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Abstract 

Glaucoma is a neurodegenerative disease characterized by chronic 

degeneration of retinal ganglion cells with progressive loss in visual 

function. While measurements of the optic disc, retinal nerve fiber layer 

(RNFL) and visual sensitivity have been used to monitor glaucoma 

progression, little is known about the optimal strategy for detection of 

change. Both event and trend analyses (EA and TA) are adopted to 

evaluate glaucoma progression in clinical practice but the agreement 

between the two approaches is often poor. This research project set out 

to investigate the performance of EA and TA for detection of progressive 

RNFL thinning measured with optical coherence tomography (OCT) and 

its association with subsequent change in visual function.  

In the computer simulation study, average RNFL thickness progression 

was modeled with reference to the individual's test-retest variabilities 

and different patterns and rates of progression. We showed that TA 

generally attained sensitivity and accuracy ≥80% earlier than EA at 

similar specificities. These findings were validated with prospective 
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RNFL measurements collected from 107 glaucoma patients who had a 

median follow-up of 38 months. TA detected 35% whereas EA detected 

12% to 28% of eyes with progression in eyes with average test-retest 

variability.  

 

With the observation that TA generally outperformed EA, we then set 

forth to develop a trend-based algorithm to compute RNFL loss in the 

individual pixels in the RNFL thickness map (Trend-based Progression 

Analysis (TPA)), and compared its performance with Guided 

Progression Analysis (GPA) – a commercially available event-based 

counterpart. 68 eyes of 48 glaucoma patients followed for a median of 

60 months were examined. Among the 23 eyes with evidence of GPA 

progression, TPA detected RNFL progression in all but 4 eyes. For the 

45 eye without GPA progression, 19 had progression detected by TPA. 

For the 19 progressing eyes detected by GPA and TPA at the latest 

follow-up visit, over 73.7% had progression evident in TPA earlier than 

or at the same time with GPA. With the inclusion of the rates of change 

of RNFL measurements at individual pixels and the false discovery rate 

(a measure of false positives in the RNFL thickness map) in TPA, TPA 

can provide a more informative approach to analyze RNFL changes in 

glaucoma. 
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 As the ultimate goal of glaucoma management is to preserve visual 

function, it is relevant to investigate whether RNFL progression would 

translate to subsequent change in function. Analyzing longitudinal RNFL 

and visual field measurements with autoregressive modeling in 84 eyes 

of 84 glaucoma and glaucoma suspect patients followed for a median of 

49 months, we showed that prior average RNFL thickness and prior 

visual field MD were associated with subsequent loss in visual field MD 

in the early stages of glaucoma. RNFL measurement would be useful to 

predict subsequent loss in visual function.  

In summary, TA outperformed EA for detection of progressive RNFL 

thinning. RNFL measurement would be useful to predict subsequent 

visual field progression and may thus be qualified as an outcome 

measure in clinical trials investigating glaucoma progression. 
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摘要摘要摘要摘要 (Abstract in Chinese) 

青光眼是一類視神經退化性的視神經病變青光眼是一類視神經退化性的視神經病變青光眼是一類視神經退化性的視神經病變青光眼是一類視神經退化性的視神經病變，，，，主要表現為慢性主要表現為慢性主要表現為慢性主要表現為慢性，，，，進展性的進展性的進展性的進展性的

視網膜神經節細胞雕亡視網膜神經節細胞雕亡視網膜神經節細胞雕亡視網膜神經節細胞雕亡，，，，最終導致失明最終導致失明最終導致失明最終導致失明。。。。研究表明研究表明研究表明研究表明，，，，視神經的退化要早視神經的退化要早視神經的退化要早視神經的退化要早

於視覺功能的損傷於視覺功能的損傷於視覺功能的損傷於視覺功能的損傷，，，，因此分析結構性與功能性的參數改變對監測青光眼因此分析結構性與功能性的參數改變對監測青光眼因此分析結構性與功能性的參數改變對監測青光眼因此分析結構性與功能性的參數改變對監測青光眼

是極為重要的是極為重要的是極為重要的是極為重要的。。。。 

既既既既 1991年光學相幹斷層掃描儀的發明使得客觀測量視盤及視網膜成為可年光學相幹斷層掃描儀的發明使得客觀測量視盤及視網膜成為可年光學相幹斷層掃描儀的發明使得客觀測量視盤及視網膜成為可年光學相幹斷層掃描儀的發明使得客觀測量視盤及視網膜成為可

能能能能。。。。以往很多臨床研究著眼於結構與功能之間的相關性以往很多臨床研究著眼於結構與功能之間的相關性以往很多臨床研究著眼於結構與功能之間的相關性以往很多臨床研究著眼於結構與功能之間的相關性，，，，但其二者之間但其二者之間但其二者之間但其二者之間

的不同步性仍然是青光眼進展研究的一大問題的不同步性仍然是青光眼進展研究的一大問題的不同步性仍然是青光眼進展研究的一大問題的不同步性仍然是青光眼進展研究的一大問題。。。。 

我們開展縱向研究主要關註視網膜神經纖維層厚度和視野平均標準差之我們開展縱向研究主要關註視網膜神經纖維層厚度和視野平均標準差之我們開展縱向研究主要關註視網膜神經纖維層厚度和視野平均標準差之我們開展縱向研究主要關註視網膜神經纖維層厚度和視野平均標準差之

間的相關性間的相關性間的相關性間的相關性。。。。應用統計學模型應用統計學模型應用統計學模型應用統計學模型，，，，發現二者之間的不同步性主要取決於疾發現二者之間的不同步性主要取決於疾發現二者之間的不同步性主要取決於疾發現二者之間的不同步性主要取決於疾

病的嚴重程度病的嚴重程度病的嚴重程度病的嚴重程度。。。。對早期診斷青光眼對早期診斷青光眼對早期診斷青光眼對早期診斷青光眼，，，，視網膜神經纖維層厚度相較於視野視網膜神經纖維層厚度相較於視野視網膜神經纖維層厚度相較於視野視網膜神經纖維層厚度相較於視野

平均標準差更有幫助平均標準差更有幫助平均標準差更有幫助平均標準差更有幫助。。。。 

事件及趨勢分析方法被廣泛應用於研究疾病進展事件及趨勢分析方法被廣泛應用於研究疾病進展事件及趨勢分析方法被廣泛應用於研究疾病進展事件及趨勢分析方法被廣泛應用於研究疾病進展。。。。然而然而然而然而，，，，究竟哪種方法究竟哪種方法究竟哪種方法究竟哪種方法

的敏感性及特異性更高則尚未知曉的敏感性及特異性更高則尚未知曉的敏感性及特異性更高則尚未知曉的敏感性及特異性更高則尚未知曉。。。。我們采用數學模擬法分析縱向臨床我們采用數學模擬法分析縱向臨床我們采用數學模擬法分析縱向臨床我們采用數學模擬法分析縱向臨床

數據數據數據數據，，，，結果表明趨勢分析在檢測疾病進展的敏感性較高結果表明趨勢分析在檢測疾病進展的敏感性較高結果表明趨勢分析在檢測疾病進展的敏感性較高結果表明趨勢分析在檢測疾病進展的敏感性較高，，，，且特異性與事且特異性與事且特異性與事且特異性與事

件性分析相似件性分析相似件性分析相似件性分析相似。。。。 

我們進一步利用趨勢分析方法分析視網膜神經纖維層厚度圖的逐點像素我們進一步利用趨勢分析方法分析視網膜神經纖維層厚度圖的逐點像素我們進一步利用趨勢分析方法分析視網膜神經纖維層厚度圖的逐點像素我們進一步利用趨勢分析方法分析視網膜神經纖維層厚度圖的逐點像素，，，，

分析表明趨勢分析方法較事件分析方法更早檢測出青光眼進展分析表明趨勢分析方法較事件分析方法更早檢測出青光眼進展分析表明趨勢分析方法較事件分析方法更早檢測出青光眼進展分析表明趨勢分析方法較事件分析方法更早檢測出青光眼進展。。。。 
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總之總之總之總之，，，，統計學模型可用於解釋在青光眼進展過程中的結構功能關系統計學模型可用於解釋在青光眼進展過程中的結構功能關系統計學模型可用於解釋在青光眼進展過程中的結構功能關系統計學模型可用於解釋在青光眼進展過程中的結構功能關系。。。。視視視視

網膜神經纖維層厚度是檢測青光眼進展的重要參數網膜神經纖維層厚度是檢測青光眼進展的重要參數網膜神經纖維層厚度是檢測青光眼進展的重要參數網膜神經纖維層厚度是檢測青光眼進展的重要參數。。。。趨勢分析方趨勢分析方趨勢分析方趨勢分析方法比事法比事法比事法比事

件分析方法可更早發現疾病進展件分析方法可更早發現疾病進展件分析方法可更早發現疾病進展件分析方法可更早發現疾病進展。。。。 
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CHAPTER 1 INTRODUCTION 

1.1 Definition and Epidemiology of Glaucoma 

Glaucoma is an optic neuropathy characterized by chronic progressive 

degeneration of retinal ganglion cells with clinical features including 

thinning of the retinal nerve fiber layer, narrowing of the neuroretinal rim, 

and optic disc cupping. Visual sensitivity is gradually loss which can 

eventually lead to blindness if treatment is not initiated.  

Glaucoma is generally classified into open-angle glaucoma (OAG) and 

angle-closure glaucoma (ACG) according to the anterior chamber angle 

configuration. With reference to the etiology, OAG and ACG can be 

further subclassified into primary and secondary glaucoma (Figure 1.1).  

Glaucoma is the second leading cause of global blindness after cataract 

since 1990 (Resnikoff & Keys, 2012), which causes around 8% of global 

blindness in 2010 (Pascolini & Mariotti, 2011). Worldwide, it is estimated 

that 60.5 million of people were suffering from glaucoma in 2010 and is 

predicted to grow to 79.6 million by 2020. Among the 60.5 million of 

people suffering from glaucoma, 44.7 and 15.7 million of people were 

open-angle glaucoma (OAG) and angle-closure glaucoma (ACG), 

respectively. Notably, 47% of OAG and 87% of ACG were Asians. 4.5 

million of OAG patients and 3.9 million of ACG patients had bilateral 

blindness in 2010. These numbers are expected to increase to 5.9 and 

5.3 million, respectively, by 2020. (Quigley & Broman, 2006) 
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1.2 Pathogenesis of Glaucoma 

The pathogenesis of glaucoma is multifactorial and apoptosis is a key 

pathological process observed in retinal ganglion cells in eyes with 

glaucoma (Quigley, 2011). There are multiple factors influencing the 

structural and functional integrity of retinal ganglion cells.  

The mechanical theory proposes that elevated intraocular pressure (IOP) 

mechanically compresses the lamina cribrosa, disrupting axoplasmic 

transport and leading to retinal ganglion cell degeneration (Fechtner & 

Weinreb, 1994, Agarwal et al., 2009). Animal studies show that both the 

level and duration of IOP elevation are positively correlated with RGC 

axon loss (Chauhan et al., 2002, Levkovitch-Verbin et al., 2002). 

The vascular theory proposes that retinal ganglion cell axon death may 

be due to insufficient blood supply to the optic nerve head consequential 

to loss in capillaries, compromised microcirculation, and alterations in 

choroidal blood flow (Fechtner & Weinreb, 1994, Agarwal et al., 2009, 

Flammer et al., 2002, Grieshaber & Flammer, 2005). In healthy eyes, 

there is an efficient autoregulatory mechanism to maintain a constant 

rate of blood flow in the retina and optic nerve head (Bill & Sperber, 

1990). However, in glaucomatous eyes, the ocular perfusion pressure is 

compromised, which is particularly deleterious in patients with low 

systemic blood pressure(Michelson et al., 1998, Chung et al., 1999, 

Grunwald et al., 1999), In fact, reduced diastolic perfusion pressure has 
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been shown to be an important risk factor for POAG (Bonomi et al., 

2000). 

Although the exact molecular mechanism(s) contributing to RGC 

apoptosis is unknown, glutamate toxicity, formation of nitric oxide and 

free radicals have been shown to be associated with RGC death in 

glaucoma. Hypoxia can induce the release of glutamate in the retina 

(Neal et al., 1994). Glutamate is an essential neurotransmitter in the 

retina and it can be toxic to the retinal neurons when the concentration 

in the retina is high. Glutamate toxicity was first demonstrated in an 

animal study conducted by Lucas & Newhouse, who observed severe 

RGC death after subcutaneous injection of glutamate in young mice 

(Lucas & Newhouse, 1957). Similar glutamate-induced retinal toxicity 

was also reported by Olney and the term "excitotoxicity" was introduced 

to describe the damage developed upon exposure to excess level of 

excitatory neurotransmitter (Olney, 1969). Vorwerk et al. found that 

glutamate is also toxic to RGCs when its level is mild but chronically 

elevated. (Vorwerk et al., 1996).  

Excessive production of nitric oxide (NO) by astrocytes and microglia in 

the optic nerve head has been found to be associated with neuronal 

loss. NO is synthesized from L-arginine by the NO synthases and has 

been detected in three isoforms (Moncada & Higgs, 1993). In normal 

human eyes, NOS-1 has been detected in scattered astrocytes 

throughout the optic nerve head, which indicates that this isoform is 
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constitutive in certain glia and that NO may serve as a physiological 

mediator between astrocytes or between astrocytes and axons. By 

contrast, in patients with glaucoma, numerous cell bodies are positive 

for the presence of NOS-1 on the vitreal surface, in the remnant glial 

cells and in the cells in lamina cribrosa within glaucomatous tissue 

(Neufeld, 1999). NOS-3 is a constitutive isoform found in the vascular 

endothelial cells in the prelaminar region of the optic nerve head in 

normal eyes. In glaucomatous eye, vascular endothelial NOS-3 may 

cause vasodilation and contribute to increased blood flow and thereby 

offering neuroprotection (Neufeld, 1999). NOS-2 is the inducible form of 

the enzyme which reacts to diverse conditions such as exposure to 

cytokines and elevated IOP to produce excessive amount of NO. 

Significant amount of NOS-2 has been found in the astrocytes and 

microglia at the optic nerve head of patients with glaucoma (Liu & 

Neufeld, 2000, Liu & Neufeld, 2001). 

Excessive formation of free radicals and oxidative stress from aerobic 

metabolism or vascular dysregulation are known to damage the DNA of 

the trabecular meshwork cells and altered the outflow of aqueous humor 

in glaucoma. In the study conducted by Izzotti et al., the oxidative DNA 

damage was measured by 8-hydroxy-2'-deoxyguanosine in the 

trabecular meshwork region from 42 glaucoma patients and 45 control 

subjects. Oxidative DNA damage is found to be significantly increased in 

glaucoma patients and correlated with intraocular pressure (IOP) (Izzotti 
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et al., 2003). Similar findings were observed in the study conducted by 

Saccà et al. with a sample of 17 glaucomatous eyes and 21 healthy 

eyes (Saccà et al., 2005). 

1.3 Functional Assessments for Glaucoma 

The goal in glaucoma management is to preserve visual function to 

meet with the needs of the patient for his/her lifespan. Since 

glaucomatous visual field loss commonly occurs in correspondence with 

the retinal nerve fiber bundle defects, understanding the retinal nerve 

fiber bundle trajectories is a prerequisite for diagnosing and monitoring 

glaucomatous damage. In the retina, the nerve fibers at the nasal side of 

the fovea travel directly into the temporal sector of the ONH and the 

nerve fibers at the temporal side travel to superotemporal and 

inferotemporal sectors of the ONH in arched traveling paths without 

crossing the horizontal midline (Figure 1.2) (Fitzgibbon & Taylor, 1996, 

Jansonius et al., 2009, Garvin et al., 2012). Therefore, glaucomatous 

visual field defects are often observed in arcuate-shaped extension of 

the blind spot corresponding to the nerve fiber bundle trajectories 

(Weber & Ulrich, 1991, Garway-Heath et al., 2000). Visual field loss 

commonly occurs first in the superonasal or inferonasal field.  

Perimetry plays an important role in detection of visual field defects in 

glaucoma. Perimetry can be classified into kinetic and static testing. 

Kinetic perimetry uses moving light stimulus with fixed size and 
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brightness from a peripheral non-detectable location to a location where 

it is first detected by the test subject. The procedure is repeated until the 

visual field is mapped out. On the other hand, static perimetry uses 

stationary light stimulus with varying size and brightness. It presents 

light stimulus with different levels of intensity at different test locations 

and determines the stimulus intensity with 50% probability of perception. 

The intensity that results in 50% probability of perception is called the 

threshold or differential luminance sensitivity. Static perimetry is the 

reference standard for evaluation of glaucomatous damage. 

Standard white-on-white automated perimertry (SAP) 

Standard automated perimetry is a well-established technology to 

measure the thresholds of visual field in glaucoma. The white-on-white 

perimetry presents test stimulus with varying size and brightness against 

a standard white background at each test location. Humphrey Field 

Analyzer (HFA, Carl Zeiss Meditec, Dublin, California) is a popular 

commercial automated perimetry for visual field assessment. It provides 

global indices including mean deviation (MD), pattern standard deviation 

(PSD) and visual field index (VFI) to indicate the average visual 

sensitivity of the whole visual field. MD is defined as the average of the 

deviations of threshold values across all test locations in the total 

deviation plot. A negative MD value signifies a reduction in visual 

sensitivity compared with a reference normal visual field. PSD is a 

measure defined as the standard deviation of the deviations values 
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across all test locations in the pattern deviation plot. A large PSD is 

associated with high likelihood of the existence of localized defects. 

Localized visual field defects can be observed in the probability plots of 

the pattern deviation values with reference to a normative database. VFI 

is an age-corrected index to determine the percentage of visual field 

preserved (Bengtsson & Heijl, 2008). A VFI of 100% represents a 

normal visual field and 0% represents a perimetrically blind field.  

Visual field progression is analyzed by the Guided Progression Analysis 

(GPA) software in HFA. GPA includes a linear regression analysis of 

VFI across time to estimate the rate of change in visual function and a 

progression analysis plot to detect the difference between baseline and 

follow-up visual sensitivity that exceeds the variability derived from the 

normative database with simple plain-language messages (no 

progression, possible progression and likely progression) based on the 

criteria used in the Early Manifest Glaucoma Trial (EMGT) (please refer 

to section 1.5.1.1 for detail). 

Other types of perimetry testing in glaucoma 

Frequency doubling technology perimetry uses frequency doubling 

illusion first described by Kelly in 1966 (Kelly, 1966) to measure the 

visual sensitivity to vertical gratings stimulus counter-phase flickered at 

high temporal frequency. It has shown to have above 85% sensitivity 

and specificity for the detection of glaucoma in early stage (Cello et al., 
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2000). Humphrey Matrix (Carl Zeiss Meditec, Dublin, California) is the 

second generation of FDT perimetry which provides similar visual field 

indices as Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, 

California) to quantify visual sensitivity. Short-wavelength perimetry 

projects blue stimulus on a yellow background to quantify the visual 

function. Since there is relatively less dense matrix of blue cones 

serving the central visual field, it was believed to detect glaucomatous 

visual field loss earlier than SAP. However, a recent study by van der 

Schoot et al. showed that out of 24 glaucoma suspect eyes that 

converted to glaucoma, only 2 (8%) had earlier conversion detected in 

SWAP. In contrast,15 (63%) eyes had conversion detected in SAP 

earlier (van der Schoot et al., 2010) than SWAP. 

1.4 Optic Disc Assessment for Glaucoma 

Thinning of retinal nerve fiber layer (RNFL), narrowing of the 

neuroretinal rim, and optic disc cupping are the key characteristic 

structural changes in glaucoma. Assessment of the RNFL and optic 

nerve head are critical in diagnosing and monitoring of glaucoma. Optic 

disc stereophotography (Morgan et al., 2005), red-free RNFL 

photography (Hoyt et al., 1973), confocal scanning laser 

ophthalmoscopy (Webb et al., 1987), scanning laser polarimetry 

(Weinreb et al., 1990), and optical coherence tomography (Huang et al., 

1991) are common imaging techniques to measure the RNFL and ONH. 

Most imaging techniques can provide high measurement repeatability 
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and reproducibility (Weinreb et al., 1993, Chauhan et al., 1994, Hoh et 

al., 1998, Mikelberg et al., 1993, Paunescu et al., 2004, Kruse et al., 

1989, Budenz et al., 2008, Leung et al., 2009, Leung et al., 2008). 

Evaluation of optic disc stereophotography and red-free RNFL 

photography is largely subjective and thus limited by considerable inter-

observer variability (Coleman et al., 1996, Azuara-Blanco et al., 2003, 

Jampel et al., 2009). 

A number of studies have demonstrated that RNFL and ONH changes 

can be detected before visual field defects are apparent (Airaksinen et 

al., 1981, Quigley et al., 1992). Localized RNFL defect in glaucoma was 

first illustrated by Hoyt (Hoyt et al., 1973). According to Jonas & Dichtl 

(Jonas & Dichtl, 1996), RNFL defects are wedge-shaped and running 

toward the optic disc border, which occurred in about 20% of all 

glaucoma eyes. Due to the uneven distribution of RNFL thickness 

around the ONH, localized RNFL defects are most commonly occurred 

in the inferior temporal and superior temporal sectors followed by the 

inferior nasal and superior nasal sectors (Quigley & Addicks, 1982). 

Similar to the RNFL defects, neuroretinal rim loss is found 

predominantly at the inferotemporal and superotemporal sectors in the 

early stages of glaucoma, followed by the temporal and then nasal 

sectors when the disease reaches moderate and advanced stages 

(Jonas et al., 1993). 
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Optic disc cupping is another important sign observed in glaucoma. 

Optic cup size varies among individuals and positively correlates with 

optic disc size (Bengtsson, 1976, Caprioli & Miller, 1987, Jonas, et al. 

1988a). Because of the correlation between the cup and disc area, 

cup/disc ratio, which is defined as the ratio of cup to disc diameters, is 

small in small optic discs and large in large optic discs. In normal eyes, 

horizontal cup/disc ratio is reported to be greater than vertical cup/disc 

ratio in 93% of eyes (Jonas et al., 1988a). Since the vertical cup/disc 

ratio increases faster than the horizontal cup/disc ratio in early to 

moderate stages of glaucoma, the quotient of horizontal to vertical 

cup/disc ratio smaller than one may provide an important indication of 

the development of glaucoma (Jonas et al., 1988b, Jonas et al., 1988c). 

Peripapillary atrophy is associated with glaucoma. It can be divided into 

� and � zones. � zone is characterized by a complete loss of retinal 

pigment epithelium located near the optic disc margin. � zone is 

characterized by irregular hypopigmentation and hyperpigmentation in 

the retinal pigment epithelium located peripheral to � zone. Although 

both zones are observed in normal and non-glaucoma eyes, they are 

significantly larger in glaucoma eyes and the � zone is found to occur 

more often in glaucoma eyes (Jonas et al., 1989, Jonas & Naumann, 

1989, Jonas et al., 1992).According to Tezel et al. (Tezel et al., 1997a, 

Tezel et al., 1997b), the presence and size of peripapillary atrophy are 

related to the development of subsequent optic disc or visual field 
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damage in ocular hypertension which may be an important feature in 

early glaucoma. 

Splinter-shaped or flame-shaped hemorrhages at the margin of the optic 

disc are also associated with glaucoma. They often precede the onset of 

RNFL and visual field defects (Airaksinen et al., 1981a, Airaksinen & 

Heijl, 1983). Population studies estimated that optic disc hemorrhages 

occurred in about 1% of normal eyes (Healey et al., 1998, Yamamoto et 

al., 2004). By contrast, their prevalence was around 7-14% in glaucoma 

eyes (Airaksinen et al.,1981b, Gloster, 1981, Healey et al., 1998, 

Yamamoto et al., 2004). Although it is a rather specific sign in glaucoma, 

its low sensitivity limits its role in early detection of glaucoma. 

Detection of Optic Disc Changes 

1.4.1 Optic disc stereophotography and red-free RNFL 

photography 

Optic disc stereophotography and red-free RNFL photography have 

been used for diagnosing and monitoring glaucoma for decades. Optic 

disc stereophotography is useful to examine neuroretinal rim notching 

and narrowing, disc cupping and hemorrhages. On the other hand, red-

free RNFL photography is useful to observe localized or diffuse loss of 

the RNFL. However, reliable examination of the optic disc and RNFL 

relies on the availability of high quality optic disc and RNFL images, 

which is subject to the influence of media opacity and imaging 
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techniques. Notably, intraobserver and interobserver agreement for 

optic disc evaluation with optic disc stereophotography and red-free 

RNFL photography has been shown to be fair (Coleman et al., 1996, 

Azuara-Blanco et al., 2003, Jampel et al., 2009).  

1.4.2 Confocal scanning laser ophthalmoscopy 

Confocal scanning laser ophthalmoscopy (cSLO) makes use of laser 

light to illuminate the retina. It emits light ray to the optic disc and retina 

and measures the reflected light through a pinhole which only allows 

light ray reflected from the focal plane to pass through. It starts scanning 

above the retinal surface, then captures parallel images at increasing 

depths and stacks images together to form a three-dimensional 

topographic image of the retina and optic disc (Weinreb et al., 1989).  

The Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, 

GimbH, Heidelberg, Germany) is a commercially available confocal 

scanning laser ophthalmoscope which provides two classification 

methods (1) the Moorfields Regression Analysis (MRA) and (2) the 

Glaucoma Probability Scores (GPS) to separate healthy and 

glaucomatous eyes. MRA discriminates glaucomatous from healthy 

eyes by using global and sectorial rim area adjusted for disc size and 

age of the examined optic disc and compares the rim area with a 

database of normal eyes (Wollstein et al., 1998). However, the 

subjectively drawn contour line of the optic disc results in moderate 



13 

 

interobserver and intraobserver agreement of rim area measurement 

(Garway-Heath et al., 1999). 

By contrast, GPS is a contour line-independent method, which uses 

Bayesian machine-learning classifier to compare the shape of the 

examined optic disc with those obtained from healthy and glaucomatous 

eyes to evaluate the likelihood of optic disc damage (Swindale et al., 

2000). The classification performance is comparable to MRA. However, 

the classification performance of both GPS and MRA varies with the 

optic disc size (Coops et al, 2006). 

1.4.3 Scanning laser polarimetry 

Scanning laser polarimetry (SLP) uses a polarized laser beam on to the 

retina and measures the retardation of the reflected light from the nerve 

fiber layer tissue. A fixed conversion factor (0.67 nm/µm) is used to 

calculate the RNFL thickness in micrometers(Weinreb et al., 1990, 

Weinreb et al., 1998, Knighton et al., 1998). Other than the RNFL, the 

cornea and the lens are also birefringent structures. The measured 

retardation due to these structures have to be neutralized in order to 

derive the retardation of the RNFL (Greenfield et al., 2000, Weinreb et 

al., 2002). The variable corneal compensation (VCC) is a technique to 

compensate the anterior segment birefringence (Qienyuan Zhou & 

Weinreb, 2002) and is used in the commercial device, GDx (Carl Zeiss 

Meditec, Dublin, California). However, atypical patterns of elevated 
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retardation may appear in SLP-VCC images result in inaccurate 

calibration of the RNFL thickness (Reus & Lemij, 2004). The enhanced 

corneal compensation (ECC) algorithm is introduced in 2006 to better 

compensate the atypical retardation patterns and residual anterior 

segment birefringence in measuring the RNFL thickness (Q Zhou, 

2006). This ECC algorithm is introduced in the GDxPro (Carl Zeiss 

Meditec, Dublin, California), the latest generation of GDx. The ECC 

algorithm provides a lower measurement variability of RNFL thickness 

(Tóth & Holló, 2005) and better classification performance to 

discriminate glaucomatous from healthy eyes (Medeiros et al., 2007). 

The Nerve Fiber Indicator (NFI) calculated by both GDxVCC and 

GDxECC is an indicator of the likelihood of abnormal RNFL thickness 

based on support vector machine trained to discriminate healthy from 

glaucomatous eyes. There is evidence suggesting that the classification 

performance of NFI is better than the TSNIT (temporal, superior, nasal, 

inferior, temporal) average, superior average, inferior average RNFL 

thickness (Dada et al., 2009). RNFL defects can be detected by the 

RNFL thickness deviation map in both GDxVCC and GDxECC. The 

RNFL thickness deviation map compares RNFL measurements of 

individual pixels in the map with a database of normal RNFL 

measurements collected from healthy eyes.  
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1.4.4 Optical coherence tomography 

Optical coherence tomography (OCT) was first introduced in 1991 by a 

team in Massachusetts Institute of Technology (MIT) headed by 

Fujimoto for noninvasive cross-sectional imaging in biological systems 

(Huang et al., 1991). Two dimensional grayscale OCT images 

representing the reflectivity of different structures of the retina were 

illustrated, where high reflective structures such as the RNFL and the 

retinal pigment epithelium were displayed in bright signal intensity 

whereas low reflective structures such as the subretinal fluid and the 

vitreous were displayed in low signal intensity. Based on the unique 

reflectivity in each layer of the retina, different layers can be segmented 

and the RNFL thickness can be quantified. The basic principal of optical 

coherence tomography is based on low coherence interferometry which 

makes use of the interference of two light beams split up from a 

common light source by a beam splitter. One light beam is directed to 

the sample, another one is directed to a reference mirror. The 

backscattered and back-reflected signals are then recombined through 

the beam splitter and received by a detector. Since interference only 

occurs when the two beams are matched in traveling distance, the 

location and depth of interfaces within sample can be determined by 

detection of the various interference envelop peaks. Multiple longitudinal 

scans at a series of lateral locations are performed to provide a two 

dimensional image of the reflection sites in the sample analogous to 
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ultrasound B scan imaging. Similarly, three dimensional image can be 

obtained by repeating the multiple longitudinal scanning operation in 

another dimension.  

