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Abstract

Background: Catechins, the major biologically active constituents of green tea
extract (GTE), are anti-oxidative compounds from natural resources. The
pharmacokinetics of catechins and their oxidation capability in the rat eye after oral
administration have been studied. (-)-Epigallocatechin gallate (EGCG) is the most
abundant of the catechins in GTE, accounting for 50-75% of the total amount of the
catechins. Other catechins, like (-)-epicatechin (EC), (-)-epigallocatechin (EGC), and
(+)-gallocatechin (GC), are present in smaller quantities, less than 15%. Catechins
possess strong anti-oxidant properties, especially EGCG. They also act as free radical
scavengers that neutralize free radical mutagens and prevent formation of reactive
oxygen species. It has been proposed that catechins consumption, through green tea,
could benefit the eye. But how catechins affect mammalian eyes with oxidative
stresses remain to be investigated.

It is known that systemic administration of oxidant sodium iodate selectively
impairs the retinal pigment epithelium atrophy by oxidative stress, subsequently,
resulting in photoreceptor degeneration, as seen in the pathogenesis of many retinal
diseases. This can lead to severe visual loss and eventually blindness. Sodium
iodate-induced retinal degeneration in rats can be employed as an animal model to

explore the biological effects of chemical molecules which therapeutic potential. In



this thesis, the work on the biological effects of GTE and catechins in healthy rats
and sodium iodate treated rats are described.

Objectives: To test the ocular uptake and distribution of cathechins in GTE
(Theaphenon™E) in plasma, vitreous, and retina. EGCG, catechin combinations and
GTE preparation Theaphenon™E, will be fed to adult Sprague-Dawley rats in an
attempt to explore the biological effects of exogenous catechins against oxidative
stress-induced retinal degeneration induced by sodium iodate.

Methods: In healthy adult Sprague-Dawley rats, the rats were randomly assigned to
9 groups: viz. 0, 0.5, 1, 2, 4, 6, 10, 15, 20 hours. 550 mg/kg Theaphenon®E was
suspended in 500ul water for intragastric feeding to each rat. After the experiment
the eyes were enucleated, the retina and vitreous dissected immediately. Plasma was
obtained from peripheral whole blood. Negative control was performed according to
each time point. The catechins contents in each eye compartment were analyzed by
High Performance Liquid Chromatography with electrochemical detection
(HPLC-ECD) after B-D-glucuronidase and sulfatase digestion.

Retinal degeneration was induced to adult Sprague-Dawley rats by single-dose
intravenous injection of 40 mg/kg sodium iodate. The retinal degeneration profile
was assessed by a new in vivo procedure on confocal scanning laser ophthalmoscopy
(CSLO) and spectral domain optical coherence tomography (SD-OCT) for
longitudinal studies of living rat retinas. After the in vivo experiments the rats were
sacrificed for histological examinations of retinas. The sodium iodate treated rats
were also administered intra-gastrically with 550 mg/kg Theaphenon®E, 387.8 mg/kg
EGCQG, 438.0 mg/kg catechins combination (EGCG, GC, EGC, and EC), and 50.3
mg/kg catechins combination (GC, EGC, and EC), respectively. Controls were

injected intravenously with normal saline or 40 mg/kg sodium iodate only. After in



vivo examination of the retinas by CSLO and SD- OCT, the rats were sacrificed for
histological analysis. Biochemical analyses included determination of superoxide
dismutase (SOD), glutathione peroxidase (GPx), caspase 3 mRNA, and an oxidative
stress marker, 8-Iso-PGFy,, concentration in the retina.

Results: In healthy rats catechins were differentially distributed in eye tissues.
EGCG presents at high levels in the plasma, retina and vitreous at 6686.8+4437.1
nM, 784.4+195.9 nmol/kg, and 2224.4+805.4 nM respectively. In the retina, EGCG
was the dominant constitute and maintained to 20 hours. The order of dominance of
catechins levels in plasma was EGC>EC>C>GC, in galloyl catechins was
EGCG>ECG>GCG>CG. Catechins were absorbed at short time, with 30 minutes
after administration.

In the sodium iodate treated rats confocal scanning laser ophthalmoscopy revealed
hyper-reflective blots in the retina 7 days after intravenous injection of sodium iodate
(25, 40, 50, 75 mg/kg). Occurrence of lesions coincided with the time when
degenerative changes were observed in the outer retinal layers which appeared in
OCT images and histological sections. Further analyses of retinas with restricted
distribution of blots showed a concomitant localization of degenerative profiles in
histological preparations, suggesting that the blots shown in CSLO corresponded to
the deteriorating photopigments and outer nuclear layer (ONL). Quantitative
analyses showed that the changes in blot number are dose dependent, again
concomitant with results showing dose dependent lesions in photopigment layer and
ONL in histological sections of the retina. Furthermore, we found that 40 mg/kg is a
feasible dose that generates consistent damage to the retina without causing obvious
systematic damage to other organs, and can serve as the selected dosage for testing

the anti-oxidation effect of the EGCG catechin combinations, and GTE



(Theaphenon™E).

CSLO and OCT measurements revealed decreases in hyper-reflective blots in the
retina specimens after treatment with EGCG, catechins combination (EGCG, GC,
EGC, and EC), and Theaphenon™E. Concomitant protective effects of these catechins
were observed in histological preparations with reduction of disrupted ONL in retina.
Expressions of SOD, GPx, Caspase 3 and 8-Iso-PGFy, level in the retina were
reduced, indicating strong anti-oxidant effects of the EGCG, catechins combination
(EGCQG, GC, EGC, and EC), and Theaphenon®E. However, catechins combination
without EGCG (GC, EGC, and EC) on the mRNA level was slightly attenuated, but
the difference was not statistically significant.

Conclusions: We found catechins distribution in different compartments of the eye.
Our findings also showed that degenerative changes observed in in vivo retinal
imaging using CSLO and OCT can reflect cellular damages in outer retinal layers in
the adult rat treated by sodium iodate. These techniques allow quantitative measures
of degenerative changes in a large area of retina in longitudinal assessments.
Moreover, EGCG, catechins combination (EGCG, GC, EGC, and EC) and
Theaphenon™E attenuated sodium iodate-induced retinal degeneration in rats.
Catechins combination without EGCG (GC, EGC, and EC) gave insignificant
protective effect. Our results support the notion that catechins alleviate oxidative

stress in the retina, with EGCG providing the important effect.
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Chapter 1: Introduction

1.1 Oxidative stress definition and characterization

Oxidative stress is the disrupture of the balance between the free radicals
(FR)/reactive oxygen species (ROS) and endogenous antioxidant defense system.
(Chandra et al., 2000). Oxidant and antioxidant defense system are the key factors
for maintain the cellular metabolism, cell signal transduction and regulation inside
the body in normal situation. Therefore, each cell in tissues keeps the balance
between the oxidant and antioxidant status (Poli et al., 2004). The hypoxia/hyperoxia
and reperfusion generate reactive oxygen species include free radical surges and
peroxides cause oxidative stress, which lead to biological disturbances and finally
cause tissue cell damage and dysfunction.

The ROS include reactive chemical species (Sohal and Weindruch, 1996), can be
divided into two subgroups: free radicals ROS such as superoxide radicals, peroxyl,
alkoxyl, hydroxyl, and nitric oxide; non- radical ROS such as hydrogen peroxide,
singlet oxygen, and hypochlorous acid. Both radicals and non-radical are common in
the presence of oxygen atom. ROS exist in the environment, can be generated by
pollutant, tobacco smoke, iron salts, and radiation, and also can be produced in side
cells, it is shown that ROS can be generated through several mechanisms. Commonly,
most of the ROS are continuous take places in mitochondria (Valko et al., 2006,
Inoue et al., 2003). Moreover, cytochrome 450 enzymes are also known to induce
ROS (Parke and Sapota, 1996). ROS produce single or double-stranded DNA breaks

and cross- links; prolong DNA damage; induction of signal transduction pathways;



induction of transcription, replication errors, and genomic instability (Ogasawara and

Zhang, 2009).

1.2 Cellular and molecular mechanism of oxidative stress

Reactive oxygen species are known to damage cellular functions, however, they
also can serve as subcellular messengers in gene regulation and cell signal
transduction pathways. Oxidative stress status involved in cell growth,
transformation, differentiation, induced apoptosis by altering DNA binding;
activation of transcriptional factors or alter biochemical pathways lead to affect gene
expression.

The ROS involve changes in the redox state of protein sulthydryl groups and
enzyme conformation; DNA binding stability and protein complex formation. So, the
ROS can modulate the cytokines, growth factors, hormone secretion, ion transport,

neuron-modulation transcription and apoptosis.

1.3 Oxidative stress affects gene expression and signal transduction

The cellular actions of the external signaling molecules like growth factors and
cytokines transmit signals from receptor sites in the plasma membrane to the nucleus
for gene expression through protein kinase activity in cytoplasm. Mitogen activated
protein kinases (MAPK) include four subtypes: extracellular-signal-regulated kinases
(ERKSs); c-Jun N-terminal kinases (JNKs); p38 and MAP kinase. In ERKs and JNKs
pathways, growth factor receptors activation by tyrosine autophosphorylation and
reactants of SH-Grb2 protein complex and consequently leads to SH2- Grb2-Sos
complex formation. However, oxidants like H,O, can activate this complex

formation. Oxidizing status such as hypoxia/reperfusion or hydrogen peroxides



(H,0;) can activate Raf-1 phosphorylation to stimulate mitogen-activated protein
kinase kinase 1 (MEKT1) to regulate downstream such as apoptosis, mitogenesis and
differentiation.

In addition, the nuclear factor kB (NF-kB) Rel family of transcription factors
regulates cell surface receptors, cytokines, acute phase proteins and also
antioxidative defense involving superoxide dismutase-2 transcription and
Y'-glutamylcysteine synthetase. However, ROS activate the NF-kB through degrade
the Ix-Ba, which is an inhibitory protein. This is followed by the translocation of
NF-kB to nuclear and bind to DNA to initiate gene transcription. Antioxidants such
as catechins can decrease NF-kB activity by impeding Ik-Badegradation so that to
prevent NF-kB translocate to the nuclear (Allen and Tresini, 2000).

Hydrogen peroxides also can stimulate protein phosphorylation such like protein
kinase p38-MAPK through inhibiting protein dephosphorylation by tyrosine
phosphatase. Therefore, stimulate transcription factors to induce inflammation. It

also stimulates transcription of pro-apoptotic such as caspase 3.

1.4 Oxidative stress plays roles in ocular disorders

The retina is a highly metabolic system; the photoreceptors are particularly
susceptible to oxidative damage not only because of photo—chemical reactions
(Wang et al., 1994) but also because of their high polyunsaturated fatty acid (Bazan,
1989, Fliesler and Anderson, 1983) content and rich supply of oxygen from the
choroidal circulation (Alder and Cringle, 1985).

Oxidative stress has been suggested to play an important role in the pathogenesis
of many common ocular diseases, especially retinal diseases, such as age-related

macular  degeneration (AMD), glaucoma, diabetic retinopathy, Graves’



ophthalmopathy, retinopathy of prematurity, cataract (Figure 1.1).

1.4.1 Age-related macular degeneration

Age-related macular degeneration (AMD) is a leading cause of irreversible visual
impairment in the developed countries, affecting 50 million elderlies worldwide
(Klein et al., 2004, Congdon et al., 2004). It is a progressive neurodegenerative
disease affecting the macula, resulting in a significant loss of central vision in
advanced stages. AMD can be classified into dry and wet forms, represented by their
respective clinical hallmarks of geographic atrophy (GA) and choroidal
neovascularization (CNV) (Jager et al,, 2008). In atrophic form, the pathological
characteristics are atrophy of the choriocapillaries, disruptions of the associated
retinal pigment epithelium (RPE) and derangements of the underlying photoreceptors
(Coleman et al., 2008). Histological evidence shows that RPE dysfunction as a
primary and major causative role in the pathogenesis of AMD (Zarbin, 2004). One of
the proposed mechanisms of RPE dysfunction in AMD assumption accumulation of
oxidative damages to the RPE cells, and subsequently RPE mitochondrial
dysfunction, accumulation of deposit in the sub epithelial space, and inflammation
triggered at the RPE choroid interface. The RPE is an oxygen- rich environment and
the RPE mitochondrial is prone to oxidative damage (Jarrett et al., 2008, Liang and
Godley, 2003).

AMD is a complex disease, influenced by multiple genes and environmental
factors. Epidemiological studies have identified several risk factors, including age,
cigarette smoking, sunlight exposure, high-fat diet, low anti-oxidant intake, and
genetic variants such as polymorphism of complement factor H. All these risk factors

are associated with oxidative stress. Chronic oxidative stress is regard as an
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important contributing environmental factor to the development of AMD, which
causes retinal tissue damage, including damage of the photoreceptor cells, retinal
pigment epithelium, and choroidal capillaries, resulting in macular degeneration. The
retina is an environment that metabolically active tissues generation of reactive
oxygen species (ROS) in the body and result in oxidative damage, retina is one of the
highest oxygen- consuming tissues in the human body. It also receives high levels of
radiation, e.g. ultraviolet (UV) exposure. Phagocytosis in retinal pigment epithelium
cells gives rise to high levels of reactive intermediates. These elevated levels of
oxidative stress conditions increase with age, causing the susceptible polyunsaturated
fatty acid (DHA) on the photoreceptor membrane to be per-oxidized. Oxidative
stress induces vascularization in the choroid, decreases macular pigment in the retina,
and forms sub retinal pigment epithelium deposits (Espinosa-Heidmann et al., 2006).
Excess body weight activates the renin-angiotensin system which induces superoxide
production, lipid oxidation, glutathione level reduction in erythrocytes, and decreases
lutein and zeaxanthin levels in the retina. These increase endogenous oxidation

injury to the retina, resulting in retinopathy.

1.4.2 Retinitis pigmentosa

There are several retinal diseases in which the primary and predominant site of
retinal dysfunction is localized in the RPE or/and photoreceptors. Retinitis
pigmentosa (RP) is a group of inherited retinal disease caused by complicated
molecular etiology, characterized by a progressive loss of visual function due to the
RPE and photoreceptors degeneration. Oxidative stress can be a risk factor for the
onset and progression of RP. There are a great number of animal models developed

and studied for studying the pathophysiology and new treatment of this disease.



Systemic administration of sodium iodate has been reported it selectively damage the

RPE, and subsequently lead to degeneration of photoreceptors.

1.4.3 Glaucoma

Glaucoma is a leading cause of irreversible blindness in developed country; it is a
group of diseases characterized by progressive optic neuropathies, loss of visual field.
Glaucoma is often come along with elevated intraocular pressure as a result of
obstruction of aqueous humor outflow due to abnormalities within the drainage
system of the anterior chamber angle or damaged access of aqueous humor to the
drainage system. Oxidative injury to glaucoma appears to play a role in the
pathogenesis of glaucomatous neuro-degeneration. It may cause direct cytotoxic
effects cause retinal ganglion cell death through nitrogen oxide metabolism
modifications, vascular alterations, and generation of reactive oxidative
intermediates (Chrysostomou et al.,, 2013). Oxidative proteins may exert
immune-stimulatory signals; alter neuro-supportive and immune-regulatory functions
of glial cells. Oxidant involve in initiation of the apoptotic cascade in glaucomatous

retinopathy (Aslan et al., 2013).

1.4.4 Diabetic retinopathy

Diabetic retinopathy is a microcirculatory disease of the retina. From experimental
studies, increasing evidence showed that chronic inflammation and oxidative stress
are involved. Diabetes mellitus increase oxidative stress level to induce capillary cell
apoptosis and retinal microvasculature damage. Elevated levels of glutamate,
oxidants, the overexpression and the up-regulation of renin-angiotensin system play

an essential role in the retinal neuro-degeneration induced by diabetes mellitus



(Hernandez and Simo, 2012). Oxidative stress lead glyceraldehyde-3-phosphate
dehydrogenase activity impairment and activation of major undesirable biochemical

pathways (Duarte et al., 2012).

1.4.5 Graves’ ophthalmopathy

Graves’ ophthalmopathy (GO) is a most common caused by hyperthyroidism
characterized by protrusion of the eyeball, affecting 25-50% patients with Graves’
Disease. Around 3%-5% GO patients have potential sight-threatening risk.
Accumulating evidence has shown that oxidative stress is an important factor for the
disease (Ademoglu et al., 2006, Tsai et al., 2011). Over-production of thyroid
hormones accelerates the basic metabolic rate and cellular oxidative metabolism in
mitochondria leading to ROS over-generation. Increased extracellular levels of
ROS have been noted in the blood, urine, and fibroadipose. This oxidative
environment stimulates retro-ocular fibroblast proliferation leading to eye protrusion.
Urinary 8-hydroxy-2’-deoxyguanosine (8-OhdG) is a biomarker for oxidative DNA
damage. In GO patients, there was significant correlation between thyroid
stimulating hormone receptor antibody levels and 8-OhdG (Zarkovic, 2012). The
mechanism was supported by the increase level of 8-hydroxy-2’-deoxyguanoin
(8-OHdG) in urine of active GO patients and higher levels of 8-OHdG,
malondiadehyde, superoxide anions and hydrogen peroxide in orbital fibroblasts GO

patients (Tsai et al., 2010).

1.4.6 Retinopathy of prematurity
Retinopathy of prematurity (ROP) is an ocular disease of the retina cause of visual

impairment and blindness in premature babies, characterized by the onset of vascular



abnormalities in the developing retina. ROS and oxidative stress has been suggested
to contribute to the retinal vaso-oblitreation in ROP. Nitric oxide can react with ROS
by the nitro-oxidative stress process affecting the cell function, generate nitrites, and
protein tyrosine nitration products, all cytotoxic to retina-vascular endothelium,
causing vaso-obliteration, can enhance increasing retinal micro-vascular
degeneration (Checchin et al., 2006). The retina is highly susceptible to lipid
peroxidation as it has high level of polyunsaturated fatty acids. Lipid peroxidation
together with nitrative stress lead inadequate oxygen environment is pivotal to the
pathogenesis of ROP. Oxidative stress is possible to induce peroxidation and

nitration which is cytotoxic to retinal microvasculature (Rivera et al., 2011).

1.4.7 Cataract

Cataract occurs when the normally clear lens in the eye becomes opacity. It is the
leading cause of reversible reduced vision worldwide. Cataract is consistently
subjected to light-induced photo-oxidation. Crystallin is a major constituent of the
lens (Mathew et al., 2012). a-crystallin is essential in preventing the light-scattering
and maintenance of lens transparency, thereby prevention of cataract. Oxidation may
cause cross-linking of sulfhydryl groups in lens proteins, such as crystalline,
resulting in aggregation of proteins, cell damage, and optical opacity. In cataract
lenses have been found to contain low levels of the natural anti-oxidant glutathione,
and high levels of H,O,, indicating that oxidation reactions are believed to be potent

etiological factors in the development of cataract.

1.5 The antioxidant system



In general, antioxidants are reducing agents, are the compounds of exogenous or
endogenous in nature exist both intracellular and extracellular which either prevent
the generation of oxidants or react with free radicals and reactive oxygen species,
thereby block the propagation of chain reaction produced by these oxidants, delay or
preventing oxidative stress (Rangan and Bulkley, 1993).

Antioxidants can be synthesized both in vivo and absorbed through diet. They can
be divided into several groups: enzymatic and nonenzymatic; endogenous
antioxidants such as uric acid, produced form metabolism of purines; natural

antioxidants obtained from the diet such as ascorbic acid, a-tocopherol, B-carotene.

