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Abstract

Abstract of thesis entitled:
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ulated Services Rates

Submitted by HUANG, Liang

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in August 2013

This dissertation is aimed to study the queueing behavior of communication sys-

tems with time-varying service rates. The system may change its service rate sev-

eral times while serving a customer subject to the condition of external environment.

The time-varying server is modeled as a Markov modulated service process (MMSP)

and the communication system is modeled as an M/MMSP/1 queue. The exist-

ing performance analyses of Markov modulated service process are almost all based

on the on the matrix-geometric method, which provides little physical insights for

system design. By contrast, we focus on deriving closed-form analytic expressions

with physical interpretations in terms of system parameters of interest. Our main

contribution is to derive the generalized Pollaczek-Khinchin (P-K) formula of the
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M/MMSP/1 queue from the start service probability to explore the impact of chan-

nel state transitions on the queueing behavior of the system. This generalized P-K

formula reveals that the performance of M/MMSP/1 queue can be fully charac-

terized by a newly defined system parameter, called state transition factor β, which

clearly explains the reason that the system with slow state transition rate owns a

larger delay for the same system/channel capacity. In the extreme case when the

state transition factor β approaches 0, we show that the system under consideration

can be approximately modeled as an M/G/1 queue. Both the two-state and the

finite-state M/MMSP/1 queues are studied in details.

The wireless fading channels with finite input buffer, Poisson arrivals, and two-

state Markov modulated service processes (MMSP) are modeled asM/MMSP/1/K

queues. We first obtain the buffer overflow probability and its large-deviation ap-

proximation with an exact asymptotic constant from generating functions. The state

transition factor β is given in a simple expression and the start-service probabilities

are obtained in closed-form expressions. The generalized P-K formula is derived

based on finite buffer capacity which gives the exact value of the mean waiting time.

We use a Type I Hybrid ARQ system with a fixed data-rate as a running example

to illustrate our results with two-state MMSP.

We then extend our generalized P-K formula for Markov channels with two states

to general Markov modulated service process with finite states. For a special three-

state Markov channel with no service rate in one state, we show that a simple closed-

form expression of the state transition factor is available. For a N -state MMSP,

it is impossible to obtain closed-from expression for the start-service probability

and we propose two approximations: Linear Approximation for small N and CDF

Approximation for large N . The approximate generalized P-K formula can well

predict the mean queue length as verified by simulation results through a general

queueing model for peer-to-peer file-sharing systems.
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摘要 

本文旨在研究通信系統在服務率隨時間變化下的排隊行為。在服務一個

顧客的過程中，系統的服務率可能會隨著外部環境的變化而改變。我們建立

一個馬爾科夫調製服務過程（MMSP）模型來表示這種隨著時間變化速率的

服務台，同時用一個𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/1 排隊模型描述整個通信系統。現存的馬爾

科夫調製服務過程的性能分析都是基於矩陣幾何方法，不能清晰地解釋系統

設計時中各個參數的物理意義。相比之下，我們專注於推導能體現各個系統

參數物理意義的閉式表達式。我們的主要貢獻是基於起始服務概率（start-

service probability），針對𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/1  排隊模型推導出廣義的  Pollaczek-

Khinchin (P-K) 公式，從而探究服務速率變化對排隊系統性能的影響。根據

廣義的 P-K 公式可知，𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/1 排隊模型的性能完全由本文中新定義的

狀態轉換因子（state transition factor）𝛽𝛽所決定，並且解釋了爲什麽在相同

的系統或者信道容量下服務狀態轉換慢的系統的延遲更大。我們證明當狀態

轉換因子𝛽𝛽極限趨近於零時，𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/1 排隊模型近似等價於𝑀𝑀/𝐺𝐺/1 排隊

模型。我們通過分析具有兩個服務狀態的無線混合自動重傳請求協議

（Hybrid ARQ）和具有多個服務狀態的點對點傳輸系統（P2P）作為示例以

展示我們的研究成果。 

我們用𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/1/𝐾𝐾 排隊模型來描述這樣的無線衰落信道：具有有限輸

入緩存區，顧客到達過程服從泊松分佈，具有兩個服務且屬於馬爾科夫調製
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服務過程（MMSP）。我們首先通過矩母函數方法得到緩存溢出概率和其相

應的帶確切漸進常數的大偏差近似。在當前系統下，狀態轉換因子𝛽𝛽是一個

簡單的表達式，同時可以求得起始服務概率的閉式表達式。在有限緩存的條

件下，我們直接推導出廣義的 P-K 公式，準確地描述顧客的平均等待時間。

我們列舉了一個具有固定傳輸速率的第一類混合自動重傳請求(Type I Hybrid 

ARQ)系統，以闡釋上述關於兩個服務狀態的結果。 

我們將上述在兩個服務狀態的馬爾科夫調製服務過程的條件下獲得的廣

義 P-K 公式推廣到了多個服務狀態。如果一個三個服務狀態的馬爾科夫信道

中的某一個服務率是零，那麼其相應的狀態轉換因子𝛽𝛽可以寫成一個簡單的

表達式。在多個服務狀態下，不可能獲得起始服務概率的閉式表達式。因此，

我們提供了兩種近似方法分別針對服務狀態較少和較多的情況：線性近似法

和累積分佈函數法。通過分析一個點對點文件共享系統的一般排隊模型，仿

真結果顯示這種近似的廣義 P-K 公式可以很好的預測平均隊列長度。 
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Chapter 1

Introduction

1.1 Statement of the Problem

With the development of communication networks, systems with time-varying ser-

vice rates have received more and more attention in the field of wireless communi-

cation systems and sharing systems with limited resource.

1.1.1 Wireless Channels

Most newly emerging real-time telecommunication services are deployed over wireless

networks. The challenge of providing stringent quality of service (QoS) guarantees

is how to cope with the time-varying service rate that is subject to the radio propa-

gation characteristics of wireless channels [23]. The impact of variations of channel

service rate on the queueing behavior of input buffer is vital to the design of wireless

system for delay-sensitive traffic [4, 54].

The variations of the fading channels are commonly estimated by the normalized

Doppler frequency, which is the product of the maximum Doppler frequency fD

and the symbol period. It is widely known that slower fading channels own larger

1



Chapter 1. 2

loss probabilities or longer delay, which can only be intuitively explained by the

normalized Doppler frequency [4,29,46,64]. There is no rigorous analysis in current

literature that explores the effect of slow/fast fading on the delay performance of

Markov channels.

The performance of wireless fading channels is widely studied by using the

Markov chain method invented and pioneered by Wang and Moayeri in [50], which

explicitly established the link between the physical parameters of wireless channels

and the states of the finite-state Markov channel (FSMC). In particular, each chan-

nel state corresponds to a range of the received signal-to-noise ratio (SNR), which,

in return, determined a constant error probability in that state. The state transition

rates are calculated from the level-crossing rate at the physical layer, which are linear

functions of the Doppler frequency fD. With the help of FSMC modeling, system

performance metrics such as packet error probabilities and throughput of the system

can be analyzed and improved. For delay-sensitive systems, the analyses of packet

queueing delay and buffer overflow probabilities in the literature are almost all based

on the matrix-geometric method [35], which was developed in the 1980s. However,

those results expressed as functions of matrices provide little physical insights for

system design, and we do not know the range that they are bounded.

1.1.2 Markov modulated service processes in different

fields

Besides in the wireless communications systems, systems with time-varying service

rates are studied in different fields in the literature, by modeling the service process

as a finite-state Markov chain:

A general P2P queueing model is proposed by Li et al. [27], where the system

has independent Poisson job and server arrivals (with rates λc and λs respectively),

and independent exponentially-distributed job service time and server life time (with



Chapter 1. 3

rates µc per server and µs respectively). Li et al. [27] prove the P2P system stability

conditional is λc/µc < λs/µs, and observe that systems with higher server dynamics

lead to lower waiting time.

Perel and Yechiali [37] analyze a similar queueing systems of Markov models

with applications in computer networks, where the system is comprised of two con-

nected M/M/ − /− type queues with customers of one queue, Qs, act as servers

for the other queue, Qc. Qs operates as a finite buffer M/M/1/N system and Qc

operates as an infinite-buffer, single-server M/M/1/∞ queue with Poisson arrival

rate λc and dynamically changing service rate µcLs, where Ls denotes the number

of customers in Qs. They derive the generating functions of the systems’s steady

state probabilities and calculate numerically the mean total number of customers in

the second queue.

Another example is the parallel processes [32], where a Central Processor Unit

(CPU) runs multiple processors in parallel. A software agent submits tasks to the

CPU continuously throughout the day according to a Poisson process and each

task has exp(µ) work in it. If there is only one process running on the CPU, it

receives all the CPU speed. However if there are few other processes running at the

same time, each of those processes shares a fraction of the CPU speed. Then the

service rates vary according to an external environment process which is modeled as

a Continuous Time Markov Chain (CTMC). The author analyzed the conditional

moments of service time and obtained the queue length and delay using Matrix

Geometric Method (MGM).

The Markov modulated service rates model is also used to study the service

systems with human servers [61], where employee learning and turnover cause the

sequence of service-time distribution to exhibit systematic non-stationary. A new

employee may lean and advance to a higher skill level with a pre-specified probability;

a skilled employee may also turn over with another probability and the position is
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usually replaced by another new person with lower skill level. Such a system is

modeled as a M/MMPP/1 process and obtained a complete characterization of

the system’s behavior using a matrix difference equation approach when considering

only two states.

In the field of transportation, If an incident occurs on a road segment all the

vehicles on the road have to lower their speed. Consider a section of a road subject

to incidents. The space occupied by an individual vehicle on the road segment

represents one queueing server, which starts its service as soon as a vehicle joins

the link and carries the service (the act of traveling) until the end of the link is

reached. A two-mile roadway section contains hundreds or thousands of such servers,

and Baykal-Gursoy and Xiao [3] consider an M/M/∞ queueing system subject to

random interruptions of exponentially distributed durations.

A system with Markov modulated service rates is also a Quasi-birth-death (QBD)

process. All the previous system performance analysis concerning queueing length

and delay is carried out by applying MGM. MGM is so powerful to solve all those

models. However, the computing complexity considerably increases when the num-

ber of service states is large. What’s more, only numerical results can be obtained

which implies little physical insights on the relationships between the system per-

formance metrics and the system parameters.

1.1.3 Purpose of the Study

In this dissertation, we study the queueing performance of communication systems

with Markov modulated service rates. We focus on deriving analytic expressions with

clear physical interpretations in terms of system parameters of interest, that is, the

closed-form physical laws that govern the system behavior. The results we obtained

based on Markov channels could also be applied to other related applications with

Markov modulated service time in different fields.
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1.2 Our Methodologies

In this dissertation, we study on the performance analysis of Markov channels by

modeling the channel as a Markov modulated service process (MMSP). We consider

Poisson arrivals, and the channel systems are modeled as M/MMSP/1 queues. We

introduce the sate transition factor β, which indicates how fast the channel state

changes in comparison with service rates, to characterize the performance of the

M/MMSP/1 queue. From the generalized P-K formula for the M/MMSP/1 queue

derived by using the start-service probability, we show that the queueing delay is

very sensitive to this state transition factor β. When this factor is close to 1, the

queueing delay of the wireless channel becomes extremely large. On the other hand,

the performance of the M/MMSP/1 queueing system can be approximated by an

M/G/1 queue when this factor β is close to 0.

The state transition factor β is derived by studying the channel state transition

progress during one service time of a random packet. Purdue [39] analyzed the

similar process by studying the busy period of an M/M/1 queue embedded in an

N -state irreducible continuous-time Markov chain. He obtained a so called busy-

period matrix, corresponding to the state transition matrix Q̂ in this dissertation,

from which he derived the stability condition of the queueing system by obtaining the

extreme value of the start-service probability when the arrival rate goes to infinity.

We define the state transition factor β from this matrix Q̂ and show it is essential to

the queue length of the M/MMSP/1 queue by deriving its generalized P-K formula.

The derivation of the generalized P-K formula is based on the residual service

time similar to the method described in pages 141-144 of [5] for proving the tradi-

tional P-K formula for the M/G/1 queue. We obtain the mean waiting time from

the start-service probabilities and the state transition factor, by invoking to the

conditional moments of service time [32]. Mahabhashyam and Gautam [32] derived
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the expressions of conditional moments of service time of queueing systems with

Markov modulated service process to analyze the first and second moments of ser-

vice time. He also studied the start-service probability under two extreme cases

when the arrival rate goes to 0 and infinity.

We first analyze a Markov channel with two-state. The wireless fading channels

with finite input buffer, Poisson arrivals and two-state Markov modulated service

processes (MMSP) are modeled as M/MMSP/1/K queues. We derive the closed-

from expressions of buffer overflow probability and queueing delay from conditional

generating functions. A simple expression of state transition factor β is derived and

closed-form expressions of start-service probabilities are provided. The closed-form

expression of the generalized P-K formula is derived based on finite buffer capacity.

We use the Type I Hybrid ARQ system with a fixed data-rate as an example to

illustrate our results for two-state channels.

We then extend our generalized P-K formula for Markov channels with two

states to general Markov modulated service process with finite states. For a special

three-state Markov channel with no service rate in one state, we show that a simple

closed-form expression of the state transition factor is available. We provide a Linear

Approximation method to approximately calculate the start service probability. For

Markov channels with large number of states, we propose a CDF Approximation

method to approximately calculate the start service probability. We take a P2P

system with the M/M/(M/M) model defined in [27] as an example to illustrate our

results for Markov channels with large states.

1.3 Contributions

In this dissertation, we consider the wireless channel as a Markov modulated service

process (MMSP). Assuming Poisson arrivals and exponential service time in each
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channel state, we obtain the following results:

1. We derive a closed-form expression of buffer overflow probability of theM/MMSP/1/K

queue with two states from conditional generating functions. We also provide

the exact expression of the asymptotic constant for the large-deviation ap-

proximation of buffer overflow probability.

2. We define a key parameter, called state transition factor, to completely de-

termine the start-service probability first introduced in Mahabhashyam and

Gautam’s approach [32]. The state transition factor indicates how fast the

channel state changes with respect to service rate. Based on this generalized

start-service probability, we obtain the closed-form expressions of the first and

second moments of service time and mean delay. For a Markov channel with

N states, we provide an Linear Approximation method for small N and a

CDF Approximation method for large N to approximately calculate the start

service probability.

3. We derive a generalized P-K formula for M/MMSP/1 from conditional mo-

ments of service time and start-service probability which reveals that the

queueing delay is highly related to the state transition factor. For wireless

channels with the same channel capacity, we show that the mean delay of

a channel with a slow state transition rate is longer than the one with fast

channel state transition rate, simply because the former owns a larger state

transition factor, say close to 1, than the latter. Thus, this state transition

factor should be reduced as much as possible for delay-sensitive wireless sys-

tems. Furthermore, we show that the M/MMSP/1 can be approximated by

an M/G/1 queue with the same first and second moments of service time

when this factor approaches 0.
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1.4 Dissertation Overview

The dissertation is organized as follows:

Chapter 2 provides an extensive review of the related research works in the

literature, including a) Markov channels, b) Queues with Markov modulated service

rates, c) Delay analysis on Hybrid ARQ systems, and d) Delay analysis on Peer-to-

peer systems.

In Chapter 3, we study the queueing performance of Markov channels with two

states. We first derive the closed-from expressions of buffer overflow probability and

queueing delay from conditional generating functions. A simple expression of state

transition factor β is derived and closed-form expressions of start-service probabili-

ties are provided. The closed-form expression of the generalized P-K formula method

is derived based on finite buffer capacity and the impact of the state transition factor

on queue length is discussed.

In Chapter 4, we extend our generalized P-K formula method derived in Chap-

ter 3 to Markov channel finite states. We define state transition factor for finite-state

Markov channel from state transition matrix Q̂. The results are illustrated in details

through a three-state Markov channel model and a finite-state P2P model. We pro-

vide two approximation methods, Linear Approximation and CDF Approximation,

to approximately calculate the start service probability for small and large number

of channel states respectively. The impact of the state transition factor on queue

length of M/MMSP/1 with finite states is discussed and verified by simulations.

Chapter 5 will give the summary of this dissertation, together with several further

research directions.
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Review of Related Literature

In this Chapter, we provide an extensive review of the literature and research related

to the queueing analysis over Markov channels. The chapter will be divided into

four sections that include a) Markov channels, b) Queues with Markov modulated

service rates, c) Delay analysis on Hybrid ARQ systems, and d) Delay analysis on

Peer-to-peer systems.

2.1 Markov Channels

The study of communication channels dates back to the work by Shannon in [47],

where the channel is defined as “merely the medium used to transmit the signal from

transmitter to receiver” and the capacity of a channel is defined relating to informa-

tion entropy. In 1960, Gilbert [17] introduced a Markov chain with Good and Bad

states to model a burst-noise channel, where each channel state is associated with a

discrete memoryless channel and is statistically independent of the channel inputs.

In 1963, Elliott studied the error rate performance of error correcting and error de-

tecting codes over Gilbert’s model in [11]. In the original version of Gilbert’s model,

the transmission over channel with Good state is error-free; Elliott later modified

9
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the model to allow error probabilities in both states and the error probability in the

Good state is smaller than that in the Bad state [44]. The Gilbert-Elliott channel,

which models the channel by a two-state Markov chain, is widely used for modeling

wireless fading channels over the past 60 years for its simplicity.

Meanwhile, researchers are trying to extend the Gilbert-Elliott model from two

states to finite states since 1960s, so as to model much complicated channels. Fritch-

man [14] studied a N -state Markov channel, which is partitioned into a group of NG

Good states and N −NG Bad states in 1967. For the special Markov channel with

only one Bad state, Fritchman well derived the channel error statistics and showed

the Gilbert-Elliott as an extreme case. Gallager [16] further explored the informa-

tion theoretical aspect of finite-state Markov channels (FSMCs) in 1968, by provid-

ing standard definitions, coding theorems and error exponents. The applications of

these Markov channels were limited to model error bursts in digital wireline circuits

or wireless links between fixed stations until the commercial success of digital cellu-

lar networks in the 1990s, after which the demand for modeling of fading channels

was arising. Wang and Moayeri [50] explicitly established the fading channel models

by using finite-state Markov chains in 1995. They explicitly established the link be-

tween the physical parameters of wireless channels and the states of the FSMC. In

particular, each channel state corresponds to a range of the received signal-to-noise

ratio (SNR), which, in return, determined a constant error probability in that state.

The state transition rates are calculated from the level-crossing rate at the physical

layer, which are linear functions of the Doppler frequency fD. An improved method

to partition the received SNR into finite states for Rayleigh fading channels was

proposed in [60], and the level-crossing rate for general Nakagami fading channels

was analyzed in [22]. Higher order Markov modeling of Rician fading channels was

investigated in [38]. The packet transmission process over Rayleigh fading channel

is adequately modeled three-state Markov model with one Good state and two Bad
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states [64]. Due to their simplicity, the proposed Markov chain modeling [50] and its

variations [22,60] are still used by researchers today to determine model parameters

and to analyze system performance.

