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Abstract

Three-dimensional (3D) stacked integrated circuits (3D-SICs) that stack multiple

dies vertically using through-silicon vias (TSVs) have gained tremendous momen-

tum for the semiconductor industry adoption recently. 3D-SICs promise “More-

than-Moore” integration by packing more functionalities into a single chip, but the

disruptive manufacturing technologies, e.g., die/wafer stacking and TSV forma-

tion, inevitably introduce new kinds of manufacturing defects (t = 0) and failure

mechanisms into the circuit. To be specific, in the die/wafer stacking process,

it is likely for a bad die to be stacked with a good die, causing significant stack

yield loss. The assembly process, including TSV fabrication, alignment and etc.,

introduces various types of defects that lead to dramatic assembly yield loss. In

addition, electromigration (EM) (one of critical challenges for reliability of metal

wires in nano-scale circuit) indeed occurs in TSVs, and even gets exacerbated with

the thermal-mechanical stress generated in TSV fabrication process. This wear-out

mechanism of TSVs results in accelerated chip failure in the field. No doubt to say,

these issues have to be resolved first before TSV-based 3D ICs become commer-

cially viable.

To tackle the above problems, in this thesis, we propose a set of systematic

approaches to enhance the yield and reliability for 3D-SICs. We presented the

first analytical model for 3D memory circuit that captures the impact of TSV open

defects through extensive simulation study, which serves as the preparation step
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摘要： 

三維堆疊集成電路（3D-stacked ICs）是通過尺寸極短的過矽穿孔 (through-silicon vias)（TSV）把

多個晶片堆疊在一起從而行程一個完整芯片。進來，這種集成電路已經逐漸開始得到主流工業界

的認可。三維堆疊集成電路可以在一個芯片中集成更多的功能，因此被認為是最有可能成為代表

後摩爾定律（More-than-Moore）的技術。但是，三維堆疊芯片的制造工藝不但復雜，而且有一

定的破壞性（比如，晶片堆疊過程和 TSV 制造）。這就不可避免的在電路中引入嚴重的製造缺陷

以及一些潛在的，暫時無法發現的缺陷。具體的說，在晶片堆疊過程中，一個故障晶片會和一個

無故障晶片疊在一起，因此導致嚴重的堆疊良率（stack yield）損失。另一方面，芯片的裝配

（assembly）過程（包括 TSV 制造和對齊等）也會引入各種缺陷，從而導致整個三維堆疊集成電

路的裝配良率（assembly yield）嚴重下降。而且，電遷移（electromigration）（ 對納米級電路中

金屬導線的可靠性造成最大挑戰）也會發生在 TSV 中。更糟的是，製造過程中產生的熱機械應力

（thermal-mechanical stress）會惡化 TSV 本身的電遷移過程。這會導致 TSV 加速老化並且試三維

堆疊集成電路在運行過程中的失效率大大增加。毫無疑問，只有解決了這些問題，三維堆疊集成

電路才有足夠可觀的商業利益。  

為了解決這些問題，本論文提出了一套系統性的解決方案來提高三維堆疊芯片的良品率和可靠性。 

我們通過廣泛的仿真實驗率先提出了一個分析模型來捕捉在三維堆疊存儲器中由於 TSV 斷路而造

成的故障模式。這一分析模型作為未來對三維堆疊芯片進行有效的測試和維修奠定了基礎。然後，

我們率先提出了三維堆疊片上系統（3D SoC）的測試架構以及相應的優化算法，來盡可能的降低

堆疊前測試（pre-bond test）和堆疊後測試（post-bond test）的成本。為了進行堆疊前測試，我

們必須要加入額外的測試管腳。而這些測試管腳會占用過多的空間。因此，我們接下來重新優化

三維片上系統的測試架構，使其可以在有限的測試管腳下盡可能的降低測試成本。以上這些故障

模型和測試方案的提出，可以大大降低故障晶片被堆疊的可能性，從而提高了堆疊良率。不過，

一種更有吸引力的做法是在完成堆疊後對那些故障晶片（可能是沒有被堆疊前測試所檢測到）進

行修補。但是，只有那些自身帶有冗余資源的產品才能被修復（比如三維存儲器）。我們將這一

新穎的概念引入三維存儲器中，並提出了一種迭代的晶片匹配算法來盡可能的提高其堆疊良率。

為了提高裝配良率，我們提出了一種新穎的，基於 TSV 陣列的冗余架構以及對應的修復算法。這

個方案可以修復 TSV 中的故障（對那種聚集在一起的故障尤其有效），從而極大的提高裝配良率。

最後，我們提出了一種可重構的在線 TSV 修復方案。通過巧妙的使用 TSV 冗余資源，它可以有效

的解決 TSV 中潛在的故障。這個修復方案中的可重構的冗余 TSV 架構可以讓臨近的 TSV 陣列共享

冗余 TSV 資源，而其修復算法則可以支持在線修復。 



for further test and repair. We then presented the first 3D SoC test architecture

design and optimization technique that takes both pre-bond testing and post-bond

testing into consideration. As dedicated test pads introduced for pre-bond testing

incur quite high overhead to the circuit, this constraint was considered in our later

work in this thesis. With above fault modeling and test solutions, we enhance the

stack yield of 3D-SICs by preventing faulty dies from being stacked. A more at-

tractive way is to be able to remedy the bad dies after bonding, and this is only

possible for those products with inherent redundancies (e.g., 3D-DRAMs). We in-

troduce this novel concept into 3D DRAMs and presented an iterative die matching

strategy that can dramatically enhance the stack yield. In order to enhance the as-

sembly yield, we proposed novel TSV-grid based redundancy architecture and the

corresponding repair algorithms to tolerate the manufacturing defects (especially

clustered defects) in TSVs. Finally, we describe a reconfigurable in-field repair

solution that is able to effectively tolerate latent TSV defects through the judicious

use of spares. The proposed solution includes a reconfigurable repair architecture

that enables spare TSV sharing between TSV grids, and the corresponding in-field

repair algorithms.

ii
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Chapter 1

Introduction

The shift towards volume production of 3D-SICs requires their manufacturing

yield to be commercially viable and their service life to be as high as possible.

However, the disruptive manufacturing process of 3D-SICs causes critical issues

on its yield and reliability, posing great threats to their mainstream adoption. For

better understanding the content of this thesis, we introduce the related back-

grounds of 3D-SICs in this chapter. The remainder of the chapter is organized

as follow: In Section 1.1, we first present the background knowledge of 3D-SICs,

such as manufacturing process and mainstream prospects. In Section 1.2, we dis-

cuss the design for pre-bond testability and its challenges. The current advances for

yield enhancement of 3D-SICs and the remaining challenges are then introduced

in Section 1.3, wherein some of the descriptions are excerpted from our survey

paper [5]. Finally, the motivation of this thesis work and the thesis organization

are described in Section 1.4.

1
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Figure 1.1: An Example 3D-SIC.

1.1 Three-Dimensional Stacked Integrated Circuits

In this section, we first introduce the concept of 3D-SIC and its advantages. We

then present the manufacture process and the market prospects for 3D-SICs.

1.1.1 Background of 3D-SIC

In each new generation of electronic products, there are endless quests for higher

performance and more functionality with less power consumption. As the technol-

ogy scales into deep-submicron domain, however, interconnects have become the

dominating factor for the performance and the power dissipation. 3D-SIC that pro-

vides abundant interconnects with improved performance and less communication

energy has been proposed as a promising solution to resolve this problem [6].

3D-SIC integrates multiple silicon layers with short and dense through-silicon

vias (TSVs), as shown in Fig. 1.1. This new integration paradigm has plenty

of benefits, as stated below. First of all, with the smaller chip footprint and the

micrometer-length TSVs, the total wire length can be dramatically reduced, thus

leading to improved performance and less communication energy [7, 8]. Secondly,

the reduced parasitic for interconnects in 3D-SICs facilitates the circuit design for

high-performance applications, such as system-on-chips [9]. Thirdly, 3D dynamic
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Figure 1.2: Bonding Manners.

random access memory (3D DRAM) [10], with the high bandwidth and low la-

tency access provided by TSVs, becomes a promising solution to overcome the

“memory-wall” issue (i.e., the speed and bandwidth gap between the processor

and memory) [11]. At last, 3D-SICs also facilitate the integration of devices in

heterogeneous technologies as each layer is fabricated separately. Therefore, al-

though there are still critical issues such as yield and heat dissipation to be resolved

in 3D integration, it is generally regarded that 3D-SICs will occupy a big market

share in the future [12].

3D-SIC offers many unique benefits, but it is not a universal solution, since

it incurs additional cost during manufacture and testing. In the remainder of this

section, we briefly describe the manufacturing process of 3D-SIC and show the its

prospects.

1.1.2 Manufacturing Process

3D-SICs can be built in several manners: wafer-to-wafer (W2W) bonding [13],

die-to-wafer (D2W) bonding (only for 3D-SICs built on two semiconductor wafers) [14],
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Figure 1.3: An Example Manufacturing Process.

or die-to-die (D2D) bonding [15]. W2W bonding directly stacks wafers together

and then dices them into individual die stacks (see Fig. 1.2 (a)). This bonding

strategy simplifies the manufacturing process [15], thereby leading to the highest

throughput. But it requires that dies at different layers to have the same form fac-

tor, and thus, is suitable only for homogeneous integration (e.g. 3D DRAMs). In

addition, W2W integration may suffer from significant yield loss due to the stack-

ing of good dies and bad dies, referred to as the “known good die” (KGD) issue.

On the contrary, with D2W/D2D integration, bare dies are first diced from a wafer

and then stacked to other dies/wafers (see Fig. 1.2 (b)). This bonding strategy re-

quires a more complex manufacturing process that applies pre-bond testing and

attaches known good dies only, thus resulting in higher yield compared to W2W

bonding [16]. In terms of bonding direction, there can be face-to-face bonding or

face-to-back bonding. The former allows more interconnects between active de-

vices on different layers, but it limits the number of stacked dies to be two; the

latter is a scalable solution that supports more stacking layers.

The manufacturing process can be coarsely divided into (a) TSV formation [17],

(b) wafer thinning and (c) bonding [18]. As depicted in Fig. 1.3(a), TSV forma-

tion has to go through a series process: (1) deep silicon etching of TSV holes, (2)



CHAPTER 1. INTRODUCTION 5

oxide deposition, (3) copper seed deposition, (4) copper plating, and (5) chemical-

mechanical polishing (CMP). The wafer needs to be thinned down from the back-

side to expose the TSV tips. In order to provide sufficient mechanical strength

and prevent it from breaking or cracking, we have to temporarily bond the to-be-

thinned wafer onto a carrier wafer, prior to thinning, as Fig. 1.3(b) illustrated. Sub-

sequently, the thinned product wafer on its carrier wafer is permanently bonded to

the next layer, after which the temporary carrier wafer is removed. Above disrup-

tive process involves tremendous changes of temperature and mechanical stress,

and thereby introduces various defects, rendering a serious yield loss.

1.1.3 Prospects of 3D-SICs

The products that can benefit from 3D integration include 1) capacity-driven IC

products (e.g., memory, FPGA and etc.); 2) complicated system-on-a-chips (SoCs)

with footprint constraints; 3) IC products with high bandwidth requirements (e.g.,

high performance processors). Some of them have gain mainstream adoption (e.g.,

3D DRAM [1]), with others being explored (e.g., 3D SoCs) or to be explored (e.g.,

Memory-on-logic stacking [10] and logic-on-logic stacking [19]).

Existing 3D DRAM simply uses TSVs as a vertical bus across multiple DRAM

layers to link them to the peripheral layer [1, 20], rendering less memory access

latency. Such memory organization is simple since the individual structures in

each layer are still traditional two-dimensional memory structures. The product

yield is also guaranteed by the mature memory self-test and repair mechanism.

Specifically, sophisticated functional fault models for random access memory are

proposed and a class of tests called march tests [21] has been proved to be able to

effectively cover these modeled faults. Redundant rows and columns of storage-

cells are added on-chip in advance so as to repair the faulty storage-cells (faulty

bits) found in storage-cell arrays by replacing the rows/columns containing the
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faulty bits with the redundant ones [22]. To fully exploit the benefits of 3D stack-

ing technology, more aggressive DRAM organization is introduced wherein indi-

vidual storage-cell arrays are stacked in a 3D fashion. In such a DRAM organi-

zation, TSVs are used as bitlines and wordlines to link these storage-cell arrays

from different layers to the peripheral logics (e.g. decoder and sense amplifier) in

the bottom layer, leading to significant increase of memory bandwidth with much

less memory access time [23]. Due to the massive usage of TSVs and the high

storage capacity, however, it has higher risk for such memory structure to be hurt

by defective TSVs and/or unsuccessful repairing of storage-cell arrays, resulting

in significant yield loss.

As SoC designs become increasingly complex, interconnects that emerged as

the performance and power limiter can be addressed using 3D stacking, namely 3D

SoC. 3D stacking also facilitates the integration of various IP cores with disparate

technologies such as microelectromechanical systems (MEMS), various kinds of

sensors and other heterogeneous elements demanded by applications, as they can

be fabricated on different silicon layers separately before integration, thereby of-

fering a genuine single-chip system solution. To test these core-based 3D SoC,

we can partially reuse the basic SoC test infrastructure that is composed of 1) test

source and sink, 2) test access mechanism (TAM) and 3) core test wrapper. To

test a core in SoC, the test stimuli should be sent into the core-under-test (CUT)

first, and the test response should be sent out, which is then compared with the

predefined correct response. Test source and sink can be off-chip automatic test

equipment (ATE) or on-chip BIST hardware. TAM transports the test stimuli from

the source to the CUT and transports the test response out to sink. The test wrapper

connects the CUT’s terminals to the TAM, isolating the CUT from its environment

during test. As the pre-bond test is required, however, the basic SoC test infras-

tructure faces new challenges, such as the limited test access and the extra test



CHAPTER 1. INTRODUCTION 7

Probe Needle
Test Pad

Front-end 
Metal

Device Layer
TSVs

Carrier

Thinned waferTSV tips

(a) Probe to test pads in front side (b) Probe TSVs in bottom side

Device Layer

Figure 1.4: Two Probe Manners for Pre-bond Test Access.

cost, rendering the existing TAM architecture and cost optimization procedure in-

efficient [24]. In next section, we demonstrate the design for pre-bond test and its

challenges.

1.2 Design for Pre-bond Test

Pre-bond test is to test individual dies to be stacked before the bonding process.

One of the earliest works that address the design for pre-bond test of 3D-SICs

is by Lewis and Lee [25]. In this work, the authors considered testing 3D-SICs

with fine-grained circuit-level partitioning (i.e., functional blocks spread across

multiple dies) and proposed a “scan island” approach to test incomplete circuits.

This work pointed out an important observation: test access is the key challenge

in pre-bond testing due to the difficulty in TSV probing.

In the state-of-art probe technology, the finest probe needle (tip) has a pitch of

35µm [26], and the capacity of a probe card (the number of probe needles a probe

card contains) is only in an order of magnitude of hundreds. Consider a single die

to be probed that fabricates several thousands of TSVs with normally 10µm pitch.

There is a dimension gap between the probe needle and TSV tip that are exposed

on the bottom side of the die, rendering an insufficient probe on TSV tips.

There are two potential solutions to tackle above issue [25, 27]:

• Additional test pads for test: That is, as can be seen in Fig. 1.4(a) to fabri-
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cate a number of test pads on face side of the die (where front-end metals are

placed) so that the automatic test equipment (ATE) can probe it during test-

ing. The test pads have to be sized according to today’s probing technique.

Obviously, this comes with an area penalty, and hence the number of extra

pads should be minimized. Also, care must be taken so that the probe force

on thinned wafer would not damage the wafer itself [24].

• Probe technology improvement: In order to directly probe the TSV tips, as

shown in Fig. 1.4(b), advanced probe technology need to be investigated to

provide fine-grain probe needles with larger capacity in the probe card.

Most existing test solutions adopt the former approach and consequently pro-

vide methods to design the test access mechanism in the die. Lewis et al. [28]

proposed several test methods for circuit-level partitioned 3D-SICs. The basic

strategy is to establish the control-observe points, by either inserting scan registers

to support structural test or selectively partitioning a functional block so that the

read/write ports are both available on the same layer so as to use functional test. In-

stead of inserting scan flip-flops to both ends of TSVs, Li and Xiang [29] proposed

to reuse existing primary I/Os or pseudo primary I/Os to provide controllability

and observability for signals associated with TSVs. Wu et al. [30] proposed 3D

scan chain design that cross multiple dies to minimize the stitching wirelength.

For the more practical 3D-SICs that are partitioned at block or core level, modular

testing is a natural choice to reduce the required number of test pads. Marinissen

et al. [31] proposed to add IEEE 1500-like test wrapper for a die with 3D-specific

extensions, such as dedicated test pads for pre-bond probing. Marinissen et al. [32]

further extend this die-level wrapper by providing external control interface, which

is now being formalized as IEEE P1838 standard [33]. These test solutions, how-

ever, have simplified assumptions. For example, modular test access design is

limited by the assumption that all the devices are scan testable. Hence, it is neces-
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sary to consider more complicated scenarios, e.g., clock generator, analog/RF and

non-CMOS devices.

Besides the silicon die testing, the difficulty in TSV probing also raises ques-

tions to the feasibility of pre-bond TSV testing since no test access exists at the

TSV tips (located on the bottom side of the die). To solve the problem, existing

works focus on measuring the I-V characteristics (e.g., resistance and capacitance)

with the help of design-for-test (DfT) circuitries built around TSV end-points that

located on the face side of the die. The application of on-chip sense amplification

was proposed in [34, 35] for detecting capacitive TSV faults. Further, a voltage

divider is added for scannable voltage test [36]. Two other methods utilizing leak-

age current sensor and capacitive bridge were evaluated in [37] to measure TSV

resistance and capacitance. As analog devices are utilized in above DfT circuits,

the accuracy of measurement is quite sensitive to the tester capability and environ-

mental noises. Moreover, these sophisticated DfT circuits significantly increase

the hardware cost.

At last, the pre-bond test complicates the conventional test flow and increases

the test cost. Besides pre-bond test, Marinissen [38] discussed the impact of con-

ducting “intermediate stack test” and “pre-package test” before the final post-bond

package test, and they are treated as part of pre-bond testing in this thesis.

1.3 Yield and Reliability Challenges for 3D-SICs

All the advantages of 3D-SICs described in Section 1.1 must be translated into

cost-effectiveness so that the emerging 3D products (including but not limited to

what we mentioned in Section 1.1.3) can be commercially viable. Among the

various factors that affect 3D-SIC product cost, manufacturing yield is one of the

most (if not the most) crucial ones [16], and it was showed that the functional yield

of a rather simple 3-layer chip is only a bit more than 60% [39]. In this section,
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we first discuss the yield and reliability crisis in 3D-SICs. Then, a mathematical

yield model for 3D-SIC is presented to show the importance of the yield issue.

1.3.1 Yield and Reliability Crisis in 3D-SICs

Generally speaking, there are two kinds of yield losses in manufacturing 3D-SICs.

• Stack yield loss, caused by defects in one or more of the stacked dies. With-

out KGD information, the yield of the W2W bonded 3D chips can be quite

low, especially when the die size is large and/or the defect density is high [7].

While D2W/D2D bonding facilitates to achieve higher stack yield than W2W

bonding strategy, however requires costly and challenging pre-bond test.

• Assembly yield loss, caused by defects occurred during the assembling pro-

cess. The assembly process for 3D-SICs involves many challenging manu-

facturing steps, which may cause various types of TSV defects [40]. For ex-

ample, the wafer thinning possibly leads to degradation of some I-V charac-

teristics, shifts in device performances, and gives rise to yield losses [41, 42].

Insufficiently filling of TSVs is likely to occur during TSV formation, which

results in micro-voids inside TSVs. In [43], twelve different types of TSV

defects were identified, eight of which involve defects that arise prior to

bonding, while the rest is induced due to alignment, bonding, or stress.

For stack yield improvement, needless to say, pre-bond test plays an important

role for D2W/D2D bonding and it is critical to achieve high defect coverage to

prevent bad dies from being stacked [24]. Even for W2W bonding, with KGD

information from pre-bond tests, stack yield improvement can be achieved by con-

ducting selective wafer matching for maximal combination of good dies [44, 45].

While wafer matching is helpful for stack yield improvement, its effectiveness is

fundamentally constrained by the defect rate of individual dies.
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For assembly yield enhancement, adding redundant TSVs [1, 2, 3, 46] to repair

faulty ones is probably the only effective method besides improving the manufac-

turing process itself. Nevertheless, effective TSV testing is essential to identify the

faulty TSV prior-/post bonding process before one can be repaired. A number of

TSV redundancy allocation strategies were presented in the literature and they dif-

fered in terms of redundancy ratio, repair flexibility and capability, and hardware

cost (e.g., [47]). However, their effectiveness is limited either by the high cost of

redundant TSVs, or the poor scalability in 3D-SICs with massive use of TSVs.

Not like above manufacturing defects (t = 0), latent defects, such as micro-

voids and interfacial cracks in TSVs, are induced by the thermal-mechanical stress

during the TSV fabrication due to the different coefficients of thermal expansion

among diverse materials in 3D stack. These latent defects are usually too small to

be detectable in manufacturing test. While at runtime (t > 0), they get exacerbated

with the electro-migration of TSVs [48, 49, 50], and finally lead to hard-to-predict

timing errors on critical paths with TSVs, thereby resulting in accelerated chip

failure in the field.

1.3.2 Yield Modeling

The manufacturing yield of a single silicon die based on compound poisson model [51]

is as follows:

Ydie = (1+
DAdie

α
)−α (1.1)

wherein D is the defect density, Adie is the die area and α is the clustering parameter

related to the technology and the design itself (e.g., circuit density and mask steps).

Yield modeling for 3D-stacked ICs is more complicated considering the extra

processing steps, various stacking manners, and the impact of die/wafer matching,

as discussed in this chapter.
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1.3.2.1 Stack Yield Modeling

Consider a 3D-stacked IC product containing N layers, and the yield of ith layer

die is Ydiei . Its manufacturing yield using W2W integration (without matching) can

be roughly calculated as follows:

Ystack,W2W =
N

∏
i=1

[Ydiei ] (1.2)

With D2W/D2D integration, assuming perfect KGD tests, the yield of 3D-

stacked IC product can be estimated as:

Ystack,D2W/D2D = min[Ydiei ],1≤ i≤ N (1.3)

This is because, consider that we have the same number of dies fabricated

for each layer, the final good die-stack will be constrained by the layer with the

minimum number of good dies. The above clearly demonstrates the yield benefits

of D2W/D2D integration [16, 24]. Let us now examine the yield model in detail

considering the various factors besides bonding choice.

The impact of footprint: By partitioning a large monolithic 2D-IC into several

smaller dies and stacking them together to provide the same functionality, it is in

fact beneficial from the yield standpoint since each die now has a much smaller

area. On the other hand, there is some additional area overhead for 3D-stacked ICs

with TSVs and design-for-testability (DfT) for pre-bond testing. We can roughly

obtain the yield model for die i in 3D-stacked IC as follows:

Y 3D
diei

= (1+
Di

αi
(
A2D

die
N

+Oi))
−αi (1.4)

wherein A2D
die is area of the monolithic 2D implementation and Oi is the extra area

overhead of this particular die.

The impact of KGD test: As discussed earlier, pre-bond testing can be applied

to identify known good dies for later bonding. Clearly, the test quality will affect
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the final yield of 3D-stacked IC products. The ratio of defective dies that escape

pre-bond tests to all the ICs can be derived as [52]:

Rescape = 1−Y 1−Fc
die (1.5)

wherein Fc is the fault coverage of pre-bond tests. Thus, if D2W/D2D integra-

tion is used, the test escape ratio for the stacked IC can be estimated as [53]:

Rescape,D2W/D2D = 1−
N

∏
i=1

Y
1−Fci
diei

(1.6)

Taking the above yield loss into consideration, the stack yield for D2W/D2D

in Eq. 1.3 integration can be revised as:

Ystack,D2W/D2D = min[Ydiei +Rescapei ] ·
N

∏
i=1

Y
1−Fci
diei

(1.7)

The impact of wafer matching for W2W integration: In [54], Verbree et al.

formulated a closed-form mathematical model to approximate the stack yield with

wafer matching, by introducing a probability p( j), which denotes the occurrence

of matching exactly j faulty dies between two bonding wafers. There are some

limitations in this analytical model, e.g., the model assumes a fixed number of

faulty dies per stack tier, as pointed out in the paper itself.

1.3.2.2 Assembly Yield Modeling

The assembly yield (Yassembly) of 3D-stacked IC products can be calculated as fol-

lows:

Yassembly = YBonding ·YT SV (1.8)

wherein YBonding is the bonding yield and YT SV is the TSV yield [53]. Currently,

there is still no concrete model for YBonding that takes device failure caused by

bonding into account and it is typically assumed to be a constant value. For YT SV ,
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as discussed earlier, TSVs are vulnerable to various kinds of defects introduced

during fabrication and stacking process [24, 27]. Without redundancy, YT SV is

simply:

YT SV = (1− fT SV )
NT SV (1.9)

where fT SV is the TSV failure rate and NT SV is the total number of TSVs. From

the above equation, TSV yield is a crucial factor for 3D-stacked IC products, es-

pecially when the number of TSVs are large and/or the TSV failure rate is high.

Consequently, it is essential to incorporate redundancy for TSV defect-tolerance.

1.3.2.3 Cumulative Yield Model

According to the cumulative yield property [55], the final yield of 3D-stacked SICs

Yf inal can be formulated as follows:

Yf inal = Ystack

N−1

∏
i=1

Yassembly(i) (1.10)

where N is the number of layers in the 3D-stacked IC product, Ystack is the stack

yield and Yassembly(i) is the assembly yield for the ith assembly process.

Let us do a simple mathematical calculation to show the importance of yield

issue for 3D-SICs. Given a 3D-SIC containing six stacked dies, each of which

has a yield 90%, we assume the test coverage of pre-bond test for each die equals

to 80%. According to Equation (1.7), the stack yield of this 3D-SIC is 81%. We

further assume there are 1000 TSVs with 500dppm (defect part per million) im-

plemented in this 3D-SIC. And we can get the assembly yield as 77.8%, according

to Equation (1.9). The final yield is now 63% based on Equation (1.10), rendering

a significant yield loss for this 3D-SIC. This simple example shows that the yield

enhancement technique is essential for the mainstream semiconductor industry to

adopt 3D-SICs.
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1.4 Thesis Motivation and Organization

In this thesis, we propose a systematic set of solutions, providing effective and

efficient designs and algorithms, to enhance the yield and reliability of 3D-SICs.