Currently, there are two types of OCT systems, known as time-domain 

OCT (TD-OCT) and spectral-domain OCT (SD-OCT). The one 

introduced by the MIT team headed by Fujimoto in 1991 is a TD-OCT. 

The first SD-OCT is introduced in 1995 (Fercher et. at, 1995) and the 

first demonstration of in vivo imaging was published in 2002 (Wojtkowski 

et al., 2002). The major difference between TD-OCT and SD-OCT is the 

method in acquiring a longitudinal scan. In TD-OCT, longitudinal 

scanning is performed by moving the reference mirror over a distance 

equal to the interested depth range. In SD-OCT, there are currently two 

systems of image acquisition. One system is called spectrometer-based 

SD-OCT, also known as Fourier domain OCT. In Fourier domain OCT, 

the reference mirror is immobilized, interferometric signal is detected by 

a low-loss spectrometer to measure the spectral oscillations. The other 

system is called swept-source SD-OCT, it uses a rapidly tunable 

narrowband laser with immobilized reference mirror to measure the 

spectral oscillations generated by the swept source. Yaqoob et al. have 

proved that spectrometer-based SD-OCT can provide a better signal-to-

noise ratio (SNR) than TD-OCT with the same acquiring time, with a 

difference of 10 log���/2�, where � is the number of detector elements 

in the spectrometer (Yaqoob et al., 2005). 
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The first commercialized TD-OCT was introduced in 1995. TD-OCT has 

undergone generations of changes from OCT 1, OCT 200, to Stratus 

OCT (Carl Zeiss Meditec). The time-domain OCT technology allows the 

Stratus OCT to acquire 400 A-scans per second. SD-OCT has become 

the current standard for optic disc and retina imaging because of the 

increased scan speed and improved image resolution. A number of SD-

OCT models are available in the market. These include the Cirrus HD-

OCT (Carl Zeiss Meditec, Dublin, California) with a scan speed of 

27,000 A-scans per second, Spectralis OCT (Heidelberg Engineering, 

GimbH, Heidelberg, Germany) with a scan speed of 40,000 A-scans per 

second, 3D-OCT (Topcon Corporation, Tokyo, Japan) with a scan 

speed of 20,000 A-scans per second, RTVue (Optovue, Inc, Fremont, 

CA, USA) with a scan speed of 26,000 A-scans per second, 3D SD OCT 

(Bioptigen, Inc, Research Triangle Park, North Carolina) with a scan 

speed of 20,000 A-scans per second, SOCT Copernicus HR (Optopol 

Technology, SA, Zawiercie, Poland) with a scan speed of 52,000 A-

scans per second and OCT/SLO (Ophthalmic Technologies Inc, OTI, 

Toronto, Ontario) with a scan speed of 27,000 A-scans per second. The 

scan speed of the spectral-domain OCT ranges between 20,000 A-

scans per second and 52,000 A-scans per second and the axial 

resolution of is approximately 5µm. 

Extensive research investigating the reproducibility of RNFL and optic 

disc measurements has been reported across different generations of 
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OCT. The reproducibility of the first generation OCT (OCT 1, Carl Zeiss 

Meditec) was reported by Schuman et al. (Schuman et al., 1996). The 

study evaluated the intraclass correlation coefficients (ICCs) of the 

average RNFL thickness measurement based on different diameters of 

scan circles at the optic disc from 10 glaucoma and 11 control subjects. 

The scan circle of 3.4 mm diameter centered at the optic disc center 

was found to have highest ICCs among the tested scan circle diameters. 

The ICCs for the 10 glaucoma and 11 control subjects were 0.52 and 

0.56, respectively (Schuman et al., 1996). The reliabilities were only 

moderate. With the improvement in OCT technology, the reliability of 

OCT has been improved dramatically. Good to adequate reliability with 

ICCs of 0.79 - 0.98 has been reported in the average RNFL thickness 

measured by the Stratus OCT (Carl Zeiss Meditec) for both glaucoma 

and normal subjects with both standard and fast scan protocols 

(Paunescu et al., 2004, Budenz et al., 2005, Budenz et al., 2008 Leung 

et al., 2008). High reliability of RNFL measurement has also been 

reported in many SD-OCT devices. Vizzeri et al. reported good reliability 

for Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, California) RNFL 

measurements with ICCs of 0.98 and 0.96 in glaucomatous and healthy 

eyes, respectively (Vizzeri et al., 2009). Langenegger et al., reported an 

ICC of 0.99 for the average RNFL thickness in both glaucoma and 

normal groups using the Spectralis OCT (Heidelberg Engineering, 

GimbH, Heidelberg, Germany) (Langenegger et al., 2011). For the 3D-
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OCT (Topcon Corporation, Tokyo, Japan), Menke et al. showed the 

ICCs of average RNFL thickness measured with scan circle of 3.0 mm 

and 6.0 mm diameters were 0.94 - 0.96 (Menke et al., 2008). González-

García et al. reported the ICCs of average RNFL thickness 

measurement of RTVue (Optovue, Inc, Fremont, CA, USA) were 0.97 in 

both glaucoma and normal subjects (González-García et al., 2009). The 

reliability of OCT/SLO (Ophthalmic Technologies Inc, OTI, Toronto, 

Ontario) was investigated by Hong et al., who reported the intra-session 

ICCs of the average RNFL thickness were 0.97 and the inter-session 

ICCs were 0.96 in both the independent and guided re-test scanning 

modes (Hong et al., 2012). 

Many studies have shown that OCT has good diagnostic performance 

for glaucoma. Medeiros et al. had reported that the average RNFL 

thickness obtained by Stratus OCT had an area under the receiver 

operating characteristic curve (AUC) of 0.91 in 75 glaucoma and 66 

healthy subjects, which was not significantly difference from those 

obtained with the HRT and GDx VCC. The average RNFL thickness 

obtained by Stratus OCT had a sensitivity of 71% with a specificity of 

95% and a sensitivity of 84% with a specificity of 80% (Medeiros et al., 

2004). Using an average RNFL thickness < the 5th percentile of the 

RNFL thickness from the reference database for glaucoma diagnosis, a 

sensitivity of 84% with a specificity of 98% have been reported (Budenz 

et al., 2005). Large AUC for the average RNFL thickness measurement 
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(0.952 - 0.978) to discriminate glaucomatous from normal eyes has also 

been reported using the SD-OCT (Leung et al., 2010, Wu et al., 2012). 

1.5 Monitoring Glaucoma Progression 

Monitoring glaucoma progression is essential to guide treatment in 

glaucoma patients. Visual field testing has been a key strategy to follow 

glaucoma progression and most clinical trials in glaucoma treatment 

used visual field changes as an outcome measure. 

1.5.1 Visual Field Progression 

1.5.1.1 Event analysis 

In the Advanced Glaucoma Intervention Study (AGIS), a visual field 

scoring system was developed with reference to the threshold values in 

the total deviation map provided in the Humphrey 24-2 printout. The 

visual field was divided into three partitions: the nasal, the superior and 

the inferior hemifields. In the superior and the inferior hemifields, scores 

were given separately based on the number of clusters with three or 

more contiguous depressed points with at least one test location 

depressed ≥12 dB. Clusters of 3-5 points, 6-12 points, 13-20 points and 

>20 points were given a score from 1 to 4, respectively. For a cluster 

with at least half of its points depressed by ≥12 dB, ≥16 dB, ≥20 dB, ≥24 

dB or ≥28 dB, a score from 1 to 5 was added, respectively. The score on 

each hemifield was bounded by 9. In the nasal field, occurrence of a 

cluster of three or more contiguous depressed points that may cross the 
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horizontal midline or a cluster of one or more depressed points that did 

not cross the horizontal midline was given a score of 1. If more than half 

of the nasal test locations were depressed ≥12 dB, a score of 2 was 

given. A total score ranged from 0 (normal) to 20 (severe visual field 

loss) was assigned to a visual field. Progression was defined when the 

visual field score increased by 4 or more and confirmed with 2 

consecutive tests. (AGIS investigators, 1994a, AGIS investigators, 

1994b) 

The Collaborative Initial Glaucoma Treatment Study (CIGTS) is another 

major clinical trial examining 607 subjects with open-angle glaucoma 

enrolled at 14 clinical centers in the United States. It used a scoring 

system based on the total deviation probability plot in the Humphrey 24-

2 printout. A test location was defined as a defective point when a 

probability ≤5% was observed in the corresponding location in the total 

deviation probability plot with at least two adjacent defective points on 

the sides or corners. The minimum defect was defined as the maximum 

probability value in the total deviation plot at the given defective point 

and two most defective neighboring points. A score would be given 

according to the minimum defect. 1 for a minimum defect ≤5%, 2 for a 

minimum defect ≤2%, 3 for a minimum defect ≤1% and 4 for a minimum 

defect ≤0.5%. Scores of all the test locations, except for the two test 

location near to the blind spot, were summed and rescaled (dividing by 

10.4) to a range between 0 (no defect) to 20 (all points showing a defect 
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at 0.5% level of significant). Progression was defined when a score 

increased by 3 or more and confirmed with two consecutive 

examinations. (Musch et al., 1999) 

In the Early Manifest Glaucoma Trial (EMGT), visual field progression at 

a test location was defined when the change in visual sensitivity was 

outside the 95% test-retest variability in the pattern deviation plot, and 

confirmed with two consecutive tests. An eye was considered to have 

visual field progression when 3 or more test locations (Leske et al., 

1999) had evidence of change. 

A study conducted by Heijl et al. (Heijl et al., 2008) shown that the three 

visual field progression detection criteria (AGIS, CIGTS and EMGT 

criteria) had a sensitivity of 58%, 75% and 96% and a specificity of 98%, 

99% and 89%, respectively. The agreement between the three criteria 

was only moderate. 

1.5.1.2 Trend analysis 

Although event analysis is a more popular approach to evaluate 

glaucoma progression, trend analysis is useful to examine the rate of 

progression. Linear regression is the most commonly used regression 

model in modeling glaucoma progression. There are studies suggesting 

that linear regression provide adequate fit to glaucoma visual field 

progression (Mikelberg et al., 1986, McNaught et al., 1995, Bengtsson 

et al., 2009). Mean deviation (MD) has been a commonly used index to 
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assess the overall severity of visual field damage. A population-based 

study based on 1066 OAG subjects estimated that the mean 

progression of visual field in decibels per year was -1.12 dB/year, -1.26 

dB/year, -1.33 dB/year and -1.56 dB/year in European, Hispanic, 

African, and Chinese, respectively. There were no without significant 

differences between ethnicities (Broman et al., 2008). A study 

conducted by Heijl et al. reported significant differences in the median 

rates of MD loss between normal, high-tension glaucoma (HTG), 

normal-tension glaucoma (NTG) and pseudoexfoliation glaucoma 

(PEXG) subjects. The median rates of MD loss were -0.40 dB/year 

overall, and -0.46 dB/year, -0.22 dB/year and -1.13 dB/year in the HTG, 

NTG and PEXG groups, respectively (Heijl et al., 2009). However, MD 

can be affected by the presence of media opacity (e.g. cataract). The 

visual field index (VFI) is an age-corrected index introduced by 

Bengtsson and Heijl (Bengtsson & Heijl, 2008) quantifying the 

percentage of visual field preserved. It has been shown that VFI is less 

likely to be affected by media opacity compared with MD (Bengtsson & 

Heijl, 2008, Rao et al., 2013). Artes et al. investigated the relationship 

between MD and VFI in 109 glaucoma subjects and reported the mean 

rates of change in MD and VFI were -0.27 dB/year and -0.26 %/year, 

respectively. There was a strong correlation between the rates of 

change of MD and VFI (Spearman's correlation coefficient of 0.79) 

(Artes et al., 2011). 
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In addition to evaluating global change in visual field indices such as MD 

and VFI, the point-wise linear regression analysis (PLR) (Progressor, 

OBF Laboratories UK Ltd, Wiltshire, UK) can provide linear regression 

analysis on individual test locations. It has been shown that the mean 

rate of change of localized threshold sensitivities in glaucomatous eyes 

vary from -0.84 dB/year to -5.84 dB/year (Smith et al., 1996, Katz et al., 

1997). Therefore, the rate of change of localized threshold sensitivity ≤-

1.00 dB/year is usually considered clinically meaningful in glaucoma 

monitoring. While most studies on PLR were based on linear regression, 

Caprioli et al. suggested that exponential regression may provide better 

fit than linear regression for modeling progression of the differential 

luminance sensitivities at individual test locations (Caprioli et al., 2011). 

1.5.2 Optic Disc and RNFL Progression 

1.5.2.1 Confocal scanning laser ophthalmoscopy 

Topographic Change Analysis (TCA) is a statistical technique introduced 

by Chauhan (Chauhan et al., 2000) for detecting surface topographic 

changes in the optic disc with the confocal scanning laser 

ophthalmoscope (cSLO), Heidelberg Retina Tomograph, (HRT; 

Heidelberg Engineering, GimbH, Heidelberg, Germany). The HRT 

image consists of 256x256 pixels (10 µm/pixel) of topographic height 

values in the optic disc region. In the TCA, images are divided into 

arrays of 64x64 superpixels (1 superpixel =4x4 pixels). A nested three-
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way analysis of variance (ANOVA) accounted for the effects of 

topograph scan variability, scan time and the location of the height 

measurements is applied to compare the baseline and follow-up 

topographic height values on each superpixel. A significant change is 

defined as a difference in surface height between the follow-up and the 

baseline examinations greater than the test-retest variability calculated 

from the three baseline examinations (Chauhan et al., 2000).  

A computer simulation study by Chauhan et al. (Chauhan et al., 2000) 

suggested that the TCA has an adequate level of sensitivity to detect 

changes ≥2 standard deviation (SD) of topographic height in the optic 

disc with a high level of specificity. Progression detected by the TCA is 

also found to be predictive of subsequent visual field progression 

(Chauhan et al., 2009b). However, a longitudinal study of 77 subjects 

with early glaucomatous visual field damage showed that only 29% of 

eyes detected with progression by TCA had also progression detected 

by the pattern deviation probability plot in SAP. There was a poor 

agreement between the changes detected by TCA and SAP (Chauhan 

et al., 2001). Likewise, the agreement of optic disc changes detected by 

TCA and optic disc photography was poor (Chauhan et al., 2009a, 

O’Leary et al., 2010). 

A statistical image mapping (SIM) approach has been investigated by 

Patterson et al. SIM is generated by performing pixel-by-pixel analysis of 

topographic height changes over time using permutation testing at 5% 
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level of significance. Clusters of contiguous pixels were analyzed 

through permutation testing by shuffling the images many times. SIM 

has been shown to have superior performance in detecting change 

compared with TCA in computer simulation. It has been further 

confirmed by a longitudinal study following 20 normal and 30 ocular 

hypertensive subjects. SIM detected a higher proportion of optic disc 

changes (73%) in ocular hypertensive subjects and a lower proportion of 

optic disc changes (10%) in normal subjects than TCA (53% and 15%, 

respectively). (Patterson et al., 2005) 

1.5.2.2 Scanning laser polarimetry 

The advent of Guided Progression Analysis in GDx VCC and ECC (Carl 

Zeiss Meditec, Dublin, California) has facilitated detection of progressive 

RNFL thickness. GPA analyzes RNFL thickness changes in a map with 

event analysis and performs linear regression analysis of average, 

superior and inferior RNFL thicknesses. For the map analysis, RNFL 

thickness measurements in the 4.2x4.2 mm2 area at the optic disc 

region are analyzed. The RNFL thicknesses were compared between 

the follow-up and the two baseline examinations pixel-by-pixel. There 

are two different modes of GPA: Fast Mode and Extended Mode. In the 

Fast Mode, test-retest variability is estimated based on a reference 

population. In the Extended Mode, the test-retest variability is estimated 

by the within-subject variability calculated from three baseline images. 

"Possible progression" of RNFL thickness at individual pixel is 
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highlighted in yellow, which signifies that the reduction in RNFL 

thickness between the baseline and the follow-up examination exceeds 

the test-retest variability of that particular pixel. When the change is 

confirmed by a consecutive examinations, "Likely progression" is noted 

and the pixel would be highlighted in red. On the other hand, an 

increase in RNFL thickness is denoted as “Possible increase” and 

highlighted in purple when the difference between the baseline and the 

follow-up examinations exceed the test-retest variability. 

A longitudinal study of 431 glaucoma and glaucoma suspect eyes using 

the Fast Mode GPA in GDxVCC reported that 50% of eyes with 

progression detected by SAP or optic disc photographs were detected 

by GPA with a specificity ≥96%. However, the agreement between the 

progression detected by GPA and the two standard techniques is only 

moderate (Agreement Coefficient AC1: 0.44, 95% confidence interval: 

0.28 - 0.61) (Alencar et al., 2010). In addition, although the same GPA is 

available in both GDxVCC and GDxECC, the agreement between the 

Fast Mode GPA in the two corneal compensation techniques (kappa: 

0.41- 0.57) is only moderate (Grewal et. al, 2011). 

1.5.2.3 Optical coherence tomography  

The first longitudinal study investigating the progressive changes of 

RNFL thickness measured by OCT was conducted by Wollstein et al. 

(Wollstein et al., 2005). They investigated 64 eyes of 37 glaucoma and 
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glaucoma suspect subjects with a median follow-up of 4.7 years. The 

study reported that the mean rates of change in the average RNFL 

thickness were -2.56 µm/year and -2.21 µm/year in glaucoma suspects 

and glaucomatous eyes, respectively. There were no significant 

differences in the rates of change between the groups. By defining OCT 

RNFL progression as a reduction in average RNFL thickness of at least 

20 µm and visual field progression as a reduction in MD of at least 2 dB, 

22% of eyes were detected to have progression by OCT, 9% of eyes 

were detected to have progression by visual field, with 3% of eyes were 

detected to have progression by both techniques (Wollstein et al., 2005).  

Lee et al. compared the rates of change of RNFL thickness measured 

by OCT between 76 progressors and 77 non-progressors (based on the 

evaluation of serial red-free RNFL photographs) with localized RNFL 

defects (Lee et al., 2011). They found that the rate of change in affected 

clock-hour sectors had the highest discrimination power to separate 

progressive eyes from non-progressive eyes, which reported a 

sensitivity of 62% with specificity of ≥80%. Comparatively, the rate of 

change of average RNFL thickness only provided a discrimination ability 

between progressors and non-progressors with a sensitivity of 32% and 

a specificity of ≥80% (Lee et al., 2011). Both the global and sectoral 

RNFL thickness are important parameters in monitoring glaucoma 

progression. 
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In the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, California), 

progressive RNFL changes can be analyzed in a map using the Guided 

Progression Analysis (GPA). The RNFL thickness map is compared of 

200x200 pixels, representing RNFL measurements in a 6x6 mm2 optic 

disc region. The RNFL thicknesses between the two baseline and the 

follow-up examination are compared pixel-by-pixel. Possible RNFL 

thickness progression at individual pixel in the RNFL thickness map is 

defined when the difference between the two baseline and the follow-up 

examination exceeds the test-retest variability of that particular pixel. 

The test-retest variability is estimated based on a reference database. 

Likely progression is defined when the change is confirmed in the 

consecutive follow-up examinations. "Likely Loss", "Possible Loss", and 

"Possible Increase" are highlighted in red, yellow and purple, 

respectively. 

A longitudinal study analyzing serial changes of the RNFL change maps 

showed that widening of RNFL defects was the most common pattern of 

RNFL progression (85.7% of all eyes with RNFL progression detected), 

whereas deepening of RNFL defects was found in 7.1% of eyes, and 

development of new RNFL defects was found in 17.9%. However, 

among those eyes with RNFL progression detected by GPA, only 46.4% 

had visual field progression detected by SAP (Leung et al., 2012). 
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1.6 Statistical Methods of Progression Analysis 

Event-based and trend-based analyses are the two key fundamental 

approaches for detection of change in disease progression. In the 

following sessions, the statistical basis of event-based and trend-based 

analyses and different mathematical models for detection of change are 

reviewed.  

1.6.1 Event-based Analysis 

Event-based analysis (EA) refers to the statistical analysis that detects 

change that exceeds a certain specific threshold compared with the 

baseline examination. The threshold is commonly computed based on 

the subject-specific test-retest reliability. Commercially available 

statistical packages are available for detection of change in glaucoma 

based on EA. These include the Progression Analysis Probability Plot in 

the Humphrey Field Analyzer (HFA, Carl Zeiss Meditec, Dublin, 

California), the TCA provided by HRT (Heidelberg Engineering, GimbH, 

Heidelberg, Germany), the RNFL thickness change analysis in the 

GDxVCC (Carl Zeiss Meditec, Dublin, California), GDxECC (Carl Zeiss 

Meditec) and Cirrus HD-OCT (Carl Zeiss Meditec). On the other hand, 

there are event analysis using an arbitrary threshold obtained by 

empirical data has been applied in clinical trials of glaucoma treatment. 

These include the visual field scoring system developed by the 

Advanced Glaucoma Intervention Study (AGIS) (AGIS investigators, 
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1994a) and the Collaborative Initial Glaucoma Treatment Study (CIGTS) 

(Musch et al., 1999), and the progression detection defined by the Early 

Manifest Glaucoma Trial (EMGT) (Leske et al., 1999). 

1.6.1.1 Event-based analysis using empirical threshold  

The statistical basis of event analysis is outlined as follow. Let ��� 
denotes the measurement of interest for eye � at time �. To compare the 

baseline measurement at time 0 with the follow-up measurement at time 

�, the difference ��� = ��� − ���� is calculated. Using an empirical 

threshold, ��� for all eyes, � = 1,… , �, can be calculated and arranged in 

order. Let ���� ≤ ���� ≤ ⋯ ≤ ���� be the ordered difference obtained 

from � healthy normal eyes. Assuming the empirical distribution is the 

same as the population distribution, the probability of the difference 

between the baseline and follow-up measurements of a normal eye � 
that is smaller than or equal to � ��, !"�#� ≤ � ��$, equals to %/�. 

Using � �� as the empirical threshold to detect change, progression can 

be defined for eye � if �#� ≤ � ��, and the specificity would be &1 −  �' ×
100%. The sensitivity can be estimated by the percentage of glaucoma 

progression detected by the empirical threshold from a sample of 

progressive glaucomatous eyes defined by a reference standard. 

Although the empirical distribution is not likely to be the same as the 

population distribution, based on empirical theory, it will converge to the 
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population distribution as the sample size increases. Therefore, the use 

of empirical threshold is suitable for population based studies. 

1.6.1.2 Event-based analysis using statistical threshold  

The test-retest reliability of the measurement ��� is assumed to follow a 

certain independent and identical distribution for eye � at time �. With an 

independent and identical normal distribution with a mean of *�� and a 

variance of +��, denoted by ���~�*�� , +���, the difference ��� = ��� − ���� 
would also follow a normal distribution with a mean of *�� − *�� and a 

variance 2+��, ���~�*�� − *��, 2+���. By setting the statistical threshold 

as −-./2+��, where -. is the critical value satisfying Φ−-.� = � and 

Φ	∙	� denotes the cumulative distribution function of standard normal 

distribution, progression can be defined if ��� ≤ −-./2+��. The 

specificity would be31 − Φ−-.�4 × 100% = 1 − �� × 100% and the 

sensitivity would be ! 5��� < −-./2+��7*�� < *��8 = Φ9−-. − :;<=:;>/�?;@ A. 

+��can be estimated by the sample variance +B�� obtained by collecting 

multiple examinations in the baseline visit. This is eye-specific test-retest 

variability. For EA using test-retest variability derived from a group of 

subjects, it is then assumed that all eyes share a similar test-retest 

reliability (i.e. +�� = +�). Then, +� can be estimated by the mean of +B�� 
from a sample of normal eyes. The calculation does not require 
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estimation of the individual variance so that progression can be detected 

with only one baseline and one follow-up examinations. 

1.6.2 Trend-based Analysis 

Trend-based analysis (TA) refers to regression analysis that models 

change of the parameter of interest over time. Linear regression is the 

most commonly used regression model in modeling glaucoma 

progression. Examples of commercially available statistical packages 

based on trend-based analysis include linear regression analysis of 

mean deviation (MD) and visual field index (VFI) in the Humphrey Field 

Analyzer (Carl Zeiss Meditec, Dublin, California), point-wise linear 

regression analysis (PLR) on individual test locations provided by the 

Progressor (OBF Laboratories UK Ltd, Wiltshire, UK) and linear 

regression analysis of RNFL thickness measurements in the Guided 

Progression Analysis (GPA, Carl Zeiss Meditec, Dublin, California) in 

GDxVCC (Carl Zeiss Meditec), GDxECC (Carl Zeiss Meditec), Stratus 

OCT (Carl Zeiss Meditec) and Cirrus HD-OCT (Carl Zeiss Meditec).  

1.6.2.1 Simple linear model  

The statistical basis of linear modeling is outlined as follow. Let ��� 
denotes the measurement of interest for eye � at time � which follows a 

normal distribution with a mean of *�� and a variance of +��, denoted by 

���~�*�� , +���. With simple linear modeling, *�� = ��,� + ��,��, progression 

is defined if the estimation of slope ��,� is significantly less than zero. 



34 

 

The function, *�� = ��,� + ��,��, is known as the link function which 

specify the relationship between the covariate(s) and mean of the 

response variables. For measurements obtained at ��, ��, … , ��, the least 

squares estimator of ��,� is given by �D�,� = ∑ �F=�̅�H;F=HI;�JFKL∑ �F=�̅�@JFKL  which follows 

the normal distribution with mean ��,� and variance +MNL,;� , � &��,� , +MNL,;� ', 
where �̅ = ��∑ � � O�  and �I� = ��∑ �� � O� . The least squares estimator of 

��,� would be given by �D�,� = �I� − �D�,� 	�,̅ which follows a normal 

distribution with mean ��,� and variance +MN>,;� , � &��,� , +MN>,;� '. Progression 

can be defined if �D�,� < −-.+MNL,; with a specificity of 1 − �� × 100%, 

where -. is the upper � × 100% critical value of the standard normal 

distribution. The sensitivity would be ! &�D�,� < −-.+MNL,;P��,�' =
Φ5−-. − ML,;?QNL,;8. If the pattern of progression is exponential, *�� =
��,�RML,;�, by assuming the response variable follow a lognormal 

distribution (i.e. logS ��� ~�logS *�� , +���), a linear regression model can 

be fitted into the logarithm transformed data. 

1.6.2.2 Multiple linear model  

Linear modeling can also take into account multiple covariates (e.g. age 

and IOP for evaluation of glaucoma progression) to refine the model 

fitting. This can be performed by modeling the means of the response 

variables by a linear combination of the covariates, *�� = ��,� + ��,���,�� +
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��,���,�� +⋯+ � ,�� ,��, where "1, ��,�� , ��,�� , … , � ,��$ and "��,� , … , � ,�$ 
represent the covariates and the corresponding coefficients, 

respectively. Under independent and identical normal distribution 

assumption ���~�*�� , +���, the vector �T = "��,�, … , � ,�$ can be estimated 

by the maximum likelihood estimator which follows an asymptotically 

normal distribution with a mean �T and variance U��=�, where U�� =
−E W X@XMY@ logZ ["�T, �T\�T$ |�T^ is the Fisher information matrix and ["�T, �T\�T$ 
is the likelihood function of the whole sample. Each coefficient can be 

tested by Wald test or likelihood ratio test and progression can be 

detected. 

1.6.3 Advanced Regression Analysis 

There is an increasing trend of using linear mixed model to evaluate 

progression in glaucoma. Longitudinal studies conducted by Leung et al. 

(Leung et al., 2012) and Rao et al. (Rao et al., 2013) have used linear 

mixed model to report age-related change in RNFL measurements in 

normal eyes. Their studies suggest that the identification of 

glaucomatous progression should take consideration of age-related 

change. O'Leary et al. (O’Leary et al., 2012) compared the rates of 

change of RNFL thickness and visual field mean deviation between 

normal and glaucoma eyes by linear mixed model. Significant 

differences were only found in the rates of visual field mean deviation 

but not in RNFL thickness. This result might be due to the inclusion of 
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both progressing and non-progressing glaucoma eyes in the analysis. 

By contrast, a number of studies have shown that the rates of change of 

RNFL measurements between progressing and non-progressing 

glaucoma eyes were significantly different, in which stereoscopic 

photography, red-free RNFL photographs and visual field were adopted 

as the reference standard (Medeiros et al., 2009a, Medeiros et al., 

2009b, Alencar et al., 2010, Na et al., 2013). All these studies were 

analyzed using linear mixed model. 

Although linear regression is the most common model to examine 

glaucoma progression, glaucoma progression may not always be linear. 

There is evidence suggesting that faster rate of progression in RNFL 

thickness is associated with thicker baseline RNFL thickness (Medeiros 

et al., 2009, Leung et al., 2010, Leung et al., 2012). Autoregressive (AR) 

model, which regresses current response on previous responses, might 

provide a useful alternative to model such nonlinearity. In 1999, Rahiala 

(Rahiala, 1999) introduced an extension of autoregressive model to 

generalize the variation among individuals in a similar manner as in 

LMM. However, autoregressive model is not commonly used in 

biomedical research and has not been reported in glaucoma study. 

1.6.3.1 Linear mixed model  

Given a collection of longitudinal data from a group of � independent 

eyes such that each eye follows a linear model:	
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��� = ��,� + ��,���,�� + ��,���,�� +⋯+ � ,�� ,�� + _�� 
where ��� represents the response variable for eye � at time �, 
"1, ��,�� , ��,�� , … , � ,��$ and "��,� , … , � ,�$ represent the covariates and the 

corresponding coefficients, respectively, and _�� represents the random 

residual error. The collection of linear models can be grouped together 

to form a linear mixed model (LMM), which is expressed by 

��� = �� + ����,�� +⋯+ � � ,�� 
+`�,� + `�,���,�� + `�,���,�� +⋯+ ` ,�� ,�� + _�� 

where ��, … , � � and "`�,� , … , ` ,�$ represent the fixed overall and 

random individual effects of the covariates "1, ��,�� , … , � ,��$, respectively. 