2.2 Queues with Markov Modulated Service

Rates

The queueing analysis of Markov modulated service rates traces back to the early

work of queueing problems where the service of a customer may breakdown and

resume according to different rules [51]. By considering Poisson arrivals and a single

server with service rate varying between µ and 0, the moments of the queue length

distribution are found by a generating function approach in [51]. A multi-server

queue where each server may be down independently of the others for an exponential

amount of time is analyzed in [34], where the explicit from of the moment generating

function is obtained when there are two servers. Eisen and Tainiter [10] studied a

single-server queue with the arrival and service rates alternate according to two

external environment states, and each state corresponding to an arrival and service

rate in 1963. Analytic expressions are obtained for the generating functions, the

mean queue length, and the mean waiting time. Apparently unaware of the work

done by Eisen and Tainiter, Yechiali and Naor [57] also obtained similar steady-

state results for the same model in 1971. The work is generalized to a queue whose

arrival and service rates are changing according to a continuous-timeN -state Markov

chain in [56]. Purdue [39] studied the busy period of this queue by defining busy −

periodmatrix and obtained its generalized equilibrium conditions with Yechiali’s

result [56] as a special case.

Neuts [36] generalized the service distribution of queueing model in [57] from

exponential distribution to general distribution, where he assumes that the service
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state only changes only at the beginning of the service. There are followed analysis

on queues with general distributed service time which depends on the underlining

finite-state Markov chain [6, 41, 49].

In general, the queueing models with Markov modulated service rates can be

represented as quasi-birth-and-death (QBD) processes [15] and their analysis can

be solved by the matrix-geometric method [35]. However, the matrix-form solution

requires complicated computations but provides little physical insights for practical

system operation. A novel approach based on conditional moments of service time

is proposed by Mahabhashyam and Gautam in [32], in which the moments of service

time are evaluated by conditioning on the start-service state of the server. However,

the analysis in [32] is incomplete because the start-service probability is only avail-

able for two extreme cases, packet arrival rate approaches zero or infinity, which are

not in the region of interest in the practical operation of wireless channels.

2.3 Delay Analysis on Hybrid ARQ Systems

Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) are com-

monly used to improve the quality of digital data delivery over wireless channels.

ARQ detects error bits and requests a retransmission of the current packet, while

FEC corrects error bits at the receiver with additional redundant bits. The former

guarantees transmission reliability and the latter is more suitable for delay-sensitive

applications. However, ARQ technology may cost large delay for multiple retrans-

missions for the same packet. On the other hand, FEC consumes excessive band-

width, especially under good channel condition, in order to improve transmission

reliability over time-varying channel.

The Hybrid ARQ scheme designed for delay-sensitive wireless systems comprises

a stereotypical class of Markov fading channels [2, 12, 19, 24–26, 43, 46]. It combines
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conventional ARQ with Forward Error Correction (FEC) to reduce the number of

retransmissions and improve the throughput by correcting some error bits at the

receiver [28]. The receiver first corrects received packets with FEC bits and requests

a retransmission if there are remaining errors. There are two types of Hybrid ARQ

systems. For the Type I Hybrid ARQ scheme, the transmitter retransmits the same

packet. For the Type II Hybrid ARQ scheme, the transmitter sends additional re-

dundancy bits, along with the erroneous packets previously received, to help decode

the original message [31].

The packet delay analyses of different Hybrid ARQ schemes have been well stud-

ied in the literature. Packet transmission delay of SR ARQ systems with Markov

channels was derived based on heavy traffic assumption in [43]. For a Type I

Hybrid ARQ wireless system with infinite buffer capacity, the packet delay and

buffer overflow probability were derived from tail distribution analysis by Kim and

Krunz [24, 25]. The queueing behavior of a Type II Hybrid ARQ system over a

Markov channel was analyzed in [46] with a resort to matrix-geometric method. As-

suming that packets are discarded after limited timeslots instead of buffer overflow,

the packet loss probability of a Type I Hybrid ARQ wireless system with batch

arrivals was obtained in [26]. A wireless channel with Type II Hybrid ARQ was

modeled as a three-state continuous-time Markov process in [19], which provides

average delay analysis from the tail asymptote buffer overflow probabilities. Various

approximations of buffer overflow probability were obtained in previous work based

on the theory of large deviations. Due to the infinite buffer assumption, however,

the asymptotic constant in these approximate overflow probabilities has never been

exactly determined. Under the finite input buffer assumption, an approximation of

the overflow probability of a Hybrid ARQ system was obtained from the first and

second moments of service time of an M/G/1/K queue in [12], while we directly

calculated this probability from the generating functions of M/MMSP/1/K queue
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in [21]. The analyses in [2, 24–26, 43] assume that the channel condition does not

change during the transmission of a packet. However, for fading channels, channel

variations are independent of the packet transmission. In this dissertation, our anal-

ysis allows channel variations during the packet’s transmission and reveals how the

channel variations (slow or fast) affecting the delay performance.

2.4 Delay Analysis on Peer-to-peer Systems

Typical file sharing systems, peer-to-peer (P2P), are widely used to for distribution

of resources over Internet, including video downloads, online storage and media

streaming. In a P2P network, a connected customer operates as a user downloading

a file and as a server uploading the file at the same time.

Stochastic models have been used to analyze P2P file sharing systems where

the number of servers is greatly correlated to the number of jobs. In [55], the

service capacity of a P2P system is modeled in two regimes, the transient phase by

a brunching process and the steady state by a Markov model. A fluid model is used

in [40] to characterize the performance and efficiency of BitTorrent like networks in

terms of average downloading time. In [13], the fluid model is supplemented obtain

the analytical expressions of system performance with higher accuracy. [48] studied

the population dynamics of system by a deterministic fluid model and adopted a

more detailed Markov chain to estimate the life time of a P2P file sharing system.

The Markov model approximates to M/M/∞ when the mean service times are very

small.

With the development of P2P technology, such as streaming, the server arriving

process tends to a random process and less correlated to the job dynamics. Idle

Internet resources are leveraged to act as additional servers provide a scalable solu-

tion to P2P Video-on-Demand (VOD) systems [58]. A new View-Upload Decoupling
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(VUD) design for multi-channel P2P streaming systems is proposed in [53], where a

user might be assigned to one or more unwatched channels to contribute the upload

bandwidth. [27] developed queueing models for P2P service systems where the server

dynamics may or may not correlate to the job dynamics.
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Generalized Pollaczek-Khinchin

Formula for the M/MMSP/1/K

Queue — Two-state

Although the two-state Markov model has been widely used in [8, 21, 24–26, 33, 63],

the analysis of wireless channels is still incomprehensible because of the dependent

service time distribution. In this chapter, we use generating function methods to

compute the buffer overflow probability and introduce the generalized P-K formula

method to complete the queueing analysis on two-state Markov channel.

3.1 Two-state Channel Model

The aim of this paper is to analyze the performance of Markov fading channels with-

out resorting to the matrix-geometric method. We are interested in the physical laws

that govern system behavior, and parameters that characterize the impact of wire-

less channel variations on the queueing delay. There is an inherent trade-off between

the accuracy of modeling and the complexity of analysis. Our analysis focuses on

16
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Markov channels with two service states, which are mathematically tractable, and

enables us to capture the essential characteristics of wireless fading channels. The

parameters and assumptions of the system are introduced in this section to facilitate

our discussions. We expect that the results obtained by the two-state model will

shed some light on the analysis of general Markov channels in the future research.

3.1.1 Markov model of fading channels

The two-state Markov chain of a wireless fading channel is shown in Fig. 3.1, which

is called Markov modulated service process (MMSP) in this paper. The state j = 0

(j = 1) represents the channel is in Good (Bad) state, respectively. The transition

rate from state j to j̄ is denoted as fj , where j̄ is the complement of j. The state

transition rate fj is determined from level-crossing rate at the physical layer, which

is a linear function of the maximum Doppler frequency, i.e. fj ∝ fD, as shown

in [50, 60] for Rayleigh fading channels and in [22] for general Nakagami fading

channels. Thus, the steady-state probability that the channel is in state j is given

by

πj =
fj̄

f0 + f1
. (3.1)

We assume that the channel service rate is a constant during one symbol in-

terval, but it may vary during the transmission period of a packet. The channel is

in state j = 0 (j = 1) if the received signal-to-ratio (SNR) is above (below) some

predetermined threshold. Each channel state is associated with a constant error

probability of received symbol, which is averaged over all probabilities in that chan-

nel state [50, 60]. For a specific FEC coding scheme, the probability of having one

or more uncorrectable error symbols in the received bits in each state is reported

in [26, 64], from which the net data-rate (symbols of the original message transmit-

ted per unit time) in each state j of the channel can be determined along with the

specific coding rate.
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j=0 j=1

f0

f1

Figure 3.1: Two-state Markov model.

3.1.2 Parameters of M/MMSP/1/K queueing model

We assume that the channel under consideration is a non-adaptive wireless system

that employs an ideal Type I Hybrid ARQ scheme with a fixed data-rate, and there

is an error-free feedback channel [62], through which an ACK/NACK will be sent

back immediately after each transmission. If a packet is transmitted successfully,

the next packet in the queue will be served; otherwise, the same head-of-line (HOL)

packet will be retransmitted until it is successfully received. For the tractability

of our model, we further assume that the stream of packets input to a finite first-

in-first-out (FIFO) buffer is a Poisson process with mean rate λ packets per unit

time, and the packet lengths are independent and identically distributed exponential

random variables. The packet length, along with the net data-rate, determines the

service rate µj in each channel state j ∈ {0, 1}. That is, packets are successfully

transmitted with mean service rate µj (packets per unit time), and the service rate

µ0 in Good state is larger than µ1 in Bad state. In this paper, we show that the

queueing behavior of the system can be described by closed-form expressions under

these assumptions.

At time t, the state of the system X(t) is defined as the number of packets in the

system, including the one in service, while the channel state is denoted by V (t). The

process {(X(t), V (t)), t ≥ 0} is a Continuous Time Markov Chain (CTMC) with a

finite state space {(i, j), i = 0, 1, 2, ...,K, j = 0, 1}. We denote this queuing model

as M/MMSP/1/K with the state transition diagram shown in Fig. 3.2.
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Figure 3.2: Rate transition diagram with finite buffer K.

The steady state probabilities of the M/MMSP/1/K are defined by:

pi,j = lim
t→∞

Pr{X(t) = i, V (t) = j}, (3.2)

where i = 0, 1, 2, ...,K and j = 0, 1. Thus, the probability that there are i packets

in the system in steady state is given by:

Pi = pi,0 + pi,1. (3.3)

The following set of Kolmogorov forward equations, or so called balance equations,

can be directly derived from the state transition diagram shown in Fig. 3.2:

(λ+ fj)p0,j = fj̄p0,j̄ + µjp1,j (3.4a)

(λ+ fj + µj)pi,j = fj̄pi,j̄ + λpi−1,j + µjpi+1,j (3.4b)

(fj + µj)pK,j = fj̄pK,j̄ + λpK−1,j (3.4c)

for all i = 0, 1, 2, ...,K and j = 0, 1. The balance equation with respect to the dashed

line of the state transition diagram is given by

λ(pi,0 + pi,1) = µ0pi+1,0 + µ1pi+1,1. (3.5)

Summing equation (3.5) over index i , we obtain

λ(1− PK) = µ0π0 + µ1π1 − µ0p0,0 − µ1p0,1. (3.6)
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The left-hand side of (3.6) is the net packets input rate, denoted as λ′ = λ(1−PK),

while the right-hand side is the system throughput, or the mean number of packets

transmitted by the system per unit time. Thus, the capacity of this channel can be

defined as follows [18]:

µ̂ = π0µ0 + π1µ1, (3.7)

which is the maximum of the right-hand side of (3.6) when p0,j approaches 0, mean-

ing that the system is busy with probability 1. Detailed discussions on channel

capacity µ̂ are presented in subsection A of Section 3.4.

3.2 M/MMSP/1/K Queue

In this section, we derive the buffer overflow probability and queueing delay of the

M/MMSP/1/K queue from the conditional generating function Gj(z), which is

defined as

Gj(z) =

i=K
∑

i=0

ziPi,j , |z| ≤ 1, j = 0, 1.

Multiply zi(i = 0, 1, 2, ...,K) on both sides of (3.4) appropriately, and sum over all

i, we arrive at

(λ+ fj + µj)Gj(z) = fj̄Gj̄(z) + λzGj(z) +
µj

z
Gj(z) + (µjP0,j − λPK,jz

K+1)(1−
1

z
)

(3.8)

Solving the equation set (3.8) for j = 0, 1, we get

Gj(z) =
1

g(z)

(

fj̄(µj̄p0,j̄ − λzK+1pK,j̄)z+

(µjp0,j − λzK+1pK,j)
(

−λz2 + (λ+ µj̄ + fj̄)z − µj̄

)

)

(3.9)

where

g(z) = (z − 1)(λz − µ0)(λz − µ1)− z(λz − µ̂)(f0 + f1) (3.10)
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Define the system generating function G(z) =
∑i=K

i=0 ziPi, whose closed-from expres-

sion can be obtained from conditional generating functions Gj(z), as

G(z) = G0(z) +G1(z)

=
1

g(z)

(

− λ(µ̂− λ(1− PK))z2 − µ0µ1P0 + ((λ+ f0 + f1)(µ̂− λ(1− PK)) + µ0µ1P0) z

− λzK+1
(

− λPKz2 − µ0pK,1 − µ1pK,0 + ((λ+ f0 + f1)PK + µ0pK,1 + µ1pK,0) z
)

)

,

(3.11)

The function g(z) in the denominator processes three roots z0, z1 and z2 (z0 < z1 <

z2 by default) which locate at the three points of intersections of the following two

curves [10], as plotted in Fig. 3.3:

y1(z) = (z − 1)(λz − µ0)(λz − µ1)

and

y2(z) = z(λz − µ̂)(f0 + f1).

For positive λ, µ0, µ1, f0 and f1, it has been proved in [10] that the following

relationship always holds:

0 < z0 < min(1, µ0

λ ) and z2 > max(1, µ1

λ ). (3.12)

3.2.1 Buffer overflow probability

Since z0, z1 and z2 are the three roots of g(z), (3.11) can be expressed as

G(z) =A
1− (z−1

1 z)K+1

1− z−1
1 z

+B
1− (z−1

2 z)K+1

1− z−1
2 z

+ C
zK0 − z−1

0 zK+1

1− z−1
0 z

. (3.13)

The probability that there are i packets in the system

Pi =Az−i
1 +Bz−i

2 + CzK−i
0 . (3.14)
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Figure 3.3: z0, z1 and z2 locate at the three points of intersections of y1 and

y2.

can be obtained by taking the inverse z-transform of G(z). The probability pi,j that

there are i packets in the system while the wireless channel is in state j can be

derived from Pi. Due to the assumption µ0 6= µ1, from (3.3) and (3.5) we have

pi,j =
λPi−1 − µj̄Pi

µj − µj̄

(3.15)

for i = 1, 2, 3...,K. Substituting (3.14) into (3.15), it yields

pi,j =
λz1 − µj̄

µj − µj̄

Az−i
1 +

λz2 − µj̄

µj − µj̄

Bz−i
2 +

λz0 − µj̄

µj − µj̄

CzK−i
0 . (3.16)

It can be verified that (3.16) is also satisfied under the condition i = 0.

Since z0 ∈ (0, 1), the last component of (3.14) is given as CzK−i
0 instead of Cz−i

0 .

A general form for the stationary probability distribution of M/G/1-type Markov

chains is presented in [1], where the authors decompose the generalized system into

forward and backward subsystems using Matrix-geometric method. Although our

system model is different from M/G/1, the component CzK−i
0 in our expression
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corresponds to the backward subsystem defined in [1]. For the special case when

µ1 = 0, there does not exist z0. However, our analysis are still valid if we take z0 = 0

under this environment and the discussion is detailed in Appendix A.

Parameters A, B and C can be derived from the initial conditions (3.4a), the end

boundary conditions (3.4c), and the property that the summation of all probabilities

goes to unity, specifically,

A = 1
R

1−z−1
1

λz1−µ̂

(

1−
(

z0
z2

)K+1
)

,

B = 1
R

1−z−1
2

λz2−µ̂

(

(

z0
z1

)K+1
− 1

)

,

C = 1
R

1−z0
λz0−µ̂

(

z
−(K+1)
1 − z

−(K+1)
2

)

(3.17)

where R is a normalization coefficient

R =
1−z

−(K+1)
1

λz1−µ̂

(

1−
(

z0
z2

)K+1
)

+
1−z

−(K+1)
2

λz2−µ̂

(

(

z0
z1

)K+1
− 1

)

+
1−zK+1

0
λz0−µ̂

(

z
−(K+1)
1 − z

−(K+1)
2

)

.

From the relationships of z0, z1 and z2 shown in (3.12), we conclude that coefficients

A, B and C are all positive values. In this derivation, we use (3.15) which are based

on µ0 6= µ1. However, the expressions of A,B and C we obtained are still valid

under the special case µ0 = µ1.

Now that we have the stationary probability distribution of the M/MMSP/1/K

with two states, its buffer overflow probability is given by

PK = pK,0 + pK,1 = Az−K
1 +Bz−K

2 + C. (3.18)

Here the buffer overflow probability is derived based on that a new arrival is

blocked when there are already K packets in the system. For some real systems,

the buffer is estimated by memory capacity instead of number of number of packets.

With the random packet length assumption, the buffer may not be full if the sizes

of all those K packets in the system are small and additional new packets can be

stored in the buffer. The analysis of buffer overflow probability by tracking the sizes
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of packets in the buffer is much complicated and is beyond our interest. However, our

PK still provides a good estimation with respect to average packet length, especially

when K is large, if those packet lengths are independent and identically distributed.

3.2.2 Large-deviation approximation

Due to (3.18), expressing K in terms of PK as a simple expression does not seem to

be possible. It is also common to estimate the buffer overflow probability from the

tail distribution of infinite queue by using the theory of large deviations. Let X(∞)

denote the number of packets in the system when the system is stable. According

to the theory of large deviations, for large values of K, we have

P{X(∞) > K} ∼ αe−θK , (3.19)

where θ = log z1 is the asymptotic decay rate and α is the asymptotic constant

[9,19,32]. When K is not too large, an approximation by setting α ≈ P{X(∞) > 0}

is commonly adopted to analyze the wireless system performance, and is given in

[24, 54] as follows:

P{X(∞) > K} ≈ P{X(∞) > 0}e−θK , (3.20)

with parameters defined in [54] as follows:

P{X(∞) > 0} = 1− lim
K−∞

P0.

A comparison between the exact buffer overflow probability (3.18) and the ap-

proximation (3.20) obtained from the large deviation method with α ≈ P{X(∞) >

0} is shown in Fig. 3.4. These curves show that the exact buffer overflow probabilities

agree with the simulation results, which are upper bounded by the approximation

(3.20) when K > 1. Thus, the approximation obtained from the large deviation

method can only serve as a conservative estimate of the overflow probability, which

agrees with the observation reported in [9]. An alternate approach was proposed
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Figure 3.4: A comparison between approximations and exact values of buffer

overflow probability.

in [30] to improve the large-deviation bound given in (3.20). Actually, a much more

improved asymptotic constant α in expression (3.19) can be simply determined from

our exact expression of buffer overflow probability (3.18). Substituting the constant

C given in (3.17) into (3.18), we have

PK =
(

A+ 1
Rz1

1−z0
λz0−µ̂

)

z−K
1 +

(

B + 1
Rz2

1−z0
λz0−µ̂

)

z−K
2 ≈

(

A+ 1
Rz1

1−z0
λz0−µ̂

)

z−K
1 .

