
On the Routability-driven Placement

HE, Xu

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2013

Abstract

In traditional VLSI design flow, the processes of placement and routing are done

separately. A placer determines the positions of cells and generates a row-based

layout. The major objective is to minimize wirelength which is often estimated

by the half-perimeter wirelength (HPWL) model. After placement, a router deter-

mines the routing path to connect all the pins of the cells in the same signal net.

Since the routing capacities of the metal layers are limited, the router not only need

to route all signal nets with small wirelength, but also has to satisfy the routing

resource constraints. Therefore, although minimizing HPWL in placement can re-

duce the average routing demand, the wires may be distributed unevenly and overly

optimized wirelength may lead to unroutability of some nets. As a result, we need

to consider routing congestion during placement. In this thesis, we study how to

trade off between routability and wire length in global placement, legalization, de-

tailed placement, and post-placement process.

First, we study the routability problem in global placement. We propose a

robust and effective flow to relieve routing congestion. We studied different meth-

ods to identify congested regions, including probabilistic approaches and global

routing approaches. The accuracy of different methods were also analyzed. After

congestion analysis, we will use cell inflation and spreading to reduce congestion.

Cell inflation has been a traditional technique to deal with congestion, and we will

discuss how this technique can be used easily and robustly.

Second, we study how to optimize wirelength without worsening congestion

during legalization and detailed placement. We find that many HPWL-driven ap-

proaches will increase congestion and reduce routability. After global placement,

the cells are located quite sparsely in the potentially over-congested regions. In

ii

many cases, the cells will be moved closer to each other after HPWL-driven le-

galization and detailed placement and the overflow will very likely be increased

significantly. Unlike many previous works that focus on different types of swap-

ping strategies in detailed placement, we analyze and propose some simple and

effective approaches to consider routability. Experimental results show that these

approaches can avoid worsening congestion effectively while the reduction in wire-

length is not affected obviously.

At last, we propose a fast and effective simultaneous routing and placement

refinement tool called Simultaneous Routing and Placement (SRP). SRP is inde-

pendent of the placer and the global router. Based on a given placement layout and

a global routing result, SRP relocates problematic cells by considering routing and

placement simultaneously. Not only overflow from local nets, but overflow from

global and semi-global nets can also be resolved by SRP. A cell will be relocated

and its associated nets will be rerouted if its connections go across congested re-

gions, even if the cell is not located in the congested region. Experimental results

show that our method can reduce overflow effectively. Given the layouts generated

by the top four routability-driven placers in the DAC Contest 2012, SRP can still

reduce the total overflow by 32.6% on average while the routed wirelength and

HPWL are not increased obviously.

Our placer Ripple combines the above approaches in global placement, legal-

ization, detailed placement, and post-placement process. As far as we know, com-

paring with other placers on the latest benchmarks released in the ICCAD 2012

contest, the routability of our placement result is the best on average.

iii

摘摘摘要要要

在超大規模集成電路物理設計中，布局和布線一般是分開進行的。布局階

段計算電路單元在芯片中的位置，生成基於行的布局結果。布局階段的主

要目標是優化線長，但因為布局階段很難計算準確的線長，所以是用線網

矩形框的半周長模型 (HPWL)來估計線長。得到布局結果後，布線器會決

定每個線網該如何走線，使得同一線網的所有單元連在一起。因為芯片上

每個區域的布線資源是有限的，所以布線器不僅需要減小線長，而且每個

區域的走線條數不能超過布線資源。雖然布局階段優化HPWL能減少總的

布線長度，但是走線通常分布不均勻。如果局部出現布線擁擠，那麼一些

線網就會布不通。目前，考慮布線擁擠的布局算法已經成為工業界和學術

界討論的熱點問題。本論文主要研究如何在布局的每個階段，包括整體布

局、合法化、詳細布局、後處理等，同時優化線長和可布線性。

首先，我們研究在整體布局階段如何考慮可布線性。我們提出了一套有

效的流程來優化布線擁擠問題。對中間布局結果，我們嘗試了各種不同的

方法對芯片的各個區域估算布線擁擠度，包括概率方法和總體布線算法。

並且，我們對不同估算方法的準確度也進行了分析。在估算完布線擁擠度

之後，我們膨脹電路單元面積並擴散這些電路單元，使得在布線擁擠度高

的區域，電路單元盡量分布稀疏。采用電路單元膨脹擴散的方法來降低布

線擁擠度是個很常見的技術，但是如果過度膨脹反而會同時增加線長和擁

擠度。所以，我們對如何簡單有效地使用這個技術，進行了深入的分析。

其次，在布局合法化和詳細布局階段，我們研究如何在優化線長的同

時，不增加布線擁擠度。傳統的布線驅動算法會影響布線擁擠度，從而降

低可布線性。一般在整體布局結果中，在可能的布線擁擠區域，電路單元

會分布得很稀疏。但是，如果合法化和詳細布局階段僅僅考慮線長，這些

電路單元很可能被重新放置得很緊密，從而降低可布線性。很多考慮可布

iv

線性的算法，基本是關於如何選擇電路單元進行交換的局部策略。不同於

這些算法，我們通過實驗，分析並提出了一些簡單有效的方法來解決可布

線性問題。實驗表明，這些方法能有效的防止可布線性降低，同時相比傳

統的布線驅動算法，線長也沒有明顯增加。

最後，我們提出同時進行布局和布線優化的後處理工具SRP。SRP獨立

於布局和布線工具。輸入布局結果和相應的總體布線結果，SRP會對造成布

線擁擠的電路單元重新布局布線。由於重布局布線不僅針對在擁擠區域的

單元，而且也針對走線經過擁擠區域的單元，所以不僅能優化局部布線擁

擠，而且也能優化由全局走線造成的擁擠。實驗表明，我們的方法能有效

減少布線擁擠度。給定DAC 2012競賽前四名的布局結果，SRP可以平均優

化布線擁擠度32.6%，同時HPWL和實際走線長度都沒有明顯增加。

把布局的各個階段整合在一起，就是我們的布局工具Ripple。Ripple獲

得ISPD 2011布線驅動的布局競賽冠軍，以及DAC 2012, ICCAD 2012競賽亞

軍。目前，使用最新由ICCAD 2012競賽提供的布局測試用例，同其他布局

工具相比，Ripple的平均可布線性最好。

v

Acknowledgments

First, my greatest thanks and appreciation go to my supervisor Evangeline F. Y.

Young. Without her insightful guidance, advice, and continuous Encouragement,

this thesis would not have been possible. I have learned a lot from her kindness,

patience, and positive attitude towards life. All these would be invaluable through-

out my life. I’m especially grateful for the days back to 2010 when she introduced

the routability-drive placement problem to me. Little did I know that this elegant

problem would bring me so much fun, hard work, frustration, satisfaction, and

fulfillment.

Also I would like to thank fellow lab mates Huang Tao, Xiao Linfu, Jiang

Yan, Tian Haitong, Cui Guxin, Qian Fuqiang, Chow Wing Kai, Kuang Jiang, and

Cai Wenzan. Thanks for all your helps during my Ph.D. study. I won’t forget

the meetings we discussed together for the contests. I would also like to thank

my friends Wei Xin, and Diao Yi, Chen Zhitang, Xu Jinxi and et al for sharing

happiness during the last three years.

Finally, I want to express my heartfelt thanks to my parents Li Yueyue and He

Dongliang, and my relatives Wen chunling, Li Yunliang, Wang Shifen, He Huilan,

Li qingqing, Li bingbing and et al for their love, understanding, and constant sup-

port. Their encouragement has always been a powerful source of inspiration and

energy. Without them, this dissertation would not exist.

Contents

1 Introduction 1

1.1 Introduction of VLSI flow . 1

1.1.1 Physical design . 2

1.2 Placement problem formulation . 5

1.2.1 Traditional placement . 5

1.2.2 Routability-driven placement 8

1.3 Procedural flow in placement . 13

1.4 Thesis outline . 13

1.5 Thesis contributions . 15

2 Background 19

2.1 Traditional placement . 19

2.1.1 Partitioning-based placement 21

2.1.2 Analytical placement . 21

2.2 Routability-driven placement . 25

2.2.1 Congestion analysis . 26

2.2.2 Congestion reduction techniques 30

2.2.3 Case studies of routability-driven placers 39

3 Routability-driven global placement 51

3.1 Problem formulation . 52

3.2 Overview . 53

3.3 Congestion estimation . 54

3.3.1 Probabilistic estimation . 56

viii Contents

3.3.2 Lookahead routing analyze 61

3.4 Congestion-based cell movement . 65

3.4.1 Cell inflation ratio calculation 65

3.4.2 Cell spreading . 67

3.4.3 Analysis of cell inflation and spreading 68

3.4.4 Routing path-based cell inflation & spreading 70

3.4.5 Congested cluster optimization 73

4 Routability-driven legalization and detailed placement 77

4.1 Problem formulation . 78

4.2 Traditional legalization and detailed placement 78

4.2.1 HWPL-driven legalization 78

4.2.2 HWPL-driven detailed placement 79

4.3 Routability-aware legalization & detailed placement 84

4.3.1 Congestion-driven legalization 84

4.3.2 Congestion-driven detailed placement 88

5 Simultaneous routing and placement (SRP) for congestion refinement 91

5.1 Problem formulation . 93

5.2 Overview of SRP . 93

5.3 Simultaneous cell relocation & net rerouting 95

5.3.1 Identify problematic cells 95

5.3.2 Remove problematic cells 96

5.3.3 Searching new location . 98

5.3.4 Connections to new location 102

5.4 Further discussions . 105

Contents ix

6 Experimental results 107

6.1 Benchmarks for routability placement 107

6.2 Experimental result of detailed placement 110

6.3 Experimental result of SRP . 111

6.4 Experimental result of Ripple . 111

6.4.1 Study of the basic framework 111

6.4.2 Overall performance of Ripple — an integration of differ-

ent techniques . 120

7 Conclusion 125

Bibliography 127

List of Figures

1.1 VLSI design flow [47] . 3

1.2 Physical design flow [47] . 4

1.3 (a) Pure standard cell placement (b) Mixed-size placement [3]. . . 7

1.4 (a) HPWL model on a three-pin net (b)Rectangular steiner tree

model on a three-pin net. The estimated wirelength is the length

of bold lines in red color. 8

1.5 (a) 2D global routing graph for one metal layer (b) 3D routing graph. 9

1.6 Congestion maps and total overflow values for Ripple [18] and

SimPLR [29] placement solutions on superblue12. The regions

colored purple indicate congestion hot-spots [52]. 12

1.7 (a) Before legalization (b) After legalization [3]. 13

2.1 Placement techniques and state-of-the-art placers [38]. 21

2.2 (a) The high-level outline of the top-down partitioning-based place-

ment process (b) Sequential min-cut partitioning. 22

2.3 The Bound2Bound net model in the x-direction. 24

2.4 Multilevel framework for placement problem [3]. 25

2.5 (a) Under Lou’s model, all detour-free paths are considered. (b)

Under Westra’s model, only L- and Z-shapes are considered. [61] . 29

2.6 (a) Placement with congested region (b) CRISP inflates cells in

these regions (c) Spread cells after inflation [44]. 34

2.7 Macro-based hierarchy grouping [20]. 37

xii List of Figures

2.8 Illustration of narrow channels (superblue7 in DAC 2012 con-

test [52]). (a) The placement result given by Ripple. All movable

cells are in blue color. (b) The corresponding global routing re-

sult from NCTUgr [34]. The narrow channels between macros are

usually potential routing congested region (shown in red color) in

(b). 38

2.9 The upper-lower-bound framework. 40

2.10 (a) Non-linear scaling is first performed in the x-direction (b) Sub-

sequent non-linear scaling is applied in two sub-regions in the y-

direction (Adaptec1). All movable cells are in blue color [30]. . . . 40

2.11 The routability flow of SimPLR [29]. 41

2.12 The overview of NTUplacer4 [20]. 44

2.13 An example of the GTL-score curve [26]. 48

3.1 The framework of our routability-driven placer. 54

3.2 The flow of congestion-aware cell inflation and spreading. 55

3.3 The congestion estimation of HPWL is too optimistic. Both con-

gestion maps are for the horizontal direction (superblue12). 56

3.4 The congestion estimation map in the horizontal direction (su-

perblue12) obtained with our proposed enhancements. 57

3.5 The routing demand of a two-pin net in tile is computed according

to the overlapping ratio between the overlapped region (grey) and

the bounding box of the net. 58

3.6 The routing supply of tile 1 has to exclude the blocked resources

(region in grey). 58

List of Figures xiii

3.7 An example of repeated counting the routing demand. After de-

composing a four-pin net into three two-pin nets: a-b, a-c and c-d,

tile 1, tile 3 and tile 4 will overlap with more than one subnet. The

routing demands of tile 1, tile 3 and tile 4 due to this net will be

double without proper adjustment. 61

3.8 The GCells connected by horizontal edge e1 and e2 are overlapped

with routing blockages. The supply of e1 and e2 have to exclude

the blocked routing resources. 63

3.9 An example to show the modified lookahead legalization which is

more effective in reducing congestion in one particular direction. . 69

3.10 Trajectories showing the horizontal and vertical overflow in dif-

ferent steps of a global placement iteration (the 38th iteration of

superblue12). 70

3.11 An example of routing path-based cell inflation and spreading. . . 71

3.12 The placement layout (a) and its routing result by NCTUgr [34] (b)

of superblue3. 74

3.13 The weight of pseudo-net in each iteration of global placement. . . 76

3.14 After congested cluster optimization, the area of the routing con-

gested regions of superblue3 is much less than the result shown in

Fig. 3.12 (b). 76

4.1 Detailed placement flow in FastPlace-DP. 80

4.2 Optimal region of cell 1. 81

4.3 Superblue12 before and after a HPWL-driven detailed placement.

Regions highlighted in red circles have high routing congestion. . . 85

xiv List of Figures

4.4 An example to show the effect of legalization on the horizontal con-

gestion (superblue12). (a) The horizontal congestion map before

legalization. (b) The horizontal congestion map after legalization.

Both congestion maps are generated by the simplified FastRoute. . 87

5.1 The whole flow of post-process. 94

5.2 (a)The routing path of net A passes through a congested routing

edge connecting tile(1,2) and tile(2,2) (b) We propagate from

tile(1,2) and tile(2,2) until reaching any pins of net A. Cell 1

and cell 2 are marked as problematic cells. 96

5.3 (a) Tile(1,1) contains a problematic cell 1 (b) The remaining path

and cells after removing cell 1 (c) Tile(4,2) contains a problematic

cell 2, and the degree of this tile is two (d) After removing cell 2,

the remaining path has two subnets (e) Tile(3,4) has two cells,

and cell 4 is the current problematic cell (f) The remaining path

and cells after removing cell 4. 97

5.4 Potential problems of some previous approaches. 98

5.5 (a) The problematic cell 1 has two associated nets: net 1 and net 2.

(b) After removing cell 1 and its connections from net 1 and net 2,

the remaining path is partitioned into two subnets: T 11 and T 12;

while net 2 becomes subnet T 21. (c) Obtain an optional location

for cell 1 by using multi-source propagation method from both net

1 and net 2. (d) Find the shortest path to connect the new location

and the subnets of together. 100

List of Figures xv

5.6 (a) The path obtained by tracing back can only connect the prob-

lematic cell 1 to one of its subnets (subnet 1), and subnet 2 is not

connected. (b) Problematic cell 4 has three associated nets. Since

both net 1 and net 2 will pass through tile(1,3) and tile(2,3) after

tracing back, the overflow on these two paths will be larger compar-

ing with the value in the propagation process. Therefore, the paths

obtained by tracing back the propagation may not be the shortest

paths for net 1 and net 2 respectively. 104

6.1 (a) The floorplans of fixed terminal nodes in superblue18. (b)The

floorplans of fixed terminal nodes in superblue15. The light-

red shaded boxes with blue out-line represent the rectangular

fixed nodes and the dark-gray shaded boxes represent the non-

rectangular fixed nodes in the design [54]. 108

6.2 Lower-upper-bound HPWL, inflation area and overflow at each it-

eration (superblue18). 115

6.3 Congestion maps for RippleBasic solution and the top result in

ISPD 2011 Contest on superblue2. 116

List of Tables

2.1 Prior congestion analysis approaches 26

2.2 Prior routability techniques . 31

4.1 Horizontal overflow after each step of legalization. Overflow is

generated by the simplified FastRoute 86

4.2 Total overflow (horizontal and vertical) caused by each step in

detailed placement. Overflow is generated by the simplified Fas-

tRoute. 89

6.1 Benchmark in ISPD 2011 contest. 109

6.2 Benchmark in DAC 2012 contest. 109

6.3 Benchmark in ICCAD 2012 contest. 109

6.4 Comparison between the HPWL-driven detailed placement and the

congestion-driven detailed placement. Overflow is generated by

the simplified FastRoute. 110

6.5 Overflow comparison and runtime of SRP 112

6.6 Routed wirelength and HPWL comparison 113

6.7 Runtime for global and detailed placement 117

6.8 Comparisons with the top results of the ISPD 2011 Contest [1] and

SimPLR [29] . 118

6.9 Evaluation of routing path-based cell inflation and spreading (RPB)

and congested cluster improvement (CCI) 122

6.10 Comparison with the top results of the ICCAD 2012 contest [55] . 123

CHAPTER 1

Introduction

Contents

1.1 Introduction of VLSI flow . 1

1.1.1 Physical design . 2

1.2 Placement problem formulation 5

1.2.1 Traditional placement . 5

1.2.2 Routability-driven placement 8

1.3 Procedural flow in placement . 13

1.4 Thesis outline . 13

1.5 Thesis contributions . 15

1.1 Introduction of VLSI flow

Because of the complexity of Very Large Scale Integration (VLSI), there are several

steps in the VLSI design cycle as shown in Fig. 1.1.

Given a system specification which is a high level description of the system,

the step of architectural design decides the architecture of the chip, e.g., RISC

versus CISC, number of ALUs, etc. Then, the step of functional design identifies

main functional units of the system and interconnect requirement between them.

2 Chapter 1. Introduction

It also estimates the area, power and other parameters of each unit. Logic design

describes the control flow, word widths, arithmetic operations, register allocation

and logic operations, which is called the Register Transfer Level (RTL) description.

Based on the result of logic design, the task of circuit design is to convert the

boolean expression into a circuit representation by considering the speed and power

requirement of the system. In physical design, the circuit representation (gates,

transistors) is converted into a geometric representation with specific shapes on

multiple layers. Based on the circuit layout obtained by physical design, the chip

is ready for fabrication on a wafer. At last, each individual chips will be packaged

and tested to ensure whether it meets all the design specifications and functions

properly.

1.1.1 Physical design

In the process of VLSI design, physical design is the most important step. The ob-

jective of physical design is to give optimal arrangements of millions of devices on

a plane (or a number of planes) and determine an effective interconnection schemes

between the devices. Currently, there are usually millions of transistors on a chip.

Due to the large number of devices, physical design must resort to the support of

computers.

Fig. 1.2 shows the process of physical design. The input is a circuit diagram;

while the output is the layout of the circuit. There are several phases in the flow of

physical design:

1. Partitioning: Because of the huge number of transistors on a chip, it is

impossible to layout the whole circuit in one step. Usually, a circuit is partitioned

into many sub-circuits in a preprocessing step. These sub-circuits are called blocks.

The output of this partitioning step is a set of blocks and interconnections between

1.1. Introduction of VLSI flow 3

Figure 1.1: VLSI design flow [47]

them which are called netlist information.

2. Floorplanning and Placement: The positions of blocks are determined in

this step. Floorplanning can provide a guideline for locating the functional blocks.

The number of the functional blocks in floorplanning is usually several hundreds.

However, placement has to place millions of small cells and most of these cells are

rectangular shape with fixed width and height.

3. Routing: The interconnections between blocks according to the netlist are

4 Chapter 1. Introduction

Figure 1.2: Physical design flow [47]

completed in this step. Nowadays, there are several metal layers above the device

layer for routing, and over-the-device routing has become popular. For each metal

layer, its wire direction is usually either horizonal or vertical. The route from the

source of a net may go through several layers until reaching the sink of the net.

Because of the complexity of the routing problem, it is solved in two phases: global

routing and detailed routing. In global routing, the routing area is represented as

a grid graph, and the interconnections across grids will be roughly routed. Based

on the global routes, detailed routing will be done to find the exact routes of all the

1.2. Placement problem formulation 5

nets.

4. Verification: After getting the layout, Design Rule Checking (DRC) will be

performed to verify that all geometric patterns meet the design rules required by

the fabrication process. Besides, the functionality of the layout needs to be verified

in this step as well.

1.2 Placement problem formulation

In the placement phase, a block/gate/ transistor-level netlist is transformed into an

actual layout for implementation. Because the locations of the circuit elements are

obtained during placement, the corresponding route and delay of the interconnec-

tion will be affected greatly. Therefore, the placement result has significant impact

on the final performance of the design and is regarded as one of the most important

optimization step in physical design.

1.2.1 Traditional placement

Since the circuit elements have to be located on a chip, we should define the place-

ment region P first. The region P is usually a rectangle with coordinates (xlow,ylow)

and (xhigh,yhigh). The circuit netlist is represented as a graph G = (V,E), where V is

a set of circuit elements and E is a set of interconnections (nets) between the circuit

elements.

The vertex set V includes two disjoint subsets: MV and FV , where MV and

FV represents a set of movable and fixed circuit elements respectively. The lo-

cation of each circuit element v ∈ FV has already been determined and cannot be

moved. Therefore, the task of placement is to give a location (x,y) to each circuit

element v ∈ MV such that the total wirelength is minimized. Other objectives such

6 Chapter 1. Introduction

as routability, noise, temperature will also be considered in some placers.

Each net e ∈ E connects a subset of circuit elements, i.e., e = {v1,v2, . . . ,vm},

where vi ∈ MV ∪MF . There is a pin contained in each circuit element vi for this

connection, and its position in vi is fixed.

Suppose that in G= (V,E), there are n circuit elements V ={v1,v2, . . . ,vn} and m

nets E = {e1,e2, . . . ,em}, i.e., ∣V ∣ = n and ∣E ∣ = m. For each movable circuit element

vi ∈ MV , its location is a variable (xi,yi). The placement problem can be defined

as follows: Given a placement region P with width W and height H, a netlist G =

(V,E) and an objective function f (V,E) which is typically formulated as the total

wirelength of all the nets, the task is to find the location (xi,yi) for each movable

circuit element vi ∈MV , such that vi is:

• Located within P without overlapping with other circuit elements;

• The objective function f = (V,E) is minimized;

• In the case of the standard cell placement problem, additional circuit rows

are designated in the region P, and the circuit elements, which are called

standard cells, with the same height must be placed in the rows.

Currently, hierarchical design methodology is very popular to reduce the turn-

around-time of taping out chips. Because of this, more and more macro blocks (ei-

ther fixed or movable) exists in modern ASIC designs, e.g.. reusable internal/third-

party IPs. Therefore, the circuit elements in V can have a large range of sizes,

and this type of placement problem is called mixed-size placement. In mixed-size

placement, besides those small standard cells, there are some large macro blocks.

Fig. 1.3 shows two examples of pure standard cell placement and mixed-size place-

ment.