It can be expressed in a matrix form:  

�T� = �T��T + �T� à� + _�̃ 
where �T� = &���;,L , … , ���;,c;�'d, _�̃ = &_��;,L , … , _��;,c;�'d, 

�T� = &�T��;,L , … , �T��;,c;�'d, �T�� = "1, ��,�� , … , � ,��$, �T = ��, … , � �d and 

à� = "`�,� , … , ` ,�$d. 

It is commonly assumed that à�~�"0T, Σf$ and _�̃~�0, +�U� are 

independent. To avoid singularity of Σf and non-free coefficient in �T, 
consider à� = gha� and �T = �iT where g is a % × j� matrix with rank j, 
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ha�~�"0T, Σk$, � is a % × l� matrix with rank l and iT is a l-dimensional 

vector. The model can be rewritten as 

�T� = ΧT �iT + ΖT�ha� + _�̃ 
where ΧT � = �T�� and ΖT� = �T�g. 

The likelihood function, o"iT, Σk$, for the whole sample is proportional to 

p|q�|=�� × exp u12 "�T� − ΧT �iT$dq�=�"�T� − ΧT �iT$v�
�O�  

where q� = ΖT�ΣkΖT�w + +�U. The maximum likelihood estimator (MLE) of iT 
conditional on q� is given by  

ixyzS = {|ΧT �dq�=�ΧT ��
�O� }=� {|ΧT �dq�=��T��

�O� } 
and the MLE of q�, qxyzS, can be obtained by maximizing the likelihood 

function with iT replaced by ixyzS. This pair of MLE, "ixyzS , qxyzS$, 
simultaneously maximizes the likelihood function, o"iT, Σk$ (Laird & 

Ware, 1982). Based on the properties of MLE, any fixed coefficient iT 
can be tested by Wald test or likelihood ratio test (LRT). Existence of 

any random coefficient can be tested by linear combination of LRT with 

different degrees of freedom as described by Self & Liang (Self & Liang, 

1987). 
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Using Bayesian techniques, eye-specific coefficients ha� given �T� for eye � 
can be predicted by the posterior mean of ha�, which is given by 

hB� = ~3ha�|�T�4 = ΣkΖT�dq�=�"�T� − ΧT �iT$ 
with variance-covariance matrix 

q��hB�� = ΣkΖT�d �q�=� − q�=�ΧT � �|ΧT �dq�=�ΧT ��
�O� �=� ΧT �dq�=��ΖT�Σk 

(Laird & Ware, 1982). 

This predictor is called the best linear unbiased predictor (BLUP). It is 

'linear' because it is a linear function of �T�, and 'unbiased' because the 

expectation of the prediction is equal to the true coefficients ha�. Among 

all the linear unbiased predictors, it is the 'best' in that its variance is 

minimal. The unknown parameters "iT, Σk$ in BLUP can be replaced by 

the MLE of "iT, Σk$ to perform the prediction, such predictor is called an 

empirical best linear unbiased predictor (EBLUP). 

Since the two eyes of any individual are likely to be associated, a nested 

design LMM can be fitted to model data obtained from both eyes. The 

nested design LMM can be formulated as follow: 

�T�# = ΧT �#iT + ΖT�#ha� + ΖT�#∗ ha�#∗ + _�̃# 
where �T�# is the vector of responses for individual � and eye �, iT is the 

vector of fixed effect coefficients corresponding to the covariate matrix 
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ΧT �#, ha� represents the vector of random effect coefficients nested within 

the same individual � corresponding to the covariate matrix ΖT�#, ha�#∗  

represents the vector of random effect coefficients nested within the 

same eye � from the same subject � corresponding to the covariate 

matrix ΖT�#∗ , and _�̃# is the vector of residual errors. 

Assuming ha�~�"0T, Σk$, ha�#∗ ~�"0T, Σk∗$ and _�̃#~�0, +�U� are independent, 

the model parameters can be estimated by MLE, random coefficients 

can be predicted by EBLUP derived from above. 

Using LMM to regress a collection of longitudinal measurements on 

time, the eye-specific rate of progression can be predicted by EBLUP 

and progression can be defined based on Wald test. 

1.6.3.2 Autoregressive model  

In linear and linear mixed models, responses are regressed on a set of 

covariates measured at the same time points as the responses. For 

example, to model the longitudinal change of a response over time for 

eye �, a simple linear regression with link function, *�� = ��,� + ��,��, can 

be applied. The link function is a deterministic function; if ��,� and ��,� are 

known, prediction can be made regardless of the historical records of 

the response ���� for all �= < �. Therefore, linear model and linear mixed 

model are difficult to address the relevance of historical data to 

subsequent changes. Comparatively, an autoregressive (AR) model, 
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which regresses a time series of responses on the previous responses, 

may be a more useful approach. It can be expressed as: 

��� = ��,����=�� + ��,����=�� +⋯+ ��,����=�� 
+��,� + ��,���,�� + ��,���,�� +⋯+ � ,�� ,�� + _�� 

where "��,� , … , ��,�$ represents the effects of the previous responses 

"���=��, … , ���=��$ influencing the response ��� at time point �, which is 

the stochastic component of the model. The linear model component, 

��,� + ��,���,�� +⋯+ � ,�� ,��, corresponds to the deterministic 

component. This model is known as an autoregressive model of order � 
(AR��); given the previous responses, "���=��, … , ���=��$, the current 

response, ���, does not depend on the responses before time � − ��. By 

determining the lag order �, the number of time points required for 

prediction can be identified. The parameters can then be estimated by 

MLE and tested by Wald test. 

Consider causality as a cause-effect relationship among variables or 

events in linear time, multivariate AR model provides a statistical 

approach to investigate causality among the model variables. For 

simplicity, consider a bivariate AR(1) model as follow: 

����� � = W��� ��H�H� �HH^ ���=���=� � + W_�,�_�,H^ 
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The coefficient ��H (or �H�) measures the usefulness of ��=� to predict �� 
(or ��=� to predict ��). If ��H = 0 and �H� ≠ 0, �� is said to cause �� but 

not the other way round (Figure 1.3). This kind of statistical causality is 

first introduced by Granger in 1969 (Granger, 1969) and widely applied 

in economic research. 

Although, AR model can provide more realistic modeling than linear 

modeling, it is not commonly used in biomedical research since it 

requires data to be measured in regular time intervals which is 

practically difficult to obtain. Continuous-time autoregressive (CAR) 

model is an extension of AR model to handle data measured in irregular 

time intervals. However, due to its model complexity, it is not widely 

adopted in biomedical research. Therefore, both AR and CAR models 

are not as popular as linear modeling in applied science. 

1.6.3.3 Random coefficient autoregressive model  

Similar to the extension from linear model to linear mixed model, given a 

collection of longitudinal data from a group of individuals, AR model can 

be extended by introducing random autoregressive coefficients to 

account for the differences between individuals. This model is 

introduced by Rahiala (Rahiala, 1999) and is called a random coefficient 

autoregressive (RCA) model. The RCA model is formulated as below: 

��� = �����=�� + �����=�� +⋯+ �����=�� 
+τ�,����=�� + τ�,����=�� +⋯+ τ�,����=�� 
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+�� + ����,�� +⋯+ � � ,�� 
+`�,� + `�,���,�� + `�,���,�� +⋯+ ` ,�� ,�� + _�� 

where ��, … , ��� and "��,� , … , ��,�$ represent the fixed and random 

effects of the previous responses "���=��, … , ���=��$,respectively, and 

��, … , � � and "`�,� , … , ` ,�$ represent the fixed and random effects of 

the covariates "1, ��,��, … , � ,��$ at time �, respectively. 

Assuming "��,� , … , ��,� , `�,� , … , ` ,�$d~�"0T,Σ$ and _��~�0, +�� are 

independent, the parameters ��, … , ��, ��, … , � �, +� and Σ can be 

estimated by MLE in a similar manner as in LMM by treating the 

autoregressive covariates, "���=��, … , ���=��$, like the exogenous 

covariates, "1, ��,�� , … , � ,��$, if measurements are obtained in a regular 

basis with only a few missing observations. Under some regularity 

conditions, the MLE of the fixed effect coefficients, ��, … , ��, ��, … , � �, 
follows an asymptotic normal distribution with a mean of 

��, … , ��, ��, … , � � and a variance equals to the Fisher information 

matrix. Significance of any fixed effect coefficient can be tested by Wald 

test and LRT, and the existence of any random coefficient can be tested 

by linear combination of LRT with different degrees of freedom as in 

LMM (Rahiala, 1999). Since LMM is more commonly known in 

biomedical research, and RCA model shares many similarities with LMM, 
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it is also called random coefficient autoregressive linear mixed model 

(RCALMM). 

For data obtained in irregular time intervals, parameter estimation for a 

restricted RCALMM model without random autoregressive effect is 

provided by Funatogawa et al. (Funatogawa et al., 2007). Since this 

model can be decomposed as a fixed effect AR model and a mixed 

effect LMM, it is also known as an autoregressive linear mixed model 

(ARLMM). Currently, there are only a few biomedical studies built on 

RCALMM (Fried, 2001, Funatogawa et al., 2007, Funatogawa et al., 

2008a, Funatogawa et al., 2008b, Funatogawa & Funatogawa, 2012). 

All of these models are based on the restricted ARLMM and none are 

unrestricted RCALMM. 

1.6.4 Comparison of Trend and Event Analyses to detect 

structural progression 

Fayers et al. (Fayers, Strouthidis, & Garway-Heath, 2007) compared the 

detection of rim area progression in glaucoma using both event and 

trend analyses. In the event analysis, progression is defined if the 

difference between the follow-up and baseline rim area measured by the 

HRT exceeded its reproducibility coefficient in one or more disc sectors 

with at least 2 of 3 consecutive tests. With a similar level of specificity at 

94% - 95%, they found that event analysis had a higher sensitivity (28%) 

than trend analysis (12%) and the agreement between event and trend 
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analyses was poor. By contrast, trend-based change detection analysis 

based on statistical image mapping (SIM) developed by Patterson et al. 

(Patterson et al., 2005) was shown to have a better diagnostic precision 

in detecting change in HRT images than TCA in computer simulation 

and confirmed by longitudinal data with 20 normal and 30 ocular 

hypertensive subject. SIM had a higher proportion of change detection 

(73%) in ocular hypertensive subjects and a lower proportion of change 

detection (10%) in normal subjects than TCA (53% and 15%, 

respectively).  

The agreement in progression detection between trend and event 

analyses on RNFL thickness measurements was poor. In the study by 

Moon et al. (Moon et al., 2012), progression were detected in 24.3% and 

12.5% of 152 glaucomatous eyes with event and trend analyses, 

respectively, with only 3.3% were detected by both strategies. There is 

no consensus on which change detection strategy should be used to 

detect glaucoma progression.  

1.6.5 Comparison of Trend and Event Analyses to detect 

Functional Progression 

Casas-Llera et al. (Casas-Llera et al., 2009) and Antón et al. (Antón et 

al., 2013) compared the EMGT criteria and linear regression on VFI for 

detection of glaucoma progression. Both studies suggested that trend 

analysis has a lower sensitivity than event analysis with a comparable 
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specificity. The agreement between trend and event analysis is 

moderate (0.48 and 0.57, respectively). In the detection of localized 

visual sensitivity progression, sensitivity of point-wise trend analysis was 

also found to be less sensitive than event analysis (Vesti et al., 2003, 

Viswanathan et al., 2003, Kovalska et al., 2008). 

1.6.6 Structural and Functional Progression Detection Strategies 

The agreement between structural and functional progression has been 

known to be poor. In the study by Fayers et al. (Fayers et al., 2007), 

there were 28% and 22% eyes with progression detected by HRT event 

analysis and by the visual field AGIS criteria, respectively. 16% of eyes 

detected with progression by the HRT and 10% of eyes detected with 

progression by the AGIS criteria had no evidence of progression 

detected by the other technique. Poor agreement between structural 

and functional progression was also found in trend analysis. There were 

more than 87% of eyes with progression detected by trend analysis on 

rim area or VFI which cannot be confirmed by the other technique. In the 

study conducted by Moon et al. (Moon et al., 2012), 152 eyes of 

glaucomatous subjects were evaluated based on visual field EMGT 

criteria, trend analysis on VFI, and trend and event analysis on RNFL 

thickness measurements obtained with the SLP. Out of 71 eyes with 

progression detected by any of the four strategies, no more than 11.3% 

of eyes were detected in any pair of structural and functional detection 

strategies. Another study conducted by Alencar et al. (Alencar et al., 
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2010) based on 453 eyes of 252 individuals with optic disc and RNFL 

assessment based on stereophotography and SLP and functional 

assessment based on SAP also observed poor agreement between 

structural and functional assessment (with Gwet's Agreement 

Coefficient=0.44) in progressing eyes. 
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1.7 Project Objectives 

Assessment of the optic disc, RNFL and visual field and understanding 

the association between structural and functional progression are 

important to the monitoring of glaucoma. Although both event and trend 

analyses have been used for detection of change, there is no consensus 

regarding which approach should be used in clinical practice. 

Disagreement was often found not only between structural and 

functional progression, but also between event and trend analyses in 

studies evaluating structure or function alone (Fayers et al., 2007, 

Casas-Llera et al., 2009, Alencar et al., 2010, Moon et al., 2012, Antón 

et al., 2013). We thereby set out to compare the performance of 

progression detection evaluated by trend and event analyses using the 

retinal nerve fiber layer measured by the spectral-domain OCT as the 

parameter of interest, and investigate the effect of detecting progressive 

RNFL thinning on subsequent change in function.  

The research project is composed of three studies with the objectives of: 

1. comparing the performance of event- and trend- based analyses to 

detect progressive reduction of average RNFL thickness in glaucoma;  

2. investigating the performance of trend analysis to detect progressive 

RNFL thinning in the RNFL thickness map and; 

3. determining the effect of RNFL measurement on subsequent change 

in visual function.  
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In the first study, a computer simulation study was performed to model 

RNFL progression with reference to the individual's test-retest variability 

and different patterns and rates of progression. The sensitivity, 

specificity and accuracy for the detection of progressive reduction of 

average RNFL thickness between event- and trend- based analyses 

were compared. The simulation findings were then validated using 

longitudinal data collected from a group of glaucoma and glaucoma 

suspect subjects. 

In the second study, trend-based analysis of the RNFL thickness map 

was evaluated (Trend-based Progression Analysis or TPA) and the 

detection of RNFL progression was compared between TPA and Guided 

Progression Analysis (GPA), an event-based analysis of the RNFL 

thickness map provided by the Cirrus HD-OCT (Carl Ziess Meditec).  

The specificities of the TPA and GPA were estimated from a group of 

normal subjects.  

In the last study, a relatively new statistical model was used 

(autoregressive modeling) to investigate the causal relationship between 

RNFL progression and the visual field MD progression in a group of 

glaucoma patients and glaucoma suspects. The associations between 

prior average RNFL thickness or prior visual field MD on subsequent 

changes of RNFL thickness and visual field MD were investigated. 
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Figure 1.3 Visualization of a bivariate autoregressive model of order 1 with �� causing ��. 
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CHAPTER 2 GENERAL MATERIALS AND METHODS 

2.1 Subject Enrollments 

Subjects were enrolled between June 2007 and March 2013 at the 

University Eye Center, the Chinese University of Hong Kong. The 

number of subjects enrolled in each study varied depending on the 

specific time period in which the subjects were recruited. All studies 

were conducted in accordance with the ethical standards stated in the 

Declaration of Helsinki and approved by a local research ethics 

committee, the Clinical Research Ethics Committee of Hong Kong 

Hospital Authority Kowloon West Cluster, with written consent obtained 

from all participants. 

2.2 Inclusion and Exclusion Criteria 

All subjects underwent a full ophthalmic examination, including visual 

acuity, refraction, intraocular pressure measurement with Goldman 

tonometry, gonioscopy and dilated fundus examination with 

stereoscopic biomicroscopy of optic nerve head under slit-lamp and 

indirect ophthalmoscopy. Eyes were included if the visual acuity was at 

least 20/40. Eyes with macular disease, refractive or retinal surgery, 

neurological disease or history of diabetes were excluded. 
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2.3 Humphrey Visual Field Perimetry 

Visual field testing was performed using static automated white-on-white 

threshold perimetry (SAP) with 24-2 Swedish Interactive Threshold 

Algorithm (SITA) Standard (version 4.1) in the Humphrey Field Analyzer 

II (HFA II, Carl Zeiss Meditec). The SITA standard testing strategy uses 

the size III stimuli of 4 mm2 with each stimulus presented for 200 ms. 54 

locations within the central 24° visual field were tested. Stimulus 

intensities changed in a 4-2 dB staircase to detect the visual sensitivity 

at each test location, which initially changed in 4 dB steps until the 

stimulus can be seen or no longer be seen and then followed by 

changes in 2 dB steps until turnaround. Threshold values were 

continuously estimated based on the maximum a posteriori estimator 

during the 4-2 staircase procedure. Fixations were tested through the 

blind spot (Heijl-Krakau) test program by checking the visibility of the 

stimuli projected at the presumed blind spot location. A visual field 

examination was defined as reliable when fixation losses, false positive 

and false negative errors were all less than 20%. Average visual field 

sensitivity was expressed in MD (mean deviation) as calculated by the 

perimetry software. A visual field defect was defined as having three or 

more significant (p<0.05) non-edge contiguous points with at least one 

at the p<0.01 level on the same side of horizontal meridian in the pattern 

deviation plot and confirmed with at least two consecutive examinations. 
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2.4 Spectral-Domain OCT RNFL Imaging 

Spectral-domain OCT imaging was performed by the Cirrus HD-OCT 

Model 400 (Carl Zeiss Meditec) (software version 5.0 to 6.0), which is a 

spectrometer-based OCT using an 840 nm superluminescent light 

emitting diode as a broadband light source for the generation of 

interference between the backscattered and backreflected waves 

resolved by the spectrometer. The acquisition rate of the Cirrus HD-OCT 

is 27,000 A-scans per second with 2.0 mm A-scan depth. The 

transverse and axial resolutions are 15 µm and 5 µm, respectively. The 

“Optic Disc Cube 200x200” exam protocol was used to measure the 

RNFL thickness in a 6x6 mm2 area consisting of 200x200 A-scans 

(pixels) at the optic disc region. The RNFL thickness at each pixel was 

measured and the RNFL thickness map was generated. An OCT image 

was defined as reliable when the signal strength was greater than 7 

without motion artifact. Dilation with tropicamide 0.5% and 

phenylephrine 0.5% each was performed when the pupil size was too 

small to obtain images with the required quality. Images with poor 

centration and motion artifact were rescanned in the same visit. Average 

RNFL thickness was expressed as the average RNFL thickness derived 

from the scan circle of 3.46 mm diameter centered at the optic disc 

center consisting of 256 A-scans, where the location of the optic disc 

center was identified by the built-in algorithm. 
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2.5 Definition of Glaucoma, Glaucoma Suspects and Normal 

Subjects 

Glaucoma subjects were identified based on the presence of visual field 

defects with corresponding optic disc and RNFL changes (narrowing of 

neuroretinal rim or thinning of the RNFL) in at least one eye. Glaucoma 

suspects and ocular hypertension subjects, which were simply called as 

'glaucoma suspects' in the following studies, were defined as subjects 

without evidence of visual field defect on Humphrey visual field 

perimetry but had glaucomatous optic disc and/or RNFL changes and/or 

intraocular pressure greater than 22 mmHg for at least 3 visits. Normal 

subjects were defined as having both eyes with normal optic nerve head 

appearance (symmetric cup/disc ratio of less than 0.5 with uniform 

neuroretinal rim) in stereoscopic examination under slit lamp and without 

evidence of visual field defect on Humphrey visual field perimetry and no 

history of intraocular pressure greater than 22 mmHg. 

2.6 Statistical Analysis 

Statistical analyses were performed with the numerical computing 

software MATLAB R2010a (The MathWorks, Inc., Natick, MA) and the 

statistical computing software R version 2.15.2 (R Foundation, Vienna, 

Austria). MATLAB was used for computer simulation to evaluate the 

performance of event- and trend- based analyses, and for the TPA 

(Trend-based Progression Analysis) developed to evaluate the 
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progressive RNFL thinning in the RNFL thickness map. R was used for 

statistical modeling of the structure-function relationship in glaucoma 

progression. Statistical methods of the three studies are described in the 

respective session. 
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CHAPTER 3 THE INVESTIGATION OF RETINAL NERVE 

FIBER LAYER PROGRESSION DETECTION 
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3.1 Computer Simulation of Progressive Retinal Nerve Fiber Layer 

Loss in Glaucoma: A Comparison between Event and Trend 

Analysis 

3.1.1 Abstract 

Objectives: Event- and trend- based analyses (EA and TA) have been 

widely adopted to evaluate glaucoma progression in clinical practice. 

However, the agreement between the strategies is often poor. With 

computer simulation of progressive loss of the retinal nerve fiber layer 

(RNFL), we compared the performance of EA and TA for detection of 

glaucoma progression. 

Methods: RNFL progression was modeled with reference to the 

individual test-retest variability, the rate of progression, and different 

patterns of progression. The sensitivity, specificity and accuracy of each 

scenario were computed from 5000 simulated datasets. Simulation 

results were then validated with longitudinal RNFL measurements 

obtained from 107 glaucoma subjects and glaucoma suspects with a 

median follow-up of 38 months. 

Results: In the computer simulation study, TA attained a sensitivity 

≥80% for detection of RNFL progression earlier than EA. The specificity 

of TA was 95% and ranged between 80% and 100% for EA. TA had an 

accuracy ≥80% earlier than EA. On the other hand, EA using a group 

reproducibility coefficient had a higher sensitivity than TA in eyes with a 
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large test-retest variability in the early follow-up period, albeit at a lower 

specificity. In the longitudinal study, the detection rate was 42%, 35%, 

and 3% for TA, whereas it was 11% to 40%, 12% to 28%, and 3% to 

23% for EA at 36 months of follow-up in eyes with small, average, and 

large test-retest variabilities, respectively. 

Conclusions: TA generally outperformed EA for the detection of RNFL 

progression in glaucoma and the test-retest variability was an important 

determinant in progression analysis. 
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3.1.2 Background and Objectives 

In glaucoma, event- and trend- based analyses have been widely 

adopted for detection of change in glaucoma progression. In event 

analysis (EA), progression is commonly defined when the difference of a 

parameter of interest between the baseline and the follow-up visits is 

greater than the test-retest variability. In trend analysis (TA), progression 

is commonly defined when a significant negative trend is detected with 

linear regression between the parameter of interest and time. In major 

clinical trials in glaucoma treatment, the key outcome measures have 

been largely based on event analysis of visual field measurements. In 

the Advanced Glaucoma Intervention Study (AGIS) and the 

Collaborative Initial Glaucoma Treatment Study (CIGTS), 20-step visual 

field scoring system (0 - normal, 20 - advanced visual field loss) was 

developed based on the extent and the depth of defects in total 

deviation plot in the visual field printouts (AGIS investigators, 1994a, 

AGIS investigators, 1994b, Musch et al., 1999). In AGIS, progression 

was defined when the score increased by 4 or more (95% of 

glaucomatous eyes showed a test-retest variability of 3) and confirmed 

with two consecutive examinations (AGIS Investigators, 1994a). In 

CIGTS, progression was defined when the score increased by 3 or more 

and confirmed with two consecutive examinations (Musch et al., 1999). 

In the Early Manifest Glaucoma Trial (EMGT), individual test locations 

were evaluated. A change in visual sensitivity at a test location was 
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defined when the change was outside the 95% test-retest variability, and 

progression was defined if 3 or more test locations showed significant 

deterioration with two consecutive examinations (Leske et al., 1999). 

Comparatively, trend analysis was less popular in clinical trials for 

evaluation of glaucoma treatment. Although there are a number of 

statistical packages available to evaluate glaucoma progression based 

on linear regression of mean deviation (MD), visual field index (VFI) 

(Guided Progression Analysis, Carl Zeiss Meditec, Dublin, CA), and 

RNFL measurements (Guided Progression Analysis, Carl Zeiss 

Meditec), the agreement of progression detection between event and 

trend analysis for both structure and function is often poor. No 

consensus has been reached regarding which strategy to be used for 

progression evaluation. 

In this study, computer simulation was used to model progressive loss of 

the RNFL and the performance of event and trend analyses was 

compared for detection of RNFL progression. Longitudinal RNFL 

measurements collected from a cohort of glaucoma patients were also 

analyzed to validate the finding obtained from the computer simulation 

study. 
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3.1.3 Subjects and Methods 

3.1.3.1 Subjects 

All subjects were consecutively enrolled from June 2007 to March 2011 

at the University Eye Center, the Chinese University of Hong Kong. All 

subjects underwent visual field examination using SAP (SITA Standard 

24-2, HFA II, Carl Zeiss Meditec), spectral-domain OCT RNFL imaging 

(Cirrus HD-OCT, Carl Zeiss Meditec) and full ophthalmic examination, 

including measurement of visual acuity, refraction, intraocular pressure 

and fundus examination. Subjects were classified into normal, glaucoma 

suspects or glaucoma groups according to the definition stated in 

section 2.5. Based on the inclusion and exclusion criteria stated in 

section 2.2, 46 eyes of 46 subjects (19 glaucoma and 27 normal 

subjects) were examined weekly for 8 consecutive weeks for 

measurement of intervisit test-retest variability. 175 eyes of 81 glaucoma 

subjects and 26 glaucoma suspects (121 eyes with open-angle 

glaucoma, 7 eyes with angle-closure glaucoma and 47 eyes with 

suspected glaucoma) were examined every 4 months for at least 30 

months (range 30 - 42 months with median of 38 months) to validate the 

results of the computer simulation. 

3.1.3.2 Simulation of RNFL progression 

Computer simulation was performed using MATLAB R2010a (The 

MathWorks, Inc., Natick, MA) months) to model progressive reduction 
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and non-progressive condition of average RNFL thickness. Four 

different patterns (linear, episodic, exponential, and parabolic loss) 

(Figure 3.1.1) and two different rates (-2 µm/year and -4 µm/year) of 

RNFL progression plus a stable non-progressive condition were 

modeled with three different values of test-retest variability (small, 

average and large test-retest variabilities). Linear progression referred to 

a constant rate of change of average RNFL thickness over time. 

Episodic progression referred to a stepwise loss of average RNFL 

thickness with a phase of of linear progression followed by a phase of 

no change. Exponential progression had had exponential loss of the 

average RNFL thickness. Parabolic progression referred to a rate of 

change which was linearly proportional to the square of time. The 

modeled rates of RNFL progression were selected with reference to the 

study by Leung et al. (2011), which showed that the rate of average 

RNFL thickness progression ranged between -1.52 µm/year and -5.03 

µm/year. Therefore, the modeled rates -2 µm/year and -4 µm/year would 

capture the average rate of slow and fast progressors, respectively. The 

test-retest variabilities of average RNFL thickness were estimated based 

on the reproducibility coefficients calculated from the 46 eyes of 46 

subjects (19 glaucoma and 27 normal subjects) who had weekly RNFL 

measurements for 8 consecutive weeks. The within-subject standard 

deviation (SD) of average RNFL thickness had a mean of 1.77 µm and a 

median of 1.71 µm, with 95% confidence interval between 1.59 and 1.93 
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µm, and a range between 0.74 µm and 3.50 µm (Table 3.1.1). The 

minimum (0.74 µm), median (1.71 µm) and maximum (3.50 µm) within-

subject SD were selected to represent eyes with small, average and 

large RNFL measurement variability in the simulation, respectively 

For each simulation scenario, 5,000 datasets were simulated. Each 

dataset were simulated with 16 average RNFL thickness measurements 

randomly generated from independent normal distribution with a 

specified within-subject SD, representing RNFL measurements collected 

every 4 months over 60 months (Figure 3.1.2). Each dataset was 

analyzed by five different event- and trend- based strategies described 

in section 3.1.3.3. The proportions of progression detection from the 

5,000 simulated datasets were used to estimate the sensitivities and 

specificities for the five strategies. A sample size of 5,000 was chosen to 

satisfy all the SDs of the specificity estimates were <1%. 

3.1.3.3 Definitions of progression detection  

1. Event analysis with individual reproducibility coefficient 

Progression was defined when the difference in average RNFL 

thickness between the first and the most recent measurements was 

greater than the individual’s reproducibility coefficient (reproducibility 

coefficient was defined as 2 × √2 × within-subject standard deviation 

(Bland & Altman, 1996)). 

2. Event analysis with group reproducibility coefficient 
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Progression was defined when the difference in average RNFL 

thickness between the first and the most recent measurement was 

greater than the reproducibility coefficient derived from a group of 

reference individuals (2 × √2 × mean within-subject standard deviation 

(1.77 µm)). 

3. Event analysis with individual reproducibility coefficient 

confirmed with a consecutive test 

Progression was defined when the differences in average RNFL 

thickness between the baseline and the most recent two measurements 

were both greater than the individual’s reproducibility coefficient.  

4. Event analysis with group reproducibility coefficient confirmed 

with a consecutive test 

Progression was defined when the differences in average RNFL 

thickness between the baseline and the most recent two visits were both 

greater than the group’s reproducibility coefficient.  