First of all, extensive works have studied the new types of defects introduced

in 3D integration and found that conventional fault models can cover a majority

of them. There is little work discussing TSV coupling effect [56], especially for

future 3D DRAMs that employ a large amount of TSVs. This motivate us to

present an analytical model to capture the faulty behavior of TSVs in 3D DRAMs

structures. This model serves as the first step towards further yield and reliability

enhancement techniques, as demonstrated as follow:

To improve the stack yield, pre-bond test is essential to prevent faulty dies from

being stacked. However, the basic test architecture of 2D SoC is not able to sup-

port the pre-bond test for 3D SoCs. Motivated by this, in this thesis, we propose

an efficient test architecture design and optimization methodology to facilitate the

pre-bond test for 3D SoCs. In addition, pre-bond test requires additional test pins,

as depicted in Section 1.2, leading to significant hardware cost. This motivates

this thesis to optimization the test architecture under pre-bond test-pin-count con-

straint.

With enhanced pre-bond testability, there is less chance for a faulty die to

be mistakenly stacked with good dies. However, 3D-SICs still suffer yield loss

due to the discarded faulty dies. A more attractive way is to make use of bad

dies after stacking, and it is possible only if the die has inherent redundant re-

sources (e.g., memory). Consider conventional 2D memories that a memory block

cannot borrow redundant resources from its neighbors for repair due to the rout-

ing complexities and the change of electrical properties. A 2D memory chip is

deemed to be faulty if any memory block cannot repair itself with its own redun-

dant resources (self-irreparable). In 3D memories, however, it is possible for a
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self-irreparable memory block to use TSVs to borrow redundant resources from

its vertical neighbor. Motivated by this, in this thesis, we discover a novel repair

framework for 3D DRAMs, including redundancy sharing scheme and an iterative

die-matching algorithm that selectively match the DRAM dies to be stacked to

enhance the stack yield.

In order to resolve the TSV induced assembly yield loss, effective TSV repair

mechanism should be addressed. Existing TSV repair techniques are with limited

reparability, and more importantly, are vulnerable to clustered TSV faults. Moti-

vated by above, we propose a novel TSV-grid based redundancy architecture and

corresponding algorithm to tackle above problem.

To enhance the reliability and extend the service life of 3D-SICs, the TSV la-

tent faults must be detected and repaired in the runtime, which is, in any case,

beyond the capability of all existing TSV repair solutions. Motivated by this, in

this thesis, we describe a reconfigurable in-field repair solution that is able to ef-

fectively tolerate latent TSV defects through the judicious use of spares. The pro-

posed solution includes a reconfigurable repair architecture that enables spare TSV

sharing between TSV grids, and the corresponding in-field repair algorithms.

The remainder of this thesis is organized as follows. Chapter 2 addresses the

fault modeling for TSVs in 3D DRAMs. Effective test patterns are also gener-

ated to cover the new faulty behaviors. Chapter 3 presents the test architecture

design and optimization for 3D SoCs. The pre-bond test-pin-count constraint is

also considered in this chapter. We present the repair framework for 3D DRAMs

in Chapter 4. In Chapter 5, the TSV-grid based redundancy architecture and repair

algorithm are described. Based on above work, in Chapter 6, we propose an effi-

cient in-field repair solution, including the hardware architecture together with an

in-field TSV repair algorithm. Finally, chapter 7 concludes this thesis and points

out our future research directions.
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� End of chapter.



Chapter 2

Modeling TSV Open Defects in 3D

DRAM

2.1 Introduction

3D-stacked memories can be implemented in several manners. One possible orga-

nization is simply using TSVs to implement a vertical bus across multiple DRAM

layers to link them to the processor layer [1, 20, 10], as shown in Fig. 2.1(a). Such

memory organization reduces the long memory access latency, but does not pro-

vide much bandwidth benefits because the individual structures in each layer are

still traditional two-dimensional memory structures.

To fully exploit the benefits of 3D stacking technology, another DRAM orga-

nization is introduced wherein individual storage-cell arrays are stacked in a 3D

fashion. TSVs are used to link these memory arrays from different layer to pe-

ripheral logic (e.g. decoder and sense amplifier) in bottom layer [23], as shown in

Fig. 2.1(b). By isolating the peripheral logic implemented with CMOS technology

from the DRAM bitcells implemented with NMOS technology, such architecture

not only reduces manufacturing complexity, but also enables individual optimiza-

18
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Figure 2.1: Two Example 3D-stacked DRAMs.

tions of logic layer for speed and storage layers for density, thus dramatically re-

ducing memory access time. In addition, TSVs are implemented as part of the

bitlines and wordlines, leading to significant increase of memory bandwidth.

Recently, Tezzaron Semiconductor has implemented the above “true” 3D DRAM

architecture (see Fig. 2.1(b)). In their design, one TSV is shared by two wordlines

through a 1 to 2 decoder at the edge of each memory array. At another edge of each

memory array, the 8 to 1 mux are placed to control which bitline can connect to

the sense amplifier by TSV [57]. This design not only release the pitch-mismatch

problem [57], but also reduce the excessive use of TSVs. However, it still leads

to a massive usage of TSVs with density in the range of tens of thousands of

TSVs/mm2, that is, approximately 1.5 million TSVs for 1Gb memory [58]. Con-

sequently, to obtain high manufacturing yield for such 3D DRAM circuits, it is

essential to understand the faulty behavior of TSV defects and develop effective

test and repair solutions to tolerate such defects.

The primary failure mechanism for TSVs is random open defects (e.g., caused

by void after filling) during TSV fabrication [3]. However, we cannot simply

model such defects as wordline/bitline stuck-open faults as in [59] for 2D DRAM

circuits. This is because the extremely high density of TSVs makes capacitive
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coupling effects among them not negligible [60]. To tackle this problem, in this

chapter, we conduct extensive simulations to study the faulty behavior of TSV

open defects and map them to functional fault models of the memory circuits,

which serves as the first step to tackle the test and repair problem for 3D DRAMs.

The remainder of this chapter is organized as follows. Section 2.2 presents

preliminaries of this work. In Section 2.3, we describe the simulation methodology

employed in this work. Next, the simulation results and analysis for wordline

opens and bitline opens due to TSV defects are detailed in Sections 2.4-2.6. In

Section 2.7, we map the TSV open defect into memory functional fault models

and present corresponding test implications. Finally, Section 2.8 concludes this

chapter.

2.2 Preliminaries

2.2.1 Memory Operation

Fig. 2.2 presents an example equivalent circuit with one DRAM layer connect-

ing to the bottom peripheral layer using TSVs. For simplicity, only three word-

lines (WLA-WLC) are shown in this figure. With the commonly-used folded bitline

DRAM architecture [61], each column in the memory array has two bitlines (BL

and BL), intersecting each wordline at two points, wherein one storage-cell is

placed in one of these two points. Nevertheless, the storage-cell can be placed

in either BL or BL, for example, storage-cell along WLA are all in BL while that

along WLB and WLC are all in BL (see Fig. 2.2). Pass transistor connects storage-

cell with bitline, and it is controlled by the corresponding wordline.

During write operation, the wordline is driven with logic ‘1’, turning on the

pass-transistor. After write enable signal (WE) is turned on, the input data directly

drive the bitlines(e.g. drive BL to ‘1’ and drive BL to ‘0’ simultaneously), charg-
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Figure 2.2: 3D DRAM Model.

ing (discharging) the target cell capacitor. During read operation, there are four

phases: (i) In precharge phase, both BL and BL are charged as Vre f by precharge

circuit. After that, precharge circuit is isolated from bitlines. (ii) In access phase,

specific wordline is accessed by driven to logic ‘1, turning its pass-transistors on.

Then the storage capacitors begin to charges/discharge the BL while BL remains

as Vref (i.e. when WLA is accessed in Fig. 2.2), and vice versa (i.e. when WLB

or WLC is accessed). (iii) In sensing phase, the minute voltage difference between

BL and BL makes the two transistors in diagonal position in sensing circuit more

conductive, leading to a positive feedback, which continually enlarges the voltage

difference until one of them is pulled up to ‘1’ while the other dragged down to

‘0’. (iv) Finally, the result comes out through the output circuit and restored back

to the accessed storage-cell.
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2.2.2 Related Work and Motivation

Open defects in memory circuits are traditionally modeled as stuck-open faults [59].

With this fault model, when an open spot occurs on the bitline/wordline, the mem-

ory cell becomes unaccessible. Using defect injection and SPICE simulation, re-

sistive open defects on the wordlines/bitlines of traditional 2D DRAM circuits

have also been studied in several prior works [62, 63]. To the best of our knowl-

edge, there is no work on full open defect in DRAMs.

Generally speaking, a full open defects breaks an interconnect into two parts:

one connected to the source, while the other disconnected as a floating net. Ac-

cording to several electrical models for full interconnect opens [64, 65, 66], the

parasitic capacitances between the floating net and its neighbors may have a sig-

nificant impact on the voltage of the floating part, and Aggressor-Victim model

is commonly used for analysis. For example, in [64], the authors sum up all the

coupling capacitance of aggressors having logic value ‘0/1’ as C0/C1. Then it de-

termines the voltage of the floating part by comparing C0 and C1. For 2D DRAM

circuits with bitline/wordline opens, coupling from its surroundings is of a less

concern because the coupling capacitance is usually quite small and hence does

not affect the DRAM faulty behavior.

When TSVs are used as part of the bitlines/wordlines in 3D DRAMs, however,

not only they are more prone to random open defects [3], but also their capacitive

coupling is not negligible, as studied in [60]. Previous stuck-open or resistive open

fault models hence cannot accurately capture the faulty behavior of TSV open de-

fects in 3D DRAM. In addition, as the coupling effects between aggressor TSVs

and victim open TSV vary with the operation of the DRAM, the faulty behavior

of TSV open defects in 3D DRAM is affected by many factors, e.g., operation

type (i.e., read or write), voltage of its neighboring wordlines/bitlines and cou-

pling capacitance from its surroundings. Consequently, it is almost impossible to
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analyze the faulty behavior of TSV open defects statically. The above motivates

us to conduct extensive simulations to study TSV open defects in this work.

2.3 Simulation Methodology
Based on [?], we set the size of TSV as 1.5µm× 1.5µm. According to the 3D

DRAM cell feature size, we estimate the distance between TSVs to be 2− 4µm.

Based on the previous characteristic extraction for TSVs in [60], we set two rea-

sonable value 0.6 f F and 1 f F as the boundary of their coupling capacitance in our

simulation, regardless of the TSV open position. The storage-cell intrinsic capaci-

tance is set to be 30 f F . We also set Vdd = 1.8V and reference voltage is half of it.

The threshold voltage of each pass-transistor is set to be 0.6V .

In our simulation study, for a victim TSV with open defects, we only con-

sider the capacitive coupling effects from its neighboring TSVs (i.e., without other

TSVs in between), because the coupling effects from farther TSVs are usually

shielded out by the TSVs in between [60]. We are not concerned about the cou-

pling effects between TSVs used to implement part of wordlines and those on

bitlines, that is because they are routed outside of two different borders of each

DRAM bank respectively, by which their coupling effects can be ignored. In ad-

dition, we differentiate TSVs that are at the border and hence only have neighbors

at one side(denoted as border TSVs) and TSVs that are in the middle and hence

are surrounded by other TSVs (denoted as middle TSVs), because they suffer from

different coupling effects. For the ease of discussion, we denote “XwY ” as write

logic X (i.e., ‘1’ or ‘0’) to a cell with logic Y (‘1’ or ‘0’). Similarly, “Xr” denotes

read from a cell with logic X. The wordline/bitline with TSV open defect is simply

denoted as open wordline/bitline. We also assume that the coupling effect between

TSVs and traditional vias are negligible due to the small size of traditional vias.

In the following, we first show our simulation models and results for word-
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line/bitline opens considering coupling effects from TSVs originating from the

same layer, where there are at most two neighboring aggressors to the floating wire

(Section 4-5). Then, in Section 6, we extend the simulation model to consider the

coupling effects between TSVs passing through different layers with more aggres-

sors.

2.4 Simulation for Wordline Opens

2.4.1 Simulation Setup

For TSV open defect on wordline, the floating part is the wordline in DRAM layer

and the pass transistors (MOSFET) on it. According to [65], the gate-to-source

voltage (Vgs) of a floating pass transistor depends on two factors: voltage on neigh-

boring nets of the floating wordline (Vmg) and the drain-to-source voltage (Vds) that

determines the operational region of transistor (i.e., off, linear or saturation). As

“0w0” and “1w1” operations will not change the cell capacitor, we only consider

the following operations: “1w0”, “0w1”, “1r”, and “0r” in our simulation. In ad-

dition, consider the example circuit in Fig. 2.2 and suppose WLB has a TSV open

defect, there are two possible cases to be concerned: (i) WLB is accessed (turned

on); (ii) one of WLB’s neighbors, WLA, is accessed. For the former case, as none

of its neighbors can be turned on (only one wordline can be accessed in a memory

bank), it behaves as a stuck-open fault. We therefore only need to simulate for the

latter case.

Fig. 2.3(a) shows the schematic circuit used in our simulation for wordline

opens. The open defect is represented by a very large resistance Ropen in SPICE

simulation. Wordline WL0 has an open TSV, we simply denote it as an open word-

line. Wordline WL1 (WL2) is the neighboring wordline being turned on (turned

off). PT0 and PT1 are the pass transistors. C0 and C1 are the corresponding cou-
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Figure 2.3: Simulation Model and Two Scenarios for Write/Read Operation with

Wordline Opens.
pling capacitance between adjacent TSVs, driven by logic ‘1’ and ‘0’, respectively.

Cell0 is the floating cell and Cell1 is the accessed cell. Cb is the wire parasitic ca-

pacitance in bitline. We use a voltage pulse source (Vsig) to represent the voltage

change when wordline is accessed. The switch X is used for transfering between

two scenarios in terms of the corresponding position of Cell0 and Cell1: (i) con-

nect X to BL such that the accessed cell and floating cell are in the same bitline; (ii)

connect X to BL such that accessed cell and floating cell are in the complemental

bitlines. We use the following example to demonstrate these two scenarios.

Fig. 2.3(b) presents the structural view of accessing neighboring wordline of

an open one. Let us consider wordline (WL0) is open, thus Cell0 is the floating

cell. For scenario (i), WL2 is accessed and Cell1 is the accessed cell. Cell0 and

Cell1 are in the same bitline (BLi). For scenario (ii), WL1 is accessed and Cell2 is

the accessed cell. Cell0 and Cell2 are in complemental bitlines.

During write operation there is no difference between these two scenarios,

since there is a source driving both BL and BL. Thus, we turn off the sense enable

signal SE to isolate the sensing amplifier and drive the bitline BL to corresponding
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logic (Y = 1 or Y = 0) (see Fig. 2.3(a)). During read operation, the corresponding

position of the accessed cell and floating cell should be considered, because there

is no strong source in bitline during sensing phase. Thus the different correspond-

ing positions of accessed cell and floating cell affects the simulation results. As

a result, we consider both scenarios during read operation simulation with open

wordline.

2.4.2 Simulation Results and Analysis for Write Operation

Fig. 2.4(a)-(b) shows voltage change on Cell0 due to the coupling effect. As 1.2V

is the maximum voltage can be written into a fault free storage-cell, we set the

initial VCell0 1.2V for “1w0” and 0V for “0w1”. Fig. 2.4(a) shows that for middle

TSV open, a single “0w1” operation to Cell1 can only drive Cell0 to 0.4V due

to the weak pulling up capability of NMOS transistor while the “1w0” operation

can pull down the voltage of Cell0 efficiently. Fig. 2.4(b) shows the simulation

results by applying the same operation six times (i.e., ”0w1w1w1w1w1w1” and

”1w0w0w0w0w0w0”). For wordline with middle TSV open, the voltage can be

written into a cell capacitor in “0w1” operation is no more than 60mV , while the

times needed to write cell capacitor to 0 depends on the coupling capacitance be-

0ns 1.5ns 3.0ns0V

0.4V

1.2V

(a) Single Write
0ns 15ns 30ns

V(1w0)

(b) Multiple Write 

V(0w1)

0.8V

0.6fF 1.0fFMiddle Border

Figure 2.4: Write Operation with Wordline Open.
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cause aggressor TSVs with higher coupling capacitance is more effective to drive

the floating cell capacitor. Both Fig. 2.4(a)-(b) shows that it is able to drive cell

capacitor in a border TSV more aggressively, even with low coupling capacitance

0.6 f F .

2.4.3 Simulation Results and Analysis for Read Operation

Previous results show that an open wordline can turn on the pass-transistor when

its neighboring wordline are accessed. Because of this, two storage-cells may be

read out at the same time. One is in the accessed wordline (accessed cell) while

the other is in the open wordline (floating cell). To simulate logic ‘1’ in accessed

cells, we set the initial value to be 1.2V . The upper-bond of floating cell is set

according to the result of previous write operation simulation (in Fig. 2.4).

After simulation, we found that there are only two cases that the output is

affected by floating cell: (i) when the floating cell and the accessed cell are in the

same bitline, and accessed cell is with logic ‘1’ while the floating cell is with logic

‘0’; (C7 = 0,C4 = 1 in Fig. 2.5); (ii) when these two cells are in complemental

bitlines, and the two cells are both with logic ‘0’ (C0 = 0,C4 = 0 in Fig. 2.5).
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Furthermore, the output is only affected when C0 = 0 in the wordline with border

TSV open. The final result is still correct when C0 is in the wordline with middle

TSV open. That is because, for middle TSV open, the capacitive coupling from

logic ‘1’ is equal to that from logic ‘0’, thus, the voltage in the victim wordline is

not high enough to fully open the pass transistor, and C0 cannot affect the bitline

effectively.

Fig. 2.6(a)-(b) present the results of cells stay in the same bitline and comple-

mental bitlines when the floating cell is 0. In both cases, the result is incorrect

when coupling capacitance is 1 f F . In Fig. 2.6(a), C4 and C7 are fighting with each

other on the same bitline after wordline access. Bitline is first discharged by C7

leading to voltage drop, then the charging effect from C4 become dominant and

pull up the voltage of bitline. However, it cannot reach the Vre f at last, leading to

incorrect result. The correct voltage of BLi−1 should be logic ‘1’ but now it is ‘0’.

The correct voltage of C4 should be logic ‘1’ (the voltage in accessed cell remain

the same during read operation), but now it is also logic ‘0’.

In Fig. 2.6(b), C0 and C4 are fighting on two complemental bitlines, which

are being charged from Vre f (0.9V). Along with the charging, Vds of pass tran-

sistor (equal to voltage difference between bitline and cell capacitor) is reduced,

0ns 10ns
(a)  Same BL, C4-1,C7-0

0V

1.8

0.9

5ns 0ns 10ns
(b)  Comp. BL, C4-0,C0-0

5ns

V(BLi-1)V(Cell1) 0.6fF 1.0fF

Correct

Fault

Fault

Correct

Figure 2.6: Read Operation with Wordline Border TSV Open.
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making the pass transistor stay in linear region. Since it is weak to charge the float-

ing cell Cell0 to logic ‘1’, the voltage in Cell0 is lower than that in Cell4. Thus,

at last in the saturation region, the voltage in BLi−1 is lower than that in BLi−1,

leading to incorrect result. The correct voltage of BLi−1 should be logic ‘0’, but

now it is ‘1’. The correct voltage of C4 should be logic ‘0’, but now it is also ‘1’.

2.5 Simulation for Bitline Opens

2.5.1 Simulation Setup for Bitline Opens

For write and read operations under open bitline, we do the simulation in two cases.

(i) directly access the open bitline; (ii) access its neighboring bitline. Fig. 2.7

presents the schematic circuit used in our simulation for bitline BLi with TSV open

defect. The coupling capacitance Cc is between adjacent TSVs. We set the bitline

capacitance to a feasible value 20 f F . The simulation setup for write operation

is less complicated, because sense amplifier is shut down during write operation,
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only the accessed storage-cell is affected. To simulate ‘1’, we link a voltage pulse

source to the corresponding bitline. For case (i), we add this voltage pulse source to

the open bitline. For case (ii), we link it to the open bitline’s neighboring bitlines.

Before sensing phase, all bitlines are floating without any strong source.

Fig. 2.8 presents the structural view for this situation. Assume bitline BLi

suffers TSV open defect. For read operation with this open bitline, let us consider

two cases: (i) If we access WL0, bitline BLi is driven by C1. Although bitline BLi

is floating with reference voltage due to open defect, the sense amplifier can still

sense the voltage difference between BLi and BLi and then drive both bitlines to

opposite voltages. In this case, the open defect will not influence the output of read

operation. (ii) However, if we access WL1, bitline BLi is floating because there is

no storage-cell being accessed in BLi. At the same time, bitline BLi is also floating

due to the TSV open defect. Thus, bitline BLi will be influenced by C4 on bitline

BLi−1 while bitline BLi will be influenced by C6 on bitline BLi+1 (see the arrows in

C0
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WL1

WLn
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Figure 2.8: Read with Bitline Open: An Example.
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Fig. 2.8). As a result, we run simulation for the latter case to see the corresponding

fault behavior. It should be notes that, before read operation’s sensing phase, all

bitlines are floating at Vre f since there is no strong source.

2.5.2 Simulation Results and Analysis for Write Operation

For write operation under bitline open defect, there are two scenarios as men-

tioned in section 2.5.1. (i) We directly drive the open bitline with logic ‘1’ and ‘0’

respectively, and find that the voltage change of storage-cell in the open bitline is

negligible. (ii) We write logic ‘1’ to the neighboring bitlines of open bitline and

expecting the storage-cell in open bitline to be driven to high voltage through the

capacitive coupling between bitlines. We find that it can only be driven to less

than 60mV . If the initial voltage of the accessed cell in open bitline is logic ‘1’,

no matter what logic is written into the neighboring bitline, the voltage is reduced

almost by half. Because both the parasitic capacity and the storage-cell capacity in

the open bitline is quite large while the coupling effect from neighboring bitlines is

negligible. In addition, the sense amplifier is shut down during write operation. As

a result, the voltage drop in accessed cell is caused by discharging from accessed

C4=0,C6=0

C4=1,C6=1
10ns5ns

Driving same value on BLi and BLi

0V

1.8V

0.9V

V(BLi)

Figure 2.9: Read Operation with Bitline Open.
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cell to parasitic capacitance of open bitline. In practical, both write operation on

open bitline and its neighbor will not change the behavior of open bitline.

2.5.3 Simulation Results and Analysis for Read Operation

For case (ii) in Fig. 2.8, the simulation result shows that, when the neighbors BLi−1

and BLi+1 drive BLi and BLi with opposite logic values (one is ‘1’ while the other

is ‘0’), the voltage difference between BLi and BLi is amplified by sensing cir-

cuit, charging BLi and BLi to opposite logic values. The output of open bitline

is reinforced by both its neighboring bitlines. We denote this fault behavior as a

compatible coupling. When two neighbors, BLi−1 and BLi+1 drive BLi and BLi

with the same logic value (both ‘1’ or both ‘0’). From the simulation result (see

Fig. 2.9), we know the output of open bitline BLi is determined by C6 since C6 is

coupled with BLi, the complemental bitline of BLi. We denote the driving force

as the capability to drive the open bitline through capacitive coupling. The larger

distance between the aggressor bitline (TSVs) and the open bitline (TSV) is, the

smaller coupling capacitance is. Since BLi−1 and BLi+1 have the same storage-

cell value during the read operation, they pull up (or pull down) BLi and BLi at the

same time. The coupling capacitance from BLi+1 to BLi is larger than that from

BLi−1 to BLi, the driving force of BLi+1 is larger, making BLi+1 dominates the

logic value in BLi. We denote this fault behavior as a Competitive coupling.

We vary the coupling capacitance Cc from 0.1 f F to 1 f F and find similar re-

sult. The reason is that, the sense amplifiers are active during sensing phase of read

operation. Although the coupling capacitance is small (0.1 f F) between neighbor-

ing bitlines, any small voltage changes in open bitline generated by this coupling

capacitance can be magnified by sense amplifier.
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2.6 Simulation with TSV Coupling from Multiple Lay-

ers

Previous simulation studies assume no capacitive coupling from aggressor TSVs

on multiple layers. In this section, we consider such coupling effect and present

their faulty behaviors. Here, we only consider the case of wordline opens. This is

because the faulty behavior of bitline opens are quite similar to what we have stud-

ied in Section 5. We just need to know the driving forces among all the neighbors

of the open bitline. If the driving force for logic ‘1’ is larger than that for logic ‘0’,

the open bitline read as logic ‘1’ , otherwise logic ‘0’.

2.6.1 Simulation Setup

Fig. 2.10(a) presents a possible wordline routing scheme from three vertically

stacked memory layers, with its cut-view shown in Fig. 2.10(b). With TSV cou-
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w

s

Tc

C(Ta,Tc)
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(a) TSV from Multiple Banks (b) TSV Layout Cutview 

Tb Ta
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Figure 2.10: TSV Coupling from Multiple Layers.
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pling from multiple layers, a middle TSV may have eight neighboring TSVs, in

which four of them are at orthogonal direction, while the others are at diago-

nal direction (TSVs from the same layer are arranged in the same column, see

Fig. 2.11(a) and Fig. 2.12(a)).

Using Aggressor-Victim Model [64], we can extend our earlier simulation

model to consider such additional TSV coupling effects. That is, based on the

capacitance extraction model presented in [67], we first calculate the sum of ca-

pacitance coupled to all possible neighboring TSVs driven by logic ‘1’ and ‘0’, re-

spectively. Then we change the value of coupling capacitance parameters (C1 and

C0) with the calculated values and conduct simulation using the same schematic

circuit in Fig. 2.3. Since driving different logic values on these neighboring TSVs

leads to different C1 and C0, without loss of generality, we consider two cases that

may cause different faulty behaviors, when compared to the case that aggressor

TSVs are from a single layer, as shown in Fig. 2.11-Fig. 2.12.

2.6.2 Simulation Results

As discussed in Section 4, when aggressor TSVs are from the same layer, access-

ing the open wordline behave as a stuck-open fault (only one wordline can be

accessed in a memory bank). When the aggressor TSVs are from multiple layers,

however, this is not true since wordlines from different layers can be accessed at

the same time. To simulate this case, as shown in Fig. 2.11(a), for open TSV i,

its two aggressor TSVs from other layers are driven to be logic ‘1’ and we are

interested in the behavior of the corresponding wordline WLi.

Fig. 2.11(b) presents the voltage change of floating cell Cell0 in WLi when

“0w1” and “1w0” are applied to wordline WLi. As can be observed from the simu-

lation results, even though this wordline is open, its storage cell can be written with

logic ‘0’ by repeating “w0” operations several times, but it cannot write logic‘1’
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into the storage cell due to the weak pulling up capability of pass transistors.

Fig. 2.11(c)-(d) shows the simulation results when we read the storage cell

on open wordline under the same condition. We can get a correct result for “0r”

operation. However, for “1r” operation, the result depends on the coupling capac-

itance. When the coupling capacitance is 1 f F , logic ‘1’ can be successfully read

out. When the coupling capacitance is 0.6 f F , however, we read an incorrect logic

‘0’ out. This is because the low coupling capacitance drives insufficient voltage on

the pass transistor and hence limits its conductivity to charge the bitline. Fig. 2.12

presents the simulation results for the faults shown in Fig. 2.6(a)-(b), in which the

floating cell Cell0 is in the open wordline WLi while the accessed cell Cell1 is on

the accessed wordline WLm.