1.5.1 Anti-oxidative enzymes

The antioxidants defense enzymes include superoxide dismutase (SOD),
glutathione peroxidase (GPX), and catalase (CAT). These enzymes seated in
different component of the cell, and account for scavenging of ROS.

SOD is a major antioxidant defense enzyme in the tissue; it plays a key role in
reducing and eliminating superoxide. SOD has three subtypes in tissues: copper-zinc
superoxide dismutase (Cu/ZnSOD; encoded by the SOD/ gene), manganese
superoxide dismutase (MnSOD; encoded by the SOD2 gene), and extracellular
superoxide dismutase (ECSOD; encoded by the SOD3 gene). These three isoforms of
SOD have different functions in form of protein structure, chromosome localization,
and gene regulation (Miao and St Clair, 2009). SOD also can catalyze the superoxide
radicals into oxygen and hydrogen peroxides.

Glutathione peroxidase (GPx) located in the cytosol and the mitochondria, to take
away the hydroperoxides into H,O,, protect membrane lipids, proteins, and DNA

against oxidation (Margis et al., 2008).
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Catalase (CAT) is a ferriheme-containing enzyme inside the cell; the major
function of the CAT is catalyzing the H>O; into H,O and O». But, compare to GPx,
CAT has less aftinity with H,O, (Droge, 2002).

The nonenzymatic antioxidant contains glutathione, vitamin C, vitamin E,
carotenoids, and flavonoids. Glutathione (GSH) is water-soluble and can be formed
from glutamate, cysteine, and glycine by daily consumption of food. GSH can be
synthesized nearly in all types of cells but there are easy to degrade into amino acid
(Valencia et al., 2001, Wu et al., 2004, Gomes et al., 2012). GSH can remove ROS
and FR so that can against forming of oxidative stress status. Once GSH is oxidized,
GSH will convert to the glutathione disulfide (GSSG) by the catalysis of the
glutathione peroxidase. However, GSSG also can convert back to GSH by the
reductase enzyme nicotinamide adenine dinucleotide phosphate (NADPH). So, when
the tissues suffered from oxidative stress, the level of the GSH and the oxidized GSH
formed GSSG ratio is a good and reliable biochemical marker to present the

oxidative level in the tissues.

1.5.2 Endogenous antioxidants

Uric acid and melatonin are two important endogenous antioxidants. Uric acid and
melatonin possess strong anti-oxidative properties, and sustain higher level in fluid
circulation and in tissues.

Oxidation of xanthine and hypoxanthine can generate uric acid. Uric acid is an
important oxidation scavenger because it effective in removing hydroxyl, peroxyl
and singlet oxygen in human body. It has been reported that uric acid also have the
capability to react with ions like Fe*" or Fe** (Filipe et al., 2001).

Melatonin, is also an important endogenous antioxidant in human body, is a

11



neuro-hormone, melatonin is almost exclusively produced by the photoreceptor cells
(Liu et al., 2004). The amount of melatonin produced by the retina is small compared
to that in the pineal gland, and retinal melatonin is thought to act as a local
neuromodulator within the eye. It can scavenge 'O, and “OH. It has been shown that
melatonin modulation of intraocular pressure (IOP), and it has been suggested that
melatonin or melatonin analogs may be useful in the treatment of glaucoma (Belforte
et al., 2010). Melatonin protects cultured RPE cells from oxidative stress and
ischemia-induced cell death and delays photoreceptor degeneration in rds mutant
mice (Osborne et al., 1998, Liang et al,, 2004, Liang et al., 2001). It has been
reported that daily administration of melatonin (3 mg) may protect the retina and
delay the progression of age-related macular degeneration (AMD) (Rosen et al.,

2009).

1.5.3 Antioxidants obtain from diet

Vitamin C (Ascorbic acid) is a water-soluble nutrient known to have antioxidant
properties. It has also been shown to be a cofactor in the regeneration of Vitamin E in
the retina (Stoyanovsky et al., 1995). Ascorbic acid can be deacidizing by NADPH
and glutathione reductase. On the other hand, it can be a pro-oxidant in the presence
of transition metals. Cho et al. reported it has a mild protective effect in the
prevention of early AMD.

Vitamin E is a lipid-soluble antioxidant and has four common subtypes:
a-tocopherol, B-tocopherol, 6-tocopherol, and y-tocopherol. a-Tocopherol has been
reported as the most effective antioxidant protects against lipid peroxidation among
this group (Handelman et al., 1985) but can act as a pro-oxidant if there is transition

metals presence. Vitamin E as a supplement was included in the Age-Related Eye
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Disease Study trial.

Over 600 known carotenoids, only dozen can be found in the human body. Lutein
and zeaxanthin are the only two that exist in the human retina. These retinal
carotenoids have been shown to absorb blue light and serve to scavenge free radicals
(Parker, 1989). B- carotene can quench singlet oxygen, the ability of quenching is
higher than vitamin C and vitamin E.

Over the last century, flavonoids have been identified as the most common group
of plant polyphenols that give colour and flavour to fruits and vegetables. Flavonoids
can be classified into several subclasses, which include flavones, flavonols,
flavanones, flavanols, isoflavones and catechins. Flavonoids are able to reduce the
highly oxidizing free radicals (e.g. superoxide, peroxyl, alkoxyl and hydroxyl),
resulting in more stable, less reactive radicals (Pietta, 2000, Nijveldt et al., 2001).

With this knowledge, before applying the catechins, we have to understand the

physiological and chemical properties of catechins.

1.6 History and green tea ingredients

Green tea has been consumed as a beverage for thousands of years. It is mainly
produced from freshly harvested leaves of Camellia sinensis, a small plant grown
mainly in China and Southeast Asia, consumed predominantly in China, Japan, India,
and some countries in North Africa and the Middle East. It is originated in southwest
China 5000 years ago as a medicine. The brewed extract of green tea leaves contains
carbohydrates, cellulose fibers, polyphenols, caffeine, amino acids, and vitamins.

Green tea is rich in polyphenolic which make up about 35% of the dry weight of
green tea extract (GTE), polyphenols are the most biologically active substances

present, capable of slowing or preventing the oxidation of other molecules.
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Polyphenols are reducing agents, can help diminish the oxidative damage by acting
directly on reactive oxygen species or stimulating endogenous defence systems. The
phenols can accept an electron to form relatively stable phenoxyl radicals, therefore,
disrupt chain oxidation reactions in cellular compounds.

Green tea contains large amounts of various flavonoids, which are characterized
by the benzopyrane skeleton, with the pyrane ring bearing at least one aromatic ring.
One of the major classes of flavonoids 1is catechins, which include
(-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epigallocatechin
(EGC), (-)-epicatechin gallate (ECG), EGCG is the most abundant of the catechins,
accounts for 50-75% of the total amount of the catechins, other catechins, like
(+)-catechin (C), (+)-gallocatechin (GC), (-)-catechin gallate (CG), and
(-)-gallocatechin gallate (GCG) are only present in small quantities (Figure 1.2).
Catechins are synthesized via the malonic acid and shikmic acid metabolic pathways.
The galloyl esters of catechins are synthesized by esterification with gallic acid. Both
catechins and their esters possess strong anti-oxidant properties, especially EGCG.
Green tea contains catechin- based flavonoids with EGCG being the most abundant
and possessing the most potent antioxidative activity. Catechins are present in higher
quantities in green tea as compared to black and oolong tea, due to the different

methods of leave processing.

1.7 Biological effects of catechins

Catechins has been claimed to possess biological effects potentially beneficial to
human health. Most of these functions are attributed to the multi-functional and
multi-targeting properties of green tea catechins, such as metal chelation,

anti-oxidation, anti-oxidation, cell signaling modifications, anti-angiogenesis,
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Figure 1.2 Chemical structures of Catechins.

(Picture modified from www.sciencedirect.com)
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anti-microbial, anti-arteriosclerosis, anti-carcinogenesis, and anti-mutagenesis
properties (Ahmad and Mukhtar, 1999). Catechins also has been studied extensively
for their beneficial effects might be useful in the treatment and prevention of several
chronic disease such as cancer, heart diseases, diabetes, obesity and
neurodegenerative diseases (Higdon and Frei, 2003, Khan et al., 2006, Kuriyama et
al., 2006).

Therefore, a better understand of mechanisms of catechins will provide a rationale
way to the clinical development of tea polyphenol alone or combination strategies.
The efficiency of polyphenols as antioxidant compounds mainly depends on their
chemical structure. Reported studies have shown the capability of green tea catechins
in anti-oxidation, cell signaling modification, and anti-microbial capabilities relevant

to the treatment of ocular diseases.

1.7.1 Anti-Oxidant nature of catechins

Polyphenols in green tea extract, especially EGCG, have been found to act as free
radical scavengers that neutralize free radical mutagens, prevent of formation of ROS.
The polyphenolic structure of EGCG consists of 4 rings, A, B, C, D (Figure 1.3). A
and C rings constitute benzopyran ring. The B ring of EGCG has vicinal trihydroxy
group, the D ring galloyl moiety in EGCG is the form of an ester at C3. Many studies
have demonstrated the strong antioxidant nature of EGCG is attribute to their
polyphenolic structure, the presence of the meta-5,7-dihydroxyl groups on the A ring
plays important role in their anti-oxidative action, the ortho-dihydroxyl and the
ortho-trihydroxyl group in the B ring is essential for its scavenging properties

(Figure 1.4). The B ring consisting of vicinal dihyoxy or trihydroxy groups is the
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Figure 1.4 Schematic oxidation of catechin. Figure demonstrates how catechin
neutralizes reactive oxygen species and propagates polymerization to a stabilized
final product. (Picture from Chu KO, Yang YP, Wang CC, Pang CP. Biological
effects of green tea catechins in ocular tissue cells. Tea in Health and Disease

Prevention, 1st Edition. United States of America. 2012.p 1311.)
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preferred site for antioxidation. In the polyphenols with the pyrogallol type B ring
and/or galloyl group, electron-withdrawing substituents and/or intramoleular
hydrogen bonding constituted structural against the antoixdation. The binding site for
reactive carbonyl species is the A ring of the catechins, however, the preferred sites
for the antioxidant activity is on the B ring. Scavenging properties can be further
synergistically enhanced by the presence of other anti-oxidants with different
solubility such as L-ascorbic acid and tocopherols. Moreover, EGCG can chelate
catalytic metal ions and quench singlet oxygen (Kuo et al., 1998), preventing DNA
damage from ROS. Catechins can scavenge ROS (Frankel et al., 1993) through
inhibition of xanthin oxidase and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activities, activation of catalase and glutathione peroxidase
activities. The ability of scavenge free radicals works well at acidic medium. EGCG
is less stable in neutral and alkaline medium due to the hydroxyl groups on the
phenyl ring are attacked by the basic medium results to the formation of a more

active phenoxide anion.

1.7.2 Anti-angiogenesis effect

Vascular endothelial growth factor (VEGF) is a major angiogenic factor. It
stimulates new blood vessels development from micro-vascular bed through increase
vascular permeability, induce extracellular matrix degradation, and stimulate
endothelial cell migrations and proliferation. The production of VEGF is redox status
dependent (Frankel et al., 1993). Catechins have been reported possess the capability
of scavenging ROS (Rosenkranz et al., 2002); inhibiting xanthin oxidase, and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities; increasing

catalase and glutathione peroxidase activity.
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EGCG also can prevent Platelet Derived Growth Factor AB (PDGFAB) which
induced by VEGF inhibit phosphorylation of p38 MAPK signaling (Masuda et al.,

2002).

1.7.3 Cell signaling modification and mechanism of action

Catechins can interact with some important molecules or transcription factors
which regulate cell signal transduction pathways play a key role in modifying
different cellular functions. Catechins can affect various tyrosine kinase receptors
and downstream or upstream their gene expression level, therefore, affecting cell

proliferation, angiogenesis, and apoptosis.

1.7.3.1 Mitogen activated protein kinases (MAPK) and activator protein-1
(AP-1) inhibition

MAPKSs can activates transcription factors like ERK and c-Jun which affect AP-1
gene expression leading to cell proliferation, migration, and apoptosis. Cells
pre-treated with. EGCG can inhibit H>O; induced phosphorylation of ERK 1/2, JNK,
and p38 in oxidative stress model (Katiyar et al., 2001). The inhibition causes cells in
G2 status. Topical application of catechins can inhibit UVB irradiation induced by
ERK1/2, JNK, and p38 phosphorylation in fibroblasts (Bae et al., 2008). Thus it
prevents dermal cells from apoptosis possibly through changing the balance of
BAX/Bcl2 (Chung et al., 2003). Through inhibition of AP-1 transciption activity,
catechins, especially EGCG, can inhibit tissue plasminogen activator (TPA) or
epidermal growth factor (EGF) induced cellular transformation in epidermal cell
(Kim et al., 2004). Therefore, catechins can modify cellular transformation, survival,

differentiation, proliferation under stress.

20



1.7.3.2 Nuclear factor — kappa B inhibition (NF-kB)

NF-kB is a transcription factor involving inflammatory and innate immune
responses. It is a sequence specific transcription factor sensitive to oxidative stress.
NF-«xB is found in the cytoplasm interacting with Ik-Ba as an inactive form.
Phosphorylation of Ik-Ba causes its degradation and subsequently releasing NF-kB.
NF-kB then translocates to the nucleus and induces the expression of more than 200
genes. Many of these genes suppress apoptosis and induce proliferation; it can bind
to the promoter regions of genes relating to inflammation such as MEKK, IL-6, and
TNF-a. EGCG inhibits NF-kB binding and phosphorylation to down regulate the
inflammatory response through reducing the production of TNF-q, IL-6, and IL-8
(Shin et al., 2007). EGCG also suppress monocytes chemotactic protein-1 expression
in endothelial cells (Hong et al., 2007). Through blocking Ikx-Bophosphorylation,
topical application of EGCG also suppress UVB damage of epidermal cells (Gupta et

al., 2004).

1.7.3.3 Epidermal growth factor receptor (EGFR) inhibition

EGFR regulates cell proliferation and differentiation. EGCG inhibits
phosphorylation of EGFR and EGF binding to EGFR. Thus, EGCG suppress its
subsequent downstream signaling pathways (Chan et al, 2008). It prevents

uncontrolled cell growth and metastasis (Hou et al., 2005).

1.7.3.4 Insulin-like growth factor (IGF)-1 inhibition
IGF is a complex system of peptide hormones, cell surface receptors, circulating
binding protein. The isoforms -1, -2, can regulate cell proliferation, differentiation,

and apoptosis. EGCG can inhibit IGF-1R and increase IGFBP-3 protein expression
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decreasing the levels of mRNAs of MMPs-7 and -9 to suppress cell proliferation and

differentiation (Shimizu et al., 2005).

1.7.3.5 Proteasome activities inhibition

Proteasome destroys intracellular proteins including cyclins, cyclin-dependent
kinase inhibitors, p53, Bcl-2, and Ixk-Bawhich involve cell cycle, apoptosis, and
transcriptional regulation. Through inhibition of chymotryptin, catechin gallates such
as EGCG and ECG accumulate p27 and Ik-Ba to induce growth arrest in the G (1)

phase of the cell cycle (Nam et al., 2001).

1.7.3.6 Matrix metalloproteinase (MMPs) inhibition

MMPs are zinc-dependent endopeptidase. They can degrade extracellular matrix
(ECM). They involve various physiological and pathological conditions including
inflammation, vascular, and autoimmune disorders, and carcinogenesis. They can
alter cell-cell and cell-ECM interaction. They can facilitate cells go through tight
basement membrane. Therefore, MMPs can promote angiogenesis stimulate growth,
regulate innate immunity, and exhibit anti-apoptotic properties. EGCG can inhibit
MMP-2 activity to prevent cells from invasion, migration, and G (1) to S phase cell

cycles in vascular smooth muscles (Kim and Moon, 2005, Ho et al., 2007).

1.7.3.7 Urokinase plasminogen activator (uPA) inhibition

UPA can remove blood clots and stimulate angiogenesis. It can also help degrade
and regulate basement membrane and extracellular matrix (Dass et al., 2008). EGCG
can block urokinase catalytic triad to inhibit uPA activity. EGCG can also suppress

VEGF, uPA, and angiopoietin 1 and 2 expression.
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1.7.3.8 Induction of apoptosis and cell cycle arrest

Apoptosis involves in a series of biochemical events, resulting to a variety of
morphological changes. It has been reported that EGCG inhibit the expression of
anti-apoptotic proteins Bcl but increasing the expression of pro-apoptotic proteins
Bax (Qin et al, 2007). EGCG can trigger the intrinsic apoptosis pathway by
regulating the mitochondrial functions, activating the caspase-3 and caspase-9 (Roy
et al., 2005).

EGCG can induce expression of p21 and p27 and inhibit CDK2 and CDK4
activity to negatively regulate cell cycle progression resulting in GO/G1 phase cell
cycle arrest (Liang et al., 1999). Unlike other antioxidants, catechins not only can
scavenge free radicals to against apoptosis, necrosis and uncontrolled cell cycling,
but also can participate in the molecular regulatory process to attenuates oxidative
stress induced apoptosis. EGCG can block the extracellular signaling by growth
factors include EGF, PDGF, FGF binding to receptors and inhibit tyrosine kinase
induced uncontrolled cell cycling; inhibits cyclin dependent kinases 2 and 4; down
regulates nitric oxide (NO) synthase and NF-kB. So, EGCG can serve as inhibitor to

inhibit tumor initiation and promotion.

1.7.4 Toxicity

Testing the safety and tolerability of a drug are very important issues before
approval for clinical use. Green tea has a long history of use as a beverage is
generally regarded as safe. Numerous human bioavailability and intervention studies
using around 20~800 mg green tea preparations have report no severe side effects
(Chow et al., 2006, Bettuzzi et al., 2006, Lee et al., 2002). Pro-oxidative effect of

EGCG may underlie the observed toxicity. Laboratory studies of green tea
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preparations in rodents revealed toxic effects at high doses (>1000 mg/kg) (Isbrucker
et al., 2006). No significant damage was reported with 2% Polyphenon 70 S™
(Mitsui Norin Co., Ltd.) treated on mice for six months, a green tea extract which
contains more than 70% catechins. In other studies, the LD50 of green tea
polyphenols (Sunphenon with 60% polyphenols) was 3.1 g/kg for female and 5.0
g/kg for male mice. 75 mg/kg green tea extract was daily administrated on male mice

for 88 days did not give any toxicity effect.

1.7.5 Effects of catechins on ocular tissue/cells

Oxidative stress has been contributed to many pathogenesis of the common eye
diseases, anti-oxidants have been widely used to protect against oxidative damage,
including lutein, vitamin C, zeaxanthin, and vitamin E. But, their prophylactic and
protective effects are not so effective. A great number study have shown the
capability of GTE and catechins in antioxidation effect, cell cycle arrest and
induction of apoptosis, anti-microbial activities and affect transcription factors which
are relevant to treat retinal degeneration and inflammation in the eye. It is possible
because they have several biological effects on ocular tissue cells and plenty studies
have proved this. The natural product EGCG is an abundant and major active
component in GTE, account for more than 50-75% of the total amount of catechins
in GTE preparations. It is responsible for most of the potential health benefits of
green tea. Up to now, a literature search on PUBMED shows that more than 10,000
reports have been published refers to the area on the effects of the chemistry,
bioactivity, production, and health benefits of green tea. Over 4,000 publications on

EGCG (Nagle et al., 2006).