1.2. Placement problem formulation 7

Figure 1.3: (a) Pure standard cell placement (b) Mixed-size placement [3].

In earlier VLSI design flow, placement and routing were implemented in sep-

arate software tools. A placer generates row and site-aligned, non-overlapping

locations for the circuit elements with small estimated interconnect length. After

placement, a router determines the routing path to connect all the pins of the circuit

elements in the same signal net.

The traditional placement objective is usually measured by the estimated wire-

length, like the half-perimeter bounding box wirelength model (HPWL), rectilinear

steiner tree wirelength model, and so on. Fig. 1.4 shows the results of these esti-

mation models on a three-pin net.

HPWL is widely used when comparing results in placement. HPWL is easy

to measure and yet a reasonable first-order estimation for the routed wirelength

of small nets in particular. For larger nets, steiner tree wirelength is needed to

accurately estimate the routing wirelength [38].

However, the traditional placement metric is hard to capture the key aspect of

solution quality. Since the routing capacity of metal layer is limited, a router not

only needs to route all signal nets with small wirelength, but must also satisfy the

8 Chapter 1. Introduction

Figure 1.4: (a) HPWL model on a three-pin net (b)Rectangular steiner tree model
on a three-pin net. The estimated wirelength is the length of bold lines in red color.

routing resource constraints. Therefore, although minimizing HPWL in placement

can reduce the average routing demand, the wires may be distributed unevenly and

overly optimized wirelength may lead to unroutability of some nets.

1.2.2 Routability-driven placement

If a placement solution is not routable in the following routing phase, it must be

re-designed again. Placement solution has to be routable. Currently, one of the key

challenges for modern physical synthesis flow is routability [2]. There are several

factors that contribute to the issue of routing congestion in advanced process tech-

nologies like 65nm and below. A few of them being, increased use of embedded

IPs or memories on the die that blocks metal layers, more layer stacks to achieve

higher performance, reduced die size to control manufacturing cost, and compli-

cated logic structures such as cross-bars. As a result, physical synthesis needs to

consider routing congestion in the entire design flow [54].

To address this issue of routing congestion, routability-drive placement be-

comes a hot topic in recent years and several routability-driven placement contests

were held in some top conferences like ISPD 2011 [54], DAC 2012 [52] and IC-

CAD 2012 [55] and attracted many researchers. The routability problem and the

1.2. Placement problem formulation 9

evaluation metric are formulated in these contests. Besides giving the information

of the placement region P and the circuit netlist G(V,E), the routing information is

also provided. Typically, a global router will overlay a regular grid (GCells) on the

chip, and construct a global routing graph (Fig. 1.5 (a)). Each node in the graph

represents a GCell in the layout, and an edge (GEdge) represents the boundary be-

tween adjacent GCells. In modern circuits, there are more than one metal layer for

routing, (e.g., nine layers in modern designs). The 2D regular grid graphs of each

metal layer stack up as a 3D grid graph (shown in Fig. 1.5 (b)). Via edge is used

to connect two abutting GCells in adjacent layers. To enable global routing and

congestion analysis, the routing information is given as follows:

Figure 1.5: (a) 2D global routing graph for one metal layer (b) 3D routing graph.

10 Chapter 1. Introduction

• Global routing grid (grid size, GCell dimensions, etc.)

• Number of routing layers

• Maximal GEdge routing resource for each routing layer

• Wire width and spacing for each routing layer

• Via specification

• Routing blockage information

• Routing layer for pins of random logic macros (RLM)

According to these routing information, the width or height of each GCell and

capacity of each GEdge can be obtained. The capacity c(e) of an GEdge e is the

number of routing tracks that can legally go across the adjacent grids, and demand

d(e) of e is the number of global rotuing paths passing through e. The overflow of

e is defined as max(0,d(e)−c(e)). If d(e) > c(e), it implies that too many global

routing pahts are passing through e, resulting in routing overflow.

Different from the contests held in ISPD 2005 [37] and ISPD 2006 [36] which

primarily evaluate a placer based on the HPWL metric and use density target to

address routability and congestion mitigation [38], a routability-driven placement

solution is evaluated by some metrics defined based on a global routing result.

In the ISPD 2011 contest, a global router coalesGrip [48] is used to route each

placement solution within a time budget (e.g., 15 min). The total overflow of all

the GEdges reported by the global router is used to evaluate the routablity of a

placement solution, i.e., lower total overflow implies better routability. However,

the metric of total overflow usually fails to provide a clear picture of the design

routability [60]. Considering only total overflow may encourage placers to use

1.2. Placement problem formulation 11

routings with very long detour to reduce a small amount of overflow, and it may

add to the difficulty in detailed routing. In addition, as the peak overflow is not

considered, a routing solution may have very congested hot-spots although the total

overfloap overflow may not be alarming. As shown in Fig. 1.6, the total overflow

value of SimPLR [29] is less than that of Ripple [18]. However, the distribution

of the congestion hotspots in SimPLR is more uneven, and it has worse routability

when compared to Ripple on this design [52].

In order to overcome the limitation of the total overflow metric, a new conges-

tion metric called average congestion of GEdges (ACE) to give a more accurate

congestion measure. ACE(x) computes the average congestion in percentage of

the top x% congested GEdges. Using different values of x, e.g. x ∈ {0.5,1,2,5,10},

a set of ACE values can be calculated, which together can provide a more accu-

rate view of the design congestion. For example, ACE(0.5) or ACE(1) provide a

highly local view, representing the most congested regions in the design. On the

other hand, ACE(5) or ACE(10) give a broader view of the design congestion [52].

Let,

• Peak Weighted Congestion (PWC):

PWC = ∑x∈{0.5,1,2,5}Kx×ACE(x)
∑x∈{0.5,1,2,5}Kx

, (1.1)

where Kx is the weight of ACE(x).

• Routing Congestion (RC):

RC =max(100,PWC) (1.2)

By considering the HPWL and the routing congestion (RC), the routability eval-

12 Chapter 1. Introduction

uation metric of a placement solutioncan be modeled by Equation (1.3).

scaledWL =HPWL×(1+PF ×(RC−100)) (1.3)

where, PF is a penalty factor that scales the HPWL to account for over-congestion.

Figure 1.6: Congestion maps and total overflow values for Ripple [18] and Sim-
PLR [29] placement solutions on superblue12. The regions colored purple indicate
congestion hot-spots [52].

Local peaks of pin density within GCells often cause internal routing conges-

tion, but are usually overlooked by global routing that only captures the wires pass-

ing through GEdges. In the metric of ICCAD 2012 [55], congestion due to local

wires (intra-GCell routes) are considered. Based on the metric of ICCAD 2012,

when computing ACE values, the routing demand of a GEdge e equals the sum of

the routing tracks passing through e and a weighted number of pins within the two

adjacent GCells connected by e.

1.3. Procedural flow in placement 13

1.3 Procedural flow in placement

Placement is a complicated NP-complete problem. A placement problem is usu-

ally solved by four steps: global placement, legalization, detailed placement, and

postprocess. Global placement determines the approximate distributions of the cir-

cuit elements to optimize the objective function. In global placement, the circuit

elements may have some degree of overlapping. Then, the legalization step will

transform an illegal global placement result into a legal one (i.e., remove overlaps,

and locate cells within rows in the case of standard cell placement). The detailed

placement step is performed to improve the objective function further. Usually,

the legalization step is viewed as a part of the detailed placement process. Fig. 1.7

shows the layout before and after legalization in the case of standard cell placement.

In post-process, various refinement methods can be applied for different objective,

e.g., power reduction, timing optimization, and routability alleviation, etc.

Figure 1.7: (a) Before legalization (b) After legalization [3].

1.4 Thesis outline

This dissertation studies the routability problem in placement.

In Chapter 2, we do a literature review of the placement problem, including

14 Chapter 1. Introduction

the traditional HPWL-driven placement and routabilty-driven placement. We in-

troduce a set of heuristics algorithms used in the state-of-the-art placers for both

the HPWL and routability optimization.

In Chapter 3, we propose several techniques in global placement to improve

routability. Our global placement is a flat placer with a lower-upper-bound frame-

work [30]. In the lower bound computation, we focus on minimizing HPWL. In

the upper bound computation, we spread cells by considering routing congestion.

In order to identify congested regions during the upper bound computation phase,

we tried many methods, such as probabilistic approaches and global routing tech-

niques. The accuracy of these methods will be discussed in detail. After congestion

analysis, we mainly use cell inflation and spreading to reduce congestion. Although

this technique has been used in many previous works, it is not easy to be applied

effectively. In this chapter, we studied three important questions. Where should

cell inflation be used? What should be the inflation ratio? How should the cells

be spread? Our algorithm can compute and adjust the cell inflation ratio efficiently

without causing over-inflation. Besides, both congestion from local nets and global

nets are handled. We also give an effective flow to reduce congestion without scar-

ifying wirelength unnecessarily.

In Chapter 4, we study the routability-driven legalization and detailed place-

ment. Traditional HPWL-driven legalization and detailed placement may increase

congestion and reduce routability. We find that after global placement, the cells are

located quite sparsely in some potentially over-congested regions. However, after

legalization and detailed placement, the cells are moved even closer to each other

and the overflow will very likely be worsened significantly. In this chapter, we

study the impact of each step of legalization and detailed placement on congestion,

and propose some simple and effective methods to trade off between congestion

1.5. Thesis contributions 15

and HPWL in those steps.

In Chapter 5, we propose a fast and effective simultaneous routing and place-

ment refinement method called SRP. SRP is independent of the placer and global

router being used. Based on a given placement layout and a global routing re-

sult, three major steps are employed in SRP to do congestion refinement. First,

we identify and rip-up problematic cells. Different from many previous works that

only focus on reducing the overflow caused by local nets, our method may relo-

cate a cell even when it is not lying inside a congestion region but its routing path

has run across congested regions. Second, we will search for a new location for

the ripped-up cell by a multi-source propagation step. Unlike other works that only

search the surrounding region around the cell’s original location, we will find a new

location for the problematic cell by searching around the G-Cells passed through

by the routing paths of the associated nets of the cell. Third, we will connect the

problematic cell from its new location to its associated nets by a multi-subnet maze

routing algorithm.

In Chapter refchap:result, the experimental results are analyzed. In Chapter 7,

a conclusion of this thesis is drawn.

1.5 Thesis contributions

The contributions of this dissertation can be summarized as follows.

For routability problem in global placement:

• Devise an efficient and robust flow of global placement to gradually improve

both the congestion and HPWL. Even with accurate congestion estimation,

the problem of how and when to utilize the congestion information to im-

prove both the congestion and HPWL is still an open and non-trivial prob-

16 Chapter 1. Introduction

lem.

• Propose a routing path-based method for cell inflation and spreading. Dif-

ferent from previous methods that only spread cells in congested regions,

we also consider cells whose routing path passes through congested regions.

Our strategy can thus alleviate both local and global congestion effectively.

• Present an simple and stable method to calculate the inflation ratio for cells in

the congested regions. Our inflation method can compute the inflation ratio

robustly without the need to set any sensitive parameters manually. Besides,

for those benchmarks whose congestion measures are too large, our method

can adjust the inflation ratio dynamically to avoid over-inflation.

• Present a method of handling tangled logic (a group of cells with many inter-

connections) to trade off between congestion and HPWL. We detect the con-

gestion due to tangled logic, and spread the cells there more sparsely without

sacrificing the HPWL unnecessarily.

For routability problem in detailed placement:

• Legalization is usually thought to have less impact on the placement result

since we just legalize the global placement solution. However, we find that

this is not true and legalization can worsen congestion in the horizontal direc-

tion quite significantly. We analyze the problem, and propose a very effective

method to solve it.

• Traditional HPWL-driven detailed placement may worsen congestion a lot.

Many previous works may use complex methods to deal with it, e.g.,

congestion-driven cell swapping. We have studied carefully in various de-

1.5. Thesis contributions 17

tailed placement steps to identify the problems and developed some simple

and effective solutions to handle them.

For routability refinement:

• We present a routability refinement method called SRP that can be used in-

dependent of any placer and router. Other refinement tools can be integrated

with our tool for further improvement.

• We relocate problematic cells by considering routing and placement re-

sources simultaneously. Not only overflow from local nets, but overflow

from global and semi-global nets can be relieved. We relocate and reroute

a cell if its connections run across congested regions, even if the cell is not

lying in a congested region itself. Results show that our method can reduce

overflow effectively.

Finally, an integration of the above ideas and techniques composes a powerful

placer called Ripple for routability optimization. In recent years, routability-drive

placement contests have been held in ISPD 2011 [54], DAC 2012 [52] and ICCAD

2012 [55] respectively. Ripple won champion once and first runner-up twice in

these contests. As far as we know, comparing with other placers on the latest

benchmark released in the ICCAD 2012 contest, the routability of our placement

results is the best on average.

CHAPTER 2

Background

Contents

2.1 Traditional placement . 19

2.1.1 Partitioning-based placement 21

2.1.2 Analytical placement . 21

2.2 Routability-driven placement . 25

2.2.1 Congestion analysis . 26

2.2.2 Congestion reduction techniques 30

2.2.3 Case studies of routability-driven placers 39

2.1 Traditional placement

Typically, the objective of placement is to minimize the total wirelength of all the

nets. Smaller wirelength always consume smaller routing resource. Besides, wire-

length can also approximate other objectives indirectly, such as timing, power and

routability of a design. In addition, wirelength can be modeled relatively easier

than other objectives.

Since nets have not been routed yet during placement, we can only estimate the

wirelength by using some models and the placement objective is to minimize the

20 Chapter 2. Background

estimated wirelength.

Usually, we use the half-perimeter wirelength (HPWL) model. For each net,

the HPWL model measures its wirelength as the half-perimeter of the smallest

bounding box that surrounds all the pins of the net. Suppose that for a net e ∈E, the

HPWL of net e is:

HPWL(e) =HPWLx(e)+HPWLy(e) = max
vi,v j∈e

∣xi−x j∣ + max
vi,v j∈e

∣yi−y j∣ (2.1)

The total HPWL of all the nets is:

TotalHPWL =
m
∑
i=1

HPWL(ei) =
m
∑
i=1

HPWLx(ei)+
m
∑
i=1

HPWLy(ei) (2.2)

There are some other estimation models, e.g., Rectilinear Steiner Minimum

Tree (RSMT), where SMT is a tree that connects all the pins of a net and can make

use of any arbitrary point as inserted nodes (steiner point) when building the tree

to reduce the tree length. Usually, RSMT is a more accurate estimation of the real

wirelength than other models. However, finding RSMT is a NP-complete problem,

and it is hard to model this estimation as an analytical function.

The techniques used in traditional placers are summarized in Fig. 2.1. Placers

based on stochastic approaches often utilize simulated annealing to find the global

optimum layout, but it suffers from long runtime. Partitioning approach is to recur-

sively partition the circuit and the placement area. Analytical approaches optimize

an objective function and compute the cell locations by methods of mathematical

analysis. We will introduce partitioning and analytical techniques in the following

sections.

2.1. Traditional placement 21

Figure 2.1: Placement techniques and state-of-the-art placers [38].

2.1.1 Partitioning-based placement

Partitioning-based placement has a top-down framework. It recursively decom-

poses a given circuit into sub-circuits, and divides a placement region into sub-

regions (or bins). The cells in sub-circuits are assigned to sub-regions. This al-

gorithm is composed of a sequence of passes where each pass examines all sub-

regions and divides some of them into smaller ones. When assigning cells to subre-

gions, we should minimize the number of nets crossing the subregions and consider

the total area of cells inside each subregion, which corresponds to a min-cut parti-

tioning problem. Fig. 2.2 (a) gives the process of partitioning-based placement.

2.1.2 Analytical placement

2.1.2.1 Wirelength Approximation

Usually, in analytical placer, the objective function is formulated to minimize the

HPWL function shown in equation (2.2). However, equation (2.2) is nonconvex,

22 Chapter 2. Background

Figure 2.2: (a) The high-level outline of the top-down partitioning-based placement
process (b) Sequential min-cut partitioning.

and it is hard to be minimized directly [38]. Therefore, some smooth wirelength

approximation functions are used:

• Quadratic function:

∑
e∈E

(∑
vi,v j∈e,i< j

wi, j(xi−x j)2+ ∑
vi,v j∈e,i< j

wi, j(yi−y j)2) (2.3)

• Lp-norm:

∑
e∈E

((∑
vk∈e

xp
k)

1
p −(∑

vk∈e
x−p

k)−
1
p +(∑

vk∈e
yp

k)
1
p −(∑

vk∈e
y−p

k)−
1
p) (2.4)

2.1. Traditional placement 23

• log-sum-exp:

γ∑
e∈E

(log∑
vk∈e

exp(xk

γ
)+ log∑

vk∈e
exp(−xk

γ
)+ log∑

vk∈e
exp(yk

γ
)+ log∑

vk∈e
exp(−yk

γ
))

(2.5)

A placer using equation (2.3) as the objective function is called a quadratic

placer; while a placer using equation (2.4) or (2.5) is called a nonlinear-

optimization-based placer. For the net models shown in equation (2.3), (2.4) and

(2.5), if the problem is convex, it can be solved effectively using Conjugate Gradi-

ent method (CG).

Here, we introduce a quadratic net model called Bound2Bound net model as

follows. Since the x and y coordinate is independent in Equation (2.3), they can

be considered separately. Here, we discuss the objective function in x-direction,

and the function in y-direction can be obtained similarly. In the Bound2Bound net

model [49], not every pair of two-pin connections of a net is used, but only a few

representative ones. Fig. 2.3 shows an example for a net with P pins including

pin a and b. Pin a with the smallest x-coordinate is connected to pin b with the

largest x-coordinate. We use lx,1 to denote the length of this connection. Other

P−2 inner pins of the net are connected with both outer pins a and b. We use lx, j

and lx, j+1 where j = 2,4, ...,2(P−2) to denote the length of these connections from

each inner pin j, and lx, j + lx, j+1 = lx,1 = w, where w is the distance between pin a

and b in x-direction. The net creates 1+2(P−2) two-pin connections.

The quadratic function of this net is shown in Equation (2.6). This function is

equal to the width w of the nets’ bounding box in x-direction.

2(P−2)+1
∑
i=1

wi× l2
x,i,

where, wi = 1
(P−1)(lx,i)

(2.6)

24 Chapter 2. Background

Figure 2.3: The Bound2Bound net model in the x-direction.

Bound2Bound net decomposition capture the HPWL objective exactly, but only

for the given placement. When the locations change, the connections and weights

of the nets need to be updated throughout the placement algorithm.

After minimizing the objective function and obtaining the location (xi,yi) for

each movable cell, there will be many overlaps between the cells, and we need

other approaches to remove these overlaps, like cell shifting [53], putting cell-

density penalty in the objective function [7][27][8], look-ahead legalization [30],

and so on.

2.1.2.2 Multilevel framework

When the number of variables is too large, e.g., millions of movable cells will have

millions of variables, the runtime for the CG method will be too long especially

when the objective function is nonlinear. Therefore, some placers will use a multi-

level framework [3] to improve the scalability (shown in Fig. 2.4).

Given a placement problem G = (V,E), we can cluster some cells as a group if

there are many connections between them, and this process is called aggregation

or coarsening. This coarsening process is performed recursively until the final

coarsest-level at which the number of groups is less than a threshold. Then we will

2.2. Routability-driven placement 25

use CG to solve the problem and get the positions of the groups. The positions

of the groups will be transformed to compute the positions of the subgroups at

its adjacent finer level. This process is called interpolation or uncoarsening. This

uncoarsening process will be repeated until getting all the original cells.

Figure 2.4: Multilevel framework for placement problem [3].

2.2 Routability-driven placement

In previous placement algorithms, the major objective is to minimize wirelength

which is often estimated by HPWL. Although minimizing HPWL can reduce the

average routing demand to some extend, the routing demand may be distributed un-

evenly, and as a result, making some nets difficult to be routed or even unroutable

at the end. Therefore, only pursuing short HPWL cannot get routable result with

short wirelength as expected, and it may even produce unroutable solution. More-

over, hundreds of large macros that occupy several metal layers usually exist in

modern circuit designs. The existence of such routing blockages has made this

routability-driven placement problem even more challenging.

26 Chapter 2. Background

Table 2.1: Prior congestion analysis approaches

Category Specific Techniques
Rent’s Rule [65]
Net bounding box [5]

Static Steiner tree construction [45]
Pin density [4]
Nets Counting in bin [58]
Probabilistic pattern routing [35][61][46]

Probabilistic Pseudo-constructive wirelength [28]
RUDY (uniform wire density) [50]
Using A*-search algorithm on 2D routing grid [62]

Global routing Integrate FastRoute [63] in placer IPR [42]
Using Simplified FastRoute and NCTUgr [34] in placer Ripple [17]
Integrate BFG-R [22] in placer SimPLR [29]

There are many previous works on routability-driven placement and we will

discuss them in details as follows.

2.2.1 Congestion analysis

In order to alleviate routing congestion, we have to identify the congestion region

first. Many prior approaches are proposed for congestion estimation. They can be

divided into three main categories: (1) static congestion estimation, (2) probabilis-

tic congestion estimation, and (3) global routing estimation. Table 2.1 [29] gives

the summary of these approaches. Traditionally, the first two options are used pop-

ularly for their short runtime. Thanks to the improvement in quality and runtime

of recent routers, a placement layout can be evaluated by a global router with an

acceptable time-out.

Here, we introduce some congestion analysis approaches in detail.

2.2. Routability-driven placement 27

2.2.1.1 Rent’s rule

Rent’s rule is an empirical observation first descried in [31]. It states the relation-

ship between the number of cells G in a subcircuit of a partitioned design and the

number of external connections T of the subcircuit (shown in Equation(2.7)).

T = tGp (2.7)

where t is the average number of interconnections per cell and p is the Rent expo-

nent (0.4 < p < 0.8 in real circuits). Rent’s rule has been widely used to estimate

interconnect wirelength in early design [14][51][13].

2.2.1.2 RUDY

RUDY [50] stands for Rectangular Uniform wire DensitY. Since a multi-pin net

usually has many different routes if a rectilinear steiner minimal tree (RSMT) is

used as a routing model, and all of these routes have the same minimal length, it

is hard to predict which routes will be used. Thus, the work [50] suggests that it

is not necessary for a single net to predict its routing demand accurately within its

minimum bounding box.

RUDY is defined by a uniform wire density di for each net i = 1,2, . . . ,N within

the minimum bounding box of net i. The wire density di of net i is the ratio of the

wire area wai and the net area nai (shown in Equation (2.8)).

di =
wai

nai
(2.8)

The net area nai is equal to wi×hi, where wi and hi are the width and height of the

minimum bounding box of net i. The wire area wai is computed by the wirelength

28 Chapter 2. Background

li times the wire width p: wai = li× p. The wire width p is defined by the average

wire-to-wire pitch divide by the number of routing layer. The wirelength li is the

estimated routed wirelength of net i and can be computed by the HPWL or by

the length of the RSMT. RUDY uses the HPWL as the estimation for the routed

wirelength.

2.2.1.3 Probabilistic pattern routing

The chip is divided into uniform grids as the global router does. For each net, there

are a number of possible routing paths, and the probabilistic usages are assigned

to the grids that the paths go through. Usually, the analysis is based on two-pin

nets, and multi-pin nets are decomposed into two-pin nets (e.g., using a Minimum

Spanning Tree algorithm).

