk+1 = λk;
ELSE put xk+1 = xk and λk+1 = 1

2λk.
Put k := k + 1 and repeat.

Note. As noted above in Remark 22, one may replace (4.26) with

‖u‖ ≤ 1,
λkg(xk) ≤ t ≤ λ−1

k g(xk)q,
g(xk + tu)− g(xk) ≤ −λkg(xk).

(4.27)

in the case of (locally) Lipschitz functions.

Lemma 28. Let g : X → R be lower semicontinuous and g(x̄) = 0. Then its sublevel
set S is calm [q] at (0, x̄) if and only if there exist α ∈ (0, 1) and β > 0 such that
λk ≥ α holds for every step k of Algorithm 2 whenever the initial point satisfies
‖x1 − x̄‖ ≤ β.
In this situation, the sequence {xk} generated by Algorithm 2 converges to some

ξ ∈ S(0) and it holds

g(xk+1) ≤ (1− α)g(xk) if g(xk) > 0 and ‖ξ − x1‖ ≤
(g(x1)+)q

α (1− (1− α)q) . (4.28)

Proof. For α and β fulfilling the desired properties, condition (4.19) is satisfied for
each 0 < λ ≤ α and all x = x1 ∈ B(x̄, β), so we get calmness [q] as claimed.
Conversely, assume that there are λ ∈ (0, 1) and ε > 0 such that, for all x ∈ B(x̄, ε)

with g(x) > 0 exist u ∈ B(0, 1) and t > 0 satisfying (4.19). Then this also holds
for the largest λn = 2−n ≤ λ. As shown in the sufficiency part of the proof to
Theorem 27, thus the algorithm generates a sequence {(xk, λk)} with λk ≥ λn =: α
and xk → ξ ∈ S(0) provided that ‖x1− x̄‖ ≤ ε′ is valid with β := ε′ from (4.23) (with
λn instead of λ). The estimates (4.28) then follow from (4.20) and (4.22).

Remark 24. If S is not calm [q] at (0, x̄), the sequence {λk} obtained by Algorithm
2 obligatory tends to 0 (from above), so one can choose a subsequence {λ′k} with
0 < λ′k < λ′k+1 for each k. And because of x̄ = x+ ‖x̄−x‖ x̄−x

‖x̄−x‖ and λ
′
k
−1g(x)q →∞

for fixed x, it is not possible that xk+1 = xk for all k. Thus again and again there
are xk such that (4.26) has to be fulfilled.
As a result Algorithm 2 generates (in the non-calm [q] case) a sequence containing

a subsequence {(xk, λk)} satisfying λk+1 < λk and xk+1 = xk + tu with g(xk+1) <
(1− λk)g(xk) for some u ∈ B(0, 1) and t ∈ (0, λ−1

k g(xk)q].

If we assume some more smoothness and regularity of the function in question, the
next lemma yields another possible variation of Algorithm 2 and moreover a condition
for Hölder calmness with exponent 1

2 .
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Lemma 29. Consider g ∈ C2(Rn,R) with regular Hessian D2g(x̄), g(x̄) = 0 and
Dg(x̄) = 0. Then the steps of Algorithm 2 can be realized (for small λk) using any
u ∈ B(0, 1) with

Dg(xk)u ≤ −ρ ‖Dg(xk)‖2

for fixed ρ ∈ (0, 1) and setting t = λ
1
2
k g(xk)

1
2 .

In particular the given setting yields that the sublevel set S of g is calm [1/2] at
(0, x̄).

Note. Corollary 46 below provides a different proof for calmness [1/2] under the given
assumptions.

Proof. To start with let us collect helpful properties following from the assumptions:
Since D2g(x̄) is regular, we get, using the implicit function theorem, that the

multifunction S̃ : Rn ⇒ Rn defined as S̃(y) := {x | Dg(x) = y } is pseudo-Lipschitz
at (0, x̄), i.e.

∃C, δ1, δ2 > 0 ∀ (ỹ, x̃) ∈ (B(0, δ1)×B(x̄, δ2)) ∩ gph S̃
∀ y ∈ B(0, δ1) ∃x ∈ S̃(y) : ‖x− x̃‖ ≤ C‖y − ỹ‖.

And as Dg is continuous and Dg(x̄) = 0 there exists some ε > 0 such that Dg(x) ∈
B(0, δ1) for all x ∈ B(x̄, ε), so it follows

∀x ∈ B(x̄, ε) : ‖x− x̄‖ ≤ C‖Dg(x)‖. (4.29)

Further continuity of D2g yields a constant M > 0 s.t. for all x in the compact set
B(x̄, ε)

‖D2g(x)‖ ≤ 2M,

and by Taylor’s Theorem for each fixed y ∈ Rn, u ∈ B(0, 1), t ∈ R it is

g(y + tu) = g(y) + tDg(y)u+ t2

2 u
TD2g(ξ)u

with ξ = y + (1− ϑ)tu for some ϑ ∈ [0, 1].
Hence for all x ∈ B(x̄, ε) we obtain: Whenever x /∈ S(0) then3

g(x) = |g(x)− g(x̄)| =
∣∣∣12(x− x̄)TD2g(ξ)(x− x̄)

∣∣∣
≤ 1

2‖D
2g(ξ)‖‖x− x̄‖2 ≤M‖x− x̄‖2,

(4.30)

and, for each fixed u ∈ B(0, 1), t ∈ R and ou,x(t) := t2

2 u
TD2g(ξ)u, it holds

g(x+ tu)− g(x) = tDg(x)u+ ou,x(t) with |ou,x(t)| ≤M‖u‖2t2 ≤Mt2. (4.31)
3Remember that g(x̄) = 0 and Dg(x̄) = 0.
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Next we will use the above to show that (4.26) is satisfiable using any u ∈ B(0, 1)
with Dg(xk)u ≤ −ρ‖Dg(xk)‖ and t = λ

1
2
k g(xk)

1
2 , where ρ ∈ (0, 1) is fixed:

One directly gets λkt = λkλ
1
2
k g(xk)

1
2 ≤ g(xk)

1
2 , because λk ≤ 1. And using (4.31),

we see that g(xk + tu)− g(xk) ≤ −λk g(xk) is equivalent to

tDg(xk)u+ ou,x(t) ≤ −λk g(xk),

which follows from

λ
1
2
k g(xk)

1
2Dg(xk)u+Mλkg(xk) ≤ −λk g(xk), (4.32)

if one chooses t = λ
1
2
k g(xk)

1
2 . Now (4.32) is equivalent to

Dg(xk)u ≤ −λ
1
2
k g(xk)

1
2 −Mλ

1
2
k g(xk)

1
2 = −(1 +M)λ

1
2
k g(xk)

1
2 , (4.33)

which, taking (4.30) into account, is true if the stronger condition

Dg(xk)u ≤ −M
1
2 (1 +M)λ

1
2
k ‖xk − x̄‖ (4.34)

holds. Since by (4.29) our specified u satisfies

Dg(xk)u ≤ −ρ‖Dg(xk)‖ ≤ −ρC−1‖xk − x̄‖,

property (4.34) is fulfilled as soon as λk ≤ ρ2
(
C
√
M(1 +M)

)−2
.

And because, for any fixed ρ ∈ (0, 1), with uk = − Dg(xk)T
‖Dg(xk)‖2

it is

Dg(xk)uk ≤ −ρ ‖Dg(xk)‖2 ,

λk will not vanish and thus Lemma 28 yields calmness [1/2] of S.
Here we can consider xk ∈ B(x̄, ε) because of the following consideration:
Let n := min { k ∈ N | 2−k ≤ ρ2(C√M(1 +M)

)−2 } . Then for λn = 2−n condition
(4.34) holds true and so λn = λk if k ≥ n and λn < λk else.
Hence, with θ := (1− λn), the sequence {xk} generated by the algorithm satisfies

g(xk+1) ≤ (1− λk)g(xk) ≤ θg(xk) ≤ θkg(x− 1)

and therefore

‖xk+1 − x1‖ ≤
k−1∑
i=1
‖xi+1 − xi‖ ≤

k−1∑
i=1

λ
1
2
i g(xi)

1
2 ≤

k−1∑
i=1

g(xi)
1
2

≤ g(x1)
1
2

k−1∑
i=1

(
θ

1
2
)i−1

≤ g(x1)
1
2

1− θ
1
2
.
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This results in xk ∈ B(x̄, ε) whenever x1 ∈ B(x̄, 1
2ε) and additionally x1 is near

enough to x̄ s.t. g(x1) ≤ (1−
√

1− 2−n)2 (which is possible because of continuity of
g and g(x̄) = 0).

Remark 25 (Modification). In the lemma we needed g ∈ C2 to obtain (4.29), (4.30)
and (4.31). These properties are still ensured if Dg is locally Lipschitz, i.e. for so-
called C1,1 functions. Then (4.30) and (4.31) remain valid without additional assump-
tions and to get (4.29) it suffices to suppose that the contingent derivative CDg(x̄)
of Dg at x̄ is injective, which replaces regularity of the Hessian D2g(x̄).

Lemma 29 shows that the following algorithm may reveal proper calmness or calm-
ness [1/2]:

Algorithm 3. Let x1 ∈ Rn and λ1 = 1 be given.
Step k ≥ 1:
IF g(xk) ≤ 0 THEN put (xk+1, λk+1) = (xk, λk);
ELSE

IF ‖Dg(xk)‖2 ≥ γ THEN find u ∈ Rn and t ∈ R such that

‖u‖ ≤ 1,
0 < t ≤ λ−1

k g(xk),
g(xk + tu)− g(xk) ≤ −λkg(xk).

(4.35)

IF (u, t) exists THEN put xk+1 = xk + tu and λk+1 = λk;
ELSE put xk+1 = xk and λk+1 = 1

2λk.
ELSE find u ∈ Rn such that

‖u‖ ≤ 1,
Dg(xku)u ≤ −ρ ‖Dg(xk)‖2 .

(4.36)

IF u exists THEN put xk+1 = xk +
√
λk g(xk)u and λk+1 = λk;

ELSE put xk+1 = xk and λk+1 = 1
2λk.

Put k := k + 1 and repeat.

Note. Here γ and ρ are constants in (0, 1) to be chosen in advance.
As the proof of Theorem 33 will indicate, one could omit (4.36) and directly set

xk+1 = xk−
√
λk g(xk) Dg(xk)T

‖Dg(xk)‖2
as soon as λk is small enough. This means we could

replace the whole second part of Algorithm 3 with
ELSE
IF “λk is small enough” THEN put xk+1 = xk −

√
λk g(xk) Dg(xk)T

‖Dg(xk)‖2
and λk+1 = λk;

ELSE put xk+1 = xk and λk+1 = 1
2λk.

But how to check “λk is small enough”?
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By condition (4.33) and taking u = − Dg(xk)T
‖Dg(xk)‖2

we could try to verify

λk ≤
1

(1 +M)2 ‖Dg(xk)‖22 g(xk)−1,

but we do not know the constant M in advance ... so this seems to be a misleading
idea.

On the basis of Theorem 27 we will next obtain the Hölder calm version of [KK09,
Theorem 3] and then provide another algorithm to check calmness [q].

Theorem 30. Let q ∈ (0, 1] and g : X → R with g(x̄) = 0 s.t. (g+)q is Lipschitz
near x̄ ∈ X. Then it holds:

(i) The sublevel set S of g is calm [q] at (0, x̄) if and only if there are λ ∈ (0, 1],
ε > 0 such that, for every x ∈ B(x̄, ε) with g(x) > 0, there exist u ∈ B(0, 1) and
t > 0 satisfying

g(x+ tu)− g(x) ≤ −λt
1
q and λg(x)q ≤ t ≤ λ−1g(x)q. (4.37)

(ii) Now let moreover g be given as g(x) := maxi=1,...,m gi(x) with gi ∈ C1(X,R),
i = 1, . . . ,m. As in [KK09], we define the relative slack of gi as

si(x) := g(x)− gi(x)
g(x) if g(x) > 0. (4.38)

Then one may delete t and replace condition (4.37) with

Dgi(x)u ≤
(
si(x)
λ
− λ

1
q

)
g(x)1−q ∀ i = 1, . . . ,m. (4.39)

Note. For the case q = 1 the requested Lipschitz condition is of course automatically
fulfilled if g is piecewise differentiable, but for q ∈ (0, 1) we have to presume it.

Proof.

(i) We will show that condition (4.24) implies (4.37) and vice versa:

First note that λg(x)q ≤ t ≤ λ−1g(x)q is equivalent to λ
1
q g(x) ≤ t

1
q ≤ λ−

1
q g(x)

and that – because λ ∈ (0, 1] and g(x) > 0 – it is

λ
1+ 1

q g(x) ≤ λ
1
q g(x) and λ

− 1
q g(x) ≤ λ−1− 1

q g(x).

Thus, whenever (4.24) or (4.37) hold, then also

λ
1+ 1

q g(x) ≤ t
1
q ≤ λ−1− 1

q g(x).
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And since λ
1
q g(x) ≤ t

1
q yields −λt

1
q ≤ −λ1+ 1

q g(x) property (4.24) follows from
(4.37) with new with λ′ = λ

1+ 1
q . On the other hand t

1
q ≤ λ

− 1
q g(x) gives

−λg(x) ≤ −λ1+ 1
q t

1
q , which shows that if (4.24) is true then (4.37) holds with

λ′ = λ
1+ 1

q .

Hence (4.24) and (4.37) are interchangeable, so we are done by Remark 22.

(ii) We start considering (4.37) and see that g(x + tu) − g(x) ≤ −λt
1
q is for the

given max-function g equivalent to

∀ i ∈ {1, . . . ,m} : gi(x+ tu)− g(x) ≤ −λt
1
q ,

which in turn is equivalent to

∀ i ∈ {1, . . . ,m} : gi(x+ tu)− gi(x)
t

≤ g(x)− gi(x)
t

− λt
1
q
−1
. (4.40)

Together with λg(x)q ≤ t this yields for each i = 1, . . . ,m

gi(x+ tu)− gi(x)
t

≤ g(x)− gi(x)
λg(x)q − λ(λg(x)q)

1
q
−1

= si(x)
λ

g(x)1−q − λ
1
q g(x)1−q.

(4.41)

In addition it holds by assumption for all i = 1, . . . ,m

lim
t→0+

sup
x∈B(x̄,ε)
u∈B(0,1)

∣∣∣∣(gi(x+ tu)− gi(x)
t

−Dgi(x)u
)

(g(x)+)q−1
∣∣∣∣ = 0,

i.e. gi( ·+tu)−gi(·)
t (g(·)+)q−1 converges uniformly to Dgi(·)u (g(·)+)q−1. Thus, in

particular, exist βi > 0 s.t.

∀ t ∈ (0, βi) ∀x ∈ B(x̄, ε) ∀u ∈ B(0, 1) :∣∣∣∣(gi(x+ tu)− gi(x)
t

−Dgi(x)u
)

(g(x)+)q−1
∣∣∣∣ ≤ 1

2λ
1
q .

(4.42)

W.l.o.g. consider
β := min

i=1,...,m
βi ≥ λ−1

(
g(x)+

)q
for all x ∈ B(x̄, ε), which is possible because g(x̄) = 0 and g is a continuous
function.

Now take any x ∈ B(x̄, ε) with g(x) > 0 and let u and t fulfill (4.37) for this
x. So t ≤ λ−1g(x)q, which yields with the above consideration t ∈ (0, β) and
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hence

Dgi(x)u ≤ gi(x+ tu)− gi(x)
t

+ 1
2λ

1
q g(x)1−q

≤
(
si(x)
λ
− λ

1
q

)
g(x)1−q + 1

2λ
1
q g(x)1−q

=
(
si(x)
λ
− 1

2λ
1
q

)
g(x)1−q ≤

(
si(x)
2−qλ −

(
λ

2q
) 1
q

)
g(x)1−q.