5. Trend analysis 

Progression was defined when a significant negative trend (p<0.05) was 

detected between average RNFL thickness and time.  
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3.1.3.4 Estimation of sensitivity, specificity, and accuracy 

Sensitivity, specificity and accuracy were computed and compared 

among the five progression detection strategies. An ideal strategy would 

have high sensitivity, specificity and accuracy. Sensitivity was estimated 

by the proportion of datasets detected with progression (out of 5,000 

simulated datasets) with an imposed progression pattern. Specificity 

was estimated by the proportion of datasets detected with no 

progression without an imposed progression pattern. Accuracy is the 

multiplication of sensitivity and specificity. They were computed at 12 

months and then every 4 months until 60 months of the simulation. 

3.1.4 Statistics 

Mathematical Formulas for Sensitivity and specificity 

The sensitivity and specificity of each of the progression detection 

strategies can be derived in mathematical formulas. A list of symbol 

annotations is summarized as follow: 

�� An independent average RNFL thickness measurement 

obtained at a particular visit and distributes normally with 

homogenous variance (i.e. Y�~Nμ�, σ��). *� The average RNFL thickness in the �th visit. 

+ The standard deviation of an individual patient. 

+� The standard deviation of a group of patients. 
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-. The critical value satisfying	Φ−z�� = α (The corresponding 

z� for α=0.05 is 1.645). 

Φ∙� The cumulative distribution function of standard normal 

distribution. 

Φ�;�∙� The cumulative distribution function of a bivariate normal 

with mean W00^ and variance-covariance matrix Σ. 

Event analysis with individual reproducibility coefficient 

Under the normal distribution assumption, 

D� = Y� − Y��~Nμ�−μ�, 2σ��, progression was defined when D� <
−z�√2σ�. 
Denoting z� to be the critical value satisfying	Φ−z�� = α and Φ∙� to be 

the cumulative distribution function of standard normal distribution, the 

specificity is 

1 − Φ−z�� = 1 − α�, 
and the sensitivity is  

P"D� < −z�√2σ�	|	μ� < μ�$ = Φ&−z� − ��=�L√� @ '. 
Event analysis with group reproducibility coefficient 

Progression was defined when D� < −z�/2σ¡�. 
Since −z�/2σ¡� = −z�  ¢  √2σ�, the specificity is  
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1 − Φ&−z�  ¢  ' = Φ&z�  ¢  ', 
and the sensitivity is 

Φ&−z�  ¢  − ��=�L√� @ '. 
Event analysis with individual reproducibility coefficient confirmed 

with a consecutive test 

Under the independent normal distribution assumption of ��,  
�D�=�D� � ~N &Wμ�=�−μ�μ�−μ� ^ , 2Σσ�', 

where  

Σ = W 1 0.50.5 1 ^ 
with the correlation between the two differences come from the common 

term, ��.  
Denoting the cumulative distribution function of a bivariate normal with 

mean W00^ and variance-covariance matrix Σ to be Φ�;�∙�.	To control the 

specificity at 1 − ��, progression was defined if D�=� < −z�√2σ�	and 

D� < −z�√2σ�.  
The specificity is  

1 −Φ�;�−z�, −z��, 
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and the sensitivity is  

P &D�=� < −z�¥2σ�, D� < −z�¥2σ�	|	μ� < μ�'
= Φ�;� ¦−z� − μ� − μ�√2σ� , −z� − μ�=� − μ�√2σ� § 

Event analysis with group reproducibility coefficient confirmed 

with a consecutive test 

Similarly, by replacing the individual standard deviation σ with the group 

standard deviation σ¡ the classification cutoff becomes 

−z�/2σ¡� = −z�  ¢  √2σ�. 
Therefore, the specificity and sensitivity are  

1 − Φ�;� &z�  ¢  , z�  ¢  ', 
and  

Φ�;� &−z�  ¢  − ��=�L√� @ , −z�  ¢  − ���L=�L√� @ ', 
respectively.  

Trend analysis 

Simulated serial RNFL measurements were analyzed by ordinary least 

square regression. Progression was defined if the slope β was <0. 

The estimate of β is given by  
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βx = ©ªk« ¬,�®¯°« ¬� = ∑±²³²=∑±²�∑³²�/�∑±²@=∑±²�@/� . 

In the model, each RNFL measurement was simulated at regular 

intervals. The summation of ´ can be expressed by an arithmetic series 

1 + 2 + 3 +⋯+ � where � represents the �th measurement.  

x� = i, ∑x� = ��·��� , ∑x�� = ��·����·��¸  

and  

βx = ∑&i − �·�� ' y� &��·����·��¸ − ��·��@º '» = ∑"��=�·��$³²��@=��/¸ . 

Under the normal distribution assumption,  

βx~N &∑"��=�·��$�²��@=��/¸ , � @��@=��/¸'. 
To control the specificity at 1 − ��, progression was defined when 

βx < −z�¼ 2σ�nn� − 1�/6 

and the sensitivity is given by 

P5βx < −z�/ � @��@=��/¸ 	|	μ� < μ�8 = Φ¦−z� − ∑"��=�·��$�²¥��@=��/¿� @§. 
The duration (years), À, required to detect progression at a sensitivity ρ 

with Â observations per year with a yearly reduction of average RNFL 

thickness at Ã is given by: 
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δθ, γ, ρ� = arg	minÊ ËÌ
ÍdÏÏΦÐ

Ñ−z� − γ∑ "2i − ÒθdÓ + 1�$ iθ�O�,�,…,ÒÔÊÓ/¦ÒθdÓÒθdÓ� − 1�3 §σ� Õ
Ö ≥ ρØÙ

Ú
 

3.1.5 Results 

3.1.5.1 Sensitivity of progression detection 

Figure 3.1.3 illustrates the sensitivities for detection of average RNFL 

thickness progression modeled at a rate of -2 µm/year based on the 5 

progression detection strategies (1. EA with individual RC, 2. EA with 

group RC, 3. EA with individual RC confirmed with a consecutive test, 4. 

EA with group RC confirmed with a consecutive test, 5. TA) over 60 

months under the 4 different progression patterns (1. linear, 2. episodic, 

3. exponential, 4. parabolic) for eyes with small (SD=0.74 µm), average 

(SD=1.71 µm) and large (SD=3.50 µm) test-retest variabilities. 

The computer simulation suggested that sensitivity of progression 

detection depended on the duration of follow-up, pattern of progression, 

rate of RNFL loss, individual test-retest variability and the analysis 

strategy. With increasing duration of follow-up, RNFL loss increased, 

and the sensitivity of progression detection increased independent of 

other factors. With the dramatic reduction of RNFL thickness in the 

beginning of the exponential loss, it attained a sensitivity ≥80% for 

progression detection earlier than other progression patterns. By 

contrast, parabolic RNFL loss required the longest duration to reach the 
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same sensitivity among the four progression patterns. Linear and 

episodic progressions had sensitivity profiles in between those of 

exponential and parabolic progressions. Under the same progression 

pattern with same progression rate, analyzed by the same strategy, 

eyes with smaller test-retest variability took shorter time to achieve 

sensitivity ≥80%. 

For eyes with an average test-retest variability, the sensitivities of EA 

with individual RC and EA with group RC were almost identical (Figure 

3.1.3 E-H). However, eyes with a small test-retest variability had higher 

sensitivity under EA with individual RC (Figure 3.1.3 A-D), and eyes with 

a large test-retest variability had higher sensitivity under EA with group 

RC (Figure 3.1.3 I-L). The same property was founded in EA confirmed 

with a consecutive test, with sensitivity ≥80% always attained later than 

those without confirmation, independent of the progression pattern and 

individual test-retest variability. 

In all scenarios, TA always attained sensitivity ≥80% earlier than the 

other four EA progression detection strategies, where the differences in 

sensitivity were minimal compared with EA with individual RC for eyes 

with a small test-retest variability in the episodic and exponential 

progression patterns (Figure 3.1.3 B and C). Based on the mathematical 

formulas shown in section 3.1.4, the minimum duration required to attain 

a pre-specifiied sensitivity of RNFL progression detection can be 

calculated. Figure 3.1.4 shows the minimum duration required to attain a 
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sensitivity of RNFL progression detection at 80% at various linear 

reduction rates. For example, for a linear rate of -1.5 µm/year in eyes 

with large test-retest variability, TA required 60 months to attain a 

sensitivity of 80%, but EA with individual RC and with group RC required 

100 and 68 months, respectively (Figure 3.1.4 C).In contrast, TA, EA 

with individual RC and EA with group RC required 20, 24 and 40 months 

to attain a sensitivity of 80% in eyes with small test-retest variability for 

the same RNFL reduction rate, respectively (Figure 3.1.4 A). Similar to 

the finding observed in the computer simulation (Figure 3.1.3), TA 

generally attained sensitivity of 80% earlier than EA with individual RC 

and EA with group RC, except for eyes with large test-retest variability, 

the RNFL reduction rate <-2.5 µm/year and progression detected by EA 

with group RC (Figure 3.1.4 C). 

Figure 3.1.5 illustrates the sensitivities for detection of average RNFL 

thickness progression based on the simulation modeled at reduction 

rate of -4 µm/year. The pattern of sensitivity profiles for each 

progression detection strategy was similar to those with a rate of -2 

µm/year (Figure 3.1.3), with shorter duration required to attain a 

sensitivity of 80%. 

Some of these findings can be directly observed from the mathematical 

formulas of the sensitivity of the five strategies: 

EA with individual RC:  Φ&−z� − ��=�L√� @ ' 
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EA with group RC:  Φ&−z�  ¢  − ��=�L√� @ ' 
EA with individual RC confirmed with a consecutive test: 

    Φ�;� &−z� − ��=�L√� @ , −z� − ���L=�L√� @ ' 
EA with group RC confirmed with a consecutive test: 

    Φ�;� &−z�  ¢  − ��=�L√� @ , −z�  ¢  − ���L=�L√� @ ' 
TA:    Φ¦−z� − ∑"��=�·��$�²¥��@=��/¿� @§. 
For example with increasing RNFL loss, μ� − μ�� ≪ 0, the sensitivity of 

progression detection increased. And with larger individual test-retest 

variability, + ↑, the sensitivity of progression detection decreased. 

Sensitivity of different patterns of progression, rates of progression or 

test-retest variabilities can also be obtained through the mathematical 

formulas. 

3.1.5.2 Specificity of progression detection 

In the mathematical expressions in section 3.1.4, TA and EA with 

individual RC had the same level of specificity independent of the test-

retest variability, which was also observed in the simulation results 

displayed in Figure 3.1.6. Confirming progression detection with a 

consecutive test, the specificity of EA with individual RC increased to 

99%. The specificity of EA with group RC varied from 80%, 95% to 
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almost 100% corresponding to eyes with small, average and large test-

retest variability, respectively. With confirmation with a consecutive test, 

the specificity of EA with group RC increased to 91%, 99% and almost 

100%, respectively. 

3.1.5.3 Accuracy of progression detection 

The accuracy is defined as (sensitivity ⨉ specificity). Figure 3.1.7 and 

Figure 3.1.8 illustrated the simulated accuracy profiles of progression 

detection of average RNFL thickness at a rate of -2 µm/year and -4 

µm/year for different scenarios, respectively. Independent of the 

patterns of progression, the rates of progression and the test-retest 

variability, TA generally attained accuracy of 80% earlier than the other 

four EA strategies. The accuracy of TA was bounded above by 95%. On 

the other hand, EA with group RC and EA with individual RC confirmed 

with a consecutive test had an accuracy close to 100% for eyes with a 

small test-retest variability. 

3.1.5.4 Validation with prospective longitudinal data 

Since the progression pattern, the rate of progression and the test-retest 

variability usually varies across different individuals, the true sensitivity 

of TA and EA is difficult to determine. However, it is still feasible to 

compare the relative performance of the five progression detection 

strategies by the proportion of eyes detected with progression over time. 

A total of 1680 longitudinal RNFL measurements obtained by a spectral-
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domain OCT were collected longitudinally from 175 eyes of 81 

glaucoma and 26 glaucoma suspect subjects followed every 4 months 

for at least 30 months (range between 30 - 43 months; median of 38 

months). Each eye had an average of 10 serial measurements (range 

between 6 - 11 measurements). Table 3.1.2 shows the demographics, 

RNFL and visual field measurements of the 175 eyes. 

The test-retest variability of each eye was estimated from the residuals 

of the linear regression fitted on all the available data of the particular 

eye. 123 eyes (70.3%) were found to have a test-retest variability of 

1.77 µm at 10% level of significance. The proportion of eyes with 

progression detection by TA and EA computed from month 12 to month 

36 were shown in Figure 3.1.9 A. Similarly, the performance of TA and 

EA were observed in the initial 30 months. At month 36, 35% of eyes 

were detected with progression by TA. However, only 12% - 28% of 

eyes were detected with progression by EA. 

Performance of progression detection in eyes with small and large test-

retest variability were evaluated by the first 50 eyes with smallest and 

the last 50 eyes with largest test-retest variability estimated through the 

residuals of linear regressions, respectively (the cut-off of 50 eyes was 

arbitrarily defined). EA with individual RC detected more progressing 

eyes than EA with group RC for eyes with small test-retest variability 

(Figure 3.1.9 B) and vice versa for eyes with a large test-retest variability 

(Figure 3.1.9 C). At month 36, TA detected more progressive eyes (42%) 
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than other strategies (11% - 40%) for eyes with small test-retest 

variability (Figure 3.1.9 B). For eyes with large test-retest variability, EA 

with group RC detected more progressive eyes (23%) than other 

strategies (3% - 17%) at month 36 (Figure 3.1.9 C). With progression 

confirmed with a consecutive test, fewer progressive eyes were 

detected (Figure 3.1.9). These findings closely resemble to the 

simulation results described in section 3.1.5.1. 

3.1.6 Discussion 

3.1.6.1 TA versus EA  

According to the computer simulation results, TA attained a high 

sensitivity (≥80%) earlier than EA in detection of RNFL progression at a 

comparable level of specificity (TA: 95% versus EA: 80% - 100%). The 

validation of the simulation results with the longitudinal RNFL 

measurements obtained from 175 eyes of 107 glaucoma and glaucoma 

suspect subjects confirmed that TA would be a preferable strategy for 

following and detecting disease progression in glaucoma.  

3.1.6.2 EA with group RC versus EA with individual RC 

EA using a group test-retest variability to detect change has been the 

prevailing approach to analyze glaucoma progression in clinical trials 

and clinical practice. However, it may fail to detect change for eyes with 

a small test-retest variability and falsely detect progression for eyes with 

a large test-retest variability. EA with individual reproducibility coefficient 
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(RC) provides an eye-specific approach of progression detection. With 

reference to the computer simulation results, EA with individual RC 

indeed had a higher sensitivity than EA with group RC for progression 

detection in eyes with a small test-retest variability. However, it had a 

lower sensitivity than EA with group RC in eyes with large test-retest 

variability. The specificity of EA with group RC (80%) was lower than EA 

with individual RC (95%). For eyes with an average test-retest variability, 

both EA with individual RC and EA with group RC have comparable 

sensitivity and specificity profiles. The mathematical calculated 

sensitivity and specificity are in line with these results and the 

longitudinal data also confirmed these findings (Figure 3.1.9). Recalling 

that the sensitivity of EA with individual RC and with group RC are 

Φ¦−z� − μ� − μ�√2σ� § 

 and  

Φ¦−z� σ¡σ − μ� − μ�√2σ� § 
respectively. If the individual test-retest variability is smaller than the 

group test-retest variability, i.e. the ratio 
?Þ? 	> 1, the classification cut-off 

of EA with group RC would become more negative and thus resulting in 

a lower sensitivity (and a higher specificity). On the other hand, if 

individual test-retest variability is larger than the group test-retest 

variability, i.e. the ratio 
?Þ? < 1, and the classification cut-off of EA with 



80 

 

group RC would become less negative and thus resulting in a higher 

sensitivity (but a lower specificity) compared with EA with individual RC 

(Figure 3.1.10). Generally, EA with individual RC is more sensitive than 

EA with group RC only in eyes with a small test-retest variability. Having 

a confirmation with a consecutive test would increase the specificity but 

reduce the sensitivity for progression detection as expected. 

3.1.6.3 Factors affecting the selection between TA and EA 

The computer simulation also suggests that EA with group RC may be 

more sensitive than TA in the early follow-up period for eyes with a large 

test-retest variability, which is more remarkable when the rate of 

progression is fast (Figure 3.1.5 I-L). By comparing the calculation of 

sensitivity between TA and EA with group RC, 

Φ5−z� − ∑"2i − n + 1�$μ�¥nn� − 1�/3�σ�8 

versus  

Φ¦−z� σ¡σ − μ� − μ�√2σ� § 
, respectively, TA would be more sensitive than EA when 

∑"2i − n + 1�$μ�¥nn� − 1�/3� < z�"σ¡ − σ$ + μ� − μ�√2  
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The performance of progression detection between the two strategies 

depends on the relative difference between the group and individual 

test-retest variability, "+� − +$, and the number of follow-up visits, �. 

Therefore, TA would be more sensitive than EA with group RC in eyes 

with small test-retest variability followed for a long duration (i.e. more 

follow-up visits). This mathematical condition is true for any 

measurement not just restricted to the average RNFL thickness 

measurement. Therefore, it is true also for visual field measurements 

and any localized measurement. In contrast, even though EA with group 

RC can have a higher sensitivity than TA in the early follow-up period in 

eyes with large test-retest variability (Figure 3.1.3 I-L), its specificity is 

relatively low (80%) (Figure 3.1.6 C). As an ideal progression detection 

strategy should have a high sensitivity as well as specificity, accuracy 

provides a more comprehensive comparison between the five strategies 

by combining sensitivity and specificity together into a single index. 

According to the simulation results, TA always attained an accuracy of 

80% earlier than the other four strategies, independent of the test-retest 

variability, the pattern of progression and the rate of progression (Figure 

3.1.7). 

3.1.6.4 Specificity 

Since the level of significance, α, was chosen as 5%, it is not surprising 

to observe the specificity of TA and EA with individual RC was 95% in 

the computer simulation. In EA with group RC, the level of significance, 
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�, was chosen as 5% with respect to the group RC, the specificity would 

be 95% in eyes with average test-retest variability. Higher (lower) 

specificity (99% (80%)) can be obtained in eyes with a smaller (larger) 

test-retest variability. (Figure 3.1.6) 

3.1.6.5 Duration and number of observations required to detect 

progression with desired sensitivity in TA 

TA is preferable than EA in progression detection not only because it 

can attain a high accuracy earlier than EA, it can also provide an 

estimation of the rate of progression which is useful to guide treatment 

and evaluate disease prognosis. A reliable estimation of the rate of 

progression requires multiple measurements. Therefore, it is important 

to know how many observations are needed to provide a reliable 

estimate of the rate of progression. By specifying the level of sensitivity, 

the pattern and rate of progression, it is possible to work out the number 

of observations per year and the minimum follow-up duration required to 

detect progression. Figure 3.1.11 shows the relationship between the 

number of observations required per year and the minimum duration 

needed to detect a linear average RNFL thickness progression at rate of 

-2 µm/year at a sensitivity of 70% and 80% for eyes with small (SD=0.74 

µm), average (SD=1.71 µm), and large (SD=3.50 µm) test-retest 

variabilities. If three observations are obtained per year for a subject 

with an average test-retest variability (SD=1.71 µm), it takes 2.7 and 2.9 

years to detect a progression with a rate of -2 µm/year at 70% and 80% 
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level of sensitivity, respectively. Progression can be detected earlier by 

increasing the number of observations per year. Eyes with a large test-

retest variability require a longer duration to detect the same rate of 

progression, particularly when the number of observations per year is 

small. In general, the number of measurements required depends on the 

rate of progression, the desired level of sensitivity, the individual test-

retest variability and the acceptable duration for detection. The 

suggested optimal number of observations per year is approximately 

four, which can detect linear average RNFL thickness progression at a 

rate of -2 µm/year in 1.5 to 3.8 years with sensitivity of 70% (or in 1.6 to 

4.2 years with sensitivity of 80%) for subjects with test-retest variability 

between 0.74 µm and 3.50 µm. The benefit of shortening the duration of 

progression detection is small by including additional observations, 

where the duration of progression detection can be shortened no more 

than 0.5 years per observation added. Glaucoma monitoring schedule 

should take the severity of disease and the life expectancy of the 

individual into consideration. 

3.1.6.6 Glaucoma monitoring schedule for TA 

The above discussion is based on glaucoma monitoring scheduled at 

regular time intervals. It is important to understand whether regular 

scheduling offers any advantage. In linear regression, the null 

hypothesis, 
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à�: � = 0 

is rejected if 

�D/q��« "�D$ < −�.,�=� 

where 

�D = ∑´� − ´̅�â� − âI�∑´� − ´̅��  

is the ordinary least square (OLS) estimate of � and 

q��« "�D$ = 1� − 2 × ∑_� − _��∑´� − ´̅�� 
is the estimated variance of �D.  
Since �D is an unbiased estimator of � (i.e. ~"�D$ = �), varying ´� (the 

observation time point) would have no effect on the estimation of �. On 

the other hand, the estimated variance of �D, q��« "�D$, can be minimized 

by maximizing the denominator term, ∑´� − ´̅��. Therefore, by evenly 

dividing the number of observations to the beginning and the end of 

follow-up would provide the highest sensitivity of progression detection. 

This wait-and-see approach agrees with the computer simulation results 

conducted by Crabb & Garway-Heath (Crabb & Garway-Heath, 2012). 

One critical assumption of the OLS is that measurements obtained at 

each time point should have same variance and time independent. 
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However, this may not be legitimate in clinical situation when the follow-

up duration is long. Development of cataract, surgical interventions, and 

instrument instability could substantially affect the quality of data 

collection and the reliability of measurement. The wait-and-see 

approach may result in a critical bias in estimating the rate of 

progression compared with scheduling the observations at regular time 

intervals. Also, any rapid progression experienced in between the follow-

up period would be missed. Further investigation is needed to identify 

the time-dependency factors on progression analysis. 

3.1.6.7 Generalization 

Although the computer simulation is based on RNFL progression 

measured by spectral-domain OCT, the current findings can also be 

applied to other imaging or visual field examinations. Customized 

analysis strategy may be needed to monitor disease progression in 

different types of structural and functional tests. This study is limited in 

evaluating the performance of trend and event analysis on global 

change in RNFL thickness derived from the scan circle of 3.46 mm 

diameter centered at the optic disc center. We addressed the application 

of TA in the RNFL thickness map in the next session. 

3.1.6.8 Conclusion 

In conclusion, the sensitivity of progression detection in glaucoma 

depends on the pattern and rate of progression, the test-retest variability, 
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and the progression detection strategy. An appropriate selection of 

progression detection strategy and disease monitoring schedule can 

maximize the probability of progression detection. In general, TA can 

attain high sensitivity and accuracy earlier than EA at a comparable 

level of specificity. EA with group RC would have higher sensitive than 

TA in eyes with large test-retest variability at a cost of a lower specificity. 
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Table 3.1.1 Demographics, retinal nerve fiber layer (RNFL), and visual field measurements of 46 eyes of 46 subjects 
who underwent weekly RNFL evaluations for 8 consecutive weeks. 

 Glaucoma Group Normal Group All 

Sample size 19 27 46 

Spherical error (D) -2.7 ± 3.7 -1.3 ± 2.4 -1.9 ± 3.0 

Age (year) 48.0 ± 13.8 42.9 ± 13.4 45.0 ± 13.6 

Signal strength 8.3 ± 1.0 8.5 ± 0.8 8.4 ± 0.9 

Average RNFL thickness (µm) 68.04 ± 13.59 99.88 ± 9.76 86.73 ± 19.50 

VFI (%) 81.47 ± 24.19 99.48 ± 0.85 92.04 ± 17.75 

MD (dB) -7.55 ± 8.08 -0.87 ± 0.84 -3.63 ± 6.13 

Test-retest variability (µm)    

Median 1.39 1.91 1.71 

Minimum 0.83 0.74 0.74 

Maximum 2.43 3.50 3.50 

Mean 1.80 1.87 1.77 

D = diopter; RNFL = retinal nerve fiber layer ; VFI = visual field index; MD = mean deviation 

  



88 

 

Table 3.1.2 Demographics, retinal nerve fiber layer (RNFL), and visual 
field measurements of 175 eyes of 107 glaucoma and glaucoma 
suspect subjects who were followed up every 4 months for at least 30 
months. 

 Mean ± SD 

Spherical error (D) -2.81 ± 4.15 

Age (year) 51.3 ± 15.1 

Signal strength 8.4 ± 1.1 

Baseline examination  

Average RNFL thickness (µm) 74.07 ± 14.49 

VFI (%) 79.54 ± 24.19 

Visual field MD (dB) -7.85 ± 8.22 

Final examination  

Average RNFL thickness (µm) 71.99 ± 14.43 

VFI (%) 73.01 ± 25.64 

Visual field MD (dB) -10.63 ± 8.27 

Duration of follow-up (month)  

Median 38 

Minimum 30 

Maximum 43 

D = diopter; RNFL = retinal nerve fiber layer; VFI = visual field index; MD = mean 

deviation. 
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Figure 3.1.1 Progressive average retinal nerve fiber layer (RNFL) 
thickness reduction modeled in linear, episodic, exponential, and 
parabolic patterns at an average rate of -2.0 µm/year over 60 months. 

 

Model  RNFL thickness change function  

Linear:  *y − *� = −2 × y��  
Episodic:  *y − *� = ã 0 �[	ä = 0*y=º − *�� �[	ä = 4, 8, 12, 28, 32, 36, 52, 56, 60*y=º − *�� = 106 �[	ä = 16, 20, 24, 40, 44, 48 ç 
Exponential:  *y − *� = −10 × S�c/L@=�S�è>/L@=�  
Parabolic:  *y − *� = −10 × &y/��¸�/��'�  
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Figure 3.1.2 Schematics illustrating simulation of 16 serial average 
retinal nerve fiber layer (RNFL) thickness measurements over 60 
months. Each measurement was derived from an independent normal distribution 

with a mean of 100 µm and a within-subject standard deviation. (A) illustrates a 
simulation with a small test-retest variability of 0.74 µm. (B) illustrates a simulation with 
a large test-retest variability of 3.50 µm. RNFL progression was modeled by imposing 
a specific pattern of progression at a specific rate of change on the simulated dataset. 
(C) illustrates a simulation with linear reduction of average RNFL thickness at a rate of 
-2.0µm/year was imposed in an eye with a small test-retest variability (SD = 0.74µm). 

(A) 

 
(B) 

 
(C) 
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Figure 3.1.3 Sensitivity profiles for detection of retinal nerve fiber layer 
(RNFL) progression by trend and event analyses computed from month 
12 to month 60. Progressive average RNFL thickness reduction was 
modeled at a rate of -2 µm/year for linear (A, E, I), episodic (B, F, J), 
exponential (C, G, K) and parabolic (D, H, L) patterns for eyes with small 
(A-D), average (E-H) and large (I-L) test-retest variabilities. 
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Figure 3.1.4 Relationship between the rate of linear change in average 

RNFL thickness and the minimum duration required for TA and EA to 

detect progression at a sensitivity of 80% in eyes with small (A), average 

(B), and large (C) test-retest variabilities. 

(A) Small test-retest variability (SD=0.74 µm) 

 
 

(B) Average test-retest variability (SD=1.71 µm) 

 
 

(C) Large test-retest variability (SD=3.50 µm) 
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Figure 3.1.5 Sensitivity profiles for detection of retinal nerve fiber layer 

(RNFL) progression by trend and event analyses computed from month 

12 to month 60. Progressive average RNFL thickness reduction was 

modeled at a rate of -4 µm/year for linear (A, E, I), episodic (B, F, J), 

exponential (C, G, K) and parabolic (D, H, L) patterns for eyes with small 

(A-D), average (E-H) and large (I-L) test-retest variabilities. 

 

  



 

Figure 3.1.6

with small (A), average (B) and large (C) test

computed from month 12 to month

 

 

Figure 3.1.6 Specificity profiles of trend and event analyses for eyes 

with small (A), average (B) and large (C) test

computed from month 12 to month 

(A) Small test-retest variability (SD=0.74 

(B) Average test-retest variability (SD=1.71

(C) Large test-retest variability (SD=3.50 

 

Specificity profiles of trend and event analyses for eyes 

with small (A), average (B) and large (C) test-retest variabilities 

 60. 

retest variability (SD=0.74 µm) 

 
retest variability (SD=1.71 µm) 

 
retest variability (SD=3.50 µm) 
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Specificity profiles of trend and event analyses for eyes 

retest variabilities 
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Figure 3.1.7 Accuracy profiles for detection of retinal nerve fiber layer 

(RNFL) progression by trend and event analyses computed from month 

12 to month 60 in the simulation. Progressive average RNFL thickness 

reduction was modeled at a rate of -2 µm/year for linear (A, E, I), 

episodic (B, F, J), exponential (C, G, K) and parabolic (D, H, L) patterns 

for eyes with small (A-D), average (E-H) and large (I-L) test-retest 

variabilities. 
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Figure 3.1.8 Accuracy profiles for detection of retinal nerve fiber layer 

(RNFL) progression by trend and event analyses computed from month 

12 to month 60 in the simulation. Progressive average RNFL thickness 

reduction was modeled at a rate of -4 µm/year for linear (A, E, I), 

episodic (B, F, J), exponential (C, G, K) and parabolic (D, H, L) patterns 

for eyes with small (A-D), average (E-H) and large (I-L) test-retest 

variabilities. 

