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This thesis studies the estimations of vector Multiplicative Error

Model (MEM) under different kinds of model mismatches and its

application in forecasting. In the first part of the thesis, two esti-

mation methods, Maximum Likelihood (ML) method and Gener-

alized Method of Moments (GMM), which have previously been

used on vector MEM, are compared through different situations

of data contaminations. From the comparison results it is found

that both ML and GMM estimators are suspected to outliers in

data. Therefore in the second part of the thesis a novel estima-

tor is proposed: Weighted Empirical Likelihood (WEL) estimator.
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It is shown to be more robust than ML and GMM estimators in

simulations, and also in forecasting realized volatility and bipower

volatility of S&P 500 stock index including the current financial

crisis period. The forecast ability of vector MEM is further ad-

dressed in the third part of the thesis, where an alternative decom-

position of realized volatility is proposed, and vector MEM is used

to model and forecast the two components of realized volatility.

From the realized volatility forecasts of S&P 500, NASDAQ and

Dow Jones, this decomposition together with vector MEM are

illustrated to have superior performances over three competing

models which have been applied on forecasting realized volatility

before.
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这篇论文研究了当假设的数据分布与实际不符时估计多维

乘积误差模型参数的方法，和该模型在预测领域的应用。论文

的第一部分讨论了两种在以前的文献中被用来估计该模型的估

计方法：最大似然估计法和广义矩估计法。并在对数据做了不

同的干扰后比较了这两种方法。比较结果显示这两种方法都易

受偏离值的影响。因此论文的第二部分提出了一种新的估计方

法：权重经验似然估计法。在模拟实验和使用包含了当前经济

危机间断数据的标准普尔指数的实际实验中，对比最大似然估

计法和广义矩估计法，权重经验似然函数显示出了对偏离值有

更好的抗性。论文的第三部分进一步研究了多维乘积误差模型

在预测中的应用。并且这一部分还提出了实波动性的一种新的

分解方式。分解得到的两个新的变量可以被多维乘积误差模型

所模拟。通过比较标准普尔指数和纳斯达克指数的预测结果，

比起以前用来估计实波动性的三种模型，多维乘积向量模型和

新的分解方式显示出了更强的预测能力。
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Chapter 1

Introduction

Autoregressive Conditional Heteroscedasticity (ARCH) models pro-

posed in Engle [1982] and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models proposed in Bollerslev [1986]

are models that widely used in modeling and forecasting financial

time series. These models successfully reproduce the stylized facts

of financial processes and allow the underlying variables to be both

positive and negative. This will not result any problems if the vari-

ables under consideration are logarithm of returns or other time

series that include both positive and negative values. However,

there are a considerable number of financial data which are non-

negative. For example, the durations between trades, volumes of

trades and volatilities. Although transforming these nonnegative

1



CHAPTER 1. INTRODUCTION 2

time series with logarithm function will turn them into suitable

variables for ARCH and GARCH models, this transformation may

not work for several reasons. First of all there may be zeros in

the series; secondly even if there are no zeros in the data, a very

small positive value could has severe impact on parameter esti-

mation after logarithm transformation; thirdly feasible choices of

innovation distributions are lessened [Engle, 2002]; and lastly the

relations among variables and between each variable and its own

past values do not have straightforward explanations. Therefore

it is desirable to model the nonnegative time series directly.

To this end, Autoregressive Conditional Duration (ACD) model

is proposed in Engle and Russell [1998] to model nonnegative fi-

nancial time series, the durations between trades. Later ACD

model is generalized into Multiplicative Error Model (MEM) by

Engle [2002] to account for a wider range of nonnegative time

series. Since then, MEM has been applied to modeling realized

volatility [Lanne, 2006], volumes [Brownlees et al., 2011a] and so

on. Of all the areas MEM has been applied in, modeling and

forecasting volatilities is one area that attracts much interest.

As high frequency data are becoming more and more available,
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volatility that can incorporate intra-day information is attract-

ing more and more interest. GARCH models are perhaps one of

the most common models on daily returns among practitioners.

However they do not directly model volatility. Also due to the

nonnegativity of volatility, instead of GARCH, MEM becomes a

natural candidate to model volatility. One problem with volatility

is that it cannot be directly observed, therefore various kinds of

measures are developed for volatility. These different measures

can be divided into two groups. The first group of volatility

measures, for example, squared return and high-low range, uti-

lizes daily information. Volatility measures in the second group

are calculated from high-frequency time series. Realized volatility

and bipower volatility, for instances, belong to the second group.

No matter which group the measure is from, one single volatility

measure is often not enough to encapsulate all the information on

the underlying volatility. As a result, vector MEM is introduced

in Engle and Gallo [2006], where three volatility measures, abso-

lute return, daily high-low range and realized volatility are jointly

modeled by vector MEM. In the past decade, more and more re-

searches adopt this vector MEM framework to model and forecast
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different measures of volatilities, and also analyze the interactions

between them [Cipollini et al., 2006, 2007, Gallo and Velucchi,

2007].

The recent global financial crisis has caused a lot of unusual

movements in the market. Comparing to history observations in

the volatility series, these unusual movements are suspected as

outliers. Traditional estimation methods like Maximum Likeli-

hood method and Generalized Method of Moments can be heav-

ily influenced by outliers. Motivated by these two phenomenon,

this thesis focuses on the parameter estimation of MEM and its

application in volatility forecasts in the presence of outliers.

Based on the kinds of outliers two situations are considered in

this thesis. In the first situation the assumption is that outliers are

rare and they do not contain any information on volatility. There-

fore the task is to locate the outliers and to reduce their impact

on parameter estimations and volatility forecasts. For this situa-

tion a novel approach, Weighted Empirical Likelihood method, is

proposed to robustly estimate the parameters of MEM.

The second situation differs from the first situation from three

aspects. The first difference is that situation two only considers
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outliers in realized volatility. The second difference is that in sit-

uation two the outliers are not isolated and they are themselves a

time series. This outlier series is recognized as jump component

in the literature. And the last difference is in situation two the

jump component is assumed to contain useful information on re-

alized volatility and it is involved in the forecasting process. The

task in situation two is to decompose realized volatility into con-

tinuous and jump components and to model the two components

separately. For situation two this thesis proposes a multiplicative

decomposition on realized volatility and vector MEM as the joint

model for the continuous and jump components.

The details of the two situations are discussed in Chapter 4 and

5. The next section provides a full outline of the present thesis.

1.1 Outline of the thesis

The first part of this thesis includes Chapter 2 and Chapter 3. Af-

ter the background study in Chapter 2, two estimators for MEM

are discussed in Chapter 3. In Cipollini et al. [2006], Maximum

Likelihood (ML) estimator and estimation function estimator are

discussed in details and the latter estimator is further developed



CHAPTER 1. INTRODUCTION 6

to Generalized Method of Moments (GMM) in Cipollini et al.

[2012]. However, their estimation results when data are contam-

inated have not been studied. Often the assumptions of ML and

GMM estimators for data may be violated because of outliers and

model mismatches. Therefore a simulation study on comparing

the performance of the two estimators under different data con-

tamination scenarios is conducted in Chapter 3.

Based on the results of comparisons between ML and GMM

estimators, Weighted Empirical Likelihood (WEL) method is pro-

posed in Chapter 4, which is the second part of the thesis. This

chapter is based on the paper [Ding and Lam, 2012], which is

accepted by Journal of Forecasting. The proposed method uses

the moment conditions for GMM in Cipollini et al. [2012] as con-

straints for empirical likelihood functions. And weights in WEL

are calculated automatically by depth function and k-means clus-

tering. The impact of outliers on empirical likelihood functions is

reduced by tilting their weights in empirical score function. Thus

WEL is expected to be more robust than ML and GMM in the

presence of outliers. Through a simulation study consisting of

three different outlier scenarios and an application on forecasting
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volatilities of S&P 500, WEL is proved to be more robust than

ML and GMM.

Chapter 5 is the third part of the thesis. In this chapter vec-

tor MEM is used to forecast realized volatility by modeling two

components from multiplicative decomposition. Evidences sup-

port the conclusion, that vector MEM together with the multi-

plicative decomposition of realized volatility has superior forecast

ability than other competing models on realized volatility or ad-

ditive decomposition, are found in both empirical studies on S&P

500 stock index, NASDAQ stock index and Dow Jones industry

average index.

And the last chapter is conclusion and future work.

1.2 Conclusion

In conclusion, vector MEM has played an important role in mod-

eling and forecasting volatilities, especially in the past decade.

Motivated by the recent financial crisis, this thesis focuses on the

estimation aspect and the application aspect of vector MEM when

data contain outliers.

The main contributions are twofold. Firstly empirical likeli-
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hood, k-means clustering and depth function are combined to es-

timate parameters of vector MEM. And the robustness increases.

The outliers are detected by depth function and k-means cluster-

ing. The number of outliers is determined by k-means clustering

automatically without requiring an artificial threshold value to

differentiate outliers from ordinary observations. This property

may be appreciated by practitioners.

Secondly realized volatility is decomposed in a multiplicative

way rather than the traditional additive way so that vector MEM

can be employed to model the continuous and jump components

of realized volatility. Further the interactions between them can

be investigated based on their conditional expectations. Therefore

a clearer picture of relations between these two components can

be seen without the disturbances of noise in them.

2 End of chapter.



Chapter 2

Background study

Chapter 2 introduces the backgrounds of several areas related to

the present thesis. Firstly the recent developments of multiplica-

tive error model are discussed. Secondly the vector MEM is ex-

plained in details because it is the main model used in this thesis.

And finally two functions, copula function and depth function,

which are used to analyze multivariate data are briefly introduced.

2.1 Multiplicative Error Model

2.1.1 Introduction

Based on the autoregressive conditional duration model [Engle

and Russell, 1998], multiplicative error model (MEM) is proposed

9



CHAPTER 2. BACKGROUND STUDY 10

in Engle [2002] to model realized volatility. Since then, MEM has

been the workhorse for modeling nonnegative time series data.

MEM has been used to model duration [Manganelli, 2005, Brown-

lees and Gallo, 2011], squared returns and absolute returns [Hautsch,

2008, Cipollini et al., 2012, Engle and Gallo, 2006, Hautsch, 2008,

Manganelli, 2005, Cipollini et al., 2007, Gallo and Velucchi, 2007],

realized volatility [Luca and Gallo, 2010, Lanne, 2006, 2007, Brown-

lees and Gallo, 2008, 2010, Otranto, 2012, Cipollini et al., 2012,

Engle and Gallo, 2006, Brownlees and Gallo, 2010, Barigozzi et al.,

2011, Gallo and Velucchi, 2007, Cipollini et al., 2007], realized

kernel volatility [Otranto, 2011, Gallo and Otranto, 2012, Brown-

lees and Gallo, 2010], bipower volatility [Gallo and Velucchi, 2007,

Cipollini et al., 2007], ranged volatility [Lam and NG, 2009, Cipollini

et al., 2012, Engle and Gallo, 2006, Cipollini and Gallo, 2010],

trading volumes of stock [Hardle et al., 2012, Bodnar and Hautsch,

2012, Hautsch, 2008, Manganelli, 2005], equity index ETF [Brown-

lees et al., 2011a], and implied volatility [Ahoniemi and Lanne,

2009].

MEM assumes the nonnegative time series can be represented

by the multiplication of a random variable called innovation and a
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scale factor that evolves in a similar way to GARCH model. This

scale factor is the conditional expectation of the nonnegative time

series. Therefore innovations are restricted to have a unit mean.

The basic univariate multiplicative error model of order (p, q) can

be written as:

xt = µtϵt (2.1)

µt = ω +

p∑
i=1

αixt−i +

q∑
j=1

βjµt−j (2.2)

ϵt|Ft−1 ∼ D(1, σ2) (2.3)

In equation (2.1)-(2.3), xt is a non-negative univariate process,

and ϵt ∼ i.i.d., are innovations. They have a nonnegative condi-

tional distribution D(1, σ2). µt is the conditional expectation of

xt that depends on MEM parameters θ = (ω, {αi}pi=1, {βj}
q
j=1).

Because xt is non-negative, both ϵt and µt are assumed to be non-

negative. Moreover according to Cipollini et al. [2006], to ensure

the nonnegativity of µ and stationary distributions for xt, the

following restrictions should be imposed on θ:
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0 < ω, αi, βj < 1, i = 1, · · · , p, j = 1, · · · , q (2.4)
p∑

i=1

αi +

q∑
j=1

βj < 1 (2.5)

The model discussed above is denoted as basic MEM(p,q), as it

is simplest version of MEM. Since Engle [2002], MEM has been fre-

quently used in modeling and forecasting volatilities. To capture

the stylized facts of volatility, different modifications or general-

izations are made to the basic MEM(p,q), resulting many differ-

ent configurations. And they can be roughly classified into three

groups. In the first group, different distributions are assigned to

innovations. Therefore group 1 is related to equation (2.3). The

second group changes the structures of equation (2.2). And the

last group adds other components to the multiplication in equa-

tion (2.1). The details of the three groups are discussed in the

following section.

2.1.2 Developments of MEM

In the past decade, many different versions of MEM are developed

in the literature. In this section the developments of MEM are dis-
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cussed from three aspects, which are corresponding to equations

(2.1)-(2.3) respectively.

Equation (2.3) defines the distribution of innovation and its

expectation is restricted to 1. Because the innovation is non-

negative, the distribution D should be a non-negative distribu-

tion. Specifying a suitable distribution is very important to MEM,

because it decides the model’s capacity to capture the fat tail phe-

nomenon of volatility. The most popular non-negative distribu-

tion is perhaps Exponential distribution. And indeed it is the first

distribution applied on MEM [Engle, 2002]. The advantage of Ex-

ponential distribution is its simplicity. Because the expectation of

innovation is restricted to be 1, the rate parameter is fixed to be 1.

As a result only the MEM parameters are unknown and need to be

estimated. In the empirical analysis Engle [2002] finds Exponen-

tial distribution may lead to underdispersion in residuals, thus an

alternative distribution, Gamma distribution, is proposed. Com-

paring to Exponential distribution, Gamma distribution has one

parameter left after imposing the unit mean restriction. There-

fore it is more flexible than Exponential distribution. Engle [2002]

shows Gamma distribution is strongly preferred to Exponential
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distribution. Similar to the case of Gamma distribution, Weibull

distribution has also been used in MEM [Hardle et al., 2012].

More complicated distributions are also used. Lanne [2006]

enhances the model’s flexibility by employing a mixture of two

Gamma distributions on innovations. In Luca and Gallo [2010],

this distribution specification is further generalized by allowing

the weights of two Gamma distributions to change over time. And

realized volatility forecasts on exchange rates in Luca and Gallo

[2010] show 50-step ahead predictions are improved when weights

of Gamma distribution are allowed to change over time.

The distribution used in Luca and Gallo [2010] is perhaps the

most flexible distribution used on MEM to date. Despite the

flexibility, the disadvantage is that it is difficult to generalize the

mixture Gamma distribution with time varying weights to higher

dimensions. When the input variable contains more than one mar-

gins, a multivariate non-negative distribution is required. And

multivariate Gamma distribution can only handle positive corre-

lation between margins[Cipollini et al., 2006]. On the other hand,

Cipollini et al. [2012] introduces a semi-parametric specification

on innovations so that the univariate MEM can be easily gener-
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alized to multivariate MEM. This semi-parametric assumption is

used in Cipollini et al. [2012], Cipollini and Gallo [2010]. And the

only assumption for innovations is that their expectation equals

1.

Equation (2.2) defines the conditional expectation of xt. Usu-

ally the conditional expectation attracts more interest than inno-

vation, because it is used to predict future values of volatility. A

common generalization of equation (2.2) when modeling volatility

is adding the asymmetric effect, for example Engle [2002], Engle

and Gallo [2006], Gallo and Otranto [2012] and Brownlees et al.

[2011b]. The asymmetric effect is that volatility responds differ-

ently to positive return and negative return. From the perspective

of modeling, a new variable is introduced to equation (2.2). The

new variable equals 0 when lagged return is positive and equals

−xt−1 when lagged return is negative. MEM with this generaliza-

tion is called asymmetric MEM (AMEM). Brownlees and Gallo

[2010] considers including 5 different volatility measures in equa-

tion (2.2) to better forecast volatility and also to evaluate the

contribution of these measures to volatility.

Besides adding lagged variables into the equation, the limita-
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tion of equation (2.2) that it cannot account for the level changes

in volatility is addressed in Gallo and Otranto [2012]. In Gallo and

Otranto [2012] the AMEM is generalized into two AMEM with

different parameters representing two states in a discrete Markov

chain. Therefore both sudden and persistence changes in level of

volatility can be captured. Otranto [2011] changes the parameter

ω in equation (2.2) to a smooth transition function. So that the

level of volatility reproduced by MEM can change with time and

is not restricted within a regime like the ones in Gallo and Otranto

[2012].

Equation (2.1) stands for the multiplicative decomposition of

volatility. One way to generalize this equation is to include more

components into the multiplication. For example in Brownlees

and Gallo [2010] µt is further decomposed into two components

capturing long run and short run persistence respectively. Also

in Brownlees et al. [2011a] xt is the multiplication of four compo-

nents. These components are calculated from different frequen-

cies, so that daily effects and intra-daily effects can be differenti-

ated and modeled separately. Comparing the modifications made

to equation (2.2), the ones made to equation (2.1) are usually
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more convenient to be extended to vector MEM, as long as the

additional components of different margins are independent.

Following these three directions, MEM can be generalized to a

powerful tool for volatility analysis. What is more besides these

generalization on equation (2.1)-(2.3), univariate MEM has been

generalized to multivariate model, which is the main model used

in this thesis. And its details are explained in the next section.

2.1.3 Vector MEM

In this section the multivariate version of MEM, vector MEM, is

discussed. The MEM that models more than one non-negative

processes first appear in Engle and Gallo [2006] and Manganelli

[2005]. The former proposes a three dimensional MEM to jointly

model squared return, high-low range and realized volatility while

the latter applies vector MEM on duration, volume and returns.

The common assumptions in these two works are that firstly the

innovations of different processes are independent to each other.

Secondly the conditional expectation of one process is only related

to observed values of other processes but not the conditional ex-

pectations of other processes. These assumptions make equation
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by equation estimation via maximum likelihood practicable. How-

ever, from today’s point of view they are over-simplified. Compar-

ing to the model in Manganelli [2005], the one in Engle and Gallo

[2006] is more suitable to be called vector MEM. Because all the

three variables in the model are assumed to follow MEM in Engle

and Gallo [2006] and the multivariate model in Manganelli [2005]

is composed of one GARCH model and two univariate MEM.

After Manganelli [2005]Engle and Gallo [2006], in Cipollini

et al. [2006] vector MEM is generalized into a full multivariate

model in terms that firstly the innovations are assumed to fol-

low a multivariate model. Thus innovations of different margins

are dependent to each other. Secondly the conditional expecta-

tion of one margin is related to not only the observations of other

margins, but also the conditional expectations of other margins.

These generalizations are essential in the development of vector

MEM. Because this specification can better capture the dynam-

ics of multivariate volatilities and it divides the interactions be-

tween different volatilities into the ones between innovations and

the ones between conditional expectations. Also this specification

makes equation by equation estimation impossible. Thus it stimu-
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lates the inventions of new structures of innovation and estimation

methods.

Examples of the new structures of vector MEM different from

the one in Cipollini et al. [2006] are: Hautsch [2008] adds a com-

mon component to each margin’s conditional expectation in or-

der to study the common movements with volatility in trade size

and number of trades; In Ahoniemi and Lanne [2009], the mixture

MEM proposed in Lanne [2006] is generalized to vector MEM and

the implied volatility of put and call options are jointly modeled;

Also in the semi-parametric vector MEM proposed by Cipollini

et al. [2012], the distribution of innovations is unspecified and the

MEM parameters are estimated by GMM estimator.

In this thesis the vector MEM is chosen to have the same spec-

ification to the ones in Cipollini et al. [2006]. Let x⃗t ∈ RK×1 be a

K-dimensional process with non-negative components, the vector

MEM of order (p,q) for x⃗t is defined as:

x⃗t = µ⃗t ⊙ ϵ⃗t = diag (µ̃t)ϵ̃t (2.6)

µ⃗t = ω⃗ +

p∑
i=1

Aix⃗t−i +

q∑
j=1

Bjµ⃗t−j (2.7)

ϵ⃗t ∼ D(⃗1,Σ) (2.8)
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where ⊙ indicates the Hadmard (element by element) product.

µ⃗t ∈ RK×1 is the conditional expectation on the information set

Ft−1. ω⃗ ∈ RK×1, Ai ∈ RK×K , i = 1, · · · , p and Bj ∈ RK×K , j =

1, · · · , q are MEM parameters. If parameter matrix A or B are not

diagonal, one variable and its conditional expectation will affect

other variables’ conditional expectations. Just like the univariate

MEM, equation (2.7) for conditional expectation can be extended

to include asymmetric effect. By specifying A and B to be non-

diagonal, the interactions between input variables and between

the conditional expectations of input variables can be modeled

respectively.

The innovation vector ϵ⃗t is a conditionally stochastic K-dimensional

i.i.d. process. Its density function is defined over a [0,+∞)K

support, with unit vector as expectation and a general variance-

covariance matrix Σ, which is usually unknown.

These conditions on expectations and variance covariance ma-

trix guarantee that

E(x⃗t|Ft−1) = µ⃗t (2.9)

V(x⃗t|Ft−1) = µ⃗tµ⃗
′

t ⊙ Σ = diag(µ⃗t)Σdiag(µ⃗t) (2.10)
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If the innovations have a diagonal variance covariance matrix,

then the vector model can be considered as several univariate

MEM models. Engle and Gallo [2006] use multivariate MEM with

parameter matrix A non-diagonal but both B and the variance

covariance matrix Σ diagonal. This assumption on MEM param-

eters means that the past values of one margin have influences

on the conditional expectations of all the margins including itself.

But the past values of one margin’s conditional expectation are

not related to those of other margins. And the MEM parameters

of each margin can be estimated by equation by equation method.

However the equation by equation method is not feasible when

the innovations’ variance covariance matrix is not diagonal. There-

fore it is necessary to assign a multivariate distribution to them

so that Maximum Likelihood method can be used to estimate

the parameters. Cipollini et al. [2006] point out the drawback of

multivariate normal distribution and multivariate gamma distri-

bution. Firstly, many researches have shown the assumption that

financial data follow normal distribution is false. Secondly, these

kinds of distributions have constraints on parameters which can-

not be easily met. And most of them require computing numerical
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inversions in the pdf formula.

The answer to these disadvantage of multivariate distributions

is copula introduced by Cipollini et al. [2006]. Any multivari-

ate distribution can be separated into margin distributions and a

copula function which describes the dependence structure. Cop-

ula function describes the dependence between variables and are

highly involved in multivariate financial analysis nowadays [Trivedi

and Zimmer, 2007]. Copula is more flexible and more tractable.

It allows different univariate distribution for different margins.

These are the reasons to employ copula functions. Among the

pool of copulas the most commonly used copula are the Gumbel

copula for extreme distributions, normal copula for linear corre-

lation and Archimedean copula and the Student’s t copula for

dependence in tail. In this thesis Student’s t copula and Gamma

distribution are chosen for innovations, because Student’s t copula

generalizes normal copula by allowing for non-zero dependence in

extreme tails. It is fast growing in usage because the degree of

tail dependency can be set by changing the degrees of freedom

parameter ν. Large value for τ say 100, approximates a normal

distribution. Conversely small value for τ , say 3, increases the
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tail dependency, until τ equals 1 it become a Cauchy distribu-

tion. And after restricting expectations of innovations to be one,

Gamma distribution still has one parameter for each margin to es-

timate which increases the model’s flexibility [Engle, 2002]. Thus

the distribution of innovations is:

ϵt|Ft−1 ∼ Ct(R, ν)×
K∏
i=1

Γ(ϕi) (2.11)

In this formula, the first part represents Student’s copula, where

R is the correlation and τ is the degree of freedom. Both R and

τ controls tail dependence which is symmetric.

In order to illustrate the structure of vector MEM in more

detail, assume K equals 2, the parameter matrices A and B are

diagonal and the order of the model is (1,1). Further assume the

innovations follow Gamma margin distribution and their depen-

dence structure is captured by Student’s t copula, the model can

be written as:
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x1,t = µ1,tϵ1,t (2.12)

µ1,t = ω1 + a1x1,t−1 + b1µ1,t−1 (2.13)

x2,t = µ2,tϵ2,t (2.14)

µ2,t = ω2 + a2x2,t−1 + b2µ2,t−1 (2.15)

where xi,t is a non-negative univariate process, (ω1, a1, b1, ω2, a2, b2)

are mem parameters. And innovation vector {ϵt} is a conditional

stochastic 2-dimensional i.i.d. process who has a joint conditional

distribution

ϵ⃗t|Ft−1 ∼ Cρ,τ ×
2∏

i=1

Gamma(ϕi) (2.16)

where Cρ,τ is the cdf of Student’s t copula with correlation param-

eter ρ and degree of freedom τ . Gamma(ϕ(i)) stands for the cdf

function of Gamma distribution with shape parameter ϕ(i) and

scale parameter 1/ϕ(i). And the density of student’s t copula is :

cρ,τ (u1, u2) = |ρ|− 1
2
Γ( τ+N

2 )[Γ( τ2 )]
2(1 + 1

τ (t
−1
τ (u1)

2 + t−1
τ (u2)

2)− 2ρt−1
τ (u1)t

−1
τ (u2))

− τ+2
2

[Γ( τ+1
2 )]2Γ( τ2 )

∏2
i=1(1 +

t−1
τ (ui)2

τ )−
τ+1
2

(2.17)

where cρ,τ(u1, u2) is the pdf of Student’s t copula with correlation
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parameter ρ and degree of freedom τ at (u1, u2), and tτ denotes

CDF of student’s t distribution with freedom τ .

2.2 Two functions for multivariate analysis

In this section two functions,copula function and depth function,

used in this thesis are introduced. Copula function is closely re-

lated to the developments of vector MEM. It is an essential com-

ponent in distribution assumption of innovations. Comparing to

univariate distribution, choices for multivariate distribution are

limited, let alone non-negative multivariate distribution. With the

help of copula function, the multivariate distribution of innova-

tions can be constructed based on different non-negative univari-

ate distributions. Depth function is a powerful tool in multivariate

analysis. It can rank multi-dimensional data non-parametrically.

Therefore it is used for detecting outliers from innovations.

2.2.1 Copula function

Although analysis methods for multivariate distributed normal

data are well developed, general approaches for joint nonlinear

model or nonnormal data are not. And copula seems to be a
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promising way to handle these problems. Besides this, copula can

provide a more flexible multivariate model, it allows each variable

to have different marginal distributions.

Definition An K-dimensional copula is a function C from the

unit K-cube [0, 1]Kto the unit interval [0, 1] which satisfies the

following conditions:

(1) C(1, · · · , 1, uk, · · · , 1) = uk for all k ≤ K and all uk in

[0, 1];

(2) C(u1, · · · , uK) = 0 if uk = 0 for any k ≤ K;

(3) C is K-increasing.

Property 1 says that when the realizations of all other variables

are known with probability 1, then the joint probability of the K

outcomes is the same as the uncertain one.

Property 2 is referred as the grounded property. The joint

probability is zero when any of the outcomes are zero.

In property 3, K-increasing means that:

2∑
i1=1

· · ·
2∑

iK=1

(−1)i1+···+iKC(u1,i1, · · · , uK,iK) ≥ 0 (2.18)

for all hyper-rectangle
∏K

k=1[uk,1, uk,2] ∈ [0, 1]K .
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An K-copula is a K-dimensional distribution function with all

K univariate margins following uniform distribution in [0, 1]. To

see the relation between joint distribution and copula, consider K

variables (x1, · · · , xK) with a joint cumulative distribution func-

tion F (x1, · · · , xK), and margin cdf F1(x1), · · · , FK(xK) with

F−1
1 , · · · , F−1

K as the inverse function of margin cdf. Let u1, · · · , uK

be random variables following uniform distribution in [0, 1]. And

let (U1, · · · , UK) ∈ [0, 1]K satisfy Uk = Fk(xk), ∀k = 1, · · · , K.