For each two-pin net, Lou’s model [35] considers all detour-free paths within

its minimum bounding box, and gives an equal probability of being selected by

the global router. Each net contributes the probability of occupying a track in

the regions it may be routed through to the probabilistic usage of these regions.

However, Westra’s model [61] provides experimental proofs that in practice, most

nets are routed with one or two bends. Therefore, the work [61] only considers the

usages of L- and Z-shape routes, and then combines them based on probabilities

weight extracted form real-life designs.

Fig. 2.5 show the difference between routing usage maps by these two models.

Lou’s model yields a high probabilistic usage at the center of the box spanned by

a net (shown in Fig. 2.5 (a)); while Westra’s model suggests a high probabilistic

usage at the borders of the bounding box of the net (shown in Fig. 2.5 (b)).

Other probabilistic models are also proposed recently. For example, the

work [46] uses diagonal-based model and assign probability to each grid in the

2.2. Routability-driven placement 29

Figure 2.5: (a) Under Lou’s model, all detour-free paths are considered. (b) Under
Westra’s model, only L- and Z-shapes are considered. [61]

same diagonal uniformly.

2.2.1.4 FastRoute

FastRoute [39][41] is a very fast global router which can be used as both an inter-

connect estimator and a traditional routing tool. FastRoute uses rip-up and reroute

technique during global routing, and the main flow includes five phases:

1. Congestion map generation. The nets are decomposed into two-pin nets by

Steiner minimal tree (FLUTE [10] construction). For each two-pin net, L-

shape routing is applied to generate an initial congestion map.

2. Congestion-driven Steiner tree construction. If the routing path of a net

passes though a congested edge, we have no way to simply eliminate the

routing demand on the edge. Changing the Steiner tree topologies can give

a lot of flexibility in avoiding routing congestion, which the widely used

pattern routing and maze routing cannot achieve. By using the congestion-

scaled distance instead of the original distance, the congestion-driven Steiner

tree can reduce congestion significantly. Moreover, edge shifting is applied

to do further improvement [39].

30 Chapter 2. Background

3. L- and Z-shape pattern routing. After decomposing nets based on their

congestion-driven Steiner tree topology, L- and Z-shape pattern routing is

applied to do rip-up and reroute.

4. Monotonic routing. For a two-pin net that spans n×m grids, L-shape pattern

routing only considers 2 different paths, and Z-shape pattern routing only

considers m+n different paths. These limitations of pattern routing make it

hard to find good routing paths. Monotonic routing is a trade-off between

maze routing and pattern routing. The quality can be better than pattern

routing, but the runtime is similar. Since all monotonic routing paths will not

go out of the bounding box of the two-pin net, the total number of monotonic

routing paths is (m+n−2
m−1) = (m+n−2)!

(m−1)!(n−1)! [41].

5. Maze routing. Maze routing is the most popular technique used in global

routing. Unlike original maze routing algorithm which is designed to find

the shortest path connecting two pins in the presence of routing blockages, it

is extend to multi-source multi-sink maze routing.

2.2.2 Congestion reduction techniques

Routability-driven placement problem has been studied in many previous works.

The optimizations can be performed during (1) global placement, (2) detailed

placement, and (3) the post-placement process. Table 2.2 summarizes these tech-

niques. We will introduce several recent techniques in detail as follows.

2.2.2.1 Whitespace allocation

Several previous works try to distribute the routing demand evenly by reduc-

ing the cell densities in the congested regions. It is shown that by reducing

2.2. Routability-driven placement 31

Table 2.2: Prior routability techniques

Category Specific Techniques
Movable nodes relocation [25][50][56][20]
Cell inflation [17][18][23][29][4]

In global Growing or shrinking placement regions [43]
placement Macro block handling [12][20][21]

Hierarchy design [11][20]
Local placement refinement [42]

In detailed Congestion aware cell swapping [29][42]
placement Linear placement based on Steiner length in small windows [24][45]

Network flow [57][59]
Bloating and spreading cell by using pin density and congestion map [44]

Post-process Module shifting by expanding GCell [66]
Whitespace insertion or reallocation [32][64][45]
Linear programming [33]

the densities of the cells on a chip, the routing demand will be distributed more

sparsely [64] [32] [4] [44], and the routing congestion will be lowered.

The authors of [64] presents a whitespace allocation approach to allocate

whitespace according to the congestion map. There are two steps: (1) allocate

whitespace to each row, and (2) allocate whitespace to each bin within rows. As-

sume that there are n rows in the chip. Row congestion c j is defined as the total

congestion of the bins in row j, and row whitespace w j is the total whitespace to

be allocated to row j. Let W be the total whitespace of the chip. The relationship

between w j and W is shown in Equation (2.9).

n
∑
j=1

w j =W (2.9)

If there is a minimum row whitespace wmin constraint, the row whitespace can

be assigned proportionally to the row congestion by Equation (2.10).

wi =wmin+
W −n×wmin

∑n
j=1(c j −cmin)

(ci−cmin) (2.10)

32 Chapter 2. Background

where cmin is the minimum row congestion among all the rows.

If both the minimum and maximum row whitespace are limited (wmin ≤ w j ≤

wmax, j = 1, . . . ,n), a monotonic function w j = f (c j) should be designed so that

wi ≤ w j, if ci ≤ c j. The rows are first sorted according to their congestions in non-

decreasing order (c1 ≤ c2 ≤ ⋅ ⋅ ⋅ ≤ cn) . Hence, wmin ≤ w1 ≤ w2 ≤ ⋅ ⋅ ⋅ ≤ wn ≤ wmax. Let

f (x) be in the form f (x) = a1x2+a2x+a3, three constraints can be obtained (Equa-

tion (2.11)).

a1c2
1+a2c1+a3 =wmin

a1c2
n+a2cn+a3 =wmax

a1∑n
i=1 c2

i +a2∑n
i=1 ci+a3n =W

(2.11)

The function f (x) could be determined by solving Equation (2.11). Some ad-

justments are also discussed in the work [64] to make sure that the function is

monotonic in the range [c1,cn].

In the second step, it is reasonable to allocate whitespace to each bini, j propor-

tionally to the ratio of the congestion to the total congestion, i.e., wi, j = w jci, j/c j.

Other ratios can also be used, e.g., the ratio of the bin congestion square to the total

square of the bin congestion.

Another method of whitespace allocation is proposed in [32]. A slicing tree

based on the geometric locations of all the cells are first constructed, and this pro-

cess is similar to a partitioning-based flow. The congestion level at each node of

the tree are then estimated. According to the congestion, the cutline location at

each node is adjusted in a top-bottom fashion to distribute the whitespace to two

child nodes. Consider a region r with lower left conner (x0,y0), upper right coner

(x1,y1), and the area of this region is Ar = (x1 − x0)(y1 − y0). Assuming that the

original cut is at xcut = (x0 + x1)/2 in vertical direction. The total area of the cells

on the left subregion r0 and the right subregion r1 are S0 and S1 respectively, and

2.2. Routability-driven placement 33

the corresponding congestion levels are c0 and c1. In order to keep the whitespace

proportional to the congestion levels of two subregions, the new cut location x′cut

can be computed by Equation (2.12).

γ =
S0+(Ar−S0−S1)

c0
c0+c1

Ar

x′cut = γx1+(1−γ)x0

(2.12)

At last, a detailed placer is applied to remove overlaps of cells and further reduce

HPWL while preserving the whitespace distribution.

2.2.2.2 Cell inflation

CRISP [44] is an incremental placer. By using a fast global router instead of an

inaccurate probabilistic congestion estimation, CRISP inflates and spreads cells in

the congested regions iteratively. Fig. 2.6 shows an example of how CRISP inflates

and spreads cells in a congested region. After spreading cells, the sizes of the

cells will be reset to their original values. However, the technique of cell inflation

applied at a later stage of the placement phase can only allow width expansion

because the height must match with the row height of the standard cell. As a result,

the horizontal routing congestion cannot be reduced. Moreover, by spreading cells

horizontally, the demand of the horizontal tracks may even be increased [2].

Cell inflation performed during global placement is thought to be more flexible

and powerful. In BonnPlace [4], cell areas in a congested region are expanded, and

this technique is incorporated into a partitioning-based placer to affect whitespace

allocation.

For cell i in a congested region, its inflated size will be (1+b(i))× s(i), where

s(i) is the original area of cell i, and b(i)(≥ 0) is the inflation ratio. The initial value

of b(i) is proportional to the number of pins of cell i divided by s(i). It is observed

34 Chapter 2. Background

Figure 2.6: (a) Placement with congested region (b) CRISP inflates cells in these
regions (c) Spread cells after inflation [44].

that small cells with many pins often cause routing problem when they are placed

densely. During the placement process, b(i) is updated according to the congestion

estimation. In additional, b(i) can be decreased if both the congestion estimation

on the routing grid edges and the pin density are far away from the critical values.

After cell inflation, BonnPlace [4] uses repartitioning method to move cells out of

regions that are too full.

2.2.2.3 Congestion optimization in analytical function

Some previous works try to change the objective function in analytical placement

to account for routability. By adding an additional force or cost to pull cells away

from highly congested region to less congested region, we can reduce the routing

congestion as well.

In NTUplace [21] (the version called Radiant in ISPD 2011 contest), when

considering routing congestion, the placement problem is formulated by Equa-

tion (2.13).

min W(x,y)

s.t. Db(x,y) ≤Mb , for each bin b

Ee(x,y) ≤Ce , for each routing edge e

(2.13)

2.2. Routability-driven placement 35

where Db(x,y) is the potential function that is the total area of movable blocks in

bin b, Mb is the maximum area of movable nodes in bin b, Ee(x,y) is the expected

usage of routing edge e, and Ce is the total routing capacity of e. Note that Ee(x,y)

is a function of node positions. In the work [21], a 0-1 logic function is used to

formulate the relationship between routing usage and node position. A Quadratic

sigmoid function is then applied to smooth the Ee(x,y) to Êe(x,y), where Êe(x,y)

is the smoothed expected usage function of e. At last, the quadratic penalty method

is used to transform the constrained optimization problem into an unconstrained

problem as shown in Equation (2.14).

min λ1Ŵ(x,y)+λ2∑
b
(D̂b(x,y)−Mb)2+λ3∑

e
(Êe(x,y)−Ce)2 (2.14)

where λ1, λ2 and λ3 are weigths for wirelength, cell-density and routability respec-

tively.

Many other methods are proposed as well. Aplace [27] uses a probability-based

approach to estimate congestion and incorporates this information in a logarithmic-

sum-exponential (LSE) wirelength objective function. Kraftwerk2 [50] proposes a

fast routing demand estimation method RUDY, and modifies the move force in

their quadratic function to move cells to regions with lower routing demand. NTU-

place [25] tries to remove overlaps between net bounding boxes to reduce routing

congestion. Observing that net overlap removal may go too far since the bounding

box of a net can only give a very rough estimation of its route, the approach in [11]

uses fence force that utilizes the design-hierarchy information to group cells and

uses local spreading force to reduce cell density in congested regions to balance

between routability and wirelength during global placement.

36 Chapter 2. Background

2.2.2.4 Hierarchy design

Hierarchical design methodologies are usually employed in modern circuit design.

It is expected that placing circuit elements that belong to the same design hierarchy

level closely will have better circuit performance and routability [11][55]. It should

be mentioned that the benchmarks used in the ICCAD 2012 contest of design hier-

archy aware routability-driven placement [55] have the hierarchical information of

the nodes.

NTUplacer [20] makes use of the hierarchy information in their multilevel

framework for clustering in the coarsening stage. While the initial node locations

are determined after the coarsening stage, clustering could help to preserve design

hierarchies during the uncoarsening stage.

Before clustering, the work [20] uses macro-based hierarchy grouping. This

grouping information will be considered in the subsequent clustering process.

Since most macros are preplaced and fixed in modern mixed-size circuit de-

signs [55], it is reasonable to consider both the hierarchy information and the po-

sitions of the macros simultaneously. According to the design hierarchy of the

macros, macro hierarchical structure trees (MHSTs) are first constructed. Fig. 2.7

(a) shows an example of a MHST for a set of macros. The corresponding fixed

layout of these macros is shown in Fig. 2.7 (b). Macros belonging to a MHST

with similar shapes are grouped first (shown in Fig. 2.7 (c)), and other macros are

grouped in a bottom-up manner according to the MHSTs (shown in Fig. 2.7 (d)).

Although the macros on the upper-left and lower-right corners belong to the same

hierarchy, they should not be identified as the same hierarchy group because of

their large distance separation. Finally, for each macro, the cells that are at the

same hierarchy with the macro will be grouped with it. For cells that are not at the

same hierarchy with any macro will be grouped according to the design hierarchy

2.2. Routability-driven placement 37

information [11].

Figure 2.7: Macro-based hierarchy grouping [20].

During the clustering process, both the design hierarchy and the net connectiv-

ities should be considered. The affinity A(vi,v j) between two nodes vi and v j is

defined by Equation (2.15).

A(vi,v j) = Ti, j
∣ei, j ∣⋅∣ai+a j ∣

Ti, j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α ⋅ki, j if vi, v j are in the same hierarchy group

ki, j otherwise

(2.15)

where ∣ei, j∣ is the total number of pins of nets connecting vi and v j, ai and a j are

the areas of vi and v j respectively, Ti, j is the hierarchy factor, ki, j is the number

of common hierarchy parts between these two nodes, and α is a factor set to 10

in [20].

38 Chapter 2. Background

2.2.2.5 Narrow channels handling

As illustrated in the work [20], many routing overflows occur along the macro

boundaries, especially for narrow channels between macros. Placing too many

cells in these narrow channels would cause routing overflow as shown in Fig. 2.8.

Besides, cells placed in narrow regions have difficulty in escaping during routing.

Figure 2.8: Illustration of narrow channels (superblue7 in DAC 2012 contest [52]).
(a) The placement result given by Ripple. All movable cells are in blue color. (b)
The corresponding global routing result from NCTUgr [34]. The narrow channels
between macros are usually potential routing congested region (shown in red color)
in (b).

In order to reduce the congestion caused by narrow channels, the work [12]

chooses to inflate fixed macros based on their distance to neighboring fixed macros.

For each fixed macro, a set of right-side macro neighbors whose distance is smaller

than a right-threshold value are found. The sets of neighbors of its left-side, top-

side and bottom-side can be found similarly. Four inflation ratios are then com-

puted for the macro with respect to these four sides. For example, to completely

block a narrow channel on the right of a macro, inflation ratio of the right-side of

2.2. Routability-driven placement 39

the macro should be equal to 100%.

NTUplacer4 [20] proposes a method that dynamically modifies the base poten-

tial around narrow channels in their analytical placer. They first detect the locations

of narrow channels, and then change the potential function of the bins that reside

on these narrow channels. Gaussian smoothing method [15] with a small σ (e.g.

0.5 in their implementation) are used to differentiate the potential function.

2.2.3 Case studies of routability-driven placers

2.2.3.1 SimPLR

Here, we first briefly introduce the framework of the traditional placer SimPL [30].

Then, the routability optimization techniques used in SimPLR [29][23] will be

discussed.

SimPL [30] is a self-contained, flat, quadratic global placer. It is developed

based on the lower-upper-bound framework as shown in Fig. 2.9. The two bound

computations are invoked alternately. In the lower bound computation, the HPWL

objective is represented as quadratic function (shown in Equation (2.3)) according

to the Bound2Bound net model [49], and this quadratic function will be solved

by the Conjugate Gradient (CG) decent method. In the upper-bound computation

phase, a lookahead legalization algorithm based on geometric top-down partition-

ing and non-linear scaling is proposed to alleviate the overlaps between cells. The

two bound computations are invoked alternately until the computations of these

two bounds converge. Artificial two-pin pseudonets are introduced in the lower

bound computation to consider the target positions of cells obtained in the upper

bound computation.

During lookahead legalization (LAL), the chip is divided into uniform grids.

40 Chapter 2. Background

Figure 2.9: The upper-lower-bound framework.

Adjacent grids with significant amount of cell overlaps are clustered. LAL seeks to

remove most of the overlaps (with respect to the grid) while preserving the relative

ordering of the cell locations. For each cluster, the lookahead legalization is based

on a top-down recursive geometric partitioning and non-linear scaling. Fig. 2.10

shows an example of lookahead legalization process.

Figure 2.10: (a) Non-linear scaling is first performed in the x-direction (b) Subse-
quent non-linear scaling is applied in two sub-regions in the y-direction (Adaptec1).
All movable cells are in blue color [30].

When considering routability, SimPLR applies several techniques, such as dy-

namic adjustment of target density, cell inflation, and so on. The SimPLR flow is

2.2. Routability-driven placement 41

shown in Fig. 2.11. BFG-R [22] is applied for lookahead routing.

Figure 2.11: The routability flow of SimPLR [29].

The work [29] dynamically adjusts the target density during global placement.

The initial target density is set to:

γinit =Dut +min{max{γ0−Dut ,0%},ωD} (2.16)

where Dut is the design utility (given), γ0 is a prediction of a good target density,

and ωD is the target density lower bound. In the work [29], γ0 = 50% and ωD =

15%. After lookahead routing and cell inflation, the target density is updated by

Equation 2.17.

γ =min{ area(Cm)
area(D)−area(C f)

+φ,95%} (2.17)

where Cm is the set of movable cells, C f is the set of fixed cells, D is the design,

the function area returns the total area of input including inflated cells, and φ is a

number that is initially γinit −Dut , and increases by 1% when the routed wirelength

increases according to the lookahead routing.

For routability-driven cell inflation, the work [23] argues that when inflated

42 Chapter 2. Background

cells move outside the congested region, new coming cells have to be inflated again,

and this process may waste whitespace without solving the root cause of congestion

in the given region. This problem is also confirm by several industrial and academic

studios.

The work [23] summarized three types of congestion:

• Cell-based congestion: caused by cell-to-cell interconnections.

• Local layout-based congestion: caused by static design properties, like

blockages and routing capacities reduction.

• Remotely-induced layout-based congestion: caused by global nets which

pass through the congested region.

In order to reduce cell-based congestion, we can resort to inflating the cells in

the congested region. However, inflating too many cells or overinflate some cells

may even worsen both the routability and wirelength. To ensure steady improve-

ment, SimPLR [29] chooses to inflate cell in the top 5% most congested GCells by

Equation (2.18)

max{width(cell)+1,1+θ(G) ⋅Λ(cell) ⋅deg(cell)} (2.18)

where width(cell) and deg(cell) are the width and connectivity of cell in a con-

gested GCell, respectively. θ(G) is an adaptive function reflecting by the routabil-

ity and difficulty of the design, and Λ(cell) is the number of times cell has been in

a congested GCell.

In order to reduce layout-based congestion, the work [23] enforces non-uniform

target densities in localized regions. The local layout-based congestion which is

caused primarily by static constraints such as custom routing edge reduction, can

2.2. Routability-driven placement 43

be solved through locally injecting whitespace. The remotely-induced layout-based

congestion, where congested GCells contain no standard cells but have a few rout-

ing tracks traversed by long nets, the non-uniform target density can be imple-

mented by inserting fixed dummy cells at the center of every GCell and modifying

their size based on congestion.

2.2.3.2 NTUplacer4

In the traditional placer NTUplacer [8], the placement region is first divided into

uniform nonoverlapping bins. The global placement problem is formulated as a

constrained minimization problem as shown in Equation (2.19).

min W(x,y)

s.t. Db(x,y) ≤Mb , for each bin b
(2.19)

where W(x,y) is the wirelength function, Db(x,y) is the potential function that is

the total area of movable blocks in bin b, and Mb is the maximum area of movable

nodes in bin b. Mb is computed by Mb = tdensity(wbhb−Pb), where tdensity is target

density value for each bin, wb and hb are the width and height of bin b, and Pb is

the base potential equal to the pre-placed block area in bin b. Mb is a fixed value

when all the positions of preplaced blocks are given and the bin size is determined.

The objective W(x,y) is usually defined as the total HPWL of all nets, and

the smooth function (Equation (2.5)) is used in NTUplacer. The potential function

Db(x,y) is defined according to the overlaps of each bin and each block along the

x and y directions, and the bell-shaped function is used to smoothen the density for

each block [27].

Equation (2.19) can be solved by the quadratic penalty method shown in Equa-

tion (2.20).

44 Chapter 2. Background

min Ŵ(x,y)+λ∑
b
(D̂b(x,y)−Mb)2 (2.20)

where λ is a penalty factor, Ŵ and D̂ are the smoothed wirelegnth and density

functions. This unconstrained problem in Equation (2.20) can be solved by CG

methods. NTUplacer uses multi-level framework (Section 2.1.2.2). During the

uncoarsening stage, the placement problem is solved from the coarsest level to the

finest level, where the solution for the current level provides the initial placement

for the next level.

Routability optimization is considered in NTUplacer4 [20] (the version in IC-

CAD 2012 contest). The framework is shown in Fig 2.12. Three major techniques

are proposed: (1) Design hierarchy identification (Section 2.2.2.4), (2) Narrow

channel handling (Section 2.2.2.5), and (3) Net congestion optimization. In this

section, we will introduce the congestion estimation and the net congestion opti-

mization.

Figure 2.12: The overview of NTUplacer4 [20].

2.2. Routability-driven placement 45

Since the exact routing is unknown during placement, routability is an abstract

concept. L-shape probabilistic routing model is applied in NUTplacer4. The nets

are first decomposed into 2-pin nets by a RSMT algorithm (FLUTE [10]), and then

each 2-pin net is routed by upper-L and lower-L patterns with 50% probability for

each direction. At last, Gaussian smoothing [15] is used to smooth the L-shape

approximation model.

In the following, the technique of routing congestion optimization will be

discussed. The form of constrained minimization problem is shown in Equa-

tion (2.21).

min W(x,y)

s.t. Db(x,y) ≤Mb , for each bin b,

Cb(x,y) ≤ Sb , for each bin b.

(2.21)

where Cb(x,y) is the net congestion of bin b, Sb is the total allowable routing area

in bin b. Note that Cb is a function of block positions.

To evaluate the net congestion of bin b, the weighted perimeter-per-area ratio

of a net e is defined by Equation (2.22)

de(x,y) = Lx,e(x,y) ⋅σv+Ly,e(x,y) ⋅σh

Lx,e(x,y)+Ly,e(x,y) (2.22)

where Lx,e and Ly,e are the respective horizontal and vertical bonding box lengths

of net e, and σh and σv are respectively the average vertical and horizontal wire

pitches. When minimizing de(x,y), square bounding box is preferred.

The overlaps between a net e and a bin b is computed by Equation (2.23)

φb,e(x,y) = oh(b,e) ⋅ov(b,e) (2.23)

where oh(b,e) and ov(b,e) are the horizontal and vertical overlaps between net e

46 Chapter 2. Background

and bin b.

The net congestion of a bin b is defined by Equation (2.24)

Cb(x,y) =∑
e
(de(x,y) ⋅φb,e(x,y)) (2.24)

The quadratic penalty method is used to solve Equation (2.21) by transform-

ing the constrained optimization problem into an unconstrained problem shown in

Equation (2.25).

min λ1Ŵ(x,y)+λ2∑
b
(D̂b(x,y)−Mb)2+λ3∑

e
(Ĉb(x,y)−Sb)2 (2.25)

where λ1, λ2, and λ3 are weights for wirelength, density, and net congestion, re-

spectively, and Ĉb is the smoothed net congestion of a bin b.