So with λ′ = 2−qλ instead of λ – and possibly new ε > 0 – we obtain (4.39).
Conversely, having (4.39), we conclude that (4.42) ensures with t = 1

2qλg(x)q

gi(x+ tu)− gi(x)
t

≤ Dgi(x)u+ 1
2λ

1
q g(x)1−q

≤
(
si(x)
2−qλ −

(
λ

2q
) 1
q

)
g(x)1−q

=
(
g(x)q

t
si(x)− t

1
q g(x)−1

)
g(x)1−q

= g(x)− gi(x)
t

− t
1
q

g(x)q = g(x)− gi(x)
t

− λ

t
t

1
q

= g(x)− gi(x)
t

− λt
1
q
−1

(4.43)

for all i ∈ {1, . . . ,m}, i.e. (4.40) is fulfilled.

As a corollary of the Theorem we get in the case q = 1 the following alternative to
(4.39) as stated in [KK09, Theorem 3]:

Corollary 31. Let g := maxi=1,...,m gi for gi ∈ C1(X,R), i = 1, . . . ,m. Then the
sublevel set S of g is calm at (0, x̄) ∈ gphS if and only if exist λ ∈ (0, 1] and ε > 0
such that, for every x ∈ B(x̄, ε) with g(x) > 0, there is some u ∈ B(0, 1) such that

Dgi(x̄)u ≤ si(x)
λ
− λ =: bi(x, λ) ∀ i = 1, . . . ,m. (4.44)

Proof. We may choose ε > 0 such, that for all x ∈ B(x̄, ε) and all u ∈ B(0, 1)

|Dgi(x)u−Dgi(x̄)u| ≤ 1
2λ.

So having calmness we get (4.39) with q = 1 and it follows

Dgi(x̄)u ≤ Dgi(x)u+ 1
2λ ≤ bi(x, λ) + 1

2λ ≤ bi(x,
1
2λ).

The other direction is analogous.
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For the case 0 < q < 1 the corresponding assertion to (4.44) is not true, i.e. it is
not enough to have only

Dgi(x̄)u ≤
(
si(x)
λ
− λ

1
q

)
g(x)1−q ∀ i = 1, . . . ,m,

for all x near x̄ with fixed u and λ. We really need to consider Dgi(x):

Example 6. Let S(p) := {x ∈ R | g(x) := x2 ≤ p }. Then S is calm [1/2] at (0, 0)
(cf. Example 1), but

g′(0)u = 0 > −λ2
√
g(x) ∀λ > 0, x 6= 0, u ∈ [−1, 1].

In contrast (4.37) and (4.39) hold with λ = 1, u = x
|x| and t = |x| for all x ∈ R\{0}.

The proof of Theorem 30 shows that it is sufficient to put t = 1
2q λ g(x)q – for

λ ∈ (0, 1] small enough – in order to get property (4.39) whenever the sublevel set S
of some piecewise differentiable function g is calm [q] at (0, x̄) ∈ gphS.
As an important result we get, that Hölder calmness of such sets will be completely

characterized by the following modified algorithm [KK09, ALG3], which uses the
relative slack si (4.38) and the (computable) quantities

bqi (x, λ) :=
(
si(x)
λ
− λ

1
q

)
g(x)1−q for g(x) > 0 and λ > 0. (4.45)

Note. Obviously, bqi (x, λ) is increasing for λ→ 0+ and fixed x.

Algorithm 4. Let x1 ∈ X and λ1 = 1 be given.
Step k ≥ 1:
IF g(xk) ≤ 0 THEN put (xk+1, λk+1) = (xk, λk);
ELSE find u ∈ X such that

‖u‖ ≤ 1,
Dgi(xk)u ≤ bqi (xk, λk) ∀i ∈ {1, . . . ,m}.

(4.46)

IF u exists THEN put xk+1 = xk + 1
2q λk g(xk)u and λk+1 = λk;

ELSE put xk+1 = xk and λk+1 = 1
2λk.

Put k := k + 1 and repeat.

As before we have (see [KK09, Theorem 4 (ALG3)] for the genuine calm version of
this result):

Lemma 32. Let g(x) := maxi=1,...,m gi(x) with gi ∈ C1(X,R), i = 1, . . . ,m, be such
that (g+)q is locally Lipschitz continuous near x̄ ∈ X.
Then the sublevel set S of g is calm [q] at (0, x̄) ∈ gphS if and only if there exists

some α > 0 such that, for ‖x1 − x̄‖ small enough, λk ≥ α holds for every step k of
Algorithm 4.
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In this case, the sequence {xk} converges to some ξ ∈ S(0) and it holds

g(xk+1) ≤
(
1− 1

2α
1+ 1

q

)
g(xk) whenever g(xk) > 0. (4.47)

Proof. The proof works as in Lemma 28, using Theorem 30 in addition to Theorem
27. And the estimate follows from (4.43), since this says g(xk+1) ≤ g(xk)− α t

1
q and

t = 1
2q α g(xk)q.

Short note about solving the algorithms

Naturally the question arises how to find solutions to (4.17), (4.26) or (4.46). We will
just have a short look at the convex system (4.46) in finite dimension, i.e. we want
to find – for fixed x and λ – some u ∈ Rn such that

|uj | ≤ 1 ∀j ∈ J = {1, . . . , n},
Dgi(x)u ≤ bqi (x, λ) ∀ i ∈ I = {1, 2, . . . ,m};

(4.48)

where gi ∈ C1(Rn,R). This is nothing more than to solve

|uj | ≤ 1 ∀j ∈ J = {1, . . . , n},
Au ≤ b;

(4.49)

with n×m matrix A and b ∈ Rm, which may be treated as any linear problem.
But let us check here whether it is suitable to use (a generalized version of) Newton’s

method. To do so consider functions ψ : Rm → Rm+ and ϕ : Rn → Rn+ defined by

ψ(v) = v+ = (max{0, v1}, . . . ,max{0, vm})T

and
ϕ(u) = (max{0, |u1| − 1}, . . . ,max{0, |un| − 1})T

respectively. Then (4.49) can be written as

G(u, v) :=
(
Au+ ψ(v)− b

ϕ(u)

)
= 0. (4.50)

G : Rn+m → Rn+m is piecewise C1, i.e. a PC1-function, and thus semismooth.
Additionally it is not only locally but globally Lipschitz.
Using that for PC1-functions f : Rd1 → Rd2 with selection functions fk, k =

1, . . . , s, it holds for their Clarke differential ∂Clf by [Kum88a, Proposition 4] – see
also [KK02b, p. 5], where as well the similar statement of Scholtes [Sch94, Proposition
A.4.1] is listed –

∂Clf(x) = conv
{
Dfk(x)

∣∣ ∃xl → x :
(
fk(xl) = f(xl) ∧Dfk(xl) = Df(xl)

) }
,
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we get

∂ClG(u, v) =
{ (

A B
C 0

) ∣∣∣∣∣ B ∈ ∂Clψ(v), C ∈ ∂Clϕ(u)
}

with (ei being the i-th unit vector)

∂Clψi(v) =


{0}, vi < 0
{ei}, vi > 0
{λei | λ ∈ [0, 1] } , vi = 0

and

∂Clϕj(u) =



{0}, −1 < uj < 1
{ej}, uj > 1
{−ej}, uj < −1
{λei | λ ∈ [0, 1] } , uj = 1
{−λei | λ ∈ [0, 1] } , uj = −1.

As our point of interest is such that −1 ≤ uj ≤ 1 for all j = 1, . . . , n, it will be
almost always the case that for some j it holds ∂Clϕj(u) = 0 and thus the j-th
line of ∂ClG(u, v) will become zero. This means ∂ClG is a singular matrix near most
solutions and so Newton’s method cannot work. The only case such that ∂ClGmay be
regular is that for the respective solution of (4.49) holds |uj | = 1 for every j = 1, . . . , n
and than the solution is easier to find without Newton’s method.

4.3 Applying the algorithms

4.3.1 Arbitrary initial points

Until now we only analyzed the algorithms with respect to starting points near the
points we are interested in. In the following let us check conditions and properties if
we start at some arbitrary point.
Here we will focus on Algorithm 2 because it has a convenient testing condition

which is nevertheless applicable for l.s.c. functions.

Theorem 33. Let g : X → R be l.s.c. on a reflexive Banach space X, S(p) :=
{x | g(x) ≤ p } its sublevel set and x1 ∈ X s.t. S(g(x1)) is bounded.
Then, for 0 < q ≤ 1, Algorithm 2 with starting point x1 determines some ξ ∈

S(0) ∩B(x1, L|g(x1)|q), if there is some some constant λ > 0 such that the sequence
{λk} generated by the algorithm satisfies λk ≥ λ for all k ∈ N.
Otherwise, the occurring sequence {xk} has a weak accumulation point x̂, which is

stationary insofar that there are points zk such that ‖zk − xk‖ → 0 and

lim inf
k→∞

inf
‖u‖=1

d−g(zk)(u) ≥ 0. (4.51)



48 4 Hölder calmness – conditions and characterizations

Proof. The first part of the proposition holds, because the “⇐”-part of the proof of
Theorem 27 shows, that (under the given assumption) xk → ξ ∈ S(0) with ‖x1−ξ‖ ≤

1
λ(1−(1−λ)q) g(x1)q, so in particular L = (λ(1− (1− λ)q))−1.
So assume λk → 0+. Thus, by condition (4.26), Algorithm 2 generates a sequence

in X containing some subsequence {xk} with

∀u, t :
(
‖u‖ ≤ 1 ∧ 0 < t ≤ λ−1

k g(xk)q → (1− λk) g(xk) < g(xk + tu)
)
.

So we have

0 < (1− λk) g(xk) ≤ inf
{
g(x)

∣∣∣ ‖x− xk‖ ≤ λ−1
k g(xk)q

}
≤ g(xk). (4.52)

Now we apply Ekeland’s variational principle [Eke74] to the l.s.c. function g on the
complete metric space Xk := B(xk, λ−1

k g(xk)q) on which g has a finite infimum:
By (4.52) it holds with εE := εk = λk g(xk) that g(xk) ≤ εE + infx∈Xk g(x), so for

any αE := αk = rk λ
−1
k g(xk)q, rk ∈ (0, 1), there is some zk ∈ B(xk, αk) ⊂ intXk such

that
(1− λk) g(xk) ≤ g(zk) ≤ g(xk) (4.53)

and
∀x′ ∈ Xk : g(x′) + ρk‖x′ − zk‖ ≥ g(zk), (4.54)

where ρk := r−1
k λ2

k g(xk)1−q = εE
αE

.
Setting rk = λ

3/2
k we obtain (recall q ≤ 1)

ρk =
√
λk g(xk)1−q ≤

√
λk g(x1)1−q −−−→

k→∞
0+,

and
αk =

√
λk g(xk)q ≤

√
λk g(x1)q −−−→

k→∞
0+.

Since ‖xk − zk‖ ≤ αk this implies ‖xk − zk‖ → 0. And as (4.54) yields for all x′ ∈ Xk

that

−ρk ≤
g(x′)− g(zk)
‖x′ − zk‖

=
g
(
zk + ‖x′ − zk‖ x′−zk

‖x′−zk‖
)
− g(zk)

‖x′ − zk‖
,

it follows

−ρk ≤ lim inf
‖x′−zk‖→0+

g
(
zk + ‖x′ − zk‖ x′−zk

‖x′−zk‖
)
− g(zk)

‖x′ − zk‖
= d−g(zk)(

x′ − zk
‖x′ − zk‖

)

for each x′ ∈ Xk, and so
−ρk ≤ inf

‖u‖=1
d−g(zk)(u), (4.55)

which results in (4.51) because ρk → 0.
Since S(g(x1)) is bounded and g(zk) ≤ g(xk) ≤ g(x1), i.e. {zk}, {xk} ⊂ S(g(x1)),
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the sequences {zk} and {xk} are bounded. Thus, as X is reflexive, there exists a
common4 weak accumulation point x̂ ∈ X.

Remark 26. If we know something more about the function g or its sublevel set S
then we are able to say more about the weak accumulation point x̂:

a) If g is weakly continuous, then 0 ≤ g(x̂) ≤ g(x1), so in particular x̂ is contained
in S(g(x1)).

b) If the closed and bounded set S(g(x1)) is weakly compact, then also x̂ ∈
S(g(x1)).

c) For X = Rn the point x̂ is a proper accumulation point of {xk}.5 Moreover,
here the property ‖zk − xk‖ → 0 yields zk → x̂ for a subsequence.

d) If g ∈ C1(Rn,R) then by (4.55) we have (with the same notation as in the
above proof) for each u ∈ bdB(0, 1) that

Dg(zk)u ≤ ρk,

and so with u = Dg(zk)T
‖Dg(zk)‖2

we get

‖Dg(zk)‖2 = Dg(zk)u ≤ ρk =
√
λk −−−→

k→∞
0. (4.56)

So because of continuity it is particularly Dg(x̂) = 0 – which is what (4.51)
means in the case of g ∈ C1(Rn,R).

e) For the case that g is a C1 maximum function, i.e. g = maxi=1,...,m gi with
gi ∈ C1(Rn,R), proposition (4.51) implies

0 ∈ ∂Clg(x̂),

which is equivalent to

∀u ∈ Rn : max
i∈I(x̂)

Dgi(x̂)u ≥ 0;

with I(x̂) being the set of active indices at x̂.

The boundedness assumption for S(g(x1)) – which is nevertheless natural for many
applications – cannot be omitted in general:

Example 7. Consider g(x) = ex, q = 1. Of course here S(g(x1)) = (−∞, x1] is
unbounded for any x1 ∈ R. And condition (4.26) of Algorithm 2 means to find in
each step k some ‖uk‖ ≤ 1 and tk > 0 such that tk ≤ λ−1

k exk as well as etkuk ≤ 1−λk.
4Remember ‖xk − zk‖ → 0 and check the definition of weak convergence.
5Recollect that in finite dimension weak convergence and convergence are the same.
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Now, if there was some λ > 0 with λk ≥ λ for all k, i.e. there are always ‖uk‖ ≤ 1,
tk > 0 satisfying tk ≤ λ−1 exk and etkuk ≤ 1− λ, then we would obtain6

tk ≤ λ−1 ex1
k−1∏
i=1

etiui ≤ λ−1 ex1(1− λ)k−1.

But, as 0 < λ < 1,7 this yields |tkuk| ≤ tk → 0+ and thus etkuk → 1, which contradicts
etkuk ≤ 1− λ.
Hence Algorithm 2 generates a vanishing sequence λk and as in the proof of Theo-

rem 33 exist zk such that (4.54) is fulfilled. Particularly, if rk = λ
3/2
k , this yields

ezk = g(zk) = g′(zk) = lim
h→0

ezk+h − ezk

h
= lim

h→0−
ez
k − ezk+h

|h|
≤ ρk =

√
λk,

and it follows zk ≤ ln(
√
λk)→ −∞. Since |zk−xk| → 0, we thus also have xk → −∞,

so there is no (weak) accumulation point of {xk}.

Remark 27. Clearly it holds that, if the assumptions of Theorem 33 are satisfied
but a stationary weak accumulation point as mentioned cannot exist, then the se-
quence {λk} cannot tend to zero and so Algorithm 2 determines necessarily some
ξ = limk→∞ xk ∈ S(0) ∩B(x1, L|g(x1)|q).
This is for instance true if g : Rn → R is a convex function s.t. inf g < 0 and

S(g(x1)) is bounded: Then (cf. Remark 26) we have 0 ≤ g(x̂) and so for any zk → x̂
it is zk /∈ argmin g (at least for large k). Here this means

0 /∈ ∂g(zk) = { v | ∀w : 〈v, w〉 ≤ d−g(zk)(w) } ,

i.e. there is some w ∈ Rn with ‖w‖ = 1 and d−g(zk)(w) < 0. So it follows

lim inf
k→∞

inf
‖u‖=1

d−g(zk)(u) < 0.