 

  



97 

 

Figure 3.1.9 Proportion of eyes detected with retinal nerve fiber layer progression by TA and EA in 175 eyes of 81 

glaucoma and 26 glaucoma suspect subjects (followed every 4 month for a median of 38 months) from month 12 to month 

36 with average (A), small (B) and large (C) test-retest variability. Individual test-retest variability was estimated from the residuals of 

linear regression fitted on all available data of the particular eye. 123 eyes (70.3%) with test-retest variability of 1.77 µm at 10% level of 

significance were defined as the eyes with an average test-retest variability (A). The first 50 eyes with smallest estimated test-retest variability 

were arbitrarily defined as the eyes with a small test-retest variability (B) and the last 50 eyes with largest estimated test-retest variability were 

arbitrarily defined as the eyes with a large test-retest variability (C). 

(A) 
Eyes with an average test-retest variability 
(Range = 1.06 – 2.44 µm, mean = 1.77µm) 

(B) 
Eyes with a small test-retest variability 

(Range = 0.62 – 1.48 µm, mean 1.23 µm) 

(C) 
Eyes with a large test-retest variability 

(Range = 2.37 – 6.56 µm, mean = 3.22 µm) 
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Figure 3.1.10 The impact of individual test-retest variability on the sensitivity and specificity of even analysis with group 

reproducibility coefficient (EA with group RC). The sensitivity and specificity can be represented by the area under the probability density 

function of the baseline measurement (mean=*� and SD=+) and the measurement of the �th visit (mean=*� and SD=+), respectively, and the 

classification cut-off, -.+�/+.If the individual test-retest variability, +, equals to the group test-retest variability, +�, the sensitivity and specificity 

would be the same as EA with individual RC (A). If the individual test-retest variability, +, is smaller than the group test-retest variability, +�, the 

classification cut-off, -.+�/+, would shift to left resulting in a lower sensitivity and a higher specificity compared with EA with individual RC (B). If 

the individual test-retest variability, +, is larger than the group test-retest variability, +�, the classification cut-off, -.+�/+, would shift to right and 

resulting in a higher sensitivity and a lower specificity compared with EA with individual RC (C).  

(A) (B) (C) 
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Figure 3.1.11 Relationship between the number of observations required per year and the minimum duration needed to 

detect a linear average RNFL thickness progression at rate of -2 µm/year at a sensitivity of 70% (A) and 80% (B) for eyes 

with small (SD=0.74 µm), average (SD=1.71 µm), and large (SD=3.50 µm) test-retest variabilities. 

(A) 

 

(B) 
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3.2 Detection of Retinal Nerve Fiber Layer (RNFL) Progression 

using the RNFL thickness map 

3.2.1 Abstract 

Objectives: In the previous study, we showed that trend-based analysis 

generally attained high sensitive for detecting progressive reduction of 

average retinal nerve fiber layer (RNFL) earlier than event-based 

analysis with comparable specificity. Therefore, we set out to investigate 

if trend-based analysis on individual pixels data in the RNFL thickness 

maps (Trend-based Progression Analysis or TPA) would outperform 

Guided Progression Analysis (GPA) (an event-based counterpart) to 

detect change.  

Methods: Individual pixel data of serial RNFL thickness maps of 68 

eyes of 48 glaucoma subjects and 60 eyes of 34 normal subjects 

followed for a median of 55 months were exported from the Cirrus HD-

OCT (Carl Zeiss Meditec). Linear regression analysis was performed on 

the individual pixels and the detection error in high dimensional multiple 

testing was quantified and controlled by the false discovery rate. The 

performance of detecting RNFL thinning was compared between TPA 

and GPA. 

Results: Among the 68 eyes of 48 glaucoma subjects, RNFL 

progression was detected in 38 eyes (55.9%) by TPA and 23 eyes 

(33.8%) by GPA. The false discovery rates in the 38 eyes detected with 
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progression by TPA were all ≤5%. RNFL progression were detected by 

both techniques in 19 eyes with 12 eyes (60%) first detected by the TPA 

and 5 eyes (25%) first detected by the GPA. The survival probability of 

TPA was significantly lower than that of GPA (p=0.012). The proportion 

of RNFL progression detected by TPA and GPA was similar in the 60 

eyes of 34 normal subject in which 4 eyes (6.7%) were detected by the 

TPA and 2 eyes (3.3%) were detected by the GPA. The survival 

probabilities between the two algorithms were not significantly different 

(p=0.400). 

Conclusions: TPA outperformed GPA in detecting more number of 

progressing eyes at a similar level of specificity. With the analysis of the 

false discovery rate of the RNFL change map, TPA can provide a more 

informative approach to report progressive RNFL damage. 
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3.2.2 Background and Objectives 

Although the advent of spectral-domain optical coherence tomography 

allows high-speed and high-resolution imaging of the retina nerve fiber 

layer (RNFL), detection of progressive RNFL thinning in glaucoma has 

been largely based on global parameters, such as the average, the 

superior average, and the inferior average RNFL thicknesses obtained 

from circumpapillary RNFL measurement. One commercially available 

spectral-domain OCT, the Cirrus HD-OCT (Carl Zeiss Meditec), 

provides statistical analysis - the Guided Progression Analysis or GPA 

to analyze progressive RNFL thinning in the RNFL thickness map. In 

GPA, a statistically significant RNFL thickness change at an individual 

pixel in the RNFL thickness map is defined when the difference between 

the two baseline and the follow-up examinations exceeds the test-retest 

variability of that particular pixel (the test-retest RNFL measurement 

variabilities of individual pixels are in-house proprietary data from Carl 

Zeiss Meditec). Significant RNFL thinning is displayed in the "RNFL 

Change Map". "Likely Loss" (when the change is detected in two 

consecutive follow-up visits), "Possible Loss" (when the change is 

detected in one follow-up visit), and "Possible Increase" (when the 

change is greater than the test-retest variability) are highlighted in red, 

yellow and purple, respectively, in the RNFL thickness change map. 

One shortcoming of GPA is the lack of accountability of the potential 

increase in Type 1 error in testing multiple pixels (50 x 50 superpixels in 
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the RNFL thickness change map). Without estimating the number of 

false positives, the interpretation of RNFL thickness change map would 

be difficult. In our previous study, we demonstrated that trend-based 

analysis generally attained high sensitivity for progression detection 

earlier than event-based analysis at a comparable level of specificity. 

We hypothesized that trend analysis of the RNFL thickness maps would 

provide a more informative and sensitive approach to detect RNFL 

change compared with GPA. In this study, Trend-based Progression 

Analysis (TPA) was developed. We also included the concept of false 

discovery rate (FDR), which was originally described Benjamini & 

Hochberg (Benjamini & Hochberg, 1995), to estimate the potential 

number of false positives in the RNFL thickness change map without 

sacrificing the potential loss in detection sensitivity as in Bonferroni 

adjustment. and the performance of TPA and GPA was then compared 

in a group of 82 subjects (48 glaucoma patients and 34 normal subjects) 

who had been followed for at least 36 months. 

3.2.3 Subjects and Methods 

3.2.3.1 Subjects 

All subjects were enrolled from June 2007 to March 2013 at the 

University Eye Center, the Chinese University of Hong Kong. They 

underwent visual field examination using SAP (SITA Standard 24-2, 

HFA II, Carl Zeiss Meditec), spectral-domain OCT RNFL imaging (Cirrus 
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HD-OCT, Carl Zeiss Meditec) and full ophthalmic examination, including 

measurement of visual acuity, refraction, intraocular pressure and 

fundus examination as described in section 2.2 to 2.4. Subjects were 

classified into normal, glaucoma suspect or glaucoma subjects 

according to the definitions described in section 2.5. Based on the 

inclusion and exclusion criteria stated in section 2.2, 68 eyes of 48 

glaucoma subjects (64 eyes with open-angle glaucoma and 4 eyes with 

angle-closure glaucoma) were examined every 4 months for at least 36 

months (range 36 - 67 months with median of 60 months) for Cirrus HD-

OCT RNFL imaging. Sixty eyes of 34 normal subjects followed for at 

least 36 months (range 36 - 65 months with median of 52 months) were 

also included to estimate the specificity of GPA and TPA.  

3.2.3.2 Algorithm of Trend-based Progression Analysis  

Individual pixel RNFL thickness values in the RNFL thickness maps 

were exported from the Cirrus HD-OCT (Carl Zeiss Meditec) and 

analyzed in MATLAB (The MathWorks, Inc., Natick, MA). Serial RNFL 

thickness maps form the same eye were registered with reference to the 

trajectories of the retinal blood vessels. After registering and aligning the 

retinal blood vessels in the longitudinal image series, a functional 

response and a scalar independent variable model was constructed: 

[��, �� = ���� + ����� + _��, �� 
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where t denotes time (t = 0 represents the time at the baseline 

examination); fs�, t� denotes the RNFL thickness in a particular 

superpixel, s� = x�, y��, at time t; αs�� is a functional constant 

representing the RNFL thickness at the baseline examination; βs�� 
denotes the rate of change in RNFL thickness and εs�, t� denotes the 

random measurement error. (Ramsay & Dalzell, 1991)  

Assuming the measurement error, ε, as a Gaussian process 

independent of time, t, local RNFL thickness change at the geographical 

location s� can be estimated by the ordinary least square (OLS) 

estimation,  

βxs�� = Cov3t, fs�, t�4Var3t4 , 
with the baseline measurement estimated by  

αðs�� = f̅s�, t� − βxs��t.̅ 
The null hypothesis of no RNFL thickness change, H�: βs�� = 0, versus 

the alternative hypothesis of having RNFL thickness change, H�: βs�� ≠0, can be tested by using t-test with n − 2 degree of freedom by defining 

the extreme probability as ò = ℙôx ≥ õs��|X~T�=�ø, where õs�� =
7ùNú>�=ùú>�ûüNý>� 7, SùNú>� = ¼ L��@∑ ��ú>,�²�=��ðú>�·ùNú>��²��@�²KL ∑ �²=�̅�@�²KL , and n represents the 

number of longitudinal observations used. The hypothesis of no local 
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RNFL thickness change would be rejected if ò is less than or equal to 

the predefined level of significance for a single test. 

The TPA derived RNFL thickness change map can be generated by 

performing the functional response regression analysis in individual 

superpixel of the RNFL thickness map. 

The RNFL thickness map obtained by the "Optic Disc Cube 200x200" 

protocol in the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) contains 

200 x 200 (40,000) localized RNFL thickness measurements in an area 

of 6x6 mm2 around the optic disc. To reduce the amount of model fitting 

and hypothesis testing without substantial loss of image resolution, the 

RNFL thickness map was partitioned into 4x4 pixels (a superpixel). 

Model fitting and hypothesis testing were performed using the average 

RNFL thickness calculated from each partition. 

3.2.3.3 Measurement of False Discovery Rate (FDR) 

With multiple regression analyses performed in the high density RNFL 

thickness map, it is important to quantify and control the detection error 

of RNFL thickness change. The false discovery rate (���) introduced by 

Benjamini and Hochberg was used to quantify the detection error, which 

is defined as 

��� = 	 ��`äiR�	
[	[���R	�
����hR	lR�R��
��`äiR�	
[	�
����hR	lR�R��
� � 
(Benjamini & Hochberg, 1995). 
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The supremum of the ��� can be estimated by  

�`�� ���� = �`äiR�	
[	�R���	 × 	���. �RhR�	`�Rl	[
�	�	�����R	�R���`äiR�	
[	�
����hR	lR�R��
�  

False discovery rate can be controlled by the Benjamini Hochberg 

procedure and the enhanced approach by a two-stage procedure 

suggested by Benjamini et al. (Benjamini & Hochberg, 1995, Benjamini 

& Hochberg, 1997, Benjamini & Yekutieli, 2001, Benjamini et al., 2006) 

The Benjamini Hochberg ��� controlling procedure 

• Set a predefined ��� level (the desired supremum), �. Order all 

the single location extreme probabilities as 

ò�� ≤ ò�� ≤ ⋯ ≤ òy� 
• Find % = max ��: ò#� ≤ #�y�, and reject the hypotheses of no 

change in all locations when ò ≤  �y . 

By rejecting the % hypotheses of no change in all locations with ò ≤  �y , 

the supremum of the ��� = yò  would be smaller than the desired level 

�.  

The two-stage procedure (with equal weighting)  

1. Set a predefined ���  level (the desired supremum), � , and 

define �′ = �
�·�. Order all the single location extreme probabilities 

as 
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ò�� ≤ ò�� ≤ ⋯ ≤ òy� 
and find % = max ��: ò#� ≤ #�′y �, where ä is the total number of t-

test performed in the whole map. 

2. Find %� = max ��: ò#� ≤ #�′y= � , and reject the hypotheses of no 

change in all locations when ò ≤  @�′y= . 
In the TPA RNFL thickness change map, RNFL thinning in a super-pixel 

would be highlighted in yellow if a significant negative slope was found 

at 5% level of significance, and in red if a negative slope was found and 

the hypothesis of no change was rejected at a false discovery rate of 5% 

controlled by the two-stage procedure (examples are illustrated in Figure 

3.2.1 and 3.2.2). A superpixel would be highlighted in purple if a positive 

slope was found and the hypothesis of no change was rejected at a 

false discovery rate of 5% controlled by the two-stage procedure.  

3.2.3.4 Definition of RNFL progression 

In both GPA and TPA, RNFL progression was defined if a contiguous 

cluster of ≥10 superpixels (1 superpixel=4x4 pixels) was coded in red in 

the corresponding RNFL change maps in the latest follow-up 

examination. 

3.2.3.5 Statistics 

Statistical analyses were performed with MATLAB R2010a (The 

MathWorks, Inc., Natick, MA) and R version 2.15.2 (R Foundation, 
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Vienna, Austria). Computer programs were written in MATLAB for image 

registration, detecting progressive RNFL thinning in the RNFL thickness 

map, and quantifying the false discovery rate. R was used for 

agreement analysis and comparing the area of detection between GPA 

and TPA, estimating the rate of change of average RNFL thickness, and 

non-parametric survival analysis of TPA and GPA. Agreement analysis 

between GPA and TPA was based on Cohen's kappa (Cohen, 1960). 

Comparison of the area of detection between GPA and TPA was based 

on Wilcoxon signed rank test. The rate of change of average RNFL 

thickness was estimated by linear mixed model with all eyes treated as 

independent. In the survival analysis, the events of interests were the 

time to first detection of RNFL progression with a contiguous cluster of 

≥10 superpixels (1 superpixel=4x4 pixels) coded in red in the TPA and 

GPA RNFL change maps, respectively, since subjects were enrolled. 

The survival probabilities were estimated by Kaplan–Meier estimator 

and compared by log-rank test. p<0.05 were considered statistically 

significant. 

3.2.4 Results 

A total of 1690 OCT images from 68 eyes of 48 glaucoma patients (23 

eyes with and 45 eyes without evidence of progression detected in the 

RNFL thickness change map by the GPA) and 60 eyes of 34 normal 

subjects prospectively followed for at least 36 months (a mean follow-up 
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period of 55 months) were included. The demographics, visual field and 

average RNFL measurements are shown in Table 3.2.1. 

3.2.4.1 Comparison of detection of progressive RNFL thinning 

between GPA and TPA in eyes with glaucoma 

Among the 23 eyes with evidence of GPA progression, TPA detected 

progressive RNFL damage in all but 4 eyes. For the 45 eye without GPA 

progression, 19 had progression by TPA. The false discovery rates in 

the 38 eyes detected with progression by TPA were all ≤5%. Among the 

19 eyes with progressive RNFL thinning detected by both algorithms, 12 

(63.2%) were detected by TPA 4 – 26 months earlier than GPA, 2 

(10.5%) were detected by TPA and GPA at the same time, and 5 

(26.3%) were detected by GPA 4 – 12 months earlier than TPA. The 

agreement of progression detection between the two algorithms was fair 

(kappa: 0.348, 95% confidence interval: 0.132 – 0.565) (Figure 3.2.3). 

Figure 3.2.4 shows the survival probabilities of GPA and TPA estimated 

by the Kaplan–Meier estimators. The survival probability of TPA was 

significantly lower than that of GPA (log-rank test, p=0.012), indicating 

that TPA detected progressive RNFL thinning earlier than GPA. Figure 

3.2.5 shows the overlay of the RNFL change maps obtained in the latest 

follow-up analyzed by GPA and TPA. Notably, while both algorithms 

indicated that the superotemporal and inferotemporal sector were the 

most frequent location where progressive RNFL thinning was detected, 
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TPA detected a greater area of progressive RNFL thinning compared 

with GPA (p=0.001).  

Rate of RNFL loss in the RNFL map 

The rate of change of average RNFL thickness in the 38 progressing 

eyes detected by TPA was -1.00 µm/year. For individual pixel RNFL 

thicknesses, the rates of change ranged between -42.26 µm/year and -

0.23 µm/year.  

Examples 

Figures 3.2.1 is an example of a glaucomatous eye with RNFL 

progression detected by the Cirrus HD-OCT GPA (Figure 3.2.1 A) and 

TPA (Figure 3.2.1 B). The same data set was used to illustrate the 

differences between GPA and TPA. While significant RNFL thinning was 

detected by GPA in November 2009, it is not known if the detected 

changes were false positives. By contrast, TPA revealed RNFL 

progression for the same set of images in July 2009, 4 months earlier 

than GPA, with a false detection rate of 5% (coded in red). Figure 3.2.1 

C shows that the detection can be displayed in a color-coded map 

indicating the rates of change of RNFL thickness at individual pixel 

partitions in the latest follow-up visit. Figures 3.2.2 A shows another 

example of a glaucomatous eye with RNFL progression detected by the 

GPA in May, 2012. Notably, TPA detected progressive RNFL thinning 

as early as January 2011 with a false discovery rate of 5%, fully 16 
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months earlier (Figure 3.2.2 B). The detection was displayed in a color-

coded map showing the rates of change of RNFL thickness at individual 

pixel partitions in the latest follow-up visit in Figure 3.2.2 C. In both 

examples, TPA detected progressive RNFL thinning earlier than GPA 

and the area of change was greater TPA than that of GPA.  

3.2.4.2 Specificity of GPA and TPA  

TPA detected 4 (6.7%) and GPA detected 2 (3.3%) eyes with 

progressive RNFL thinning in the normal group and the estimated 

specificity was 93.3% and 96.7%, respectively. One normal eye was 

detected with progressive RNFL thinning by both algorithms (Figure 

3.2.6). There was no significant difference in the survival probability 

between the TPA and GPA in the normal eyes (log-rank test, p=0.400) 

(Figure 3.2.7). 

3.2.5 Discussion 

3.2.5.1 Trend-based analysis in detecting RNFL thinning in the 

RNFL thickness maps 

To our knowledge, this is the first investigation to apply trend-based 

analysis to evaluate progressive RNFL thinning in the RNFL thickness 

map. With TPA, we showed that progressive RNFL thinning can be 

detected earlier than GPA (Figures 3.2.1 and 3.2.2) at a comparable 

level of specificity and there was a significant difference in the survival 

probability between the two algorithms for detection of RNFL 
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progression in glaucoma patients. This finding concurs with our previous 

study demonstrating that trend-analysis outperformed event analysis in 

detection of RNFL progression in glaucoma.  

The GPA of the RNFL thickness map is an event-based analysis which 

does not provide the rates of change of RNLF thickness in individual 

pixels. The rates of change of RNFL thickness map derived from the 

TPA (Figure 3.2.1 C and 3.2.2 C) provides a clear visualization of the 

distribution pattern of the rates of RNFL loss. These data may provide 

prognostic information in predicting the severity and location of 

subsequent visual field loss and guiding treatment in glaucoma 

management. Investigation is ongoing to address the predictive power 

of the TPA in locating subsequent visual field damage in glaucoma 

patients.  

3.2.5.2 The importance of reporting false discovery rate 

In the detection of RNFL changes in the RNFL thickness map, a large 

number of hypothesis testing is involved. Defining significant RNFL 

changes based on individual p values may lead to multiple false 

detections. Controlling the family-wise error rate (FWER) by algorithm 

such as Bonferroni adjustment would require a p value less than 

0.05/50 × 50� = 0.00002, rendering the detection of change not 

sensitive. For this reason, we use the false discovery rate introduced by 

Benjamini & Hochberg (Benjamini & Hochberg, 1995) in the TPA. The 
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false discovery rate is important for the map analysis because it can 

provide a more informative interpretation of the detected RNFL changes 

without sacrificing potential loss in the detection sensitivity. For example, 

an area of RNFL thinning of 100 superpixels detected with a ��� = 5% 

in the RNFL thickness change map suggests that 5 out of the 100 

superpixels would likely be false positives. A limitation of the FDR is that 

it does not account the likelihood of progressive RNFL thinning that 

occurs in contiguous clusters. One approach to tackle this issue is the 

statistic image mapping (SIM) technique introduced by Patterson 

(Patterson et al., 2005). In their study, SIM detected changes in ONH 

topography images with an algorithm that quantified the occurrence 

likelihood of contiguous clusters. It is estimated by permutation testing, 

which is based on shuffling the pixel-wise analyses on the image to 

obtain the permutation distribution of the largest cluster size. Applying 

permutation testing for the detected clusters would provide more reliable 

estimates of RNFL change.  

3.2.5.3 Extension of TPA 

i. Higher order linear or non-linear models 

Although the functional regression model evaluated in this study was 

limited to simple linear regression on individual pixels of the RNFL 

thickness maps, it is possible to extend the application to quadratic or 

higher order linear, or non-linear models.  
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ii. Discriminating glaucomatous RNFL changes from age-related 

RNFL changes 

Knowledge regarding the age-related RNFL changes in normal eyes can 

be constructed by point-wise linear mixed model, such as 

f�s�, t� = "β�,�s�� + β�,�s��t$ + "u�,�,�s�� + u�,�,�s��t$ + ε�s�, t�, 
where β�,�s�� represents the overall rate of age-related RNFL change 

in normal eyes, and u�,�,�s�� represents the eye-specific deviation of the 

rate of age-related for eye �. Eye-specific RNFL change would be 

considered as glaucomatous loss if the reduction is greater than the 

� × 100� th percentile of the age-related RNFL changes, β�,�s�� −
zασùL,�s��, where σùL,�s�� represents the eye-specific standard 

deviation of the random effect u�,�,�s��. 
iii. Modeling pixel RNFL change with consideration of the adjacent 

pixels 

RNFL thicknesses in the geographical location, s�, can take into account 

the adjacent locations of s� (denoted by δú>, which is called the 

geographical neighborhood of s�) by Functional Autoregressive Moving 

Average "[`���
���	ARMAp,q�$ process:  

[��, �� =|� φ�s�, s� × [s, � − ��l�ú∈!ý>
"

�O�  
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+|�m#s�� × εs�, t − j��%

#O� + βs�, t� 
where φ�s�, s� is the weighting parameter of the �th prior RNFL 

thickness at location s corresponding to the subsequent RNFL thickness 

at location s�, m#s�� is the weighting parameter of the jth prior 

measurement error, and βs�, t� is a time related function representing 

the general change of RNFL thickness regardless of any prior thickness 

information. Change in RNFL thickness map can be determined by 

performing stationary test on [��, �� (i.e. testing ~"[��, ��$ = constant). 
However, the application of this model is limited to the measurements of 

the RNFL thickness are obtained in regular time intervals. On the other 

hand, if the examination intervals are sporadic, smoothing, such as 

kernel smoothing or kriging prediction (Krige, 1951), can be applied to 

approximate the RNFL thickness profile in regular intervals and the 

[`���
���	ARMAp,q� can be applied. Alternatively, continuous-time 

[`���
���	'�('�, �� can be applied, which is expressed in form of a 

stochastic partial differential equation (SPDE): 

∂"
∂t" fs�, t� = |� ϕ�s�, s� ∂�∂t� fs, t�dsú∈!ý>

"=�
�O�  

+| +m#s�� ∂#∂t# εs�, t�,
%

#O� + βs�, t� 
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where 
X�X�� is the n-th stochastic partial derivative with respect to t and ε 

is a white noise process. 

iv. Modeling RNFL change with consideration of the shape, 

smoothness, and the curvature of the RNFL profile  

TPA is considered as a functional regression model since the RNFL 

thickness maps are considered as a spatio-temporal functional data 

instead of a series of two dimensional array of numerical data. By 

considering the RNFL thickness map as a functional data, information 

such as smoothness, 
-
-ú [s, ��, and curvature, 

-@
-�@ [s, ��, of RNFL 

thickness map can be modeled in the analysis of RNFL change, where 

-F
-�F is the %-th ordinary partial derivative with respect to � (Ramsay & 

Dalzell, 1991). Further investigation is needed for the applications of 

these extensions of the trend-based analysis on the RNFL thickness 

maps. In particular, it is believed that investigation about the spatio-

temporal correlation, the change in shape, the change in smoothness 

and the change in curvature of the RNFL thickness map might be able 

to provide valuable insight for discriminating glaucomatous from age-

related changes.  

3.2.5.4 Conclusions 

TPA outperformed GPA in detecting more number of eyes with 

progressive RNFL changes in the RNFL thickness change map in an 
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earlier follow-up time point. With the inclusion of the rates of RNFL 

change map and the false discovery rate, informative interpretation of 

significant changes in the RNFL thickness change map can be attained. 

Further studies are needed to investigate the possible extensions of 

TPA application and their clinical significance in glaucoma management.  
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Table 3.2.1 Demographics, RNFL, and visual field measurements of 
68 eyes of 48 glaucoma subjects and 60 eyes of 34 normal subjects 
who were followed up every 4 months for at least 36 months. 

 Mean ± SD 

 Glaucoma Group Normal Group 

Spherical error (D) -2.66 ± 4.15 0.33 ± 3.00 

Age (year) 50.8 ± 14.6 67.1 ± 6.5 

Signal strength 7.7 ± 0.8 8.4 ± 0.8 

Baseline examination   

Average RNFL thickness 
(µm) 

67.91 ± 12.31 102.91 ± 9.59 

VFI (%) 73.56 ± 26.85 98.92 ± 1.30 

Visual field MD (dB) -9.81 ± 8.89 -0.88 ± 1.20 

Final examination   

Average RNFL thickness 
(µm) 

66.24 ± 12.29 102.50 ± 2.12 

VFI (%) 72.14 ± 31.08 98.57 ± 2.07 

Visual field MD (dB) -10.51 ± 10.12 -1.21 ± 0.91 

Duration of follow-up (month)   

Median 60 52 

Minimum 36 36 

Maximum 67 65 

D = diopter; RNFL = retinal nerve fiber layer; VFI = visual field index; MD = mean 

deviation. 
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Figure 3.2.1 An example of retinal nerve fiber layer progression analysis evaluated the Guided Progression Analysis 

(GPA) (A) and the Trend-based Progression Analysis (TPA) (B). In the GPA "RNFL Change Maps", RNFL progression 

was first detected on November 2009 (A). In the TPA, significant localized RNFL loss at 5% level were highlighted in 

yellow, significant loss with false discovery rate ≤5% were highlighted in red, and significant increases with false discovery 

rate ≤5% were highlighted in purple. RNFL progression was first detected on July 2009, which was 4 months earlier than 

the detection in GPA (B). The rates of change of RNFL thickness at individual superpixels in the latest follow-up with 

significant changes at 5% false discovery rate are shown in a color-coded map with the color-coded scale on the right (C). 
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Figure 3.2.2 Another example of retinal nerve fiber layer progression analysis evaluated by the Guided Progression 

Analysis (GPA) (A) and the Trend-based Progression Analysis (TPA) (B). In the GPA "RNFL Change Maps", RNFL 

progression was first detected in May 2012 (A). In the TPA, significant RNFL loss at 5% level were highlighted in yellow, 

and significant loss with false discovery rate ≤5% were highlighted in red. RNFL progression was first detected on January 

2011, which was 16 months earlier than the detection in GPA (B). The rates of change of RNFL thickness at individual 

superpixels in the latest follow-up with significant changes at 5% false discovery rate are shown in a color-coded map with 

the color-coded scale on the right (C). 
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Figure 3.2.3 Agreement of the localized RNFL progression detected by 

the Trend-based Progression Analysis (TPA) and Guided Progression 

Analysis (GPA) in the glaucoma group. 

 

CI=confidence interval. 
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Figure 3.2.4 Survival probabilities of Trend-based Progression Analysis 

(TPA) and Guided Progression Analysis (GPA) estimated by the 

Kaplan–Meier estimators in the glaucoma group. 
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Figure 3.2.5 The overlay of the RNFL change maps obtained in the 

latest follow-up analyzed by Guided Progression Analysis (GPA) (A) and 

the Trend Progression Analysis (TPA) (B) in the glaucoma group. Area 

of RNFL thinning detected by GPA highlighted in red in 23 eyes (A). 

Area of RNFL thinning detected by by TPA highlighted in red in 38 eyes 

(B). 

(A) 

 
(B) 
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Figure 3.2.6 Agreement of the localized RNFL progression detected by 

the Trend-based Progression Analysis (TPA) and Guided Progression 

Analysis (GPA) in the normal group. 

 

CI=confidence interval. 
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Figure 3.2.7 Survival probabilities of Trend-based Progression Analysis 

(TPA) and Guided Progression Analysis (GPA) estimated by the 

Kaplan–Meier estimators in the normal group. 
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3.3 Impact of Retinal Nerve Fiber Layer Measurement on 

Subsequent Change in Visual Function 

3.3.1 Abstract 

Objectives: To evaluate if prior retinal nerve fiber layer (RNFL) and 

visual field measurements would affect their subsequent changes during 

the course of glaucoma progression.  

Methods: 84 eyes of 84 glaucoma patients [44 eyes with 

suspected/early glaucoma (baseline MD ≥-6 dB) and 40 eyes with 

moderate/advanced glaucoma (baseline MD <-6 dB)] were followed 

every 4 months for spectral-domain OCT RNFL and visual field 

measurements for at least 35 months. Random Coefficient 

Autoregressive Linear Mixed Modeling (RCALMM) was used to 

investigate the impact of prior average RNFL thickness / visual field MD 

on subsequent changes in average RNFL thickness and visual field MD 

(measured at 4 month intervals) in the suspected/early and 

moderate/advanced glaucoma groups. Statistical causality between the 

structural and functional measurements were evaluated by statistical 

testing on the corresponding coefficients. 