Fig. 2.12(b) shows the voltage of bitline connecting to Cell1 when we access
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Figure 2.11: Case 1 for No Access Faults.
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Figure 2.12: Case 2 for Wordline Multiple Access Fault.

WLm, wherein both WLn are also accessed at the same time. C−BL,Cell0-0, Cell1-

0 represent that Cell0 and Cell1 are on complemental bitlines with logic value ‘0’.

S−BL,Cell0-0,Cell1-1 represent that Cell0 and Cell1 are on the same bitline, with

logic value ‘0’ and ‘1’, respectively. The results show that logic value read from

bitline of Cell1 is always opposite to the logic value stored in Cell1, which leads

to incorrect result.

2.7 Fault Modeling and Test Implications

In this section, we map the TSV open defect into memory functional fault models

according to our simulation.

Wordline Open:

When we access the wordline with TSV open defects, we cannot access the

corresponding cells, denoted as No Access Behavior. Consequently, write opera-

tion cannot change the values in the storage cell, and such fault behaves the same

as a transition fault (T F0 and T F1). To sensitize these faults, we need to access its



CHAPTER 2. MODELING TSV OPEN DEFECTS IN 3D DRAM 37

neighboring wordline and repeatedly write the same logic value several times (the

total number of writes depends on the coupling capacitance) to make sure the cell

capacitor fully charged.

When we access the storage-cell (denoted as accessed cell) on the neighboring

wordline of the open wordline, the floating cell on this open wordline is accessed

too. This faulty behavior is defined as Multiple Access Behavior. The write op-

eration in accessed cell forces the floating cell to be written as the same logic,

which behaves like a coupling fault (CF). For read operation, the logic value in

bitline (BL) and the content in accessed cell (Cell1) are both incorrect (Fig. 2.6(a)-

(b), border TSV Open), denoted as a Read Disturb Faults (RDF) [62]. To sensitize

the above faults, we need to set the floating cell to be the opposite logic value of

that in the accessed cell. Since every time we write logic value into the accessed

cell, the floating cell is written with the same value due to capacitive coupling,

making the above sensitizing condition unsatisfied. As a result, the RDF faults are

difficult to detect when we only consider the coupling effects from aggressor TSVs

originating from the same layer. It should be noted that, the refresh operation only

affect the fault behavior when the neighboring wordline of border wordline is re-

freshed. Refreshing other wordlines will not change the fault behavior. Because,

the neighboring wordline of the open wordline is now driven by ‘0’, the capacitive

coupling is too weak to drive the pass transistor in the open wordline.

Bitline Open:

Since the write operation with bitline opens has negligible impact on its ac-

cessed cell, we only model the fault of read operation with bitline opens. As

discussed in section 2.4.3, there are two types of coupling faults caused by bitline

with open TSV, denoted as compatible coupling faults and competitive coupling

faults. Suppose BLi is open and given the logic value in BLi−1 and BLi+1, Tab. 2.1

presents the logic value of BLi generated by capacitive coupling. Once a wordline
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is selected, all storage-cells in that wordline are accessed. These accessed cells

have two types of positions: either in bitlines (BL1, BL2,...,BLi) or in complemen-

tal bitlines (BL1, BL2,...,BLi). As mentioned in section 2.4.3, compatible coupling

faults are sensitized when two neighbors of open bitline (BLi) has opposite logic

value while competitive coupling faults are sensitized when these two neighbors

has the same logic value (see Tab. 2.1 column 2, 4 in compatible coupling and

column 6, 8 in competitive coupling). Take the first row in compatible coupling

faults (see Tab. 2.1) as an example. When WL1 is selected in Fig. 2.8, C4, C6 are

accessed, driving BLi−1 and BLi+1 to logic ‘1’ and ‘0’ respectively. Then BLi−1

drives BLi to logic ‘1’ and BLi+1 drives BLi to logic ‘0’. As a result, the output of

BLi is logic ‘1’. Other output of BLi in Tab. 2.1 can be derived in a similar way.

The fault behavior in read operation with bitline open can be mapped to one of

the functional memory fault model, that is, neighborhood pattern sensitive fault (NPSF).

We develop three March algorithms targeting one these patterns. All the fault be-

havior in Tab. 2.1 can be detected by following three test algorithms:

α : {⇑ (w0);⇑ (r0,w1,r1)}
β : {⇑ (w1);⇑ (r1,w0,r0)}

γ : {⇑ (w1);⇑ (r1)}
Considering the refresh operation, although voltage in open bitline is affected

by its neighboring bitlines, the result is not sent out. During the refresh write-back

Compatible Coupling Competitive Coupling

CellPosition BLi−1 (open)BLi BLi+1 Test BLi−1 (open)BLi BLi+1 Test

1 1 0 α 1 0 1 γ

In Bitline 0 0 1 β 0 1 0 γ

1 0 0 α 1 0 1 γ

In Bitline 0 1 1 β 0 1 0 γ

Table 2.1: Fault Modeling for Read Operation with Bitline Open.
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phase, the storage-cells in open bitline is not affected according to our simulation.

As a result, the refresh operation dose not change the behavior of bitline open

defects. It should be noted that we did not consider the column multiplexing as

in [57]. Because for those bitlines not selected by decoder, the behavior just like

the refresh operation (e.g. read phase, write-back phase). Whenever the bitlines

are switched on or off, there is no difference.

Wordline and Bitline Open with TSVs from Multiple Layer:

To test RDF , we need to apply the following operations corresponding to

Fig. 2.12(a). We first drive WLn with logic ‘1’ and WLm with logic ‘1’ to write

logic ‘0’ to Cell1. Due to the TSV coupling effects, floating cell Cell0 in WLi is

strongly driven to logic ‘0’. Then, we set both wordlines WLn=‘0’ and write logic

‘1’ to Cell1. Based on our simulation results, under the above condition, the float-

ing cell Cell0 in wordline WLi can only be weakly pulled up (see Fig. 2.11(b)).

Finally, we read Cell1 out. If we obtain an incorrect value, the wordline is faulty;

it is not otherwise.

Moreover, this crossing bank effect changes the normal memory test algo-

rithms dramatically. That is because, in 2D memory, the test in different memory

bank are independent, making it possible to test the memory chip in a highly par-

allel manner. However, in 3D memory, we have to write test pattern to memory

cells in multiple banks to satisfy the test condition.

2.8 Conclusion and Future Work
3D-stacked memory is emerging as a promising solution to tackle the “Memory

Wall” problem. The large number of TSVs implemented in 3D DRAM circuits,

however, are prone to open defects and coupling noises, leading to new test chal-

lenges. In this chapter, we model the faulty behaviors of such defects with ex-
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tensive simulation studies, map them into memory functional fault models, and

present the corresponding test implications.

Since existing March algorithms are not able to detect many faults caused by

TSV open defects. In our future work, we plan to develop new test algorithms

and the associated BIST structure to address this problem. In addition, this work

focuses on full open defects of TSVs. As TSVs can also be resistive open [62]

and may exhibit different faulty behavior, we plan to also consider resistive open

wordline/bitline in our future work.

� End of chapter.



Chapter 3

3D-SoC Test Architecture Design

and Optimization

3.1 Introduction

In this chapter, we design the test architecture for D2W/D2D 3D SoCs due to its

high yield as mentioned in chapter 1. To get the information of the “Known good

die” information, pre-bond wafer-level test is a good choice. After pre-bond test,

those bad dies are discarded and only good dies are bonded. During the procedure

of D2D/D2W bonding, however, the manufacture defects are also introduced. Fur-

thermore, after packaging procedure, the functionality of the whole SoC need to be

verified. As a result, the traditional package test is also necessary, denoted as post-

bond test. The test architecture design and optimization problem for 3D SoCs is

formulated by considering both post-bond test and pre-bond wafer-level tests. As

the test time and routing compose the major part of the test cost [53], we first

propose an test access mechanisms (TAM), wherein the test wires for post-bond

package test can be fully reused for pre-bond test. Then, we propose efficient and

effective heuristics to optimize the testing time and the routing cost associated with

41
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the proposed TAM, based on simulated annealing technique.

In order to enable pre-bond tests and improve manufacturing yield for 3-D

ICs, as introduced in Chapter 1, we have to fabricate additional test pads on the

silicon die. However, the number of test pads must be limited due to the large area

each test pad consumes. As a result, it is essential to take the pre-bond test-pin-

count constraint into consideration during test planning. Our previously proposed

TAM, however, tries to integrate pre-bond tests and post-bond test together and

may lead to high test pad requirement for certain dies. To tackle the pre-bond test-

pin-count constraint problems, in this chapter, we further propose to design the

TAMs for pre-bond tests and post-bond test separately so that the test-pin-count

constraint can be satisfied in pre-bond tests. By doing so, however, the routing

cost for TAMs may be dramatically increased as pre-bond tests and post-bond test

have different TAMs. To address this issue, we propose optimization methods that

allow us to share routing resources between pre-bond tests and post-bond test as

much as possible. Also, we show how to optimize test architectures to further

reduce TAM routing cost with little impact on testing time.

The remainder of this chapter is organized as follow: Section 3.2 first intro-

duces related works on this domain. In Section 3.3, the 3D SoC test architecture

design and optimization is proposed to minimize the test time and routing cost.

The test architecture design and optimization considering the pre-bond test-pin

constraint is then addressed in Section 3.4. At last, we conclude this chapter in

Section 7.

3.2 Preliminary



CHAPTER 3. 3D-SOC TEST ARCHITECTURE DESIGN AND OPTIMIZATION43

3.2.1 Prior Work in SoC Testing

When testing SoC devices, embedded cores are typically tested as separate, stand-

alone units, wherein test wrappers are constructed to isolate them from the en-

vironment during test while dedicated test access mechanisms (TAMs) facilitate

the transportation of test stimuli/responses between the core-under-test (CUT) and

test source/sink (e.g., tester). Within a test wrapper, scan-chains (SCs) are the key

components to deliver test stimuli and collect test response to/from the circuits

while sophisticated registers and I/O controllers are used to facilitate the switching

among normal functional mode and various test modes. These details have been

standardized in IEEE P1500 [68] and are out of the scope of this thesis. However,

it is important to note that the test application time of CUT depends on the longest

wapper SCs, which in turn, if optimized, depends on the TAM bandwidth [69].

Among various TAMs proposed in literatures, dedicated bus-based TAM be-

comes the most popular test access mechanism. We use an example in Fig. 3.1(a)

to demonstrate more details for the test bus based TAM [70]. The total TAM width

W is distributed to two TAMs each of which has TAM width w1 and w2 respec-

tively. TAM 1 connects Core1, Core2, and Core3 while TAM 2 connect Core4 and

Core5. The cores in different TAMs can be tested independently. Multiplexes are

added to select which core is actually connected to the TAM output pins. Only one

core can be accessed at a time. Hence the total test application time is the sum of

all the individual core test application times.

Since both wrapper design and TAM optimization have direct impacts on the

SoC test cost, they should be considered in conjunction to achieve the best result.

We use the same example to demonstrate the importance of test architecture op-

timization integrating wrapper design and TAM optimization. Fig. 3.1 (a’) shows

the corresponding schedule, where x-axis denotes the test time and y-axis denotes

the width of each TAM, and the total test time is determined by the maximum test
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Figure 3.1: An Example for Bus-based TAM and its Optimization.

time among all TAMs. In fig. 3.1 (a’), there is idle time in TAM 2 which no test are

applying, leading to a waste of test resource. In Fig. 3.1 (b), we swap the assign-

ment of Core3 and Core4, leading to the reduction of total test time (see Fig. 3.1

(b’)). Observing that the test time of TAM 1 is still larger than that of TAM 2, we

take one test wire from TAM 2, and assign it to TAM 1, which decrease the test

time of TAM 1 but increase the test time of TAM 2 (see Fig. 3.1 (c)). However,

the total test time is further reduced (see Fig. 3.1 (c’)). Through this example,

we know that a good test architecture can significantly reduce the test application

time.
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For an SoC with specified parameters for its cores, a test architecture and a test

schedule need to be designed to minimize the test cost, which must account for the

test application time and design-for-testability (DfT) overhead. The optimization

of the above modular test architectures and test scheduling have been subject to

extensive research [71].

3.2.2 Prior Work in Testing 3D ICs

Test techniques and design-for-testability (DfT) solutions for 3D ICs are critical

issues for the success of 3D technology, as pointed out in [72, 27]. However, only

limited work has been done in this emerging area.

Lewis and Lee [25] proposed a scan-island-based design to enable pre-bond

tests for incomplete circuits at the architecture level. Wu et al. [30] studied several

scan chain design approaches for 3D ICs and compared their routing costs. The

above works mainly target 3D ICs that put functional blocks in different silicon

layers.

For 3D SoCs with entire embedded cores on different layers, modular testing

is an attractive solution as it facilitates the reuse of test patterns. While test ar-

chitecture design and optimization for two-dimensional SoCs have been subject to

extensive research [71], these solutions are not readily applicable for testing 3D

SoCs. Marinissen et al. [31] proposed a novel test wrapper design for cores in 3D

SoCs, but it did not address the test architecture optimization problem. Recently,

a test architecture optimization technique was proposed in [73] to minimize the

testing time of 3D SOCs, under limits on the number of TSVs utilized by TAMs.

However, pre-bond tests were not considered in this work and hence it can only

provide cost-effective solutions for 3D SoCs manufactured with W2W bonding

technology. Noia et al. [74] considered the case with given fixed or yet-to-be-

designed test architecture on each die, which is able to optimize for post-bond test
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only.

3.3 On Test Time and Routing Cost

The remainder of this section is organized as follows. Section 3.3.1 motivates

this section. The test architecture design and optimization problem for test time

and routing cost reduction is then formulated in Section 3.3.2. In Section 3.3.3, we

detail our simulated annealing-based solution for the above problem. Experimental

results on benchmark circuits are then shown in Section 3.3.4.

3.3.1 Motivation

We use the following motivating example to illustrate the problem investigated in

this section. Consider a core-based 3D SoC as shown in Fig. 3.2, wherein six

cores are placed on two silicon layers. With a traditional 2D test architecture

optimizer that tries to minimize the testing time in post-bond test, we obtain the

TAM architecture shown also in Fig. 3.3. That is, there are totally three TAMs for

this example SoC: TAM1 for core 5, TAM2 for cores 1, 2, and 3, and TAM3 for
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Figure 3.2: An Example 3D SoC Test Architecture Optimized for Post-bond Test

Only.
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core 4 and core 6. In particular, TAM2 traverses two layers in this example.

When pre-bond tests at the wafer-level are required, however, the test cost

model for the 3D SoC changes. For instance, the testing time of the chip is the

sum of each layer’s pre-bond testing time and the post-bond testing time of the

entire chip. That is, for the example shown in Fig. 3.2, it contains three parts: the

pre-bond testing time for layer 1, the pre-bond testing time for layer 2, and the

post-bond testing time for the entire chip, represented as three bins in Fig. 3.3(a),

respectively. The cores in different layers are shown in different gray scales, and

the TAM can be empty if no cores in that layer are assigned to it. From this figure,

it is obvious that the test architecture optimized only for post-bond test in 3D SoCs

incurs long idle time on their pre-bond tests (see TAM2 on layer 1 and layer 2). If

we are able to design a 3D-aware test architecture as shown in Fig. 3.3(b), the total

testing time for the 3D SoC can be dramatically reduced, although the testing time

of the post-bond test becomes longer. In addition, the routing cost associated with

TAMs for 3D SoCs is also different from that of the planar 2D SoCs, as TAMs
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can use TSVs to go through several layers. Therefore, we should add additional

TAM wires (dashed lines) and additional test pads (AP1, AP2) for those incomplete

TAMs during pre-bond test (TAM 2), as shown in Fig. 3.2.

The above motivates us to investigate the test architecture design and opti-

mization problem for D2W/D2D bonding fabricated 3D SoCs, as formulated in

the following section.

3.3.2 Problem Formulation
3.3.2.1 Test Cost Model

The test cost model for 3D SoCs to evaluate different test architectures is shown

in the following.

Ctotal =CTest Time×α+CWire Length× (1−α) (3.1)

where, CTest Time is the total testing time for both pre-bond tests and post-bond

test, while CWire Length is the total TAM wire length. α is a weighting factor desig-

nated by users. For the example test architecture and the associated test schedule

shown in Fig. 3.3(a), CTest Time is the sum of three terms: (T1 +T2 +T3) for post-

bond entire chip, T5 for pre-bond layer 1 and (T4+T6) for pre-bond layer 2, where

Ti is the testing time of core i.

The computation of CWire Length, however, is non-trivial. In this section, we

assume a TAM involved in several layers will route through all cores tested with

this TAM on one layer before it goes through TSVs to connect cores in other layers.

Accordingly, we calculate CWire Length as follows.

CWire Length for a TAM that involves several layers contains two parts: the intra-

layer wire length and the inter-layer one. For the former one, the TAM is broken

into several segments, each on a single layer. For each segment (or TAM that is on

one layer only), we use the algorithm in [75] to compute its wire length1. As for

1Note that additional pads (APs) and wires (dash lines in Fig. 3.2) for test may be necessary

when reusing chip-level TAMs for wafer-level testing.
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the inter-layer wire lengths, they are calculated as the Manhattan distance between

the corner cores in different layers, e.g., for TAM2 in Fig. 3.2, the inter-layer wire

length is the Manhattan distance between core 3 and the core 2 mirrored on layer 2

(i.e., the dot dash line). The wire length for TSVs is ignored due to their tiny sizes.

It is important to note that our proposed algorithms (detailed in Section 3.3.3)

can be applied to other cost models as well. For example, if a different TAM

routing strategy is used [30], partial pre-bond testing is applied [76] or multi-site

testing is considered [77]. Designers can just update the above test cost model

accordingly and apply our proposed technique.

3.3.2.2 Problem Definition

The problem addressed in this section can be formulated as follows:

Problem: Given

• a set of cores C, and the test parameters for each core c ∈ C, that is, the

number of wrapper input cells inc, the number of wrapper output cells outc,

the number of wrapper bidirectional cells bic, the number of test patterns pc,

the number of internal scan chains scc, and for each scan chain i, the lengths

of scan chain in flip-flops lc,i;

• the physical position of every core c, i.e., which layer it sits on and its X-Y

coordinate on that layer;

• the maximum available TAM width WTAM;

Determine the number of TAMs, the cores assignment associated with each TAM,

and the width of each TAM to minimize the total test cost as shown in Eq. (1).

Note, test wrapper design and optimization is a subproblem of the above problem,

and we use the algorithm in [78] to address it.
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3.3.3 Proposed Algorithm

In this section, we introduce the proposed simulated annealing-based algorithm for

tackling the problem presented in Section 3.3.2.2. Here, we mainly consider the

TestBus architecture for the sake of simplicity. The proposed method, however,

can be easily extended to a TestRail architecture.

3.3.3.1 Outline of The Proposed Algorithm

The test architecture design and optimization problem for 2D SoCs has been proven

to be a NP-hard problem [78]. To reduce computational time, prior work mainly

resorts to deterministic heuristics to address this problem (e.g., [79, 80, 81, 82]).

As shown earlier, for 2D SoCs without considering pre-bond test, generally one

single TAM is the bottleneck that determines the SoC testing time. Consequently,

greedily optimizing the bottleneck TAM by assigning cores to different TAMs

and/or allocating more TAM wires to the bottleneck TAM can lead to close-to-

optimal solution [79]. The above deterministic optimization strategies, however,

are difficult to apply to optimize 3D SoC test architectures as we need to consider

both pre-bond tests and post-bond test, which can have multiple bottleneck TAMs

in terms of testing time (e.g., TAM1 for layer 1 pre-bond test and TAM2 for post-

bond test in Fig. 3.3(a) ). We therefore propose to use simulated annealing (SA)

based stochastic search algorithms to tackle the problem described in Section 3.2.

One of the most straightforward methods to address this problem is then to con-

struct a unified solution representation including both core assignment and TAM

width allocation, and perform simulated annealing on it. That is, we can represent

a solution as a few core sets and a TAM width for each set. This method, in spite of

its simplicity, is not quite effective due to the huge solution space and the difficulty

to specify neighboring solutions in the SA process.

Fortunately, we notice that, given a fixed core assignment for each TAM, it

is easy to determine close-to-optimal TAM widths for each TAM by properly ad-
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1 Set TAM Nummin and TAM Nummax

2 For Tam Num = TAM Nummin to TAM Nummax

// Simulated Annealing

3 Get initial core assignment with no empty TAM

4 Perform inner TAM width allocation algorithm

and compute initial cost

5 Costbest ← initial cost, Costold ← initial cost

6 Set temperature T as a high value

7 While (T > end temperature Tend)

// Run a few iterations at same T

8 For each iteration

9 Random move to reach a new core assignment

10 Perform inner TAM width allocation

11 Compute Costnew

12 If Costnew <Costold or e∆Cost/T > rand()

// Accept Move

13 Costold ←Costnew

14 Update core assignment solution

15 If Costnew <Costbest

16 Costbest ←Costnew

17 Record the best solution

18 Else

19 Restore old solution

20 Decrease temperature T

Figure 3.4: Main Flow of the Proposed Algorithm.

justing existing deterministic heuristics. Based on this observation, for a given

number of TAMs, we propose to separate our optimization procedure into two
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nested parts: the outer SA-based core assignment (Section 3.3.3.2) and the inner

heuristic-based TAM width allocation (Section 3.3.3.3). By doing so, the solution

space explored by simulated annealing shrinks to the various core assignment so-

lutions only, without loss of its quality. The above outer and inner procedures are

for a given number of TAMs, we therefore need to enumerate this value in our

algorithm.

The overall algorithm to tackle 3D SoC test architecture design and optimiza-

tion problem is shown in Fig. 3.4. In the beginning, we set the minimum number

of TAMs (TAM Nummin) and the maximum number of TAMs (TAM Nummax) to

be explored in our algorithm. Typically, TAM Nummin = 1 while TAM Nummax

is set to be a small number that is much less than min{|C|,WTAM}2. Then, for a

given number of TAMs, we start from a random initial core assignment, and keep

on searching for its neighbor solutions. Once a feasible solution is obtained, TAM

width allocation is conducted by inner deterministic algorithm. Core assignment

solutions are evaluated using the cost model in Section 3.3.2.1. Then algorithm

conducts like a typical simulated annealing algorithm. Finally, the algorithm out-

puts the best solution that is obtained during the stochastic search process.

3.3.3.2 SA-Based Core Assignment

Suppose we are performing core assignment for m TAMs. Remind there are totally

|C| cores to be tested, the problem comes down to dispatching cores to m sets. As

a consequence, a solution can be represented as a series of sets A1,A2, · · · ,Am,

where Ai is the core set assigned to TAM i. For instance, assume there are two

TAMs and five cores, a valid solution can be {(1,3),(2,4,5)}, meaning that cores

1 and 3 are assigned to one TAM, and cores 2, 4, and 5 are assigned to the other

one.

{(1,3),(2,4,5)} and {(2,4,5),(1,3)} are both valid representations, but they

2A large number of TAMs typically results in excessive testing time and hence is not preferred.
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essentially correspond to the same solution. To eliminate this redundancy and

provide a one-to-one mapping between a representation and its corresponding so-

lution, we always keep the smallest core index assigned to TAM i smaller than that

assigned to TAM j, provided i is smaller than j. Let αi be the minimum core index

of TAM set Ai. This rule can be expressed as ∀i < j : αi < α j. According to it,

{(2,4,5),(1,3)} will be deemed as an invalid solution in our annealing process.

With the help of the above rule, the solution space shrinks to 1
m! of that without

this rule. Also, we do not allow empty sets, because any solution with n empty

sets achieved in the iteration where TAM number is set to be m can be revisited in

the iteration where TAM number is (m−n) without empty sets.

The only move defined in our procedure to find a neighbor solution is M1: pick

up a core from a random set Ai which contains more than one cores, and put it into

another randomly selected set A j. The completeness of the above move can be

effectively proved by: starting from a valid solution A1,A2, · · · ,Am, we are able to

reach any other solution B1,B2, · · · ,Bm after finite times of M1 move.

3.3.3.3 Heuristic-Based TAM Width Allocation

With given number of TAMs and the core assignment for each TAM, it is actually

possible to obtain the optimal TAM width allocation using techniques such as lin-

ear programming (e.g., [78]). The inner TAM width allocation procedure however

needs to be called every time we have a feasible core assignment solution during

the simulated annealing process. Consequently, the running time for this inner

procedure needs to be very short so that we can explore a large number of core

assignment solution space. Because of this, instead of acquiring exact optimal so-

lution for the inner TAM width allocation process, we use a greedy heuristic as

shown in Fig. 3.5 to obtain a close-to-optimal solution. Similar to [79], this pro-

cedure iteratively assign one-bit wire (b = 1) to a TAM that leads to the lowest

total test cost (Line 6). If this one-bit TAM wire cannot result in cost reduction,
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1 Allocate one bit width to every TAM

2 Set b = 1

3 While no more unassigned TAM width

4 Costmin ← ∞

5 For each TAM

6 Allocate b bit width to this TAM;

7 Compute the cost of entire TAM architecture

8 If Cost <Costmin

9 Costmin =Cost

10 Keep this TAM as the only candidate

11 Restore this b bit width

12 If Costmin reduces

13 Allocate b bit to the recorded TAM

14 Set b = 1

15 Else

16 Increase b by one

Figure 3.5: Inner TAM Width Allocation Procedure.

we will not allocate it in this iteration (Line 11). Instead, we increase the width of

the to-be-assigned TAM wire by one until a lower cost is found (Lines 12-16).