2.2.3.3 mPL12

The framework is based on analytical placement approaches [21][6][38]. Since

we have already briefly introduced these techniques in Section 2.1.2 and Sec-

tion 2.2.3.2, we focus on the issues of routability optimization [12] in the following.

To estimate the routing congestion, the chip is divided into uniform tiles. Multi-

pin nets are first decomposed into two-pin nets by FLUTE [10]. The routing supply

and demand of each tile in the horizontal and vertical directions are computed sep-

arately. Similar to Ripple 1.0 [18], the routing congestion value CongestionH(i) of

tile i in the horizontal direction are computed by Equation (2.26)), and the conges-

2.2. Routability-driven placement 47

tion in the vertical direction can be obtained similarly.

SupplyH(i) = (TileWidth)(TileHeight)−BlockageH(i),

DemandH(i) = ∑e
Ovl p(i,e)WireH(e))

WidthBB(e)HeightBB(e) ,

CongestionH(i) = SupplyH(i)−DemandH(i)
SupplyH(i) ,

(2.26)

where TileWidth and TileHeight are the width and height of each tile,

BlockageH(i) is blocked area of horizontal tracks occupied by routing blockages

in tile i, WidthBB(e) and HeightBB(e) is the width and height of the bounding box

of two-pin net e, Ovl p(i,e) is the overlapping area between tile i and the bounding

box of net e, and WireH(e) is the horizontal wire area of net e.

Cell inflation is used to alleviate congestion with the similar inflation pattern

in Ripple 1.0 [18]. To further reduce congestion, three techniques are proposed:

(1) blocking narrow channels by inflating fixed macros that create such channels

(discussed in Section 2.2.2.5), (2) inserting dummy cells inside regions with low

density of fixed macro, and (3) pre-placement inflation. Here, we will introduce

the techniques (2) and (3).

In some designs, the majority of macros are located at the periphery, and the

existence of the regions with large amount of whitespace may become congested

during placement. To avoid this type of congestion, dummy cells are inserted inside

the large empty regions on the chip. To identify such regions, a coarse grid is

applied to determine bins with reduced fixed macro density. And then, dummy

cells are inserted in these particular bins.

Two kinds of pre-placement inflation are proposed in [12]:

1. GTL(Group of Tangled Logic)-based inflation. The GTL metric [26] is ap-

plied to detect tangled logic structures in a netlist. Let T(C) be the net cut

of cell cluster C, ∣C∣ be the umber of cells in C, AC be the average pin count

48 Chapter 2. Background

of cells in C, AG be the average pin count of all cells, and p be the Rent

exponent. The GTL score of C is defined by Equation (2.27). The GTL

score curve of C is illustrated in Fig. 2.13 and corresponds to the growth of

C. During the growth of a cluster from a seed cell, the score of the cluster

is modified by iteratively ding highly connected neighbors. The curve con-

tains a distinct trough if a tangled logic structure appears during the growth.

The position of the trough indicates when the cluster growth has reached

the logic structure with the most tangled logic. The allocation of whitespace

among the detected tangled logic structures is proportional to their respective

weights as shown in Equation (2.28), where TroughWidth(C) correspond to

the trough width of the GTL score curve of C. If the GTL score curve of C

has a larger trough width, it has a more distinctive trough and C has more tan-

gled logic structure. The wight of C is based on the observation that clusters

with a large number of cells and small area are more likely to be congested

and should be inflated.

GT L(C) = T(C)

AG∣C∣p
AC
AG

(2.27)

Figure 2.13: An example of the GTL-score curve [26].

2.2. Routability-driven placement 49

Weight(C) = TroughWidth(C) ∣C∣2
Area(C) (2.28)

2. Pin density-based inflation. This process is trying to minimize the maximum

pin density. The cells are first sorted in the order of decreasing pin density,

then the process determines how many of these cells can be inflated within

the given whitespace budget, so that all inflated cells have the same pin den-

sity dmax. Let pi be the number of pins of cell i, Ai and A′i be the original and

inflated area of cell i, and W be the whitespace allocated for cell inflation.

The inflated area {A′i} is the variable in the following optimization problem

shown in Equation (2.29).

min maxi{pi/A′i}

s.t. Ai ≤ A′i , ∀i,

∑i(A′i −Ai) =W.

(2.29)

This problem can be solved optimally by four steps:

Step 1: Sort cells in descending order of their pin density s.t.pi/Ai ≥

pi+1/Ai+1,∀i.

Step 2: Find the largest index k s.t. Ik ≤W ≤ Ik+1, where Ik =Ak(∑k
i=1 pi)/pk−

(∑k
i=1 Ai).

Step 3: Compute the maximum pin density after inflation dmax =

(∑k
i=1 pi)/(W +∑k

i=1 Ai).

Step 4: Compute the inflated area A′i = pi/dmax(i ≤ k).

The cells are first sorted in descending order of their pin density (Step 1).

Then, the target pin density are found by iteratively budgetting whitespace to

cells until there is no whitespace left (Step 2). The cells whose pin density

50 Chapter 2. Background

are larger than the target density will be inflated (Step 3-4). The proof of this

algorithm is given in the work [12].

CHAPTER 3

Routability-driven global placement

Contents

3.1 Problem formulation . 52

3.2 Overview . 53

3.3 Congestion estimation . 54

3.3.1 Probabilistic estimation . 56

3.3.2 Lookahead routing analyze 61

3.4 Congestion-based cell movement 65

3.4.1 Cell inflation ratio calculation 65

3.4.2 Cell spreading . 67

3.4.3 Analysis of cell inflation and spreading 68

3.4.4 Routing path-based cell inflation & spreading 70

3.4.5 Congested cluster optimization 73

The aim of this chapter is to propose several effective algorithms in the global

placement of Ripple. In order to address routability problem, we first do lookahead

routing analysis to identify congested regions. We then discuss the method to grad-

ually move cell for routability. A robust and effective way to obtain the inflation

ratio for cells in the congested regions, especially avoiding over-inflation when the

52 Chapter 3. Routability-driven global placement

congestion is very high. Besides, a method to spread the cells after inflation will

also be discussed.

The rest of this chapter is organized as follows. In Section 3.2, we review re-

lated preliminaries. Section 3.3 gives an overview of our placer Ripple. Section 3.4

explains the congestion estimation method to computer congestion maps quickly.

Section 3.5 analyzes the cell inflation and spreading during placement.

3.1 Problem formulation

Given a netlist N = (E,V) with nets E and nodes V , the routing resource supplied

in upper-metal layer (refer to Section 1.2), a routability-driven placer is required

to compute the positions of the movable nodes (cells) to minimize the routing con-

gestion and wirelength.

The main purpose of global placement is to distribute the cells evenly over the

placement region. The major goal is to trade off between the congestion measure

and the HPWL. As we want to maintain a global view, the global placement pays

more attention to the relative positions among cells globally, and the layout may

have some degree of overlapping between nodes.

HPWL is an objective used by many traditional placers. The HPWL function is

usually approximated by a differentiable function, such as the quadratic objective

shown in equation (3.1).

f (x⃗, y⃗) = ∑
i, j∈V

wi, j((xi−x j)2+(yi−y j)2) (3.1)

where x⃗ and y⃗ are coordinate vectors of the cell locations, and wi, j is the connec-

tivity weight between cells i and j. In our implementation, B2B net model [49]

(introduced in Section 2.1.2) is applied to calculate the connectivity weight.

3.2. Overview 53

Since nets have not been routed yet during placement, and different routers have

different routing results, the routing congestion is usually estimated by some mod-

els or simplified global router (discussed in Section 3.3). During global placement,

we try to reduce the congestion measure obtained by congestion estimation.

3.2 Overview

Ripple is a flat placer with a lower-upper-bound framework [30] as shown in

Fig. 3.1. In the lower bound computation, the quadratic objective shown in equa-

tion (3.1) is applied to minimizing HPWL. In the upper bound computation, we

spread cells to roughly remove overlaps between cells and alleviate routing conges-

tion. The two bound computations are invoked alternately until the computations

of these two bounds converge.

The process of upper bound computation is shown in Fig. 3.2. We apply Simpli-

fied FastRoute with pin density consideration to analyze congestion of intermediate

layouts. This global router not only give a more accurate congestion map compar-

ing with previous probabilistic estimation, but also provide routing solutions for

nets, which enables us to use the strategy of routing path-based cell inflation and

spreading to alleviate congestion. It is known that the congestion of a region can

be caused by three types of nets: (1) local nets connecting cells within the region,

(2) semi-global nets coming into/out of the region, and (3) global nets passing

through the region without connecting any cell inside the region. Different from

many previous works that only spread cells in congested regions, the cells whose

connections passing through congested regions will be inflated as well. Therefore,

the congestion due to various types of nets can be alleviated effectively. A global

placement solution is generated when the congestion and HPWL obtained by the

54 Chapter 3. Routability-driven global placement

lower and upper bound computations converge.

After a number of iterations (> 30 iterations in our implementation), the conges-

tion and HPWL will nearly converge. However, several congested clusters caused

by tangled logic may appear. The cells of tangled logic may not be spread sparsely

enough, even if we have already used the technique of cell inflation and spreading.

Therefore, those cells in the tangled logic should be identified and made to spread

more sparsely. Section 3.4.5 gives further discussion about this issue.

Figure 3.1: The framework of our routability-driven placer.

3.3 Congestion estimation

Congestion estimation is very important when considering routability. During

placement, many intermediate layouts will be generated and evaluated by a con-

3.3. Congestion estimation 55

Figure 3.2: The flow of congestion-aware cell inflation and spreading.

gestion estimator. According to these estimations, the placer will make proper

adjustment to improve congestion. Different kinds of probabilistic congestion es-

timations [28][50][61] [46] are proposed to capture the behavior of routing and

perform congestion analysis. Recently, some global routers, like BFG-R [22] and

FastRoute [39], are even used in placement for congestion estimation purpose. Us-

ing a router to do estimation is more accurate, and the routing paths are made avail-

able. However, the runtime of a router is usually much longer than that of those

probabilistic methods. If a placer needs to make use of the routing path information

or the number of calls to the estimator is not large, using a router directly may be

more proper. On the other hand, if a placer needs to call the estimator frequently,

a faster probabilistic method will be a better choice. Therefore, the selection of the

56 Chapter 3. Routability-driven global placement

Figure 3.3: The congestion estimation of HPWL is too optimistic. Both congestion
maps are for the horizontal direction (superblue12).

congestion estimator depends on when and how the congestion information will be

used during the placement process.

We tried various congestion estimation methods in Ripple. Section 3.3.1 and

Section 3.3.2 explain how to do probabilistic estimation and apply simplified global

router for congestion analyze respectively.

3.3.1 Probabilistic estimation

Our congestion estimation is obtained by extending and generalizing RUDY [50].

RUDY uses the HPWL estimation directly which is indeed much shorter than the

actual wirelength. Therefore, it will often under-estimate the real routing conges-

3.3. Congestion estimation 57

Figure 3.4: The congestion estimation map in the horizontal direction (su-
perblue12) obtained with our proposed enhancements.

tion a lot as shown in Fig. 3.3(a) by comparing with Fig. 3.3(b) that is obtained

from the global router coalesCgrip [48]. To cope with this, instead of using HPWL

directly, multi-pin nets are first decomposed into two-pin nets by using the recti-

linear minimum spanning tree (RMST) method. Shared tiles between subnets of

the same net will be handled in such a way to avoid double counting. The rout-

ing demand is computed in the horizontal and vertical directions separately. We

will discuss below the computation of the horizontal demand DemandH, while the

vertical demand DemandV can be obtained similarly.

The layout is divided into uniform routing tiles whose width and height are

TileSizeX and TileSizeY respectively. Consider a two-pin net p connecting from

pin1(x1,y1) to pin2(x2,y2) shown in Fig. 3.5. The width of the bounding box of net

58 Chapter 3. Routability-driven global placement

Figure 3.5: The routing demand of a two-pin net in tile is computed according to
the overlapping ratio between the overlapped region (grey) and the bounding box
of the net.

Figure 3.6: The routing supply of tile 1 has to exclude the blocked resources (region
in grey).

3.3. Congestion estimation 59

p is w = max{x1,x2}−min{x1,x2}, and the height is h = max{y1,y2}−min{y1,y2}.

The horizontal wirelength is the width of the bounding box. The DemandH due to

p for each tile overlapping with the bounding box of p is computed as follows:

DemandH = ConnInterArea
BoundingBoxArea ×WireAreaH

WireAreaH = (max{x1,x2}−min{x1,x2})×WireSpaceH

WireSpaceH = TileSizeY
TotalTracksH

TotalTracksH =
LayerNum
∑
i=1

HTrack(i)

(3.2)

where BoundingBoxArea is the bounding box area of this connection,

ConnInterArea is the intersection area between the tile and the bounding box,

WireSpaceH is the area of one unit of wire in the horizontal direction, WireAreaH

is the horizontal wire area of this net which can be obtained by multiplying the hor-

izontal wirelength by WireSpaceH and TotalTracksH is the total number of hori-

zontal tracks (counting all metal layers) in a tile. In Fig. 3.5, the BoundingBoxArea

is w∗h and the ConnInterArea with tile 1 is the area of the region in gray. The

horizontal wire area WireAreaH is equal to the wirelength w multiplied by the av-

erage horizontal wire width WireSpaceH. The DemandH of tile 1 is equal to the

overlapping ratio ConnInterArea/BoundingBoxArea multiplied by the wire area

WireAreaH.

The supply of a tile in the horizontal direction SupplyH can be computed as

follows:
SupplyH =OriginSupplyH −BlockageH

OriginSupplyH = TileSizeX ×TileSizeY

BlockageH = ∑
i∈Btile

BInterArea(i)×BRatioH(i)

BRatioH(i) =
∑

j∈BlockLayer(i)
HTrack(j)×(1−BlockPorosity)

TotalTracksH

(3.3)

60 Chapter 3. Routability-driven global placement

where Btile is the set of routing blockages overlapped with the tile, BInterArea(i)

is the intersection area between routing blockage i and the tile, BRatioH(i) is the

ratio of horizontal tracks being occupied by the routing blockage i and BlockageH

is the routing resource occupied by all the routing blockages overlapped with the

tile in the horizontal direction. If SupplyH < DemandH, this tile is congested. As

shown in Fig. 3.6, tile 1 is overlapped with blockage 1 (grey color). Btile of tile 1

is {blockage1} and the blockage area in tile 1 is BInterArea(1) (area of the grey

region). The value of BRatioH(1) is obtained by computing the ratio between

the blocked routing tracks of blockage 1 and the total routing tracks of all layers.

OriginSupplyH of tile 1 is equal to TileSizeX ×TileSizeY . Note that the routing

supply SupplyH of tile 1 has to exclude the blocked resource due to blockage 1

which is equal to BInterArea(1)×BRatioH(1).

As mentioned above, we will handle the shared tiles of those subnets belonging

to the same net carefully in order not to double count the routing demand of the

same net mistakenly. As illustrated by the example in Fig. 3.7, using RMST, this

four-pin net will be decomposed into three 2-pin subnets which are a−b, a−c and

c−d. Since both subnets a−b and a−c will increase the routing demand of tile 1,

the demand of this net on tile 1 will be counted twice. In order to estimate more

accurately, the DemandH of tile 1 due to this net will be equal to the maximum

DemandH due to subnet a−b and subnet a−c. Similarly, since tile 3 and tile 4 are

overlapped by more than one subnet, the DemandH of tile 3 and tile 4 will be equal

to the maximum routing demand of their overlapping subnets respectively.

Fig. 3.4 shows the congestion map in the horizontal direction for superblue12

obtained by our method. We can see that more accurate estimation can be obtained

by comparing Fig. 3.4 with the simple HPWL approach shown in Fig. 3.3(a).

Our estimation is probabilistic and the nets are not detoured if they go through

3.3. Congestion estimation 61

Figure 3.7: An example of repeated counting the routing demand. After decom-
posing a four-pin net into three two-pin nets: a-b, a-c and c-d, tile 1, tile 3 and tile
4 will overlap with more than one subnet. The routing demands of tile 1, tile 3 and
tile 4 due to this net will be double without proper adjustment.

congested regions. Therefore, this estimation method may over-estimate overflow.

However, without detouring nets, we can directly identify the congested regions

and resolve the problem by relocating cells. We can also dynamically deal with the

over-estimation problem which will be discussed in section 3.4. 1

3.3.2 Lookahead routing analyze

In order to optimize routability while preserving wirelength, a lookahead routing

is invoked during global placement. Unlike previous congestion estimations that

only report congestion map, our lookahead routing analysis reports both routing

congestion and interconnection paths. Besides, our lookahead routing accounts for

1 Actually, we tried other probabilistic methods [46][61] and the Steiner tree approach
(using FLUTE [9]) to do estimation. In our implementation, the congestion maps and the
final results are similar. Since the method we proposed in this paper is faster and simpler,
we use it in Ripple.

62 Chapter 3. Routability-driven global placement

pin density as well.

The chip is divided into uniform GCells whose width and height are TileSizeX

and TileSizeY respectively. Each pair of adjacent GCells have an edge connecting

them. In our lookahead routing analysis, the routing supply and demand are com-

puted in the horizontal and vertical directions separately. We will discuss below

the computation of the horizontal supply and demand, while the vertical supply

and demand can be obtained similarly.

3.3.2.1 Routing supply calculation

The routing supply of a GCell edge is equal to the total number of tracks supplied

in all metal layers. Since different metal layers have different wire widths and wire

spacings, we need to sum up the number of tracks of each metal layer. The default

supply of a horizontal GCell edge e is obtained by equation (3.4).

De f aultSupplyHe =
NumLayer
∑
l=1

TileSizeY
MinWidthl+MinSpacel

, (3.4)

where MinWidthl and MinSpacel are the minimum wire width and spacing on

metal layer l, and NumLayer is the number of metal layers.

Since there are many fixed routing blockages occupying the routing resources

on the metal layers, the supply of GCell edges need to exclude those blocked rout-

ing resource. In order to calculate the number of blocked tracks, we first obtain the

union of all the blockages on a GCell edge. Then, we obtain the number of blocked

tracks of each blocked region separately. As shown in equation (3.5), the supply

of a horizontal GCell edge e is equal to De f aultSupplyHe minus the number of

blocked tracks of e.

3.3. Congestion estimation 63

SupplyHe =De f aultSupplyHe−BlockTrackHe

BlockTrackHe =
NumLayer
∑
l=1

BlockLengthe,l
MinWidthl+MinSpacel

×(1− p),
(3.5)

where BlockTrackHe is the number of blocked tracks of edge e, BlockLengthe,l is

the length of the blocked region in the GCells connected by e on metal layer l and

p is the porosity of the routing blockage (zero implies complete blockage).

The calculation of the routing supply is demonstrated in Fig. 3.8. In this exam-

ple, TileSizeY = 40. Let both the minimum wire width and spacing be 2, and poros-

ity p is 0. The De f aultSupplyHe1 and De f aultSupplyHe2 are both 40/(2+2)=10.

Since two blockages overlap with GCells connected by e1 and the total blocked

length is 32, BlockTrackHe1 is 32/(2+2)=8 and SupplyHe1 is 10-8=2. Similarly,

BlockTrackHe2 is 16/(2+2)=4 and SupplyHe2 is 6.

Figure 3.8: The GCells connected by horizontal edge e1 and e2 are overlapped with
routing blockages. The supply of e1 and e2 have to exclude the blocked routing
resources.

3.3.2.2 Routing demand calculation

We use FastRoute [39] to do routing congestion analysis. In order to check the

overflow fast, we simplify FastRoute by removing the steps of monotonic routing

64 Chapter 3. Routability-driven global placement

and maze routing. Since global routing captures the wires that pass between GCell

edges, internal congestion of GCells is ignored [44]. Therefore, we need to con-

sider pin density within GCells to account for local congestion when computing

the routing demand before invoking Simplified FastRoute.

In this Simplified FastRoute, multi-pin nets are decomposed into two-pin sub-

nets by a congestion-driven method [39]. Then, a rip-up and reroute process will

be invoked by using L/Z shape pattern routing. According to the current conges-

tion map, if a net passes through congested regions, it will be rerouted. Since local

peaks of pin density within GCell often cause routing congestion [44], pin density

is added when constructing the initial congestion map. The demand of pin density

on GCell edge e is obtained by equation (3.6).

PinDemandHe = (PinNumL+PinNumR)×β, (3.6)

where PinNumL and PinNumR are the number of pins in the left and right GCells

connected by e and β is the pin density factor. In our implementation, β = 0.025

at the beginning iterations and β = 0.05 when the congestion and HPWL nearly

converge and further optimization step (section 3.4.5) is to be invoked.

After finishing Simplified FastRoute, we obtain the routing demand of each

GCell edge e. The horizontal demand of e is shown in equation (3.7).

DemandHe = PinDemandHe+TrackHe, (3.7)

where TrackHe is the number of tracks passing through e which is obtained from

Simplified FastRoute.

3.4. Congestion-based cell movement 65

3.4 Congestion-based cell movement

In cell inflation, we need to answer three important questions. Where is cell infla-

tion used? What is the inflation ratio? How to spread the cells? Unlike previous

works [4][19][44], we consider these three issues as a whole for the horizontal and

vertical directions separately. By applying our cell inflation and spreading strategy

in the horizontal and vertical directions alternately for several times (six times in

our implementation) in each iteration of global placement, the routing congestion

in both directions will be alleviated steadily.

3.4.1 Cell inflation ratio calculation

After obtaining the routing demand as described in the section 3.3, the cells in

the congested regions will be inflated. The following discussion is based on the

horizontal direction while the vertical direction can be handled similarly.

In our implementation, we determine the associated tile of a cell based on the

position of the cell center. In spite of the inaccuracy of ignoring other overlapping

tiles, the discrepancy brought on average is not large since the sizes of the cells

are usually much smaller than that of the tiles. For a congested tile tilei, j, the cells

in it will have the same inflation ratio. The values of DemandH and SupplyH

are obtained as described in section 3.3. The tiles that with a DemandH larger

than its SupplyH will be added into a list called In f lationList. The inflation ratio

In f lateRatioi, j for the cells in tilei, j will be computed by equation 3.8. We will

also limit the maximum inflation ratio (e.g., 2.5) to avoid over-inflation.

In f lateRatioi, j =DemandH/SupplyH (3.8)

The new size NewAreak of a cell k in tilei, j after inflation is computed by equa-

66 Chapter 3. Routability-driven global placement

tion 3.9.

NewAreak =CellAreak× In f lateRatioi, j (3.9)

where CellAreak is the original cell area of cell k.

According to the new sizes of the cells in each tile of the list In f lationList, we

will budget a total inflation area TotalIn f lation according to equation 3.10.

TotalIn f lation =∑tilei, j∈In f lationList In f lationi, j

In f lationi, j =∑cellk∈tilei, j(NewAreak−CellAreak)
(3.10)

where In f lationi, j is the total inflated area of the cells in tilei, j.