(3.21)

We know from (3.12) that 0 < z1 < z2. It follows that a theoretically sound

estimation of the constant α in (3.19) for large value of K should be given by

α′ = A+ 1
Rz1

1−z0
λz0−µ̂ . (3.22)

The approximation curve with α′ is also plotted in Fig. 3.4. It fits well with the exact

overflow probability (3.18) when K > 10. Due to the limitation of the theory of
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large deviations, however, both approximations failed to predict the buffer overflow

probability for small values of K (K < 10), as shown in Fig. 3.4.

3.2.3 Queueing delay

The mean queue length L =
∑i=K

i=0 iPi can be directly derived from the generating

function (3.11) and is given as follows:

L = λ(1−(K+1)PK)
µ̂−λ +

(1−pK,1)λµ0+(1−pK,0)λµ1−λµ̂−µ0µ1ρ
(f0+f1)(µ̂−λ) , (3.23)

where ρ = 1 − P0 is the server utilization. If we take the limit K → ∞, then

limK→∞ PK = 0, limK→∞ pK,j = 0, and limK→∞ λ′ = λ. From (3.23), the mean

queue length of the system with infinite buffer capacity becomes:

lim
K→∞

L = λ
µ̂−λ + λ(µ0+µ1−µ̂)−µ0µ1ρ

(f0+f1)(µ̂−λ) (3.24)

which agrees with the result presented by Eisen and Tainiter [10] and Yechiali and

Naor [57]. The mean waiting time is obtained from Little’s Law as follows:

W = (L− ρ)/λ′. (3.25)

With respect to different channel varying rates, the trade-off between buffer overflow

probability and delay is shown in Fig. 3.5. The wireless channel alternates between

Good and Bad states with frequencies f0 = 0.1f and f1 = 0.3f respectively, where f

is a parameter representing different state-varying speeds, or different Doppler fre-

quencies fD, of the wireless channel. We consider a fixed channel capacity µ̂ = 0.65

with three different values of f , 0.0001, 0.01 and 1, corresponding to three differ-

ent channel state-varying speeds. Our results demonstrate that the buffer overflow

probabilities and delays of M/MMSP/1/K queue are very sensitive to the value of

f . As shown in Fig. 3.5, the buffer overflow probability gradually decreases as the

mean waiting time increases in all three cases. With the same channel capacity

and buffer size, a slow varying channel (small f) generates a much larger delay and
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channel varying rates.

a larger buffer overflow probability. In the following sections, we will concentrate

our discussion on this phenomena based on the start-service probability and the

generalized P-K formula of the M/MMSP/1/K queue.

3.3 Start-service Probability

The channel state at the beginning of the service of a head-of-line (HOL) packet is

called the start-service state of this packet. The start-service probability π̂j of an

HOL packet is defined as the probability that the start-service state of this packet

is j. Note that the probability π̂j is different from πj . The latter is the probability

that the channel state is in j and it is also the probability that a newly arrived

packet sees the channel in state j due to PASTA [52]. That is, the probability π̂j is

averaged over all HOL packets whereas πj is averaged over time. It should be noted
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that the difference between π̂j and πj was first studied in [43]. It is shown in [32]

that the probability π̂j is not only a function of πj but also dependent on the packet

arrival rate λ. However, only the following two extreme cases

π̂j =







πj when λ → 0

ηj =
µjfj̄

µ0f1+µ1f0
when λ → ∞

(3.26)

were known. The impact of the arrival process on the service time was first inves-

tigated via start-service probability in [2], where the Markov channel is bound to

change only after each packet transmission. Unfortunately, the authors concluded

from numerical results that the service time is insensitive to the packet arrival rate.

In the next theorem, we show that the state transition factor β ∈ (0, 1) defined as

follows:

β =
µ0µ1

µ0µ1 + µ0f1 + µ1f0
(3.27)

is the key to derive the start-service probability π̂j . Furthermore, we prove that

the service time is insensitive to packet arrival rate only for small β, as depicted in

Fig. 3.11.

Suppose that a new arrival sees i packets in the system. If i = K, then this newly

arrived packet will be blocked. If i ≤ K − 1, then we assume that these packets in

the FIFO buffer are sequentially numbered by m = 0, 1, · · · , i, the one in service is

numbered 0 and the new arrival is numbered i, as shown in Fig. 3.6. Let π̂j(i,m)

be the conditional start-service probability of mth packet defined as follows:

π̂j(i,m) = P{start-service state of mth packet is j

| an arrival sees i packets in the system}

for 0 ≤ m ≤ i, and j = 0, 1. The start-service probability π̂j of an HOL packet

expressed in terms of state transition factor β is derived from the conditional start-

service probability π̂j(i,m) of mth packet in the following theorem.
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Figure 3.6: A new arrival sees i packets in the system.

Theorem 3.1. The probability that the service of an HOL packet starts with channel

state j is given by:

π̂j = ηj +
1

1−PK

(

ηj̄(Gj(β)− βKpK,j)− ηj(Gj̄(β)− βKpK,j̄)
)

, (3.28)

for j = 0, 1.

Proof. The channel may change its state during the service of a packet. We first con-

sider the transition probability of two consecutive start-service states. Let P{j′|j}

be the probability that a packet starts the service in channel state j and finishes

the service in channel state j′. Define the following conditional state transition

probabilities during the service of a packet:

qj =P{next state transition occurs before service

completion | channel is in state j} =
fj

µj+fj
,

for j = 0, 1. Then we have

P{j′ = 0|j = 0} =
∞
∑

n=0

(q0q1)
n(1− q0) =

∞
∑

n=0

(

f0f1
(µ0+f0)(µ1+f1)

)n
µ0

µ0+f0
= β

(

1 + f1
µ1

)

.

Similarly, we can obtain:

P{j′ = 1|j = 1} =
∞
∑

n=0

(q0q1)
n(1− q1) = β

(

1 + f0
µ0

)

,

P{j′ = 1|j = 0} =1− P{j′ = 0|j = 0} = β f0
µ0
,

P{j′ = 0|j = 1} =1− P{j′ = 1|j = 1} = β f1
µ1
.
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We then establish the following set of equations from the definition of π̂j(i,m):

π̂0(i,m+ 1) =π̂0(i,m)P{j′ = 0|j = 0}+ π̂1(i,m)P{j′ = 0|j = 1},

π̂1(i,m+ 1) =π̂0(i,m)P{j′ = 1|j = 0}+ π̂1(i,m)P{j′ = 1|j = 1}.

Solving the above set of difference equations together with the condition π̂0(i,m) +

π̂1(i,m) = 1, for all 0 ≤ m ≤ i, we get

π̂j(i,m) = βm (π̂j(i, 0)− ηj) + ηj . (3.29)

From the probability Pi that a newly arrived packet sees i packets in the system

and pi,j that a newly arrived packet sees i packets in the system while the current

channel is in state j, we obtain the following initial state probability:

π̂j(i, 0) = pi,j/Pi. (3.30)

Since an arrival that sees i packets in the system starts the service in state j with

probability π̂j(i, i), we then obtain the following start-service probability by com-

bining (3.29) and (3.30):

π̂j =
1

1−PK

K−1
∑

i=0

Piπ̂j(i, i) = ηj +
1

1−PK

(

ηj̄(Gj(β)− βKpK,j)− ηj(Gj̄(β)− βKpK,j̄)
)

.

(3.31)

As we mentioned before, the probability π̂j is averaged over all HOL packets

whereas πj is averaged over time. In contrast to the expression (3.31) of π̂j , the

probability πj that the channel is in state j can be expressed from (3.30) as follows:

πj =
K
∑

i=0

pi,j =
K
∑

i=0

Piπ̂j(i, 0). (3.32)

If the loading is very low, meaning P0 → 1, then it is clear that both expressions

of π̂j and πj approach π̂j(0, 0), which is consistent with (3.26) that π̂j = πj when
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λ → 0. On the other hand, if arrival packets always find a large number of packets

waiting in the buffer, then (3.29) and (3.31) reveal that the transmission of a packet

is started in state j with a probability close to ηj , which is again consistent with

(3.26) that π̂j = ηj when λ → ∞. Thus, the expression (3.31) of the start-service

probability π̂j covers the two extremes originally derived in [32] as special cases.

The expression (3.29) implies that the state transition factor β indicates how

fast the channel state probability tends to be stable. This point can be illustrated

by the following two extreme cases:

1. β → 1, when the state transition rate fj is very small, corresponding to

a system with very slow changes of channel rate. The probability π̂j(i,m)

reaches ηj only after a large number m of packets have been served in a busy

period.

2. β → 0, when the state transition rate fj is extremely large compared to service

rate µj . According to (3.29), the probability π̂j(i,m) reaches ηj after a small

numberm of packets have been served. In this case, theM/MMSP/1/K queue

behaves as an M/G/1/K queue with the same first and second moments of

service time, because the dependency among service times becomes insignif-

icant and, therefore, can be ignored. A detailed discussion of this point is

provided in subsection D of Section 3.4.

In the next section, we show that the state transition factor β also plays an essential

role in the derivation of queue length distribution.
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Figure 3.7: Waiting time of an arrival seeing i packets in the system.

3.4 Generalized Pollaczek-Khinchin Formula for

the M/MMSP/1/K Queue

In this section, we derive the generalized P-K formula for the M/MMSP/1/K queue,

which shows that the queueing delay is proportional to 1
1−β . It should be noted that

the analysis described in this section is independent of the number of states of the

Markov channels. The waiting time analysis is based on the residual service time

similar to the method described in [5]. As illustrated in Fig. 3.7, we define

• Qc = The number of packets in the system seen by an arrival (0 ≤ Qc ≤ K).

• Wi = Waiting time of an arrival seeing i (0 ≤ i ≤ K−1) packets in the system.

An arrival that sees K packets in the system is blocked with probability PK ,

in which case there is no waiting time.

• Ri = Residual service time of an arrival that sees i (1 ≤ i ≤ K− 1) packets in

the system. That is, Ri is the remaining time until the completion of current

service. If i = 0, then the system is empty and there is no residual service

time.

• Xm = Service time of the mth (1 ≤ m ≤ i − 1) packet in the queue, starting

from the first packet behind the head-of-line (HOL) packet, which is in service.
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According to the above definitions, the waiting time of an arrival is given by

Wi =























Ri +
∑i−1

1 Xm 2 ≤ i ≤ K − 1,

Ri i = 1,

0 i = 0.

Taking expectation, we have

W =
1

1− PK

K−1
∑

i=0

PiWi = R+
1

1− PK

K−1
∑

i=2

Pi

i−1
∑

m=1

E[Xm|Qc = i], (3.33)

where W is the average waiting time and R = 1
1−PK

∑K−1
i=1 PiRi is the mean residual

service time. In the rest of this section, we will derive the generalized P-K formula

of M/MMSP/1/K queue from the expression (3.33).

3.4.1 Moments of Service time

The derivations of the mean residual service time R and the service time of the mth

waiting packet Xm require the first and second moments, E[T ] and E[T 2], of the

service time of the M/MMSP/1/K queue. They can be obtained from the first and

second conditional moments E[Tj ] and E[T 2
j ] (j = 0, 1) defined in [32] as follows:

E[T ] =
∑

j=0,1

π̂jE[Tj ], (3.34a)

E[T 2] =
∑

j=0,1

π̂jE[T 2
j ], (3.34b)

where E[Tj ] and E[T 2
j ] are the first and second conditional moments of service

time given that the service begins with state j. According to [32], the closed-form

expressions of E[Tj ] and E[T 2
j ], expressed in terms of µ0, µ1, f0 and f1, are obtained

as following:

Consider an arbitrary packet whose service starts in channel state j. Let Tj

be the random variable denoting the total service time for this packet. During the

service of this packet, the channel state j may change to j after time Tf when



Chapter 3. 34

the serve speed alternates, or even stay at j until the serve is finished after time

Tµ. Conditioning on steady state, Tµ and Tf are exponentially distributed with

parameters µj and fj respectively. Then, Tj can be calculated as

Tj = min(Tf , Tµ) +







0 with probability
µj

µj+fj

Tj with probability
fj

µj+fj

where j = 0, 1.

Taking the Laplace Stieltjes transform (LST) on both sides, we get

E(e−sTj ) =
µj + fj

s+ µj + fj

(

µj

µj + fj
+

fj
µj + fj

E(e−sTj )

)

.

Arranging terms, we have

(s+ µj + fj)E(e−sTj ) = µj + fjE(e−sTj ). (3.35)

Solving (3.35) at both j = 0, 1 states, and substituting µj + fj = µj + fj , we get

E(e−sTj ) =
µjs+ µ0µ1 + µ0f1 + µ1f0

s2 + (µ0 + µ1 + f0 + f1)s+ µ0µ1 + µ0f1 + µ1f0
. (3.36)

Taking the first and second derivatives of (3.36) with respect to s, and substituting

s = 0, we have

E[Tj ] =
µj + f0 + f1

µ0µ1 + µ0f1 + µ1f0
, (3.37a)

E[T 2
j ] = 2

µ2
j
+ 2µjfj + fj(µ0 + µ1) + (f0 + f1)

2

(µ0µ1 + µ0f1 + µ1f0)2
. (3.37b)

When the arrival rate goes to infinity, the mean service time becomes 1/µ̂, as shown

in the following expression:

lim
λ→∞

E[T ] =
1
∑

j=0

lim
λ→∞

π̂jE[Tj ] =
1
∑

j=0

ηjE[Tj ] =
1
µ̂ , (3.38)

which can be obtained by combining (3.26), (3.34a) and (3.37a).

The channel capacity µ̂ defined in (3.7) is also the bound of the maximum arrival

rate input to a stable M/MMSP/1 queue. With an infinite input buffer, the server
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Figure 3.8: Derivation of the mean residual service time (page 143-144 in [5]).

utilization can be readily obtained from Little’s Law as follows:

ρ = λE[T ]. (3.39)

The server utilization is also the probability that the channel is busy, or ρ = 1−P0.

From (3.17) and (3.10), we obtain the following expression after extensive algebra:

ρ = 1− (µ̂− λ) z0
1−z0

λ(1−z0)+f0+f1
µ0µ1

. (3.40)

Since z0 ∈ (0, 1), the stability condition (ρ < 1) of the M/MMSP/1 queue implies

λ < µ̂.

3.4.2 Residual service time

We need the mean residual service time R to complete the derivation of the P-K

formula for the M/MMSP/1/K queue. There is no general expression of the mean

residual service time R for finite buffer size K. In the case of infinite input buffer,

the following expression of mean residual service time

R = 1
2λE[T 2] (3.41)

of M/MMSP/1 queue can be derived in the same manner as that of the M/G/1

queue, which was described in pages 143-144 of [5]. Fig. 3.8 illustrates the relation-

ship between the residual service time and the arrivals. Suppose Xn is the service
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Figure 3.9: Simulations of mean residual service time R and 1
2
λE[T 2] of the

M/MMSP/1 queue.

time of the nth customer, then its residual service time r(τ) at time τ must fall

linearly (with slope -1) to 0. A simple derivation of (3.41) given in [5] is displayed

in Fig. 3.8. Since this fact has nothing to do with the property whether the service

time is independently distributed (in the M/G/1 model) or state dependent (in our

M/MMSP/1 model). Thus, the same proof of (3.41) can also be applied to our

model, which is also firmly verified by the simulation result shown in Fig. 3.9. Note

that, due to the state dependency of service time, the mean residual service time

R of an M/MMSP/1/K queue cannot be obtained by simply extending (3.41) to

1
2λ(1−PK)E[T 2]. The derivation of a general expression of the mean residual service

time R of the M/MMSP/1/K queue remains open.



Chapter 3. 37

3.4.3 Generalized P-K formula of Mean Waiting Time

Suppose that for an arrival seeing i packets in the system with probability Pi, the

mth packet in the queue will start its service after the previous m packets (including

the one in service) were served, as demonstrated in Fig. 3.7. From Theorem 3.1, we

know that the mth packet will start the service in state j with probability π̂j(i,m).

Then, its averaged service time Xm under the condition that there are i packets in

the system when a new packet arrives is given by

E[Xm|Qc = i] =
1
∑

j=0

E[Tj ]π̂j(i,m). (3.42)

Theorem 3.2. The mean waiting time of an M/MMSP/1 queue is given by

W =

λ
µ̂E[T ] + 1

1−β

∑1
j=0E[Tj ](πj − π̂j)

1− λ
µ̂

. (3.43)

Proof. Substituting (3.29) into (3.42), the total time for all i − 1 packets in queue

that have been served is given by the unconditional (3.38):

i−1
∑

m=1

E[Xm|Qc = i] =
1
∑

j=0

E[Tj ]
i−1
∑

m=1

π̂j(i,m)

= 1
1−β

1
∑

j=0

E[Tj ] (π̂j(i, 0)− π̂j(i, i)) +
i−1
µ̂ −

1
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj) .

(3.44)

Averaging over all possible i, we obtain the following averaged time to serve all

packets in queue seeing by an arbitrary arrival:

K−1
∑

i=2

Pi

i−1
∑

m=1

E[Xm|Qc = i]

= 1
1−β

K−1
∑

i=2

1
∑

j=0

E[Tj ] (Piπ̂j(i, 0)− Piπ̂j(i, i))+

K−1
∑

i=2

Pi
i−1
µ̂ −

K−1
∑

i=2

1
∑

j=0

E[Tj ] (Piπ̂j(i, 0)− Piηj)
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= 1
1−β

1
∑

j=0

E[Tj ] (πj − pK,j − π̂j(1− PK)) +
Lq−(K−1)PK

µ̂

−
1
∑

j=0

E[Tj ] (πj − PK,j − ηj(1− PK))+

1
∑

j=0

E[Tj ](p0,j − P0ηj), (3.45)

where the second equation is obtained from (3.30), (3.31) and (3.32) and Lq =
∑K

i=2(i− 1)Pi. From Little’s Law, we have

Lq = λ(1− PK)W. (3.46)

Substituting (3.45) and (3.46) into (3.33), we obtain the following mean waiting time

of the M/MMSP/1/K queue:

W =
1

1− PK

1

1− λ
µ̂

{

R(1− PK) + 1
1−β

1
∑

j=0

E[Tj ] (πj − PK,j − π̂j(1− PK))− (K−1)PK

µ̂ −

1
∑

j=0

E[Tj ] (πj − pK,j − ηj(1− PK)) +
1
∑

j=0

E[Tj ] (p0,j − P0ηj)
}

. (3.47)

Taking the limit of K → ∞, we obtain the following mean waiting time from (3.47):

W =
R+ 1

1−β

∑1
j=0E[Tj ](πj − π̂j)−

∑1
j=0E[Tj ](πj − ηj) +

∑1
j=0E[Tj ] (p0,j − P0ηj)

1− λ
µ̂

.