Results: Among the 84 eyes, RNFL and visual field progression were 

detected in 27 eyes (32.1%) and 18 eyes (21.4%), respectively, with 

linear regression analysis. In suspected/early glaucoma, both the prior 

average RNFL thickness (coefficient: 0.046, 95% confidence interval: 
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0.017 - 0.075, p=0.002) and prior visual field MD (coefficient: -0.680, 

95% confidence interval: -0.807 - -0.554, p<0.001) were significantly 

associated with the subsequent change in visual field MD. A greater 

average RNFL thickness and/or a worse visual field MD were 

associated with a smaller reduction in the subsequent visual field MD. In 

moderate/advanced glaucoma, prior visual field MD (coefficient: -0.662, 

95% confidence interval: -0.792 - -0.532, p<0.001) but not the prior 

average RNFL thickness (coefficient: 0.020, 95% confidence interval: -

0.019 - 0.060, p<0.310) was associated with subsequent change in 

visual field MD. A worse visual field MD was associated with a smaller 

reduction in the subsequent visual field MD. 

Conclusions: Functional change is relatively small whereas structural 

change is more substantive in the early stages of glaucoma when the 

RNFL is thick. RNFL measurement is useful to predict subsequent 

change in visual function.  
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3.3.2 Background and Objectives 

Glaucoma is an optic neuropathy characterized by the progressive optic 

disc and visual field changes. However, the precise relationship 

between structural and functional changes in glaucoma remains unclear 

(Girkin, 2004, Johnson et al., 2000, Harwerth et al., 2005). Specifically, it 

is largely unclear the association between progression in optic disc / 

RNFL and progression in function. Although, a number of mathematical 

models have been described to address the relationship between the 

structure and function in glaucoma (Johnson et al., 2000, Harwerth et 

al., 2005, Leung et al., 2005, Bowd et al., 2006, Harwerth & Quigley, 

2006, Hood & Kardon, 2007), most studies investigating the structure 

and function relationship were based on cross-sectional data. As 

glaucoma is a chronic progressive disease, long-term longitudinal data 

instead of cross-sectional data may provide more insights into the 

structure function relationship in glaucoma progression.  

In longitudinal studies, the agreement between structural and functional 

progression in glaucoma often is poor (Fayers et al., 2007, Alencar et 

al., 2010, Moon et al., 2012). A Bayesian hierarchical linear model 

combining the rates of structural and functional progression have been 

proposed to improve detection of glaucoma progression (Medeiros et 

al., 2011). The use of structural progression detection to predict 

functional loss has also been investigated through survival analyses 

(Chauhan et al., 2009, Medeiros et al., 2009). The longitudinal study 
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conducted by Chauhan et al. followed 81 patients with open-angle 

glaucoma (OAG) for a median of 11 years (Chauhan et al., 2009). They 

reported that the time to visual field progression was consistently shorter 

by 0.8 - 1.7 years in patients with prior optic disc changes detected by 

confocal scanning laser ophthalmoscopy in the first 3 years. Subsequent 

visual field progression was more likely to occur in patients with prior 

optic disc changes (Chauhan et al., 2009). The study conducted by 

Medeiros et al. investigated 407 glaucoma suspects followed for an 

average of 8 years (Medeiros et al., 2009). It found that the odds of 

visual field progression with prior optic disc progression in optic disc 

photographs was 25.8 times higher those without (Medeiros et al., 

2009). In this study, a mathematical model, random coefficient 

autoregressive linear mixed model (Rahiala, 1999), was used to 

investigate the causal relationship between structural change (based on 

OCT average RNFL thickness) and functional change (based on SAP 

derived MD) in glaucoma. 

3.3.3 Subjects and Methods 

3.3.3.1 Subjects 

Eighty four open-angle glaucoma patients consecutively followed from 

June 2007 to October 2012 at the University Eye Center, the Chinese 

University of Hong Kong were included in the analysis. All subjects 

underwent visual field examination using SAP (SITA Standard 24-2, 
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HFA II, Carl Zeiss Meditec), spectral-domain OCT RNFL imaging (Cirrus 

HD-OCT, Carl Zeiss Meditec) and full ophthalmic examination, including 

measurement of visual acuity, refraction, intraocular pressure and 

fundus examination. Subjects were selected according to the inclusion 

and exclusion criteria described in section 2.2. Eighty four subjects (72 

glaucoma and 12 glaucoma suspect subjects, classified according to the 

criteria stated in section 2.5) were followed every 4 months for at least 

35 months (range 35 - 64 months with median of 49 months). One eye 

from each subject was randomly selected in the analysis.  

3.3.3.2 Autoregressive modeling 

In general, autoregressive modeling specifies that the output variable 

depends linearly on its own previous values. In this study, Random 

Coefficient Autoregressive Linear Mixed Model (RCALMM; or simply 

Random Coefficient Autoregressive (RCA) Model) introduced by Rahiala 

(Rahiala, 1999) was used to determine if prior average RNFL thickness 

or prior visual field MD was associated with the subsequent change in 

average RNFL thickness and visual field MD. Since both visual field MD 

and average RNFL thickness are non-age-adjusted measurements, the 

use of visual field MD was believed to be more comparable to average 

RNFL thickness than the age-adjusted visual field index (VFI). The 

RCALMM is an extension of the linear mixed model (LMM) including the 

previous responses into the covariates of the LMM. The mathematical 

details of the RCALMM model have been described in section 1.6.3.3. 
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Change in average RNFL thickness and visual field MD (defined as the 

difference in average RNFL thickness and visual field MD between 

consecutive follow-up visits) were regressed by RCALMMs on the prior 

average RNFL thickness and prior visual field mean deviation with 

random effects accounted at the subject level:  

�Δ���o�,#Δ(��,# � = ���,���,�� + ���,���,�� × ���o�=�,# + ���,���,�� ×(��=�,# 
+ W`�,�,#`�,�,#^ + W`�,�,#`�,�,#^ × ���o�=�,# + W`�,�,#`�,�,#^ ×(��=�,# + W_�,�,#_�,�,#^ 

where "Δ���o�,# ,Δ(��,#$d represents the change in average RNFL 

thickness and change in visual field MD at examination � for subject �, 
"��,�, ��,�$d, "��,�, ��,�$d and "��,�, ��,�$d represents the fixed effect 

coefficients corresponding to the intercept, the prior average RNFL 

thickness and the prior visual field MD, respectively, "`�,�,# , `�,�,#$d, 

"`�,�,#, `�,�,#$d and "`�,�,# , `�,�,#$d represents the random effect 

coefficients corresponding to the intercept, the prior average RNFL 

thickness and the prior visual field MD at the subject level, respectively, 

and "_�,�,# , _�,�,#$d represents the residual errors. "`�,�,# , `�,�,#$d, 

"`�,�,#, `�,�,#$d and "`�,�,# , `�,�,#$d were assumed to follow identically 

normal distribution with mean zero and independent across subjects, 

and "_�,�,# , _�,�,#$d was assumed to follow independent and identically 

normal distribution with mean zero. 
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3.3.3.3 Statistics 

Statistical analyses were performed with the statistical computing 

software R version 2.15.2 (R Foundation, Vienna, Austria). Comparisons 

of RNFL and visual field MD measurements between the baseline and 

the final visits were based on paired t-test. The agreement index, 

Cohen's kappa (Cohen, 1960), was used to evaluate the agreement 

between structural and functional progression detection. Model fittings 

were performed using the lme4 package in R (Bates et al., 2012). 

Goodness of fits of different models was compared by likelihood ratio 

test (LRT). Significance of the fixed effects was determined by Wald test. 

p<0.05 were considered statistically significant. 

3.3.4 Results 

3.3.4.1 Demographics 

Eight-four eyes of 84 subjects (72 glaucoma and 12 glaucoma suspect 

patients) were followed every 4 months for at least 35 months (range: 

35–64 months, median=49 months). The baseline average RNFL 

thickness and visual field MD were 69.78±13.30 µm and -9.05±9.06 dB, 

respectively, which were significantly different from those obtained at the 

latest follow-up examination (66.84±14.17 µm and -9.86±8.54 dB, 

respectively, p≤0.019). A total of 942 OCT and 942 visual field 

examinations were included. Each eye had an average of 11 serial 
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measurements (range: 5-16) for analysis. Table 3.3.1 shows the 

demographics of participants. 

3.3.4.2 Agreement between Structural and Functional Progression 

in Glaucoma 

By defining RNFL and visual field progression as having a significant 

negative slope obtained in linear regression analysis between the 

average RNFL thickness and the visual field MD and time, respectively, 

27 eyes (32.1%) had RNFL progression and 18 eyes (21.4%) had visual 

field progression. The rate of change of average RNFL thickness varied 

between -2.05 µm/year and -0.43 µm/year, and the rate of change of 

visual field MD was between -2.12 dB/year and -0.33 dB/year. Figure 

3.3.1 shows the agreement of RNFL and visual field progression. 

3.3.4.3 Causal Relationship between Structure and Function in 

Glaucoma 

In order to investigate the statistical causality between the prior RNFL / 

visual field measurements and the subsequent changes, change in 

average RNFL thickness and change in visual field MD (measured at 4 

month intervals) were regressed by random coefficient autoregressive 

linear mixed models (RCALMMs) on prior average RNFL thickness and 

prior visual field MD with random effects accounted at the subject level. 

As different stages of glaucoma may exhibit different patterns of 

dependence, 44 eyes with suspected/early glaucoma (baseline MD ≥-6 



137 

 

dB) and 40 eyes with moderate/advanced glaucoma (baseline MD <-6 

dB) were regressed by RCALMM separately. 

Table 3.3.2 showed the RCALMM regression on the change in visual 

field MD. In suspected/early glaucoma, both the prior average RNFL 

thickness (coefficient: 0.046, 95% confidence interval: 0.017 - 0.075, 

p=0.002) and the prior visual field MD (coefficient: -0.680, 95% 

confidence interval: -0.807 - -0.554, p<0.001) were significantly 

associated with the subsequent change in visual field MD. A greater 

average RNFL thickness and/or a worse visual field MD were 

associated with a smaller reduction in the subsequent visual field MD. In 

moderate/advanced glaucoma, subsequent change in visual field MD 

was significantly associated with the prior visual field MD (coefficient: -

0.662, 95% confidence interval: -0.792 - -0.532, p<0.001) but not with 

the prior average RNFL thickness (coefficient: 0.020, 95% confidence 

interval: -0.019 - 0.060, p<0.310). A worse visual field MD was 

associated with a smaller reduction in the subsequent visual field MD. 

Table 3.3.3 showed the RCALMM regression on the change in average 

RNFL thickness. Prior average RNFL thickness was significantly 

associated with the subsequent change in average RNFL thickness in 

both suspected/early (coefficient: -0.031, 95% confidence interval: -

0.053 - -0.008, p=0.007) and moderate/advanced glaucoma (coefficient: 

-0.731, 95% confidence interval: -0.839 - -0.622, p<0.001). A greater 

average RNFL thickness was associated with a larger reduction in the 
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subsequent RNFL measurement. No significant associations were 

observed between the prior visual field MD and the subsequent change 

in average RNFL thickness (p≥0.083). 

3.3.5 Discussion 

3.3.5.1 Structure and function relationship 

To our knowledge, this is the first study using prospective longitudinal 

OCT RNFL and visual field measurements to investigate the impact of 

prior measurement of structure/function on their subsequent changes. 

Using the random coefficient autoregressive linear mixed model 

(RCALMM), we showed that prior average RNFL thickness was 

positively associated with subsequent change in visual field MD in 

suspected/early glaucoma (coefficient: 0.046, p=0.002 in Table 3.3.2) 

and negatively associated with subsequent change in average RNFL 

thickness in both suspected/early (coefficient: -0.031, p=0.007 in Table 

3.3.3) and moderate/advanced glaucoma (coefficient: -0.731, p<0.001 in 

Table 3.3.3). In other words, in suspected/early glaucoma when the 

RNFL is thick, the subsequent change in function would be relatively 

small and the subsequent change in the RNFL would be relatively 

substantive. By contrast, when the RNFL is thin as in 

moderate/advanced glaucoma, prior RNFL measurement would be 

relatively less influential to subsequent change in function. These 

findings are in agreement with the previous studies suggesting that a 
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considerable degree of retinal ganglion cell loss would occur before 

detectable change in visual function (Quigley & Addicks, 1982, Quigley 

et al., 1982, Harwerth et al., 1999, Kerrigan-Baumrind et al., 2000, 

Harwerth & Quigley, 2006). For OCT RNFL measurement, floor effect 

may set in when glaucoma advances, rendering further detection of 

RNFL thinning difficult (Hood et al., 2007, Leite et al., 2012).  

On the other hand, prior visual field MD was negatively associated with 

subsequent change in visual field MD in both suspected/early 

(coefficient: -0.680, p<0.001 in Table 3.3.2) and moderate/advanced 

glaucoma (coefficient: -0.662, p<0.001 in Table 3.3.2), but not 

associated with subsequent change in average RNFL thickness 

(p≥0.083 in Table 3.3.3). In the late stages of glaucoma when the visual 

field MD is significantly negative, further change in visual field MD would 

be relatively small. Glaucoma progression likely begins with progressive 

RNFL thinning with minimal change in visual field. As the disease 

advances with extensive loss of RNFL and visual function, detection of 

change in structure and function would both become difficult.  

3.3.5.2 Importance of the prior measurements 

In the investigation of glaucoma progression, many studies have 

suggested that linear regression can provide an adequate fit between 

visual field and time (Mikelberg et al., 1986, McNaught et al., 1995, 

Bengtsson et al., 2009). Linear regression is simple and provides a 
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convenient approach to estimate the rate of change for any parameter of 

interest. However, as described in section 1.6.3.3, the link function in 

linear modeling is deterministic. In this study, we used an autoregressive 

model to address the casual relationship between prior and subsequent 

measurements. In the RCALMM, average RNFL thickness and visual 

field MD were regressed on prior average RNFL thickness and visual 

field MD, follow-up duration, age and spherical error. The model fitting 

was significantly better than fitting with LMMs without including the prior 

RNFL and visual field MD measurements (Table 3.3.4 and Table 3.3.5). 

Based on the likelihood ratio test derived by Self & Liang (Self & Liang, 

1987), the likelihood ratio statistics comparing the RCALMMs and the 

corresponding LMMs followed a &�º : �� : �º' mixture of chi-square 

distributions with degree of freedom 7,8,9�. The goodness of fit 

measures of both RCALMMs were significantly better (p<0.001) than the 

two corresponding LMMs. Therefore, the prior average RNFL thickness 

and the prior visual field MD would be important factors affecting the 

subsequent measurements after adjusting for the deterministic rate of 

progression (represented by the coefficients of follow-up duration). 

3.3.5.3 Limitation - Order specification and spurious dependency 

in autoregressive model 

In this study, only first order autoregressive teams, the prior average 

RNFL thickness and the prior visual field MD measured 4 months before 
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the subsequent measurements, were considered. It is possible that 

higher order autoregressive teams, measurements obtained in 8,12,16… 

months before the subsequent measurements may also influence the 

subsequent measurements even when the first order prior 

measurements are given. A spurious finding incorrectly suggesting 

causality may occur.  

Figure 3.3.2 illustrated an example of spurious causality when an 

autoregressive model of order 2 is wrongly specified as autoregressive 

model of order 1. Consider two measurements denoted as �� and ��, 
and suppose that the value of �� depends on the prior values of ��=� and 

��=� and the value of �� depends on the prior value of ��=�. Without 

modeling the 2nd order term ��=� for the prediction of ��, ��=�, which 

carries the information of ��=�, will become informative for the prediction 

of ��. �� will be wrongly modeled as depending on ��=� and ��=� even 

��=� does not affect the upcoming value of ��. 
3.3.5.4 Conclusions 

In summary, prior average RNFL thickness and prior visual field MD 

were associated with subsequent loss in visual field MD. By contrast, 

only prior average RNFL thickness, but not visual field MD, was 

associated with subsequent reduction in average RNFL thickness. This 

study affords evidence in favor of the view that functional change is 

relatively small whereas structural change is more substantive in the 
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early stages of glaucoma when the RNFL is thick. Our results suggest 

that OCT RNFL measurements obtained with the spectral-domain OCT 

would be useful to predict subsequent visual field progression in 

glaucoma and may thus be qualified as an outcome measure in clinical 

trials investigating glaucoma progression. 
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Table 3.3.1 Demographics, Retinal Nerve Fiber Layer (RNFL), and 
visual field measurements of 84 eyes of 84 glaucoma and glaucoma 
suspect subjects who were followed up every 4 months for at least 35 
months. 

 
Mean ± SD 

Age 51.7 ± 14.1 
Spherical error (D) -2.54 ± 4.09 
Number of examinations 11.2 ± 2.7 
Signal strength 7.7 ± 0.8 
Baseline examination 

 
Average RNFL thickness (µm) 69.78 ± 13.30 
Visual field mean deviation (dB) -9.05 ± 9.06 
Visual field index (%) 75.9 ± 27.1 

Final examination 
 

Average RNFL thickness (µm) 66.84 ± 14.17 
Visual field mean deviation (dB) -9.86 ± 8.54 
Visual field index (%) 74.6 ± 26.0 

Duration of follow-up (month)  
Median 49 
Minimum 35 
Maximum 64 

D=diopter; dB=decibels. 
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Table 3.3.2 Coefficient estimates of Random Coefficient Autoregressive Linear Mixed Model (RCALMM) for the change 
in visual field mean deviation (MD) on the prior average RNFL thickness and the prior visual field MD. 

Change in Visual Field Mean Deviation 
Suspected/Early Glaucoma 

Fixed Effects 
 

Random Effects 
Overall Level Coefficient SD 95% CI p 

 
Subject Level SD 

Intercept -5.981 1.211 (-8.356, -3.607) <0.001 
 

 Intercept 2.433 
Prior RNFL thickness 0.046 0.015 (0.017, 0.075) 0.002 

 
 Prior RNFL thickness 0.010 

Prior visual field MD -0.680 0.064 (-0.807, -0.554) <0.001 
 

 Prior visual field MD 0.269 

      
Residual Error 1.161 

Moderate/Advanced Glaucoma 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept -11.672 1.676 (-14.957, -8.387) <0.001 

 
 Intercept 5.211 

Prior RNFL thickness 0.020 0.020 (-0.019, 0.060) 0.310 
 

 Prior RNFL thickness 0.037 
Prior visual field MD -0.662 0.066 (-0.792, -0.532) <0.001 

 
 Prior visual field MD 0.261 

      
Residual Error 1.249 

Eyes were classified into suspected/early glaucoma if baseline MD ≥-6 dB and moderate/advanced glaucoma if baseline MD<-6 dB. Changes in 
visual field MD were measure at 4 month intervals. Prior measurements were the obtained 4±1 months prior to the changes in visual field MD. P 
values are calculated based on Wald test. 
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Table 3.3.3 Coefficient estimates of Random Coefficient Autoregressive Linear Mixed Model (RCALMM) for the change 
in average RNFL thickness on the prior average RNFL thickness and the prior visual field MD. 

Change in Average RNFL Thickness 
Suspected/Early Glaucoma 

Fixed Effects 
 

Random Effects 
Overall Level Coefficient SD 95% CI p 

 
Subject Level SD 

Intercept 1.985 0.954 (0.116, 3.854) 0.037 
 

 Intercept 0.000 
Prior RNFL thickness -0.031 0.011 (-0.053, -0.008) 0.007 

 
 Prior RNFL thickness 0.000 

Prior visual field MD 0.009 0.057 (-0.102, 0.120) 0.877 
 

 Prior visual field MD 0.000 

      
Residual Error 2.687 

Moderate/Advanced Glaucoma 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept 46.210 3.825 (38.713, 53.706) <0.001 

 
 Intercept 2.384 

Prior RNFL thickness -0.731 0.056 (-0.839, -0.622) <0.001 
 

 Prior RNFL thickness 0.129 
Prior visual field MD 0.205 0.118 (-0.026, 0.437) 0.083 

 
 Prior visual field MD 0.071 

      
Residual Error 4.376 

Eyes were classified into suspected/early glaucoma if baseline MD ≥-6 dB and moderate/advanced glaucoma if baseline MD<-6 dB. Changes in 
average RNFL thickness were measure at 4 month intervals. Prior measurements were the obtained 4±1 months prior to the changes in visual 
field MD. P values are calculated based on Wald test. 
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Table 3.3.4 Coefficient estimates of Random Coefficient Autoregressive Linear Mixed Models (RCALMMs) for the 
average RNFL thickness and visual field MD on the prior average RNFL thickness, the prior visual field MD, follow-up 
duration, age and spherical error. 

RCALMM for Average RNFL Thickness * 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept 67.583 5.984 (55.855, 79.311) <0.001 

 
 Intercept 6.719 

Follow-up duration -0.511 0.278 (-1.057, 0.035) 0.066 
 

 Follow-up duration 2.266 
Prior RNFL thickness 0.154 0.033 (0.089, 0.220) <0.001 

 
 Prior RNFL thickness 0.105 

Prior visual field MD 0.178 0.090 (0.001, 0.355) 0.049 
 

 Prior visual field MD 0.538 
Age -0.130 0.091 (-0.308, 0.048) 0.152 

  
Spherical Error 0.707 0.324 (0.072, 1.342) 0.029 

 
Residual Error 2.755 

RCALMM for Visual Field Mean Deviation (MD) * 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept -10.171 2.453 (-14.978, -5.364) <0.001 

 
 Intercept 7.374 

Follow-up duration -0.057 0.050 (-0.154, 0.040) 0.250 
 

 Follow-up duration 0.066 
Prior RNFL thickness 0.064 0.016 (0.032, 0.096) <0.001 

 
 Prior RNFL thickness 0.051 

Prior visual field MD 0.356 0.046 (0.266, 0.447) <0.001 
 

 Prior visual field MD 0.295 
Age 0.013 0.033 (-0.052, 0.077) 0.702 

  
Spherical Error 0.032 0.109 (-0.182, 0.246) 0.768 

 
Residual Error 1.221 

Prior measurements were the obtained 4±1 months prior to the responses. P values are calculated based on Wald test. 

*Both models were compare with the corresponding LMMs with all the covariates except the prior measurements. Based on likelihood ratio test 

(LRT), the goodness of fit of both RCALMMs were significantly better (p<0.001) than those of the corresponding LMMs shown in Table 3.3.5. 
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Table 3.3.5 Coefficient estimates of Linear Mixed Models (LMMs) for the average RNFL thickness and visual field MD 
on the follow-up duration, age and spherical error. 

LMM for Average RNFL Thickness 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept 81.955 6.820 (68.588, 95.321) <0.001 

 
 Intercept 12.590 

Follow-up duration -0.535 0.208 (-0.943, -0.127) 0.010 
 

 Follow-up duration 1.344 
Age -0.188 0.117 (-0.418, 0.041) 0.108 

  
Spherical Error 1.046 0.405 (0.252, 1.840) 0.010 

 
Residual Error 3.003 

LMM for Visual Field Mean Deviation (MD) 
Fixed Effects 

 
Random Effects 

Overall Level Coefficient SD 95% CI p 
 

Subject Level SD 
Intercept -9.265 4.439 (-17.964, -0.565) 0.037 

 
 Intercept 8.234 

Follow-up duration -0.185 0.095 (-0.371, 0.002) 0.052 
 

 Follow-up duration 0.425 
Age 0.009 0.076 (-0.140, 0.159) 0.901 

  
Spherical Error 0.276 0.264 (-0.242, 0.793) 0.297 

 
Residual Error 1.127 

  



148 

 

Figure 3.3.1 Agreement of RNFL thickness and visual field progression in the 84 eyes of 84 subjects 

 

CI=confidence interval. 
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Figure 3.3.2 An example of spurious causality when an autoregressive model of order 2 is wrongly specified as 
autoregressive model of order 1. Suppose the value of �� depends on the prior values of ��=� and ��=� and the value of �� depends on the 

prior value of ��=�. The blue arrows in solid lines represent the true dependencies between the two measurements.  

Without modeling the 2nd order term ��=� for the prediction of ��, ��=�, which carries the information of ��=�, will become informative for the 
prediction of ��. �� will be wrongly modeled as depending on ��=� and ��=� even ��=� does not affect the upcoming value of ��. The red arrows in 
dashed lines represent the spurious dependencies observed when the 2nd order terms are not considered. 
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CHAPTER 4 GENERAL CONCLUSIONS 

4.1 Conclusions 

Detecting progressive retinal nerve fiber layer thinning is relevant and 

important in monitoring glaucoma progression. This study was designed 

to address different approaches and statistical models to evaluate 

progressive RNFL reduction and its impact on subsequent change in 

visual function. In the computer simulation study, we showed that trend-

based analysis generally attained high sensitivity earlier than event-

based analysis to detect significant reduction of average RNFL 

thickness measured by the spectral-domain OCT at a similar level of 

specificity (Figure 3.1.3 - Figure 3.1.5). However, for subjects with a 

short follow-up duration and a large test-retest variability, event analysis 

using a group test-retest variability may have a higher sensitivity to 

detect change but with a trade-off of a lower specificity compared with 

trend analysis. These findings were confirmed with longitudinal data 

collected from glaucoma patients. Following 107 glaucoma patients and 

glaucoma suspects for a median of 38 months, the detection rate of 

RNFL progression was 42%, 35%, and 3% for TA, whereas it was 11% 

to 40%, 12% to 28%, and 3% to 23% for EA in eyes with small, average, 

and large test-retest variabilities, respectively. For progression detection 

of the average RNFL thickness using trend analysis, three observations 

per year was found to be an efficient monitoring schedule (Figure 3.1.11) 
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although monitoring frequency should be scheduled with reference to 

the disease severity and the life expectancy. 

Having found that trend analysis had a higher sensitivity to detect 

average RNFL thickness loss, we then extended its application in the 

RNFL thickness map and introduced the Trend-based Progression 

Analysis (TPA). TPA was able to detect progressive RNFL thinning 

earlier than or at the same time as GPA in 75% of 68 eyes in 48 

glaucoma patients and the survival probability of TPA was significantly 

lower than that of GPA (p=0.012). The false discovery rates in the 38 

eyes detected with progression by TPA were all ≤5%. With the reporting 

of the false discovery rate and the rate of change in the RNFL thickness 

change map, TPA can provide a more informative approach to detect 

RNFL progression than GPA.  

We then investigated the impact of RNFL progression on subsequent 

change in visual function in glaucoma using autoregressive modeling. 

We showed that prior average RNFL thickness and prior visual field MD 

were significantly associated with the subsequent change in visual field 

MD in early glaucoma. A greater average RNFL thickness was 

associated with a smaller subsequent change in function but a greater 

subsequent loss in RNFL thickness. By contrast, in the late stages of 

glaucoma when the RNFL is thin and visual field is extensively damaged, 

detecting subsequent reduction in RNFL thickness and visual function 

would be difficult. RNFL thickness can be an informative biomarker to 
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predict subsequent change in visual field particularly in the early stages 

of glaucoma.  

4.2 Future Works 

Trend analysis was found to be a more sensitive approach to detect 

change in glaucoma compared with event analysis. Future work is to 

refine the application of TPA using the shape, smoothness and 

curvature of the RNFL profiles to improve the detection of glaucoma 

progression. Although TPA detected more eyes with progression than 

GPA, it is possible that the detected change may represent age-related 

change. Analyzing progression with consideration of age-related loss of 

the RNFL would be important to identify glaucomatous RNFL 

progression.  

The statistical model, RCALMM of order 1, was used to understand the 

structure and function relationship in glaucoma. The results suggested 

that prior average RNFL thickness and prior visual field MD were 

associated with the subsequent changes in visual field MD. However, 

without considering the higher order autoregressive terms, the statistical 

causality can be spurious. Collecting longitudinal data with a longer 

follow-up duration would be important to fully address the issue. 
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Detection of Disease Related Retinal Nerve Fiber Layer Thinning 

 

CROSS REFERENCES TO RELATED APPLICATIONS 

[0001] This application claims priority to U.S. Provisional Application 61/649,896, 5 

filed May 21, 2012, and titled “Detection of Retinal Nerve Fiber Layer Thinning,” the 

disclosure of which is incorporated herein in its entirety and for all purposes.  

FIELD OF INVENTION 

[0002] Embodiments of the present invention generally relate to the design and 

development of novel methods to analyze progressive retinal nerve fiber layer (RNFL) 10 

thinning in patients with possible eye abnormalities, such as glaucoma and different 

types of optic neuropathies.  

BACKGROUND 

[0003] Glaucoma is the most common type of optic neuropathies and a leading cause 

of irreversible blindness worldwide. Characterized by progressive loss of retinal 15 

ganglion cells, measurement of their axon bundles – the retinal nerve fiber layer 

(RNFL) would be useful to detect and track the progression of the disease. The Guided 

Progression Analysis (GPA) (Carl Zeiss Meditec, Dublin, CA) is a commercially 

available algorithm to detect longitudinal RNFL changes in the RNFL thickness map 

using spectral-domain optical coherence tomography (OCT). In the analysis of RNFL 20 

thinning, change at individual pixels may be displayed in the RNFL thickness change 

map if the differences between two baseline visits and one follow visit are statistically 

greater than the test-retest variability of that particular pixel. However, the ability of 

GPA on the RNFL thickness map for detection of progressive RNFL thinning can be 

limited.  25 

[0004] It is therefore desirable to provide improved methods and systems for 

detecting early progressive RNFL thinning. The current invention is designed to address 

these issues.   