Therefore U1, · · · , UK are the cdf of x1, · · · , xK . Then

F (x1, · · · , xK)

= F (F−1(U1), · · · , F−1
K (UK))

= Pr[u1 ≤ U1, · · · , uK ≤ UK ]

= C(u1, · · · , uK) (2.19)

The above results imply that copulas can be used to express a

multivariate distribution in terms of its marginal distributions.

Sklar’s Theorem: Let F be an K-dimensional distribution func-

tion with continuous margins F1, · · · , FK . The F has a unique
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copula representation:

F (x1, · · · , xk, · · · , xK) = C(F1(x1), · · · , Fk(xk), · · · , FK(xK))

(2.20)

After introducing the main concepts of copula function, in the

following four examples of copula functions are listed.

Product copula The simplest copula, product copula, has the

form

C(u1, · · · , uK) =
K∏
k=1

uk (2.21)

where uk ∈ [0, 1], k = 1, · · · , K. The product copula assumes

different margins are independent to each other. And the corre-

sponding density is

c(u1, · · · , uK) = 1 (2.22)

Multivariate Gaussian copula Gaussian copula is the copula as-

sociated with bivariate normal distribution, and is the dependence

function implicitly assumed whenever the bivariate normal distri-

bution is used. Let ρ be a symmetric, positive definite matrix

with diagonal elements equal 1. ρ is the covariance matrix of
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margins. Denote (u1, · · · , uK) as the cdf of margins, Φ as the

standard normal distribution and Φρ as the standard multivariate

normal distribution with correlation matrix ρ. The K-dimensional

multivariate Gaussian copula can be defined as follows:

C(u1, · · · , uk, · · · , uK ; ρ)

= Φρ(Φ
−1(u1), · · · ,Φ−1(uk), · · · ,Φ−1(uK)) (2.23)

The corresponding density is

c(u1, · · · , uk, · · · , uK ; ρ) =
1

|ρ| 12
exp(−1

2
ςT (ρ−1 − I)ς) (2.24)

with ς = (ς1, · · · , ςK)T and ςk = Φ−1(uk), ∀k = 1, · · · , K.

Multivariate Student’s copula Student’s t copula is the depen-

dence structure associated with the bivariate Student’s t distri-

bution. Let ρ be the same as in Gaussian copula, a symmetric

and positive definite matrix with diagonal elements equal 1 and

Tρ,τ the standardized multivariate Student’s distribution with τ as

the degree of freedom and correlation matrix ρ. The multivariate
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Student’s copula can be defined as follows:

C(u1, · · · , uk, · · · , uK ; ρ, τ)

= Tρ,τ(t
−1
τ (u1), · · · , t−1

τ (uk), · · · , t−1
τ (uK)) (2.25)

where t−1
τ the inverse of the univariate Student’s distribution with

degree of freedom τ . The corresponding density is

c(u1, · · · , uk, · · · , uK ; ρ, τ)

= |ρ|−
1
2
Γ(τ+K

2 )[Γ(τ2)]
K(1 + 1

τ ς
Tρ−1ς)

τ+K
2

[Γ(τ+1
2 )]KΓ(τ2)

∏K
k=1(1 +

ς2k
τ )

− τ+1
2

(2.26)

with ς = (ς1, · · · , ςK)T and ςk = t−1
τ (uk), k = 1, · · · , K.

The Student’s t copula generalizes the normal copula by allow-

ing for non-zero dependence in extreme tails. For example, if two

variables exhibit lower tail dependence, then it implies a non-zero

probability of observing a large increase in one variable with a

large increase on the other. On the other hand Gaussian copula

assumes that this probability is zero.

Archimedean copulas Archimedean copulas are popular because

they are easily derived and are capable of capturing wide ranges

of dependence. However, the Archimedean copula family is very
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difficult to generalized to higher dimensions. Genest and MacKay

[1986] define Archimedean copulas as the following:

C(u1, · · · , uk, · · · , uK)

= φ−1(φ(u1) + · · ·+ φ(uk) + · · ·+ φ(uK)) (2.27)

Equation (2.27) holds only if
∑N

n=1 φ(un) ≤ φ(0). Otherwise the

Archimedean copula is 0. φ(u) is a C2 function with φ(1) =

0, φ
′
< 0 and φ

′′
> 0 for all 0 < u < 1. φ(u) is called the

generator of Archimedean copula.

Product copula belongs to the Archimedean copula family. Be-

sides product copula, two bivariate Archimedean copulas exam-

ples are provided below:

Copula φ(u) C(u1, u2)

Gumbel (− lnu)α exp(−(ũα1 + ũα2 )
1
α )

Clayton u−α − 1 (uα1 + uα2 − 1)−
1
α

where ũ = − lnu
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2.2.2 Depth function

The vector MEM used in this thesis assumes that the innova-

tions follow a non-negative multivariate distribution. Under the

circumstance that the distribution is not specified, the only in-

formation on innovations is that their expectation is equal to a

vector of 1. To study the properties and structure of innovations,

nonparametric approaches in multivariate analysis are required.

However, classical multivariate statistics are extended from the

univariate ones and the data is assumed to be multivariate nor-

mally distributed or "almost" normally distributed. In the case

of innovations, this assumption clearly cannot hold. Because the

distribution of innovations are non-negative. In this section an al-

ternative non-parametric analysis tool for multivariate data, depth

function, is introduced.

General speaking, depth function measures the "outlyingness"

of an observation in a data cloud or how "deep" the observation

is inside a data cloud. The closer it is to the center of the data

cloud, the higher the depth value. Distance to center is the only

concern and directions are not differentiated. Depth function can

also be considered as a rank tool for multivariate data. The obser-
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vation with the highest depth value is the center of the data. The

observations with lower depth values have lower ranks. The obser-

vations with the lowest depth values have the highest probability

to be outliers.

In Zuo and Serfling [2000], four desirable properties for depth

function are proposed. They are affine invariance, maximality at

center, monotonicity relative to deepest point and vanishing at

infinity. Suppose a random variable ς ∈ RK has a distribution Fς .

And the set of distributions on the Borel sets of RK is F. Depth

function can be defined based on the four properties:

Definition of depth function Let the function D(·; ·) : RK ×F →

R be bounded, non-negative and satisfies the following

(i)D(Ax + b, FAX+b) = D(x, FX),∀ random variable X ∈

RK ,∀A ∈ RK×K , detA ̸= 0, b ∈ RK ;

(ii) D(c;F ) = supxRK D(x;F ) holds for any distribution F

having a center c;

(iii) if F has a deepest point c, then D(x;F ) ≤ D(ax + (1 −

a)c);F ),∀a ∈ [0, 1], ∀x ∈ RK ;

(iv) D(x;F ) → 0 as ∥ x ∥→ 0, ∀F ∈ F,∀x ∈ RK .

Then D is a depth function.
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In statistics literatures, many different kinds of depth functions

are proposed. Here three of them are provided as examples. They

are Tukey depth [Tukey, 1975], simplicial depth[Liu, 1990] and

Oja depth [Oja, 1983].

Tukey depth(HD) Tukey depth is also called half space depth.

It is calculated by the following equation.

HD(x;F ) = inf
H
{P (H) : H is a closed half space inRK and x ∈ H}

(2.28)

The calculation of Tukey depth is illustrated through the fol-

lowing two dimensional example. Suppose we are considering the

Tukey depth of an observation, whose coordinate is (a1, a2), in a

data set A. Randomly draw a line that pass through (a1, a2), for

example, a1y − a2x = 0. This line cut the plane into two parts:

a1y − a2x > 0 and a1y − a2x < 0. By counting the observations

within each half plane we get two values. The smaller one is the

current depth. If we rotate the line around the point (a1, a2) for

360 degree and record the depth values at each degree, after ro-

tating the line to the starting position, i.e. finishing a full circle,

the smallest value among all the depth values recorded at different
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degrees is the Tukey depth of observation at (a1, a2) based on the

data set A.

simplicial depth(SD) The SD of x based on data set (X1, X2, · · · , XT ), Xt ∈

RK ,∀t = 1, · · · , T is:

SD(x;Fn) =

(
T

K + 1

)−1 ∑
1≤i1≤···≤iK+1≤T

I(x ∈ S[Xi1, · · · , XiK+1
])

(2.29)

In this equation I(·) is the indicator function and Fn is the em-

pirical distribution function of (X1, X2, · · · , XT ). S[·] is the close

simplex with vertices (X1, X2, · · · , XT ), which means S is the set

of all the convex combinations of (X1, X2, · · · , XT ).

The calculation of simplicial depth is illustrated through the

example in Figure 2.1. The data set contains three observations

A,B,C ∈ R2. According to the definition, depth value of O1 is

1 because there is only one simplex that has three vertices and

contains O1. And the depth value of O2 is 0. Therefore O1 is

closer to the center of (A,B,C) comparing to O2.

Oja depth (OD) Oja depth is developed in Serfling and Zuo

[2000] from a location measure proposed by Oja [1983]. For a
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Figure 2.1: simplicial depth
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given set of data, (X1, X2, · · · , XT ), Xt ∈ RK ,∀t = 1, · · · , T , the

depth value at x ∈ RK is

OD(x;Fn) =

(
T

K

)−1

(1 +
∑

1≤t1≤···≤tK≤T

v(S[x,Xt1, · · · , XtK ]))
−1

(2.30)

In this equation S[·] is the same as in SD function, a closed sim-

plex composed of vertices (x,Xt1, · · · , XtK) and v(S[·]) is the vol-

ume of simplex S. The volume for the K + 1 vertices simplex

(x,Xt1, · · · , XtK)is calculated as:

1

K!
det(Xt1 − x, · · · , XtK − x) (2.31)

One difference between Oja depth and simplicial depth is that

the simplex in Oja depth uses x as an vertex while all of the

vertices of the simplex in simplicial are from the data set. Fig-

ure 2.2 contains an example of Oja depth. The data set is again

A,B,C ∈ R2. And the simplexes that contain vertex O1 is tri-

angles ABO1,BCO1 and ACO1. Therefore the summation of

volumes of these simplexes is the area of the triangle ABC. Fol-

lowing the same logic, the simplexes that contain the vertex O2 are

ABO2,BCO2 and ACO2. And the summation of their volumes
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Figure 2.2: Oja depth

is the area of ABC plus two times the area of ACO2. Therefore

the Oja depth of O2 is smaller than the Oja depth of O1, which

means that O1 is closer to the center of data set (A,B,C).

2 End of chapter.



Chapter 3

Two Estimators for Vector MEM

This chapter is about the estimation methods that are used on

vector MEM previously. As a start two stage ML is discussed.

Although it is not a typical method to estimate parameters of

vector MEM, its results can be used as starting values for both ML

and GMM estimators. Following two stage ML method, ML and

GMM estimators for vector MEM are introduced. A comparison

based on simulation is conducted at the end of this chapter. The

results from simulation show the two estimators can be heavily

influenced by outliers, which is the motivation for proposing WEL

in Chapter 4.

39
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3.1 Two Stage Maximum Likelihood

Two stage ML estimator is similar to ML estimator. They employ

the same distribution assumption on innovations. The difference

is that the MEM parameters and copula parameters are estimated

separately by two stage ML estimator rather than jointly by ML

estimator. In the parameter estimation processes of both ML and

GMM estimators, starting values play an important role. Good

starting values can quickly lead the optimization to convergence.

Therefore two stage ML estimator is used for providing starting

values for both ML and GMM estimators. Although GMM es-

timator only needs the results from stage one of two stage ML

estimation. In fact, if stage two of two stage ML is omitted, stage

one can be considered as a quasi ML estimator for the copula

part. Because when the score function only contain log-likelihood

functions of margins, the dependence between innovations are as-

sumed to follow independent copula. According to Chapter 2, the

density of independent copula is 1, therefore its logarithm value

is 0. If the margins are assumed to follow univariate MEM where

Exponential distribution is assigned to innovations, the stage one

of two stage ML estimator is a quasi ML estimator for vector
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MEM.

Since two stage ML is closely related to ML estimator, and it

can provide reasonably good starting values for ML and GMM

estimators, it is introduced before the two estimators.

3.1.1 Introduction

Two stage ML estimator is also called inference functions for mar-

gin (IFM). Both Patton [2006] and Hu [2006] use this method to

estimate models containing copula and margins. IFM is suitable

for the situation when multivariate models under consideration

have an unknown parameter vector that may be partitioned into

parameters only related to the margin distributions and param-

eters only related to the copula. If such a partition is not pos-

sible, full maximum likelihood estimator is the natural estimator

to employ. IFM method has the benefit of being computational

tractable, at the cost of a loss of full efficiency. Normally results

of full ML are not the same with those of IFM. But Patton [2006]

shows that IFM is a good alternative to full maximum likelihood

method (FML). For it can achieve great computational savings

and in addition as the IFM is able to explore all available infor-
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mation on both variables, for example when some margins have

more data than the other margins. Therefore in some situations

IFM actually outperforms FML.

Copula representation splits the parameters into parameters for

margin distributions and common parameters of the dependence

structure (or the parameters of the copula). The log-likelihood

could then be written as

l(θ⃗) =
T∑
t=1

ln c(F1(x1,t; θ⃗1), · · · , Fk(xk,t; θ⃗k), · · · , FK(xK,t; θ⃗K); α⃗)

+
T∑
t=1

K∑
k=1

ln fk(xk,t; θ⃗k) (3.1)

where θ⃗k are the parameters for the kth margins and α⃗ are the

parameters for copula. c is the density of copula function, and Fk

and fk are the cdf and pdf of the distribution corresponding to

kth margin.

In vector MEM, if the parameter matrices A and B are both

diagonal, the first stage of two stage ML estimator can be opti-

mized via equation by equation method, i.e. the parameters of

margins can be estimated separately. For example, the estimator
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of the kth margin is

ˆ⃗
θk = argθ⃗k max

T∑
t=1

ln fk(xk,t; θ⃗k) (3.2)

And the estimator for α⃗ given the previous estimation results

which are denoted as (ˆ⃗θ1, · · · ,
ˆ⃗
θK) is

ˆ⃗α = argα⃗max
T∑
t=1

ln c(F1(x1,t;
ˆ⃗
θ1), · · · , FK(xK,t;

ˆ⃗
θK); α⃗) (3.3)

Very similar to IFM method, in two stage ML the parameter vec-

tor α could be estimated without specifying the distribution of

margins. The method consists of transforming the data (x1,t, · · · , xK,t)

into uniform variables (û1,t, · · · , ûK,t) by empirical distribution,

and the estimator can be written as:

ˆ⃗α = argmax
α⃗

T∑
i=1

ln c(û1,t, · · · , ûK,t; α⃗) (3.4)

In this case, α̂ could be viewed as the ML estimator given the

observed margins(without assumptions on the parametric form of

the marginal distributions). Because it is based on the empirical

distribuions, we call it the canonical maximum likelihood method

(CML).
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If parameter matrices A or B is not diagonal, then the first

stage of two stage ML method cannot be estimated via equation

by equation method. All the log-likelihood functions of margins

are added together and during the first stage estimation the copula

is assumed to be independent copula. The estimator for first stage

in this case is:

(
ˆ⃗
θ1, · · · ,

ˆ⃗
θK) = arg(θ⃗1,··· ,θ⃗K)max

T∑
t=1

K∑
k=1

ln fk(xk,t; θ⃗k) (3.5)

And the second stage estimation is same as the one when A

and B are diagonal. The two stage maximum likelihood estimator

is proved to be consistent and asymptotic normal under some

regularity conditions [Newey and McFadden, 1994].

3.1.2 Simulation of two stage ML

In this section a simulation study is conducted to test the per-

formance of two stage ML estimator. It is expected that it can

provide reasonable results so that ML and GMM estimators can

use the results to further estimate the parameters. For each of

the two cases considered, there are 100 repetitions, and in each
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repetition the data length is 1000.

Diagonal case

In the situation where A and B of the MEM parameters are

diagonal, the model used to generate data is:

x1 = µ1,tϵ1,t

x2 = µ2,tϵ2,t

ϵ⃗t ∼ c(⃗ϵt) ·
∏

Gamma (3.6)

µ1,t = ω1 + α1x1,t−1 + β1µ1,t−1

µ2,t = ω2 + α2x2,t−1 + β2µ2,t−1

Two sets of data are generated from model (3.6). Each data

set contain 100 repetitions, the estimation results are tabulated in

Table 3.2 and 3.3. In the first set the copula function is Gaussian

copula and in the second the copula is assumed to be Student’s t

copula. The parameters of Gamma distributions for both sets are

same, as well are MEM parameters (ω1, α1, β1, ω2, α2, β2). The

results in Table 3.2 and 3.3 show that estimated parameters are

quite close to their true values. Also this simulation test results
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indicate that two stage ML are supposed to perform fairly well on

data from Gaussian or Student’s t copula.

Non-diagonal case

When MEM parameter matrix A and B are not diagonal, which

is often the case in real world application, estimating each margin

separately in the first stage of two step ML method is impractical.

Because even without the dependence structure, copula function,

each margin still affects other margins through off-diagonal el-

ements of A and B. As stated in last section, in this case the

parameters in the first stage of two step ML are estimated by as-

suming the copula function is product copula. This assumption

means in the first stage the interactions between innovations are

not considered. The model used to generate data in this case is a

2-dimensional vector MEM model:
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x1 = µ1,tϵ1,t

x2 = µ2,tϵ2,t

ϵ⃗t ∼ cρ,τ (⃗ϵt) ·
∏

Gamma (3.7)

µ1,t = ω1 + α1,1x1,t−1 + α1,2x2,t−1 + β1,1µ1,t−1 + β1,2µ2,t−1

µ2,t = ω2 + α2,1x1,t−1 + α2,2x2,t−1 + β2,1µ1,t−1 + β,22µ2,t−1

In the model (3.7), cρ,τ is assumed to be Student’s t copula

with correlation parameter ρ and degree of freedom τ . In total

100 data sets are generated, and each data set has a size 2 by

1000. The estimation results together with the true values of each

parameter are tabulated in Table 3.4. From the results it can be

seen that the estimated values are fairly close to their true values.

However, comparing to the results in Table 3.3, the bias in Table

3.4 is larger. This is due to the fact that there are more parameters

need to be estimated in the non-diagonal case.

From the results of both diagonal case and non-diagonal case,

two stage ML method is proved to be able to provide good starting

values for other methods which are sensitive to starting values.
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3.2 Maximum Likelihood estimator

Following Cipollini et al. [2007] in this paper the ML estimator

assumes that the joint distribution of innovations are Gamma dis-

tributions linked by Student’s t copula. Student’s t copula is fast

growing in usage because it generalizes normal copula by allowing

non-zero dependence in extreme tails through different degrees

of freedom, denoted as τ . Student’s t copula with large τ , say

100, approximates a normal copula. Conversely small values for τ

lead to high tail dependency. After setting mean to one, Gamma

distribution has one parameter left to estimate, which increases

the model’s flexibility comparing to exponential distribution. The

distribution of innovations are assumed to be:

ϵ⃗t|Ft−1 ∼ Ct(R, τ)×
K∏
k=1

F (ϕk, ϵk,t) (3.8)

where Ct(R, τ) is the cdf of student’s t copula with correlation

matrix R and degree of freedom τ . F (ϕ, ϵ) is the cdf of Gamma

distribution at ϵ with shape parameter ϕ and scale parameter 1
ϕ .

The density for this joint distribution at time t is:
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ct,R,τ(F1(x1,t/µ1,t), . . . , FK(xK,t/µK,t))×
K∏
k=1

fk(xk,t/µk,t) (3.9)

In the the first part of the above formula, ct,R,τ(·) , represents

the density of Student’s t copula, where R and τ are the same pa-

rameters as in equation 3.8. Following the discussions in Chapter

2, Student’s t copula’s density at (ϵ1,t, · · · , ϵK,t) is:

ct,R,τ(F1(x1,t/µ1,t), . . . , FK(xK,t/µK,t))

= |R|−
1
2
Γ(τ+K

2 )[Γ(τ2)]
K(1 + 1

τQ
TR−1Q)

τ+K
2

[Γ(τ+1
2 )]KΓ(τ2)

∏K
k=1(1 +

q2k
τ )

− τ+1
2

(3.10)

where Q = (q1, · · · , qK)T and qk = t−1
τ (Fk(xk,t/µk,t)) and tτ is

the cdf of student’s t distribution with degree of freedom τ .

And the second part of equation 3.9 is the density of margins

where Fk and fk are conditional cdf and pdf of ϵk,t. Since the

margin distribution of innovations is Gamma distribution, Fk and

fk can be expressed as below:

fk(ϵk,t) =
ϕϕk

k

Γ(ϕk)
ϵϕk−1
k,t exp(−ϕkϵk,t) (3.11)
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Fi(ϵk,t) = Γ(ϕk;ϕkϵk,t) (3.12)

where Γ(ς, x) is the incomplete Gamma function with parameter

ς computed at x, or in other words, the cdf of a Gamma(ς, 1)

random variable computed at x [Cipollini et al., 2006]. And ϕk is

the Gamma parameter for kth dimension.

For ML estimator, the parameters are estimated by the follow-

ing maximization problem(4.5) [Cipollini et al., 2007]:

(θ̂ML, ρ̂, τ̂)

= arg max
θ∈Θ,ρ∈[−1,1]0,τ>0

[
T∑
t=1

(ln ct,R,τ +
K∑
k=1

fk(
xk,t
µk,t

))] (3.13)

where Θ is the feasible region for MEM parameters Cipollini et al.

[2006].

3.2.1 Derivatives of score function

The parameters of vector MEM can be estimated by maximizing

the log-likelihood function (score function) using different numer-

ical methods. Often the optimization methods, Newton methods

for example, require derivatives of the log-likelihood functions.

Although softwares like R and MATLAB can calculate numer-
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ical derivatives, the analytic ones are still helpful. For example,

Levy [2003] has show that analytic derivatives perform better than

numerical derivatives in short GARCH sequence. However, the

calculations of numerical derivatives usually cost less time than

analytic ones. This is because they use finite-difference approxi-

mations which will only evaluate the objective function at several

points in the neighborhood of the current estimations of the pa-

rameters. This is contrast to analytic derivatives which are com-

puted recursively using all the data.

The derivatives of GARCH models have been developed by

Fiorentini et al. [1996], and Cipollini et al. [2006] states the de-

tails of calculating the derivatives of vector MEM. Based on their

results and for illustration purpose, the calculations of derivatives

of the vector MEM used in section 3.1.2 are discussed. The ba-

sic vector MEM is assumed to have two margins which follows

Gamma distribution. And the copula is assumed to be Student’s

t copula.

Most derivatives of the model have analytic forms, only the

derivative against ϕ , the parameter of margin distribution and

τ , the parameter of Student’s t copula need to be calculated
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numerically.

Derivatives of Margin Log-likelihood

Because xk,t can be expressed as the multiplication of µk,t and

ϵk,t,
∂xk,t

∂ω⃗ ,∂xk,t

∂α⃗ ,∂xk,t

∂β⃗
and ∂xk,t

∂ϕ⃗
all equal to zero, where ω⃗ = (ω1, ω2),

α⃗ = (α1, α2), β⃗ = (β1, β2) and ϕ⃗ = (ϕ1, ϕ2). Also since ϕ⃗ is a

parameter only related to ϵ⃗t, ∂µ⃗t

∂ϕ⃗
= 0.

Denote lmt as the summation of all margin score functions.

∂lmt

∂ω1
= ϕ1

∂µ1,t

∂ω1
(
x1,t − µ1,t

µ2
1,t

) (3.14)

∂lmt

∂α1
= ϕ1

∂µ1,t

∂α1
(
x1,t − µ1,t

µ2
1,t

) (3.15)

∂lmt

∂β1
= ϕ1

∂µ1,t

∂β1
(
x1,t − µ1,t

µ2
1,t

) (3.16)

∂lmt

∂ϕ1
= lnϕ1 + 1− Γ

′
(ϕ1)

Γ(ϕ1)
+ ln

x1,t
µ1,t

− x1,t
µ1,t

(3.17)

∂lmt

∂ω2
, ∂lmt

∂α2
, ∂lmt

∂β2
, and ∂lmt

∂ϕ2
are the same as above besides the index.

In the above equations, all the values are known except the

derivatives of MEM parameters on µk,t. Therefore the calculation

of ∂µ1,t

∂ω1
is discussed below. The calculation is very similar to the

derivative of variance term in GARCH model.
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According to µk,t = ωk + αkxi,t−1 + βkµk,t−1, we have

∂µk,t

∂ωk
= 1 + βk

∂µk,t−1

∂ωk
(3.18)

And if we assume that µk,0 is a constant which does not depend

on ωk, k = 1, 2, we have

∂µk,0

∂ωk
= 0 (3.19)

Base on this assumption we can calculate ∂µk,t

∂ωk
for all t. ∂µk,t

∂αk

and ∂µk,t

∂βk
can be calculated in the same way.

∂µk,t

∂αk
= xk,t + βk

∂µk,t−1

∂αk
(3.20)

∂µk,0

∂αk
= 0 (3.21)

∂µk,t

∂βk
= µk,t + βk

∂µk,t−1

∂βk
(3.22)

∂µk,0

∂βk
= 0 (3.23)

Derivatives of copula log-likelihood

Let lct denote the logarithm density of copula function at time t,

the derivatives of copula log likelihood are:
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ln lct
∂ρ

=
ρ

1− ρ2
−τ + 2

2

[2ρ(q21,t + q22,t − 2ρq1,tq2,t)− 2(1− ρ2)q1,tq2,t]

(1− ρ2)2τ + (1− ρ2)(q21,t + q22,t − 2ρq1,tq2,t)

(3.24)

∂lct
∂τ

= 1
2

Γ
′
( τ+2

2 )

Γ( τ+2
2 )

+ 1
2

Γ
′
( τ2 )

Γ( τ2 )
− 1

2

Γ
′
( τ+1

2 )

Γ( τ+1
2 )

−1

2
ln(1 +

q21,t+q22,t−2ρq1,tq2,t
(1−ρ2)τ )

−τ + 2

2

−(q21,t+q22,t−2ρq1,tq2,t)+τ(2q1,t
∂q1,t
∂τ +2q2,t

∂q2,t
∂τ −2ρq2,t

∂q1,t
τ −2ρq1,t

∂q2,t
∂τ )

(1−ρ2)τ2+(q21,t+q22,t−2ρq1,tq2,t)τ

+
1

2
ln(1 +

q21,t
τ ) + τ+1

2

2τq1,t
∂q1,t
∂τ −q21,t

τ2+τq21,t
+ 1

2 ln(1 +
q22,t
τ )

+
τ + 1

2

2τq2,t
∂q2,t
∂τ −q22,t

τ2+τq22,t
(3.25)

∂lct
∂ω1

= −τ + 1

2

2q1,t
∂q1,t
∂ω1

− 2ρq2,t
∂q1,t
∂ω1

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
+

τ + 1

2

2q1,t
∂q1,t
∂ω1

τ + q21,t
(3.26)

∂lct
∂α1

,∂lct∂β1
and ∂lct

∂ϕ1
are similar to the formula above, therefore they

are omitted here.
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∂lct
∂ω2

= −τ + 1

2

2q2,t
∂q2,t
∂ω2

− 2ρq1,t
∂q2,t
∂ω2

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
+

τ + 1

2

2q2,t
∂q2,t
∂ω2

τ + q22,t
(3.27)

In the same way the derivatives of lct against α2, β2 and ϕ2 can

be calculated, therefore they are omitted here.

In above formula the derivatives of qk,t can be further calculated

as:
∂qk,t
∂ωk

=
f(

xk,t

µk,t
)xk,t

tτ(qk,t)µ2
k,t

∂τ

∂ωk
(3.28)

∂qk,t
∂αk

and∂qk,t
∂βk

are in the same form of ∂qk,t
∂ωk

.

∂qk,t
∂ϕk

=
1

tτ(qk,t)

∂Fk(
xk,t

µk,t
)

∂ϕk
(3.29)

Here
∂Fk(

xk,t
µk,t

)

∂ϕk
and ∂qk,t

∂τ can only be calculated numerically.