3.3.4 Experiments
To demonstrate the effectiveness of the proposed solution for testing 3D SoCs,

we present experimental results for two ITC’02 benchmark SoCs3 (p22810 and

t512505). We map these two SoCs onto three silicon layers randomly and try to

balance the total area of each layer, where a core’s area is estimated based on

3Due to space limitation, results for other benchmark circuits are not reported here, but they

show similar trends.
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p22810 t512505

Width Total Testing Time Ratio (%) Wire Length Ratio (%) Total Testing Time Ratio (%) Wire Length Ratio (%)

( bit ) TR-1 TR-2 SA ∆T
1 ∆T

2 TR-1 TR-2 SA ∆W
1 ∆W

2 TR-1 TR-2 SA ∆T
1 ∆T

2 TR-1 TR-2 SA ∆W
1 ∆W

2

16 1888667 1327398 1062281 43.75 14.04 5386 13694 12095 -120.66 13.21 47658726 30913144 27190110 42.95 7.82 2743 4560 13234 -382.46 -190.22

24 1302783 1046844 780763 40.07 20.42 7729 17041 14614 -104.41 7.29 34450110 30758094 26778656 22.27 11.55 5459 5824 21245 -289.17 -264.78

32 1031366 836821 627148 39.19 20.33 7693 15051 18062 -126.97 -16.01 33867447 18036401 17510811 48.30 1.55 4596 11590 8621 -87.58 25.62

40 802558 723546 534329 33.42 23.58 8582 21328 24926 -124.91 9.50 23417347 18890284 13028909 44.36 25.03 6313 8460 17540 -177.84 -107.33

48 703142 639377 500868 28.77 19.70 9184 17380 32084 -245.90 -82.78 23417347 18890284 12967247 44.63 25.29 7171 9724 11775 -64.20 -21.09

56 593840 562916 435664 26.64 21.43 9709 22240 37302 -333.20 -89.11 23417347 18890284 12967247 44.63 25.29 7797 10988 13605 -74.49 -23.82

64 527732 490439 421677 20.10 13.03 10560 26862 35286 -241.11 -34.10 23417347 18890284 12967247 44.63 25.29 8985 12252 15846 -76.36 -29.33

∆T
1 / ∆T

2 : Difference ratio on total testing time between SA and TR-1 / TR-2;
∆W

1 / ∆W
2 : Difference ratio on wire length between SA and TR-1 / TR-2.

Table 3.1: Experimental Results for α = 1.

the number of internal inputs/outputs and scan cells (if any). An academic floor-

planner is utilized to get the coordinates for each core, to be used for wire length

calculation. As mentioned in Section 3.3.3, we focus on the TestBus architecture

in our experiments. Other benchmarks, such as p93791, have similar results.

We compare the proposed algorithm with two baseline solutions, constructed

from a traditional 2D optimization algorithm TR-ARCHITECT [79]. In the first

one (referred as TR-1), we apply TR-ARCHITECT algorithm to the 3D SoC layer

by layer, i.e., no TAM wires is allowed to traverse multiple silicon layers, and we

adjust the TAM width among layers iteratively until the testing time of these layers

are as balanced as possible. In the second baseline solution (referred as TR-2), we

simply apply TR-ARCHITECT algorithm to the whole 3D chip, minimizing the

testing time of the post-bond test. In this section, we do not compare against [73]

because [73] is essentially an optimizer for post-bond test with TSV constraints,

but we do not consider TSV as constraints in our work. Also, the layout used in

[73] is not available to us.

Table 3.1 presents our experimental results when considering testing time only.

As expected, our algorithm leads to significant improvement in terms of testing

time reduction when compared with the other two baseline solution. The benefit

can be as high as 48.3% compared with TR-1, and 25.3% compared with TR-2 for

SoC t512505. TR-1 leads to longer testing time because TAMs are not allowed
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α = 0.6 α = 0.4

Width Total Testing Time Ratio (%) Wire Length Ratio (%) Total Testing Time Ratio (%) Wire Length Ratio (%)

( bit ) TR-1 TR-2 SA ∆T
1 ∆T

2 TR-1 TR-2 SA ∆W
1 ∆W

2 TR-1 TR-2 SA ∆T
1 ∆T

2 TR-1 TR-2 SA ∆W
1 ∆W

2

16 47658726 30913144 25854529 45.75 10.61 2743 4560 7272 -165.11 -59.47 47658726 30913144 27556426 42.18 7.04 2743 4560 3957 -44.26 13.22

24 34450110 30758094 24742962 28.18 17.46 5459 5824 4714 13.65 19.06 34450110 30758094 28320290 17.79 7.08 5459 5824 4144 24.09 28.85

32 33867447 18036401 14449906 57.33 10.59 4596 11590 9933 -116.12 14.30 33867447 18036401 27355499 19.23 -27.52 4596 11590 3986 13.27 65.61

40 23417347 18890284 13359723 42.95 23.62 6313 8460 7354 -16.49 13.07 23417347 18890284 27360934 -16.84 -36.17 6313 8460 4029 36.18 52.38

48 23417347 18890284 13359680 42.95 23.62 7171 9724 7440 -3.75 23.49 23417347 18890284 27350658 -16.80 -36.13 7171 9724 4175 41.78 57.06

56 23417347 18890284 13361473 42.94 23.61 7797 10988 7470 4.19 32.02 23417347 18890284 27350409 -16.80 -36.13 7797 10988 4102 47.39 62.67

64 23417347 18890284 13372901 42.89 23.56 8985 12252 7374 17.93 39.81 23417347 18890284 28867718 -23.27 -42.61 8985 12252 4043 55.00 67.00

Table 3.2: Experimental Results for SoC t512505 Considering Both Testing Time
and Wire Length.

to walk through different layers, which significantly constrains the solution ex-

ploration space. At the same time, as TAM wire length is not considered in this

experiment (i.e., α = 1), typically long TAM wires are obtained using our algo-

rithm, especially when compared to TR-1.

When the total TAM width gets larger, the total testing time decreases for

p22810. However, for t512505, after the TAM width is larger than 40, its testing

time does not decrease any more, mainly due to a bottleneck core in the system.

Also, we can observe that when TAM width increases to be more than 32, the test-

ing time of TR-2 becomes even higher, mainly due to the increase of its pre-bond

testing time.

Fig. 3.6 shows the testing time of the pre-bond test for each layer and the post-

bond test for the entire chip for SoC p22810. With TR-1, we can observe balanced

testing time among all layers (as expected), while the other two algorithms do not

have this feature. Compared to TR-2, the proposed algorithm often has longer

testing time for the post-bond test, but achieves a much shorter testing time in

the pre-bond tests (e.g., when TAM width is 16), thus resulting in improved total

testing time.

In Table 3.2, we present experimental results for SoC t512505 with two sets

of weight parameter: α = 0.6 and α = 0.4, in which the former one is associated

with balanced testing time and TAM wire length cost factors while the latter one
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Testing Time (   106 clock cycle)

TAM Width  (bit)
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Pre-bond Testing Time of Layer 2
Pre-bond Testing Time of Layer 3
Post-bond Testing Time of Chip

TR-1

Figure 3.6: Detailed Testing Time of p22810.
emphasizes more on the impact of wire length cost.

As can be observed from this table, for the former case, the TAM wire length

of the proposed solution is still higher than that of TR-1 in many cases, but already

much smaller than the case in Table 1. In several cases (when TAM width is 24, 56

and 64), we can achieve both testing time improvement and wire length reduction.

As the total TAM width increases, the total testing time of the proposed algo-

rithm declines first, and then increases (see Column 4). We attribute it to the fact

that wire length accounting for more share in the cost function with the increment

of TAM width.

For the latter case, where wire length has a much heavier weight, since the wire

length increases dramatically with TAM width increment, when the TAM width is

large, we can achieve much shorter wire length compared to that with TR-1 or

TR-2. For instance, when TAM width is 64, the difference ratio on wire length
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between the proposed algorithm and TR-1 / TR-2 is as high as 55.00% / 67.00%.

Finally, the computational time of the proposed technique is in the range of

minutes for all our experiments, and the number of TSVs remains in the magnitude

of tens. Both are acceptable for test architecture design and optimization.
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3.4 Pre-bond Test-Pin Constrained TAM Sharing

The remainder of this sections is organized as follow: Section 3.4.1 demonstrate

the cause of test-pin constraint. We motivate this section in Section 3.4.2. The

problem is then formulated in Section 3.4.3. Next, our proposed test wire sharing

scheme, and layout-driven test architecture design and optimization techniques are

shown in Section 3.4.4 and Section 3.4.5, respectively. Section 3.4.6 presents our

experimental results for benchmark circuits.

3.4.1 Pre-Bond Test-pin Constraint

When conducting pre-bond tests for silicon dies at wafer-level, one of the biggest

challenges is how to probe the silicon die effectively. As shown in [83], since fine-

grained touchdown probe needles are not available in the next decade, producing

dense probe arrays to connect to the ATE is not a viable solution, at least for the

near future. Consequently, we have to fabricate test pads (C4 bump or wire bond,

see Fig. 3.7) on silicon dies and rely on conventional probing techniques to connect

them to the ATE during pre-bond testing [72]. At the same time, however, it is not

possible to fabricate a large number of test pads for pre-bond testing in 3D ICs.

This is because of the following reasons. According to [83], the pitch for C4 bumps

is around 120µm, which is much larger than that of TSV (1.7µm as shown in [84]

and this figure keeps shrinking with technology improvements). In other words,

one single test pad can consume area equivalent to hundreds of TSVs (see Fig. 3.7).

As these test pads have to be put at the “keep-out area” for TSVs (i.e., TSVs

need to keep some distance from any other component), the benefits of exploiting

dense TSVs for interconnecting active devices between layers are significantly

diminished with the increase of test pads [24]. In 3D technology, except for the

bottom layer, the silicon bulks in other layers are thinned for the ease of TSV
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Device 
Layer

Bulk Si

TSV C4 
Bump

Cu

Bulk Si

Cu

Cu

Cu

Bond Pad

(a) (b) 

Figure 3.7: Pre-Bond Test Pad: (a) C4 Bump as Test Pad, (b) Wire-Bond as Test

Pad.

fabrication. If we conduct pre-bond tests before thinning, we may not be able

to detect the failures introduced during the chemical mechanical polishing (CMP)

process. If, however, we probe the thinned wafer instead, the probe force (typically

3− 10g per probe and 60− 120kg per wafer) during testing becomes a serious

concern as these thinned wafers are not mechanically strong enough. Again, it

is desired to have less test pads (probes/touchdowns) for silicon dies in pre-bond

testing.

3.4.2 Motivation

In Section 3.3, the same TAMs that traverse multiple layers in post-bond testing are

fully reused for pre-bond tests. Consequently, TAMs can be divided into multiple

parts and distributed among the different silicon layers. As all the TAM segments

in a particular silicon layer need to be probed during pre-bond testing, a large

amount of test pads may be required for those silicon dies that contain many TAM
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Figure 3.8: Test Architecture for an Example 3D SoC.

segments. This can be a serious issue in pre-bond testing.

The most straightforward solution to take pre-bond test-pin-count constraint

into consideration during the 3D SoC test architecture design and optimization

process is to design separate test architectures for pre-bond tests and post-bond

test. By doing so, however, the total TAM routing cost for 3D SoCs can be quite

high as we have dedicated TAMs for pre-bond tests, resulting in degradation of

the chip’s routability. As we need to link cores using both pre-bond TAMs and

post-bond TAMs and they are used at different times, a natural question is whether

we can share some of the routing resources between the two types of TAMs.

We use the following example to demonstrate the possibility of sharing routing

resources and its potential benefits. Consider a two-layer 3D SoC containing 11

cores, in which six of them (C1 to C6) are on the bottom layer while the other five

cores (C7 to C11) are on the top layer. Similar to Section 3.3, for the sake of TSV

count consideration, we assume a post-bond TAM involved in several layers will

route through all cores tested with this TAM on one layer before it goes through
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Figure 3.9: Routing Resource Sharing Example: (a) Test Architecture During

Post-Bond Test, (b) Reuse TAM During Pre-Bond Test.

TSVs to connect cores in other layers. In this example 3D SoC, three TAMs are

used for post-bond testing and they are shown in Fig. 3.8. As an example, TAM1

connects C1, C2, C7, C8, and C9 with TAM width W1, starting from test pad T P1

and ending at test pad T P2.

For the ease of discussion, we map a few cores in the 3D SoC onto one layer

as shown in Fig. 3.9(a). In this figure, each vertex represents a core, in which the

upper label is the core ID, while the lower one denotes the pre-bond TAM ID and

post-bond TAM ID that this core belongs to. In Fig. 3.9(b), we show how pre-

bond TAMs can reuse the existing test wires for post-bond testing, wherein the

solid lines are pre-bond TAMs. It can be easily observed that those wires having

both solid and dashed/doted lines can be shared between pre-bond test and post-

bond test, which can significantly reduce the total routing cost for TAMs in 3D

SoCs. Note that, during pre-bond test, the end points of each TAM are directly

routed to deliver test data on its own silicon layer. Here, we assume that these test

pad is near the end point, so that we can ignore the distance between end points

and test pads.
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Clearly, some design-for-testability (DfT) circuitries need to be introduced to

enable the routing resource sharing between pre-bond test and post-bond. To be

specific, we need: (i) certain multiplexers to select the different test data source

for pre-bond test and post-bond test (see the “×” point shown in Fig. 3.9(b)); (ii)

reconfigurable test wrappers for cores that have different TAM width between pre-

bond test and post-bond test (e.g., [85, 82]); (iii) the necessary control mechanisms

(typically by introducing extra instructions in test wrapper and JTAG controller).

3.4.3 Problem Formulation

Problem: Given

• the set of cores C on the 3D SoC, and the test parameters for each core c∈C;

• the layout of the 3D SoC, i.e., the physical position of every core c, including

which layer it sits on and its X-Y coordinate on that layer;

• the maximum available TAM width for post-bond test Wpost ;

• the pre-bond test-pin-count constraint Wpre;

Our objective is to determine the number of pre-bond TAMs Npre, the number

of post-bond TAM Npost , the core assignment associated with each TAM ti, and the

width of each TAMs Wti , so that the total testing cost, Ctotal =Ctime×α+Croute×
(1−α), is minimized (α is a weighting factor designated by users). Note thatCtime

and Croute represent the total testing time of the 3D SoC and the total TAM wire

length for the 3D SoC, respectively.

For the case that the pre-bond TAMs and post-bond TAMs are not shared, the

routing cost Croute is simply the total wire length of the two kind of TAMs, that is,

Croute =
i<Npre

∑
i=0

Wti×Lti +
i<Npost

∑
i=0

Wti×Lti (3.2)
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Here, Lti denotes the wire length for TAM ti, and we calculate it using the sum

of Manhattan distance between adjacent cores in this TAM.

When considering the sharing of pre-bond TAMs and post-bond TAMs, sup-

pose the total length for the shared wires is Creused . The routing cost Croute becomes

Croute =
i<Npre

∑
i=0

Wti×Lti +
i<Npost

∑
i=0

(Wti×Lti)−Creused (3.3)

It is worth noting that test wrapper design and optimization is a subproblem of

the above problem, and we use the algorithms in [78, 85] to optimize the IEEE Std.

1500-compliant test wrapper and the reconfigurable test wrapper, respectively.

3.4.4 Test Wire Sharing

It is not trivial to solve the above problem due to its complexity. Thus, in this

section, we address the test wire sharing scheme, provided that the TAMs for post-

bond test and pre-bond test are already given. The first step of our test wire sharing

scheme is to derive the post-bond TAM routing, after which, we try to identify

those wire segments in post-bond TAM that can be reused by pre-bond TAM.

At last, we propose a greedy heuristic for pre-bond TAM routing to minimize its

routing cost, leveraging the wire sharing.

3.4.4.1 Post-Bond TAM Routing

Given a post-bond TAM with several cores tested on it, we first map these cores

belonging to different layers onto one virtual layer (as shown in Section 2.3). For

the connections that link two cores on different layers, we can ignore the routing

cost for the TSVs due to its short length. Given the test architecture, we are to

route all the cores belonging to the same TAM sequentially, and hence the routing

problem is equivalent to the NP-Hard Traveling Salesman (TSP) problem [75].
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To tackle this problem, we first construct a complete graph for all the cores

(vertices) belonging to the TAM and the weight of each edge represent its routing

cost (i.e., the distance between the two cores multiply the TAM width) between

the linked two cores ( denoted as SG , see Fig. 3.10(a)). We have another acyclic

graph used to store the final routing result (initialized with no edges), denoted as

EG . We consider all the edges in SG as candidate TAM segments and gradually

build EG , using the algorithm shown in Fig. 3.11.

The input to the post-bond TAM routing algorithm is a set of cores which

belong to a TAM, and the output is a core sequence indicating the routing order

for the cores on this TAM and its routing cost. In lines 1-4, we construct the

completed graph SG and assign the weight (Lti×Wti) on them. In line 5, we sort

all the edges according to their weights. Then, in every iteration (lines 6-10), we

move edges from SG to EG in a greedy manner (i.e., we move the edge with the

smallest weight), e.g., the solid line A-B with length 1 in Fig. 3.10(b) and the solid

line B-C with length 3 in Fig. 3.10(c)). As the procedure going, more edges (i.e.,

TAM segments) are moved into EG and they are gradually linked together as a

path (e.g., the linked path A-B-C in Fig. 3.10(c)). It is important to note that, there

are two kinds of redundant edges that should be deleted in every iteration after a
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Figure 3.10: An Example of Post-Bond TAM Routing.
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C = {core1, ...,coren}→C
′
= {core

′
1, ...,core

′
n}

1 Construct a complete graph SG = (V,E) from all cores in C;

2 for all edges ei j ∈ E{
3 W (ei j) := w(r) ·d(mi,m j);}
4 Sum = 0;

5 SORT all the edges ei j ∈ E → E ′;

6 while E ′ �= Empty{
7 Pop first edge ekl from E ′;

8 Add ekl into result graph EG ;

9 Sum += W (ekl);

10 delete redundant edges in SG ;

11 Obtain C ′
from EG ;

12 Obtain Sum;

Figure 3.11: Post-Bond TAM Routing Algorithm

new edge is moved into EG (line 10): (i) Any edge should be deleted if either of its

vertex is an internal vertex (all vertices except two end points of a path) in current

EG ; (ii) Any edge that would generate a cycle in EG should be deleted since EG

should be acyclic all the time. Taking Fig. 3.10(c) as an example, edge B-E and

B-D are the first kind of redundant edges, since vertex B is a internal vertex. Edge

A-C is the second kind of redundant edge, since A-B-C-A will become a cyclic

graph if we move A-C into EG . Finally, all the paths are linked together to form

one single path (e.g., solid lines A-B-C-D-E in Fig. 3.10(d)), which gives us the

final TAM routing order and its cost, as returned from lines 11-12.

3.4.4.2 Identification of Reusable TAM Segments

Given the TAM routing for post-bond test, our problem now is to route the pre-

bond TAM in such a manner that we can reuse the post-bond TAM test wires as

much as possible. To reduce the problem complexity, we first divide every TAM

into a set of TAM segments, each linking two adjacent cores on the same silicon
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layer belonging to the TAM. After routing all the post-bond TAMs, every post-

bond TAM segment is considered to be reusable by any pre-bond TAM segment

that is on the same silicon layer. For the sake of simplicity, we consider each

TAM segment of pre-bond test can reuse test wires from only one TAM segment

of post-bond test, and each TAM segment of post-bond test can be reused by only

one TAM segment of pre-bond test. It should be noted that, we have excluded

those TAM segments that link two cores on different layers.

We examine several scenarios to illustrate how we can reuse post-bond TAM

routing resources for pre-bond tests (see Fig. 3.12). With given core layout position

(modeled as the center point of the cores), we can draw a bounding rectangle for

each TAM segment as shown in Fig. 3.12(a). To connect these two cores, we can

have any routes within this bounding rectangle as long as there is no detour (e.g.,

route A, B or C), and the Manhattan distance of these routes (i.e., the half perimeter

of the bounding rectangle) are all the same.

Let us consider the 3D SoC example demonstrated in Fig. 3.8. TAM segments

C1-C2 and C3-C4 are from post-bond TAM 1 and TAM 3 (see Fig. 3.12(b)-(d)).

Fig. 3.12(b) depicts the case that a pre-bond TAM segment C1-C3 needs to be

routed; while Fig. 3.12(c) presents another case that we need to route another pre-

bond TAM segment C3-C4.
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Figure 3.12: Reusable Routing Resources Represented by Bounding Rectangle.
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Considering the bounding rectangles for TAM segments discussed above, it is

clear that the coincided rectangle is where we can route the pre-bond TAM that

reuses post-bond TAM routing resources (i.e., the grey parts in Fig. 3.12(b)-(d)).

It is important to note that, however, the reusable wire length is not always the

half perimeter of the coincided rectangle (see Fig. 3.12(d)), and it is calculated as

follows.

Let us denote the slope of diagonal line with its two end points placed from

up-left to bottom-right as negative (e.g., C1-C2 of Fig. 3.12(b)-(d), C1-C3 of

Fig. 3.12(b)-(c) and C4-C3 of Fig. 3.12(c)). On the contrary, the slope of diag-

onal line with its two end points placed from up-right to bottom-left is positive

(C3-C4 of Fig. 3.12(d)). Considering two TAM segments that share test wires, if

the slopes of their diagonal lines are the same (i.e., all negative or all positive),

as shown in Fig. 3.12(b)-(c), the reusable wire length is half perimeter of coin-

cided rectangle. If the slopes are different (i.e., one is negative while the other

is positive), however, the reusable wire length is the longer edge of the coincided

rectangle, as shown in Fig. 3.12(d).

In view of the above discussion, the problem of reusing post-bond TAM routing

resources in a pre-bond TAM cane be stated in terms of how to combine the one-to-

one pairs of TAM segments (one from pre-bond test and the other from post-bond

test) so that the total routing cost is minimized. We propose a greedy heuristic to

solve this problem, as described next.

3.4.4.3 Greedy Heuristic for Pre-Bond TAM Routing

Fig. 3.13 presents our proposed greedy heuristic for pre-bond TAM routing, which

tries to reuse the routing resources of post-bond TAMs as much as possible.

In line 1, we acquire the possible reusable TAM segments for post-bond test.

Similar to the post-bond TAM routing algorithm shown in Fig. 3.11, we move the
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{C1, ...,Cn} ∈ Layeri →{C′
1, ...,C

′
n} ∈ Layeri

1 Get the set of reusable post-bond TAM segment F ;

2 for all TAMi in this layer{
3 Construct a complete graph Gi = (Vi,Ei) from all

cores in Ci belong to TAMi;

4 put all Gi together into SG ;}
5 for all edges ei j ∈ SG{
6 W (ei j) := w(r) ·d(mi,m j);

7 add W (ei j,∅) into list WList(ei j);

8 for all edges fkl ∈ F{
9 calculate the routing cost after reusing

W (ei j, fkl) = minWidth(ei j, fkl)×Lreuse(ei j, fkl);

10 record the routing cost W (ei j, fkl) and

corresponding post-bond TAM segment fkl

into list WList(ei j);}
11 SORT all the results in WList(ei j) in ascending order;}
12 Sum = 0;

13 while E �= Empty{
14 find edge ei j ∈ E with the minimum

routing cost W (ei j, fx) ∈WList(ei j);

15 delete ei j from E and add it into edge list: TAMi;

16 Sum += W (ei j);

17 for all ekl ∈ E{
18 if exist fx, remove W (ekl , fx) from WList(ekl);}
19 delete redundant edges from SG ;

20 Obtain {C
′
1, ...,C

′
n} from {TAM1, ...,TAMn};

21 Obtain Sum;

Figure 3.13: Greedy Heuristic for Pre-Bond TAM Routing

edge with the lowest routing cost from SG to EG iteratively in a greedy manner.

In lines 2-4, we construct a completed graph for every TAM for pre-bond test in

the layer, and put all these complete graphs together into SG . The reason behind

this is that a reusable post-bond TAM segment can be a reusable candidate for
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TAM segments from more than one pre-bond TAMs. Since each TAM segment of

pre-bond test has more than one reusable candidates and each reusable candidates

can only be reused at most once, we build a list for each TAM segment of pre-bond

test, and store all possible reusable candidates into the list (lines 8-10).

To be specific, if one edge cannot reuse any of the TAM segments of post-bond

test in that layer, we simply use the original routing cost, calculated by the wire

length multiplied by its TAM width, and add it into the list (lines 6-7). If it has a

reusable candidate, its routing cost is updated accordingly. In addition, the TAM

widths can be different between pre-bond TAM and post-bond TAM. We choose

the smaller one to calculate the routing cost of reused wires by multiplying it with

the reused wire length. And then we use the original routing cost minus the routing

cost of reused wire as the new routing cost of this edge (line 9).

Here, we maintain the list for each edge to keep all the possible reusable TAM

segments, and their corresponding updated routing costs (line 10). After sorting

the list according to their routing cost (line 11), the head item of each list is the

edge with the least routing cost (either with or without reuse strategy). In every

iteration, we choose the edge with least routing cost (i.e. value of head item in the

list linking to this edge) and move it into EG (lines 12-15). Since every reusable

candidate can only be reused for at most once, we delete this reused segment from

all other edges in SG (lines 17-18). Finally, we obtain the routing result and its

cost (lines 19-21).

We take an example extended from Fig. 3.9 to elaborate the above process.

After constructing the complete graph from all cores in pre-bond test, we obtain

the list of TAM segments shown in Fig. 3.14, which keeps all possible reusable

post-bond TAM segment in the list of every pre-bond TAM segment. For example,

for segment [TAM1(C2,C3)], there are two reusable candidates in its list, that is,

post-bond TAM segment (C1,C2) and (C3,C4), The corresponding routing costs
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TAM1 (C1,C2) 0 (C1,C2)

TAM1 (C1,C3)

TAM1 (C2,C3)

3 (C1,C2)

3 (C1,C2) 10 (C3,C4) 18 (Ø)

TAM2 (C4,C5) 0 (C4,C5)

Pre-bond 
TAM Segment

Reusable Post -bond TAM 
Segments1

2

3
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8 (Ø)
1

1

10 (Ø)

Figure 3.14: Example for the Proposed Algorithm to Reuse TAM Routing Re-

sources.

are 3 and 10, respectively. The original routing cost is 18. In this example, we

pick up the pre-bond TAM segment [TAM1(C1,C2)] first since it has the minimum

routing cost 0 by reusing the post-bond TAM segment [0(C1,C2)]. We then move

[TAM1(C1,C2)] from SG to the EG . Afterwards, the reusable post-bond TAM

segments [(C1,C2)] are deleted from all the lists. Then, in the second iteration,

[TAM2(C4,C5)] is chosen, and the reusable post-bond TAM segment [(C4,C5)] is

deleted. Next, we know that [TAM1(C1,C3)] has the minimum routing cost of 8

without any reuse. Again, it is moved to EG . At last, we delete the redundant

segment [TAM1(C2,C3)].

3.4.5 Layout-Driven Test Architecture Design and Optimiza-

tion

With the test wire sharing scheme, we address the test architecture optimization

problem progressively in this section, denoted as Scheme 1 and Scheme 2, respec-

tively.

In Scheme 1, we consider the case that test architectures for both pre-bond tests

and post-bond test are fixed, and we propose a greedy heuristic to share test wires
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Test Architecture 
Optimization for Post -bond 

Test 

Post-bond TAM Routing

Identification of Reusable 
TAM Segments Pre-bond TAM Routing

Test Architecture 
Optimization for Pre -bond 

Test 

Figure 3.15: Design Flow for Scheme 1.

between pre-bond TAM and post-bond TAM as much as possible. The design flow

for this scheme is shown in Fig. 3.15. Firstly, we optimize the test architecture

for both pre-bond tests and post-bond test, which gives us the number of TAMs,

the width for each TAM, and the cores tested on each TAM for each kind of test.