4.3.2 Application to disturbed optimization problems

In this subsection we want to study the usage of the algorithms to find stationary
points of classical nonlinear problems (NLP) in finite dimension8

min { f(x) | g(x) ≤ 0 } where g = (g1, . . . , gm) and f, gi ∈ C1(Rn,R). (4.57)

We denote by M := {x ∈ Rn | g(x) ≤ 0 } the restriction set of (4.57) and call the
function L(x, y) := f(x) +

∑m
i=1 yigi(x) = f(x) + 〈y, g(x)〉 the Lagrangian of (4.57)

6By construction it is xk = x1 +
∑k−1

i=1 tiui.7λ = 1 is not possible because there are no u and t s.t. ex1+tu ≤ (1− λ1)ex1 = 0.
8We set equations aside as they here just make our considerations more laborious but not more

meaningful.
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where the components yi of y are the Lagrange multipliers.

Definition 5. (x, y) ∈ Rn+m is called a Karush-Kuhn-Tucker point (short: KKT
point) of (4.57) if it fulfills the KKT conditions:

1. DxL(x, y) = 0 (Lagrange condition)

2. g(x) ≤ 0 and y ≥ 0 (Feasibility condition)

3. ∀i yigi(x) = 0 (Complementarity condition)9

Let
SKKT := { (x, y) | DxL(x, y) = 0, min{yi,−gi(x)} = 0 ∀i } . (4.58)

be the set of KKT points.
If its set of Lagrange multipliers Y (x) = { y | (x, y) ∈ SKKT } is not empty then x

is said to be a stationary point. Let Sstat denote the set of stationary points.

KKT points and their description

Let us first examine the relationship between Hölder calmness of a perturbed system
describing KKT points and – on the other hand – of KKT points for perturbed
optimization problems. To describe KKT points, we apply the simplest NCP function,
the minimum of two arguments.

The perturbed system (4.58) (with (a, b) ∈ Rn+m) is

S1(a, b) := { (x, y) | DxL(x, y)− a = 0, min{yi,−gi(x)} − bi = 0 ∀i } .

By canonical perturbation of (4.57) we obtain

min { f(x)− 〈a, x〉 | g(x) + b ≤ 0 } (4.59)

(we changed the sign at b here) whose set of KKT points can be written as

S2(a, b) := { (x, y) | DxL(x, y)− a = 0, min{yi,−(gi(x) + bi)} = 0 ∀i } .

Note. Obviously it holds S1(0, 0) = SKKT = S2(0, 0).
Below we will show that, though generally S1(a, b) 6= S2(a, b) for (a, b) 6= (0, 0),

calmness [q] of S1 and S2 at the origin does not depend on the different descriptions.
But let us start wit an example showing S1(a, b) 6= S2(a, b) in general:

Example 8. We consider f(x) = x2 and g(x) = x. Then with a = 1
2 and b = −1

2 we
have S1(a, b) = {(1

2 ,−
1
2)} and S2(a, b) = {(1

4 , 0)}, because DxL(x, y)−a = 2x+y− 1
2

equals 0 iff y = 1
2 − 2x, and min{1

2 − 2x,−x} = −1
2 only holds for x = 1

2 and
min{1

2 − 2x,−x+ 1
2} = 0 is true for x = 1

4 solely.
9That is: yi 6= 0⇒ gi(x) = 0 and gi(x) 6= 0⇒ yi = 0.
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Lemma 34. Let (x̄, ȳ) be a KKT point of (4.57). Then S1 is calm [q] at ((0, 0), (x̄, ȳ))
if and only if this is true for S2.
Proof. As we are in finite dimension, it suffices to prove the proposition for ‖·‖ =
‖·‖∞.

(⇒) Let S1 be calm [q] at ((0, 0), (x̄, ȳ)) with constants ε1, δ1, L1 > 0. We suppose
w.l.o.g. 1 ≥ ε1 ≥ 2δ1.
As gi ∈ C1 it exists some K ∈ R such that for every x with ‖x− x̄‖ ≤ ε1 it holds

max
1≤i≤m

‖Dgi(x)‖ ≤ K.

Furthermore if (x, y) ∈ S2(a, b), it is (x, ỹ) ∈ S1(ã, b) for

ỹi =
{
bi, if yi = 0 or yi < bi

yi, if yi > 0 and yi ≥ bi
and ã = DxL(x, ỹ),

and we have due to yi ≥ 0

‖y − ỹ‖ = max
i
|yi − ỹi| ≤ max

i
|bi| = ‖b‖ .

Then, by

‖a− ã‖ = ‖DxL(x, y)−DxL(x, ỹ)‖ =
∥∥∥∑1≤i≤m

(yi − ỹi)Dgi(x)
∥∥∥

≤ m ‖y − ỹ‖max
i
‖Dgi(x)‖ ≤ mK ‖b‖ ,

also holds ‖ã‖ = ‖ã− a+ a‖ ≤ ‖ã− a‖+ ‖a‖ ≤ mK ‖b‖+ ‖a‖ ≤ (mK + 1) ‖(a, b)‖ .
Let now δ2 := δ1

mK+1 , ε2 := min{δ2, ε1} and L2 := mKL1 + L1 + 1. Then for
every (a, b) ∈ B((0, 0), δ2) and (x, y) ∈ S2(a, b) ∩ B((x̄, ȳ), ε2) it holds, with ỹ and ã
as above,

‖(ã, b)‖ ≤ (mK + 1)‖(a, b)‖ < (mK + 1)δ2 = δ1,

and

‖(x, ỹ)− (x̄, ȳ)‖ ≤ ‖(x, ỹ)− (x, y)‖+ ‖(x, y)− (x̄, ȳ)‖

≤ ‖b‖+ ε2 ≤ 2δ2 = 2
mK + 1δ1 < ε1

and therefore (note that in particular ‖b‖ ≤ 1 and 0 < q ≤ 1)

dist((x, y), S2(0, 0)) ≤ ‖(x, y)− (x, ỹ)‖+ dist((x, ỹ), S2(0, 0))
= ‖y − ỹ‖+ dist((x, ỹ), S1(0, 0))
≤ ‖b‖+ L1 ‖(ã, b)‖q

≤ ‖b‖q + L1(mK + 1) ‖(a, b)‖q

≤ L2 ‖(a, b)‖q .



4.3 Applying the algorithms 53

(⇐) We can do the same as above with ỹi =
{

0, if yi = bi or yi < 0
yi, if yi > bi and yi ≥ 0

.

Computing stationary points

Here we assume min { f(x) | g(x) ≤ 0 } = 0 for problem (4.57) and that x̄ with g(x̄) =
0 is a solution. Then of course also x̄ ∈ S(0) := {x ∈ Rn |

∧m
i=0(gi(x) ≤ 0) } =

{x | gmax(x) ≤ 0 }, where g0 := f and gmax := maxi=0,...,m gi.
Now we want to apply Algorithm 2 to S(b) := {x | gmax(x) ≤ 0 }, presupposing

that S is locally upper Lipschitz at (0, x̄), i.e.

∃L, β, δ > 0 ∀ b ∈ [0, β] ∀x ∈ S(b) ∩B(x̄, δ) : ‖x− x̄‖ ≤ Lb. (4.60)

This assumption particularly yields that x̄ is an isolated solution of gmax(x) ≤ 0,
because ∀x ∈ S(0) ∩B(x̄, δ) : ‖x− x̄‖ ≤ L · 0 = 0.
For the application of the algorithm take a starting point x1 near x̄. We then have

the following proposition:

Lemma 35. Under the given assumptions Algorithm 2 generates a sequence {xk}
such that xk → x̄ or xk → x̂ with

0 ∈ ∂Clgmax(x̂), (4.61)

if the starting point x1 was sufficiently close to x̄. Here x̂ is a Fritz-John point of the
parameterized problem (4.59) with a = 0 and b = gmax(x̂).
If we further have the Mangasarian-Fromovitz constraint qualification (MFCQ) for

the original problem at x̄, and

x̂ = x̂(x1)→ x̄ for the starting point x1 → x̄, (4.62)

then also x̂ = x̄.

Proof. Directly by Theorem 33 (and the respective remarks from Remark 26) follows
xk → ξ ∈ S(0) or xk → x̂ with 0 ∈ ∂Clgmax(x̂). In the first case then isolatedness of
x̄ and the properties of the algorithm (cf. Lemma 28) ensure ξ = x̄ for x1 sufficiently
close to x̄.
Now by [Sch94, Proposition A.4.1] it is ∂Clgmax(x̂) ⊂ conv {Dgi(x̂) | i ∈ I(x̂) },

where I(x̂) = { i ∈ {0, . . . ,m} | gi(x̂) = gmax(x̂) }, and thus (4.61) yields the existence
of some ŷi ≥ 0, i ∈ I(x̂), s.t.

∑
i∈I(x̂) ŷiDgi(x̂) = 0 and

∑
i∈I(x̂) ŷi = 1. So, with

ŷi = 0 if i /∈ I(x̂), we have
∑m
i=0 ŷiDgi(x̂) = 0 as well as ŷi ≥ 0, gi(x̂) − b ≤ 0 and

(gi(x̂) − b)ŷi = 0 for all i = 1, . . . ,m. But this means just by definition that x̂ is a
Fritz-John point of (4.59) with a = 0 and b = gmax(x̂).
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If moreover MFCQ holds, there is some ū ∈ Rn with ‖ū‖ = 1 such that

∀ i ∈ I(x̄) : Dgi(x)ū =
n∑
j=1

∂jgi(x)ūj < 0, (4.63)

whenever x is near enough to x̄. So, if x̂ is close to x̄ (which we may assume by
(4.62)) and thus fulfills (4.63), together with the Fritz-John property it follows

0 =
n∑
j=1

m∑
i=0

ŷi∂jgi(x̂)ūj =
m∑
i=1

ŷi

n∑
j=1

∂jgi(x̂)ūj + ŷ0

n∑
j=1

∂jg0(x̂)ūj < ŷ0

n∑
j=1

∂jg0(x̂)ūj .

Hence in particular ŷ0 > 0 and so x̂ is stationary point for (4.59) with a = 0 and
b = gmax(x̂).
The upper Lipschitz property (4.60) now provides

‖x̂− x̄‖ ≤ Lb,

and thus we would have x̂ = x̄, if b = gmax(x̂) = 0.
In order to show the latter, assume b > 0 and x̂ 6= x̄. Since ŷ0 > 0 additionally

yields g0(x̂) = gmax(x̂), we obtain by the mean value theorem, that for any ũ = x̂−x̄
‖x̂−x̄‖

holds
b = g0(x̂)− g0(x̄) = Dg0(x̃)(x̂− x̄) = t̃Dg0(x̃)ũ,

with t̃ = ‖x̂− x̄‖ and for some x̃ between x̂ and x̄. Because of t̃ ≤ Lb it follows

Dg0(x̃)ũ = b

t̃
≥ 1
L
.

As x̃→ x̄ if x1 → x̄ (remember that x̂ = x̂(x1)→ x̄ and x̃ between x̂ and x̄), we thus
get for every accumulation point û of the ũ that

Dg0(x̄)û ≥ 1
L
.

Further, since there is only a finite number of functions involved, we may pass to
some subsequence of x1 → x̄ providing us with constant sets I(x̂(x1)) = I(x̄). Now,
an analogous argument for the active constraints yields as well

Dgi(x̄)û ≥ 1
L

if i ∈ I(x̄).

But this means nothing else than −û being a descent direction at x̄ for the active
constraints and the objective function as well, and in consequence x̄ cannot be a
minimizer, a contradiction.

Remark 28. Lemma 35 states, that (under certain conditions) Algorithm 2 creates
a sequence {xk} converging to x̄ – whenever the starting point was close enough and
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provided that x̂ remains close-by also.
But the latter is quite a problem: How can one guarantee that x̂ stays close? Since,

if we analyze Algorithm 2 (and the related propositions), we see that it is possible
in the noncalm [q] case, that we do not find u and t fulfilling (4.26) for a while and
so xk stays constant for the moment but λ−1

k may become rather large – an then
t ≤ λ−1

k g(xk)q may be such that xk + tu finally jumps away ...
Remark 29. If min { f(x) | g(x) ≤ 0 } = v 6= 0, then we may apply all the above to
g0(x) := f(x)− v.
Moreover, if the optimal value is not known but we have some lower bound w ∈ R,

then consider g0(x, xn+1) := xn+1 − f(x), take

S(0) := {x ∈ Rn+1 | gi(x) ≤ 0; i = 0, . . . ,m } = {x | gmax(x) ≤ 0 }

and start the procedure near (x̄, f(x̄)).

4.4 Assigned linear inequality systems
In this chapter we again consider solution sets S(p) for systems of inequalities of
finitely many continuously differentiable functions gi, i = 1, . . . ,m, or equivalently
the sublevel set of the function f composed of the gi, i.e. f = maxi=1,...,m gi.
Since MFCQ yields calmness, a sufficient condition for calmness of S at some

(0, x̄) ∈ gphS is
∃u ∈ bdB(0, 1) ∀ i ∈ I(x̄) : Dgi(x̄)u < 0,

where I(x̄) := { i | gi(x̄) = 0 } is the set of active indices in x̄.
Remark 30. Henrion and Outrata also gave some sufficient condition of this type
[HO05, Theorem 3]: For X = Rn, S is calm at (0, x̄) ∈ gphS if, at x̄, the Abadie CQ
holds true and

∃u ∈ bdB(0, 1) ∀ i ∈ J : Dgi(x̄)u < 0,

whenever J fulfills J = { i | gi(ξk) = 0 } for certain ξk → x̄, ξk ∈ bdS(0)\{x̄}.
But, as noted in [Kum09, Remark 4.8], this sufficient condition is violated even

for the linear system S(p) = {x ∈ R2 | g1(x) := x1 ≤ p1, g2(x) := −x1 ≤ p2 }: Since
S(0) = { (0, x2) | x2 ∈ R } = bdS(0) and gi(0, x2) = 0, i = 1, 2, it holds J = {1, 2}
for x̄ = 0. But Dgi(0) = ±(1, 0), so Dgi(x̄)u cannot be less than zero for both indices
and fixed u.
So what are the crucial index sets for calmness and moreover calmness [q]? To

answer this question we introduce the following notation:
Notation. Let F+ := {x ∈ X | f(x) > 0 }. We define, with I = {1, . . . ,m},

Θ0 :=
{
J ⊂ I

∣∣∣ ∃ {xk} ⊂ F+ :
(
xk → x̄ ∧ ∀ k ∈ N ∀ i ∈ J : gi(xk) = f(xk)

) }
,

Θlim 0 :=
{
J ⊂ I

∣∣∣ ∃ {xk} ⊂ F+ :
(
xk → x̄ ∧ ∀ i ∈ J : limk→∞ si(xk) = 0

) }
,
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and
Θmax
ι :=

{
J ∈ Θι

∣∣∣ ∀ J̃ ∈ Θι \ {J} : J * J̃
}
, ι ∈ {0, lim 0}.

Note. All those sets are dependent on x̄. Θ0 collects the index sets J of active
functions gi (i.e. gi = f) for some sequence xk

F+
−−→ x̄. The index sets in Θlim 0

may additionally contain indices of almost active functions gi, that means those with
gi(xk)
f(xk) → 1. And Θmax

ι are the sets of the respective maximal index collections.

Remark 31. To begin with observe that – because there are only finitely many
subsets J of {1, . . . ,m} – for any sequence xk → x̄ exists a subsequence {xkl} such
that for some J it is I(xkl) := { i | gi(xkl) = f(xkl) } = J for all l ∈ N. Thus in
particular Θ0 6= ∅ and hence also Θlim 0 as well as Θmax

ι are nonempty.
Furthermore obviously Θ0 ⊂ Θlim 0 and Θmax

ι ⊂ Θι, ι ∈ {0, lim 0}. And one
easily verifies that J ⊂ I(x̄) for all J ∈ Θlim 0

10, and further that J̃ ∈ Θι whenever
J̃ ⊂ J ∈ Θmax

ι as well as that for each J̃ ∈ Θι there is one J ∈ Θmax
ι containing J̃ .