Score functions

In conclusion, the derivatives of the likelihood, i.e., the score func-

tions are tabulated in table 3.1, where θk denotes any one of ωk,αk

or βk,k = 1, 2, and:
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Aθ1 =
T∑
t=1

[
(τ + 1)(q1,t

∂q1,t
∂θ1

− ρq2,t
∂q1,t
∂θ1

)

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
−

(τ + 1)q1,t
∂q1,t
∂θ1

τ + q21,t
]

(3.30)

Aθ2 =
T∑
t=1

[
(τ + 1)(q2,t

∂q2,t
∂θ2

− ρq1,t
∂q2,t
∂θ2

)

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
−

(τ + 1)q2,t
∂q2,t
∂θ2

τ + q22,t
]

(3.31)

Aϕ1
=

T∑
t=1

[
(τ + 1)(q1,t

∂q1,t
∂ϕ1

− ρq2,t
∂q1,t
∂ϕ1

)

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
−

(τ + 1)q1,t
∂q1,t
∂ϕ1

τ + q21,t
]

(3.32)

Aϕ2
=

T∑
t=1

[
(τ + 1)(q2,t

∂q2,t
∂ϕ2

− ρq1,t
∂q2,t
∂ϕ2

)

(1− ρ2)τ + q21,t + q22,t − 2ρq1,tq2,t
−

(τ + 1)q2,t
∂q2,t
∂ϕ2

τ + q22,t
]

(3.33)

Comparison against numerical derivatives

Table 3.5 shows the derivatives calculated by analytic derivatives

and numerical derivatives separately. The data used is a ran-

domly generated data set following equation (3.6). And the cop-

ula function is assumed to be student’s t copula. A total of 100

repetitions are generated. And in each repetition the data length

is 1000. Both the analytic and numerical derivatives use the true

values of parameters. From the aspect of programming, the calcu-

lations of numerical derivatives are performed by "grad" function

in the package "numDeriv" in R. The differences between numer-
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ical and analytic derivatives are very small, especially the ones of

ω, α, β and ρ. Noted that all of them have full analytic derivatives.

Therefore the results verify equations for analytic derivatives are

correct. In the estimation processes of ML and GMM methods,

analytic derivatives are used.

3.3 GMM estimator

Cipollini et al. [2012] use GMM to estimate vector MEM semi-

parametrically. Their method stems from the estimation function

proposed in Cipollini et al. [2006]. This method uses less as-

sumptions than ML method. Therefore it is suitable for a more

generalized class of models in the vector MEM family as long as

the only interest is on the MEM parameters.

In general GMM is computational efficient comparing to ML

method. And the less the assumptions, the less likely the model

is misspecified. In detail, GMM assumes only the structure of µ⃗t,

and do not have any constraints on dependence structure among

innovations, in addition, it does not require assigning a distribu-

tion for innovations. Thus the GMM estimator will only estimate

MEM parameters θ, i.e. the parameters of µ⃗t. GMM involves
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an approximation on correlation matrix before solving the GMM

estimator. In Cipollini et al. [2012] a sample covariance matrix

is used to approximate covariance matrix of innovations for given

θ, which only holds when the first moment condition is satisfied.

This fact indicates GMM may be sensitive to first moment condi-

tion.

The GMM estimator in Cipollini et al. [2012] is based on the

conditional moment restriction: E (⃗ϵt|Ft−1 = 1). The moment

restriction used for construct GMM estimator is E (⃗ϵt− 1⃗|Ft−1) =

0, and the corresponding instrument variable is:

G⃗t = ∇θµ⃗
′

tdiag(µ⃗t)
−1Σ̂−1 (3.34)

In equation (3.34) Σ̂ = 1
T (⃗ϵ−1⃗)T (⃗ϵ−1⃗) is an estimator of V(⃗ϵt|Ft−1).

Thus the GMM estimator θ̂GMM of vector MEM should satisfy the

following equation:

1

T

T∑
t=1

∇θµ⃗
′

tdiag(µ⃗t)
−1Σ̂−1(⃗ϵt − 1⃗) = 0⃗ (3.35)

By using ϵi,t =
xi,t

µi,t
, i = 1, · · · , K equation (3.35) can be rewrit-
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ten as:

1

T

T∑
t=1

∇θµ⃗
′

t[diag(µ⃗t)Σ̂diag(µ⃗t)]
−1(x⃗t − µ⃗t) = 0⃗ (3.36)

The optimal weight matrix which produces efficient estimator is

approximated as [Hall, 2005]:

ŴT = V(T− 1
2

T∑
t=1

∇θµ⃗
′

tdiag(µ⃗t)
−1Σ̂−1(⃗ϵt − 1⃗))−1

=
1

T

T∑
t=1

∇θµ⃗
′

t[diag(µ⃗t)Σ̂diag(µ⃗t)]
−1∇θµ⃗t (3.37)

Thus the MEM parameters are estimated by solving the following

optimization problem rather than solving a system of equations

(5.4):

θ̂GMM = argmin θ∈Θ

T∑
t=1

(G⃗t(⃗ϵt − 1⃗))′ ×WT × G⃗t(⃗ϵt − 1⃗) (3.38)

where Θ is the feasible region for MEM parameters Cipollini et al.

[2006]. The optimization process of GMM is found to converge

faster than ML method in experiments, and thus less time con-

suming.



CHAPTER 3. TWO ESTIMATORS FOR VECTOR MEM 60

3.4 Comparing ML and GMM through simu-

lations

In this section the performances of ML and GMM estimators are

compared through a simulation study. In this simulation study,

the data are generated by the two variable baisc MEM(1,1), same

as the one in equation (3.6). And the innovations are assumed to

follow Gamma distributions connected by student’s t copula. The

simulation contains two parts. The first one is a test on efficiency

of both estimators, and the second part is on their robustness. In

the first part the input data are generated by vector MEM, which

is denoted as clean data. On the other hand in the second part

the input data are artificially contaminated data.

There are two stylized facts not captured by ARCH type mod-

els. One is that the standardized residues from ARCH type models

still display large kurtosis, leading to fat tail phenonmenon. For

example, fat tail distribution of risk asset returns is a salient fea-

ture in financial time series. And the other sytlized fact is that

large shock will seriously impact estimations of ARCH type mod-

els.
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Thus the clean data generated by equation (3.6) are contami-

nated from two aspects. Firstly the structure of copula is changed

to a mixture of student’s t copula and independent copula. The

purpose is to test when the tail dependence decreases and copula

or marginal distributions are misspecified, whether the original

model can capture the dependence structure correctly. Secondly

margins are modified by adding outliers to the data generated

from vector MEM. This contamination aims at simulating the sit-

uation where large shocks appear in data. And the performances

of ML and GMM estimators under this situation are tested. The

details of two kinds of contaminations are discussed below.

3.4.1 Generation of clean data

With the predetermined MEM parameters, two dimensional data

(u, v) are randomly generated, which are in the range of (0,1), us-

ing student’s t copula. u and v are the cdf of innovation terms ϵ1,t

and ϵ2,t. Then the cdf is inverted into Gamma variables using the

corresponding gamma distribution function. Note that the invert

functions are determined by the margin distribution assumptions

of the vector MEM. After selecting a starting value for xk,0 and
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µk,0, k = 1, 2, the series x⃗t and µ⃗t series can be calculated using

the formula for them in equation (3.6). The final output data are

x⃗t.

3.4.2 Data contamination

1 Change copulas

In order to test whether the model can capture dependence

structure correctly when the distribution specified is different to

the underlying distribution, ten sets of samples are generated.

The copula function in these ten sets is a mixture of bivariate

Student’s t copula and independent copula (product copula). The

cdf of copula can be written as:

C = wuv + (1− w)Ct;ρ,τ(u, v) (3.39)

where Ct;ρ,τ is the CDF of Student’s t copula with parameters

ρ, τ . And w and 1 − w are the weights of product copula and

Student’s t copula respectively. When w equals zero, the cop-

ula is just Student’s t copula. And when w equals one, the two

margins are independent (extreme case). There are in total ten

sets of data generated that corresponding to different w, where
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w ∈ (0.1, 0.2, · · · , 1.0). Each set that is corresponding to a value

of w contains 100 repetitions and each repetition includes a time

series of dimension 1000× 2.

2 Add outliers

Outliers are added to the clean data generated from vector

MEM as shocks:

x∗k,t = xk,t ∗ d if t = tj, 1 ≤ j ≤ l = [hT/100], else x∗k,t = xk,t

where h is the percentage of contamination, xk,t is the non-

contaminated series generated by vMEM models (equation (3.6)).

t1, · · · , tl are the time slots when the outliers are observed. The

values tj, 1 ≤ j ≤ l, were chosen to be equally spaced.

In this outlier test three values, 3, 6 and 9, are chosen to be

the sizes of outliers d. And the numbers of outliers are chosen to

be 5% and 10% of the total number of clean data. In all there are

6 combinations of outliers with different numbers and sizes. For

each combination 100 repetitions are included and each repetition

contains a time series of dimension 1000× 2.
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3.4.3 Optimization

In the simulation it is found that when both ML and GMM es-

timators are optimized using a constrained optimization method,

the efficiencies are not good in general. This is because when op-

timization is performed with boundary constraints, as long as the

derivatives are not zero (or efficiently small), the "optimal point"

tends to move to the boundaries. When we apply the model on

real data or randomly generated data, it is very hard to guarantee

the derivatives of optimal point to be small enough due to the

fact that the sample is usually finite. Therefore the optimization

is changed into a unconstrained one. If a variable is constrained

in (0, 1), MEM parameters for example, a logit transformation

is used. Suppose p is between 0 and 1, the logit transforma-

tion of p is q = log(p/(1 − p)), and its inverse transformation is

exp(p)/(1 + exp(q)). If a variable must be positive, a logarithm

transformation is used. In this way the constrained problem is

changed into a unconstrained one.
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3.4.4 Resutls on clean data

The estimation results of ML and GMM on clean data are tab-

ulated in Table 3.6, only common parameters between the two

estimators are reported for ease of comparison.

As it can be seen from Table 3.6, the estimated parameters

using both estimators are very close to their true values and the

variances of errors using both estimators are very small. This

shows the performances of ML and GMM estimator are good when

the distribution assumptions and moment conditions assigned to

the model are accordant to the true distributions and moment

conditions of the data. And the performance of ML method is a

little better than that of GMM.

As an illustration of the fitting of estimated model on innova-

tions, one repetition is chosen and innovations calculated by es-

timated parameters are compared with Gamma distribution with

true ϕ. The innovations calculated using parameters estimated by

ML estimator are depicted in Figure 3.1 and 3.2, corresponding to

first margin and second margin separately. And those by GMM

estimator are plotted in Figure 3.3 and 3.4, corresponding to first

margin and second margin separately.
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From Figures 3.1, 3.2, 3.3 and 3.4, it can be seen that the calcu-

lated innovations using both estimator are well fitted by Gamma

distribution which indicates that the MEM parameters (ω, α, β)

are correctly estimated.

In conclusion both estimators work well when the model is

correctly specified.

3.4.5 Results on contaminated data

Misspecified copula

In the robustness test, the weight variable w is varied from zero

to one, with zero corresponding to extreme case, i.e. independent

copula, and one corresponding to Student’s t copula. The means

of dependencies between two margins estimated by the two esti-

mators are reported in Table 3.7. The results show that when the

dependence structure is misspecified, whether assume the depen-

dence structure to be Student’s t copula or do not assume any

specific dependence structure, the dependencies between innova-

tions can always be estimated accurately. When the weight w

equals zero, the mean of estimated dependencies is −0.0004 for

ML and −0.0006 for GMM, which are very close to zero. When
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the weight w increases to a larger value thus in the mixture the

Student’s t copula has a larger weight, the estimated dependen-

cies using both estimators show an increasing tendency to move

closer to 0.6, which is the true value of the correaltion parameter

in Student’s t copula.

The detailed estimation results are reported in Table 3.8 for

common parameters of the two estimators. The results show that

when the copula is misspecified, not only the dependence can be

captured accurately by both methods, but also the estimated pa-

rameters of MEM model are very close to true values. Comparing

the MSE in Table 3.8 and those in Table 3.6, the results are al-

most the same for both methods. This result indicates that when

the dependence structure is misspecified, estimations of neither

method is heavily impacted. By assuming the dependence struc-

ture to be Student’s t copula, ML estimator gains robustness be-

cause of the flexibility of Student’s t copula. Also GMM gains

robustness through its semi-parametric assumption, i.e. no spe-

cific distribution is assigned to the innovations but only the first

moment conditions.
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Outliers

The estimation results are summarized in Table 3.9. First obser-

vation is that the results in Table 3.9 indicates that outliers have

significant impact on parameter estimations of both estimators.

The values of MSE in Table 3.9 are much larger than the ones in

Table 3.6 or Table 3.8.

The other observation is that the results are inconclusive on

which estimator has a better performance. Neither of the two

estimator has a good performances comparing to themselves in the

clean data test or misspecified copula test. And also comparing

between the two estimators, no evidences are found to support

that one of them outperforms the other. When the percentage

of ourliers in margin is 5%, GMM perform better than ML. For

example when the size of outlier is 9, the MSE of β2 is 0.0037 for

GMM and 0.0267 for ML, which is almost 8 times larger than the

one of GMM. When the percentage of outliers is 10%, ML method

seems to have a better performance. For instances when the size

of outliers is 6, the MSE of β2 for GMM is 0.0604 and 0.0167 for

ML method.

As a conclusion, both ML method and GMM are found to be
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sensitive to outliers in margins. The estimation results of both of

them are heavily influenced by outliers.

3.5 conclusion

In this chapter, two stage ML method is first introduced and used

to estimate the starting values for ML and GMM. A compari-

son between ML and GMM is conducted through a simulation

study. In the simulation study it is found that both estimators

have a good performance when the dependence structure is mis-

specified. The copula used to generate the simulation data is the

mixture of independent copula and Student’s t copula. Chang-

ing the weight of independent copula in the mixture from zero

to one, the estimation results of both estimators are not severely

affected. However, when outliers exist in the margin, the Gamma

distribution assumption in ML estimator and moment condition

assumption in GMM estimator are both violated. Consequently

the MSE of MEM parameters are much larger using both estima-

tors comparing to themselves when data are not contaminated or

only dependence structure is misspecified.

This phenomenon motives us to propose another method to
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robustly estimate the parameters of vector MEM in the presence

of outliers: Weighted Empirical Likelihood (WEL) method. This

method can automatically detect outliers from innovations and

the impact of outliers is reduced by adjusting the weights in the

likelihood function. Therefore it is expected to be more robust

than ML method and GMM when outliers exist in data. The

details of WEL are discussed in Chapter 4.
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parameter Score function
θk(marginal) sθk =

∑T
t=1[ϕk

∂µk,t

∂θk
(
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µ2
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Table 3.1: derivatives of score function

parameter ω1 α1 β1 ϕ1 ω2 α2 β2 ϕ2 ρ

True 0.02 0.11 0.7 1 0.05 0.10 0.78 1.1 0.6

Mean 0.020 0.109 0.702 1.00 0.061 0.120 0.780 1.102 0.612

Var 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001

Table 3.2: Gaussian(repeat 100 times)

parameter ω1 α1 β1 ϕ1 ω2 α2 β2 ϕ2 ρ ν

True 0.02 0.11 0.7 1 0.05 0.10 0.78 1.1 0.6 2

Mean 0.020 0.109 0.697 1.000 0.060 0.121 0.781 1.10 0.595 2.17

Var 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009

Table 3.3: Student’s t(repeat 100 times)
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parameter ω1 α1,1 α1,2 β1,1 β1,2 ϕ1 ω2 α2,1 α2,2 β2,1 β2,2 ϕ2 ρ τ

True 1.5 0.3 0.2 0.55 0.2 1 1 0.002 0.01 0.003 0.1 1 0.6 5

Mean 1.4601 0.2997 0.2144 0.5457 0.2594 1.007 0.8999 0.0019 0.0180 0.0025 0.1802 1.006 0.5982 5.199

Var 0.3526 0.0018 0.0542 0.0026 0.1590 0.0018 0.09529 5.3e− 6 0.0005 1.3e− 5 0.0725 0.0020 0.0006 1.864

Table 3.4: Full matrix two step estimation)

ω1 α1 β1 ω2 α2 β2 ρ

ML 0.0002 0.0002 0.0007 0.0006 0.0005 0.0007 0.0005

GMM 0.0002 0.0003 0.0008 0.0006 0.0006 0.0008 0.0008

Table 3.6: MSE of two methods on clean data, true values
(ω1, α1, β1, ω2, α2, β2, ρ) = (0.05, 0.15, 0.8, 0.1, 0.35, 0.6, 0.6)

Parameters (true value) Analytic Numeric

ω1(0.02) −0.5748450516 −0.5748457042

α2(0.15) −0.0368254517 −0.0368254821

β1(0.6) −0.0465226878 −0.0465227371

ϕ1(0.5) 0.0185003594 0.0185003860

ω2(0.15) 0.0674829037 0.0674830201

α2(0.05) 0.0569829442 0.0569830290

β20.8 0.0537566592 0.0537567562

ϕ2(0.5) −0.0027189557 −0.0027189860

ρ(0.6) 0.0089000310 0.0089000222

τ(2) −0.0006436333 −0.0006436308

Table 3.5: derivatives
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Figure 3.1: Innovations of first margin VS Gamma distribution (ML)
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Figure 3.2: Innovations of second margin VS Gamma distribution (ML)

weight 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ML −0.0004 0.0132 0.0360 0.1048 0.1852 0.2803 0.3866 0.4858 0.5541 0.5792

GMM −0.0006 0.0128 0.0398 0.1048 0.1873 0.2799 0.3804 0.4736 0.5400 0.5704

Table 3.7: mean of estimated dependencies
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estimated error density fitted by gamma(GMM)
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Figure 3.3: Innovations of first margin VS Gamma distribution (GMM)
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Figure 3.4: Innovations of second margin VS Gamma distribution (GMM)
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weight parameter ω1 α1 β1 ω2 α2 β2

0 ML 0.0004 0.0004 0.0010 0.0007 0.0008 0.0012

GMM 0.0004 0.0004 0.0010 0.0007 0.0008 0.0012

0.1 ML 0.0004 0.0005 0.0012 0.0007 0.0009 0.0013

GMM 0.0004 0.0005 0.0012 0.0007 0.0009 0.0013

0.2 ML 0.0005 0.0003 0.0011 0.0092 0.0007 0.0013

GMM 0.0005 0.0003 0.0010 0.0074 0.0007 0.0013

0.3 ML 0.0004 0.0004 0.0011 0.0007 0.0006 0.0010

GMM 0.0004 0.0004 0.0011 0.0007 0.0006 0.0010

0.4 ML 0.0004 0.0005 0.0015 0.0008 0.3935 0.0608

GMM 0.0004 0.0004 0.0014 0.0008 0.0668 1.4e− 4

0.5 ML 0.0003 0.0004 0.0010 0.0005 0.0008 0.0011

GMM 0.0003 0.0004 0.0010 0.0005 0.0008 0.0011

0.6 ML 0.0004 0.0004 0.0011 0.0007 0.0006 0.0011

GMM 0.0004 0.0004 0.0011 0.0007 0.0006 0.0010

0.7 ML 0.0003 0.0004 0.0008 0.0005 0.0006 0.0008

GMM 0.0336 0.0005 0.0334 0.0005 0.0007 0.0008

0.8 ML 0.0003 0.0003 0.0010 0.0007 0.0005 0.0009

GMM 0.0003 0.0003 0.0010 0.0008 0.0006 0.0010

0.9 ML 0.0002 0.0003 0.0006 0.0006 0.0004 0.0007

GMM 0.0002 0.0003 0.0007 0.0006 0.0005 0.0008

Table 3.8: MSE of ML method and GMM when weight changes. True values
(ω1, α1, β1, ω2, α2, β2, ρ) = (0.05, 0.15, 0.8, 0.1, 0.35, 0.6, 0.6)
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percent of outliers 5 10
size of outliers d = 3 d = 6 d = 9 d = 3 d = 6 d = 9

ω1 ML 0.1057 0.0407 0.0194 0.1013 0.0497 0.0874

GMM 0.0164 0.0092 0.0078 0.2297 0.1175 0.1489

α1 ML 0.0007 0.0014 0.0042 0.0008 0.0016 0.0069

GMM 0.0006 0.0006 0.0013 0.0014 0.0015 0.0041

β1 ML 0.0782 0.0240 0.0129 0.0627 0.0211 0.0198

GMM 0.0136 0.0069 0.0064 0.1469 0.0533 0.0548

ω2 ML 0.1901 0.1990 0.1538 0.4425 0.1301 1.625

GMM 0.0240 0.0268 0.0221 0.2679 0.5589 0.7038

α2 ML 0.0015 0.0038 0.0099 0.0021 0.0042 0.0140

GMM 0.0017 0.0016 0.0008 0.0028 0.0022 0.0025

β2 ML 0.0339 0.0301 0.0267 0.0669 0.0167 0.0832

GMM 0.0063 0.0055 0.0037 0.0486 0.0604 0.0573

Table 3.9: MSE of ML and GMM when outliers exist in margins. True values
(ω1, α1, β1, ω2, α2, β2, ρ) = (0.05, 0.15, 0.8, 0.1, 0.35, 0.6, 0.6)

2 End of chapter.



Chapter 4

Weighted Empirical Likelihood

Estimator

Vector Multiplicative Error Model (vector MEM) is capable of

analyzing and forecasting multidimensional non-negative valued

processes. Usually its parameters are estimated by Generalized

Method of Moments (GMM) and Maximum Likelihood (ML) meth-

ods. However, the estimations could be heavily affected by out-

liers. To overcome this problem, in this chapter an alternative

approach, Weighted Empirical Likelihood (WEL) method, is pro-

posed. This method uses moment conditions as constraints and

the outliers are detected automatically by performing a k-means

clustering on Oja depth values of innovations. The performance

77
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of WEL is evaluated against those of GMM and ML methods

through extensive simulations, in which three different kinds of

additive outliers are considered. Besides WEL, Empirical Likeli-

hood method with equal weights is also considered in the simu-

lation study. By comparing the results of WEL and EL, the role

of weights calculated by depth function and k-means clustering

can be examined. Moreover, the robustness of WEL is demon-

strated by comparing the volatility forecasts of the three methods

on 10-minute returns of S&P 500 index. The results from both

the simulations and the S&P 500 volatility forecasts have shown

preferences of using WEL method. Please refer to Ding and Lam

[2012] for the journal version of this chapter.

4.1 Introduction

Multiplicative error model (MEM) has attracted much interest

in the past decade because it is capable of modeling and fore-

casting non-negative financial data, for example realized volatil-

ity of exchange rates [Engle, 2002], duration and trading volumes

[Manganelli, 2005]. One of the areas in which MEM plays an im-

portant role is analyzing and forecasting volatilities. Due to the
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non-negative nature of volatilities, GARCH models are less suit-

able for directly analyzing the dynamics of volatilities. Moreover

since true volatilities are not observable, different volatility prox-

ies such as squared return, high low range and realized volatility

have been used. The problem with proxies is that with only one

of them, it may not be enough to encapsulate all the informa-

tion contained in volatilities. This concern gives rise to extending

MEM into vector MEM [Engle and Gallo, 2006, Cipollini et al.,

2006]. The study in Cipollini et al. [2006] shows that although

vector MEM is a straightforward generalization from univariate

MEM, the estimation of vector MEM parameters is not.

Two estimators have been applied on vector MEM: Maximum

Likelihood (ML) estimator and Estimating Functions estimator

[Cipollini et al., 2006]. The latter estimator is further devel-

oped into Generalized Method of Moments (GMM) estimator in

Cipollini et al. [2012]. ML estimator is built on the paramet-

ric multivariate density function of innovations, which is usually

Gamma distributions linked by normal copula [Cipollini et al.,

2006, 2007] or Student’s t copula [Cipollini et al., 2007]. On the

other hand GMM estimator is constructed based on the assump-
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tion that the expectations of innovations are equal to a vector

of one. Thus GMM estimator avoids choosing a specific multi-

variate distribution, which is necessary for ML estimator, and the

probability of model misspecification is reduced. However, if the

data contain outliers, the distribution assumption for ML estima-

tor and the moment assumption for GMM estimator will both be

violated. As a result, ML and GMM are susceptible to outliers.

Outliers are not uncommon in financial time series. They can

be a result of external influences such as policy changes, news

or recording errors. For example, the current financial crisis has

caused a considerable number of unusual movements of stock in-

dices in 2008, which are suspected as outliers. The existence of

outliers and their impact on ML and GMM estimators motivate us

to find a more robust method to estimate the parameters of vector

MEM. In this chapter an alternative approach based on Empirical

Likelihood method [Owen, 1988] is proposed: Weighted Empirical

Likelihood (WEL) method. Empirical likelihood combines the ad-

vantages of ML and GMM methods. It allows the parameters to

be estimated by likelihood method, without the requirement of a

specific distribution assumption. Also it does not require the cal-
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culation of the inverse of the weight matrix in GMM. The weighted

version of EL method is first studied in Glenn and Zhao [2007],

where it is used for non-parametrically estimating the means of a

sample from contaminated normal density. There are two char-

acteristics that differentiate the WEL estimator proposed in this

chapter from the one in Glenn and Zhao [2007].

The first characteristic is that in this chapter, WEL utilizes

moment conditions for vector MEM [Cipollini et al., 2012] as

constraints to estimate parameters of a multivariate nonlinear

model. Because of these moment conditions WEL estimator is

semi-parametric. By contrast, in Glenn and Zhao [2007] WEL is

non-parametric. Comparing to ML estimator, this semi-parametric

feature is preferred when the underlying distribution of innova-

tions is unknown or contaminated by outliers.

The second and more important characteristic is that different

from Glenn and Zhao [2007], in this chapter the weights assigned

to empirical likelihood functions are automatically calculated by

Oja depth function [Oja, 1983] and k-means clustering. Obser-

vations are classified into two groups, outliers and non-outliers,

according to the depth values of innovations. Since the number
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of outliers is unknown, one main difficulty in outlier detection

is to find a suitable threshold value to identify outliers. Rather

than choosing this threshold value artificially, k-means clustering

is used to automatically separate depth values into two groups

corresponding to outliers and non-outliers respectively. And only

the weights of outliers are adjusted in empirical likelihood func-

tions. When the data does not contain outliers, the outlier group

would only contain a very small number of extreme observations,

and the impact of adjusting the weights on these observations is

not significant on parameter estimation. Therefore our estimator

allows tilting the likelihood function to lessen the influences of

outliers, which will increase the robustness of WEL comparing to

ML and GMM estimators.

As a result of these two characteristics the performance of the

proposed WEL estimator is expected to be better than those of

ML and GMM estimators under the situation that outliers exist

in data. Vector MEM and the two estimators, ML and GMM, are

introduced in Section 4.2, followed by Section 4.3 where the details

of WEL estimator are explained. To investigate the performances

of the three estimators, a simulation study is conducted in Section
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4.4 where different scenarios of additive outliers are considered.

In Section 4.7 the three estimators are further compared through

an empirical application on 10-minute returns of S&P 500 index,

including data collected during the current financial crisis period.

The last section is conclusion of this chapter.

4.2 Vector multiplicative error model and two

estimation methods

In this section vector MEM and two estimators, ML and GMM,

that have previously been discussed in Chapter 2 are briefly re-

viewed.

Let x⃗t = (x1,t, · · · , xK,t)
T be a K-dimensional nonnegative

time series. Vector MEM of order (1, 1) can be written as

x⃗t = diag(µ⃗t)⃗ϵt (4.1)

µ⃗t = ω⃗ + Ax⃗t−1 +Bµ⃗t−1 (4.2)

ϵ⃗t|Ft−1 ∼ D(⃗1,Σ) (4.3)
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In equation (4.1), diag(µ⃗t) is a diagonal matrix whose diagonal

elements are µ⃗t. The parameters in equation (4.2), i.e. ω⃗ ∈ RK ,

A ∈ R(K,K) and B ∈ R(K,K), are MEM parameters. These MEM

parameters are the main concern of analyzing and forecasting the

dynamics of µ⃗t. If both A and B are diagonal, the model is the

basic form of vector MEM(1,1). And the 1-dimensional margins

of x⃗t influence each other through ϵ⃗t but not µ⃗t. On the other

hand, if at least one of A and B is not diagonal, the interactions

between margins of x⃗t are reflected by those between ϵ⃗t and also

between µ⃗t. In this chapter our interest lies in reducing the im-

pact of outliers on parameter estimations but not estimating the

interactions between margins of x⃗t, therefore only the basic form

of vector MEM is considered in the simulation study. In the em-

pirical example both circumstances that A is diagonal and A is

not are considered.