(3.48)

Using the mean residual service time R of M/MMSP/1 given in (3.41) and after

some algebra, the expression (3.48) can be simplified to (3.43). To prove the two

expressions (3.43) and (3.48) are equivalent, we need to show that the following

identity holds:

R−

1
∑

j=0

E[Tj ](πj − ηj) +

1
∑

j=0

E[Tj ] (p0,j − P0ηj) =
λ
µ̂E[T ]. (3.49)

From the closed-form expressions of π̂j , E[Tj ] and E[T 2
j ], previously derived in (3.28)

and (3.37) respectively, it is straightforward to obtain each term of (3.49) as follows:
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• The residual service time R = 1
2λE[T 2] is given by (3.41), where the second

moment of service time is obtained from (3.28), (3.34b) and (3.37b) as follws:

E[T 2] = 2 ρ
λ
µ0+µ1+f0+f1−λ/ρ
µ0µ1+µ0f1+µ1f0

. (3.50)

• From (3.1), (3.37a) and (3.38), we have

1
∑

j=0

E[Tj ](πj − ηj) =
1
∑

j=0

E[Tj ]πj −
1
µ̂ = µ0+µ1+f0+f1−µ̂

µ0µ1+µ0f1+µ1f0
− 1

µ̂ . (3.51)

• From (3.30) and (3.38), we have

1
∑

j=0

E[Tj ] (p0,j − P0ηj) =
1
∑

j=0

E[Tj ]p0,j − P0

1
∑

j=0

E[Tj ]ηj =
1
∑

j=0

E[Tj ]p0,j − P0
1
µ̂ ,

(3.52)

where

1
∑

j=0

E[Tj ]p0,j =
(µ0+µ1+f0+f1)(1−ρ)−(µ̂−λ)

µ0µ1+µ0f1+µ1f0
(3.53)

can be obtained from (3.6) and (3.37a).

Collectively, we establish the identity (3.49) by substituting (3.41), (3.50), (3.51),

(3.52) and (3.53) into the left-hand side of (3.49), and (3.34a) and (3.39) into the

right-hand side.

Alternately, from (3.24) and (3.25), the mean waiting time of the system with

infinite buffer capacity can be expressed as follows:

W =
1

µ̂− λ
+

µ0 + µ1 − µ̂− µ0µ1ρ/λ

(f0 + f1)(µ̂− λ)
− E[T ]. (3.54)

From (3.1), (3.34a), (3.37a) and (3.39), it can be readily proven that the mean

waiting time (3.43) obtained from the generalized P-K formula is the same as (3.54),

the one derived from the generating function.
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Figure 3.10: Mean queue length of M/MMSP/1 and M/G/1 with different

state transition factor β.

3.4.4 The impact of state transition factor on queue

length

The generalized P-K formula explicitly expresses the impact of the state transition

factor on the performance of wireless channels. For a given fixed channel capacity

µ̂, the generalized P-K formula (3.43) reveals that the mean waiting time is greatly

affected by the state transition factor β. This point is illustrated in Fig. 3.10 by the

following mean queue length for different β:

L = λ(E[T ] +W ).

Note that different values of state transition factor β in Fig. 3.10 correspond to

different parameters f shown in Fig. 3.5. Both analytical and simulation results

show that this mean queue length of M/MMSP/1 is very sensitive to the state
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transition factor β when the arrival rate is larger than the service rate in a Bad

channel state (λ > µ1). Because some packets arriving in the Bad state cannot be

transmitted until the channel changes to the Good state, resulting in a long queue

of backlogged packets. The P-K formula shows that the state transition factor β

can be used to characterize the following two extreme cases:

1. β → 1, for slow varying channel systems. It can be readily seen from (3.27)

that β is close to 1 when the channel state transition rate fj is much smaller

than the service rate µj . Since the factor
1

1−β becomes extremely large when β

is close to 1, there is a large mean waiting time of the M/MMSP/1 queue due

to the dominating term 1
1−β

∑1
j=0E[Tj ](πj − π̂j) in the nominator of (3.43).

In Fig. 3.10, the mean queue length at β = 0.9998 (f = 0.0001) is much longer

than the one at β = 0.9840 (f = 0.01).

2. β → 0, when the channel state transition rate fj is extremely large compared

to the service rate µj . According to (3.27), β is close to 0 and 1
1−β is close to

1. Furthermore, from (3.29), the conditional start-service probability of mth

packet π̂j(i,m) ≈ ηj for m ≥ 1, which results in Xm ≈ 1
µ̂ (E[T ] ≈ 1

µ̂) and
∑∞

i=2 Pi
∑i−1

m=1Xm =
Lq

µ̂ . Then the mean waiting time of M/MMSP/1 queue

(3.48) can be approximately given as:

W ≈
R

1− λ
µ̂

≈
1
2λE[T 2]

1− λE[T ]
. (3.55)

The right-hand side of (3.55) corresponds to the mean waiting time of an

M/G/1 queue, which sometimes is used to approximately model a wireless

channel [7, 12]. The expression (3.55) indicates that this approximation is

valid only when β is close to 0. As an example, the mean queue length of the

M/G/1 queue plotted in Fig. 3.10 almost coincides with that of M/MMSP/1

queue when β = 0.3810 (f = 1).
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Figure 3.11: Mean service time E[T ] of M/MMSP/1 with different state tran-

sition factor β.

Note that a relative smaller state transition factor β corresponds to a smaller

E[T ] and
∑1

j=0E[Tj ](πj − π̂j) in the nominator of (3.43), as depicted in Fig. 3.11.

We know from (3.26) that
∑1

j=0E[Tj ]πj is the first moment of service time when λ

approaches 0, and the lower bound (0.1538 in Fig. 3.11) is given by
∑1

j=0E[Tj ]ηj =

1/µ̂ when λ approaches ∞. It is obvious that the first moment of service time E[T ]

is bounded by 1
µ̂ ≤ E[T ] ≤

∑1
j=0E[Tj ]πj .

Our analysis clearly explains the reason that a wireless communication system

with a smaller state transition factor β owns a smaller queueing delay. For a given

Hybrid ARQ coding scheme, an increase in the packet length leads to a smaller

µj ; while an increase in the Doppler frequency fD leads to a larger fj . From the

definition of state transition factor β given in (3.27), we know that either of them

will generate a smaller β, consequently, a smaller queueing delay. This property also

explains the results depicted in Fig. 2 ∼ 4 in [46].
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Generalized Pollaczek-Khinchin

Formula for the M/MMSP/1/K

Queue — Finite-state

The only available method to analyze the average queue length of finite-state Markov

channels in the literature is the Matrix Geometric Method [36]. In this chapter,

we extend the generalized Pollaczek-Khinchin formula developed in Chapter 3 to

Markov channels with finite states.

4.1 Finite-state Markov Model

A N -state Markov chain of a wireless fading channel, Markov modulated service

process (MMSP), is shown in Fig. 4.1. The state j (j = 0, 1, 2, ..., N) represents

that the channel is in state j where the service rate is exponentially distributed with

mean µj . The state transition rate from state j to j + 1 is denoted as fj,j+1 (> 0).

Here the channel states could only change to its adjacent states, because the channel

quality of our interest is continuously varying. However, the following derivations

43
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Figure 4.1: Finite-state Markov model.

are still established under the assumption that the channel state could jump to any

state j′ out of the N states. Then, the infinitesimal generator matrix Q is given by

Q =

































−f0 f0,1 0 0 0 · · · 0

f1,0 −f1 f1,2 0 0 · · · 0

0 f2,1 −f2 f2,3 0 · · · 0

...
...

...
...

. . . · · · 0

0 0 0 · · · fN−1,N−2 −fN−1 fN−1,N

0 0 0 0 · · · fN,N−1 −fN

































, (4.1)

where we denote

fj =
∑

j′ 6=j

fj,j′ . (4.2)

At time t, the state of the system X(t) is defined as the number of packets in the

system, including the one in service, while the channel state is denoted by V (t). The

process {(X(t), V (t)), t ≥ 0} is a Continuous Time Markov Chain (CTMC) with a

finite state space {(i, j), i = 0, 1, 2, ..., j = 0, 1, ..., N}. We denote this queuing model

with infinite buffer capacity as M/MMSP/1. The steady state probabilities of the

M/MMSP/1 are defined by:

pi,j = lim
t→∞

Pr{X(t) = i, V (t) = j}, (4.3)

where i = 0, 1, 2, ... and j = 0, 1, ..., N . Thus, the probability that there are i packets

in the system in steady state is given by:

Pi =
N
∑

j=0

pi,j . (4.4)
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4.2 Start-service Probability

For a system with finite-state Markov channels, suppose that a new packet arrives

into a FIFO buffer and sees i packets in the system. Those packets are sequentially

numbered by m = 0, 1, · · · , i, the one in service is numbered 0 and the new arrival is

numbered i, as shown in Fig. 3.6. The definitions related to start-service probability

π̂j of finite-state Markov channels are independent of the number of channel states

and are the same as the ones in two-state Markov channels described in Section 3.3,

except that we extend the channel states from 2 to N as following:

• πj = the steady-state probability that the channel is in state j, for j =

0, 1, 2, ..., N . If we denote πj as a column vector π = [π0, π1, ..., πN ]T where

the superscript T means the transpose of the matrix, πj can be obtained by

solving

QTπ = 0 (4.5)

and

N
∑

j=0

πj = 1 (4.6)

Then we define the channel capacity µ̂, as

µ̂ =
N
∑

j=0

πjµj . (4.7)

Detailed discussions on the channel capacity can be find in Section 4.3.1.

• π̂j = the probability that an HOL packet’s start-service state is in channel

state j, for j = 0, 1, 2, ..., N . According to the analysis in [32], the following



Chapter 4. 46

two extreme cases

π̂j =











πj when λ → 0

ηj =
πjµj

∑N
j=0 πjµj

when λ → ∞
(4.8)

are still established for Markov channels with finite states. However, there is

no present expression of π̂j in the literature. Here, we express π̂j in forms of

πi and π̂j(i,m) in Theorem 4.1 and from which we define the state transition

factor β ∈ (0, 1) for finite-state Markov channel. We denote the corresponding

column vector as π̂ = [π̂0, π̂1, ..., π̂N ]T and η = [η0, η1, ..., ηN ]T .

• π̂j(i,m) = the conditional start-service probability of mth packet, which is

defined as follows:

π̂j(i,m) = P{start-service state of mth packet is j

| an arrival sees i packets in the system}

for i = 0, 1, 2, ... and j = 0, 1, 2, ..., N . We denote the corresponding column

vector as π̂(i,m) = [π̂0(i,m), π̂1(i,m), ..., π̂N (i,m)]T .

• P{j′|j} = the probability that a packet starts the service in channel state

j and finishes the service in channel state j′. We denote the corresponding

matrix, called state transition matrix Q̂ in this paper, as

Q̂ =



















P{0|0} P{0|1} · · · P{0|N}

P{1|0} P{1|1} · · · P{1|N}

...
...

. . .
...

P{N |0} P{N |1} · · · P{N |N}



















. (4.9)

4.2.1 State transition matrix

For a packet starts its service in channel state j, the Markov channel may change

to its adjacent state before the packet is transmitted or stays in the same channel
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state till the end of the packet’s transmission. For different values of channel state

j, the channel state transition during during one packet’s service time is given by

the following set of equations:

• j = 0,







p{0|0} = µ0

f0+µ0
+

f0,1
f0+µ0

p{0|1}

p{j′ 6= 0|0} =
f0,1

f0+µ0
p{j′|1}

(4.10a)

• 1 ≤ j ≤ N − 1,







p{j′ = j|j} =
µj

fj+µj
+

fj,j−1

fj+µj
p{j|j − 1}+

fj,j+1

fj+µj
p{j|j + 1}

p{j′ 6= j|j} =
fj,j−1

fj+µj
p{j′|j − 1}+

fj,j+1

fj+µj
p{j′|j + 1}

(4.10b)

• j = N ,







p{j′ = N |N} = µN

fN+µN
+

fN,N−1

fN+µN
p{N |N − 1}

p{j′ 6= N |N} =
fN,N−1

fN+µN
p{j′|N − 1}

(4.10c)

Multiplying fj + µj on each side of the equations in (4.10) and expressing (4.10) in

forms of matrix, we have

M



















p{j′|0}

p{j′|1}

...

p{j′|N}



















= ej′ , (4.11)

where ej′ = [0, 0, ..., µj′ , ...]
T is a vector with the j′th element be µj′ , and

M =

























f0 + µ0 −f0,1 0 0 0 · · · 0

−f1,0 f1 + µ1 −f1,2 0 0 · · · 0

...
...

...
...

. . . · · · 0

0 0 0 · · · −fN−1,N−2 fN−1 + µN−1 −fN−1,N

0 0 0 0 · · · −fN,N−1 fN + µN

























.

(4.12)
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Comparing (4.12) with (4.1), we have

M = D −Q, (4.13)

where we denote

D = diag(µ0, µ1, ..., µN ). (4.14)

Then P{j′|j} is obtained from Cramer’s rule, as

P{j′|j} =
|Mj′,j |

|M |
, (4.15)

where |M | is the determinant of the matrix M and Mj′,j is a matrix obtained from

M by replacing the jth column by ej′ . After some development, |Mj′,j | is given by

|Mj′,j | = µj′Cj′,j , (4.16)

where Cj′,j is the cofactor of the (j′, j)th element of matrix M . The corresponding

cofactor matrix C = [Cj′,j ]N×N is key to compute the inverse of M , as

M−1 =
CT

|M |
. (4.17)

Considering all possible j′, j = 0, 1, 2, ..., N of (4.15), we obtain the state transition

matrix Q̂ by resorting to (4.16) and (4.17)

Q̂ = D(MT )−1. (4.18)

4.2.2 Start service probability

Theorem 4.1. The probability that the service of an HOL packet of M/MMSP/1

starts with channel state j is given by:

π̂j =
∑

i

Piπ̂j(i, i), j = 0, 1, ..., N, (4.19)
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where

π̂(i,m) = Q̂
m
π̂(i, 0) (4.20)

and

π̂j(i, 0) = pi,j/Pi. (4.21)

Proof. From the definition of π̂i(i,m) and P{j′|j}, we establish the following rela-

tionship between π̂i(i,m) and π̂i(i,m+ 1), as

π̂(i,m + 1) = Q̂π̂(i,m) (4.22)

From the probability Pi that a newly arrived packet sees i packets in the system

and pi,j that a newly arrived packet sees i packets in the system while the current

channel is in state j, we obtain the following initial state probability:

π̂j(i, 0) = pi,j/Pi. (4.23)

Solving recurrence relationship (4.22) for all possible m ≥ 0 along with the initial

condition (4.23), we get

π̂(i,m) = Q̂
m
π̂(i, 0) (4.24)

Since an arrival that sees i packets in the system starts the service in state j with

probability π̂j(i, i), we then obtain the following start-service probability by com-

bining (4.22) and (4.24):

π̂j =
∑

i

Piπ̂j(i, i) (4.25)

Theorem 4.2. The stationary probability vector of the Markov chain characterized

by the state transition matrix Q̂ is η. That is

η = Q̂η. (4.26)
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Proof. From the definition of inverse matrix, the following equation always hold

I = (MT )−1MT , (4.27)

where I is the identity matrix. Substituting (4.13) into (4.27) and multiplying π on

both sides of (4.27), we arrive at

π = (MT )−1(D −Q)Tπ

= (MT )−1Dπ − (MT )−1QTπ

= (MT )−1Dπ (4.28)

where DT = D since D is a diagonal matrix and the last equation is due to (4.5).

Notice that ηj given in (4.8) could be expressed in forms of πj , as

η =
Dπ

|Dπ|1
, (4.29)

where |Dπ|1 is the 1-norm of the vector Dπ and |Dπ|1 = µ̂. With (4.29), (4.18)

and (4.28), we finally establish the relationship between η and Q̂ as follows:

Q̂η =
1

µ̂
D(MT )−1Dπ

=
1

µ̂
Dπ

= η. (4.30)

If arrival packets always find infinite number of packets waiting in the buffer,

then (4.24) and (4.25) reveal that the transmission of a packet is started in state j

is approximately given by

lim
λ→∞

π̂ = lim
i→∞

π̂(i, i) = lim
m→∞

π̂(∞,m) = lim
m→∞

Q̂
m
π̂(∞, 0) (4.31)

Theorem 4.2 shows that η is the stationary probability vector of the Markov chain

characterized by the state transition matrix Q̂. From the property of Markov chain,
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we have

lim
m→∞

π̂(∞,m) = η. (4.32)

Both (4.31) and (4.32) lead to result that π̂j = ηj when λ → ∞, which is again

consistent with (4.8).

On the other hand, in contrast to the expression (4.25) of π̂j , the probability πj

that the channel is in state j can be expressed from (4.23) as follows:

πj =
∑

i

pi,j =
∑

i

Piπ̂j(i, 0). (4.33)

If the loading is very low, meaning P0 → 1, then it is clear that both expressions

of π̂j and πj approach π̂j(0, 0), which is consistent with (4.8) that π̂j = πj when

λ → 0. Thus, the expression (4.25) of the start-service probability π̂j covers the two

extremes originally derived in [32] as special cases.

4.2.3 State transition factor

The state transition factor β indicates how fast the channel state probability tends

to be stable, which is the convergence rate for the Markov chain characterized by

the state transition matrix Q̂. If µj > 0 for all j = 0, 1, 2, ..., N , from the definition

of p{j′|j} we have p{j′|j} ∈ (0, 1). It follows that Q̂ is ergodic. Rosenthal [42] shows

the following properties related to Q̂:

• Property 1. The state transition matrix Q̂ has one and only one eigenvalue

equaling to 1 and the absolute value of every other eigenvalue is less than 1.

Without loss of generality, we write down the eigenvalues of Q̂ as 1 = ξ0 >

|ξ1| ≥ |ξ2| ≥ |ξ3| ≥ · · · ≥ |ξN |. Theorem 4.2 implies that η is an eigenvector

of Q̂ corresponding to the eigenvalue ξ0.

• Property 2. For any initial distribution π̂(i, 0) and j = 0, 1, 2, ..., N , there is
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a constant Cj > 0 such that

|π̂j(i,m)− ηj | ≤ Cjm
J−1|ξ1|

m−J+1. (4.34)

where J is the size of the largest Jordan block of Q̂. In particular, if Q̂ is

diagonalizable, J = 1.

The property 2 shows that the converge rate of the Markov chain is highly related

to |ξ1|. There is a related work [45] which also studies the importance of the second

largest eigenvalue on the convergence rate of Markov chain. Here, we define the

state transition factor as

β = |ξ1|. (4.35)

If one of the service rate in channel state j equals to 0, such as µ0 = 0, we have

p{0|j} = 0 for all j = 0, 1, 2, ..., N since the packet’s service will not end in channel

state j = 0. Then, the whole first row of Q̂ will become all 0s and ξN = 0.