24



1.7.5.1 The reported effect of EGCG in retinal pigment epithelial (RPE) cells

RPE plays an important role in maintenance the proper function of the neural
retinal. It is a polarized, pigmented, cuboidal epithelial cell layer situated between the
photoreceptors and choroidal vasculature in the outer retina. It delivers glucose
consumed by the neural retina, performs various functions crucial for retinal
homeostasis, including delivery amino acids and docosahexaenoic acid for metabolic
mechanisms essential for phototransduction; maintenance of the blood retinal barrier;
secretion of growth factors.

Oxidative stress damages the RPE and subsequently cause photoreceptor
degeneration plays a significant role in the pathogenesis of AMD and retinitis
pigmentosa. Exposure to solar ultraviolet can cause damage to RPE cells because it
may generate ROS. Studies have shown that EGCG, even at 1 uM, inhibits
ultraviolet irradiated intracellular HO; in RPE cells in a concentration-dependent
manner, and 10uM produced a marked effect (Chan et al., 2008).

RPE cells can initiate cell proliferation, migration and secrete extracellular matrix
(ECM) as seen in some retinal diseases such as proliferative vitreoretinopathy (PVR),
proliferative diabetic retinopathy (PDR). It has reported that EGCG is effective in
inhibiting RPE cell proliferation and migration (Peng et al., 2010). Chan et al. found
that EGCG can inhibit RPE cell migration through by preventing platelet-derived
growth factor (PDGF)-BB and RPE cell adhesion to fibronectin in a dose-dependent
manner. The inhibition of EGCG does not directly binding to the PDGF-BB but
involves inhibition of phosphorylation of PDGFR-Breceptors, downstream molecules
like PI3K/Akt and Mitogen-activated protein kinase (MAPK) phosphorylation.
EGCG also inhibited fibronectin-induced cytoskeletal reorganization of RPE cells

essential for migration processes (Peng et al., 2010). Moreover, another study also
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investigated the inhibitory effect of EGCG on proliferation in PVR of human retinal
pigment epithelial cells by using the ARPE19 cell line and human RPE cells, EGCG
inhibited cell proliferation showed induced the least cell death when compare to the
resveratrol and the curcumin (Alex et al., 2010). EGCG, at 100 pM, inhibited cell
proliferation without inducing significant toxicity to the cell as proved by flow
cytometric, and apoptosis assay (Alex et al., 2010). This provided the evidence that

polyphenols may aid treatment of PVR and PDR.

1.7.5.2 The protective effect of EGCG on retinal degeneration

Several group studies have indicated that intravitreal injection of oxidants such as
sodium nitroprusside, which effectively generate nitric oxide into the eye of the rat,
caused specific photoreceptor degeneration, while other layers of the retina were
unaffected (Zhang and Osborne, 2006). Combination of 15 uM EGCG and 100 uM
sodium nitroprusside , the detrimental effects to the photoreceptor induced by the
SNP was significantly blunted as shown by using histological, electroretinogical
(Figure 1.5) and biochemical methodologies; expressions of photoreceptor-specific
markers, such as RET-P1, rhodosin kinase; the apoptosis marker caspase-3.

Moreover, Zhang et al. induced ischemia and reperfusion in rats’ eyes (Zhang et
al., 2007). Ischemia was delivered by increasing the intraocular pressure higher than
the systemic blood pressure, sustained for 45 minutes. EGCG was delivered using
two approaches; 25 mg/kg EGCG intraperitoneally injected before ischemia and 5 pl
of 200uM EGCG intravitreally injected, giving the final vitreous concentration is 10
uM after ischemia; in another experiment, 25 mg/kg EGCG intraperitoneally injected
two days before and after ischemia. The ischemic damage was reduced in retinal

ganglion cells (RGCs) as proved by photoreceptor-specific proteins, retinal glial
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Figure 1.5 Electroretinograms (ERG) of rat eyes after ocular
ischemic/reperfusion insult with EGCG treated. The a- and b-wave amplitudes of
the ERGs were drastically reduced after ischemia/reperfusion, however, these were
alleviated significantly when treated with EGCG Individual characteristic ERGs
recordings showed that a control eye taken before ischemia (baseline) and after
ischemia almost identical. The wave was much affected by ischemia but less affected
in rats treated with EGCG. (Picture from Zhang B, Safa R, Rusciano D, Osborne NN.
Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging
influences to the retina caused by ischemia/reperfusion. Brain Res. 2007 Jul

23;1159:40-53.)
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fibrillary acidic protein (GFAP), mRNA levels were attenuated by EGCG seven days
after ischemia significantly (Zhang et al., 2007). The thickness of the inner plexiform
and inner nuclear layer became thinner caused by ischemia were also blunted by the
EGCG administrated.

In in vitro studies, 10 uM EGCG significantly blocked RGC-5 cell death caused
by 400 uM H;Os-induced oxidative stress. EGCG blunts the influence of H>O; and
inhibits intracellular H>O, generation, against apoptosis and the generation of ROS

(Zhang and Osborne, 2006).

1.7.5.3 EGCG against human lens epithelial cells (HLE) from oxidative stress

Oxidative stress has been reported as a major factor to induce human lens
epithelial cells apoptosis and also considered as an important mediator in the
pathogenesis of cataracts. Yao et al. used HLEB-3, a human lens epithelial cell line,
was exposed to different concentrations of H,O; and EGCG, subsequently assessed
cell death by cell viability assay; apoptosis effect was using flow cytometric analysis
with Annexin V and propidium iodide (PI) (Yao et al., 2008). The ability of EGCG
to protect HLE cells against apoptosis, which was caused by accumulation of
intracellular ROS and the loss of mitochondrial membrane potentials induced by
H,0,, was determined by dichlorofluorescein (DCF) fluorescence and 5,5°,6,6°-
tetrachloro-1,1",3,3 -tetrathylben-zimidazol carbocyanine iodide (JC-1).

EGCG blocked the loss of mitochondrial membrane potential and the release of
cytochrome C from mitochondria into the cytosol, EGCG inhibited H,O;-induced
caspase-9 and caspase-3 expression, and the decreased of the BCL-2/Bax ratio.
EGCG also can activate the mitogen-activated protein kinase (MAPK), p38

Mitogen-activated protein kinase, and extracellular-signal-regulated kinases (ERKs)
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activities (Zhao et al., 2011).

1.7.5.4 Reported anti-angiogenesis effect of catechins

Cao et al. in 1998 has been reported that EGCG suppresses endothelial cell growth
in in a dose-dependent manner. This coincided with the studies EGCG against
VEGF-induced endothelial cell proliferation and migration by a scratch-wound
model in human umbilical vein endothelial cells (HUVECs) (Cao et al., 2010)
(Figure 1.6) and suppressed endothelial cell growth and formation in chick
chorioallantoic membrane. In one study, it has already reported EC, EGC, ECG and
EGC also can inhibit angiotensin- converting enzyme (ACE) activity that increased
nitrogen oxide (NO) production in a dose-dependent manner by using HUVEC

model (Figure 1.7) (Persson et al., 2006).

1.7.5.5 Reported anti-inflammation and anti-microbial action of EGCG in
corneal epithelium

The corneal epithelium act as physical barrier to infection and insult, and involve
in the ocular immune response by generating cytokines. Ocular surface inflammation
included the appearance of pathogens, allergic, and dry eye. While inflammation
cytokines and hyperosmolarity of the tears plays a key role in the dry eye disease.

In the in vitro study, human corneal epithelial cells (HCEpiC) were challenged
with interleukin-1b (IL-1b) for 18 hours or hyperosmolarity (440 mOsm) for 24
hours to induce corneal inflammation (Cavet et al., 2011). Application of EGCG at
doses from 0.3-30 uM caused a dose-effect suppression phosphorylation of MAPKs
p38, c-Jun- N-terminal kinase (JNK), and transcription factors sun as nuclear factor

kappa B (NF-kB) and activator protein-1 (AP-1) which regards as an important
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Figure 1.6 Viability and Migration Tests on ARPE19 Cells with. ARPE19 cell viability after treatment with various Concentrations
of EGCG (0-100uM) (A). Investigate HUVEC proliferation and migration after treatment with EGCG (0-50 uM) by using
scratch-wound model (B). (Picture from Cao L, Liu H, Lam DS, Yam GH, Pang CP. In vitro screening for angiostatic potential of herbal

chemicals. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6658-64.)

30



15

10

ACE activity {U)

Figure 1.7 Angiotesin-converting enzyme activity in HUVEC. After 10 minutes
incubation with: EC n=6; EGC, n=6; ECG, n=6; or EGCG, n=8. *P<0.05, **P<0.01
and ***P<0.001. (Picture from Persson IA, Josefsson M, Persson K, Andersson RG.
Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric
oxide production in human endothelial cells. J Pharm Pharmacol. 2006

Aug;58(8):1139-44.)
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mediator in the inflammatory response. It also inhibited glucose oxidase-induced
ROS levels in dose-dependent manner. So, EGCG may act as anti-inflammation and
anti-oxidant potential drug for therapeutic HCEpiC in ocular inflammation such as
dry eye.

Bacterial conjunctivitis and keratitis are common ocular infections. Bacterial
strains such as Staphylococcus aureus, Pseudomonas aerugenosa, Streptococcus are
among the most common bacteria isolated from ocular infections. Bacterial invasion
involves cells move to the affected area, and proteolysis for inner tissue spreading.
Some kinds of bacteria produce gelatinase that acts as a protease, causing hydrolysis
of the peptides in structural proteins and hence leading to breakdown of the host’s
tissue cells and allowing the bacteria to spread. EGCG inhibits the metalloproteases
and gelatinase activities (Garbisa et al., 2001). EGCG inhibit bacterial gelatinase
with an IC50 at about 0.2 mM and limit gelatinase-positive bacteria invasion at about
2 mM (Blanco et al.,, 2003). EGCG inhibit the biofilm formation in an ocular
staphylococcal isolation at sub-microliter (250-500 uM) level, suggesting that EGCG
inhibit pathogen adhesion to the ocular surface these might attribute to the inhibitory

of bacterial growth or slime production (Blanco et al., 2005).

1.8 The mechanisms of sodium iodate as retinotoxin

Systemic administration of sodium iodate (NalO;) has been widely reported it
selectively impair the retinal pigment epithelial (RPE) by oxidative stress, resulting
in patchy loss of RPE and subsequent degeneration of photoreceptors (Kiuchi et al.,
2002). Why sodium iodate has selective effect on RPE cells may due to several
mechanisms. First, NalO; inhibits enzyme activities of RPE cells. such as triose

phosphate dehydrogenase (Ashburn et al., 1980), succcinodehydrogenase, lactate
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dehydrogenase (Birrer, 1970). Sodium iodate damages the anionic sites on the
basal membrane, lead cell organelles swelling, loss of apical microvilli, and then
finally cause RPE cells necrosis. So, the junction between RPE and Bruch’s
membrane is became loose (Yoon and Marmor, 1993). Second, the sodium iodate
destroys the blood-retina-barrier by affecting the zonula occludens (Konda et al.,
1994). Finally, the inner/outer segment of photoreceptor become disorganized, and
photoreceptor cells degenerated, and the choriocapillaris are atrophies (Anstadt et al.,
1982). Third, a chemical reaction between the sodium iodate and melanin, melanin,
absorbs scattered light, which otherwise disturb visual acuity, and in cooperation
with various anti-oxidative enzymes protects against reactive oxygen species
produced by phagocytosis of photoreceptors (Miceli et al., 1994). Sodium iodate can
increase the ability of melanin to affect the glycine to glyoxylate. Melanin is the
source of the zinc and plays a key role in the retina metabolism (Schraermeyer and
Heimann, 1999). So, sodium iodate is a potentially cell toxic compound (Baich and
Ziegler, 1992). However, this chemical reaction was suggested as a partial

explanation to the specificity of iodate toxicity to the RPE and photoreceptor.

1.8.1 Reported activities of sodium iodate-induced retinal degeneration

Systemic administration of different dosages of sodium iodate has been used in
various of rodents (I have summarized as seen in Table 1.1) to evaluate the effect on
visual function (Enzmann et al., 2006, Franco et al., 2009), retinal morphology
(Kiuchi et al., 2002) and other functional features (Machalinska et al., 2010). Sodium
iodate-induced retinal degeneration in rats was employed as an animal model to

explore the capability of stem cells in differentiation into RPE and photoreceptors
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Table 1.1 Reported activities of sodium iodate-induced retinal degeneration

Dosage of sodium

No.  Author Journal Year Model(s) Assessments iodate Activities to report
. Intra-vitreal injection of HGF significant protection against
1 Ohtaka et a/ Curr Eye Res 2006 SDrats 5 - Histology ; ERG, . 40.m.g/kg, N audal photoreceptor and RPE degeneration induced by systemic
weeks old Immunohistochemistry vein injection L .
administration of NalO3.
. . . Bone marrow MSCs transplanted into the sub-retinal space
2 Gongetal (C)hﬁtlssclplzgment 2008 ;V‘:s;:f{rgltz Histology igir?ﬁlaz%ﬁ%ar?dal of sodium iodate-injected rats have the ability to
P J differentiate into RPE, photoreceptor and glial lincage cells.
., . 40 vs. 20 mg/kg, . . .

Machalin’ska C57BL Histology ,ERG, : Peripheral area of the retina reveals better resistance to
3 Neurochem Res 2010 orbital venous L .

etal mice TUNEL assay ) . NalO3 injury than its central part.

plexus inection
. Invest Ophthalmol C57BL Histology, 15, 25, 35 mg/kg , RPE necrosis was observed with a low concentration of
4 Luisactal R 2010 ; . N Y
Vis Sci mice Immunohistochemistry i.v. injection NalO3.

5 Enzmann et Expe Eye Res 2006 C§7BL H1s§ology, behavioral 35, 50 7 5 mg/kg, NalO3 can produge pennanem deficits in retinal

al mice testing 1.v. injection morphology and visual function.

L C57BL Histology, TUNEL 100 mg/kg, Retinal toxicity evoked by NalO3 was characterized by RPE
6 Kiuchietal Curr Eye Res 2002 assay LT . .
mice . . i.p.injection cell necrosis followed by photoreceptor cell apoptosis
Immunohistochemistry
7 Yoonetal Ophthalmic Res 1993 Rabbit Electron microscopy  i.v. 20 mg/kg Large patches of RPE separated, adhered to peeled retina
8 Nilsson ef a/ Acta Ophthalmol 1977 Sheep Histology i.v. 30 mg/kg RPE svyollen and ruptured. c-wave was abolished
immediately

9 Kiryuetal VisionRes 1992 Cat Histology, ERG i.v. 30 mg/kg Change in the c-wave amplitude

34



after transplantation into the subretinal space (Enzmann et al., 2003, Gong et al.,
2008), and investigate the protective effect of hepatocyte growth factor against
retinal degeneration (Ohtaka et al., 2006). Sodium iodate-induced retinal
degeneration is also reported in rabbits (Grignolo et al., 1966, Suyama, 1967, Flage,
1983, Yoon and Marmor, 1993) and sheep (Nilsson et al., 1977a). The sodium iodate
causes retina degeneration in sheep through disrupture of basal membrane, swelling
of intracellular organelles. In rabbit, within 7 hr after injection, changes are
observable in the ultrastructure of the retinal pigment epithelium; 10 hr after
injection, all the cells of the pigment epithelium are severely damaged, and
irregularities of the outer segments of the receptors can be detected; after 15 hr
injection of 1odate, regeneration of rhodopsin is severely impaired. After several days,
the pigment epithelium and outer segments of the receptors show gross degeneration
(Clifton and Makous, 1973). In cat, the amplitude of the c-wave decreased in ERG
(Kiryu et al., 1992), subsequently followed by: the severe atrophy of the
choriocapillaris (Korte et al., 1984), the a-and b-waves, which represent the neural
retina, were decreased significantly (Hosoda et al., 1993), considered as the retinal
photoreceptor degeneration (Nilsson et al., 1977b).

Although a great number of previous studied have shown the consistency of the
sodium iodate causes RPE and photoreceptor degeneration, the mechanism of how
NalO; affect the RPE neural retina damage, the reasons are not fully understand
some issues remain have to investigate. These include: Traditional assessments in
sodium iodate induced retinal degeneration are based on electrophysiology and
histological staining. Electrophysiology can be monitored longitudinally, however,

cellular changes in the retina are not visible. Histological staining enables clear
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assessment on retinal structures; however, animals are sacrificed and a large number
is needed for longitudinal study. Therefore, development of an in vivo longitudinal
assessment method is needed, especially for stem cell and drug therapeutic.

To fill these gaps in our understanding of NalOs-induced retinal degeneration, we
examined the effects of four concentrations and several post injection time points on
both intraperitoneal and intravenous injection retinal morphology in adult
Sprague-Dawley rats. In addition, we assessed retinal layer changes in histological
preparations were correlated with that in confocal scanning laser ophthalmoscopy
(CSLO) and Spectral domain optical coherence tomography (OCT) images.
Although the mechanism of the RPE cell death and neural degeneration in the
sodium iodate model may different from that patient suffer from the outer retinal
degenerative diseases in clinic, the presentation of the RPE and the photoreceptor
degeneration might be similar. Therefore, sodium iodate induced retinal degeneration
can be used as a reliable model for studying human retinal degenerative diseases

which RPE and photoreceptor degeneration are involved in.

1.9 Confocal scanning laser ophthalmoscopy and Spectral domain optical
coherence tomography

The confocal scanning-laser ophthalmoscopy (CSLO) provides predominantly
surface information but has a very restricted depth resolution. CSLO is a noninvasive
imaging technique that allows examination of specific tissues and retinal layers and
of their vascular structures in the human and rodent retinas. CSLO imaging was
performed with a commercial scanning laser ophthalmoscope (HRA2; Heidelberg
Engineering GmbH, Dossenheim, Germany). The confocal diaphragm of the CSLO

allows the visualization of different planar images of the posterior pole, ranging from
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the surface of the retina to the RPE even the choroid. The HRA features to argon
wavelengths (488 nm excitation, 795 nm detection), barrier filters at 500 nm and 810
nm. Figure 1.8 shows a schematic diagram of a CSLO.

Spectral domain optical coherence tomography (OCT) is a non-invasive technique
for in vivo cross-sectional imaging of the retina (Huang et al., 1991). The OCT has
several advantages for visualizing retina layers in animal models mimic ocular
diseases. It can provide histology- homologous sections so that the researchers can
do the correlation of the in vivo images with the histology sections at the same retina.
This is very important and useful for longitudinal investigate the retina changes and
also essential for the quantification analysis of localized lesions and degeneration
profile in each retina layer. The histological sections can be replaced by the in vivo
images in some situations, so it decreased the number of the animals to be sacrificed.
The OCT images also help to determine when is the optimal time point to sacrifice
the animal to get the traditional histological sections for progressive study. So, the
OCT can serve as an important tool for the in vivo investigate retina changes of eyes.
The Spectral domain optical coherence tomography could be useful in retinal
degeneration studies as a noninvasive tool for investigating cell death in vivo since it
has been demonstrated recently that cell apoptosis and necrosis cause changes in the
tissue optical reflectivity parallel layers, all intra-retinal layers are clear visible in the
saline retina.

The OCT 1s based on light reflectivity, light shade means weak reflectivity, and
dark shade represents strong reflectivity. Retinal layers with much membrane and
less optical dense are presented as a darker shade, for example plexiform and
nerve-fiber layers appeared as dark in OCT images, retinal layers with more optically

dense and less membrane are present as light shade, such as the outer nuclear layer,
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Figure 1.8 Schematic diagram of a confocal laser scanning ophthalmoscope.
(Picture from Rasta SH, Manivannan A, Sharp PF. Spectral imaging technique for
retinal perfusion detection using confocal scanning laser ophthalmoscopy. J Biomed

Opt. 2012 Nov;17(11):116005.).
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inner nuclear layer appeared as light in OCT images (Fischer et al., 2009).