Therefore it holds

Θι =
{
J̃ ⊂ I(x̄)

∣∣∣ ∃ J ∈ Θmax
ι : J̃ ⊂ J

}
.

Moreover, setting

I(x) := { i | gi(x) = f(x) } and

Ilim({xk}) := { i | lim
k→∞

si(xk) = 0 } for xk
F+
−−→ x̄,

it is

Θmax
0 ( ΘI

0 :=
{
J ⊂ I(x̄)

∣∣∣ ∃ {xk} ⊂ F+ :
(
xk → x̄ ∧ ∀ k ∈ N : J = I(xk)

) }
( Θ0

and

Θmax
lim 0 ( ΘI

lim 0 :=
{
J ⊂ I(x̄)

∣∣∣ ∃ {xk} ⊂ F+ :
(
xk → x̄ ∧ J = Ilim({xk})

) }
( Θlim 0.

One directly notes that ∅ ∈ Θι but ∅ /∈ ΘI
ι . Indeed we have even more, namely

(even if one determines Θι not to contain ∅) that all the sets defined above may be
different:

Example 9.

a) Let gi : R→ R, i = 1, 2, be given as

g1(x) :=
{
x4 sin(1/x) + x, x 6= 0
0, x = 0

and g2(x) :=
{
x4 sin(1/2x) + x, x 6= 0
0, x = 0

,

10We have (for all i ∈ J) 0 = limk→∞ si(xk) = limk→∞
f(xk)−gi(xk)

f(xk) which yields f(xk)−gi(xk)→ 0
and so gi(xk)→ f(x̄) = 0. Since also gi(xk)→ gi(x̄) (by continuity) we get gi(x̄) = 0 for all i ∈ J .
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which are C1 functions. With f = max{g1, g2} it now holds for xk = 2
kπ

f(xk) =


g1(xk) = g2(xk), k = 4n
g1(xk), k = 8n+ 1 ∨ k = 8n+ 5 ∨ k = 8n+ 6
g2(xk), k = 8n+ 2 ∨ k = 8n+ 3 ∨ k = 8n+ 7

and

I(xk) =


{1, 2}, k = 4n
{1}, k = 8n+ 1 ∨ k = 8n+ 5 ∨ k = 8n+ 6
{2}, k = 8n+ 2 ∨ k = 8n+ 3 ∨ k = 8n+ 7

.

Thus Θ0 = {∅, {1}, {2}, {1, 2}}, ΘI
0 = {{1}, {2}, {1, 2}} and Θmax

0 = {{1, 2}}.

b) Next consider

g1(x) :=
{
x4 sin(1/x) + x, x 6= 0
0, x = 0

,

and
g2(x) := x4 + x.

Since g1(x) ≤ g2(x) for all x ∈ R, the active index set I(x) contains i = 2 for
each sequence x→ 0 and therefore {1} /∈ ΘI

0. But {1} ∈ Θ0 – using for instance
xk = 2

(4k+1)π .

Additionally here for all x > 0

|s1(x)| = | (1− sin(1/x))x4|
x4 + x

≤ 2x4

x4 + x
−−−→
x→0

0 and s2(x) = 0,

and so Θlim 0 = {∅, {1}, {2}, {1, 2}}, ΘI
lim 0 = {{1, 2}} = Θmax

lim 0.

c) Take g1(x) := x and g2(x) := ln(x + 1). As ln(x + 1) < x for all x > 0 it is
I(x) = {1} for each x > 0 and hence Θ0 = {∅, {1}} and Θmax

0 = {{1}} = ΘI
0.

On the other hand

lim
x→0+

s2(x) = lim
x→0+

x− ln(x+ 1)
x

= lim
x→0+

1− 1
x+1

1 = 0,

which yields Θlim 0 = {∅, {1}, {2}, {1, 2}} and Θmax
lim 0 = {{1, 2}} = ΘI

lim 0.

d) Finally with

g1(x) := x4 and g2(x) := (1− cos(1/x))x4

4 + (1 + cos(1/x))x3 ln(x+ 1)
2 ,
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one has for xk = 1
2kπ that g2(xk) = x3

k ln(xk + 1) < x4
k = g1(xk) and thus

s1(xk) = 0 and s2(xk) = xk − ln(xk + 1)
xk

−−−→
x→0

0,

i.e. Θmax
lim 0 = {{1, 2}}. But for xk = 1

(2k+1)π it is g2(xk) = 1
2x

4
k < x4

k = g1(xk),
so

s1(xk) = 0 and s2(xk) = 1
2 ,

and therefore ΘI
lim 0 ⊇ {{1}, {1, 2}}.

Notation. For q ∈ (0, 1] we call a sequence {(xk, λk)} ⊂ F+ ×R+ q-critical with
respect to J ⊂ {1, . . . ,m} iff xk → x̄, λk → 0+ (for k →∞) and

∀ i ∈ J : bqi (xk, λk) :=
(
si(xk)
λk

− λ
1
q

k

)
g(xk)1−q −−−→

k→∞
0−.

In the particular case q = 1 we also use the name critical (instead of 1-critical) and
denote bi(xk, λk) := b1i (xk, λk) = λ−1

k si(xk)− λk.

Lemma 36. For each q ∈ (0, 1] and any J ∈ Θlim 0 exists a q-critical sequence
{(xk, λk)}.

Proof. Take any {xk} ⊂ F+ with xk → x̄ as well as ∀ i ∈ J : limk→∞ si(xk) = 0 and
define µJ(x) := maxi∈J si(x) for x ∈ F+.
If µJ(xk) = 0 for all k ∈ N then obviously for any sequence λk → 0+ it is {(xk, λk)}

q-critical. So consider otherwise and put λk := 2µJ(xk)q
2/2. Then for all i ∈ J

bqi (xk, λk) =
(
λ−1
k si(xk)− λ

1
q

k

)
g(xk)1−q ≤

(1
2 si(xk)

1− q2
2 − λ

1
q

k

)
g(xk)1−q −−−→

k→∞
0,

since si(xk) → 0, and thus λk → 0, as well es g(xk)1−q → 0 for q ∈ (0, 1) and
g(xk)1−q = 1 for q = 1.
Moreover for k large enough it is 0 < µJ(xk) ≤ 1 and thus µJ(xk)

q
2 ≥ µJ(xk)

1
2 ≥

µJ(xk)1− q2
2 , which yields

bqi (xk, λk) ≤
(1

2 si(xk)
1− q2

2 − 2
1
q µJ(xk)

q
2

)
g(xk)1−q

≤
(1

2 µJ(xk)1− q2
2 − 2

1
q µJ(xk)

q
2

)
g(xk)1−q

≤
(1

2

√
µJ(xk)−

√
µJ(xk)

)
g(xk)1−q

= −1
2

√
µJ(xk)g(xk)1−q < 0.

Thus for any J ∈ Θlim 0 one finds a q-critical sequence {(xk, λk)}.
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Remark 32. Lemma 36 should have served as an entry point to generalize the
statement of Theorem 37 below for Hölder calmness (which now is only a compilation
of older results concerning proper calmness). But this approach failed as is noted in
Remark 33. Nevertheless it yields some hints about which indices may be the the
important ones regarding Algorithm 4.

Next we want to show that the above sets of critical indices (which are in general not
only formally different as demonstrated in Example 9) are playing the essential role
for proper calmness of the sublevel set of a max-function composed of finitely many
continuously differentiable functions. Here, the statement (i) ⇔ (iii) is [Kum09,
Theorem 4.7] and (i)⇔ (ii) may be found also in [HK06, Theorem 4.6].

Theorem 37. Let S(p) = {x ∈ X | maxi∈I gi(x) ≤ p }, gi ∈ C1(X,R) and (0, x̄) ∈
gphS. Then the following propositions are equivalent:

(i) S is calm at (0, x̄);

(ii) ∀ J ∈ Θmax
lim 0 ∃u ∈ B(0, 1) ∀ i ∈ J : Dgi(x̄)u < 0;

(iii) ∀ J ∈ Θmax
0 ∃u ∈ B(0, 1) ∀ i ∈ J : Dgi(x̄)u < 0.

Note. Of course we may assume x̄ ∈ bdS(0), because else there is no sequence
xk

F+
−−→ x̄ and thus Θlim 0 = ∅ and Θ0 = ∅, so also the sets Θmax

ι are empty. Thus (ii)
and (iii) are trivially fulfilled – as well as calmness of S at inner points.

Proof.
(i)⇒ (ii) By Corollary 31 calmness yields

∃λ, ε > 0 ∀x ∈ B(x̄, ε) \ S(0) ∃u ∈ B(0, 1) ∀ i = 1, . . . ,m : Dgi(x̄)u ≤ bi(x, λ).

Now take any J ∈ Θmax
lim 0. By Lemma 36 we have a critical sequence {(xk, λk)} for J

and w.l.o.g. we may suppose {xk} ⊂ B(x̄, ε) \ S(0) and λk ≤ λ for all k. Thus we
have

∀ k ∈ N ∃u ∈ B(0, 1)∀ i ∈ J : Dgi(x̄)u ≤ bi(xk, λ) ≤ bi(xk, λk) < 0.

(ii) ⇒ (iii) If for J ∈ Θmax
lim 0 exists u ∈ B(0, 1) s.t. ∀ i ∈ J : Dgi(x̄)u < 0, then

(with the same u) this holds for each subset of J – which are elements of Θlim 0. Thus,
because of Θι = { J̃ ⊂ I(x̄) | ∃J ∈ Θmax

ι : J̃ ⊂ J }, we have

∀ J ∈ Θlim 0 ∃u ∈ B(0, 1) ∀ i ∈ J : Dgi(x̄)u < 0.

And since Θmax
0 ⊂ Θlim 0 we are done.

(iii) ⇒ (i) Put λ := −1
2 maxJ∈Θmax

0
maxi∈J Dgi(x̄)uJ , which exists since the set

of indices is finite and which is by assumption greater than zero (we took uJ ’s with
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∀ i ∈ J : Dgi(x̄)uJ < 0). Now let ε > 0 s.t. for all x ∈ B(x̄, ε) holds I(x) ∈ Θ0 (this is
possible because there are only finitely many J ∈ Θ0)11 and

∀ J ∈ Θ0 ∀ i ∈ J : |Dgi(x)uJ −Dgi(x̄)uJ | <
1
2λ.

So, for each x ∈ B(x̄, ε) and t > 0 small enough, it holds for at least one i ∈ I(x)

f(x+ tuJx)− f(x)
t

= gi(x+ tuJx)− gi(x)
t

= Dgi(x)uJx + o(t)

< Dgi(x̄)uJx + 1
2λ+ o(t) ≤ −2λ+ 1

2λ+ o(t) ≤ −λ,

i.e. f(x+tuJx )−f(x)
t < −λ for small t > 0 which yields calmness by Theorem 24.

Remark 33. In the same way as in the »(i)⇒ (ii)«-part of above proof one gets –
using Theorem 30 – that

∀ J ∈ Θmax
lim 0 ∃xk → x̄, si(xk)→ 0 ∃uk ∈ B(0, 1) ∀ i ∈ J : Dgi(xk)uk < 0

is necessary for calmness [q] at (0, x̄) ∈ gphS, which means nothing more than that
in any neighbourhood of x̄ there is a descent direction.
Of course this condition can not be sufficient: Since it does not take q into account,

one could deduce that Hölder calmness for any q1, q2 ∈ (0, 1) is equivalent – and this
is obviously not true.

4.5 Sufficient conditions

The next statement is well known (since the given requirements mean that LICQ is
fulfilled, which is a stronger constraint qualification than calmness) but we want to
give a proof using Theorem 24 as this will carry us to some generalization.

Corollary 38. Let X be a (real) subspace of Rn and g ∈ C1(X,R) such that g(x̄) = 0
and Dg(x̄) 6= 0 for some x̄ ∈ X. Then S(p) := {x ∈ X | g(x) ≤ p } is calm on X at
(0, x̄).

Proof. By continuity of Dg and as Dg(x̄) 6= 0 there is some ε > 0 s.t. Dg(x) 6= 0 for
all x ∈ BX(x̄, ε) and thus λ := minx∈BX(x̄,ε) maxi=1,...,n |∂ig(x)| > 0. This yields

max
‖u‖=1

|Dg(x)u| ≥ max
i=1,...,n

|∂ig(x)| ≥ λ,

11Suppose not, then exists xk
F+
−−→ x̄ s.t. ∀ k ∈ N : I(xk) /∈ Θ0. Since there are only finitely many

possible elements in Θ0 there must be some subsequence {xkl} s.t. I(xkl ) is equal for all l. But this
means I(xkl ) ∈ Θ0, a contradiction.
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so there is some ux ∈ bdBRn(0, 1) with Dg(x)ux < −λ
2 . Taylor’s theorem thus yields

g(x+ tux) = g(x) + tDg(x)ux + o(t) < g(x)− λ

4 t

for small t.
This means that we have some x′ = x+tux with g(x′)+−g(x) < −λ

4 ‖x−x
′‖ which

shows calmness by Theorem 24.

Note. The reverse of Corollary 38 is not true, i.e. the sublevel set map S may be
calm at (0, x̄) ∈ gphS for g ∈ C1(X,R) with g(x̄) = 0 but Dg(x̄) = 0 – just consider
g ≡ 0.

Having Theorems 24 and 25 we now can show a sufficient property for calmness
[q] resp. global error bounds with Hölder exponent q for sets defined by finite lower
semicontinuous inequality systems. In the case of only one l.s.c. function the condition
is a little weaker than for proper systems.
The result for one l.s.c. function was as well given by Wu and Ye in [WY02a,

Theorem 6]12 (using a different proof) and a similar proposition was shown before by
Ng and Zheng [NZ00, Theorem 3] for the sublevel set of a single weakly l.s.c. function
(i.e. l.s.c. with respect to the weak topology).13

Theorem 39 (level set of one l.s.c. function). Let X be a Banach space and g : X →
R lower semicontinuous with sublevel set S(p) := {x ∈ X | g(x) ≤ p } with S(0) 6= ∅.
If exist 0 < q ≤ 1 and λ > 0 such that

∀x ∈ X\S(0) ∃ux ∈ bdB(0, 1) :

d−g(x)(ux) := lim inf
t→0+
u′→ux

g(x+ tu′)− g(x)
t

≤ −λg(x)1−q, (4.64)

then
∀x ∈ X : dist(x, S(0)) ≤ 1

λq
(g(x)+)q.

Proof. Let x ∈ X \ S(0) and take some ux ∈ bdB(0, 1) fulfilling the assumption. By
definition of the lower subderivative d−, there exists, for each fixed c > 1, a sequence
tn → 0+ s.t.

g(x+ tnux)− g(x)
tn

< −c− 1
c

λg(x)1−q. (4.65)

12Compare also [WY02b, Theorem 3.1 and 4.1] and [WY04, Theorem 2.2] for error bounds with
exponent 1.

13In particular our Theorem (again) gives an affirmative answer to the question [NZ00, Problem 1]
adressed by Ng and Zheng after their statement: ›Is [NZ00, Theorem 3] true if the function is only
assumed to be lower semicontinuous?‹.
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Because for c > 1 it is − c−1
c λg(x)1−q < 0, we have particularly

g(x+ tnux)− g(x) < 0.