SUMMARY 
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[0005] Embodiments relate to methods, apparatuses, and computer readable media for 

detecting abnormalities in the retinal nerve fiber thickness (or other characteristic) of an 

eye using imaging methods, for example spectral-domain optical coherence tomography 

(OCT).  

[0006] Some embodiments include receiving a plurality of images of the patient’s 5 

eye, where each image is obtained at a different time. Each image of the plurality of 

images may be made up of a plurality of pixels, each pixel indicating a time-varying 

characteristic of a particular location in the patient’s eye. Each image may be divided 

into a plurality of pixel partitions, where each pixel partition includes one or more 

pixels, e.g., 2x2 pixels, 4x4 pixels, 10x10 pixels, or just one pixel. A plurality of pixel 10 

partition sets may be identified, where each pixel partition set includes a pixel partition 

from each image and the pixel partitions of the same pixel partition set correspond to a 

common region in the patient’s eye. For each pixel partition set, and for each pixel 

partition of each pixel partition set, a respective value for the respective common region 

of the pixel partition set may be determined, e.g., an average of the pixel values. 15 

[0007] The respective value may correspond to a time-varying characteristic of the 

pixel partition at the time of the corresponding image. A regression model for each pixel 

partition set may then be calculated from the respective values of the pixel partitions, 

with a computer system. The regression model may include a rate of change value at 

individual pixel partitions. Then, it may be determined whether the common region that 20 

corresponds to the pixel partition set exhibits at least one abnormality in the patient’s 

eye if the rate of change of the regression model is more negative than the age-related 

change of that particular pixel partition. The age-related changes may be determined 

from a longitudinal dataset collected from a normal healthy cohort. In some 

embodiments, a false discovery rate of the detected abnormalities is computed. Once an 25 

abnormality has been identified a disease prognosis and a treatment plan can be 

provided. 

[0008] Other embodiments may include functional regression models that include 

non-linear polynomial terms or autocorrelation terms. Embodiments are also directed to 

systems and computer readable media associated with methods described herein.  30 
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BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] A further understanding of the nature and advantages of various embodiments 

may be realized by reference to the following figures. In the appended figures, similar 

components or features may have the same reference label. Further, various components 

of the same type may be distinguished by following the reference label by a dash and a 5 

second label that distinguishes among the similar components. If only the first reference 

label is used in the specification, the description is applicable to any one of the similar 

components having the same first reference label irrespective of the second reference 

label. 

[0010] FIG. 1A is a flowchart of a method according to embodiments of the present 10 

invention. 

[0011] FIG. 1B is a flowchart of additional method steps according to some 

embodiments. 

[0012] FIGs. 2A-2D, and 3A-3D are illustrative results comparing existing methods 

(GPA) and methods and apparatuses of embodiments of the present invention.  15 

[0013] FIG. 4 illustrates the importance of accounting for age-related change as part 

of the embodiments of the present invention. 

[0014] FIG. 5 is a graphical illustration showing a regression model according to 

embodiments of the present invention.  

[0015] FIG. 6 shows a computer system of various embodiments of the present 20 

invention.  

DETAILED DESCRIPTION 

[0016] Embodiments of the present invention describe a functional regressive 

modeling approach to detect disease-related RNFL changes in individual pixels of 

RNFL thickness images of a patient’s eye, measured at different time points. RNFL 25 

changes detected in the patient’s eye, as measured by analyzing certain data in the 

functional regressive models, if greater than the age-related change, may signal eye 

abnormalities, such as glaucoma.  

[0017] Commercially-available algorithms for detecting longitudinal RNFL changes 

in the RNFL thickness map using spectral-domain optical coherence tomography (OCT) 30 
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can be limited. For example, the detection method may not be sensitive enough to detect 

early change. Second, even if a change is detected, the change may not be disease-

related. In other words, the current method may not differentiate disease-related from 

age-related change. Third, statistical test performed at multiple pixels in the RNFL 

thickness map would increase the likelihood of detecting false positives. A method 5 

providing information about the specificity of the detected changes is important for 

interpretation of the analysis. Irreversible loss of vision could occur in patients with 

glaucoma if treatment is not provided at the early stage of disease when progression is 

detected. On the other hand, patients may be over-treated if the detected changes are 

age-related or false positives.  10 

[0018] Embodiments of the present invention may solve these and other problems, 

including differentiating disease-related from age-related change and reporting the false 

detection rate of the change analysis in a patient’s eye.  

[0019] For example, embodiments of the present invention may include eight 2-

dimensional digital images of a patient’s eye, wherein each image is taken every four 15 

months over a 3-4 year period, and wherein each image comprises 200 x 200 pixels, 

each pixel having a value that represents the RNFL thickness at that particular location 

of the patient’s eye. The 200 x 200 pixels are then divided into a plurality of pixel 

partitions (e.g. 4 x 4 pixels for each partition to form 50 x 50 pixel partitions). The 

average values of RNFL thickness are calculated in each pixel partition. Embodiments 20 

may then calculate a regression model (e.g. least squares linear regression) for each 

pixel partition by using the RNFL thickness data values from all eight images at the 

same corresponding location. The regression models of each pixel partition may 

therefore form a matrix of regression models, arranged in the same order as the partition 

locations. Each regression model may include a slope value term, which represents the 25 

change in RNFL thickness at that particular pixel partition of the patient’s eye across the 

follow-up time period. If a slope value at a pixel partition exceeds the age-related 

change value of the same pixel location, then it may signal that the RNFL thickness at 

that location in the eye has an abnormality, such as glaucoma. In some embodiments, 

the age-related rates of change of RNFL thickness and their 95% confidence intervals at 30 

individual pixel partitions are generated from linear mixed modeling on long-term 

longitudinal RNFL data collected from a cohort of healthy normal eyes.   
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[0020] Some embodiments may include calculating at least one false discovery rate 

(FDR) in the matrix of regression models, whose rates of change values signal an 

abnormality; or controlling the FDR in defining the abnormality threshold for each 

regression model in the matrix of regression models. The FDR may represent the 

percent likelihood that the signaled abnormality is a “false positive.” Multiple FDRs in 5 

the matrix of the regression models may represent different percent likelihoods (e.g. 5% 

likely, 25% likely) that the signaled abnormality is a false positive.  

[0021] FIGs. 2B-D and 3B-D illustrate some examples of data analysis that may be 

performed by present embodiments. These examples, among others, will be explained in 

more detail in the following paragraphs. Specifically, this disclosure is divided into 10 

several sections, including detailed descriptions of: I. Method embodiment, II. 

Regression modeling, III. Regression modeling with error term, IV. False discovery 

rate, V. Non-linear regression model, VI. Sample data, and VII. Computer system 

embodiments. First, referring to FIG. 1A, example methods of embodiments of the 

present invention are described.  15 

I. METHOD 

[0022] FIG. 1A is flowchart of a method 100 for identifying regions of abnormalities 

in a patient’s eye according to embodiments of the present invention. The method 

includes receiving a plurality of images of a patient’s eye, where each image is 

composed of a plurality of pixels. Each image is divided into a plurality of pixel 20 

partitions, each including at least one pixel of the image. A plurality of pixel partition 

sets are then determined, each pixel partition set including a pixel partition from each of 

the images, where each of the pixel partitions correspond to a common region of the 

patient’s eye. A regression model is then calculated for each pixel partition set, using 

values determined for each pixel partition of the set. The regression is analyzed to 25 

determine whether the common region of the patient’s eye corresponding to the pixel 

partition set has an abnormality. In some embodiments, this analysis includes measuring 

a slope value of the regression model. 

[0023] In block 102, a plurality of images of the patient’s eye are received. An 

imaging device may record a plurality of images of a patient’s eye using an imaging 30 

device, and these images may be received by a processor or other image repository. 

Example imaging devices may include magnetic resonance imaging (MRI) devices, 
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ophthalmology imaging devices (including but not limited to spectral-domain optical 

coherence tomography, scanning laser polarimetry and polarization sensitive optical 

coherence tomography), spectral imaging systems, or digital fundus cameras. For 

clarity, assume that J images of the patient’s eye are recorded. Each image may include 

a plurality of pixels, arranged in any configuration, but may commonly be arranged in a 5 

square or rectangular pattern or matrix. Each of the J images is recorded at different 

times. Certain method embodiments record the J images over a period of years, where 

each image may be recorded several months apart from each other. One of the purposes 

of recording the images over such a period may be to create a longer term history of the 

development of a patient’s eye, so that trend analysis can be performed over such a time 10 

period. 

[0024] The imaging device can then send the images to a computer system. The 

computer system may include the imaging device, or the imaging device may be 

networked to the computer system. Alternatively, the images may be recorded on a 

computer readable medium (e.g. a compact disc), which can be loaded into the 15 

computer system. Thus, a computer system can receive the images in various ways. 

Each of the steps below can be performed by one or various components of a computer 

system.  

[0025] Having obtained the J images, at block 104, each image may be divided into a 

plurality of pixel partitions, or sub-images, which include one or more pixels. The pixel 20 

partitions may be sets of pixels of an image grouped in close proximity to one another. 

For example, in an image comprised of 40000 pixels arranged in a square 200x200 

matrix, the image may be divided by pixel partitions of 4x4 pixels each, for a total of 

2500 pixel partitions. The pixel partitions do not have to be uniform in size, and each 

pixel partition does not have to comprise more than even 1 pixel. The pixel partitions 25 

also may not comprise contiguous pixels of the image. For example, in an image 

comprising 10,000 pixels arranged in a square 100x100 matrix, the image may be 

divided by pixel partitions comprised of every other pixel in a column and row in a 

square 10x10 matrix, e.g. the 2
nd

, 4
th

, 6
th

, 8
th

, and 10
th

 pixels of a row, for each of the 

2
nd

, 4
th

, 6
th

, 8
th

, and 10
th

 row comprises one pixel partition. In this example, each pixel 30 

partition is arranged in this way, thereby generating 100 pixel partitions of the 100x100 

image. 
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[0026] At block 106, the pixel partitions of each of the J images are grouped with 

other pixel partitions of every other image, arranged by a correspondence to a common 

region of the patient’s eye. For example, assume there are 8 images of a patient’s eye 

recorded over a span of years, each image comprised of 100 pixels in a 10x10 matrix. 

The images are divided into pixel partitions of 2x2, with no pixels skipped, for a total of 5 

25 pixel partitions for each image. A pixel partition set, therefore, may comprise the top 

left pixel 2x2 pixel partition of each of the 8 images, assuming that the top left corner of 

each image corresponds to the same region of the patient’s eye, but recorded at different 

instances in time. Therefore, the first pixel partition set comprises all of the pixel 

partitions of each of the 8 images located at the position {(1,1), (1,2), (2,1), (2,2)}, 10 

where (i,j) is the pixel location at the ith row from the top and jth column from the left 

in a pixel partition matrix. Similarly, another pixel partition set would be the area just to 

the right of the previously mentioned pixel partition set, at matrix positions {(1,3), (1,4), 

(2,3), (2,4)}, comprising 8 pixel partitions, one from each image. Pixel partition sets 

would be similarly defined in this way, thereby creating 25 pixel partition sets, each 15 

comprised of 8 pixel partitions – one from each of the 8 images. In general, it can be 

seen then that for a plurality J images divided into a plurality of M pixel partitions, M 

pixel partition sets may be identified, each comprising J pixel partitions.   

[0027] Other embodiments may arrange pixel partitions and pixel partition sets in a 

different way. For example, some may be arranged by matrix location, but others may 20 

be aligned where necessary to link the areas of each image corresponding to a common 

location of the patient’s eye. In cases where the location of the patient’s eye is slightly 

skewed or shifted in an image, other analysis and alignment may need to be performed 

and are not limited in the present invention.  

[0028] In some cases, performing analysis in pixel partitions instead of individual 25 

pixels may be preferred. For example, the use of an average value of a pixel partition 

minimizes alignment error related to imperfect image registration which can be 

secondary to insistent ocular magnification during the longitudinal follow-up (e.g. 

patients may undergo cataract surgery and that will change the ocular magnification). 

Additionally, analyzing data in pixel partition increases the computation efficiency. This 30 

is important because the 3D data sets can be very memory-intensive. Analyzing pixel 

partitions instead of individual pixels would substantially reduce the computation time. 

Also, there are areas in the retina (e.g. the nasal sector of the optic disc) where RNFL 
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thinning is unlikely to occur in disease-related or age-related conditions. Using a larger 

pixel partition in this sector can further improve the computation efficiency. 

[0029] Having identified a plurality M of pixel partition sets, at blocks 108, 110 and 

112, a regression model analysis is performed for each pixel partition set. As part of the 

regression model analysis, multiple regression models are calculated. One regression 5 

model is calculated for each pixel partition set, and then the regression models are 

analyzed to determine abnormalities. 

[0030] At block 108, a value V for each of the J pixel partitions is determined. Each 

value V may represent a time variant characteristic of the patient’s eye at the location of 

the pixel partition. For example, the pixels of an image may represent RNFL thickness 10 

of a patient’s eye, measured in micrometers. A value V then for a pixel partition of 4x4 

pixels may be the average RNFL thickness of those 16 pixels. In another example, V 

may be the RNFL thickness value of the top-left pixel. In an example where pixel 

partitions comprises a square 3x3 matrix of pixels, V may be defined as simply the 

RNFL thickness of the central pixel of the 3x3 matrix. The present invention is not 15 

limited to the choice of V or how V is derived, but certain methods may rely on the 

methodology of determining V being made uniformly for all pixel partitions and pixel 

partition sets.  

[0031] At block 110, a regression model is calculated using the values V of each pixel 

partition in the pixel partition set. The regression model may be a number of different 20 

models, including linear regression, ordinary least squares, mean square error regression 

and the like. The regression model may also trend non-linear curves, and/or be higher 

ordered polynomial models. More details of the use of regression models in 

embodiments of the present invention are provided below. However, in general, a 

purpose of performing regression or trending analysis is to compute and analyze a 25 

change in the values V over time.  

[0032] At block 112, an analysis of the regression model is performed. In some 

embodiments, this includes determining whether the values V have changed over time. 

Such a determination may indicate that the corresponding common region of the pixel 

partition set exhibits at least one abnormality in the patient’s eye. Determining whether 30 

there is such a change may be based on analyzing a slope value provided in the 

regression model. In other embodiments, there may not be a slope value but rather some 
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sort of non-linear rate of change value that represents a rate of change of the values V 

for each pixel partition. For example, a regression model running ordinary least squares 

may comprises a slope value B as a function of time. After calculating an ordinary least 

squares regression on a pixel partition set, it is found that the slope value B is a 

statistically significant negative value. However, this may not indicate an abnormality in 5 

the particular area of the patient’s eye corresponding to the pixel partition set because 

the change may be age-related. Therefore, the slope value B will be compared with an 

age-related slope value corresponding to the particular area. If the slope value B is more 

negative than the lower 95% confidence limit of the age-related slope value in the pixel 

partition, a disease related change is detected. If the pixel partition set measures RNFL 10 

thickness of the patient’s eye, this may mean that the patient is suffering from glaucoma 

or some other eye disease. The slopes of age-related change may vary from pixel 

partition to pixel partition. These values may be generated from long-term (at least 3 

years) longitudinal data obtained from healthy normal eyes with no evidence of any 

ocular diseases. In some embodiments, a composite model of typical changes due to 15 

aging in healthy normal eyes is generated using data sets from multiple healthy patients. 

This model may be further extended by subdividing the data sets by certain 

characteristics, e.g. gender, ethnicity, occupation, or other common characteristic.  

[0033] In some embodiments, the regression model includes an error value. The error 

value may be used to represent the concept that the measurements taken from the 20 

recorded images may be merely approximate, and therefore the conclusions reached in 

the regression models have a slight amount of uncertainty. In some embodiments, the 

error values of a regression model may be modeled as having a Gaussian distribution. 

Such an assumption may allow certain embodiments to make more precise conclusions, 

based on known theory in statistical analysis. Embodiments may also include 25 

determining a degree of certainty in the detection results by performing hypothesis 

testing and/or computing a false detection rate. These methods may be explained more 

in the following paragraphs, and may be exemplified in test results as shown in FIGs 2B 

and 3B.  

[0034] As previously stated, the methods described in blocks 108, 110 and 112 may 30 

be repeated for each pixel partition set. For example, if there are 2500 pixel partition 

sets each comprised of 16 pixel partitions from 8 images of a patient’s eye, then 2500 

regression models are calculated, one for each pixel partition set. Each regression model 
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conducted therefore measures whether an abnormality may exist in the patient’s eye at 

the particular corresponding region to the particular pixel partition set. Advantages of 

methods described herein include being able to not only localize and isolate regions of a 

patient’s eye, but also to differentiate disease-related from age-related change and 

include a false detection rate for interpretation of the results.  5 

II. REGRESSION MODEL 

[0035] As described above at block 110, embodiments may generate a regression 

model for each of the M pixel partition sets of the J images. Any suitable regression 

model may be used. In general terms, a regression model describes a relationship 

between one range variable y and at least one explanatory variable X. Regression 10 

models utilizing only one explanatory variable are called simple regression models, 

while having more than one explanatory variable is called multiple regression. Here, the 

explanatory variable X may represent the time domain of a common location of the 

patient’s eye, recorded at distinct intervals by each of the J images. The data points of X 

therefore correspond to the times at which the J images in block 102 of FIG. 1A were 15 

recorded. The range variable Y may be the values V in block 108 of FIG. 1A, 

determined for each of the pixel partitions in the pixel partition set.  

[0036] In some embodiments, V represents an average RNFL thickness of a pixel 

partition.  Hence, a simple regression model of some embodiments will plot the RNFL 

thickness of a common region of a patient’s eye as a function of the health of the 20 

patient’s eye over time. For each regression model, there would be J data points (X,Y), 

one data point for each of the J images corresponding to a common region of the 

patient’s eye. 

[0037] One purpose of regression modeling is to generate a mathematical function 

that accurately describes a “curve fit” to the sample data. While there are finite, discreet 25 

data points in real-life sample data, it is easier to analyze data if a continuous function 

accurately or approximately represents the discreet data points. This curve fit that 

regression modeling generates may describe such data, and is reflected in the method 

step at block 110. Some embodiments use a “linear curve fit” to model the data. The 

linear curve fit regression model may be described as Y = BX + A, where Y again is the 30 

range variable describing RNFL thickness of a common region of the patient’s eye, X is 
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the time domain, B is a slope value that describes how the RNFL thickness has changed 

over time, and A is the initial RNFL thickness at base time = 0.  

[0038] By generating a regression model using the J data points of a pixel partition 

set, one may be able to analyze the data to determine how the RNFL thickness in the 

patient’s eye has changed over time. The value B may represent precisely this change, 5 

and thus if the change is negative (e.g. B is a negative value), the regression model may 

then indicate that the RNFL thickness has been degrading or weakening over the sample 

period of time. Block 112 reflects the aforementioned analysis of what the value B may 

be and determination of whether the data in the regression model signals an abnormality 

in the patient’s eye.  10 

[0039] Blocks 110 and 112 of FIG. 1A may include more sophisticated calculations 

and analysis. For example, instead of a simple linear regression model, a more precise 

curve fit may be calculated, including multiple explanatory variables or including higher 

ordered curve fits. Other statistical methods may be employed that may minimize the 

effects of outlier data, and/or may accurately express the degree of error or uncertainty 15 

in the curve fits. Various modeling techniques may be used, including ordinary least 

squares, generalized least squares, Bayesian linear regression, etc. Additional statistical 

methods may be incorporated to improve analysis, such as calculating a false detection 

rate for multiple testing. Again, the regression modeling techniques described herein are 

not limiting, and all techniques devised by persons of ordinary skill in the art related to 20 

the techniques described herein may be included in certain embodiments.  

[0040] FIG. 5 illustrates an example regression model 500 of one pixel location in a 

pixel partition set. The dots 510 may represent data points of RNFL thickness of a 

single pixel location over a period of time. The horizontal axis 520 may represent the 

time dimension, taken over a period years, with units in months. The vertical axis may 25 

represent the RNFL thickness, or the value V in block 108 of FIG. 1A. A regression 

analysis is performed on this particular pixel to generate the regression line 540. A slope 

value may be determined from the regression line 540 to demonstrate that the RNFL 

thickness is gradually decreasing of the measured period of time.  

[0041] Again, each pixel location in the pixel partition set may have a regression 30 

analysis 500 performed, to similarly obtain a regression line 540. Each regression model 

thus allows a determination of how the RNFL thickness at that pixel location may have 
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changed over time. When the entire set of pixel locations has regression models 

performed on them, an RNFL thickness map showing potential changes over the entire 

region can be determined.  

[0042] Referring to FIG. 1B, flowchart 150 illustrates further analysis for determining 

whether the common region of the pixel partition set exhibits at least one abnormality, 5 

according to some embodiments. That is, according to some embodiments, flowchart 

150 may provide further details of block 112 of FIG. 1A, by taking into account age-

related rates of change that may be typical in a patient’s eye and does not necessarily 

constitute a disease-related change. At block 152, a rate of change of RNFL thickness of 

the patient’s eye may be determined at the J individual pixel partitions. In some 10 

embodiments, the rate of change of RNFL thickness of the patient’s eye may be based 

on the regression model computed at block 110 of FIG. 1A.  

[0043] At block 154, the rate of change from block 152 may be compared with an 

age-related rate of change for each of the J pixel partitions. The age-related rate of 

change may be obtained from a longitudinal dataset collected from a normal healthy 15 

cohort. In some embodiments, a composite model of typical changes due to aging in 

healthy normal eyes is generated using data sets from multiple healthy patients. The 

age-related data may be further extended by subdividing the data sets by certain 

characteristics, e.g. gender, ethnicity, occupation, or other common characteristic. Thus, 

more specific age-related rates of change may be used to fit a more common profile of 20 

the particular patient, in some embodiments. 

[0044] At block 156, in some embodiments, a disease-related abnormality may be 

determined if the rate of change of the patient’s eye is more negative than the age-

related rate of change being compared against. The age-related rate of change follows a 

normal distribution. Disease related change may be defined when the rate of change of 25 

the patient’s eye in a pixel or pixel partition is more negative than the lower 95% 

confidence limit of the age-related change in the corresponding region. Other cutoff 

values of the confidence intervals of the age-related change may be used to define the 

change. In other words, the rate of change of the patient’s eye may not be fully 

accounted for just by the age-related rate of change, and thus it is more likely that the 30 

rate of change is disease-related. In some embodiments, as discussed more below, other 

factors may be used to determined disease-related rates of change, including 
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incorporating a false detection rate for rates of change at individual pixel partition sets. 

In other cases, error terms may be introduced into the regression model. In other cases, 

non-linear regression models may be used. In other cases, any and all of these examples 

may be used in combination with one another. Embodiments are not so limited. 

III. REGRESSION MODEL WITH ERROR TERM  5 

[0045] As mentioned above, more sophisticated regression modeling can include an 

error term and are included in some embodiments. A regression model with an error 

term is described in more detail here. As mentioned above, the error value may be used 

to represent the concept that the measurements taken from the recorded images may be 

merely approximate, and therefore the conclusions reached in the regression models, 10 

e.g. whether there is an abnormality in a region of the patient’s eye, have a slight 

amount of uncertainty. 

[0046] Serial RNFL thickness maps are registered with reference to a baseline with 

reference to the trajectory of the retinal blood vessels. After registering and aligning the 

retinal blood vessels in all the images, a functional response and a scalar independent 15 

variable model may be constructed:
 
 

[��, �� = ���� + ����� + _��, �� 

where � denotes time (� = 0 represents the time at the baseline); [��, �� denotes the 

RNFL thickness in a particular geographical location, �� = ´�, â��, at time �; ���� is 

a functional constant representing the true RNFL thickness at the baseline; ���� 
denotes the rate of change of RNFL thickness and _��, �� denotes the random 20 

measurement error.
 
 

[0047] Assuming the measurement error, _, as a Gaussian process independent of 

time, �, local RNFL thickness changes at the geographical location �� can be estimated 

by ordinary least square estimation, �D��� = 1233�,4�>,��4
5673�4 	, with baseline estimated by 

�B��� = [̅��, �� − �D����̅. The measurement error _ may be determined based on the 25 

linear model used to perform the regression.  

IV. HYPOTHESIS TESTING AND FALSE DETECTION RATE 
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[0048] In some embodiments, the degree of (un)certainty of each conclusion based on 

the regression models, e.g. whether there is an abnormality in a region of the patient’s 

eye, is determined. Methods for calculating this degree of (un)certainty may include 

performing hypothesis testing and false detection rate (FDR) error analysis. Other 

methods for calculating the degree of (un)certainty may be employed, and embodiments 5 

of the invention may not be so limited. These calculations may be included in block 112 

of FIG. 1A, where the calculations may be used to improve the accuracy of detecting 

abnormalities.  

[0049] In some embodiments where hypothesis testing is used, a null hypothesis may 

be devised, and statistical analysis may be employed to determine if a slope or rate of 10 

change value in the regression model does not satisfy (e.g. can reject) the null 

hypothesis. For example, a null hypothesis (H0) may be that the rate of change of RNFL 

thickness at a region in question does not change, e.g. slope = 0. Typically, hypothesis 

testing makes determinations based on confidence intervals. For example, the question 

of whether the null hypothesis of slope = 0 is true (or false) is determined to a degree of 15 

confidence, e.g. 95% confidence. In other words, the regression analysis may determine 

whether the slope value representing change in RNFL thickness has actually changed 

(e.g. slope is not equal to 0), and whether that determination is accurate to a degree of 

confidence of 95%. If the slope value is in fact not 0, and the conclusions satisfy the 

95% confidence interval, then it can be said that we are at least 95% certain the RNFL 20 

thickness has been changing, indicating most likely some abnormality in the patient’s 

eye. Thus, in some embodiments, for each region of abnormality, a likelihood the 

abnormality detected is a false positive may be determined, based on the false detection 

rate for each region of abnormality. Additionally, in some embodiments, determining 

whether the common region that corresponds to the pixel partition set exhibits at least 25 

one abnormality in the patient’s eye is based further on the likelihood the abnormality 

detected is a false positive, consistent with the false detection rate analysis described 

herein. 

[0050] The hypothesis of no local RNFL thickness change, à�: ���� = 0, can be 

tested by using t-test with � − 2 degree of freedom by defining the extreme probability 30 

(P-value) as ò = ℙô|´| ≥ õ���|�~8�=�ø (the probability of obtaining an absolute 

value larger than õ��� under t distribution with � − 2 degree of freedom), where 
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õ��� = 9MN�>�=M�>�:QN;>� 9, <MN�>� = ¼ LJ�@∑ �4�>,�;�=�.ð�>�·MN�>��;��@J;KL ∑ �;=�̅�@J;KL , and � 

represents the number of longitudinal observations used. The hypothesis of no local 

RNFL thickness change is rejected if ò is less than or equal to a predefined threshold, 

which is the significant level of the single test. 

[0051] In other embodiments, a false detection rate (FDR) is also included to further 5 

measure the degree of (un)certainty. Generally, FDR measures the number of false 

abnormalities detected as a ratio of the total number of abnormalities detected. It can be 

seen, therefore, that the FDR is a useful indicator to show that, given the number of 

supposed abnormalities detected, how likely is it that the detections are truly legitimate 

abnormalities. If FDR is relatively low then, and there are a relatively high number of 10 

abnormalities detected, then one may be very confident that the patient has a serious eye 

problem. Persons with ordinary skill in the art may make judgments that differ from this 

exemplary analysis, and in any case embodiments of the present invention are not so 

limited. FDR calculations and analysis may be explained in more detail below.  

[0052] Due to the large amount of hypotheses testing involved in the high density 15 

RNFL thickness map, it is important to quantify and control the detection error of 

RNFL thickness change. The false discovery rate (���) introduced by Benjamini and 

Hochberg would be an appropriate index to quantify the detection error, which is 

defined as 

 ��� = 	 W�=y>S7	24	46z�S	?2����3S	@S�SA��2��=y>S7	24	?2����3S	@S�SA��2� ^. 
20 

[0053] The exact FDR may be difficult to be estimated. However, the supremum of 

the ��� can be estimated by �`�� ���� = �=y>S7	24	�S���	×	���.zS3Sz	=�S@	427	6	����zS	�S���=y>S7	24	?2����3S	@S�SA��2� , 

where supremum is defined as the least upper bound such that a condition still remains 

true. In this case, the supremum of the FDR may be an accurate approximation because 

the FDR is a value that can be pre-defined but may not be reached exactly. 25 

[0054] Other than quantifying the false discovery rate of the multiple significance 

testing, the FDR can be controlled by various techniques such as the Benjamini 

Hochberg procedure, and enhanced by a two-stage procedure suggested by Benjamini et 

al through appropriate adjustment to the significance level used in each significance 
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test. These two techniques may be included in some embodiments of the present 

invention, and more techniques may also be included.
 

 The two-stage procedure (with equal weighting): 

[0055] Set a predefined ��� level (the desired supremum), �, and define �B = �
�·�. 

Order all the single location extreme probabilities ò�� ≤ ò�� ≤ ⋯ ≤ òy� and find 5 

% = max ��: ò#� ≤ #�Cy �, where m is the total number of t-test performed in the whole 

map, j is the value to be maximized such that the inequality after the colon holds. 

[0056] Find %� = max ��: ò#� ≤ #�Cy= �, and rejecting the hypotheses of no change in 

all locations with ò ≤  @�Cy= . 

[0057] In situations where the units of interest are the thickness change in spatial 10 

clusters, the cluster testing and trimming procedure suggested by Benjamini and Heller 

can be adopted to detect partitions with significant change as well as the specific 

locations of significant change in those partitions without changing the test statistics.
 