This technique has been used to examine real-time longitudinal changes in the
retina of mutant mice with photoreceptor degeneration (Ruggeri et al., 2007, Fischer
et al., 2009), and in mice with intravitreal injection of NMDA (Nakano et al., 2011).
Spectral domain OCT was also employed to investigate degenerative changes in
outer retinal layers in transgenic rabbits (Muraoka et al., 2012) and in rats with
sodium iodate induced retinal lesion (Hariri et al., 2012). Although this imaging
technique provides important information on the site of lesion within a confined area
of the retina, information on whether the lesion is widespread throughout different
areas of the retina and quantification of the damage across different retina quadrants
is difficult. A few studies now using OCT to assess the retinal layer changes in
rodents, but no study have combine the planar images by using confocal scanning
laser ophthalmoscopy (CSLO) with the cross sectional image spectral domain optical
coherence tomography at the same time. We report here a novel method for
assessment of retinal lesion induced by sodium iodate in the adult rat based on
confocal scanning laser ophthalmoscopy (CSLO) and OCT, which allows
simultaneous take Spectralis HRA + OCT registers the CSLO and OCT images in
the retina simultaneously evaluation of damage across the retinal layers and different
quadrants of the retina.

Based on the literature review how can we perform a green tea study on oxidative
stress model? Give an summary of reported green tea extract and catechins studies
showed that the most effective and safe dosages of EGCG for their anti-oxidative
effect and angiogenesis inhibition in different ocular disease models were usually
from range 10 to 50 uM. In the physically normal situation, after drinking two cups

of green tea, the EGCG level in plasma is 0.17 uM. In our previous
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pharmacokinetics studies, we used 550 mg/kg green tea extract (Sunphenon*DCF-1),
fed intra-gastrically to the adult Sprague-Dawley rats, equivalent to drink 10 cups of
green tea. The maximum level of EGCG we measured was about 0.3 uM in plasma,
0.25 umol/kg in the retina (Figure 1.9). In plasma, retina, lens, cornea, the highest
concentration level was within two hours after GTE administration.

According to the 8-isoprostane level results, the oxidative level was decreased in
different ocular compartment after the 550 mg/kg GTE administration (Figure 1.10).
It is detectable that normal physical levels after the GTE administration can be able
to produce anti-oxidative effects against oxidative stress. This effect might be
attributing to the synergistic of the different catechins in this GTE. Moreover, the
GTE may indirectly lower the oxidative level. So, we want to investigate the
anti-oxidative properties of GTE, different catechin combinations and purified

catechins EGCG in oxidative stress condition to verify their anti-oxidative effect.
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Figure 1.9 Profiles of catechins in ocluar compartments. Figure shows the profiles
of total catechins and their gallate esters (free and conjugated) changes in (a)
plasma,(b) retina, (c) lens, and (d) cornea after 550 mg/kg GTE treatment (n = 6).
The profiles in the compartments were divided into two groups according to the
presence of gallate derivatives. Error bar represents standard derivation. (Picture
from Chu KO, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Rogers MS, Pang CP.
Green tea catechins and their oxidative protection in the rat eye. J Agric Food Chem.

2010 Feb 10;58(3):1523-34.)
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Figure 1.10 Profiles of 8-Isoprostane in different compartments. Shows the
profiles of 8-iso-PGF2a in (a) plasma, (b) retina, (c) lens, and (d) cornea. We
compared 8-epi-isoprostane levels at time zero to the first minimum level. ¢ and d
show that isoprostane levels in these regions rapidly and significantly reduced (p <
0.001, n = 6) and remained at low levels. b showed isoprostane level slowly and
significantly decreased to a minimum level in the retina (p < 0.05, n = 6) but
gradually increased back. No significant decrease in level was found in plasma (a).
Error bar represents standard derivation. (Picture from Chu KO, Chan KP, Wang CC,
Chu CY, Li WY, Choy KW, Rogers MS, Pang CP. Green tea catechins and their

oxidative protection in the rat eye. J Agric Food Chem. 2010 Feb 10;58(3):1523-34.)
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Chapter 2: Objectives and study design

The objectives of this research project

(1) To test the rat ocular uptake and distribution of GTE (Theaphenon®E) in plasma,
vitreous, and retina.

(2) EGCG catechins combination (EGCG, EC, EGC, and GC), catechins
combination (GC, EGC, and EC), and the GTE preparation, Theaphenon®E,
will be fed to the adult Sprague-Dawley rats in an attempt to against oxidative

stress-induced retinal degeneration induced by sodium iodate.

Study design

(1) In healthy adult Sprague-Dawley rats, the rats were randomly assigned to 9
groups: viz. 0, 0.5, 1, 2, 4, 6, 10, 15, 20 hours. 550 mg/kg Theaphenon®E was
suspended in 500ul water and intragastric feeding to each rat. The catechins
contents in plasma, retina, and vitreous humor were analyzed by High
Performance Liquid Chromatography with electrochemical detection
(HPLC-ECD) after B-D-glucuronidase and sulfatase digestion.

(2) Adult Sprague-Dawley rat single-dose (25, 40, 50, 75 mg/kg) intravenous or
intraperitoneal injection of sodium iodate, after 1, 4, 7, 14 days injection, the
rats retinas were assessed by confocal scanning laser ophthalmoscopy (CSLO)
and spectral domain optical coherence tomography (SD-OCT). Until Day 14,
the rats were sacrificed for histological examinations of retinas.

(3) The 40 mg/kg sodium 1odate treated rats were also administered intra-gastrically

with 550 mg/kg Theaphenon®E, 387.8 mg/kg EGCG, 438.0 mg/kg catechins
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combination (EGCG, GC, EGC, and EC), and 50.3 mg/kg catechins
combination (GC, EGC, and EC), respectively. Controls were injected
intravenously with normal saline or 40 mg/kg sodium iodate only. After in vivo
examination of the retinas by CSLO and SD- OCT, the rats were sacrificed for
histological analysis. Biochemical analyses included determination of
superoxide dismutase (SOD), glutathione peroxidase (GPx), caspase 3 mRNA,
with 8-Iso-PGF,, as an oxidative stress marker to measure the oxidant status in

retina.
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Chapter 3: Materials and Methods

3.1 Experimental Materials
3.1.1 Animals

All rats were treated according to the guidelines of the Association for Research in
Vision and Ophthalmology (ARVO) Statement on the Use of Animals in Ophthalmic
and Vision Research. This study protocol was approved by the Animal
Experimentation Ethics Committee, The Chinese University of Hong Kong. Adult
Sprague-Dawley rats, weighing 200g to 250g, and aged 9 weeks, were obtained from
the Laboratory Animal Service Center, The Chinese University of Hong Kong. The
animals were housed in standard conditions, maintained at 22+1°C, 40£10%
humidity and 12 hour: 12 hour dark-light cycle. Standard rodent chow and water
were provided ad libitum. For each study group, at least 3 rats were used for the

experiments.

3.1.2 Chemicals

Sodium iodate (Sigma-Aldrich, MO, USA); ketamine (35 mg/kg; Ketaset,; Fort
Dodge Animal Health, Fort Dodge, 1A, USA); xylazine (5 mg/kg; TranquiVed,
Vedco, Inc., St. Joseph, MO, USA); 0.9% sodium chloride solution (Baxter company,
USA); Paraformaldehyde (Sigma-Aldrich company, USA); (-)-epicatechin (EC),
(-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate
(EGCG), purchased from Chengdu Biopurity Phytochemical, China; green tea
extract Theaphenon™E obtained generously donated from Dr. Yukihiko Hara
(Department of Environmental Physiology, Shimane University Faculty of Medicine,
Japan, 99% purity by TLC/high performance liquid chromatography),
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Theaphenon®™E is a trademark of green tea polyphenol preparation, will have a
chance to be accepted as a high-grade tea catechin powder, the content EGCG is
70.5%; 8-Isoprostaglandin F2R-D4 (8-1s0-PGF2R-D4), 8-iso-PGF2R, and other
prostaglandin metabolites were from Cayman (Ann Arbor, MI); Bis-(trimethylsilyl)
trifluoroacetamide (BSTFA), pentafluorobenzyl bromide (PFBBY),
N,N-diisopropylethylamine, and dodecane were purchased from Sigma; Butylated
hydroxytoluene (BHT) was from Calbiochem (La Jolla, CA); Triphenylphosphine

was from Aldrich (Milwaukee, WI). All the primers were purchased from Invitrogen.

3.2 Methods
3.2.1 Normal rat treated with green tea extract (Theaphenon®“E)

Nine groups of Sprague-Dawley rats, each group had six rats. They were weighed
and fasted overnight before the GTE administration. GTE tablets were powdered and
suspended in 0.5 mL of sterile water. Previous studies on the pharmacokinetics of
catechins in rats have used a wide range of EGCG dosages from 25 to 500 mg/kg
(Chen et al., 1997, Nakagawa and Miyazawa, 1997). In this study, we used 550
mg/kg GTE (Theaphenon™E), which is similar to our previous studies (Chu et al.,
2006, Chu et al., 2007, Chu et al., 2010). The doses of catechins were comparable to
most publications. The rats were randomly assigned to 9 groups: viz. 0, 0.5, 1, 2, 4, 6,
10, 15, 20 hours. The rats from each time point were fed 0.5 mL of GTE
(Theaphenon™E) suspension by a feeding tube (Figure 3.1). The rats were
anesthetized with 35 mg/kg ketamine and 5 mg/kg xylazine by intraperitoneal
injection (i.p.), and sacrificed at different time points after GTE (Theaphenon®E)
administration. Rats of time zero were immediately sacrificed after feeding. The

negative controls were fed 0.5 mL of water.
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The eyes were enucleated. The retina and vitreous were dissected immediately.
Retinas were washed in ice-cold saline, and then were snap-frozen in liquid nitrogen
and stored at -80 °C. Plasma was obtained from peripheral whole blood after

centrifugation at 3000 rpm at 4 °C for 10 min and stored at -80 °C (Chu et al., 2004).

3.2.2 Tissue and plasma preparations for catechins measurement

The tissue preparation followed by a published fully validated procedure (Chu et
al., 2004). The retina weighed and homogenized in 0.25 mL of methanol/ethyl
acetate (2:1) and 0.25mL of 0.3Msodium dithionite with 0.1%w/vNa;EDTAIn ice.
After centrifugation at 10000g at 4 °C, the supernatant was purged by nitrogen to
remove the organic solvents and reduce the volume to about 0.2 ml.

Then 0.25 ml of 0.4M phosphate buffer (pH 6.8) and 20 pul of a mixture of
B-D-glucuronidase (2500U) and sulfatase (1U) were added to digest the conjugated
catechins by incubation the mixture at 37 °C for 45 min.

The thawed plasma or vitreous humor was mixed with 40 ul of ascorbate-EDTA
buffer solution, 40 pul of 0.4M NaH,POj, bufter (pH 7.4), and 20 pl of a mixture of
B-D-glucuronidase (250U) and sulfatase (1U). After purging by nitrogen and
incubation at 37 °C for 45 min, all the samples were snap-cooled in ice before to add
Iml of 0.05SMNaH,PO, buffer (pH 7.0), solid phase was eluted by 10 ml of a
methanol/ethyl acetate (2:1) mixture at 35 °C into a tube containing 20 ul of 2%
ascorbate-EDTA to against oxidation.

After evaporated, it was dissolved into 100 ul of a mixture containing 10%
acetonitrile and 0.06% trifluoroacetic acid in 0.05 M phosphate buffer (pH 3.0) and

filtered for analysis by High-performance liquid chromatography (HPLC).
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3.2.3 Pharmacokinetic data Analyses

All of the statistical analyseswere performed by SPSS 18.0. The pharmacokinetic
parameters of catechins were analyzed by WINNONLIN Professional version
4.01.The parameters, MRTi,s, maximum peak time (Tmax), maximum concentration
(Cmax), area under curve (AUC), terminal elimination rate (Az), oral clearance (CI/F),

and volume of distribution (Vz), were assessed by non-compartmental models.

3.2.4 Sodium iodate application

Sodium iodate (Sigma-Aldrich, MO, USA) was dissolved in sterile normal saline
at a stock concentration of 4% (w/v). Single dose intra-venous (i.v.) injection of
sodium iodate was applied to the rat tail vein. The rats were divided into 6 groups:
normal saline (n=3); 75 mg/kg sodium iodide as control groups (n=3), the high dose
of sodium iodide were used to compare the ionic strengths of sodium iodate with
sodium iodide, to deduce whether the tissue damage is due to the oxidative effect of
the iodate rather than the osmosis pressure; 25 mg/kg sodium iodate (i.v., n=6), 40
mg/kg sodium iodate (i.v., n=12); 50 mg/kg sodium iodate (i.v., n=3, i.p., n=3) and
75 mg/kg sodium iodate (i.v., n=3, i.p., n=3) as experimental groups. Before sodium
iodate injection, the rats were anesthetized by intraperitoneal (i.p.) injection with a
mixture of 35 mg/kg ketamine and 5 mg/kg xylazine. Afterwards, returned to the
animal colony and kept under standard cycle lighting until further CSLO and OCT

assessments.

3.2.5 Sodium iodate with catechins and GTE (Theaphenon®E) application (high
dose)

The dosage of catechins was according to the proportion of each catechins in GTE
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Figure 3.1 Intra-gastric fed the sterile water to the normal rat as negative

control.
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Theaphenon®E (EGCG: 70.53%, EGC: 4.61%, EC: 3.88%, GC: 0.64%). The dosage
of Theaphenon®E was 550 mg/kg; so, EGCG was 387.8 mg/kg, 850 pmol/kg;
catechins combination (EGCG, GC, EGC, and EC) was 438.0 mg/kg with EGCG
(387.8 mg/kg, 850 umol/kg), GC (3.53 mg/kg, 12 umol/kg), EGC (25.4 mg/kg, 83
umol/kg), EC (21.4 mg/kg, 74 umol/kg); catechins combination (GC, EGC, and EC)
was 50.3 mg/kg with GC (3.53 mg/kg, 12 umol/kg), EGC (25.4 mg/kg, 83 umol/kg),
EC (214 mg/kg, 74 pmol/kg). Assume each 200 ml cup of tea contains
approximately 200 mg catechins, including 88 mg EGCG, equal to 1.3 mg/kg EGCG,
so 550 mg/kg Theaphenon E is equivalence to 300 cups of green tea of consumption
for one time (Sutherland et al., 2006).

The experimental groups were divided into six groups, each with five animals.
Group I: Negative control, i.v. injected with saline; Group II: Positive control, single
i.v. injected with 40 mg/kg sodium iodate; Group III: Single i.v. injected with 40
mg/kg sodium iodate and oral intake of 550 mg/kg Theaphenon™E; Group IV: Single
i.v. injected with 40 mg/kg sodium iodate and oral intake of 387.8 mg/kg EGCG;
Group V: Single 1.v. injected with 40 mg/kg sodium iodate and oral intake of 438.0
mg/kg catechin combination (EGCG, GC, EGC, and EC); Group VI Single i.v.
injected with 40 mg/kg sodium iodate and oral intake of 50.3 mg/kg with catechin
combination (GC, EGC, and EC). All the catechins and GTE were fed

intragastrically 12 hours and 1 hour before sodium iodate injection.

3.2.6 Sodium iodate with catechins and GTE (Theaphenon®E) application (low
dose)
The lower dosage of catechins was also according to the proportion of each

catechins in GTE Theaphenon®E (EGCG: 70.53%, EGC: 4.61%, EC: 3.88%, GC:
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0.64%). The low dosage of Theaphenon™E was 100 mg/kg; so, EGCG was 70.5
mg/kg, 154 umol/kg; catechins combination (EGCG, GC, EGC, and EC) was 79.6
mg/kg with EGCG (70.5 mg/kg, 154 umol/kg), GC (0.64 mg/kg, 2.2 umol/kg), EGC
(4.61 mg/kg, 15 umol/kg), EC (3.88 mg/kg, 13.4 umol/kg); catechins combination
(GC, EGC, and EC) was 9.1 mg/kg with GC (0.64 mg/kg, 2.2 umol/kg), EGC (4.61
mg/kg, 15 umol/kg), EC (3.88 mg/kg, 13.4 umol/kg).

The experimental groups were also divided into six groups, each with five animals.
Group I: Negative control, i.v. injected with saline; Group II: Positive control, single
i.v. injected with 40 mg/kg sodium iodate; Group III: Single i.v. injected with 40
mg/kg sodium iodate and daily oral intake of 100 mg/kg Theaphenon®™E; Group IV:
Single i.v. injected with 40 mg/kg sodium iodate and daily oral intake of 70.5 mg/kg
EGCG; Group V: Single i.v. injected with 40 mg/kg sodium iodate and daily oral
intake of 79.6 mg/kg catechins combination (EGCG, GC, EGC, and EC); Group VI
Single i.v. injected with 40 mg/kg sodium iodate and daily oral intake of 9.1 mg/kg
catechins combination (GC, EGC, and EC). The catechins and GTE were fed
intragastrically 12 hours and 1 hour before sodium iodate injection and daily oral

intake until 14 days post sodium iodate injection.

3.2.7 In vivo imaging (Retinal examination by confocal scanning laser
ophthalmoscopy and spectral-domain optical coherence tomography)

Confocal scanning laser ophthalmoscopy (CLSO) and spectral-domain optical
coherence tomography (OCT) were used for in vivo imaging (HRA2; Heidelberg
Engineering GmbH, Dossenheim, Germany). The commercially available model of
CSLO was used to image the fundus of the retina. The HRA?2 is installed with two

laser sources (488 nm and 795 nm, barrier filters at S00 nm and 810 nm). The digital
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pixel resolution is 5-10um/pixel. The field of view ranges between 15° x 15° and
55°« 55° The focus range is between -24 and +40 diopters. A dual-beam
simultaneous imaging with an infrared CLSO provides a planar visualization of the
retina. A 55° wide field lens was added to the camera, in order to have a wider view
to study the changes of the fundus. So, from optic disc to the ambitus, at least around
60% of the total retina area can be monitored by the CSLO. The scan rate of the
CSLO was 16 frames per second with image size ranges between 384x384 pixels and
1536x1536 pixels. Eye-tracking (a retinal recognition technology enabling the same
retinal location being “locked on”) was activated during imaging. Fifteen images at
the same location of the retina were captured, and then automatically averaged by the
built-in software to augment the signal-to-noise ratio, and the fundus photos were
displayed on the computer screen simultaneously (Li et al., 2011, Liu et al., 2012).
The Spectralis OCT parameters were modified according to the technical advice
from the manufacturer to adapt OCT imaging in rats. The length of reference arm
was adjusted to match the length of the sample arm scanning the rat eye by altering
configurations at the software level. Thus, retinal fundus photograph and OCT
images could be simultaneously captured on the exact retinal focus, which ensures
the high quality of OCT imaging in rats. In each retina, 4 different square regions,
the superotemporal, inferotemporal, inferonasal, and superonasal quadrants around
the optic nerve head were scanned separately by the volume scan protocol, which
consists of 19 evenly distributed B scans (1024 A scans for each B scan) covering a
20°x15° area of the retina (Hee et al., 1995, Leung et al., 2008a). The Spectralis HRA
+ OCT registers the CSLO and OCT images in the retina simultaneously. No any

photobleaching or phototoxicity was induced by the laser during the image, and there
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was no detectable change in the morphology fundus even imaging at the same laser
intensity for 30 minutes.