The aforementioned two properties are still established, so is the definition of state

transition factor β.

We develop a possible approximation of π̂j(i,m) from the property 2 by com-

bining (4.24), (4.34) and (4.35) as

π̂j(i,m) ≈ mJ−1βm−J+1(π̂j(i, 0)− ηj) + ηj . (4.36)

If m >> J or J = 1, (4.36) could be simplified to

π̂j(i,m) ≈ βm(π̂j(i, 0)− ηj) + ηj . (4.37)

The approximation ignores those components contributed by the other eigenvalues

ξj , 2 ≤ j ≤ N . If N = 1 with no components ignored, then (4.37) exactly holds,

which is (3.29) of the two-state Markov channel.



Chapter 4. 53

4.3 Generalized Pollaczek-Khinchin Formula for

the M/MMSP/1 Queue

In this section, we derive the generalized P-K formula for the M/MMSP/1 queue

with finite channel states, which shows that the queueing delay is approximately

proportional to 1
1−β . It should be noted that the waiting time analysis described in

Section 3.4 is independent of the number of states of the Markov channels and we

could easily extend the analysis from two states to finite states. Here we reproduce

those definitions related to waiting time defined in Section 3.4, as:

• Qc = The number of packets in the system seen by an arrival (Qc ≥ 0).

• Wi = Waiting time of an arrival seeing i (i ≥ 0) packets in the system.

• Ri = Residual service time of an arrival that sees i (i ≥ 1) packets in the

system. That is, Ri is the remaining time until the completion of current

service. If i = 0, then the system is empty and there is no residual service

time.

• Xm = Service time of the mth (1 ≤ m ≤ i − 1) packet in the queue, starting

from the first packet behind the head-of-line (HOL) packet, which is in service.

According to the above definitions, the waiting time of an arrival is given by

Wi =























Ri +
∑i−1

1 Xm i ≥ 2,

Ri i = 1,

0 i = 0.

Taking expectation, we have

W =
∞
∑

i=0

PiWi = R+
∞
∑

i=2

Pi

i−1
∑

m=1

E[Xm|Qc = i], (4.38)
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where W is the average waiting time and R =
∑∞

i=1 PiRi is the mean residual

service time. In the rest of this section, we will derive the generalized P-K formula

of M/MMSP/1 queue from the expression (4.38).

4.3.1 Moments of Service time

The derivations of the mean residual service time R and the service time of the mth

waiting packet Xm require the first and second moments, E[T ] and E[T 2], of the

service time of the M/MMSP/1 queue. They can be obtained from the first and

second conditional moments E[Tj ] and E[T 2
j ] (j = 0, 1, 2, ..., N) defined in [32] as

follows:

E[T ] =

N
∑

j=0

π̂jE[Tj ], (4.39a)

E[T 2] =
N
∑

j=0

π̂jE[T 2
j ], (4.39b)

where E[Tj ] and E[T 2
j ] are the first and second conditional moments of service time

given that the service begins with state j. If we denote

E[T ] = {E[T0], E[T2], E[T2], ..., E[TN ]}T

E[T 2] = {E[T 2
0 ], E[T 2

2 ], E[T 2
2 ], ..., E[T 2

N ]}T ,

then E[Tj ] and E[T 2
j ] are obtained from

E[T ] = M−11, (4.40a)

E[T 2] = 2M−1E[T ], (4.40b)

where M is defined in (4.12) and 1 is an all-ones vector.

According to [32], E[Tj ] and E[T 2
j ] are obtained as following: Consider an arbi-

trary packet whose service starts in channel state j. Let Tj be the random variable

denoting the total service time for this packet. During the service of this packet,
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the channel state j may change to j + 1 (or j− 1) after time Tj,j+1 (or Tj,j−1) when

the serve speed alternates, or even stay at j until the serve is finished after time

Tµ. Conditioning on steady state, Tµ, Tj,j+1 and Tj,j−1 are exponentially distributed

with parameters µj , fj,j+1 and fj,j−1 respectively. Then, Tj can be calculated as

Tj = min(Tµ, Tj,j+1, Tj,j−1) +























0 with probability
µj

µj+fj

Tj,j+1 with probability
fj,j+1

µj+fj

Tj,j−1 with probability
fj,j−1

µj+fj

where j = 0, 1, 2, ..., N .

Taking the Laplace Stieltjes transform (LST) on both sides, we get

E(e−sTj ) =
µj + fj

s+ µj + fj

(

µj

µj + fj
+

fj,j+1E(e−sTj+1) + fj,j−1E(e−sTj−1)

µj + fj

)

.

Arranging terms, we have

(s+ µj + fj)E(e−sTj ) = µj + fj,j+1E(e−sTj+1) + fj,j−1E(e−sTj−1). (4.41)

Taking derivative of (4.41) with respect to s and substituting s = 0, we have

(µj + fj)E[Tj ]− fj,j+1E[Tj+1]− fj,j−1E[Tj−1] = 1 (4.42)

By solving (4.42), we get the conditional first moment of service time E[Tj ] for every

channel state j. Taking the second derivative of LST in (4.41) with respect to s and

substituting s = 0 and (4.42), we get

(µj + fj)E[T 2
j ]− fj,j+1E[T 2

j+1]− fj,j−1E[T 2
j−1] = 2E[Tj ] (4.43)

By solving (4.43), we get E[T 2
j ] for every j = 0, 1, 2, ..., N . Reorganizing (4.42)

and (4.43) in forms of matrix with (4.12), it is straightforward that (4.40) are the

solutions of E[Tj ] and E[T 2
j ].

When the arrival rate goes to infinity, from (4.8) we have

lim
λ→∞

E[T ] =
N
∑

j=0

lim
λ→∞

π̂jE[Tj ] =
N
∑

j=0

ηjE[Tj ]. (4.44)



Chapter 4. 56

The following we show that

N
∑

j=0

ηjE[Tj ] =
1
µ̂ , (4.45)

always holds. Resorting to the matrices,

ηTE[T ] = ηTM−11

=
1

µ̂
(Dπ)TM−11

=
1

µ̂
(MTπ)TM−11

=
1

µ̂
πTMM−11

=
1

µ̂
πT1

=
1

µ̂
(4.46)

where (4.40a), (4.29) and (4.28) are used sequentially.

4.3.2 Residual service time

The comparison on residual service time between M/MMSP/1 and M/G/1 pre-

sented in Section 3.4.2 is independent of the Markov channels states. ForM/MMSP/1

with finite channel states, the mean residual service time is also given by the follow-

ing expression of

R = 1
2λE[T 2]. (4.47)

Except that here the second moment of service time E[T 2] is obtained from (4.39b).

Although the equations to compute E[T 2] are all present, the probability Pi that

there are i packets in the system is not easy to obtain for N ≥ 2. One possible way

in the literature is using the Matrix Geometric Method, which need large extensive

calculation and is not under our consideration.
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For the concerned M/MMSP/1 queueing system, the packets arrive in Poisson

process and the service time in each channel state j is exponentially distributed.

If a new arriving packet see i (i > 0) packets in the system with probability with

probability Pi, the residual service time of the packet under service (refer to the 0th

packet in Fig. 3.6) will renew. From Theorem 4.1 the 0th packet will restart the

service in state j with probability π̂j(i, 0). Then, we get another expression of the

mean residual service time

R =
∞
∑

i=1

Pi

N
∑

j=0

E[Tj ]π̂j(i, 0) =
N
∑

j=0

E[Tj ](πj − p0,j), (4.48)

where (4.23) and (4.33) are used.

4.3.3 Generalized P-K formula of Mean Waiting Time

Suppose that for an arrival seeing i packets in the system with probability Pi, the

mth packet in the queue will start its service after the previous m packets (including

the one in service) were served, as demonstrated in Fig. 3.7. From Theorem 4.1, we

know that the mth packet will start the service in state j with probability π̂j(i,m).

Then, its averaged service time Xm under the condition that there are i packets in

the system when a new packet arrives is given by

E[Xm|Qc = i] =
N
∑

j=0

E[Tj ]π̂j(i,m). (4.49)

Theorem 4.3. The mean waiting time of an M/MMSP/1 queue is approximately

given by

W ≈

λ
µ̂E[T ] + 1

1−β

∑N
j=0E[Tj ](πj − π̂j)

1− λ
µ̂

. (4.50)

Proof. The π̂j(i,m) given by (4.24) need the computation of Q̂
m
, which provides no

physical interpretations of the M/MMSP/1. Hence, we adapt its approximation as
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shown in (4.37). Substituting (4.37) into (4.49), the total time for all i− 1 packets

in queue that have been served is given by the unconditional (4.45):

i−1
∑

m=1

E[Xm|Qc = i] =
N
∑

j=0

E[Tj ]
i−1
∑

m=1

π̂j(i,m)

≈
N
∑

j=0

E[Tj ]
i−1
∑

m=1

(βm(π̂j(i, 0)− ηj) + ηj)

=

N
∑

j=0

E[Tj ]

i−1
∑

m=1

(βm(π̂j(i, 0)− ηj)) +

N
∑

j=0

E[Tj ]

i−1
∑

m=1

ηj

=
N
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj)
i−1
∑

m=1

βm + (i− 1)
N
∑

j=0

E[Tj ]ηj

=
N
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj)
β − βi

1− β
+ (i− 1)

1

µ̂

=
N
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj)
1− βi

1− β
−

N
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj)
1− β

1− β
+ (i− 1)

1

µ̂

=
1

1− β

N
∑

j=0

E[Tj ] (π̂j(i, 0)− π̂j(i, i)) +
i− 1

µ̂
−

N
∑

j=0

E[Tj ] (π̂j(i, 0)− ηj) , (4.51)

Where

(π̂j(i, 0)− ηj) (1− βi) = π̂j(i, 0)− ηj − (π̂j(i, 0)− ηj)β
i

= π̂j(i, 0)− π̂j(i,m).

Averaging over all possible i, we obtain the following averaged time to serve all

packets in queue seeing by an arbitrary arrival:

∞
∑

i=2

Pi

i−1
∑

m=1

E[Xm|Qc = i]

≈
1

1− β

∞
∑

i=2

N
∑

j=0

E[Tj ] (Piπ̂j(i, 0)− Piπ̂j(i, i)) +
∞
∑

i=2

Pi
i− 1

µ̂
−

∞
∑

i=2

N
∑

j=0

E[Tj ] (Piπ̂j(i, 0)− Piηj)

=
1

1− β

N
∑

j=0

E[Tj ] (πj − π̂j) +
Lq

µ̂
−

N
∑

j=0

E[Tj ] (πj − ηj) +
N
∑

j=0

E[Tj ](p0,j − P0ηj),

(4.52)
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where the second equation is obtained from (4.23), (4.25) and (4.33) and Lq =
∑∞

i=2(i− 1)Pi. From Little’s Law, we have

Lq = λW. (4.53)

Substituting (4.48), (4.52) and (4.53) into (4.38), the mean waiting time W given

by the following equation

W ≈
N
∑

j=0

E[Tj ](πj − p0,j) +
1

1− β

N
∑

j=0

E[Tj ] (πj − π̂j) +
λW

µ̂

−
N
∑

j=0

E[Tj ] (πj − ηj) +
N
∑

j=0

E[Tj ](p0,j − P0ηj)

=
1

1− β

N
∑

j=0

E[Tj ] (πj − π̂j) +
λW

µ̂
+

N
∑

j=0

E[Tj ]ηj −
N
∑

j=0

E[Tj ]P0ηj

=
1

1− β

N
∑

j=0

E[Tj ] (πj − π̂j) +
λW

µ̂
+ (1− P0)

N
∑

j=0

E[Tj ]ηj

=
1

1− β

N
∑

j=0

E[Tj ] (πj − π̂j) +
λW

µ̂
+ (1− P0)

1

µ̂
(4.54)

Solving (4.54) for W , we obtain the following mean waiting time of the M/MMSP/1

queue:

W ≈

(1−P0)
µ̂ + 1

1−β

∑N
j=0E[Tj ](πj − π̂j)

1− λ
µ̂

. (4.55)

In fact, the 1 − P0 in the nominator of (4.55) is the server utilization ρ = 1 − P0.

From Little’s law, we have

ρ = λE[T ]. (4.56)

Substituting (4.56) into (4.55), we have (4.50).

4.4 Three-state MMSP Systems

A three-state Markov modulated service rates model is used to analyze the perfor-

mance of Hybrid ARQ system [19], where the instantaneous throughput from the
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source to the destination depends on the current quality of the physical channel.

The channel system has three possible states corresponding to every Markov state:

a good state with high speed data-rate where packets are transmitted successfully

on first attempts, a moderate state with lower data-rate where packets are trans-

mitted with retransmissions, and a bad state with no data-rate where no packets

get through. The delay performance is analyzed in [19] by resorting to conditional

generating functions methods, similarly to the method we presented in Chapter 3.

The performance of the two-state Gilbert-Elliot model is improved by accounting

a diversity of order by deploying two antennas [63]. The signals received at the two

antennas fade independently and the channel can be modeled by three states: both

channels are good, only one of the channels is good, and both channels are bad.

4.4.1 Model description

The three-state queueing model we analyzed in this paper is proposed in [19]. The

system has independent Poisson job and server arrivals (with rates λc and λs re-

spectively), and independent exponentially-distributed job service time and server

life time (with rates µc per server and µs respectively). The service policy allows

only one job in the queue to get served by all servers simultaneously with a First

Come First Service (FCFS) manner. The maximum number of servers is 2.

Let nc(t) and ns(t) are the number of jobs and servers in the system at time t

respectively. Then the process {nc(t), ns(t)} is a two-dimension birth-death process

with a infinite state space {(i, j), i = 0, 1, 2, ..., j = 0, 1, 2}. At any time t, a job will

be served with rate ns(t)µc. The server arrival and depart processes are independent

on the number of job process in the system and can be studied by an M/M/2/2

process. Fig. 4.2 shows the steady-state rate transition diagram. Let {pi,j} be the

steady state probabilities, that is

pi,j = lim
t→∞

Pr{nc(t) = i, ns(t) = j}, (4.57)
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Figure 4.2: Steady-state rate transition diagram for three-state model

where i = 0, 1, 2, ..., j = 0, 1, 2. The probability that there are i packets in the system

at steady state, Pi(i = 0, 1, 2, ...), is given as

Pi =
2
∑

j=0

pi,j . (4.58)

We have the set of balance equations from the state transition rate diagram shown

in Fig. 4.2, as

(λc + λs)p0,0 = µsp0,1 (4.59a)

(λc + λs)pi,0 = λcpi−1,0 + µspi,1 (4.59b)

(λc + λs + µs)p0,1 = λsp0,0 + 2µsp0,2 + µcp1,1 (4.59c)

(λc + λs + µs + jµc)pi,1 = λspi,0 + λcpi−1,1 + 2µspi,2 + 1µcpi+1,1 (4.59d)

(λc + 2µs)p0,2 = λsp0,1 + 2µcp1,2 (4.59e)

(λc + 2µs + 2µc)pi,2 = λspi,1 + λcpi−1,22µcpi+1,2 (4.59f)

i = 1, 2, 3, ...
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The probability that system is in state j (there are j servers in the system), πj , is

given as

πj =
∞
∑

i=0

pi,j . (4.60)

From the state transition diagram in Fig. 4.2, πj can be solved as

π0 =
1

1 + ρs + ρ2s/2
, π1 =

ρs
1 + ρs + ρ2s/2

and π2 =
ρ2s

2(1 + ρs + ρ2s/2)
(4.61)

where ρs = λs/µs. The balance equation with respect to the dashed line cut 2 is

λcPi =
2
∑

j=0

jµcpi+1,j , (4.62)

for all i = 0, 1, 2, .... Sum all these equations together over i, we get

λc =
∞
∑

i=0

2
∑

j=0

jµcpi+1,j = µc

2
∑

j=0

j(πj − p0,j). (4.63)

The left hand side of (4.63) means the net input mean arrival rate, while the right

hand side is the system throughput. Let

µ̂ =
2
∑

j=0

πjjµc (4.64)

be the channel capacity. Then (4.63) can be rewritten as

µ̂− λc = µcπ1 + 2µcπ2. (4.65)

For steady state, all the probabilities pi,j should be positive. From (4.65), the

necessary condition for system stability is:

λc < µ̂. (4.66)

4.4.2 Start-service probability

With respect to the general M/MMSP/1 model we proposed in Section 4.1, for

the three-state Markov modulated queueing system we have λ = λc, µj = jµc,
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fj,j+1 = λs and fj,j−1 = jµs. the infinitesimal generator matrix Q is given by

Q =













−λs λs 0

µs −λs − µs λs

0 2µs 2µs













. (4.67)

The probabilities related to start-service probability π̂j of M/MMSP/1 are listed

as following:

• πj =
1

1+ρs+ρ2s/2
ρjs
j! . And the channel capacity

µ̂ =
3
∑

j=0

πjµj =
ρsµc(1 + ρs)

1 + ρs + ρ2s/2
. (4.68)

• π̂j = the probability that an HOL packet’s start-service state is in channel

state j, for j = 0, 1, 2. And its two extreme cases

π̂j =











πj when λc → 0

ηj =
πjµj∑3
j=0 πjµj

=
jµcπj

µ̂ when λc → ∞
(4.69)

specifically, the values of ηj are

η0 = 0, η1 =
µs

λs + µs
, and η2 =

λs

λs + µs
. (4.70)

• P{j′|j} = the probability that a packet starts the service in channel state

j and finishes the service in channel state j′. We denote the corresponding

matrix, called state transition matrix Q̂ in this paper, as

Q̂ =













P{0|0} P{0|1} P{0|3}

P{1|0} P{1|1} P{1|3}

P{3|0} P{3|1} P{3|3}













. (4.71)



Chapter 4. 64

State transition factor

The diagonal matrix D of the three-state Markov modulated queueing system is

D =













0 0 0

0 µc 0

0 0 2µc













(4.72)

From (4.13), we have the matrix M , as

M = D −Q =













λs −λs 0

−µs λs + µs + µc −λs

0 −2µs 2(µs + µc)













. (4.73)

From (4.15), we solve all those values of P{j′|j}, listed as following:

p{0|0} =
|M0,0|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −λs 0

0 λs + µs + µc −λs

0 −2µs 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.74a)

p{0|1} =
|M0,1|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs 0 0

−µs 0 −λs

0 0 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.74b)

p{0|2} =
|M0,2|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs −λs 0

−µs λs + µs + µc 0

0 −2µs 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.74c)

p{1|0} =
|M1,0|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −λs 0

µc λs + µs + µc −λs

0 −2µs 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
µc

|M |

∣

∣

∣

∣

∣

∣

−λs 0

−2µs 2(µs + µc)

∣

∣

∣

∣

∣

∣

=
µc

|M |
C1,0 =

µc + µs

λs + µs + µc
(4.74d)
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p{1|1} =
|M1,1|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs 0 0

−µs µc −λs

0 0 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.74e)

=
µc

|M |

∣

∣

∣

∣

∣

∣

λs 0

0 2(µs + µc)

∣

∣

∣

∣

∣

∣

=
µc

|M |
C1,1 =

µc + µs

λs + µs + µc
(4.74f)

p{1|2} =
|M1,2|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs −λs 0

−µs λs + µs + µc µc

0 −2µs 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.74g)

= −
µc

|M |

∣

∣

∣

∣

∣

∣

λs −λs

0 −2µs

∣

∣

∣

∣

∣

∣

=
µc

|M |
C1,2 =

µs

λs + µs + µc
(4.74h)

p{2|0} =
|M1,2|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −λs 0

0 λs + µs + µc −λs

2µc −2µs 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.74i)

=
2µc

|M |

∣

∣

∣

∣

∣

∣

−λs 0

λs + µs + µc −λs

∣

∣

∣

∣

∣

∣

=
2µc

|M |
C1,2 =

λs

λs + µs + µc
(4.74j)

p{2|1} =
|M1,2|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs 0 0

−µs 0 −λs

0 2µc 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.74k)

= −
2µc

|M |

∣

∣

∣

∣

∣

∣

λs 0

−µs −λs

∣

∣

∣

∣

∣

∣

=
2µc

|M |
C2,1 =

λs

λs + µs + µc
(4.74l)

p{2|2} =
|M1,2|

|M |
=

1

|M |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs −λs 0

−µs λs + µs + µc 0

0 −2µs 2µc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.74m)

=
2µc

|M |

∣

∣

∣

∣

∣

∣

λs −λs

−µs λs + µs + µc

∣

∣

∣

∣

∣

∣

=
2µc

|M |
C2,2 =

λs + µc

λs + µs + µc
(4.74n)
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(4.74o)

where

|M | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λs −λs 0

−µs λs + µs + µc −λs

0 −2µs 2(µs + µc)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2λsµc(λs + µs + µc). (4.75)

Then we have the state transition matrix

Q̂ =
1

|M |













0 0 0

µcC1,0 µcC1,1 µcC1,2

2µcC2,0 2µcC2,1 2µcC2,2













=













0 0 0

µc+µs

λs+µs+µc

µc+µs

λs+µs+µc

µs

λs+µs+µc

λs

λs+µs+µc

λs

λs+µs+µc

λs+µc

λs+µs+µc













(4.76)

which is consistent with (4.18). Denote the three eigenvalues of Q̂ as 1 = ξ0 > |ξ1| ≥

|ξ2|, which can be obtained from (4.76), as

ξ0 = 1, ξ1 =
µc

λs + µs + µc
, and ξ2 = 0.

