
DISSERTATION

BEYOND SHARED MEMORY LOOP PARALLELISM IN THE POLYHEDRAL MODEL

Submitted by

Tomofumi Yuki

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2013

Doctoral Committee:

Advisor: Sanjay Rajopadhye

Wim Böhm
Michelle Strout
Edwin Chong

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3565471
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3565471

ABSTRACT

BEYOND SHARED MEMORY LOOP PARALLELISM IN THE POLYHEDRAL MODEL

With the introduction of multi-core processors, motivated by power and energy concerns, parallel pro-

cessing has become main-stream. Parallel programming is much more difficult due to its non-deterministic

nature, and because of parallel programming bugs that arise from non-determinacy. One solution is auto-

matic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs.

However, automatic parallelization is very difficult, and only a handful of successful techniques are available,

even after decades of research.

Automatic parallelization for distributed memory architectures is even more problematic in that it re-

quires explicit handling of data partitioning and communication. Since data must be partitioned among

multiple nodes that do not share memory, the original memory allocations cannot be directly used. One of

the main contributions of this dissertation is the development of techniques for distributed memory parallel

code generation with parametric tiling.

Our approach builds on important contributions to the polyhedral model, a mathematical framework for

reasoning about program transformations. We show that many affine control programs can be uniformized

only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed

memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ

system, a system for prototyping analyses, transformations, and code generators in the polyhedral model.

The key features of AlphaZ are memory re-allocation, and explicit representation of reductions.

We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that

our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the

polyhedral model.

Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel

programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel

programming languages. These languages, such as X10, aim to provide highly productive parallel program-

ming environment by including parallelism into the language design. However, even in these languages,

parallel bugs remain to be an important issue that hinders programmer productivity.

Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of

X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static

guarantees can significantly increase programmer productivity by catching questionable implementations at

compile-time, or even while programming.

ii

ACKNOWLEDGEMENTS

The years I spent as a student of Dr. Sanjay Rajopadhye were very exciting to say the least. The

interactions we had over coffee were enjoyable, and had led to many ideas. I appreciate his help in many

dimensions not limited to research but in a much broader context.

I am blessed to have Drs. Wim Böhm and Michelle Strout on my committee since my Master’s thesis

for every single examination that I went through. For every one of them, they have given valuable feedback

through questions and comments.

The class on non-linear optimization by Dr. Edwin Chong has helped significantly in boosting my

mathematical maturity. I will continue to look for applications of the optimization techniques we learned.

I am very thankful to Dr. Steven Derrien for introducing us to many interesting new ideas and Model-

Driven Engineering. Without Steven and Model-Driven Engineering, we would not have advanced at this

rate. The on-going collaboration with Steven has been very fruitful, and we will continue to work together.

We thank Dr. Dave Wonnacott and his students for using our tools, and giving us feedback. Without a

body of external users, the tools would have been much less mature.

Members of Mélange, HPCM, and CAIRN have helped me throughout the years by being available for

discussion, providing feedbacks on talks, and having fun together.

I appreciate the National Science Foundation, and Colorado State University for supporting my assis-

tantships during the course of my study.

I thank my parents for their continuous support over many years, and their open-mindedness. I now

realize that their scientific background and its reflection in how I was raised is a large contributor to my

accomplishment.

Lastly, I would like to thank Mrs. Heidi Juran, my third grade teacher at an elementary school in Golden,

Colorado. The great experiences I had back then have had so much influence to my later decisions, eventually

leading up to my graduate study.

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Scope of the Dissertation . 2

1.2 Contributions . 3

2 Background and Related Work . 5

2.1 The Polyhedral Model . 5

2.1.1 Matrix Representation . 6

2.1.2 Program Parameters . 6

2.1.3 Properties of Polyhedral Objects . 6

2.1.4 Uniform and Affine Dependences . 7

2.1.5 Dependence vs Dataflow . 7

2.1.6 Memory-Based Dependences . 7

2.1.7 Lexicographical Order . 7

2.1.8 Polyhedral Reduced Dependence Graph . 7

2.1.9 Scanning Polyhedra . 8

2.1.10 Schedule . 8

2.1.11 Memory Allocation . 8

2.1.12 Polyhedral Equational Model . 8

2.2 Polyhedral Compilation Tools . 10

2.3 Tiling . 12

2.3.1 Overview of Tiling . 12

2.3.2 Non-Rectangular Tiling . 14

2.3.3 Parameterized Tiling . 14

2.3.4 Legality of Tiling . 15

2.4 Distributed Memory Parallelization . 15

2.4.1 Polyhedral Approaches . 16

2.4.2 Non-Polyhedral Approaches . 17

3 The AlphaZ System . 18

3.1 Motivations . 18

3.2 The AlphaZ System Overview . 19

3.3 The Alpha Language . 21

iv

3.3.1 Domains and Functions . 21

3.3.2 Affine Systems . 22

3.3.3 Alpha Expressions . 23

3.3.4 Normalized Alpha . 25

3.3.5 Array Notation . 27

3.3.6 Example . 28

3.4 Target Mapping: Specification of Execution Strategies . 29

3.4.1 Space-Time Mapping . 30

3.4.2 Memory Mapping . 32

3.4.3 Additional Specifications . 32

3.5 Code Generators . 33

3.5.1 WriteC . 33

3.5.2 ScheduledC . 34

3.6 AlphaZ and Model-Driven Engineering . 34

3.7 Summary and Discussion . 36

4 AlphaZ Case Studies . 37

4.1 Case Study 1: Time-Tiling of ADI-like Computation . 37

4.1.1 Additional Complications . 38

4.1.2 Performance of Time Tiled Code . 39

4.2 Case Study 2: Complexity Reduction of RNA Folding . 39

4.2.1 Intuition of Simplifying Reductions . 41

4.2.2 Simplifying Reductions . 43

4.2.3 Normalizations . 46

4.2.4 Optimality and Algorithm . 47

4.2.5 Application to UNAfold . 49

4.2.6 Validation . 53

5 “Uniform-ness” of Affine Control Programs . 55

5.1 Uniformization by Pipelining . 56

5.2 Uniform in Context . 57

5.3 Embedding . 58

5.4 Heuristics for Embedding . 58

5.5 “Uniform-ness” of PolyBench . 60

5.6 Retaining Tilability after Pipelining . 61

v

5.7 Discussion . 63

6 Memory Allocations and Tiling . 64

6.1 Extensions to Schedule-Independent Storage Mapping . 64

6.1.1 Universal Occupancy Vectors . 65

6.1.2 Limitations of UOV-based Allocation . 66

6.1.3 Optimal UOV without Iteration Space Knowledge . 66

6.1.4 UOV in Imperfectly Nested Programs . 67

6.1.5 Handling of Statement Ordering Dimensions . 68

6.1.6 Dependence Subsumption for UOV Construction . 69

6.2 UOV-based Allocation for Tiling . 70

6.3 UOV-based Allocation per Tile . 72

6.4 UOV Guided Index Set Splitting . 72

6.5 Memory Usage of Uniformization . 74

6.6 Discussion . 74

7 MPI Code Generation . 76

7.1 D-Tiling: Parametric Tiling for Shared Memory . 77

7.2 Computation Partitioning . 79

7.3 Data Partitioning . 79

7.4 Communication . 80

7.4.1 Communicated Values . 80

7.4.2 Need for Asynchronous Communication . 81

7.4.3 Placement of Communication . 82

7.4.4 Code Generation . 85

7.5 Evaluation . 86

7.5.1 Applicability to PolyBench . 88

7.5.2 Performance Evaluation . 88

7.6 Summary and Discussion . 94

8 Polyhedral X10 . 96

8.1 A Subset of X10 . 98

8.1.1 Operational Semantics . 98

8.1.2 Happens Before and May Happen in Parallel relations 102

8.1.3 Correspondence . 103

vi

8.2 The “Happens-Before” Relation as an Incomplete Lexicographic Order 105

8.3 Dataflow Analysis . 108

8.3.1 Potential Sources . 108

8.3.2 Overwriting . 110

8.4 Race Detection . 112

8.4.1 Race between Read and Write . 112

8.4.2 Race between Writes . 112

8.4.3 Detection of Benign Races . 113

8.4.4 Kernel Analysis . 113

8.5 Examples . 113

8.5.1 Importance of Element-wise . 114

8.5.2 Element-wise with Polyhedral . 114

8.5.3 Importance of Instance-wise . 115

8.5.4 Benefits of Array Dataflow Analysis . 116

8.6 Implementation . 117

8.7 Related Work . 119

8.8 Discussion . 120

9 Conclusions . 121

vii

Chapter 1

Introduction

Parallel processing has been a topic of study in computer science for a number of decades. However, it is

only in the past decade that coarse grained parallelism, such as loop level parallelism, become more than a

small niche. Until the processor manufacturers encountered the “walls” of power and memory [18, 56, 127],

the main source of increase in compute power came from increasing the processor frequency; through an easy

ride on the Moore’s Law. Now the trend has completely changed, and multi-core processors are the norm.

Compute power of a single core has stayed flat, or even decreased for energy efficiency, in the past 10 years.

Suddenly, parallel programming became a topic of high interest in order to provide continuous increase in

performance for the mass.

However, parallel programming is difficult. The moment parallelism is added to the picture, program-

mers now must think about many additional things. For example, programmers must first reason if a

particular parallelization is legal. Parallelism introduces non-determinism and parallel bugs that arise from

non-determinacy. Even if the parallelism is legal, is it efficiently parallelized?

One ultimate solution to this problem is automatic parallelization. If programmers can keep writing

sequential programs, which they are now used to, and leave parallelization as a job of the compiler, then the

increased compute power in the form of parallelism can easily be exploited.

However, automatic parallelization is very difficult due to many reasons. Given a program, the compiler

must be able to ensure that the parallelized program still outputs the same result. The analyses necessary

to provide such a guarantee is difficult, and currently known techniques are either over-approximate, by a

large degree, or are only applicable to a restricted class of programs. In addition, a sequential program is

already an over-specification in many cases. For example, sum of N numbers can be performed in O(logN)

steps in parallel, but in a sequential program, it takes O(N) steps. Unless the compiler can reason about

algebraic properties, associativity and commutativity in this case, it cannot exploit this parallelism.

An alternative approach for efficient and productive parallel programming is to develop new programming

languages designed for parallel programming [7, 17, 80, 105, 116, 130]. Currently well accepted methods of

parallel programming, such as OpenMP or Message Passing Interface (MPI), are essentially extensions to

existing languages, like C or Fortran. On one hand, this allows reuse of an existing code base, and the

learning curve may potentially be low. On the other hand, it requires both the compiler and programmers

to cope with languages that were not originally designed for parallelism.

1

1.1 Scope of the Dissertation

The focus of this dissertation is on polyhedral programs, a class of programs that can be reasoned by

a mathematical framework called the polyhedral model. For this class of programs—called Affine Control

Loops (ACLs) [90], or sometimes called Static Control Parts (SCoPs) [13, 30]—the polyhedral model enables

precise dependence analysis; statement instance-wise and array element-wise.

In the last decade, the polyhedral model has been shown to be one of the few successful approaches

to automatic parallelization. Although the applicable class of programs are restricted, fully automatic

parallelization has been achieved for polyhedral programs. Approaches based on polyhedral analyses are

now part of production compilers [39, 83, 98], and many research tools [16, 19, 46, 64, 51, 78, 86] that use

the polyhedral model have been developed.

In this dissertation, we address the following problems related to parallel processing and to polyhedral

compilation.

• Unexplored design space of polyhedral compilers. Current automatic parallelizers based on the poly-

hedral model rarely re-consider the memory allocation of the original program. Memory allocations

can have significant impact on performance by restricting applicable transformations. For example,

the amount of parallelism may be reduced when memory allocation is untouched. Moreover, none of

the polyhedral compilers take advantage of algebraic properties, such as those found in reductions.

• Distributed memory parallelization. The polyhedral model has been successful in automatically paral-

lelizing for multi-core architectures with shared memory. The obvious next step is to target distributed

memory systems, where the communication is now part of the programs, as opposed to implicit com-

munication through shared memory.

Distributed memory parallelization exposes two new problems that were conveniently hidden by the

shared memory: communication and data partitioning. The compiler must reason about (i) which

processors need to communicate, (ii) what values need to be communicated, and (iii) how to distribute

storage among multiple nodes.

• Determinacy guarantee of a subset of X10 programs. Emerging parallel languages have a common goal

of providing a productive environment for parallel programming. One of the important barriers that

hinder productivity is parallel bugs arising from non-deterministic behaviors.

The parallel constructs in X10 is more expressive than a commonly used form of parallelism: doall loops.

Thus, previously approaches for race detection of parallel loop programs are not directly applicable.

2

1.2 Contributions

The polyhedral model plays a central role in all of our contributions that address the problems describe

in the above. We present the following contributions in this dissertation:

• The AlphaZ system, a system for exploring the rich space of transformations and program manipula-

tions available in the polyhedral model.

• Automatic parallelization targeting distributed memory parallelism with support for parametric tiling.

• Extension of Array Dataflow Analysis [30] to a subset of programs in the explicitly parallel high

productivity language X10 [105].

The polyhedral model is now part of many tools and compilers [16, 19, 39, 46, 64, 51, 78, 83, 86, 98].

However, the design space explored by these tools is still a small subset of the space that can be explored

within the polyhedral model. The AlphaZ system, presented in Chapter 3, aims to enlarge this subset, and

to serve as a tool for prototyping analyses, transformations, and code generators. The key unique features

of AlphaZ are (i) memory allocation, and (ii) reduction. Existing tools do not support altering memory

allocation, or representing/transforming reductions. In addition, AlphaZ utilizes a technique from software

engineering, called Model-Driven Engineering [34, 35].

Using the AlphaZ system, we have developed a set of techniques for generating distributed memory

programs from sequential loop programs. The polyhedral model has been successful in automatically par-

allelizing for multi-core architectures with shared memory. The obvious next step is to target distributed

memory systems, where the communication is now part of the programs, as opposed to implicit commu-

nication through shared memory. Since affine dependences can introduce highly complex communication

patterns, we choose not to handle arbitrarily affine dependences.

We first question how “affine” affine loop programs are and show that most affine dependences can

be replaced by uniform dependences (in Chapter 5.) The “uniform-ness” of affine programs is utilized in

subsequent chapters that describe distributed memory code generation. In Chapter 6 we present techniques

for automatically finding memory allocations for parametrically tiled programs. Memory re-allocation is a

crucial step in generating distributed memory parallel programs. Chapter 7 combines the preceding chapters

and present a method for automatically generating distributed memory parallel programs. The generated

code differs from previously proposed methods [8, 15, 21, 97] by allowing parametrized tiling. We show that

our distributed memory parallelization scales as well as PLuTo [16], the state-of-the-art polyhedral tool for

shared memory automatic parallelization.

We have also extended the polyhedral model to handle a subset of X10 programs. Parallelism in X10

is expressed as asynchronous activities, rather than parallel loops. The polyhedral model has been used

3

for doall type parallelism, and cannot handle X10 programs. We present an extension to Array Dataflow

Analysis [30] to handle a subset of X10 programs in Chapter 8. We show that the result of dataflow analysis

can be used to provide race-free guarantees. The ability to statically verify determinism of a program region

can greatly improve programmer productivity.

Finally, we summarize and conclude the discussion in Chapter 9 and present future directions.

4

Chapter 2

Background and Related Work

In this chapter we provide the necessary background of the polyhedral model, and discuss related work

of our contributions. Section 2.1 covers basic concepts, such as polyhedral domains and affine functions,

as well as the representations of program transformations, such as schedules and memory allocation, in the

polyhedral model. In addition, Section 2.1.12 describes an equational view of polyhedral representations,

specific to AlphaZ (and MMAlpha [64].) Another important background, tiling, its parameterization, and

legality, is presented in Section 2.3.

We contrast AlphaZ with other tools and compilers that use the polyhedral model in Section 2.2. The

related work on distributed memory code generation is discussed in Section 2.4.

2.1 The Polyhedral Model

The strength of the polyhedral model as a framework for program analysis and transformation are its

mathematical foundations for two aspects that should be (but are often not) viewed separately: program

representation/transformation and analysis. Feautrier [30] showed that a class of loop nests called Affine

Control Loops (or Static Control Parts) can be represented in the polyhedral model. This allows compilers to

extract regions of the program that are amenable to analyses and transformations in the polyhedral model,

and to optimize these regions. Such code sections are often found in kernels of scientific programs, such as

dense linear algebra, stencil computations, or dynamic programming. These computations are used in wide

range of applications; climate modeling, engineering, signal/image processing, bio-informatics, and so on.

In the model, each instance of each statement in a program is represented as an iteration point, in a space

called iteration domain of the statement. The iteration domain is described by a set of linear inequalities

forming a convex polyhedron denoted as {z|〈constraints on z〉}.

Dependences are modeled as pairs of affine function and domains, where the function represents the

dependence between two iteration points, and the domain represents the set of points where the dependence

exists. Affine functions are expressed as (z → z′), where z′ consists of affine expressions of z. Alternatively,

dependences may be expressed as relations, sometimes called the dependence polyhedra, where functions

and domains are merged into a single object. As a shorthand to write statement S depends on statement T ,

we also write S[z]→ T [z′].

5

2.1.1 Matrix Representation

Iteration domains and affine dependences may sometimes be expressed as matrices. A polyhedron is

expressed as Az+b ≥ 0 where A is a matrix, b is a constant vector, and z is a symbolic vector constrained by

A and b. Similarly, an affine function is expressed as f(z) = Az+ b where A is a matrix, and b is a constant

vector. Relations take the same form as domains in its matrix form.

2.1.2 Program Parameters

In the polyhedral model, the program parameters (e.g., size of inputs/outputs) are often kept symbolic.

These symbolic values may also have a domain, and can also be used as part of the affine expressions. We

follow the convention that capitalized index names denote implicit parameters and are not listed as part of

z in both domains and functions. For example, when we write {i|0 ≤ i ≤ N}, N is some size parameter.

Similarly (i, j → i, j +N) use an implicit parameter N .

2.1.3 Properties of Polyhedral Objects

One of the advantages of modeling the program using polyhedral objects is the rich set of closure properties

that polyhedra and affine functions enjoy as mathematical objects. Preimage by function f , or image by its

relational inverse f−1, of a domain D is the set of points x such that f(x) ∈ D. Polyhedral domains (unions

of polyhedra) are closed under set operations. They are also closed under image by the relational inverse of

affine functions, also called preimage. Because of this closure property, affine transformations are guaranteed

to produce another polyhedra after its application.

In addition, a number of properties from linear algebra can be used to reason about the program. For

some of the analyses in this paper, we use one class of such properties, namely the kernels of matrices, and

by implication, of affine functions and domains. The kernel of matrix A, ker(A), is the set of vectors x such

that Ax = 0. Note that if ρ ∈ ker(A) then Az = A(z+ ρ), so the space characterized by the kernel describes

the set of vectors that do not affect the value of an affine function.

With an abuse of notation, we define the kernels of domains and affine functions to be the respective

kernels of the matrix that describes the linear part of the domain and affine functions. The kernel of domain

D represented as Ax+ b ≥ 0 in matrix representation, is ker(A).

Another property used in the document is linearity spaces, of domains. The linearity space HD of domain

D is the smallest affine subspace containing D. The subspace is the entire space ZN , unless all points in D

lie in a space of some lower dimension. In other words, if there are equalities in the domain D, the equalities

are what characterize the linearity space.

6

2.1.4 Uniform and Affine Dependences

A dependence is said to be uniform if the matrix A in the matrix representation is the identity matrix I.

In other words, uniform functions are translations by some constant vector. Since the constant vectors are

sufficient to characterize uniform dependences, they are referred as dependence vectors in this document.

2.1.5 Dependence vs Dataflow

In the literature of the polyhedral model, the word dependence is sometimes used to express flow of data,

but in this dissertation, when we write and draw a dependence, the arrow is from consumer to producer.

With an exception of dataflow vector, which is simply the negation of its corresponding dependence vector,

we use dependences in this document.

2.1.6 Memory-Based Dependences

The results of array dataflow analysis are based on the values computed by instances of statements,

and therefore do not need any notion of memory. As a consequence, program transformation using dataflow

analysis results usually requires re-considering memory allocation of the original program. Most existing tools

have made the decision to preserve the original memory allocation, and include memory-based dependences

as additional dependences to be satisfied.

2.1.7 Lexicographical Order

Lexicographical ordering is used to describe the relation between two vectors. In this paper we use �

and � to denote lexicographical ordering. Given two vectors z and z′, z � z′ if

∃k;∀i < k, zi = z′i, zk < z′k

In words, z lexicographically precedes z′ if some k-th element of z is less than z′, and for all elements i

that are before k, zi and z′i are equal.

Lexicographical ordering is the base notion of “time” in multi-dimensional polyhedra used in the poly-

hedral literature.

2.1.8 Polyhedral Reduced Dependence Graph

Polyhedral Reduced Dependence Graph (PRDG), sometimes called Generalized Dependence Graph, is a

concise representation of dependences in a program. Each node of the PRDG represents a statement in the

loop program, Nodes are connected with edges that represent dependences between statements. Nodes in

PRDG have an attribute, its domain, which is the domain of the corresponding statement. Edges have two

attributes, its domain and the dependence function; the pair of data that characterize a dependence. The

7

direction of the edge is the same as the dependence function, from the consumer to the producer. PRDG is

a common abstraction of the dependences used in various analyses and transformations.

2.1.9 Scanning Polyhedra

After analyzing and transforming polyhedral representation of loop programs, an important step is to

generate executable code in the end. The dominant form of such code generation is to produce loop nests

that scan each point in the iteration domain once, and only once, in lexicographical order [13, 91]. The

algorithm currently being used by most researchers was presented by Bastoul [13], which extends an earlier

version by Quilleré [91], and implemented as the Chunky Loop Generator (CLooG).

2.1.10 Schedule

Schedules in the polyhedral model are specified as multi-dimensional affine functions. These functions

map statement domains to another domain, where its lexicographic order denotes the order in which state-

ment instances are executed [31, 32]. These affine schedules encompass wide range of loop transformations,

such as loop permutation, fusion, fission, skewing, tiling, and so on. Not only that they represent trans-

formations given above, compositions of loop transformations are also handled as compositions of affine

functions.

2.1.11 Memory Allocation

There are a number of techniques for memory allocation in the polyhedral model [25, 69, 90, 112, 115].

Existing techniques all compute memory allocation of a statement; a node in the PRDG. Most techniques

require schedules to be given before computing memory allocations.

Allocations are expressed as pseudo-projections, a combination of affine functions and modulo factors.

The affine function, usually many-to-one, represents a projection that maps iteration points to (virtual) array

elements. All points in the kernel of the projection are mapped to the same element, and hence share the

same memory location. Modulo factors are specified for each dimension of the mapping, and when specified,

memory locations are reused periodically using modulo operations.

For example, (i, j → i, j) mod [2,−] is a memory allocation where two points [i, j] and [i′, j′] share the

same location in memory if i mod 2 = i′ mod 2 ∧ j = j′.

2.1.12 Polyhedral Equational Model

The AlphaZ system adopts an equational view, where programs are described as mathematical equations

using the Alpha language [76]. After array dataflow analysis of an imperative program, the polyhedral

representation of the flow dependences can be directly translated to an Alpha program. In addition, Alpha

has reductions as first-class expressions [62] providing a richer representation.

8

We believe that application programmers (i.e., non computer scientists), can benefit from being able

to program with equations, where performance considerations like schedule or memory remain unspecified.

This enables a separation of what is to be computed, from the mechanical, implementation details of how

(i.e., in which order, by which processor, thread and/or vector unit, and where the result is to be stored.)

To illustrate this, consider a Jacobi-style stencil computation, that iteratively updates a 1-D data grid

over time, using values from the previous time step. A typical C implementation would use two arrays to

store the data grid, and update them alternately at each time step. This can be implemented using modulo

operations, pointer swaps, or by explicitly copying values. Since the former two are difficult to describe

as affine control loops, the Jacobi kernel in PolyBench/C 3.2 [84] uses the latter method, and the code

(jacobi 1d imper) looks as follows:

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

A[i] = foo(B[i-1] + B[i] + B[i+1]);

for (i = 1; i < N-1; i++)

B[i] = A[i];

When written equationally, the same computation would be specified as:

A(t, i) =

t = 0 : Binit(i);

t > 0 ≤ i < N − 1 : foo(A(t− 1, i− 1), A(t− 1, i), A(t− 1, i+ 1));

t > 0 = i : A(t− 1, i);

t > 0 ∧ i = N − 1 : A(t− 1, i);

where A is defined over {t, i|0 ≤ t < T ∧ 0 ≤ i < N}, and Binit provides the initial values of the data

grid. Note how the loop program is already influenced by the decision to use two arrays, an implementation

decision, not germane to the computation.

2.1.12.1 System of Recurrence Equations

The polyhedral model has its origin in analyses of System of Recurrence Equations (SREs), where a

program is described as a system of equations, with no notion of schedule or memory [50]. A SRE is called

System of Uniform Recurrence Equations (SURE), if the dependences consists only of uniform dependences.

Similarly, if a system equations consists of affine dependences, it is called System of Affine Recurrence

Equations (SARE).

The polyhedral representation of, and hence the affine control loops themselves, can be viewed as SREs

using results of array dataflow analysis. The Alpha language is a superset of SAREs that in addition to an

SRE, can represent reductions as first class objects.

2.1.12.2 Change of Basis

Change of Basis (CoB) is a transformation used mostly in the equational side of the polyhedral mode.

CoB is a semantic preserving transformation used for multiple purposes. The transformation takes an affine

9

function T that admits a left inverse for all points in the domain to be transformed, T−1, and a target

statement/equation S, and transforms its domain by taking its image by T . Then, to preserve the original

semantics, dependences in the program are updated with the following rules:

• All dependences f to S are replaced by T ◦ f . Since S is transformed by T , composition with T is

necessary to reach the same point as the original program.

• All dependences f from S are replaced by f ◦ T−1. Since S is transformed by T , its inverse is first

applied to get back to the original space, and then f is applied to reach the same points as the original

program.

CoB is used to change the view of the program without changing what is computed. The view may be

its dependence patterns or shape of the domain and so on.

2.2 Polyhedral Compilation Tools

The polyhedral model has a long history, and there are many existing tools that utilize its power.

Moreover, it is now used internally in the IBM XL compiler family [98]. We now contrast AlphaZ with such

tools. The focus of our framework is to provide an environment to try many different ways of transforming

a program. Since many automatic parallelizers are far from perfect, manual control of transformations can

sometimes guide automatic parallelizers as we show later.

PLuTo

PLuTo is a fully automatic polyhedral source-to-source program optimizer tool that takes C loop nests

and generates tiled and parallelized code [16]. It uses the polyhedral model to explicitly model tiling and to

extract coarse grained parallelism and locality. Since it is automatic, it follows a specific strategy in choosing

transformations.

Graphite

Graphite is an optimization framework for high-level optimizations that are being developed as part

of GCC now integrated to its trunk [83]. Its emphasis is to extract polyhedral regions from programs that

GCC encounters, a significantly more complex task than what research tools address, and to perform loop

optimizations that are known to be beneficial.

AlphaZ is not intend to be full fledged compiler. Instead, we focus on intermediate representations that

production compilers may eventually be able to extract. Although codes produced from our system can

be integrated into a larger application, we do not insist that the process has to be fully automatic, thus

expanding the scope of transformations.

10

PIPS

PIPS is a framework for source-to-source polyhedral optimization using interprocedural analysis [46]. Its

modular design supports prototyping of new ideas by developers. However, the end-goal is an automatic

parallelizer, and little control over choices of transformations are exposed to the user.

Polyhedral Compiler Collections

Polyhedral Compiler Collections (PoCC) is another framework for source-to-source program optimiza-

tions, designed to combine multiple tools that utilize the polyhedral model [86]. Like AlphaZ, POCC also

seeks to provide a framework for developing tools like Pluto, and other automatic parallelizers. However,

their focus is oriented towards automatic optimization of C codes, and they do not explore memory (re)-

allocation.

MMAlpha

MMAlpha is another early system with similar goals to AlphaZ [64]. It is also based on the Alpha language.

The significant differences between the two are that MMAlpha emphasizes hardware synthesis (therefore,

considers only 1-D schedules, nearest-neighbor communication, etc.) It does not treat reductions as first

class (the first thing an MMAlpha user does is to “serialize” reductions), and does no tiling. Moreover, it is

based on Mathematica, and this limits its potential users by its learning curve and licensing cost. MMAlpha

does provide memory reuse in principle, but in its context, simple projections that directly follow processor

allocations are all that it needs to explore.

RStream

Rstream from Reservoir Labs performs automatic optimization of C programs [78]. It uses the polyhedral

model to translate C programs into efficient code targeting multi-cores and accelerators. Vasillache et al. [119]

recently gave an algorithm to perform a limited form of memory (re)-allocation (the new mapping must

extend the one in the original program). In addition, RStream is also fully automatic, while our focus is

on being able to express and explore different optimization strategies. Moreover, their tool is a commercial,

closed-source system (although they do mention source-level collaborations are possible.)

Omega

The collection of tools developed as part of the Omega project [52, 51, 87, 110] together cover a larger

subset of the design space than most other tools. The Omega calculator partially handles uninterpreted

function symbols, which no other tools support. Their code generator can also re-allocate memory [110].

However, reductions are not handled by Omega tools.

11

CHiLL

CHiLL is a high-level transformation and parallelization framework using the polyhedral model [19]. CHiLL

uses tools from the Omega project as its basis. It also allows users to specify transformation sequences

through scripts. However, it does not expose memory allocation.

POET

POET is a script-driven transformation engine for source-to-source transformations [131]. One of its goals

is to expose parameterized transformations via scripts. Although this is similar to AlphaZ, POET does not

check validity of the transformations, and relies on external analysis to verify the transformations in advance.

2.3 Tiling

Tiling is a well known loop transformation that was originally proposed as a locality optimization [47,

96, 109, 124]. It can also be used to extract coarser grained parallelism, by partitioning the iteration space

to tiles (blocks) of computation, some of which may run in parallel [47, 96].

2.3.1 Overview of Tiling

Tiling a d-dimensional loop nest usually results in 2d-dimensional tiled loop nest. In the resulting loop

nest, outer d-dimensional loop nest first visits all the tiles, and then another (inner) d-dimensional loop

nest visits all points in a tile. Thus, tiling changes the execution order of the program, which may lead

to better locality. We refer to the outer d-dimensional loops as the tile loops, and the inner d-dimensional

loops as the point loops. In addition, the points visited by the tile loops are called tile origins, which are the

lexicographically minimal points of the tiles. An example with 2D loop nest is illustrated in Figure 2.1.

Another important notion related to tiling is the categorization of tiles into three types:

• Full Tile: All points in the tile are valid iterations.

• Partial Tile: Only a subset of the points in the tile are valid iterations.

• Empty Tile: No point in the tile is a valid iteration.

To reduce control overhead, one of the goals in tile loop generation is to avoid visiting empty tiles.

Renganarayanan et al. [101] proposed what is called the OutSet that tightly over-approximates the set

of non-empty tile origins, constructed as a syntactic manipulation of loop bounds. Similarly, they have

presented InSet that exactly captures the set of full-tile origins.

12

for (i=1; i<10; i++)

for (j=1; j<10; j++)

...

(a) Original loop nest

(b) Original iteration space (c) Tiled iteration space

for (ti=1; ti <10; ti+=3)

for (tj=1; tj <10; tj+=3)

for (i=ti; i<min(ti+3 ,10); i++)

for (j=tj; j<min(tj+3 ,10); j++)

...

(d) Tiled loop nest

Figure 2.1: Example of tiling with 2D loop nest. Tiling is a loop transformation that transform the original
loop nest to tiled loop nest. Circled iteration point in each tile is the tile origin. The tile loop visits all points
in a tile in lexicographic order before visiting points in the (lexicographically) next tile. Note that the sizes
of the iteration space, as well as the tiles, are constants only for visualization purposes. Figures generated
by Tiling Visualizer [103].

13

2.3.2 Non-Rectangular Tiling

The tiling used in the above is categorized as rectangular tiling, where the hyper-planes that define the

tiles are along the canonic axes. In fact, most common tiling defined by hyper-planes that form hyper-

parallelepipeds; n-dimensional generalization of parallelograms and parallelepipeds; can be tiled as rectan-

gular tiles after skewing the iteration space [9].

Although tilings that cannot be expressed in this manner exits (e.g., [58]), rectangular tiling is currently

the preferred method. This is mainly due to the lack (or quality) of code generation techniques for non-

rectangular tiling. Rectangular tiling can be implemented efficiently as loop nests whereas other methods

require more complicated control structure. In the rest of this dissertation, we refer to rectangular tiling

when we mention tiling.

2.3.3 Parameterized Tiling

The choice of tile sizes significantly impacts performance. Numerous analytical models were developed for

tile size selection (e.g., [22, 102, 99, 60]; see Renganarayana’s doctoral dissertation [100] for a comprehensive

study of analytical models.) However, analytical models are difficult to create, and can lose effectiveness

due to various reasons, such as new architecture, new compilers, and so on. As an alternative method for

predicting “good” tile sizes, more recent approaches employ some form of machine learning [93, 114, 132].