The images were captured on each rat before (Baseline) and after sodium iodate
injection (Day 4, 7 and 14). The imaging procedure was performed with one
technician gently holding the animal and another operating the CSLO and the OCT.
The platform could be manually rotated around the longitudinal axis of the body or
in the horizontal plane. Each rat was placed on a custom-made platform and the head
and body were fixed. Systemic anesthesia was applied but contact lenses were not
required. Prior to imaging, rats were anesthetized as described and pupils were
dilated by topical 1% tropicamide. Because cornea transparency is one of the key
factors affecting the quality of the image, so during imaging, one drop sterile saline
was applied to the cornea to maintain media clarity. This in vivo imaging technique
provides real-time morphometric of living rat retinas which is not possible with
conventional histological analysis. The setup with an animal in place is shown in
Figure 3.2.

In vivo images were captured by CSLO at baseline, day 4, day 7, and day 14 after
sodium iodate injection, were exported to a computer for hyper-reflective blots
counting by using Photoshop (11.0; Adobe Systems Incorporated, San Jose, CA). In
each retina, 4 different square regions with clearly visualized, each photos measuring
400pum %400 um of the retina were analyzed. The dark blots in four different
quadrants in each eye were counted manually before and after the injection

performed by a blinded observer.

3.2.8 Eyeball collection and fixation
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Figure 3.2 In vivo imaging on sodium iodate treated rats with confocal scanning
laser ophthalmology (CSLO). The CSLO (HRA?2, Heidelberg Engineering, GmbH,
Dossenheim, Germany) was used for assessing the sodium iodate-treated retina
imaging. A 55 degree wide field lens was added to the camera to increase the field of
view. Fifteen images at the same location of the retina were captured, and then
automatically averaged by the built-in software to augment the signal-to-noise ratio,
and the fundus photos were displayed on the computer screen simultaneously.
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At sodium iodate post-injected on Day 14, after captured the CSLO and OCT
images, the rats were performed perfusion, and then got the eyeball for the further
histological analysis, the chest cavity was carefully opened, and a 19-gauge perfusion
cannula was perfused through the left ventricle with Phosphate Buftered Saline (PBS)
first, and then performed with 4.0% paraformaldehyde in PBS buffer at PH 7.4 to
remove erythrocytes in the retina. Eyes were enucleated, fixed in 10% neutral

buffered formalin for at least 24 hours.

3.2.9 Dehydrate processing, embed and sectioning

After fixation in formalin, the eyes rinsed in PBS for 3 times, the eyeball was
transferred to plastic cassette with proper label. The samples were dehydrated
through a series of graded ethanol baths with increasing concentration (30%, 70%,
95% and 100% ethanol) in a processing machine (Shandon Excelsior, Thermo), then
cleaned in xylene. After the sample was dehydrated, it was infiltrated with paraffin.
The dehydrated tissue was then embedded (with the open edge facing downwards) in
a wax block using the Embedding Center (EG 160, Leica, Germany). A mold that
suitable to the size of the rat eye was chosen before the embedding procedure.

Paraffin sectioning was done with microtone (RM2135, Leica, Germany) and 5
um in thickness section were obtained. The eyeball was cut along the pupil to optic
nerve head (PO position). Each piece of section was extended with 30% alcohol
followed by floating on 40°C water bath for 10 minutes and collected on the glass
slide (HistoBond, Marienfeld). The sections stored at room temperature were dried

thoroughly and kept until staining.

3.2.10 Histochemical staining (haematoxylin and eosin)
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The paraffin sections were placed on a 60°C oven for 30 minutes for wax melting
and also have a good attachment of tissue on the slide. Then de-waxing in xylene
solution and rehydrated using a graded series of alcohol baths from absolute to 95%
and 70% ethanol concentration, and then wash in running tap water for 2 minutes.

For haematoxylin and eosin (H&E) staining, the section was immersed in
haematoxylin solution (Biocare Medical) for 10 minutes for nuclei staining. After
rinsing in running tap water for 2 minutes, the staining was differentiated by
immersing the section in 1% acid alcohol for 2 seconds, rinsed immediately in
running tap water and then put in Scott’s tap water for 2 minutes until blue coloration
appeared. The sample was then put in aqueous eosin for 10 minutes in order to stain
the cytoplasm.

After staining, the sections were washed with running water, and then dehydrated
through a series of ethanol baths 70%, 95%, absolute ethanol 1 minute for each, and
then cleared in xylene. Finally the section were mounted with Canada Balsum and

dried in the room temperature and labeled properly.

3.2.11 Image acquisition

The mounted slide was put under the light microscope (Leica, Wetzlar, Germany)
equipment with SPOT RT color system (Diagnostic Instruments, Serling Heights, M1,
USA). The whole retinal layer were clearly assessed and captured for further
analysis.

In paraffin sections, morphological analyses including measurements of thickness
of inner/outer segments (IS/OS) of photoreceptors, outer nuclear layer (ONL), inner
nuclear layer (INL) and inner plexiform layer (IPL) were performed at 300pm from

the optic nerve head (posterior hole) using Image J (version 1.46e; NIH, Bethesda,
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MD). The INL cell density fixed at 1000 pm?area 300um from the optic nerve head

(posterior hole) determined using Image J software.

3.2.12 Target gene expression in different pathways
3.2.12.1 Retina collection

After the high dose of the EGCG, catechins combination (EGCG, GC, EGC, and
EC), catechins combination (GC, EGC, and EC), green tea extract Theaphenon® E
12 hours and Thour oral treated before 40 mg/kg sodium iodate intravenous injection,
24 hours after sodium iodate injection, the rats were scarified by barbiturate overdose.
Eyes were enucleated. The retinas were dissected, stored at -80 °C immediately until

RNA extraction.

3.2.12.2 Total RNA extraction and purification

Total RNA was extracted from fresh-frozen retina using 500uL Trizol reagent
(Carlsbad CA, USA), incubated for five minutes at room temperature (RT), and then
vortexed frequently, added 100 uL of chloroform to the Trizol, and vortexed for 15
seconds, centrifuged at 15,000xg for 10 minutes at 4°C to separate phases.
Completely aspirate the supernatant and purified with an mRNA isolation kit
(Qiagen, Valencia, CA) added 1 volume of 70% ethanol to the homogenized lysate,
and mix well by pipetting then put to the RNeasy column with spinning at 8000 rcf
for 15 seconds at room temperature. The flow-through was discarded. The column-
bound RNA was then washed with 500 uL. RW1 buffer twice and centrifuge for 8000
rcf for 15 seconds to wash the spin column membrane (RNeasy extraction kit) and
discard the flow-through. Add 500 ul Buffer RPE to the RNeasy spin column. Close

the lid gently, and centrifuge for 15 s at 8000 rcf to wash the spin column membrane.
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Discard the flow-through, added 500 ul Buffer RPE to the RNeasy spin column.
Close the lid gently, and centrifuge for 2 min at 8000 rcf to wash the spin column
membrane. Place the RNeasy spin column in a new 2 ml collection tube (supplied),
and discard the old collection tube with the flow-through. Close the lid gently, and
centrifuge at full speed for 1 min. Place the RNeasy spin column in a new 1.5 ml
collection tube (supplied). Add 30-50 ul RNase-free water directly to the spin
column membrane. Close the lid gently, and centrifuge for 1 min at 8000 rcf to elute
the RNA.

The concentration and the quantity (absorbance at 260nm wavelength / absorbance
at 280 nm wavelength) of the purified RNA was determined by Nanodrop ND-1000
UV-Vis spectrophotometer (Nanodrop technologies, Wilmington, DE, USA) and
Nanodrop 3.1.0 software, with the RNase-free water as the reference to measure the
RNA concentration and labeled on each sample. The RNA samples were

immediately stored at -80 °C until reverse transcription.

3.2.12.3 Reverse transcription

1ug of the purified RNA was used to synthesize cDNA by using SuperScript " III
cDNA synthesis kit (Invitrogen), according to the manufacturer’s instructions. RNA
was diluted in RNase-free water by using 1 pl of dANTP mixture (10mM, Roche,
Basel, Switzerland), 1 ul random primer (250ng/ ul; Qiagen). The volume of the
mixture was made up to 13 pl and incubated in 65 °C for 5 minutes, after then,
immediately incubated on ice for 2 minutes. The mixture was then made with 5x
Frist-Strand Reaction Buffer (Invitrogen), 1 pl pp-DTT (0.1 M), 1 ul RNase OUT ™
recombinant RNase inhibitor and 1 pl SuperScript " III reverse transcriptase. After

the reagent mixed well, the reaction condition was set to 25 °C for 5 minutes for
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primer annealing, 50 °C for 60 minutes for strand elongation, 70 °C for 15 minutes
for enzyme denaturation, and finally at 4 °C in a thermal cycler (BioRad). The

synthesized cDNA was collected and stored at -80 °C until PCR analysis.

3.2.12.4 Real- time polymerase chain reaction (PCR)

Gene-specific primers for all tested genes are presented in Table 3.1 All PCRs
were analyzed by the LightCycler real-time PCR instrument from Roche. Thermal
cycling conditions comprised an initial denaturation step at 95°C for 3 min followed
by 45 cycles at 95°C for 30 sec and an annealing temperature at 60°C for 30 sec. All
samples were run in triplicate, and each well of PCR contained 20ul as a final
volume, including 1pl of cDNA, 10 uM gene-specific primers, 2X SYBR Green [
(Roche). GAPDH was used as a housekeeping gene. Negative samples were run for
each RT-PCR consisting of no RNA in the reverse transcriptase reaction and no
cDNA in the PCR. The mathematical method described by Pfaffl was used to
evaluate the relative expression ratio for all genes compared with GAPDH (Pfaftl,

2001).

3.2.13 Assay for 8-Iso-PGFy, in retina
3.2.13.1 Retina collection

After the high dose of the EGCG, catechins combinations (EGCG, GC, EGC, and
EC), catechins combinations (GC, EGC, and EC), green tea extract Theaphenon™E
12 hours and Thour oral treated before 40 mg/kg sodium iodate intravenous injection,
24 hours after sodium iodate injection, the rats were scarified by barbiturate overdose.
Eyes were enucleated. The retinas were dissected, stored at -80 °C immediately, until

lipid extraction.
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Table 3.1 Sequence of the primer.

Gene Primer name Sequence (5'>3') Length (nt) Tm ('C) Amplicon size Reference
eRt-Gapdh-F GTGCCAGCCTCGTCTCATA 19 60.09

GAPDH 190 NM_017008.3
eRt-Gapdh-R  GTTGAACTTGCCGTGGGTAG 20 60.03
¢Ri-Sodl-F GGATGAAGAGAGGCATGTTGG 21 59.63

SOD 122 NM_017050.1
e¢Rt-Sod1-R TACGGCCAATGATGGAATGC 20 59.6
eRt-Gpx3-F TTCGGACACCTCAGACGG 18 59.54

GPx 149 NM_022525.3
eRt-Gpx3-R GGCAGTCTGTCTTGGACTTC 20 59.11
eRt-Casp3-F AGTCTGACTGGAAAGCCGAA 21 59.63

Casp3 122 NM_017050.1
eRt-Casp3-R ATAGTAACCGGGTGCGGTAG 20 59.6
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3.2.13.2 Extraction of tissue lipids

The protocol was based on published validated methods (Morrow and Roberts,
1999, Morrow et al., 1999). To measure levels of 8-Iso-PGFy, in tissue phospholipids,
the phospholipids must first be extracted from the tissue sample. To weigh 0.05 to 1
g of retina was added 20 ml of ice-cold Folch solution, with chloroform/methanol
(2:1, v/v), containing 0.005% butylated hydroxytoluene (BHT) in a 50 ml centrifuge
tube. The tissue is then homogenized with a blade homogenizer for 30 s, and the
mixture is sealed under nitrogen at room temperature for 1 h. Four milliliters of 0.9%
NaCl are then added and the solution is vortexed and centrifuged at 800g for 10 min.
After centrifugation, the upper aqueous layer is discarded and the lower organic layer

is carefully separated from the intermediate semisolid proteinaceous layer.

3.2.13.3 Hydrolysis of lipid extracts

The organic phase containing the extracted lipids, then transferred to a 50 ml
centrifuge tube and evaporated to dryness under a stream of nitrogen. Four milliliters
of methanol containing 0.005%BHT and Four milliliters 15% NaOH were then
added to the residue. The mixture was vortexed and incubated at 37 °C for 30 min to
hydrolysis and release of the F2-IsoPs. The mixture is then acidified to pH 3 with 5
M HCI. Dilution of the methanol in the solution with water to 5% or less is necessary
to ensure proper column extraction of 8-Iso-PGF2a in the subsequent purification

procedure.

3.2.13.4 Purification and derivatization

20 pl of 10 pg/ul D4-isoprostane as the internal standard, was Added to the

63



mixture, vortexed and applied to a C18 Sep-Pak column (Waters Associates, Milford,
MA) washed with 10 ml pH 3 water and cyclohexane. The sample and subsequent
solvents were eluted through the Sep-Pak using a 10 ml sterile plastic syringe. The
column was then washed 10 ml of water (pH3) and 10 ml of heptane. The F2-IsoPs
are eluted with 10 ml of ethyl acetate/heptane (50/50, v/v). The ethyl acetate/heptane
eluated from the C18 Sep-Pak was then dried over sodium sulfate, applied to a silica
Sep-Pak (Waters Associates) that was prewashed with 5 ml of ethyl acetate, then
washed with 5 ml of ethyl acetate followed by elution of the F2-IsoPs with 5 ml of
ethyl acetate/methanol (50:50 v/v) and then evaporated under a stream of nitrogen.
Add 40 pl 10% pentafluorobenzyl bromide (PFBB) and 20 pl 20% Diisopropyl Ether
(DIPE) 30 minutes at room temperature. Dry reagents under nitrogen and resuspend
in 10-20 pl ethyl acetate. Thin layer chromatograph to 13 centimeter in a solvent
with chloroform/ ethanol (93:7), visualize the thin layer chromatography (TLC)
standard by spraying with 10% phosphomolybdic acid/ethanol and heating, then
scape silica from the TLC, place silica in 1.5 ml tube and add 1 ml ethyl acetate,
votex 30s and pour off ethyl acetate into another tube, dry the organic layer, add 50
ul N, O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA), dry the reagent under
nitrogen. Add 20 pl dodecane readily injection for Gas chromatography-mass

spectrometry (GC-MS).

3.2.14 Statistical analysis

Mann-Whitney U-test was used to compare the mean between different
experimental groups and the controls. Data were expressed as mean+standard error
of the mean (SD). All analyses were performed using PASW Statistics 18 (SPSS

Science, Chicago, IL), and comparisons were considered as significance different
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when p <0.05.
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Chapter 4: Results

4.1 Pharmacokinetic study of catechins distribution in the normal rat eye

The catechin concentration versus time curves in plasma appeared as a single peak,
however, in retina and vitreous the profile appeared as multiple peaks (Figure 4.1).
Some catechins sustained at high level even after 20 hours of GTE administration,
for example, EGCG and EC in retina. No catechins were detected in any of the
plasma, vitreous, and retina in the negative control group. Also, shapes of the profiles
of catechins and catechin gallates were in general similar in all compartments.
Whereas, the profiles between catechins and catechin gallates within the same tissue
we different.

Comparison catechins profiles in plasma between Theaphenon®E and
Sunphenon® DCF-1 (our previous data), the Cmax of catechins are generally no
difference from Sunphenon ® DCF-1 results except EGCG is significantly higher in
Theaphenon® E. The exposure level (AUC) of EGCG is higher but GC is lower in
Theaphenon® E. The elimination rate (Az) of C, EC, EGCG EGCG, and ECG are
higher in Theaphenon E. Therefore, the mean residence time of C, EGCG, and ECG
are shorter (Table 4.1). In the retina, the Cmax and AUC level were higher, with 784
nmol/kg and 5228 nmol/kg. EGCG was the dominant constitute and maintained to 20
hours. Low level of ECG was found in Theaphenon®E which was absent in
Sunphenon®DCE-1 (Table 4.2). High level of GC present in the vitreous humor, with
Cmax ~ 4492 nM, AUC ~ 47534, Tmax is 5.2 hour. EGCG was the dominate gallates
derivative, with Cmax~2224, AUC ~20612, Tmax ~9.4 hour (Table 4.3).

The order of dominance of catechins levels in Theaphenone was EGC>EC>C>GC
E, however, in Sunphenon® DCF-1, EC>EGC>C>GC. The order of dominance of
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galloyl catachins was the same in both GTE, ie. EGCG>ECG>GCG>CG. Catechins
were found extensively absorbed at short time, within 30 minutes after intra-gastric

administration (Table 4.4).
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Figure 4.1 Profiles of total catechins and catechins gallate. Normal rat treated
with 550 mg/kg GTE (Theaphenon®E) n=6. The profiles in each group divided into
two groups according to the presence of gallate derivatives. Error bars represent

mean = SD.
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Table 4.1 Pharmacokinetic parameters of catechins in plasma 20hours after a single dose of Theaphen0n®E treated to the

normal rats

Plasma from Theaphenon®E
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Table 4.2 Pharmacokinetic parameters of catechins in retina 20hours after a single dose of Theaphen0n®E treated to the normal

rats
Retina from Theaphenon®E
Ph Patameter GC EGC N EC EGOG GCG ECG O
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Table 4.3 Pharmacokinetic parameters of catechins in vitreous humor 20hours after a single dose of Theaphen0n®E treated to

the normal rats

Vitreous humor from Theaphenon®E
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Table 4.4 Comparison catechins profile in different ocular tissues

Compartment Theaphenon E Sunphenon DCF-1
Cmax: No difference except EGCG higher Cmax: EGCG lower
Exposure level (AUC): EGCG higher, GC lower Exposure level (AUC): EGCG lower, GC higher
Elimination rate (Az): Elimination rate(Az):
C, EC, EGCG, EGCQG, and ECG are higher. C, EC, EGCG, EGCQG, and ECG are lower.

Plasma ‘ ‘ Mean residence time: C, EGCG, and ECG are

Mean residence time: C, EGCG, and ECG are shorter longer
Order of dominance of catechins: EGC>EC>C>GC ~ EC>EGC>C>GC
Order of dominance of galloyl catachins: Order of dominance of galloyl catachins:
EGCG>ECG> GCG>CG EGCG>ECG> GCG>CG

Tmax: within 30 minutes

Tmax: within 1 hour

Vitreous humor

GC was the dominate compound.

EGCG was dominate gallates derivative
EGC higher Cmax & AUC: 404 nM, 3632
Higher Cmax in EC & EGCG: 436, 2224 nM
Higher AUC in EC & EGCG: 3428, 20612

GC was the dominate compound.

EGCG was not dominate

EGC Cmax & AUC: 15.9nM, 79.2

Lower Cmax in EC & EGCG: 20.5, 15.4 nM
Lower AUC in EC & EGCG: 205, 109

Retina

EGCG dominated in retina maintained to 20 hour
GC, EGC, EC are significant lower
Low level of ECG is found

EGCG dominated in retina
GC, EGC, EC are dominant
ECG is absent
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4.2 Establishment of a retinal degeneration model on sodium iodate treated rat
4.2.1 Fundus examination by confocal scanning laser ophthalmoscopy (CSLO)
in living rat retinas

Retinal lesions were induced in Sprague-Dawley adult rats with single intravenous
injection of 25, 40, 50, 75 mg/kg sodium iodate, and single intraperitoneal injection
of 50, 75 mg/kg sodium iodate. The retina was examined using CSLO before the
sodium iodate injection (Day 0) and after sodium iodate injection on Day 4, 7, 14.