[0058] By evaluating different pixel partition sizes (1x1, 2x2, 4x4, 8x8 and 10x10 

pixels) of the RNFL thickness map or image, embodiments of the present invention 15 

reveal that the regression analysis is robust to the partition sizes when using the average 

RNFL thickness within each partition to regress against time. The regression approach 

is also robust to missing data at locations where scan quality is insufficient for reliable 

segmentation of the RNFL.  

V. NON-LINEAR REGRESSION MODEL 20 

[0059] As previously alluded to, the functional regressive model calculated at block 

110 of FIG. 1A can be extended to quadratic or higher order linear model. When the 

evaluation of the RNFL is performed in regular intervals, the rate of change of RNFL 

thickness can be modeled into a Functional Autoregressive Moving Average 3[`���
���	'�('�, ��4 process:
  

25 

[��, �� =|� D���, �� × [�, � − ��l��∈E;>
?

�O� +|�ä#��� × _��, � − ����

#O� + ���, �� 
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where φ� and ä� are the weighting parameters related to the previous measures and 

measurement errors, respectively.  

[0060] Given the order of the autoregressive component � ≥ 1, a more representative 

form can be obtained by taking the first difference, ∆[�, �� = [�, �� − [�, � − 1�, and 

the [`���
���	'�('�, �� model becomes: 5 

∆[��, �� = 1ô� > 0ø ×� G��, �� × [�, � − 1�l��∈E;>
+|� H���, �� × ∆[�, � − ��l��∈E;>

?=�
�O� +|�ä#��� × _��, � − ����

#O�
+ ���, �� 

where G and H� are the weighting parameters representing the contributions of the latest 

RNFL thickness and changing pattern in the À-neighborhood of the geographical 

location �� to current local RNFL thickness change, ∆[��, ��, the higher the absolute 

value of the parameters, the more the influence power to the progression of the testing 

location; ä# are the weighed parameters related to the spatio-temporal correlation of 10 

measurement errors across time; 1ô∙ø is an indicator function which equals to 1 if the 

enclosed criteria is satisfied and 0 otherwise. In some embodiments, lattice data is 

observed instead of functional data. In such situation, the above model is also known as 

a Spatio-Temporal Autoregressive Moving Average <8'�('�, �� model.  

[0061] By modeling the RNFL thickness into the above model, the effect of 15 

surrounding RNFL thickness and their changes can also be examined. Under the [`���
���	'�('1,1� with G��, �� = 0 and ���, �� = �∗���, the functional 

Autoregressive Moving Average model would able to capture the functional response 

and a scalar independent variable model mentioned above.  

[0062] If a sufficiently large sample of images or video data can be collected, it is 20 

even possible to extend it into a dynamic process, commonly refer as a continuous-time 

'�('�, ��, in form of a stochastic partial differential equation (SPDE):
 

I?
I�? [��, �� = |� H���, �� I�I�� [�, ��l��∈E;>

?=�
�O� +| +ä#��� I#I�# _��, ��,

�

#O� + ���, �� 
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where 
-J
-�J is the �-th stochastic partial derivative with respect to �; _ is a white noise 

process (usually assumed to be a Wiener process / Brownian motion). 

[0063] On the other hand, if the examination intervals are sporadic, smoothing, such 

as kernel smoothing, or kriging prediction, builds on Krige (1951), can be applied to 

approximate the RNFL thickness profile in regular intervals and the [`���
���	'�(' 5 

or the <8'�(' model can be applied.
 

[0064] In addition, large sample of longitudinal images can be analyzed by adding the 

mixed effects into the '�(' model to form a Functional Autoregressive Moving 

Average Linear Mixed Model. Biomedical studies using autoregressive linear mixed 

model have been proposed and developed in Feried (2001) and Funatogawa, et al (2007 10 

& 2008). 

VI. EXAMPLE DATA 

[0065] FIGs. 2 & 3 are examples of patients’ eye images and subsequent detection of 

RNFL progression using existing OCT methods and embodiments of the present 

invention. Specifically, FIGs. 2A and 3A show results from the Guided Progression 15 

Analysis on the RNFL Thickness Maps performed by the Cirrus HD-OCT (Carl Zeiss 

Meditec, Dublin, CA), a commercially available OCT product, and FIGs. 2B and 3B 

show results from embodiments of the present invention. For each A & B pair, the same 

data set is used to illustrate improvements by embodiments over the commercially 

available techniques. Each figure includes a series of RNFL thickness maps recorded 20 

over a period of time, where the total span of time ranges from August 2007 to July 

2011 for FIG. 2 and from August 2007 to September 2012 for FIG. 3.  

[0066] Referring to FIGs. 2A & 2B, at item 202, an RNFL thickness map of a 

patient’s eye was first shown to be recorded on August 2, 2007 (Exam 1). At item 204, a 

total of 11 RNFL thickness images were recorded, the last recording occurring on July 25 

21, 2011 (Exam 11). Images 206 are blue, yellow, and red images, where the color 

represents RNFL thickness, according to the scale 208, ranging from 0-350 

micrometers.  

[0067] In FIG. 2A, test results 200 from an existing technique, Cirrus HD-OCT, were 

obtained in order to detect for an eye abnormality glaucoma. The substantially black and 30 

white images below the colored figures in FIG. 2A represent the analysis performed by 
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the Cirrus HD-OCT technique. Item 210 of FIG. 2A shows that at Exam 8, an eye 

abnormality was detected, colored by the red blotch in the substantially black and white 

photo. This detection is based on the Guided Progression Analysis of the Cirrus HD-

OCT product. It highlights the areas where the differences in RNFL thickness between 

the follow-up visit and the baseline 1 and baseline 2 visits are greater than the test-retest 5 

variability of RNFL thickness in those areas. Thus, using previously existing methods, 

an eye abnormality could be detected based on different time-variant images spanning 

over two years and three months. However, it is not known if the changes represent age-

related change and the probability that the changes detected are false positive. 

[0068] In contrast, FIG. 2B illustrates example test results generated by embodiments 10 

of the present invention. Here, 11 eye exams, from image 220 to image 224, were 

received, and regression model analysis as described in FIG. 1A was used to determine 

eye abnormalities. The test results of FIG. 2B show that embodiments reveal eye 

abnormalities for the same set of images 206 in FIG. 2A in July 2009 with a false 

detection rate <5% (coded in red), at item 228, or 4 months earlier than previously 15 

existing methods. The substantially black and white images 224, with spots of yellow 

and red, represent detection results of abnormalities for various embodiments of the 

present invention.  

[0069] For FIG. 2B, detection may have been determined following the regression 

modeling analysis as described in FIG. 1A, at blocks 108-112. Specifically, the 11 20 

images of FIG. 2B may have been divided into pixel partitions, say 4x4 pixel partitions. 

Pixel partition sets were then identified, each including a pixel partition from each of 

the 11 images corresponding to a common region of the patient’s eye. The RNFL 

thickness of each pixel partition would be calculated and used in a regression model. 

Calculating the regression model for each pixel partition set, by plotting the RNFL 25 

thickness over the time period of the 11 images, would then determine a rate of change 

value for the RNFL thickness of the common region corresponding to the pixel partition 

set.  

[0070] The red regions of image 224 represent regions of RNFL thickness that 

changed sufficiently, according to the regression modeling, and were determined to be 30 

sufficiently abnormal according to a fixed FDR threshold, described above at Section 

IV. Specifically, regions highlighted as red may represent locations with RNFL 
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progression where false discovery rate is less than 5%. Similarly, the yellow regions of 

the images in FIG. 2B represent regions of RNFL thickness that changed sufficiently, 

according to the regression modeling, and were determined to be sufficiently abnormal 

according to hypothesis testing without a fixed FDR threshold, described above at 

Section IV. Specifically, regions highlighted as yellow represent locations with RNFL 5 

progression at 5% significant level without controlling the false discovery rate. Thus, in 

some embodiments that detect for abnormalities using a t-test without controlling for 

false discovery rate, the yellow portions of images 224 show that there are abnormalities 

to a confidence level of 95% in the yellow regions as early as April 7, 2008, image 222 

(Exam 3).  10 

[0071] With progressively worsening results, controlling for the false detection rate 

using at least one of the techniques described herein, reveal an even clearer detection of 

abnormalities. These results are illustrated in the red portions of images 224, most 

noticeably seen in the images from July 27, 2009 to July 21, 2011.  

[0072] At Item 226, FIG. 2B also illustrates the degree of confidence of detecting 15 

abnormalities, based on computing t-tests with the results shown. These steps may be 

included in the method step of block 112 of FIG. 1A, and may be based on techniques 

described in Section IV. For example, under image 222, recorded on April 7, 2008, 

there are two sets of numbers: (R) and (Y), where (R) represents additional detection 

results when controlling for the false detection rate, and (Y) represents additional results 20 

without controlling for the false detection rate. For (R) at item 222, FDR <= 0.0%, 

meaning that controlling for the false detection rate may not yet yield any noticeable 

results. Indeed, there is no red yet shown at the time of this image. However, for (Y), P 

<= 0.050, meaning all areas of image 222 colored in yellow are 1 – P = 1-0.050 = 95% 

confident to show an abnormality at those regions. Given the total number of spots 25 

colored in yellow, analysis using embodiments of the present invention also showed a 

false detection rate (FDR) out of all of these yellow spots to be 75.0%. Given then that 

100% -75.0% = 25.0% of the yellow area is not a false detection (to a confidence level 

of 95%), those with ordinary skill in the art would still determine that an abnormality is 

present, even as early as April 2008.  30 

[0073] Image 228, recorded on July 27, 2009 (Exam 7), may illustrate another 

example of the degree of confidence of detecting abnormalities. Here, there are red and 
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yellow areas present after detection analysis using techniques of the present invention. 

The yellow regions may be interpreted as above, since P <= 0.050. FDR = 25.4%, 

meaning 74.6% of the yellow region is highly likely (to a confidence level of 95%) that 

there is an abnormality in those areas. However, the areas in red are even more 

convincing. P <= 0.003 for red; in other words, all areas in red are 1 – P = 1 – 0.003 = 5 

99.7% confident to show an abnormality at those regions. Also, since red controls for 

the number of false detections, FDR is set at 4.8%, meaning only 4.8% of the red area is 

a false detection at the 99.7% confidence level. Therefore, the red region even more 

convincingly shows that there may be a serious abnormality with the patient’s eye.  

[0074] Referring to FIG. 2C, image 240 shows that the detection may be displayed in 10 

a color-coded map indicating the rates of change of RNFL thickness at individual pixel 

partitions in the latest follow-up visit. The rates of change of RNFL thickness are shown 

in a color-coded scale on the right. 

[0075] Referring to FIG. 2D, image 260 illustrates that not all the detected changes 

are disease-related. After removing the pixel partitions that represent age-related 15 

change, it is possible to generate a map showing disease-related change. The area 

showing disease-related change is smaller than the one showing both disease- and age-

related change (FIG. 2C). Thus, in some embodiments, methods may account for age-

related change in the eye in order to generate a more accurate determination of disease-

related change. 20 

[0076] FIGs. 3 A-D are other illustrative results comparing various techniques of the 

present invention and previously existing methods. These illustrations can all be 

interpreted using similar analysis described for FIGs. 2A-D, above.  

[0077] Referring to FIG. 3A, test results 300 shows detection of abnormalities using 

the Cirrus HD-OCT Guided Progression Analysis. An abnormality may be detected on 25 

May 3, 2012, based on the earliest image in August 2007. However, based on techniques 

of the present invention, shown in test results 320, detection of abnormalities may be 

evident as early as January 2011 with a false discovery rate <5%, fully 16 months 

earlier (FIG. 3B).  

[0078] Referring to FIG. 3C, as shown in image 340, detection may be displayed in a 30 

color-coded map showing the rates of change of RNFL thickness at individual pixel 

partitions in the latest follow-up visit.  
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[0079] Referring to FIG. 3D, image 360 illustrates RNFL changes that are disease-

related. A significant portion of the detected changes in FIG. 3C was age-related.  

[0080] Referring to FIG. 4A, images 400 show an example of a healthy normal eye 

followed from July 11, 2008 to November 27, 2012. Significant progressive RNFL 

thinning was detected on July 30, 2012 with a false detection rate <5%. Detection may 5 

be displayed in a color-coded map showing the rates of change of RNFL thickness at 

individual pixel partitions in the latest follow-up visit (FIG. 4B). Those with ordinary 

skill in the art would determine that an abnormality is present, according to typical 

techniques in the industry. However, embodiments of the present invention are able to 

illustrate that there was no disease-related change after adjusting for age-related losses 10 

(FIG. 4C).  

[0081] Referring to FIG. 4B, as mentioned previously, image 420 may illustrate a 

detection of an abnormality in the eye according to existing commercial methods. 

However, referring to FIG. 4C, as mentioned earlier, image 440 may take the same 

patient and data, but determine that there is no disease-related change after adjusting for 15 

age-related losses.  

[0082] Embodiments of the present invention are unique and advantageous in that it is 

believed no one has differentiated disease-related change from age-related change in the 

eye using a plurality of regression models, each for a different region of the eye. Current 

methods include calculating the rates of change of RNFL thickness over the entire 20 

image as a whole, using pixel partitions of each image and comparing these calculated 

rates of change with the expected age-related rates of change at the corresponding pixel 

partitions. Also, it is believed no one has measured false discovery rates for each 

measurement, nor used the false discovery rate to identify an abnormality. 

[0083] The spectral-domain optical coherence tomography is a relatively new 25 

technology (introduced in 2006) for retinal nerve fiber layer (RNFL) imaging, allowing 

for much growth in improving detection methods and apparatuses. With high speed and 

high resolution imaging, objective and reproducible measurement of the retinal nerve 

fiber layer has been shown feasible. Measurement of progressive retinal nerve fiber 

layer changes has become an important paradigm for detection of progression in 30 

glaucoma patients. Embodiments of the present invention therefore have enormous 

market potential as there are currently a number of companies who specialize in this 
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field. The need for a more robust and sensitive algorithm for detection of RNFL 

progression is eminently needed in the market. Embodiments of the present invention 

has been shown to detect abnormalities in RNFL thickness levels in the eye up to 16 

months before existing commercial applications do, representing a superior advantage 

over existing brands.  5 

VII: COMPUTER SYSTEM 

[0084] Having described multiple aspects of determine whether abnormalities may 

exist in a patient’s eye using regression models, an example of a computing system in 

which various aspects of the disclosure may be implemented may now be described 

with respect to FIG. 6. According to one or more aspects, a computer system as 10 

illustrated in FIG. 6 may be incorporated as part of a computing device, which may 

implement, perform, and/or execute any and/or all of the features, methods, and/or 

method steps described herein. For example, computer system 600 may represent some 

of the components of a medical device or imaging device. A medical device may be any 

computing device with an input sensory unit, such as a camera and/or a display unit. 15 

Examples of a medical device include but are not limited to slit lamp digital imaging 

cameras, ophthalmic photographers, optical biometers and related computer systems 

and software. In one embodiment, the system 600 is configured to implement the 

methods of flowchart 100 or 150 described above. FIG. 6 provides a schematic 

illustration of one embodiment of a computer system 600 that can perform the methods 20 

provided by various other embodiments, as described herein, and/or can function as the 

host computer system, a remote kiosk/terminal, a point-of-sale device, a mobile device, 

a set-top box, and/or a computer system. FIG. 6 is meant only to provide a generalized 

illustration of various components, any and/or all of which may be utilized as 

appropriate. FIG. 6, therefore, broadly illustrates how individual system elements may 25 

be implemented in a relatively separated or relatively more integrated manner. 

[0085] The computer system 600 is shown comprising hardware elements that can be 

electrically coupled via a bus 605 (or may otherwise be in communication, as 

appropriate). The hardware elements may include one or more processors 610, 

including without limitation one or more general-purpose processors and/or one or more 30 

special-purpose processors (such as digital signal processing chips, graphics 

acceleration processors, and/or the like); one or more input devices 615, which can 
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include without limitation a camera, a mouse, a keyboard and/or the like; and one or 

more output devices 620, which can include without limitation a display unit, a printer 

and/or the like. 

[0086] The computer system 600 may further include (and/or be in communication 

with) one or more non-transitory storage devices 625, which can comprise, without 5 

limitation, local and/or network accessible storage, and/or can include, without 

limitation, a disk drive, a drive array, an optical storage device, a solid-state storage 

device such as a random access memory (“RAM”) and/or a read-only memory 

(“ROM”), which can be programmable, flash-updateable and/or the like. Such storage 

devices may be configured to implement any appropriate data storage, including without 10 

limitation, various file systems, database structures, and/or the like. 

[0087] The computer system 600 might also include a communications subsystem 

830, which can include without limitation a modem, a network card (wireless or wired), 

an infrared communication device, a wireless communication device and/or chipset 

(such as a Bluetooth® device, an 802.11 device, a WiFi device, a WiMax device, 15 

cellular communication facilities, etc.), and/or the like. The communications subsystem 

830 may permit data to be exchanged with a network (such as the network described 

below, to name one example), other computer systems, and/or any other devices 

described herein. In many embodiments, the computer system 600 may further comprise 

a non-transitory working memory 635, which can include a RAM or ROM device, as 20 

described above.  

[0088] The computer system 600 also can comprise software elements, shown as 

being currently located within the working memory 635, including an operating system 

640, device drivers, executable libraries, and/or other code, such as one or more 

application programs 645, which may comprise computer programs provided by various 25 

embodiments, and/or may be designed to implement methods, and/or configure systems, 

provided by other embodiments, as described herein. Merely by way of example, one or 

more procedures described with respect to the method(s) discussed above, for example 

as described with respect to FIG. 1A or 1B, might be implemented as code and/or 

instructions executable by a computer (and/or a processor within a computer); in an 30 

aspect, then, such code and/or instructions can be used to configure and/or adapt a 

general purpose computer (or other device) to perform one or more operations in 
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accordance with the described methods. The computer system 600 may also comprise 

various hardware elements, such as imaging device 650. The imaging device 650 may 

perform various functions, such as recording images or other forms of data. 

[0089] A set of these instructions and/or code might be stored on a computer-readable 

storage medium, such as the storage device(s) 625 described above. In some cases, the 5 

storage medium might be incorporated within a computer system, such as computer 

system 600. In other embodiments, the storage medium might be separate from a 

computer system (e.g., a removable medium, such as a compact disc), and/or provided 

in an installation package, such that the storage medium can be used to program, 

configure and/or adapt a general purpose computer with the instructions/code stored 10 

thereon. These instructions might take the form of executable code, which is executable 

by the computer system 600 and/or might take the form of source and/or installable 

code, which, upon compilation and/or installation on the computer system 600 (e.g., 

using any of a variety of generally available compilers, installation programs, 

compression/decompression utilities, etc.) then takes the form of executable code. 15 

[0090] Substantial variations may be made in accordance with specific requirements. 

For example, customized hardware might also be used, and/or particular elements might 

be implemented in hardware, software (including portable software, such as applets, 

etc.), or both. Further, connection to other computing devices such as network 

input/output devices may be employed. 20 

[0091] Some embodiments may employ a computer system (such as the computer 

system 600) to perform methods in accordance with the disclosure. For example, some 

or all of the procedures of the described methods may be performed by the computer 

system 600 in response to processor 610 executing one or more sequences of one or 

more instructions (which might be incorporated into the operating system 640 and/or 25 

other code, such as an application program 645) contained in the working memory 635. 

Such instructions may be read into the working memory 635 from another computer-

readable medium, such as one or more of the storage device(s) 625. Merely by way of 

example, execution of the sequences of instructions contained in the working memory 

635 might cause the processor(s) 610 to perform one or more procedures of the methods 30 

described herein, for example a method described with respect to FIG. 1A or 1B. 
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[0092] The terms “machine-readable medium” and “computer-readable medium,” as 

used herein, refer to any medium that participates in providing data that causes a 

machine to operate in a specific fashion. In an embodiment implemented using the 

computer system 600, various computer-readable media might be involved in providing 

instructions/code to processor(s) 610 for execution and/or might be used to store and/or 5 

carry such instructions/code (e.g., as signals). In many implementations, a computer-

readable medium is a physical and/or tangible storage medium. Such a medium may 

take many forms, including but not limited to, non-volatile media, volatile media, and 

transmission media. Non-volatile media include, for example, optical and/or magnetic 

disks, such as the storage device(s) 625. Volatile media include, without limitation, 10 

dynamic memory, such as the working memory 635. Transmission media include, 

without limitation, coaxial cables, copper wire and fiber optics, including the wires that 

comprise the bus 605, as well as the various components of the communications 

subsystem 630 (and/or the media by which the communications subsystem 630 provides 

communication with other devices). Hence, transmission media can also take the form 15 

of waves (including without limitation radio, acoustic and/or light waves, such as those 

generated during radio-wave and infrared data communications). 

[0093] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over as one or more instructions or code 20 

on a computer-readable medium. Computer-readable media may include computer data 

storage media. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. “Data 

storage media” as used herein refers to manufactures and does not refer to transitory 25 

propagating signals. By way of example, and not limitation, such computer-readable 

media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, 

magnetic disk storage, or other magnetic storage devices, flash memory, or any other 

medium that can be used to store desired program code in the form of instructions or 

data structures and that can be accessed by a computer. Disk and disc, as used herein, 30 

includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy 

disk and blu-ray disc where disks usually reproduce data magnetically, while discs 
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reproduce data optically with lasers. Combinations of the above should also be included 

within the scope of computer-readable media. 

[0094] The code may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other 5 

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as 

used herein may refer to any of the foregoing structure or any other structure suitable 

for implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 10 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.   

[0095] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 15 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware 20 

stored on computer-readable media. 

[0096] Various examples have been described. These and other examples are within 

the scope of the following claims. 
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WHAT IS CLAIMED IS:

1.  A method for identifying regions of abnormalities in a patient’s 1 

eye, the method comprising: 2 

receiving a plurality of images of the patient’s eye, each image obtained 3 

at a different time, wherein each image of the plurality of images is comprised of a 4 

plurality of pixels, each pixel indicating a time-varying characteristic of a particular 5 

location in the patient’s eye; 6 

dividing each image into a plurality of pixel partitions, each pixel 7 

partition including one or more pixels;  8 

identifying a plurality of pixel partition sets, each pixel partition set 9 

comprising a pixel partition from each image, wherein the pixel partitions of the pixel 10 

partition set correspond to a common region in the patient’s eye; 11 

for each pixel partition set: 12 

for each pixel partition of the pixel partition set: 13 

determining a respective value for the respective common region 14 

of the pixel partition set, wherein the respective value corresponds to the 15 

time-varying characteristic of the pixel partition at the time of the 16 

corresponding image; 17 

calculating, with a computer system, a regression model from the 18 

respective values of the pixel partitions of the pixel partition set, wherein the 19 

regression model comprises a rate of change value; and 20 

determining whether the common region that corresponds to the pixel 21 

partition set exhibits at least one abnormality in the patient’s eye, based on whether 22 

the rate of change value of the regression model is more negative than a rate of age-23 

related change.  24 

2. The method of claim 1, wherein:   1 

the rate of change value comprises a slope value, the slope value being a 2 

coefficient of a term in the regression model; and 3 
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detecting one or more regions of abnormalities is based further on 4 

determining whether the slope value exceeds the slope value of age-related change. 5 

3.  The method of claim 2, wherein:   1 

the time-varying characteristic is a retinal nerve fiber layer (RNFL) 2 

thickness; 3 

the slope value represents the rate of change in the RNFL thickness; and 4 

the regression model further comprises a baseline value that represents 5 

the RNFL thickness of the earliest recorded image, and an error value. 6 

4.  The method of claim 3, wherein the respective value for the 1 

respective common region of the pixel partition set is the average RNFL thickness of 2 

the pixel partition for the respective common region. 3 

5. The method of claim 3, wherein the error value follows a 1 

Gaussian distribution;  2 

the method further comprising: 3 

determining a false detection rate for each region of abnormality 4 

detected, based on the error value; and 5 

determining, for each region of abnormality, a likelihood the abnormality 6 

detected is a false positive, based on the false detection rate for each region of 7 

abnormality, 8 

wherein determining whether the common region that corresponds to the 9 

pixel partition set exhibits at least one abnormality in the patient’s eye is based further 10 

on the likelihood the abnormality detected is a false positive. 11 

6.  The method of claim 1, wherein the regression model is a 1 

polynomial of order at least one, and wherein the rate of change value is a coefficient of 2 

the linear term or greater term of the polynomial. 3 

7. The method of claim 1, wherein the plurality of images comprises 1 

at least three images that are recorded successively over time. 2 

8. The method of claim 1, wherein the pixel partitions comprise at 1 

least a single pixel.  2 
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9. The method of claim 1, further comprising:  1 

recording the plurality of images of the patient’s eye using an imaging 2 

device. 3 

10.  An apparatus for identifying regions of abnormalities in a 4 

patient’s eye, comprising  5 

a processor configured to: 6 

receive a plurality of images of the patient’s eye, each image obtained at 7 

a different time, wherein each image of the plurality of images is comprised of a 8 

plurality of pixels, each pixel indicating a time-varying characteristic of a particular 9 

location in the patient’s eye; 10 

divide each image into a plurality of pixel partitions, each pixel partition 11 

including one or more pixels;  12 

identify a plurality of pixel partition sets, each pixel partition set 13 

comprising a pixel partition from each image, wherein the pixel partitions of the pixel 14 

partition set correspond to a common region in the patient’s eye; 15 

for each pixel partition set: 16 

for each pixel partition of the pixel partition set: 17 

determine a respective value for the respective common region of 18 

the pixel partition set, wherein the respective value corresponds to the time-19 

varying characteristic of the pixel partition at the time of the corresponding 20 

image; 21 

calculate a regression model from the respective values of the pixel 22 

partitions of the pixel partition set, wherein the regression model comprises a rate of 23 

change value; and 24 

determine whether the common region that corresponds to the pixel 25 

partition set exhibits at least one abnormality in the patient’s eye, based on whether 26 

the rate of change value of the regression model is more negative than a rate of age-27 

related change.  28 

11. The apparatus of claim 10, wherein:   1 
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the rate of change value comprises a slope value, the slope value being a 2 

coefficient of a term in the regression model; and 3 

the processor is further configured to determine whether the slope value 4 

exceeds the slope value of age-related change. 5 

12.  The apparatus of claim 11, wherein:   1 

the time-varying characteristic is a retinal nerve fiber layer (RNFL) 2 

thickness; 3 

the slope value represents the rate of change in the RNFL thickness; and 4 

the regression model further comprises a baseline value that represents 5 

the RNFL thickness of the earliest recorded image, and an error value. 6 

13.  The apparatus of claim 12, wherein the respective value for the 1 

respective common region of the pixel partition set is the average RNFL thickness of 2 

the pixel partition for the respective common region. 3 

14. The apparatus of claim 12, wherein the error value follows a 1 

Gaussian distribution; and 2 

the processor is further configured to:  3 

determine a false detection rate for each region of abnormality 4 

detected, based on the error value; and 5 

determine, for each region of abnormality, a likelihood the 6 

abnormality detected is a false positive, based on the false detection rate for each 7 

region of abnormality, 8 

wherein determining whether the common region that 9 

corresponds to the pixel partition set exhibits at least one abnormality in the 10 

patient’s eye is based further on the likelihood the abnormality detected is a false 11 

positive. 12 

15.  The apparatus of claim 10, wherein the regression model is a 1 

polynomial of order at least one, and wherein the rate of change value is a coefficient of 2 

the linear term or greater term of the polynomial. 3 
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16. The apparatus of claim 10, wherein the plurality of images 1 

comprises at least three images that are recorded successively over time. 2 

17. The apparatus of claim 10, wherein the pixel partitions comprise 1 

at least a single pixel.  2 

18. The apparatus of claim 10, further comprising an imaging device 1 

configured to record the plurality of images of the patient’s eye. 2 

19. A computer program product residing on a processor-readable 1 

medium and comprising processor-readable instructions configured to cause a processor 2 

to: 3 

receive a plurality of images of the patient’s eye, each image obtained at 4 

a different time, wherein each image of the plurality of images is comprised of a 5 

plurality of pixels, each pixel indicating a time-varying characteristic of a particular 6 

location in the patient’s eye; 7 

divide each image into a plurality of pixel partitions, each pixel partition 8 

including one or more pixels;  9 

identify a plurality of pixel partition sets, each pixel partition set 10 

comprising a pixel partition from each image, wherein the pixel partitions of the pixel 11 

partition set correspond to a common region in the patient’s eye; 12 

for each pixel partition set: 13 

for each pixel partition of the pixel partition set: 14 

determine a respective value for the respective common region of 15 

the pixel partition set, wherein the respective value corresponds to the time-16 

varying characteristic of the pixel partition at the time of the corresponding 17 

image; 18 

calculate a regression model from the respective values of the pixel 19 

partitions of the pixel partition set, wherein the regression model comprises a rate of 20 

change value; and 21 

determine whether the common region that corresponds to the pixel 22 

partition set exhibits at least one abnormality in the patient’s eye, based on whether 23 
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the rate of change value of the regression model is more negative than a rate of age-24 

related change.  25 
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ABSTRACT OF THE DISCLOSURE 

Methods, apparatuses, and computer readable media for 

detecting abnormalities in a characteristic of an eye using eye-imaging methods 

are presented. A plurality of images of the eye are received over time. Each 

image includes a plurality of pixels, which can be partitioned into blocks of 

pixels with varying sizes, called pixel partitions. A value is determined for each 

pixel partition, e.g., an average of the pixel values. A pixel partition set may be 

identified, which includes a pixel partition from each image, corresponding to a 

common region of a patient’s eye. A regression model is computed for each 

pixel partition set using the values determined for each pixel partition. The 

regression model computes a rate of change of the retinal nerve fiber thickness 

at individual pixel partitions over time. An abnormality may be identified by 

comparing the rates of change of the model and the expected age-related rate of 

change.  

 

 

 