In these methods, machine learning is used to create models as platform evolves, and to avoid the need for

creating analytical models to keep up with the evolution.

A complementary technique to the tile size selection problem is parameterization of tile sizes as run-time

constants. If the tile sizes are run-time specified constants, instead of compile-time, code generation and

compilation time can be avoided when exploring tile sizes. Tiling with fixed tile sizes; a parameter of the

transformation that determines the size of tiles, can fit the polyhedral model. However, when tile sizes are

parameterized, non-affine constraints are introduced and this falls out of the polyhedral formalism.

This led to the development of a series of techniques, beyond the polyhedral model, for parameterized tiled

code generation [43, 44, 55, 54, 53, 101]. Initially, parameterized tiling was limited to perfectly nested loops

and sequential execution of the tiles [55, 101]. These techniques were then extended to handle imperfectly

nested loops [43, 54], and finally to parallel execution of the wave-front of tiles [44, 53].

DynTile [44] by Hartono et al., and D-Tiling [53] by Kim et al. are the current state-of-the-art of

parameterized tiling for shared memory programs. These approaches both handle parameterized tiling of

imperfectly nested loops, and its wave-front parallelization. Both of them manage the non-polyhedral nature

of parameterized tiles by applying tiling as a syntactic manipulation of loops.

Our approach for distributed memory parallelization extends the ideas used in these approaches to handle

parametric tiling with distributed memory.

14

2.3.4 Legality of Tiling

Legality of tiling is a well established concept defined over contiguous subsets of the schedule dimensions

(in the RHS; scheduled space), also called bands [16]. These dimensions of the schedules are tilable, and are

also known to be fully permutable.

The RHS of the schedules given to statements in a program all refers to the common schedule space, and

have the same number of dimensions. Among these dimensions, a dimension is tilable if all dependences are

not violated (i.e., the producer is not scheduled after the consumer, but possibly be scheduled to the same

time stamp,) with a one-dimensional schedule using only the dimension in question. Then any contiguous

subset of such dimensions forms a legal tilable band.

We call a subset of dimensions in an iteration space to be tilable, if the identity schedule is tilable for

the corresponding subset.

2.4 Distributed Memory Parallelization

Although parallelism was not commonly exploited until the rise of multi-core architectures, it was used

in the High Performance Computing field much before multi-cores. In HPC, more computational power is

always demanded, and in many of the applications, such as simulating the climate, ample parallelism exists.

As a natural consequence, distributed memory parallelization has been a topic of study for a number of

decades.

When programming for distributed memory architectures, a number of problems that were not encoun-

tered in shared memory cases must be addressed. The two key issues that were not encountered in shared

memory parallelization are data partitioning and communication.

Data Partitioning: When generating distributed memory programs starting from sequential programs,

memory re-allocation must be re-considered. With shared memory, the same memory allocation was legal

and efficient. However, with distributed memory, reusing the same memory allocation as the original program

on all nodes multiplies the memory consumed by the number of nodes involved. Thus, it is necessary to

re-allocate memory such that the total memory consumed is comparable to the original usage to provide

scalable performance.

Communication: Since data are now local to each node, communication becomes necessary unless the

computations are completely independent. In shared memory, communication is all taken care by the

hardware or the run-time system. The only thing that is visible at the software are synchronization points,

indicating points at which values written by a processor become available to others.

15

Note the above two problems, and also the partitioning of computation, which also arise in shared memory,

are inter-related. The choice of data/computation partitioning can change what values are communicated

and vice versa.

We distinguish our work from others in the following aspects:

• We support parametric tiling. None of the existing approaches handle parametric tiling for distributed

memory parallelization.

• We explicitly manage re-allocation of memory. None of the existing polyhedral parallelizers for dis-

tributed memory even mention data partitioning. Instead, they use the same memory allocation as

the original sequential program on all nodes.

• In contrast to those non-polyhedral approaches that handle data partitioning, we use the polyhedral

machinery to:

– apply loop transformations to expose coarse grained parallelism,

– apply tiling, not performed by most approaches, and

– in contrast to those that perform tiling, we handle imperfectly nested affine loops.

• We require at least one dimension to be uniform, or can be made uniform. This restriction

– does not prevent us from handling most of PolyBench [84], and

– simplifies communication and enables optimization of buffer usage, as well as overlap of commu-

nication with computation.

2.4.1 Polyhedral Approaches

Early ideas of distributed memory parallelization with polyhedral(-like) technique were presented by

Amarasinghe [8]. Claßen and Griebl [21] later showed that, with polyhedral analysis, the set of values that

needs to be communicated can be found. However, no implementation or experimental evaluation of their

approach is available.

Bondhugula [15] has recently shown an approach that builds on previous ideas using the polyhedral

formalism to compute values to be communicated. The proposed approach is more general than ours in

that it handles arbitrarily affine dependences. However, the tile sizes must be compile-time constants. The

author do not mention data partitioning, and it appears that the original memory allocation is used. In

contrast, we handle parametric tile sizes, and we explicitly re-allocate memory to avoid excessive memory

usage.

Kwon et al. [59] have presented an approach for translating OpenMP programs to MPI programs. They

analyze shared data in the OpenMP program to compute the set of values that are used in a processor but

16

written in another. These values are communicated at the synchronization points in the original OpenMP

parallelization as MPI calls. They handle a subset of affine loop nests where the set of values communicated do

not change depending on the values of loop iterators surrounding the communication. Since parametrically

tiled programs are not affine, they do not handle parametric tiling. The authors do not mention data

partitioning other than input data, and their examples indicate that they do not touch the memory allocation.

2.4.2 Non-Polyhedral Approaches

The Paradigm compiler by Banerjee et al. [11] is a system for distributed memory parallelization. For

regular programs, they apply static analysis to detect and parallelized independent loops, and then insert

necessary communications.

Goumas et al. [37] proposed a system for generating distributed memory parallel code. Their approach is

limited to perfectly nested loops with uniform dependences. They use non-rectangular, non-parameterized,

tiling instead of skewing followed by rectangular tiling.

Li and Chen [71, 72] make a case that once computation and data partitioning is done, it is not difficult

to insert communications that correctly parallelize the program in distributed memory. However, a näıve

approach would result in point-to-point communication for each value used by other processors. They focus

on finding reference patterns that can be implemented as aggregated communications.

As part of the dHPF compiler developed for High Performance Fortran [45], Mellor-Crummey et al. [79]

use analysis on integer sets to optimize computation partitioning. In HPF, data partitioning is provided

by the programmer, and it is the job of the compiler to find efficient parallelization based on the data

partitioning. Although their approach is not completely automatic, they are capable of handling complex

data and computation decompositions such as replicating computations.

Pandore [10, 36] is a compiler that take HPF(-like) programs as inputs, and produces distributed memory

parallel code. Pandore uses a combination of static analysis and a run-time to efficiently manage pages of

distributed arrays. Instead of finding out which values should be communicated as a block, the communica-

tion is always at the granularity of pages. Similarly, data partitioning is achieved by not allocating memory

for pages not accessed by a node.

The main difference between these work and ours is the parallelization strategy. Most non-polyhedral

approaches either find a parallelizable loop in the original program, or start from shared memory paralleliza-

tions with such information. Instead, we first tile the iteration space, and use specific properties from tiled

iteration spaces in our distributed memory parallelization.

17

Chapter 3

The AlphaZ System

In this chapter, we present an open source polyhedral program transformation system, called AlphaZ,

that provides a framework for prototyping analyses and transformations. AlphaZ is used for implementing

the distributed code generator in Chapter 7. Memory re-allocation, and an extensible implementation of

parameterized tiled code generator are critical elements of the distributed memory code generator, making

AlphaZ an ideal system for its prototype implementation. Key features of AlphaZ are:

• Separation of implementation detail from the specification of computation. What needs to be com-

puted is represented as Systems of Affine Recurrence Equations (SAREs), which takes the form of an

equational language: Alpha.

Execution strategies, such as schedules, memory allocations, and tiling, are specified orthogonally to

the specification of computation itself.

• Explicit handling of reductions. Reductions; associative and commutative operator applied to a col-

lection of values; are useful abstractions of the computation. In particular, AlphaZ implements a very

powerful transformation that can reduce asymptotic complexity of programs using reductions [40].

Case studies to illustrate the potentials of memory re-allocation and reductions are presented in Chapter 4.

3.1 Motivations

The recent emergence of many-core architectures has given a fillip to automatic parallelization, especially

through “auto-tuning” and iterative compilation, of compute- and data-intensive kernels. The polyhedral

model is a formalism for automatic parallelization of an important class of programs. This class includes

affine control loops which are the important target for aggressive program optimizations and transformations.

Many optimizations, including loop fusion, fission, tiling, and skewing, can be expressed as transformation

of polyhedral specifications. Vasillache et al. [85, 118] make a strong case that a polyhedral representation

of programs is especially needed to avoid the blowup of the intermediate program representation (IR) when

many transformations are repeatedly applied, as is becoming increasingly common in iterative complication

and/or autotuning.

A number of polyhedral tools and components for generating efficient code are now available [16, 19,

44, 64, 51, 53, 78, 86]. Typically, they are source-to-source, and first extract a section of code amenable to

polyhedral analysis, then perform a sequence of analyses and transformations, and finally generate output.

18

Many of these tools are designed to be fully automatic. Although this is a very powerful feature, and is

the ultimate goal of the automatic parallelization community, it is still a long way away. Most existing tools

give little control to the user, making it difficult to reflect application/domain specific knowledge and/or to

keep up with the evolving architectures and optimization criteria. Some tools (e.g., CHiLL [19]) allow users

to specify a set of transformations to apply, but the design space is not fully exposed.

In particular, few of these systems allow for explicit modification of the memory (data-structures) of the

original program. Rather, most approaches assume that the allocation of values to memory is an inviolate

constraint that parallelizers and program transformation systems must always respect. There is a body of

work towards finding the “optimal” memory allocation [25, 69, 90, 112, 115]. However, there is no single

notion of optimality, and existing approaches focus on finding memory allocation given a schedule or finding

a memory allocation that is legal for a class of schedules. Therefore, it is critical to elevate data remapping

to first-class status in compilation/transformation frameworks.

To motivate this, consider a widely accepted concept, reordering, namely changing the temporal order

of computations. It may be achieved through tiling, skewing, fusion, or a plethora of traditional compiler

transformations. It may be used for parallelism, granularity adaptation, or locality enhancement. Regardless

of the manner and motivation, it is a fundamental tool in the arsenal of the compiler writer as well as the

performance tuner.

An analogous concept is “data remapping,” namely changing the memory locations where (intermediate

as well as final) results of computations are stored. Cases where data remapping is beneficial have been

noted, e.g., in array privatization [77] and the manipulation of buffers and “stride arrays” when sophisticated

transformations like time-skewing and loop tiling are applied [125]. However, most systems implement it

in an ad hoc manner, as isolated instances of transformations, with little effort to combine and unify this

aspect of the compilation process into loop parallelization/transformation frameworks.

3.2 The AlphaZ System Overview

In this section we present an overview of the AlphaZ system,

AlphaZ is designed to manipulate Alpha equations, either written directly or extracted from affine control

loops. It does this through a sequence of commands, written as a separate script. The program is manipulated

through a sequence of transformations, as specified in the script. Typically, the final command in the script

is a call to generate code (OpenMP parallel C, with support for parameterized tiling [44, 53]). The pen-

ultimate set of commands specify, to the code generator, the (i) schedule, (ii) memory allocation, and (iii)

additional (i.e., tiling related) mapping specifications.

19

Target Mapping

Intermediate
Representation

Transformations

Analyses

Code Gens

Alpha

C

C+OpenMP C+MPI C+CUDA

AlphaZ

Figure 3.1: AlphaZ Architecture: The user writes an Alpha program (or extract it from C), and gives it to
the system. The Intermediate Representation (IR) is analyzed and transformed with possible interactions
with the user, and after high-level transformations, user specifies execution strategies called Target Mapping,
some of which may also be found by the system through analyses. The specified Target Mapping and the
IR is then passed to the code generator to produce executable code.

The key design difference from many existing tools is that AlphaZ gives the user full control of the

transformations to apply. Our ultimate goal is to develop techniques for automatic parallelizers, and the

system can be used as an engine to try new strategies. However, this has been the “ultimate goal” for many

decades, well beyond the scope of a single doctoral dissertation. This allows for trying out new program

optimizations that may not be performed by existing tools with high degree of automation. The key benefits

for this are:

• Users can systematically apply sequences of transformations without re-writing the program by hand.

The set of available transformations includes those involving memory re-mapping, and manipulating

reductions.

• Compiler writers can prototype new transformations/code generators. New compiler optimizations may

eventually be re-implemented for performance/robustness.

The input to the system is a language called Alpha, originally used in MMAlpha. As an alternative, we

support automatic conversion of affine loop nests in C into Alpha programs. The PRDG extracted from loop

programs using array dataflow analysis and the information about statement bodies in the original program

is sufficient to construct the corresponding Alpha programs. The Alpha language may therefore be viewed

as an Intermediate Representation (IR) of a compiler, with concrete syntax attached.

Figure 3.1 shows an overview of the system. We first describe the Alpha language in Section 3.3, and

then present the Target Mapping in Section 3.4. Section 3.5 illustrates currently available code generators.

20

3.3 The Alpha Language

In this section we describe the Alpha language used in AlphaZ. The language we use is a slight, syntactic

variant of the original Alpha [62]. In addition, an extension to the language to represent while loops and

indirect accesses, called Alphabets has been proposed but is not fully implemented [94]. For the purposes

of this paper, references to Alphabets should be considered the synonymous to Alpha.

3.3.1 Domains and Functions

Before introducing the language, let us first define notations for polyhedral objects, domains and func-

tions. The textual representation of domains and functions resembles the mathematical notations with the

following changes to use standard characters:

• && denotes intersection and || denotes union

• →,≤,≥ are written ->, <=, >= respectively

We use the above textual representation when referring to a code fragment or when describing Alpha syntax.

When writing constraints for polyhedral domains, some short-hand notations are available. Constraints

such as a <= b and b <= c can be merged as a <= b <= c if the constraints are “transitively aligned” (<

and ≤ or > and ≥). If two indices share the same constraints, it can be expressed concisely by using a list

of indices surrounded by parentheses (e.g., a <= (b,c) .)

3.3.1.1 Parameter Domains

Polyhedral objects may involve program parameters that represent problem size (e.g., size of matrices)

as symbolic parameters. Except for where the parameters are defined, Alpha parser treats parameters as

implicit indices. For example, a 1D domain of size N is expressed as {i|0<=i<N}, and not {N,i|0<=i<N}.

Similarly, functions that involve parameters are expressed like (i->N-i), and not (N,i->N,N-i).

3.3.1.2 Index Names

Although textual representation of domains and functions use names to distinguish indices from each

other, the system internally does not use the index names when performing polyhedral operations. The

indices are distinguished from each other by dimensions. For example, domains:

• {i,j| 0<=i<N && 0<=j<M}

• {x,y| 0<=x<N && 0<=y<M}

• {j,i| 0<=j<N && 0<=i<M}

• {i,x| 0<=i<N && 0<=x<M}

21

are all equivalent, since constraints on the first dimension are always 0 to N, and constraints on the second

dimension are always 0 to M. Similarly, the index names can be different for each polyhedron in a union of

polyhedra. For example, {i,j| 0<=i<N && 0<=j<M} || {x,y| 0<=x<P && 0<=y<Q} is valid. The system

does make an effort to preserve index names during transformations, but it cannot be preserved in general.

3.3.2 Affine Systems

An Alpha program consists of one or more affine systems. The high-level structure of an Alpha system

is as follows:

affine <name > <parameter domain >

input

(<type > <name > <domain >;)*

output

(<type > <name > <domain >;)*

local

(<type > <name > <domain >;)*

let

(<name > = <expr >;)*

.

Each system corresponds to a System of Affine Recurrence Equations (SARE). The system consists of a

name, a parameter domain, variable declarations, and equations that define values of the variables.

3.3.2.1 Parameter Domain

Parameter domain is a domain with indices and constraints that are true for all domains in the system.

The indices in this domain are treated as program parameters mentioned above, and are implicitly added to

all domains in the rest of the system.

3.3.2.2 Variable Declaration

Variable declarations specify the type and domain of each variable. We currently support the following

types int, long, float, double, char, bool. The specified domain should have a distinct point for each

value computed throughout the program, including intermediate results. It is important not to confuse

domains of variables with memory, but rather as simply the set of points where the variable is defined. Some

authors my find is useful to view this as single assignment memory allocation, where every memory location

can only be written once.1 Each output and local variable may correspond to a statement in a loop program,

or an equation in an SRE. The body of the statement/equation is specified as Alpha expressions following

the let keyword.

1We contend that so called, “single assignment” languages are actually zero-assignment languages. Functional language
compilers almost always reuse storage, so nowhere does it make sense to use the term “single” assignment.

22

Table 3.1: Expressions in Alpha.

Expression Syntax Expession Domain

Constants Constant name or symbol DP

Variables V (variable name) DV

Operators op(Expr1, . . . , ExprM)

M⋂
i=1

DExpri

Case case Expr1; . . . ; ExprM esac

M⊎
i=1

DExpri

If if Expr1 then Expr2 else Expr3 DExpr1
∩ DExpr2

∩ DExpr3

Restriction D′ : Expr D′ ∩ DExpr

Dependence f@Expr f−1(DExpr)
Index Expression val(f) (range of f must be Z1) DP

Reductions reduce(⊕, f, Expr) f(DExpr)

3.3.2.3 External Functions

External functions may additionally be declared in the beginning of an Alpha program. External function

declarations take the form of C function prototypes/signatures with scalar inputs and outputs. Declared

external functions can be used as point-wise operators, and are assumed to be side effect free.

3.3.3 Alpha Expressions

Table 3.1 summarizes expressions in Alpha. Expressions in Alpha also have an associated domain com-

puted from the leaf (either constants or variables, where the domain is defined on its own) using domains

of its children. These domains denote where the expression is defined and could be computed. Domain

DP in the table above, shown as the domain of constants and index expressions, is the parameter domain.

These expressions can be evaluated for the full universe, and thus its expression domain is the intersection

of universe with the parameter domain.

The semantics of each expression when evaluated at a point z in its domain is defined as follows:

• a constant expression evaluates to the associated constant.

• a variable is either provided as input or given by an equation; in the latter case, it is the value, at z,

of the expression on its RHS.

• an operator expression is the result of applying op on the values of its arguments at z. op is an

arbitrary, strict point-wise, single valued functions. Also note that external functions are like user-

defined operators.

• a case expression is the value at z of that branch whose domain contains z. Branches of a case expression

are defined over disjoint domains to ensure that the case expression is uniquely defined.

23

• an if expression if EC then E1 else E2 is the value of E1 at z if the value of EC at z is true, and the

value of E2 at z otherwise. EC must evaluate to a boolean value. Note that the else clause is required.

In fact, an if-then-else expression in Alpha is just a special (strict) point-wise operator.

• a restriction of E is the value of E at z.

• the dependence expression f@E is the value of E at f(z). The dependence expression in our variant of

Alpha use function joins instead of compositions. For example, f@g@E is the value of E at g(f(z)),

whereas the original Alpha language defined by Mauras used E.g.f .

• the index expression val(f) is the value of f evaluated at point z.

• reduce(⊕, f, E) is the application of ⊕ on the values of E at all points in its domain DE that map

to z by f . Since ⊕ is an associative and commutative binary operator, we may choose any order of

application of ⊕.

It is important to note that the restrict expression only affects the domain, and not what is computed

for a point. This expression is used in various ways to specify the range of values being computed for an

equation. In addition, identity dependence is assumed for variable expressions without a surrounding de-

pendence expression. Similarly, function to zero-dimensional space from the surrounding domain is assumed

for constant expressions.

3.3.3.1 Reductions in Alpha

Reductions, associative and commutative operators applied to collections of values, are explicitly repre-

sented in the intermediate representation of AlphaZ. Reductions often occur in scientific computations, and

have important performance implications. For example, efficient implementations of reductions are available

in OpenMP or MPI. Moreover, reductions represent more precise information about the dependences, when

compared to chains of dependences.

The reductions are expressed in the following form as reduce(⊕, fp, Expr), where op is the reduction

operator, fp is the projection function, and E is the expressions/values being reduced. The projection

function fp is an affine function that maps points in Zn to Zm, where m is usually smaller than n (sof f

is many-to-one mapping.) When multiple points in Zn are mapped to a same point in Zm, the values of

Expr at those points are combined using the reduction operator. For example, commonly used mathematical

notations such as Xi =

n∑
j=0

Ai,j is expressed as X(i) = reduce(+, (i, j → i), A(i, j)). This is more general

than mathematical notations, allowing us to concisely specify reductions with non-canonic projections, such

as (i, j → i+ j).

24

3.3.3.2 Context Domain

Each expression is associated with a domain where the expression is defined, but the expression may not

need to be evaluated at all points in its domain. Context domain is another expression attribute, denoting

the set of points where the expression must be evaluated [26]. The context domain of an expression E is

computed from its domain and the context domain of its parent.

The context domain XE of the expression E is:

• DV ∩ DE if the parent is an equation for variable V.

• f(XE′) if E′ is E.f .

• f−1p (XE′) ∩ DE if E′ is reduce(⊕, fp, E).

• XE′ ∩ DE′ if the parent E′ is any other expression.

This distinction of what must be computed and what can be computed is important when the domain and

context domain are used to analyze the computational complexity of a program.

3.3.4 Normalized Alpha

Alpha programs can become difficult to read, especially as program transformations are composed, and

may have complicated expressions such as case or if expressions.

For example, consider the equation below (drawn from [62]).

U = case

{i,j|j==O} : X;

{i,j|j>=1} : (i,j->i+j)@(Y+Z)

* case

{i,j|i==0 && j>0} : W1;

{i,j|i>=1 && j>0} : W2;

esac;

esac;

it would be much more readable if it were rewritten as:

U = case

{i,j|j==0} : X;

{i,j|i==0 && j>=1} : ((i,j->i+j)@Y + (i,j->i+j)@Z) * W1;

{i,j|i>=1 && j>=1} : ((i,j->i+j)@Y + (i,j->i+j)@Z) * W2;

esac;

Note how the case expressions are now “flattened.” This flattening is the result of a transformation

called normalization, as proposed originally by Mauras [76]. Normalized programs are usually easier to read

since the branching of the cases are only at the top-level expression, and the reader does not have to think

about restrict domains at multiple levels of case expressions. The important properties of normalized Alpha

programs are:

25

• Case expressions are always the top-level expression of equations or reductions, and there is no nesting

of case expressions.

• Restrictions, if any, are always just inside the case, and are also never nested. The expression inside a

restriction has neither case nor restriction, but is a simple expression consisting of point-wise operators

and dependence expressions.

• The child of dependence expressions are either a variable, a constant, or a reduce expression.

3.3.4.1 Normalization Rules

The following rules are used to normalize Alpha programs [76]. As a general intuition, restrict expressions

are taken higher up in the AST, while dependence expressions are pushed down to the leaves.

1. f@E ⇒ E, if f(z) = z; Eliminating identity dependences.

2. f@(E1 ⊕ E2)⇒ (f@E1)⊕ (f@E2); Distribution of dependence expressions.

3. (D : E1) ⊕ E2 ⇒ D : (E1 ⊕ E2); Promotion of restrict expressions. Since E1 ⊕ E2 is only defined for

the set of points where both E1 and E2 are defined, restrict expressions can be applied to both.

4. E1 ⊕ (D : E2)⇒ D : (E1 ⊕ E2); Same as above.

5. f2@(f1@E)⇒ f@E, where f = f1 ◦ f2; Function composition.

6. f2@val(f1)⇒ val(f), where f = f1 ◦ f2; Function composition involving index expressions.

7. D1 : (D2 : E) ⇒ D : E, where D = D1 ∩ D2; Nested restrictions are equivalent to one restriction by

the intersection of the two.

8. caseE1
1 ; . . . caseE2

1 ; . . . E2
n; esac . . . E1

m; esac ⇒ caseE1
1 ; . . . E2

1 ; . . . E2
n; . . . E1

m; esac; Flattening of

nested case expressions.

9. E ⊕ (caseE1; . . . En; esac)⇒ case (E ⊕ E1); . . . (E ⊕ En); esac;

Distribution of point-wise operations.

10. (caseE1; . . . En; esac)⊕ E ⇒ case (E1 ⊕ E); . . . (En ⊕ E); esac; Same as above.

11. f@(caseE1; . . . En; esac)⇒ case (f@E1); . . . (f@En); esac;

Distribution of dependence expressions.

12. D : (caseE1; . . . En; esac)⇒ caseD : E1; . . . D : En; esac;

Distribution of restrict expressions.

26

13. f@(if E1 thenE2 elseE3)⇒ if (f@E1) then (f@E2) else (f@aE3);

Distribution of dependence expressions.

14. if (D : E1) thenE2 elseE3 ⇒ D : (if E1 thenE2 elseE3); Promotion of restrict expressions. If-then-

else expressions are only defined for the set of points where E1, E2, and E3 are defined.

15. if E1 then (D : E2) elseE3 ⇒ D : (if E1 thenE2 elseE3); Same as above.

16. if E1 thenE2 else (D : E3)⇒ D : (if E1 thenE2 elseE3); Same as above.

17. if (caseE1
1 ; . . . E1

n; esac) thenE2 elseE3

⇒ case (if E1
1 thenE2 elseE3); . . . (if E1

n thenE2 elseE3); esac;

Distribution of if-then-else into case expressions.

18. if E1 then (caseE2
1 ; . . . E2

n; esac) elseE3

⇒ case (if E1 thenE
2
1 elseE3); . . . (if E1 thenE

2
n elseE3); esac; Same as above.

19. if E1 thenE2 else (caseE3
1 ; . . . E3

n; esac)

⇒ case (if E1 thenE2 elseE
3
1); . . . (if E1 thenE2 elseE

3
n); esac; Same as above.

3.3.5 Array Notation

For readability, an abbreviated notation is used for dependence expressions in parts of this dissertation.

Since the examples we encounter are normalized, the parent of a variable expression is always a dependence

node. For example, let A be a variable with one-dimensional domain, and it is used by another expression

with 3D domain. Then the variable must be accessed as A.f , where f is an affine function from Z3 to Z1.

For example, A.(i, j, k → k) is an access to a one-dimensional variable A from a 3D space by the dependence

function (i, j, k → k).

However, when the index names are unambiguous from the context, we use the array notation and only

write the RHS of the function. For the above example, the corresponding expression in array notation is

A[k] when it is clear from the “context” that the indices for 1st to 3rd dimensions are named i, j, k.

Array notation was created to allow dependence to variables resemble array accesses. In addition to

dependences, there are other syntactic conveniences that rely on context information. These context-sensitive

syntax are collectively called array notations. Other array notations in Alpha are:

• Index Expressions may use array notations similar to dependences. (e.g., val(i, j, k → i− j + 10) may

be written as [i− j + 10])

• Restrict Expressions may omit the index names in its restrict domain. Index names of restrict domains

must either be fully given or fully omitted, and names from the context are used when omitted. (e.g.,

{|0<=i<N}).

27

• Reduce Expressions may specify their projection function using array notation. Array notation for

projection functions is only applicable when the function is canonic. With canonic projections, index

names for new dimensions may be specified with array notation. For example, reduce(+, (i,j->i),

...) may be written as reduce(+, [j], ...) .

Context of array notations are either defined by the LHS of the surrounding equation, or by a surrounding

reduce expression. In the LHS of the equation, the variable name may be accompanied with a list of index

names. When index names are given in the LHS, then those names are treated as the context in its RHS

expressions. However, this context may be over written by a reduce expression. When a reduce expression is

encountered, all its children will now be in a different context, defined by the LHS of the projection function.

New index names will be simply appended if the projection function was specified with array notation.

For example, consider the following equation:

A[i,j] = X[i,j] + reduce(+, (x,y,z->x,z), Y[x-y+z]);

Access to X uses the context defined by the LHS of the equation, but access to Y uses the context defined by

the reduce expression.

3.3.6 Example

We take a simple computation, matrix multiplication to illustrate basic syntax of the language. Matrix

multiplication using reduction is written as follows in alphabets:

affine matrix_product {N|N>0}

input

double A,B {i,j|0<=(i,j)<N};

output

double C {i,j|0<=(i,j)<N};

let

C = reduce(+, (i,j,k->i,j), (i,j,k->i,k)@A * (i,j,k->k,j)@B);

.

Note that we only use one program parameter in the above example to avoid clutter, making it a square

matrix multiplication.

Matrix multiplication can be written as follows without using reductions:

affine matrix_product {N|0<N}

input

double A,B {i,j|0<=(i,j)<N};

output

double C {i,j|0<=(i,j)<N};

local

double temp_C {i,j,k|0<=(i,j,k)<N};

let

C = (i,j,k->i,j,N-1) @temp_C;

temp_C = case

28

{i,j,k|k==0} : (i,j,k->i,k)@A * (i,j,k->k,j)@B;

{i,j,k|k> 0} : (i,j,k->i,k)@A * (i,j,k->k,j)@B

+ (i,j,k->i,j,k-1) @temp_C;

esac;

.

Without reductions, the program must explicitly specify dependences for accumulation of the result matrix

C. In the above program, accumulation is performed in a local variable temp C.

The matrix multiplication example in array notation is written as follows:

affine matrix_product {N|0<N}

input

double A,B {i,j|0<=(i,j)<N};

output

double C {i,j|0<=(i,j)<N};

let

C = reduce(+, [k], A[i,k] * B[k,j]);

.

affine matrix_product {N|0<N}

input

double A,B {i,j|0<=(i,j)<N};

output

double C {i,j|0<=(i,j)<N};

local

double temp_C {i,j,k|0<=(i,j,k)<N};

let

C[i,j] = temp_C[i,j,N-1];

temp_C[i,j] = case

{|k==0} : A[i,k] * B[k,j];

{|k> 0} : A[i,k] * B[k,j] + temp_C[i,j,k-1];

esac;

.

3.4 Target Mapping: Specification of Execution Strategies

In this section we describe the Target Mapping (TMap) for specifying execution strategies. TMap consists

of three main specifications, schedule to define when to compute, processor allocation for where to compute,

and memory allocation for where to store the results. We will use a simple 3-point stencil computation with

1D data, shown in Figure 3.2, as an example in this section.

TMap is used for exploring transformations described as the combination of schedule, processor allo-

cation, and memory allocations. In addition to these main axes, additional specifications such as tiling is

also specified in TMap. The main specifications are specified per “variable” in alphabets programs, which

corresponds to statements in ACLs.

29

affine jacobi1D {N,T|N>0 && T>0}

input

double Ain {i|0<=i<N}

local

double A {t,i|0<=i<N && 0<=t<=T}

output

double Aout {i|0<=i<N}

let

A[t,i] = case

{t==0} : Ain[i,j]

{t>0 && 1<=i<N-1} :

(A[t-1,i] + A[t-1,i-1] + A[t-1,i+1]) * 0.333333;

{t>0 && i==0} || {t>0 && i==N-1} : A[t-1,i];

esac;

Aout[i] = A[T,i];

.

Figure 3.2: Alpha specification of 3-point Jacobi stencil.

3.4.1 Space-Time Mapping

We use multi-dimensional affine functions to jointly represent schedules and processor allocation. We

call this multi-dimensional mapping the space-time (ST) mapping. Space-time mapping maps domains of

variables to others, where each dimension will eventually corresponds to a loop in the generated code.

The following restrictions apply to the given mapping:

• The ST maps for all variables must have the same number of destination dimensions. Since all state-

ments must be placed relative to each other, all statements must be scheduled in a common space.

• The mapping must be bijective, so that the statements are executed for the appropriate point in its

domain.

Space-time mapping can be seen as multi-dimensional schedule [32], and is sometimes referred to as a

full-dimensional schedule. In this dissertation, the non-parallel dimensions of the space-time mapping are

referred to as schedules.

3.4.1.1 Schedule

We first describe the case when the entire space-time mapping is the schedule—sequential programs. A

large number of loop transformations can be expressed with multi-dimensional affine schedules, and they are

used by most program transformation tools using the polyhedral model.

For example, the schedule (i,j->j,i) can be viewed as a loop permutation when compared to another

schedule (i,j->i,j). Similarly, the schedule (t,i->t,t+i) corresponds to loop skewing, skewing i loop by

t.

30

How a user may specify the above schedule for loop skewing in our script is illustrated below:

prog = ReadAlphabets (" jacobi1D.ab");

SetSTMap(prog , "A", "(t,i->t,i+t)");

SetSTMap command is used to specify space-time mapping for each variable.

3.4.1.2 Processor Allocation

In AlphaZ, processor allocation is part of the space-time mapping, and is distinguished from the time

component of the ST mapping by annotations given to dimensions. After specifying the space-time mapping,

certain dimensions may be flagged as parallel using SetParallel command.

For example, we may first use the SetSTMap command to specify lexicographic schedule, and then

SetParallel command to flag the inner dimensions as parallel. Dimensions of ST mappings are specified

as integer index starting from 0.