Then, we take the 3D SoC layout into consideration and conduct post-bond TAM

routing (as stated in Section 3.4.4.1). Next, we identify reusable TAM segments

out of the post-bond TAM and conduct pre-bond TAM routing to share them as

much as possible (as stated in Section 3.4.4.2 and Section 3.4.4.3 respectively).

In Scheme 2, to further reduce routing cost, we consider flexible pre-bond test

architecture while keeping the post-bond test architecture and its TAM routing un-

changed, and then we optimize the pre-bond test architecture so that the total cost

Ctotal is minimized. The reason behind the above strategy is: (i) making both pre-

bond test architecture and post-bond test architecture flexible would lead to an ex-

tremely large solution space, and hence it is rather difficult to find a good solution

within limited computational time; (ii) making pre-bond test architecture (instead

of the post-bond test architecture) flexible has the benefit that it only affects the

routing in one layer.
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Figure 3.16: Design Flow for Scheme 2.

To further reduce their routing cost, it is possible to share more routing re-

sources from post-bond TAM, by changing the test architecture for pre-bond tests.

However, it may lead to the increase of testing time, since we change the test archi-

tecture which is previously optimized to a near optimal solution in terms of testing

time cost. As a result, we would like to sacrifice only limited testing time to ob-

tain much better routing cost. In order to achieve the above objective, we extend

the simulated annealing-based 3D SoC test architecture optimization procedure

presented in Section 3.3. Our design flow for Scheme 2 is shown in Fig. 3.16.

The optimization procedure is comprised of two parts: the outer SA-based core

assignment and the inner heuristic-based TAM width allocation, which is almost

the same with that in Similar to Section 3.3, except that we use proposed greedy

reusable heuristic (as shown in Fig. 3.13) to calculate the pre-bond routing cost,

and obtain the total test cost including both routing cost and testing time cost.
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Width Total Testing Time Ratio Routing Cost Ratio Total Testing Time Ratio Routing Cost Ratio

( bit ) No Reuse Reuse SA ∆T (%) No Reuse Reuse SA ∆W
1 (%) ∆W

2 (%) NoReuse Reuse SA ∆T (%) No Reuse Reuse SA ∆W
1 (%) ∆W

2 (%)

p22810 p34392

16 948714 948714 959753 1.16 18677 15922 12648 -14.7 -32.3 2100312 2100312 2088962 -0.54 15154 13595 7760 -10.29 -48.79

24 730866 730866 738800 1.09 19549 17744 14567 -9.23 -25.5 1802341 1802341 1791078 -0.62 27624 22766 17422 -17.59 -36.93

32 647043 647043 653060 0.93 17289 15445 10898 -10.6 -36.9 1592668 1592668 1595286 0.16 25220 20946 13949 -16.95 -44.69

40 608139 608139 611087 0.48 14547 11826 8240 -18.7 -43.4 1579078 1579078 1538795 -2.55 43384 34172 24439 -21.23 -43.67

48 584380 584380 587328 0.50 25532 23402 19181 -8.34 -24.9 1572840 1572840 1567728 -0.33 33544 28460 23705 -15.16 -29.33

56 562561 562561 563882 0.23 17138 15739 10754 -8.16 -37.3 1571728 1571728 1819571 15.77 34068 29669 23423 -12.91 -31.25

64 550549 550549 553497 0.54 17642 16548 11320 -6.20 -35.8 1571728 1571728 1758060 11.86 34068 29669 23145 -12.91 -32.06

p93791 t512505

16 3631177 3631177 3726714 2.63 35709 32674 18803 -8.5 -47.34 23494872 23494872 23494872 0 2693 2409 1974 -10.55 -26.70

24 2782827 2782827 2791223 0.30 42034 36818 23727 -12.41 -43.55 23417347 23417347 23494872 0.33 2687 2403 1968 -10.57 -26.76

32 2347166 2347166 2390750 1.86 41403 38383 20953 -7.29 -49.39 18232745 18232745 18310270 0.43 1723 1441 1004 -16.37 -41.73

40 2099123 2099123 2153380 2.58 44550 40509 24709 -9.07 -44.54 18192297 18192297 18438359 1.35 2721 2405 2002 -11.61 -26.42

48 1932476 1932476 1946263 0.71 43546 37730 22749 -13.36 -47.76 18192297 18192297 18352952 0.88 2721 2405 2002 -11.61 -26.42

56 1814195 1814195 1842030 1.53 61754 54135 33205 -12.34 -46.23 18192297 18192297 18269822 0.43 2721 2405 2002 -11.61 -26.42

64 1708376 1708376 1737586 1.71 52686 46992 26974 -10.81 -48.80 18192297 18192297 18482093 1.59 2721 2405 2002 -11.61 -26.42

∆T
1 : Difference ratio on total testing time between SA and reuse (testing of reuse and N-reuse is the same);

∆W
1 / ∆W

2 : Difference ratio on wire length between Reuse and No Reuse / SA and No Reuse.

Table 3.3: Experimental Results for 3D SoC p22810 and p34392.

3.4.6 Experiments

To demonstrate the effectiveness of the proposed layout-driven 3D SoC test ar-

chitecture design and optimization technique, we present experimental results for

four revised ITC’02 benchmark SoCs (p22810, p34392, p93791, and t512505).

The setup of benchmarks is the same with that in Section 3.3. In addition, the

pre-bond TAM width is fixed to be 16 by taking the test-pin-count constraint into

consideration. We compare three kinds of test architecture design and optimization

solutions. The first one (denoted as No Reuse), implemented the algorithm in [86]

to optimize testing time and it uses the TAM routing algorithm shown in Fig. 3.11

to route both post-bond TAMs and pre-bond TAMs without sharing routing re-

sources between the two kinds of TAMs. The second one (denoted as Reuse),

resorts to the same heuristic to optimize testing time as No Reuse, but uses the

greedy heuristic algorithm shown in Fig. 3.13 to route pre-bond TAMs. The last

scheme (denoted as SA), has the same procedures as Reuse to optimize post-bond

testing time and post-bond TAM routing, and it uses the SA-based optimization

procedure shown in Section 4.2 to adjust the pre-bond test architectures for further
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test cost reduction.

We do not compare against our prior work in Section 3.3, because it does not

take test-pin-count constraint into consideration and hence may result in pre-bond

test architecture with more than 16-bit TAMs, preventing fair comparison.

As can be observed from Table 3.3, the testing time of No Reuse scheme and

Reuse scheme (i.e., Scheme 1) are the same as they employ the same test archi-

tecture (with different routing strategies only). In most cases, SA scheme (i.e.,

Scheme 2) slightly increase the pre-bond testing time since it sacrifices some test-

ing time to achieve reduced routing cost, but no more than 1% or 2% except for

p34392 with large post-bond TAM width. In very few cases, both the testing time

and the routing cost for the SA scheme are the smallest among the three schemes

(e.g., p34392 with TAM width 40).

The routing cost reduction brought by the greedy TAM reusing algorithm used

TSV

(a) (b)

Figure 3.17: Pre-Bond TAM Routing in p93791. (a) without Reusing Post-Bond
TAMs; (b) Reusing Post-Bond TAMs.
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in Reuse scheme is considerable when comparing with No Reuse scheme. The

reduction ratio can be as high as -21.23% for p34392 with TAM width 40. With

flexible pre-bond test architecture used in the SA scheme, the savings in routing

cost is even larger, in the range between -24.87% and -49.39%. The average rout-

ing reduction is around 33%, 38%, 46%, and 28% for the four benchmark SoCs.

p93791 produces better results because there is no stand-out large core in this

SoC, which can serve as a bottleneck during the optimization process. By con-

trast, t512505 has a large core that alone requires a large post-bond TAM width on

its own, which essentially reduces the reusable TAM segments.

Generally speaking, with the growth of post-bond TAM width from 16 to 64,

the routing cost reduction ratio increases in the beginning and drops at the end.

The main reason is that, when post-bond TAM width grows, the width of reusable

TAM segments also goes up; while the TAM width keeps to be 16 for pre-bond

tests, the demanded reusable TAM width does not increase, leaving more reusable

TAM width idle.

In Fig. 3.17, we present the layout of one layer in 3D SoC p93791 to demon-

strate the effectiveness of our TAM reuse strategy (see ). The TAM segments of

post-bond TAM on this layer is shown as dashed lines; while the solid lines are the

pre-bond TAMs in this layer. Note that, if a TAM only goes through one single

core in this layer, it cannot be reused for pre-bond TAM (e.g., the one for cores

13). Fig. 3.17(a) depicts the test wires without reusing any post-bond TAM seg-

ments. With our reuse methodology as shown in Fig. 3.17(b), we can see that the

the routing overhead for TAMs can be significantly reduced.
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3.5 Conclusion

Although applying pre-bond test for 3D SoCs with D2W/D2D bonding technique

needs additional test effort, it is critical for 3D SoCs yield enhancement and the

final cost (the manufacture cost plus the test cost ). In this chapter, we combine

the pre-bond test into the 3D SoCs test architecture design, and propose efficient

simulated-annealing based optimization methods to reduce test cost. Further, the

pin-count constraint of pre-bond test is considered. It is a practical problem during

test and our proposed solution can tackle it efficiently.

� End of chapter.



Chapter 4

Stack Yield Enhancement for 3D
DRAM

4.1 Introduction

To fulfill the ever-increasing demands of storage capacity, many semiconductor

companies have implemented 3D-stacked memories, by using TSVs as vertical

bus across multiple DRAM layers and it is believed that such memory products

will be commercialized in the near future [1, 10].

Due to their extreme high density, memory circuits are prone to manufactur-

ing defects. Consequently, to avoid yield loss, redundant rows and columns are

added on-chip so that most faults can be repaired by replacing the rows/columns

containing faulty bits with redundant ones. Since we can only implement lim-

ited amount of redundant resources on-chip for cost considerations and we cannot

afford lengthy repair time for throughput considerations, numerous redundancy

analysis and repair algorithms have been presented in the literature for effective

and efficient memory repair [22].

Memory circuits typically contain multiple memory blocks and spare rows/columns

are added to each memory block. If one of the blocks is not reparable, the entire

memory circuit has to be discarded. Intuitively, we can increase memory yield

78
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by letting neighboring blocks share the precious redundant rows/columns [87],

but this strategy involves quite high routing overhead and hence is not used in

practice for traditional two-dimensional (2D) memory circuits. With the emerging

3D-stacked memory, however, sharing redundant resources between neighboring

vertical blocks for yield enhancement becomes feasible because short TSVs can

be used for routing.

With the above redundancy sharing strategy, a memory block that is not self-

reparable can borrow spare resources from its vertical neighbors (if any) and pos-

sibly becomes reparable after bonding. Consequently, when compared to the case

that we only bond self-reparable dies together to form the 3D-stacked memory, we

have the opportunity to achieve significant yield enhancement, especially when the

defect density is high and/or the redundant resources are limited. At the same time,

whether we could realize this opportunity highly depends on the matching strategy

for the memory dies. That is, if a self-reparable memory die is bonded with a non-

reparable one but they could not form a functional 3D-stacked memory circuit, the

memory yield might even be sacrificed. Therefore, with the distinct defect bitmaps

of different memory dies obtained with pre-bond testing, how to selectively match-

ing them together to maximize the yield for the bonded 3D-stacked memory is an

interesting and relevant problem. In this chapter, we present novel solutions to

tackle the above problem. Noted that, we assume D2D bonding is utilized to form

the 3D-stacked memory chips, as we are able to attach known good dies so that the

manufacturing yield can be significantly higher when compared to W2W bonding.

Experimental results with various memory organizations and defect distributions

show that the proposed methodology is quite effective for yield enhancement.

The remainder of this chapter is organized as follows. Section 4.2 reviews re-

lated work and motivates this chapter. The 3D-stacked memory architecture that

supports redundancy sharing across neighboring dies is described in Section 4.3.
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Next, we discuss the memory repair strategy with redundancy sharing and our

memory die matching algorithms in Section 4.4 and Section 4.5, respectively. Sec-

tion 4.6 presents experimental results with various memory organizations and de-

fect distributions. Finally, Section 4.7 concludes this chapter.

4.2 Preliminaries and Motivation

4.2.1 Prior work

The memory repair problem can be formulated as a constrained vertex cover sets

of bipartite graphs problem and has been proved to be NP-complete in [88]. It is

possible to obtain optimal repair solution by exhaustive search, but this is too time-

consuming to be used in practice. To address this problem, various redundancy

analysis and fast memory repair techniques (e.g., [89, 88]) were presented in the

literature to reduce repair time at the cost of slight memory yield loss.

In the above memory repair strategies, they assume a full fault bitmap of the

memory is available and the repair is conducted by external memory testers. With

the increasing usage of embedded memories, built-in self-repair (BISR) has be-

come more popular. As it is not cost-effective to store the entire fault bitmap before

repair, various memory repair techniques with limited fault bitmap are developed

in recent years. In particular, a so-called essential spare pivoting algorithm (ESP)

is presented in [90]. In this work, the authors classify faults into three types: 1)

suitable for row repair; 2) suitable for column repair; 3) orthogonal fault which

can either be repaired by a spare row or a spare column. This work is shown to be

quite effective and efficient.

A memory circuit typically contains multiple memory blocks. If one of these

memory blocks is irreparable, the entire memory circuit is deemed as defective and

has to be discarded. Clearly, if a self-irreparable memory block can borrow some

redundant resources from other reparable blocks, memory yield can be increased.
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Figure 4.1: 3D-Stacked DRAM

Motivated by the above, [87] proposed a distributed global replaceable redundancy

scheme, which allows to use the spare rows/columns in a memory block to repair

faults in other memory blocks. In [91], the author proposed a memory built-in self-

repair (BISR) algorithm with sharable redundant resources, using a programable

decoder. However, such decoder design is much more complex than conventional

one, which not only increases area overhead but also significantly deteriorates the

routability of memory. Because of this, redundancy sharing is not utilized in prac-

tice for today’s 2D memory devices.

4.2.2 Motivation

In 3D-stacked memory, bit-arrays are stacked vertically on each other and TSVs

are utilized as buses to link the stacked dies together, as shown in Fig. 4.1. Such

organization provides us the opportunity to conduct redundancy sharing across

neighboring dies with short TSVs without incurring much routing overhead. With

redundancy sharing, an irreparable memory die is likely to become reparable by

borrowing spares from its neighboring dies, but whether we can realize the above

yield enhancement opportunity highly depends on the matching strategy.

Consider the eight memory dies shown in Fig. 4.2, each of them containing
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Figure 4.2: Different Matching Strategy affects the Overall Yield.

four memory blocks with different fault density. For simplicity, we classify these

dies into four categories.

The memory blocks in Type A are all self-repairable and provide extra spare

resources (see A1 and A2 in Fig. 4.2(a)). Type B memory dies cannot repair them-

selves but become reparable by borrowing a small number of redundant resources

from other dies, and we assume that two Type B memory dies stacking together

can be reparable. Type C memory dies must borrow plenty of spares to become

reparable, while the memory blocks in type D have high fault density and is ir-

reparable even if they are allowed to borrow spares from others.

For this example, suppose we only allow bond self-reparable memory dies only

(see Fig. 4.2(a)), the yield is only 25%. As shown in Fig. 4.2(b), stacking A1 to

B2 and B1 to A2 produces two reparable 3D-stacked memory circuits, and the

overall yield in this case is 50%. Suppose we have an aggressive repair strategy as

shown in Fig. 4.2(c), which attempts to repair Type D memory dies using the spare

resources in Type A dies, the yield can be 0% in the extreme case. In other words,

a bad matching strategy can even reduce the overall memory yield since good dies

might be wasted. A good matching strategy as shown in Fig. 4.2(d), on the other
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hand, results in a maximum yield of 75%.

From the above, we can conclude that die matching strategy is critical for the

final yield of the 3D-stacked memory circuits. Suppose we can quickly know

whether the matched 3D-stacked memory is reparable or not for any pair of mem-

ory dies, the matching problem is quite similar to the wafer-to-wafer bonding se-

lection problem in [44]. However, with both redundant rows and columns for a

memory block, we cannot afford the time used to temporarily running repair al-

gorithm between every possible memory die pairs. Consequently, how to conduct

efficient and effective matching to achieve the maximum memory yield is a chal-

lenging problem, which motivates this work.

4.3 3D-Stacked Memory Architecture with Redun-
dancy Sharing

Fig. 4.3 depicts the 3D-stacked memory architecture that supports redundancy

sharing across dies. Spare rows/columns on each memory die not only connects to

the programmable decoder on its own layer, but also link to the decoder of other

layers using TSVs. The routing overhead to support redundancy sharing across

dies is quite low due to the use of short TSVs as routing mechanisms. The pre-

fabricated multiplexor controls which memory block use the corresponding spare

row/column. For a memory block with n spare rows and m spare columns, sharing

Bit-arraySpares 
Rows

TSVs
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od

er

L2

Bit-array
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od
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Spares 
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Figure 4.3: Redundancy Sharing using TSVs.
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all the redundant resources between two neighboring dies requires n+m TSVs,

as shown in Fig. 4.3(a) (only spare rows are shown in this figure). With the con-

tinuing improvement of TSV manufacturing technology, this overhead is of a less

concern. Moreover, we can leave some spare resources for repairing its own die

and/or share the same TSVs for different redundant rows/columns, reducing the

amount of TSVs used for redundancy sharing. An example is shown in Fig. 4.3(b).

The above architecture can tolerate some TSV defects. Let us consider memory

blocks in Fig. 4.3 (a). If one of the three TSVs is defective, we can leave the

corresponding spare row to repair its own memory block, while we still have two

spare rows for sharing among neighboring blocks. As long as a memory block

does not require to borrow all three redundant rows to become reparable, it is still

sufficient.

4.4 Memory Repair with Redundancy Sharing

When conducting self-repair of a memory block, there might be multiple repair

strategies to replace the faulty rows/columns with redundant ones, and any one

of them suffices. With resource sharing between neighboring dies, however, how

to repair each individual die determines whether the other die can be repaired or

not. For example, two memory blocks are shown in Fig. 4.4(a)-(b), in which black

vertices denote faulty cells and solid/dashed lines denote spare columns/rows, re-

spectively. Memory block in Fig. 4.4 (a) is self-irreparable. Memory block in

Fig. 4.4 (b) is self-reparable, but it can lend no spares to the other block if we

guarantee to repair itself first. Bonding these two dies together is reparable only

if memory block in Fig. 4.4(a) repairs itself with three spare columns (one is bor-

rowed) while memory block in Fig. 4.4(b) repairs itself with two spare rows (one

is borrowed) and one spare column. From this example, the memory repair algo-

rithm with redundancy sharing must be aware of the fault information of stacked
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dies and be conducted at a global level.

4.4.1 Problem Formulation

The problem of memory repair with redundancy sharing can be formulated as fol-

lows:

Problem: Given

• The number of memory blocks Nb on the memory die;

• The fault bitmap of each memory block obtained from pre-bond testing;

• The number of spare rows/columns Ra,Ca in each memory block;
Our objective is to determine the repair scheme of each memory block so that the

stacked memory dies can be reparable, whenever possible.

4.4.2 Memory Repair Strategy

A single memory repair problem is formulated as constrained vertex cover sets

of bipartite graphs. Based on the fault bitmap of the memory block, we can build

corresponding bipartite graphs (see Fig. 4.4). The left set of vertices denote the row

number and the right set denote the column number of the faulty bits, respectively.

An edge between two vertices represents the position of the corresponding faulty

bit. With given number of spare rows and columns as constraints, our objective is

to find a set of vertices to cover one end of every edge.

We propose a novel algorithm to tackle this problem, inspired from the concept

of so-called irrespective error matrixes in [91]. We first extract rows and columns

that contain faulty bits from the two memory blocks with sharable redundancies,

and integrate them together into a new fault bitmap by putting them in diagonal

position without intersection, as shown in Fig. 4.4(c). For the new fault bitmap, our

redundant resources are also doubled. By translating the problem of repairing two

dies with redundancy sharing into a new memory problem as above, we guarantee
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Figure 4.4: Irrespective Sub-Bipartite Graphs.

that a sharable redundant row/column can be flexibly utilized to replace a faulty

one in either of the two memory blocks without enumerating all possible repair

solutions for each die. Then, we can apply any redundancy analysis and repair

algorithm to solve this problem. In this example (see Fig. 4.4(c)), a solution is

found so that a self-irreparable block and a self-reparable one forms a reparable

stacked memory circuit.

4.5 Matching for Yield Enhancement

4.5.1 Problem Formulation

As discussed earlier, how to conduct efficient and effective die matching has a

significant impact on the final yield of the 3D-stacked memory circuits. We model

this problem by constructing a graph with these memory dies as vertices and add

edges between two vertices if the corresponding memory dies are reparable after

stacking. This problem can then be solved in polynomial time as the classical

maximum matching problem.
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The challenge here lies in the fact that it is extremely time-consuming to run

repair algorithm between every die pairs and hence it is impractical to obtain the

exact edge information as modeled above. We hence need more efficient method

to address the die matching problem, as formulated in the following.

Problem: Given a number of memory dies with the following information:

• The number of memory blocks in each die;

• The fault bitmap of each memory block in every die obtained from pre-bond

testing;

• The number of spare rows/columns of each memory block;

Our objective is to match the given dies in a pairwise manner to maximize the

total number of reparable 3D-stacked memory circuits. It is important to note that

even though a 3D-stacked memory can contain more than two layers, we consider

pairwise matching only in this work. There are two reasons behind: (i). selectively

matching more than two dies is a much more complicated problem since the pos-

sible combinations grow rapidly; (ii). generally speaking, the die yield cannot be a

small value (otherwise the product is not profitable) and a good pairwise matching

algorithm is able to recover most self-irreparable dies. By simply combining the

matched memory pairs to form 3D-stacked memory circuits with more layers, we

can maintain a high memory yield.

4.5.2 Direct Matching

As discussed earlier, we cannot afford the computational complexity to run repair

algorithm for every possible pair of memory dies to obtain exactly whether two

dies matched together can form a reparable stacked circuit (referred to as match-

ing condition). If, however, we can estimate the matching conditions with suf-

ficient accuracy efficiently, we should be able to achieve good matching results.

Motivated by the above, we develop two kinds of matching conditions to solve our
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die matching problem. Before describing them in detail, we first present our die

matching algorithm as follows.

4.5.2.1 Die Matching Algorithm

Fig. 4.5 presents the pseudocode of our algorithm. We first construct a graph

with each memory die as a vertex (Line 1), and check every pair of memory

dies whether they are considered to be reparable according to our matching con-

dition (Line 4). After checking all pairs and adding the corresponding edges, a

undirect graph is constructed (Lines 1-6). We then use the classic ’Blossom’ max-

imum matching algorithm [?] to get the matched die pairs (Line 7). Finally, to

verify whether every pair is reparable and get the final yield (Lines 8-10), we use

a two-step memory repair algorithm: (i) We first utilize the efficient ESP algo-

rithm [90] for repair; (ii) If a solution cannot be found, we resort to a branch-and-

bound method for another try and abort to repair if a solution still cannot be found

under a runtime limit.

4.5.2.2 Reparability Condition

Let us first consider reparability condition which guarantees that any pair of mem-

ory dies passing through this condition must be reparable. Apparently, match-

ing self-reparable dies together is one type of reparability condition, as shown

in Fig.4.6(a). However, such matching strategy is too conservative, far from the

optimal matching solution1. We therefore propose to extend the ESP algorithm

presented in [90] for building more effective reparability condition efficiently.

Similar to [90], for a memory block i with Ri spare rows and Ci spare columns,

we classify the faulty bits into three types: (i). Fr
i bits that are suitable for row

1The “optimal matched dies” shown in Fig.4.6 refers to the obtained dies in the case
that we can run final repair algorithm between every possible memory die pair to determine
whether they are reparable.
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Input: Set of N Memory Die C = c1, ..,cN , Match Condition

Output: Set of X Stacking Memory Die S = s1, ..,sX

Match Repair(Input,Output,Match Condistion)

1 Construct a undirect graph G = {V,E}, V =C E =	
2 for i = 1 to N

3 for j = i+1 to N

4 Check Match Condition between ci and c j

5 If ci and c j are considered as reparable

6 E = E ∪{ci,c j}
7 Apply ’Blossom’ Maximum-Matching-Algorithm to G,

get pair of dies S = {(ci,c j), ...,(cx
i ,c

x
j)}

8 for k = 1 to x

9 check whether Sk = (ck
i ,c

k
j) is reparable

10 If not, remove Sk from S, x = x - 1

11 Output S

Figure 4.5: Die Matching Algorithm
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Figure 4.6: Matching according to Reparability Condition.

repair; (ii). Fc
i bits that are suitable for column repair; and (iii). Fo

i orthogonal

bits that can be repaired by either spare rows or spare columns. Then, we use the

following formula to determine whether two blocks a and b are reparable after
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stacking:

Rl = (Ra +Rb−Fr
i −Fr

j )≥ 0 (4.1)

Cl = (Ci +Cj−Fc
i −Fc

j )≥ 0 (4.2)

Rl +Cl ≥ Fo
i +Fo

j (4.3)

Rl/Cl are the number of left spare rows/columns after repairing the correspond-

ing faulty cells that require dedicated row/column repair. If their sum can be used

to repair the remaining orthogonal faulty bits, we can guarantee that bonding the

two memory blocks together is reparable. By checking all pairs of memory blocks

between the two memory dies, the above condition is used as our new reparabil-

ity condition, which can provide yield enhancement when compared to matching

self-reparable dies only, as shown in Fig.4.6(b).

4.5.2.3 Irreparability Condition

The above reparability condition guarantees that all found die pairs are repara-

ble. Such stringent requirement prevents us from finding those reparable pairs that

cannot pass the previous reparability condition checking and inherently limits the

achievable maximum yield. In this subsection, we consider another type of match-

ing conditions based on irreparability checking. By only eliminating those pairs

that are guaranteed to be irreparable, more possible die pairs can be found but

we cannot guarantee they are reparable. We obtain the irreparability condition by

analyzing the property of bipartite graph constructed from the fault bitmap.

Given a bipartite graph G = (V,E), where vertices are partitioned into two

sets (X and Y , xi⊆ X , yi⊆Y ) and each edge (xi,yi,)⊆ E, we have the theorem that

the minimum number of vertices that cover all the edges is equal to the number of

edges in any maximum bipartite matching of the graph [88]. For a memory block

i with Ri spare rows and Ci spare columns, it is easy to deduct from the above that,
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the memory block is not reparable if Ri +Ci is smaller than the number of vertices

required for maximum bipartite matching (can be obtained efficiently as in [88]).

Now let us consider the matching condition for two memory blocks a and b, we

have the following lemma.

Lema 1: Given two memory blocks with spare rows Ra,Rb and spare columns

Ca,Cb. The mapped bipartite graph from these two blocks is Ga = (Va,Ea),Gb =

(Vb,Eb). The maximum bipartite matching of Ga,Gb are Ma,Mb. Then, only if

|Ma|+ |Ma| ≤ Ra +Rb +Ca +Cb (4.4)

the stacked memory is possibly to become reparable.