In the single intravenous treated group, with 40 (n=12), 50, 75 mg/kg (n=3)
sodium iodate treated rats, in these retinal images, typical appearance of the retinal
vessels and optic nerve head was readily recognizable. No obvious change was
visible in the retina of these animals before sodium iodate injection (Day 0) and 4
days after injection (Day 4) (Figure 4.2 A-B). However, a dramatic change started to
appear at 7 days post sodium iodate injection (Day 7), which was characterized by
the presence of many small dark blots in the retina (Figure 4.2 C). These dark blots
were more obvious in the retina when examined on Day 14 (Figure 4.2 D). Whereas
with 25 mg/kg (n=6) sodium iodate injection, the distribution of the dark blots were
limited to certain regions in part of the retina until Day 14 (Figure 4.3 C-D). In the
group with 50, 75 mg/kg (n=3) intraperitoneal injection, 75 mg/kg sodium iodate
cause the retinal appeared dark blots from day 7, the retina covered with small dark
blots throughout the retina until day 14 (Figure 4.3 E-H). However, with 50 mg/kg
intraperitoneal injection, the dark spots only appeared from day 14. In control
animals that had injected either with saline (n=6) (Figure. 4.2 E, 4.3 A-B) or 75
mg/kg sodium iodide (n=3) (Figure. 4.2F), no such changes were observed in the

retina until Day 14.
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Figure 4.2 40 mg/kg sodium iodate-induced retinal lesions under infra-red
confocal scanning laser ophthalmoscopy (CSLO). Montages retinal images
generated by CSLO. A-D: Typical changes in the retina of a rat injection
intravenously with 40 mg/kg sodium iodate. Hyper-reflective structures or blots
(white arrows) were detected in all retinal quadrants 7 and 14 days after injection.
E-F: Retina in control animals 14 days after injection of saline or 75 mg/kg sodium
iodide. OD: Optic disk. Superior is up and temporal to the right in these images.

Scale bar is 200 um.
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Figure 4.3 Sodium iodate-induced retinal lesions under infra-red confocal
scanning laser ophthalmoscopy (CSLO). Montages retinal images generated by
CSLO. A-B: Retina in control animals 7 days and 14 days after injection of saline.
C-D: Changes in the retina of a rat injection intravenously with 25 mg/kg sodium
iodate. Hyper-reflective structures or blots (white arrows) were detected in part of the
retinal quadrants 7 and 14 days after injection. E-H: Typical changes in the retina of a
rat injection intravenously with 50, 75 mg/kg sodium iodate. Hyper-reflective
structures or blots (white arrows) were detected in all retinal quadrants 7 and 14 days
after injection. OD: Optic disk. Superior is up and temporal to the right in these

images. Scale bar is 200 um.
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4.2.2 Outer nuclear layer thickness assessed by spectral —domain optical
coherence tomography (SD-OCT)

Cross-sectional images of the retina were also taken from these animals using
spectral domain OCT at the same time with CSLO. Images from Day O, animals
showed a typical laminated layer of the intraretinal (Figure 4.4 A), which was
observed also in the retina 4 days after 40 mg/kg sodium iodate injection (Figure 4.4
B). Structure changes were first detected at Day 7, which were characterized by
appearance of dome-shaped hyper-reflective areas in outer layers of the retina,
corresponding to the position of the outer nuclear layer (ONL) and inner/outer
segments of photoreceptors (IS/OS) (Figure 4.4 C). The photoreceptor outer
segment structure disappeared and the IS/OS low reflective band is replaced by
hyper-reflectivity regions in part of the retina and has become irregular in shape.

Retinal layers in inner regions of the retina were relatively unaffected, in terms of
thickness and reflectivity. These abnormalities were more obvious and increased in
number in optical sections of severe irregularity in the retina 14 days after injection
(Figure 4.4 D), representing lesions induced by 40 mg/kg sodium iodate that are
known to confine preferentially to outer retinal layers(Machalinska et al., 2010,
Muraoka et al., 2012). Such abnormalities were not observed in control animals
injected with saline (Figure 4.4 E) or sodium iodide (Figure 4.4 F).

Further analyses of images collected by CSLO (n=3) and their corresponding
cross-sectional images by OCT with 40 mg/kg sodium iodate intravenous treated
showed a high spatial correlation of the dark blots in the planar image of the retina
with hyper-reflective regions in the ONL (Figure 4.5 A and B), suggesting that
degenerative changes in the outer retinal layers in the cross sectional images can be

visualized readily by CLSO images of the retina.
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Figure 4.4 Sodium iodate-induced retinal lesions under spectral-domain optical
coherence tomography (OCT). Cross-sectional OCT images of the retina in adult
rats treated with 40 mg/kg sodium iodate, i.v. A-D: typical appearance of retinal
layers in OCT images. Obvious degenerative profiles (white arrows) in photopigment
layer and outer nuclear layer were first observed at Day 7 and became more
prominent at Day 14. This damage was not observed in control retinas 14 days after
injection of saline (E) or sodium iodide (F). INL: inner nuclear layer; ONL: outer

nuclear layer; IS/OS: photopigment layer. Scale bar is 200 um.
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Figure 4.5 Hyper-reflective blots in CSLO images are in register to degenerative
profiles in OCT images. CSLO and OCT images collected from superotemporal
quadrant of a retina 7 days after injection of 40 mg/kg sodium iodate. The
HRA+OCT captures the CSLO and OCT images from the retina simultaneously. A:
CSLO images depicting scan lines (white lines) that cut across regions without
hyper-reflective blot (line 1 and 2), and regions that contain blots (white solid arrows)
(line 3 to 6). Hyper-reflectivity was also observed in the blood vessels (white empty
arrow). B: Cross-sectional OCT images correspond to the 6 locations in A. Note the
location of blood vessel in the vitreal surface (black empty arrow in Panel 1) and the
degenerative profiles (solid white arrows) in ONL (Panel 3-6) that are in complete
register with the blots in CLSO image of this retina. Scale bar in A is 50 um, in B

100 pum.
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4.2.3 Dose effect of sodium iodate

We examined the change in blot number in response to different doses of sodium
iodate by using CSLO. The quantitative analyses showed a dose dependent increase
in blot number at 7 and 14 days after sodium iodate injection (i.v.). The response is
progressive in animals injected with 25 or 40 mg/kg sodium iodate i.v. and is more
acute in those received higher doses 75 mg/kg sodium iodate (Figure 4.6). Moreover,
animals with injection of 50 mg/kg sodium iodate administered intraperitoneally
showed a milder response than those with similar dose given intravenously (Day 7:
666.5+33 2-fold; Day 14: 2.07+42.6-fold, p<0.05), and the dark blots only started

from day 14.

4.2.4 Histopathology of sodium iodate-induced lesion in the rat retina

To further investigate the relationships of the structural changes in infra-red CSLO
and OCT images, we investigated the histological changes in paraffin sections of the
retina after intravenous injection of 40 mg/kg sodium iodate. Morphological analyses
showed that there was no detectable change in cellular arrangement in the retina 1
day (n=3) and 4 days post sodium iodate injection (n=3) (Figure 4.7 B and C). The
retinal layers were readily identified as in the normal controls (n=3) (Figure 11A).
Obvious lesions were found in the retina start from Day 7 (n=3), which appeared as
massive degeneration of IS/OS of pigments and focal reduction of photoreceptor
cells in ONL (Figure 4.7 D), producing irregular profiles of folding in the outer
retinal layers. The inner retinal layers, including ganglion cell layer (GCL), inner
plexiform layer (IPL) and inner nuclear layer (INL), are relatively spared. Similar
abnormalities were observed in the retina 14 days post-injection (n=3), but with a

further increase in folding and a reduction in retinal thickness (Figure 4.7 E).
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Figure 4.6 Dose dependent effect of sodium iodate on blot number in the retina.
The number of blots in CSLO images increased with increasing dose of sodium
iodate. Comparison of the number at Day 14 with Day 7 showed significant between
animals injected i.v. with 25 or 40 mg/kg of drug when with those injected with 75
mg/kg, the maximum dose tested. *P < 0.05, Mann- Whitney U tests; mean + SD.
For counting the number of dark blots the image tool UTHSCSA (version 2.0) was

used. 1.v.: intravenous injection.
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Figure 4.7 Temporal changes in retinal lesion after sodium iodate injection.
Paraftin section of the rat retina stained with Hematoxylin and Eosin in A: saline
control, observed at 21 days; B-F: on different day after injection of 40 mg/kg
sodium iodate. The retinal layers are clearly depicted in the control retina and in
retinas 1 day and 4 days after sodium iodate injection. Disruption of the outer retinal
layers (arrows) was detected at day 7 and the lesions became more severe at Day 14
and Day 21. Note the progressive increase in folding in the outer retinal layers and
thinning out retinal thickness at the end of the examined period. GCL: ganglion cell
layer; IPL: inner plexiform layer; INL, inner nuclear cell layer; OPL: outer plexiform
layer; ONL, outer nuclear layer; IS/OS: Inner and outer segment of photoreceptor;

RPE: retinal pigment epithelium. Scale bar is 100 pm.
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In another experiment, we investigated the morphological changes in retinal
sections 14 days after intravenous injection of different dosages of sodium iodate.
Sodium iodate at 25 mg/kg (n=3), the lowest dosage we examined, could generate
obvious degeneration in outer retinal layers and a reduction in thickness of the retina,
when compared with the control injected with saline (n=3) (Figure 4.8 A and B).
Higher doses (40 or 50 mg/kg) produced further degenerative changes in the retina.
At 75 mg/kg (n=6), the highest dose we tested, there was massive disruption of all
retinal layers (Figure 4.8 E).

Quantitative analyses of morphological changes in these histological sections
showed a significant dose dependent reduction in thickness of IS/OS and ONL, and
in number of row of cells in ONL in animals with intravenous injection of sodium
iodate (25-75 mg/kg) at 7 days and 14 days post-injection when compared with the
saline control (Figure 4.9 A-C). However, in animals injected intraperitoneally with
sodium iodate, significant reduction was observed only at the dose of 75 mg/kg but
not at 50 mg/kg, indicating that intravenously injection is more effective in
generating degeneration in outer retinal layers than intraperitoneal injection.
Analyses of IPL and INL revealed a less severe damage when compared with the
saline control, particularly at Day 7 (Figure 4.10 A-C). These findings indicate that
sodium iodate has a selective effect on cellular structures in the outer retina within
the first two weeks of injection.

The effects of sodium iodate on other organs were also determined in these
animals. We found that sodium iodate at 25 (n=3) or 40 mg/kg (n=6) administered
intravenously did not produce any obvious damage in the kidney and the liver
(Figure 4.11 B and E), when compared with respective control that had received

saline injection (n=06) (Figure 4.11 A and E). Obvious damage in cellular structures
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Figure 4.8 Dosage effect of sodium iodate on retinal lesion. Representative
micrographs showing responses of the retina to different doses of sodium iodate at
day 14. A-B: saline control; C-H: sodium iodate at 25-75 mg/kg. Note the
progressive changes of lesion that spread from photopigment layer at low dose to

ONL and INL at higher doses.
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Figure 4.9 Quantitative analyses of outer retinal layers thickness and row
number after sodium iodate insults. A: Dose dependent reduction in thickness of
inner and outer segment of photoreceptor (IS/OS) in histological section of retina
(n=3 in each group). Intravenous injection gave a more prominent effect than
intraperitoneal injection at comparable dose of sodium iodate. B: Similar changes
were observed in the outer nuclear layer (ONL). C: Counting of number of rows of
photoreceptor nuclei in ONL confirmed the dose dependent response. *P<0.005, **P
<0.001 when compared with saline control (Mann-Whitney U test). Each plot

indicated the mean + SD.
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Figure 4.10 Quantitative analyses of changes in inner retinal layers after sodium
iodate injection. A: Reduction in thickness of inner plexiform layer (IPL) was only
obvious at Day 14, and again intravenous injection showed a more substantial effect
than intraperitoneal injection at comparable dose of drug. B: Cell density counts
showed a dose dependent reduction in inner nuclear layer (INL), which was
particularly obvious at Day 14. *P < 0.005, **P < 0.001 when compared with saline

control (Mann-Whitney U test). Legend is the same as that in Figure 4.9.
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Figure 4.11 Histological assessment of liver and Kidney in sodium iodate-treated
rats. A .B: H&E staining of paraffin section of kidney in control (saline injected) C.D:
treated with 25 mg/kg (i.v.) of sodium iodate 14 day after injection. E.F: treated with
40 mg/kg (i.v.) of sodium iodate 14 day after injection. GH: treated with 50 mg/kg
(i.v.) of sodium iodate 14 day after injection. LJ: treated with 75 mg/kg (i.v.) of

sodium iodate 14 day after injection.
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was observed at higher dose (75 mg/kg) (n=06) in both kidney and liver. The kidney
with massive cell death and caused large gap space in the glomerulus, and also has
extensive damage to the glomerulus and renal tubular. Massive death appearance in
hepatocytes, more pyknotic cells but sinusoidal spaces are intact (Figure 4.11 D and
H).

Moreover, while all animals with 40 mg/kg injection showed lesion in the retina,
only about 50% with 25 mg/kg injection had retinal lesion, indicating that 40 mg/kg
is the maximal dose that generates toxicity consistently to the retina but not other

major organs.

4.2.5 Correlation of CSLO and OCT images with histology of retina

To investigate the anatomical basis of hyper-reflective blots in CSLO images, we
selected several animals with injection of 25 mg/kg sodium iodate that produced a
restricted distribution of dark blots in CSLO images of the living retina on Day 14.
The rats were then sacrificed, their retinas were fixed, paraffin embedded and
sectioned across the lesion regions. We found a correlation of the blot-rich regions
with retinal regions that showed extensive damage in the outer retinal layers. In one
specimen, the dark blots were confined to the inferior-nasal quadrant of the retina,
whereas in histological section cutting across similar region of that retina lesions of
the outer retinal layers were observed in nasal but not temporal hemiretina (Figure
4.12 A-B). In another retina, dark blots were found in a region surrounding the optic
disk (Figure 4.12 C). Sections across this retina slightly inferior to the optic disk
revealed obvious lesions in the central but not peripheral regions (Figure 4.12 D).
The dark blots appeared in CSLO were corresponded to regions with lesion of outer

retinal layers.
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Figure 4.12 Hyper-reflective blots in CSLO images indicated location of outer
retinal degeneration in histological section. A: In this rat CSLO revealed a
localized sodium iodate induced lesion that is confined to inferior nasal quadrant of
the retina. B: Sectioning of this retina at the level indicated in “A” (broken line)
showed concomitant degeneration in outer retinal layers (black arrows) that is
observed only in the nasal but not temporal retina in H&E preparation. C: In another
rat, hyper-reflective blots were observed in central regions around the optic disk
(white arrows). D: Histological section at the level indicated by the broken line in
“C” showed a restricted damage (black arrows) in the central retina. Scale bar in A is

500 um, applied also to C. Scale bar in B is 500 pm, applied to D.
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The highly organized laminated pattern in histological sections of normal retina
was readily recognized in high resolution OCT images (Figure 4.13 A-B). In retina
treated with 40 mg/kg sodium iodate, hyper-reflective structures found in the IS/OS
layer and in the ONL in the OCT image are likely corresponding to the focal lesions
observed in the paraffin section, which consist of degenerated photoreceptor

pigments and folded layer of photoreceptor cells (Figure 4.13 C-D).

4.3 Catechins, catechin combinations and green tea extract attenuates sodium
iodate - induced retinal degeneration (high dose)
4.3.1 Fundus examination by confocal scanning laser ophthalmoscopy (CSLO)

In fundus examination by CSLO, typical appearances of the retinal vessels and
optic nerve head were well recognized. No obvious change was visible in the retina
of control animals 14 days after saline injection (Figure 4.14 A). However, a
dramatic change was observed in the retina 14 days after sodium iodate injection,
which was characterized by the presence of many small dark blots throughout the
four quadrants of the retina and hyper-reflectivity of retinal vessels (Figure 4.14 B).
Worthily, with Theaphenon®E, EGCQG, and catechins combination (EGCG, GC,
EGC, and EC) treatments, the distribution of the dark blots was localized and
restricted (Figure 4.14 D-F). However, in the catechins combination without EGCG
(GC, EGC, and EC), the retina has no obvious change compare with the sodium
iodate treated only retina.

The saline treated rats have no observable blots in the retina (Figure 4.15). For
eyes treated with EGCG, catechins combination (EGCG, GC, EGC, and EC) and
Theaphenon™E, prior to 40 mg/kg sodium iodate injection, the number of blots was

significantly lower when compared with that of sodium iodate group at 14 days post
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Figure 4.13 Histological correlation of retinal lesion in sodium iodate induced
injury. A-B: Representative images of cross-sections of the retina under OCT and
histological preparation. Note that all layers of the retina can be revealed by the live
imaging technique. C-D: Comparison of the images suggested that the degenerative
profile in outer retinal regions shown in OCT image is likely corresponding to the
disrupted photopigment layer and the folded outer nuclear layer. GCL/NFL: ganglion
cell and nerve fiber layer; IPL: inner plexiform layer; INL, inner nuclear cell layer;
OPL: outer plexiform layer; ONL, outer nuclear layer, IS/OS: Inner and outer

segment of photoreceptor; RPE: retinal pigment epithelium. Scale bar is 50 um.
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Figure 4.14 Retinal lesions under infra-red confocal scanning laser
ophthalmoscopy (CSLO). All the retinas were 14 days after sodium iodate injection.
A: Saline injection. B: 40 mg/kg sodium iodate injection. Hyper-reflective structures
or blots (white arrows) were detected in all retinal quadrants. C: Catechins
combination (GC, EGC, and EC) with sodium iodate treated. Dark blots were
detected in all retinal quadrants. D-F: Dark blots were limited to certain regions

(white arrows). Scale bar is 200 pm.
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Figure 4.15 The number of blot in the retina. The number of the blots in CSLO
images decreased after EGCG, catechins combination (EGCG, GC, EGC, and EC),
Theaphenon® E treated. Comparison of the number at Day 7 and Day 14 with 40
mg/kg sodium iodate treated only. * P < 0.05, ** P <0.01, Wilcoxon Rank sum tests;
mean = SD. For counting the number of dark blots the image tool UTHSCSA

(version 2.0) was used. i.v.; intravenous injection.
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injection. However, the eyes treated with catechins combination without EGCG have

no significant protective effect against sodium iodate-induce retinal dark blots.

4.3.2 Outer nuclear layer thickness assessed by spectral —domain optical
coherence tomography (SD-OCT)

Figure 4.16 shows an analysis of measuring the thickness of the ONL from
different treatment of experiments groups where it can be seen that the 40 mg/kg
sodium iodate caused the thinning of the ONL and these were significantly
counteracted by catechins combination (EGCG, GC, EGC, and EC), EGCG, and
Theaphenon®E. And the layer became thicker than the only sodium iodate treated

retinas.