The script to specify ST mapping for executing the inner loop of Jacobi 1D stencil is the following:

prog = ReadAlphabets (" jacobi1D.ab");

SetSTMap(prog , "A", "(t,i->t,i)");

SetSTMap(prog , "Aout", "(i->T-1,i)");

SetParallel(prog , 1);

3.4.1.3 Ordering Dimensions

In addition to sequential and parallel dimensions, another possible dimension type is called the ordering

dimension. When generating imperfect loop nests from polyhedral representation, the common practice is

to use additional dimensions, with constant values, to denote ordering of the loops. For example, given

two statements S1 and S2 with the same domain {i, j|0 ≤ (i, j) < N}, generating code with schedules

θS1 = (i, j → i, 0, j) and θS2 = (i, j → i, 1, j) will produce:

for (i=0; i < N; i++)

for (j=0; j < N; j++)

S1

for (j=0; j < N; j++)

S2

If, only the j loop surrounding S1 is to be executed in parallel, the user may specify the values of ordering

dimensions that distinguish the target loop as an optional argument to the SetParallel command as follows:

SetSTMap(prog , "S1", "(i,j->i,0,j)");

SetSTMap(prog , "S2", "(i,j->i,1,j)");

SetParallel(prog , "0", 2);

31

3.4.2 Memory Mapping

Memory allocation is specified through multi-dimensional affine functions with dimension-wise modulo

operation, called modular mapping or pseudo projections. This representation is commonly used by existing

approaches for optimal memory allocation [69, 90, 112, 115]. Another representation using integer lattices

may also be represented as modular mappings [25].

For the 3-point Jacobi stencil example, memory allocation corresponding to the commonly used “ping-

pong” style allocation is specified by the following script:

prog = ReadAlphabets (" jacobi1D.ab");

SetMemoryMapping(prog , "A", "(t,i->t,i)", "2 ,0");

Two arrays of size N are used alternately in each iteration of the time loop, achieving the ping-pong style

computation of Jacobi stencil. The convention is to treat modulo factor 0 as projection without modulo

operations.

3.4.2.1 Reductions

AlphaZ provides two possible ways to specify schedules of reduction expressions. One is to view each

reduction as “atomic” operations, and to schedule the domain of the answers of reductions. The other is to

assign time stamps to each point in the body of reductions.

The latter provides more control over how the computations are executed, while the former is a simpler

abstraction. Existing scheduling techniques for programs with reductions only handle the former case, and

scheduling reduction bodies is an open problem, although a partial solution was proposed by Gautam et

al. [41].

The latter option is only applicable if the reduce expression is the top-most expression of an equation.

Then the space-time mapping given to the variable on the LHS of the equation can be specified to schedule

the reduction body. In such cases, the LHS of the STmap must have the dimensionality equal to that of the

reduction body.

Since reduction involves projection, the dimensionality is usually different between the reduction body

and the answer space, and thus the same command SetSTMap may be used for both purposes.

3.4.3 Additional Specifications

Target Mapping described above forms the basis for specifying execution strategies orthogonal to the spec-

ification of what is computed. However, such a TMap is not yet complete. Additional, optional, specifications

will be needed for code generators to accommodate other strategies such as tiling and synchronization, and

possibly code generator specific options. The purpose of TMap is to decouple optimization strategies from

the input specification and code generators, so that design space exploration and orthogonal specification are

32

both possible. Thus, it is best if options for future code generators are also decoupled and exposed through

TMap.

3.4.3.1 Tiling

Tiling is a well known loop transformation for data locality and extracting coarse grained parallelism [47,

123]. The additional specification required for tiling is which dimensions are to be tiled, and tile sizes.

3.5 Code Generators

There are several code generators available in AlphaZ, and more are being developed. The code generator

takes a program with Target Mapping and produces executable code. Current code generators all target C

as the target output language.

How the Target Mapping is used largely depends on the code generator. Some specialized code generators

will ignore certain specifications, or partially modify them to fit their purpose.

In this section, we describe two of the available code generators.

• WriteC: Demand driven code generator that does not require any TMap specification.

• ScheduledC: Code generator that fully respects the TMap specification. This code generator is intended

to be the core for more specialized code generations.

The basic interface to AlphaZ generated code is function calls. The generated code includes a function

for each system in Alpha, where all the inputs and parameters are given as function arguments. In the

generated C code, we also take pointers to output arrays as function arguments.

3.5.1 WriteC

WriteC is designed to provide executable code for any legal input specification without specifying any

additional information, in other words, not even a schedule is specified. This code generator does not need

TMap to be given, indeed, if this code generator is called and a TMap is given, most of it will be ignored.

However, it respects the memory allocation for input and output variables because this affects how the

generated code interfaces with existing code. If the given program contains cyclic dependences, it is detected

and flagged at run-time.

Demand driven code produced by this code generator traverses the dependences “backwards” from the

outputs to find out the values required to compute the output. The order of evaluation is specified implicitly

when a value is “demanded,” hence the name demand-driven code generator.

However, a naive implementation of this execution strategy may introduce inefficiencies when a value is

used multiple times. For example, the equation fib(n) = fib(n− 1) + fib(n− 2), which define the Fibonacci

33

series , will require the result of fib(n− 2) when computing fib(n) and also when computing fib(n− 1).

To avoid such redundant computation, the demand-driven code uses memoization to keep track of previously

computed values using the approach proposed by Wilde and Rajopadhye [122].

3.5.2 ScheduledC

ScheduledC produces loop programs that execute the computations in the order specified by the TMap.

The STmap, memory mapping, and tiling specifications are all respected. The program produces C programs

and uses OpenMP for parallelism.

CLooG [13] is used to generate loop nest that scans all equations in Alpha. The Alpha program is

first normalized, and then each branch of the top-level case expression, becomes a separate statement in

the generated loop program. Before generating statements and calling CLooG, the space-time mapping of

each variable is reflected by applying Change of Basis (recall Section 2.1.12.2.) After the application of

CoBs, lexicographic scan of the statement domains becomes the scanning order specified by the space-time

mapping.

CLooG returns an Abstract Syntax Tree, called clast that represents the generated loops. If tiling is

specified in the given TMap, we use D-Tiling [53] to transform the clast. The clast is then pretty printed as

C loop nests and then combined with additional codes, such as statement bodies and memory allocations to

produce the final output.

3.6 AlphaZ and Model-Driven Engineering

Model-Driven Engineering (MDE) [35] is a technique of software engineering that place models; abstrac-

tions of knowledge of the target domain; as the center of development. AlphaZ and GeCoS [48] are compiler

infrastructures that use MDE techniques in their development [34]. These two compiler infrastructures share

a common model for manipulating polyhedral objects.

We find MDEs to be an attractive technique for research compiler development because many challenges

in compiler development are addressed by MDE tools. The modeling community has developed a number of

tools to ease software development, and to derive as much as possible from the model specifications. These

tools are often directly applicable to compiler development.

For example, data structures for model instances can be generated automatically from model specifica-

tions. There are now tools to generate parsers given concrete syntax, to transform models, and to pretty

print a model instance.

The key connection between modeling and compiler is the observation that the compiler Intermediate

Representations (IRs) are models. The compiler IR, which usually is an Abstract Syntax Tree, is an abstrac-

tion of the source program, and a compiler performs analyses and transformations on the AST. Then, all

34

tools for parser generation, model manipulation, and pretty printing can directly be used to build the main

phases of a compiler.

We emphasize that MDE is attractive for research compilers, but not necessarily for production compilers.

The production compilers need to be robust and efficient, whereas research compilers are only used for

prototyping new ideas. When the performance of compiler itself is not the critical factor, overheads associated

with generative programming in MDE are not major concerns.

AlphaZ use the Eclipse Modeling Framework for model driven development. We use four models in

AlphaZ:

• polyhedralIR; the AST of Alpha programs. Most program transformations manipulate this model.

• polyIRCG is a separate model for code generation. This model captures high level structures of the

desired code, such as functions and their layout, placement of memory allocations, main loops, and

other code fragments. Such abstraction allows us to easily reuse common components across multiple

code generators (e.g., malloc and free.)

• polymodel, a model shared between GeCoS and AlphaZ that abstracts polyhedral objects, such as

domains and functions.

• prdg models the Polyhedral Reduced Dependence Graph, and are used for some of the analyses such

as scheduling. This model is also shared with GeCoS.

These models are all developed using the Eclipse Modeling Framework (EMF) [1]. We briefly describe

the three tools we use extensively in AlphaZ.

• Xtext [4] is a tool that we use for generating Alphabets parsers. It is more than a parser generator,

and provides us with editors with syntax highlighting, content-assists, and many other features.

• Tom/Gom [2] is a term rewriting system that we use to manipulate our models. Some transformations

are much easier to specify as re-writing compared to visitors. For example, normalization of Alpha pro-

grams is implemented using a set of rewriting rules, which is a much more clean and easy specification

compared to visitor based implementations.

• Xtend [3] is a DSL for code generation. It encourages modularized design of code generators, and allows

modules to be swapped seamlessly. For example, we have two implementations of memory allocators,

one that allocates arrays of arrays for multidimensional arrays, and another that allocates a linearized

array, and assigns appropriate pointers for multi-dimensional access. Most of the specifications for these

variants are common, and thus shared. The specifications are concisely specified through template-

based code generation of Xtend, where the majority of the output is specified with plain texts.

35

Perhaps one of the most powerful benefit of using MDE comes from the modeling activity itself, and

generative programming. Research compilers are often developed by generations of students, working on

different projects. We need students to share their code as much as possible, but the coding style can largely

vary. Modeling helps in communication between students at a higher level, where implementation details

are irrelevant.

Furthermore, the base data structures and code skeletons are generated from model specifications. This

gives a homogenized code structure across all systems that use the same framework, and also matches the

model specification. Such homogenization can manage code variations among students to some extent,

making sharing of code less painful.

3.7 Summary and Discussion

We have presented a system for exploring analyses and transformations in the polyhedral model. The

two key features in our system are:

• the ability to re-consider memory allocations, and

• explicit representation of reductions.

Polyhedral representations of programs are expressed as systems of equations; which can either be ex-

tracted from loop nests, or programmed directly in an equational language. These polyhedral programs are

manipulated using script driven transformations, to reflect human analyses or domain specific knowledge

to help guide optimizing translations. Then executable code is generated by specifying schedule, memory

allocation, and other implementation details.

AlphaZ has a number of transformations and code generators, and others are actively being developed.

In addition to what previous tools have focused on, we believe that exploring memory allocations is very

important. We expect it to become even more important as we target distributed memory machines.

While many tools focus on fully automated program transformations, a tool like AlphaZ that expose as

much control to the user is helpful in developing and prototyping new ideas.

36

Chapter 4

AlphaZ Case Studies

In this chapter, we illustrate possible uses of our system through two case studies that benefit from

explicit representation of reductions and memory re-mapping.

Section 4.1 illustrates the importance of memory re-mapping, with a benchmark from PolyBench/C

3.2 [84], and Section 4.2, presents an application of a very powerful transformation on reductions, called

Simplifying Reductions. The work in Section 4.2 is an extension of the MS thesis of Pathan [82] and was

done in collaboration with him and Gautam.

We describe the necessary elements of the Simplifying Reductions used in this case study in Section 4.2.2.

Note that this is not a new contribution of this dissertation, and are re-illustration of the necessary subset

for completeness sake. Please refer to the original article by Gupta and Rajopadhye [40] for the complete

algorithm.

4.1 Case Study 1: Time-Tiling of ADI-like Computation

The Alternating Direction Implicit method is used to solve partial differential equations (PDEs). One of

the stencil kernels in PolyBench/C 3.2 [84], adi/adi.c resembles ADI computation.1

ADI with 2D discretization solves two sets of tridiagonal matrices at each time step. The idea behind ADI

method is to split the finite difference system of equations of a 2D PDE into two sets: one for the x-direction

and another for y. These are then solved separately, one after the other, hence the name alternating direction

implicit.

Shown below is a code fragment from PolyBench, corresponding to the solution for one direction in ADI.

When this code is given to PLuTo [16] for tiling and parallelization, PLuTo fails to find that all dimensions

can be tiled, and instead, tiles the inner two loops individually. The key reason is as follows: the value

written by S0 is later used in S3, since computing S3 at iteration [t,i1,i2] (written S3[t,i1,i2]) depends

on the result of S0[t,i1,i2] and S0[t,i1,i2-1]. Since the dependence vector is in the negative orthant,

this value-based dependence does not hinder tiling in any dimension.

for (t = 0; t < tsteps; t++) {

for (i1 = 0; i1 < n; i1++)

1There is an error in the implementation, and time-tiling would not be legal for a correct implementation of ADI. The
program in the benchmark nevertheless illustrates our point that existing tools are incapable of extract the best performance,
largely because of lack of memory remapping.

37

for (i2 = 1; i2 < n; i2++) {

S0: X[i1][i2] = X[i1][i2] - X[i1][i2 -1] * A[i1][i2]

/ B[i1][i2 -1];

S1: B[i1][i2] = B[i1][i2] - A[i1][i2] * A[i1][i2]

/ B[i1][i2 -1];

}

S2 ... // 1D loop updating X[*,n-1] (details irrelevant here)

for (i1 = 0; i1 < n; i1++)

for (i2 = n-1; i2 >= 1; i2 --)

S3: X[i1][i2] = (X[i1][i2] - X[i1][i2 -1]

* A[i1][i2 -1]) / B[i1][i2 -1];

... // second pass for i1 direction

}

However, the original C code reuses the array X to store the result of S0 as well as S3. This creates a

memory-based dependence S3[t, i1, i2]→ S3[t, i1, i2 + 1] because S3[t,i1,i2] overwrites X[i1,i2] used

by S3[t,i1,i2+1]. Hence, S3 must iterate in a reverse order to reuse array X as in the original code, whereas

allocating another copy of X allows all three dimensions to be tiled.

4.1.1 Additional Complications

The memory-based dependences are the critical reason why the PLuTo scheduler (as implemented in

Integer Set Library by Verdoolaege [121]) cannot find all three dimensions to be tilable in the above code.

Moreover, two additional transformations are necessary to enable to scheduler to identify this. These trans-

formations can be viewed as partially scheduling the polyhedral representation before invoking the scheduler.

AlphaZ provides a command, called Change of Basis (CoB), to apply affine transforms to statements of poly-

hedral domains.2

One of them embeds S2 which nominally has a 2D domain into 3D space, aligning it

to be adjacent to a boundary of the domain of S1. The new domain of S2 becomes

{t, i1, i2 | 0 ≤ t < tsteps ∧ 0 ≤ i1 < N ∧ i2 = n− 1} (note the last equality).

The other complication is that a dependence from S3 to S2 is affine, not uniform

(S3[t, i1, i2]→ S2[t, i1, n− i2− 1]) due to the reverse traversal of the i2 loop S3. If a CoB

(t, i1, i2→ t, i1, n− i2− 1) is applied to the domain of S3 we get a uniform dependence. After these

three transformations (removing memory-based dependences, and the two CoBs) the PLuTo scheduler dis-

covers that all loops are fully permutable.

2This is similar to the preprocessing of code generation from unions of polyhedra [13], where affine transforms are applied
such that the desired schedule is followed by lexicographic scan of unions of polyhedra. Since the program representation in
AlphaZ is equational, any bijective affine transformation is a legal CoB.

38

We are not sure of the precise reason why PLuTo scheduling is not able to identify all dimensions are

tilable without these transformations. Parts of PLuTo scheduling are driven by heuristics, and our conjecture

is that these cases are not well handled. We expect these difficulties can be resolved, and that it is not an

inherent limitation of PLuTo. However, a fully automated tool, prevents a smart user from so guiding the

scheduler. We believe that guiding automated analyses can significantly help refining automated components

of tools.

4.1.2 Performance of Time Tiled Code

Since PLuTo cannot tile the outer time loop, or fuse many of the loops due to the issues described above,

PLuTo parallelized code contains 4 different parallel loops within a time step. On the other hand, AlphaZ

generated code with time-tiling consists of a single parallel loop, executing wave-fronts of tiles in parallel.

Because of this we expect the new code to perform significantly better.

We measured the performance of the transformed code on a workstation, and also on a node in Cray

XT6m. The workstation uses two 4 core Xeon5450 processors (8 cores total), 16GB of memory, and running

64-bit Linux. A node in the Cray XT6m has two 12 core Opteron processors, and 32GB of memory. We

used GCC/4.6.3 with -O3 -fopenmp options on the Xeon workstation, and CrayCC/5.04 with -O3 option on

the Cray. PLuTo was used with options --tile --parallel --noprevector, since prevector targets ICC.

AlphaZ was supplied with the original C code along with a script file specifying pre-scheduling transfor-

mations described above, and then used the PLuTo scheduler to complete the scheduling. Memory allocation

was specified in the script as well, and additional copies of X were allocated to avoid the memory-based

dependences discussed above. We used the ScheduledC code generator to produce the tiled and parallelized

code.

For all generated programs, only a limited set of tile sizes were tried (8, 16, 32, 64 in all dimensions), and

we report the best performance out of these. The problem size was selected to have cubic iteration space

that runs for roughly 60 seconds with the original benchmark on Xeon environment (tsteps = n = 1200).

The results are summarized in Figure 4.1, confirming that the time-tiled version performs much better.

On the Cray, we can observe diminishing returns of adding more cores with PLuTo parallelized codes, since

only the inner two loops are parallelized. AlphaZ generated code does require more memory (this can actually,

be further reduced), but at the same time, time-tiling exposes temporal reuse of the memory hierarchies.

4.2 Case Study 2: Complexity Reduction of RNA Folding

In this section, we show a detailed description of how a known optimization that reduce the complexity

of RNA folding algorithm from O(N4) to O(N3) can be semi-automatically applied using a technique called

Simplifying Reductions [40].

39

Speedup of Optimized Code on Xeon

Number of Threads (Cores)

S
pe

ed
 u

p
co

m
pa

re
d

to
 o

rig
in

al
 c

od
e

AlphaZ
PLuTo

0 1 2 4 8

0
1

2
4

8

Speedup of Optimized Code on Cray XT6m

Number of Threads (Cores)

S
pe

ed
 u

p
co

m
pa

re
d

to
 o

rig
in

al
 c

od
e

AlphaZ
PLuTo

0 4 8 12 16 20 24

0
4

8
12

16
20

24

Figure 4.1: Speedup of adi.c parallelized with PLuTo and AlphaZ, with respect to the execution time of
the unmodified adi.c from PolyBench/C 3.2. Observe that coarser grained parallelism with time-tiling
leads to significantly better scalability with higher core count on the Cray.

RNA secondary structure prediction, or RNA folding, is a widely used algorithm in bio-informatics. The

original algorithm has O(N4) complexity, but an O(N3) algorithm has been previously proposed by Lyngso

et al. [73]. However, no implementation of the O(N3) algorithm has been made publicly available to the

best of our knowledge.

The complexity reduction takes advantage of “hidden scans” in collections of reductions, where results

(possibly partial) of a reduction can be reused in computing other reductions. For example, consider the

following where Xi, 0 ≤ i < N is computed as sums of subsets of values in Ai; 0 ≤ i < N .

Xi =

i∑
k=0

Ak

This is actually a prefix (scan) computation, and can be written as the following:

Xi =

{
i = 0 : Ai

i > 0 : Ai +Xi−1

Note that the former equation takes O(N2) time while the latter takes O(N) time. This is the core of

the algorithm, and simplifying reductions consists of collection of analyses and transformations to detect

and transform such reductions to corresponding scan computations.

A much more complicated simplification, but also based on reuse across reductions, was found by Lyngso

et al. [73] in the RNA secondary structure prediction algorithm. However, implementing such optimization

require significant re-structuring of the program. Moreover, although the Simplifying Reductions algorithm

include the necessary analyses to identify hidden scans, detecting scans from a real application is non-trivial.

40

We present a systematic way of deriving reduced complexity implementation of a function in UNAfold

software package [75], using the AlphaZ system. Although the Simplifying Reductions was proposed by

Gupta and Rajopadhye [40], there is no known implementation of the algorithm aside from AlphaZ. This

section is an extension to a related Master’s Thesis by Pathan [82] that describe the systematic transformation

of UNAfold in AlphaZ. We extend the work of Pathan by deriving the sequence of transformations to apply

from the optimality algorithm presented by Gupta and Rajopadhye [40]. We also use a more efficient code

generator and compare the performance of the optimized implementation with the original to empirically

show the benefit of the optimization.

4.2.1 Intuition of Simplifying Reductions

We first illustrate the intuition using a simple example. The prefix sum computation can be expressed

as the following:

X[i] =

j=i∑
j=0

A[j] (4.1)

with DE = {i, j|0 ≤ j ≤ i < N}.

Figure 4.2 visualizes the iteration space of this program for N=8. The body of the reduction has a

triangular domain {i, j|0 ≤ j ≤ i < N}, and there are 7 independent reductions along the vertical axis.

Because A[j] is accessed within a 2D domain, it can be observed that all points along the horizontal access

that has the same j but different i all share the same value. Note that the reuse space, i.e., the set of points

that share the same value, is spanned by the vector [1,0].

Assume that some constant vector in the reuse space, reuse vector rE , is given as the input and the

simplification is performed so that an instance of reduction at z reuses the result of another instance at

z − rE . Unless the values used at different instances of reductions are identical, reusing the result of

another instance by itself is not enough. Because the iteration spaces are represented as polyhedra, the

additional computation required can be computed. Figure 4.3 illustrates the reuse space and how the

required computation in addition to the reuse is computed. Domain of additional computations are derived

from the original domain DE (filled domain) and its translation by the reuse vector DE′ (unfilled domain).

Domain with diagonal stripes is the intersection Dint = DE

⋂
DE′ . Dint is where the result of two reductions

rE apart overlaps and can be reused. Thus, the diagonal strip of filled domain that does not have the stripe,

Dadd = DE −DE′ is the domain that needs to be computed in addition to the reuse.

Depending on the shape of the domain and the direction of reuse being exploited, some computation

must be “undone” in addition to the reuse. In such cases, the reduction operator must have a corresponding

inverse operator in order to undo parts of the computation. For example, if the vector[-1,0] was used instead

in the above example, P (x) is computed from P (x + 1) by subtracting A[x + 1]. Such a domain, called

subtract domain, can be computed as well, and it must be empty if the operator does not have an inverse.

41

(a) Iteration Space and Reductions (b) Reuse of A

Figure 4.2: Geometric illustration of the iteration space and reductions involved in prefix sum computation
for N=8. The iteration space has a triangular domain where all integer points represent a computation.
The reduction is along the vertical axis so that all points with the same i contributes to the same answer.
Because A is indexed only with j, all points with the same j shares the same value.

(a) When reuse vector (1, 0) is used (b) When reuse vector (−1, 0) is used

Figure 4.3: Visualization of the reuse and simplification. DE′ is the domain translated by the reuse vector.
The intersection of the two domains (striped and filled) is the value being reused. In Figure (a), the diagonal
strip of filled domain that does not have the stripe, Dadd = DE−DE′ is the domain that needs to be computed
in addition to the reuse. In Figure (b), the diagonal strip of unfilled domain, Dsub = DE′ −DE is the domain
of values that needs to be undone from the reused value.

42

The core of Simplifying Reductions is in precisely computing these addition and subtraction domains

through geometrical analysis, by shifting polyhedra along the reuse space.

4.2.2 Simplifying Reductions

We first introduce the notion of share space that characterize sharing of values, used to determine if a given

rE is legal or not. Then we introduce the simplification transformation, followed by other transformations

that enhance the applicability of Simplifying Reductions.

4.2.2.1 Sharing of Values

Consider a dependence expression E of the form:

X.f (4.2)

The expression E has the same value at any two index points z, z′ ∈ DE if f(z) = f(z′) since they map

to the same index point of X. We will say that the value of E at these index points is shared. Note, two

index points in DE share a value if they differ by a vector in ker(f). Thus, values of E are shared along the

linear space ker(f).

However, ker(f) may not be the maximal linear space along which values are shared in E. Observe, if

in turn, index points in X also share values, along ker(f ′) say, then a larger linear space along which values

of E are shared is ker(f ′ ◦ f). We denote the maximal linear space along which values are shared in E as

SE , and call it the share space of E. Below, we list the relationship between the share space of expressions.

We assume that the specification has been transformed to have just input and computed variables, and all

reductions are over expressions defined on a single integer polyhedron. The share space, SE is equal to

• φ if E is a constant.

• φ is E is an input variable. We assume that program inputs have no sharing.

• SX if E is a computed variable defined by E = X

•
M⋂
i=1

SEi
if E is op(E1, . . . , EM)

•
M⋂
i=1

SEi
if E is caseE1, . . . , EM esac

• SX if E is D′ : X

• ker(T ◦ f) if E is X.f and SX = ker(T).

• fp(ker(Q) ∩ SX) if E is reduce(⊕, fp, X) and DX is a single integer polyhedron P ≡ {z|Qz + q ≥ 0}.

43

4.2.2.2 Simplifying Transformation

The input reduction is required to be in the following form:

X = reduce(⊕, fp, E) (4.3)

where DE is a single integer polyhedron and equal to XE . For simplicity of explanation, we have the reduction

named by a computed variable X.

The Simplifying Reduction transformation takes as inputs; a reduction in the form of Equation 4.3,

where DE is a single integer polyhedron, and a legal vector specifying the direction of reuse rE ; and returns

a semantically equivalent equation:

X =

case

(Dadd −Dint) : Xadd;

(Dint − (Dadd ∪ Dsub)) : X.(z → z − rX);

(Dadd ∩ (Dint −Dsub)) : (Xadd ⊕X.(z → z − rX));

(Dsub ∩ (Dint −Dadd)) : (X.(z → z − rX)	Xsub);

(Dadd ∩ Dint ∩ Dsub) : (Xadd ⊕X.(z → z − rX)	Xsub);

esac;

Xadd = reduce(⊕, fp, (XE −XE′) : E)

Xsub = reduce(⊕, fp,

f−1p (Dint) : (XE′ −XE) : E′)

where E′ = E.(z → z − rE), rX = fp(rE), 	 is the inverse of ⊕, Dadd, Dsub and Dint denote the domains

fp(XE−XE′), fp(XE′−XE) and fp(XE ∩XE′) respectively, and Xadd and Xsub are defined over the domains

Dadd and Dint ∩ Dsub respectively.

We require that the reuse vector rE to satisfy rE ∈ SE \ ker(fp) for the semantic to be preserved. Since

rE is the direction of reuse it must be in the share space. However, it must not be in the kernel of the

projection function fp. This is because the transformation involves the use of the value of X at an index

point to simplify the computation at another and so in order to avoid a self-dependence, we must ensure

that these index points are distinct (i.e., rX = fp(rE) 6= 0).

Note that the above transformation requires the inverse operator 	, which may not exist for some ⊕.

Then all branch of the case in transformed that use 	 must have empty context domains.

44

4.2.2.3 Simplification Enhancing Transformations

We have shown a transformation that resulted in the simplification of reductions. Here, we will present

transformations that, per se, do not simplify but enhance simplification. The goal of enhancing transfor-

mations is to increase the applicability of simplification by enlarging SE . We only present a subset of such

transformations used in simplification of RNA folding we show in Section 4.2.5.

4.2.2.4 Distributivity

Consider a reduction of the form

E = reduce(⊕, fp, E1 ⊗ E2)

where ⊗ distributes over ⊕.

If one of the expressions is constant within the reduction (E1, say), we would be able to distribute it

outside the reduction. For the expression E1 to be constant within a reduction by the projection fp, we

require

HDE
∩ ker(fp) ⊆ HDE

∩ SE1

where HD is defined as the linear part of the smallest affine subspace containing HD. HD becomes important

when the domains contain equalities. After distribution, the resultant expression is

E1 ⊗ reduce(⊕, fp, E2)

The resultant expression can potentially have larger share space, since share space of E1 no longer affects

that of the reduction body.

4.2.2.5 Reduction Decomposition

We will now introduce a transformation that has wide applicability in enhancing simplification.

An expression of the form

reduce(⊕, fp, E)

is semantically equivalent to

reduce(⊕, f ′′p , reduce(⊕, f ′p, E))

where fp = f ′′p ◦ f ′p.

This transformation enhances simplification primarily by exposing additional opportunities to apply

distributivity. When a reduction from Zn to Zm where m is at least 2 dimensions less than n, then some

expression that cannot be distributed may be distributed once the reduction is decomposed.

For example, consider the following reduction:

reduce(⊕, (i, j, k → i), E1 ⊗ E2)

45

where SE1 = φ, SE2 = [0, 0, 1], and ker(fp) = ([0, 1, 0], [0, 0, 1]). Since ker(fp) 6⊆ SE2 , E2 cannot be

distributed out. However, applying reduction decomposition with f ′p = (i, j, k → i, j) and f ′′p = (i, j → i) to

obtain:

X = reduce(⊕, (i, j, k → i, j), E1 ⊗ E2)

reduce(⊕, (i, j → i), X)

allows E2 to be distributed out from the inner reduction.

Depending on its use, the reduction decomposition may or may not have side effects. However, the

case without side effects only occur when domains of reduction body contain equalities (or some constant

“thickness” variations of equalities) along certain dimensions. When there are equalities in the domain

of reductions, the space spanned by the equalities are separated by reduction decomposition as a pre-

processing. These cases, including constant “thickness” variants, are formalized as Effective Linear Subspace

in the original article [40]. It states that a polyhedron P have constant thickness along any vector not in its

effective linear subspace LP .

For the domains in UNAfold, LDE
is the universe, and we focus on reduction decomposition with side

effects. Reduction decomposition with side effects reduce the space of possible reuse directions, and affects

if simplification is applicable later in the sequence of transformations.

Recall that distributing an expression E out from the reduction with a projection fp requires ker(fp) ⊆

SE . Therefore, we may decompose fp into f ′′p ◦ f ′p to distribute an expression with available reuse space SE

outside the inner reduction by choosing f ′p such that

ker(f ′p) = ker(fp) ∩ SE

4.2.3 Normalizations

There are a number of transformations for taking equations with reductions into the form required by

the simplification transformation (Equation 4.3). We introduce two of such transformations that are used

later in Section 4.2.5.

4.2.3.1 Normalize Reductions

Normalize Reductions is a transformation that takes expression containing reductions:

E = · · · reduce(⊕, fp, E1) · · ·

and isolates reductions by adding vairables:

E = · · ·X · · ·

X = reduce(⊕, fp, E1)

46

After this transformation, all reduce expression in the Alphabets program will be top-level expressions

(the first expression in the right hand side of an equation). This is purely a pre-processing to obtain reductions

of the form required by the simplification algorithm. We also provide another transformation, called Inline,

to replace variables with its definition, so that the variables introduced by this transformation can eventually

be removed.

4.2.3.2 Permutation Case Reduce

Permutation Case Reduce, presented as a theorem by Le Verge [65], takes reduce expression of the form:

E = reduce(⊕, fp, case E1;E2; esac)

and returns a semantically equivalent equation:

E = case

D1 : X1;

D12 : (X1 ⊕X2);

D2 : X2;

esac;

where D12 = fp(DE1
) ∩ fp(DE2

), D1 = fp(DE1
) \ fp(DE2

), D2 = fp(DE2
) \ fp(DE1

), and X1, X2 are defined

as follows:

X1 = reduce(⊕, fp, E1)

X2 = reduce(⊕, fp, E2)

The transformation essentially moves case expressions out of the reduction. Since the simplification

transformation requires that the domain of the reduction body to be a single polyhedron, and not unions of

polyhedra, case expressions must be moved out.

4.2.4 Optimality and Algorithm

The optimality algorithm proposed by Gupta and Rajopadhye [40] considers a number of transformations

that can expose more simplification opportunities. In this dissertation, we outline a simplified version of the

algorithm used when applying the algorithm to UNAfold shown in Algorithm 4.1.

For the dynamic programming in Step 5 to work, we must show that from the infinite search space of

parameters for the various transformations, we need to consider only a finite set of choices and the global

47

Algorithm 4.1 The Simplification Algorithm: Subset for UNAfold

Input:

An equational specification in the polyhedral model.

Output:

An equivalent specification of optimal complexity.

Algorithm:

1. Preprocess to obtain a reduction over an expression whose domain is a single polyhedron and equal to
its context domain.

2. Other pre-processing not used for UNAfold, if applicable.

3. Perform any of the following transformations, if applicable.

(a) Distributivity.

(b) Other side-effect free enhancing transformations not used for UNAfold.

4. Repeat Steps 1-3 till convergence.

5. Dynamic Programming Algorithm to optimally choose:

(a) The simplification transformation along some rE .

(b) A reduction decomposition with side effects.

(c) Other enhancing transformations with side-effects, not used for UNAfold.

6. Repeat from Step 1 on residual reductions until convergence.

48

optima can be reached through such choices. The intuition behind our formal argument used by Gupta and

Rajopadhye [40] is as follows:

Simplification Transformation: From the infinitely many choices of reuse vectors rE in a share space,

we show that there are only finitely many equivalence classes. The intuition is that the result of applying

the simplification transformation with different reuse vectors from the same equivalence class are identical

except for the “thickness” of the residual reductions. The residual reductions corresponds to the addition and

subtraction domains (Dadd,Dsub). The constant “thickness” of reductions affect only the constant factors,

but not the asymptotic complexity.

Reduction Decomposition with Side Effects for Distributivity: Of the infinite possible decompositions of

the projection fp, we only need to consider a finite subset, since the transformation is needed to distribute a

set of subexpressions outside the inner reduction. The number of candidates are finite, with the equivalence

classes formed by the basis vectors of its kernels.