And since g is l.s.c., it holds

lim inf
n→∞

g(x+ tnux) = g(x) > 0,

so g(x+ tnux) > 0 for sufficiently large n.
Now

g(x+ tnux)q = g(x)q + q

g(x)1−q
(
g(x+ tnux)− g(x)

)
+O(tn),

where

O(tn) =
(

1− q
(g(x+ tnux)

g(x)
)1−q)

g(x+tnux)q−(1−q)g(x)q = o
(
g(x+tnux)−g(x)

)
.

Hence O(tn) ≤ − q
c g(x)1−q

(
g(x + tnux) − g(x)

)
if n is sufficiently large, and thus,

applying (4.65), one gets for such n that

g(x+ tnux)q ≤ g(x)q + (c− 1) q tn
c g(x)1−q

(
g(x+ tnux)− g(x)

tn

)
< g(x)q − (c− 1)2

c2 λ q tn.

So, for t′ = tn > 0 with n large enough and x′ = x+ t′ux, it holds

‖x− x′‖ = t′ <
c2

(c− 1)2
1
λq

(
g(x)q − g(x′)q

)
= c2

(c− 1)2
1
λq

(
g(x)q − (g(x′)+)q

)
.

Thus Theorem 25 yields for each c > 1:

∀x ∈ X : dist(x, S(0)) ≤ c2

(c− 1)2
1
λq

(g(x)+)q,

which implies
∀x ∈ X : dist(x, S(0)) ≤ 1

λq
(g(x)+)q,

because c2

(c−1)2 −−−→
c→∞

1.

The sufficient condition (4.64) is rather strong and not a necessary one:

Example 10. For the differentiable function

g(x) =
{
x2 sin(1/x) + x, x 6= 0
0, x = 0
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it is14 g(x) < x
2 < 0 if x < 0 and g(x) > x

2 > 0 if x > 0. So in particular
S(0) = {x | g(x) ≤ 0 } = (−∞, 0] and altogether we have

∀x /∈ S(0) : dist(x, S(0)) = x < 2g(x).

But even locally condition (4.64) does not hold, since the derivative g′ (which is
not continuous in x = 0) is given by

g′(x) =
{

2x sin(1/x)− cos(1/x) + 1, x 6= 0
0, x = 0,

and 2x sin(1/x)− cos(1/x) + 1 is zero for all x = xk = 1
2kπ , k ∈ N.

As a generalization for solution sets of finitely many lower semicontinuous inequa-
tions we get the following theorem (for a similar proposition about closed convex
subsets and convex l.s.c. functions see [WY02b, Corollary 4.2]):

Theorem 40 (finite system of l.s.c. inequalities). Again let X be a Banach space
and S(p) := {x ∈ X |

∧m
i=1 gi(x) ≤ pi } with p = (p1, . . . , pm) ∈ Rm, S(0) 6= ∅ and

gi : X → R, i = 1, . . . ,m, lower semicontinuous functions.
Further let 0 < q ≤ 1 and λ > 0 be given such that

∀x ∈ X\S(0) ∃ux ∈ bdB(0, 1) ∀ i ∈ I(x) :

g′i(x;ux) := lim
t→0+

gi(x+ tux)− gi(x)
t

≤ −λgi(x)1−q;
(4.66)

where I(x) := { i ∈ {1, . . . ,m} | gi(x) = maxi gi(x)+ }.
Then

∀x ∈ X : dist(x, S(0)) ≤ 1
λq

(
max
i=1,...,n

g(x)+)q.
Proof. Put f(x) := maxi=1,...,m gi(x)+ which is (as max-function of l.s.c. functions)
again l.s.c. As in the proof of Theorem 39 above one gets for every c > 1 some
sufficiently small t′ > 0 s.t. for each i ∈ I(x)

gi(x+ t′ux)q < gi(x)q − (c− 1)2

c2 λ q t′ = f(x)q − (c− 1)2

c2 λ q t′.

Here we need the (one-sided) directional derivative g′i(x;ux) ≤ −λgi(x)1−q instead of
d−gi(x)(ux) ≤ −λgi(x)1−q since the latter would only give this inequation for (may
be different15) t′i > 0 and we could not use the following argument:
By definition of f and I(x), and since limt→0+ gi(x + tux) = gi(x) = f(x) for

i ∈ I(x), it is gi(x + t′ux) = f(x + t′ux) for at least one i ∈ I(x), so the above
14Consider the cases 0 < x < 1/π and x ≥ 1/π, and use g(−x) = −g(x) to see this.
15Consider crisscrossing zigzag functions gi.
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inequality implies

‖x− x′‖ < c2

(c− 1)2
1
λq

(
f(x)q − (f(x′)+)q

)
for x′ = x+ t′ux and thus by Theorem 25 (and the same argument as in the proof of
Theorem 39)

∀x ∈ X : dist(x, Sf (0)) ≤ 1
λq

(
f(x)+

)q
,

where Sf (r) := {x | f(x) ≤ r }. Now Sf (0) = S(0) yields the proposition.

Next we will modify conditions (4.64) and (4.66) in such a way that we will use
the distance of points x outside of S(0) to some (known) point x̄ in this set instead
of the function value of x. These conditions are of course less direct to verify but will
prove helpful in the following.

Theorem 41. Having the same setting as in Theorems 39 and 40 we may replace
(4.64) and (4.66) by

∀x ∈ X\S(0) ∃ x̄ ∈ S(0) ∃ux ∈ bdB(0, 1) : d−g(x)(ux) ≤ −λ‖x− x̄‖
1−q
q , (4.67)

resp.

∀x ∈ X\S(0) ∃ x̄ ∈ S(0) ∃ux ∈ bdB(0, 1) ∀ i ∈ I(x) :

g′i(x;ux) ≤ −λ‖x− x̄‖
1−q
q ,

(4.68)

as sufficient conditions for

∀x ∈ X : dist(x, S(0)) ≤ max{ 1
λq , 1}(g(x)+)q

and
∀x ∈ X : dist(x, S(0)) ≤ max{ 1

λq , 1}
(
maxi=1,...,n g(x)+)q,

respectively.

Proof. We will only give the proof for the first part of the theorem, the second one
follows in the same way (cf. the proof of Theorem 40).
Consider x ∈ X \S(0) and let x̄ and ux as in (4.67). If ‖x− x̄‖ < g(x)q put x′ = x̄,

so (
g(x′)+

)q
= 0 < g(x)q − ‖x− x̄‖.

Suppose ‖x − x̄‖ ≥ g(x)q in the following. As in the proof of Theorem 39 one gets
g(x+ t′ux) > 0,

g(x+ t′ux)− g(x)
t′

< −c− 1
c

λ ‖x− x̄‖
1−q
q
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and
g(x+ t′ux)q ≤ g(x)q + c− 1

c

q t′

g(x)1−q

(
g(x+ t′ux)− g(x)

t′

)
for any c > 1 and some t′ > 0 small enough. These properties yield

g(x+ t′ux)q < g(x)q − (c− 1)2

c2
λ q t′

g(x)1−q ‖x− x̄‖
1−q
q .

Since by assumption −‖x−x̄‖
1
q

g(x) ≤ −1, it is also −
(
‖x−x̄‖

1
q

g(x)

)1−q

≤ −1, and thus it

follows
g(x+ t′ux)q < g(x)q − (c− 1)2

c2 λ q t′

and with x′ = x+ t′ux we have
(
g(x′)+

)q
< g(x)q − (c− 1)2

c2 λ q ‖x− x′‖.

In any case, with Lc = max{ (c−1)2

c2
1
λq , 1}, we find some x′ ∈ X such that ‖x−x′‖ <

Lc
(
g(x)q −

(
g(x′)+)q) and thus Theorem 25 and a limiting process yield the desired

proposition.

As a immediate corollary we get the (local) Hölder calmness result:

Corollary 42. Let X be a Banach space and gi : X → R, i = 1, . . . ,m, lower
semicontinuous functions. Then S(p) := {x ∈ X |

∧m
i=1 gi(x) ≤ pi } is calm [q] with

rank 1
λq at (0, x̄) ∈ gphS if – with I(x) := { i ∈ {1, . . . ,m} | gi(x) = maxi gi(x)+ }

again –

∃ ε, λ > 0 ∀x ∈ B(x̄, ε)\S(0) ∃ux ∈ bdB(0, 1) ∀ i ∈ I(x) :

g′i(x;ux) ≤ −λ‖x− x̄‖
1−q
q .

(4.69)

Note. As above we may replace the directional derivative in (4.69) with the lower
subderivative d− for the case m = 1.

Proof. Again we set f(x) := maxi=1,...,m gi(x)+. By Remark 18 it suffices to consider
sequences xk → x̄ with xk 6= x̄, 0 < f(xk) and limk→∞ f(xk)q ‖xk− x̄‖−1 = 0 only. In
particular then f(xk)q < ‖xk− x̄‖ for k large enough and gi(xk) > 0 for all i ∈ I(xk).
The proposition then follows from Theorem 24 using the same arguments as in

Theorem 41.

The next statement is an immediate corollary of the above statement and so does
not need to be mentioned apart. But since we will use this special form later on and
the proof given has its own right, we do so anyhow.
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Corollary 43. Let X be a subspace of Rn and S(p) := {x ∈ X |
∧m
i=1 gi(x) ≤ pi }

with p = (p1, . . . , pm) ∈ Rm, gi ∈ C1(X,R), i = 1, . . . ,m. Further let x̄ ∈ S(0) and
I = I(x̄) := { i | gi(x̄) = 0 }.
Then S is calm [1/d] with rank d

λ on X at (0, x̄) if

∃ ε, λ > 0 ∀x ∈ BX(x̄, ε)\S(0) ∃ux ∈ bdB(0, 1) ∀ i ∈ I(x) :
Dgi(x)ux ≤ −λ‖x− x̄‖d−1,

(4.70)

where I(x) = { i ∈ I | d
√
gi(x)+ = maxi∈I d

√
gi(x)+ }.

Note. Of course we suppose w.lo.g. I 6= ∅, since else we may choose ε > 0 small
enough s.t. gi(x) < 0 for each i = 1, . . . ,m and all x ∈ B(x̄, ε).

Proof. This proof uses some of the ideas presented in [Kum09, Theorem 4.11].
Put f(x) := maxi∈I d

√
gi(x)+. We will show (proper) calmness of the sublevel set

map of this function which is equivalent to calmness [1/d] of S (cf. Remark 16).
By Remark 18 it suffices to consider sequences xk → x̄ with xk 6= x̄, 0 < f(xk) and

limk→∞ f(xk) ‖xk − x̄‖−1 = 0 only. In particular then f(xk) < ‖xk − x̄‖ for k large
enough and gi(xk) > 0 for all i ∈ I(xk).
Now, setting fi(x) := d

√
gi(x)+, it is

Dfi(x) = 1
d · gi(x)1− 1

d

Dgi(x) = 1
d · fi(x)d−1Dgi(x),

if gi(x) > 0, and so (using Taylor’s theorem)

fi(x+ tu) = fi(x) + t

d · fi(x)d−1 Dgi(x)u+ oi(t)

= f(x) + t

d · f(x)d−1 Dgi(x)u+ oi(t),

whenever i ∈ I(x).
Take any c > 1. Then property (4.70) yields for for each i ∈ I(xk), that, for large

k – in particular we choose k large enough s.t. xk ∈ B(x̄, ε) – and t > 0 small enough,
holds

fi(xk + tuxk) ≤ f(xk) + c− 1
c

t

d · f(xk)d−1 Dgi(xk)uxk

< f(xk)−
(c− 1)2

c2
t

d · f(xk)d−1 λ‖xk − x̄‖
d−1

< f(xk)−
(c− 1)2

c2
λ

d
t

Fix such t′ > 0. Since fi(xk + t′uxk) = f(xk + t′uxk) for at least one i ∈ I(xk) – by
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definition of f and I(xk) and continuity of fi – this implies

f(xk + t′uxk) < f(xk)−
(c− 1)2

c2
λ

d
t′,

which yields by Theorem 24 calmness with rank Lc := c2

(c−1)2
d
λ of the sublevel set

map of f . A limiting process then gives rank d
λ as well.

And, as f(x) = d
√

maxi∈I gi(x)+, we get calmness [1/d] of the sublevel set of the
function maxi∈I gi(x)+ (cf. Remark 16) and thus Corollary 21 shows calmness [1/d]
of S, whereby the rank is not changed.

Remark 34. Condition (4.70) is in general weaker than MFCQ since Dgi(x̄)ux may
be zero. But for the case of proper calmness (i.e. d = 1) it does not say more than
that MFCQ yields calmness.

Remark 35. For S defined by a single g ∈ C1(X,R) (4.70) reduces to

∃ ε, λ > 0 ∀x ∈ BX(x̄, ε)\S(0) ∃ux ∈ bdB(0, 1) : Dg(x)ux ≤ −λ‖x− x̄‖d−1. (4.71)

Before presenting a sufficient property for (4.71) (see Lemma 45) we want to prove
another common proposition by means of Corollary 43.

Corollary 44. Let g ∈ Cd(R,R) and x̄ ∈ R with g(x̄) ≤ 0, g(k)(x̄) = 0 for all
1 ≤ k < d and g(d)(x̄) 6= 0. Then S(p) := {x ∈ R | g(x) ≤ p } is calm [1/d] at (0, x̄).

Note. The assumption g(x̄) ≤ 0 is not important for the proof but for the definition of
calmness [q] only, since we want to have x̄ ∈ S(0). The same is true for the following
two propositions as well.

Proof. As g(d) is continuous and g(d)(x̄) 6= 0 there is some ε > 0 such that g(d)(x) 6= 0
for all x ∈ B(x̄, ε). And – using Taylor’s theorem – the other preconditions yield that
for some ξx between x and x̄ holds

g′(x) =
d−2∑
k=0

1
k! (g

′)(k)(x̄) · (x− x̄)k + 1
(d− 1)!(g

′)(d−1)(ξx) · (x− x̄)d−1

= (x− x̄)d−1

(d− 1)! g(d)(ξx).

As a result we have |g′(x)| = |g(d)(ξx)|
(d−1)! |x − x̄|d−1, i.e. |g′(x)| ≥ λ|x − x̄|d−1 for all

x ∈ B(x̄, ε) with λ = 1
(d−1)! minx∈B(x̄,ε) |g(d)(x)| > 0.

Thus (for ux = 1 or ux = −1) it is g′(x)ux ≤ −λ|x − x̄|d−1, whereby follows
calmness [1/d] of the sublevel set map at (0, x̄).
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Notation. If g ∈ Cd(Rn,R) then the order of partial differentiations does not play a
role, so in such case we will write any k-th partial derivative, 0 ≤ k ≤ d, in the form

∂αg := ∂α1
1 · · · ∂

αn
n g

with adequate multiindex α ∈ Nn
0 s.t. |α| =

∑n
i=1 αi = k.

Lemma 45. Let X be a subspace of Rn, g ∈ Cd(X,R) and x̄ ∈ X with g(x̄) ≤ 0
such that ∂αg(x̄) = 0 for all α ∈ Nn

0 with 1 ≤ |α| < d. Further let exist some ε > 0
such that for all x1, . . . , xn ∈ BX(x̄, ε)

max
i=1,...,n

∣∣∣ ∑
|α|=d−1

1
α!∂

α∂ig(xi)uα
∣∣∣ > 0 for every u ∈ X\{0}. (4.72)

Then (4.71) holds true and thus S(p) := {x ∈ X | g(x) ≤ p } is calm [1/d] on X at
(0, x̄).

Proof. Since
∣∣∑
|α|=d−1

1
α!∂

α∂ig(·)uα
∣∣ is continuous for every fixed u and BX(x̄, ε) is

compact, there are x̃i,u ∈ BX(x̄, ε) conforming minx∈BX(x̄,ε)
∣∣∑
|α|=d−1

1
α!∂

α∂ig(x)uα
∣∣.

