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Abstract
This dissertation presents wideband and multi-element antennas for mobile applications. It is divided
into the following main parts: modal theory, wideband antennas, multi-element antennas, and
wideband multi-element antennas. 

The radiating fields are first studied in terms of spherical scalar and vector modes, and it is shown
how these modes correlate with the characteristic current modes on a planar mobile ground plane. The
theory part shows how it is possible to excite the same modes on a conventional sphere and a
rectangular planar mobile ground plane. The theory refers to the novel wideband antenna structures
presented in this dissertation, in terms of current and radiating modes. 

After studying the modes, the dissertation shows how to excite a radiating antenna mode within a
wide frequency bandwidth. To gain this, two main approaches are taken. First, a quasi-
complementary antenna (QCA) structure with an electric conductor and magnetic slot is presented,
and its characteristics are studied. A QCA UWB antenna, and a QCA element excited with a
monopole or a dipole, is presented. The QCA structure compensates for the imaginary part of the
input impedance on wide frequency bandwidth, when, at the same time, the fundamental mode is
excited to ensure good radiating properties. 

The second approach uses a symmetrical feeding with two antenna elements to gain a wide
frequency bandwidth, the relative -6 dB impedance bandwidth between 37.5–80%. When a field is
symmetrically coupled to the conducting ground plane, the excitation avoids the awakening of higher
order modes which might disturb the performance of the antenna. 

It is also shown, by using multiple feeding elements, that the excitation of orthogonal higher order
modes on a small radiating ground plane is possible. As the modes are orthogonal to each other, they
present a very low correlation. By using this kind of approach, radiation pattern diversity can be
obtained in mobile applications within a small volume. 

On the other hand, when combining two QCA elements to a one multi-element antenna structure,
a wideband diversity antenna with an 87.5% relative -6 dB impedance bandwidth, and a wideband
MIMO antenna with a 95.0% relative -6 dB impedance bandwidth, are presented with excellent
radiation and correlation properties. Also mutual coupling is need to be counted when multi-element
antennas are designed. 

When designing an efficient radiator, it is important to consider an antenna feeding in terms of
wideband impedance matching and wideband baluns, not to spoil the antenna performance. The
efficient antenna structures and feeding mechanisms are obtained by using commercial 3D
electromagnetic simulators to find the desired wideband antenna characteristics. Prototype antennas
are measured in most of the presented structures to show their functionality in real. 

In general, the dissertation presents wideband antenna structures with radiating antenna modes
excited on a planar conducting ground plane. The idea is to find structures and feeding mechanisms
to excite the fundamental mode, or a certain radiating antenna mode, at a wide frequency bandwidth,
by avoiding the excitation of higher order modes which might disturb the antenna performance. It is
also shown that, by using multiple feeding elements, it is possible to excite higher order modes on a
small antenna.

Keywords: characteristic modes, complementary antenna, diversity techniques, MIMO, multi-
element antenna, mutual coupling, slot antenna, small antennas, spherical modes, UWB, wideband 
antenna
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Tiivistelmä
Väitöskirjassa esitetään uusia laajakaistaisia ja monielementtiantenneja matkaviestimiin. Väitöskirja
koostuu neljästä pääalueesta: pintavirtojen muototeoria, laajakaistaiset antennit, monielementtiantennit
sekä laajakaistaiset monielementtiantennit. 

Teoriaosassa säteilykenttiä on aluksi tutkittu pallon pinnalla sekä skalaaripotentiaaleina että pintavir-
tavektoreina, jonka jälkeen niitä on verrattu mobiilin laitteen maatason ominaispintavirtojen synnyttä-
miin säteilykenttiin. Teoriaosassa osoitetaan, että pallon pinnalla sekä tasomaisella suorakaiteen muotoi-
sella pinnalla on mahdollista herättää samat säteilykentät. Myöhemmin väitöskirjassa esitettävien uuden-
laisten antennirakenteiden ominaisuuksia verrataan teoriaosassa esitettyihin pintavirtoihin ja säteilykent-
tiin. 