4.3.3. Catechins reduced sodium iodate-induced retinal degeneration in
histological preparations

We have previously shown that when 40mg/kg sodium iodate was injected, the
alignment of nuclei in the ONL and the rod outer segments were irregular, shortened
and disorganized (Figure 4.17 B). The cell density in INL decreased. Figure 4.17
D-F shows with administrated the EGCG, catechins combination (EGCG, GC, EGC,
and EC), and Theaphenon®™E, the retina became more flatten, reducing the loss of
nuclei. Figure 4.18 represents a comparison between the catechins treated and
untreated eyes, the proportion of total retinal length exhibiting irregular ONL
alignment to total retinal length measured on Day 14 after the sodium iodate
injection. Importantly, proportion of retinal length exhibiting irregular ONL
alignment was significantly less in EGCG, catechins combination (EGCG, GC, EGC,

and EC), and Theaphenon™E treated eyes than the sodium iodate treated only eyes.
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Figure 4.16 ONL thickness under spectral-domain optic coherence tomography
(OCT). Graphs show results for ONL thickness in OCT images. The ONL thickness
decreased in 40 mg/kg sodium iodate treated retina compare to saline injection after
14 days, after EGCG catechins combination (EGCG GC, EGC, and EC),
Theaphenon®E treated, the ONL thickness increased significantly when compare to
40 mg/kg sodium iodate treated group. * P < 0.05, Mann- Whitney U test (Mean +

SD).
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Figure 4.17 Catechins attenuate retinal changes in retinal lesion after sodium
iodate injection. Paraffin section of the rat retina stained with Hematoxylin and
Eosin in A: saline control; B: 40 mg/kg sodium iodate injection after 14 days; C-F:
on different drug treatment with sodium iodate injection after 14 days. The retinal
layers are clearly depicted in the control retina. Disruption of the outer retinal layers
(arrows) was detected and the lesions were severe. Note with the EGCG, catechins
combination (EGCG, GC, EGC, and EC) treated, the number of the folded retina
decreased, with Theaphenon®™E, the retina nearly to be normal. GCL: ganglion cell
layer; IPL: inner plexiform layer; INL, inner nuclear cell layer; OPL: outer plexiform
layer; ONL, outer nuclear layer; IS/OS: Inner and outer segment of photoreceptor;
RPE: retinal pigment epithelium. Scale bar is 200 pm. All the images were taken 300

um from the optic disk.
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Figure 4.18 The proportion of the folded retina in the histological preparations.

The proportion of retinal length exhibiting irregular ONL alignment to total retinal
length, Image J (version 1.46e; NIH, Bethesda, MD) was used. The proportion of the
folded retina is defined the length of the folded retina divided by the total length of
the whole retina in histological slices. The eyeballs were sections vertically through
the optic nerve (superior-inferior). * P < 0.05, Mann- Whitney U test (Mean + SD).

1.v.: intravenous injection.
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However, the sodium iodate effect wasn’t counteracted by the catechins combination
(GC, EGC, and EC). The finding that sodium iodate caused reduction of ONL
compared with saline treated retinas is consistent with SD-OCT and histological

preparations.

4.3.4 Determination of mRNA level in retina by real time-PCR

After 40 mg/kg sodium iodate injection without any treatment followed by 24
hours, the expression of mRNA levels of Superoxide dismutase (SOD), Glutathione
peroxidase (GPx) and caspase-3, normalized to GAPDH, were significantly
increased. In contrast, for eyes with EGCG, catechins combination (EGCG, GC,
EGC, and EC) and Theaphenon“E treated, the increased expression mRNA level of
SOD, GPx and capase-3 were blunted (51.5%, 58.3%, 47.3%; 51.0%, 28.8%, 20.7%;
10.3%, 8.6%, 11.7% of sodium iodate treated only group with P <0.05). The effect
caused by the catechins combination (GC, EGC, and EC) on the mRNA levels of
SOD, GPx and capase-3 were slightly attenuated, although the difference were not

statistically significant. (Figure 4.19)

4.3.5 Quantification of 8-iso-PGF3, level in retina

The levels of 8-1s0-PGF», in the retina are shown in Figure 4.20 were nearly 10
times increased in 40 mg/kg sodium iodate treated only group than in saline treated
group. Importantly, the 8-iso-PGF,, levels were strongly attenuates by EGCQG,
catechins combination (EGCG, GC, EGC, and EC), and Theaphenon®E treatment.
However, the 8-i1s0-PGF,, level was slightly against by the catechins combination

(GC, EGC, and EC), but no statistically significant.
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Figure 4.19 The SOD, GPx, Caspase 3 mRNA level in retina.

The mRNA levels in retina normalized with GAPDH. It can be seen that sodium
iodate caused significant increasing on the mRNA level compare to the saline group.
These changes were all significantly blunted by treated with EGCG, Theaphenon® E.
The catechins combination decrease the mRNA level but not statistical significant. *

P <0.05, Mann- Whitney U test (Mean =+ SD). i.v.: intravenous injection.
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Figure 4.20 The 8-iso-PGF,, concentration in retina. 24 hours post injected
sodium 1odate, the 8-iso-PGF2, concentration in retina was dramatically increased
compare to control, these were significantly blunted by EGCG catechins
combination (EGCG, GC, EGC, and EC), Theaphenon®E treated. * P < 0.05, Mann-

Whitney U test (Mean + SD). i.v.: intravenous injection.
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4.4 Low dose of green tea extract, EGCG, and catechins combinations has no
protective effect on sodium iodate-induced retinal degeneration

After 40mg/kg sodium iodate post 14 days intravenous injection, the retinal
lesions were induced throughout the rat retinal appeared as usual. However, with 100
mg/kg Theaphenon E, 70.5 mg/kg EGCG, 79.6 mg/kg catechin combination with
EGCG treated, the number of the dark blots significantly decreased, but with 9.1
mg/kg catechin combination without EGCG treated, we can’t find any significant
changes by the CSLO in terms of the number or the reflectivity of dark blots in the
retina (Figure 4.21 and 4.22).

In the morphometric evaluation of the retina, compare to the 40 mg/kg sodium
iodate treated retinas, after these drugs treated, the alignment of nuclei in the ONL
was irregular, a wavy folded retina was apparent in which the outer retinal were
shortened and disorganized in both catechins drug treated and only 40 mg/kg sodium
iodate treated eyes (Figure 23).

Figure 24 represents a comparison between the different compose of catechins
with 40 mg/kg sodium iodate treated and only with 40 mg/kg sodium iodate treated
eyes with respect to the proportion of total length of the retina exhibiting irregular
and folded outer retinal alignment on 14 days post sodium iodate injection. However,
the proportion of total retinal length display irregular and folded retinal length were
not significantly less in the catechins treated eyes with the sodium iodate treated only
eyes (p>0.05), indicating 100 mg/kg Theaphenon E, 70.5 mg/kg EGCG, 79.6 mg/kg
catechin combination with EGCG, and 9.1 mg/kg catechin combination without

EGCG has no significant preservation of retinal structure damaged by sodium iodate.
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Figure 4.21 retinal treated by the low dose of the catechins captured by
infra-red confocal scanning laser ophthalmoscopy (CSLO). All the retinas were
14 days after sodium iodate injection. A. Saline injection. B. 40 mg/kg sodium iodate
injection. Hyper reflectivity blots (white arrows) were indicated in all retinal
quadrants. C. Low dose of catechins combination (GC, EGC, EC) daily oral gavage
feed with 40 mg/kg single intra-venous injection. Dark blots were detected in all
retinal quadrants. D-F: Dark blots were appeared in all the quadrants of the retinas.

Scale bar is 200um.
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Figure 4.22 The number of the dark blot in the retina. The number of the blots in
CSLO images decreased after the low dose of the EGCG, catechins combination with
EGCG (EGCG, GC, EGC, and EC), and Theaphenon™E treated. Comparison of the
number at Day 7 and 14 with 40 mg/kg sodium iodate treated only group. * P <0.05,
Wilcoxon Rank sum tests; mean + SD. For counting the number of dark blots the

image tool UTHSCSA (version 2.0) was used. i.v.: intravenous injection.
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Figure 4.23 Low dose of catechins hasno protective effect in retinal damage
induced by sodium iodate. Paraffin section of the rat retina stained with
Hematoxylin and Eosin in A: saline control, B: 40 mg/kg sodium iodate injection
after 14 days; C-F: on different low dose of drug daily treated with 40 mg/kg single
intra-venous injection after 14 days. The retinal layers are clearly depicted in the
control retina. Disruption of the outer retinal layers was detected and the lesions were
severe. Note with the low dose of EGCG, catechins combinations without EGCG
(GC, EGC, EC) combination (EGCG, GC, EGC, and EC) and Theaphenon®E treated,
there was no detectable change. GCL: ganglion cell layer; IPL: inner plexiform layer;
INL, inner nuclear cell layer; OPL: outer plexiform layer; ONL, outer nuclear layer;
IS/OS: Inner and outer segment of photoreceptor; RPE: retinal pigment epithelium.

Scale bar is 200 um. All the images were taken 300 um from the optic disk.

132



s
e -u""..

kil

o 1.?—'-"',",'- - "m."- .
-4

—
"1

e
T g ,,._.. - ., -
"I |.',|__4. .l-""" 3

et ﬂeﬁm (low dose)

Sodlum jodate




Figure 4.24 The proportion of the folded retina in the histological preparations.
The proportion of retinal length exhibiting irregular ONL alignment to total retinal
length, Image J (version 1.46e; NIH, Bethesda, MD) was used. The proportion of the
folded retina is defined the length of the folded retina divided by the total length of
the whole retina in histological slices. The eyeballs were sections vertically through
the optic nerve (superior-inferior). Compare to the control group, no significant was
found in each treatment group. Mann- Whitney U test (Mean + SD). i.v.: intravenous

injection.
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Chapter 5: Discussion

5.1 Pharmacokinetic study of catechins distribution in normal rat eye

Although many studies investigated the biological effect of catechins and GTE in
the ocular, our pharmacokinetic study revealed the distribution of individual
catechins after administration of GTE to the normal rat.

Multiple peaks were exhibited in the individual catechins profiles the retina and
the vitreous humor (Figure 4.1 B-C), it may be due to the catechins or the catechins
metabolites recirculated or reabsorbed into the retina and the vitreous humor, so their
levels were sustained during the measurement. This phenomenon was also observed
in the previous GTE (Sunphenon®DCF-1) study (Chu et al., 2010). Similar shapes of
the profiles among the catechins and catechin gallates indicated similar absorption
mechanisms. Meanwhile, different profile suggested different absorption
mechanisms. Different absorptions of catechins may involve catechins selectively
binding with target protein in the ocular tissues rather than passive diffusion (Chen et
al., 1997, Lin et al., 2007).

Some tissue may readily incorporate with catechins by specific mechanisms, as
shown by the different profiles in that single peaks appeared in the plasma but
multiple peaks in the retina and the vitreous (Figure 4.1 A-C). Also, the presence of
different catechins dominated in different tissues, indicating discriminative
distributions in eye tissues.

In the further work, the metabolic studies should be performed in the interest of
clearly understand the different absorption mechanism among the catechins. The

metabolic studies not only focus on the catechins metabolites themselves but also
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involve the metabolic environment in different eye tissues. This is crucial issue on

drug application before clinical trial in order to against ocular oxidation.

5.2 Establishment of a retinal degeneration model on sodium iodate treated rat
5.2.1 Fundus examination by confocal scanning laser ophthalmoscopy (CSLO)
and spectral domain optical coherence tomography (SD-OCT)

In the establishment of the sodium iodate model study, we have investigated the
capability of Spectralis HRA + OCT to register the CSLO and OCT simultaneously
of in vivo imaging on sodium iodate-induced retinal lesions in the adult rats. Clear
and revealing in vivo CSLO and OCT images were obtained to image retinal
structures in normal and diseases eyes.

In retinal degeneration, lesions are commonly sparse, which makes the histological
analysis laborious and demanding, so the in vivo imaging combine with the CSLO
has proven to be very effective to overall assessment and also as a pre-selection for
other morphological studies, saving animals, time and finance, with the OCT at the
same time, the extent of the lesions can be visualized in real time. The particular
example in Figure 4.2-4.4 demonstrated the capability of detecting the intra-retinal
(white arrows).

As we have shown in the results, CSLO and OCT are both useful for the
morphology assessment and numerical quantification of the retinal changes and for
the detection and analysis of appearance of lesions. The major findings we were able
to obtain: (1) using infra-red CLSO hyper-reflective degenerative profiles can be
recognized as dark blots in planar images of the retina after sodium iodate injection;
(2) these profiles appeared at the time when lesions are observed in the IS/OS layer

and ONL as revealed by OCT imaging; (3) distribution of these degenerative profiles
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is well correlated with the lesion in outer retinal layers in histological sections; (4)
these degenerative profiles show a dose dependent change in response to sodium
iodate insult. These findings together provide a strong support that imaging of the
retina with infra-red CLSO and spectral domain OCT simultaneously is an effective
and reliable method to evaluate damages in outer retinal layers in living adult rats.

Our results showed that infra-red CSLO combined with OCT can be used to assess
retinal lesion in living adult rats. The advantage of this method is that the retina can
be monitored and viewed in planar and cross-sectional images in the same area at the
same time, allowing assessment of the layer specific changes by OCT at defined
location of the retina as revealed in the CSLO images, and visualization of
abnormalities in a large area of the retina as shown in CSLO images with known and
defined layer specific lesion.

However, the CLSO also have limitations, because the CLSO can assess around
60% of the total retina area, not the whole field of the retina. Since the
membrane-rich less optically dense layers like the nerve fiber layers and the
plexiform appeared as dark shade, but the less membrane-rich like the outer nuclear
layer appeared as white in OCT images, in our findings, the cell death in ONL, and
the folded rosettes formed the empty place. So, the dark blots and hyper-reflectivity
in the CSLO and OCT might be the massive cell death formed rosettes empty space.
Meanwhile, based on the literature review, only the Sprague-Dawley rats can be
induced folded irregular retinal degeneration profile, the C57BL mice and Long
Evans rats appeared in a regular cell apoptosis in ONL after sodium iodate
administration, this indicating that the dark blot in CSLO only can be visualized in
Sprague-Dawley rats, not in other species.

Previous in vivo imaging studies used spectral domain OCT as the tool to evaluate
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degenerative changes in the retina. It is superior in providing high resolution
cross-sectional views of the retina and has been used widely in assessment of retinal
lesions in experimental and mutant rodents (Ruggeri et al., 2007, Fischer et al., 2009,
Nakano et al., 2011). This technique has also been employed for assessing
longitudinal changes in macular thickness and optic fiber layer thickness in human
retina (Leung et al., 2008a, Leung et al., 2008b). Through analyses of images of the
retina we found the appearance of hyper-reflective blots in the CSLO images
corresponded to degenerative profiles in the photoreceptor and ONL of the retina.
Further analyses of retinas with distribution of blots restricted to certain areas
showed a good correlation to lesion sites in the corresponding histological sections.
Moreover, these blots are detected 7 days after injection of sodium iodate, coinciding
with the time when obvious degenerative changes are observed in OCT images and
histological preparations. These findings strongly support that the hyper-reflective
blots observed under infra-red CSLO indicated degenerative profiles in the outer
retinal layers. We showed further that changes in number of blots is dependent on the
dose of sodium iodate, which again are supported by the morphometric analyses of
outer retinal layers in histological sections. These dose dependent responses suggest
that CSLO can be used as a reliable method to evaluation real-time longitudinal
damage to the retina with outer retinal layer lesions. However, it remains to be
determined whether this technique can be applied to degenerative changes in inner
retinal layers and in other animals. To our knowledge this is the first study providing
an in vivo technique to assess the retinal changes response to different sodium iodate
doses.
5.2.2 Histopathology of sodium iodate induced lesion in the rat retina

We have reassessed the sodium iodate model of producing retinal lesions in
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histology preparations. To this end, we studied the eftects of different doses and post
injection times on several aspects by using different techniques.

One important finding is that we have shown a characteristic pattern of
degenerative changes in the retina after sodium iodate injection. By examining both
changes in the outer retinal and inner retinal as well as intravenous or intraperitoneal
injection we found that sodium iodate-induced structure changes are both dose and
time dependent.

This lesion affects severely the photoreceptors in IS/OS layer and ONL, whereas
changes in the IPL and INL are milder. This finding coincided with the previous
reports documenting that the retinal pigment epithelium is the initial site towards to
the sodium iodate toxic, with subsequently photoreceptor degeneration, which is
conform to the mechanisms of the sodium iodate used as retinotoxic (Enzmann et al.,
2006, Korte et al., 1984, Franco et al., 2009). The time course and the doses effect of
the sodium iodate in response to the pathological changes in the IS/OS of
photoreceptor, outer nuclear layer as well as the inner retinal layer changes. Over all,
we performed for the first time the morphmetic analysis in different dosages in
generating retinal lesions on both intravenous and intraperitoneal injections. Based
on our results, we found that the minimum dose of sodium iodate to induce retinal
lesions was 25 mg/kg. However, the retinal lesions could not be induced in every rat
in 25 mg/kg sodium iodate group. Therefore, perhaps the 25mg/kg could be the
marginal dosage that could induce the retinal lesions. For the 50 mg/kg sodium
iodate 1.p. injection, the dark patches appeared until Day 14, and the number of dark
patches was even less than the 40 mg/kg i.v. injection (Figure 4.6). For all the
measurements, the effects of the i.p. injection at the same dose tended to be smaller

than the i.v. injection.
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The mechanism of sodium iodate induced retinotoxicity is not fully understood,
but inhibition of lysosomal enzymes activities and iodate may bind to the
melanosomes alter the ion composition and morphology play an important role, and
the toxicity is associated with the iodate oxidizing properties (Sorsby and Reading,
1964). 30 minutes after intravenous iodate injection, the RPE, and subsequently the
photoreceptor, can no longer be protected by glutathione, to elicit retinotoxic effect;
the iodate dosage must exceed the capacity of endogenous radical scavenger systems.

The sodium iodate effect in the brain hasn’t been investigated in our study, but
reported studies showed, no effect of sodium iodate on the blood brain barrier (BBB)
in doses that caused obvious changes of the blood retina barrier (BRB) (Ennis and
Betz, 1986). The sodium iodate selectively affects the carrier D-glucose in the BRB
but not in the BBB (Taarnhoj and Alm, 1992). The RPE may explain the difference
between these two barriers, which is one part of the BRB, suggesting a selective
toxic effect to the RPE consistent with earlier studies. The sodium iodate causes
retinatoxicity happens not only in Sprague-Dawley rats but also in mice (Enzmann et
al., 2006), rabbit (Clifton and Makous, 1973), sheep (Nilsson et al., 1977a), cat
(Kiryu et al., 1992), and even in human retina (Singalavanija et al., 2000).

Enzmann et al., in 2006, injected 35, 50, 70 mg/kg sodium iodate in to the rat,
assessed the retinal degeneration and visual function on 14, 21, and 28 days as well
as 6 month post injection, a significant visual function defect with significantly lower
swim speeds, and consistent with the anatomical observations, showed no functional
and morphological recovery were found in these animal retinas even after 6 months
treated with sodium iodate. So, sodium iodate causes permanent degeneration in

retinal morphology and visual function (Enzmann et al., 2006).
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5.2.3 Correlation of retina lesions in histological sections with SD-OCT

The acquired OCT images have high correlation with histology results. The
Spectralis HRA + OCT system accomplished the goal of noninvasive in vivo
imaging of the rat retina with high image quality and short examination time, suitable
for routine high throughput reproducible applications. The OCT image provides a
tool for precise spatial registration of the OCT cross-sectional images on the retina
layers with histological sections.

The appearance of degeneration profiles in form of folding or rosettes as
observed in our findings has been reported in histological preparation of the retina of
Sprague-Dawley rats after injection of 40 mg/kg sodium iodate (Ohtaka et al., 2005).
However, similar pattern of degeneration was not reported by Hariri et al (Hariri et
al., 2012, Hariri et al., 2013). Who have utilized ultra-high resolution OCT to study
degenerative changes after treatment of 40 mg/kg sodium iodate in Long Evans rats.
In their findings, a progressive destruction of cellular structure is observed in the
outer retinal layers, which appears to initiate at the interphase between the IS/OS of
photoreceptors and the pigment epithelium as early as 1 hour after injection,
producing a general and even thinning of the retina. The causes of these differences
in pattern of degeneration are unknown. One possibility is the difference in
sub-species of animal used. It might be worth noting the studies by Hariri et al. were
done on pigmented rats, whilst those by Ohtaka et al. and the current study were
performed on rats that lack ocular pigment.