So by (4.72) we have for every u 6= 0 in X

0 < max
i=1,...,n

∣∣∣ ∑
|α|=d−1

1
α!∂

α∂ig(x̃i,u)uα
∣∣∣ = max

i=1,...,n
min

x∈BX(x̄,ε)

∣∣∣ ∑
|α|=d−1

1
α!∂

α∂ig(x)uα
∣∣∣,

and so λ := min‖u‖X=1 maxi=1,...,n minx∈BX(x̄,ε)
∣∣∑
|α|=d−1

1
α!∂

α∂ig(x)uα
∣∣ > 0.

Due to ∂αg(x̄) = 0 for all α ∈ Nn
0 with |α| < d Taylor’s theorem yields

∂ig(x) =
∑

|α|=d−1

1
α!∂

α∂ig(ξix)(x− x̄)α

for some ξix between x and x̄. Thus

max
‖u‖=1

|Dg(x)u| ≥ max
i=1,...,n

|∂ig(x)|

= max
i=1,...,n

∣∣∣∣∣∣
∑

|α|=d−1

1
α!∂

α∂ig(ξix)
(
x− x̄
‖x− x̄‖

)α∣∣∣∣∣∣ ‖x− x̄‖d−1

≥ λ‖x− x̄‖d−1

for every x ∈ BX(x̄, ε) and so (4.71) holds.

Remark 36. g ∈ Cd(X,R) such that ∂αg(x̄) = 0 for all α ∈ Nn
0 with |α| < d is

true for instance for homogeneous polynomials g of degree d at x̄ = 0. For such g
moreover

∑
|α|=d−1

1
α!∂

α∂ig(xi)uα = ∂ig(u).
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Lemma 45 (together with Corollary 38) now yields the following proposition –
which is the statement of [Kum09, Theorem 4.11] for the case of only one inequality
(cf. also [Kum09, Lemma 4.12]) and the conclusion of Lemma 29 above as well:

Corollary 46. Let g ∈ C2(Rn,R) such that g(x̄) ≤ 0, Dg(x̄) = 0 and D2g(x̄) regular
for some x̄ ∈ Rn. Then S(p) := {x ∈ Rn | g(x) ≤ p } is calm [1/2] at (0, x̄).

Proof. As D2g(x̄) is regular there is some ε > 0 s.t. for all x1, . . . , xn ∈ B(x̄, ε) the
matrix  ∂1∂1g(x1) · · · ∂n∂1g(x1)

... . . . ...
∂1∂ng(xn) · · · ∂n∂ng(xn)


is regular as well, so in particular {

(
∂j∂ig(xi)

)
i=1,...,n | j = 1, . . . , n } is a set of linear

independent vectors. Thus (for u ∈ Rn)

∀ i = 1, . . . , n :
n∑
j=1

∂j∂ig(xi)uj = 0

⇐⇒
n∑
j=1

uj
(
∂j∂1g(x1), . . . , ∂j∂ng(xn)

)
= (0 , . . . , 0)

⇐⇒ ∀ j = 1, . . . , n : uj = 0
⇐⇒ u = 0.

This yields maxi=1,...,n
∣∣∣∑n

j=1 ∂j∂ig(xi)uj
∣∣∣ > 0 for every u 6= 0, i.e. we have (4.72).

Remark 37. Having Morse lemma below one may prove Corollary 46 as well using
the ideas presented in Case 1 of the proof of Theorem 50.

Proposition 47 (Morse lemma (cf. [JJT00, Theorems 2.7.2 and 2.8.2])). Suppose
g ∈ C2(Rn,R) with g(0) ≤ 0, Dg(0) = 0 and D2g(0) regular, and let k ∈ N be
the number of negative eigenvalues (multiplicities taken into account) of D2g(0) (by
regularity the number of positive eigenvalues is thus n− k).
Then exist open neighbourhoods U and V of 0 ∈ Rn and a C1 diffeomorphism

φ : U → V with φ(0) = 0 such that

f
(
φ−1(x1, . . . , xn)

)
= −

k∑
i=1

x2
i +

n∑
i=k+1

x2
i .
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5.1 Level sets of polynomials
Having the above tools we now want to answer the question whether or not it holds
for polynomials g : Rn → R of degree d that S(p) = {x ∈ Rn | g(x) ≤ p } is calm
[1/d] at any (0, x̄) with g(x̄) = 0.
So let

g(x) =
∑
|α|≤d

aαx
α

be a polynomial of degree d, i.e. there exists some ᾱ ∈ Nn
0 with |ᾱ| = d s.t. aᾱ 6= 0

(see page 7 for notations). Then for any α ∈ Md−1
n := {α ∈ Nn

0 | |α| = d− 1 } it is
for each i = 1, . . . , n and x ∈ Rn

∂α∂ig(x) := ∂α1
1 · · · ∂

αn
n ∂ig(x) = ∂α1

1 · · · ∂
αi+1
i · · · ∂αnn g(x) = (α+ i)! aα+i,

where α+ i := (α1, . . . , αi + 1, . . . , αn).
By Lemma 45 it is thus interesting to analyze maxi=1,...,n

∣∣∣∑|α|=d−1
(α+i)!
α! aα+iu

α
∣∣∣,

i.e. we have to check whether

max
i=1,...,n

∣∣∣∑
|α|=d−1

(αi + 1)aα+iu
α
∣∣∣ > 0 ∀u 6= 0,

which is not true in such general form. But it may be possible to restrict ourselves
to expedient subspaces X of Rn such that

max
i=1,...,n

∣∣∣∑
|α|=d−1

(αi + 1)aα+iu
α
∣∣∣ > 0 ∀u ∈ X\{0}.

First let us check some easy properties of the given setting:

Remark 38. Let d > 0 and g(x) =
∑
|α|=d aαx

α.

a) Then
∑
|α|=d−1(αi + 1)aα+ix

α = ∂ig(x) and

g(x) = 1
d

(x1, . . . , xn)


∑
|α|=d−1(α1 + 1)aα+1x

α

...∑
|α|=d−1(αn + 1)aα+nx

α



= 1
d

(x1, . . . , xn)

 (α1
1 + 1)aα1+1 · · · (αm1 + 1)aαm+1

... . . . ...
(α1

n + 1)aα1+n · · · (αmn + 1)aαm+n



xα

1

...
xα

m

 ,
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where Md−1
n = {α1, . . . , αm}, m =

(n+(d−1)−1
d−1

)
.

Moreover for f(x) = g(x) +
∑
|α|<d aαx

α one has
∑
|α|=d−1

1
α!∂

α∂if(y)xα =
∂ig(x) (for arbitrary y).

b) Obviously part a) yields

max
i=1,...,n

∣∣∣ ∑
|α|=d−1

(αi + 1)aα+ix
α
∣∣∣ = 0

⇐⇒

 (α1
1 + 1)aα1+1 · · · (αm1 + 1)aαm+1

... . . . ...
(α1

n + 1)aα1+n · · · (αmn + 1)aαm+n



xα

1

...
xα

m

 = 0.

So in particular for g(x) =
∑
|α|=d aαx

α holds

max
i=1,...,n

∣∣∣ ∑
|α|=d−1

(αi + 1)aα+ix
α
∣∣∣ = 0 =⇒ g(x) = 0.

c) For d = 1 it is m = 1, g(x) = aTx with a = (a(1,0,...,0), . . . , a(0,...,0,1))T and

(α1
1 + 1)aα1+1

...
(α1

n + 1)aα1+n

 =


a(1,0,...,0)

...
a(0,...,0,1)

 = Dg(0).

And for d = 2 we have m = n and g(x) = xTAx with symmetric matrix

A =


a(2,0,...,0,0) · · · 1

2a(1,0,...,0,1)
... . . . ...

1
2a(1,0,...,0,1) · · · a(0,0,...,0,2)

 .
So here it is (α1

1 + 1)aα1+1 · · · (αn1 + 1)aαn+1
... . . . ...

(α1
n + 1)aα1+n · · · (αnn + 1)aαn+n

=


2a(2,0,...,0,0) · · · a(1,0,...,0,1)

... . . . ...
a(1,0,...,0,1) · · · 2a(0,0,...,0,2)

=D2g(0).

The previous considerations yield

Lemma 48. For homogeneous polynomials g : Rn → R of the form g(x) =
∑n
i=1 aix

d
i ,

with ai 6= 0 for each i, it is for all x 6= 0

max
i=1,...,n

∣∣∣ ∑
|α|=d−1

(αi + 1)aα+ix
α
∣∣∣ = max

i=1,...,n

∣∣∂ig(x)
∣∣ = max

i=1,...,n

∣∣daixd−1
i

∣∣ > 0.
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So by Lemma 45 (and Remark 36) it follows calmness [1/d] for the sublevel set
maps of such homogeneous polynomials.

Note. The above homogeneous polynomials have a very special shape. But we cannot
go without limitations as Example 13 will show.

For at most quadratic polynomials we do not need the special form of Lemma 48
directly1 and not even homogeneity:

Theorem 49. If g(x) =
∑
|α|≤d aαx

α is a polynomial of degree d at most 2, then its
sublevel set map S(p) = {x ∈ Rn | g(x) ≤ p } is (at least) calm [1/2] at any (0, x̄)
with g(x̄) = 0.

Proof. Since calmness [q] of sublevel set maps is stable under translation (cf. Lemma
22) and of course translation of a polynomial gives a polynomial of the same degree,
we may w.l.o.g. suppose x̄ = 0. So g(0) = 0, i.e. a(0,...,0) = 0. Further, as forDg(0) 6= 0
we would already have calmness (cf. Corollary 38), we may assume Dg(0) = 0, which
yields aα = 0 for all α ∈ Nn

0 with |α| = 1.
Thus w.l.o.g. let g(x) =

∑
|α|=2 aαx

α = 1
2x

TD2g(0)x. It is (cf. Remark 38)

max
i=1,...,n

∣∣ ∑
|α|=1

(αi + 1)aα+ix
α
∣∣ > 0 iff x /∈ kerD2g(0) := {x | D2g(0)x = 0 } =: Y,

so by Lemma 45 the map SX(p) = {x ∈ X | g(x) ≤ p } is calm [1/2] at (0, 0) on
X := Y ⊥. And, since for all x ∈ X, y ∈ Y it is g(x + y) = g(x), Lemma 23 yields
that S is calm [1/2] at (0, 0).

Unfortunately it is not possible to transfer this proof even for simple monomials of
degree greater than 2:

Example 11. Let g(x) = xd−1
1 x2 ∈ R[X1, X2] with d ≥ 3.

Then maxi=1,...,n
∣∣∣∑|α|=d−1(αi + 1)aα+ix

α
∣∣∣ = max{|(d− 1)xd−2

1 x2|, |xd−1
1 |} which is

0 if and only if x1 = 0. Thus the only subspaces X such that Lemma 45 is applicable
are X = span{(1, t)}, t ∈ R, and so X⊥ = span{(−t, 1)}.
Thus for any x ∈ X and y ∈ X⊥ we have in case of

1. t = 0: g(x) = 0 but img g = R;

2. d odd, t 6= 0: g(y) = g(−ty2, y2) = (−t)d−1yd2 > 0 for y ∈ { y ∈ X⊥ | y2 > 0 };

3. d even, t < 0: g(y) > 0 for any y ∈ { y ∈ X⊥ | y2 6= 0 };
1But as we will see in Theorem 50 below, in the quadratic case we may translate every polynomial

into this shape – which we use to prove the global quadratic error bound. So implicitly we apply
this special structure as well.
For a general translation see Proposition 47.
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4. d even, t > 0: g(1, t) = td−1 > 0 but g((1, t) + (−2, 2
t )) = g(−1, t + 2

t ) =
−(t+ 2

t ) < 0.

In any case the conditions of Lemma 23 do not hold.

Moreover the next example – derived and generalized from [LP94, Example 4.2]2
which is concerned with quadratic systems – shows that calmness [1/d] does not hold
in general for sublevel set maps of polynomials of degree d greater than 3:

Example 12.

a) Consider g(x1, x2, x3) = (xk1 − x2)2 + (xk2 − x3)2 + x2
3 with k ∈ N, which is a

polynomial of degree 2k. For its sublevel set map S obviously holds S(0) = {0},
so dist(x, S(0)) = ‖x‖ for each x ∈ R3.
Thus for xε = (ε, εk, εk2), 0 < ε < 1, one has (using maximum norm)

dist(xε, S(0)) = ε and g(xε)+ = ε2·k2
,

which yields for k ≥ 2

dist(xε, S(0))
2k
√
g(xε)+ = 1

εk−1 −−−→ε→0
∞.

b) For polynomials of odd degree one has to make a little more effort:
Let g(x1, x2, x3) = (xk1−x2)2 +(xk2−x3)2 +x2

3 +x2k+1
3 with k ∈ N, a polynomial

of degree 2k+ 1. Here we have S(0)∩B(0, 1) = {0} (since for 0 < |x3| < 1 it is
x2k+1

3 < x2
3 ≤ (xk1−x2)2 + (xk2−x3)2 +x2

3, i.e. 0 < g(x) for all x ∈ B(0, 1)\{0})
and thus dist(x, S(0)) = ‖x‖ for each x ∈ B(0, 1).
So we get for xε = (ε, εk, εk2), 0 < ε < 1 (using maximum norm)

dist(xε, S(0)) = ε and g(xε)+ = ε2·k2 + ε(2k+1)·k2 ≤ 2ε2·k2
,

which yields for k ≥ 2

dist(xε, S(0))
2k+1
√
g(xε)+ ≥ ε1− 2·k2

2k+1

2k+1√2
−−−→
ε→0

∞,

as 2 · t2 > 2t+ 1 for t ∈ R\[1−
√

3
2 , 1+

√
3

2 ].

Even more, it is not possible to obtain that mere homogeneous polynomials define
in general everywhere Hölder calm sets of same exponent as their (inverse) degree:3

2cf. also [LPR96, 2.3.13 Example]
3Nevertheless such proposition holds for general monomials and special types of homogeneous

polynomials (cf. Lemma 12 and Lemma 48 respectively).
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Example 13. Take g(x1, x2, x3, x4) = (x2
1−x2x4)2k+(x2

2−x3x4)2k+(x3x4)2k, k ∈ N,
which is an homogeneous polynomial of degree 4k, for which obviously

S(0) := {x ∈ R4 | g(x) ≤ 0 } = S=(0) := {x ∈ R4 | g(x) = 0 } .

Because of g(x) = 0 iff x1 = 0 ∧ x2 = 0 ∧ (x3 = 0 ∨ x4 = 0), one concludes

S(0) = { (0, 0, x3, 0) | x3 ∈ R } ∪ { (0, 0, 0, x4) | x4 ∈ R } .

But we do not have calmness [1/(2k)] at x̄ := (0, 0, 0, 1) for instance:
Since for all x ∈ B(x̄, 1

2) it is dist∞(x, S(0)) = max{|x1|, |x2|, |x3|}, one has in
particular for each xε = (ε, ε2, ε4, 1), 0 < ε < 1

2 ,

dist∞(xε, S(0)) = ε.

But g(xε)+ = ε8k, resulting in

dist∞(xε, S(0))
4k
√
g(xε)+ = 1

ε
−−−→
ε→0

∞.

Another notable fact is that in the general case the bound depends also on the
dimension n:

Example 14. Consider g(x1, . . . , xn) =
∑n−1
i=1 (x2

i −xi+1)2 +x2
n, n ∈ N, and let S(p)

be its sublevel set map.
Now for xε = (ε, ε2, . . . , ε2n−1), 0 < ε < 1, we get

dist∞(xε, S(0)) = ε but g(xε)+ = ε2n .

The following global variant of Theorem 49 has been proved already by Ng and
Zheng [NZ00, Theorem 4]. In their paper they even gave a rigorous analysis which
exponents are possible for different types of real quadratic polynomials. And in a
preceding paper they examined quadratic functions with respect to error bounds
with exponent 1 and offered conditions under which conditions the exponent 1 is
possible, see [NZ01, Theorem 5.1].
A similar result for the solution set of a quadratic equation was presented also

by Luo and Sturm [LS00, Theorem 3.1] using a different argument. Although their
indirect proof may be easily adopted for sublevel sets of quadratic inequalities, it does
not allow to derive the constant L and their argument is less general than the one
used here.