The die matching algorithm is then conducted on the bipartite graph con-

structed according to the above irreparability condition. With this strategy, we

are able to find more die pairs that are possibly reparable, but this is not guaran-

teed. For the two examples shown in Fig. 4.7, both require at least four spares
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(either spare row or spare column) to be possibly reparable. Even though both are

deemed as possibly reparable according to the above lemma, if in total we have

2 spare rows and 2 columns with redundancy sharing, the faults in (a) are repara-

ble (rows 1,2 and columns 6,9), but the faults in (b) cannot be repaired (a possible

repair solution is when we have 4 spare columns). Fig. 4.8 presents the match-

ing effect according to irreparability condition. As can be observed, within the

matched dies, only part of them are reparable.

4.5.3 Iterative Matching

Directly matching memory dies according to the previous reparability condition

and irreparability condition all have their limitations. In this subsection, we con-

sider to match dies iteratively. That is, we conduct die matching multiple times,

and in each iteration, we keep those good pairs while redo the matching for the left

dies by changing the matching condition.

We start from the irreparability condition 2 as discussed earlier, since such

strategy gives us more possible die pairs and our die matching algorithm will try

to match them by aggressively making use of the redundant resources. Then, we

keep those pairs that are reparable, and for those found pairs that are not reparable,

we conduct matching again with tightening irreparability condition as follows:

|Mi|+ |M j|+ k ≤ Ri +R j +Ci +Cj (4.5)

, with gradual increase of the value k (initialized as 0).

As shown in Fig. 4.9, every time we tighten the irreparability condition, more

reparable pairs are found because the existence of more spare rows/columns be-

tween them. At the same time, the number of found pairs decreases, and the above

procedure terminates until we cannot find any pairs that can be matched.

2Starting from reparability condition does not give us any benefit because all the
matched pairs are reparable already.
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4.6 Experimental Results

4.6.1 Experiment Setup

We consider a total of 1000 1Gb memory dies to be formed as 2-layer memory

circuits, and hence we can obtain a maximum of 500 functional stacked memories

when the yield is 100%. Each memory die contains 4× 4 memory blocks, and

each memory block is with the size of 8k×8k (Row×Column) bit-cells.

For fault injection, we consider two cases to obtain the number of faults in each

die: (i). Poisson distribution with λ= 2.130 [92]; (ii). Polya-Eggenberger distribu-

tion with λ= 2.130 [90]. For Polya-Eggenberger distribution, we also tune another

parameter α with (ii) α = 2.382 [93] and (iii) α = 0.6232 [94], representing the

case with clustered faults and that with evenly distributed faults, respectively.

We assume that all the spare rows/columns can be borrowed between neigh-

boring vertical memory blocks, and we inject random TSV faults with faulty rate

as 0.1%. Experiments are conducted on two cases with different percentage of six

kinds of faults (see the following table).
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Fault Single Cell Double Cell Single Row Single Column Double Row Double Column

Case 1 40% 4% 20% 20% 8% 8%

Case 2 70% 4% 8% 8% 5% 5%

Table 4.1: Experimental Parameters for Two Cases.

4.6.2 Results and Discussion

In our experiments, we compare four matching strategies: (i). matching self-

reparable dies only; (ii). matching according to reparability condition; (iii). match-

ing according to irreparability condition; and (iv). iterative matching. Tables 4.2

present our experimental results with gradual increase of spare rows/columns.

From this table, we can observe that, with redundancy sharing, all the three

proposed matching strategies significantly increase memory yield when compared

to the case that we bond self-reparable dies only (up to 35.6% yield enhancement).

Generally speaking, the amount of yield improvement decreases with the increase

of redundancy, while the number of self-reparable dies grows rapidly. From an-

other perspective, we can observe that for all the cases, iterative matching with

10×10 spares outperforms bonding self-reparable dies only with 18×18 spares.

In other words, to achieve the same memory yield, much fewer spare rows/columns

are needed with redundancy sharing, which justifies the use of some TSVs to fa-

cilitate this repair strategy.

In most cases, iterative matching results in the highest yield, followed by

matching according to reparability condition while matching according to irrepara-

bility condition is inferior to the other two strategies. This is because, even though

the number of matched dies according to irreparability condition is usually quite

high (see Column Nmatch), a non-trivial portion of them might be irreparable, es-

pecially when the redundant resources are not sufficient. There are also few cases

that iterative matching results in less reparable memory circuits when compared

to matching according to reparability condition (e.g., Poisson Distribution in Ta-
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ble 2(b) with 10× 10 spares). This is because, when the first iteration matching

according to irreparability condition has returned very high yield (494 out of 500

die pairs are reparable in this case), there are few flexibility for us to match more

reparable pairs for the left ones.

From Table 2, we can also see that the yield in Case 2 is always higher than

that in Case 1. This is because, there are much more single cell faults in Case 2 and

they can be easily repaired with either a spare row or a spare column, and hence the

repair algorithm has higher flexibility to fulfill such needs. For polya-eggenberger

fault distribution, the yield values with α = 0.6232, is much larger than that with

α = 2.38. This is also expected because, there are more fault clusters when α is

large, and hence such memory dies are more difficult to repair.

4.7 Conclusion

In this chapter, we propose to conduct redundancy sharing across neighboring dies

for yield enhancement of the emerging 3D-stacked memory circuits. To achieve

this objective, we first develop a repair strategy that enables redundancy sharing

for any given pair. Next, we present novel solutions that selectively match memory

dies together for yield maximization. Experimental results show that the proposed

technique is able to greatly enhance memory yield or requires much less redundant

resources to achieve similar yield.

� End of chapter.
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Table 4.2: Experimental Results
(a) Case1

Spare Self Reparability Irreparability Iterative
Repair Condition Condition Approach

SR×SC Nrepair Ysel f Nrepair ∆Yr Nmatch Nrepair ∆Yir Nrepair ∆Yit

Poisson Distribution
6×6 203 40.6% 341 27.6% 386 281 15.6% 352 29.8%
8×8 268 53.6% 415 29.4% 475 367 19.8% 446 35.6%

10×10 358 71.6% 481 24.6% 496 411 10.6% 482 24.8%
12×12 388 77.6% 485 19.4% 498 448 12.0% 489 20.2%
14×14 428 85.6% 496 13.6% 500 477 9.8% 496 13.6%
16×16 457 91.4% 498 8.2% 500 490 6.6% 498 8.2%
18×18 471 94.2% 499 5.6% 500 498 5.4% 499 5.6%
Average 18.34% 11.4% 19.7%

Polya-Eggenberger Distribution α = 0.6232
6×6 307 61.4% 412 21.0% 445 404 19.4% 428 24.2%
8×8 367 73.4% 436 13.8% 483 407 8.0% 460 18.6%

10×10 410 82.0% 457 9.4% 494 435 5.0% 480 14.0%
12×12 434 86.8% 477 8.6% 497 454 4.0% 485 10.2%
14×14 453 90.6% 490 7.4% 499 469 3.2% 490 7.4%
16×16 463 92.6% 495 6.4% 500 484 4.2% 496 6.6%
18×18 471 94.2% 497 5.2% 500 489 3.6% 497 5.2%
Average 10.26% 6.77% 12.31%

Polya-Eggenberger Distribution α = 2.38
6×6 111 22.2% 202 18.2% 215 169 11.6% 205 18.8%
8×8 152 30.4% 278 25.2% 318 181 5.8% 286 26.8%

10×10 187 37.4% 340 30.6% 396 179 -1.6% 350 32.6%
12×12 219 43.8% 354 27.0% 414 254 7.0% 377 31.6%
14×14 257 51.4% 393 27.2% 447 300 8.6% 406 29.8%
16×16 292 58.4% 421 25.8% 457 353 12.2% 430 27.6%
18×18 319 63.8% 443 24.8% 477 374 11.0% 450 26.2%
Average 25.54% 7.8% 27.62 %

∆Yr: Yield improvement according to reparability condition over Ysel f .
∆Yit : Yield improvement with iterative matching over Ysel f .

(b) Case 2
Spare Self Reparability Irreparability Iterative

Repair Condition Condition Approach
SR×SC Nrepair Ysel f Nrepair ∆Yr Nmatch Nrepair ∆Yir Nrepair ∆Yit

Poisson Distribution
6×6 291 58.2% 446 31.0% 455 445 30.8% 452 32.2%
8×8 376 75.2% 493 23.4% 495 485 21.8% 493 23.4%

10×10 443 88.6% 500 11.4% 500 494 10.2% 498 11.0%
12×12 462 92.4% 500 7.6% 500 499 7.4% 499 7.4%
14×14 483 96.6% 500 3.4% 500 500 3.4% 500 3.4%
16×16 494 98.8% 500 1.2% 500 500 1.2% 500 1.2%
18×18 498 99.6% 500 0.4% 500 500 0.4% 500 0.4%
Average 11.2% 10.74% 11.29%

Polya-Eggenberger Distribution α = 0.6232
6×6 382 76.4% 468 17.2% 477 469 17.4% 474 18.4%
8×8 436 87.2% 486 10.0% 495 479 8.6% 490 11.0%

10×10 468 93.6% 492 4.8% 499 488 4.0% 495 5.0%
12×12 476 95.2% 496 4.0% 500 495 3.8% 498 5.0%
14×14 484 96.8% 498 2.8% 500 497 2.6% 498 2.8%
16×16 491 98.2% 499 1.6% 500 498 1.4% 499 1.8%
18×18 494 98.8% 499 1.0% 500 499 1.0% 499 1.2%
Average 5.91% 5.54% 6.2%

Polya-Eggenberger Distribution α = 2.38
6×6 177 35.4% 294 23.4% 305 294 23.4% 302 25.0%
8×8 228 45.6% 371 28.6% 389 354 25.2% 378 30.0%

10×10 298 59.6% 416 23.6% 439 394 19.2% 429 26.2%
12×12 313 62.6% 438 25.0% 452 423 22.0% 444 26.2%
14×14 354 70.8% 456 20.4% 472 441 17.4% 461 21.4%
16×16 382 76.4% 472 18.0% 481 468 17.2% 476 18.8%
18×18 408 81.6% 479 14.2% 489 469 12.2% 482 14.8%
Average 21.89% 19.51% 23.2%

∆Yir: Yield improvement according to irreparability condition over Ysel f .



Chapter 5

TSV Repair for Assembly Yield
Enhancement

5.1 Introduction

The assembly process for 3D-SICs involves many challenging manufacturing steps

(e.g., wafer thinning and TSV bonding), which may cause various types of TSV

faults [40]. Adding redundant TSVs to repair faulty ones is probably the most

effective method to enhance assembly yield besides improving the manufacturing

process itself. Several TSV redundancy design techniques have been proposed in

the literature [3, 2, 1]. Despite different redundancy allocation strategies used in

these works, they all assume uniformly-distributed TSV faults and use neighbor-

ing TSVs to replace faulty ones, if any. In practice, however, the bonding quality

of TSVs depends not only on the bonding technology, but also the winding level

of the thinned wafer and the surface roughness and cleaness of silicon dies. Con-

sequently, if one TSV is defective during the bonding process, it is more likely

that its neighboring TSVs are also faulty. Due to such clustering effect, earlier

TSV repair techniques are less effective because a signal TSV and its neighboring

redundant TSV may be defective at the same time.

In this chapter, we propose a novel TSV repair framework to tackle the above

problem. Instead of repairing faulty TSVs by their neighbor TSVs, our technique

97
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enables them to be repaired by redundant TSVs that are “distant”. With the im-

proved repair flexibility, our technique is suitable to repair clustered, faulty TSVs.

To guarantee the timing correctness after repair, we also present a new repair algo-

rithm in this chapter. Experimental results show that the proposed solution outper-

forms prior techniques, especially when the number of TSVs used in the 3D-SICs

is large and/or the clustering effect is significant.

The remainder of this chapter is as follows: Section 5.2 presents the prelim-

inaries and motivation of this work. In Section 5.3, we present the hardware ar-

chitecture of our TSV repair framework. The corresponding repair algorithm is

then shown in Section 6.5. Section 5.5 presents the corresponding redundancy ar-

chitecture construction. Section 5.6 presents the experimental results for various

hypothetical 3D-SICs. We then discuss several practical considerations to use the

proposed technique in Section 5.7. Finally, we conclude this work in Section 5.8.

5.2 Preliminaries and Motivation

To date, there is no public data on actual TSV failure rates. In fact, they can vary

significantly among different foundries because the failure rate of a particular TSV

technology depends on its technology maturity level and parameters such as TSV

width/height and TSV pitch size. The common belief is that: while the TSV pro-

cessing technology has advanced significantly over the past several years, TSV

yield is still not satisfactory, requiring redundancy for defect-tolerance. Conse-

quently, several TSV redundancy allocation strategies were presented in the liter-

ature which differ in terms of redundancy ratio (#Redundant T SV s
#Signal T SV s ), repair capability,

and hardware cost.

In [1], Samsung presented a TSV redundancy strategy used to improve the

yield of its 3D memory product, wherein four signal TSVs and two spares are

bundled together to form a group of six TSVs (see Fig. 5.1(a)). The redundancy
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Figure 5.1: Existing TSV Redundancy Solutions: (a) Signal Switching [1]; (b)
Signal Shifting [2]; (c) Crossbar [3].

ratio of this technique is 1:2 and it can tolerate any two TSV failures within the

group.

Hsieh et al. [2] proposed to link signal TSVs in a TSV block with one spare

TSV to form a TSV-chain (see Fig. 5.1(b)). If there is one defective TSV in a TSV

block, signal shifting is conducted to repair it with the spare. Suppose each TSV

block contains N TSVs, the redundancy ratio of this technique is 1 : N, and it can

tolerate one TSV failure in the block.

In et al. [3], for a N ×N TSV grid used as NoC links, redundant rows or

columns of TSVs are added for defect-tolerance. Suppose a redundant row is

added (see Fig. 5.1(c)), each spare TSV is connected to the signal TSVs on its cor-

responding column through a crossbar and it can be used to repair any defective

TSV on that column. Suppose M redundant columns/rows are added, the redun-

dancy ratio of this technique is M : N, and it can tolerate any M TSV failure in

each row/column in the grid.

While significant yield improvements were achieved in the above works, their

analysis, in all cases, was based on the assumption that TSV defects are uniformly-

distributed. This assumption may hold true for certain random defects such as void
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Figure 5.2: Results of Existing Repair Schemes Assuming 1/2 Redundancy Ratio.

Figure 5.3: The Existing Clustered Faults Aware Repair Scheme [4].

formation [95] and lamination due to thermal induced stress [96]. At the same

time, however, many types of TSV defects appear during the imperfect bonding

process. Oxidation or contamination of the bond surface, height variation of the

TSVs, thinned dies warping [27] and bowing of a wafer can cause large alignment

errors [97], leading to clustered, faulty TSVs.

Due to the above, it is likely that, while most signal TSV groups have very few

faults and are reparable, there exists one or more signal TSV groups that are vul-
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Figure 5.4: Proposed TSV Redundancy Architecture: (a) An Example Physical
Layout of Original TSV bundle and their Signal Entries; (b) A Physical Imple-
mentation of Proposed TSV Redundancy Architecture; (c) A Conceptual View of
the Proposed TSV Redundancy Architecture;

nerable to clustered faults and will become irreparable, although the redundancy

ratio is large enough. On the other hand, since prior solutions mainly rely on neigh-

boring spare TSVs for repair, they may suffer from the same clustered faults as the

defective one, rendering low repair efficiency. We use two examples in Fig. 5.2

to demonstrate the above concern. For simplicity, the bundled signal TSVs and

redundancies are linked by a line in the fault map. Although the redundancy ratio

of the prior solutions are all the same (1:2), their repair efficiencies behavior dif-

ferently after the clustered TSV faults occur. In Fig. 5.2(a), all the prior solutions

can successfully repair the random TSV faults that are sparsely located. While in

Fig. 5.2(b), all the existing techniques fail to repair the three clustered TSV faults

due to the lack of redundancies nearby.

Recently, the clustered TSV faults get noticed by several works [4, 46]. In

[4], signal TSVs and redundant TSVs are grouped together as a crossbar scheme.

Each signal TSV has r repair candidates if the group is assigned with r redundant

TSVs (e.g. Fig. 5.3 (a)). In order to tolerate the clustered faults (e.g. Fig. 5.3 (b)),

they either choose to shrink the group size (e.g. Fig. 5.3 (c)) or increase the redun-

dancy ratio (e.g. Fig. 5.3 (d-e)). In order to maximize the yield and minimize the

multiplexors, the group size and redundancy ratio are determined through proba-
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bility analysis of successful repair. The derived optimal solution, however, is still

not “cheap” especially in terms of redundancy cost. That is because the repair

structure is fixed in advance, rendering an inflexible repair and hence most of the

redundant TSVs remain useless. Motivated by the above, in this chapter, we pro-

pose a novel repair framework that is effective and flexible to repair clustered TSV

faults with least redundancy cost.

5.3 Proposed TSV Redundancy Architecture

In order to handle clustered TSV fault, our solution is to offer more repair options

for each defective TSV. In other words, we try to increase repair flexibility so that

a defective TSV can be replaced by a spare that is distant. In this section, we first

demonstrate the overall architecture and then detail the switch design and signal

re-routing mechanism.

5.3.1 Overall Structure

An example layout of TSVs is shown in Fig. 5.4(a), wherein the signal connecting

TSV (noted as signal entry) is located nearby. Around each TSV, there is a “Keep-

out-zone” that no logic gate can be placed. Thus, the signal can only be routed

into this TSV bundle by wires. It first injects a switch into the TSV-signal link

and places the redundant TSVs along two borders of the TSV bundle (Fig. 5.4(b)).

Each redundancy TSV links to a switch by wires (shown in red color). Noted

that the exactly placement of these redundancy TSVs can be tuned to facilitate the

placement and routing in physical design. This physical layout is mapped to a

logical TSV grid (see Fig. 5.4(c)) for clarity. In the remaining of this chapter, we

will use this logical redundancy architecture instead.

Inspired by the compensation path problem [98], in this architecture, if one

signal is disconnected due to a TSV fault (the one with “X” mark), the switches

linking two pads of the faulty TSV reroute the signal through a neighbor fault-free
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TSV by way of their switches (see the solid line). Since the fault-free TSV is now

attached to the previous rerouted signal, its original signal needs to be rerouted as

well. This process continues until a redundant TSV on the border is used.

TSVs are usually fabricated in a “regular” manner and grouped as bundles

in many 3D-SIC designs [99, 20]; those regularly placed TSVs can be naturally

linked together to construct the proposed TSV redundancy architecture. In case

that TSVs are not regularly placed, we can also map them into a logical TSV grid

and apply our repair architecture (discussed later). Note that, while more hardware

resources are needed in the proposed architecture (i.e., additional switches and

wires) when compared to earlier TSV redundancy techniques, this hardware cost

is well justified by the yield improvement brought with our solution, as shown in

our experimental results.

5.3.2 Switch Design and Repair Path Routing

The switch design depends on the placement of redundant TSVs, e.g. in Fig. 5.4(c),

which are placed on the east and south borders of the TSV grid. Thus, we constrain

W
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Figure 5.5: Switch Design and Routing Capability. (a)Switch Design; (b)TSV grid
with Edge-Disjoint Repair Path.
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signals to route from two directions (from west to east or from north to south).

Fig. 5.5(a) shows the schematic of the corresponding switch design. The signal

entry and its original TSV have two ports in the switch (denoted as signal port

and TSV port). In addition, there are four other ports connecting other switches far

apart from four different directions (denoted as linking ports). The design principle

is that the signal port and two linking ports (North and West) have a mux capable

of linking to the TSV port and the remaining linking ports (East and South).

We use Fig. 5.5(b) as an example (4×4 grid) to introduce the concept of repair

path and to show its routing capability. Initially the mux of signal port connects to

TSV port. Once the faulty TSV is detected, the signal port reroutes to another fault

free TSV by reconfiguring the connectivity of the switch. This type of physical

connection between signal and TSV is represented as a repair channel (see the

solid arrow). Starting from any faulty TSV, there must be a succession of continu-

ous repair channels finally terminating in a redundant TSV. We denote this virtual

connection from a faulty TSV to a redundant TSV as repair path. For example,

the three clustered faults on the top find three disjointed repair paths to redundant

TSVs (see dashed arrow). The four clustered faults on the bottom also find four

disjointed repair paths. It is worth noting that the design of the switch guarantees

that the repair paths can intersect with each other without any contradiction as

long as port connections within the switch have no conflict (see the three clustered

faults in the bottom).

5.4 Proposed Repair Algorithm

After the fault maps of each TSV grid is obtained via testing 1, a repair algorithm

is essential to analyze whether the TSV grid is reparable and generate repair paths

1Testing is out of the scope of this chapter. Interested readers may refer to [27, 2, 100] for more
details.
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for each faulty TSV, if possible.

5.4.1 A Maximum Flow Method Based Approach

Consider the TSV grid as a directed graph, wherein each vertex represents a TSV

and its corresponding switch while the directed edge connecting two vertices is the

wire between two switches (the edge direction depends on the constraint of signal

routing directions).

Our problem is to find edge-disjoint repair paths for all faulty TSVs, and we

can employ the Maximum Flow method [101] to find them. To be specific, we

first assign each edge in the graph with an unit capacity “1” to construct a directed

flow graph. By adding a super source node that points to those faulty TSVs and

merging all the spare TSVs into a target node, the TSV grid is repairable only if the

weight of maximum flow is equal to the number of faulty TSVs (see Fig. 5.7(a)).

5.4.2 Additional Delay due to Signal Rerouting

While the above problem formulation and its corresponding solution are simple

and effective, it does not take the additional delay introduced during repair into

Figure 5.6: Timing Issue caused by Signal Rerouting.
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consideration. First, let’s take a look at the extra delay caused by the switch in-

serted between each TSV and its signal entry. Each switch has three Muxes (i.e.

six gates). Assuming the average area of a gate is 3125F2, the size of the switch is

approximately 0.9µm×0.9µm in 65nm technology. Comparing to the TSV size (in

an order of magnitude of 10µm), it is negligible. To reroute to the neighboring

TSV, one signal only need to pass four gates in maximum. Conclusively, it is not

the extra hardware in the proposed architecture that contributes the extra delay.

Instead, the wire of accessing the neighboring TSV mainly determines the extra

delay.

Furthermore, the wire length of rerouting the signal is determined by the layout

of signal entries. We classify their layout into two scenarios, one of which is

mentioned in Fig. 5.4 and denoted as “centralized signal entries” (see Fig. 5.6(a)),

wherein the switches are assumed to be near the signal entry, and thus omitted for

clarity. Applications like 3D-NoC and 3D stacked memory prefer to connect TSVs

in this way for massive data transformation. Under this circumstance, the extra

delay after repairing depends on the different distances of the original TSV and

repairing TSV away from the respect signal entries. And this difference is roughly

equivalent to the distance between the two TSVs (e.g. repairing TSV 2 using TSV

5). While the extra the delay after repairing the TSV would even decrease in other

cases (e.g. repairing TSV 1 by TSV 2). Assuming the TSV distance is in the same

order of its pitch (10µm), this extra delay is limited and negligible, except for some

critical signals with tight timing margin.

For the other scenario, the signal entries are distributed near to their respect

TSVs (see Fig. 5.6(b)). In this situation, the proposed TSV redundancy architec-

ture confronts with timing issues since we have to take the distance between signal

entries (switches) into consideration. For example, repairing TSV 5 by TSV 8

leads the signal to access as far as half of the bundle’s perimeter away. A repairing
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Figure 5.7: Problem Transformation.

is available only if the extra delay of rerouting the signal would not violate the

timing constraint. As a result, it is essential to consider timing constraint in the

proposed TSV repair algorithm.

5.4.3 Problem Analysis due to Timing Constraint

To guarantee the timing correctness of the circuit after repair without necessarily

changing our problem formulation completely, we translate the timing constraint

for each “to-be-repaired” fault as length constraints in the flow graph. That is, each

wire/mux in the TSV grid is associated with a length weight, and given a length

constraint for each signal, the length of repair channel (the distance between the

signal with the faulty TSV and its reconnected TSV) cannot violate the length

constraint.

With the above, directly using maximum flow method to solve our problem is

not applicable because: (i). The “flow” in maximum flow method has no sense

of length; (ii). If two repair paths intersect in the same TSV (e.g. dashed path

and doted path intersected in TSV V in Fig. 5.7(a)), a decision has to be made,

that one repair path should possess the TSV while the other one is bypassed, and
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this decision has to consider the timing constraint. This is not a concern in the

original maximum flow method. Before introducing our repair algorithm in detail,

we prove this problem is a NP problem first, as shown in the following.

First, we transform the flow graph by setting all signals as sources and all the

fault-free TSVs as targets (see Fig. 5.7(b)). At the same time, all the ports within

switches become internal vertices while all the wires between them are edges in

the graph. The edge between TSV and the TSV port guarantees that each TSV is

used only once, and the length weight is put on these edges. The problem now

becomes how to find edge-disjoint paths from all signals to TSVs under the length

constraint. Second, we rearrange the flow graph as shown in Fig. 5.7(c), where

each source is labeled with length constraint (a...i), among which we suppose i is

the minimum length constraint. Then we add a super source/target and links to

all the sources/targets. For each link from super source to source, we manipulate

a length weight that is the source’s length constraint minus the minimum length

constraint (e.g., a− i). Thus, the original problem becomes a NP-complete max-

imum length-bounded flow problem, which is to find a maximum flow between

one source and one target where the length of all flows are bounded by a length

constraint [102].

5.4.4 Repair with Length Constraint

For the sake of simplicity, in this chapter, we assume that there is a unified length

constraint C, i.e., the one for the most critical signal.

Our heuristic is shown in Fig. 5.8, and the basic idea is to divide sources into

groups and apply bounded search for each group. First, we initialize the flow

graph by removing those edges that link signals with faulty TSVs and their TSV

port (line 1). Consider that the repair channel can only go towards east and

south directions. It is better to conduct a bounded search for those sources from

west/north to east/south. This is because the targets and edges chosen for preced-
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ing sources are no longer available for the latter sources, thus reducing solution

space. At the same time, the sources in the same diagonal lines have no edge con-

nection to each other, which makes it a perfect choice to group them together (line

2). For each source in a group, we first find all possible candidate repair chan-

nels (c j) including available edges and targets that satisfies the length constraint

using breadth first search (lines 4-5). To avoid an extremely large solution space

during exhaustive search, we constrain the candidate repair channels in terms of

their number of edges/hops. The search bound iteratively increases from “1” as

long as it does not exceed some pre-defined maximum bound (line 6). Generally

speaking, the larger the search bound is, the more edges the repair channel occu-

pies, leaving less solution space for consequent groups. Thus, the repair channels

with less edges are preferred. We then apply an exhaustive search to find the repair

channels for each source in this group such that, there is no conflict on edges and

targets (line 7). Once such a combination of repair channels is found, we confirm

this solution by recording the repair channels and updating the graph, i.e. deleting

the chosen edges and targets in this solution (lines 8-9). We then continue with the

next group of sources (line 10). Otherwise, the search bound is increased and the

search continues. If no such non-conflict repair channels can be found even with

the maximum bound, the TSV grid is deemed irreparable (lines 11-12). Otherwise,

the heuristic returns the successful repair solution (line 13).