From (4.35), we define the state transition factor

β = |ξ1| =
µc

λs + µs + µc
. (4.77)

Start service probability

The Theorem 4.1 provides expressions to calculate exact value of the start service

probability. However, the initial channel state probability π
(0)
j which is essential

to compute the start service probability π̂j is unknown variables. It could only be

calculated by resorting the Matrix Geometric Method in the literature. Here we

introduce a Liner Approximation method to approximate π̂j .
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• Linear Approximation. [32] shows that simple expressions of π̂j can be ob-

tained under two extreme cases as shown in (4.69): π̂j = πj when λc → 0

and π̂j = ηj when λc → ∞. We take an linear approximation that if a packet

arrives when system is idle (with probability 1 − ρ), it will start its service

in state j with probability πj ; if a packet arrives when system is busy (with

probability ρ), it will start its service in state j with probability ηj . That is

π̂j ≈ (1− ρ)πj + ρηj , for j = 1, 2. (4.78)

Because there is no service rate in channel state j = 0, a packet will start its

service in state j = 0 only if it arrives in state 0 while system is idle. That is

π̂j = p0,0, (4.79)

which could be confirmed from (4.76) since the first element of D is 0. In

order to handle the special case when j = 0, we have to introduce another

approximation

p0,j ≈ Cj(1− ρ)πj , for j = 1, 2. (4.80)

where Cj is a normalization constant decided by

1− ρ =
3
∑

j=0

p0,j . (4.81)

If the arrival rate λc → 0, there is no packet in the system. It follows p0,j → πj

and ρ → 0, which is (4.80); If the arrival rate λc → ∞, both p0,j and 1 − ρ

tends to be 0, as p0,j → 0 and ρ → 1. The left and right sides of (4.80) are

balanced. From (4.94a), (4.81) and (4.80), we have

p0,0 ≈
µs

λc + λs
Cj(1− ρ)π1 =

λs

λc + λs
Cj(1− ρ)π0. (4.82)

For simplicity we assume that all Cj have the same value, which gives the
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following one possible approximation of p0,j , as











p0,0 ≈
λs

λc+λs

1− λc
λc+λs

π0
(1− ρ)π0

p0,j ≈
1

1− λc
λc+λs

π0
(1− ρ)πj for j = 1, 2.

(4.83)

By combining (4.78) and (4.83), we finally establish the Linear Approximation

of the start service probability










π̂0 =
1− λc

λc+λs

1− λc
λc+λs

π0
(1− ρ)π0

π̂j =
1

1− λc
λc+λs

π0
(1− ρ)πj + ρηj , for j = 1, 2.

(4.84)

where the server utilization ρ is analyzed during service time analysis in Sec-

tion 4.4.3.

4.4.3 Delay analysis

The Linear Approximation of the start service probability π̂j requires the server

utilization ρ. In the following sections, we first show how to obtain the ρ from

conditional moment of service time E[Tj ] and analyze the delay on different server

variations, which is verified by simulations.

Moments of service time

In Section 4.3.1, we show that the closed form expressions of the first and second

conditional moments of service time, E[Tj ] and E[T 2
j ], are derived from (4.40) as

E[T0] =
1

λs
+ E[T1] (4.85a)

E[T1] =
1

µc
+

µs

λs
(µs + µc)−

λs

2

µc(λc + µc + µs)
(4.85b)

E[T2] =
1

2(µc + µs)
+

µs

µc + µs
E[T1] (4.85c)

and

E[T 2
0 ] =2

1

λs
E[T0] + E[T 2

1 ] (4.86a)
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Figure 4.3: Mean service time of three-state queueing model for different arrival

rates with different state transition factor β

E[T 2
1 ] =2

µc + µs

µc(λs + µs + µc)

(

µs

λs
E[T0] + E[T1] +

λs

2(µs + µc)
E[T2]

)

(4.86b)

E[T 2
2 ] =

1

µc + µs
E[T2] +

µs

µc + µs
E[T 2

1 ] (4.86c)

Then the first and second moments, E[T ] and E[T 2], of the service time of the

three-state Markov modulated queueing model is obtained from (4.39) as:

E[T ] =
2
∑

j=0

π̂jE[Tj ], (4.87a)

E[T 2] =
2
∑

j=0

π̂jE[T 2
j ], . (4.87b)

The first and second moments of service time calculated from our Linear approxi-

mately start-service probability fits the simulation results as shown in Fig. 4.3 and

Fig. 4.4. The arrival rate λc cannot exceed the channel capacity µ̂ for the stability of
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Figure 4.4: The second moment of service time of three-state queueing model

for different arrival rates with different state transition factor β

queueing system. As depicted in Fig. 3.11, a relative smaller state transition factor β

corresponds to a smaller E[T ] and
∑1

j=0E[Tj ](πj−π̂j) which is essential to the mean

waiting time as shown later in (4.91). We know from (4.69) that
∑1

j=0E[Tj ]πj is

the first moment of service time when λc approaches 0, and the lower bound (0.1538

in Fig. 4.3) is given by
∑1

j=0E[Tj ]ηj = 1/µ̂ when λc approaches ∞. It is obvious

that the first moment of service time E[T ] is bounded by 1
µ̂ ≤ E[T ] ≤

∑1
j=0E[Tj ]πj .

The second moments of service time diverge from each other for different start tran-

sition factor β and will not converge to the same lower bound as the arrival rate λc

increases.
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Server utilization ρ

The server utilization ρ is derived from the Little’s Law, given as

ρ = λcE[T ]. (4.88)

With the Linear Approximation π̂j given in (4.84), we have the mean service time

from (4.39), as

E[T ] =
3
∑

j=0

E[Tj ]π̂j

≈
1− ρ

1− λc

λc+λs
π0





3
∑

j=0

E[Tj ]πj −
λc

λc + λs
π0E[T0]



+ ρ
3
∑

j=0

E[Tj ]ηj

=
1− ρ

1− λc

λc+λs
π0





3
∑

j=0

E[Tj ]πj −
λc

λc + λs
π0E[T0]



+ ρ
1

µ̂
(4.89)

where
∑3

j=0E[Tj ]ηj = 1/µ̂.

Solving the joint equations (4.88) and (4.89) for ρ with , we get an approximation

of the server utilization

ρ ≈

1
1− λc

λc+λs
π0

(

∑3
j=0E[Tj ]πj −

λc

λc+λs
π0E[T0]

)

1
λc

+ 1
1− λc

λc+λs
π0

(

∑3
j=0E[Tj ]πj −

λc

λc+λs
π0E[T0]

)

− 1
µ̂

. (4.90)

Mean queue length

From Theorem 4.50, the mean waiting time of the three-state Markov modulated

queue model is approximately given by

W =

λc

µ̂ E[T ] + 1
1−β

∑2
j=0E[Tj ](πj − π̂j)

1− λc

µ̂

. (4.91)

The generalized P-K formula explicitly expresses the impact of the state transition

factor on the performance of wireless channels. For a given fixed channel capacity

µ̂, the generalized P-K formula (4.91) reveals that the mean waiting time is greatly
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Figure 4.5: Mean queue length of three-state queueing model and M/G/1 for

different arrival rates with with different state transition factor β

affected by the state transition factor β. This point is illustrated in Fig. 4.5 by the

following mean queue length for different β:

L = λc(E[T ] +W )

Similarly as the results obtained in two-state Markov channel, both analytical and

simulation results show that this mean queue length of M/MMSP/1 with three-state

Markov channel is very sensitive to the state transition factor β. When β → 1, the

mean queue length is dominated by the term 1
1−β

∑2
j=0E[Tj ](πj−π̂j). When β → 0,

the mean queue length is approximately given by

W ≈

λc

µ̂ E[T ]

1− λ
µ̂

,

which is close to the mean waiting time of an M/G/1 queue with mean service time

µ̂.
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4.5 Peer-to-peer Systems

A general P2P queueing model is proposed by Li et al. [27], where the system has

independent Poisson job and server arrivals (with rates λc and λs respectively), and

independent exponentially-distributed job service time and server life time (with

rates µc per server and µs respectively). Perel and Yechiali [37] analyze a similar

queueing systems of Markov models with applications in computer networks, where

the system is comprised of two connected M/M/− /− type queues with customers

of one queue act as servers for the other queue.

In this section, we apply our generalized Pollaczek-Khinchin formula methods

to study the Markovian queueing model proposed in [27, 37]. We show that the

relationship between server dynamics and waiting time can be characterized by the

state transition factor β.

4.5.1 Model description

Here we reproduce the P2P queueing model proposed by [27, 37], as: The system

has independent Poisson job and server arrivals (with rates λc and λs respectively),

and independent exponentially-distributed job service time and server life time (with

rates µc per server and µs respectively). The service policy allows only one job in

the queue to get served by all servers simultaneously with a First Come First Service

(FCFS) manner. Let nc(t) and ns(t) are the number of jobs and servers in the system

at time t respectively. Then the process {nc(t), ns(t)} is a two-dimension birth-death

process with a infinite state space {(i, j), i = 0, 1, 2, ..., j = 0, 1, 2, ..., N}. The server

number ns(t) is limited by N , because in a real network system the service rate is

constrained by downlink capacity limitation of end users. At any time t, a job will be

served with rate ns(t)µc. The server arrival and depart processes are independent

on the number of job process in the system and can be studied by an M/M/∞
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Figure 4.6: Steady-state rate transition diagram for P2P model

process. We model the queueing system of this p2p system as M/MMSP/1 and

the corresponding steady-state rate transition diagram is shown in Fig. 4.6. The

steady state probabilities of the M/MMSP/1 are defined by:

pi,j = lim
t→∞

Pr{nc(t) = i, ns(t) = j}, (4.92)

where i = 0, 1, 2, ... and j = 0, 1, ..., N . Thus, the probability that there are i packets

in the system in steady state is given by:

Pi =
∞
∑

j=0

pi,j . (4.93)
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The set of balance equations is given by

(λc + λs)p0,0 = µsp0,1 (4.94a)

(λc + λs)pi,0 = λcpi−1,0 + µspi,1 (4.94b)

(λc + λs + jµs)p0,j = λsp0,j−1 + (j + 1)µsp0,j+1 + jµcp1,j (4.94c)

(λc + λs + jµs + jµc)pi,j = λspi,j−1 + λcpi−1,j + (j + 1)µspi,j+1 + jµcpi+1,j

(4.94d)

(λc +Nµs)p0,N = λsp0,N−1 +Nµcp1,N (4.94e)

(λc +Nµs +Nµc)pi,N = λspi,N−1 + λcpi−1,N +Nµcpi+1,N (4.94f)

i = 1, 2, 3, ..., j = 1, 2, ..., N − 1.

Let πj be the probability that system is in state j (there are j servers in the system),

we have

πj =
∞
∑

i=0

pi,j . (4.95)

From the rate transition diagram shown in Fig. 4.6, the balance equation with

respect to the dashed line cut 1 is

λsπj = (j + 1)µsπj+1, (4.96)

for all j = 0, 1, 2, ..., N . With
∑N

0 πj = 1, πj can be solved and given as

π0 = e−ρs and πj = e−ρs ρ
j
s

j!
, (4.97)

where ρs = λs/µs. For convenience, we have assumed a large N such that πN → 0

in the following analysis. If N is a comparative small number and πN can not be

ignored, we only need to add a normalization constant to πj given in (4.97). (4.97)

is the probability distribution for M/M/∞ process. The average number of servers

E[Ls] in the P2P system is

E[Ls] =
∞
∑

j=0

jπj = ρs. (4.98)
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The balance equation with respect to the dashed line cut 2 is

λcPi =
N
∑

j=0

jµcpi+1,j , (4.99)

for all i = 0, 1, 2, .... Sum all these equations together over i, we get

λc =
∞
∑

i=0

∞
∑

j=0

jµcpi+1,j = µc

∞
∑

j=0

j(πj − p0,j). (4.100)

The left hand side of (4.100) means the net input mean arrival rate, while the right

hand side is the system throughput (the mean number of jobs served by this P2P

system per unit time). Substituting (4.98) into (4.100), it yields

ρc = ρs −
∞
∑

j=0

p0,j . (4.101)

For steady state, all the probabilities pi,j should be positive. Then, we can deduce

from (4.101) that the following relation must hold:

ρc < ρs, (4.102)

which is the necessary condition for system stability. [27] shows it is also the sufficient

condition.

4.5.2 Start-service probability

With respect to the general M/MMSP/1 model we proposed in Section 4.1, for the

p2p queueing system we have λ = λc, µj = jµc, fj,j+1 = λs and fj,j−1 = jµs. the

infinitesimal generator matrix Q is given by

Q =

































−λs λs 0 0 0 · · · 0

µs −λs − µs λs 0 0 · · · 0

0 2µs −λs − 2µs λs 0 · · · 0

...
...

...
...

. . . · · · 0

0 0 0 · · · (N − 1)µs −λs − (N − 1)µs λs

0 0 0 0 · · · Nµs −Nµs

































.

(4.103)
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The probabilities related to start-service probability π̂j of M/MMSP/1 are listed

as following:

• πj = e−ρs ρ
j
s

j! . And the channel capacity

µ̂ =
N
∑

j=0

πjµj = ρsµc. (4.104)

• π̂j = the probability that an HOL packet’s start-service state is in channel

state j, for j = 0, 1, 2, ..., N . And its two extreme cases

π̂j =











πj when λc → 0

ηj =
πjµj

∑N
j=0 πjµj

=
jπj

ρs
when λc → ∞

(4.105)

• P{j′|j} = the probability that a packet starts the service in channel state

j and finishes the service in channel state j′. We denote the corresponding

matrix, called state transition matrix Q̂ in this paper, as

Q̂ =



















P{0|0} P{0|1} · · · P{0|N}

P{1|0} P{1|1} · · · P{1|N}

...
...

. . .
...

P{N |0} P{N |1} · · · P{N |N}



















. (4.106)

State transition factor

The diagonal matrix D of the p2p queueing system is

D = diag(0, µc, 2µc, ..., Nµc). (4.107)

From (4.13), we have the matrix M , as

M = D −Q =
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































λs −λs 0 0 0 · · · 0

−µs λs + µs + µc λs 0 0 · · · 0

0 −2µs λs + 2(µs + µc) −λs 0 · · · 0

...
...

...
...

. . . · · · 0

0 0 0 · · · −(N − 1)µs λs + (N − 1)(µs + µc) −λs

0 0 0 0 · · · −Nµs N(µs + µc)

































.

(4.108)

Then the state transition matrix Q̂ is given by (4.18)

Q̂ = D(MT )−1. (4.109)

If we write down the eigenvalues of Q̂ as 1 = ξ0 > |ξ1| ≥ |ξ2| ≥ |ξ3| ≥ · · · ≥ |ξN |.

From (4.35), we have the state transition factor

β = |ξ1| (4.110)

and an approximation of π̂j(i,m), as

π̂j(i,m) ≈ βm(π̂j(i, 0)− ηj) + ηj . (4.111)

Start service probability

The Theorem 4.1 provides expressions to calculate exact value of the start service

probability. However, the initial channel state probability π
(0)
j which is essential

to compute the start service probability π̂j is unknown variables. It could only be

calculated by resorting to the Matrix Geometric Method in the literature. Hence,

we seek some simple approximations to compute π̂j . The Linear Approximation

method proposed in Section 4.4.2 is the simplest among all possible approximations

but only suitable for small ρs. If ρ tends to be large, e.g. ρ = 500, then the mean

service time will always be a number close to 1/500µc with little variations. That is

ρ is approximately a linear function of the arrival rate λc. However, the start service
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probability is not linear with λc. Besides the Linear Approximation method, here

we introduce the Cumulative Distribution Function (CDF) Approximation, which

is applicable to different values of ρs, especially when ρs is large, such as ρs > 100.

A comparison of the two approximations is provided in Section 4.5.3.