3.4.1.1 Dynamic inflation adjustment

Since our congestion estimation method may over-estimate the routing demand,

we need to avoid inflating cells too much. If the total inflation area TotalIn f lation

is larger than a threshold In f lationT hreshold, we will adjust the inflation ra-

tio In f lateRatio of each tile in the list In f lationList dynamically to avoid over-

inflation. This will usually happen at the beginning iterations of the global place-

ment process, since the overflow at the beginning is much larger than that in the

later iterations. We will describe this dynamic adjustment as follows.

We will keep a list of tiles called In f lationList in which the tiles are sorted

by their inflation ratios in a non-decreasing order. Let tilei, j be the first one in

In f lationList. The inflation ratios of all the tiles in In f lationList (including tilei, j)

will be adjusted by a ratio of 1/In f lateRatioi, j. As a result, the inflation ratio of

tilei, j becomes 1 instead of In f lateRatioi, j > 1. Since the sizes of the cells in tilei, j

will not be changed (inflation ratio is 1), we will remove tilei, j from In f lationList.

The new area of each cell k in the remaining tiles can then be computed according

to equation 3.11 and the TotalIn f lation can be updated by equation 3.10.

3.4. Congestion-based cell movement 67

NewAreak =CellAreak×(In f lateRatioi′, j′/In f lateRatioi, j) (3.11)

This process of removing tiles from In f lationList and adjusting the infla-

tion ratios of the remaining tiles will continue until TotalIn f lation is less than

In f lationT hreshold.

Recall that we will alternate between horizontal and vertical cell inflation a few

times (six in our implementation) in an iteration. The cell sizes will not be re-

set until the end of the whole iteration. As described above, there is a parameter

called In f lationT hreshold that limits inflation area for each time of cell inflation.

Although the over-inflation can be avoid if In f lationT hreshold is no more than

1/6 of the chip whitespace2, and the total inflation area after cell inflation for six

times will not exceed 100% of the chip whitespace, we find that allowing a little

over-inflation at the beginning iterations of the global placement can help to con-

verge and relieve congestion in the subsequent iterations. For each time of cell

inflation, we set In f lationT hreshold to 30% of the chip whitespace. And in our

experiments, the total inflation area per iteration (after cell inflation for six times)

does not exceed 110% of the chip whitespace at most. As congestion improves, the

inflation area will decrease and the total inflation area per iteration will fall below

the chip whitespace after a few iterations.

3.4.2 Cell spreading

After cell inflation, we will spread the cells in those tiles whose cell density is

larger than a threshold γ (γ=0.95 in our implementation). A modi f ied lookahead

2In our implementation, the chip whitespace is a constant. It is calculated before cell
inflation.

68 Chapter 3. Routability-driven global placement

legalization will be performed to reduce cell density as described as follows.

In our implementation of regular lookahead legalization step [30], a rectangular

containing region (referred as expansion region in this paper) will be found for each

cell cluster with density larger than γ. In our implementation, the expansion region

is found by searching around the bounding box of the cell cluster with uniform

distance in all four directions until cell density ≤ γ. The cells will then be distributed

evenly within the expansion region, avoiding fixed blocks.

In our modified lookahead legalization step, if we want to reduce the congestion

in the horizontal direction, the expansion region will be found by going more in

the vertical direction (up and down). In that case, the horizontal demand will be

distributed more sparsely in a larger vertical scope. As illustrated in Fig. 3.9, if the

inflated cells are spread more in the vertical direction, the horizontal congestion

will be alleviated more. Starting with the bounding box of a cell cluster, the ratio

of searching expansion region in the vertical and horizontal directions will be 3:1

to resolve horizontal congestion. The vertical congestion is handled similarly but

with the ratio of searching expansion region 1:3.

After applying cell inflation and spreading in the horizontal and vertical di-

rections alternately a few times, the routing densities in both directions will be

alleviated effectively. All the cells will then be reset back to their original sizes

after the last lookahead legalization of an iteration.

3.4.3 Analysis of cell inflation and spreading

In each iteration of our global placement, we will gradually reduce overflow by

cell inflation and spreading a number of times (six in our implementation). We

will work on the congestion in the horizontal and vertical direction separately by

applying cell inflation and spreading in these two directions alternately. In our

3.4. Congestion-based cell movement 69

Figure 3.9: An example to show the modified lookahead legalization which is more
effective in reducing congestion in one particular direction.

implementation, we will work on the horizontal congestion in the first, third and

fifth round and work on the vertical congestion in the second, fourth and sixth

round. Fig. 3.10 shows the trajectory of overflow in the horizontal and vertical

direction in one iteration. We can see that the horizontal congestion is reduced a

lot in the first, third and fifth round while the vertical congestion is not affected too

much in those rounds. Similarly, the vertical congestion is improved a lot without

affecting the horizontal congestion much in the second, fourth and sixth round.

It is advantageous to reduce congestion in the horizontal and vertical direc-

tion separately because the amount of congestion in these two directions is usually

different and we can reduce the congestion effectively by processing the two direc-

tions independently. It should be mentioned that, after cell inflation and spreading

a few times in an iteration, the cells will be reset to their original sizes before the

next iteration. We choose not to remember the inflated sizes because the conges-

tion map will be changed from one iteration to another. Without resetting to the

70 Chapter 3. Routability-driven global placement

Figure 3.10: Trajectories showing the horizontal and vertical overflow in different
steps of a global placement iteration (the 38th iteration of superblue12).

original sizes, the HPWL will get larger and larger while the overflow cannot be

reduced quickly as less whitespaces is available for cell inflation. Now, since the

cells are always inflated based on the congestion map in the current iteration, the

HPWL will not be increased unreasonably and the cells can be inflated effectively

to relieve congestion.

3.4.4 Routing path-based cell inflation & spreading

If we use simplified FastRoute with pin density consideration (Section 3.3.2) to do

routing analysis, comparing with probabilistic congestion estimations, this looka-

head routing estimation not only can produce more accurate congestion map, but

also can provide a routing solution for each net.

After routing congestion analysis, we can identify some congested regions

where the routing demand is larger than the supply. In the next step, we make

use of cell inflation and spreading to reduce the congestion problem. Different

from many previous cell inflation approach in which only the cells within the con-

gested regions will be inflated, we propose a routing path-based cell inflation and

3.4. Congestion-based cell movement 71

Figure 3.11: An example of routing path-based cell inflation and spreading.

spreading technique to deal with the congestion problem. This new technique is

based on the following two reasons.

1. Empirical study shows that a large part of congestion is caused by global

nets [38], i.e., the nets with all its connecting cells located outside the con-

gested region. This part of routing congestion cannot be solved by inflating

only the cells within the congested region. This problem is more critical

when congestion appears on top of macro blockages, which is often the case

in modern designs. In such situation, there would be no cell in those con-

gested regions and traditional cell inflation will fail to deal with the problem.

2. Since we make use of a router to perform routing congestion analysis, the

routing path of each net in the congestion map is known. We know that,

among various options, the router will try to route a net by choosing the least

congested path. This kind of information should be utilized in dealing with

the congestion problem but was often overlooked.

Consider the horizontal direction in the following example. The key idea of the

cell inflation and spreading step can be illustrated in Fig. 3.11. For each decom-

posed two-pin net, we trace its routing path for a certain distance (at most 10 GCell

72 Chapter 3. Routability-driven global placement

edges in our implementation) and find the most congested horizontal GCell edge

e. If the supply SupplyHe is less than the demand DemandHe, we will inflate the

height of the corresponding cells of this two-pin net by equation (3.12)

In f lateHi = In f lateHi×
DemandHe

SupplyHe
, (3.12)

where In f lateHi is the inflated height of cell i. In f lateHi is equal to the original

height Hi of cell i before inflation. For a cell associated with several nets, we will

inflate it according to the maximum inflation ratio.

After cell inflation, some regions may contain more cells than it can contain.

Then, the modified lookahead legalization [18] is performed to roughly legalize

the layout. Cell inflation combined with the modified lookahead legalization will

spread the cells in the vertical direction. In this case, more routing resources will be

provided to the problematic nets that pass through congested regions. This can ef-

fectively reduce the congestion problem without a significant change of the layout.

For vertical congestion, we inflate the cell width and perform horizontal spreading

in the same way. As we can see, this path-based cell inflation technique can relieve

the congestion caused by the local, semi-global and more importantly the global

nets.

After the horizontal and vertical inflation and spreading, we will perform rout-

ing congestion analysis again and this process will be repeated a number of times

k (k = 3 in our implementation). The rationale behind is that we want to spread the

cells in a more careful way to avoid over-spreading. Each time, we spread the cells

slightly and perform analysis to see the impact, and the resulting congestion map

will be used to guide the next spreading. The inflated height In f lateHi and width

In f lateWi will be reset to Hi and Wi before the next iteration starts.

3.4. Congestion-based cell movement 73

3.4.5 Congested cluster optimization

When congestion and HPWL nearly converge after a number of iterations, we find

that there may still be some congested clusters in the layout. Many of these con-

gested clusters have cels with a lot of interconnections [26]. The cells in these

clusters need to be spread more sparsely. We show the placement layout and its

routing result by NCTUgr [34] of superblue3 in Fig. 3.12(a) and (b) respectively.

Fig. 3.12(b) shows the routing hotspots in dark red or violet color. We use white

circles to highlight these routing hotspots. Many congested clusters appearing are

occupied by a lot of cells (by comparing Fig. 3.12(a) and (b)). If the cells are spread

more sparsely, the routing hotspots will be eliminated.

Identification of congested clusters is performed by applying NCTUgr [34]

directly. NCTUgr uses the techniques of pattern routing, monotonic routing, maze

routing and post routing to relieve congestion. After using these techniques, the

remaining congested regions usually contain cells with too many interconnections

with each other and the congestion problem cannot be resolved yet.

Adjustments of cell sizes and pseudo-net weight are used after identification

of congested clusters. If cell i is in a congested region, we choose to adjust either

its height or width with a larger inflation ratio. We budget the adjustment in height

by equation (3.13), and the adjustment in width can be similarly computed.

Hi =Hi×
DemandHe1+DemandHe2

SupplyHe1+SupplyHe2
, (3.13)

where e1 and e2 are the edges connecting the GCell containing cell i on the left

and right side respectively. The adjusted size will be remembered and used in the

following iterations of the global placement. It should be mentioned that the cells

will be reset to their original sizes after global placement.

74 Chapter 3. Routability-driven global placement

Figure 3.12: The placement layout (a) and its routing result by NCTUgr [34] (b) of
superblue3.

Artificial two-pin pseudo-nets are introduced in the lower bound computation

to consider the target positions of cells obtained in the upper bound computation.

3.4. Congestion-based cell movement 75

The pseudo-net weight is computed by equation (3.14).

pseudoi = α/(∣lxi−uxi∣ + ∣lyi−uyi∣) (3.14)

where (lxi, lx j) and (uxi,uyi) are the coordinates of cell i obtained by the lower

and upper bound computation of the previous iteration and α = 0.01×(1+ iteration

number).

After changing cell sizes, HPWL will be increased. In order to avoid worsen-

ing HPWL, we perform some additional iterations to reduce HPWL. During these

additional iterations, the impact of the upper bound computation is reduced by

decreasing the pseudo-net weight in the lower bound computation. After these ad-

ditional iterations, we will identify congested clusters and adjust cell sizes again.

This process of congested cluster optimization will be repeated several times until

the congestion is improved obviously. The value of α in the pseudo-net weight

(shown in equation (3.14)) is illustrated in Fig. 3.13. At the beginning, α is in-

creased linearly. When we perform the process of congested cluster optimization

on the intermediate layouts, α will be adjusted to a lower value and increased lin-

early again in the subsequence iterations. Since the process of congested cluster

optimization is repeated several times, α will be adjusted repeatedly as well.

Fig. 3.14 shows the routing result after applying the congestion cluster opti-

mization. Comparing with Fig. 3.12 (b), the area of the congested regions has been

reduced a lot.

76 Chapter 3. Routability-driven global placement

Figure 3.13: The weight of pseudo-net in each iteration of global placement.

Figure 3.14: After congested cluster optimization, the area of the routing congested
regions of superblue3 is much less than the result shown in Fig. 3.12 (b).

CHAPTER 4

Routability-driven legalization and

detailed placement

Contents

4.1 Problem formulation . 78

4.2 Traditional legalization and detailed placement 78

4.2.1 HWPL-driven legalization 78

4.2.2 HWPL-driven detailed placement 79

4.3 Routability-aware legalization & detailed placement 84

4.3.1 Congestion-driven legalization 84

4.3.2 Congestion-driven detailed placement 88

In this chapter, we study the routability problem in detailed placement. In de-

tailed placement, the most common approach to improve routability is to change

the objective of cell swapping to alleviate routing congestion [18][29][21][42][66].

The aim of this chapter is to propose several effective techniques to improve

routability in detailed placement of Ripple. The rest of this chapter is organized

as follows. In Section 4.2, we review the techniques used in FastPlace-DP [40]

which is a traditional placer for HPWL optimization. Section 4.3 describes the

techniques used in our legalization and detailed placement in detail.

78 Chapter 4. Routability-driven legalization and detailed placement

4.1 Problem formulation

Given a netlist N = (E,V) with nets E and nodes V , the routing resource supplied

in upper-metal layer (refer to Section 1.2), and the positions of the movable nodes

(cells) obtained by global placement, the legalization process is to remove overlaps

between cells, while satisfying design objectives including routing congestion and

HPWL. In row-based design, the placement area is partitioned into rows, and the

cells and macros must be aligned with the rows after legalization process.

Detailed placement works on the legalized placement to further improve the

solution quality. It is more constrained than global placement as it optimizes the

objectives by transforming one legal placement solution into another.

4.2 Traditional legalization and detailed placement

We use FastPlace-DP [40] as our basic framework for legalization and detailed

placement. In this section, we introduce the methods of HPWL optimization used

in FastPlace-DP [40]. The routability techniques in our placer Ripple will be dis-

cussed in section 4.3.

4.2.1 HWPL-driven legalization

In our row-based placement, all the macros are fixed. We only need to legalize

the standard cells. In legalization, each row is divided into segments based on

the overlaps between fixed blockages and the row. A placement segment is the

maximal strip in a row not being covered by any blockages. The cells are first

moved among segments to satisfy the capacity constraints of the segments. The

cells are then legalized within their segments.

4.2. Traditional legalization and detailed placement 79

When moving cells among segments, we need to determine the target segment

for movement. For each cell in a segment, we computer eight scores based on

moving the cell to its nearest possible positions in eight neighboring segments. The

score is a weighted sum of two parts: (1) the HPWL reduction after movement, and

(2) the utilization of the source and target segment. The weight of the second part is

higher, since the objective of legalization is mainly to spread cells evenly. If all the

scores are negative, the cell will not be moved to any other segment. Otherwise,

it will be moved to the segment with the highest score. In each iteration, all the

segments with utility above capacity will be handled. The iteration will be repeated

until all the segments are within their respective capacities. At last, the cells will

be spread to legal positions within each segment.

4.2.2 HWPL-driven detailed placement

The detailed placer FastPlace-DP [40] used in Ripple works only on the standard-

cells in a legalized row-based placement or a placement in which the macros have

been fixed. There are three major techniques to further reduce the HPWL of a

legalized layout: (1) cell swapping, (2) local reordering, and (3) single segment

clustering. During cell swapping, global swapping and vertical swapping are per-

formed. The flow of the detailed placement is summarized in Fig. 4.1.

4.2.2.1 Cell swapping

For each cell i, a swapping window for cell i can be calculated for wirelength

optimization. The idea behind cell swapping is to swap i with a cell j or a space s

in the swapping window of i.

For global swapping, the swapping window is called the optimal region. The

optimal region of a cell is determined based on the median idea in the work [16].

80 Chapter 4. Routability-driven legalization and detailed placement

Figure 4.1: Detailed placement flow in FastPlace-DP.

When calculating the optimal region of cell i, all its associated nets Ni and their

bounding boxes are found first. It should be mentioned that cell i is excluded

from the nets when computing their bounding boxes. For each net p ∈ Ni, its

bounding box is noted as xl[p],xr[p],yb[p],yr[p] (the left, right, bottom, and

up boundaries). According to the bounding boxes, two series can be obtained:

(xl[1],xr[1],xl[2],xr[2], ...,) and (yb[1],yu[1],yb[2],yu[2], ...,). The optimal posi-

tion of cell i is given by (xopt ,yopt), where xopt and yopt are the medians of the x

and y series respectively. Usually, the number of elements in these two serious are

even, and the optimal position is a rectangular region rather than a point. In some

cases, the optimal region may degrade to a point/line when the two medians of the

x and/or y series carry the same value.

4.2. Traditional legalization and detailed placement 81

Figure 4.2: Optimal region of cell 1.

Fig. 4.2 shows an example of computing the optimal region for cell 1.

There are three nets connecting with cell 1: Net1, Net2 and Net3. The

bolded rectangles in red color are the bounding boxes of these nets exclud-

ing cell 1. The x and y series are (xl[1],xr[1],xl[2],xr[2],xl[3],xr[3]) and

(yb[1],yu[1],yb[2],yu[2],yb[3],yu[3]). The region in blue color is the optimal re-

gion of cell 1.

After finding the optimal region for cell i, we will try to move i into this region.

Before moving, we have to determine the cell/space being swapped with i. If there

is any overlap created by swapping, the neighboring cells have to be shifted. A

benefit for the swapping and shifting effect on wirelength is introduced in [40]. For

each cell i, we try to swap it with every cell j and space s in its optimal region. The

benefit is measured for each tentative swapping. At last, the j or s with the best

benefit will be picked and swapped with i. If the best benefit is less than zero, we

do not perform swapping for cell i.

82 Chapter 4. Routability-driven legalization and detailed placement

Vertical swapping is similar to the global swapping. It is used to increase the

possibility of a good swap and reduce the vertical wirelength locally [40]. Vertical

swapping only moves a cell up or down by one row. After calculating cell i’s

optimal region, we will check whether the optimal region is above or below i’s

current location. Then, a few cells in the segment above/below cell i will become

swapping candidates. The same benefit of swapping will be measured as in the

process of global swapping.

It is observed that comparing with only applying global swapping, interleav-

ing vertical swapping with global swapping results in a much faster decrease in

wirelength. The reason is that vertical swapping is not as greedy as global swap-

ping, and it is more flexible in moving the cells. Moreover, it may aid the global

swapping [40].

4.2.2.2 Local reordering

With vertical swapping fixing local vertical errors, local reordering is used to fix

local horizontal errors. For any n consecutive cells within a segment, all possible

ordering of the cells are tried, and we pick the order with the best wirelength. When

reordering the n cells, we consider them as a group. The left and right boundary of

the group is the left and right boundary of the first and last cell respectively in the

original order. For each order, the cells are distributed evenly within the left and

right boundaries. In our implementation, n is equal to 3 to tradeoff the runtime and

the HPWL optimization. 1

1We also tried n = 4 without obvious improvement.

4.2. Traditional legalization and detailed placement 83

4.2.2.3 Single segment clustering

Given a segment S in the placement region with n cells whose left-to-right order

is: c1,c2, ...,cn, assuming that all the cells not in S are fixed, the clustering problem

is to find a non-overlapping placement for the segment S so that the HPWL is

minimized. FastPlace-DP [40] proposed an efficient algorithm to find the optimal

solution.

During cell clustering in segment, a cluster is a cell or a group of cells abut-

ting together in the original order. Clustering is to merge two clusters as a new

cluster whose width is the sum of the widths of the original clusters. The wire-

length function of the x-coordinate of a cluster is a convex piecewise linear func-

tion W(x) when all other objects are fixed. The slopes for the linear pieces are

...,−3,−2,−1,0,1,2,3, ..., and it is unnecessary that all integer slopes exist. The

part with slope 0 is the optimal region in the x-direction for the cluster. The points

where the function changes slope are called bounds. These bounds are the left

and right boundaries of the bounding boxes of the nets associated with the cluster

(excluding the cluster itself).

When finding the optimal region for a cluster in segment S, the positions of all

the other cells and macros except the cells in S are fixed. Although the bounds of

the cluster cannot be determined if it has any connection with the cells in S, we

fix the order of processing the cells in S so that the optimality of the solution will

not be affected. Since the cells’ coordinate in segment S is not fixed, when we

compute the bounding box of net N associated with the cluster, if a cell c′ is in S

and left/right to the cluster, we will assume c′ is at the left/right end of the segment

S. Although the real coordinate of c′ is not used, it will not affect the optimality

because the left-right order is maintained.

During clustering, every cluster will try to be put at the center of its optimal

84 Chapter 4. Routability-driven legalization and detailed placement

region. If there is overlap between two clusters, they will be merged as a new

cluster and processed as a single cluster at any later stage. The new cluster will be

put at the center of its optimal region. This clustering process will continue until

all the clusters are placed without any overlap. If the optimal region boundary is

out of the segment range, it will be assign to the closest segment boundary. The

proof of optimality is given in [40].

4.3 Routability-aware legalization & detailed place-

ment

We use FastPlace-DP [40] as our basic framework for legalization and detailed

placement. However, FastPlace-DP is HPWL-driven which will increase conges-

tion and reduce routability. As shown in Fig. 4.3(a), after global placement, the

cells are located quite sparsely in the potentially over-congested regions. However,

after legalization and detailed placement, the cells are moved closer to each other

(Fig. 4.3(b)) and the overflow of the next global routing step will very likely be in-

creased significantly. We have studied how to modify the HPWL-driven approach

in legalization and detailed routing to trade off congestion and HPWL.

4.3.1 Congestion-driven legalization

Legalization is usually thought to have less impact on the placement result since

we just legalize the global placement result. However, we find that it can worsen

congestion in the horizontal direction quite significantly.

In FastPlace-DP, several steps are applied to do legalization:

• Step 1: Move cells out of macro blocks.

4.3. Routability-aware legalization & detailed placement 85

Figure 4.3: Superblue12 before and after a HPWL-driven detailed placement. Re-
gions highlighted in red circles have high routing congestion.

• Step 2: Spread cells in their corresponding segments under the constraint of

not exceeding the segment capacity.2

• Step 3: Legalize cells within each segment. The overlaps between cells are

removed within each segment.

Among these steps, Step 3 is the most possible one to worsen the horizontal

congestion. Here, we use FastRoute [39] to verify the impact of Step 3 on overflow

in the horizontal direction. In order to check the overflow fast, we use simplified

FastRoute, which is FastRoute without the monotonic routing and maze routing

step. Although we do not use the full process of FastRoute, the result is still quite

illustrative. Table 4.1 shows that Step 3 will worsen the congestion in the hori-

zontal direction by more than two times. The influence on the vertical congestion

is small according to our experiments. Take superblue12 as an example, although
2Segments are strips in a row separated by fixed nodes.

86 Chapter 4. Routability-driven legalization and detailed placement

Table 4.1: Horizontal overflow after each step of legalization. Overflow is gener-
ated by the simplified FastRoute

Benchmark After After Legalization
Global After After After

Step 2 Step 3 Modified Step 3
superblue1 25675 30002 67727 38653
superblue2 60252 61210 88562 72756
superblue4 89944 93345 145179 107464
superblue5 102826 102829 190777 113411

superblue10 129836 133966 197685 148745
superblue12 201645 198634 553444 216982
superblue15 94734 106739 334733 129848
superblue18 87818 88047 128310 95874

Avg. 1.00 1.03 2.15 1.17

its horizontal overflow after legalization is worsen a lot (as shown in table 4.1), its

vertical overflow before and after legalization are 128559 and 126571 respectively.