In equation (4.3), D is the joint distribution of ϵ⃗t. The expec-

tations of ϵ⃗t are restricted to 1⃗. And Σ is the variance covariance

matrix of ϵ⃗t. The specifications for x⃗t and µ⃗t are same in ML and

GMM estimators. The assumptions for D are where these two

estimators differ.
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ML estimator requires a specified joint distribution for inno-

vations. In Cipollini et al. [2006, 2007] and Cipollini and Gallo

[2010], the joint distribution is decomposed into one dimensional

margin distributions and a copula, which is used to describe the

dependence structure between margins. In this chapter Gamma

distribution and Student’s t copula are chosen to construct the ML

estimator. As mentioned in Engle [2002], Gamma distribution is

more flexible than exponential distribution, which is first used

in univariate MEM. And Student’s t copula generalizes normal

copula by allowing non-zero dependence in extreme tails through

different degrees of freedom. The combination of Gamma distri-

bution and Student’s t copula is also used in Cipollini et al. [2007]

and Cipollini and Gallo [2010]. Following this assumption, denote

ct(R, τ) as Student’s t copula function with correlation matrix R

and degree of freedom τ , and Fϕ(x) and fϕ(x) as the cdf and pdf

of Gamma distribution respectively with a shape parameter ϕ and

a scale parameter 1
ϕ , the density of innovations at time t can be

written as:
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ct,R,τ(Fϕ1
(x1,t/µ1,t), . . . , Fϕk

(xK,t/µK,t))×
K∏
k=1

fϕk
(xk,t/µk,t) (4.4)

Thus when ML estimator is used, the MEM parameters are
obtained by solving the following maximization problem [Cipollini
et al., 2007]:

θ̂ML = argmax θ∈Θ

T∑
t=1

(ln ct,R,τ (Fϕ1(x1,t/µ1,t), . . . , FϕK (xK,t/µK,t)) +

K∑
k=1

ln fϕk
(
xk,t

µk,t
))

(4.5)

where Θ is the feasible region for MEM parameters [Cipollini

et al., 2006].

On the other hand, the GMM estimator proposed in Cipollini

et al. [2012] is constructed with three components: the moment

conditions, instrument variables and optimal weight matrix. The

moment conditions are:

E(⃗ϵt|Ft−1) = 1⃗ (4.6)

V(⃗ϵt|Ft−1) = Σ (4.7)

where the covariance matrix Σ is unknown.

The instrument variables {G⃗t}Tt=1 and optimal weight matrix

ŴT corresponding to equation (4.6) are:
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G⃗t = ∇θµ⃗
T
t diag(µ⃗t)

−1Σ̂−1 (4.8)

ŴT = (V(T−1
2

T∑
t=1

G⃗t(⃗ϵt − 1⃗)))−1

=
1

T

T∑
t=1

∇θµ⃗
T
t [diag(µ⃗t)Σ̂diag(µ⃗t)]

−1∇θµ⃗t (4.9)

where Σ̂ = 1
T

∑T
t=1 µ⃗tµ⃗

T
t is the approximation of the unknown

covariance matrix of innovations.

The GMM estimations of MEM parameters can be obtained

by solving the optimization problem:

θ̂ = argmin θ∈Θ

T∑
t=1

(G⃗t(⃗ϵt − 1⃗))T ×WT × G⃗t(⃗ϵt − 1⃗) (4.10)

where Θ is the feasible region for MEM parameters [Cipollini

et al., 2006].

From equation (4.4), we can see that ML estimator requires

choosing a specific margin distribution and copula before esti-

mating MEM parameters. This may cause difficulties because

for multivariate model it is often hard to write down a tractable

likelihood function when the underlying distribution is unknown.

And if the true distribution differs from the one assumed, para-
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metric estimator, for example ML estimator, may lead to biased

estimations. On the other hand, GMM estimator proposed by

Cipollini et al. [2012] only imposes moment restrictions on inno-

vations. Thus GMM is much preferred due to the semi-parametric

property. However GMM requires estimating the optimal weight

matrix, which is usually calculated via a two step optimization

procedure or substituted by an approximation. Further the out-

liers may contaminate the moment conditions and drive the esti-

mated parameters away from true values. Therefore an alternative

semi-parametric estimator, weighted empirical likelihood (WEL)

estimator, is proposed in this chapter. WEL is expected to be

more robust to outliers. And its details are discussed in the fol-

lowing section.

4.3 Weighted Empirical Likelihood

In this section WEL estimator for vector MEM is introduced. The

proposed estimator is a combination of EL method, moment con-

ditions and depth function. WEL method can be considered as a

generalization of EL method, in which equal weights are assigned

to each empirical likelihood. The rationale for imposing unequal
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weights in WEL estimator is that the empirical likelihood func-

tions can be considered as density of innovations. As a result, the

values of empirical likelihood functions which are corresponding

to outliers should be decreased. The weights in WEL estimator

are calculated based on depth function. Depth function serves as

a measure of the distance between innovations and their center.

And the innovations whose distances to center are larger than oth-

ers are recognized as outliers. Therefore weights based on depth

function can be used to reduce the impact of outliers on empirical

likelihood function.

The same moment conditions used in Cipollini et al. [2012] for

GMM estimator are employed in this chapter. And the assump-

tions for innovations are

E(⃗ϵt|Ft−1) = 1⃗ (4.11)

Following the notations used in Section 4.2, the weighted log

empirical likelihood can be written as:
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f(p⃗, θ) = {
T∑
t=1

wtlog(pt)|pt ≥ 0,
T∑
t=1

pt = 1,
T∑
t=1

ptG⃗t(⃗ϵt − 1⃗) = 0}

(4.12)

where ϵ⃗t is innovation vector, pt and wt are the empirical likeli-

hood and weight for ϵ⃗t respectively, and G⃗t is the instrument vari-

able. As discussed in Owen [2001], maximizing equation (4.12) is

equivalent to minimizing the Lagrange dual function:

L(η, λ⃗, p⃗, θ) =
T∑
t=1

wt log pt − η(
T∑
t=1

pt − 1)− λ⃗T
T∑
t=1

ptG⃗t(⃗ϵt − 1⃗)

(4.13)

where η ∈ R and λ⃗ ∈ RK+2K2 are Lagrange multipliers. Using

the first order conditions of equation (4.13) and
∑T

t=1wt = 1, it

can be shown that (the details of the optimization process are

discussed in the following section):

η = 1 (4.14)

pt =
wt

1+λ⃗T G⃗t(⃗ϵt−1⃗)
(4.15)

λ⃗ = argmin λ⃗∈RK+2K2 −
∑T

t=1wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗))(4.16)
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Without moment constraints,
∑T

t=1wt log(pt) is maximized at

pt = wt, t = 1, · · · , T . Therefore following Glenn and Zhao [2007],

the WEL estimation of parameters θ is obtained by maximizing

the weighted empirical likelihood ratio:

θ̂WEL = argmax θ∈Θ

T∑
t=1

wt log(
pt
wt

)

= argmax θ∈Θ

T∑
t=1

wt log(
1

1 + λ⃗T G⃗t(⃗ϵt − 1⃗)
) (4.17)

where {wt}Tt=1 are weights calculated by depth function, λ⃗ are

Lagrange multipliers obtained from equation (4.16), {G⃗t}Tt=1 are

instrument variables used in GMM estimator (equation (4.8)) and

ϵ⃗t are innovation vectors.

The optimization of empirical likelihood function is discussed

in Owen [2001]. Basically the same procedure is used in the opti-

mization of WEL. As can be seen from equation (4.17), there are

two sets of parameters in the log empirical likelihood function.

The parameters in the first set are MEM parameters θ, which

are the main concern of the optimization. The parameters in the

second set are Lagrange multipliers λ⃗. Therefore the optimiza-
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tion process can be separated into inner optimization (estimate

λ⃗ assuming θ is fixed) and outer optimization (estimate θ). The

weights are calculated after inner optimization and before outer

optimization. Therefore the inner optimization is

ˆ⃗
λ = argmin λ⃗∈RK+2K2 −

T∑
t=1

wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗)) (4.18)

and the outer optimization is

θ̂ = argmax θ∈Θ −
T∑
t=1

wt log(1 + λ⃗T (θ)G⃗t(⃗ϵt − 1⃗)) (4.19)

where λ⃗(θ) are estimated Lagrange multipliers in inner optimiza-

tion.

Equation (4.19) can be maximized via normal routines like

quasi-Newton algorithms or derivative-free algorithms. Equation

(4.18) on the other hand is more complicated than equation (4.19)

because pt =
wt

1+λ⃗T G⃗t(⃗ϵt−1⃗)
needs to be constrained in (0, 1). The

details of inner optimization is discussed in the following section.
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4.3.1 Inner optimization

The inner optimization intends to estimate {pt}Tt=1 when θ is fixed.

If T is large then too many parameters are estimated at the same

time. To reduce the number of parameters, Lagrange dual of the

original problem is considered.

The Lagrange function associated with equation (4.12) is:

L(η, λ⃗, p⃗, θ) =
T∑
t=1

wt log pt − η(
T∑
t=1

pt − 1)− λ⃗T
T∑
t=1

ptG⃗t(⃗ϵt − 1⃗)

(4.20)

where η ∈ R1 and λ⃗ ∈ RK+2K2 are Lagrange multipliers.

Note in inner optimization θ are fixed, thus the first order con-

ditions of lagrange function is:

∂L(η, λ⃗, p⃗, θ)

∂pt
=

wt

pt
− η − λ⃗T G⃗t(⃗ϵt − 1⃗) = 0, t = 1, . . . , T(4.21)

∂L(η, λ⃗, p⃗, θ)

∂η
= −(

T∑
t=1

pt − 1) = 0 (4.22)

∂L(η, λ⃗, p⃗, θ)

∂λi
= −

T∑
t=1

ptGi,t(ϵi,t − 1) = 0,

i = 1, . . . , K + 2K2 (4.23)

where Gi,t and ϵi,t are the ith elements of vector G⃗t and ϵ⃗t respec-
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tively. If (4.21) holds, then

T∑
t=1

pt
∂L(η, λ⃗, p⃗, θ)

∂pt
= 0 (4.24)

From equation (4.21),(4.22), (4.23) ,(4.24) and
∑T

t=1wt = 1 we

have

1− η = 0

Therefore

η = 1 (4.25)

pt =
wt

1+λ⃗T G⃗t(⃗ϵt−1⃗)
(4.26)∑T

t=1 ptGi,t(ϵi,t − 1) = 0, i = 1, . . . , K + 2K2 (4.27)

Observations from equation 4.25-4.27 are that if we substitute

pt in equation 4.27 with equation 4.26, then we have

T∑
t=1

wtGi,t(ϵi,t − 1)

1 + λ⃗T G⃗t(⃗ϵt − 1⃗)
= 0, i = 1, . . . , K + 2K2 (4.28)

This is exactly the first order condition of the following uncon-
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strained optimization problem:

min
λ⃗∈R

K(K+1)
2

−
T∑
t=1

wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗)) (4.29)

Therefore the first order conditions 4.21, 4.22 and 4.23 for

L(η, λ⃗, p⃗, θ) are solved by:

η = 1 (4.30)

pt =
wt

1+λ⃗T G⃗t(⃗ϵt−1⃗)
(4.31)

λ⃗ = argmin λ⃗∈RK+2K2 −
∑T

t=1wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗))(4.32)

One choice of calculating λ⃗ is solving a system of equations

(equation (4.28)). Thus it is possible to solve λ⃗ for any given

θ. Further we have the same number of variables as the number

of equations, therefore the solution is unique. This method is

impractical because even in the current step θ may be close to

their true values, there is no guarantee the unique solution of λ⃗

can result in a positive joint density pt. This is especially the case

when the starting values are far from the true values. Thus we do

not solve the equations directly in inner optimization but rather

transfer them into a minimization problem (4.29).
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The problem that pt may be out of feasible region is solved

by monitoring its value in each step of inner optimization. Since

pt =
wt

1+λ⃗T G⃗t(⃗ϵt−1⃗)
and wt, pt ∈ (0, 1), we have 1 + λ⃗T G⃗t(⃗ϵt − 1⃗) ∈

(0,∞)K , for t = 1, . . . , T . In each step if 1 + λ⃗T G⃗t(⃗ϵt − 1⃗) is

smaller than a small constant, the step size is divided by two. In

this paper this small constant is chosen as 1
T .

To sum up, the function to be minimized in inner optimization

is:

−
T∑
t=1

wt log(1 + λT G⃗t(⃗ϵt − 1⃗)) (4.33)

And its first and second order derivatives against λ are:

d

dλi
(−

T∑
t=1

wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗)))

= −
T∑
t=1

wtGi,t(ϵi,t − 1)

1 + λ⃗T G⃗t(⃗ϵt − 1⃗)
, i = 1, . . . , K + 2K2 (4.34)
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d2

dλidλj
(−

T∑
t=1

wt log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗)))

=
T∑
t=1

wtGi,t(ϵi,t − 1)Gj,t(ϵj,t − 1)

1 + λ⃗T G⃗t(⃗ϵt − 1⃗)
,

i, j = 1, . . . , K + 2K2 (4.35)

4.3.2 Calculation of weights

An ideal weight function should have the following properties:

firstly it can assign small values to innovations far from the center;

secondly it can be calculated non-parametrically.

These preferred properties can be achieved by using depth func-

tion. Depth values can rank multivariate data from center to out-

ward non-parametrically. For a multivariate data set, its center

will receive the highest depth value. The farther away the obser-

vations are from the center, the lower the depth values. In the

past decade, depth function has received growing interest in areas

such as multi-dimensional exploratory data analysis and inference

[Zuo and Cui, 2005, Zuo et al., 2004, Massé, 2009] and outlier

detection [Gervini, 2011].

The depth function used in this chapter is Oja depth(OD).
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Oja depth is developed in Serfling and Zuo [2000] from a location

measure proposed by Oja [1983]. For a given set of innovations,

{ϵ⃗t}Tt=1, the depth value d at ϵ⃗0 ∈ RK is

d(⃗ϵ0; {ϵ⃗t}Tt=1) =

(
T

K

)−1

(1 +
∑

1≤t1≤···≤tK≤T

v(S [⃗ϵ0, ϵ⃗t1, · · · , ϵ⃗tK ]))−1

(4.36)

In equation (4.36), S[·] is a closed simplex composed of vertices

(⃗ϵ0, ϵ⃗t1, · · · , ϵ⃗tK) and v(S[·]) is the volume of simplex S.

After calculating the depth values, a function is needed to

transfer them to weights. This is because the summation of depth

values is not necessarily one, and also the depth values should be

divided into two groups. If the depth value is smaller than a cer-

tain value, resulting the detection of an outlier, the corresponding

weight is adjusted. The weight function introduced in Zuo et al.

[2004] is used in this chapter:

WT (d) = (exp(−J(1− (
d

C
)2)2)− exp(−J))I(d < C)+ I(d ≥ C)

(4.37)

In the weight function (4.37), d represents Oja depth, I(·) is
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indicator function and C ∈ (0, 1), J ∈ (0,∞) are range and shape

parameters separately. C indicates the range of depth values in

which the weight is adjusted. For example, if C = 0.5, it means

all innovations with depth values smaller than 0.5 are identified

as outliers and their corresponding weights are reduced. And if

an innovation’s depth value is larger than 0.5, its weight is 1. The

shape parameter J represents how fast the weight decreases when

the depth gets smaller. When J is very large, say more than 100,

the weights of all the outliers are very close to 0. This means

that the outliers are neglected in the estimation process. On the

other hand, when J is small, only a few outliers with the low-

est depth values are neglected. The weights of the other outliers

are between 0 and the weights of non-outliers. In our simulation

study we set J as 2. The reason to choose 2 is that when an ob-

servation is classified as outliers, the weight of the corresponding

empirical likelihood function is not reduced to zero immediately.

The reduction on weight is decided by how small the depth value

is comparing to depth values of other outliers. The advantage of

reducing the weight gradually is that the impact of misclassifi-

cation is lessened. When the data does not contain outliers, the
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outliers group would contain a small number of extreme observa-

tions, their weights are only slightly adjusted because their depth

values are not as low as outliers. Therefore WEL can estimate the

parameters accurately when data do not contain outliers. Figure

4.1 and Figure 4.2 plot the the weight function for different values

of C and J .

The weights used in (4.17) can be written as:

w̃t = WT (d(⃗ϵt; {ϵ⃗t}Tt=1)) (4.38)

wt =
w̃t∑T
t=1 w̃t

(4.39)

where equation (4.39) guarantees the summation of weights is 1.

From equation (4.38), it can be seen that the weights {wt}Tt=1

depend on innovation vectors, and also the range parameter C.

In practice C can be considered as a benchmark value, and it

is used to determine the bar of depth values under which their

corresponding weights will be adjusted. One way to calculate

C is setting it as a certain quantile of depth values. However

this involves choosing a cut off percentage artificially, and it is

difficult to find a suitable percentage when the number of outliers

is unknown. In the present chapter the cut off value C is chosen
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automatically by using k-means clustering.

Since firstly depth function transfers the outlyingnesses of multi-

dimension data into one dimension measure: depth value. And

secondly the depth value represents the distance to the center, i.e.

smaller values are more likely to be associated with outliers. K-

means clustering is used to divide the one dimension depth values

into two groups. They are outlier group and non-outlier (ordinary)

group respectively. The group with a larger valued mean contains

depth values of the ordinary innovations. And the group with the

smaller valued mean contains those of outliers. The cut off value

C is set as the largest depth of innovations in the outlier group.

And smaller weights are assigned to the log empirical likelihood

corresponding to the outlier group. Although some extreme in-

novations may be classified as outliers, through the simulation we

find the number of miss-classified outliers is small and the influ-

ences on parameter estimation are insignificant.

4.4 Simulation study on outliers

In this section the performances of WEL, ML and GMM esti-

mators are compared through simulations. Firstly the three es-
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timators are tested using clean data (data generated by vector

MEM without outliers). Secondly they are compared under three

circumstances of data contamination. In each circumstance a dif-

ferent kind of outliers is added to the clean data.

The model used to generate the clean data is a 2−dimensional

basic Vector MEM(1, 1), where the joint distribution of innova-

tions is assumed to be two 1−dimensional Gamma distributions

linked by Student’s t copula. The combination of Gamma distri-

bution and Student’s t copula is also used in Cipollini et al. [2007]

and Cipollini and Gallo [2010].

x1 = µ1,tϵ1,t

x2 = µ2,tϵ2,t

ϵ⃗t ∼ c(⃗ϵt, 0.6, 5) ·
∏

Gamma(10) (4.40)

µ1,t = ω1 + α1x1,t−1 + β1µ1,t−1

µ2,t = ω2 + α2x2,t−1 + β2µ2,t−1

Equation (4.40) is the vector MEM that generates the clean

data. In equation (4.40) c(⃗ϵt, 0.6, 5) stands for the density of Stu-
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dent’t copula, whose correlation parameter is 0.6 and degree of

freedom is 5. And Gamma(10) is 1-dimensional Gamma distri-

bution with a scale parameter 10 and a shape parameter 0.1. The

MEM parameters θ = (ω1, α1, β1, ω2, α2, β2) are set as

(0.05, 0.1, 0.85, 0.01, 0.15, 0.8).

The evaluation method used in the simulation study is mean

square error (MSE). MSE of the kth MEM parameter θ(k) ∈ θ is

defined as

MSE =
1

N

N∑
i=1

(θ̂i(k)− θ0(k))
2 (4.41)

where N is the number of repetitions, θ̂i(k) is the estimated MEM

parameter for the ith repetition and θ0(k) is the true value of θ(k).

4.4.1 Clean data

The performance of a robust estimator should be good whether

the input data contain outliers or not. Therefore before testing

the robustness of the three estimators against outliers, their per-

formances are compared using clean data.

The clean data are generated by equation (4.40) and contain

500 repetitions of 2−dimensional basic MEM (1,1) series. And in

each repetition the size of the MEM series is 2× 1000. The esti-
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mations of the three estimators are reported in Table 4.1. We can

see that when data does not contain outliers, the performances of

all the three estimators are good. The results of GMM and WEL

estimators are very close and their differences on each parameter

are all smaller than 0.0001. The similar performances between

WEL and GMM estimators are expected, because they employ

the same moment conditions and very few observations are clas-

sified as outliers by WEL estimator. By comparing the results

of ML estimator with the results of GMM and WEL estimators,

it can be seen that most of the MSE values are same except the

ones of ω1 and β1 of ML estimator are slightly larger than those

of GMM and WEL. The reason is that when both parameter ma-

trices A and B are diagonal, there are 8 MEM parameters to esti-

mate. However for ML estimator there are additional parameters

for Gamma distribution and Student’s t. Therefore ML estimator

has 12 parameters to estimate, which is about 50% more than

the number of parameters of GMM and WEL. As a result the

optimization result of ML estimator is slightly worse than those

of GMM and WEL estimators.
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4.4.2 Outliers

According to Engle [2002] the square roots of 1-dimensional MEM

input variables, {
√
x⃗t}, can be considered as variables following

a zero mean GARCH model. Therefore MEM is isomorphic to

GARCH model, and adding outliers to the clean data generated by

MEM is similar to the situation where the clean data are generated

by the GARCH model. Following Mulera and Yohai [2008] and

Chalabi and Wuertz [2010], a portion of the clean data used in

Section 4.4.1 are replaced by the true expectations multiplied by

the size of the outliers.

Since multivariate input data are used in the simulation study,

different from univariate data, outliers may only appear in some

of the margins. Also the appearances of the outliers can follow a

periodic or random pattern. These phenomena motivate us to de-

sign three kinds of additive outliers: outliers that simultaneously

appear in every margin periodically; outliers that simultaneously

appear in every margin, but the time intervals between consec-

utive outliers are random; and outliers that do not necessarily

appear in every margin simultaneously nor do they appear in a

periodic pattern. The details of the three scenarios are explained
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below.

Scenarios

The first kind of outliers is equidistant-in-time outliers, which

means outliers appear in a periodic pattern. The outliers appear

in x1,t and x2,t simultaneously following the equation:

x∗k,t =


s · µk,t if t = ti, 1 ≤ i ≤ l = [hT/100], k = 1, 2

xk,t else, k = 1, 2.

where h is the percentage of contamination, xk,t is the clean data

used in Section 4.4.1 and µk,t is its conditional expectation. t1, . . . , tl

are the time slots in which original data are replaced by outliers.

The values ti, 1 ≤ i ≤ l, are equally spaced. The size of outliers s

is chosen from the set (3, 6, 9). And the total numbers of outliers,

l, are 50 and 100. They are corresponding to the percentages h,

which are equals to 5 and 10 respectively. When there are 5%

outliers out of 1000 pairs of observations, one outlier will appear

in every 20 observations. This periodic pattern indicates they are

monthly outliers. While in the situation of h equals 10, outliers

will appear in every 10 observations. Therefore they are biweekly
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outliers.

The second kind of outliers is designed to appear simultane-

ously in both margins but time intervals between two consequent

outliers are random. They are generated according to the follow-

ing equation:

x∗k,t = xk,t ∗ (1− bt) + s · µk,t · bt, k = 1, 2

where s ∈ (3, 6, 9) is the size of outliers and bt is an i.i.d. series fol-

lowing Bernoulli distribution. The numbers of outliers are 5% and

10% out of 1000 observations. Random variables bt corresponding

to 5% and 10% outliers follow Bernoulli(0.05) distribution and

Bernoulli(0.1) distribution respectively.

The third kind of outliers is completely random outliers in

terms that the time intervals between consecutive outliers in the

same margin are random and further outliers in different mar-

gins are unrelated. They are generated according to the following

equation

x∗1,t = s · µ1,t · b1,t + x1,t ∗ (1− b1,t)

x∗2,t = s · µ2,t · b2,t + x2,t ∗ (1− b2,t)
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where s ∈ (3, 6, 9) is the size of outliers and bk,t, k = 1, 2 are

i.i.d. Bernoulli distributed variables. Two numbers of outliers

are considered. When the percentage of outliers is 5%, bk,t ∼

Bernoulli(0.05), k = 1, 2. And when the percentage of outliers is

10%, bk,t ∼ Bernoulli(0.1), k = 1, 2.

After adding outliers to the clean data, the MEM parameters

are estimated based on {x∗1,t, x∗2,t}Tt=1. Different combinations of

sizes and numbers of outliers used in the simulation are summa-

rized in Table 4.2. And each combination is repeated 500 times.

4.4.3 Simulation results

The results for data containing outliers of scenario 1 are displayed

in Table 4.3. From the results we can see that the performance

of the WEL estimator is the best among the three estimators.

Comparing to ML estimator, the MSE of WEL and GMM esti-

mators are often ten times smaller, which shows the advantage of

semi-parametric assumption of WEL and GMM. As to the com-

parison between WEL and GMM, although they use the same mo-

ment conditions, WEL estimator considerably reduces the MSE of

MEM parameters ω1, ω2, β1 and β2. For example, when the size of
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outliers is 9 and the percentage of outliers is 10%, the MSE of β2

corresponding to WEL is 0.0091. While the value corresponding

to GMM is 0.0573, which is more than 5 times larger than 0.0091.

The MSE of α1 and α2 are similar between WEL and GMM. This

is because these two parameters are less impacted by outliers and

there is little room for WEL estimator to improve.

Table 4.4 reports the results of the three estimators in scenario

2. The results show that the performances of GMM and WEL are

similar to each other and are better than ML. Comparing the re-

sults of Table 4.3 and 4.4, we can see that the parameters’ MSE of

all the three estimators are larger in scenario 1. This observation

shows that when outliers appear simultaneously in both margins,

periodic outliers have more influences on the estimations of MEM

parameters than random outliers.

Results of scenario 3 are tabulated in Table 4.5. Among the

three estimators WEL is least affected by outliers and achieves the

best performance. For instance, when data contain 10% outliers

of size 9, MSE of β2 using WEL is 0.0105 where those using ML

and GMM are 0.4642 and 0.1611 respectively. The substantial

reductions in MSE show that the impact of outliers is successfully
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decreased using WEL estimator. The results in Table 4.5 also

suggest that comparing to themselves, the performances of the

three estimators are worse when outliers are completely random

in scenario 3 than when they appear simultaneously in scenario 1

and 2. This phenomenon indicates the three estimators may not

be feasible when the outliers in different margins are independent

to each other. However if the input data are different volatility

measures of one time series, this problem is not significant because

the outliers tend to appear simultaneously.

To conclude, WEL estimator produces the smallest MSE among

all the three estimators and is more stable than the other two esti-

mators. When the size of outliers increases, the parameter estima-

tions of WEL are least affected. On the other hand, estimations

of ML and GMM differ significantly as the size becomes larger.

Another observation from the results is that the estimations are

less affected by outliers that appear simultaneously in each mar-

gin. For the simultaneously appeared outliers, periodic outliers

have more influences on parameter estimation than the outliers

that do not have a periodic pattern.
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4.5 Computations of high dimension vector MEM

In this section, the computation issues of ML, GMM and WEL

methods when the dimension K is large are discussed.

4.5.1 The influences of dimension on ML

When the dimension K increases, the first problem is the increase

of number of parameters, which is referred to "the curse of di-

mension" in literatures. For a K dimension variable, there are

2 ∗ K2 + K MEM parameters. As can be seen the number of

MEM parameters increases rapidly as K increases. Beside the

MEM parameters, different from GMM and WEL methods, ML

method also need to estimate the covariance matrix,the Gamma

parameters and the degree of freedom parameter. Therefore the

increase of the number of parameters affects ML method most

among the three methods.