• Linear Approximation. [32] shows that simple expressions of π̂j can be ob-

tained under two extreme cases as shown in (4.105): π̂j = πj when λc → 0

and π̂j = ηj when λc → ∞. We take an linear approximation that if a packet

arrives when system is idle (with probability 1 − ρ), it will start its service

in state j with probability πj ; if a packet arrives when system is busy (with

probability ρ), it will start its service in state j with probability ηj . That is

π̂j ≈ (1− ρ)πj + ρηj , for j = 1, 2, ..., N (4.112)

Because there is no service rate in channel state j = 0, a packet will start its

service in state j = 0 only if it arrives in state 0 while system is idle. That is

π̂j = p0,0, (4.113)

which could be confirmed from (4.109) since the first element of D is 0. In

order to handle the special case when j = 0, we have to introduce another

approximation

p0,j ≈ Cj(1− ρ)πj , for j = 1, 2, ..., N, (4.114)

where Cj is a normalization constant decided by

1− ρ =
N
∑

j=0

p0,j . (4.115)

If the arrival rate λc → 0, there is no packet in the system. It follows p0,j → πj

and ρ → 0, which is (4.114); If the arrival rate λc → ∞, both p0,j and 1 − ρ

tends to be 0, as p0,j → 0 and ρ → 1. The left and right sides of (4.114) are
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balanced. From (4.94a), (4.115) and (4.114), we have

p0,0 ≈
µs

λc + λs
Cj(1− ρ)π1 =

λs

λc + λs
Cj(1− ρ)π0. (4.116)

For simplicity we assume that all Cj have the same value, which gives the

following one possible approximation of p0,j , as











p0,0 ≈
λs

λc+λs

1− λc
λc+λs

π0
(1− ρ)π0

p0,j ≈
1

1− λc
λc+λs

π0
(1− ρ)πj for j = 1, 2, ..., N,

(4.117)

By combining (4.112) and (4.117), we finally establish the Linear Approxima-

tion of the start service probability











π̂0 =
1− λc

λc+λs

1− λc
λc+λs

π0
(1− ρ)π0

π̂j =
1

1− λc
λc+λs

π0
(1− ρ)πj + ρηj , for j = 1, 2, ..., N

(4.118)

where the server utilization ρ is analyzed during service time analysis in Sec-

tion 4.5.3.

• Cumulative Distribution Function (CDF) Approximation. The steady state

probabilities

πj = e−ρs ρ
j
s

j!

are discrete variables. Define a continuous function based on the distribution

of πj , as

f(x) = e−ρs ρ
x
s

x!
. (4.119)

It is the probability dense function of the channel state if the channel state

changes continuously with x instead of j. Define the cumulative distribution

function (CDF)

F (x) =

∫ x

0
f(t)dt,
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and a variable γ

γ =
F (λc)

F (ρs)
. (4.120)

All those packets arriving into the system are approximately divided into two

groups: 1−γ of them start their service in channel state j with probability πj

and γ of them start service in channel state j with probability ηj . To derive

the approximation of the start service probability π̂ based on γ is similar to

the ones conducted in the Linear Approximation, except that we replace the

ρ by γ.That is

π̂j ≈ (1− γ)πj + γηj , for j = 1, 2, ..., N (4.121)

The channel state j = 0 in which there is no service rate should also be handled

separately. A packet will start its service in state j = 0 only if it arrives in

state 0 while system is idle.

π̂j = p0,0, (4.122)

which could be confirmed from (4.109) since the first element of D is 0. In

order to handle the special case when j = 0, we have to introduce another

approximation

p0,j ≈ Cj(1− γ)πj , for j = 1, 2, ..., N, (4.123)

where Cj is a normalization constant decided by

1− γ =

N
∑

j=0

p0,j . (4.124)

If the arrival rate λc → 0, there is no packet in the system. It follows p0,j → πj

and γ → 0, which is (4.123); If the arrival rate λc → ∞, both p0,j and 1 − γ

tends to be 0, as p0,j → 0 and γ → 1. The left and right sides of (4.123) are

balanced. From (4.94a), (4.124) and (4.123), we have

p0,0 ≈
µs

λc + λs
Cj(1− γ)π1 =

λs

λc + λs
Cj(1− γ)π0. (4.125)



Chapter 4. 82

For simplicity we assume that all Cj have the same value, which gives the

following one possible approximation of p0,j , as










p0,0 ≈
λs

λc+λs

1− λc
λc+λs

π0
(1− γ)π0

p0,j ≈
1

1− λc
λc+λs

π0
(1− γ)πj for j = 1, 2, ..., N,

(4.126)

By combining (4.121) and (4.126), we establish the CDF approximation of the

start service probability










π̂0 =
1− λc

λc+λs

1− λc
λc+λs

π0
(1− γ)π0

π̂j =
1

1− λc
λc+λs

π0
(1− γ)πj + γηj , for j = 1, 2, ..., N

(4.127)

4.5.3 Delay analysis

The Linear Approximation of the start service probability π̂j requires the server

utilization ρ. In the following sections, we provide reasonable expressions of E[Tj ]

and show how to obtain the ρ from conditional moment of service time E[Tj ]. The

delay on different server variations are discussed, which is verified by simulations.

Moments of service time

In Section 4.3.1, we show that the first moments of service time E[Tj ] could be

obtained from (4.40a), which requires solving the reverse of the matrix M . However,

we are trying to provide expressions of interested performance metrics with physical

interpretations on system parameters throughout our analysis. We state a theorem

to obtain the moments of service time in series expansions.

Theorem 4.4. The first and second moments of service time conditional on the

channel state being j at the beginning of service, are given by










E[T0] =
1
λs

+ E[T1]

E[Tj ] =
1

jµc
+ µs

j2µ2
c
+ 1

j3

(

µs−λs

µ2
c

+ 2µ2
s

µ3
c

)

+ 1
j4

(

µs+λs

µ2
c

+ 6µ2
s−5λsµs

µ3
c

+ 6µ3
s

µ4
c

)

+ · · ·

(4.128a)
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









E[T 2
0 ] =

2
λs
E[T0] + E[T 2

1 ]

E[T 2
j ] =

2
j2µ2

c
+ 6µs

j3µ3
c
+ 1

j4

(

8µs−6λs

µ3
c

+ 22µ2
s

µ4
c

)

+ · · ·
(4.128b)

for j = 1, 2, 3, ..., N .

The prove of the Theorem 4.4 is provided by Prof. Tony LEE, as detailed in

Appendix B. The simplified approximations with only the first-order component are

given by:







E[T0] =
1
λs

+ E[T1]

E[Tj ] =
1

jµc

(4.129a)







E[T 2
0 ] =

2
λs
E[T0] + E[T 2

1 ]

E[T 2
j ] =

2
j2µ2

c

(4.129b)

for j = 1, 2, 3, ..., N . Numerical results show that there are little differences between

the full series expansion (4.128) and the first-order approximation (4.129). The

latter is enough for this p2p model, which is adapted in the following simulations.

Server utilization ρ

The server utilization ρ is derived from the Little’s Law, given as

ρ = λcE[T ]. (4.130)

With the Linear Approximation π̂j given in (4.118), we have the mean service time

from (4.39), as

E[T ] =
N
∑

j=0

E[Tj ]π̂j

≈
1− ρ

1− λc

λc+λs
π0





N
∑

j=0

E[Tj ]πj −
λc

λc + λs
π0E[T0]



+ ρ
N
∑

j=0

E[Tj ]ηj

=
1− ρ

1− λc

λc+λs
π0





N
∑

j=0

E[Tj ]πj −
λc

λc + λs
π0E[T0]



+ ρ
1

µ̂
(4.131)
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Figure 4.7: Mean queue length of p2p queueing model and M/G/1 for different

arrival rates with different state transition factor β

where
∑N

j=0E[Tj ]ηj = 1/µ̂.

Solving the joint equations (4.130) and (4.89) for ρ with , we get an approxima-

tion of the server utilization

ρ ≈

1
1− λc

λc+λs
π0

(

∑N
j=0E[Tj ]πj −

λc

λc+λs
π0E[T0]

)

1
λc

+ 1
1− λc

λc+λs
π0

(

∑N
j=0E[Tj ]πj −

λc

λc+λs
π0E[T0]

)

− 1
µ̂

. (4.132)

Mean queue length

From Theorem 4.50, the mean waiting time of the p2p queue model is approximately

given by

W ≈

λc

µ̂ E[T ] + 1
1−β

∑N
j=0E[Tj ](πj − π̂j)

1− λc

µ̂

. (4.133)

The generalized P-K formula explicitly expresses the impact of the state transition

factor on the performance of wireless channels. For a given fixed channel capacity
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µ̂, the generalized P-K formula (4.133) reveals that the mean waiting time is greatly

affected by the state transition factor β. This point is illustrated in Fig. 4.7 by the

following mean queue length for different β:

L = λc(E[T + λcW )

With the assumption that the number of channel state N → 0, we fix the ρs = 0,

and adjust the value λs and µs proportionally to form several systems with different

server dynamics [27]. Both analytical and simulation results show that this mean

queue length of M/MMSP/1 is very sensitive to the state transition factor β. When

β → 1, the mean queue length is dominated by the term 1
1−β

∑N
j=0E[Tj ](πj − π̂j).

When β → 0, the mean queue length is approximately given by

W ≈

λc

µ̂ E[T ]

1− λc

µ̂

,

which is close to the mean waiting time of an M/G/1 queue with mean service time

µ̂. Our state transition factor and the generalized P-K formula can well explain that

observation that a job would spend less time in systems with high server dynam-

ics than in systems with low server dynamics conditional on fixed average service

capacity [27].

The mean queue lengths (4.133) with respect to different approximations of the

start-service probability π̂j when ρs = 200 are shown in Fig. 4.8. The Linear Ap-

proximation failed to predict the mean queue length while the CDF Approximation

fits the simulation results well. Because the Linear Approximation (4.112) is a func-

tion of the server utilization ρ. For large ρs, the mean service time is almost a

constant, as shown in Fig. 4.9. It follows that ρs is a linear function of the arrival

rate λc, which appears as a linear mean service time in Fig. 4.9. However, the mean

waiting time is not linearly decreasing with the increasing of λc.
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Figure 4.8: Mean queue length with the Linear Approximation and the CDF

Approximation for large ρs.
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Summary and Future works

In this chapter, we will first summarize the main achievements of this dissertation

which based on the proposed generalized Pollaczek-Khinchin formula to analyze the

queueing systems with Markov modulated service process. We hope this methodol-

ogy can be extended to more general queueing systems, which can be considered as

the future directions of our work.

5.1 Contribution Summary

In this dissertation, we concentrated on the performance analysis of the wireless

channel by modeling the channel as a Markov modulated service process (MMSP).

The main contribution is to characterize the performance of the M/MMSP/1 queue

by introducing the sate transition factor β, which indicates how fast the channel

state changes in comparison with service rates. From the generalized P-K formula

for the M/MMSP/1 queue derived by using the start-service probability, we show

that the queueing delay is very sensitive to this state transition factor β. When this

factor is close to 1, the queueing delay of the wireless channel becomes extremely

large. On the other hand, the performance of the M/MMSP/1 queueing system can

87
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be approximated by an M/G/1 queue when this factor β is close to 0.

We derived the exact expressions of those performance metrics for Markov chan-

nels with two states, by taking an ideal Type I Hybrid ARQ scheme as an example.

We illustrate the procedure to obtain the service rate in each channel state and

model the queueing system as an M/MMSP/1/K queue. We first derive the closed-

from expressions of buffer overflow probability and queueing delay from conditional

generating functions. A simple expression of state transition factor β is derived and

closed-form expressions of start-service probabilities are provided. The closed-form

expression of the generalized P-K formula method is derived based on finite buffer

capacity.

We extend our generalized P-K formula for Markov channel with two-state to

Markov modulated service process (MMSP) with finite-state. The definitions of the

start-service probability and the state transition factor are well established, and an

approximation of the generalized P-K formula for mean waiting time is derived. For a

special three-state Markov channel with no service rate in one of the three states, we

show that a simple closed-form expression of the state transition factor is available.

We provide a Linear Approximation method to approximately estimate the start

service probability. With the approximate start service probability, the generalized

P-K formula provides a good approximation to the mean waiting time, as shown by

simulations. For Markov channels with large number of states, we illustrate our work

through a general model in peer-to-peer systems. Besides the Linear Approximation

method for channels with small number of states, we propose a CDF Approximation

method to approximately calculate the start service probability for channels with

large number of states. Our generalized P-K formula is a good approximation of the

mean queue length of the P2P model, as verified by simulations.
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5.2 Future Work

In this dissertation, we have established the generalized Pollaczek-Khinchin formula

method to analyze the queueing systems with Markov modulated service process.

Throughout those listed examples we most concerned, the Markovian service state

could only change to its neighbor states. However, our derivations of the state

transition factor, start-service probability, conditional moments of service time and

the generalized P-K formula are still valid if the channel is allowed to jump to any

random state. The closed-from expressions of delay and the state transition factor

are obtained under the assumptions of Poisson arrivals and exponentially distributed

service time. Hence, extending this approach to general queueing models, such as

with renewal arrival process and generally distributed service time, will be our future

directions.

We have proposed two methods, the Linear Approximation and the CDF Ap-

proximation, to approximate the start-service probability for Markov channels with

small number and large number of states separately. A general approximation for

start-service probability is expected to fit all Markov channels.

The analysis curves shown in Fig. 4.7 are a little higher than those simulation

curves. Because the state transition factor is defined as the second largest eigenvalue

of the state transition matrix Q̂ and those contributions of other eigenvalues on the

generalized P-K formula are ignored. Just like the large-deviation approximation

[9,19,32] for buffer overflow probability as we shown in Fig. 3.4 with α ≈ P{X(∞) >

0}. We expect an adjustment constant on the approximate generalized P-K formula,

similar to the asymptotic constant in large-deviation approximation, to provide a

more accurate mean waiting time.

We do believe that the generalized Pollaczek-Khinchin formula for Markov chan-

nels is a compliment of the finite-state Markov channel model proposed by Wang
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and Moayeri [50] which will benefit the queueing analysis of system models based

on [50]; and the state transition factor is essential to characterize the performance of

communication systems over Markov channels which will bring convenience to the

design of different communication systems when the delay is considered.



Appendix A

Two-state Markov Channel with

No Service Rate in Bad State

Here we study the two-state Markov channel with one of its service rate is 0. We

derive the interested performance metrics with different methods and show that it

is consistat with our general two-state model analyzed in Chapter 3.

A.1 Model Discription

For a fixed service rate (when the channel is in Good state), the corresponding service

rate distribute exponentially with parameter µ0. There is no service rate when the

channel is in Bad state. That is µ1 = 0. Figure A.1 shows the state rate transition

diagram of M/MMSP/1/K with µ1 = 0, from which we derive the following set of

Kolmogorov forward equations

(λ+ f0)p0,0 = f1p0,1 + µ0p1,0 (A.1a)

(λ+ f1)p0,1 = f0p0,0 (A.1b)

(λ+ f0 + µ0)pi,0 = f1pi,1 + λpi−1,0 + µ0pi+1,0 (A.1c)
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0, 0 1, 0

0, 1 1, 1

i, 0

i, 1

i+1, 0

i+1, 1

K, 0

K, 1

Figure A.1: Rate transition diagram with finite waiting rooms K and µ1 = 0

(λ+ f1)pi,1 = f0pi,0 + λpi−1,1 (A.1d)

(f0 + µ0)pK,0 = f1pK,1 + λpK−1,0 (A.1e)

f1pK,1 = f0pK,0 + λpK−1,1. (A.1f)

for all i = 1, 2, ...,K − 1. From the rate transition diagram shown in figure A.1, the

balance equation with respect to the dashed line cut is given by

λ(pi,0 + pi,1) = µ0pi+1,0 (A.2)

for all i = 0, 1, 2, ...,K − 1. Summing (A.2) over i, we obtain

λ(1− PK) = µ0(π0 − p0,0). (A.3)

Corresponding to (3.7), the system capacity when µ1 = 0 is given by

µ̂ = π0µ0, (A.4)

which is the average serve rate when the system is always busy. Then (A.3) can be

rewritten as µ̂− λ′ = µ0p0,0.
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A.2 Generating Functions

The system generating function

G(z) =
i=K
∑

i=0

ziPi, |z| ≤ 1, j = 0, 1.

is obtained by applying µ1 = 0 to (3.11) as follows

G(z) =
1

g(z)

(

(λ(1− z) + f0 + f1)(µ̂− λ(1− PK))

+ λzK (µ0pK,1(1− z)− (λ(1− z) + f0 + f1)PKz)
)

, (A.5)

where

g(z) = λ2z2 − λ(λ+ f0 + f1 + µ0)z + µ0(λ+ f1).

The function g(z) in the denominator processes two roots z1 and z2 (z1 < z2 by

default), as

z1 =
λ+ f0 + f1 + µ0 +

√

(λ+ f0 + f1 + µ0)2 − 4µ0(λ+ f1)

2λ

z2 =
λ+ f0 + f1 + µ0 −

√

(λ+ f0 + f1 + µ0)2 − 4µ0(λ+ f1)

2λ

After extensive mathematical development, it turns out that both z1 and z2 are

larger than 1 under the system stability condition λ < µ̂. Otherwise, rearrange the

function g(z) as

g(z) = λ(λz − µ0)(z − 1)− (λz − µ̂)(f0 + f1). (A.6)

It follows that the both of the roots of g(z) locate at the two points of intersections

of the following two curves, as plotted in Fig. A.2:

y1(z) = λ(λz − µ0)(z − 1)

and

y2(z) = (λz − µ̂)(f0 + f1).
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Figure A.2: z1 and z2 locate at the three points of intersections of y1 and y2.

For positive λ, µ0, f0 and f1, the following relationship always holds under the

system stability condition λ < µ̂:

1 < z1 <
µ̂

λ
<

µ0

λ
< z2. (A.7)

A.3 Buffer overflow probabilities

In the following we show an alternative method to obtain the blocking probability

of the finite queueing systems based on the probabilities of queueing systems with

infinite waiting rooms.
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A.3.1 Infinite waiting rooms

Taking the limit K → ∞ in (A.5), we obtain the generating function for system

with infinite waiting rooms as follows:

G(z) =
−λ(µ̂− λ)z + (λ+ f0 + f1)(µ̂− λ)

λ2z2 − λ(λ+ f0 + f1 + µ0)z + µ0(λ+ f1)
. (A.8)

The probability that there are i packets in the system

Pi = Az−i
1 +Bz−i

2 , i = 0, 1, 2, ... (A.9)

can be obtained from G(z) expressed as follows:

G(z) =
A

1− z−1
1 z

+
B

1− z−1
2 z

,

where A and B can be easily derived from (A.8), as following

A =
µ̂− λ

λ

z−1
1

z1 − z2

(µ0

λ
− z2

)

B =
µ̂− λ

λ

z−1
2

z2 − z1

(µ0

λ
− z1

)

.

More specifically, we could express both parameters A and B in forms of channel

model parameters

A =
µ̂− λ

2µ0(λ+ f1)

(

λ+ f0 + f1 +
µ0(λ+ f1 − f0)− (λ+ f0 + f1)

2

√

(λ+ f0 + f1 + µ0)2 − 4µ0(λ+ f1)

)

B =
µ̂− λ

2µ0(λ+ f1)

(

λ+ f0 + f1 +
(λ+ f0 + f1)

2 − µ0(λ+ f1 − f0)
√

(λ+ f0 + f1 + µ0)2 − 4µ0(λ+ f1)

)

.

Taking the inverse z-transform of G(z), we get (A.9). It follows that the following

probabilities pi,0 and pi,1 can be calculated from (A.9) along with (3.3) and (A.2):

pi,0 =
λ

µ0
Az1−i

1 +
λ

µ0
Bz1−i

2 (A.10a)

pi,1 = (1−
λ

µ0
z1)Az

−i
1 + (1−

λ

µ0
z2)Bz−i

2 (A.10b)
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The server utilization is given as follows:

ρ = 1− P0 =
λ

µ0

λ+ f0 + f1 + µ0 − µ̂

λ+ f1
. (A.11)

For system to be stable, the server utilization must satisfy ρ < 1. From (A.11), the

stable condition implies λ < µ̂. It is the system stability condition for the infinite

queue and it is why µ̂ is defined as the system capacity.