We find that before Step 3, the total area of the cells in a segment does not

exceed the segment capacity. Since the cells have overlaps with each other, Step 3

will try to relocate the cells in a segment to remove overlaps. If the length of

a segment is very long, the cells will be legalized by spreading a long distance

from their original positions. The large displacement from the global placement

result after legalization has worsened the congestion. Fig. 4.4 shows an example

to illustrate this problem. The region in the circle has a lot of overlaps. After

being legalized by Step 3, the cells are spread by a long distance away from their

original x-coordinate. Therefore, the routing demand and overflow in the horizontal

direction is changed a lot.

In order to solve this problem, we simply limit the maximum length of a seg-

ment. If the length is shorter, the capacity of each segment will be less, and Step 2

will try to move cells to their neighborhood segments (including the segments in

the upper and bottom rows) with less displacement. This method can easily solve

4.3. Routability-aware legalization & detailed placement 87

Figure 4.4: An example to show the effect of legalization on the horizontal conges-
tion (superblue12). (a) The horizontal congestion map before legalization. (b) The
horizontal congestion map after legalization. Both congestion maps are generated
by the simplified FastRoute.

88 Chapter 4. Routability-driven legalization and detailed placement

the problem discussed above. In our implementation, the maximum length of a

segment is set to max(3×maxCellWidth,0.02×chipWidth), where maxCellWidth

is the maximum width of a movable cell and chipWidth is the width of a chip. If

the length of a segment is larger than the maximum length, we will divide it into

uniform small segments. Note that we use the same setting for all the benchmarks

in our experiments. Table 4.1 shows the congestion after Step 3 with limit on the

length of the segments. We can see that the overflow is not worsen as much.

4.3.2 Congestion-driven detailed placement

Many previous works try to modify the cell swapping process to improve overflow

in detailed placement [18][29][21]. However, we find that the impact of cell swap-

ping on congestion is not the most significant one. We have studied carefully the

steps in FastPlace-DP:

• Clustering step: Recursively cluster cells that are neighboring to each other

in each segment to reduce HPWL.

• Swapping step: Swap between two cells, or swap a cell to an empty location

(including global cell swapping and vertical cell swapping).

• Reordering step: Re-order a small number of neighboring cells in each seg-

ment.

These three steps, with each one containing many iterations, will be performed

one by one. For example, in the clustering step, clustering will be performed re-

cursively for many times until the HPWL is not improved. Table 4.2 shows the

overflow right before detailed placement and the relative change in overflow after

each step in detailed placement. These overflows are obtained by the simplified

4.3. Routability-aware legalization & detailed placement 89

Table 4.2: Total overflow (horizontal and vertical) caused by each step in detailed
placement. Overflow is generated by the simplified FastRoute.

Benchmark Legalization Detailed
Cluster Swap Reorder

superblue1 155112 +22280 +21280 -24494
superblue2 1079291 +323009 +85292 -50418
superblue4 166270 +5653 +27150 -34501
superblue5 299240 +27793 +45387 -45938

superblue10 496319 +83518 +67290 -40856
superblue12 331669 +514536 +313315 -312190
superblue15 178893 -16326 +25758 -53542
superblue18 152383 +5773 +44225 -39543

Avg. 1.0 +33.8% +22.0% -21.0%

FastRoute as discussed in section 4.3.1. We find that the clustering step will in-

crease congestion most.

The clustering step can on the other hand improve HPWL a lot, so it is not good

to remove it from detailed placement. If we check the overflow caused by clustering

in each segment of the chip, the runtime will become too long. In order to minimize

running time and not to worsen congestion, we choose to check the overflow after

each clustering or swapping iteration using the simplified FastRoute. As explained

above, there are many iterations in each of those clustering and swapping phases.

After each iteration in clustering and swapping, the simplified FastRoute will be

invoked to check whether the overflow is larger than a certain threshold (we use the

overflow after legalization as the threshold). If the overflow exceeds the threshold,

we will proceed to the next phase. We find that at the beginning iterations, both

the overflow and HPWL can be reduced (HPWL is reduced more). By checking

the overflow after each iteration, we can choose a right time to stop a process and

proceed to the next one.

CHAPTER 5

Simultaneous routing and placement

(SRP) for congestion refinement

Contents

5.1 Problem formulation . 93

5.2 Overview of SRP . 93

5.3 Simultaneous cell relocation & net rerouting 95

5.3.1 Identify problematic cells . 95

5.3.2 Remove problematic cells 96

5.3.3 Searching new location . 98

5.3.4 Connections to new location 102

5.4 Further discussions . 105

In this chapter, an effective simultaneous routing and placement refinement tool

called SRP is proposed for routability improvement.

In post-placement process, there are some previous works considering con-

gestion refinement. The most recent ones, CROP [66] and CRISP [44], address

routability in post-placement process directly. After obtaining the congestion map,

CROP [66] adjusts the boundary of each GCell and shifts the modules according

92
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

to the new GCell boundary. CRISP [44] applies cell inflation and spreading to

allocate cells more sparsely in the congested regions.

Global router overlays a regular grid (GCell) on the chip, and constructs a

global routing on the grid. In a global routing grid graph, each GCell is repre-

sented by a node, and there are global routing edges to connect adjacent GCells.

If the usage of routing tracks on an edge e is above e’s capacity, this edge e is

considered as over-congested. Given a globally routed layout, the congestion of a

region can be caused by three types of nets: (1) local nets connecting cells within

the region, (2) semi-global nets coming in/out of the region, and (3) global nets

passing through the region without connecting any cell of the region. Many pre-

vious works [66][44] can directly solve the overflow from local nets by relocating

cells in congested GCells. However, as we know , the overflow caused by global

or semi-global nets is usually more than that caused by local nets. Therefore, we

should consider congestion caused by all types of nets in our routability refine-

ment method. Since many placers have already used whitespace allocation method

during placement, we choose to do cell relocation directly during our refinement

process. Besides, other refinement tools can also integrate with SRP to further

improve the congestion.

The remainder of this paper is organized as follows. In Section 4.2, we give an

overview of our post-placement process. Section 4.3 describes the details of our

simultaneous relocating and rerouting algorithm. Section 4.4 gives further discus-

sion on SRP. Experimental results will be given in Section 4.5.

5.1. Problem formulation 93

5.1 Problem formulation

Given a netlist N = (E,V) with nets E and nodes V , the routing resource supplied

in upper-metal layer (refer to Section 1.2), the positions of the nodes obtained by

detailed placement, and the routing results of all nets given by global router (e.g.

NCTUgr [34]), the refinement tool SRP is to replace movable cells, rip-up and

reroute nets with the goal of minimizing the total routing overflow on GEdges.

To show the effectiveness of our work, we also uses NCTUgr [34] to evaluate the

routability of the placement solutions produced by SRP (discussed in Section 6.3).

5.2 Overview of SRP

SRP is independent of the placer and global router being used. Based on a given

placement layout and its global routing result, we try to relocate cells and reroute

nets to reduce overflow. Three major steps are used in our tool. First, we identify

and rip-up problematic cells by considering congestion caused by all types of nets

mentioned above. Different from many previous works that only focus on reducing

the overflow caused by local nets, our method may relocate a cell even when its

routing path obtained by the global router has just run across congested regions.

Second, we search for new location for a cell by multi-source propagation. Unlike

other works that only search the surrounding region around the cell’s original loca-

tion, we will find a new location for the problematic cell by searching around the

GCells passed through by the routing paths of the associated nets of the cell. Third,

we will connect the problematic cell from its new location to its associated nets by

a multi-subnet maze routing algorithm.

Fig. 5.1 shows the overall flow of SRP. The input is a placement layout and

its global routing result. Before relocating and rerouting, we need to obtain the

94
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

routing capacity and the routing demand according to the global routing result. If

the routing demand of a region is larger than its routing capacity, this region is a

congested region. During cell relocation and net rerouting, every problematic cell

that has some connections going across some congested regions will be identified

and ripped up first. Since not only the cells in the congested region, but also the

cells that have connections going across congested regions will be identified and

relocated, the congestion cause by local nets, semi-global nets and global nets are

all handled. Then, the problematic cell will be relocated and its associated nets

will be rerouted. If the total overflow is improved, the cell will stay at its new

location, and the congestion map will be updated according to the rerouted paths;

otherwise, the cell will go back to its original position. In each iteration, all the

problematic cells will be processed one after another. The whole post-placement

process will be finished if there is no more obvious reduction in overflow. To trade

off between congestion improvement and runtime, the number of iterations is 3 in

our implementation.

Figure 5.1: The whole flow of post-process.

5.3. Simultaneous cell relocation & net rerouting 95

5.3 Simultaneous cell relocation & net rerouting

The chip is divided uniformly into m×n GCells. Each pair of adjacent GCells have

a edge connecting them. If the pins of a net is in different GCells, there is a routing

path going through edges to connect these pins. Each edge e has a capacity, which

is the total number of available tracks for wires to go through. If the total number

of used tracks (routing demand) is larger than the capacity of the edge, there will

be overflow on this edge.

5.3.1 Identify problematic cells

After obtaining the routing result, the cells with connections going across con-

gested regions should be relocated to reduce the overflow of those regions. Differ-

ent from previous works which only relocate the cells in the congested regions, we

also identify the cells whose connections have passed through congested regions.

By doing this, not only the overflow caused by local nets but also the overflow

caused by semi-global nets and global nets can be reduced.

Given the routing result of a net, we will first identify the congested GCells

passed through by the routing path of this net. If a congested GCell has at least one

pin of this net, the cell of this pin will be marked as a problematic cell. Otherwise,

we will follow the routing path from this congested GCell until reaching other

GCells that contain some pins of this net, and then the cells of these pins will be

marked as problematic cells. After identifying all the problematic cells, we will

relocate them to reduce overflow.

Take net A in Fig. 5.2 as an example. Net A has three cells: cell 1, cell 2 and cell

3. The routing path (in grey color) of net A is shown in Fig. 5.2 (a). This path passed

through a congested routing edge (in red color) connecting tile(1,2) and tile(2,2).

96
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

Since tile(1,2) has a pin of cell 1, cell 1 will be marked as a problematic cell. Since

tile(2,2) doesn’t contain any pin of net A, we will follow the routing path until we

reach tile(4,3) that contains a pin of cell 2. Then we stop propagating, and mark

cell 2 as a problematic cell.

Figure 5.2: (a)The routing path of net A passes through a congested routing edge
connecting tile(1,2) and tile(2,2) (b) We propagate from tile(1,2) and tile(2,2)
until reaching any pins of net A. Cell 1 and cell 2 are marked as problematic cells.

5.3.2 Remove problematic cells

Before problematic cell relocation and net rerouting, we first need to remove the

problematic cell and rip up the routing paths connecting this cell. There are three

cases need to be considered (shown in Fig. 5.3) when we delete the routing path

connecting with a problematic cell:

Case 1: In Fig. 5.3 (a), cell 1 is a problematic cell. Since tile(1,1) contains

cell 1 which only has degree one, we will remove the cell directly, and delete the

routing path connecting to tile(1,1). After deleting the path from tile(1,1) to

tile(2,1), the degree of tile(2,1) becomes one. Since there is no pin in tile(2,1),

we can delete the path from tile(2,1) to tile(3,1) as well. This deleting process

5.3. Simultaneous cell relocation & net rerouting 97

Figure 5.3: (a) Tile(1,1) contains a problematic cell 1 (b) The remaining path
and cells after removing cell 1 (c) Tile(4,2) contains a problematic cell 2, and the
degree of this tile is two (d) After removing cell 2, the remaining path has two
subnets (e) Tile(3,4) has two cells, and cell 4 is the current problematic cell (f)
The remaining path and cells after removing cell 4.

will continue until reaching a GCell that contains a pin or a steiner point of this net.

The remaining routing path of this net after removing cell 1 is shown in Fig. 5.3

98
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

Figure 5.4: Potential problems of some previous approaches.

(b).

Case 2: In Fig. 5.3 (c), cell 2 is a problematic cell. Tile(4,2) contains cell 2

which has degree more than one (1 ≤ degree ≤ 4). In order to reduce the overflow

caused by the paths connected to cell 2, we choose to delete the path from tile(4,2)

to tile(4,4) and the path from tile(4,2) to tile(1,1). After deleting these paths

connected to cell 2, the net becomes two subnets (shown in Fig. 5.3 (d)). We will

discuss how to connect cell 2 and these subnets together after searching a new

position for cell 2 in section 5.3.3 and section 5.3.4.

Case 3: In Fig. 5.3 (e), cell 4 is a problematic cell. However, tile(3,4) contains

cell 4 and cell 5 which are both on this net. After removing cell 4, we cannot delete

the routing path connecting to this GCell, since cell 5 is still in this GCell. Fig. 5.3

(f) shows the remaining path and cells of this net after removing cell 4.

5.3.3 Searching new location

During global placement and detailed placement, most previous

works [42][32][45][64] find the new locations of the problematic cells by

searching the surrounding GCells of the cells’ original locations. Besides, before

5.3. Simultaneous cell relocation & net rerouting 99

evaluating the cost of each optional GCell, the multi-pin nets are first decomposed

into two-pin subnets. These two scenarios are illustrated in Fig. 5.4 to show the

potential problems of their strategies.

Algorithm 1 Multi-Source Propagation
1: for net i ∈ associateNet(curCell) do
2: for tilea ∈ path(net i) do
3: costi(tilea) = 0
4: enqueue(tilea, Qi)
5: end for
6: end for
7: while numOptionTile < optionT hreshold do
8: for net i ∈ associateNet(curCell) do
9: tilea=dequeueMin(Qi)

10: if !isVisitTile(tilea, i) then
11: isVisitTile(tilea, i)=true
12: numNetReach(tilea)+ = 1
13: end if
14: if numNetReach(tilea) == ∣associateNet(curCell)∣ then
15: numOptionTile+ = 1
16: end if
17: for tileb adjacent with tilea & !isVisitTile(tileb, i) do
18: costi(tileb) = costi(tilea)+costi(tilea,tileb)
19: enqueue(tileb, Qi)
20: end for
21: end for
22: end while

Local search: Consider the scenario in Fig. 5.4 (a). The problematic cell 1’s

location and its surrounding regions are all congested. If we only consider the

surrounding regions as optional new locations, either the cell will not be moved

(because of no overflow improvement) or the cell has to be moved several times

until it reaches a good position out of the congested region.

Over-estimation: Consider the scenario in Fig. 5.4 (b). After decomposing a

net into two-pin subnets, problematic cell 1 is connected with the pin at location A

directly. When we evaluate the cost of an optional location B, we will try to connect

100
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

Figure 5.5: (a) The problematic cell 1 has two associated nets: net 1 and net 2. (b)
After removing cell 1 and its connections from net 1 and net 2, the remaining path
is partitioned into two subnets: T 11 and T 12; while net 2 becomes subnet T 21. (c)
Obtain an optional location for cell 1 by using multi-source propagation method
from both net 1 and net 2. (d) Find the shortest path to connect the new location
and the subnets of together.

B with A. However, besides point A, B can actually be connected to any other

GCell passed by the net (thickened blue line), and the cost may become smaller.

Therefore, the cost of locating cell 1 in B may be over-estimated.

As we can see in these two scenarios, the remaining routing path of the net is

not utilized in an effective way when searching for a new location for the prob-

lematic cell. Not only the positions around the cell’s original location, but also the

positions surrounding any GCells passed through by the remaining routing path of

the net should be considered. Besides, when connecting the problematic cell to its

associated net, we only need to find a path between its new location to any GCells

5.3. Simultaneous cell relocation & net rerouting 101

passed through by the remaining routing path of the net.

Aware of this problem, we propose a multi-source propagation method to obtain

the new location. After removing a problematic cell from its associated nets, the

GCells passed through by the remaining routing paths of its nets will be treated as

sources. Then, we apply the multi-source propagation method on each associated

net i of the problematic cell. The sources on each net i will propagate simultane-

ously until a GCell is reached by all the associated nets. As shown in Fig. 5.5 (a),

the problematic cell 1 is associated with two nets: net 1 and net 2. After ripping up

cell 1 and deleting the paths at these two nets connecting with it, net 1 is partitioned

into two subnets T 11 and T 12; while net 2 becomes subnet T 21 (shown in Fig. 5.5

(b)). All the GCells passed through by T 11 and T 12 are considered as sources of

net 1. Similarly, the GCells passed through by T 21 are the sources of net 2. We

will propagate from these two sets of sources until a GCell A is reached from these

two nets. Then GCell A will be an optional position for cell 1.

Algorithm 1 shows our multi-source propagation method. Given a problematic

cell curCell, for each associated net i of curCell (i ∈ associateNet(curCell)), a

priority queue Qi is maintained. Initially, the sources of net i are enqueued into Qi,

with the cost equal to zero (line 1-6). From each Qi, we dequeue a tile tilea with the

minimum cost (line 9-13). Once a tile tilea has been visited by all the associated

nets, tilea can be an optional location for the problematic cell curCell (line 14-

16). After dequeuing tilea from Qi, we will propagate from tilea to its adjacent tile

tileb (line 17-20). The cost of visiting tileb is the cost of tilea added by the cost

tilea to tileb. Both the overflow and the wirelength of the edge connecting from

tilea to tileb are considered when calculating the cost from tilea to tileb. The cost

function is shown in equation (5.1). The loop in line 8-21 is similar to the Dijkstra’s

algorithm. The loop in line 7-22 will be repeated until the number of optional

102
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

locations is equal to a threshold optionT hreshold ≥ 1, (e.g., optionT hreshold=2

in our experiments).

costi(tileb) = costi(tilea)+costi(tilea,tileb)

costi(tilea,tileb) = o f (tilea,tileb)+wl(tilea,tileb)
(5.1)

cost(tilek) = ∑
neti∈N

costi(tilek) (5.2)

We use equation (5.2) to evaluate each optional location tilek. The tile with

the minimum cost will be chosen as a new location for the cell. The method to

generate new paths between the cell’s new location and its associated subnets will

be illustrated in section 5.3.4.

5.3.4 Connections to new location

After finding a new location for the problematic cell, we can trace back accord-

ing to the propagation process (section 5.3.3) to find the shortest path from this new

location to the cell’s associated nets. However, there are two reasons not to use this

method.

First, not all the subnets of a net can be connected together. An associated net

may be partitioned into more than one subnets after ripping up the problematic cell.

Since tracing back can only find a path from the new location to one GCell passed

through by one subnet. Therefore, only one of the subnets can be connected. As

shown in Fig. 5.6 (a), the new location of cell 1 can only be connected with subnet

1 when tracing back, while subnet 2 cannot be connected.

Second, the path may not be the shortest path when tracing back. If the prob-

lematic cell has more than one associated net, the path obtained by tracing back

may not be the shortest one since the costs on the edges may change. As shown in

5.3. Simultaneous cell relocation & net rerouting 103

Algorithm 2 Multi-Subnets Maze Routing
1: while numSubnet >1 do
2: for tilea ∈ path(subnet 1) do
3: cost(tilea) = 0
4: enqueue(tilea, Q);
5: end for
6: while ∣Q∣ >0 do
7: tilea=dequeueMin(Q)
8: if !isVisitTile(tilea, i) then
9: isVisitTile(tilea, i)=true

10: if isSink(tilea) then
11: i=subnetID(tilea)
12: break
13: else
14: for tileb adjacent tilea & !isVisitTile(tileb, i) do
15: cost(tileb) = cost(tilea)+cost(tilea,tileb)
16: enqueue(tileb, Q)
17: end for
18: end if
19: end if
20: end while
21: path(subnet 1)=path(subnet 1) ∪ path(subnet i) ∪ path(tilea, subnet 1)
22: updateRoutingDemand(path(tilea, subnet 1))
23: numSubnet− = 1
24: end while

104
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

Fig. 5.6 (b), the problematic cell 4 has three associated nets: net 1, net 2, and net

3. After removing cell 4, the remaining cells of these three nets are cell 1, cell 2,

and cell 3 respectively. Since both net 1 and net 2 will pass through tile(1,3) and

tile(2,3) after tracing back, the overflow along these two paths will be increased

comparing the values used during the propagation process. Therefore, the paths

obtained by tracing back the propagation process may not be the shortest ones for

net 1 and net 2 any more.

Figure 5.6: (a) The path obtained by tracing back can only connect the problematic
cell 1 to one of its subnets (subnet 1), and subnet 2 is not connected. (b) Problem-
atic cell 4 has three associated nets. Since both net 1 and net 2 will pass through
tile(1,3) and tile(2,3) after tracing back, the overflow on these two paths will be
larger comparing with the value in the propagation process. Therefore, the paths
obtained by tracing back the propagation may not be the shortest paths for net 1
and net 2 respectively.

Therefore, we will connect the new location to each associated subnet one by

one, and update the overflow of the routing edges after obtaining the shortest path

for each net.

In order to find the shortest path to connect all the subnets of a net, we use multi-

subnets maze routing. If the new location of the problematic cell is not passed

through by any subnets, this new location will be seen as a subnet as well. The

5.4. Further discussions 105

algorithm of multi-subnet maze routing is shown in Algorithm 2. We first take

all the GCells on one subnet (e.g., subnet 1) as the sources (line 2-5), and all the

GCells on other subnets as sinks. We propagate from the sources by using the cost

function in equation (5.1) (line 6-17). Once we reach a sink tilea (line 8-10), we

will get the subnet ID i in tilea. Then subnets 1 and subnet i will be connected

as a new subnet by the path(tilea,subnet1). The overflow of all the routing edges

passed through by path(tilea,subnet1) will be updated. All the GCells on this new

subnet will become sources for the next propagation process (line 18-19). This

propagation process will repeat until all the subnets are connected.

Fig. 5.5 (d) shows the paths connecting between cell 1’s new location and the

other subnets.

5.4 Further discussions

Most placers have already used whitespace allocation method as a major technique

to reduce overflow during global placement or detailed placement. If we use similar

technique in the refinement process, the improvement in congestion may not be

large. Therefore, we choose to relocate and reroute problematic cell directly.

The number of cells which can be moved to reduce congestion successfully is

much smaller than the number of problematic cells. The major reason is that even

a new location and a new routing path are found, the overflow caused by the new

routing path is hard to be smaller than that of the original one. In our implemen-

tation, we change the relocation order of the problematic cells. We sort the prob-

lematic cells by the total overflow value of their routing paths in a non-increasing

order. The cells with larger overflow values will be relocated and rerouted earlier.

Besides, in order to reduce runtime, we ignore the problematic cells whose prob-

106
Chapter 5. Simultaneous routing and placement (SRP) for congestion

refinement

ability of reducing overflow is too small. For example, these include cells whose

routing path overflow value is less than a threshold thr1, and the cells whose min-

imum distance between its original location and the overflow GCell its routing

paths passing through is larger than a threshold thr2 (e.g., thr1 = 2, thr2 = 100 in

our experiments).

We also tried to move multiple cells together. However, we find that the con-

gestion map is inaccurate when many cell locations and routing paths are updated

simultaneously. It is very difficult to determine how to move many cells and reroute

many nets simultaneously. Actually, in our implementation, the overflow improve-

ment of moving multiple cells together is even smaller than that of moving cells

one by one.