4.2.5 Application to UNAfold

Finally, we show that the application of the simplification algorithm described in Section 4.2.4 leads to

the reduced complexity algorithm.

The RNA folding algorithm is a dynamic programming algorithm. There are multiple variations of the

algorithm based on the cost model used. UNAfold [75] uses a prediction model based on thermodynamics

that finds a structure with minimal free energy. For an RNA sequence of length N , the algorithm computes

multiple tables of free energy for each subsequence from i to j such that 1 ≤ i ≤ j ≤ N . The three tables

Q(i, j), Q′(i, j), and QM(i, j) correspond to the free energy for three different substructures that may be

formed.

The following equations taken from the original algorithm:

Q(i, j) = min

b+Q(i+ 1, j),

b+Q(i, j − 1),

c+ END(i, j) +Q′(i, j),

b+ c+ E5′D(i+ 1, j) +Q′(i+ 1, j),

b+ c+ E3′D(i, j − 1) +Q′(i, j − 1),

2b+ c+ EDD(i+ 1, j − 1) +Q′(i+ 1, j − 1),

QM(i, j)

(4.4)

Q′(i, j) = min

EH(i, j),

ES(i, j) +Q′(i+ 1, j − 1),

mini<i′<j′<j {EBI(i, j, i′, j′), Q′(i′, j′)} ,
a+ c+ END(j, i) +QM(i+ 1, j − 1),

a+ b+ c+ E3′D(j, i) +QM(i+ 2, j − 1),

a+ b+ c+ E5′D(j, i) +QM(i+ 1, j − 2),

a+ 2b+ c+ EDD(j, i) +QM(i+ 2, j − 2)

(4.5)

49

QM(i, j) = min
i+1≤k≤j−2

Q(i, k − 1) +Q(k, j) (4.6)

where a,b, and c, are constants and functions of the form EXY are all energy functions for different substruc-

tures.

The third term in Equation 4.5 is the dominating term that makes the algorithm O(N4). Notice that

the term uses four free variables i,j,i′ and j′ and has a four dimensional domain {i, j, i′, j′|1 ≤ i < i′ < j′ <

j ≤ N} and hence O(N4) complexity. The term corresponds to a substructure called internal loops, and the

cubic time algorithm to evaluate this term is referred to as fast i-loop.

4.2.5.1 Simplification

We focus on the dominating term in calculating the energy associated with internal loops to illustrate

the simplification. The term is rewritten as a separate equation using our notation of reductions, and named

QBI (since it is the term that involves EBI) is the following:

QBI[i, j] = reduce(min, (i, j, i′, j′ → i, j), EBI(i, j, i′, j′) +Q′(i′, j′)) (4.7)

The sequence of transformations to obtain the above corresponds to Step 1 in Algorithm 4.1.

Before simplification, the energy function EBI must be inlined to expose the reuse. This inlining is not

part of the algorithm, and requires human analysis to deduce that the inlining is necessary at the moment.

EBI has two different definitions, one for the generic case and another to handle special cases. These

special cases are when the size of the internal loop is very small (less than 4) and thus resembles other kind

of substructures. Since the special case can be described as polyhedral domains, we focus on the generic case

for simplicity.

The function EBI for generic case is defined as follows:

EBI(i, j, i′, j′) = Asym(i′ − i− j + j′) + SP (i′ − i+ j − j′ − 2) + ES(i, j) + ES(i′, j′) (4.8)

Inlining Equation 4.8 into Equation 4.7 gives the following:

QBI[i, j] = reduce

min, (i, j, i′, j′ → i, j),

Asym(i′ − i− j + j′) +

SP (i′ − i+ j − j′ − 2) +

ES(i, j) +

ES(i′, j′) +

Q′(i′, j′)

 (4.9)

50

Computing the share space for each sub-expressions in the reduction body (recall Section 4.2.2.1) gives:

SAsym(i′ − i− j + j′) =[−1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]

SSP
(i′ − i+ j − j′ − 2) =[1, 0, 1, 0], [1, 1, 0, 0], [−1, 0, 0, 1]

SES
(i, j) =[0, 0, 1, 0], [0, 0, 0, 1]

SES
(i′, j′) =[1, 0, 0, 0], [0, 1, 0, 0]

SQ′(i′, j′) =[1, 0, 0, 0], [0, 1, 0, 0]

In addition, the kernel of the projection function ker(fp) = ([0, 0, 1, 0], [0, 0, 0, 1]). Since the share space

of ES(i, j) contains ker(fp), it can be distributed out from the reduction in Step 3a of Algorithm 4.1 to

produce: 3

QBI [i, j] = ES(i, j) + reduce

min, (i, j, i′, j′ → i, j),

Asym(i′ − i− j + j′) +

SP (i′ − i+ j − j′ − 2) +

ES(i′, j′) +

Q′(i′, j′)

 (4.10)

Taking the intersection of share spaces of the remaining terms gives the zero vector, and therefore no

reuse can be exploited. This takes us to Step 5b of Algorithm 4.1. We analyze the share space of expressions

in the reduction body and the projection function to find candidate decompositions. The candidate f ′p are:4

ker(f ′p) = ker(fp) ∩ SAsym(i′ − i− j + j′)

ker(f ′p) = ker(fp) ∩ SSP
(i′ − i+ j − j′ − 2)

ker(f ′p) = ker(fp) ∩ SES
(i′, j′)

ker(f ′p) = ker(fp) ∩ SQ′(i′, j′)

The latter two candidates have no feasible f ′p because the intersection of ker(fp) and its respective share

space is empty. Similarly, SAsym(i′ − i− j + j′) do not have any feasible f ′p. The only feasible candidate is

ker(f ′p) = [0, 0, 1, 1] with SSP
(i′ − i+ j − j′ − 2).

The function (i, j, i′, j′ → i, j, j′− i′) is a function that have the space spanned by [0, 0, 1, 1] as its kernel.

We use this function as f ′p with its corresponding f ′′p = (i, j, d→ i, j). Note that f ′′p ◦ f ′p = (i, j, i′, j′ → i, j)

is the original projection. The choice of the function among the set of functions that have the same kernel

3HDE
is universe for this program.

4Note that once we have fp and f ′
p, f ′′

p can be deduced with standard linear algebra.

51

does not affect the resulting complexity. Decomposing the reduction with f ′p and naming the inner reduction

QBI ′ gives the following two equations.

QBI[i, j] = ES(i, j) + reduce(min, (i, j, d→ i, j), QBI ′[i, j, d]);

QBI ′[i, j, d] = reduce

min, (i, j, i′, j′ → i, j, j′ − i′),

Asym(i′ − i− j + j′) +

SP (i′ − i+ j − j′ − 2) +

ES(i′, j′) +

Q′(i′, j′)

After the decomposition, the expression SP (i′−i+j−j′) can be distributed out from the inner reduction, be-

cause its share space ([1, 1, 0, 0], [1, 0, 1, 0], [−1, 0, 0, 1]) contains ker(f ′p) = [0, 0, 1, 1] ([1, 0, 1, 0]+[−1, 0, 0, 1] =

[0, 0, 1, 1].)

QBI ′[i, j, d] = reduce

min, (i, j, i′, j′ → i, j, j′ − i′),

Asym(i′ − i− j + j′) +

ES(i′, j′) +

Q′(i′, j′)

+ SP (−i+ j − d− 2)

Then the remaining expressions have a common share space spanned by the vector [-1,1,0,0]. Applying

the simplifying reduction transformation using [-1,1,0,0] as the reuse vector yields an equivalent equation of

the following form:

QBI ′[i, j, d] =

{
Dinit : Xadd

Dadd : min(Xadd, QBI
′[i+ 1, j − 1, d])

(4.11)

+ SP (−i+ j − d− 2)

Xadd =

Asym(i′ − i− j + j′)+

ES(i′, j′)+

Q′(i′, j′)

Domains Dinit, and Dadd are computed following the definitions in Section 4.2.2. The full Alphabets program

after transformation in the appendix show the domains as the domain of corresponding Alpha variables.

In the following, we show a fragment of the Alphabets after sequence of transformations described above

has been applied. We can observe that equations QBI SR1 init and QBI SR1 add both have equalities in the

restrict expression. These equations respectively correspond to branches of QBI ′ in Equation 4.11. Because

of the equalities the context domains of these reductions are 3D domains embedded in 4D space. Hence, we

confirm that the complexity is reduced to O(N3). We also note that the term SP was factored out since the

simplification algorithm requires reduce expression to be the top-level expression.

// Simplifying Reduction result

QBI_SR1[i,j,ip] = case

{|i-j+ip+7>= 0} : QBI_SR1_init; // D_init case

{|j-1-ip -8>= 0} : (QBI_SR1_add min QBI_SR1[i+1,j-1,ip]); //D_add case

esac;

52

//X_add for D_init

QBI_SR1_init[i,j,ip] = reduce(min , (i,j,ip,jp->i,j,jp-ip),

{|ip-i==2} || {|j-jp==4 && ip-i==3} :

((Ebi_stacking ([jp],[ip]) + Ebi_asymmetry ([ip-i-1],[j-jp -1]))

+ Qprime[ip,jp])

);

//X_add for D_add

QBI_SR1_add[i,j,ip] = reduce(min , (i,j,ip,jp->i,j,jp-ip),

{|ip-i==2} || {|j-jp==4} :

((Ebi_stacking ([jp],[ip]) + Ebi_asymmetry ([ip-i-1],[j-jp -1]))

+ Qprime[ip,jp])

);

Starting from the original equations expressed as Alpha, the only step that is not handled by the algorithm

is inlining to reach Equation 4.9 from Equation 4.7.

4.2.6 Validation

We have applied the above transformation using AlphaZ to the UNAfold 3.8 [75]. The function

fillMatrices 1 in hybrid-ss-min.c was written in our equational language, and the simplifying trans-

formation was applied. The ScheduledC code generator was used to generate the simplified version of

fillMatrices 1 and replaced with the original function.

Both original and the simplified versions were compiled with GCC/4.5.1, with -O3 option and the execu-

tion times were measured a machine with Core2Duo 1.86GHz and 6GB of memory running Linux. Because

the default option of UNAfold limits the internal loop size to 30, we also set the limit to infinity when

running hybrid-ss-min.

Figure 4.4 shows the measured performance, and its log-log scaled version. The log-scale plot clearly

shows the reduction in complexity, and, as expected, the speedups with transformed code becomes greater

and greater as the sequence length grows.

53

200 400 600 800 1000 1400

0
50

0
10

00
15

00
20

00
25

00

Execution Time of UNAfold

Sequence Length (N)

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds original
simplified

(a) Raw Execution Time

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0
1

2
3

4
5

6
7

8

Log plot of Execution Time

Log of Sequence Length

Lo
g

of
 E

xe
cu

tio
n

T
im

e original
simplified y = 4x + b1

y = 3x + b2

(b) Log-Log Plot

Figure 4.4: Execution Time of UNAfold after simplifying reduction compared with the original implemen-
tation. The two lines show are with slopes 4 and 3 with constant offsets (b1, b2) to make the lines meet the
points at log(N)=3.2.

54

Chapter 5

“Uniform-ness” of Affine Control Pro-
grams

In this chapter, we discuss the “uniform-ness” of affine control programs. The polyhedral model can

handle affine dependences and most techniques for multi-core processors are formalized for programs with

affine dependences. If the target architecture has shared memory, affine accesses to shared memory have

little or no difference in cost compared to uniform accesses. However, affine dependences are significantly

more complex, and as soon as we reach beyond shared memory, handling affine dependences again becomes

a problem. When generating distributed memory parallel code, affine dependences can result in broadcast

or broadcast to complicated subsets of the processors. The pattern of communication can be affected by the

problem size and by tile sizes if tiling is used.

When parallelization was a small niche; before the rise of multi-cores, a class of techniques called uni-

formization or localization, which replaces affine dependences with uniform dependences was of great inter-

est [20, 74, 95, 104, 117, 128]. There is also a related approach for converting affine dependences to uniform

dependences that “fold” the iteration space using piece-wise affine transformations [81, 129].

When the target architecture is hardware, such as FPGAs, VLSI circuits, or ASICs, implementing com-

munications induced by affine dependences are very expensive. For example, communications among 1D

processors over {i|0 ≤ i ≤ 10}, that corresponds to an affine dependence (i→ 0) require all processors to be

connected to processor 0. Instead, if we replace the affine dependence with a uniform dependence (i→ i−1),

and propagate the value, only neighboring processors need to be connected. The process of replacing an

affine dependence with uniform dependences is called uniformization or localization, and has a significant

impact on the performance of hardware, especially on the die area consumed by implementing communi-

cations. Since shared memory hides these issues from the software layer, techniques for uniformization are

rarely used in recent work toward automatic parallelization.

In this chapter, we ask ourselves the question: “How affine are affine control programs?”, and re-evaluate

the affine-ness of affine dependences in realistic applications. We use PolyBench/C 3.2 as our benchmark,

which consists of 30 benchmarks, and show that most of PolyBench can be easily uniformized.

55

5.1 Uniformization by Pipelining

There are a number of techniques for uniformization [20, 74, 95, 104, 117, 128]. In this section, we

illustrate one of the techniques called uniformization by pipelining. This is one of the simpler methods for

uniformization that replaces an affine dependence with chains of uniform dependences such that the same

value eventually is propagated. It turns out that this method alone can uniformize most of PolyBench.

Let us first assume that the domain of all statements in a program has been transformed such that all

statements have the same number of dimensions. This means that all dependences are now from ZN to ZN ,

which also means that the linear part of the dependence, A, is an N ×N square matrix. This is obviously

a necessary condition of dependences to be affine, and is the starting point of all known uniformization

techniques. The necessary pre-processing to take programs into this form, called embedding or alignment,

is discussed later in Section 5.3.

Pipelining is only applicable to affine dependences that are idempotent [104]. An affine dependence is

said to be idempotent if the linear part is idempotent. In other words, let f = Ax+ b, then f is idempotent

iff A = A.A. We describe nullspace pipelining below, based on the work by Roychowdhury [104] with some

of the terminology replaced by those used in the polyhedral model [117].

Given an affine dependence with function f = Ax+ b and domain D is an N dimensional space, we first

find an N-vector, called the uniformization vector v that satisfied the following:

• v ∈ ker(f); in the kernel (nullspace) of f , and

• v ∈ HD; in the linearity space of D

The kernel of a dependence characterizes the share space, i.e., the set of points that depend on the same

value. The pipelining must be along those set of points, otherwise the value propagated cannot be used. The

second condition is to prevent cases where there is only one point in the intersection of the space spanned

by v, and D, because the vector is not aligned with the equalities.

Once a vector v is chosen, we compute the following domains:

• D0: {x|x ∈ D ∧ f(x) = x}; the initialization domain,

• D+: {x|x ∈ D ∧ y ∈ D0 ∧ x = y + αv ∧ α > 0}; the positive propagation domain, and

• D−: {x|x ∈ D ∧ y ∈ D0 ∧ x = y − αv ∧ α > 0}; the negative propagation domain.

The intuition is that the initialization domain is set of points where the dependence function is equivalent

to identity. This set of points initializes the pipelining. The propagation domains are the points pipelining

along v can reach, separated into two based on the direction of propagation.

56

Finally the equation of the following form:

X(z) = · · ·Y (f(z)) · · ·

is transformed as follows:

X(z) = · · ·

D0 : Y (z)

D+ : Y +(z)

D− : Y −(z)

· · ·

Y +(z) =

{
Y +(z − v)

Y (z)

Y −(z) =

{
Y −(z + v)

Y (z)

where Y is the variable being accessed with an affine dependence, Y + and Y − are variables introduced

during the uniformization, called uniformization variables. In practice, some of the domains may be empty,

making Y + or Y − unnecessary.

Roychowdhury [104] showed that the above transformation is always applicable if the dependence function

is idempotent, and the row rank of I − A is 1. If the rank r is greater than 1, the dependence must be

decomposed and uniformized r times.

5.2 Uniform in Context

An important analysis, especially for polyhedral representations extracted from loop programs, is to

check if any “uniform-ness” is hidden by equalities. For example, a dependence with affine function (i→ 0),

with domain {i|i = 1}, is actually uniform, since the function can be replaced with (i → i − 1). These

dependences are said to be uniform in context, where the dependences are uniform only for a certain domain

[63, 74].

Uniform in context can be performed using Gauss-Jordan elimination. Given a dependence with function

f = Ax+ b for some domain D on a N dimensional space. We first find the equalities in domain D, denoted

E. Then we apply Gauss-Jordan elimination on matrix

[
A
E

]
to obtain its reduced row echelon form, R.

If the top N × N sub-matrix of R is the identity, then the function f is uniform in the context of D (or

more precisely, E). Gauss-Jordan elimination only uses elementary row operations, and if the identity can

be reached by some combination of elementary row operations, it is some linear combination of the rows

(and hence is affine). The combination, or the necessary transformation, to make the dependence uniform

may be deduced by keeping track of the elementary row operations applied.

In addition, even if the dependence is not completely uniform in context, the same procedure may be

applied to partially uniformize a dependence in context. In reduced row echelon form, even if the N×N sub-

57

matrix is not the identity, some smaller sub-matrix (possibly 0×0) will be identity, and for the corresponding

dimensions, the dependence is uniformized.

5.3 Embedding

One important pre-processing step, called embedding or alignment, is a step that transforms all statement

domains to have the same number of dimensions. Since two statements must be in the same dimension for

a dependence to even have a chance to be uniform, this pre-processing is essential.

Embedding of a statement is performed by applying change of basis with an affine function f from Zn

to Zm where n < m. Any embedding is legal provided the function f is bijective. However, finding a good

f is a very difficult problem, because the choice of f can have a huge influence on even whether or not a

dependence can be uniformized with pipelining and/or if a dependence is already uniform after embedding.

Consider the following equation X with DX = {i|0 ≤ i ≤ N} that depends on Y with affine function

(i→ i, 0):

X(i) = Y (i, 0)

Applying CoB to X with function (i→ i, 0) results in a uniform dependence, after uniformizing in context.

However, if we instead apply CoB with (i→ 0, i), the result is the following:

X(i, j) = Y (j, 0)

where DX = {i, j|0 ≤ j ≤ N ∧ i = 0} after CoB.

The linear part A of the dependence (i, j → j, 0) is

[
0 1
0 0

]
, and is not idempotent. Therefore, the re-

sultant dependence after CoB cannot be uniformized with pipelining. In fact, it requires adding a dimension,

and we can say that embedding with (i→ i, 0) is better.

The problem of automatically determining legal (i.e., uniformizable) or optimal embeddings is still open.

It is already difficult to formulate what a “good” embedding is, since the choice of embedding for a statement

is also influenced by embeddings of another statements connected in the PRDG, and vice versa. The problem

is often viewed as a step in data alignment problem [42, 67, 68], which is slightly different since the target

of alignment is arrays instead of iteration space.

5.4 Heuristics for Embedding

We rely on a number of heuristics to find a reasonable embedding. Although a more general solution,

which analyze how “good” a choice of embedding, is more desirable, it is left as a future work. The heuristics

are similar to those for data alignment, but are different since some of the heuristics, e.g., those that refer

to loop indices used in array accesses, are not directly applicable.

58

The embedding operates on PRDG of programs. We first set the maximum number of dimensions of nodes

in the PRDG, as the target dimension. Although it is possible, and sometimes better or even unavoidable,

to embed into higher dimensions, we stay with the original number of dimensions. Then we can say those

nodes with the highest number of dimensions are already embedded. These nodes form a set B called base

nodes.

Then we seek to find embedding functions for other nodes in the PRDG. To allow transitive construction

of such functions, we find a pair TS(n) = 〈t, s〉, where t is an affine function, and s is a node n in the PRDG,

for each node. The function t is the base transform, and is composed with the transform of s: composition

target. The final embedding transformation σ is computed by composing t with the embedding transform

of s, and hence is recursively defined. This requires that when finding the pairs 〈t, s〉, the path following s

does not form a cycle.

There are some simple cases where a “good” embedding can be found from dependences. The following

heuristics are cases where a candidate can be found by inspecting an edge, provided the dependence function

is bijective.

• Dependence on base nodes: If a node n 6∈ B depends on b ∈ B, then the dependence function

itself is a good embedding transformation. For example, if there is a dependence (i → i,N), then

after transforming the node with the same function, the dependence becomes (i, j → i, j); a uniform

dependence.

• Dependence to a node with higher dimensions: With a similar argument as the above, depen-

dence functions to a node with higher dimensions is a good candidate.

• Dependence from a node with higher dimensions: If a node with higher dimensions m depends

on n with function f , then an embedding transformation t on n where t ◦ f has the lowest rank is a

good candidate. The rank of a dependence is the rank of the linear part of the dependence in matrix

representation. For example, if a node depends on n with dependence (i, j → i), t = (i → i, 0) is

preferred over (i→ 0, i). The former leads to dependence (i, j → i, 0), which is rank 1, but the latter

leads to (i, j → 0, i); a rank 2 dependence.

We first apply these heuristics, in the order shown above, to find some of the embedding transformations.

In all cases, the composition target s is the node with higher number of dimensions in the edge considered.

Note that the chain of compositions will never have a cycle, since the direction is always from lower to higher

dimensions. If a heuristic give multiple candidates, then one is selected by another set of heuristics discussed

later.

Next, a second set of heuristics is used to find safe embedding transforms (i.e., those do not introduce

cycles.) We ensure the safety by only introducing embedding transforms where the target is a node that

59

already have a transform, including those introduced by the following set of heuristics. Since all targets are

in higher dimensions after the application of first set of heuristics, introducing additional transforms that do

not decrease in dimensions to a node that already has a transform is safe.

• Dependence on node with embedding: If n has an edge e to m where TS(m) is already de-

fined, with a bijective function to the space with the same or higher number of dimensions, then the

dependence function is a candidate embedding transform.

• Dependence from node with embedding: If n has an edge e from m where TS(m) is already

defined, with a dependence function that admits an inverse (in context of the dependence domain),

then the inverse is a candidate embedding transform.

The above set of heuristics are actually sufficient to find embedding transforms for most nodes. If some

node do not have a transform, then the embedding is completed by specifying a legal embedding, which can

trivially be found. We use the following to find an embedding.

• If there is another node m with TS(m) already defined, use identity function as the transform, and set

m to be the composition target. If the input PRDG has a single weakly connected component, there

is at least one such m.

In the application of the heuristics above, some nodes may find multiple edges that match a heuristic. In

such cases, we need to select an edge to use.

• If the linear part of the functions are the same, any edge will work.

• If the linear part is not identical, then select an edge that gives the lowest dependence after transfor-

mation.

As a secondary optimization, select an edge to some boundary in the higher dimensional space among those

that have the same linear part.

The heuristics above, when combined, forms a working algorithm that can find embedding transforms for

all nodes. The resulting algorithm is heuristic driven, and the heuristics used are rather simple. However,

as we show later in the next section, these set of heuristics are sufficient to find good enough embeddings

for PolyBench benchmarks.

5.5 “Uniform-ness” of PolyBench

In this section, we evaluate the “uniform-ness” of PolyBench to by measuring how many of the bench-

marks can be uniformized by applying the methods described above. The program is said to be uniform if

all dependences in its PRDG, excluding input dependences, are.

60

Table 5.1 shows if dependences in a benchmark is completely uniform in three stages:

• Uniform at Start: We take the Alpha program extracted from C programs, and perform a form of

constant propagation to inline constants and scalar variables. Then we construct the PRDG of a

program, and check if it is uniform.

• Uniform after Embedding: The PRDG after applying the embedding described in Section 5.3 is ana-

lyzed.

• Uniform after Pipelining: The PRDG after applying uniformization by pipelining described in Sec-

tion 5.1 is analyzed.

We found 5 benchmarks with bugs or questionable implementations that make a computation known to

be uniformizable not, or the other way around. Excluding these benchmarks, 21 out of 25 benchmarks are

completely uniform after pipelining.

Of the remaining four, three benchmarks can technically be handled. These three benchmarks

correlation, covariance, and ludcmp share a common property that some matrix is computed in the

first phase of the kernel, and then used in the next phase with transpose-like dependences. Transpose-like

dependences are dependences where the linear part is some permutation of the indices. Such dependences

are not idempotent and cannot be handled by pipelining. However, it is possible to decompose the program

into phases such that the values computed in the former can be used as inputs to the latter. Then the

problematic dependences become input dependences, and the program remains uniform. This is obviously

not an ideal solution, as it significantly limits the design space.

This leaves durbin as the only remaining benchmark, which is known to be difficult to parallelize. In

fact, PLuTo will not parallelize this kernel, and it can only tile one of the dimensions.

In conclusion, we found a significant portion of PolyBench to be uniformizable, albeit with heuristic

heavy embedding, and one of the simplest technique for uniformization. Although no general claims can be

made from the study of PolyBench, we believe that 84% of PolyBench is significant.

5.6 Retaining Tilability after Pipelining

Let us first introduce the notion of dependence cones:

• f∗ denotes the dependence cone; the smallest polyhedral cone of a dependence f , defined over domain

D, containing its range f(D).

• A dependence cone f∗ is said to be “pointed” if there exists a vector π such that ∀x ∈ f∗, π · x > 0.

• Dependence cone for a set of dependence is the smallest polyhedral cone that contains the union of all

ranges.

61

Table 5.1: Uniform-ness of PolyBench/C 3.2 [84]. Excluding the
four benchmarks with bugs and questionable implementations, 21
out of 25 (84%) can be fully uniformized.

Benchmark Uniform Uniform after Uniform after
at Start Embedding Pipelining

correlation

covariance

2mm 4

3mm 4

atax 4

bicg 4 4 4

cholesky ?2

doitgen 4 4

gemm 4 4 4

gemver 4

gesummv 4 4

mvt 4 4 4

symm ?3

syr2k 4 4 4

syrk 4 4 4

trisolv 4

trmm ?3

durbin

dynprog ?4

gramschmit 4

lu 4

ludcmp1

floyd-warshall 4

reg detect 4 4

adi ?5

fdtd-2d 4 4

fdtd-apml 4 4

jacobi-1d-imper 4 4 4

jacobi-2d-imper 4 4 4

seidel-2d 4 4 4

1 ludcmp in PolyBench is actually LU decomposition followed
by forward substitution.

2 cholesky is not uniformized due to a rather strange imple-
mentation of Cholesky decomposition. The computation itself
is known to be uniformizable.

3 symm and trmm do not correctly implement their BLAS equiv-
alent. Correct implementation (and also the incorrect symm)
is uniform.

4 dynprog is uniformizable, but only due to a bug in its imple-
mentation. Correct implementation of Optimal String Paren-
thesization is not uniformizable.

5 adi is uniformizable, but contains a bug that makes it
an incorrect implementation of Alternate Direction Implicit
method. With the bug fixed, it is still uniformizable.

62

Van Dongen and Quinton [117] show that if the dependence cone formed by the set of dependences in

the program is pointed, then the extremal rays of this cone can be used as uniformization vectors to ensure

that the resulting program also has a pointed dependence cone. This simple result going back more than 25

years is, in hindsight, all we need to ensure tilability after uniformization.

If the dependences before uniformization is such that the program is tilable, then it is tilable after

uniformization if the dependences are uniformized with non-negative uniformization vectors. Also following

from the same assumption, the dependence cone for all dependences in the starting program is at most the

entire non-negative orthant. Thus, it immediately follows that the extremal rays of this cone are non-negative

vectors, and thus satisfying the condition.

In the original article, published before the invention of tiling, the dependence cone was used to ensure

that the choice of uniformization vectors maintain “schedulability” of system of affine recurrences (which is

a subset of Alpha) by affine schedules. We have shown that this result carries over to “tilability”, and this

is rather obvious in hindsight.

5.7 Discussion

In fact, Roychowdhury [104] has shown that all affine dependences can be uniformized, provided any

number of dimensions can be added to the iteration space. Although it is not practical to add many

dimensions, we may say that no affine dependences are truly affine.

In this chapter, we have shown that even with uniformization by pipelining, most of PolyBench can be

uniformized. Those that cannot be uniformized by pipelining all share a common pattern of transpose-like

dependences, and could be handled with a minor extension to our heuristics.

Assuming uniform dependences, even for a subset of the dependences, can significantly simplify the

formalization of analyses and transformations. One may get an impression that only handling uniform

dependences is too restrictive, but as we have shown, most affine dependences can easily be uniformized.

Although affine dependences are the most general class of dependences that the polyhedral model can handle,

we believe that it is important to explore a more restrictive class of dependences that permits more powerful

analyses and transformations.

63

Chapter 6

Memory Allocations and Tiling

In this chapter, we discuss memory allocations for tiled programs, especially for the case when tile

sizes are not known at compile time. When the tile sizes are parameterized, most techniques for memory

allocations [25, 69, 90, 115] cannot be used due to the non-affine nature of parameterized tiling. However,

parametric tiling combined with memory re-allocation is no use if we cannot find a legal allocation for all

legal tile sizes.

One approach that can find memory allocations for parametrically tiled programs is the Schedule-

Independent Storage Mapping proposed by Strout et al. [112]. For programs with uniform dependences,

schedule-independent memory allocation finds memory allocations that are legal for any legal execution of

the program, including tiling by any tile size. We present a series of extensions to schedule-independent map-

ping for finding legal and compact memory allocations for polyhedral programs with uniform dependences.

6.1 Extensions to Schedule-Independent Storage Mapping

The Schedule-Independent Storage Mapping is based on what are called Universal Occupancy Vectors

(UOVs) that characterize when a value produced can safely be overwritten. In the remainder of this section,

we use UOV-based allocation to refer to schedule-independent storage allocation.

The method makes simplifying assumptions that can lead to inefficient allocations in practical cases. In

particular, the assumption that the dependence pattern is same for all points in the iteration domain often

leads to inefficiencies due to dependences at the boundaries.

In this section, we extend the UOV-based allocation in the following aspects:

• Handling of imperfectly-nested loops. The original method assumed perfectly nested programs. We

extend the method by taking statement orderings, often expressed in the polyhedral model as constant

dimensions, into account.

• Refined trivial UOV construction. We show certain properties of dependences and UOVs to reduce

the number of dependences to be considered when finding an UOV. This can significantly improve

the quality of the trivial UOV (a legal UOV found by a simple method), and also narrow the search

space that needs to be explored when the optimal UOV is obtained using the dynamic programming

presented by Strout et al. [112].

64

• We also present a very efficient method, without any search, to find the shortest UOV (in Manhattan

distance as we define in Section 6.1.3) when UOV-based allocation is used in a specific context, namely

tiled loop programs.

6.1.1 Universal Occupancy Vectors

We first present an overview of Universal Occupancy Vectors (UOVs), and a memory allocation strategy

based on UOVs [112]. This approach works for uniform dependence programs, and an important property

is that the computed memory allocation is valid for any legal schedule, including tiled execution.

UOV is a vector that characterizes when a value may safely be overwritten. Given the set of dependences

I, and an iteration point z, let X be the set of points that depends on z by a dependence in I. Then a

vector v is a legal UOV if the point z′ = z+ v depends either directly or indirectly on all points x ∈ X \ {z′}

by compositions of the dependences in I. In other words, the point z′ must transitively depend on all points

that directly use the value produced at z. One exception is the point z′ that can also be a consumer of the

value produced at z, since most machine models assume that at any given time step, reads happen before

writes. Because z′ depends on all uses of z, any legal schedule would have executed all uses of z, and hence

the value may safely be overwritten by z′. Since the dependence pattern is assumed to be the same at all

points in the statement domain, the choice of z is not relevant.

UOV is formulated for a set of dependences, and we say UOV with respect to dependence(s) X when the

scope of dependences considered are limited to X.

Once the UOV is computed, the memory allocation that corresponds to a projection along the UOV is a

legal memory allocation. If the UOV crosses more than one integer points, then an array that corresponds

to a single projection is not sufficient. Instead, multiple arrays are used in turn, implemented as modulo

factors. The necessary modulo factor is the GCD of elements of the UOV.

The trivial UOV; a valid UOV, which may not be optimal; is computed as follows.

1. Collect the set of dependences for a statement S.

2. Add the dataflow vectors of the functions in the set.

The above follows from a simple proposition shown below, and an observation that the dataflow vector

of a dependence is a legal UOV with respect to that dependence.

Proposition 6.1 (Sum of UOVs) The sum of legal UOVs for two sets of dependences is a legal UOV for

the combined set of dependences.

Proof Let the UOVs for two sets of dependences U and V respectively be u and v. Then the

value produced at z is dead when z + u can legally be executed with respect to the dependences

65

in U , and similarly for V at z+ v. Since there is a path from z to z+u+ v by following the edges

z + u and z + v (in either order), the value produced at z is guaranteed to be used by all uses,

z + u and z + v, when z + u+ v can legally be executed.

6.1.2 Limitations of UOV-based Allocation

Allocations based on UOVs have a strong property: schedule-independence. Here, the schedule is not

limited to affine schedules in the polyhedral model, and time stamps to each operation can be assigned

arbitrarily, as long as they respect the dependences.

In the usual flow of compilation, dependences are across multiple statements. Affine scheduling in poly-

hedral compilation finds affine functions that map each of these statements to a common space, where time

stamps of instances of all statements can be compared using lexicographical order. Therefore, the allocation

is, strictly speaking, not legal for any schedule when put in the context of polyhedral compilation. Instead,

UOV-based allocation is only applicable when all statements are taken to this common space.