Theorem 50. Let g : Rn → R be a polynomial of degree 2 and denote S(p) =
{x ∈ Rn | g(x) ≤ p } its sublevel set map whereby S(0) 6= ∅. Then exists some positive
constant L s.t.

∀x ∈ Rn : dist(x, S(0)) ≤ Lmax
{
g(x)+,

√
g(x)+}. (5.1)
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More precisely it holds:
Let

∑l
i=1 λix

2
i + βxl+1 + γ with β · γ = 0 be the normal form of the quadratic poly-

nomial g, where λi, i ∈ I := {1, . . . , l}, are the nonzero-eigenvalues of its quadratic
part.

1. If now g has a normal form without linear and constant part, i.e. β = γ = 0,
then

∀x ∈ Rn : dist(x, S(0)) ≤ max{λ−1, 1}
(
g(x)+

)1/2
, (5.2)

with λ = min u∈Rl
‖u‖=1

maxi∈I
∣∣λiui∣∣.

2. If the normal form of g contains a linear but no constant term (which means
β 6= 0 but γ = 0), then

∀x ∈ Rn : dist(x, S(0)) ≤ |β|−1g(x)+. (5.3)

3. If the constant in the normal form of g is nonzero, then – with λ∗ := maxi∈I |λi|
and λ∗ := mini∈I |λi| – it holds

∀x ∈ Rn : dist2(x, S(0)) ≤
√
λ∗

2λ∗
√
|γ|

g(x)+, (5.4)

in the case of γ < 0, and

∀x ∈ Rn : dist2(x, S(0)) ≤ max
{

2√
λ∗γ

,

√
λ∗

λ∗
√
γ

}
g(x)+, (5.5)

otherwise.
Proof. Since g is a real polynomial of degree 2 we may write g(x) = xTAx+ bTx+ c
where A ∈ Rn×n symmetric, b ∈ Rn, c ∈ R (here of course A 6= 0, since deg g should
be 2).
For real symmetric matrices A eigendecomposition yields that there is some orthog-

onal matrix R for which RTAR = D, where D is a diagonal matrix containing the
eigenvalues λ1, . . . , λn of A (with multiplicities) on its diagonal s.t. λ1, . . . , λl 6= 0 and
λl+1, . . . , λn = 0. For notational convenience we put I := { i | λi 6= 0 } = {1, . . . , l},
which is not an empty set as A 6= 0.
Using orthogonal rotation and translation we get the normal form

g(x) = f(w) :=
l∑

i=1
λiw

2
i + βwl+1 + γ

with β · γ = 0 and w = RTx+ v for some fixed v ∈ Rn.
Now for Sf (p) := {w ∈ Rn | f(w) ≤ p } it holds dist2(w, Sf (0)) = dist2(x, S(0)) for

all x = R(w − v):
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Let x and w be given with x = R(w − v). For w′ ∈ bdSf (0) s.t. dist2(w, Sf (0)) =
‖w − w′‖2 and x′ = R(w′ − v) it holds g(x′) = f(w′) = 0 and thus dist2(x, S(0)) ≤
‖x− x′‖2 = ‖R(w − w′)‖2 ≤ ‖R‖2 ‖w − w′‖2 = ‖w − w′‖2 = dist2(w, Sf (0)), with
‖R‖2 being the spectral norm of the matrix R (induced by the euclidean vector
norm) – which is 1 since RTR = E. In the same way one proves dist2(w, Sf (0)) ≤
dist2(x, S(0)).
Having this one sees (for any L, q > 0)

∀w ∈ Rn : dist2(w, Sf (0)) ≤ L(f(w)+)q ⇐⇒ ∀x ∈ Rn : dist2(x, S(0)) ≤ L(g(x)+)q,

so we may assume w.l.o.g.

g(x) =
l∑

i=1
λix

2
i + βxl+1 + γ with β · γ = 0 and ∀ i ∈ I = {1, . . . , l} : λi 6= 0.

We distinguish the three cases: β = γ = 0, β 6= 0 and γ 6= 0.

Case 1 (β = γ = 0): Let X := {x ∈ Rn | ∀ j /∈ I : xj = 0 }.

Then with λ := min u∈X
‖u‖=1

maxi∈I
∣∣λiui∣∣ > 0 it holds for all x ∈ X \ SX(0)

max
‖u‖=1

|Dg(x)u| ≥ max
i=1,...,n

|∂ig(x)| = max
i∈I

∣∣∣∣2λi xi‖x‖
∣∣∣∣ ‖x‖ ≥ 2λ‖x‖. (5.6)

Because 0 ∈ SX(0) this yields4 by Theorem 41

∀x ∈ X : dist(x, SX(0)) ≤ max{λ−1, 1}(g(x)+)1/2.

Now, since for each x ∈ X and y ∈ Y := X⊥ it is g(x + y) = g(x), we get (5.2) by
Lemma 23.

Case 2 (β 6= 0): In this case for each x ∈ Rn \ S(0)

max
‖u‖=1

|Dg(x)u| ≥ max
i=1,...,n

|∂ig(x)| = max{max
i∈I
|2λixi| , |β|} ≥ |β| > 0. (5.7)

By Theorem 39 thus (5.3) holds.

Case 3 (γ 6= 0): For this case we need a little more effort and some notation:

First set I+ := { i ∈ I | λi > 0 } and I− := { i ∈ I | λi < 0 } and so

g(x) =
∑
i∈I+

λix
2
i +

∑
i∈I−

λix
2
i + γ.

4Note that ‖x‖ = ‖x‖
1−q

q for q = 1
2 .
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Note that for λ∗ = maxi∈I |λi| and λ∗ = mini∈I |λi|, which are reals greater than 0,
we have for all x ∈ Rn

1
λ∗

∑
i∈I
|λi|x2

i ≤
∑
i∈I

x2
i ≤

1
λ∗

∑
i∈I
|λi|x2

i , (5.8)

that is with other words

− 1
λ∗

∑
i∈I−

λix
2
i ≤

∑
i∈I−

x2
i ≤ −

1
λ∗

∑
i∈I−

λix
2
i

and
1
λ∗

∑
i∈I+

λix
2
i ≤

∑
i∈I+

x2
i ≤

1
λ∗

∑
i∈I+

λix
2
i .

We subdivide this case into the parts γ < 0 and γ > 0:

a) (γ < 0) W.l.o.g. we may assume I+ 6= ∅, since else g(x) < 0 for all x ∈ Rn, i.e.
S(0) = Rn. So for each x ∈ Rn \ S(0) it holds

λ∗
∑
i∈I+

x2
i ≥

∑
i∈I+

λix
2
i > −

∑
i∈I−

λix
2
i − γ ≥ −γ = |γ| > 0.

Thus for ux := −x̂
(∑

i∈I+ x
2
i

)−1/2
, where x̂i :=

{
xi, if i ∈ I+

0, else
, it is ‖ux‖2 = 1

and

Dg(x)ux = − 2(∑
i∈I+ x

2
i

)1/2

∑
i∈I+

λix
2
i ≤ −2λ∗

(∑
i∈I+

x2
i

)1/2
< −2λ∗

√
|γ|√

λ∗
, (5.9)

which yields (5.4) by Theorem 39.

b) (γ > 0) Let x ∈ Rn \ S(0). We consider the two subcases:

If
∑
i∈I− x

2
i ≤

γ
4λ∗ ≤

γ
4λ∗ then choose y ∈ Rn s.t.

∑
i∈I− |λi|y

2
i = γ and ∀ i ∈ I+ :

yi = 0, ∀ i /∈ I : yi = xi. Thus g(y) = 0 and so we get using (5.8)

dist2(x, S(0))2 ≤ ‖x− y‖2 =
∑
i∈I+

x2
i +

∑
i∈I−

(xi − yi)2

≤
∑
i∈I+

x2
i +

∑
i∈I−

x2
i + 2

(∑
i∈I−

x2
i

) 1
2
(∑
i∈I−

y2
i

) 1
2 +

∑
i∈I−

y2
i

≤
∑
i∈I+

x2
i + γ

4λ∗
+
√
γ

λ∗

(∑
i∈I−
|λi|y2

i

) 1
2 + 1

λ∗

∑
i∈I−
|λi|y2

i

=
∑
i∈I+

x2
i + 9γ

4λ∗
.
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Additionally

g(x)2 =
(∑
i∈I+

λix
2
i +

∑
i∈I−

λix
2
i + γ

)2
≥
(
λ∗
∑
i∈I+

x2
i − λ∗

∑
i∈I−

x2
i + γ

)2

≥
(
λ∗
∑
i∈I+

x2
i − λ∗

γ

4λ∗ + γ
)2

=
(
λ∗
∑
i∈I+

x2
i + 3

4γ
)2

≥ 3
2γλ∗

∑
i∈I+

x2
i + 9

16γ
2.

Hence it holds
dist2(x, S(0)) ≤ 2√

λ∗γ
g(x). (5.10)

Next consider
∑
i∈I− x

2
i >

γ
4λ∗ . We take x̌i :=

{
xi, if i ∈ I−
0, else

and set ux :=

x̌
(∑

i∈I− x
2
i

)−1/2
.

Then ‖ux‖2 = 1 and for each t ≥ 0

g(x+ tux) =
∑
i∈I+

λix
2
i +

∑
i∈I−

λi

(
xi + t

xi
(
∑
i∈I− x

2
i )−1/2

)2

+ γ

= g(x)− t
∑
i∈I−
|λi|x2

i

(∑
i∈I−

x2
i

)−1
2
(∑
i∈I−

x2
i

)1/2
+ t


≤ g(x)− 2t

∑
i∈I−
|λi|x2

i

(∑
i∈I−

x2
i

)−1/2
≤ g(x)− 2tλ∗

(∑
i∈I−

x2
i

)1/2

≤ g(x)− t
λ∗
√
γ√

λ∗

which is less or equal 0 for t > 0 large enough. Since g(x) > 0, the intermediate
value theorem yields the existence of some t0 > 0 with g(x+t0ux) = 0 and hence
dist(x, S(0)) ≤ t0. As, by the above calculation,

−g(x) = g(x+ t0ux)− g(x) ≤ −t0
λ∗
√
γ√

λ∗
,

we get

dist2(x, S(0)) ≤
√
λ∗

λ∗
√
γ
g(x). (5.11)

Thus in any of the subcases (5.5) is true.

Remark 39. Since the algorithm of principal component analysis for quadrics allows
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for a detailed computation of the normal form, we can identify the value of β and
γ and describe them in terms of the original polynomial. Thus we have a concrete
proposition for L for general quadratic polynomials.

Remark 40. Let us reconsider Case 1 of the above proof, i.e. g(x) =
∑l
i=1 λix

2
i ,

λi 6= 0 for all i ∈ I, to get a different constant L:
Again with X := {x ∈ Rn | xl+1 = . . . = xn = 0 } and

λ := min
u∈X
‖u‖=1

max
i∈I

∣∣λiui∣∣ > 0,

we get (5.6) as well for the Euclidean norm and thus with λ∗ := maxi∈I |λi| it holds

max
‖u‖=1

|Dg(x)u| ≥ 2λ ‖x‖2 = 2λ
( l∑
i=1

x2
i

) 1
2 ≥ 2λ√

λ∗

( l∑
i=1
|λi|x2

i

) 1
2

≥ 2λ√
λ∗

( l∑
i=1

λix
2
i

) 1
2 = 2λ√

λ∗
g(x)

1
2

for each x ∈ X \ S(0). And so by Theorem 39 and Lemma 23

∀x ∈ Rn : dist2(x, S(0)) ≤
√
λ∗

λ
(g(x)+)1/2. (5.12)

As a direct corollary of Theorem 50 one has akin to [LS00, Corollary 3.1] and with
essentially the same proof:

Corollary 51. Let g1 : Rn → R be a quadratic polynomial, g2 : Rn → R continuous
and Si(p) = {x | gi(x) ≤ p }, i = 1, 2. If S1(0) ⊂ S2(0), then exists for each ρ > 0
some L > 0 with

∀x ∈ B(0, ρ) : g2(x)+ ≤ L
(
g1(x)+

)q
, (5.13)

where q ∈ {1
2 , 1} depends on the normal form of g1.

Proof. For x ∈ B(0, ρ) consider x̄ ∈ S2(0) s.t. dist(x, S2(0)) = ‖x− x̄‖, i.e. in partic-
ular g2(x̄) = 0 if x /∈ S2(0) and x̄ = x elsewise.
Since the continuous function g2 is Lipschitz on any compact set there is some

L2 > 0 with

∀x ∈ B(0, ρ) : g2(x)+ = |g2(x)− g2(x̄)| ≤ L2‖x− x̄‖ = L2 dist(x, S2(0)).

Now due to Theorem 50 it holds for some L1 > 0 and q ∈ {1
2 , 1}

∀x ∈ Rn : dist(x, S1(0)) ≤ L1
(
g1(x)+

)q
,
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and thus, because S1(0) ⊂ S2(0) yields dist(x, S2(0)) ≤ dist(x, S1(0)), we get

∀x ∈ B(0, ρ) : g2(x)+ ≤ L2 dist(x, S1(0)) ≤ L1L2
(
g1(x)+

)q
as desired.

5.2 Polynomial systems

Next we want to check solution sets of systems of polynomials.
As a basis of all following arguments we start adopting Theorem 50 to hyperplanes:

Lemma 52. Let g : Rn → R be a quadratic polynomial and f : Rn → R an
affine function defining the hyperplane H = {x ∈ Rn | f(x) = 0 }. If the set SH :=
{x ∈ H | g(x) ≤ 0 } is not empty, then exists a constant L > 0 such that

∀x ∈ H : dist(x, SH) ≤ Lmax
{
g(x)+,

√
g(x)+}. (5.14)

Proof. Let ΠH be the Euclidean projector onto H, set g̃(x) := g(ΠH(x)) and S̃(p) :=
{x | g̃(x) ≤ p }.
Obviously SH ⊂ S̃(0), so dist(x, S̃(0)) ≤ dist(x, SH). Moreover one has for each

x ∈ H and x′ ∈ S̃(0) with dist2(x, S̃(0)) = ‖x− x′‖2 that

dist2(x, S(0)) ≤
∥∥x−ΠH(x′)

∥∥
2 ≤

∥∥x− x′∥∥2 = dist2(x, S̃(0)),

because ΠH is a projection onto a convex set and ΠH(x) = x here. Hence it is
dist2(x, SH) = dist2(x, S̃(0)) for all x ∈ H.
As ΠH is affine as Euclidean projector onto an affine space, the function g̃ (com-

posed from a quadratic and an affine function) is quadratic. Thus by Theorem 50
there exists L > 0 such that

∀x ∈ Rn : dist(x, S̃(0)) ≤ Lmax
{
g̃(x)+,

√
g̃(x)+}.

Now the above considerations and the fact that g̃(x) = g(x) for all x ∈ H yield

∀x ∈ H : dist2(x, SH) = dist2(x, S̃(0))

≤ Lmax
{
g̃(x)+,

√
g̃(x)+} = Lmax

{
g(x)+,

√
g(x)+}.