CHAPTER 6

Experimental results

Contents

6.1 Benchmarks for routability placement 107

6.2 Experimental result of detailed placement 110

6.3 Experimental result of SRP . 111

6.4 Experimental result of Ripple . 111

6.4.1 Study of the basic framework 111

6.4.2 Overall performance of Ripple — an integration of different

techniques . 120

In this chapter, we first introduce the benchmarks released in contests ISPD

2011 [54], DAC 2012 [52], and ICCAD 2012 [55]. The experimental results of

detailed placement and the refinement tool SRP are then analyzed. At last, the

results of Ripple are discussed in detail.

6.1 Benchmarks for routability placement

Three sets of benchmarks released in contests ISPD 2011 [54], DAC 2012 [52] and

ICCAD 2012 [55] are shown in Table 6.1, Table 6.2, and Table 6.3 respectively. All

of them are real industrial ASIC designs from IBM. These benchmarks can be used

108 Chapter 6. Experimental results

Figure 6.1: (a) The floorplans of fixed terminal nodes in superblue18. (b)The floor-
plans of fixed terminal nodes in superblue15. The light-red shaded boxes with
blue out-line represent the rectangular fixed nodes and the dark-gray shaded boxes
represent the non-rectangular fixed nodes in the design [54].

to perform both placement and global routing. Moreover, they are representative

of today’s designs with numerous placement blockages, more metal layers, varying

metal width and spacing across layers, etc.

These benchmarks also demonstrate the varying characteristics and associated

challenges of modern ASIC floorplans. For example, all the fixed nodes in su-

perblue18 (shown in Fig. 6.1 (a)) are pushed to the periphery of the placement

region, which gives the placement tool a large amount of whitespace in and around

the center of the placement region. On the other hand, the fixed nodes in su-

perblue15 (shown in Fig. 6.1 (b)) fragment the placement region into multiple

subregions. In addition, the tall and thin fixed nodes in most of the designs cre-

ate "alleys". Alleys in the placement region can lead to significant congestion if a

net gets split across the corresponding fixed nodes.

To consider design hierarchy during physical synthesis, the set of benchmarks

in ICCAD 2012 contest contain the design hierarchy information. It is hoped that

placement algorithms can potentially use the design hierarchy information to min-

imize wire length as well as routing congestion and to improve runtime.

6.1. Benchmarks for routability placement 109

Table 6.1: Benchmark in ISPD 2011 contest.

Design Total Movable Terminal Terminal Total Total Util. Den.
Nodes Nodes Nodes _NI Nets Pins (%) (%)

sb1 847441 765102 52627 29712 822744 2861188 69 35
sb2 1014029 921273 59312 33444 990899 3228345 76 28
sb4 600220 521466 40550 38204 567607 1884008 70 44
sb5 772457 677416 74365 20676 786999 2500306 77 37
sb10 1129144 914921 153595 60628 1085737 3665711 75 35
sb12 1293433 1278084 8953 6396 1293436 4774069 56 44
sb15 1123963 829614 252053 42296 1080409 3816680 73 60
sb18 483452 442405 25063 15984 468918 1864306 67 47

Util.(%) is the area ratio between all nodes and the chip.

Den.(%) is the area ratio between all movable nodes and the whitespace of the chip.

Table 6.2: Benchmark in DAC 2012 contest.

Design Total Movable Terminal Terminal Total Total Util. Den.
Nodes Nodes Nodes _NI Nets Pins (%) (%)

sb2 1014029 921273 59312 33444 990899 3228345 76 28
sb3 919911 833370 55033 31508 898001 3110509 73 42
sb6 1014209 919093 65316 29800 1006629 3401199 73 43
sb7 1364958 1271887 66995 26076 1340418 4935083 76 58
sb9 846678 789064 37574 20040 833808 2898853 73 47
sb11 954686 859771 67303 27612 935731 3071940 79 40
sb12 1293433 1278084 8953 6396 1293436 4774069 56 44
sb14 634555 567840 44743 21972 619815 2049691 72 50
sb16 698741 680450 419 17872 697458 2280931 69 46
sb19 522775 506097 286 16392 511685 1714351 78 49

The benchmarks superblue2 and superblue12 are the same with that of ISPD 2011 contest.

Table 6.3: Benchmark in ICCAD 2012 contest.

Design Total Movable Terminal Terminal Total Total Util. Den.
Nodes Nodes Nodes _NI Nets Pins (%) (%)

sb1 847441 765102 52627 29712 822744 2861188 69 35
sb3 919911 833370 55033 31508 898001 3110509 73 42
sb4 600220 521466 40550 38204 567607 1884008 70 44
sb5 772457 677416 74365 20676 786999 2500306 77 37
sb7 1364958 1271887 66995 26076 1340418 4935083 76 58
sb10 1202665 1045874 96251 60540 1158784 3894138 70 32
sb16 698741 680450 419 17872 697458 2280931 69 46
sb18 483452 442405 25063 15984 468918 1864306 67 47

The benchmarks superblue3, superblue7 and supeblue16 are the same with that of DAC 2012 contest.

The benchmarks superblue1 and superblue10 and superblue18 are the same with that of ISPD 2011 contest.

110 Chapter 6. Experimental results

Table 6.4: Comparison between the HPWL-driven detailed placement and the
congestion-driven detailed placement. Overflow is generated by the simplified Fas-
tRoute.

Benchmark HPWL-driven Congestion-driven
HPWL Overflow HPWL Overflow

sb1 266643392 174178 269995648 157781
sb2 618041152 1437174 631629376 1133897
sb4 216831264 164572 217536384 156085
sb5 337018464 326482 340494368 289346

sb10 568484544 606271 575723136 500300
sb12 347745536 847330 371608672 308700
sb15 311213824 134783 311498176 134606
sb18 169159472 162838 170792336 143331
Avg. 1.0 1.0 +1.9% -73.3%

6.2 Experimental result of detailed placement

We use the benchmarks in ISPD 2011 contest to show the effectiveness of our

congestion driven detailed placement (discussed in Chapter 4). Table 6.4 shows

that our congestion-driven placer can reduce the overflow obtained by the original

detailed placer by 73.3% while increasing the HPWL by only 1.9% only. Our

congestion-aware detailed placement is simple and efficient enough to trade off

between routability and wirelength.

We also use other cell swapping strategy to deal with routability during detailed

placement. But the routing overflow is worse and the runtime is much longer. This

is because when performing cell swapping, the runtime of computing routing con-

gestion is much longer than that of computing the HPWL. Besides, the routing con-

gestion analysis is not totally the same with the evaluation metric using NCUTgr.

In addition, many overflows are generated in clustering step as well. Therefore,

only focusing on cell swapping step as many previous placers cannot effectively

solve the routability problem.

6.3. Experimental result of SRP 111

6.3 Experimental result of SRP

We use the top four placer results in DAC 2012 Contest to test SRP (discussed

in Chapter 5). The input placement results are obtained by the top four placers

NTUplacer [21], Ripple [18], SimPLR [29] and mpl12 [6] in the routability-driven

placement DAC Contest 2012 [52]. The input global routing results are given by

NCTUgr [34] which is machine independent.

After using SRP, we use NCTUgr [34] to route the output layouts. We show the

total normalized overflow of all metal layers in Table 6.5. The total overflow after

using SRP is improved by 12.35%, 8.39%, 75.01%, 34.57% for the placers NTU-

placer [21], Ripple [18], SimPLR [29] and mpl12 [6] respectively. The runtime of

SRP is shown in Table 6.5. If we use the runtimes of these four placers in the DAC

2012 Contest [52] as reference, the runtime of SRP takes only 8.42% of the total

runtime of the placement process on average.

As shown in Table 6.6, the routed wirelength by NCTUgr after using SRP is

not affected obviously. Besides, the increased HPWL after using SRP is always

very small compared with the input placement.

6.4 Experimental result of Ripple

6.4.1 Study of the basic framework

In our basic framework shown in Fig. 3.1, we use probabilistic estimation to do

congestion analysis in global placement (Section 3.3.1). Cells are inflated in con-

gested region using a dynamic inflation adjustment method (Section 3.4.1.1). After

global placement, the congestion-driven legalization and detailed placement are

processed (Chapter 4). The refinement tool SRP is not used in this basic frame-

112 Chapter 6. Experimental results

Table
6.5:O

verflow
com

parison
and

runtim
e

ofSR
P

N
T

U
placer

R
ipple

Sim
PL

R
m

pl12
Input

Post
Input

Post
Input

Post
Input

Post
B

enchm
ark

O
F

O
F

C
PU

(s)
O

F
O

F
C

PU
(s)

O
F

O
F

C
PU

(s)
O

F
O

F
C

PU
(s)

sb2
4527

4320
454

51038
47451

1444
114562

90674
1935

248259
185867

1651
sb3

11744
10182

346
39068

36295
974

16191
13689

515
34903

28891
485

sb6
4723

4215
319

7011
6087

467
2753

2506
280

4189
3241

300
sb7

3013
2650

168
13604

13239
381

299288
123573

671
19031

14199
215

sb9
4893

4648
127

13592
12479

342
8389

7420
207

18812
15380

281
sb11

2386
2176

107
2884

2686
200

21617
15953

171
13224

11341
231

sb12
77

59
81

1975
1718

365
2878

2524
298

105472
67374

939
sb14

410
400

45
1750

1592
66

5479
4074

155
2666

2373
77

sb16
7410

6359
105

3831
2850

144
43027

32677
348

5498
4308

145
sb19

1606
1297

47
4352

3939
148

3908
2949

91
21382

18850
100

A
vg.

+12.35%
1.00

179.9
+8.39%

1.00
453.1

+75.01%
1.00

467.1
+34.57%

1.00
442.4

O
urim

plem
entation

is
w

ritten
in

C
++

and
com

piled
w

ith
g++

4.1.2.A
llthe

benchm
arks

are
run

on
an

IntelC
ore

2
D

uo
L

inux
w

orkstation
w

ith
2.8G

H
z

and
4

G
B

R
A

M
,using

one
C

PU
core.

6.4. Experimental result of Ripple 113

Ta
bl

e
6.

6:
R

ou
te

d
w

ir
el

en
gt

h
an

d
H

PW
L

co
m

pa
ri

so
n

N
T

U
pl

ac
er

R
ip

pl
e

Si
m

PL
R

m
pl

12
R

ou
te

dW
L

H
PW

L
R

ou
te

dW
L

H
PW

L
R

ou
te

dW
L

H
PW

L
R

ou
te

dW
L

H
PW

L
B

en
ch

In
pu

t
Po

st
In

pu
t

Po
st

In
pu

t
Po

st
In

pu
t

Po
st

In
pu

t
Po

st
In

pu
t

Po
st

In
pu

t
Po

st
In

pu
t

Po
st

m
ar

k
(×

E
6)

(×
E

6)
(×

E
8)

(×
E

8)
(×

E
6)

(×
E

6)
(×

E
8)

(×
E

8)
(×

E
6)

(×
E

6)
(×

E
8)

(×
E

8)
(×

E
6)

(×
E

6)
(×

E
8)

(×
E

8)
sb

2
17

.8
9

17
.8

9
6.

11
6.

12
19

.3
3

19
.3

4
6.

51
6.

52
18

.7
7

18
.7

7
6.

29
6.

31
21

.2
0

21
.2

2
7.

11
7.

13
sb

3
10

.9
0

10
.9

0
3.

27
3.

28
11

.6
6

11
.6

6
3.

34
3.

35
12

.5
7

12
.5

6
3.

63
3.

63
12

.3
2

12
.3

2
3.

64
3.

65
sb

6
10

.4
5

10
.4

5
3.

30
3.

31
10

.7
7

10
.7

7
3.

35
3.

35
11

.1
8

11
.1

8
3.

50
3.

50
12

.2
2

12
.2

2
3.

87
3.

87
sb

7
12

.7
4

12
.7

4
3.

91
3.

91
14

.0
9

14
.0

9
4.

23
4.

23
14

.3
4

14
.2

9
4.

29
4.

29
14

.3
8

14
.3

8
4.

47
4.

48
sb

9
7.

66
7.

66
2.

37
2.

37
8.

44
8.

44
2.

58
2.

58
8.

26
8.

26
2.

54
2.

54
9.

01
9.

01
2.

78
2.

78
sb

11
10

.3
2

10
.3

2
3.

42
3.

42
10

.7
1

10
.7

0
3.

56
3.

56
10

.5
5

10
.5

5
3.

47
3.

47
12

.7
0

12
.6

9
4.

23
4.

23
sb

12
10

.9
8

10
.9

8
3.

12
3.

12
11

.7
8

11
.7

7
3.

33
3.

33
12

.1
9

12
.1

9
3.

55
3.

55
10

.8
5

10
.8

6
3.

24
3.

26
sb

14
6.

93
6.

93
2.

25
2.

25
7.

09
7.

09
2.

27
2.

27
7.

47
7.

47
2.

38
2.

39
8.

08
8.

08
2.

58
2.

58
sb

16
7.

90
7.

90
2.

62
2.

62
7.

78
7.

78
2.

59
2.

59
8.

13
8.

15
2.

67
2.

68
8.

68
8.

68
2.

89
2.

89
sb

19
4.

68
4.

68
1.

50
1.

50
4.

91
4.

91
1.

59
1.

59
4.

94
4.

94
1.

58
1.

58
5.

36
5.

36
1.

74
1.

74
A

vg
.

- .0
02

%
1.

00
- .0

4%
1.

00
+.

00
2%

1.
00

- .0
5%

1.
00

+.
03

%
1.

00
- .1

0%
1.

00
- .0

5%
1.

00
- .1

5%
1.

00

114 Chapter 6. Experimental results

work. The benchmarks in the ISPD 2011 contest are used to illustrate the efficiency

of this framework.

The global placement phase mainly consists of five parts: Conjugate Gradi-

ent descent (CG), lookahead legalization, congestion estimation, cell inflation and

spreading. About 42.9% , 28.5% and 25.4% of the total runtime of the global

placement phase is spent on congestion estimation, CG and lookahead legalization

respectively. The processes of cell inflation take only 3.2% of the total runtime of

the global placement phase.

Fig. 6.2 shows the lower and upper bounds for HPWL, the inflation area and

the sum of congestion estimations in both the horizontal and the vertical directions

at the end of each iteration for the benchmark superblue18. Since cell inflation

is used after the 3rd iteration, the upper-bound HPWL is dramatically increased

at the 3rd iteration, and then begins to decrease. We do not want to inflate cells

at the beginning, since the overflow is usually too large by our estimation at this

stage. This strategy is the same throughout all the benchmarks. The congestion

value is reduced greatly in the first 25 iterations, and then the improvement slows

down. When the congestion is relieved iteratively, the inflation area also reduces

gradually.

Table 6.7 shows the runtime for the global and detailed placement phase in

seconds. Most of the runtime is spent on the global placement phase.

6.4.1.1 Comparison with top contestants in ISPD 2011 contest

Table 6.8 lists the overflow and HPWL of the placements obtained by this Ripple

basic framework (RippleBasic), and the top results from the ISPD 2011 Contest

participants (ISPD2011) [1] and SimPLR [29]. In order to show the efficiency of

the dynamic inflation adjustment step discussed in section 3.4.1.1, we also use a

6.4. Experimental result of Ripple 115

Fi
gu

re
6.

2:
L

ow
er

-u
pp

er
-b

ou
nd

H
PW

L
,i

nfl
at

io
n

ar
ea

an
d

ov
er

flo
w

at
ea

ch
ite

ra
tio

n
(s

up
er

bl
ue

18
).

116 Chapter 6. Experimental results

Figure
6.3:C

ongestion
m

aps
forR

ippleB
asic

solution
and

the
top

resultin
ISPD

2011
C

onteston
superblue2.

6.4. Experimental result of Ripple 117

Table 6.7: Runtime for global and detailed placement

Benchmark Global (s) Detailed (s) Total (s)
sb1 2798 209 3007
sb2 4764 312 5076
sb4 1819 225 2044
sb5 2888 278 3166

sb10 6056 442 6498
sb12 5990 371 6361
sb15 3847 550 4397
sb18 2168 201 2369
Avg. 92.14% 7.86% -

method called NoScale to do comparison. NoScale is similar to RippleBasic, but it

only removes tiles from the head of In f lationList one by one without reducing the

inflation ratios of the remaining tiles in In f lationList. Since the overflow obtained

by NCTUgr [34] is independent of the machine used, we use NCTUgr to do global

routing.

The overflow in Table 6.8 is the total overflow by considering the wire width

and wire space on different metal layers. Comparing with RippleBasic, the total

overflow of the top results in the ISPD 2011 Contest and SimPLR are larger by

47.48% and 28.30% respectively. Besides, the HPWL in the top results of the ISPD

2011 Contest and SimPLR are larger by 5.26% and 3.96% respectively. RoutedWL

in Table 6.8 is the number of GCells passed through by the routed wires, and the

result of RippleBasic is also shorter than the top results of the ISPD 2011 Contest

and SimPLR. The runtime in Table 6.8 is obtained from the ISPD 2011 Contest [1]

and SimPLR [29]. Since the runtime depends on the machine, we do not compare

it in Table 6.8. In Table 6.8, we can also see that the total overflow, HPWL and

RoutedWL are better in the results of RippleBasic than that in NoScaled.

Although both Ripple and SimPLR use the lower-upper bound framework in

global placement, the main idea to handle congestion is different. A global router

118 Chapter 6. Experimental results

Table
6.8:C

om
parisons

w
ith

the
top

results
ofthe

ISPD
2011

C
ontest[1]and

Sim
PL

R
[29]

B
enchm

ark
M

ethod
O

verflow
A

C
E

(%
)

H
PW

L
R

outedW
L

R
untim

e
0.50

1.00
2.00

5.00
(seconds)

sb1
R

ippleB
asic

7928
101.66

100.83
100.41

100.17
270288485

9524748
3007

N
oScaled

7928
101.66

100.83
100.41

100.17
270288485

9524748
2920

Sim
PL

R
8056

102.71
101.35

100.68
100.27

279004812
9835021

3101
ISPD

2011
12514

103.30
101.65

100.82
100.33

286630036
10124374

5686
sb2

R
ippleB

asic
215112

111.78
109.06

104.88
101.95

631736150
21547075

5076
N

oScaled
224182

113.06
109.29

104.94
101.98

633737957
21684362

5295
Sim

PL
R

297914
119.82

113.15
107.13

102.85
660940059

22644961
6498

ISPD
2011

306748
111.85

109.25
105.13

102.05
704080370

24139506
16887

sb4
R

ippleB
asic

25266
106.40

103.20
101.60

100.64
218347584

6929099
2044

N
oScaled

23044
105.90

102.95
101.48

100.59
218607769

6920948
2103

Sim
PL

R
9220

102.37
101.19

100.59
100.24

231444466
7209504

1487
ISPD

2011
33706

110.82
106.08

103.04
101.22

231798409
7319250

7631
sb5

R
ippleB

asic
54472

104.51
102.26

101.13
100.45

343406094
11845978

3166
N

oScaled
54472

104.51
102.26

101.13
100.45

343406094
11845978

3222
Sim

PL
R

93222
110.91

105.45
102.73

101.09
355052381

12234359
3110

ISPD
2011

52488
106.40

103.20
101.60

100.64
359229472

12352907
10885

sb10
R

ippleB
asic

49470
104.87

102.43
101.22

100.49
576116390

19544587
6498

N
oScaled

66922
106.24

103.12
101.56

100.62
576860165

19610052
6887

Sim
PL

R
81042

111.04
106.46

103.23
101.29

592176549
20021886

4400
ISPD

2011
75972

107.09
104.18

102.09
100.84

563980408
18542473

12873
sb12

R
ippleB

asic
41282

108.59
106.79

103.86
101.54

364157547
13101209

6361
N

oScaled
55092

109.78
107.39

105.00
102.00

367977525
13317779

6958
Sim

PL
R

29172
108.44

105.27
102.63

101.05
377265823

13383941
2599

ISPD
2011

101702
110.46

110.23
108.94

104.71
375222962

13373492
10046

sb15
R

ippleB
asic

43300
113.39

109.07
104.53

101.81
314006505

10001805
4397

N
oScaled

152412
120.24

115.12
111.61

104.89
317220427

10147739
5456

Sim
PL

R
47014

112.00
107.76

103.88
101.55

337955501
10812010

2600
ISPD

2011
56882

109.28
105.65

102.82
101.13

360309184
11471482

17831
sb18

R
ippleB

asic
11060

104.20
102.10

101.05
100.42

167174630
6514009

2369
N

oScaled
15224

106.00
103.00

101.50
100.60

166951489
6622267

2466
Sim

PL
R

8988
102.74

101.37
100.69

100.27
165750027

6699189
1283

ISPD
2011

20532
109.11

104.61
102.31

100.92
155606626

5944270
2413

A
vg.

R
ippleB

asic
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
N

oScaled
+33.80%

+1.40%
+0.98%

+1.09%
+0.47%

+0.34%
+0.67%

+7.26%
Sim

PL
R

+28.30%
+1.71%

+0.75%
+0.35%

+0.14%
+3.96%

+3.87%
N

/A
ISPD

2011
+47.48%

+1.51%
+1.09%

+0.99%
+0.54%

+5.26%
+4.30%

N
/A

6.4. Experimental result of Ripple 119

BFG-R [22] is used in SimPLR to obtain accurate congestion map and the past cell

inflated size will be remembered. Therefore, the number of times to call congestion

estimation and cell inflation is not large. In Ripple, although our congestion map

is obtained by some probabilistic method, we do a lot of estimations (more than

100 times) on intermediate layouts and use cell inflation on current layout without

remembering the past inflated size. Moreover, different with SimPLR that adjusts

target density during placement, we only use cell inflation in congested region

without changing the target density of the whole chip. Although our runtime is

longer because of the many times of congestion estimation done, we can obtain

shorter HPWL in most benchmarks, while the overflow is also smaller.

Since the total overflow do not provide an accurate view of design routabil-

ity [60], we use another metric called ACE (Average Congestion of GCell Edges)

[60] to do evaluation. The congestion (in percentage) of a GCell edge e is

Cong(e) = 100×(we +be)/ce, where ce is the total routing capacity of edge e, we

is the routing demand or wire occupancy on edge e, and be is the routing blockage

on edge e. The ACE metric is based on the distribution of the g-edge congestion.

The ACE(x) is the average congestion of the top x% congested g-edges. Here, the

ACE(x), where x ∈ {0.5,1,2,5}, is used to provide a more accurate view of the

design congestion.

From Table 6.8, we can see that in most benchmarks, we obtain the smallest

ACE. The congestion of Ripple can always be spread more evenly. An example

layout is shown in Fig. 6.3. The regions colored purple, with congestion > 100%1,

are relatively less in the RippleBasic congestion maps.

1Can be seen more clearly in color.

120 Chapter 6. Experimental results

6.4.2 Overall performance of Ripple — an integration of differ-

ent techniques

Based on the framework shown in Fig. 3.1, we use Simplified FastRoute to do

lookahead routing analyze during global placement. Besides, the techniques of

routing path-based cell inflation and congested cluster optimization are applied.

The post-process SRP is also invoked after detailed placement. All the benchmarks

were run on an Intel Xeon Linux workstation with 3.40GHz and 32 GB RAM. The

target density is set to 0.95 for all the benchmarks. The latest benchmarks (in the

ICCAD 2012 contest) are used in this section.