A.3.2 Finite buffer capacity K

An arriving packet will be blocked if there areK packets in the system. The following

theorem gives the blocking probability.

Theorem A.1. For finite queueing system with K waiting rooms, the blocking prob-

ability is given by

PK =
µ̂− λ

µ̂/S − λ
, (A.12)

where

S =
Az−K

1

1− z−1
1

+
Bz−K

2

1− z−1
2

.

Proof. Comparing the balance equations of both finite and infinite queueing systems,

the first K − 1 equations are the same. Hence, we assume the ratios between the

first K − 1 state probabilities are constant. Then the first K − 1 state probabilities

can be expressed as

pi,0 =
1

S0

(

λ

µ0
Az1−i

1 +
λ

µ0
Bz1−i

2

)

(A.13)

pi,1 =
1

S0

(

(1−
λ

µ0
z1)Az

−i
1 + (1−

λ

µ0
z2)Bz−i

2

)

(A.14)

i = 0, 1, 2, ...,K − 1,

where S0 is a normalization constant. For the state (K, 0), probabilities should

satisfy (A.2) when i = K − 1,

λ(pK−1,0 + pK−1,1) = µ0pK,0,
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which yields

pK,0 =
1

S0

(

λ

µ0
Az1−K

1 +
λ

µ0
Bz1−K

2

)

. (A.15)

For the state (K, 1), the balance equation (A.1f) gives

pK,1 =
1

f1
(f0pK,0 + λpK−1,1)

=
1

S0f1

(

f0

(

λ

µ0
Az1−K

1 +
λ

µ0
Bz1−K

2

)

+ λ

(

(1−
λ

µ0
z1)Az

1−K
1 + (1−

λ

µ0
z2)Bz1−K

2

))

=
λ

S0f1µ0

(

(f0 + µ0 − λz1)Az
1−K
1 + (f0 + µ0 − λz2)Bz1−K

2

)

=
1

S0
(1 +

λ

f1
)

(

(1−
λ

µ0
z1)Az

−K
1 + (1−

λ

µ0
z2)Bz−K

2

)

. (A.16)

The normalization constant S0 is determined from the property that the sum-

mation of all the probabilities goes to unity:

K
∑

i=0

(pi,0 + pi,1) = 1. (A.17)

We have all the probabilities in state j = 0 from (A.13) and (A.15), as

K
∑

i=0

pi,0 =
1

S0

λ

µ0



A
z1

(

1− z
−(K+1)
1

)

1− z−1
1

+B
z2

(

1− z
−(1+K)
2

)

1− z−1
2





=
1

S0

(

f1
f0 + f1

−
λ

µ0

(

Az−K
1

1− z−1
1

+
Bz−K

2

1− z−1
2

))

(A.18)

and all the probabilities in state j = 1 from (A.14) and (A.16)

K
∑

i=0

pi,1 =
K−1
∑

i=0

pi,1 + pK,1

=
1

S0

(

(1−
λ

µ0
z1)A

1− z−K
1

1− z−1
1

+ (1−
λ

µ0
z2)B

1− z−K
2

1− z−1
2

)

+
λ

f1µ0

(

(f0 + µ0 − λz1)Az
1−K
1 + (f0 + µ0 − λz2)Bz1−K

2

)

=
1

S0

(

f0
f0 + f1

−
λf0
µ0f1

(

Az−K
1

1− z−1
1

+
Bz−K

2

1− z−1
2

))

=
f0
f1

K
∑

i=0

pi,0 (A.19)
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Substituting (A.18) and (A.19) into (A.17), we have

K
∑

i=0

(pi,0 + pi,1) =
1

S0

(

1−
f0 + f1

f1

λ

µ0

(

Az−K
1

1− z−1
1

+
Bz−K

2

1− z−1
2

))

=1,

which results in

S0 =1−
f0 + f1

f1

λ

µ0

(

Az−K
1

1− z−1
1

+
Bz−K

2

1− z−1
2

)

=1−
λ

µ̂

(

Az−K
1

1− z−1
1

+
Bz−K

2

1− z−1
2

)

.

The blocking probability that packets arriving when there are K packets in the

system is given by

PB =pK,0 + pK,1

=
1

S0

((

1 +
λ

f1
(1−

λ

µ0
z1)

)

Az−K
1 +

(

1 +
λ

f1
(1−

λ

µ0
z2)

)

Bz−K
2

)

(A.20)

To simplify the expression of PB, we need the following equations:

1 +
λ

f1
(1−

λ

µ0
z1) =

µ̂− λ

µ̂

1

1− z−1
1

. (A.21a)

1 +
λ

f1
(1−

λ

µ0
z2) =

µ̂− λ

µ̂

1

1− z−1
2

. (A.21b)

Substituting (A.4) into (A.21a), we have

1

µ0f1
(µ0f1 + λµ0 − λ2z1) =

µ0f1 − λ(f0 + f1)

µ0f1

1

1− z−1
1

, (A.22)

Reorganizing (A.22), it gives

λ2z1 − λ(λ+ µ0 + f0 + f1) + µ0(λ+ f1)z
−1
1 = 0. (A.23)

Please note that (A.23) always holds since z1 is one of the two roots of g(z). Similarly,

(A.21b) is derived since z2 is the other root of g(z). Substituting both (A.21a) and

(A.21b) into (A.20), we have (A.12).
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A.3.3 Large-deviation approximation

The blocking probability PK is a combination of two exponential series z−K
1 and

z−K
2 . Since 0 < z−1

2 < λ/µ̂ < z−1
1 as shown in Fig. A.2, S0 is dominated by z−K

1 for

large K(approximately > 10), or specifically, we have S0 ≈ A
z−K
1

1−z−1
1

. It follows that

K can be approximately given by

K ≈
ln
(

λ
µ̂ + µ̂−λ

µ̂
1

PK

)

+ ln A
1−z−1

1

lnz1
. (A.24)

In practice, the lagging bound can be approximately determined by expression (A.24)

for a given blocking probability.

A.4 Delay analysis

Comparing infinite and finite queueing systems, the only difference is the net arrival

rate changing from λ to λ′. Hence, the server utilization ρ for finite queueing system

can be obtained by replacing λ in (A.11) by λ′. Let E(T ) be the mean service time

of the system. From Little’s Law, ρ = λ′E(T ), we have

E(T ) =
λ′ + f0 + f1 + µ0 − µ̂

µ0(λ′ + f1)
.

The mean number of packets in the system (the mean queue length) L =
∑i=K

i=0 iPi can be derived from (A.5) and given as follows:

L =
λ(1− (K + 1)PK)

µ̂− λ
+

(1− pK,1)λµ0 − µ̂

(f0 + f1)(µ̂− λ)
,

where pK,1 is given in (A.16). From Little’s Law, we obtain the following expression

of mean waiting time:

W =
L

λ′
−

λ′ + f0 + f1 + µ0 − µ̂

µ0(λ′ + f1)
.

The service time is the time that starts from the moment packet is at the head

of the queue till the service is finished. For those packets arrived when the server
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is idle and the channel state is Bad, we include the time between the arrival and

the channel state changes to Good in their service time. However, this interval is

considered as waiting time in [59].

A.5 Consistency with M/MMSP/1/K

The two-state system with no service rate in Bad state is a special case of the

M/MMSP/1/K system previously analyzed in 3.2, by replacing µ1 = 0. Similarly,

the steady state probabilities can be obtained by taking the inverse z-transform of

the generating function G(z). The function in the denominator of the generating

function, g(z) in (A.6), is consistent with the one in (3.10), if we consider the third

root of (3.10) to be zero, as z0 = 0. If the service rate at bad state reduces to zero,

we will have z0 = 0. Then the probability that there are i packets in the system is

given by

Pi =







Az−i
1 +Bz−i

2 for i = 0, 1, ...,K − 1

Az−i
1 +Bz−i

2 + C for i = K
(A.25)

The expression of the buffer overflow probability (when i = K) is different from

other ones (when 0 ≤ i ≤ K − 1). There exists an additional component C in PK

and this agrees with [20]’s work.

A.6 Numerical and simulation results

For all simulations presented in this paper, packets arrive according to Poisson

process with parameter λ and we generate a large enough number of arriving packets

to make sure that the system reaches steady state. The wireless channel changes

between two states Good and Bad alternatively with parameters f0 = 0.002 and

f1 = 0.02 respectively.
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Figure A.3: Blocking probability with lagging bound K = 20

We first consider the case of channels with constant lagging bound K. If there

are K packets in the system including the one in service upon the arrival of a packet,

then the packet will be blocked. The mean system service rate at Good state is 2.

The total time that the channel is in Good state (with probability π0 = 10/11) is 10

times longer than that of the Bad state (with probability π1 = 1/11), from which

the system capacity should be µ̂ = 1.82.

Figure A.3 shows the corresponding blocking probability curve versus λ. Our

analysis is confirmed by the simulation results. In general, the blocking probability

increase with respect to λ and in the practical range 0 < λ < µ̂ of interest, PK

increases slowly.

Figure A.4 shows the blocking probabilities at different lagging bounds and arrive

rates. All other parameters remain the same as before. When λ < µ̂, the blocking

probability will decrease to 0 if given large enough lagging bound K. On the other

hand, the blocking probability always exists for any K when λ > µ̂. At this time,
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Figure A.4: Blocking probabilities at different K and λ.

the blocking probability will decrease to 1− µ̂/λ when K goes to infinity.



Appendix B

Series expansions of service

time Moments in P2P model

We derive the expressions of the conditional first and second moments of service

time, E[Tj ] and E[T 2
j ], given that the number of server at the beginning of the

service is j, by serial expansion.

B.1 First moment of service time

We have the conditional first moment of service time E[Tj ] from (4.42) as

(λs + jµs + jµc)E[Tj ] = 1 + λsE[Tj+1] + jµsE[Tj−1]. (B.1)

Applying the following Taylor series approximations to (B.1)

E[Tj+1] ≈ E[Tj ] +
dE[Tj ]

dj
and E[Tj−1] ≈ E[Tj ]−

dE[Tj ]

dj
, (B.2)

we have

jµcE[Tj ] ∼= 1 + (λs − jµs)
dE[Tj ]

dj
. (B.3)

103



Chapter B. 104

When j = 1, the combination of (B.2 and (B.3) yields:

µcE[T1] ∼= 1 + (λs − µs)(E[T2]− E[T1]). (B.4)

Also (B.1) becomes

(λs + jµs + jµc)E[T1] = 1 + λsE[T2] + jµsE[T0]. (B.5)

If there is no server available at the beginning of the service, j = 0, then the mean

service time is given by:

E[T0] =
1

λs
+ E[T1]. (B.6)

Solving (B.4 ), (B.5) and (B.6) simultaneously, we have

E[T0] =
µs + µc

λsµc
(B.7a)

E[T1] =
µs

λsµc
(B.7b)

E[T2] =
µs − µc

λsµs
(B.7c)

From (B.1) and (B.7), we can recursively calculate E[Tj ], j = 3, 4, ..., N . For large

j, the conditional mean service time can also be obtained by the series expansion:

E[Tj ] =
N
∑

k=1

τk
jk

.

The coefficients τk in the above series are the solution of a set of linear equations.

We need the following identities to establish those equations:

1

j + 1
=

1

j

(

1

1 + 1
j

)

=
1

j

(

1−
1

j
+

1

j2
−

1

j3
+ · · ·

)

=
1

j
−

1

j2
+

1

j3
−

1

j4
+ · · · (B.8a)

1

j − 1
=

1

j

(

1

1− 1
j

)

=
1

j

(

1 +
1

j
+

1

j2
+

1

j3
+ · · ·

)

=
1

j
+

1

j2
+

1

j3
+

1

j4
+ · · · (B.8b)
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1

(j + 1)2
= −

d

dn

1

j + 1
=

1

j2
−

2

j3
+

3

j4
−

4

j5
+ · · · (B.8c)

1

(j − 1)2
= −

d

dn

1

j − 1
=

1

j2
+

2

j3
+

3

j4
+

4

j5
+ · · · (B.8d)

1

(j + 1)3
= −

1

2

d

dn

1

(j + 1)2
=

1

j3
−

3

j4
+

6

j5
−

10

j6
+

15

j7
− · · · (B.8e)

1

(j − 1)3
= −

1

2

d

dn

1

(j − 1)2
=

1

j3
+

3

j4
+

6

j5
+

10

j6
+

15

j7
+ · · · (B.8f)

1

(j + 1)4
= −

1

3

d

dn

1

(j + 1)3
=

1

j4
−

4

j5
+

10

j6
−

20

j7
+

35

j8
− · · · (B.8g)

1

(j − 1)4
= −

1

3

d

dn

1

(j − 1)3
=

1

j4
+

4

j5
+

10

j6
+

20

j7
+

35

j8
+ · · · (B.8h)

Substituting (B.8) into (B.1), we have

(λs + jµs + jµc)

[

τ1
j

+
τ2
j2

+
τ3
j3

+
τ4
j4

+ · · ·

]

=1 + λs



















τ1

(

1
j −

1
j2

+ 1
j3

− 1
j4

+ 1
j5

− · · ·
)

+τ2

(

1
j2

− 2
j3

+ 3
j4

− 4
j5

+ 5
j6

− · · ·
)

+τ3

(

1
j3

− 3
j4

+ 6
j5

− 10
j6

+ 15
j7

− · · ·
)

+ · ··



















+jµs



















τ1

(

1
j +

1
j2

+ 1
j3

+ 1
j4

+ 1
j5

+ · · ·
)

+τ2

(

1
j2

+ 2
j3

+ 3
j4

+ 4
j5

+ 5
j6

+ · · ·
)

+τ3

(

1
j3

+ 3
j4

+ 6
j5

+ 10
j6

+ 15
j7

+ · · ·
)

+ · ··



















(B.9)

which holds for all j ≥ 3. Comparing coefficients of (B.9), we obtain the following

set of equations:

τ1 (µs + µc) = 1 + τ1µs (B.10a)

τ1λs + τ2 (µs + µc) = τ1λs + τ1µs + τ2µs (B.10b)

τ2λs + τ3 (µs + µc) = −τ1λs + τ2λs + τ1µs + 2τ2µs + τ3µs (B.10c)

τ3λs + τ4 (µs + µc) = τ1λs − 2τ2λs + τ3λs + τ1µs + 3τ2µs + 3τ3µs + τ4µs (B.10d)

...
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Solving this set of linear equations (B.10), we obtain:

τ1 =
1

µc

τ2 =
µs

µ2
c

τ3 =
µs − λs

µ2
c

+
2µ2

s

µ3
c

τ4 =
µs + λs

µ2
c

+
6µ2

s − 5λsµs

µ3
c

+
6µ3

s

µ4
c

...

It follows that

E[Tj ] =
1

jµc
+

µs

j2µ2
c

+
1

j3

(

µs − λs

µ2
c

+
2µ2

s

µ3
c

)

+
1

j4

(

µs + λs

µ2
c

+
6µ2

s − 5λsµs

µ3
c

+
6µ3

s

µ4
c

)

+···

for j = 3, 4, 5, ..., N

B.2 Second moment of service time

From (4.43), the conditional second moment E[T 2
j ] satisfies the following equation:

(λs + jµs + jµc)E[T 2
j ] = 2E[Tj ] + λsE[T 2

j+1] + jµsE[T 2
j−1] (B.12)

Applying the following Taylor series approximations to (B.12)

E[T 2
j+1] ≈ E[T 2

j ] +
dE[T 2

j ]

dj
and E[T 2

j−1] ≈ E[T 2
j ]−

dE[T 2
j ]

dj
, (B.13)

we have

jµcE[T 2
j ]

∼= 2E[Tj ] + (λs − jµs)
dE[T 2

j ]

dj
. (B.14)

When j = 1, the combination of (B.13 and (B.14) yields:

µcE[T 2
1 ]

∼= 2E[T1] + (λs − µs)(E[T 2
2 ]− E[T 2

1 ]). (B.15)

Also (B.12) becomes

(λs + jµs + jµc)E[T 2
1 ] = 2E[T1] + λsE[T 2

2 ] + jµsE[T 2
0 ]. (B.16)
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If there is no server available at the beginning of the service, j = 0, then the mean

service time is given by:

E[T 2
0 ] =

2

λ2
s

+
2E[T1]

λs
+ E[T 2

1 ]. (B.17)

Solving (B.15 ), (B.16) and (B.17) simultaneously, we have

E[T 2
0 ] =

2

λ2
s

+
2µs

λsµc
+

µs(2µ
2
s − λ2

s) + 2µ2
c(µs − λs)

λ2
sµsµ2

c

(B.18a)

E[T 2
1 ] =

µs(2µ
2
s − λ2

s) + 2µ2
c(µs − λs)

λ2
sµsµ2

c

(B.18b)

E[T 2
2 ] =

µs(2µ
2
s − λ2

s) + 2µ2
c(µs − λs)

λ2
sµsµ2

c

−
2

λ2
s

−
2µs

λsµc
(B.18c)

For large j, we can assume

E[T 2
j ] =

∞
∑

k=2

vk
jk

. (B.19)

Substituting identities (B.19) into (B.12), we have

(λs + jµs + jµc)

[

v2
j2

+
v3
j3

+
v4
j4

+ · · ·

]

(B.20)

=2E[Tj ] + λs



















v2

(

1
j2

− 2
j3

+ 3
j4

− 4
j5

+ 5
j6

− · · ·
)

+v3

(

1
j3

− 3
j4

+ 6
j5

− 10
j6

+ 15
j7

− · · ·
)

+v4

(

1
j4

− 4
j5

+ 10
j6

− 20
j7

+ 35
j8

− · · ·
)

+ · ··



















(B.21)

+jµs



















v2

(

1
j2

+ 2
j3

+ 3
j4

+ 4
j5

+ 5
j6

+ · · ·
)

+v3

(

1
j3

+ 3
j4
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. (B.22)

Comparing coefficients of (B.20), we obtain the following set of equations:

v2 (µs + µc) = 2τ1 + v2µs (B.23a)

v2λs + v3 (µs + µc) = 2τ2 + v2λs + 2v2µs + v3µs (B.23b)
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v2λs + v3 (µs + µc) = 2τ2 + v2λs + 2v2µs + v3µs (B.23c)

v3λs + v4 (µs + µc) = 2τ3 − 2v2λs + v3λs + 3v2µs + 3v3µs + v4µs (B.23d)

...

Solving this set of linear equations (B.23), we obtain:

v2 =
2

µ2
c

v3 =
6µs

µ3
c

v4 =
(8µs − 6λs)

µ3
c

+
22µ2

s

µ4
c

...

It follows that

E[T 2
j ]

2

j2µ2
c

+
6µs

j3µ3
c

+
1

j4

(

8µs − 6λs

µ3
c

+
22µ2

s

µ4
c

)

+ · · · (B.25)

for j = 3, 4, 5, ..., N
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