Remark 41. As in the above lemma we will in the following always refer to (5.1)
instead to the case-by-case analysis, which would – depending on the structure of
the quadratic function under consideration – yield the exponent 1

2 or 1 in the respect
error bounds. Nevertheless one may do as well a distinction of cases, since the proofs
will work for both exponents.
In Lemma 52 the exponent then would be dependent on the structure of g(ΠH(x)).
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Having the above lemma and Theorem 50 as well as Hoffman’s error bound (Propo-
sition 1) we are now able to prove several propositions dealing with an inequality sys-
tem of one quadratic and finitely many affine functions, i.e. with quadratic functions
over convex polyhedral sets.
The Theorems 53 and 56 below, together with their corollaries, extend and relate

several propositions about this topic. Specifically we will get as corollaries some
propositions of Luo, Pang and Ralph (see [LPR96, 2.3.10 Theorem], [LPR96, 2.3.12
Theorem] and – here with an additional condition – [LP94, Theorem 4.1], [LP94,
Corollary 4.1]) which rely on nonnegativity of the quadratic system on a convex
polytope. As well we will deduce the results of Luo and Sturm [LS00, Theorem 3.3
and Corollary 3.2] – without using their rather involved proofs.
As in the mentioned papers, we start with error bounds restricted to a bounded

polytope:

Theorem 53. Again let g : Rn → R be quadratic and S(p) := {x | g(x) ≤ p }.
Further let P = {x ∈ Rn |

∧m
i=1 fi(x) ≤ 0 } be a convex and bounded polytope defined

by finitely many affine functions fi, i = 1, . . . ,m.
Then, if SP := S(0) ∩ P 6= ∅, there is some constant L > 0 such that

∀x ∈ P : dist(x, SP ) ≤ Lmax
{
g(x)+,

√
g(x)+}. (5.15)

Proof. First we apply Theorem 50 and take L1 > 0 such that

∀x ∈ Rn : dist(x, S(0)) ≤ L1 max
{
g(x)+,

√
g(x)+}. (5.16)

Moreover, by Lemma 52, for each Hi := {x ∈ Rn | fi(x) = 0 } exists some L̃i > 0
with

∀x ∈ Hi : dist(x, SHi) ≤ L̃i max
{
g(x)+,

√
g(x)+}.

Thus for L2 := maxi=1,...,m L̃i it holds for each i that

∀x ∈ Hi : dist(x, SHi) ≤ L2 max
{
g(x)+,

√
g(x)+}. (5.17)

Now decompose the closed semialgebraic set S(0) into finitely many semialgebraic
closed connected components T1, . . . , TN (cf. for instance [Cos02, Theorem 2.23]) and
put J1 := { j | Tj ⊂ P }, J2 := { j | Tj 6⊂ P ∧ Tj ∩ P 6= ∅ }, J3 := { j | Tj ∩ P = ∅ }.
Because P is compact, each Tj closed and J3 finite, we have

α := 1
2 min
j∈J3

dist(Tj , P ) > 0.

Here we set α = +∞ if J3 = ∅.
Define Sα := {x ∈ Rn | dist(x, S(0)) < α }, an open set. So P \ Sα is compact and
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thus exists
L3 := max

x∈P\Sα

dist(x, SP )
dist(x, S(0)) ≥ 1. (5.18)

It follows

∀x ∈ P \ Sα : dist(x, SP ) ≤ L3 dist(x, S(0)) ≤ L3L1 max
{
g(x)+,

√
g(x)+}. (5.19)

Next consider x ∈ P ∩ (Sα \ S(0)) and let x′ ∈ S(0) be such that dist(x, S(0)) =
‖x− x′‖.
If x′ ∈ P , then it is

dist(x, SP ) = dist(x, S(0)) ≤ L1 max
{
g(x)+,

√
g(x)+}. (5.20)

Otherwise x′ ∈ Tj \ P for some j ∈ J2 (j ∈ J3 is not possible by choice of α). And
since x ∈ P and x′ /∈ P there is some λ ∈ (0, 1] s.t. y = λx + (1 − λ)x′ ∈ bdP –
which means by definition of P that y ∈ Hi for at least one i. Now, because Tj is
connected, it is Hi ∩ Tj 6= ∅ for at least one of those i, which we denote i(j).
Putting this together it follows

dist(x, SP ) ≤ ‖x− y‖+ dist(y, SP ) ≤ ‖x− x′‖+ dist(y, SHi(j))
= dist(x, S(0)) + dist(y, SHi(j))

≤ L1 max
{
g(x)+,

√
g(x)+}+ L2 max

{
g(x)+,

√
g(x)+}

≤ max{L1, L2}max
{
g(x)+,

√
g(x)+}.

(5.21)

Finally the estimates (5.19), (5.20) and (5.21) yield (5.15) for

L := max{L1L3,max{L1, L2}}.

Corollary 54 ([LS00, Theorem 3.3]). Let g : Rn → R be a quadratic function and
P ⊂ Rn a finite convex and bounded polytope. If the zero set defined by SP :=
{x ∈ P | g(x) = 0 } is nonempty, then there exists a constant L > 0 such that

∀x ∈ P : dist(x, SP ) ≤ Lmax
{
|g(x)|,

√
|g(x)|

}
. (5.22)

Proof. Clearly SP = S1 ∩ S2 and P = S1 ∪ S2 for the sets S1 = {x ∈ P | g(x) ≤ 0 }
and S2 = {x ∈ P | −g(x) ≤ 0 }.
Theorem 50 yields the existence of L1 > 0 and L2 > 0 such that for all x ∈ P it is

dist(x, S1) ≤ L1 max
{
g(x)+,

√
g(x)+},

and
dist(x, S2) ≤ L2 max

{
(−g(x))+,

√
(−g(x))+}.
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Since in the case x ∈ S2 \ S1 it is g(x)+ = |g(x)| and (because the polytope P is
convex) dist(x, S1) = dist(x, SP ), we thus get

∀x ∈ S2 \ S1 : dist(x, SP ) ≤ L1 max
{
|g(x)|,

√
|g(x)|

}
,

and analogously

∀x ∈ S1 \ S2 : dist(x, SP ) ≤ L2 max
{
|g(x)|,

√
|g(x)|

}
.

So with L = max{L1, L2} it follows (5.22).

Corollary 55 ([LPR96, 2.3.10 Theorem]). Let gi : Rn → R, i = 1, . . . , l, be quadratic
polynomials which are nonnegative on a convex polytope P defined by finitely many
affine functions.
If the set SP = {x ∈ P |

∧l
i=1 gi(x) = 0 } is not empty, then for any compact set

K ⊂ Rn, there exists a constant L > 0 such that

∀x ∈ P ∩K : dist(x, SP ) ≤ Lmax
{
r(x),

√
r(x)

}
, (5.23)

where r(x) :=
∑l
i=1 |gi(x)|.

Note. W.l.o.g. we suppose P ∩K 6= ∅ (else (5.23) holds trivially).

Proof. We distinguish to cases:

Case 1 SP∩K = ∅: In this case it is r(x) > 0 everywhere on P∩K. So by compactness
of K there exists some α > 0 s.t. max{r(x),

√
r(x)} ≥ α for all x ∈ P ∩ K. And

taking x̄ ∈ SP (which exists because SP was assumed to be nonempty), we have

dist(x, SP ) ≤ ‖x− x̄‖ ≤ max
x∈P∩K

‖x‖+ ‖x̄‖ =: C.

So with L = α−1C it follows (5.23).

Case 2 SP ∩K 6= ∅: Set g̃(x) :=
∑l
i=1 gi(x), which is quadratic again and – because

of the nonnegativity assumption – has the property that S̃P := {x ∈ P | g̃(x) = 0 } =
SP .
Now let P̃ be a finite convex and bounded polytope containing K and apply Corollary
54 to g̃ and P ∩ P̃ , obtaining L > 0 s.t.

∀x ∈ P ∩ P̃ : dist(x, S̃P∩P̃ ) ≤ Lmax
{
|g̃(x)|,

√
|g̃(x)|

}
,

where S̃P∩P̃ := S̃P ∩ P̃ = SP ∩ P̃ .
Because of dist(x, SP ) ≤ dist(x, S̃P∩P̃ ), and r(x) = |g̃(x)| for all x ∈ P ∩K by the
nonnegativity assumption, we hence get (5.23).
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Remark 42. Since in the above Theorem 53 and its corollaries we always have
continuous residual functions r (r(x) being g(x)+, |g(x)| and

∑l
i=1 |gi(x)| respectively)

on a compact set K, there exists some constant C > 0 s.t.

r(x) ≤ C
√
r(x)

for all x ∈ K (choose C := maxx∈K
√
r(x)).

Hence we may replace the term of the form max
{
r(x),

√
r(x)

}
with

√
r(x) in (5.15),

(5.22) and (5.23).

Next we use the above results to obtain extended propositions.

Theorem 56. Let g be a quadratic polynomial and f = (f1, . . . , fm) affine functions
from Rn to R. Further let S(p1, p2) = {x ∈ Rn | g(x) ≤ p1 ∧ f(x) ≤ p2 } and suppose
S(0) 6= ∅.
Then for any compact set K ⊂ Rn exists a constant L > 0 such that

∀x ∈ K : dist(x, S(0)) ≤ L
(
g(x)+ + ‖f(x)+‖

) 1
2 . (5.24)

Note. The following proof is in parts orientated at the one given in [LPR96, 2.3.12
Theorem].

Proof. If K ∩ S(0) = ∅, then we can argue as in Case 1 of the proof of Corollary 55.
So we suppose K ∩ S(0) 6= ∅ now. Since g is quadratic and f is affine on Rn we may
write g(x) = xTQx+ bTx+ c for some symmetric matrix Q ∈ Rn×n, b ∈ Rn, c ∈ R.
Denote P := {x ∈ Rn | f(x) ≤ 0 }, SP := S(0) and let ΠP be the Euclidean pro-

jector onto P . Further consider a finite bounded convex polytope PK ⊃ K ∪ΠP (K),
which is possible because the projection of a bounded set onto a convex one is bounded
again by contraction of the projection.
By Theorem 53 (and Remark 42) exists L̃ > 0 such that

∀x ∈ PK ∩ P : dist(x, SP ∩ PK) ≤ L̃
√
g(x)+. (5.25)

Thus, since ΠP (x) ∈ PK ∩ P if x ∈ K, and dist(x, SP ) ≤ dist(x, SP ∩ PK), it holds

∀x ∈ K : dist(ΠP (x), SP ) ≤ L̃
√
g(ΠP (x))+. (5.26)

Hence we get for all x ∈ K

dist(x, S(0)) = dist(x, SP ) ≤ ‖x−ΠP (x)‖+ dist(ΠP (x), SP )

≤ ‖x−ΠP (x)‖+ L̃
√
g(ΠP (x))+.

(5.27)
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Because ΠP is the Euclidean projector onto P it is ‖x−ΠP (x)‖2 = dist2(x, P ), and
therefore Hoffman’s Lemma yields

∀x ∈ Rn : ‖x−ΠP (x)‖ ≤ LP ‖f(x)+‖ (5.28)

for some LP > 0.
So now we need to bound g(ΠP (x))+. By Taylor expansion one obtains for u :=

x−ΠP (x)
g(ΠP (x)) = g(x) + (Qx+ b)Tu+ 1

2u
TQu

and thus (applying the Cauchy–Schwarz inequality in the last step) it holds

(
g(ΠP (x))+

) 1
2 ≤

(
g(x)+ +

∣∣∣(Qx+ b)Tu
∣∣∣+ 1

2

∣∣∣uTQu∣∣∣) 1
2

≤
(
g(x)+

) 1
2 +

∣∣∣(Qx+ b)Tu
∣∣∣ 1

2 + 1
2

1
2

∣∣∣uTQu∣∣∣ 1
2

≤
(
g(x)+

) 1
2 +

(
‖Qx‖

1
2
2 + ‖b‖

1
2
2
)
‖u‖

1
2
2 + 1√

2
‖Q‖

1
2 ‖u‖2 ,

(5.29)

where ‖Q‖ is some matrix norm compatible with the Euclidean norm.
Setting ρ := 2 maxx∈K ‖x‖2 and Lg := maxx∈K ‖Qx‖

1
2
2 + ‖b‖

1
2
2 +

(ρ
2
) 1

2 ‖Q‖
1
2 this

yields √
g(ΠP (x))+ ≤

√
g(x)+ + Lg

√
‖x−ΠP (x)‖2. (5.30)

Hence – substituting (5.28) and (5.30) into (5.27) – it holds for all x ∈ K

dist2(x, S(0)) ≤ ‖x−ΠP (x)‖2 + L̃

(√
g(x)+ + Lg

√
‖x−ΠP (x)‖2

)
≤ (C + L̃Lg)

√
‖x−ΠP (x)‖2 + L̃

√
g(x)+

≤ (C + L̃Lg)
√
LP

√
‖f(x)+‖+ L̃

√
g(x)+

≤ L′
(√
‖f(x)+‖+

√
g(x)+

)
(5.31)

with C := maxx∈K
√
‖x−ΠP (x)‖ and L′ := max{(C + L̃Lg)

√
LP , L̃}. Now, taking

C ′ := maxx/∈S(0)
(√
‖f(x)+‖+

√
g(x)+)(‖f(x)+‖+ g(x)+)− 1

2 and L := C ′L′, we have
(5.24).

Remark 43. Note that (5.29) also holds if we replace the exponent 1
2 with 1. So, in

the case that the exponent in (5.25) would be 1 (cf. Remark 41), we could apply the
same proof to exponent 1 instead of 1

2 , getting 1 instead of 1
2 as exponent in (5.24).

Remark 44. As Example 2 already showed, the restriction to a compact set is
needed for Theorem 56.
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Note that in general one can not bound g(ΠP (x))+ from above with c g(x)+, where
c > 0 is any constant:

Example 15. Suppose g(x1, x2) := −x2
1 − x2

2 + 1 and f(x) = Ax with A =
( 0 1

0 −1
)
.

Then P = { (x1, 0) | x1 ∈ R }, S(0) = { (x1, 0) | |x1| ≥ 1 } and g(ΠP (x)) = −x2
1 + 1.

Considering x̄ = (1, 0) and xε = (1− ε, 2
√
ε) for some 2 > ε > 0 one gets g(xε) =

−2ε− ε2 < 0 but g(ΠP (xε)) = 2ε− ε2 > 0.

Corollary 57 ([LS00, Corollary 3.2]). Let g : Rn → R be a quadratic function and
P = {x ∈ Rn | f(x) ≤ 0 }, f = (f1, . . . , fm) affine, a finite convex polytope. If the
set SP := {x ∈ P | g(x) = 0 } is nonempty, then for any compact set K ⊂ Rn there
exists a constant L > 0 such that

∀x ∈ K : dist(x, SP ) ≤ L
(
|g(x)|+ ‖f(x)+‖

) 1
2 . (5.32)

Proof. Apply the proof of Theorem 56, using Corollary 54 instead of Theorem 53.

Corollary 58 ([LPR96, 2.3.12 Theorem]). Let gi : Rn → R, i = 1, . . . , l, be quadratic
polynomials which are nonnegative on the finite convex polytope P .
If the set SP = {x ∈ P |

∧l
i=1 gi(x) = 0 } is nonempty, then for any compact set

K ⊂ Rn, there exists L > 0 such that

∀x ∈ K : dist(x, SP ) ≤ L
( l∑
i=1
|gi(x)|+ ‖f(x)+‖

) 1
2
. (5.33)

Proof. This follows from Corollary 57 for g(x) :=
∑l
i=1 gi(x).

However one does not have a similar proposition for general systems of even at
most quadratic polynomials. Here (again) the bound does not only depend on the
degree of the involved polynomials but also on the dimension n (the example is a
reformulation of [LPR96, 2.3.13 Example]5):

Example 16. Let S(p) := {x ∈ Rn |
∧n
i=1 gi(x) = pi } with

gi(x1, . . . , xn) := x2
i − xi+1, i = 1, . . . , n− 1, and gn(x1, . . . , xn) := xn.

Then S(0) = {0} and thus for xε = (ε2, ε4, . . . , ε2n), 0 < ε < 1, it holds (using
maximum norm)

dist(xε, S(0)) = ε but ‖g(xε)‖ = ε2n .

5cf. also [LP94, Example 4.2]
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