In ML method, the covariance matrix of innovations are re-

quired to be estimated. And for K dimension variables, the num-

ber of parameters in covariance matrix is K(K + 1)/2. When

K = 2, there are 10 MEM parameters, which is the parameters

need to be estimated by all the three methods. And ML method
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needs to estimate the Gamma parameters and also the covariance

matrix and degree of freedom in Student’s t copula. Therefore

ML method has 14 parameters to estimate, on the other hand

GMM and WEL methods have 10 parameters to estimate. When

K = 3, there are 18 MEM parameters to estimated. The parame-

ters in the covariance matrix increase to 6. As a result, GMM and

WEL methods need to estimate 21 parameters and ML method

needs to estimate 31 parameters, which is almost 50% more than

the number of parameters in GMM and WEL methods. When

K = 4, there are 36 MEM parameters and ML method needs to

estimate 51 parameters.

In order to reduce the number of parameters, the MEM pa-

rameter ω⃗ is expressed as (I−A−B)E(X) for all three methods.

In this way in all the three methods there are only 2 ∗K2 MEM

parameters.

Generally, the larger the number of parameters, the less ac-

curate the estimations are. Thus when K is large, ML method

is expected to have the worst estimation results among the three

methods.
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4.5.2 The influences of dimension on GMM

Although the impact of the increase of parameters is not as severe

on GMM as on ML, in the optimization process GMM requires

the calculation of derivatives of MEM parameters and the weight

matrix which could cause the optimization process slow and the

estimation results inaccurate. In some cases it may even make the

optimization process crash.

The core function for GMM is the moment condition:

G⃗t(µ⃗t − 1⃗) = ∇θµ⃗
T
t (diag(µ⃗t)Σ̂diag(µ⃗t))

−1(x⃗t − µ⃗t) (4.42)

ŴT = (V(T−1
2

T∑
t=1

G⃗t(⃗ϵt − 1⃗)))−1

=
1

T

T∑
t=1

∇θµ⃗
T
t [diag(µ⃗t)Σ̂diag(µ⃗t)]

−1∇θµ⃗t(4.43)

In the above equation, θ refers to the parameter matrix A and

B. By using the equation ω⃗ = (I − A − B)E(X), ω can be rep-

resented by A and B, therefore MEM parameters only contains A

and B. G⃗t is the moment condition at time t, and it is 2 ∗K2 by

1 vector. On the right hand side of equation (4.42), ∇θµ⃗t is the

vector contains the derivatives of MEM parameters on the con-
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ditional expectation vector, and it is a 2 ∗ K2 × K matrix. As

K increases, the size of this matrix increases quickly. The rest

part of right hand side of equation (4.42), (diag(µ⃗t)Σ̂diag(µ⃗t))
−1

is a K × K matrix, the size of this matrix does not increase as

fast as the others therefore the impact is small. In conclusion, for

equation (4.42) the dimension is:

[2 ∗K2, K]× [K,K]× [K, 1] (4.44)

From equation (4.44) it can be seen the most difficult part in

this equation is calculating the derivatives of MEM parameters on

conditional expectations.

However, the most difficult part of GMM estimation is the cal-

culation of the inverse of ŴT , which is the weight matrix. Because

the object function in the GMM optimization process involves

Ŵ−1
T , the calculation of the inverse of weight matrix is essential

for GMM method. The dimension of each component in equation

(4.43) is:

[2 ∗K2, K]× [K,K]× [K, 2 ∗K2] (4.45)
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As a result of equation (4.43), the size of weight matrix is

2 ∗K2 × 2 ∗K2. Although the number of parameters to estimate

is smaller for GMM than that for ML method, when K increases,

the calculation difficulty is also increased mainly because of the

calculation of inverse weight matrix.

4.5.3 The influences of dimension on WEL

Unlike ML method, the parameters in WEL method are only the

MEM parameters. And also different from GMM method, in WEL

method the weight matrix is not required, only equation (4.42)

is involved. However, WEL is also affected by the increase of

dimension K.

For WEL method, the main difficulty lies in the calculation of

depth values for innovations. Oja depth for innovations of dimen-

sion K and length T is defined be the following equation:

d(⃗ϵ0; {ϵ⃗t}Tt=1) =

(
T

K

)−1

(1 +
∑

1≤t1≤···≤tK≤T

v(S [⃗ϵ0, ϵ⃗t1, · · · , ϵ⃗tK ]))−1

(4.46)

In the above equation, the depth value of ϵ⃗0 is calculated based
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on the data set {ϵ⃗t}Tt=1. In order to calculate the Oja depth of

ϵ⃗0, the volumes of all the K + 1 vertices simplices are calculated.

Therefore a total number of
(
T
K

)
simplices are considered. When

T or K increases, the calculation burden rapidly increases. When

K or T increases, the number of simplices increases following the

equation:

(
T

K + 1

)
=

(
T

K

)
∗ T −K

K + 1
(4.47)(

T + 1

K

)
=

(
T

K

)
∗ T + 1

T −K + 1
(4.48)

Usually K is much smaller than T, therefore T−K
K+1 is much larger

than T+1
T−K+1 . This means that the increase in K has a much larger

impact on calculation burden of Oja depth than the increase in

T.

4.5.4 Simulation

When the dimension K increases, the accuracy of all the three

methods, ML, GMM and WEL, is expected to decrease compar-

ing to the case when K is small. In this section three values of K

are chosen, and they are K=3, K=4 and K=5. And all the MEM
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parameter matrices are chosen to be diagonal. Each data set con-

tains 200 samples generated from vector MEM, and in total 100

data sets are generated.

Following this set up, when K = 3 there are 16 parameters in

ML method and 9 parameters in GMM and WEL methods. The

results are tabulated in Table 4.10. The results show that the

three methods have very similar performances. And among the

MEM parameters, the estimations on α are closest to true values.

The estimated ω are farthest to true values.

When K = 4, there are 23 parameters in ML methods and 12

parameters in WEL and GMM methods. A similar observation

can be seen from results in Table 4.11: all the three methods

estimate α better than ω and β. Another observation is that ML

method has a worse performance than WEL and GMM, whose

results are close to each other. The performance of ML method

can be explained by the increasing of parameters. Comparing to

K = 3, there are only 3 more parameters for GMM and WEL

method. On the other hand, the parameters increase from 16 to

23 for ML method.

When K = 5, there are 10 parameters for WEL and GMM
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methods and 26 parameters for ML method. The simulation re-

sults are displayed in Table 4.12. Same to the case where K = 4,

GMM and WEL methods have similar performances and both of

them outperform ML method.

In general for all the three methods the estimated parameters

are fairly close to their true values. However comparing to the

situation where K = 2 in Table 4.1, the MSE is much larger when

K increases. Although the sample length is different for the case

K = 2 and the cases K = 3, 4, 5, the differences between the

results are very large, which shows the impact of K on parameter

estimation. In practice when K is very large, certain dimension

reduction techniques may be used to reduced the dimension, for

example principle component analysis.

4.6 Compare weighted empirical likelihood and

empirical likelihood

In this section, the un-weighted version of empirical likelihood

(EL), equal weight empirical likelihood, is compared with WEL

method.

The same object function and optimization process of WEL
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can be followed in EL. The object function of EL when moment

condition in GMM method is used is:

f(p⃗, θ) = {
T∑
t=1

1

T
log(pt)|pt ≥ 0,

T∑
t=1

pt = 1,
T∑
t=1

ptG⃗t(⃗ϵt − 1⃗) = 0}

(4.49)

where p⃗ are the empirical likelihood, G⃗t are moment conditions

used in GMM method (equation (4.42)), and ϵ⃗t are innovations at

time t.

By using the Lagrange multipliers, the optimization problem

(4.49) can be transformed to:

η = 1 (4.50)

pt =
1
T

1

1+λ⃗T G⃗t(⃗ϵt−1⃗)
(4.51)

λ⃗ = argmin λ⃗∈RK+2K2 − 1
T

∑T
t=1 log(1 + λ⃗T G⃗t(⃗ϵt − 1⃗))(4.52)

where η, λ⃗ are Lagrange multipliers.

Without moment constraints,
∑T

t=1
1
T log(pt) is maximized at

pt =
1
T , t = 1, · · · , T . Therefore the equal weight EL estimation of

parameters θ is obtained by maximizing the empirical likelihood
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ratio:

θ̂EL = argmax θ∈Θ
1

T

T∑
t=1

log(
pt
1
T

)

= argmax θ∈Θ
1

T

T∑
t=1

log(
1

1 + λ⃗T G⃗t(⃗ϵt − 1⃗)
) (4.53)

The EL method is applied to the same data sets used in Section

4.4. For ease of comparison, the results are tabulated together

with WEL, ML and GMM methods in Table 4.1, Table 4.3, Table

4.4 and Table 4.5 corresponding to clean data test, outlier scenario

1, scenario 2, and scenario 3 respectively.

In clean data test, EL has a good performance. And the re-

sults are similar to the other three methods. In the outlier test,

comparing the results of EL to those of GMM when the sizes and

the numbers of outliers are small, EL method has a very similar

performance to GMM and WEL methods, especially for the esti-

mation on α. For example, when in scenario 1, the size of outliers

is 3 and the number of outliers is 50 out of 1000, the MSE of

α1 and α2 for EL are 0.0006 and 0.0018, the values for GMM

are 0.0006 and 0.0017, and the values for WEL are 0.0006 and
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0.0018.

However, when the size and number of outliers increase, EL

estimations are heavily affected by outliers. For example, in sce-

nario 3 when the size of outliers is 9 and the number of outliers

is 100 out of 1000, the MSE of β1 and β1 for EL are 0.1851 and

0.1395, the values for GMM are 0.1564 and 0.1611, and the values

for WEL are 0.1159 and 0.0105.

In general EL method have a similar performance to GMM,

and a similar performance to WEL when the size and number of

outliers are small. When there are more outliers in the data and

their sizes are larger, WEL outperforms EL. However, due to the

semi-parametric property, same to GMM, EL method outperforms

ML method in all three scenarios.

4.7 Empirical example

In this section the forecasts of the three estimators on Standard

and Poor’s composite stock index (S&P 500) are compared. An

interesting observation from Section 4.4 is that the performances

of the three estimators are better when the outliers tend to ap-

pear simultaneously in x1,t and x2,t (scenario 1 and 2). Therefore
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two closely related volatility proxies, realized volatility (RV) and

realized bipower volatility (BV), are chosen as input variables for

vector MEM. The two volatility series are calculated from 10-

minute returns of S&P 500 observed from 15 August 2005 to 16

March 2011, consisting 1386 days. And each day contains 39 in-

traday returns from 9:30 AM to 16:00 PM. Following Cipollini

et al. [2007], RV and BV are defined as:

RVt =
39∑
i=1

r2t,i (4.54)

BVt =
π

2

39∑
i=2

rt,irt,i−1 (4.55)

In equation (4.54) and (4.55) rt,i is the ith return in day t. RV

and BV are all scaled to have the same mean 1. The statistics of

BV and RV are summarized in Table 5.1. And the two series are

plotted in Figure 4.3

One observation from Table 5.1 is that the maximum values of

RV and BV are considerably larger than the mean of both series.

Also visual observations from Figure 4.3 show unusual fluctuations

occur immediately after September 2008, the month in which the
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current financial crisis begins. Both observations indicate a high

possibility that outliers exist in the two series.

Based on the observations we separate the series into two parts,

corresponding to in-sample period and out-of-sample period. The

in-sample period contains the first 1200 out of 1386 observations

(from 15 August 2005 to 21 June 2010) and the out-of-sample

period contains the rest 186 observations (from 22 June 2010 to 16

March 2011). In this way the in-sample period covers all the days

on which abnormal values are observed in Figure 4.3. Thus the

impact of outliers will be reflected on the parameter estimations

using in-sample data. Since the true values of the parameters are

unknown, out-of-sample forecasts are used to compare the impact

on different estimators.

4.7.1 Model

The filter applied on (RVt, BVt) is a two variable MEM(1,1). The

general form is defined as:
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RVt = µRV
t ∗ ϵRV

t (4.56)

BVt = µBV
t ∗ ϵBV

t (4.57)

(
µRV
t

µBV
t

)
=

(
ωRV

ωBV

)
+ A

(
RVt−1

BVt−1

)
+B

(
µRV
t−1

µBV
t−1

)
(4.58)

where A = [ai,j]2×2 ∈ R2×2,B = [bi,j]2×2 ∈ R2×2 and ϵRV
t , ϵBV

t are

i.i.d. innovations whose expectations equal 1.

Two different configurations of the filter are considered in this

example. Filter one assumes both parameter matrices A and B are

diagonal, while filter two assumes only B is diagonal. Filter one

leaves all the interactions between RV and BV into innovations.

While in filter two besides the interactions between innovations,

interdependence of BV and RV is also described by the linear re-

lationships between BVt−1 and µRV
t and the ones between RVt−1

and µBV
t as well. The assumptions for innovations (ϵRV

t , ϵBV
t )Tare

the same as the ones in Section 5.4: (ϵRV
t , ϵBV

t )T are assumed to

follow Gamma distributions linked by Student’s t copula in ML es-
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timator; WEL and GMM assume the expectations of (eRV
t , eBV

t )T

are equal to (1, 1)T .

4.7.2 Forecast comparison criteria

The forecasts using the three estimators are evaluated by Mincer-

Zarnowitz regression. Mincer-Zarnowitz regression is based on the

linear model:

(
k−1∑
j=0

V (t+j)) = c+bwel·(
k−1∑
j=0

V̂wel(t+j))+bmodel·(
k−1∑
j=0

V̂model(t+j))+et

(4.59)

Where V (t) is the value of RV or BV series at time t, V̂wel(t+j)

is the j-day ahead forecast calculated using WEL parameters and

V̂model(t + j) is the j-day ahead forecast calculated using ML or

GMM parameters. And the j-day ahead forecast is the summa-

tion of all the forecasts from day i + 1 to day i + j based on

the information up to day i. The forecast horizon k is set as

two values, 1 and 5. And {et}T−k+1
t=1 is an i.i.d. series that fol-

lows normal distribution. By restricting bmodel or bwel to zero,

the regression tests the explanation power of the regressor. The
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forecasts from different estimators can be evaluated by comparing

the coefficients of the regressors in the linear model. If the null

hypothesis bwel = 1 or bmodel = 0 cannot be rejected, namely bwel

is significantly larger than 0 or bmodel is not significantly different

from 0, then volatilities forecasted by WEL contain more infor-

mation than those forecasted by the other estimator and therefore

the WEL forecasts are superior.

4.7.3 Results

The parameter estimations are tabulated in Table 4.7. From the

results we can see that ML and GMM estimators tend to under-

estimate B and overestimate A comparing to WEL.

The regression results are summarized in Table 4.8 (in-sample

forecasts) and Table 4.9 (out-of-sample forecasts). The R square

corresponding to WEL is always the highest among all the one

variable regressions, both in-sample and out-of-sample. This re-

sult indicates that the volatility forecasts of WEL have more ex-

planation power than the ones of ML and GMM. What is more

in most two variable regressions, bwel is statistically different from

zero with 5% level of significance and more closer to 1 than bmodel.
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Also the R square does not improve much when the volatility

forecasts using ML or GMM are included in the regression. These

observations prove volatility forecasts using WEL estimator are

superior to the ones using ML and GMM.

To conclude, through the S&P 500 example we have shown

that WEL estimator can improve the parameter estimations and

forecasts when outliers exist in data and is more robust than ML

and GMM estimators.

4.8 Conclusions

In this chapter our contributions are as follows: firstly the moment

conditions are incorporated in empirical likelihood method to esti-

mate the parameters of vector MEM. Thus specifying a particular

multivariate distribution is avoided. Secondly a novel automatic

routine to detect outliers using Oja depth and k-means cluster-

ing is introduced. Finally the robustness is increased by adjusting

the weights of empirical likelihood functions corresponding to out-

liers. As a result the proposed estimator is semi-parametric and

can accommodate data containing additive outliers well.

Two estimators that have been applied on vector MEM, ML
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and GMM, are compared with WEL through a simulation study

containing three different outlier scenarios. The first scenario is

outliers simultaneously appear in each margin and the time in-

tervals between them are equal. The second scenario is outliers

simultaneously appear in each margin but the time intervals be-

tween them are random. And the last scenario is outliers appear

in a completely random pattern, which means that outliers in x1,t

and x2,t are independent to each other and the intervals between

outliers are random. Overall the results show that WEL estima-

tor can largely reduce the MSE of MEM parameters in these three

scenarios and therefore is able to estimate MEM parameters more

accurately and stably than ML and GMM estimators.

The results of the three outlier scenarios show that the per-

formance of WEL estimator is best when outliers appear simul-

taneously. This observation suggests that it is more suitable to

use WEL when input data are closely related. For example it

can be used to analyze different measures of volatility. Therefore

we apply the three estimators on RV and BV calculated from 10-

minute returns of S&P 500 composite index. The in-sample period

covers the current financial crisis, during which a lot of unusual
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fluctuations of RV and BV are observed. The parameter estima-

tions show that comparing to WEL, ML and GMM estimators

tend to underestimate MEM parameters B and overestimate A.

Mincer-Zarnowitz regressions of both in-sample and out-of-sample

forecasts show that forecasts using WEL estimator are superior to

those using the other two estimators in the presence of outliers.

This result confirms the conclusions from the simulation study.
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Figure 4.1: different C K=1 i=1

parameter ω1 α1 β1 ω2 α2 β2

MSE WEL 0.0005 0.0003 0.0011 0.0022 0.0003 0.0010

ML 0.0007 0.0003 0.0014 0.0021 0.0003 0.0010

GMM 0.0005 0.0003 0.0011 0.0022 0.0003 0.0010

EL 0.0019 0.0003 0.0025 0.0115 0.0003 0.0008

Table 4.1: clean data tests
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Figure 4.3: RV and BV of S&P 500, Aug/15/2005-Mar/16/2011
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scenarios simultaneously

appear in each

dimension or

not

time

interval

between

outliers

number of outliers size of outliers

1 simultaneous equidistant 5% 3, 6, 9

10% 3, 6, 9

2 simultaneous random 5% 3, 6, 9

10% 3, 6, 9

3 random random 5% 3, 6, 9

10% 3, 6, 9

Table 4.2: scenarios summary
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Statistics realized volatility Bipower volatility

mean 1.000 1.000

median 0.3611 0.4132

min 0.0262 0.0260

max 45.24 57.43

sd 2.662 2.394

skewness 8.646 12.10

Kurtosis 100.6 235.9

Table 4.6: RV BV statistics(Aug/15/2005-Mar/16/2011)
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percent of outliers 5 10
size of outliers s = 3 s = 6 s = 9 s = 3 s = 6 s = 9

ω1 WEL 0.0109 0.0073 0.0056 0.1936 0.0591 0.0269

ML 0.1057 0.0407 0.0194 0.1013 0.0497 0.0874

GMM 0.0164 0.0092 0.0078 0.2297 0.1175 0.1489

EL 0.0268 0.0079 0.0065 0.2408 0.0741 0.0692

α1 WEL 0.0006 0.0006 0.0013 0.0013 0.0009 0.0022

ML 0.0007 0.0014 0.0042 0.0008 0.0016 0.0069

GMM 0.0006 0.0006 0.0013 0.0014 0.0015 0.0041

EL 0.0006 0.0006 0.0013 0.0014 0.0008 0.0026

β1 WEL 0.0093 0.0055 0.0050 0.1261 0.0289 0.0128

ML 0.0782 0.0240 0.0129 0.0627 0.0211 0.0198

GMM 0.0136 0.0069 0.0064 0.1469 0.0533 0.0548

EL 0.0208 0.0060 0.0055 0.1517 0.0316 0.0256

ω2 WEL 0.0132 0.0212 0.0132 0.2079 0.1446 0.0905

ML 0.1901 0.1990 0.1538 0.4425 0.1301 1.625

GMM 0.0240 0.0268 0.0221 0.2679 0.5589 0.7038

EL 0.0265 0.0426 0.0381 0.3950 0.2773 0.3642

α2 WEL 0.0018 0.0018 0.0011 0.0029 0.0017 0.0010

ML 0.0015 0.0038 0.0099 0.0021 0.0042 0.0140

GMM 0.0017 0.0016 0.0008 0.0028 0.0022 0.0025

EL 0.0018 0.0016 0.0008 0.0030 0.0017 0.0008

β2 WEL 0.0042 0.0048 0.0026 0.0388 0.0204 0.0091

ML 0.0339 0.0301 0.0267 0.0669 0.0167 0.0832

GMM 0.0063 0.0055 0.0037 0.0486 0.0604 0.0573

EL 0.0041 0.0051 0.0027 0.0582 0.0270 0.0254

Table 4.3: MSE of parameters in scenario 1
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percent of outliers 5 10
size of outliers s = 3 s = 6 s = 9 s = 3 s = 6 s = 9

ω1 WEL 0.0018 0.0020 0.0027 0.0022 0.0026 0.0031

ML 0.1503 0.1711 0.2410 0.2201 0.0827 0.3341

GMM 0.0093 0.0027 0.0035 0.0034 0.0037 0.0031

EL 0.0095 0.0030 0.0030 0.0023 0.0028 0.8495

α1 WEL 0.0003 0.0005 0.0013 0.0003 0.0015 0.0035

ML 0.0005 0.0007 0.0012 0.0006 0.0011 0.0015

GMM 0.0003 0.0006 0.0013 0.0003 0.0015 0.0035

EL 0.0003 0.0006 0.0013 0.0003 0.0015 0.0093

β1 WEL 0.0021 0.0022 0.0032 0.0021 0.0030 0.0044

ML 0.1129 0.0945 0.1053 0.1391 0.0330 0.0892

GMM 0.0083 0.0028 0.0038 0.0030 0.0036 0.0044

EL 0.0077 0.0029 0.0034 0.0021 0.0031 0.1851

ω2 WEL 0.0031 0.0050 0.0075 0.0057 0.0074 0.0110

ML 0.1367 0.2397 0.4747 0.0898 0.1528 0.1860

GMM 0.0032 0.0089 0.0089 0.0073 0.0143 0.0109

EL 0.0168 0.0271 0.0271 0.0209 0.0292 3.1648

α2 WEL 0.0010 0.0010 0.0007 0.0009 0.0005 0.0005

ML 0.0011 0.0020 0.0028 0.0011 0.0012 0.0015

GMM 0.0010 0.0009 0.0005 0.0009 0.0005 0.0005

EL 0.0010 0.0009 0.0005 0.0009 0.0005 0.0180

β2 WEL 0.0014 0.0014 0.0013 0.0016 0.0009 0.0009

ML 0.0257 0.0334 0.0500 0.0140 0.0144 0.0131

GMM 0.0013 0.0020 0.0014 0.0019 0.0017 0.0009

EL 0.0016 0.0021 0.0012 0.0016 0.0010 0.1395

Table 4.4: MSE of parameters in scenario 2
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percent of outliers 5 10
size of outliers s = 3 s = 6 s = 9 s = 3 s = 6 s = 9

ω1 WEL 0.2792 0.4071 0.4792 0.3098 0.4275 0.5415

ML 0.3164 0.8934 1.547 0.6872 0.8581 2.522

GMM 0.3199 0.3811 0.4598 0.4691 0.4994 0.7358

EL 0.3174 0.4901 0.2881 0.4043 0.4395 0.8555

α1 WEL 0.0024 0.0072 0.0090 0.0036 0.0083 0.0099

ML 0.0038 0.0086 0.0094 0.0050 0.0083 0.0095

GMM 0.0023 0.0071 0.0084 0.0037 0.0079 0.0091

EL 0.0025 0.0074 0.0084 0.0038 0.0079 0.0094

β1 WEL 0.2058 0.1986 0.1850 0.1783 0.1347 0.1159

ML 0.2407 0.4904 0.6694 0.4238 0.3328 0.6364

GMM 0.2369 0.1824 0.1644 0.2738 0.1594 0.1564

EL 0.2336 0.2382 0.2137 0.2344 0.1384 0.1851

ω2 WEL 0.4514 1.292 1.523 0.6149 1.839 2.080

ML 0.5107 1.212 4.090 0.5450 1.785 7.697

GMM 0.5406 1.224 1.639 0.9892 2.330 3.290

EL 0.5034 1.688 2.229 1.043 2.473 3.168

α2 WEL 0.0041 0.0107 0.0142 0.0064 0.0139 0.0159

ML 0.0061 0.0157 0.0191 0.0082 0.0155 0.0185

GMM 0.0039 0.0112 0.0162 0.0063 0.0148 0.0181

EL 0.0040 0.0113 0.0164 0.0066 0.0147 0.0180

β2 WEL 0.0836 0.1512 0.1348 0.0935 0.1378 0.0105

ML 0.0932 0.1705 0.4268 0.0877 0.1607 0.4642

GMM 0.1006 0.1417 0.1303 0.1485 0.1758 0.1611

EL 0.0850 0.1808 0.1602 0.1454 0.1745 0.1395

Table 4.5: MSE of parameters in scenario 3
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parameter ωRV ωBV a1,1 a1,2 a2,1 a2,2 b1,1 b2,2 ϕ1 ϕ2 ρ τ

filter one WEL 0.0136 0.0166 0.3334 - - 0.3318 0.6542 0.6529 - - 0.8919 -
ML 0.0286 0.0352 0.4762 - - 0.4530 0.4978 0.5145 2.776 2.774 0.9266 4.666

GMM 0.0185 0.0232 0.3589 - - 0.3596 0.6243 0.6190 - - 0.8894 -
filter two WEL 0.0118 0.0169 0.2614 0.0780 −0.0280 0.3609 0.6509 0.6519 - - 0.9011 -

ML 0.0400 0.0545 0.7045 −0.1340 0.2754 0.3035 0.3913 0.3670 2.458 2.480 0.9325 12.45

GMM 0.0203 0.0305 0.3740 0.0786 0.0401 0.4206 0.5300 0.5106 - - 0.9320 -

Table 4.7: Full vector MEM: Estimated parameters of ML, GMM and WEL

parameter ω1 α1 β1 ω2 α2 β2 ω3 α3 β3

True value 0.6 0.2 0.6 0.3 0.25 0.55 0.4 0.3 0.5

Mean WEL 0.5127 0.1672 0.6566 0.3008 0.2283 0.5632 0.3455 0.2795 0.5434

ML 0.4825 0.1623 0.6663 0.2837 0.2106 0.5920 0.3707 0.2587 0.5522

GMM 0.5351 0.1584 0.6551 0.3258 0.2132 0.5619 0.4097 0.2514 0.5403

MSE WEL 0.1237 0.0087 0.0315 0.0475 0.0115 0.0425 0.0522 0.0154 0.0391

ML 0.1251 0.0052 0.0287 0.0334 0.0085 0.0333 0.0420 0.0116 0.0348

GMM 0.0901 0.0069 0.0277 0.0381 0.0097 0.0368 0.0486 0.0138 0.0375

Table 4.10: 3-dimension estimation results

parameter ω1 α1 β1 ω2 α2 β2 ω3 α3 β3 ω4 α4 β4

True value 0.6 0.2 0.6 0.3 0.25 0.55 0.4 0.3 0.5 0.5 0.35 0.45

Mean WEL 0.5109 0.1574 0.6733 0.2686 0.2138 0.6025 0.3568 0.2577 0.5637 0.4245 0.3265 0.4988