For example, let two statements A and B both scheduled with affine function (i, j → i, j) have a depen-

dence (i, j → i, j− 1) from A to B in the scheduled space. If we change the schedule of A to (i, j → i, j+ 1),

it is executed one time step later than before, and the dependence becomes (i, j → i, j − 2) in the scheduled

space. Now, an UOV computed based on the former dependence is clearly invalid. Moreover, changes in

affine schedules can turn a uniform dependence to an affine dependence and vice versa.

Thus, when used in the polyhedral compilation flow, UOV-based allocation is schedule-independent if

the same schedule is applied to all statements.

6.1.3 Optimal UOV without Iteration Space Knowledge

The optimality of UOVs without any knowledge of size or shape of the iteration space is captured by

the length of the UOV. However, the length that should be compared is not the Euclidean length, but the

Manhattan distance.

It is easy to show that any multiple, by some integer greater than one, of a legal UOV uses more memory.

This is because if some vector ~u is multiplied by an integer α > 1, then the number of iteration points

that are crossed by the vector α~u is α times more than that by the vector ~u. Since UOV characterizes the

distance between two points that can share the same memory location, the number of iteration points that

are crossed is directly related to memory usage.

Two UOVs that are not constant multiples of each other are often difficult to compare. For example,

memory usage of two allocations based on UOVs [1, 1] and [2, 0] are only parametrically comparable. With

N ×M iteration space, the former uses N +M and the latter uses 2N . The optimal allocation in such case

depends on the values of N and M that are not known until run-time.

66

for (t=0:T)

for (i=0:N)

A[i] = foo(A[i]); //S1

for (i=1:N)

A[i] = bar(A[i-1], A[i]); //S2

Figure 6.1: Imperfectly nested loop

Informally, increasing the Manhattan distance will always increase memory usage by either increasing

the GCD, and hence increasing the mod factor, or by increasing the “angle of the projection”, and hence

increasing the size of the projected space.

6.1.4 UOV in Imperfectly Nested Programs

In the original article, only programs with a single statement are considered. The authors also assume

that the loops are perfectly nested. When multiple statements are in a program, the textual order of the

statements and/or loops becomes important.

For example, consider the code fragment in Figure 6.1. When array dataflow analysis [30] is applied to

the code fragment above, the domains and dependences are (here, we denote dependences as relations, and

name label LHS and RHS with the statement name):

• DS1 = {t, i|0 ≤ t ≤ T ∧ 0 ≤ i ≤ N}

• DS2 = {t, i|0 ≤ t ≤ T ∧ 1 ≤ i ≤ N}

• I1 = S1[t, i]→ S2[t− 1, i] : i > 0

• I2 = S1[t, i]→ S1[t− 1, i] : i = 0

• I3 = S2[t, i]→ S1[t, i]

• I4 = S2[t, i]→ S1[t, i− 1] : i = 1

• I5 = S2[t, i]→ S2[t, i− 1] : i > 1

In the above example, dependence I3 is not respected with identity scheduling function, since the producer

and the consumer are scheduled at the same time stamp. One possible affine schedule to respect this

dependence is:

• θS1 = S1[i, j]→ [i, j, 0]

• θS2 = S2[i, j]→ [i, j, 1]

which corresponds to loop fusion of the original program.

Another choice of schedule, which corresponds to the original loop structure is:

67

• θS1 = S1[i, j]→ [i, 0, j]

• θS2 = S2[i, j]→ [i, 1, j]

These constant dimensions are commonly used in polyhedral scheduling for expressing statement order-

ings. Notice that the dependences in the schedule space are different between the two choices above. For

example, the dependence I3 becomes the following in the scheduled space:

• I3 = [t, i, 1]→ [t, i, 0]

• I3 = [t, 1, i]→ [t, 0, i]

As discussed earlier, different choice of schedules influence the dependence patterns in the scheduled

space. As an obvious consequence, UOV-based allocations are different.

6.1.5 Handling of Statement Ordering Dimensions

When the schedule function has ordering dimensions, the corresponding elements in the UOV require

special handling. In the original formulation there is only one statement, and thus every iteration point

writes to the same array. When multiple statements exist in a program, the iteration space of a statement

is a subset of the combined space, and is made disjoint by statement ordering dimensions. Thus, not all

points in the common space correspond to a write, and this affects how the UOV is interpreted. It is possible

for two statements to have overlapping spaces when the dependences are such that the statement order is

irrelevant. However, we assume that the spaces are disjoint to simplify our presentation.

When all points in the iteration space write to the same array, the elements in the UOV directly correspond

to the number of values that must be live. For example, consider the following program:

for (i=1:N)

A[i] = A[i-2]; //S1

A trivial UOV of S1 is the vector [2], and at least 2 scalars are required to preserve a value computed i until

its last use; i+ 2, because there is another value computed and to be stored at i+ 1.

However, the situation is different for statement ordering dimensions. Consider the following:

A = S1() //S1

B = S2(A) //S2

C = S3(A) //S3

Note that this example does not even have a loop, but the iteration space is one-dimensional, due to

constant ordering dimensions. The dependences are S2[1] → S1[0] and S3[2] → S1[0], and the constant

parts are [−1] and [−2]. Although the shortest valid UOV is [2], it is obvious that a single scalar is sufficient

for the above program. This is because the iteration points that depend on S1 are not instances of S1, and

hence they are allocated separately.

68

Because we assume all statement domains are made disjoint by statement ordering dimensions, a vector

of any length along the constant dimensions will only cross at most one iteration point of a statement. We

can safely say that the elements of a UOV that correspond to statement ordering dimensions may only be

1, 0, or −1. In the corresponding dimensions of the dependence vector, any positive value is replaced by 1,

and negative value is replaced by −1, when constructing the UOV.

In addition, the ordering dimensions may be ignored in the final memory mapping function, computed

as the affine/linear function whose kernel is the UOV, since their size is always 1.

6.1.6 Dependence Subsumption for UOV Construction

The trivial UOV, which also serves as the starting point for finding the optimal UOV, is found by taking

the sum of all dependences. However, this formulation may lead to significantly inefficient starting point.

For example, if two dependences [i]→ [i− 1] and [i]→ [i− 2] exist, the former dependence may be ignored

during UOV construction since a legal allocation for the latter is already also legal for the former.

We may refine both the construction of the trivial UOV and the optimality algorithm by reducing the set of

dependences considered during UOV construction. The optimality algorithm presented by Strout et al. [112]

searches a space bounded by the length of trivial UOV using dynamic programming. Therefore, reducing

the number of dependences to consider will improve both the trivial UOV and the dynamic programming

algorithm.

The main intuition is that if a dependence can be transitively expressed by another set of dependences,

then the longest dependence (i.e., the dependence expressed transitively), is the only dependence that needs

to be considered. This is formalized in the following lemma.

Lemma 6.2 (Dependence Subsumption) If a dependence f can be expressed as a composition of depen-

dences in a set G, where all dependences in G are used at least once in the composition, then a legal UOV

with respect to f is also a legal UOV with respect to the dependences in set G.

Proof Given a legal UOV with respect to f , a value produced at z is preserved at least until

z′ defined by f(z′) = z, can be executed. Let the set of dependences in G be denoted as gx,

1 ≤ x ≤ n, where n is cardinality of G. Since composition of uniform functions is associative and

commutative, there is always a function g∗ obtained by composing dependences in G, such that

f = g∗ ◦gx for each x. Thus, all points z′′, gx(z′′) = z, are executed before z′ for all x. Therefore,

a legal UOV with respect to f is guaranteed to preserve the value produced at z until all points

that directly depend on z by a dependence in set G have been executed.

Finding a composition in the above can be implemented as an integer linear programming problem. The

problem may also be viewed as determining if a set of vectors are linearly dependent when restricted to

69

positive combinations. The union of all sets G, called subsumed dependences, found in the initial set of

dependences can be ignored when constructing the UOV.

Applying Lemma 6.2 may significantly reduce the number of dependences to be considered. However,

the trivial UOV of the remaining dependences may still not be the shortest UOV. For example, consider

dependence vectors [−1,−1], [−1, 1], [−1, 0]. Although the vectors are independent by positive combinations,

the trivial UOV [3, 0] is clearly longer than another UOV [2, 0]. Further reducing the set of dependences to

consider requires a variation of Lemma 6.2 that allows f to be also a composition of dependences. This leads

to complex operations, and the dynamic programming algorithm for finding optimal UOV in the original

article [112] may be a better alternative. Instead of finding the shortest UOV in the general case, we show

that such UOV can be found very efficiently for a specific context, namely tiling.

6.2 UOV-based Allocation for Tiling

UOV-based allocation give legal mappings even for schedules that cannot be implemented as loops. For

example, a run-time scheduler that selects an iteration to execute randomly, among those iterations where

all required values are computed, can use UOV-based allocation. However, this is obviously an overkill if we

only consider schedules that can be implemented as loops.

When UOV-based allocation is used in the specific context of tiling, the initial UOV may be further

optimized. If we know that the program is to be tiled, we can add dummy dependences to restrict the

universality of the storage mapping, while maintaining tilability. In addition, we may assume that the

dependences are all non-positive (for the tilable dimensions) as a result of pre-scheduling step to ensure

the legality of tiling. For the remainder of this chapter, the “universe” of UOVs are one of the following

restricted universes: fully tilable, fully sequential, and mixed sequential and tilable.

Theorem 6.3 (Shortest UOV in Fully Tilable Space) Given a set of dependences I in a fully tilable

space, the shortest UOV u for tiled execution is the element-wise maxima of dataflow vectors of all depen-

dences in I.

Proof Let the element-wise maxima of all dataflow vectors be the vector m, and fm be a

dependence with dataflow vector m. We introduce the following dummy dependences fd; fd(z) =

z − ud where ud is the d-th unit vector. These dependences do not violate the fully-permutable

property of the tilable space, and therefore the resulting space is still tilable. For all dependences

in I there exists at least a sequence of compositions with the dummy dependences to transitively

express fm. Using Lemma 6.2, the only dependence to be considered in UOV construction can

be reduced to fm, which has the vector m as its trivial UOV.

70

It remains to show that no UOV shorter than m exists for the set of dependences I. The

shortest UOV is defined by the closest point from z, where all uses of an iteration z can reach

by following the dependences. Since the choice of z does not matter, let us use the origin, ~0,

to simplify our presentation. This allows us to use the dataflow vectors interchangeably with

coordinate vectors.

Then, the smallest hyper-rectangle that contains m includes all I, and all bounds of the

hyper-rectangle are touched by at least one dependence. Since all dependences in a fully tilable

space are restricted to have non-negative dataflow vectors, no points within the hyper-rectangle

can be reached by following dependences. Thus, it is clear that m is the closest common point

that can be reached by those that touch the bounds.

The basic idea of inserting dummy dependences to restrict the possible schedule can be used beyond

tilable schedules. One important corollary for sequential execution is the following.

Corollary 6.4 (Shortest UOV for Sequential Execution) Given a set of dependences I in an n-

dimensional space where lexicographic scan of the space is a legal schedule, the shortest UOV u for lex-

icographic execution is the vector [m1 + 1, 0, · · · , 0] where m is the lexicographic maxima of the dataflow

vectors of all dependences in I.

Proof For sequential execution, we may introduce dummy dependences of the form

[1, ∗, · · · , ∗] and/or [0, .., 0, 1, ∗, · · · , ∗], where ∗ can take any integer value. Since the leading

dimensions before any ∗ is either 0 or 1, the resulting dependence is always to a lexicographically

preceding iteration, and thus the dependences of this form are always respected with lexicographic

execution. Note that the dummy dependences introduced in Theorem 6.3 are included in the

above.

Using the dummy dependences, any dependence the first element of whose dataflow vector is

smaller than the maxima is subsumed according to Lemma 6.2. For the remaining dependences,

there are two possibilities:

• We may use dummy dependences of the form [1, ∗, · · · , ∗] to let a dependence with dataflow

vector [m1 + 1, 0, · · · , 0] subsume all remaining dependences.

• We may use m as the UOV following Theorem 6.3.

It is obvious that when the former options is used, [m1+1, 0, · · · , 0] is the shortest. The optimality

of the latter case follows from Theorem 6.3. Thus, the shortest UOV is the shortest among these

two options. When the lengths of two possibilities are compared in Manhattan distance, the

former possibility is at least as short as the latter, and hence, we may always use the former.

71

The following corollary can trivially be established by the combination of the above.

Corollary 6.5 (Shortest UOV for Sequence of Tilable Spaces) Given a set of dependences I in a

space where a subset of the dimensions are tilable, and lexicographic scan is legal for other dimensions, the

shortest UOV u for tiled execution of the tilable space, and sequential execution of the rest is the combination

of vectors computed for each contiguous subset of either sequential or tilable spaces.

Note that the above corollary only takes effect when there are sequential subsets with at least two

contiguous dimensions. When a single sequential dimension is surrounded by tilable dimensions, its element-

wise maxima and lexicographic maxima are equivalent.

Using the above, the shortest UOV for sequential, tiled, or a hybrid combination, can be computed very

efficiently.

6.3 UOV-based Allocation per Tile

In the above discussion, the allocations were for tilable iteration spaces. However, UOV is purely a

property of the dependences, and its correctness does not rely on domains of the iteration space. Therefore,

allocations computed using UOV can be directly used for computing allocations per tile, or any set of tiles.

In the context of shared memory architecture, allocating memory per tile does not make sense. However,

for distributed memory architecture, where memory must be partitioned among nodes, allocation for some

subset of the iteration space becomes necessary. UOV-based allocation can be used to partition the memory

by allocating memory for the set of tiles to be executed by a processor.

Furthermore, the allocation for set of tiles may be further optimized with UOV analysis by treating each

tile as an iteration, and dependences between tiles as dependences. The resulting UOV across tiles indicate

when the allocation for a tile may safely be reused by another tile.

6.4 UOV Guided Index Set Splitting

In polyhedral representation of programs, or even in Alpha programs written equationally, there are

always boundary cases that behave differently from the rest. For instance, the first iteration of the loop may

read from inputs, where successive iterations use values computed by previous iterations.

In the polyhedral model, memory allocation is usually computed for each statement. With pseudo-

projective allocations, the same allocation must be used for all points in the statement domain. Thus,

dependences that only exist at the boundaries influence the entire allocation.

For example, consider the code in Figure 6.1. The value produced by S1[t,i] is last used by S2[t,i+1]

for i > 0. However, the value produced by S1[t,0] is last used by S1[t+1,0]. Thus, the memory allocation

72

for S1 must ensure that a value produced at [t,i] is live until [t+1,i] for all instances of S1. This clearly

leads to wasteful allocations, and our goal is to avoid them.

One solution to the problem is to apply a form of index set splitting [38] such that the boundary cases

and common cases have different mappings. In the example above, we wish to use piece-wise mappings for

S1[t,i] where the mapping is different for two disjoint sets i = 0 and i > 0. This reduces the memory usage

from an array of size N + 1 to 2 scalars.

Once, the pieces are computed, application of piece-wise mappings can done through splitting the state-

ments (nodes) as defined by the pieces, and then applying a separate mapping to each of the statements

after split. Thus, the only interesting problem that remain is finding meaningful splits.

In this section, we present an algorithm for finding the split with the goal of minimizing memory usage.

The algorithm is guided by Universal Occupancy Vectors and works best with UOV-based allocations. The

goal of our index set splitting is to isolate boundaries that require longer lifetime than the main body. Thus,

we are interested in a sub-domain of a statement with a different dependence pattern compared to the rest

of the statement. We focus on boundary domains that contain at least one equality. The approach may be

generalized to boundary planes of constant thickness using Thick Face Lattices [40].

The original index set splitting [38] aimed at finding better schedules after the split. The quality of the

split is measured by its influence on possible schedules: if having different scheduling functions to each piece

helps in finding a better schedule.

In our case, the goal is different. Our starting point is the program after affine scheduling, and we are

now interested in finding memory allocations. When the dependence pattern is the same at all points in the

domain, splitting cannot improve the quality of the memory allocation. Since the dependence pattern is the

same, the same memory allocation will be used for all pieces (with a possible exception of the cases when

the split introduces equalities or other properties related to shape of the domains). Because two points that

may have been in the nullspace of the projection may now be split into different pieces, the number of points

that can share the same memory location may be reduced as the result of splitting.

Thus, as a general measure of quality, we seek to ensure that a split influences the choice of memory

allocation for each piece. The obvious case when splitting is useless is when a dependence function at a

boundary is also in the main part. We present Algorithm 6.1 based on this intuition to reduce the number

of splits.

The intuition of the algorithm is that we start with all dependences with equalities in their domain as

candidate pieces. Then we remove some of the dependences where splitting does not improve the allocation

from candidate pieces. The obvious case is when the same dependence function exists in the non-boundary

cases (i.e., dependences with no equalities in their domain). In addition, more sophisitcated exclusion is

performed using Theorem 6.3.

73

Although the algorithm is tailored towards UOV-based allocation by using UOV as an abstraction to

find useless splits, it may still be used for non-uniform programs. It may also be specialized/generalized by

adding more rules to eliminate dependences to Step 2. This requires a method similar to Lemma 6.2 for

other memory allocation methods.

6.5 Memory Usage of Uniformization

In uniformization by pipelining discussed in Chapter 5, an affine dependence was replaced by sequences

of uniform dependences. Since the only use of the uniformization variable—the variable introduced by

uniformization—is the propagation dependence, the uniformization vector becomes the UOV for the variable.

Although the identity dependence to uniformization variable that replaced the affine dependence is an-

other use of this variable, it can be ignored here. This identity dependence can always be handled by the

statement ordering that ensures the propagation happens before the use. Thus, the UOV used for the al-

location is exactly the uniformization vector, and hence only one element is allocated for propagation of a

value. Therefore, no extra memory is required for propagation.

Additionally, since both producer and consumer iterations of the propagation are mapped to exactly the

same memory location, there is no need to actually perform the copy. Thus, uniformization, which may

initially appear inefficient, can be implemented with almost no overhead.

6.6 Discussion

In this chapter, we have presented a series of techniques for finding allocations that work for parametric

tiling. Building on the result of Chapter 5 that showed many affine control programs are uniformizable, we

have extended Schedule-Independent Storage Mapping [112] to handle various cases.

By combining all the proposed extensions, we can find compact allocations that can be used for any

(legal) tile sizes. In addition, tailoring UOV-based allocation to a specific context of tiling allows us to find

the shortest UOV without any search. Although finding the optimal allocation given constant problem sizes

would still require the dynamic programming algorithm, we focus on cases where problem sizes are run-time

parameters. In such cases, our allocations are as compact as UOV-based allocation can get.

74

Algorithm 6.1 UOV-Guided Split

Input:

I: Set of dependences that depend on a statement S. A dependence is a pair 〈f,D〉 where f is an
affine function and D is a domain.

Output:

P: A partition of DS , the domain of S, where each element defines a piece of the split.

Algorithm:
We first inspect the domain of dependences in I to detect equalities.
Let

Ib be the set of dependences with equalities, and

Im be the set of those without equalities.

Then,

1. foreach 〈f,D〉 ∈ Ib,

if ∃〈g,E〉 ∈ Im; f = g then remove 〈f,D〉 from Ib

2. Further remove dependences from Ib using the following if applicable:

(a) Theorem 6.3 and its corollaries. The following steps are only for Theorem 6.3.

Let m be the element-wise maxima of dataflow vectors in Im.
foreach 〈f,D〉 ∈ Ib
– Let v be the dataflow vector of f .
– if ∀i : vi ≤ mi then remove 〈f,D〉 from Ib.

3. Group the remaining dependences in Ib into groups Gi, 0 ≤ i ≤ n, where ∀X,Y ∈ Gi;Xf (DX) ∩
Yf (DY) 6= ∅. In other words, group the dependences with overlapping domains in the producer space.

4. foreach i ∈ 0 ≤ i ≤ n, Pi =
⋃
∀X∈Gi

Xf (DX)

5. if n ≥ 0 then Pn+1 = DS \
n⋃

i=0

Pi else P0 = DS

75

Chapter 7

MPI Code Generation

In this chapter, we present our approach for generating distributed memory parallel code from polyhedral

representations. We target distributed memory parallelization with Message Passing Interface (MPI) and C.

In the last decade, a number of techniques were developed to efficiently parallelize polyhedral representa-

tions for multi-core processors. The state-of-the-art techniques use tiling as a method to expose parallelism,

and to control locality, for efficient execution [16].

The performance of tiled code is hugely influenced by the choice of tile sizes [22, 60, 93, 99, 100, 102, 114,

132]. This led to the development of series of techniques for parameterized tiled code generation [43, 44, 55,

54, 53, 101]. We may now say that automatic parallelization of polyhedral programs for shared memory is

a largely solved research problem although many engineering problems still remain.

However, shared memory architectures cannot be expected to scale to large number of cores. One of

the reasons being cache coherency; as a number of cores that share a memory increases, maintaining cache

coherency becomes increasingly expensive. It is then a natural flow to target distributed memory code

generation.

Distributed memory parallelization introduces a number of new problems. In addition to the partitioning

of computation, we must address two additional problems: data partitioning and communication. These two

problems are not visible for shared memory parallelization, since the shared memory conveniently hides these

issues from the software layer. Moreover, the problem of tile size selection is even more critical in distributed

memory parallelization. In addition to locality and load balancing concerns which are also faced by shared

memory parallelization, the volume and frequency of communication is also influenced by tile sizes.

In this chapter, we present a code generation technique for efficiently parallelizing polyhedral applications

using MPI. How we address the problems described above is summarized below:

• Computations are partitioned using wave-front of tiles. The partitioning of computation is identical

to that used for shared memory by PLuTo [16]. However, unlike PLuTo or other related work [8, 15,

21, 59], we allow parametric tiling.

• Data Partitioning is carried by extensions to UOV-based allocation presented in Chapter 6. This allows

memory to be allocated for sets of tiles, and also ensures legal memory allocation for parametric tile

sizes. It is important to note that we do not require UOV-based allocation in our code generator,

which will work with any legal memory allocation for parametric tiling.

76

• Communications are greatly simplified by our assumption that the dependences that cross processor

boundaries are uniform. This builds on our analyses of PolyBench in Chapter 5 that shows most

benchmarks can be completely uniformized.

With uniform dependences, many questions related to communication; how to find processors that

need to communicate, how to pack/unpack buffers, how to overlap communication with computation;

can easily be answered.

Our approach builds on D-Tiling [53]; a parameterized tiled code generation technique for shared memory;

and supports parametric tile sizes as well. In the following, we first describe key elements of D-Tiling that

we need to described our extensions, and then present how we address the three problems in detail.

7.1 D-Tiling: Parametric Tiling for Shared Memory

Our approach extends upon the state-of-the-art techniques for parameterized tiled code generation [44,

53]. The two techniques are nearly identical, but our presentation is based on the approach by Kim [53]

called D-Tiling. Let us first describe the key ideas in D-Tiling in order to explain our extensions.

Since parametrically tiled programs do not fit the polyhedral model, current techniques syntactically

modify the loop nests after code generation. The code generation works differently for sequential and parallel

execution of the tiles. This is because parallel execution of tiles require skewing of the tiles, which can be

represented as affine transformations if the tile sizes are fixed, that are no longer polyhedral transformations.

For sequential execution of the tiles, D-Tiling takes a d-dimensional loop nest as an input, and uses two

different algorithms to produce what are called tile loops and point loops that are d-dimensional each. Tile

loops are loop nests that visit all the tile origins, the lexicographical minima of a tile. Points loops are loop

nests, parameterized by tile origins, that visit all points in a tile. The final output is simply the two loops

composed; point loops as the body of tile loops.

For parallel execution, point loops remains the same, but the tile loops are generated using a different

algorithm. After applying tiling, the wave-front of tiles that are executed in parallel are usually those on a

hyper-plane characterized by normal vector ~1 = [1, 1, ..., 1].

This is necessary for parametric tiles, because parametric tiling falls outside the polyhedral model. The

first iterator time corresponds to the global time step of wave-front execution, controlling which wave-

front hyper-plane should be executed. Usually, wave-front hyper-planes characterized by normal vector

~1 = [1, 1, ..., 1] is used. This can be viewed as the hyper-plane with 45 degrees slope in all dimensions. This

hyper-plane is always legal to be executed in parallel, and can be further optimized by replacing 1 with 0

for dimensions where no dependences are carried across tiles. In the following, we refer to the time as the

wave-front time.

77

// computation of wave -front time step start and end

start = ...

end = ...

//time loop that enumerates wave -front hyper -planes

for (time = start; time <= end; time ++)

//loops to visit tile origins for wave -front time step "time"

f o r a l l (ti1 = ti1LB; ti1 <= ti1UB; ti1+=ts1) {

...

// last tile origin is computed as a function of

// current wave -front time step and other tile origins

tid = getLastTI(time , ti1 , ti2 , ...)

// guard against outset

if (tidLB <= tid && tid <= tidUB) {

// point loops

...

}

}

#synchronization

Figure 7.1: Structure of loop nests tiled by D-Tiling [53] for wave-front execution of the tiles. Bounds on
time; start and end are computed using Equation 7.1. The last tile origin, tid is computed using ti1 through
tid−1, and tid is not a loop iterator. The function getLastTI computes tid using Equation 7.2. There is a
guard to check if the computed tid is not an empty tile, and then the point loop. All loops up to tid−1 can
be executed in parallel.

Given such a vector v, the wave-front time step for each tile can be computed as:

time =

d∑
k=1

vk

⌊
tik
tsk

⌋
where ti is the vector of tile origins, and ts is the vector of tile sizes.

To simply our presentation, we assume that v = ~1, and use the following:

time =

d∑
k=1

⌊
tik
tsk

⌋
(7.1)

The above formula will also give the lower and upper bounds of time, start and end, by substituting tik

with its corresponding lower bound and upper bound respectively.

Similarly, if the time and ti1 through tid−1 is given, tid can be computed as:

tid = (time −
d−1∑
k=1

tik
tsk

)tsd (7.2)

Using Equations 7.1 and 7.2, D-Tiling produces tile loops that visit tile origins of all tiles to be executed

in parallel, parameterized by time. The structure of the tile loops produced for tiled execution is illustrated

in Figure 7.1.

78

7.2 Computation Partitioning

The basic source of parallelism is the wave-front of the tiles. After tiling, the wave-fronts of the tiles are

always legal to run in parallel. This approach has been shown effective in shared memory, by combining this

parallelism with data locality improvements from tiling [16]. The polyhedral representation of loop programs

is first transformed according to the PLuTo schedule (we use a variation implemented in Integer Set Library

by Verdoolaege [121]). Then we tile the outermost tilable band, and parallelize the wave-front of the tiles.

Since parallelization with MPI is SPMD, the code to implement the partitioning is slightly more compli-

cated than annotating with OpenMP pragmas in the shared memory case. We implement a cyclic distribution

of processors among the outermost parallel loop using the processor ID, pid, and the number of processors,

numP, as follows:

for (ti1=ti1LB+pid*ts1; ti1 <= ti1UB; ti+=ts1*numP)

Additionally, it is easy to extend the distribution to block cyclic by adding another loop:

for (bStart=ti1LB+pid*ts1*blockSize; ti1 <= ti1UB; ti+=ts1*blockSize*numP)

for (ti1=bStart; ti1 <= bStart+blockSize*ts1; ti1+=ts1)

The transformations above are purely syntactic, and it can be observed that the iterations being visited are

unchanged. Since it is a parallel loop, the order does not matter, and hence they are legal transformations.

Block cyclic distribution can become useful, especially in distributed memory platforms, because it can

be used to control the ratio of computation per communication, without affecting the locality behavior by

the tiles. Although OpenMP supports more dynamic allocations through the schedule clause of the for

work sharing pragma, such as dynamic or guided, these distributions cannot be implemented statically as

loops.

7.3 Data Partitioning

We use the memory allocations presented in Chapter 6 to allocate memory. However, we may use any

other memory allocation that is also legal for wave-front execution of parametric tiles. We do not use any

properties specific to UOV-based allocations.

In our approach memory is allocated per “slices of tiles”. A slice of a tile is the set of all tiles that share

a common ti1, the first tile origin. Since this is the unit of distribution of work among processors, separate

memory is allocated for each slice. With block cyclic distribution, a slice is extended to be blockSize×ts1.

Since each slice in a block is contiguous, the iteration space of the full block is equivalent to a single slice

where the outermost tile ts1′ = ts1 × blockSize. For simplifying the control structure of the generated

code, we allocate memory in each processor assuming every tile is a full tile. Each processor allocates memory

for the above slice, multiplied by the number of blocks assigned.

79

We also extend the slice by the longest dependence crossing processor boundaries to accommodate for

values communicated from neighboring tiles. This corresponds to what are often called “halo” regions or

ghost cells. The values received from other processors are first unpacked from the buffers to arrays allocated

for tiles. Then the computation does not have to be special cased for tile boundaries, since even at the

bounds, same array accesses can be used.

7.4 Communication

When we can assume all dependences that cross processor boundaries are uniform, communication is

greatly simplified. We first assume that the length of uniform dependences in each dimension are strictly

less than the tile size of each dimension. Then we are sure that the dependences are always to a neighboring

tile, including diagonal neighbors.

7.4.1 Communicated Values

The values to be communicated are always values produced at the tile facets. The values produced at

the tile facet touching another tile must be communicated if the two tiles are mapped to different processors.

The facets that need to be communicated may be of a constant thickness if the length of dependence is

greater than 1 in the dimension that crosses processor boundaries. We call this thickness the communication

depth, as it corresponds to how deep into the neighboring tiles the dependences reach.

The depth is defined by the maximum length of a dependence in the first tiled dimension. For example,

dependences [−2, 0] and [−2,−2] are both considered to have length 2 in the first dimension. The memory

allocated are extended exactly by this depth, and the received values are stored in the “halo” region.

If the memory allocation is legal, then it follows that the values stored in the “halo” regions stay live until

their use, even though some of the values may not be immediately used by the receiving tile. Moreover, with

the possible exception at the iteration space boundaries, the values communicated are also guaranteed to

be used in the next wave-front time step. This follows from the assumption that no dependences are longer

than the tile size in each dimension. Therefore, we conclude that the volume of communication is optimal.

The participants of a communication can be identified by the following functions that take the vector of

tile origins ti as an input:

sender(ti) = [ti1 − ts1, ti2, · · · , tid] (7.3)

receiver(ti) = [ti1 + ts1, ti2, · · · , tid] (7.4)

The above is the solution for one of the most complicated problems related to communication; finding

the communicating partners. For programs with affine dependences, much more sophisticated analysis is

required [15, 21, 57].

80

ti1

ti2

Figure 7.2: Illustration of communications for 2D iteration space with [−1,−1] dependence. The big
arrows show the communication, from sender to receiver. The shadowed column (blue) is the tile face being
communicated. With greater depth, more columns will be included in the communication in 2D case. The
dashed rectangle (red) denotes a slice for which memory is allocated. Note that the upper right corner of
a tile, the top-most value of each face, is sent to the horizontal neighbor, but the dependence is from the
diagonal neighbor. UOV-based allocation guarantees that this value is never overwritten until its use, and
therefore it is safe to send early.

The packing and unpacking of buffers for communicating these variables are implemented as loops after

the execution of a tile. The bounds of these loops, and the size of the buffer can be trivially computed, as

they are always tile facets of some constant thickness. As an optimization, we allocate a single buffer for

multiple statements, if the data types match.

Figure 7.2 illustrates communication for 2D iteration space.

7.4.2 Need for Asynchronous Communication

Conceptually, we may place MPI send and receive calls at the end and the beginning of each tile. With

the exception of those tiles at the initial boundary, a tile receives values from neighboring processors before

the start of the computation. Similarly, after a tile is computed, values are sent to its neighbor, with the

exception of those tiles at the terminating end.

MPI specifies that calls to MPI Send blocks until the buffer for communication has been secured. In most

cases, data is copied to system buffer and the control almost immediately returns. However, it should be

assumed, for the sake of correctness, that MPI Send is blocking until the corresponding MPI Recv is called.

From the time and receiver functions (Equation 7.1 and 7.4), and also from Figure 7.2, it is clear that

the receiver tile is one wave-front time step later than the sender. This means that with näıve placement

81

of MPI calls, the corresponding receive is not reached until all sends in a wave-front time complete. This

clearly can cause a dead lock, when one of the calls to MPI Send actually behaves as a blocking operation.

Therefore, in order to ensure correctness, we must manage buffers ourselves and use asynchronous versions

of MPI functions. Even if no dead locks occur, notice that the number of communications “in flight”

will increase as the number of tiles increase. The amount of buffer required for the näıve placement of

communications corresponds to the maximum number of tiles in a wave-front time step. This is obviously

wasteful, and should be avoided.

In addition, we may benefit from overlapping of communication with computation, sometimes called

double buffering, by using asynchronous calls. Since data transfers in distributed memory environment

typically have significant latency, it is a well-known optimization to hide the latency by computing another

set of values as a data transfer is in progress (e.g., [27, 24, 113].) Tiling based parallelization can achieve

this overlap if the number of parallel tiles is more than the number of physical processors. After a processor

computes a tile, there are more tiles to be computed within the same wave-front time step, allowing overlap.