Let us demonstrate how our heuristic works using an example fault map shown

in Fig. 5.9(a). The groups are those signals in diagonal lines (doted lines). To sim-

plify the demonstration, we adopt a flow graph like Fig. 5.7(a) and index each node

with the row and column numbers (Cx,y). We mark the faulty TSV as cross (“X”)

and use a circle to denote the node whose TSV is possessed by previous signals.

When i = 1, C1,2 has faulty TSV and it finds a repair channel (dashed gray arrows)

to the TSV in node C1,3 while the other node in this group finds the repair channel
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Input : G = (V,
−→
E ,w),S,T,L

Output : C = {ck(sk, tk),sk ∈ S, tk ∈ T}
1 Initialize G, remove faulty TSVs;
2 Classify diagonal sources into groups P = {pi};
3 For each group {pi}
4 For each source s j ∈ pi

5 BFS: find all possible repair channels from s j to t ∈ T ,
satisfying the length bound L and put into c j;

6 For search bound sb from 1 to maximum bound;
7 find a repair channel and target for each source

such that no conflict exists;
8 If success
9 confirm the solution and update G;
10 break;
11 Else If not success and sb = MAXhops(c j)

12 The grid is Irreparable;
13 The grid is reparable;

Figure 5.8: Proposed Alogrithm

to its own TSV. When i = 2, two signals without their original TSVs find the re-

pair channels (dashed black arrows) bounded by 2. The search process is shown

in Fig. 5.9(b). The nodes with fault TSV or possessed TSV are shown in grey

color and the non-conflicting repair channels end on nodes C1,4 and C2,4 respec-

tively (underlined). After confirming this solution, the edges and TSVs possessed

during i = 2 are labeled in grey color and no longer available. The process contin-

ues for group i = 3, and three more repair channels are found for this group (solid

black arrows).

5.5 TSV Redundancy Architecture Construction

In order to integrate the proposed TSV redundancy technique into the design flow,

we plan to insert redundant TSVs and supporting infrastructures, i.e. muxes and
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Figure 5.9: Illustration of the Repair Algorithm: (a) Example TSV Grid; (b)
Search Procedure Demonstration

wires, right after the TSVs planning but prior to the placement and detail routing.

During this process, the key step is to construct the TSV redundancy architecture,

i.e. to determine the distance of neighboring TSVs, which influences the repara-

bility in two contradictive aspects. From the perspective of the whole TSV grid,

a higher routability indicates a higher reparability since each signal is more flexi-

ble to find a replacement. Thus, it is preferred to minimize the distance between

neighboring TSVs so that more replacement candidate can be reached. On the

other side, it is likely that the presence of a single TSV fault increases the chance

of more defective TSVs in close vicinity [4, 46]. Once a TSV is found faulty, we

are unwillingly to see its successive neighboring TSVs are also faulty, blocking

up its repair paths. In that sense, it seems better, on the contrary, to maximize

the distance between neighboring TSVs as long as this distance fulfill the length

constraint. In order to investigate the impact of this distance, we first conduct the

probability analysis on the reparability of TSV redundancy grid assuming that the

clustered TSV faults are spatially correlated. Then a topology mapping strategy is

proposed for TSV grid construction to enhance the reparability.



CHAPTER 5. TSV REPAIR FOR ASSEMBLY YIELD ENHANCEMENT 112

5.5.1 Defect Probability Model with Spatial Correlation

To analyze the probability of successful repair, i.e. reparability, it is essential to

derive a probability model of the clustered TSV faults. The Compound Poisson

Distribution [51] is widely accepted to model the clustering effect, in which the

defect count follows Poisson distribution compounded with a Gamma function

presenting the distribution of defect density. To model the spatial correlation, a

center-satellite model [103] is proposed, where the distributions of the cluster cen-

ters are described by a two-dimensional distribution function and the distribution

of the satellites (defects) with respect to the cluster center is also described by

a two-dimensional distribution function. In this case, the defect probabilities in

the regions near defect clusters are higher than other regions. Approximately, this

defect probability is inversely proportional to the distance from the existing de-

fects [104]. If there are already Nc defects (regarded as cluster centers), the defect

probability of T SVi, pi can be expressed as

pi ∝
Nc

∑
j=1

(
1

dic
)α (5.1)

where dic is the distance between T SVi and existing cluster center and α is the

clustering effect.

5.5.2 Reparability Analysis

To analyze the reparability, we first investigate the metrics to determine whether

the proposed repair scheme can survive the clustered TSV faults. As stated in the

previous section, in order to repair the TSV faults, we have to find edge-disjointed

paths from the faulty TSVs to redundant TSVs located in the borders. According

to “Max-Flow Min-Cut theorem”, the minimum cut of the induced flow graph

must not be less than the number of faulty TSVs. Fig. 5.10(a) shows an irreparable

fault map, in which the value of the min-cut (dashed curve) is less than the number
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of faulty TSVs. Whereas the fault map in Fig. 5.10(b) has a min-cut equal to the

number of faulty TSVs, indicating a reparable solution (black solid arrows). The

fault map in Fig. 5.10(c) shows that, on the contrary, although the min-cut of these

seven sources is equal to seven, the fault map is still irreparable. As a result, we

have the following theory

Theorem 1 The fault map is reparable if and only if there is no such a sub-set of
sources whose min-cut is less than the size of this sub-set.

Proof To repair all the faults, we need to find a repair-path, as well as edge-

disjointed path for each the source. If the number of sources in any sub-set is

larger than the min-cut of this subset, then the number of edge-disjointed path is

also larger than the min-cut. Since the repair scheme constrain that the repair-

path can only go towards east and south, based on the “min-cut maximum-flow”

theorem, it is no way we can find all edge-disjointed paths for each source that can

pass through the min-cut. Thus, the fault map is irreparable.

With the above theorem, we can model the reparability of the TSV grid by

investigating the probability that any fault cluster is reparable. The proposed two

repair algorithms are modeled respectively. As [103], the probability of the cluster

Figure 5.10: The Reparability Condition:(a) Irreparable Example; (b) Reparable
Example; (c) Minimal Orthogonal Cut Equals to Min-cut.
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Figure 5.11: Defect Probability Model:(a) Maximum Flow Method; (b) Length
Bounded Search Heuristic.

center (c) is assumed to be Poisson distributed. The defect probability of satellite

TSVs pi is given in Eq. 5.1. In order to model the reparability of the maximum

flow based algorithm, we assume the size of the fault cluster is M by N and hence

the min-cut of the fault cluster is M+N (see Fig. 5.11(a)). The random variable X

denotes the number of defective TSVs among totally M×N TSVs. As mentioned

above, this fault cluster is reparable only if the number of faulty TSVs in the cluster

is less than the min-cut M +N. First we randomly select x (x ≤ M +N) TSVs

from the total M×N TSVs as a faulty TSVs set Fx, resulting in totally
(M×N

x

)
combinations. We obtain the probability of each combination Ci by calculating the

product of defective probabilities for the faulty TSVs selected in Fx,Ci as well as

the non-defective probabilities for the rest of TSVs that are not selected (Ω−Fx,Ci).

Then the probability of all the combinations are accumulated for this x. Finally, the

reparability is formulated by cumulating the derived probabilities of all possible xs

as

P(X ≤M+N) =
M+N

∑
x=0

[
(M×N

x )

∑
i

[ ∏
k∈Fx,Ci

pk ∏
j∈Ω−Fx,Ci

(1− p j)]] (5.2)
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where pk and p j are the defective probability of TSV k and j obtained from Eq. 5.1.

For the sake of simplification, we just assume an average defective probability and

Eq. 5.2 can be approximated as follow:

P(X ≤M+N) =
M+N

∑
x=0

[

(
M×N

x

)
px(1− p)M×N−x] (5.3)

where p are the average defective probability.

In order to apply the “min-cut maximum-flow” theorem to the proposed length

bounded search heuristic, we can draw a set of right triangles with their hypotenuses

representing the min-cuts. These right triangles are sorted in ascending order of

the size until the last one embodies the whole fault cluster (see Fig. 5.11(b)). Em-

pirically, the set of right triangles represent the repair process that the TSV groups

in the diagonal lines (i.e. the hypotenuses) are repaired iteratively. Once a faulty

TSV is repaired according to the heuristic, a fault-free TSV is occupied in next

orthogonal hypotenuse. Thus we need to find another fault-free TSV for this oc-

cupied TSV in next iteration. From a higher perspective, the number of occupied

TSVs is accumulated in successive hypotenuses iteratively. This process continues

until the redundant TSVs are reached. Obviously, the repair scheme fails as long as

the number of faulty TSVs embodied by any right triangle is larger than the min-

cut (number of edges) long with the hypotenuse. Suppose we need n right triangles

Tn = {t1, t2, ..., tn} (Size(ti) < Size(ti+1)) to embody the fault cluster. The random

variable xi denotes the number of faulty TSVs inside ith right triangle which con-

tains Num(ti) =
i×(i+1)

2 TSVs in total. The reparability can be approximated in a

same manner as follow

n

∏
i=1

P(xi ≤Mincut(ti)) =
n

∏
i=1

P(xi ≤ 2i) (5.4)



CHAPTER 5. TSV REPAIR FOR ASSEMBLY YIELD ENHANCEMENT 116

0.2 0.4 0.6 0.8 1
mean p

Max−flow based

2x2 4x4 6x6 8x8 10x10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mean p

Bounded Search

Figure 5.12: Reparability Approximation Trends with respect to Average Defect
Probability and Cluster Size (from 2×2 to 10×10).

For any right triangle ti, the reparable probability is

P(xi ≤ 2i) =
2i

∑
xi=0

[

(
Num(ti)

xi

)
pxi(1− p)Num(ti)−xi ] (5.5)

where p are the average defective probability.

Based on the above equations, we know that the key factor is the distance be-

tween TSVs. According to Eq. 5.1, the smaller distance between TSVs indicates

that the defect probability p becomes higher. Although, the exact defect probabil-

ity is related to the clustering effect and defect intensity, the TSVs near the cluster

center would have a very high probability to fail. We can approximately assume

the average defect probability within this fault cluster is approaching to 1 (i.e.

p → 1), which means the fault has more likelihood to occur. On the contrary, if

this distance is larger, p is approaching to a fixed failure rate, which indicates a

random defect.

Now let’s consider this trend according to the approximated reparability from

above equations (see Fig. 5.12). As the average defect probability increases, the

reparability drops dramatically. At the same time, it becomes more difficult to re-

pair those fault clusters with larger sizes. Comparing the optimal solution derived

by maximum flow algorithm, the bounded search heuristic is more vulnerable to
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Figure 5.13: Examples of the Topology Mapping and the Change of Faulty Map
in TSV Grid.

the clustering effect. In order to enhance the reparability, it is urgent to reduce

the average defect probability and reduce the size of fault cluster based on above

analysis.

5.5.3 Topology Mapping

In order to enhance the reparability, the basic strategy is either increasing the dis-

tance between TSVs or shrinking the size of the faulty TSV cluster. However, the

distance of TSVs is normally determined according to the design specification and

can hardly be changed afterwards. Similarly, the size of the faulty TSV cluster

is also beyond our control. Fortunately, we can achieve both the above strategies

by topology mapping. A topology mapping is a process that maps the TSVs from

the physical layout to a “logical” TSV grid. Thus, the neighbors in this “logical”

grid (topological neighbors) are not necessarily the neighbors in the physical lay-
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out. To demonstrate this concept, we first show a straightforward mapping that

the topological neighbors are the exact physical neighbors. In Fig. 5.13(a), a 8×8

TSV bundle is split to four 4× 4 TSV grids. Although the proposed TSV redun-

dancy architecture is inherently able to tolerate TSV clustering fault, applying the

above topology disposes the TSV redundancy architecture to the risk of unsuc-

cessful repair. For example, two faulty TSV clusters (black dots in Fig. 5.13(a))

are located into two TSV grids and make them irreparable. To overcome this vul-

nerability, the physical neighboring TSVs are distributed apart in derived grid or

even into different grids. Fig. 5.13(b) renders such a mapping that the topological

neighbors are 2-hop away (with one gapped TSV in between) in physical layout.

The derived four 4×4 TSV grids are shown in Fig. 5.13(c) and are able to repair all

the faulty TSVs. By employing this topology mapping, the clustered faulty TSVs

are distributed, indicating a larger distance between TSVs and smaller cluster size

and hence the reparability is improved.

The topology mapping would increase the delay of signal rerouting, however,

the affect is limited. As we discussed in Section 5.4.2, the extra delay is roughly

equal to the distance between “to-be-repaired” TSV and the repairing candidate

TSV, if the switches and signal entries are centralized. Mapping TSVs in 2-hop

distance away in original grid into a logical TSV grid would double this extra

delay. Since the state-of-art TSV process technology can achieve < 10µm pitch,

doubling this delay after topology mapping would not affect the delay too much.

Besides, the topology mapping could also be used upon the proposed timing aware

“length bounded search” scheme, which can improve the yield while keep the

signals under the timing constraint.
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Work
Defect TSV Yield w/o TSV
Rate Pitch Spare Number

IBM’05 [105] 13.9E-6 0.4µm 95% 88% 1k−10k
IMEC’06 [106] 40.0E-6 10µm 67% 10k
HRI’07 [107] 9.75E-6 - 68% 100k
HRI’09 [39] 7.95E-7 - ≥90% 100k

SAMSUNG’09 [1] 0.63% - 15% 300

Table 5.1: TSV Related Experimental Setup.

5.6 Experimental Results

5.6.1 Experimental Setup

Defect rate and the number of TSVs are two key parameters for yield calculation

that also determine the effectiveness of a repair scheme. The TSV number asso-

ciates with a specific design, while, the defect rate is related to a specific TSV

process technology (e.g. the pitch and aspect-ratio of TSV). Various settings of

these parameters presented in previous works are summarized in Table 5.1. A

commonly acceptable failure rate is between 10−5 and 10−4 except for two ex-

tremes (i.e. Samsung and HRI’09). in this chapter, we vary both these two param-

eters in a reasonable range.

We set up three types of sample chips (small/medium/large) based on TSV

count, that is,1k, 16k and 128k. We group TSVs as bundles (16× 16 for small

chip and 32×32 for medium and large chip) and place them randomly on the chip.

We vary the TSV failure rate in a range from 10−5 to 10−4. In the experiments,

we use three repair schemes as baseline solutions for comparison. The crossbar

scheme [3] with 0.25 redundancy ratio is denoted as “8:2”, which indicates that

eight signal TSVs and two redundant TSVs are bundled together. Similarly, the

signal-shifting scheme [2] and signal-switching [1] scheme with a 0.5 redundancy

ratio are denoted as “2:1” and “4:2” respectively. The proposed scheme allocates

one column and one row of redundant TSVs on two borders of each TSV grid,



CHAPTER 5. TSV REPAIR FOR ASSEMBLY YIELD ENHANCEMENT 120

denoted as “R×C : R+C”. For ease of comparison, we set up two TSV grids,

“4× 4 : 8” and “8× 8 : 16”, with redundancy ratio 0.5 and 0.25, respectively.

The “2HD” indicates the topological neighbors have two hops distance in physical

layout. After topology mapping with 2-hop distance, TSV grids “8× 8” contain

four 4×4 sub-grids. Similarly, a 16×16 grid has eight 4×4 sub-grids after a 4-

hop distance topology mapping. And hence, numbers of redundancy TSVs are 32

and 128 respectively. For the sake of simplicity, the distance between neighboring

TSVs within the TSV bundle are all set equally. The length constraint is decreased

from 4 to 1 time(s) of this distance (denoted as “−T (4) to −T (1)”).

We conduct two sets of experiments. In the first set, the repairing efficiency

of proposed maximum-flow based method with and without topology mapping are

compared with prior techniques. And the proposed length bounded search algo-

rithm is evaluated under diverse length (timing) constraints in the second set. To

study repair efficiency on clustered TSV faults, we adopt the mentioned Com-

pound Poisson Distribution combined with spatial correlation in the both sets. The

clustering effect parameter (denoted as Al pha) is varied from 0 to 3. Particularly,

when Alpha is equal to 0, it degrades to a Poisson distribution.

5.6.2 Results and Analysis

Figure 5.14: Repair Schemes Varying Alpha from 1 to 3.

The experimental results with Al pha < 1 are not shown in the chapter, as all

the repair schemes can guarantee 100% yield. The main reason is that the yield of
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Figure 5.15: Repair Schemes Varying TSV Failure Rate with Fixed Alpha.

a single TSV is quite high in state-of-art process technique. However, the TSVs

yield in real product and some prototype test chips is not that optimistic due to

many reasons, one of which is the clustering faults.

Fig. 6.6(a)-(c) show the yield comparison by varying the clustering effect Al-

pha with a fixed TSV failure rate set to 5× 10−5 . It can be observed from the

figures that with the increasing clustering effect, all the previous repair schemes

suffer notable yield loss. The yield drop becomes more severe as the TSV num-

ber increases. However, the proposed maximum-flow based technique has much

less vulnerability (at most 5% yield drop in medium chip while 10% yield drop

in large chip). After the topology mapping, the proposed technique can achieve

a near 100% yield. The vulnerability to clustering fault is different across these

repair schemes. To be specific, signal shifting scheme 2 : 1 is worse than others

because it fails whenever two adjacent TSVs has faults at the same time. The

signal switching and cross-bar schemes behavior better, however, their efficiency

drop fast as the number of TSVs increases. That’s because, there are more chances

to occur a triple TSV faults nearby.
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Fig. 6.8(a)-(c) show the yield comparison by varying the TSV failure rate with

a fixing Alpha=2. With the ramping TSV failure rate, the yields of baseline repair

schemes drop with different gradients while the maximum-flow based scheme can

still keep a very high yield. To be specific, the repair efficiency of signal-shifting

scheme is less than other solutions because it can only tolerate one fault in its

repair unit. The crossbar is better than the preceding one but worse than signal-

switching scheme. The signal-switching scheme performs better for small chip

and medium chips with up to 98% yield, but in the case of large chips, the yield

drops nearly 10%. To observe closer into the clustering effect, we ramp up the

Alpha to 2.8 indicating a high likelihood of catastrophic defects (see Fig. 6.8(d)-

(e)). As the TSV number increases, all the repair schemes are revolved into three

groups. The baseline solutions are converged in the first group with significant

yield drop. While the proposed maximum-flow based technique is much better

to tolerate TSV clustered faults, however, still suffers when TSV number is large

enough for catastrophic defects to happen. After topology mapping, the repair

efficiency of the proposed technique significantly increases. Comparing to the two

topology mapping strategies, the one with 4-hop distance can keep the yield closer

to 100% . Obviously, the 4-hop distance mapping make the topology neighbor

distant and tolerate faults with larger cluster size.

From the above results, we can observe that the redundancy ratio is not the

only dominating factor for the final yield, e.g., the 8 : 2 scheme is better than

the 2 : 1 scheme, even though its redundancy ratio is only half of the latter one.

This is because the flexibility for repair has a significant impact on TSV repair

efficiency. Let us consider a TSV bundle containing 8 signal TSVs. As long as

there are no more than two TSV failures, the cross-bar 8:2 scheme can successfully

repair them. However, if two TSV failures occur the same repair unit, the 2:1

signal shifting scheme would fail. When the TSV failure rate is not very high, the
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possibility to have more than two TSV failures in the bundle (and can be repaired

with 2:1 repair scheme) is lower than the possibility to have irreparable double

TSV failures. Therefore, 8:2 repair scheme results in higher yield when compared

to 2:1 scheme. Similarly, the 8×8 : 16 TSV grid has higher yield than the 4×4 : 8

TSV grid when the cluster effect is strong. This is also expected since the 4× 4

TSV grid is more vulnerable to the fault cluster whose area may cover the majority

of the 4×4 TSV grid or be even larger than the TSV grid. Under this situation, it

is by no mean possible to repair such fault cluster.

Figure 5.16: Time Constrained Repair Varying Alpha from 1 to 3.

To evaluate the timing effect among the proposed bounded search heuristic, we

reproduce the above comparison among different length constraints. Fig. 6.9(a)-(c)

show the yield comparison by varying the clustering effect Alpha with a fixed TSV

failure rate equal to 5× 10−5. Both 4× 4 and 8× 8 TSV grids with 1-hop length

constraint (“T (1)” ) suffer from notable yield loss. This is expected because the

repair path can only reach one hop of TSVs for repair and hence it is vulnerable

to any TSV faults in close proximity.

Fig. 6.10(a)-(c) show the yield comparison by varying the TSV failure rate

with a fixing Alpha=2. With the increase of TSV failure rate, only the proposed

repair scheme with 1-hop length constraint suffers the yield drops. After we raise

the clustering effect to 2.8 (see Fig. 6.10(d)-(e)), the proposed repair scheme under

all pre-defined length constraint suffer the yield drop in different gradience. For



CHAPTER 5. TSV REPAIR FOR ASSEMBLY YIELD ENHANCEMENT 124

Figure 5.17: Time Constrained Repair Varying TSV Failure Rate with Fixed Al-
pha.

bounded search algorithm, the 4×4 scheme is always better than the 8×8, which

is different from the maximum-flow based method. That is because, the search

bound limits the flexibility so that some fault maps, reparable in maximum-flow

based method, become irreparable using bound search algorithm. An interesting

observation is that, increasing the search bound only improves the yield in a limited

degree (see “T (4)” and “T (2)”). As long as the more-than-1-hop repair path is

allowed, the proposed timing aware repair scheme can guarantee a very high yield

under our experimental settings. This observation also supports the advantage of

topology mapping. Suppose the signal can reroute to 4 hops away in original TSV

grid, it can only reroute to 2 hops away after a 2-hop distance topology mapping.

According to above observation, as long as the timing constraint is larger than the

2-hop distance, it is worthwhile to apply the topology mapping.
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Figure 5.18: Mapping Irregular Placed TSVs.

5.7 Discussion

5.7.1 TSV Grid Construction

TSVs are usually bundled together in a 3D-SIC design, and the proposed TSV

redundancy scheme can be directly applied to such designs if we treat each TSV

bundle as a grid. However, sometimes the shape of the TSV bundle may not be

suitable for efficient repair (e.g., a 1× 32 TSV bundle). There are also designs

with irregularly-placed TSVs. Under the above circumstances, it is essential to

construct “logical TSV grids” for repair.

We suggest a “cut and merge” strategy for TSV grid construction when TSVs

are bundled together but their shapes are not suitable for our repair scheme. Given

a rough size of TSV grid based on the TSV failure rate and TSV redundancy ratio,

we cut the TSV bundle according to the grid’s size. For TSV bundles with high

aspect-ratio (e.g., 1× 32), we can first merge two columns into one column and

the cluster becomes 2× 16 grid. Such merging process continues until the shape

is proper. It should be noted that, the merging process would increase the length

of edges in the logical TSV grids.

When TSVs are placed irregularly, we propose a simple mapping method as
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follows. First, we divide the layout into blocks until the number of TSVs in each

block is roughly equal to the size of logical TSV grid. Then, we index each TSV

with its X-/Y-coordinate (see Fig. 5.18(a)), which indicates their relative positions

amongst TSVs. Next, we construct grids and place TSVs into them according to

the index obtained earlier. After that, we map them into the corresponding logical

TSV grids (e.g., 4×2 in Fig. 5.18(b) and 3×3 in Fig. 5.18(c) in bold). Finally, we

move TSVs so that each cell of the logical grids is assigned with one TSV only.

Since the physical grid maintains the relative position of TSVs, we are able to find

a good TSV grid construction with few TSV movements.

There are some other considerations during TSV grid construction. For ex-

ample, it would be beneficial to have timing critical signals with shorter repair

channels in a grid so that we can have more repair candidates, which will be ex-

plored in our future research work.

5.7.2 Cost Analysis

Under the same redundancy ratio, the proposed repair scheme has higher hardware

cost when compared to other TSV repair solutions, i.e., our redundancy scheme re-

quires three 1-to-3 muxes for each TSV, while signal-shifting and signal-switching

have one 1-to-3 mux for each signal TSV. However, the extra cost is justified by

the corresponding significant TSV yield improvement. It should be noted that, the

amount of redundancy is configurable in the proposed architecture. That is, we can

adjust the redundancy ratio by either varying the TSV grid size or changing the re-

dundancy allocation scheme (e.g., we can allocate redundant TSVs only on one

border). Table 5.7.2 shows a simple comparison of cost assuming 1k TSVs. As

calculated above, the size of each switch is approximately 0.9µm×0.9µm, which

is negligible comparing to a TSV (10µm× 10µm). As shown in the Table II, the

dominant factor of area is the TSV, instead of the extra logic gates. More impor-
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tantly, the TSV manufacturing cost is much larger than logic gates and the spare

TSVs are also suffering the yield problem. From this perspective, the proposed re-

pair scheme requires much less redundant TSVs than existing solutions, rendering

less hardware overhead, while, can achieve a higher yield at the same time.

1k TSVs 4:2 8:2 4x4:8 8x8:16 16x16:32
#Spare TSVs 512 256 512 256 128
#Extra Muxes 1k 2k 3k 3k 3k

Areaµm2 52010 27220 53630 28030 15230

Table 5.2: Cost Comparison for 1k TSVs.

Finally, the runtime of the proposed repair algorithm is very small. For large

dies with hundreds of thousands TSVs, it takes only tens of millisecond to obtain

the repair solution, if any.

5.8 Conclusion

In this chapter, we propose a novel TSV redundancy architecture and the corre-

sponding repair algorithm for yield enhancement of 3D-stacked ICs. When com-

pared to prior techniques, the proposed solutions enable faulty TSVs to be repaired

by spares that are distant, thus is suitable for repairing clustered TSV faults. Ex-

perimental results demonstrate the effectiveness of the proposed technique.

� End of chapter.



Chapter 6

In-Field TSV Repair for Reliability
Enhancement

6.1 Introduction

As introduced in Chapter 1, TSV fabrication involves several disruptive manu-

facturing technologies, which leads to new types of defects [108]. These defects

are often latent and difficult to screen during manufacturing test, but their impact

can be significant during field operation, leading to reduced service life of 3D

ICs [96, 109]. Burn-in for screening latent defects during manufacturing is ex-

pensive and its effectiveness for new TSV defect types has yet to be thoroughly

characterized. Therefore, repair solutions are needed in order to exploit the poten-

tial of 3D ICs and facilitate commercialization.