ML 0.4333 0.1667 0.6888 0.2152 0.1970 0.6597 0.3199 0.2460 0.5969 0.3727 0.2953 0.5534

GMM 0.5205 0.1565 0.6706 0.2868 0.2052 0.5990 0.3718 0.2526 0.5606 0.4685 0.3100 0.4984

MSE WEL 0.1684 0.0078 0.0341 0.0370 0.0087 0.0313 0.0650 0.0134 0.0395 0.0665 0.0129 0.0329

ML 0.1339 0.0076 0.0378 0.0272 0.0135 0.0416 0.0638 0.0142 0.0435 0.0580 0.0166 0.0384

GMM 0.1470 0.0073 0.0323 0.0313 0.0090 0.0314 0.0459 0.0133 0.0361 0.0511 0.0124 0.0312

Table 4.11: 4-dimension estimations results



CHAPTER 4. WEIGHTED EMPIRICAL LIKELIHOOD ESTIMATOR139

filter one filter two
d.v. regressor b0 bEL bmodel Adj.R2 b0 bEL bmodel Adj.R2

1-step BV WEL 0.1184 0.8915∗ - 0.4672 0.1197 0.8886∗ - 0.4642

ML 0.1536∗ - 0.8587∗ 0.4521 0.2297∗ - 0.7876∗ 0.4236

GMM 0.1197 - 0.8902∗ 0.4648 0.1605 - 0.8512∗ 0.4541

WEL+ML 0.1128 1.309∗ −0.4118∗ 0.4689 0.1211 0.7634∗ 0.1240 0.4655

WEL+GMM 0.1210∗ 2.306∗ −1.416 0.4677 0.1198 0.8863∗ 0.0022 0.4642

RV WEL 0.1069 0.9034∗ - 0.5100 0.0705 0.9347∗ - 0.5066

ML 0.1449∗ - 0.8686∗ 0.5029 0.2227∗ - 0.7968∗ 0.4918

GMM 0.1080 - 0.9024∗ 0.5096 0.1150 - 0.8945∗ 0.5013

WEL+ML 0.1101 0.7672∗ 0.1333 0.5103 0.1023 0.6360∗ 0.2699∗ 0.5113

WEL+GMM 0.1069 0.9331 −0.0296 0.5101 0.0734 0.8504∗ 0.0817 0.5067

5-step BV WEL 0.8129∗ 0.8481∗ - 0.6062 0.8217∗ 0.8452∗ - 0.6039

ML 0.8007∗ - 0.8503∗ 0.5935 1.598∗ - 0.7033∗ 0.4858

GMM 0.7582∗ - 0.8581∗ 0.6045 0.9109∗ - 0.8299∗ 0.5916

WEL+ML 0.8255∗ 0.9536∗ −0.1078 0.6064 0.7901∗ 0.7606∗ 0.0917∗ 0.6059

WEL+GMM 0.8567∗ 1.4263∗ −0.5863 0.6065 0.8161 0.6973∗ 0.1502 0.6045

RV WEL 0.8382∗ 0.8448∗ - 0.6208 0.5267∗ 0.9015∗ - 0.6309

ML 0.9497∗ - 0.8247∗ 0.5978 1.571∗ - 0.7119∗ 0.5469

GMM 0.8164∗ - 0.8488∗ 0.6167 0.7284∗ - 0.8649∗ 0.6109

WEL+ML 0.8479∗ 1.202∗ −0.3592∗ 0.6231 0.5305∗ 0.8937∗ 0.0072 0.6309

WEL+GMM 0.9632∗ 3.518∗ −2.696∗ 0.5101 0.4665∗ 1.499∗ −0.5866∗ 0.6347

Note: The ∗ symbol indicates the corresponding coefficient is statistically different from zero with 5% significance

Table 4.8: Mincer-Zarnowitz regression, in sample
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filter one filter two
d.v. regressor b0 bEL bmodel Adj.R2 b0 bEL bmodel Adj.R2

1-step BV WEL 0.0805 0.8142∗ - 0.3157 0.0943∗ 0.7985∗ - 0.3336

ML 0.1045∗ - 0.7659∗ 0.3305 0.0890 - 0.8080∗ 0.2881

GMM 0.0838 - 0.8087∗ 0.3492 0.1035∗ - 0.7772∗ 0.3174

WEL+ML 0.0726 1.716∗ −0.8869 0.3630 0.1143 1.120∗ −0.3644 0.3381

WEL+GMM 0.0801 4.016 −3.203 0.3619 0.0966 1.254∗ −0.4593 0.3362

RV WEL 0.0637 0.8106∗ - 0.3790 0.0900∗ 0.7544∗ - 0.3527

ML 0.0836∗ - 0.7600∗ 0.3560 0.0816∗ - 0.7761∗ 0.3127

GMM 0.0655∗ - 0.8067∗ 0.3757 0.1009∗ - 0.7232∗ 0.3426

WEL+ML 0.0584 1.383∗ −0.5612 0.3839 0.1003 0.9610∗ −0.2345 0.3381

WEL+GMM 0.1069 3.513 −2.703 0.5101 0.0885 1.003 −0.2440 0.3362

5-step BV WEL 0.3155∗ 0.7692∗ - 0.5538 0.3254∗ 0.7462∗ - 0.5503

ML 0.2228∗ - 0.7612∗ 0.5251 0.0650 - 0.9095∗ 0.4970

GMM 0.2467∗ - 0.7759∗ 0.5470 0.2828 - 0.7725∗ 0.5272

WEL+ML 0.4635∗ 1.440∗ −0.6882 0.5620 0.3780∗ 0.8283∗ −0.1098 0.5508

WEL+GMM 0.6540∗ 3.908∗ −3.188∗ 0.5662 0.3906∗ 1.203∗ −0.4877 0.5542

RV WEL 0.2776∗ 0.7277∗ - 0.5980 0.3137∗ 0.6654∗ - 0.5941

ML 0.2047 - 0.7186∗ 0.5661 0.1814 - 0.7668∗ 0.5310

GMM 0.2236∗ - 0.7338∗ 0.5920 0.2977∗ - 0.6635∗ 0.5714

WEL+ML 0.3837∗ 1.296∗ −0.5825 0.6058 0.3710∗ 0.7930∗ −0.1618 0.5960

WEL+GMM 0.5895∗ 4.336∗ −3.658∗ 0.6116 0.3647 1.261∗ −0.6100 0.6008

Note: The ∗ symbol indicates the corresponding coefficient is statistically different from zero with 5% significance

Table 4.9: Mincer-Zarnowitz regression, out of sample
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parameter ω1 α1 β1 ω2 α2 β2 ω3 α3 β3 ω4 α4 β4 ω4 α4 β4

True value 0.6 0.2 0.6 0.3 0.25 0.55 0.4 0.3 0.5 0.5 0.35 0.45 0.2 0.4 0.4

Mean WEL 0.4006 0.3253 0.6076 0.2667 0.3588 0.5515 0.2880 0.3789 0.5485 0.3532 0.3849 0.5426 0.1413 0.4137 0.5118

ML 0.4200 0.3332 0.5964 0.2167 0.3620 0.5642 0.2625 0.3685 0.5651 0.3434 0.3797 0.5501 0.1389 0.4128 0.5147

GMM 0.4061 0.3237 0.6081 0.2698 0.3578 0.5518 0.3156 0.3731 0.5469 0.3811 0.3819 0.5406 0.1585 0.4093 0.5082

MSE WEL 0.1285 0.0496 0.0238 0.0297 0.0363 0.0172 0.0454 0.0266 0.0176 0.0757 0.0219 0.0286 0.0117 0.0158 0.0307

ML 0.1718 0.0503 0.0288 0.0300 0.0383 0.0238 0.0657 0.0287 0.0276 0.0956 0.0234 0.0330 0.0102 0.0174 0.0338

GMM 0.1245 0.0497 0.0238 0.0278 0.0362 0.0168 0.0385 0.0263 0.0171 0.0685 0.0218 0.0283 0.0093 0.0162 0.0298

Table 4.12: 5-dimension estimations results

2 End of chapter.



Chapter 5

Forecast RV by Vector MEM

Forecasting ability on realized volatility (RV) can be increased by

decomposing RV into continuous and jump components. Despite

the jump component accounts for a considerable amount of total

variation, it only plays a minor role in forecasting RV comparing

to the continuous component. To better utilize jumps to predict

RV, in this chapter the jump component is constructed as RV di-

vided by its continuous component. Thus RV is decomposed into

two components multiplicatively. Moreover both components are

non-negative so they can be jointly modeled by vector multiplica-

tive error model (vector MEM). A clearer picture of the interac-

tions between them can be seen after filtering them through vector

MEM as the impact of noises in each component is reduced. 10-

142
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minute returns of S&P 500, Nasdaq and Dow Jones indices are

used to investigate the out-of-sample forecast ability of the vec-

tor MEM. Moreover vector MEM is compared with three other

models, all of which have been used to forecast RV before. Also

vector MEM is compared with the model which utilize logarithm

jump. The results show preferences for using vector MEM and

multiplicative decompositions to forecast RV over the other mod-

els.

5.1 Introduction

Volatility plays an important role in empirical finance and time

series analysis. One of the volatilities that has attracted much at-

tention in the past decade is realized volatility (RV). RV integrates

high frequency intra-day data into daily data and can be ana-

lyzed by discrete models. RV is first decomposed into continuous

and jump components in Barndorff-Nielsen and Shephard [2004],

where the decomposition is based on the differences between two

measures of volatility, RV and bipower volatility (BV). The con-

tinuous component is found to be more persistent and predictable

than the jump component in Andersen et al. [2007]. Therefore sep-
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arating jump component from RV will result in significant gains

in volatility forecasting. However, the jump component is sug-

gested by Andersen et al. [2007] and Huang and Tauchen [2005]

to account for a non-trivial part of total variation, which should

not be overlooked. In addition, the jump component is found to

be associated with central bank intervention and macroeconomic

news [Beine et al., 2006, Barndorff-Nielsen and Shephard, 2006].

Thus the jump component is beginning to generate more and more

research interest.

To this end, the jump component has been employed as a lag

regressor in a univariate linear regression model of RV [Andersen

et al., 2007] or a lag regressor in a multivariate model of squared

return, RV and BV [Gallo and Velucchi, 2007]. The structure

of the jump component is analyzed as well. For example, the

jump component is modeled by autoregressive model in Bollerslev

et al. [2009], two-regime Markov model in Lanne [2007] and a

combination of autoregressive conditional hazard model and log-

linear model in Andersen et al. [2011].

Although in theory the jump component can be calculated by

subtracting bipower or multipower variation measure from RV,
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for financial data with given frequency, this simple subtraction

can include a lot of noises in the jump component. In some

cases the noises will even lead to negative subtraction results. For

this reason an artificial threshold value is used to eliminate the

non-significant jumps and the negative valued jumps [Andersen

et al., 2003, Lanne, 2007, Andersen et al., 2011, Gallo and Veluc-

chi, 2007]. A side effect to use a threshold value is that it will

produce a lot of zeros in the jump series. Therefore the difficulty

of modeling jumps is increased. Further if the threshold value is

too large, small valued jumps may be ignored, and the correspond-

ing continuous components would be overestimated. On the other

hand, if the threshold value is too small, some positive noises may

be included in the jump series, and the corresponding continuous

components would be underestimated.

This phenomenon motivates us to propose a novel approach

to decompose RV: multiplicative decomposition, which is the first

contribution of this chapter. In this study the jump component

is calculated as RV divided by its continuous component, BV for

instance. The division results are called multiplicative jump (M-

jump) and are similar to the jumps used in Bollerslev et al. [2009],
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except that logarithm function is not used on M-jumps. From the

computation of M-jump it can be seen that M-jump is a non-

negative process and both negative and positive valued noises

are included in the series. Therefore multiplicative error model

(MEM) is suitable to filter the M-jump series. Lam et al. [2010]

first propose using MEM to filter the noises in the jump series

which is obtained from additive decomposition of RV. Following

Lam et al. [2010] and to further investigate the interactions be-

tween M-jump and the continuous component, vector MEM is

used in this chapter to model and forecast RV. This is the second

contribution of this chapter.

The approach used in this chapter is similar to the one used

in Lanne [2007]. Both approaches forecast RV by decomposition.

And both approaches use MEM to model the continuous compo-

nent of RV.

However there are two differences between the model used in

this chapter and the one used in Lanne [2007]. The first difference

is that vector MEM is used in this chapter rather than univariate

mixture MEM in Lanne’s paper. The inputs for vector MEM in

this chapter are the continuous components of RV and the cor-
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responding M-jumps. The second difference is that instead of

modeling jumps by two-regime Markov model as an independent

process to the continuous component, the interactions between

the continuous components and M-jumps are considered in this

chapter. Since these interactions could be masked by the noises

in the two components, in this chapter the relations between M-

jumps and continuous components are examined based on their

conditional expectations. In this way the impact of noises in both

components is reduced, and the results are expected to be more

reliable. In contrast in Lanne [2007] the continuous and jump

components are assumed to be independent to each other.

Besides the model proposed in Lanne [2007], vector MEM is

compared with two other models which have been used to forecast

RV in Andersen et al. [2003]. Both of them belong to ARFIMA

family and the forecasts are obtained directly based on past values

of RV. These three models together with vector MEM are tested

on three data sets. They are 10-minute returns of S&P 500 index,

Nasdaq index and Dow Jones index. Vector MEM is expected to

have superior performance over the other models.

The remainder of this chapter is organized as follows: Section
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5.2 gives a short introduction to jumps and vector MEM. In Sec-

tion 5.3 vector MEM and three other competing models are tested

on three data sets. The last section is conclusion and future work.

5.2 Multiplicative jump and vector MEM

In this section two kinds of multiplicative decompositions of RV

based on BV and quadpower volatility (QV) are introduced. Af-

ter the introduction to multiplicative decomposition, vector MEM

and its maximum likelihood estimator are presented.

5.2.1 Multiplicative jump

In theory, the jump series is proved to be the difference between

RV and BV [Barndorff-Nielsen and Shephard, 2004]. However it

is not always true for discrete financial data of given frequency.

First of all, subtracting BV from RV can result in negative values,

which contradicts the fact that jumps are non-negative in theory.

Secondly, a positive result of the subtraction does not necessarily

indicate the existence of jump. There are three methods in the

literature to handle these problems.

The first method proposed in Bollerslev et al. [2009] calcu-



CHAPTER 5. FORECAST RV BY VECTOR MEM 149

lates the jump series as the logarithm differences of RV and BV

(which means RV is allowed to be smaller than BV), thus the

jump component includes all the negative and positive valued

noises produced by the subtraction. The second method adopted

by Barndorff-Nielsen and Shephard [2004] and Gallo and Veluc-

chi [2007] uses zero to truncate the jump series and ignores the

negative values. Therefore the jump component is meaningful but

the process will include small positive valued noises. In the third

method [Andersen et al., 2011, Lanne, 2007], a positive threshold

value is used to eliminate the negative values and small positive

noises. And only the jumps which are statistically significant are

considered. Jumps constructed following this procedure have the

least noises among all the three methods, at the price of two draw-

backs. Firstly this method relies on an artificial value to recognize

significant jumps. And secondly by using a threshold, the possibil-

ity of mistakenly eliminating positive but relatively small valued

jumps is increased.

A common characteristic of the second and the third methods

is that a lot of zeros will be included in the jump series. In this case

comparing to the models used on RV or its continuous component,
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more complicated models are required for the jump component.

For instances, in Lanne [2007] jumps are calculated using the third

method and their distribution is assumed to switch between two

normal distributions following a Markov process. This model,

however, allows negative values where jumps can only be positive.

In Andersen et al. [2011], after computing jumps using the third

method, the series is represented by two new series. One contains

the values of jumps and the other is the durations between signif-

icant jumps. In this way extra variables are introduced into the

model.

To avoid mistakenly eliminating small valued jumps and also

to avoid zeros in the jump series, in this chapter a similar ap-

proach to the first method [Bollerslev et al., 2009] is used. Both

the negative and positive valued noises are included in the jump

series. However the difference is that the jump series is calculated

as RV divided by its continuous component, which does not in-

volve logarithm function. And this jump component is denoted

as multiplicative jump (M-jump). Comparing to Bollerslev et al.

[2009], the logarithm is removed so that the interactions between

M-jumps and continuous component have more straightforward
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explanations. And more importantly, M-jumps constructed in this

way are also positive like the continuous component. As a result

it is possible to use vector MEM to model the two components

jointly.

One important difference between additive jump and M-jump

is that in additive jump series, a non-zero value indicates the

existence of jumps. On the other hand M-jump is a series blended

with jumps and noises. Therefore it is not an indicator of the

presence of jumps.

Let Yt,j denote the jth log price of an asset at day t, where

total numbers of j, M , depends on the intra-day time interval of

log price series. And the jth return yt,j at day t is:

yt,j = Yt,j − Yt,j−1 (5.1)

Then RV and BV can be written as:

RVt =
M∑
j=1

y2t,j (5.2)

BVt = u−2
1

M−1∑
j=1

|yt,j+1||yt,j| (5.3)

where u1 = 21/2Γ(1)/Γ(1/2). The M-jump corresponding to BV
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is calculated as:

JBV,t =
RVt

BVt
(5.4)

Market microstructure noises can result in a bias for BV es-

pecially when the data frequency is high. One possible solution

to overcome this problem is using QV instead of BV. And QV is

defined as:

QVt = u−4
1
2

M−3∑
j=1

√
|yt,jyt,j+1yt,j+2yt,j+3| (5.5)

where u1/2 = 21/4Γ(3/4)/Γ(1/2).

Thus the jump series based on QV is:

JQV,t =
RVt

QVt
(5.6)

Both (BV 1/2, J
1/2
BV ) and (QV 1/2, J

1/2
QV ) are used as inputs to

vector MEM in the empirical analysis.
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5.2.2 Vector MEM for jump and continuous compo-

nents

Vector MEM is used to reduce the noises and possible serial cor-

relations in the continuous component and the corresponding M-

jumps, and further to investigate the relations between them based

on their conditional expectations. MEM separates a non-negative

process into a multiplication of two parts. The first part is the con-

ditional expectation, which is assumed to follow a GARCH model.

And the second part is a non-negative random noise vector, called

innovations. Due to the multiplicative property, the expectations

of innovations are restricted to one. Suppose x⃗t = (BV
1
2
t , J

1
2

BV,t)
T

or x⃗t = (QV
1
2
t , J

1
2

QV,t)
T , then vector MEM of order (p,q) is:

x⃗t = µ⃗tε⃗t (5.7)

µ⃗t = ω⃗ +

p∑
i=1

Aix⃗t−i +

q∑
j=1

Bjµ⃗t−1 (5.8)

where µ⃗t is the conditional expectation vector of x⃗t, ε⃗t is a non-

negative random noise process and ω⃗ ∈ R2×1, {Ai ∈ R2×2}pi=1, {Bj ∈

R2×2}qj=1 are the MEM parameters.

The MEM parameters θ⃗ = (ω⃗, {Ai}, {Bj}) in equation (5.8)
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can be estimated by Maximum Likelihood method after assigning

a parametric joint distribution to innovations. Following Cipollini

et al. [2006] the multivariate non-negative distribution is struc-

tured as margin distributions linked up by a copula function.

Gamma distribution is used as margin distribution in this chapter

for its flexibility comparing to exponential distribution. Because

the expectations of innovation are restricted to one, the scale pa-

rameter of Gamma distribution is assumed to be the inverse of

its shape parameter. And Student’s t copula is chosen because

comparing to normal copula, Student’s t copula considers the tail

dependence between margins. The combination of Gamma dis-

tribution and Student’s t copula is also used in Cipollini et al.

[2009] and Cipollini and Gallo [2010]. The cdf Fϕ and the pdf

fϕ of Gamma distribution with a shape parameter ϕ and a scale

parameter 1
ϕ can be written as:

fϕk
(εk,t) =

ϕϕk

k

Γ(ϕk)
εϕk−1
k,t exp(−ϕkεk,t) (5.9)

Fϕk
(εk,t) = Γ(ϕk;ϕkεk,t) (5.10)
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where Γ(ς, x) is the cdf of a random variable following Gamma(ς, 1)

distribution computed at x. Denote cρ,τ as two-dimensional Stu-

dent’s t copula function with correlation parameter ρ and degree

of freedom τ , then cρ,τ at (u1, u2) can be written as

cρ,τ(u1, u2) (5.11)

= |ρ|−1
2
Γ( τ+T

2 )[Γ( τ2 )]
2(1+ 1

τ (t
−1
τ (u1)

2+t−1
τ (u2)

2)−2ρt−1
τ (u1)t

−1
τ (u2))

− τ+2
2

[Γ( τ+1
2 )]2Γ( τ2 )

∏2
k=1(1+

t−1
τ (uk)

2

τ )−
τ+1
2

where tτ denotes cdf of student’s t distribution with degree of

freedom τ .

The log-likelihood function for vector MEM with Gamma dis-

tribution and Student’s copula assumptions is:

L(θ⃗, ϕ⃗, ρ, τ) =
T∑
t=1

log(fϕ1
(ε1,t)) +

T∑
t=1

log(fϕ2
(ε2,t))

+
T∑
t=1

log(cρ,τ(Fϕ1
(ε1,t), Fϕ2

(ε2,t))) (5.12)

where T is the total number of observations, ϕk is the parameter

for Gamma distribution of kth margin, and {ε1,t}Tt=1 and {ε2,t}Tt=1

are the innovations of the continuous and jump components re-
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spectively.

The MEM parameters θ⃗, Gamma distribution parameters ϕ⃗ =

(ϕ1, ϕ2), and Student’s t copula parameters (ρ, τ) can be estimated

by maximizing equation (5.12):

(
ˆ⃗
θ,

ˆ⃗
ϕ, ρ̂, τ̂) = arg max

θ⃗∈Θ,ϕ⃗∈(0,∞),ρ∈(−1,1),τ∈(0,∞)
L(θ⃗, ϕ⃗, ρ, τ) (5.13)

where Θ is the feasible region for MEM parameters discussed in

Cipollini et al. [2006].

5.3 Empirical analysis

Data used in this empirical analysis are taken from three stock

indices. Moreover three other models are chosen as competing

models against vector MEM. And the forecasts are evaluated by

two criteria, which help to analyze the relative performances of

the models from different angles. This empirical analysis services

two purposes: first, to investigate whether vector MEM and mul-

tiplicative decomposition could improve the forecasts of RV or

not; and second, to study the interactions between the continuous

component and M-jumps. In this empirical analysis, all the mod-
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els are estimated by Maximum Likelihood method. The reason

to choose ML method is that the model of Lanne [2006] used in

comparison can only be estimated by ML method. To make the

comparison fair, all the models are estimated by ML method

5.3.1 Data summary

Three data sets are used to test the forecast abilities of different

models in this section. The first data set is 10-minute returns of

Standard and Poor’s composite stock index (S&P500), spanning

from March 13th, 2006 to November 3rd 2009, which includes

858 days. The second data set is 10-minute returns of Nasdaq

composite stock index (NASDAQ) from August 16th, 2005 to Oc-

tober 23rd 2009, which includes 1000 days. And the last data set

is 10-minute returns of Dow Jones industry average index (DOW

JONES). It contains 858 days’ data from March 13th 2006 to

November 4th 2009. Returns in all data sets are recorded from

9 : 30 to 16 : 00 thus there are 39 intra-day returns for each trad-

ing day. In this analysis two different decompositions of RV 1/2,

based on BV and QV respectively, are investigated. Following An-

dersen et al. [2003], Gallo and Velucchi [2007] and Lanne [2007],
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the square root of RV, BV and QV are used in this analysis.

RV 1/2 and its decomposed components calculated from the three

data sets are depicted in Figure 5.1, 5.2 and 5.3.

From the figures of the three indices, sudden increases in RV,

BV and QV around September 2008 can be observed. September

2009 is the month in which Lehman Brothers Holding Inc. de-

clared bankruptcy, and the current crisis began. Therefore the

data of the indices can be naturally divided into two periods,

which are corresponding to the before-crisis period and the cri-

sis period. Out-of-sample forecast comparisons are conducted in

both periods. The data from the before-crisis period serves as

clean data and the data from the crisis period is the noisy data.

The jump component is expected to contribute more to the fore-

casts of RV during the crisis period.

For S&P 500, the before-crisis period is from March 13th, 2006

to August 6th 2008, which includes 558 days. And the crisis period

is from August 7th 2008 to November 3rd 2009, which includes

300 days. For NASDAQ, the before-crisis period is from August

16th, 2005 to August 4th 2008, which includes 700 days. And the

crisis period is from August 5th 2008 to October 23rd 2009, which
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includes 300 days. As for DOW JONES, the before-crisis period

contains days from March 13th 2006 to August 14th 2008, which

is 558 days in total. And the crisis period is from August 15th

2008 to November 4th 2009, which includes 300 days. The three

data sets are separated in this way so that all of them have 300

days in the crisis period.

The statistics of three indices are tabulated in Table 5.1. From

the statistics it can be seen that RV, BV and QV series pos-

sess strong autocorrelations, their Ljung-Box statistics are all very

large comparing to those of the M-jump series. For example, dur-

ing the before-crisis period the Ljung-Box statistic for BV 1/2 of

S&P 500 is 3165.8, which is more than 10 times larger than the

one for J
1/2
BV (24.16). The Ljung-Box statistics are in line with

the visual observations from Figure 5.1, 5.2 and 5.3. BV 1/2 and

QV 1/2 in the three figures show obvious clustering effects. On the

other hand the M-jumps show little clustering effects. This ob-

servation indicates that the M-jumps are less related to their past

values than BV 1/2 and QV 1/2. Therefore the diagonal elements of

parameter matrix A and B in vector MEM corresponding to the

M-jumps are expected to be smaller than the ones corresponding
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to BV 1/2 and QV 1/2.

However, by comparing the Ljung-box statistics of M-jumps

during the two periods, it can be found that the statistics during

the crisis period are significantly larger than those before the crisis.

For example before the crisis, the Ljung-box statistics of J1/2
BV and

J
1/2
QV for S&P 500 are 24.16 and 16.66 respectively. During the

crisis period, the corresponding statistics increase to 137.5 and

241.1. Therefore during the crisis period, the jump components

are less random than before. And by applying suitable filters on

jump series, they are expected to contribute more to RV forecasts.

The skewnesses of all the five series are similar. However, the

kurtoses of two jump series are higher than three volatility mea-

sures, which indicates the jump series have heavier tails and their

Gamma parameters ϕ are expected to be larger than those of BV

and QV in vector MEM.

5.3.2 Models

Vector MEM is used to forecast RV based on two different multi-

plicative decompositions, (BV 1/2, J
1/2
BV ) and (QV 1/2, J

1/2
QV ). In our
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experiments the specification of vector MEM is chosen as

x1,t = µ1,tε1,t (5.14)

µ1,t = ω1 + a1,1x1,t−1 + a1,2x2,t−1 + c1x1,t−2

+b1,1µ1,t−1 + b1,2µ2,t−1 (5.15)

x2,t = µ2,tε2,t (5.16)

µ2,t = ω2 + a2,1x1,t−1 + a2,2x2,t−1 ++c2x2,t−2

+b2,1µ1,t−1 + b2,2µ2,t−1 (5.17)

This vector MEM set the order p and q in equation (5.8) as

2 and 1 respectively. And the first order parameter matrices A1

and B1 are assumed to be full matrices whose elements are {ai,j}

and {bi,j} respectively. The second order matrix A2 is a diagonal

matrix whose diagonal element is c1 and c2.

The inputs {(x1,t, x2,t)}Tt=1 are {BV
1/2
t , J

1/2
BV,t}Tt=1 or {QV

1/2
t , J

1/2
QV,t}Tt=1,

depending on which decompositions are used on RV. And ε1,t and

ε2,t are assumed to follow Gamma distribution linked by Student’s

t copula. The scale and shape parameters of the Gamma distri-

bution are denoted as ϕk and 1/ϕk, k = 1, 2. And the correlation

parameter and degree of freedom of Student’s t copula are denoted
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as ρ and τ respectively.

Besides vector MEM, three competing models are used to fore-

cast RV. Two of them forecast RV without decomposition, they are

ARFIMA(0,d,0) and ARFIMA(5,d,0). In Andersen et al. [2003]

and Lanne [2006], these two models are proved to have a good

performance and thus they are used as benchmarks in this analy-

sis. The inputs for both ARFIMA models are logarithm RV. And

the forecasts are transformed to RV
1
2 for comparison purpose.

The third model is the mixture MEM combined with Markov

regime switching model proposed in Lanne [2007]. In Lanne’s

paper, the jump series is calculated as RV subtracted by BV and

a threshold is imposed on the results. The final jump series only

contains the significant jumps and is modeled by standard Markov

regime switching model. The continuous component, on the other

hand, is modeled by mixture MEM.

Among the models that forecast RV by additive decomposi-

tion, the third competing model is chosen for the following rea-

sons. First of all MEM is used for the continuous component

of RV in Lanne [2007], and in this chapter as well. Therefore

the differences in forecast abilities are debited to the jump com-
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ponent. Secondly, models involve variables other than RV, BV

and jumps are not considered in this analysis. Because usually

adding new variables to the model will improve the forecasts and

thus the comparisons between additive jumps and multiplicative

jumps are biased. These two reasons show that the comparisons

between the two models can reflect the different characteristics of

M-jumps and additive jumps meanwhile the influences from other

factors are reduced to minimum.