7.4.3 Placement of Communication

We now address the problem of where the asynchronous communications should be placed to ensure

correctness, to reduce the number of in flight communications, and to overlap communication with compu-

tation. Let us ignore the problem of code generation for the moment, and assume that communication code

can be inserted at the beginning or the end of any tile. We will deal with the problem of code generation

separately in Section 7.4.4.

Let us consider a send by a tile identified by its tile origin s, and its receiver, r = s + [ts1, 0, · · · , 0] =

receiver(s), where receiver is the receiver in the näıve placement as defined in Equation 7.4. Instead of

this näıve placement, we propose to receive the data at c = r − [0, · · · , 0, tsd], or in relation to the sender,

c = s + [ts1, 0, · · · , 0,−tsd]. The new communication pattern is illustrated in Figure 7.3. Note that even

though the tile that receives the values is now different, the memory locations where the received buffer is

unpacked remain the same.

The tile c is the tile with the same tile origins up to d−1 as r, but one wave-front time earlier. Let v[x : y]

denote a sub-vector of v consisting of elements x through y. Since c and r only differ in the d-th dimension,

c[1 : d− 1] = r[1 : d− 1]. Let the common part be denoted as a vector x, and r be a tile executed at time t,

then we observe the following using Equation 7.2, rd = getLastTI(t, x) and cd = getLastTI(t− 1, x). Since

r was one wave-front time later than s, it follows that c is in the same wave-front time as s.

Furthermore, due to the loop structure of D-Tiling, and how computation is partitioned, we can say that

if s is the n-th tile visited by a virtual processor p, then c is the n-th tile visited by the neighboring virtual

processor p+ 1, provided that the receive happens also in empty-tiles at the boundaries. Recall that c and

82

ti1

ti2

Figure 7.3: Illustration of when the values should be received using the same program structures as in
Figure 7.2. The horizontal arrows show the näıve placement, and the diagonal arrows show the optimized
placement.

83

s only differ in the first and the last tile origins, and that the difference s− c is [ts1, 0, · · · , 0,−tsd]. The tile

loops to iterate ti2 through tid−1 are common across all processors, and thus the same values are visited by

all processors in the same order. Also recall that tid is uniquely computed by Equation 7.2. The values of

ti1 for p and p+ 1 differs by ts1, and if ts2 through tsd − 1 are equal, the tile visited by the two processors

always differ by [ts1, 0, · · · , 0− tsd].

Thus, if the communication by s is to be received by c, even a single buffer is sufficient for correct

execution. However, this leads to a globally sequentialized execution, unless a processor is only responsible

for a single slice at each wave-front. This is because only the first (boundary) processor without any data to

receive can proceed to send before receive, and all other processors must wait to receive data before sending.

This wait on receive before send propagates to all processors, completely sequentializing the execution.

By increasing the number of buffers to 2 per processor, one for send and one fore receive, each processor

can perform both send and receive simultaneously, allowing for parallel execution of tiles. In addition, when

the program requires multiple datatypes to be communicated the number of required buffers are multiplied.

However, with 3D or higher iteration spaces, where a slice of tiles contains multiple tiles to be executed

in a wave-front time step, 2 buffers are not sufficient for the last physical processor. This is because the send

by the last physical processor is not received until the first processor moves to its next slice. Thus, only for

the last processor, the size of the send buffer must be multiplied by the number of tiles executed by a slice

in one wave-front time step.

Finally, we must also change the placement of receive within a tile to overlap communication with

computation. Let us define two functions prev and next that respectively give the tile executed in previous

and next wave-front time step for a given tile origin. These equations can be easily derived from Equation 7.1.

prev(ti) = ti− [0, · · · , 0, tsd] (7.5)

next(ti) = ti+ [0, · · · , 0, tsd] (7.6)

The order of operations in a tile ti is as follows:

1. Issue asynchronous receive (MPI Irecv) from sender(next(ti)).

2. Perform computations for the current tile ti.

3. Wait (MPI Wait) for the send issued at the previous tile to complete.

4. Asynchronously send (MPI Isend) outputs of ti to prev(receiver(ti)).

5. Wait (MPI Wait) for the issued receive to complete, and unpack buffer.

The key is that instead of performing the receive at the beginning of the tile, as in the näıve approach,

receive and unpacking takes place after the computation. Also note that the send always has one tile worth

84

of computation in between its issue and its corresponding wait. Thus, the communication is overlapped with

a tile of computation.

7.4.3.1 Legality

The legality of the above placement can be easily established. The order in which tiles in a wave-front

hyper-plane is executed should not matter since they are parallel. Therefore, although some of the parallel

tiles may be executed sequentially in the final code due to resource limitations, we may think of virtual

processors running at most one tile at each wave-front time step. Then the beginning of the n + 1-th tile,

and the end of n-th tile are equivalent in the final order within a virtual processor. The former case is that

of the näıve placement, and the latter is our proposed placement.

7.4.3.2 Beyond Double Buffering

Increasing the number of buffers beyond two will only allow the receive (MPI Irecv) to start early by

making buffers available earlier. This does not necessarily translate to performance, if maximum communi-

cation and computation overlap is achieved with double buffering. Denoting the time to compute a tile as

α, time to transfer outputs of a tile as β, we claim that double buffering sufficient if α ≥ β. When β > α,

one alternative to increasing the number of buffers is to increase α, i.e., increase the tile volume relative to

its surface area.

For tiled programs, α and β are both influenced by tile sizes. Since a facet of tiles are communicated, β

will increases as tile sizes ts2 through tsd increases. ts1 does not affect communication, since the outermost

tile dimension is the dimension distributed among processors. On the other hand, increasing any tile size

(ts) will increase the amount of computation per tile. Therefore, we expect that by appropriately selecting

tile sizes, buffering factor greater than 2 is not necessary. It is also known that the improvement due to

overlapping communication with computation is at most a factor of 2 [92].

Changing the tile size may alter other behaviors of the program, such as locality. However, the block cyclic

distribution we use can control locality. Increasing the block size increases the number of tiles performed

between communication are increased, and hence increases the amount of computation without affecting

locality. Because block size does not affect the size of tile facet being communicated, the volume of commu-

nication stays unchanged. Hence, block sizes can be used to provide enough overlap with communication and

computation without destroying locality. This does not change the legality of our approach, as multiplying

ts1 by block size gives equivalent behavior aside from the order of computation within a tile (or tile blocks.)

7.4.4 Code Generation

Now, let us discuss the code generation to realize the above placement of communications. Placement of

the send is unchanged from the näıve placement, where values are sent after computing values of a tile. The

85

placement of the receive seems more complicated, since prev(ti) may be an empty tile that we would like

to avoid visiting. Since the wave-front hyper-plane may be growing (or shrinking) in size as the wave-front

time step proceeds, both prev(ti) and next(ti) have a chance of not being in the outset. However, we must

visit prev(ti) even if there is no computation to be performed just to receive data for next time step.

We take advantage of the structure of loop nests after D-Tiling to efficiently iterate the necessary tiles.

D-Tiling produces d loops to visit tile origins. The outermost loop iterates over time, and then the tile

origins up to d − 1-th dimension are visited. Then the final tile origin is computed using Equation 7.2.

Furthermore, the check against the outset to avoid unnecessary point loops are after computing the last tile

origin. Therefore, it is easy to visit some of the empty tiles by modifying the guards on outset.

Let InOutSet(ti) be a function that returns true if the tile origin, ti is within the outset. Using the

above, and previously defined function sender, receiver, and next, operations in a tile are guarded by the

following:

• Computation of ti is performed if InOutSet(ti) is true.

• Tile ti sends its values if InOutSet(ti) ∧ InOutSet(receiver(ti)) is true.

• Tile ti receives values if InOutSet(next(ti)) ∧ InOutSet(sender(next(ti))) is true.

Note that for two tiles ti, and ti′, the following equations hold:

ti = sender(next(ti′))

receiver(ti) = next(ti′)

Thus, every send has a corresponding receive.

If a tile ti is in the OutSet, tile origins [ti1, ti2, ..., tid−1] are visited every wave-front time step. When

the tid is not in the outset for the current wave-front, the point-loops are skipped by the guard on OutSet.

Therefore, if ti requires data at time t, then it is guaranteed that [ti1, ti2, ..., tid−1] is visited at t− 1 (or any

other time step). Thus, we can check if next(ti) requires data in the next time step, and receive even if the

tile is not in the OutSet. The tile origins for next(ti) can be computed by computing tid with time+ 1, and

it does not matter if ti is not in the outset if the code is inserted outside the guard on OutSet for ti.

Figure 7.4 illustrates the structure of code we generate using the above strategy.

7.5 Evaluation

We evaluate our approach by applying our code generator to PolyBench/C 3.2 [84]. Our evaluation is

two-fold, we first show that despite the constraint on uniform dependences in one of the dimensions, most

of PolyBench can be handled by our approach.

86

for (time = start; time <= end; time ++)

for (ti1=ti1LB+pid*ts1; ti1 <= ti1UB; ti1+=ts1*numP) {

...

tid = getLastTI(time , ti1 , ti2 , ...)

// issue receive for the next tile

tidNext = getLastTI(time+1, ti1 , ti2 , ...)

if (SenderInOutSet(ti1 , ti2 , ..., tidNext)

&& InOutSet(ti1 , ti2 , ..., tidNext)) {

MPI Irecv(&recvBuffer , ..., &recvReq];

}

// compute if in outset

if (InOutSet(ti1 , ti2 , ..., tid)) {

//point loops

...

//send values

if (ReceiverInOutSet(ti1 , ti2 , ..., tid)) {

MPI Wait(& sendReq);
//copy outputs to buffer

...

MPI Isend(&sendBuffer , ..., &sendReq);

}

}

// values should have arrived while computing

if (SenderInOutSet(ti1 , ti2 , ..., tidNext)

&& InOutSet(ti1 , ti2 , ..., tidNext)) {

MPI Wait(& recvReq);
//copy received values to local memory

...

}

}

Figure 7.4: Structure of generated code. The function getLastTI is called for time and time + 1 to find
next(ti). Then the issue of receive, computation, sends, and completion of receive is performed within the
corresponding guards. Variables recvReq and sendReq are handles given by asynchronous communication
calls that are later waited on.

87

We then compare the performance of our code with shared memory parallelization using PLuTo, but

we expect to scale well beyond the number of cores on a single shared memory node. Our goal is to show

comparable performance to PLuTo. We do not expect our code to scale any better than PLuTo as we use

the same parallelization strategy based on tiling.

7.5.1 Applicability to PolyBench

Out of the 30 benchmarks in PolyBench, 23 satisfies the condition that at least one dimension of its

tilable space is uniform. Among the remaining 7, 4 can be handled by splitting the kernel into multiple

phases as discussed in Chapter 5. These benchmarks are correlation, covariance, 3mm, and ludcmp.

Although phase detection of these kernels is trivial, the general problem is difficult, and we do not address

this problem. We handle these benchmarks by manually splitting into phases, and then combining the codes

generated individually.

The three benchmarks that cannot be handled are the following:

• cholesky has transpose-like dependences resulting from the particular implementation of PolyBench.

Cholesky decomposition can be handled if coded differently.

• durbin, and gramschmidt do not have large enough tilable bands to benefit from tiling based paral-

lelism. These two kernels are not parallelized by PLuTo.

Even though we require uniform dependence on a dimension, we can handle virtually all of the PolyBench,

since those that we cannot handle are not tilable either. We also note that all of the 23 benchmarks, as well

as the different phases of the 4 that require phase detection, are all fully uniform after our uniformization

step.

7.5.2 Performance Evaluation

We evaluate our approach on a subset of kernels in PolyBench. We exclude a number of kernels for the

following reasons:

• trmm, dynprog, and adi have bugs and do not correctly implement their computation.

• doitgen, reg detect, and fdtd-apml use single assignment memory, and thus no meaningful compar-

ison can be made with other tools that retain original memory allocation.

• symm, and ludcmp use scalars for accumulation preventing PLuTo from parallelizing the computation.

• atax, bicg, gemver, gesummv, mvt, trisolv, and jacobi-1d-imper are small computations (only 2D

loop,) and only run for less than a second sequentially with large problem sizes.

88

correlation covariance 2mm 3mm gemm syr2k syrk lu fdtd−2d jacobi−2d

imper

seidel−2d

Summary of AlphaZ Performance Comparison with PLuTo

S
p

e
e

d
 U

p
 w

it
h
 r

e
s
p

e
c
t

to
 P

L
u

T
o

 w
it
h
 1

 c
o

re

0
2
0

4
0

6
0

8
0

1
0

0

PLuTo 24 cores

AlphaZ 24 cores

PLuTo 96 cores (extrapolated)

AlphaZ 96 cores

AlphaZ 96 cores (No Bcast)

Figure 7.5: Summary of performance of our code generator in comparison with PLuTo. Numbers for PLuTo
with 96 cores are extrapolated (multiplied by 4) from the speed up with 24 cores. MPIC (No Bcast) are
number with the time to broadcast inputs removed. Broadcast of inputs takes no more than 2.5 seconds,
but have strong impact on performance for the problem sizes used. This is a manifestation of the well known
Amdahl’s Law, and is irrelevant to weak scaling that we focus on. With the cost of broadcast removed, our
code generator matches or exceeds the scaling of shared memory parallelization by PLuTo.

• floyd-warshall has very limited parallelism, and shows poor parallel performance (about 2x) with

24 cores when parallelized for shared memory via PLuTo.

This leaves us with the following 11 benchmarks: correlation, covariance, 2mm, 3mm, gemm, syr2k,

syrk, lu, fdtd-2d, jacobi-2d-imper, and seidel-2d.

We measured the performance using Cray XT6m. A node in the Cray XT6m has two 12 core Opteron

processors, and 32GB of memory. We used CrayCC/5.04 with -O3 option on the Cray. PLuTo was used with

options --tile --parallel --noprevector, since prevector targets ICC. The problem sizes were chosen

such that PLuTo parallelized code with 24 cores run for around 20 seconds.

The tile sizes were selected through non-exhaustive search guided by educated guesses. The tile sizes

explored for PLuTo (and for our code up to 24 cores) were limited to square/cubic tiles, where the same tile

size is used in each dimension. For our code executing on larger core counts, tile sizes were more carefully

chosen. In most benchmarks, we found that the best tile sizes are different depending on the number of cores

used. Note that PLuTo can only generate tiled code with fixed tile sizes.

The comparison is summarized in Figure 7.5. The results show that the MPI code produced by our code

generator show comparable scaling as the shared memory parallelization by PLuTo. We require that the cost

of initial broadcast to be removed for comparable scaling, which is not necessary when much larger problem

sizes are used. In the following, we present the performance of each benchmark in more detail.

89

correlation

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

covariance

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

Figure 7.6: Performance of data mining kernels in PolyBench. Our MPI parallelization gives comparable
or better performance in both benchmarks.

7.5.2.1 Data Mining

Figure 7.6 shows the results for correlation and covariance, categories as data mining in PolyBench.

Both of these benchmarks have two phases, where the first phase normalizes the input data matrix using

means and standard deviations. The normalization phase is O(N2) where N is the size of the input square

matrix, while the latter phase is O(N3). Thus, we only parallelize the latter phase, and the normalization

is only performed sequentially.

The performance of MPI parallelization is comparable to shared memory parallelization by PLuTo, and

continues to scale beyond 24 cores. Our code performs better in covariance, which is due to a slightly

different scheduling decisions by PLuTo and ISL schedulers. The default fusing strategy by PLuTo do not

fuse a number of loop nests in covariance, and produces a sequence of 7 parallel loop nests. Using the same

schedule to generate shared memory parallel code yields similar performance up to 24 cores.

7.5.2.2 Linear Algebra

Figure 7.7 illustrates the results for benchmarks in PolyBench categorized under linear-algebra

kernels and linear-algebra solvers.

We require 3mm, which is three matrix multiplications, where outputs of the two are used in the third, to

be separated into two phases. The former phase is a single matrix multiplication, and the latter is essentially

2mm. In fact, such separation of phases are performed by PLuTo scheduling as the outermost constant

dimension. Thus, the result of a scheduling is already two tilable loop nests, and no special phase detection

is required.

90

2mm

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

3mm

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

gemm

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

syr2k

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

syrk

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

lu

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

Figure 7.7: Performance of linear algebra kernels in PolyBench.

91

Most of these benchmarks do not require any communication after PLuTo scheduling, and show good

scaling. We perform worse on some of the benchmarks, due to the quality of our sequential code. The

code generated by AlphaZ is slightly slower in sequential execution when compared with PLuTo, and the

difference gets amplified as number of cores increases. The performance difference comes from a mixture

of multiple factors such as the overhead of parametric tiling, influence on compiler optimizations due to

parametric tiles, and difference in memory allocations.

We perform better than PLuTo in syr2k due to the same reason as covariance. PLuTo does not fuse

the loop nests, leading to two parallel loops. The performance of lu is notably worse than others. We use

the same parallelization strategy as PLuTo, and we do not expect our code generator to scale better than

PLuTo. Note that the extrapolation used in Figure 7.5 is a simple linear interpolation using the speedup at

24 cores, and assumes that the parallel efficiency stays the same at 96 cores. This is not the case with lu,

and this is why the extrapolated performance of PLuTo appears to good in Figure 7.5.

7.5.2.3 Stencil Computations

Figure 7.8 depicts the performance of our code generator for stencil computations in PolyBench.

We outperform PLuTo in fdtd-2d and jacobi-2d-imper due to two different reasons. The skewing

transformation for fdtd-2d is different because of memory-based dependences that PLuTo respects, where

we do not. The skewing chosen by PLuTo results in more complex control structure, and negatively impacts

performance.

In jacobi-2d-imper, values computed a time step is explicitly copied to another array before the next

time step. Jacobi stencil in PolyBench uses explicit copying over other methods (e.g., pointer swaps) so

that the computation can be analyzed via polyhedral analysis. (jacobi-2d-imper is the 2D data version of

the code we used in Section 2.1.12.) UOV-based allocation1 after PLuTo scheduling allocates a scalar for

a statement that is immediately copied to an array allocated for the other statement. Thus, our code uses

only one array as opposed to two used by shared memory parallelization using PLuTo.

We are significantly outperformed by PLuTo with seidel-2d. This is due to a combination of multiple

factors. The best tile size we found for PLuTo in this benchmark was 8× 8× 8. This is a surprisingly small

tile considering the cache size and memory foot print. We found that the Cray compiler uses optimization

that are otherwise unused when the tile sizes are small, compile time constant for this code. For instance,

turning off loop unrolling has no influence on other tile sizes, but slows down the 8 cubic tiled program by

more than 15%.

1Technically speaking, we use an obvious optimization of only allocating a scalar if the only dimension that carries any
dependences is the inner-most statement ordering dimension.

92

fdtd−2d

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

jacobi−2d−imper

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

seidel−2d

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

seidel−2d (without 8x8x8 tiles)

Number of Cores

S
p

e
e

d
 U

p
 w

it
h

 r
e

s
p

e
c
t

to
 P

L
u

T
o

 w
it
h

 1
 c

o
re

0 8 16 24 48 72 96

0
8

1
6

2
4

4
8

7
2

9
6 PLuTo

AlphaZ
AlphaZ (No Bcast)

Figure 7.8: Performance of stencil kernels in PolyBench.

93

In addition to the lost compiler optimization due to parametric tiling, the dependence patterns in Gauss

Seidel stencil computation negatively impact the performance of AlphaZ generated code. The Gauss Seidel

in PolyBench does not update boundary values of the 2D data array, and only updates the interior points at

each time step. Therefore, the program has only one statement, and boundary cases are all handled implicitly

through loop bounds and memory. However, when memory based dependences are ignored, a number of

boundary conditions arise as different statements. The number of statements in AlphaZ generated code

reaches 14, where 13 of them are boundary cases, and comes with non-negligible control overhead.

We are significantly outperformed as a combination of these reasons. We do still have linear scaling,

and as shown in Figure 7.8, the scaling is very similar to PLuTo once small tile sizes that enable additional

compiler optimizations are removed from the data set.

7.6 Summary and Discussion

In this chapter, we have presented our approach for generating distributed memory parallelization. The

key idea in our approach is to only allow uniform dependences to cross processor boundaries. Although

this may seem restrictive, effectively all benchmarks in PolyBench that can be efficiently parallelized by

wave-front execution of tiles can be handled. Because of many simplifications that can be made thanks to

uniform dependences, communication becomes extremely simple, and resulting codes have similar scaling as

shared memory parallelization.

Uniformization (or localization) was once a popular approach for parallelization. With the increased pop-

ularity of shared memory architectures, which makes handling of affine dependences much easier, techniques

for uniformization are now rarely used. However, when communication can no longer be made implicit via

shared memory, resurrecting uniformization is a possible approach.

There are a number of parameters that can be explored in this parallelization scheme. The current

strategy for uniformization is to uniformize as much as possible, and then check if there is at least one

dimension that is uniform. There is really no need for intra-processor dependences to be uniformized, and

hence how to select dependences to uniformize posed an interesting challenge.

Moreover, the memory allocation of the original program can also be reused if desired. The original allo-

cation is also a legal memory allocation with parametric tiling, provided that the memory-based dependences

are taken into account. Thus, one can envision partially respecting memory-based dependences, while finding

new memory allocations for others. As illustrated by jacobi-2d-imper benchmark, re-allocating memory

can significantly improve performance. However, the original allocation is, in many cases, efficient, and

re-allocating may result in performance degradation. Such trade-off was not explored in our work.

It is also possible to use both MPI and OpenMP so that intra-node parallelism is exploited by OpenMP.

Since the MPI implementation is very efficient on shared memory, we did not explore such hybrid approach.

94

However, it is a trivial extension to our work to generate hybrid version; one can simply apply multi-level

tiling, and parallelize the inner tiles with OpenMP. Multi-level tiling can also be used for other levels of

memory hierarchy; registers, different level of caches, TLB, and so on. This is another large space that

remains to be explored.

95

Chapter 8

Polyhedral X10

Because parallelism has gone mainstream, the problem of improving programmer productivity is now

increasingly important. It was the goal of the DARPA HPCS program, initially for the supercomputing

niche, but is no longer a niche problem. A number of new parallel programming languages are being actively

developed and explored [7, 17, 80, 105, 116, 130]. These languages all employ new programming models to

ease the parallel programming effort.

While designing and writing parallel programs is significantly harder than its sequential counterpart, one

problem that is even harder is debugging. This is due to the non-deterministic nature of parallel execution,

and the accompanying difficulty of reproducing errors. Therefore the problem of static analysis of parallel

programs is becoming critical. Some recent parallel languages also attempt to ease the debugging effort.

For example, Titanium [130] can check for possible deadlocks at compile time. Most parallel constructs in

X10 [105] are designed such that no (logical) deadlocks occur.

In this chapter, we present static race detection for a subset of X10 programs. By providing race-

free guarantee, we can prove determinacy of a program. The ability to detect races statically will allow

programmers to correct them as they write the program, greatly improving their productivity. The subset of

X10 we consider includes its core parallel constructs, async and finish. We also require that the loop bounds

and array accesses to be affine to fit the polyhedral model, a mathematical framework for reasoning about

program transformations, used mainly in automatic parallelization. We improve upon previous techniques

for static data race detection in two key directions:

• Our analysis is statement instance-wise and array element-wise. Most existing approaches analyze

race of static statements and conservatively flags as race if two statements that may happen in parallel

access the same variable. Our analysis will find sets of statement instances (i.e., statement executed

when loop counters take specific values) that may happen in parallel, and only flags as race if they

access the same element of an array.

• In comparison with other methods that support both instance-wise and element-wise analysis [14, 23],

our work supports parallelism based on finish/async constructs, which are more expressive than doall

type parallelism considered in prior work.

96

Consider the following code fragment that uses the async construct of X10.

for (i in 0..N) {

S0

async S1

}

The above code sequentially executes S0 at each iteration of the loop, and after executing S0, spawns

a new activity to execute an instance of S1. This activity executing S1 may run in parallel with S0 in

the next iteration. Such parallelism cannot be expressed as doall type parallelism, and no clean way to

express such parallelism in the polyhedral model is available. The focus of polyhedral techniques has been

automatic parallelization with doall, since it is the most common form of expressing parallelism in many

parallel programming models.

Our race detection is based on an adaptation of array dataflow analysis [30] from the polyhedral model.

This allows us to have the same level of precisions as other work based on the polyhedral model, but is

applicable to finish/async based parallelism.

Specifically, our key contributions we present in this chapter are:

• Characterization of the HB relation as an incomplete lexicographical order. This is the key to reuse

techniques from the polyhedral model for X10 programs.

• Adaptation of Array Dataflow Analysis [30] for X10 programs. Array dataflow analysis answers the

question, which instance of which statement produced the value being used for each statement instance.

We have extended this analysis to handle X10 programs.

• Race Detection using array dataflow results. The key idea is that once we have solved the dataflow

problem, we can identify the set of instances that cause a race by pinpointing the set of array cells

which have multiple producers.

• Prototype implementation of a verifier for our subset of X10. If a program has races, our tool can tell

precisely which statement instances are involved.

Acknowledgements

The material in this chapter is developed in tight collaboration with Dr. Paul Feautrier and Dr. Vijay

Saraswat. In particular, we would not have had the elegant formulation of dataflow analysis for X10 programs

without Paul. Vijay has developed operational semantics for the subset of the X10 we handle, and connected

it to the definition of Happens Before relationship we define in Section 8.1.2, adding much strength to our

claims.

97

8.1 A Subset of X10

Our main interest is in intra-procedural analysis, and we wish to address the integration of finish/async

concurrency with loops over array based data-structures in a pure form. Hence we will only consider assign-

ment statements, sequencing, finish, async and for loops, and variables that range over integers and arrays

of integers. This allows us to state certain properties of the key relations—Happens Before and its closely

related May Happens in Parallel—in a pure form. Our formal treatment can be extended mutatis mutandis

with conditionals, local variables, potentially infinite loops, method calls, objects and functions etc., but we

restrain ourselves for reasons of space.

The subset of X10 [105] we consider consists of the following control constructs:

• Sequence ({S T}): Composes two statements in sequence.

• Sequential for loop: We assume all loops have an associated loop iterator. X10 loops may scan a

multidimensional iteration space. However, we assume that such loops have been expanded into a nest

of unidimensional loops.

• Parallel activation, async: The body of the async is executed by an independent lightweight thread,

called activity in X10.

• Termination detection, finish: An activity waits for all activities spawned within the body of finish

to terminate before proceeding further. In addition, each program has an implicit finish as its top

level construct.

We also require the program to fit the polyhedral model. The polyhedral model requires loop bounds,

and array access to be affine expressions of the surrounding loop indices. Multidimensional arrays in X10

and Java are in fact trees of one-dimensional arrays. As such, they support many operations beyond simple

subscripting. An example is row interchange in constant time. Detection of such uses is beyond the scope

of this paper; see for instance the work by Wu et al. [126] for an abstract interpretation approach.

Note that the full language permits some additional constructs: for instance the (conditional) atomic

block (when(c) S) . This construct permits data-dependent synchronization in general and barrier-style

clocks [106] in particular. The at construct permits computation across multiple places. We leave the

integration of these statements into the analysis presented in this chapter as future work.

8.1.1 Operational Semantics

We provide a simple, concise structural operational semantics (SOS) for the fragment of X10 considered

in this paper. This semantics is considerably simpler than [106] because it eschews the “Middleweight Java”

approach in favor of directly specifying semantics on statements. Unlike [66] there is no need to translate

98

the statement to be executed into different kinds of tree-like structure; the information is already contained

in the lexical structure of the statement and can be elegantly exploited using SOS based structural rules.

In this section, we present the semantics, characterize certain syntactic properties of statements (the

happens before and the may happens in parallel relation), and relate them to behavioral properties. For

simplicity of exposition, we chose to use a sequentially consistent memory model. In future work we expect

to apply the methods of [107] to adapt the analysis techniques developed in this paper to relaxed memory

models.

We assume that a set of (typed) locations Loc, and a set of values, Val, is given. Loc typically includes

the set of variables in the program under consideration. With every d-dimensional N1× . . .×Nd array-valued

variable a of type array are associated a set of distinct locations, designated a(0,...,0), ..., a(N1-1,

..., Nd-1). The set of values includes integers and arrays.

A heap is a partial (finite) mapping from Loc to Val. For h a heap, l a location and v a value by h[l = v]

we shall mean the heap that is the same as h except that it takes on the value v at l. By h(l) we mean the

value e to which h maps l.

Definition 8.1 (Expressions) We assume that a set of RHS expressions (ranged over by e, e′, e0, e1, . . .)

that denote values is defined. RHS expression include variables (e.g., x), literals (e.g., 0), array accesses

(e.g., a(p)), and appropriate operations over integers (e.g., addition). We also assume that a set of LHS

expressions (ranged over by a, a′, a0, a1, . . .) that denote locations is defined. These include variables and

array accesses.1 We extend h to a map from RHS expressions to values and from LHS expressions to

locations in the obvious way.

Definition 8.2 (Statements) The statements are defined by the productions:

(Statements) S, T ::=
a = e; Assignment.
{S T} Execute S then T .
for(x in e1..e2) S Execute S for x in e1 . . . e2.
async S Spawn S.
finish S Execute S and wait for termination.

The set of paths P[[S]] corresponding to a statement S is given as follows. For a set of paths U , we let

xU stand for the set of paths x s, for s ∈ U .

P[[a = e]] = {ε}
P[[{S T}]] = {ε} ∪ 0P[[S]] ∪ 1P[[T]]

P[[for(x in e1..e2) S]] = {ε} ∪ xP[[S]]
P[[async S]] = {ε} ∪ aP[[S]]
P[[finish S]] = {ε} ∪ fP[[S]]

1Thus, as is conventional in modern imperative languages, the notation a(i) is ambiguous. When used on the LHS it
represents a location and when used on the RHS it represents the contents of that location.

99

The statements for which the operational semantics is defined are assumed to satisfy some static semantic

conditions (e.g., well-typedness.) We omit the details. Note that in a for loop the index variable is considered

bound. To avoid dealing with alpha renaming, we assume that in the statement under consideration no two

loop index variables are the same. Also note that the set of paths for a statement is non-empty and prefix-

closed, hence defines a tree. A path p ∈ P[[S]] is terminal if it is not a proper prefix of any other in P[[S]].

The following proposition follows from the definition of statements and its paths, where the only place

of divergence is sequential composition.

Proposition 8.3 For a statement S, let s x and s y be two distinct paths in P[[S]]. Then either x = 0∧y = 1

or x = 1 ∧ y = 0.

However, the paths in P[[S]] are static, where an element involving loop iterators are considered equal if

the names of the iterators match. We define an instance of a path as t = θ(s), where θ is a substitution

applied to s ∈ P[[S]] mapping index variables to integers.2 Given S, s ∈ P[[S]], and an instance of t = θ(s)

note that θ can be recovered uniquely.

Another version of Proposition 8.3 can be made for path instances, following the observation that a

common prefix s of two paths in P[[S]], may no longer in common only as a result of the application of θ,

which only affects index variables.

Proposition 8.4 For a statement S, let s x and s y be two distinct instances of paths in P[[S]]. Then either

x < y or y < x.

We also introduce a notation to denote sub-statements. Let S be a statement and s ∈ P[[S]]. We use the

notation Sˆs to refer to the sub-statement of S obtained by traversing the path s from the root. Given a

path instance t = θ(s), we define Sˆt to be θ(Sˆs), that is, θ applied to the statement obtained by traversing

the path s from the root of S. This definition is justified by the fact that θ is unique for each path instance.

Definition 8.5 (Read and write set) Let S be a statement, and s ∈ P[[S]] a terminal path (or path

instance). We let rd(S, s) denote the set of locations read by Sˆs and wr(S, s) the set of locations written

in Sˆs.

Let s, t be two paths or path instances for S. We say s write-affects t if wr(S, s) ∩ (rd(S, t) ∪ wr(S, t))

is non-empty. We say that s and t conflict if s write-affects t or vice versa. We say that s self-conflicts if

rd(S, t) ∩ wr(S, t) is non-empty.

For instance, let S be the statement for(i in 0..10) a(i) = a(i) + 1. Then the path [ε] self-conflicts, as does

2 Usually, we will be concerned only with path instances that satisfy the bounds conditions for the index variable.

100

[i]. But the path (instance) [0] does not. In fact the paths [i],[j] do not conflict if i, j are distinct integers

(in the given range).

Note that Sˆs may be a statement with free variables (e.g., parameters), hence the set of locations

read/written may be symbolic (i.e., heap-dependent at run-time.)

Execution relation. As is conventional in SOS, we shall take a configuration to be a pair 〈S, h〉 (repre-

senting a state in which S has to be executed in the heap h) or h (representing a terminated computation.)

The operational execution relation −→ is defined as a binary relation on configurations.

The axioms and rules of inference are:

l = h(a), v = h(e)

〈a = e, h〉 −→ h[l = v]
(8.1)

〈S, h〉 −→ 〈S′, h′〉 | h′

〈{S T}, h〉 −→ 〈{S′ T}, h′〉 | 〈T, h′〉
〈async S, h〉 −→ 〈async S′, h′〉 | h′
〈finish S, h〉 −→ 〈finish S′, h′〉 | h′

〈{async T S}, h〉 −→ 〈{async T S′}, h′〉 | 〈async T, h′〉

(8.2)

One can think of these rules as propagating an “active” tag from a statement to its constituent statements.