The in vivo image is different from the traditional histology sections, is based on
reflectivity. Retinal layers with much membrane and less optical dense are presented
as a darker shade of gray, for example plexiform and nerve-fiber layers appeared as

dark in OCT, retinal layers with more optically dense and less membrane are present
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as light shade, like the outer nuclear layer, inner nuclear layer appeared as light in
OCT images. To elucidate the unique hyper-reflectivity in the outer nuclear layer and
the IS/OS of the outer photoreceptor layer, and the histological analysis was also
conducted on the same retina, we detected the massive cell lose in the IS/OS of the
photoreceptor and the folded of the retina, we speculate that these destructive
structures of the retina in histological preparations cause the hyper-reflectivity seen
in the outer photoreceptor layers. The consequence is since a large number of the
outer nuclei decreased and appear as empty region, the IS/OS nearly disappeared, the
region became less optical dense, so appeared as hyper-reflectivity, though further
studies are needed to confirm this issue.

Consistency and safety are critical factors should be considered when performing
systemic administrated sodium iodate-induced retinal damage as a drug feasible
animal model for drug testing. The i.p. injected 75 mg/kg sodium iodate caused more
severe damage to liver and kidney. So, we conclude that 1.p. injection reduces the
effective dose in the eye and cause more severe damage to other major organs. In
animals injected intraperitoneally with sodium iodate, significant reduction was
observed only at the dose of 75 mg/kg but not at 50 mg/kg, indicating that
intravenously injection is more effective in generating degeneration in outer retinal
layers. The chemo-kinetics of the animals is another important issue in the
development of a drug testing model. Base on this study, the selected dose of sodium
iodate for the drug testing is 40 mg/kg, which cause retinal lesions efficiently without

causing any other systemic damages.

5.3 Treatment ability of catechins, catechins combination and green tea extract

on sodium iodate treated rats
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EGCG has been wildly studied for its anti-oxidative effect on ocular tissues. A
more thoroughly and very impressive study on retina oxidative stress inhibited by
EGCG has been done by Zhang B et al. They used EGCG intravitreal and/or
intraperitoneal administered to attenuate photoreceptor degeneration induced by
sodium nitroprusside generate nitric oxide, or light exposure to cause rat retinal
damage. This conclusion was proved by a combination of using biochemical,
eletrophysiological and histological methodologies. They also showed the inner rat
retina is damaged by ischemia/reperfusion but protected by the intravitreal and or
systemic injection of EGCG. The EGCG can be proved that it against oxidative
stress-induced retinal degeneration both in inner and the outer part of the retina.

While a great number of the previous studies focus on the benefits of the EGCG,
few studies has been performed to test the antioxidant effect of the purified catechins
combination and the green tea extract Theaphenon™E which contains a total catechin
content to about 90% and even their biological effects. So the present experiments
were performed to investigate specifically the anti-oxidative effect of Theaphenon™E
and the catechins combinations. There are a lot of good studies used the sodium
iodate as an oxidant to cause retinal degeneration in order to test different drugs,
sodium iodate induced retinal degeneration in rats was employed as an animal model
to explore the capability of stem cells in differentiation into RPE and photoreceptors
after transplantation into the subretinal space,(Enzmann et al.,, 2003, Gong et al.,
2008) and investigate the protective effect of hepatocyte growth factor against retinal
degeneration (Ohtaka et al., 2006). We also proved by ourselves that sodium iodate
can work as a reliable model to cause the retinal lesions.

In our study, we performed not only EGCG, but also catechins combination with

EGCG (EGCG, GC, EGC, and EC), catechins combination without EGCG (GC,
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EGC, and EC) and a green tea extract Theaphenon®E. In the previous studies,
initially EGCG was injected into the vitreous or by intraperitoneal (Zhang et al.,
2007), but in our study the catechins were administered by oral gavage (Figure 3.1),
which is more relevant for the clinical use and avoid wound by the injection.

It is clearly shown in the present studies that EGCG, catechins combination
(EGCG, GC, EGC, and EC), and Theaphenon®“E are potent antioxidants. These data
provide proof that damage to the retina caused by an insult of sodium iodate which
involves oxidative stress can be blunted by only twice oral pretreatment of EGCG,
catechins combination (EGCG, GC, EGC, and EC), and Theaphenon®E. This
conclusion was reached by using CSLO, OCT, histological, and biochemical
methodologies. It was impossible to make definite conclusions only from the
histological preparations because of the variability of analyzing different areas of the
retina, so we perform to measure the proportion of the folded retina divided by the
whole length of the retina in a number of sections from different eyes. In order to
prove sodium iodate was toxic to the retina and that could be counteracted with
catechins and green tea extract were found by analyzing the whole of the retina either

in terms of the histological or the biochemical.

5.4 Proposed mechanisms of catechins, catechins combination and green tea
extract actions on sodium iodate treated rats

Apoptosis is a common pathway in the pathogenesis of photoreceptor
degeneration in many kinds of retinal diseases (Shahinfar et al., 1991, Tso et al.,
1994, Chang et al., 1993). In rats with photoreceptor degeneration, the number of
positive TUNEL- labeling nuclei was significantly reduced in the catechins-treated

eyes than in untreated eyes (Zhang and Osborne, 2006, Costa et al., 2008). On the
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basis of the negative TUNEL signals indicated RPE cell death induced by sodium
iodate take place through necrosis (Flage, 1983, Kiuchi et al., 2002). Therefore, the
RPE protection seen in our histological study (Figure 4.17 D-F) suggests that EGCG,
catechins combination (EGCG, GC, EGC, and EC), and Theaphenon®E could
suppress RPE necrosis.

In apoptosis, DNA is broken down in a defined manner for detection by the
apoptosis marker, such as caspase-3. The finding that intravenous injection of
sodium iodate caused elevation of the capase-3 level in retina suggested that sodium
iodate induced the photoreceptors to die by apoptosis. There are two main pathways
lead to apoptosis, the intrinsic pathway is mediated by mitochondria, the extrinsic
pathway is triggered by membrane biochemical interfere to secondarily affect
mitochondria. So, the mechanisms about protecting photoreceptors in the
catechins-treated rats could be: First, Due to apoptosis plays a pivotal role in
photoreceptor degeneration in sodium iodate treated animals, these could be
suppressed by the anti-apoptotic effect of the catechins. Second, catechins-mediated
survival of RPE cells could protect the photoreceptors against degeneration base on
the RPE was preserved to a greater degree in the catechins treated eyes. Third, since
the photoreceptor membranes have unusually high concentrations of
docosahexaenoic acid nearly 50% of the total fatty acid pool, and especially prone to
free radical damage, like the sodium iodate-induced retinal degeneration is primarily
mediated by extrinsic pathway. Interestingly, sodium iodate also caused an
upregulation of caspase-3, thus supporting that it is inducing photoreceptor cell death
by apoptosis rather than necrosis.

Sodium iodate is a known toxin to induce selective RPE damage by oxidative

stress, and consequently retinal degeneration (Kim et al., 2008, Zhao et al., 2011).
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SOD as major antioxidant enzymes, it can remove superoxide to against oxidative
stress. The hydroperoxides formed as the result of SOD activity is quenched by GPx
(Gandhi and Abramov, 2012). In this study, a significantly high expression of the
SOD and GPx was observed in sodium iodate treated retinas might be due to their
increased utilization for scavenging ROS. However, the catechism comprising the
ortho-hydroxyl group in the B-ring and galloyl moiety in the C-ring could react
directly with superoxide may reduce the formation of H;O; and in addition it
possesses a direct scavenging effect on H,O, (Gokulakrisnan et al., 2010).

Biochemical analysis of the whole retina by the real-time PCR confirmed the
CLSO, OCT and histological data that EGCG, catechins combination with EGCG,
green tea extract significantly attenuates the increasing level of oxidative stress in
retina produced by sodium 1odate.

8-Isoprostane is the well characterized compound belonging to the F2-isoprostanes,
a group of stable Prostaglandin F20 isomers derived from the non-enzymatic
oxidation of arachidonic acid (Roberts and Morrow, 1997). It is the free radical
peroxidation of arachidonic acid independent of the action of cyclooxygenase. For
this reason, 8-isoprostane has been deemed as an ideal marker of oxidative stress, it
is directly represent the oxidative stress. The 8-isoprostane provides a sensitive
measurement for the oxidative status. So, after 24 hours injection of sodium iodate, it
triggered the oxidative situation, the 8-isoprostane level 10 times increased, but
co-treated with EGCG, catechins combination with EGCG and the green tea extract
Theaphenon®™E, the 8-isoprostane level dramatically decreased, indicating strong
anti-oxidative effect of EGCG, catechins combination with EGCG and Theaphenon®

E, but the catechins combination without EGCG (GC, EGC, and EC) has no

significant effect on the 8-isoprostane level, that might because only small amount of
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the GC, EGC, EC in this combination, the doses might be too low.

Enhancement of the RPE and photoreceptor survival could improve visual
prognosis in patients with retinal degeneration, such as retinitis pigmentosa and early
AMD. So, daily intake catechins may have benefit.

This study provides a combination of structural and biochemical evidence to show
that the retinal degeneration is particularly affected by oxidative stress but orally
administered EGCG, catechins combination (EGCG, GC, EGC, and EC), and
Theaphenon™E could blunt this process. These data again proved our previous
conclusion that orally administered GTE Theaphenon™E, the catechins must have
reached the retina in sufficient amounts, to protect the retinal degeneration from a
detrimental insult of oxidative stress. This might be of clinical relevance for the
treatment of ophthalmic disorders. Many studies showed that EGCG can be
consumed and tolerated at high doses. In our previous study, we orally administered
550 mg/kg GTE (Theaphenon®E) to the normal rats, showed distribution of
individual catechins in each plasma, vitreous humor and retina. EGCG presents at
high levels in the plasma, retina and, vitreous at 6686.8+4437.1 nM, 784.4+195.9
nmol/kg, and 2224 4+805.4 nM respectively. In addition, GC was dominantly present
in vitreous humor; EGC and EC were appeared as high level in plasma and retina.

Many studies on the antioxidant effect of green tea only focus on EGCG;
however, based on our pharmacokinetic study, we want to combine the EGCG, EC,
EGC, and GC as a mixture to study their antioxidant effect. Use of a mixture, such as
Theaphenon®™E, was better than use of pure catechins because synergic effects on
antioxidation and bioavailability. The EGCG and the Theaphenon™E formulations
containing the same amount of EGCG, but the Theaphenon®E have more potent

effect may due to other small amount of catechins. Our results indicated green tea
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consumption could benefit the eye against oxidative stress.

We also indeed have the data showed that 550 mg/kg of green tea extract
Sunphenon® DCF-1 equivalent to 10 cups of green tea, was intragastric feeding to the
Sprague-Dawley rats. The maximum level of EGCG was in plasma, retina, lens and
cornea were 0.3umol/Kg, 0.25pmol/Kg, 0.15umol/Kg, and 0.09pumol/Kg
respectively. The duration of high concentration peak was within two hours. Our
experimental design using very high levels of levels of catechism and GTE,
producing the efficacy results, however, these can be artifacts due to non —specific
interactions between the signaling molecules and oxidants. But, according to the
8-isoprostane level and the SOD, GP, and Capase-3 data, we have shown that the
oxidative stress level was decreased after the EGCG, catechins combination with
EGCQG, and GTE administration. It is clearly necessary in the future to determine
whether oxidative stress-induced retinal damage can be blunted by the oral intake of
specific amounts of catechins combination or green tea extract in order to provide an
insight of the potential use of these drugs in patients.

To examine the safety of EGCG, catechins combinations, and green tea extract
Theaphenon®™E, after administrated to the rat, we observed the rat behavior every day.
They appeared as normal except the catechins combination with EGCG (EGCG, GC,
EGC, and EC) after 24hours drug administration, one rat looked like a little bit weak
and curled in the corner. After 14 days the rats were sacrificed. The eyeball, kidney
and liver were removed for histology sections. All the rats treated with GTE and
catechins have their kidney and liver appeared as normal. So, based on this
observation, there was a question. Since the dosage of the green tea extract
Theaphenon®™E used was higher than EGCG and the catechins combination in this

study, why the behavior of the all the five rat still appeared as normal? This might
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indicated the synergistic eftects of the different catechins in the green tea extract on
their antioxidation and bioavailability and also the green tea extract may lower the
oxidative stress level indirectly in retina (Chow et al., 2001).

In conclusion, the results obtained in the present study show that oral intake of
green tea extract, EGCG, catechins combination (EGCG, GC, EGC, and EC) and
Theaphenon™E can reach the retina and attenuate sodium iodate-induced retinal
degeneration in rats. These studies support the notion that daily oral intake of green
tea extract might benefit patients suffering from retinal diseases such as early onset
of age-related macular degeneration and retinal dystrophy where oxidative stress is

implicated (Suzuki et al., 2007).

5.5 Low dose of catechins has no protect effect on sodium iodate-induced retinal
degeneration

Based on the histological measurement, the low dose of the Theaphenon®E,
catechins combination with EGCG, cactechins combination without EGCG, EGCG,
none of these regimens has significant effect against the sodium iodate-induced
retinal degeneration.

In a reported study, the 50 mg/kg or 100 mg/kg EGCG with daily administered by
oral gavage 30 min before forced swim session for 28 days, EGCG could ameliorate
behavioral and biochemical deficits in rats with load-induced chronic fatigue
syndrome (Sachdeva et al., 2011). In another study, 10 g dry tea was added to 750 ml
tap water in diabetic rats for 12 weeks (Kumar et al., 2012). Compared to these
reported studies. However, in our study, after these catechins combinations and green
tea extract treated there were still patchy degeneration of the outer retina. Although

these low dosages catechins and green tea extract has no protective effect, it help us
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to further understand the pathophysiology of the toxic effect of the sodium iodate.
So, the reasons of why our low dose herbal molecules has no protective effect might
be: 1) 40 mg/kg sodium iodate may be a little bit higher to cause the retinal damage,
so the 100 mg/kg green tea extract cannot neutralize such high oxidant effect to the
retina. 2) The catechins have not distributed into the retina at sufficient quantity. 3).
we fed the low dose catechins to the rat for a short period. If we fed the catechins 2
weeks to rats before the sodium iodate injection (to maintain a sustain level of
catechins in the rat retina), and 2 weeks after sodium iodate injection, it might have
significant protective effect.

So, in future work, we can decrease the dosage of the sodium iodate, start the
dosage range from 10-25 mg/kg, and work out the reasonable lower dosage of
sodium iodate-induced retinal degeneration, and also test the sodium iodate effect in
kidney, liver, and central neural system, like the SOD, Caspase 3, and GSH/GSSG
levels in liver and kidney, use histological preparations and immunostaining to assess
any degeneration effect in brain. Low dose of sodium iodate may cause milder, and
chronic toxic effect to retina, which is more relevant to the clinical situation, unlike
the 40 mg/kg cause the effect more severe and dramatically. Then we can use the
lower optimal dose of sodium iodate to test the daily intake of lower dose of the
EGCG, different catechins combinations, and GTE, whether there would be

protective effect would be detected. This could be a very excited study.
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Chapter 6: Conclusion and future prospects
Based on a previous report, the central pole of the retina is more sensitive to the
sodium iodate than the periphery part (Machalinska et al., 2010). These pathological
changes are similar to that during early onset of age-related macular degeneration
characterize initially involve the central part of the retina, and then spread gradually
to the periphery region. Moreover, we show further from the dose dependent essays
that 40 mg/kg is the selected dosage that generates consistently retinal lesions in the
outer retinal layers but without obvious adverse effects to other organs, indicating
that administration of drug intravenously at this dosage can be considered as a good
model for experimental study of ocular degeneration diseases that involved the outer
retina layers, for example age-related macular degeneration and retinitis pigmentosa.
In this study, the Spectralis HRA + OCT register the confocal scan laser
ophthalmoscopy and spectral-domain optical coherence tomography system along
with the histological measurement were used to monitor the reflectivity and
structural changes over time in the different dosages of sodium iodate treated rat
retinal degeneration. Our results showed 40 mg/kg sodium iodate treated rat retinal
characterized by changes in the optical reflectivity, thickness, shape, integrity
without generate toxicity to the kidney and liver. Results from this study largely
indicated sodium iodate-induced retinal degeneration may serve as a feasible model
useful for studying retinal damage and drug testing, also might could potentially to
help better understand the retinal degeneration diseases, for example age-related
macular degeneration and retinitis pigmentosa. And also for the clinical situation,
there were few reports of accidental poisoning sodium iodate by oral administration,
the people developed visual field defect. Ophthalmoscopic examination revealed

severe retinal damage with degeneration of photoreceptors, and the dosage was
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assessed exceeded 100 mg/kg (Singalavanija et al., 2000). The retinal changes may
similar to our findings. Another report of iodate-induced people blindness has
occurred in China, the dosage is around 10-20 mg/kg (Tong, 1995). We proposed
that if the sodium iodate poisoning in human with sufficient dosage by an accident,
we may suggest the patient to drink green tea extract for a period, it definitely benefit
the eye against retinal degeneration.

The present study shows that EGCG, catechins combination with EGCG, and
green tea extract orally consumption could attenuates a number of detrimental effects
to the retina following sodium iodate injection. They could benefit the retina against
oxidative stress damage.

Consequently, since the high dose of the EGCG, catechins combination and the
green tea extract give an impressive antioxidant effect in the sodium iodate model.
So, the future green tea studies in ocular tissues should use other in vivo models to
mimic retinal degeneration in different kinds of mechanisms, like the
ischemia/reperfusion model, knockout or transgenic mice model. And also some in
vitro studies should be performed. However, in this project, we heavily focus on the
structural consequences of retinal degeneration caused by sodium iodate. The
functional consequences after green tea extract and catechins combinations should be
the irreplaceable and important direction in the further study. Based on the literature
review, the electroretinogram (ERG) was performed as functional evaluation. For the
40 mg/kg sodium iodate intravenous injected rats, it demonstrated that RPE
degeneration is accompanied by neurosensory dysfunction. On Day 1, the b-wave
amplitude decreased after white flash of low intensity, indicating impairment of the
rod neurosensory retina. The b-wave amplitudes were decreased in a wider range,

particularly on Day 3-28 days (Figure 5.1) (Machalinska et al., 2010, Ohtaka et al.,
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2006).

It is clearly necessary in the future to determine the long term effects of daily oral
intake of specific low dose of green tea extract should also be investigated in order to
provide an understanding for the potential use of catechins or green tea extract in
patients. The administration approach, different catechins combinations formulation,
and the treated period should be investigated in details. At the same time, we also
have to investigate the whether the treatment of sodium iodate affect the
pharmacokinetic distribution profile of the catechins and green tea extract in the

ocular tissues, especially in retina.
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Figure 5.1 Electroretinogram (ERG) response recorded at different time points
after 40 mg/kg sodium iodate administration. A. Saline-treated control. B. ERG
recorded on Day 1 after sodium iodate injection. C. ERG photography on Day 3 with
sodium iodate treated. D. The b-wave amplitude measurements on Day 1, 3, 7, 18, 28
after sodium iodate administration. * P<0.05 versus control. (Picture from Ohtaka K,
Machida S, Ohzeki T, Tanaka M, Kurosaka D, Masuda T, Ishii T.. Protective effect
of hepatocyte growth factor against degeneration of the retinal pigment epithelium
and photoreceptor in sodium iodate-injected rats. Current Eye Research. 2006
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