For the above reasons the model used in Lanne [2007] is chosen

as the third comparison model in this analysis. And the same

assumptions and procedures described in Lanne [2007] are fol-

lowed. First the significant jumps are selected at 0.95 confidence

level. Then the continuous component is calculated as RV 1/2

subtracted by the square roots of significant jumps. Finally the

continuous component is modeled by mixture MEM(2,1) and the

jump series is modeled by standard two regime Markov switching

model. The forecast of RV
1
2 is the summation of the forecasts

of the continuous and jump components. This model is denoted

as "mixture MEM" in the following discussions and "mix-MEM-

d" in the tables for simplicity although it also includes a Markov
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regime switching model.

Besides the three models mentioned above, the model used

in Bollerslev et al. [2009] is compared with vector MEM. The

model in Bollerslev et al. [2009] use a system of three equations

to model the return, RV and jump series. The jump series is

constructed as the logarithm of RV divided by BV. Because the

structure of jump series is very similar to M-jumps, this model

is included as a competing model to vector MEM. Two different

model specifications are considered. The exact specification used

in Bollerslev et al. [2009] and a simplified version are used in

comparison. In the simplified model the asymmetric effect in the

original model is ignored. The reason for this change is that the

vector MEM framework does not involve any asymmetric effect.

Therefore it is fair to compare the two models when neither of

them include the asymmetric effect.

5.3.3 Forecast comparison criteria

In the empirical analysis section, two criteria are selected to com-

pare the forecasts of different models: mean square error (MSE)
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and Mincer-Zarnowitz regression. MSE is defined as:

MSE =
1

T

T∑
i=1

((
k−1∑
j=0

rv(i+ j))
1
2 − (

k−1∑
j=0

r̂v(i+ j))
1
2 )2 (5.18)

where T is the total number of forecasts, k = 1, 10 is the forecast

horizon and r̂v(i+ j) is the j-step ahead out-of-sample forecast of

RV at day i.

Following Andersen et al. [2003], the second criterion is Mincer-

Zarnowitz regression. The summation of the first k-step ahead

forecasts of vector MEM is compared with those of other models

by the following linear regression:

(
k−1∑
j=0

rv(i+ j))
1
2 = c+ b1 · (

k−1∑
j=0

r̂vMEM(i+ j))
1
2

+b2 · (
k−1∑
j=0

r̂vmodel(i+ j))
1
2 + ei (5.19)

(5.20)

where r̂vMEM(i + j) is the j-step ahead forecast at day i using

vector MEM and r̂vmodel(i + j) is the j-step ahead forecast at

day i using one of the other competing models. ei is an i.i.d.

series that follows normal distribution. The explanation power of

a single regressor is represented by R square if one of b1 and b2
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is restricted to 0. When there are two regressors, the forecasts of

vector MEM are superior over those of the competing model if b1

is significant and close to 1.

5.3.4 Before-crisis period

Following Andersen et al. [2003] and Lanne [2007], 1-step ahead

and 10-step ahead out-of-sample forecasts of different models are

compared in this analysis. The forecasts of these models are com-

puted using rolling window method. And the estimation sample

size in the before-crisis period is fixed to 400. Take k-step out-

of-sample forecast for example, the first sample contains the data

from day 1 to day 400 and is used to estimate the parameters.

Then out-of-sample forecasts for the next k days (from day 401 to

day 400+k) are calculated. The second sample contains the data

from day 2 to day 401, and the parameters are re-estimated for

this sample, after which the forecasts for the next k days (from

day 402 to day 401 + k) are made using the re-estimated param-

eters. This procedure goes on until the forecast period includes

the 558th day for S&P and DOW JONES, and the 700th day for

NASDAQ. Therefore for 1-step ahead, there are 158, 300 and 158
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forecasts respectively when data used are S&P 500, NASDAQ and

DOW JONES. And for 10-step ahead there are 149, 291 and 149

forecasts.

Table 5.2 displays the parameter estimation results of vector

MEM specified in equation (5.15)-(5.17). The results, as expected,

show that the Gamma parameters ϕ of M-jumps are higher than

those of BV and QV. a2,2 and b2,2 are smaller than a1,1 and b1,1,

which confirms the supposition that jump series are less related to

their past values than BV and QV. From b1,2 of the three indices

it can be seen that the conditional expectations of jumps have

significant negative influences on those of BV and QV, which is

not found in the previous literatures using additive decomposition.

For S&P 500 the value of b1,2 is −1.541 and −5.577 respectively

when the inputs are (BV
1/2
t , J

1/2
BV,t) and (QV

1/2
t , J

1/2
QV,t). The cor-

responding values for NASDAQ are −0.5547 and −0.4684. And

for DOW JONES the values are −0.2358 and −0.1958. This neg-

ative impact of M-jumps is confirmed by the negative correlation

parameter ρ of Student’s t copula function. The values of ρ based

on BV and QV are −0.2663 and −0.3800 respectively for S&P

500. And the corresponding values are −0.3083 and −0.4360 for
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NASDAQ, and −0.2390 and −0.3328 for DOW JONES.

From the estimation results in Table 5.2 it can be found that

there are some insignificant parameters included in the model.

The values of a2,1 and b2,1 for the three indices are relatively small

comparing to the other parameters. These two parameters rep-

resent the influences of the continuous components on the condi-

tional expectations of M-jumps. The insignificance of these two

parameters shows that the interactions between M-jumps and con-

tinuous components are one direction only, i.e., the M-jumps have

influences on the continuous components but not the other way

around.

Therefore the two parameters, a2,1 and b2,1, of the model pre-

sented in equation (5.15)-(5.17) are restricted to zero. For conci-

sion the restricted vector MEM on {BV 1/2, J
1/2
BV } and {QV 1/2, J

1/2
QV }

are denoted as vMEM-BV-r and vMEM-QV-r respectively. And

by letting a2,1 and b2,1 be zero, the rest parameters are re-estimated.

The estimation results are tabulated in Table 5.3. Comparing to

the unrestricted model, the remaining parameters are hardly af-

fected by the restriction.

Using the estimated parameters of different models, the residu-
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als of RV are calculated. The residual at day t is calculated as the

true RV at day t minus the one step ahead prediction of different

models. And the Ljung box statistics of residuals are tabulated in

Table 5.8. The Ljung box statistics of RV for all three data sets are

larger than 1000. And the Ljung box statistic of RV for NASDAQ

before the crisis is as large as 3058.7. The Ljung box statistics

of residuals, however, are generally very small. The Ljung box

statistic of residuals for NASDAQ before the crisis, for example,

is only 21.11 if the model is v-MEM-BV. These results show that

the residuals are less self correlated and thus it is reasonable to

apply these models on RV.

The MSE of 1-step ahead and 10-step ahead out-of-sample fore-

casts before the crisis are tabulated in Table 5.4. For both 1-step

ahead and 10-step ahead forecasts, vMEM-BV-r and vMEM-QV-

r achieve the lowest MSE values, with the exception of DOW

JONES. However the differences between MSE values of mixture

MEM and vector MEM on DOW JONES are very small. For 1-

step ahead forecast the MSE values of models that utilize decom-

position are slightly lower than the ones of ARFIMA models. And

for 10-step ahead forecast the advantages of vector MEM and mix-



CHAPTER 5. FORECAST RV BY VECTOR MEM 170

ture MEM over ARFIMA are more obvious. Consider the case of

vMEM-QV-r, in 1-step ahead forecasts of S&P 500, vMEM-QV-r

reduces the MSE by 6.3%, 4.5% and 0.14% respectively, com-

paring to ARFIMA(5,d,0), ARFIMA(0,d,0) and mixture MEM,

and 11.2%, 10.6% and 1.8% in 10-step ahead forecasts. When

the data used is NASDAQ, vMEM-QV-r reduces the MSE of the

1-step ahead forecasts by 8.6%, 6.7% and 1.1% comparing to

ARFIMA(5,d,0), ARFIMA(0,d,0) and mixture MEM respectively,

and 18.2% and 13.9% in the 10-step ahead forecasts comparing

to ARFIMA(5,d,0) and ARFIMA(0,d,0). For DOW JONES data,

vMEM-QV-r reduces the MSE by 5.0% and 5.4% comparing to

ARFIMA(5,d,0) and ARFIMA(0,d,0) in 1-step ahead forecasts,

and 21.7% and 24.8% in 10-step ahead forecasts.

The Mincer-Zarnowitz regression results in Table 5.5 confirm

the conclusion obtained from MSE. It shows that vector MEM

has the best performance for the following two reasons.

First when it comes to the values of R square in single variable

regressions, vMEM-BV-r and vMEM-QV-r has achieved the high-

est values for S&P 500 and DOW JONES. Take vMEM-QV-r for

example, in the 1-step ahead regressions of S&P 500, the R square
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value of vMEM-QV-r is 0.4393, which is 13.1%, 7.3%, and 4.4%

higher than mixture MEM, ARFIMA(0,d,0) and ARFIMA(5,d,0)

respectively. And for 10-step ahead forecasts the improvements of

vMEM-QV-r on R square are 24.4%, 23.8%, and 28.7%. The cor-

responding improvements of vMEM-QV-r on DOW JONES are

7.1%, 16.6% and 18.3% for 1-step ahead forecasts, and 11.3%,

73.4% and 63.2% for 10-step ahead forecasts.

Secondly besides R square, the coefficients of the regression

also indicate vector MEM has superior forecast ability, especially

for 10-step ahead forecasts. In most of the the two variable re-

gressions, the coefficients of of vMEM-BV-r and vMEM-QV-r are

significant and closer to 1.

The results from regressions also show that the differences be-

tween MSE values of vector MEM and mixture MEM for DOW

JONES are insignificant. Consider the case of vMEM-QV-r, its R

square values of 1-step ahead and 10-step ahead forecasts are 7.1%

and 11.3% larger than the values of mixture MEM. Moreover in

the two variable regressions, the coefficients of vMEM-QV-r are

0.4707 and 0.5023 for 1-step ahead and 10-step ahead forecasts,

both of which are significant. On the contrary, the coefficients of
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mixture MEM are 0.3196 and 0.0574, which are insignificant and

much smaller than the ones of vMEM-QV-r .

The regression results confirm the conclusions from MSE, that

vector MEM achieves the best performance among all the com-

peting models, and also models that utilize decomposition of RV

are better than two ARFIMA models for all the data sets.

5.3.5 Crisis period

Similar to the before-crisis period experiment, in this section the

1-step ahead and 10-step ahead out-of-sample forecasts of different

models are compared using rolling window method. The in-sample

period is set as all the available days in the before-crisis period.

For S&P 500, the in-sample period is from March 13th 2006 to

August 6th 2008, containing 558 days. For NASDAQ index the

in-sample period is from August 16th 2005 to August 4th 2008,

containing 700 days. And for DOW JONES index the in-sample

period is from March 13th 2006 to August 6th 2008, and same as

S&P index, it also containing 558 days. The out-of sample periods

of all the indices contain 300 days, spanning from August 6th

2008 to November 3rd 2009 for S&P 500, from August 5th 2008
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to October 23rd 2009 for NASDAQ and from August 15th 2008

to November 4th 2009 for DOW JONES respectively. The out-

of-sample period is noisier than the before-crisis period, therefore

it is expected that the differences in forecast ability will be larger

between vector MEM and the three competing models.

Following the configuration of in-sample and out-of-sample pe-

riods, the estimation sample sizes of S&P 500 and DOW JONES

are fixed to 558 and the one for NASDAQ is fixed to 700. Because

the out-of-sample period contains 300 days, for 1-step ahead there

are 300 forecasts and for 10-step ahead there are 291 forecasts.

The estimated parameters during the crisis period are provided

in the lower part of Table 5.3. As expected, the autocorrelations of

M-jumps during the crisis are higher than those before the crisis.

Because a2,2 are generally larger during the crisis period compar-

ing to the ones before the crisis. For example, a2,2 of vMEM-QV-r

on S&P 500 during the crisis is 0.1911. And the corresponding

value before the crisis is 0.0439. The negative impact of M-jumps

on the continuous components still exists and can be observed

from the negative values of b1,2 and ρ. The rest parameters do

not change much before and during the crisis.
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And the Ljung box statistics of residuals during the crisis pe-

riod are tabulated in Table 5.8. Similar to the results before the

crisis, the Ljung box statistics of residuals are significantly smaller

than those of RV for all three data sets. These results again show

that the residuals are less self correlated and thus it is reasonable

to apply these models on RV.

The MSE of forecasts are summarized in Table 5.4 under the

crisis columns. Vector MEM has the lowest MSE value for all the

data sets, with the exception of DOW JONES. In the 1-step ahead

forecasts the MSE values of the competing models are only slightly

larger than vector MEM. In 10-step ahead forecasts the differences

in MSE are larger. Moreover comparing to the MSE of 10-step

ahead forecasts before the crisis, the advantages of vector MEM

over the other three models in 10-step ahead forecasts during the

crisis period are even more obvious. Take vMEM-BV-r for exam-

ple, for S&P 500 the MSE reductions of vMEM-BV-r are 31.4%,

28.5% and 14.9% comparing to ARFIMA(0,d,0), ARFIMA(5,d,0)

and mix-MEM-d. While the largest reduction percentage of 10-

step ahead forecasts before the crisis is only 11.2%. When the

data is NASDAQ, vMEM-BV-r improves the MSE values of 10-
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step ahead forecast by 32.3%, 27.9% and 10.0% comparing to

ARFIMA(0,d,0), ARFIMA(5,d,0) and mix-MEM-d. As far as

DOW JONES is concerned, the MSE value of vMEM-BV-r is

almost the same as the one of mixture MEM in 10-step ahead

forecasts. And the reductions comparing to ARFIMA(0,d,0) and

ARFIMA(5,d,0) are 36.2% and 32.4% respectively. On the other

hand the reductions before the crisis are only 24.8% and 21.7%.

The Mincer-Zarnowitz regression results are summarized in Ta-

ble 5.6. And the results show that for 10-step ahead forecasts,

vMEM-BV-r and vMEM-QV-r dominate the other three mod-

els. All the coefficients of vMEM-BV-r and vMEM-QV-r in the

two variable regressions are not only significant but also closer

to 1 comparing to the other models’ coefficients. Further results

from single variable regressions show that the R-square values of

vMEM-BV-r and vMEM-QV-r are highest in the 10-step ahead

forecast regressions. Again take vMEM-BV-r for example and

consider 10-step ahead forecasts only, the R-square of single vari-

able regression on S&P 500 is 0.6457, which is 13.9%, 13.7% and

11.8% larger than the ones of mixture MEM, ARFIMA(0,d,0)

and ARFIMA(5,d,0) respectively. In the case of NASDAQ index,
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the R square of vMEM-BV-r is larger by 6.8%, 15.3% and 10.0%.

And the R-square improvements are 0.35%, 15.1% and 18.8% cor-

respondingly for the DOW JONES case. The forecast ability of

vector MEM is superior to that of mixture MEM for S&P 500 and

NASDAQ indices. For DOW JONES index, the results show that

vector MEM and mixture MEM are comparable, and the perfor-

mance of vector MEM is slightly better than mixture MEM by

having larger coefficients in regressions. However neither of the

coefficients are significant.

5.3.6 Comparing M-jump and log M-jump

In this section the model used in Bollerslev et al. [2009] is com-

pared with M-jump.

Model in Bollerslev et al. [2009]

The model used in Bollerslev et al. [2009] are related to the

work in this chapter because both works use ratio as a proxy

for jumps. M-jump defined in this work is RV/BV , while the

jump defined in Bollerslev et al. [2009] is log(RV/BV ). However,

the models that analyze jumps are different. The model used in

Bollerslev et al. [2009] is
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rt = γ0 +
d∑

j=1

γjrt−j +
√

RVtϵt (5.21)

log(BVt) = α0 + αd log(BVt−1) + αw(log(BV ))t−1:t−5

+αm(log(BV ))t−22:t−1 + θ1
|rt−1|√
RVt−1

+ θ2I[rt−1 > 0]

+θ3
|rt−1|√
RVt−1

I[rt−1 < 0] +
√

ht(ut + g(ϵt)) (5.22)

ht = ω +

q∑
j=1

αj(
√

ht−j(ut−j + g(ϵt−j)))
2

+

p∑
j=1

βjht−j (5.23)

log(
RVt

BVt
) = δ0 +

n∑
j=1

δj log(
RVt−j

BVt−j
) + ϕ1

|rt−1|√
RVt−1

+ϕ2I[rt−1 > 0] + ϕ3
|rt−1|√
RVt−1

I[rt−1 > 0]

+(vt +m(ut) + k(ϵt)) (5.24)

(5.25)

In equation (5.22), rt, is the daily return, and it is modeled by

an AR model. The error term ϵt is assumed to follow a standard

Gaussian distribution, i.e. ϵt ∼ N(0, 1).

Equation (5.23) and (5.24) are used to model the dynamics of

log(BVt). The mean of log(BVt) is assumed to follow HAR-RV
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model. HAR-RV model utilize the past several days information

as a whole. The symbol (log(BV ))t+1−k:t is the average of past k

days values of log(BV ). The definition is:

(log(BV ))t+1−k:t =
1

k

k∑
j=1

log(BV )t−j (5.26)

The error term in equation (5.23), ut, is assumed to follow

a mixture distribution of two Gaussian distributions, in detail:

ut ∼ N(0, 1) with probability (1 − pu) and ut ∼ N(µu, σ
2
u) with

probability pu. The function g(·) in equation (5.23) is assumed to

be g(x) = g1x+g2x
2. This function is used to depict the nonlinear

relationships between error terms in equation (5.22) and (5.23).

The asymmetric relation between BV and return is described

by three terms: |rt−1|√
RVt−1

, I[rt−1 > 0] and |rt−1|√
RVt−1

I[rt−1 < 0].

The volatility of log(BVt), ht, is assumed to follow a GARCH

type model. Originally, the equation also contains the term λjBVt−j

in Bollerslev et al. [2009]. However, this term does not appear in

any tables of results in Bollerslev et al. [2009], therefore I assume

the author did not include the terms in the model.

The last equation, equation (5.25) is used to capture the self

correlations existed in jump series. The same terms used in equa-
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tion (5.23) to depict asymmetric effect are used in equation (5.25).

The functions m(·) and k(·) are used to describe the nonlinear re-

lationships between the error term of equation (5.25) and those

in equation (5.22) and equation (5.23). Same to g(·), they are

defined as m(x) = m1x+m2x
2 and k(x) = k1x+ k2x

2.

The error term in equation (5.25), vt, is assumed to follow a

mixture distribution of Normal Inverse Gaussian (NIG) distribu-

tion and Inverse Gaussian (IG) distribution, i.e. vt ∼ NIG(αNIG, βNIG, δNIG)

with probability (1− pv) and vt ∼ IG(λIG, µIG) with probability

(1− pv).

After applying the model to S&P future data, in Bollerslev

et al. [2009] the model is restricted to the following model:
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rt = γ0 + γ2rt−2 + γ3rt−3 +
√

RVtϵt (5.27)

log(BVt) = α0 + αd log(BVt−1) + αw(log(BV ))t−1:t−5

+αm(log(BV ))t−22:t−1 + θ1
|rt−1|√
RVt−1

+θ3
|rt−1|√
RVt−1

I[rt−1 < 0]

+
√
ht(ut + g(ϵt)) (5.28)

ht = ω + α1(
√

ht−1(ut−1 + g(ϵt−1)))
2

+β1ht−1 (5.29)

log(
RVt

BVt
) = δ0 + δ5 log(

RVt−5

BVt−5
) + ϕ1

|rt−1|√
RVt−1

+(vt +m(ut) + k(ϵt)) (5.30)

g(ϵt) = g1ϵt + g2ϵ
2
t (5.31)

k(ϵt) = k1ϵt (5.32)

m(ut) = m1ut +m2u
2
t (5.33)

(5.34)

Model used in comparison with vMEM and M-jump

Because the framework of vector MEM in this chapter does

not involve the asymmetric effects, and also does not include the
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return variable, another version of the model is also used in this

comparison. It is the modified version of the model used in Boller-

slev et al. [2009]. As a result, two models are compared with vec-

tor MEM in this chapter. One is the model described by equation

(5.28) - (5.34). And this model is denoted as "Bollerslev09" in

the tables and the discussions below for concision. The other one

is described by the following equations:

log(BVt) = α0 + αd log(BVt−1) + αw(log(BV ))t−1:t−5

+αm(log(BV ))t−22:t−1 +
√

ht(ut) (5.35)

ht = ω + α1(
√

ht−1ut−1)
2 + β1ht−1 (5.36)

log(
RVt

BVt
) = δ0 + δ5 log(

RVt−5

BVt−5
) + (vt +m(ut)) (5.37)

m(ut) = m1ut +m2u
2
t (5.38)

(5.39)

Because this model does not involve the return variable and

also it does not consider asymmetric effect. It is denoted as sim-

plified version of the original model in Bollerslev et al. [2009]. The

notation "Bollerslev09s" is used to refer to this model.

Compare two models on S&P 500 data
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10 minute returns of S&P 500 index data are used to compare

the forecast abilities of vector MEM and Bollerslev09 models. The

data range from March 13th, 2006 to August 6th 2008, which

includes 558 days. And same to the experiments in the previous

chapters, the in-sample period is the first 400 days and the out-

of sample period is the rest 158 days. Rolling window method

is used for both models and their forecast results are compared

based on MSE and Mincer-Zarnowitz regression. The parameter

estimation results are summarized in Table 5.7.

For 1-step ahead forecasts, the MSE of Bollerslev09s and Boller-

slev09 are 1.171 and 1.486 respectively. And the MSE of 10-step

ahead for the two models are 23.88 and 29.58. The 1-step ahead

MSE of both Bollerslev models are slightly larger than those of

vector MEM (0.8590 and 0.8673). And the 10-step ahead MSE

of both models are very large comparing to the values of vector

MEM (8.403 and 8.218).

The Mincer-Zarnowitz regression results are tabulated in Table

5.9. The regression results of both 1-step ahead forecast and 10-

step ahead forecasts show that vector MEM outperforms Boller-

slev09.
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The performance of Bollerslev09 model is show to be worse

than that of vector MEM. There are two possible reasons. The

first reason is that the number of parameters of Bollerslev09 is

too large. This increases the optimization difficulty. Although in

the experiments all the optimizations converge, the accuracy is

decreased when the number of parameters is too large. Boller-

slev09s has 21 parameters and Bollerslev09 has 30 parameters. In

comparison the vector MEM has only 12 parameters. The second

reason is that the data used in this study and the data used in

Bollerslev et al. [2009] are different. The data used in this thesis is

S&P 500 stock index data while the data used in Bollerslev et al.

[2009] is S&P future index. Although Bollerslev09 model can pro-

vide a good fit on S&P future index data, it is possible that the

model does not accommodate S&P 500 stock index data well.

5.3.7 Conclusion on empirical analysis

In this empirical analysis three stock indices, S&P 500, NASDAQ

and DOW JONES are used to test the performances of various

models. Five observations from the results of parameter estima-

tion and different criteria are in order.
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First vector MEM and mixture MEM show their advantages of

forecasting RV by decomposition, either additively or multiplica-

tively, over ARFIMA models. This result is in line with those in

Lanne [2007], where mixture MEM is shown to outperform the

models that do not decompose RV.

The second observation is that the differences in forecast power

between ARFIMA models and models that rely on decomposition

become larger as the forecast horizon becomes longer. This ob-

servation indicates that single jump, additive jump or M-jump,

is hard to forecast and contains little information. Therefore the

improvements of using jumps in 1-step ahead forecasts are not

obvious. However when jumps of the past few days are considered

together, the improvements on forecasts are significant.

The third observation is that the differences in forecast power

between vector MEM and the competing models become larger

as the data become noisier. The data collected during the crisis

period are more volatile than the data in the before-crisis period.

The experiments show that the advantages of vector MEM and

multiplicative decomposition are expanded during the crisis pe-

riod. Also the jump component exhibit higher series correlations
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during the crisis period. This observation indicates that the jump

component plays a more important role when realized volatility

contains more noises.

From the parameter estimations on two data sets, it can be

seen that M-jumps have significant negative impacts on BV and

QV series. This phenomenon is the fourth observation. In pre-

vious researches where RV is decomposed into two additive com-

ponents, the continuous component is assumed to be independent

to jumps. But by decomposing RV into two components multi-

plicatively and filtering them through vector MEM to reduce the

impact of noises, the conditional expectations of the continuous

component are found to be highly related to those of M-jumps.

Last but not least, for long horizon forecasting, the predictive

power of using the multiplicative decomposition and vector MEM

is shown to be superior than modeling RV as a whole like ARFIMA

models or using additive decompositions like mixture MEM.

5.4 Conclusion

In this chapter we propose decomposing RV multiplivatively and

modeling the two components jointly by vector MEM. M-jump
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series is constructed as RV divided by the continuous compo-

nent, therefore it is a non-negative process. And M-jump series is

able to be modeled together with the continuous component us-

ing vector MEM. Moreover in this way the problems of choosing

a specific threshold to rule out the noises in jumps and produc-

ing zeros in jumps are avoided. In the empirical analysis section,

vector MEM based on (BV 1/2, J
1/2
BV ) and (QV 1/2, J

1/2
QV ) are com-

pared with ARFIMA(0,d,0), ARFIMA(5,d,0) and mixture MEM

on three data sets: S&P 500, NASDAQ and DOW JONES. And

vector MEM is found to have superior forecast ability, especially

when the forecast horizon is long.

From the parameter estimation results of the three indices we

can see that although M-jumps are less related to past values of

themselves comparing to the continuous component, the impact

of M-jumps on continuous component of RV is significant and

negative, which is not found in previous research where RV is

decomposed additionally.