The first rule says that if {S T} is active then so is S (that is, any transition taken by S can be transformed

into a transition of {S T}.) The second rule says that if async S is active, then so is S. The third rule says

the same thing for finish S. The fourth rule captures the essence of async (we call it the “out of order”

rule). It says that in a sequential composition {async T S}, the second component S is also active. Thus

one can think of async S as licensing the activation of the following statement (in addition to activating S).

The first for rule terminates execution of the for statement if its lower bound is greater than its upper

bound.

l = h(e0), u = h(e1), l > u

〈for(x in e0..e1) S, h〉 −→ h
(8.3)

The recursive rule performs a “one step” unfolding of the for loop. Note that the binding of x to a value

l is represented by applying the substitution θ = x 7→ l to S, rather than by adding the binding to the heap.

This is permissible because x does not represent a mutable location in S.

l = h(e0), u = h(e1), l ≤ u,m = l + 1, T = S[l/x]
〈T, h〉 −→ 〈T ′, h′〉 | h′

〈for(x in e0..e1) S, h〉 −→
〈{T ′ for(x in m..u) S}, h′〉 | 〈for(x in m..u) S, h′〉

(8.4)

We now define appropriate semantical notions.

101

Definition 8.6 (Semantics) Let
?−→ represent the reflexive, transitive closure of −→. The operational

semantics, O[[S]] of a statement S is the relation

O[[S]]
def
= {(h, h′) | 〈S, h〉 ?−→ h′}

Sometimes a set of visible variables is defined by the programmer, with a refined notion of semantics:

O[[S, V]]
def
= {(h, h′

∣∣
V

) | 〈S, h〉 ?−→ h′}

where for a function f : D → R and V ⊆ D by f
∣∣
V

we mean the function f restricted to the domain V .

Note in the above definition we have chosen not to restrict the set of variables over which the input heap

is defined. In a more complete treatment of the semantics, we would introduce the new operation which

permits dynamic allocation of memory, and define the program as being executed in a heap that is initially

defined over only the input array of strings containing the command line arguments.

Definition 8.7 (Determinacy) A statement S with set of observables V is said to be scheduler determinate

over V (or just determinate for short) if O[[S, V]] represents the graph of a function.

S is said to be scheduler determinate if it is scheduler determinate over the set of its free variables.

8.1.2 Happens Before and May Happen in Parallel relations

We now establish two structural relations on statements, and connect them to the dynamic behavior of

the statements.

Definition 8.8 (Happens Before) Given a statement S, two terminal paths q, r in P[[S]], and instances

of paths i = θq(q) and j = θr(r) we say that i happens before j, and write i ≺ j, if for some arbitrary label

sequences s, t, u, some sequence c over integers, and integers m0,m1 with m0 < m1:

i = sm0 c ∨ i = sm0 c f t, and,
j = sm1 u

The definition does not explicitly mention async nodes. The label a may occur in i, but only in s or in t. In

the first case the occurrence can be ignored because we are considering two paths that lie within the same

async. In the latter case the occurrence may be ignored because it is covered by a finish. The intuition is

that the “asyncness” of a node can never cause it to happen before some other node. But the “finishness”

of a node can—it suppresses all downstream asyncs. This intuition is formalized in the next section.

The following proposition is easy to establish by reasoning about sequences.

Proposition 8.9 (Transitivity) If i ≺ j and j ≺ k then i ≺ k. (Asymmetry) If i ≺ j then it is not the case

that j ≺ i. (Irreflexivity) For no i is it the case that i ≺ i.

Thus ≺ is a strict order. But it is not total. Consider i = 0a and j = 1. It is not the case that i ≺ j or j ≺ i.

102

Definition 8.10 (May Happen In Parallel) Given a statement S, two terminal paths q, r in P[[S]], and

instances of paths i = θq(q) and j = θr(r) we say that i can start with j running, if for some arbitrary label

sequences s, t, u, some sequence c over integers, and integers m0,m1 with m0 < m1:

i = sm0 c a t, and,
j = sm1 u

We say that i may happen in parallel with j, and write i#j, if j starts with i running, or i starts with

j running.

Proposition 8.11 Let S be a statement with two path instances i, j. Then i#j iff ¬(i ≺ j)∧¬(j ≺ i)∧i 6= j.

The proof of the forward direction is easy. In the backward direction we need Proposition 8.4.

Definition 8.12 (Race) Given a statement S and two sub-statements T and U , we say that there is a race

involving T and U , if for some legal instances t = θt(T) and u = θu(U), t#u and memory accesses by t and

u conflict.

8.1.3 Correspondence

We now establish the relationship between the HB and MHP relations and the transition relation. The

formal language we are working with does not have conditionals, or local variables, or infinite loops. This

means that every sub-statement will execute in every initial heap. Hence it is possible to characterize the

MHP and HB relations in very simple terms.

The key idea in establishing the correspondence is to surface the path/time stamp of a statement in

the transition relation. We label each step by the “reason” for the step—the path (from the root) to the

substatement that triggers (is the base case for) the transition.

We proceed as follows. First we define labeled statements—each substatement is labeled with the path

from the root. Next we label transitions. The rules are a straightforward adaptation of Rules 8.1—8.4. The

only point worth noting is that in the recursive rule for for, the substitution S[l/x] replaces x by l in the

labels of all substatements of S as well.3

l = h(a), v = h(e)

〈a = es, h〉 −→s h[l = v]
(8.5)

〈S, h〉 −→s 〈S′, h′〉 | h′

〈{S T}, h〉 −→s 〈{S′ T}, h′〉 | 〈T, h′〉
〈{async T S}, h〉 −→s 〈{async T S′}, h′〉 | 〈async T, h′〉
〈async S, h〉 −→s 〈async S′, h′〉 | h′
〈finish S, h〉 −→s 〈finish S′, h′〉 | h′

(8.6)

3In Rule 8.7, s is the label for the whole for statement.

103

l = h(e0), u = h(e1), u > l

〈for(x in e0..e1) Ss, h〉 −→s h
(8.7)

l = h(e0), u = h(e1), l ≤ u,m = l + 1, T = S[l/x]
〈T, h〉 −→s 〈T ′, h′〉 | h′

〈for(x in e0..e1) S, h〉 −→s

〈{T ′ for(x in m..u) S}, h′〉 | 〈for(x in m..u) S, h′〉

(8.8)

Clearly this transition system is conservative over the previous one—it merely decorates each step with

extra information.

Theorem 8.13 (Characterization of HB) Let S be a statement and q, r terminal paths in P[[S]].

If q ≺ r then for any heap h, in any labeled transition sequence starting from 〈S, h〉 containing q and r,

(the transition labeled with) q occurs before (the transition labeled with) r.

(Converse) If for all heaps h and all transition sequences started from 〈S, h〉 containing q and r it is the

case that q occurs before r then q ≺ r.

The forward direction is proved by structural induction on S. The key case is sequential composition

U ≡ {S T} in which q is a path leading into S and r into T . Here, the only “out of order” transition possible

is because of the “out of order” rule, which requires S be an async. But since q ≺ r we know that q ≡ s0c or

q ≡ s0cft and r ≡ s1u (with s being the label for U). Hence S cannot be an async since its type is specified

by the first label of cft. In the converse direction, without loss of generality, let q ≡ s0t and r ≡ s1u. If the

first symbol in t that is not an integer is an a, then we show in the proof that the “out of order” rule can be

used to construct an execution sequence in which r precedes q, contradicting our assumption. Hence q ≺ r.

The proof of the following theorem is similar.

Theorem 8.14 (Characterization of MHP) Let S be a statement and q, r terminal paths in P[[S]].

If q#r then for any heap h there is a transition sequence starting from 〈S, h〉 containing q and r s.t. q

occurs before r and another such that r occurs before q.

(Converse) If for all heaps h there is a transition sequence starting from 〈S, h〉 containing q and r s.t. q

occurs before r and another such that r occurs before q, then q#r or r#q.

Proposition 8.15 Let S be a statement. If no two sub-statements are in a race, then S is determinate.

The converse is not true. There may be a race but it may be benign in the sense that it does not affect

the outcome of the program. Consider:

finish {

async x=1; // S0=[f0a]

x=1; // S1=[f1]

}

104

Statements S0 and S1 are in a race (they may happen in parallel and their write sets overlap,) however,

the statement is determinate, it will always yield a heap with the only change from intial state being the

mapping from x to 1.

8.2 The “Happens-Before” Relation as an Incomplete Lexico-
graphic Order

In this section, we formulate the “happens-before” relation, in a manner familiar from polyhedral analysis.

In the polyhedral analysis of sequential languages, statement instances in a program are given unique time

stamps represented as integer vectors. These vectors are ordered lexicographically—this order is sufficient

to capture the idea of “happens before” for a sequential language.

The strict lexicographic order is defined for two distinct such integer vectors u and v as follows:

u� v ≡
∨
p≥0

u�p v, (8.9)

u�p v ≡

(
p∧

k=1

uk = vk

)
∧ (up+1 < vp+1) (8.10)

As we saw in Section 8.1.2, the happens before order in X10 must be sensitive to the presence of finish

and async nodes. To take these constructions into account, we will use the paths of Section 8.1.2—vectors of

integers, loop counters and the letters a and f—as time stamps. Polyhedral analyses can take loop counters

symbolically, but reason about path instances, where loop counters take some integer value.

We will consider only terminal paths. The lexicographic order may be extended to paths simply by

specifying how to order the additional symbols a and f, for instance by assuming that a < f and that they

occur later than integers and loop counters. This convention is irrelevant, since, by Proposition 8.4, we will

never have to compare a or f to any other item in a path provided, we only compare distinct vectors.

Given a time stamp q, |q| is its dimension, qi, 1 ≤ i ≤ |q| (sometimes written q[i]) is its i-th component,

and q[i..j], i ≤ j is the vector whose components are qi, qi+1, . . . qj . A common shorthand for q[i..|q|] is q[i..].

A time stamp in which the loop counters have been replaced by integers denotes at most one instance

of an elementary statement or operation. The admissible values (legal θ) are constrained to be within the

enclosing loop bounds, which are assumed to be affine. The set of admissible values for the time stamps of

statement S, the iteration domain of S, is written DS . Under the above hypothesis, DS is a polyhedron.

We now reconstruct the “happens-before” relation as a “relaxed” lexicographic order. We start from the

trivial observation that:

true ≡ (q � r) ∨ (q = r) ∨ (r � q).

This suggests that q ≺ r be constructed as a case distinction:

• q � r →?

105

• q = r → false

• r � q →?

The case q = r is obvious, since an operation cannot execute before itself. Let us now show that if r � q,

then q ≺ r is impossible. In the notations of Definition 8.8, let s be the common prefix of q and r: q = s.x.u

and r = s.y.v. By Proposition 8.4, either x < y or y < x is true, and r � q implies that x > y. Then,

Definition 8.8 implies that q ≺ r cannot be true.

The conclusion is that in the above disjunction, only the first case has to be considered. This in turn can

be expanded according to the definition (8.9) of �:

• q �0 r →?

• q �1 r →?

• . . .

• q �n r →?

The case distinction extends until q �k r is obviously false, i.e., when qk and rk are different integers, since

all predicates q �k′ r, k′ ≥ k contains the constraint qk = rk.

Let us now consider one of the cases q �p r. The two time stamps have a common prefix q[1..k] = r[1..k],

and by the same reasoning as above, qk+1 = 0 and rk+1 = 1. We are then in a position to apply Definition 8.8.

If the first letter in the vector q[k + 1..] is an f or if there is no letter, then q ≺ r is true, and otherwise is

false.

The discussion above can be summarized by the following algorithm:

Here, h denotes a disjunction of affine constraints, which is initialized to false, is augmented each time

line (2c) is executed, and is the “happens-before” predicate when the algorithm terminates.

In what follows, in the interest of compactness, we will allow sequences with more that two items, and

timestamps containing integers larger than 1.

Example

Let us apply Algorithm H to the example shown in Figure 8.1. The time stamps associated with each

statement are as follows: S0: [0, f, 0, i, a], S1: [0, f, 1, j], and S2: [1].

We first ask if S0 ≺ S1. Then q = [0, f, 0, i, a] and r = [0, f, 1, j].

• We start from k = |q| = 5, b = true, and h = false.

• At k = 5, b becomes false, since q5 = a.

• Since qk does not point to an f until p = 1, no changes occur. At k = 1, q �0 r ≡ q1 < r1 is false, and

hence S0 does not happen before S1.

106

Algorithm 8.1 Algorithm H

Input :

Two paths q, r.

Output :

The constraint h in the loop counters of q, r (if any) which captures the precise conditions under which
q ≺ r.

Algorithm:

1. Initialization

h := ∅
b := true

2. for k = |q| downto 1:

(a) if qk = a then b := false

(b) if qk = f then b := true

(c) if b ∧ k ≤ |r| then h := h ∨ (q �k−1 r)

Let us now ask the question if S0 ≺ S2. Then q = [0, f, 0, i, a] and r = [1]. Since |r| = 1, line (2c) is

never executed until k = 1. We reach k = 1 in the same state as in the previous example, but in this case

q �0 r ≡ q1 < r1 is true, and hence S0 ≺ S2.

Although we have illustrated the algorithm with an example, the algorithm is not used in this fashion in

the following sections. The important observation is that the algorithm only executes line (2c) at a subset

of the dimensions. Moreover, the subset is determined purely structurally, i.e., given the AST and two

statements, one can find a subset I where lexicographic comparison should be performed. This leads to the

following re-formulation of the algorithm as an incomplete lexicographic order:

q ≺ r ≡
⋃
k∈I

q �k r, (8.11)

It is well known that the�p are disjoint. A pair q, r being given, there is at most one k such that q �k r.

k is the rightmost index such that q[1 . . . k] = r[1 . . . k]. From this follows that ≺ is transitive.

The observation that the “happens-before” relation is an incomplete lexicographic order becomes impor-

tant in the next section. Because of this property, we can formulate the dataflow analysis questions for X10

programs in a way that can be efficiently solved.

Lastly, the way we have constructed Algorithm H clearly implies that:

Proposition 8.16 Algorithm H exactly implements the “happens before” relation of Definition 8.8

107

finish {

for (i=0 to N)

async S0

for (j=0 to N)

S1

}

S2

seq

seq

for for

async

S0

S1

S2

0 1

0 1

i

a

j

finish

ｆ

Figure 8.1: Example X10 code and its corresponding AST.

8.3 Dataflow Analysis

In this section, we present an adaptation of array dataflow analysis [30] for X10 programs, based on the

“happens-before” as defined in the preceding section. The analysis is outlined in Figure 8.2.

Dataflow analysis aims at identifying, for each read access to a memory cell x, the source of the value

found in x, i.e., the operation which wrote last into x. If the program is sequential, and fits into the polyhedral

model [33] each read has a unique source which can be identified exactly [30].

However, the situation is different for parallel programs, since the actual execution order of operations

may differ from run to run, due to scheduler decisions or hardware clock drifts. As a consequence, the content

of some memory cell at a given step in the execution of a program may differ across runs. In other words,

the answer to the dataflow question, which operation wrote last into x may be different.

This is called a race in software, or a hazard in hardware. The presence of a race condition in a program

is usually a bug, which may be very difficult to diagnose and to correct, as it may manifest itself with very

low probability.

8.3.1 Potential Sources

Let us focus on an instance of statement R at time stamp v, which has a read of array A at subscript(s)

fR(v). The potential sources are instances of a statements W at time stamp w, which write into A at

subscript(s) fW (w). fR and fW are vector functions of the same dimension as A.

108

Input :

R,A, fR: A read in a statement R. R reads from a shared array (or scalar) A with access function fR.

W: Set of statements W that write to A with access function fW .

Output :

Q: Quasi-Affine Solution Tree [29] that gives the producer of read by instances of R.

Algorithm:

1. foreach W ∈ W

(a) Compute Potential Sources ΣW (v) of W ; the set of statement instances that (i) write to the same
memory location, and (ii) the read do not happen before the write, parameterized by instances of
R, v.

(b) Compute Self Overwrites Σ−W (v) of W ; the set of writes overwritten by another instance of the
same statement, parameterized by instances of R, v.

2. foreach W ∈ W

(a) Compute Validity Domain ValidW of v ∈ R; the set where v is valid for ΣW (v). An instance v
becomes invalid if its write is overwritten by other statements.

3. Compute Q:
Q := ∅
foreach W ∈ W

(a) Q := Q ∪
(
(ΣW (v)/Σ−W (v)) ∧ v ∈ ValidW

)
A write W is a producer of v if (i) it is a potential source, (ii) not overwritten by other instances
of W , and (iii) not overwritten by writes of other statements.

Figure 8.2: Overview of array dataflow analysis for our X10 subset.

109

The set of potential sources is defined by:

v ∈ DR, (8.12)

w ∈ DW , (8.13)

fW (w) = fR(v), (8.14)

¬(v ≺ w) ∧ v 6= w (8.15)

Constraint (8.12) and (8.13) respectively constraints v and w to set of legal time stamps (iteration domain)

of R and W . Constraint (8.14) restricts to those with conflicting memory accesses; those access the same

element of the array A. Lastly, constraint (8.15) removes writes that happen after reads (v ≺ w), and write by

the same statement instance (v = w). In a sequential program, ≺ is total, hence ¬(v ≺ w)∧ v 6= w ≡ w ≺ v,

which is the usual formulation [30].

Let ΣW (v) be the set of potential sources as defined by (8.12-8.14) and (8.15). If the source program fits

in the polyhedral model, all constraints are affine with the exception of (8.15), which can be expanded in

Disjunctive Normal Form (DNF). Hence, ΣW (v) is a union of polyhedra.

8.3.2 Overwriting

Let x be a write to the same memory cell as w. x overwrite w if in all executions, x happens between w

and v, or w ≺ x ≺ v. It is clear that if an overwrite exists, v will never see the value written by w. Both

conditions are necessary: if one of them were not true, there would exists executions in which x happens

before w, or v happens before x, and the value written at w would still be visible at v. This step is analogous

to restricting the set of candidate sources to the most recent write in the original array dataflow analysis [30].

However, since the order is not total, the most recent write is not unique.

8.3.2.1 Self Overwrites

Write by a statement may be overwritten by other instances of the same statement. An instance w in

ΣW (v) is a real source only if no other instance of W , x, overwrite w, i.e.,

w ∈ ΣW (v) ∧ ¬∃x ∈ ΣW (v) : w ≺ x. (8.16)

This is exactly the definition of the set of upper bounds of ΣW according to ≺. When ≺ is total, in

the sequential case, (8.16) defines the unique maximum of PW . In extreme cases, ≺ may be empty, and all

tentative sources must be kept.

One possibility is to eliminate the existential quantifier in formula (8.16) using any projection algorithm,

compute the negation and simplify the resulting formula. The drawback of this approach is its complexity:

quantifier elimination in integers may generate expressions of exponential size, and so does negation.

110

Another possibility is to exploit the special form (8.11) of ≺. Since existential quantification distributes

over disjunction, one has to compute ∃x : w �p x for each term which is present in ≺. Due to the very

simple form of �p, this set can be computed very efficiently using Parametric Integer Programming [29].

Simply solve the problem min{x ∈ ΣW (v)|w �p x} parametrically with respect to v and w. The result is a

conditional expression (a quast) whose nodes bear affine constraints in the parameters, and whose leaves are

either affine forms or the special term ⊥, indicating that for some values of the parameters, the set above is

empty. The disjunction of the paths leading to leaves not bearing a ⊥ is the required projection. Then take

the union of all such sets, denoted Σ−W in Figure 8.2, and subtract it from ΣW .

8.3.2.2 Group Overwrites

Another case of overwrite happens when, for a given read, there are two possible writing statements, W1

and W2. A candidate source w1 ∈ ΣW1(v) is not visible to v if there exists w2 ∈ ΣW2(v) where w1 ≺ w2.

This condition can be checked by inspecting the AST and ΣW . In the AST, the paths from the root to

W1 and W2 diverge at some seq or async or finish node. Assume that W1 is to the left of W2, then for each

w1 ∈ ΣW1(v), one may associate w2 such that w1 ≺ w2. Let p be the common prefix of time stamps labeled

to W1 and W2. Then ∀k, 1 ≤ k ≤ p, w1[k] = w2[k] and w1[p + 1] < w2[p + 1]. Regardless of the remaining

values beyond p+1, w1 �p w2 holds. According to Algorithm H, w1 ≺ w2 if the uppermost parallel construct

in W1 below the common node is not an async, and hence w1 is overwritten by w2. Otherwise, w1 and w2

can happen in any order and w1 is not overwritten. Similarly, there is no w2 where w1 ≺ w2 if W2 is to the

left of W1, since we obtain w2 �p w1.

However, this construction fails if for the considered value of v, ΣW2(v) is empty. As a set, ΣW (v) is a

function of v, and it may be empty for some values of v, i.e., for some values of v, R may have no sources

from W . Let us define the range of W as:

ΩW = {v|ΣW (v) 6= ∅}.

The source is in Σ2(v) if v ∈ Ω2, and in Σ1(v) if v ∈ Ω1\Ω2.

In the general case we must consider more than two writing statements. Let us define an order on the

writing statements by the definition: W < W ′ if W is to the left of W ′ in the AST, and if the uppermost

parallel construct in the path to W from the common node is not an async. It is easy to prove transitivity

of <. For each W , one may define a validity by the rule:

ValidW = ΩW \
⋃

w<W ′

ΩW ′ .

The source is in ΣW only if v ∈ ValidW . Maximal elements in the < order have no successors, hence for them

ValidW = ΩW , while some other statements may have empty validity sets, indicating complete overwriting.

111

8.4 Race Detection

Once we have ΣW , Σ−W , and ValidW for all writers W , the output quast of the dataflow analysis may be

computed. However, the resulting quast may not be well-defined: a read may have multiple sources when

the program contains races. The detection of races using the array dataflow analysis result is discussed in

this section.

8.4.1 Race between Read and Write

The set of potential sources ΣW (v) can be split in two sets according to whether w ≺ v is true or not.

If ¬(w ≺ v), ¬(v ≺ w) and v 6= w (recall constraint (8.15)), then the read and the write may happen in

parallel. In other words, v and w are not ordered, and thus v may execute before w in some execution but

w may precede v in the other. Hence there is clearly a race in this case.

Let Σ′W (v) be like ΣW (v) with (8.15) replaced by ¬(w ≺ v) ∧ ¬(v ≺ w) ∧ v 6= w. A non empty Σ′W (v)

indicates a race. The emptiness of Σ′W may be tested in many way, for instance by expanding its constraints

to DNF and applying linear programming, or by submitting its definition to an SMT solver, like Yices, Z3,

or CVC among others. If Σ′W is found to be non empty, the compiler may issue a warning about statement

R, and no further analyses are needed.

8.4.2 Race between Writes

Let Σ∗W (v) the set of sources after self overwrites have been removed. Then the source of a read at v is

Σ∗W (v) if v ∈ ValidW . However, the source may not be unique if the program has races. There are two types

of races:

• Race between multiple writes by the same statement. If there exists a solution to the problem v ∈

ValidW , x, y ∈ Σ∗W (v), x 6= y, then x and y are involved in a race.

• Race between multiple writes by two statements. Two statements W1 and W2 have a race if: ValidW1∧

ValidW2
6= ∅.

Both conditions can be checked by any SMT solver.

It is also important to note that it is not necessary to do all the above checks. For instance, if W1 < W2,

their validity sets are disjoint by construction. Race detection of the first kind may be performed as we

construct the sets, and the analysis may stop as soon as a race found. This approach may greatly reduce

the complexity of the method.

112

8.4.3 Detection of Benign Races

The above approach is already sufficient to certify determinism of a program. However, additional analysis

may be performed to flag questionable behavior of the program as warnings. For instance, our analysis detect

array elements that are read but never written.

Another questionable behavior is benign races—races that do not influence the program determinacy. If

two potential writes x and y may happen in parallel, x and y are in a race. However, if these writes are

overwritten later or are not seen by any read, they are harmless. It might nevertheless be useful to warn

the programmer of such behavior: a benign race can be taken as the indication of dead code. A way to

handle them is therefore to do a backward recursive analysis starting from the output of the program. Any

statement which is not encountered in this analysis is dead code and can be flagged as such.

8.4.4 Kernel Analysis

It is often the case that the full program is not polyhedral, while the core kernels are. In addition, due

to the high cost of polyhedral analysis, it may not be practical to analyze the entire program.

The usual approach is to find “polyhedral parts”—subtrees in the AST that fit in the polyhedral model,

and analyze them independently. Polyhedral methods are obvious candidates for such code fragments. For

a finish/async language like X10, one must be more careful, since a subtree or a method may terminate but

leave un-finished activities behind. Hence, to be handled with our methods, the sub-tree must satisfy the

following properties in addition to the constraints of the polyhedral model:

• The uppermost parallel construct (in the path from the root of the sub-tree to each statement must

be a finish if there is one.

• Similarly, let S be a statement that dominates statements in the sub-tree. Then the uppermost parallel

construct in the path from the common prefix of S and the sub-tree to S must be a finish if there is

one.

The above follows from Algorithm H, and ensures that all statements before and after the sub-tree are

ordered by the happens-before relation, with respect to the statements in the sub-tree.

8.5 Examples

In this section, we illustrate by examples the importance of two key strength of our approach; statement

instance-wise, and array element-wise analysis. We specifically compare with the work by Vechev et al. [120]

and with other polyhedral approaches [23, 14]. We are not aware of any other state-of-the-art static analysis

techniques for race detection that perform instance-wise or element-wise analysis.

113

8.5.1 Importance of Element-wise

Let us first use an example similar to the one used by Vechev et al. [120]. The following code is a

simplified example of a common case in parallel programming, where a shared array is accesses by multiple

threads.

finish {

async for (i in 1..N)

B[i] = C[i]; // S0

async for (j in N..2*N)

B[j] = C[2*i]; // S1

}

for (k=1:2N)

... = foo(B[k], ...); // S2

The time stamps and iteration domains are:

• S0: [0, f, 0, a, i], DS0 = {i|1 ≤ i ≤ N}

• S1: [0, f, 1, a, j], DS1 = {j|N ≤ j ≤ 2N}

• S2: [1, k], DS2 = {k|1 ≤ k ≤ 2N}

The only read in the program is the read of B by S2. Our analysis returns the following answer to the

question: which statement produced the value of B[k] at S2:

• If 1 ≤ k ≤ N ∧ k ≤ 2N then S0[k] is a producer.

• If 1 ≤ k ≤ 2N ∧N ≤ k then S1[k] is a producer.

where Sn[v] denote the instance of Sn when its loop counters take the value v. It concludes that there is a

race by two writers since the two sources overlap at k = N .

For this example, both of the other approaches will find the race with similar precision. However, if

an analysis is not element-wise, then the analysis only finds that there is a race with the entire array B.

Assuming that the programmer is warned of this race and change the lower bound of the j loop to N + 1,

making the program race free, statement based approaches will still conservatively flag the array B to be in

conflict.

8.5.2 Element-wise with Polyhedral

However, element-wise analysis in the work by Vechev et al. [120] is limited compared to polyhedral ap-

proaches, since they use an over-approximation. They require that any multi-dimensional arrays is reshaped

into a 1D array, and the range of the 1D array to be represented with affine constraints. Furthermore, the

renaming must be relative to what is called the taskID that identify an iteration of the loop ran by a thread.

114

For example, write to array A in the following code is expressed as writes to Ai[j], where i is the taskID.

for (i in 0..(N-1))

async

for (j in 0..(N-1))

A[i][j] = ... // S0

Approaches based on the polyhedral model, including ours, represents the write to A as an affine function

(i, j → i, j) from the iteration domain DS0 = {i, j|0 ≤ i, j < N}.

Let us illustrate the difference with a slight modification to the first example.

{ finish {

async for (i in 0..(N-1))

B[2*i] = C[i]; // S0

async for (j in 0..(N-1))

B[2*j+1] = C[2*i]; // S1

}

... = foo(B[N]); // S2

}

The difference is in the writes to B, which now do not conflict. Our analysis returns the following answer

to the question, which statement produced the value read by read B[N] at S2:

• If ∃e : 2e = N ∧N ≥ 2 then S0[N/2] is a producer.

• If ∃e : 2e = N − 1 ∧N ≥ 1 then S1[(N − 1)/2] is a producer.

Note that the parametric integer linear programming [29] step (Section 8.3.2.1) introduces a “new parameter”

(existentially quantified variable). The intersection of the two validity sets is empty, and we conclude that

the program is race free.

However, the over-approximation by Vechev et al. [120] will approximate the write by S0 to be 0 ≤ i ≤

2N − 2, and the write by S1 to be 1 ≤ i ≤ 2N − 1. Clearly, the two approximations overlap, and hence their

approach would conservatively flag the program to have race.

8.5.3 Importance of Instance-wise

The examples above can also be implemented using doall loops. When implemented as parallel loops,

previous approaches [23, 14] based on the polyhedral model can verify its determinacy, and does not require

extensions proposed in this paper.

Our work can also detect races in finish/async programs that cannot be expressed with doall parallelism.

The following is a simplified example of a case when such parallelism may be used. The example is based on

Gauss-Seidel stencil computation that performs updates in-place, and uses some of the values (A[i-1][j]

and A[i][j-1]) computed at the current time step and others from the previous time step.

115

The following code fragment illustrates a possible use of async in a way that cannot be expressed as loop

parallelism. Detail of the statement S1 is not given to simplify the presentation, but some code corresponding

to an asynchronous send is the motivation behind this example.

for (t in 1..T)

finish for (i in 1..N-2) {

// boundary conditions omitted

for (j in start..end)

A[i][j] =

update(A[i-1][j], A[i][j-1],

A[i][j], A[i+1][j], A[i][j+1]); // S0

async S1(A[i][end]); // S1

// boundary conditions omitted

}

The point we illustrate with this example is the importance of statement instance-wise analysis. At

the granularity of (static) statements, the pair of statements S0, S1 may happen in parallel. This is a

conservative approximation because S0[t, i] may happen in parallel with S1[t′, i′] when t ≥ t′ and i > i′.

With this precision, our approach find that the read of A[i][end] by S1 is always the value written by S0.

8.5.4 Benefits of Array Dataflow Analysis

Array dataflow analysis is, strictly speaking, an overkill for detecting races. The formulation used by

Vechev et al. [120] focuses on finding conflicting memory accesses. Dataflow analysis goes one step further

by eliminating some of the accesses that are guaranteed to be overwritten from the consumer’s perspective.

Consider the following example:

finish{

async{

x = f(); //S1

x = g(); //S2

}

async{

x = h(); //S3

x = k(); //S4

}

}

t = x; //S5

The approach by Vechev et al. [120] will find that statements S1, S2, S3, and S4 are all in race since

they all may happen in parallel and writes to x. In contrast, array dataflow analysis will show that the read

of x at S5 has two potential sources, S2 and S4.

The output by Vechev et al. [120] grows in size as the number of statements in async increases, while

the output of dataflow analysis does not. When our analysis is integrated to a programming environment,

116

we believe that the preciseness and compactness of our analysis result will help the programmer more than

simply detecting races.

Moreover, once the statement S5 is removed from the above example, the approach by Vechev et al. [120]

would still detect a race, while our analysis would detect that the race is benign, and hence the full finish

block is dead code.

8.6 Implementation

We have implemented our analysis for the subset of X10 described in Section 8.1. We take a representation

of the AST, where statements only specify arrays (or scalars) being read or written, disregarding the what

the operation is. Once we detect polyhedral regions in X10 programs, equivalent information can easily be

extracted from the internal representation of the compiler.

Analysis of loop programs to detect regions amenable for polyhedral analysis, frequently referred to as

Static Control Parts (SCoPs), or Affine Control Loops (ACLs) is well established through efforts to integrate

polyhedral parallelizers into full compilers [39, 83]. In addition, we require that array accesses a[i] and

a[j] point to the same memory location iff i = j. In general, such guarantee require pointer analysis, which

is outside the scope of this paper.

We use the Integer Set Library [121] in our implementation to perform polyhedral operations and to

solve parametric integer linear programming problems. The analysis itself is written in Java, and Java

Native Interface is used to call ISL.

Java Grande Forum Benchmark Suite

Although our key contribution is verification of finish/async programs, we are not aware of any set of

parallel benchmarks that use the extra expressive power of finish/async. We have demonstrated how our

technique can handle such programs earlier with examples. In this section, we use Java Grande Forum

benchmark suite [111] also used by Vechev et al. [120] to compare performance and applicability of our

proposed analysis to their approach.

Out of the 8 benchmarks, 3 of them that were not handled by Vechev et al. [120] cannot be handled

by ours either. Sparse includes indirect array accesses, which falls out of the polyhedral model. Similarly,

MonteCarlo and RayTracer cannot be handle by polyhedral analysis. All of the remaining 5 at least

partially fits the polyhedral model, and we were able to verify the determinacy of all parallel blocks. The

result is summarized in Table 8.1.

117

Table 8.1: Performance of our implementation on JGF bench-
marks [111]. Entries with the name followed by a number are verifi-
cation of a parallel block that each contain a parallel loop surrounded
by finish. All programs/blocks were verified to be determinate.