Various TSV redundancy allocation techniques and their corresponding repair

algorithms have been proposed in the literature [1, 2, 110, 3, 111, 112, 4, 113, 114,

46, 115]. While effective for repairing TSV manufacturing defects occurred at t =

0, these solutions are not readily applicable for in-field repair of TSV latent defects

that manifest themselves at t > 0. This is because the repair solution obtained with

the deterministic repair algorithms used in these techniques may not satisfy the

timing requirement of the circuit due to circuit aging, thereby rendering the repair

solution less effective. To tackle the above problem, this chapter presents a novel

128
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in-field TSV repair solution to enhancement the lifetime reliability of stacked 3D

ICs. We first propose an efficient TSV repair algorithm that is able to significantly

improve the mean-time-to-failure (MTTF) of TSV grids through the judicious use

of spares, as demonstrated by our experimental results. Then, we enhance the

TSV redundancy architecture in chapter 5 by allowing redundancy sharing across

neighboring TSV grids.

The remainder of this chapter is organized as follows. Section 6.2 presents

related works and further motivates this chapter. In Section 6.4 and Section 6.5,

we detail the proposed in-field TSV repair framework and the corresponding repair

algorithm, respectively. Experimental results on 3D benchmark designs are next

presented in Section 6.6. Finally, Section 6.7 concludes this chapter.

6.2 TSV Latent Defects

During TSV fabrication, the temperature is first increased for copper electroplating

and then brought down to the ambient temperature. Owing to the large difference

in coefficients-of-thermal-expansion (CTE) of the copper TSVs and that of the sil-

icon [116], however, tensile stress inevitably appears on the silicon [117]. Such

thermal-mechanical stress is likely to cause TSV interfacial cracks (see Fig. 6.1)

that is usually undetectable during manufacturing test [48]. The forces induced by

residual stress in the 3D structure cause the crack to grow during field operation,

thereby increasing the delay of critical paths with TSVs (if any) and eventually

forming an open defect [96]. Moreover, a number of recent works examined the

classical electromigration (EM) failure mechanisms in 3D ICs, showing that TSVs

are prone to EM-induced voiding effects [48, 49, 50] (see Fig. 6.1). Similar to

TSV interfacial cracks caused by thermal-mechanical stress, EM-induced voids in-

crease TSV resistance, causing path delay faults and eventually TSV open defects.

Note that TSV-induced stress also reduces the reliability of nearby transistors and
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Figure 6.1: Illustration of some TSV Latent Defects

metal wires, and various analytical models and reliability-driven physical design

techniques have been presented in the literature to mitigate this problem [108].

However, we limit the scope of this chapter to the repair of TSV latent defects

only.

6.3 Motivation for In-Field Repair

Various TSV repair solutions have been proposed in the literature for manufactur-

ing yield enhancement [1, 2, 110, 3, 112, 4, 113, 114, 46, 115]. In chapter 5, a

low-cost and flexible TSV redundancy architecture was proposed, which enables

defective TSVs to be replaced with distant spares to tolerate clustered faults and

it is shown to have higher repair capability than previous methods. Considering

the fact that neighboring TSVs usually suffer from similar thermal and mechanical

stress, we leverage this TSV redundancy architecture in this work to enable repair

of clustered latent faults within a TSV grid.

Unlike TSV repair at t = 0 for yield enhancement, the objective of in-field

repair for TSV latent faults at t > 0 is to increase the MTTF of 3D ICs. This prob-

lem is especially difficult due to circuit aging. Pervious TSV repair solutions have

focused on the replacement of defective TSVs with fault-free ones, i.e., the repair
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algorithms start from faulty TSVs and try to find repair paths to spares, without ex-

plicitly considering the impact of the repair solution on signal delays. Such repair

methodology is generally applicable for detectable manufacturing defects such as

opens and shorts when the distance between the failed TSV and its corresponding

spare is not large.

However, both TSVs and other circuit elements wear out during field-operation.

On one hand, it is likely that the “replacement-oriented” repair solution provided

with existing methods violates signal timing requirements after shifting or rerout-

ing, thereby leading to new “faulty TSVs”. On the other hand, a faulty TSV link-

ing to a particular signal might be a good one if it links to another signal instead.

This is because, a TSV fault occurring online is not necessarily a catastrophic

open/short defect, but often a delay fault that cannot meet the timing requirement

of critical paths going through it due to circuit degradation. Consider the example

TSV grid shown in Fig. 6.2(a). Signal S1 needs to be rerouted due to the latent

defect that is manifested on its corresponding TSV. However, it may fail again if

it is rerouted to use T SV2 originally linked to S2, generating a “new” TSV fault

even though this TSV is fault-free. Such fault propagation may eventually make

the TSV grid irreparable, even though a more sustainable repair solution exists as

shown in Fig. 6.2(b)).

Consequently, for in-field TSV repair, we should not focus only on faulty TSV

replacement and simply find a repair path for each faulty TSV. Instead, we are to

find the set of signal-TSV pairs that satisfy the timing requirement of every signal.

Whether a signal and a particular TSV can be paired together is known only after

we conduct online testing of those circuit paths going through the TSV, due to the

difficulty to predict change of signal timing slacks with circuit aging. The above

considerations have motivated the new in-field repair technique investigated in this

chapter.
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Figure 6.2: An Example to Motivate the Need for Careful In-Field Repair.

6.4 In-Field TSV Repair Framework

In order to conduct in-field repair for TSV latent defects, we first need to be able

to test and diagnose faulty TSVs in an online manner. To achieve these objec-

tives, as in [118], we assume the existence of a processor core and non-volatile

memory in the system for test and diagnosis purpose (see the conceptual architec-

ture shown in Fig. 6.3). This assumption is reasonable because 3D logic-on-logic

ICs or 3D logic-memory designs of the near future are likely to be large mul-

tiprocessor system-on-a-chip (MPSoC) designs. Such designs provide the most

compelling motivation for high-density 3D integration. To be specific, the non-

volatile memory stores the test and diagnosis patterns for TSV faults, our in-field

repair algorithm and the repair signature for each TSV grid, while a processor core

is called upon for online test and repair, triggered periodically or by events.
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6.4.1 Online Test and Diagnosis

As discussed earlier, TSVs suffer from interfacial cracks and EM-induced voids

and such latent defects usually manifest themselves as hard-to-predict timing er-

rors on critical paths with TSVs. From this perspective, TSV BIST techniques

(e.g., [119]) are insufficient for in-field test and diagnosis because they target on

faults occurred in individual TSV structure (and often consider TSV open/short

only) instead of delay faults of circuit paths with TSVs. For example, as discussed

in Section 2.2, using a fault-free TSV to replace a faulty one does not necessarily

lead to a valid repair solution because of the unknown signal timing slack changes

with circuit aging.

Consequently, it is important to online test those critical paths that go through

TSVs. To be specific, for each TSV, we need to pick one or more long paths that

go through it and store the corresponding path delay test patterns in non-volatile

memory (in a compressed form to reduce the storage requirement, whenever pos-

sible).

Note that, we try to overcome the delay fault on a particular path with TSVs by

signal rerouting using other TSVs. Even though this strategy mainly targets TSV

degradation/failure, it can also be used to target for path delay faults caused by

the degradation of other on-path circuit elements. That is, as long as the identified

repair solution is confirmed to be valid with online testing, it is not necessary to

root-cause the path delay fault to a particular circuit element.

6.4.2 Spare TSV Sharing and Reconfiguration

Due to the clustering effects of latent faults, unless the redundancy ratio is quite

high, we may still run into the situation that some faulty TSV grids lack spare TSVs

while the others have many redundant TSVs. We therefore propose to enhance

the TSV redundancy architecture presented in chapter 5 by allowing spare TSV



CHAPTER 6. IN-FIELD TSV REPAIR FOR RELIABILITY ENHANCEMENT134

Figure 6.3: Illustration of the TSV Redundancy Architecture.

sharing between TSV grids, as shown in Fig. 6.3.

Given the above TSV redundancy architecture for a 3D IC, the design flow of

the proposed in-field repair solution is as follows. With online testing triggered

periodically or by events, if a particular path with TSVs is found to be faulty, our

TSV repair algorithm (detailed in Section 6.5) is called upon to obtain a possible

repair solution. Afterwards, we rerun online testing to check whether this solution

is acceptable. The above procedure iterates until a valid repair solution is achieved.

The 3D IC is regarded as being irreparable if the circuit is not free of path delay

faults after tall the possible repair solutions have been considered.
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6.5 Proposed Repair Algorithm

In this section, we first formulate the in-field repair problem and then present de-

tails of the proposed repair algorithm.

6.5.1 Problem Formulation

For a 3D IC with TSV redundancy architecture as shown in Fig. 6.3, the in-field

TSV repair problem is formulated as follows:

Given the set of signals S= {s1,s2, ...,sn} and the set of TSVs T= {T SV1,T SV2, ...,T SVm}
(n < m), our goal is to link every signal in S with a dedicated TSV in T under the

following conditions: (i) all signal-TSV pairs are routable with the given TSV

redundancy architecture; (ii) it is confirmed with online testing with no timing

violations.

As we need to invoke the online testing procedure whenever there is a possible

repair solution, it is preferable to reduce the number of trials for valid repair.

6.5.2 In-Field Repair Algorithm

In order to solve the above problem, we construct a bipartite graph to store all

“possible” signal-TSV pairs, namely STpair-graph in this chapter. Fig. 6.4 (a)

presents an example STpair-graph at t = 0. In this graph, one side is the signal set

S while the other side is the TSV set T, and an edge exists for a possible signal-

TSV pair that has the following two properties: (i). there is at least one routing

path from the signal to the TSV in the flow graph; (ii). there is no confirmed timing

violation for this signal-TSV pair. STpair-graph gets updated with online testing

results, i.e., an edge is deleted if the corresponding signal-TSV pair fails path delay

test, and a TSV and all its edges are removed when it has a catastrophic failure,

e.g., a full open defect.

A valid repair solution is hence a maximum matching of the STpair-graph
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Figure 6.4: Illustration of the Repair Algorithm.

whose matching number is equal to n (i.e., every signal is paired with a dedi-

cated TSV) and all of the signal-TSV pairs are both routable and confirmed to

have no timing violations with online testing. With continuous circuit aging, one

can imagine that the number of edges in STpair-graph keeps decreasing, and the

3D IC is irreparable when the matching number of a STpair-graph is less than n.

We use Fig. 6.4 to illustrate one possible repair algorithm. Fig. 6.4(a) presents

the matching used in the 3D IC at t = 0. Suppose online testing is performed at

t = t1, and we found one signal-TSV pair fails its test. We remove this edge from

STpair-graph and thus the current matching is not maximum any more. In order

to find another maximum matching, we resort to Berge’s lemma [120], by itera-

tively finding the shortest augmenting path1 from the unmatched signal to any free

TSV. Such a method preserves the signal-TSV pairs in the earlier matching when-

1An augmenting path of a matching is defined as a path that starts and ends on free
(unmatched) vertices, and alternates between edges in & not in the matching.
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ever possible and hence is more likely to be valid when compared to a solution

based on a random maximum matching of the updated STpair-graph. In addition,

routability checking is integrated into the above procedure for efficiency. That is,

whenever we add an augmented path, we update the corresponding flow graph

and check whether it can be routed in the residual network of the flow graph. To

update the flow graph, we cancel the edges in the flow graph possessed by those

signal-TSV pairs that are removed in the matching and move them to the resid-

ual graph (i.e., the sub-graph of the original one, composing edges with residual

capacity) (Fig. 6.4(b) ). Then, we can verify routability by finding edge-disjoint

paths in the residual network for those signal-TSV pairs that are added into the

new matching (Fig. 6.4(c) ). If the matching solution is not routable, we find

another augmenting path and iterate the above procedure. Otherwise, we invoke

online testing to check whether this solution leads to any timing violation. If not,

we have obtained a valid repair solution. Otherwise, we update STpair-graph by

removing those edges whose corresponding signal-TSV pairs fail path delay tests,

and repeat the above procedure on the updated STpair-graph.

While simple and effective, the above algorithm may invoke online testing

many times due to the enumeration of matchings. Let us use Mi to denote the

ith maximum matching of the STpair-graph (containing the set of all signal-TSV

pairs). The above repair algorithm iteratively finds a new maximum matching

and performs online testing for it, until a matching (say, Mv) is shown to be valid.

Hence, we need to perform v times of online testing. Generally speaking, however,

there is usually a significant overlap of the signal-TSV pairs between Mi and Mi+1

because we tend to preserve many existing valid signal-TSV pairs from the pre-

vious solution in each iteration. These preserved pairs are known to be fault-free

with previous testing results, which do not need to be tested again.

Motivated by the above discussion, we propose a more efficient algorithm.
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Instead of checking one possible matching a time with online testing, we attempt to

test “multiple matchings” simultaneously, whenever possible. For example, after

testing M0, for a new maximum matching M1, we only need to perform online

testing for those signal-TSV pairs in M1\M0, because the other signal-TSV pairs in

M1
⋂

M0 have been shown to be valid with previous testing results of M0. Without

loss of generality, let us consider another maximum matching M2 (if any), there

must be some signal-TSV pairs in M2\M1 (otherwise M2 is not a new matching).

If some of these signal-TSV pairs have not been tested (i.e., they do not belong

to M0) and they are routable together with those signal-TSV pairs in M1\M0, they

can be tested simultaneously in one iteration. Such a method reduces the number

of online testing because, if a signal-TSV pair in M2\M1 is shown to be invalid,

not only we do not need to test M2 any more, but also the corresponding edge is

removed from the STpair-graph and reduces the possibility to find other invalid

matchings.

6.5.3 Impact of TSV Redundancy Sharing

With TSV redundancy sharing between neighboring TSV grids, there might be

conflict between the repair requirements between them. We use the example shown

in Fig. 6.5 to explain how we resolve this issue. In this example, TSV Grid A and

TSV Grid B are sharing spares TSVs in Fig. 6.5(a)). In this case, for both grids,

their STpair-graphs contain the shared TSVs. Hence, the two STpair-graphs are

connected as shown in Fig. 6.5(b). We still obtain maximum matchings for each

grid by finding augmenting paths. When the two grids try to use the same spare

TSV with their augmenting paths, a conflict arises (see red line in Fig. 6.5(b)). We

then arbitrate which grid owns this spare TSV according to the fault maps of the

two grids. In this example, Grid A has more faults than Grid B and hence this spare

TSV will be assigned to Grid A. We remove this node from the STpair-graph of
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Figure 6.5: The Impact of TSV Redundancy Sharing on Repair Algorithm.

Grid B and it will look for a different matching for in-field repair.

6.6 Experimental Results
6.6.1 Experimental Setup

To evaluate the effectiveness and efficiency of the proposed solution, we perform

simulation studies and report results on MTTF and test times.

We use the maximum-flow based algorithm presented in chapter 5 as the base-

line solution for comparison. As chapter 5 mainly deals with manufacturing de-

fects and the original algorithm uses a static fault map as input, we make the fol-
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Figure 6.6: MTTF Results in 4×4 TSV Grid with Varied Aging Coefficients and
Fixed Potential Crack or Void Defect Distribution ( 0.1 kΩm, 0.1 kΩm).

lowing changes to generate two types of baseline in-field repair algorithms. The

first type simply updates the fault map by marking the corresponding TSV to be

“faulty” whenever online testing shows an invalid signal-TSV repair and utilizes

the original algorithm to find a new repair solution (if possible), denoted as MF .

For the second type, when a signal-TSV pair is shown to be invalid with online test-

ing, it attempts to find another repair path for the faulty TSV instead of marking

the TSV as “faulty”, denoted as MF
′
. The proposed algorithm based on maximum

matching with routability verification is denoted as MV , while the proposed repair

algorithm with test time reduction is named as MR. The above results are obtained

based on the TSV redundancy architecture in chapter 5. We further present the

results based on the proposed TSV redundancy architecture with spare sharing ca-

pability, denoted as MS. We compare the MTTF of the above solutions, and a

particular 3D IC is deemed to fail when no repair solution can be found for a path

delay fault due to aging effects.

The circuits used in our experiments are the performance-optimized data en-

cryption standard (DES) circuit and the fast-Fourier transform (FFT) circuit from

the IWLS 2005 OpenCore benchmarks. The DES circuit contains 26,000 gates

and 2,000 flops, while the FFT circuit contains 229,000 gates and 20,000 flops.

The DES circuit was partitioned into two-, three-, and four-die stacks using the

Nangate open cell library and a placement engine for timing optimization. Given

the operational frequency of the benchmark 3D ICs, we extract the timing slacks



CHAPTER 6. IN-FIELD TSV REPAIR FOR RELIABILITY ENHANCEMENT141

TestTime

µa µa
(a) DES,σa=0.05 (b) FFT, σa=0.05

TestTime

�� ����� �� ��

�

�

��

��

��

���� ��� ���� ���

�

�

�

�

�

��

���� ��� ���� ���

Figure 6.7: Test Time Results in 4×4 TSV Grid with Varied Aging Coefficients
and Fixed Potential Crack or Void Defect Distribution ( 0.1 kΩm, 0.1 kΩm).

for paths with TSVs. Due to the lack of reliability models for stress-induced TSV

interfacial cracks in the public literature, we form our model based on an EM

reliability model for TSVs and vary its parameter to reflect the impact of TSV

interfacial cracks [50, 114]. We also consider initial TSV failures due to manufac-

turing defects. Aging effects are characterized by additional latent delay in TSVs,

reflected as resistance increase in terms of time t, calculated as

R(t)−R0 = A ln(
t
t0
) (6.1)

where A is the slope of TSV degradation on a logarithmic scale, and t0 is the

time when the void becomes larger than their TSV section. Note that A and t0

are affected by multiple parameters, such as the initial resistance R0 of TSV, TSV

barrier resistivity, TSV dimensions, and possibility of voids generated in TSVs.

R0 varies for different TSVs due to process variation and it is assumed to follow a

Gaussian distribution. The parameter A indicates the aging rate, which is related

to the workloads applied to the 3D IC which in turn determines the temperature

and switching activities for TSVs. The dynamic changing of A due to workloads

is aggregated in this chapter and we use Gaussian distribution to obtain A.
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6.6.2 Results and Analysis

Fig. 6.6(a)-(d) presents the normalized MTTF values, compared to the worst case

without any redundancy for in-field repair. We have four configurations for aging

coefficients with their mean values (µa) and variances (σa) varying between 0.05

kΩ/log(s) to 0.2 kΩ/log(s). This setting mimics the circuits under different stress.

The distribution of the initial resistances R0 of TSVs that represents the potential

Crack or Void Defect Distribution are fixed with a mean value (µr) of 0.1 kΩ and

variance (σr) of 0.1 kΩ.

First of all, it can be observed that the two proposed repair algorithms with the

TSV redundancy architecture in chapter 5 lead to much higher MTTF values when

compared to the two baseline solutions. For example, for DES design, MTTFs are

14.8 for both MV and MR with aging coefficient of (0.05, 0.05), compared to 3.1

using MF and 3.5 using MF ′. This is because we are able to search a much larger

solution space by exploring all possible signal-TSV pairs while previous methods

only target on repair path identification for faulty TSVs. The MTTF value of MF ′

is slightly better than that of MF because the latter solution regards the TSV from

an invalid signal-TSV pair as “faulty”, rendering an even smaller solution space.

It should be noted that MV and MR have the same MTTF as the solution space

are the same for these two algorithms. By adding spare sharing capability with the

proposed architecture, the MTTF is increased to 18.2 under the same aging rate.

Secondly, we observe significant MTTF reduction as aging coefficients in-

crease (see Fig. 6.6(a)-(d)), due to the higher TSV failure probability with in-

creasing aging rates. The differences are even larger for the proposed two repair

algorithms (MV and MS), wherein the impetus of downtrends is reduced as the

aging coefficient increases. This is expected as the solution space shrinks quickly

as aging effect becomes more severe, rendering less repair efficiency for all repair

algorithms. This indicates that, even with a better TSV redundancy architecture
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Figure 6.8: MTTF Results for DES in 4×4 TSV Grid with Varied Potential
Crack/void Defect Distribution and Fixed Aging Coefficients (0.05 kΩ/log(s),0.05
kΩ/log(s)).

(with spare TSV redundancy sharing), we cannot achieve high MTTF values when

the circuit is under severe aging effects.

Thirdly, we compare the results of DES design in Fig. 6.6(a)(c) and FFT design

in Fig. 6.6(b)(d). While we can see similar trends for the results of FFT design, but

the MTTF differences between the five algorithms are not as significant as that of

DES design. This is mainly because the timing slacks of paths with TSVs in FFT

design is much tighter, thus leading to less MTTF values.

Fig. 6.7(a)-(b) describe the corresponding test time (in terms of the number of

performed online testing) of the circuit with the five repair methods under various

aging coefficients, corresponding to Fig. 6.6(a)-(b). The proposed algorithms re-

quires more test time compared to the baseline algorithms due to the fact that more

on-line tests are conducted to achieve more successful repair. While the MTTF

values for MV and MR are the same, the test times of MR are much smaller. This

is because, we try to perform online testing for multiple possible matchings at

the same time. With such test time reduction scheme, the test times of MS only

increase slightly although it has a larger solution space to explore with spare re-

dundancy sharing.

Fig. 6.8 shows the MTTF values of different repair methods when we vary



CHAPTER 6. IN-FIELD TSV REPAIR FOR RELIABILITY ENHANCEMENT144

���

����

����

����

���� ��� ���� ���

��������

�	

��

�


���

����

����

����

���� ��� ���� ���

��������

�	

��

�


MTTF

(a) DES, σa=0.05

MTTF

µa σa

(b) DES, µa=0.05

Figure 6.9: Experimental Results in 8× 8 TSV Grid Size Repair Architecture with
Varied Aging Coefficients and Fixed Potential Crack/Void Defect Distribution ( 0.1
kΩ, 0.1 kΩ).

the initial resistances of TSVs, which demonstrate the impact of undetectable

cracks/voids during fabrication on the service life of 3D ICs. Due to space limit,

we only report the results of DES circuit. We fix the aging coefficient as (0.05,

0.05), and vary the TSV initial resistances R0 with its mean values from 0.1 kΩ to

0.4 kΩ and a fixed variance value in Fig. 6.8(a). While in Fig. 6.8(b), we also have

four configurations for R0 with the same variance value of 0.1 kΩ but different

mean values ranging from 0.1 kΩ to 0.4 kΩ. From this figure, we can observe that

the TSV initial resistance has minor impact on the MTTF values, when compared

to the aging coefficients changes shown in Fig. 6.6. This is also expected because

TSV voids/cracks that have passed burn-in test, have to grow large enough to affect

circuit timing, which is determined more by the aging rates instead of their initial

values.

Fig. 6.9 shows the MTTF values of the proposed repair methods with a 8×8

grid size for the repair architecture. The trends are similar to that in Fig. 6.6,

however, the MTTF values of MR and MS are much larger than that in Fig. 6.6. The

main reason is that, in this experiment the signal rerouting delay is not considered

and hence we have a much larger repair solution space to explore with a larger

TSV bundle.
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Figure 6.10: Experimental Results with Varied Rerouting Delay between Two Ad-
jacent Routers (ps) and Fixed Aging Coefficients and Potential Crack/Void Defect
Distribution.

It should be noted that, the extra signal rerouting delay is already taken into

consideration in the proposed repair architecture even though the previous simula-

tion studies ignore it. As long as the rerouting delay of a signal-TSV pair exceeds

the timing slack of the path containing this signal-TSV pair, the on-line test can

detect a timing error and discard this pair from the solution space. Fig. 6.10 investi-

gates the effect of this rerouting delays and shows the MTTF of the proposed repair

methods for two different grid size in the repair architecture. For both methods,

the architecture with 8× 8 grid size performs better when the rerouting delay is

small, because it has larger solution space for repair. As rerouting delay increases,

the MTTF curves of the two architectures intersect at a point when it has become a

bottleneck for signals to be able to reach many TSVs for repair. Beyond this point,

the architecture with 4× 4 grid size results in more successful repair with higher

redundancy ratio. Compared to MR, the intersection point of the two architecture

occurs later for MS because the shared redundant TSVs give each TSV grid more

solution space to explore.
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6.7 Conclusion

TSV-based 3D ICs have emerged as one of the most promising solutions to over-

come interconnect bottleneck in CMOS scaling. The disruptive manufacturing

process of TSVs, however, introduce new failure mechanisms such as stress-induced

interfacial cracks and EM-induced voids. Such reliability threats reduce the service

life of 3D ICs. In this chapter, we have described a novel in-field repair solution

that is able to effectively and efficiently tolerate latent TSV defects through the

judicious use of spares. Experimental results on 3D benchmark circuits show that

the proposed solution is able to significantly increase MTTF when compared to

existing TSV repair techniques.

� End of chapter.



Chapter 7

Conclusion and Future Work

The rapid adoption of 3D integration technology seems to be essential and un-

avoidable [121]. Without efficient and effective solutions to ensure a high yield and

long service life for 3D-stacked IC, however, it cannot become a mature industry

product. In this thesis, we propose effective and efficient techniques to enhance

the yield and reliability of 3D-stacked ICs. We first provide mathematical yield

model for 3D-stacked ICs considering various factors, such as stacking process,

pre-bond test and TSV fabrication. For better understanding the faulty behavior

of defective TSVs, we then provide a fault model for TSVs in future 3D DRAMs.

To improve the stack yield, we propose novel test architecture optimization tech-

niques considering the pre-bond test and two most significant test challenges, with

which the bad dies are prevented from being stacked. With the enhanced pre-bond

testability, we continue to strength the stacking yield of 3D-DRAMs with effective

memory repair framework. In order to solve the TSV-induced assembly yield loss,

we propose a TSV repair framework, including a novel TSV-grid based redun-

dancy architecture and corresponding repair algorithms. To alleviate the reliability

problems induced by TSV latent faults, we propose an efficient in-field repair so-

lution, including the hardware architecture together with an in-field TSV repair

algorithm.

By conducting the above research works, we are able to dramatically improve

147
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the yield and reliability of various 3D products (e.g., SoCs, memories and ASICs).

As a small percentage of yield loss transfers to millions of dollars of cost incre-

ment, while the callback of unreliable products hurts both profit and reputation,

the success of this dissertation is of significant value to the main stream adoption

of 3D ICs and semiconductor industry.

There are several important topics yet to be explored for future work. Firstly,

the TSV induced latent defects still remain mysterious and future fault modeling

is required. Secondly, the TSV induced thermal-mechanical stress causes system-

atic mobility variations in neighboring logic gates that lead to delay degradation.

Therefore, efficient design methodologies are essential to tackle this problem in

the early stage of the design flow. Last but not the least, this thesis has shown var-

ious challenging issues in 3D integration, however, this new integration paradigm

provides us new opportunities to facilitate the on-line testing and fault tolerance,

e.g., by stacking a FPGA die and a 2D-SoC die with the interposer, the faulty core

in SoC can be replaced with partial reconfigured logics in FPGA.

� End of chapter.
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