Two evaluation criteria, MSE and Mincer-Zarnowitz regression,

are used to compare the forecasts of different models. The re-

sults show that first of all the forecast ability is increased by
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forecasting RV through its decompositions. Both models which

utilize the decomposition, vector MEM and mixture MEM, have

better performances than ARFIMA models. Secondly the im-

provements of decomposition in 10-step ahead forecasts are more

obvious than those in 1-step ahead forecasts. This phenomenon

indicates that to better utilize the jump component in forecasting

RV, consecutive jumps rather than single jumps should be consid-

ered. Thirdly improvements of vector MEM over the other three

models are larger during the crisis period, which indicates that M-

jumps contribute more to RV forecasts when data are noisy. Lastly

for long horizon forecasting, little evidence is found in the MSE

and regression results against the conclusion that vector MEM on

(BV 1/2, J
1/2
BV ) and (QV 1/2, J

1/2
QV ) are superior to the other models

for all the data sets.
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Figure 5.1: S&P 500 (Mar/13/2006-Nov/03/2009)
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Figure 5.2: Nasdaq (Aug/16/2005-Oct/23/2009)
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Before-crisis period Crisis period
Statistics RV 1/2 BV 1/2 J

1/2
BV QV 1/2 J

1/2
QV RV 1/2 BV 1/2 J

1/2
BV QV 1/2 J

1/2
QV

S&P 500
mean 2.201 2.069 1.076 2.000 1.131 4.769 4.316 1.108 4.046 1.235

median 1.867 1.775 1.037 1.689 1.079 3.734 3.543 1.043 3.303 1.099

min 0.5962 0.5235 0.8667 0.4699 0.8215 1.323 1.265 0.8790 1.226 0.8120

max 8.993 9.336 2.124 9.613 3.714 24.79 24.62 4.312 26.34 6.800

sd 1.127 1.083 0.1534 1.092 0.2344 3.109 2.708 0.2814 2.735 0.5765

skewness 1.717 1.826 2.755 1.944 4.435 2.340 2.660 6.694 3.125 5.748

Kurtosis 4.488 5.123 10.73 6.031 37.10 8.388 12.07 62.81 16.59 41.61

Ljung-box(20) 3264.8 3165.8 24.16 3022.8 16.66 1874.2 1695.1 137.5 1455.1 241.1

NASDAQ
mean 2.478 2.361 1.062 2.272 1.120 4.857 4.669 1.049 4.486 1.113

median 2.191 2.054 1.035 1.972 1.082 4.108 3.868 1.033 3.636 1.077

min 0.5773 0.4292 0.8623 0.3534 0.8144 1.261 1.179 0.8876 0.9009 0.8507

max 9.059 8.863 1.806 9.253 2.324 19.61 19.97 1.735 21.24 2.940

sd 1.126 1.106 0.1207 1.112 0.1870 2.937 2.843 0.1031 2.847 0.1935

skewness 1.550 1.521 1.866 1.590 1.977 2.152 2.117 2.293 2.204 3.753

Kurtosis 3.197 3.056 5.836 3.629 6.871 5.894 5.892 9.470 6.856 26.92

Ljung-box(20) 3058.7 2898.3 15.80 2772.0 16.87 1765.4 1723.0 28.610 1627.8 23.33

DOW JONES
mean 2.404 2.108 1.169 1.999 1.249 4.917 4.582 1.071 4.392 1.141

median 2.088 1.846 1.087 1.720 1.152 3.909 3.685 1.034 3.488 1.080

min 0.5699 0.4751 0.8910 0.4876 0.8431 1.400 1.391 0.8874 1.225 0.8290

max 10.53 8.783 2.489 8.500 4.204 31.27 25.04 2.167 22.52 2.632

sd 1.249 1.102 0.3948 1.070 0.4769 3.572 3.115 0.1494 3.067 0.2280

skewness 1.753 1.641 13.87 1.751 11.26 2.868 2.389 3.476 2.277 2.824

Kurtosis 5.853 4.492 262.6 5.123 189.6 12.54 8.342 18.43 7.142 11.98

Ljung-box(20) 2055.4 2319.9 8.793 2163.5 8.588 1896.7 2027.3 88.84 2043.6 46.68

Table 5.1: Data statistics
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S&P 500 Nasdaq DOW JONES
BV QV BV QV BV QV

mean sd mean sd mean sd mean sd mean sd mean sd

ω1 1.579 0.6520 2.928 1.253 0.6208 0.1923 0.5753 0.1719 0.5327 0.1723 0.4787 0.1593

ω2 0.9958 0.0890 0.5098 0.0550 1.034 0.0731 1.113 0.0954 1.238 0.0307 1.344 0.0512

a1,1 0.5304 0.0526 0.5337 0.0683 0.3815 0.0778 0.3807 0.0781 0.3223 0.2116 0.3320 0.2222

a1,2 0.1991 0.0952 0.8223 0.1879 0.0472 0.0407 0.0240 0.0210 0.0150 0.0143 0.0116 0.0111

a2,1 −0.0021 0.0122 −0.0029 0.0043 −0.0472 0.0193 −0.0725 0.0399 −0.0764 0.0733 −0.0705 0.0692

a2,2 0.0102 0.0221 0.0101 0.0194 0.0149 0.0159 0.1072 0.0143 0.0475 0.0499 0.0484 0.0492

b1,1 0.5437 0.2326 0.6165 0.2181 0.6326 0.2044 0.6714 0.1769 0.8137 0.0554 0.8077 0.0695

b1,2 −1.541 0.6591 −5.577 2.262 −0.5547 0.2168 −0.4684 0.1722 −0.2358 0.2466 −0.1958 0.2063

b2,1 0.0032 0.0212 0.0015 0.0067 −0.0107 0.0590 −0.0127 0.0817 0.0511 0.0560 0.0357 0.0539

b2,2 0.0695 0.0934 0.0952 0.1108 0.0690 0.0657 0.0910 0.0837 0.4169 0.4131 0.4375 0.3970

ϕ1 10.09 0.3687 9.209 0.3360 11.20 0.9555 10.02 0.7734 6.625 3.711 6.438 3.542

ϕ2 50.59 2.073 28.92 2.551 79.05 3.543 37.13 1.198 11.41 8.259 8.666 5.665

ρ −0.2663 0.0213 −0.3800 0.0196 −0.3083 0.0213 −0.4360 0.0174 −0.2390 0.0109 −0.3328 0.0182

τ 248.5 111.0 277.98 103.1 128.1 130.4 195.5 128.3 41.88 42.77 160.0 154.3

c1 −0.1355 0.2072 −0.2085 0.1977 −0.1362 0.1737 −0.1708 0.1645 −0.1870 0.1833 −0.1919 0.1919

c2 −0.0012 0.0344 0.0553 0.0419 −0.0210 0.0283 −0.0442 0.0179 −0.0007 0.0048 0.0037 0.0094

Table 5.2: Estimated parameters of vector MEM before the crisis
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S&P 500 NASDAQ DOW JONES
BV QV BV QV BV QV

mean sd mean sd mean sd mean sd mean sd mean sd
Before-crisis period
ω1 1.702 0.5971 5.506 1.999 0.7843 0.1574 0.7183 0.1358 0.4054 0.1734 0.3775 0.1367

ω2 0.9509 0.0757 0.9508 0.1221 1.015 0.0547 1.085 0.0776 0.7323 0.1331 0.7511 0.0945

a1,1 0.5250 0.0357 0.5124 0.0638 0.3540 0.0592 0.3434 0.0558 0.4152 0.1037 0.4600 0.0769

a1,2 0.2208 0.0347 0.7402 0.1974 0.0463 0.0315 0.0231 0.0157 0.0350 0.0073 0.0268 0.0056

a2,1 − − − − − − − − − − − −
a2,2 0.0435 0.0087 0.0439 0.0206 0.0054 0.0077 0.0012 0.0045 0.0443 0.0168 0.0409 0.0108

b1,1 0.7209 0.0955 0.6446 0.1557 0.6180 0.1831 0.6631 0.1533 0.6669 0.0495 0.6887 0.0318

b1,2 −1.734 0.5372 −5.525 1.832 −0.5639 0.1981 −0.4848 0.1536 −0.3547 0.1451 −0.3070 0.1094

b2,1 − − − − − − − − − − − −
b2,2 0.0807 0.0695 0.1010 0.1038 0.0479 0.0582 0.0641 0.0690 0.3747 0.1147 0.3878 0.0703

ϕ1 10.29 0.1866 9.286 0.3554 11.24 0.9007 10.02 0.7456 9.548 0.6832 9.298 0.5882

ϕ2 50.57 1.241 28.77 2.214 77.81 3.173 36.39 0.9897 18.04 1.308 13.22 0.7996

ρ −0.2660 0.0097 −0.3810 0.0154 −0.3128 0.0156 −0.4408 0.0127 −0.2025 0.0682 −0.3338 0.0374

τ 116.5 82.01 260.3 111.7 37.68 18.92 96.20 81.62 13.53 5.087 14.61 4.632

c1 −0.2783 0.1021 −0.2019 0.1520 −0.0852 0.1406 −0.1065 0.1158 −0.1251 0.0756 −0.1871 0.0678

c2 −0.0027 0.0146 0.0155 0.0194 −0.0085 0.0304 −0.0316 0.0156 −0.0380 0.0215 −0.0223 0.0166

Crisis period
ω1 1.246 0.5422 0.9401 0.5212 1.905 0.4649 1.799 0.4000 0.2412 0.1529 0.2549 0.1546

ω2 2.846 0.4037 2.573 0.5064 3.204 0.2401 3.312 0.1970 0.4882 0.1475 0.4970 0.1375

a1,1 0.5465 0.0792 0.5668 0.0959 0.4256 0.0441 0.4160 0.0359 0.2225 0.0957 0.2335 0.1069

a1,2 0.1306 0.0314 0.1086 0.0287 0.1202 0.0298 0.0901 0.0250 0.0275 0.0348 0.0232 0.0220

a2,1 − − − − − − − − − − − −
a2,2 0.0107 0.0601 0.1911 0.1034 0.0195 0.0172 0.0400 0.0216 0.0797 0.0165 0.0766 0.0167

b1,1 0.7530 0.0353 0.7694 0.0713 0.7774 0.0255 0.7872 0.0156 0.7278 0.0513 0.7417 0.0411

b1,2 −0.4773 0.1591 −0.3525 0.1451 −0.6773 0.1556 −0.5896 0.1269 −0.2291 0.1238 −0.2048 0.1188

b2,1 − − − − − − − − − − − −
b2,2 0.0413 0.1232 0.0676 0.1430 0.0292 0.0793 0.0446 0.0479 0.5428 0.1453 0.5719 0.1259

ϕ1 10.91 0.9235 9.579 0.7644 11.16 0.6545 9.903 0.3919 9.196 1.333 8.741 1.091

ϕ2 40.36 9.604 20.81 6.095 88.93 5.397 40.55 0.8159 24.62 7.711 16.40 3.795

ρ −0.2552 0.0793 −0.3730 0.0922 −0.2756 0.0622 −0.4218 0.0083 −0.1035 0.1372 −0.2583 0.1201

τ 270.8 93.90 272.2 112.56 80.33 44.44 227.2 113.5 8.314 2.985 8.141 2.874

c1 −0.3152 0.0803 −0.3523 0.1280 −0.2164 0.0454 −0.2167 0.0392 0.0307 0.0611 0.0061 0.0809

c2 0.0302 0.0348 0.0443 0.0395 −0.0054 0.0278 −0.0240 0.0155 −0.0768 0.0462 −0.0610 0.0419

Table 5.3: Estimated parameters of restricted vector MEM
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S&P 500 NASDAQ DOW JONES
Before-crisis Crisis Before-crisis crisis Before-crisis crisis

Forecast Horizon 1 10 1 10 1 10 1 10 1 10 1 10

vMEM-BV-r 0.8590 8.403 3.601 30.53 0.8881 7.556 3.523 27.77 1.197 8.638 5.180 43.48

vMEM-QV-r 0.8673 8.218 3.659 32.21 0.8972 7.838 3.588 28.17 1.219 8.272 5.322 44.19

mix-MEM-d 0.8685 8.366 4.336 35.87 0.9070 7.472 3.522 30.86 1.207 7.840 4.866 43.48

ARFIMA(0,d,0) 0.9080 9.194 3.790 44.51 0.9615 9.100 3.709 41.04 1.289 11.00 5.448 68.17

ARFIMA(5,d,0) 0.9255 9.732 3.580 42.69 0.9817 9.580 3.650 38.53 1.283 10.57 5.408 64.29

Table 5.4: MSE of forecasts
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1-step 10-step
regressor b0 bvMEM bmodel R2 b0 bvMEM bmodel R2

S&P 500
vMEM-BV-r 0.4240 0.8781∗ - 0.4344 4.5394∗ 0.6338∗ - 0.2364

vMEM-QV-r 0.5217∗ 0.8290∗ - 0.4393 4.766∗ 0.5966∗ - 0.2436

mix-MEM-d 0.5124 - 0.8412∗ 0.3887 5.274∗ - 0.5472∗ 0.1958

ARFIMA(0,d,0) −0.0423 - 1.077∗ 0.4195 2.897∗ - 0.8452∗ 0.1968

ARFIMA(5,d,0) 0.1775 - 1.007∗ 0.4068 3.317∗ - 0.8110∗ 0.1877

vMEM-BV-r+mix-MEM-d 0.3257 0.6682∗ 0.2381 0.4372 4.441∗ 0.5213∗ 0.1241 0.2339

vMEM-BV-r+ARFIMA(0,d,0) 0.3733 0.8028∗ 0.0960 0.4308 7.927∗ 1.477∗ −1.257∗ 0.2518

vMEM-BV-r+ARFIMA(5,d,0) 0.4601 0.9512∗ −0.0890 0.4309 8.010∗ 1.595∗ −1.411∗ 0.2615

vMEM-QV-r+mix-MEM-d 0.4001 0.6428∗ 0.2260 0.4357 4.601∗ 0.5074∗ 0.1069 0.2405

vMEM-QV+ARFIMA(0,d,0) 0.6344∗ 0.2705 0.4380 0.4273 6.832∗ 0.9988∗ −0.6591 0.2485

vMEM-QV-r+ARFIMA(5,d,0) 0.4449 0.7275∗ 0.1348 0.4364 6.747∗ 1.013∗ −0.6747 0.2513

NASDAQ
vMEM-BV-r 0.1614 0.9876∗ - 0.4948 1.887∗ 0.9423∗ - 0.4524

vMEM-QV-r 0.1636 0.9715∗ - 0.4948 1.769∗ 0.9449∗ - 0.4535

mix-MEM-d 0.2562 - 0.9931∗ 0.4868 2.813∗ - 0.8548∗ 0.4632

ARFIMA(0,d,0) −0.00052 - 1.102∗ 0.4953 1.010 - 1.0924∗ 0.4537

ARFIMA(5,d,0) 0.0182 - 1.078∗ 0.4833 1.331∗ - 1.063∗ 0.4311

vMEM-BV-r+mix-MEM-d 0.1660 0.8799∗ 0.1103 0.4932 2.509∗ 0.2430 0.6421∗ 0.4627

vMEM-BV-r+ARFIMA(0,d,0) 0.0466 0.4780 0.5770 0.4971 1.309∗ 0.4529 0.5821 0.4573

vMEM-BV-r+ARFIMA(5,d,0) 0.1380 0.8641∗ 0.1385 0.4933 1.896∗ 0.9517∗ −0.1106 0.4505

vMEM-QV-r+mix-MEM-d 0.1680 0.8631∗ 0.1129 0.4933 2.447∗ 0.2680 0.6205 0.4630

vMEM-QV-r+ARFIMA(0,d,0) 0.0395 0.4794 0.5701 0.4987 1.260∗ 0.4761 0.5579 0.4584

vMEM-QV-r+ARFIMA(5,d,0) 0.1139 0.7429∗ 0.2624 0.4944 1.763∗ 0.9391∗ 0.0069 0.4516

DOW JONES
vMEM-BV-r 0.6801∗ 0.7974∗ - 0.2868 5.346∗ 0.5726∗ - 0.2030

vMEM-QV-r 0.8876∗ 0.7191∗ - 0.3049 5.411∗ 0.5535∗ - 0.2290

mix-MEM-d 0.7250∗ - 0.7809∗ 0.2848 5.229∗ - 0.5519∗ 0.2057

ARFIMA(0,d,0) 0.1485 - 1.045∗ 0.2615 3.488∗ - 0.8336∗ 0.1321

ARFIMA(5,d,0) 0.2830 - 0.9938∗ 0.2578 3.838∗ - 0.7856∗ 0.1403

vMEM-BV-r+mix-MEM-d 0.5391 0.4348∗ 0.4035 0.2994 5.099∗ 0.2677 0.3116 0.2058

vMEM-BV-r+ARFIMA(0,d,0) 0.5994 0.7235∗ 0.1071 0.2825 9.760∗ 1.180∗ −1.155∗ 0.2281

vMEM-BV-r+ARFIMA(5,d,0) 0.6871 0.8051∗ −0.0106 0.2822 8.521∗ 1.809∗ 0.9256∗ 0.2199

vMEM-QV-r+mix-MEM-d 0.6651∗ 0.4707∗ 0.3196 0.3121 5.328∗ 0.5023∗ 0.0574 0.2240

vMEM-QV-r+ARFIMA(0,d,0) 1.004∗ 0.7882∗ −0.1151 0.3008 11.41∗ 1.232∗ −1.426∗ 0.2757

vMEM-QV-r+ARFIMA(5,d,0) 1.083∗ 0.8506∗ −0.2092 0.3017 10.03∗ 1.179∗ −1.199∗ 0.2658

Note: The ∗ symbol indicates the corresponding coefficient is statistically different from zero with 5% significance

Table 5.5: Mincer-Zarnowitz regression, out-of-sample, before the crisis
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1-step 10-step
regressor b0 bvMEM bmodel R2 b0 bvMEM bmodel R2

S&P 500
vMEM-BV-r −0.0391 1.0345∗ - 0.6271 0.2756 1.073∗ - 0.6457

vMEM-QV-r 0.0312 1.007∗ - 0.5836 0.7502 1.0385∗ - 0.6218

mix-MEM-d 0.0483 - 0.9883∗ 0.5484 −0.1112 - 1.068∗ 0.5668

ARFIMA(0,d,0) −0.4123 - 1.173∗ 0.6319 −2.839∗ - 1.397∗ 0.5680

ARFIMA(5,d,0) −0.2435 - 1.127∗ 0.6462 −1.797∗ - 1.318∗ 0.5777

vMEM-BV-r+mix-MEM-d 0.0048 1.120∗ −0.0924 0.6263 0.7317 1.292∗ −0.2429 0.6470

vMEM-BV-r+ARFIMA(0,d,0) −0.3764 0.4960∗ 0.6430∗ 0.6459 −0.0969 1.005∗ 0.1018 0.6449

vMEM-BV-r+ARFIMA(5,d,0) −0.2906 0.3854∗ 0.7350∗ 0.6538 −0.0251 0.9985∗ 0.1034 0.6449

vMEM-QV-r+mix-MEM-d 0.0179 0.9849∗ 0.0246 0.6181 0.5671 0.9637∗ 0.0851 0.6208

vMEM-QV-r+ARFIMA(0,d,0) −0.3898 0.4474 0.6914∗ 0.6465 −1.349 0.7313∗ 0.4908∗ 0.6364

vMEM-QV-r+ARFIMA(5,d,0) −0.3002 0.3651∗ 0.7538∗ 0.6555 −1.001 0.7074∗ 0.4904∗ 0.6375

NASDAQ
vMEM-BV-r 0.2646 0.9505∗ - 0.5901 1.427 0.9747∗ - 0.6125

vMEM-QV-r 0.3464 0.9207∗ - 0.5855 1.758∗ 0.9393∗ - 0.6030

mix-MEM-d 0.1076 - 0.9998∗ 0.5899 1.265 - 0.9985∗ 0.5737

ARFIMA(0,d,0) −0.4807 - 1.184∗ 0.5953 −3.176∗ - 1.406∗ 0.5312

ARFIMA(5,d,0) −0.4767 - 1.179∗ 0.6007 −2.866∗ - 1.372∗ 0.5569

vMEM-BV-r+mix-MEM-d 0.1435 0.4848∗ 0.4991 0.5941 1.358 0.9197 0.0604 0.6113

vMEM-BV-r+ARFIMA(0,d,0) −0.2604 0.3208 0.7911∗ 0.5957 5.838∗ 1.622∗ −1.032∗ 0.6278

vMEM-BV-r+ARFIMA(5,d,0) −0.3864 0.1364 1.014∗ 0.5996 4.683∗ 1.537∗ −0.8475∗ 0.6202

vMEM-QV-r+mix-MEM-d 0.1556 0.3916 0.5858∗ 0.5933 1.476 0.7622∗ 0.2009 0.6034

vMEM-QV-r+ARFIMA(0,d,0) −0.3121 0.2217 0.9055∗ 0.5950 5.832∗ 1.504∗ −0.9261∗ 0.6142

vMEM-QV-r+ARFIMA(5,d,0) −0.4236 0.0722 1.0894 0.5994 4.257∗ 1.344∗ −0.6273∗ 0.6064

DOW JONES
vMEM-BV-r 0.1506 0.9151∗ - 0.6267 1.315 0.9275∗ - 0.6007

vMEM-QV-r 0.3045 0.8668∗ - 0.6184 1.759∗ 08788∗ - 0.6021

mix-MEM-d −0.4063 - 1.045∗ 0.6169 −0.2385 - 1.042∗ 0.5986

ARFIMA(0,d,0) −0.6314∗ - 1.247∗ 0.6115 −3.482∗ - 1.496∗ 0.5216

ARFIMA(5,d,0) −0.3260 - 1.167∗ 0.5997 −1.024∗ - 1.292∗ 0.5075

vMEM-BV-r+mix-MEM-d 0.1557 0.9227∗ −0.0087 0.6255 0.7394 0.6095 0.3599 0.6002

vMEM-BV-r+ARFIMA(0,d,0) 0.1433 0.9078∗ 0.0102 0.6255 6.566∗ 1.614∗ −1.235∗ 0.6204

vMEM-BV-r+ARFIMA(5,d,0) 0.1229 0.8799∗ 0.0470 0.6255 5.329∗ 1.772∗ −1.316∗ 0.6289

vMEM-QV-r+mix-MEM-d −0.1103 0.3922 0.5771 0.6208 1.1276 0.6228 0.3066 0.6015

vMEM-QV-r+ARFIMA(0,d,0) −0.0683 0.5657∗ 0.4439 0.6200 8.904∗ 1.719∗ −1.591∗ 0.6310

vMEM-QV-r+ARFIMA(5,d,0) 0.0704 0.6390∗ 0.3220 0.6201 5.940∗ 1.627∗ −1.235∗ 0.6283

Note: The ∗ symbol indicates the corresponding coefficient is statistically different from zero with 5% significance

Table 5.6: Mincer-Zarnowitz regression, out-of-sample, the crisis period
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parameter mean sd parameter mean sd parameter mean sd
Full model

α0 −0.2376 1.5e− 7 δ0 −0.1048 0.0002 γ0 0.0013 6.6e− 8

αd 0.2898 3.6e− 5 δ1 0.02386 0.0001 γ2 −0.0522 0.0001

αw 0.4592 7.6e− 5 δ5 0.0161 7.7e− 5 γ3 −0.0211 4.9e− 5

αm 0.2456 5.4e− 5 ϕ1 −0.0107 0.0001

θ1 0.0416 6.0e− 6 m1 −0.0642 0.0002

θ3 0.1619 3.8e− 6 m2 0.0005 0.0004

g1 −0.2049 0.0003 k1 0.0063 1.3e− 5

g2 0.0090 0.0015 pv2 0.0202 2.2e− 8

ω 0.9400 0.0010 αNIG 48.38 7.6e− 7

α1 0.0418 1.4e− 9 βNIG 25.61 5.3e− 7

β1 0.7606 2.5e− 5 δNIG 0.2615 9.9e− 5

pu2 0.1609 5.5e− 7 λIG 0.3009 1.6e− 8

µu2 0.6115 1.4e− 6 µIG 0.3362 1.4e− 5

σu2 3.727 0.0001

Simplified model
α0 −0.2138 0.1807 δ0 −0.2175 0.0010 γ0 − −
αd 0.7527 0.0050 δ1 0.0245 0.0003 γ2 − −
αw 0.1025 0.0350 δ5 0.0154 0.0003 γ3 − −
αm 0.0835 0.0620 ϕ1 − −
θ1 − − m1 −0.6894 0.1954

θ3 − − m2 2.402 1.125

g1 − − k1 − −
g2 − − pv2 0.4149 0.0176

ω 51.49 12555.7 αNIG 46.95 1.1775

α1 0.0731 0.0080 βNIG 23.62 4.692

β1 0.8722 0.0162 δNIG 0.4159 0.0048

pu2 0.1291 0.1058 λIG 1.497 0.5256

µu2 1.254 3.225 µIG 0.5644 0.1651

σu2 18179.5 7.8e+ 9

Table 5.7: Estimated parameters of Bollerslev09 model

S&P 500 NASDAQ DOW JONES
Before-crisis Crisis Before-crisis crisis Before-crisis crisis

vMEM-BV-r 20.38 66.64 21.11 39.33 23.47 82.49

vMEM-QV-r 25.24 86.67 19.97 39.80 25.50 84.41

mix-MEM-d 19.07 128.2 20.38 33.21 25.34 86.90

ARFIMA(0,d,0) 21.21 113.0 37.85 93.54 22.64 178.2

ARFIMA(5,d,0) 21.62 76.10 35.58 77.17 21.92 131.8

Table 5.8: Ljung box statistics of residues of realized volatility by different
models
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1-step 10-step
regressor b0 bvMEM bmodel R2 b0 bvMEM bmodel R2

S&P 500
Bollerslev09s 2.249∗ 0.9985∗ - 0.3440 8.950∗ 0.1859∗ - 0.0650

vMEM-BV-r+Bollerslev09s 0.4363 0.7766∗ 0.1077 0.4300 4.225∗ 0.6145∗ 0.0640 0.2566

vMEM-QV-r+Bollerslev09s 0.5205 0.7418∗ 0.1013 0.4405 4.446∗ 0.5759∗ 0.0663 0.2591

Bollerslev09 2.230∗ 1.145∗ - 0.1282 12.08∗ −0.1639∗ - 0.0395

vMEM-BV-r+Bollerslev09 0.2643 0.8509∗ 0.0833 0.4277 5.538∗ 0.6073∗ −0.0790 0.2479

vMEM-QV-r+Bollerslev09 0.3180 0.7994∗ 0.1042 0.438 5.757∗ 0.5678∗ −0.0758 0.2478

Note: The ∗ symbol indicates the corresponding coefficient is statistically different from zero with 5% significance

Table 5.9: Mincer-Zarnowitz regression, out-of-sample, before the crisis pe-
riod, Bollerslev09 vs vMEM

2 End of chapter.



Chapter 6

Conclusion and future Work

This thesis discusses two aspects of vector MEM, the estimation

and forecast. And it can be divided into three parts.

In the first part (Chapter 3), different estimation methods used

on vector MEM are discussed. As a start, two stage ML method

is introduced. Although two stage ML method may not be as ef-

ficient as ML and GMM, it can provide reasonability good start-

ing values for the other two methods. After introducing the ML

estimator and GMM estimator, a comparison between them is

conducted through three experiments. In the first experiment the

input data are generated by vector MEM, and both ML and GMM

estimator have good performances. In the second experiment the

dependence structure of input data is a linear mixture of product

198
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copula and Student’s t copula, which is different from the one as-

sumed in the first experiment. The results show that both ML

and GMM estimators can handle this kind of model mismatch

well. Finally in the third experiment, outliers are added to clean

data used in the first experiment. From the results it is shown

that the outliers have a severe impact on estimation results of

both estimators. This result motivates us to propose an alterna-

tive method, WEL method, to robustly estimate the parameters

of vector MEM in the presence of outliers. This WEL estimator

is discussed in the second part of the thesis.

In the second part of the thesis (Chapter 4), WEL method for

vector MEM is proposed. WEL method is a generalization of em-

pirical likelihood method in which weights for empirical likelihood

function are equal to each other. The moment conditions used in

GMM estimator is utilized as constraints in WEL method. More-

over k-means clustering are used to automatically determine the

amount of outliers based on data depth. This automatic routine

avoids choosing a threshold value to differentiate outliers from

ordinary observations, which might be appreciated by practition-

ers. Through simulations which includes three different outlier
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scenarios and an empirical study on forecasting RV and BV of

S&P 500 stock index, WEL method is shown to have a superior

performance over ML and GMM.

The third part (Chapter 5), different from the previous two,

focuses on the applications of vector MEM on forecasting. In this

part of the thesis the issue of forecasting RV by decomposition is

discussed. And a novel decomposition of RV, multiplicative de-

composition, is proposed. To our knowledge no researches have

been done on this kind of decomposition. The jump component

is calculated as RV divided by the continuously component, BV

or QV for example. Therefore the so-constructed jump compo-

nent is nonnegative and can be modeled and forecasted together

with continuous component by vector MEM. The empirical anal-

ysis includes two data sets, S&P 500 stock index and NASDAQ

stock index. In the empirical analysis, it is found that the jump

component has a significant and negative impact on the contin-

uous components, which is not reported in previous literatures

where RV is decomposed additively. Also, three competing mod-

els, two of which do not require decomposition of RV and the

rest one forecasts RV by additive decomposition, are considered.
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Forecasts of different models are evaluated by MSE and Mincer-

Zarnowitz regressions. The results show that vector MEM based

on QV multiplicative decomposition has a superior performance

over the other models.

Finally we wish to point out that the WEL estimator proposed

in part two can be modified to be used on other kinds of multivari-

ate filters besides vector MEM, for example multivariate GARCH

models. It is expected to be a competitive estimator if not better

than the quasi maximum likelihood or other robust estimators.

Moreover in part three only two kinds of multiplicative decompo-

sitions of RV are tested. Other decompositions which are robust

to jumps and noises such as the one based on staggered BV may

further increase the forecast ability. Also, the model proposed

in part three is in its simplest form. More complicated general-

ization may further improve the forecast ability. For example the

vector MEM can be extended to include the asymmetric effect. In

the empirical analysis section of part three, three models that are

most closely related to vector MEM are chosen to compete with

vector MEM. The comparison between vector MEM and other

models would be interesting. In addition based on the results of
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part three, modeling consecutive jumps as a whole rather than

modeling single jumps is expected to further improve the forecast

ability. These problems mentioned above are beyond the scope of

this thesis and are left for future work.

2 End of chapter.
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