Benchmark while data-dep. Time (s)4 Reference5

loop1 if2 Time (s) [120]
Crypt Y 7.6 54.8
Crypt1 Y 0.24 -
Crypt2 Y 0.24 -
SOR 1.85 -
SOR1 0.29 0.41

LUFact1 0.35 1.94
Series Y 1.25 -
Series1 Y 0.06 55.8

MolDyn13 0.35 24.6
MolDyn2 Y 0.92 2.5
MolDyn3 0.14 0.32
MolDyn4 0.08 1.01
MolDyn5 Y 0.08 0.34
1 Indicates that while loops were converted to for loops. These while

loops are of the form:
n=100; do { ... n--;} while (n>=0);

2 Indicates that data-dependent if statements were over-
approximated by assuming both branches were always taken.

3 MolDyn require a final variable pad to be constant propagated
due to expressions like: i2 ∗ pad.

4 Our experiments were conducted with 4-core Intel Core2Quad
(2.83GHz) and 8GB of memory. We used Java 1.6, and ISL 0.10.

5 These timing results are taken from the article by Vechev et
al. [120] and were conducted with 4-core Xeon (3.8GHz) and 5GB
of memory. However, their implementation is not directly compa-
rable to ours, due to many reasons. For example, they work on a
lower level representation of the program (Jimple).

118

8.7 Related Work

Array Dataflow Analysis [30, 87] is the key analysis that connects loop programs and polyhedral rep-

resentaions. Array dataflow analysis was introduced by Feautrier [30] and further expanded by Pugh and

Wonnacott [88]. Extensions beyond the polyhedral model were proposed by Pugh and Wonnacott [89] and by

Barthou et al. [12]. As far as we know, multi-dimensional time stamps were first introduced by Feautrier [32]

as a trick for proving the existence of schedules for well-structured sequential programs. They were further

exploited for specifying complex program transformations by Bastoul [13]. They are similar to the pedigrees

proposed by Leiserson et al. [70], with the difference that pedigrees are computed at run time, while time

stamps exist only at compile time.

Since the emphasis in the polyhedral literature is placed on automatic parallelization, there has been

very little work on verifying already parallel programs. The work by Collard and Griebl [23] that presents

array dataflow analysis for programs with doall parallelism is most closely related to our work. The key

distinction is that we handle parallel constructs in the X10 language, finish and async that can express

parallelism not expressible by doall loops.

The result of array dataflow analysis is the answer to the question, which instance of which statement

produced the value used. For sequential programs, the result should be a unique statement instance (except

for input dependences). However, when the input program is parallel, multiple statement instances may

happen in parallel, and hence the result may not be unique. Thus, we may take the result of array dataflow

analysis for X10 programs, and detect races by checking if the producers are uniquely identified.

One key question in reasoning about determinism is the question: which statements (or statement in-

stances) have a clearly defined order of execution. Analyses to answer this question for finish/async programs,

closely related to our “happens-before” relation, have been presented by Agarwal et al. [5] and by Lee and

Palsberg [66].

While Lee and Palsberg work at the level of a statement, Agarwal et al. try to increase precision

by exhibiting conditions on loop counters that guarantee (or forbid) parallel execution. However, these

conditions use only equality and inequality, instead of the full power of affine constraints. The algorithms in

these two papers are surprisingly complex when compared to our work.

There is a separate body of work that address race detection with multi-threaded programs with locks

(e.g., [28, 49]). These methods are not directly applicable to modern parallel languages where locks are

rarely used.

The work by Vechev et al. [120] goes beyond the evaluation of the “may happens in parallel” relation and

attempts to verify determinism of finish/async programs. Their analysis is also instance-wise and element-

wise. The main difference is that their work uses over-approximations of memory accesses, where our analysis

119

is exact. In addition, we use array dataflow analysis to find races, but the information given by the analysis,

which is more than enough to find races, can be used for other purposes.

Dynamic race detection (e.g., [108]) is a complementary technique to static analysis, and is more broadly

applicable. However, dynamic analysis requires significant run-time overhead, and is subject to the well-

known Dijkstra saying, that they can be used to prove the existence of races, not their absence.

8.8 Discussion

The contributions presented in this chapter are in a very different direction compared to those presented

in earlier chapters. This is a first step towards applying polyhedral analysis to finish/async programs. It

has been written in the context of the X10 language. However, we expect our approach to be applicable to

other languages with similar parallel constructs. For programs that fit in the polyhedral model, the analysis

is exact, and as precise as can be. There may be neither false positives nor false negatives.

Although we have focused on race detection, the adaptation of dataflow analysis have much more potential

applications. These potential applications include scheduling and locality improvement, undefined variables

detection, constant propagation and semantic program verification.

The approach presented in this chapter can be extended in two directions:

• The X10 language has several control constructs which may create (or remove) races. Among them

are clocks, a generalization of the classical barriers, the atomic modifier, and the at statement, which

delegates a calculation to a remote place of the target system. Basically, all these constructs necessitate

a new definition of the “happens before” relation. The question is whether Algorithm H can be extended

to take care of them.

Handling atomic and at constructs is a minor extension to the results presented here, but space

constraints preclude an elaborate explanation. We are currently working on extending our analysis to

handle clocks.

• Like all polyhedral analyses, our method applies only to a limited class of programs. Is there a

possibility to remove some of these restrictions? A classical approach is to deal only with polyhedral

subtrees of the AST, provided they don’t interfere with the remnants of the program. Since X10 is an

object oriented language, it might be possible to find many self-contained polyhedral methods.

One may also resort to approximations. The difficulty here is that since the source computation

uses set differences (see for instance Section 8.3.2.2) over- and under-approximations are both needed.

Depending on the quality of the approximations, the resulting analysis may have both false negatives

and false positives. The problem will be to minimize their number.

120

Chapter 9

Conclusions

Driven by power and heat problems, further increase in compute power now relies on parallelism, and

this trend is not expected to change in the near future. Ideally, programmers can write simple programs

that merely specify what needs to be computed, and let the compiler optimize for performance. However,

programmers still strive to improve performance by writing complicated codes, even for sequential programs.

The polyhedral model is a very powerful framework for program transformations, and plays a central

role in all of our contributions. Even after many years of research, only a small subset of possible trans-

formations via the model has been explored. We have shown various applications of the model: memory

re-allocation, complexity reduction, distributed memory parallelization, and determinacy guarantees. The

rich analysis capability of the polyhedral formalism will continue to serve as a fertile ground to develop

powerful transformations.

There are many direct extensions to our work. The design space explored by AlphaZ is still a small

subset, and can be expanded in various directions. We will need new code generators to explore efficient

execution strategies in new architectures, such as GPGPUs and Many Integrated Cores. We are currently

working on extending the Target Mapping to include other important optimizations, such as multi-level

tiling and vectorization. The embedding we describe in Chapter 5 is largely based on heuristics, and can

be improved. When there is a specific goal, i.e., to have one dimension that is uniform, how to perform

embedding and uniformization to satisfy such goal, as opposed to trying to uniformize everything, remains

an open problem. The MPI parallelization can be combined with OpenMP by applying additional levels of

tiling.

We have restricted ourselves to partially uniform programs for our distributed memory code generation.

Affine dependences are much more expressive, but dependences in polyhedral programs are often simple

expressions. For instance, one rarely sees dependences with coefficients on indices greater than 1. We feel

that it is important to look for other classes of dependences between affine and uniform, that are more

expressive than uniform, but easier to analyze than affine. As we have shown in Chapter 7, assuming less

general dependences can significantly simplify the problem, and it may not be a huge restriction in practice.

One candidate for such class of dependence is that described by Lamport [61], where the linear part of a

dependence is an arbitrary permutation of some subset of the indices.

Our work on polyhedral X10 programs opens up a number of interesting future directions. It is an

extension to the polyhedral model to handle more than doall type loop parallelism. Automatic parallelization

121

in the polyhedral model has always used doall parallelism in the past, and now a number of questions: how

to schedule, how to generate code, how tiling is affected, and so on, must be re-visited for finish/async

programs. In addition, we have not yet handled another important parallel construct in X10; clocks, which

we are currently working on.

The main drawback of polyhedral techniques is its limited applicability. Although affine control programs

are an important class of programs, there are many others that do not fit the model. Our extension to array

dataflow analysis for X10 programs is an attempt to enlarge the applicability. However, we only expand the

expressiveness of parallelism in the polyhedral model, and we still require controls to be affine.

There is much more to be explored in the current scope of the polyhedral model. At the same time, it is

important to look for extensions to the polyhedral model to larger class of programs. It is extremely difficult

to expand the model to larger class of programs, and also retain the same precision. However, with some

form of approximations, the model can be applied in many more programs. For example, we can reduce the

granularity and reason about blocks of computations rather than statements, and only require inter-block

dependences to be affine. We may not be able to perform some analysis statically, but can still combine

compile-time knowledge to improve run-time optimizations. These ideas are not necessarily new, but have

not been seriously pursued in the past.

The possible applications of the core techniques underlining the polyhedral model; linear algebra based

formalism, parametric integer linear programming, and all other polyhedral ways of looking at a program; are

not limited to program transformations. As an example, it has been previously applied to analyze program

termination [6]. We believe that there are more applications of the polyhedral model outside its traditional

use in parallelization.

122

References

[1] Eclipse modeling framework. http://www.eclipse.org/modeling/emf/.

[2] Tom/gom. http://tom.loria.fr/.

[3] Xtend. http://www.eclipse.org/Xtend/.

[4] Xtext. http://www.eclipse.org/Xtext/.

[5] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel analysis of X10
programs. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’07, pages 183–193, 2007.

[6] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, program termination,
and complexity bounds of flowchart programs. In Proceedings of the 17th International Conference on
Static Analysis, SAS ’10, pages 117–133, 2010.

[7] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele Jr, S. Tobin-Hochstadt,
J. Dias, C. Eastlund, et al. The Fortress Language Specification. Sun Microsystems, 139:140, 2005.

[8] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation for distributed
memory machines. In Proceedings of the 14th ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI ’93, pages 126–138, 1993.

[9] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal semi-oblique tiling. In Proceedings of
the 13th ACM Symposium on Parallel Algorithms and Architectures, SPAA ’01, pages 153–162, 2001.

[10] F. André, M. Fur, Y. Mahéo, and J.-L. Pazat. The pandore data-parallel compiler and its portable
runtime. In B. Hertzberger and G. Serazzi, editors, High-Performance Computing and Networking,
volume 919 of Lecture Notes in Computer Science, pages 176–183. 1995.

[11] P. Banerjee, J. Chandy, M. Gupta, E. Hodges IV, J. Holm, A. Lain, D. Palermo, S. Ramaswamy,
and E. Su. The Paradigm compiler for distributed-memory multicomputers. Computer, 28(10):37–47,
1995.

[12] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array dataflow analysis. Journal of Parallel and
Distributed Computing, 40:210–226, 1997.

[13] C. Bastoul. Code generation in the polyhedral model is easier than you think. In Proceedings of the
13th IEEE International Conference on Parallel Architecture and Compilation Techniques, PACT ’04,
pages 7–16, 2004.

[14] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quinton, and D. Wonnacott. ompver-
ify: polyhedral analysis for the OpenMP programmer. OpenMP in the Petascale Era, pages 37–53,
2011.

[15] U. Bondhugula. Automatic distributed-memory parallelization and code generation using the polyhe-
dral framework. Technical report, IISc Research Report, IISc-CSA-TR-2011-3, 2011.

[16] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’08, pages 101–113, 2008.

[17] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the Chapel language.
International Journal of High Performance Computing Applications, 21(3):291–312, 2007.

[18] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power cmos digital design. IEICE Transactions
on Electronics, 75(4):371–382, 1992.

123

http://www.eclipse.org/modeling/emf/
http://tom.loria.fr/
http://www.eclipse.org/Xtend/
http://www.eclipse.org/Xtext/

[19] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing high-level loop transformations.
Technical report, University of Southern California, 2008.

[20] Z. Chen and W. Shang. On uniformization of affine dependence algorithms. In Proceedings of the 4th
IEEE Symposium on Parallel and Distributed Processing, pages 128–137, 1992.

[21] M. Claßen and M. Griebl. Automatic code generation for distributed memory architectures in the
polytope model. In Proceedings of the 20th IEEE International Parallel and Distributed Processing
Symposium, IPDPS ’06, page 243, 2006.

[22] S. Coleman and K. McKinley. Tile size selection using cache organization and data layout. In Proceed-
ings of the ACM SIGPLAN 1995 Conference on Programming language Design and Implementation,
PLDI ’95, pages 279–290, 1995.

[23] J.-F. Collard and M. Griebl. Array dataflow analysis for explicitly parallel programs. In L. Bougé,
P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par’96 Parallel Processing, volume 1123 of
Lecture Notes in Computer Science, pages 406–413. 1996.

[24] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and
T. Von Eicken. LogP: Towards a realistic model of parallel computation, volume 28. 1993.

[25] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation. IEEE Transactions on
Computers, 54(10):1242–1257, 2005.

[26] F. De Dinechin. Structured systems of affine recurrence equations and their applications. Technical
report, IRISA-PI–97-1151, Publication interne IRISA, 1997.

[27] F. Desprez. Procdures de base pour le calcul scientifique sur machines parallles mmoire distribue. PhD
thesis, Institut National Polytechnique de Grenoble, 1994. LIP ENS-Lyon.

[28] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions and deadlocks. ACM
SIGOPS Operating Systems Review, 37(5):237–252, 2003.

[29] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22:243–268, 1988.

[30] P. Feautrier. Dataflow analysis of array and scalar references. International Journal of Parallel Pro-
gramming, 20(1):23–53, 1991.

[31] P. Feautrier. Some efficient solutions to the affine scheduling problem, I, one-dimensional time. Inter-
national Journal of Parallel Programming, 21(5):313–348, 1992.

[32] P. Feautrier. Some efficient solutions to the affine scheduling problem, II, multidimensional time.
International Journal of Parallel Programming, 21(6):389–420, 1992.

[33] P. Feautrier and C. Lengauer. The polyhedral model. In D. Padua, editor, Encyclopedia of Parallel
Programming. 2011.

[34] A. Floch, T. Yuki, C. Guy, S. Derrien, B. Combemale, S. Rajopadhye, and R. France. Model-driven
engineering and optimizing compilers: A bridge too far? In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems, MODELS ’11, 2011.

[35] R. France and B. Rumpe. Model-driven development of complex software: A research roadmap. In
Proceedings of the 2007 Future of Software Engineering, FOSE ’07, pages 37–54, 2007.

[36] M. L. Fur, J.-L. Pazat, and F. André. An array partitioning analysis for parallel loop distribution.
In Proceedings of the First International Euro-Par Conference on Parallel Processing, Euro-Par ’95,
pages 351–364, 1995.

[37] G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Message-passing code generation for non-
rectangular tiling transformations. Parallel Computing, 32(10):711–732, 2006.

124

[38] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. International Journal of Parallel
Programming, 28(6):607–631, 2000.

[39] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L. Pouchet. Polly–Polyhedral
optimization in LLVM. In 1st International Workshop on Polyhedral Compilation Techniques, IMPACT
’11, 2011.

[40] G. Gupta and S. Rajopadhye. Simplifying reductions. In Proceedings of the 33rd ACM Conference on
Principles of Programming Languages, PoPL ’06, pages 30–41, 2006.

[41] G. Gupta, S. Rajopadhye, and P. Quinton. Scheduling reductions on realistic machines. In Proceedings
of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’02, pages 117–
126, 2002.

[42] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for parallelizing
compilers on multicomputers. IEEE Transactions on Parallel and Distributed Systems, 3:179–193,
1992.

[43] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ramanujam,
and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loops. In Proceedings of the
23rd International Conference on Supercomputing, ICS ’09, pages 147–157, 2009.

[44] A. Hartono, M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Dyntile: Parametric tiled loop
generation for parallel execution on multicore processors. In Proceedings of the 24th IEEE International
Symposium on Parallel and Distributed Processing, pages 1–12, 2010.

[45] High Performance Fortran Forum. High performance fortran language specification. 1993.

[46] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the
pips project. In Proceedings of the 5th International Conference on Supercomputing, ICS ’91, pages
244–251, 1991.

[47] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, PoPL ’88, pages 319–329, 1988.

[48] IRISA, CAIRN. Generic Compiler Suite. http://gecos.gforge.inria.fr/.

[49] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection for concurrent programs with
asynchronous calls. In Proceedings of the the 7th joint meeting of the European software engineering
Conference and the ACM SIGSOFT Symposium on The foundations of software engineering, pages
13–22, 2009.

[50] R. Karp, R. Miller, and S. Winograd. The organization of computations for uniform recurrence equa-
tions. Journal of the ACM, 14(3):563–590, 1967.

[51] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The omega calculator
and library, version 1.1. 0. Technical report, Department of Computer Science, University of Maryland,
College Park, 1996.

[52] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel Computation, pages 332–341, 1995.

[53] D. Kim. Parameterized and Multi-level Tiled Loop Generation. PhD thesis, Colorado State University,
Fort Collins, CO, USA, 2010.

[54] D. Kim and S. Rajopadhye. Efficient tiled loop generation: D-tiling. In The 22nd International
Workshop on Languages and Compilers for Parallel Computing, LCPC ’09, 2009.

[55] D. Kim, L. Renganarayanan, D. Rostron, S. Rajopadhye, and M. Strout. Multi-level tiling: M for the
price of one. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, page 51,
2007.

125

http://gecos.gforge.inria.fr/

[56] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and
V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):68–75, 2003.

[57] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B. Lim. Integrating message-passing and
shared-memory: early experience, volume 28. 1993.

[58] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sadayappan.
Effective automatic parallelization of stencil computations. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07, pages 235–244, 2007.

[59] O. Kwon, F. Jubair, S. Min, H. Bae, R. Eigenmann, and S. Midkiff. Automatic scaling of openmp be-
yond shared memory. In Proceedings of the 24th International Workshop on Languages and Compilers
for Parallel Computing, LCPC ’11, 2011.

[60] M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimizations of blocked algorithms.
volume 25 of PLDI ’91, pages 63–74, 1991.

[61] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83–93, 1974.

[62] H. Le Verge. Reduction operators in alpha. In D. Etiemble and J.-C. Syre, editors, Parallel Algorithms
and Architectures, Europe, pages 397–411, Paris, 1992. See also, Le Verge Thesis (in French).

[63] H. Le Verge. Recurrences on lattice polyhedra and their applications to the synthesis of systolic arrays.
This was the last document that Herve Le Verge worked on before his untimely death. An updated
version will appear as an IRISA research report, Jan 1994.

[64] H. Le Verge, C. Mauras, and P. Quinton. The alpha language and its use for the design of systolic
arrays. The Journal of VLSI Signal Processing, 3(3):173–182, 1991.

[65] H. Le Verge and P. Quinton. Un environnement de transformations de programmes pour la synthèse
d’architectures régulières. 1992.

[66] J. K. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 25–36, 2010.

[67] P. Lee. Efficient algorithms for data distribution on distributed memory parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 8:825–839, 1997.

[68] P. Lee and Z. M. Kedem. Automatic data and computation decomposition on distributed memory
parallel computers. ACM Transaction on Programming Languages and Systems, 24:20, 1999.

[69] V. Lefebvre and P. Feautrier. Automatic storage management for parallel programs. Parallel Comput-
ing, 24(3-4):649–671, 1998.

[70] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel random-number generation for
dynamic-multithreading platforms. In Proceedings of the 17th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’12, pages 193–204, 2012.

[71] J. Li and M. Chen. Generating explicit communication from shared-memory program references. In
Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, SC ’90, pages 865–876, 1990.

[72] J. Li and M. Chen. Compiling communication-efficient programs for massively parallel machines. IEEE
Transactions on Parallel and Distributed Systems, 2(3):361–376, 1991.

[73] R. Lyngsø, M. Zuker, C. Pedersen, et al. Fast evaluation of internal loops in rna secondary structure
prediction. Bioinformatics, 15(6):440–445, 1999.

[74] M. Manjunathaiah, G. Megson, S. Rajopadhye, and T. Risset. Uniformization of affine dependence
programs for parallel embedded system design. In Proceedings of the 30th International Conference on
Parallel Processing, ICPP ’01, pages 205–213, 2001.

126

[75] N. Markham and M. Zuker. Software for nucleic acid folding and hybridization. Methods in Molecular
Biology, 453:3–31, 2008.

[76] C. Mauras. ALPHA: un langage équationnel pour la conception et la programmation d’Architectures
parallèles synchrones. PhD thesis, L’Université de Rennes I, IRISA, Campus de Beaulieu, Rennes,
France, December 1989.

[77] D. Maydan, S. Amarasinghe, and M. Lam. Array-data flow analysis and its use in array privatiza-
tion. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, PoPL ’93, pages 2–15, 1993.

[78] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, and R. Lethin. Productivity via automatic
code generation for PGAS platforms with the R-Stream compiler. In Proceedings of the Workshop on
Asynchrony in the PGAS Programming Model, 2009.

[79] J. Mellor-Crummey, V. Adve, B. Broom, D. Chavarrıa-Miranda, R. Fowler, G. Jin, K. Kennedy, and
Q. Yi. Advanced optimization strategies in the rice dhpf compiler. Concurrency and Computation:
Practice and Experience, 14(8-9):741–767, 2002.

[80] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[81] N. Osheim, M. Strout, D. Rostron, and S. Rajopadhye. Smashing: Folding space to tile through
time. In Proceedings of the 21th International Workshop on Languages and Compilers for Parallel
Computing, LCPC ’07, pages 80–93, 2008.

[82] T. Pathan. RNA secondary structure prediction using AlphaZ. Master’s thesis, Colorado State Uni-
versity, Fort Collins, CO, USA, 2010.

[83] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. Silber, and N. Vasilache. GRAPHITE: Polyhedral analyses
and optimizations for GCC. In Proceedings of the 2006 GCC Developers Summit, 2006.

[84] L.-N. Pouchet. PolyBench. www.cs.ucla.edu/~pouchet/software/polybench/.

[85] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral model:
Part I, one-dimensional time. In IEEE/ACM Fifth International Symposium on Code Generation and
Optimization, CGO ’08, pages 144–156, 2007.

[86] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayappan. Hybrid
iterative and model-driven optimization in the polyhedral model. Technical Report 6962, INRIA
Research Report, 2009.

[87] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the ACM,
35(8):102–114, 1992.

[88] W. Pugh and D. Wonnacott. Eliminating false data dependences using the Omega test. In Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI ’92, pages 140–151, 1992.

[89] W. Pugh and D. Wonnacott. Going beyond Integer Programming with the Omega Test to Eliminate
False Data Dependencies. Technical Report CS-TR-3191, University of Maryland, 1992.

[90] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral model. ACM Transactions
on Programming Languages and Systems, 22(5):773–815, 2000.

[91] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhedra. Inter-
national Journal of Parallel Programming, 28(5):469–498, 2000.

[92] M. Quinn and P. Hatcher. On the utility of communication-computation overlap in data-parallel
programs. Journal of Parallel and Distributed Computing, 33(2):197–204, 1996.

127

www.cs.ucla.edu/~pouchet/software/polybench/

[93] M. Rahman, L. Pouchet, and P. Sadayappan. Neural network assisted tile size selection. In Proceedings
of the International Workshop on Automatic Performance Tuning, 2010.

[94] S. Rajopadhye, G. Gupta, and D. Kim. Alphabets: An Extended Polyhedral Equational Language. In
F. Nakano, Bordim, editor, Proceedings of the 13th Workshop on Advances in Parallel and Distributed
Computational Models, 2011.

[95] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systolic arrays from
recurrence equations with linear dependencies. In Proceedings of the 6th Conference on Foundations
of software technology and theoretical computer science, pages 488–503, 1986.

[96] J. Ramanujam and P. Sadayappan. Tiling of iteration spaces for multicomputers. In Proceedings of
the 1990 International Conference on Parallel Processing, volume 2 of ICPP ’90, pages 179–186, 1990.

[97] M. Ravishankar, J. Eisenlohr, L. Pouchet, J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic
parallelization of a class of extended affine loop nests for distributed memory systems. Technical report,
OSU-CISRC-5/12-TR10, Ohio State University, 2012.

[98] L. Renganarayana, U. Bondhugula, S. Derisavi, A. Eichenberger, and K. O’Brien. Compact multi-
dimensional kernel extraction for register tiling. In Proceedings of the 2009 ACM/IEEE Conference on
Supercomputing, SC ’09, page 45, 2009.

[99] L. Renganarayana and S. Rajopadhye. Positivity, posynomials and tile size selection. In Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 1–12, 2008.

[100] L. Renganarayanan. Scalable and Efficient Tools for Multi-level Tiling. PhD thesis, Colorado State
University, Fort Collins, CO, USA, 2008.

[101] L. Renganarayanan, D. Kim, S. Rajopadhye, and M. M. Strout. Parameterized tiled loops for free. In
Proceedings of the 28th ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI ’07, pages 405–414, 2007.

[102] G. Rivera and C. wen Tseng. A comparison of compiler tiling algorithms. In Proceedings of the 8th
International Conference on Compiler Construction, pages 168–182, 1999.

[103] J. Roelofs and M. Strout. Tiling Visualizer, 2008. http://www.cs.colostate.edu/~mstrout/.

[104] V. P. Roychowdhury. Derivation, extensions and parallel implementation of regular iterative algo-
rithms. PhD thesis, Stanford University, Stanford, CA, USA, 1989.

[105] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10 language specification version
2.2, Mar. 2012. x10.sourceforge.net/documentation/languagespec/x10-latest.pdf.

[106] V. Saraswat and R. Jagadeesan. Concurrent clustered programming. In CONCUR 2005 - Concurrency
Theory, pages 353–367, 2005.

[107] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory models. In Pro-
ceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’07, pages 161–172, 2007.

[108] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data race
detector for multithreaded programs. ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[109] R. Schreiber and J. J. Dongarra. Automatic blocking of nested loops. Technical report, Oak Ridge
National Laboratory, 1990.

[110] T. Shen and D. Wonnacott. Code generation for memory mappings. In Proceedings of the 1998
Mid-Atlantic Student Workshop on Programming Languages and Systems, 1998.

[111] L. Smith, J. Bull, and J. Obdrizalek. A parallel Java Grande benchmark suite. In Proceedings of the
ACM/IEEE 2001 Conference on Supercomputing, SC ’01, pages 6–6, 2001.

128

http://www.cs.colostate.edu/~mstrout/
x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

[112] M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independent storage mapping for loops.
ACM SIGOPS Operating Systems Review, 32(5):24–33, 1998.

[113] A. Sussman. Model-driven mapping onto distributed memory parallel computers. In Proceedings of
the 1992 ACM/IEEE Conference on Supercomputing, SC ’92, pages 818–829, 1992.

[114] S. Tavarageri, L. Pouchet, J. Ramanujam, A. Rountev, and P. Sadayappan. Dynamic selection of tile
sizes. In Proceedings of the 18th International Conference on High Performance Computing, pages
1–10, 2011.

[115] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A unified framework for schedule and storage
optimization. In Proceedings of the 22nd International Conference on Programming Language Design
and Implementation, PLDI ’01, pages 232–242, 2001.

[116] UPC Consortium et al. UPC language specifications. Lawrence Berkeley National Lab Tech Report
LBNL–59208, 2005.

[117] V. Van Dongen and P. Quinton. Uniformization of linear recurrence equations: a step toward the
automatic synthesis of systolic arrays. In Proceedings of the International Conference on Systolic
Arrays, pages 473–482, 1988.

[118] N. Vasilache. Scalable Program Optimization Techniques In The Polyhedral Model. PhD thesis, Uni-
versity of Paris-Sud 11, 2007.

[119] N. Vasilache, B. Meister, A. Hartono, M. Baskaran, D. Wohlford, and R. Lethin. Trading off memory for
parallelism quality. In 2nd International Workshop on Polyhedral Compilation Techniques, IMPACT
’12, 2012.

[120] M. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic verification of determinism for structured
parallel programs. In Proceedings of the 17th International Conference on Static Analysis, SAS ’10,
pages 455–471, 2010.

[121] S. Verdoolaege. isl: An integer set library for the polyhedral model. Mathematical Software–ICMS
2010, pages 299–302, 2010.

[122] D. Wilde and S. Rajopadhye. The naive execution of affine recurrence equations. In Proceedings of the
1995 International Conference on Application Specific Array Processors, ASAP ’95, pages 1–12, 1995.

[123] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the 12th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’91, pages 30–44,
1991.

[124] M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third SIAM Conference
on Parallel Processing for Scientific Computing, pages 357–361, 1987.

[125] D. Wonnacott. Achieving scalable locality with time skewing. International Journal of Parallel Pro-
gramming, 30(3):181–221, 2002.

[126] P. Wu, P. Feautrier, D. Padua, and Z. Sura. Instance-wise points-to analysis for loop-based dependence
testing. In Proceedings of the 16th International Conference on Supercomputing, pages 262 – 273, 2002.

[127] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious. ACM SIGARCH
Computer Architecture News, 23(1):20–24, 1995.

[128] Y. Yaacoby and P. Cappello. Converting affine recurrence equations to quasi-uniform recurrence equa-
tions. In J. Reif, editor, VLSI Algorithms and Architectures, volume 319 of Lecture Notes in Computer
Science, pages 319–328. 1988.

[129] Y. Yaacoby and P. Cappello. Converting affine recurrence equations to quasi-uniform recurrence equa-
tions. In J. Reif, editor, VLSI Algorithms and Architectures, volume 319 of Lecture Notes in Computer
Science, pages 319–328. 1988.

129

[130] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, et al. Titanium: A high-performance Java dialect. Concurrency Practice and
Experience, 10(11-13):825–836, 1998.

[131] Q. Yi. Poet: a scripting language for applying parameterized source-to-source program transforma-
tions. Software: Practice and Experience, 2011.

[132] T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. Eichenberger, and K. O’Brien. Au-
tomatic creation of tile size selection models. In Proceedings of the 8th IEEE ACM International
Symposium on Code Generation and Optimization, CGO ’10, pages 190–199, 2010.

130

	Introduction
	Scope of the Dissertation
	Contributions

	Background and Related Work
	The Polyhedral Model
	Matrix Representation
	Program Parameters
	Properties of Polyhedral Objects
	Uniform and Affine Dependences
	Dependence vs Dataflow
	Memory-Based Dependences
	Lexicographical Order
	Polyhedral Reduced Dependence Graph
	Scanning Polyhedra
	Schedule
	Memory Allocation
	Polyhedral Equational Model

	Polyhedral Compilation Tools
	Tiling
	Overview of Tiling
	Non-Rectangular Tiling
	Parameterized Tiling
	Legality of Tiling

	Distributed Memory Parallelization
	Polyhedral Approaches
	Non-Polyhedral Approaches

	The AlphaZ System
	Motivations
	The AlphaZ System Overview
	The Alpha Language
	Domains and Functions
	Affine Systems
	Alpha Expressions
	Normalized Alpha
	Array Notation
	Example

	Target Mapping: Specification of Execution Strategies
	Space-Time Mapping
	Memory Mapping
	Additional Specifications

	Code Generators
	WriteC
	ScheduledC

	AlphaZ and Model-Driven Engineering
	Summary and Discussion

	AlphaZ Case Studies
	Case Study 1: Time-Tiling of ADI-like Computation
	Additional Complications
	Performance of Time Tiled Code

	Case Study 2: Complexity Reduction of RNA Folding
	Intuition of Simplifying Reductions
	Simplifying Reductions
	Normalizations
	Optimality and Algorithm
	Application to UNAfold
	Validation

	``Uniform-ness'' of Affine Control Programs
	Uniformization by Pipelining
	Uniform in Context
	Embedding
	Heuristics for Embedding
	``Uniform-ness'' of PolyBench
	Retaining Tilability after Pipelining
	Discussion

	Memory Allocations and Tiling
	Extensions to Schedule-Independent Storage Mapping
	Universal Occupancy Vectors
	Limitations of UOV-based Allocation
	Optimal UOV without Iteration Space Knowledge
	UOV in Imperfectly Nested Programs
	Handling of Statement Ordering Dimensions
	Dependence Subsumption for UOV Construction

	UOV-based Allocation for Tiling
	UOV-based Allocation per Tile
	UOV Guided Index Set Splitting
	Memory Usage of Uniformization
	Discussion

	MPI Code Generation
	D-Tiling: Parametric Tiling for Shared Memory
	Computation Partitioning
	Data Partitioning
	Communication
	Communicated Values
	Need for Asynchronous Communication
	Placement of Communication
	Code Generation

	Evaluation
	Applicability to PolyBench
	Performance Evaluation

	Summary and Discussion

	Polyhedral X10
	A Subset of X10
	Operational Semantics
	Happens Before and May Happen in Parallel relations
	Correspondence

	The ``Happens-Before'' Relation as an Incomplete Lexicographic Order
	Dataflow Analysis
	Potential Sources
	Overwriting

	Race Detection
	Race between Read and Write
	Race between Writes
	Detection of Benign Races
	Kernel Analysis

	Examples
	Importance of Element-wise
	Element-wise with Polyhedral
	Importance of Instance-wise
	Benefits of Array Dataflow Analysis

	Implementation
	Related Work
	Discussion

	Conclusions