Routability is measured by scaled wirelength (ScaledWL) computed in the

same way as in the ICCAD contest 2012 [55]. Both HPWL and congestion are

considered in ScaledWL. After obtaining the routing result by NCTUgr [34], the

ACE metric [60], which is based on the distribution of the GCell congestion, is used

to evaluate congestion where ACE(x),x ∈ {0.5,1,2,5}, is the average congestion of

the top x% congested GCell edges.

Routing path-based cell inflation and spreading (RPB) and congested clus-

ter improvement (CCI) are evaluated by comparing with the placer using prob-

abilistic congestion estimation [18] without these techniques (noRPB/CCI). We

report the (1) ACE(x) where x ∈ (0.5,1,2,5), (2) HPWL, (3) ScaledWL and (4)

Runtime in Table 6.9. We can see that most of the runtime is spend on the tech-

nique of CCI. Both RPB and CCI can improve congestion and scaled wirelength

obviously.

Routability comparisons with the top results of the ICCAD 2012 Contest is

shown in Table 6.10. In terms of scaled wirelength, Ripple outperforms the others

on average. Since different machines were used and we did not use multi-threading.

6.4. Experimental result of Ripple 121

The runtimes reported in Table 6.10 are just for reference and cannot be directly

compare.

122 Chapter 6. Experimental results
Table

6.9:E
valuation

ofrouting
path-based

cellinflation
and

spreading
(R

PB
)and

congested
clusterim

provem
ent(C

C
I)

B
enchm

ark
M

ethod
A

C
E

(%
)

H
PW

L
ScaledW

L
R

untim
e

0.50
1.00

2.00
5.00

(seconds)
noR

PB
/C

C
I

111.78
110.43

107.57
103.03

272906304
340071852

1989
sb1

R
PB

118.59
115.79

112.48
106.53

276418525
387109145

1636
R

PB
+C

C
I

102.63
101.31

100.66
100.26

278613308
288763344

5462
noR

PB
/C

C
I

129.61
122.59

117.29
110.89

307528119
492931490

2646
sb3

R
PB

111.26
108.96

106.19
102.47

343317959
417703300

2584
R

PB
+C

C
I

105.29
103.19

101.59
100.64

333315621
360085825

8487
noR

PB
/C

C
I

106.06
103.03

101.51
100.61

218230511
236570795

1423
sb4

R
PB

105.18
102.59

101.3
100.52

219891835
235700081

1127
R

PB
+C

C
I

102.75
101.37

100.69
100.27

218321746
226639292

4504
noR

PB
/C

C
I

118.04
114.54

109.83
103.93

335332413
451886534

2178
sb5

R
PB

104.87
102.43

101.22
100.49

345713557
369066484

1543
R

PB
+C

C
I

100.79
100.4

100.2
100.08

344935609
348733540

5728
noR

PB
/C

C
I

111.04
108.81

106.75
103.11

395288349
483366222

4274
sb7

R
PB

102.97
101.48

100.74
100.3

425010166
442509990

3928
R

PB
+C

C
I

101.91
100.96

100.48
100.19

417956482
429041785

11387
noR

PB
/C

C
I

117.63
114.65

110.66
105.72

565020331
771229468

5868
sb10

R
PB

105.19
102.95

101.47
100.59

582988405
627566932

4393
R

PB
+C

C
I

101.79
100.9

100.45
100.18

583014725
597515266

14383
noR

PB
/C

C
I

115.36
114.35

113.18
109.46

249202445
347035229

1470
sb16

R
PB

108.03
104.23

102.11
100.85

263035858
293059642

1267
R

PB
+C

C
I

104.48
102.24

101.12
100.45

267097907
283689195

4942
noR

PB
/C

C
I

115.95
112.97

110.2
105.2

171609483
228658479

2061
sb18

R
PB

112.19
111.09

108.84
104.41

170358833
217035361

1945
R

PB
+C

C
I

107.18
103.88

101.94
100.78

166702202
183918099

6267
noR

PB
/C

C
I

1.00
1.00

1.00
1.00

1.00
1.00

1.00
A

vg.
R

PB
-6.18%

-5.75%
-4.86%

-3.06%
+4.44%

-10.80%
-15.91%

R
PB

+C
C

I
-10.66%

-9.67%
-7.97%

-4.64%
+3.77%

-18.90%
+179.15%

6.4. Experimental result of Ripple 123

Ta
bl

e
6.

10
:C

om
pa

ri
so

n
w

ith
th

e
to

p
re

su
lts

of
th

e
IC

C
A

D
20

12
co

nt
es

t[
55

]

(T
he

ru
nt

im
e

(s
)o

fV
D

A
Pl

ac
er

,S
im

PL
R

,N
T

U
Pl

ac
er

4h
ar

e
ob

ta
in

ed
fr

om
th

e
IC

C
A

D
20

12
co

nt
es

t.)

V
D

A
Pl

ac
e

Si
m

PL
R

N
T

U
Pl

ac
e4

h
R

ip
pl

e
B

en
ch

m
ar

k
Sc

al
ed

W
L

R
un

tim
e

Sc
al

ed
W

L
R

un
tim

e
Sc

al
ed

W
L

R
un

tim
e

Sc
al

ed
W

L
R

un
tim

e
sb

1
36

98
37

79
0

88
5

27
88

80
49

6
23

19
28

49
90

37
2

87
69

28
87

63
34

4
54

62
sb

3
63

16
16

36
5

11
73

34
39

18
13

1
27

06
44

76
90

06
4

71
93

36
00

85
82

5
84

87
sb

4
28

22
82

82
4

60
4

24
34

16
74

6
12

67
23

60
22

00
4

48
66

22
66

39
29

2
45

04
sb

5
56

95
53

23
9

87
4

36
03

05
91

4
21

54
42

16
90

92
5

73
22

34
87

33
54

0
57

28
sb

7
50

01
20

58
3

17
25

43
13

25
68

0
32

49
41

36
77

50
2

15
00

5
42

90
41

78
5

11
38

7
sb

10
10

36
03

09
01

13
16

69
08

52
66

3
48

37
71

89
78

96
0

12
35

2
59

75
15

26
6

14
38

3
sb

16
32

23
05

95
9

69
1

28
57

18
33

9
17

97
28

32
97

66
7

60
24

28
36

89
19

5
49

42
sb

18
29

10
93

79
7

65
8

18
23

45
02

7
16

45
17

09
35

38
9

46
22

18
39

18
09

9
62

67
A

vg
.

+4
7.

25
%

N
/A

+3
.6

2%
N

/A
+9

.5
2%

N
/A

1.
00

N
/A

CHAPTER 7

Conclusion

Today, the dominance of interconnect in area, delay and power is increasing. Tradi-

tional placers focus on minimizing wirelength. However, wirelength-driven placers

may generate hard-to-route solutions and create a lot of troubles for the down-

stream routing process. The mismatch between the objective of wirelength and

routing congestion makes the routability issue become more and more important in

placement.

In this thesis, each stage in the placement process, including global placement,

legalization, detailed placement and post-process, are studied carefully to trade off

between routability and wirelength. During global placement, several techniques

are studied and developed: (1) routing congestion analysis by probabilistic method

and Simplified FastRoute with pin density consideration, (2) dynamic cell infla-

tion adjustment, (3) routing path-based cell inflation and spreading, and (4) robust

congested cluster optimization. After obtaining a competitive global placement

result, we propose many simple and effective way to avoid worsening congestion

while optimizing wirelength during legalization and detailed placement, such as (1)

limiting the maximum length of a segment in displacement-driven legalization, (2)

determining the stopping criteria in each step of detailed placement. All these tech-

niques are studied and evaluated by experimental analysis. For post-processing, we

propose a refinement tool called SRP that is independent of any placer and global

router. Based on a given placement layout and global routing result, SRP relocates

126 Chapter 7. Conclusion

problematic cells by considering routing and placement simultaneously. Not only

overflow from local nets, but overflow from global and semi-global nets can be

mitigated by SRP. A cell will be relocated while its associated nets will be rerouted

if its connections go across any congested region, even if the cell itself is not in

a congested region. A combination of these researches provides a powerful tool

Ripple for solving the routability placement problem. We believe that our study

will be useful for this routability-driven placement problem in both industry and

academia.

As process technology advances, the numbers of circuit elements and inter-

connections in a design can easily reach tens of millions and the numbers are still

growing. Highly efficient routability optimization method during placement is still

in great demand. Besides, future research on placement should also address other

requirements in VLSI design, such as power reduction, timing constraints, and the

manufacturability issues.

Bibliography

[1] ISPD 2011 Routability-Driven Placement Contest.

http://www.ispd.cc/contests/11/ispd2011_contest.html. xvii, 114, 117, 118

[2] C.J. Alpert, Z. Li, M.D. Moffitt, G.J. Nam, J.A. Roy, and G. Tellez. What

makes a design difficult to route. In ISPD, pages 7–12. ACM, 2010. 8, 33

[3] C.J. Alpert, D.P. Mehta, and S.S. Sapatnekar. Handbook of algorithms for

physical design automation. CRC Press Company, Incorporated, 2009. xi, 7,

13, 24, 25

[4] U. Brenner and A. Rohe. An effective congestion-driven placement frame-

work. TCAD, 22(4):387–394, 2003. 26, 31, 33, 34, 65

[5] Andrew E Caldwell, Andrew B Kahng, Stefanus Mantik, Igor L Markov, and

Alexander Zelikovsky. On wirelength estimations for row-based placement.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, 18(9):1265–1278, 1999. 26

[6] T.F. Chan, J. Cong, J.R. Shinnerl, K. Sze, and M. Xie. mpl6: Enhanced

multilevel mixed-size placement. In ISPD, pages 212–214. ACM, 2006. 46,

111

[7] Tony Chan, Jason Cong, and Kenton Sze. Multilevel generalized force-

directed method for circuit placement. In Proceedings of the 2005 interna-

tional symposium on Physical design, pages 185–192. ACM, 2005. 24

[8] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and

Yao-Wen Chang. A high-quality mixed-size analytical placer considering

128 Bibliography

preplaced blocks and density constraints. In Computer-Aided Design, 2006.

ICCAD’06. IEEE/ACM International Conference on, pages 187–192. IEEE,

2006. 24, 43

[9] C. Chu. FLUTE: fast lookup table based wirelength estimation technique. In

ICCAD, pages 696–701. IEEE Computer Society, 2004. 61

[10] Chris Chu and Yiu-Chung Wong. Fast and accurate rectilinear steiner mini-

mal tree algorithm for vlsi design. In Proceedings of the 2005 international

symposium on Physical design, pages 28–35. ACM, 2005. 29, 45, 46

[11] Y.L. Chuang and et al. Design-hierarchy aware mixed-size placement for

routability optimization. In ICCAD, pages 663–668. IEEE, 2010. 31, 35, 36,

37

[12] Jason Cong, Guojie Luo, Kalliopi Tsota, and Bingjun Xiao. Optimizing

routability in large-scale mixed-size placement. In ASP-DAC, 2013. 31, 38,

46, 47, 50

[13] Jeffrey A Davis, Vivek K De, and James D Meindl. A stochastic wire-length

distribution for gigascale integration (gsi). i. derivation and validation. Elec-

tron Devices, IEEE Transactions on, 45(3):580–589, 1998. 27

[14] W Donath. Placement and average interconnection lengths of computer logic.

Circuits and Systems, IEEE Transactions on, 26(4):272–277, 1979. 27

[15] Rafael C Gonzales and RE Woods. Digital image processing, 1993. 39, 45

[16] Satoshi Goto. An efficient algorithm for the two-dimensional placement prob-

lem in electrical circuit layout. Circuits and Systems, IEEE Transactions on,

28(1):12–18, 1981. 79

Bibliography 129

[17] X. He, T. Huang, Chow W., Kuang J., Lam K., Cai W., and E.F.Y. Young.

Ripple 2.0: High quality routability-driven placement via global router inte-

gration. In DAC, 2013. 26, 31

[18] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E.F.Y. Young. Ripple: An ef-

fective routability-driven placer by iterative cell movement. In ICCAD, pages

74–79, 2011. xi, 11, 12, 31, 46, 47, 72, 77, 88, 111, 120

[19] W. Hou and et al. A new congestion-driven placement algorithm based on

cell inflation. In ASP-DAC, pages 605–608. IEEE, 2001. 65

[20] Meng-Kai Hsu, Yi-Fang Chen, Chau-Chin Huang, Tung-Chieh Chen, and

Yao-Wen Chang. Routability-driven placement for hierarchical mixed-size

circuit designs. In Proceedings of the 50th Annual Design Automation Con-

ference, page 151. ACM, 2013. xi, xii, 31, 36, 37, 38, 39, 44

[21] M.K. Hsu, S. Chou, T.H. Lin, and Y.W. Chang. Routability-driven analytical

placement for mixed-size circuit designs. In ICCAD, pages 80–84. IEEE,

2011. 31, 34, 35, 46, 77, 88, 111

[22] J. Hu and et al. Completing high-quality global routes. In ISPD, pages 35–41,

2010. 26, 41, 55, 119

[23] Jin Hu, Myung-Chul Kim, and Igor L Markov. Taming the complexity of

coordinated place and route. In Proceedings of the 50th Annual Design Au-

tomation Conference, page 150. ACM, 2013. 31, 39, 41, 42

[24] Devang Jariwala and John Lillis. Rbi: Simultaneous placement and routing

optimization technique. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 26(1):127–141, 2007. 31

130 Bibliography

[25] Z.W. Jiang and et al. Routability-driven analytical placement by net over-

lapping removal for large-scale mixed-size designs. In DAC, pages 167–172,

2008. 31, 35

[26] T. Jindal and et al. Detecting tangled logic structures in vlsi netlists. In Design

Automation Conference (DAC), 2010 47th ACM/IEEE, pages 603–608. IEEE,

2010. xii, 47, 48, 73

[27] A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic

placer. TCAD, 24(5):734–747, 2005. 24, 35, 43

[28] A.B. Kahng and X. Xu. Accurate pseudo-constructive wirelength and con-

gestion estimation. In SLIP, pages 61–68. ACM, 2003. 26, 55

[29] M.C. Kim, J. Hu, D.J. Lee, and I.L. Markov. A simplr method for routability-

driven placement. In ICCAD, pages 67–73. IEEE Press, 2011. xi, xii, xvii,

11, 12, 26, 31, 39, 41, 42, 77, 88, 111, 114, 117, 118

[30] M.C. Kim, D.J. Lee, and I.L. Markov. simpl: an effective placement algo-

rithm. TCAD, 31(1):50–60, 2012. xii, 14, 24, 39, 40, 53, 68

[31] Bernard S Landman and Roy L Russo. On a pin versus block relationship for

partitions of logic graphs. Computers, IEEE Transactions on, 100(12):1469–

1479, 1971. 27

[32] C. Li, M. Xie, C.K. Koh, J. Cong, and P.H. Madden. Routability-driven place-

ment and white space allocation. TCAD, 26(5):858–871, 2007. 31, 32, 98

[33] Zhuoyuan Li, Weimin Wu, and Xianlong Hong. Congestion driven incre-

mental placement algorithm for standard cell layout. In Proceedings of the

Bibliography 131

2003 Asia and South Pacific Design Automation Conference, pages 723–728.

ACM, 2003. 31

[34] W.H. Liu, W.C. Kao, Y.L. Li, and K.Y. Chao. Multi-threaded collision-aware

global routing with bounded-length maze routing. In DAC, pages 200–205.

ACM, 2010. xii, xiii, 26, 38, 73, 74, 93, 111, 117, 120

[35] Jinan Lou, Shashidhar Thakur, Shankar Krishnamoorthy, and Henry S Sheng.

Estimating routing congestion using probabilistic analysis. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 21(1):32–

41, 2002. 26, 28

[36] Gi-Joon Nam. Ispd 2006 placement contest: Benchmark suite and results. In

Proceedings of the 2006 international symposium on Physical design, pages

167–167. ACM, 2006. 10

[37] Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet

Yildiz. The ispd2005 placement contest and benchmark suite. In Proceed-

ings of the 2005 international symposium on Physical design, pages 216–220.

ACM, 2005. 10

[38] G.J. Nam and J. Cong. Modern circuit placement: best practices and results.

Springer Publishing Company, Incorporated, 2007. xi, 7, 10, 21, 22, 46, 71

[39] M. Pan and C. Chu. Fastroute: A step to integrate global routing into place-

ment. In ICCAD, pages 464–471. ACM, 2006. 29, 55, 63, 64, 85

[40] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed

placement algorithm. In ICCAD, pages 48–55. IEEE Computer Society, 2005.

77, 78, 79, 81, 82, 83, 84

132 Bibliography

[41] Min Pan and Chris Chu. Fastroute 2.0: A high-quality and efficient global

router. In Proceedings of the 2007 Asia and South Pacific Design Automation

Conference, pages 250–255. IEEE Computer Society, 2007. 29, 30

[42] Min Pan and Chris Chu. Ipr: An integrated placement and routing algorithm.

In Proceedings of the 44th annual Design Automation Conference, pages 59–

62. ACM, 2007. 26, 31, 77, 98

[43] P.N. Parakh, R.B. Brown, and K.A. Sakallah. Congestion driven quadratic

placement. In DAC, pages 275–278. ACM, 1998. 31

[44] J.A. Roy and et al. CRISP: congestion reduction by iterated spreading during

placement. In ICCAD, pages 357–362. ACM, 2009. xi, 31, 33, 34, 64, 65,

91, 92

[45] J.A. Roy and I.L. Markov. Seeing the forest and the trees: Steiner wirelength

optimization in placement. TCAD, 26(4):632–644, 2007. 26, 31, 98

[46] C. Sham and E.F.Y. Young. Congestion prediction in early stages. In SLIP,

pages 91–98. ACM, 2005. 26, 28, 55, 61

[47] N. A. Sherwani. Algorithms for physical design automation / 3rd edition.

Springer-Verlag New York, LLC, 1999. xi, 3, 4

[48] H. Shojaei, A. Davoodi, and J.T. Linderoth. Congestion analysis for global

routing via integer programming. In ICCAD, pages 256–262. IEEE, 2010.

10, 57

[49] P. Spindler and et al. Kraftwerk2: A fast force-directed quadratic placement

approach using an accurate net model. TCAD, 27(8), pages 1398–1411, 2008.

23, 39, 52

Bibliography 133

[50] P. Spindler and F.M. Johannes. Fast and accurate routing demand estimation

for efficient routability-driven placement. In DATE, pages 1–6. IEEE, 2007.

26, 27, 31, 35, 55, 56

[51] Dirk Stroobandt and Jan Van Campenhout. Accurate interconnection length

estimations for predictions early in the design cycle. VLSI Design, 10(1):1–

20, 1999. 27

[52] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The dac 2012

routability-driven placement contest and benchmark suite. In DAC, pages

774–782. ACM, 2012. xi, xii, 8, 11, 12, 17, 38, 107, 111

[53] N. Viswanathan and C.C.N. Chu. Fastplace: Efficient analytical placement

using cell shifting, iterative local refinement, and a hybrid net model. TCAD,

24(5):722–733, 2005. 24

[54] N. Viswanathan and et al. The ispd-2011 routability-driven placement contest

and benchmark suite. In ISPD, pages 141–146. ACM, 2011. xv, 8, 17, 107,

108

[55] Natarajan Viswanathan and et al. Iccad-2012 cad contest in design hierarchy

aware routability-driven placement and benchmark suite. In ICCAD, pages

345–348, 2012. xvii, 8, 12, 17, 36, 107, 120, 123

[56] Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast mul-

tilevel quadratic placement algorithm with placement congestion control. In

Proceedings of the 2007 Asia and South Pacific Design Automation Confer-

ence, pages 135–140. IEEE Computer Society, 2007. 31

134 Bibliography

[57] Maogang Wang and Majid Sarrafzadeh. Modeling and minimization of rout-

ing congestion. In Proceedings of the 2000 Asia and South Pacific Design

Automation Conference, pages 185–190. ACM, 2000. 31

[58] Maogang Wang, Xiaojian Yang, Kenneth Eguro, and Majid Sarrafzadeh.

Multi-center congestion estimation and minimization during placement. In

Proceedings of the 2000 international symposium on Physical design, pages

147–152. ACM, 2000. 26

[59] Maogang Wang, Xiaojian Yang, and Majid Sarrafzadeh. Congestion mini-

mization during placement. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 19(10):1140–1148, 2000. 31

[60] Y. Wei and et al. Glare: Global and local wiring aware routability evaluation.

In DAC, pages 768–773. ACM, 2012. 10, 119, 120

[61] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic congestion prediction.

In ISPD, pages 204–209. ACM, 2004. xi, 26, 28, 29, 55, 61

[62] Jurjen Westra and Patrick Groeneveld. Is probabilistic congestion estimation

worthwhile? In Proceedings of the 2005 international workshop on System

level interconnect prediction, pages 99–106. ACM, 2005. 26

[63] Yue Xu, Yanheng Zhang, and Chris Chu. Fastroute 4.0: global router with

efficient via minimization. In Proceedings of the 2009 Asia and South Pacific

Design Automation Conference, pages 576–581. IEEE Press, 2009. 26

[64] X. Yang, B.K. Choi, and M. Sarrafzadeh. Routability-driven white space al-

location for fixed-die standard-cell placement. TCAD, 22(4):410–419, 2003.

31, 32, 98

Bibliography 135

[65] Xiaojian Yang, Ryan Kastner, and Majid Sarrafzadeh. Congestion estimation

during top-down placement. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 21(1):72–80, 2002. 26

[66] Y. Zhang and C. Chu. Crop: Fast and effective congestion refinement of

placement. In ICCAD, pages 344–350. IEEE, 2009. 31, 77, 91, 92

	Introduction
	Introduction of VLSI flow
	Physical design

	Placement problem formulation
	Traditional placement
	Routability-driven placement

	Procedural flow in placement
	Thesis outline
	Thesis contributions

	Background
	Traditional placement
	Partitioning-based placement
	Analytical placement

	Routability-driven placement
	Congestion analysis
	Congestion reduction techniques
	Case studies of routability-driven placers

	Routability-driven global placement
	Problem formulation
	Overview
	Congestion estimation
	Probabilistic estimation
	Lookahead routing analyze

	Congestion-based cell movement
	Cell inflation ratio calculation
	Cell spreading
	Analysis of cell inflation and spreading
	Routing path-based cell inflation & spreading
	Congested cluster optimization

	Routability-driven legalization and detailed placement
	Problem formulation
	Traditional legalization and detailed placement
	HWPL-driven legalization
	HWPL-driven detailed placement

	Routability-aware legalization & detailed placement
	Congestion-driven legalization
	Congestion-driven detailed placement

	Simultaneous routing and placement (SRP) for congestion refinement
	Problem formulation
	Overview of SRP
	Simultaneous cell relocation & net rerouting
	Identify problematic cells
	Remove problematic cells
	Searching new location
	Connections to new location

	Further discussions

	Experimental results
	Benchmarks for routability placement
	Experimental result of detailed placement
	Experimental result of SRP
	Experimental result of Ripple
	Study of the basic framework
	Overall performance of Ripple — an integration of different techniques

	Conclusion
	Bibliography