Teoriaosuuden jälkeen osoitetaan miten säteilevä sähkömagneettinen kenttä saadaan herätettyä laajal-
la taajuusalueella. Tähän on otettu kaksi eri lähestymistapaa, joista ensimmäisessä esitellään ja tutkitaan
kvasikomplementaarista antennirakennetta (QCA). Kvasikomplementaarisessa antennirakenteessa
sisääntuloimpedanssin imaginaariosa kompensoidaan yhdistämällä sähköinen johde ja magneettinen
rako samaan antenniin. Samanaikaisesti perusmuoto herätetään laajalla taajuusalueella, jolla varmiste-
taan antennin hyvät säteilyominaisuudet koko toimintataajuusalueella. 

Toisessa lähestymistavassa käytetään kahta symmetrisesti asetettua antennielementtiä, joita syöte-
tään symmetrisesti samalla amplitudilla ja vaiheella. Kun sähkömagneettinen kenttä herätetään symmet-
risesti, korkeamman kertaluvun muotojen herättäminen voidaan välttää laajalla taajuusalueella. Symmet-
risesti syötetyillä antennirakenteilla saavutettu -6 dB suhteellinen impedanssikaistanleveys on
37.5–80 %. 

Useita syöttöelementtejä käytettäessä voidaan mobiilin laitteen maatasossa herättää yhdellä pistetaa-
juudella monta toisistaan riippumatonta säteilykenttää. Koska herätetyt kentät ovat toisistaan riippumat-
tomia, on niiden välinen korrelaatio myös pieni. Kyseisellä rakenteella on mahdollista toteuttaa säteily-
kuviodiversiteetti erittäin pienessä tilassa, kuten matkapuhelimessa. 

Toisaalta, kun yhdistetään kaksi QCA-elementtiä yhdeksi monielementtiratkaisuksi, voidaan toteut-
taa laajakaistainen diversiteettiantenni, jonka suhteellinen -6 dB impedanssikaistanleveys on 87.5 %.
Vastaavasti kahdella laajakaistaisella QCA-elementillä toteutetulla MIMO-ratkaisulla päästään 95 %
suhteelliseen -6 dB impedanssikaistanleveyteen. Molemmilla ratkaisuilla on erittäin hyvät säteilyominai-
suudet sekä alhainen korrelaatio ja pieni keskinäiskytkentä antennielementtien välillä. 

Suunniteltaessa toimivaa laajakaistaista antennirakennetta, on tärkeää ottaa huomioon antennisyötön
impedanssisovitus, jotta antennin suorituskyky ei heikkenisi. Lisäksi balansoidussa rakenteissa tulee olla
laajakaistainen baluni, jolla vältetään säteilykuvion vääristyminen. Väitöskirjan syöttöratkaisuissa on
käytetty kaupallisia sähkömagneettisia simulaattoreita, joilla antennirakenne voidaan mallintaa kolmi-
ulotteisesti, ja joilla laajakaistainen syöttö saadaan optimoitua haluttuun antenniin. Suurin osa esitellyis-
tä antennirakenteista on simulointien lisäksi myös mitattu, jolloin niiden toimivuus käytännössä pysty-
tään todentamaan rakentamalla prototyyppiantenni. 

Yleisesti väitöskirjassa esitellään tasomaisia antenniratkaisuja johtavassa maatasossa, joissa säteile-
vät pintavirrat herätetään mahdollisimman laajalla taajuusalueella. Ideana on löytää laajakaistaisia anten-
ni- ja syöttörakenteita, joilla saadaan herätettyä perusmuoto tai jokin muu haluttu muoto. Ajatuksena on
välttää korkeamman kertaluvun muotojen herättäminen, jotka voivat pilata antennin suorituskyvyn. Väi-
töskirjassa osoitetaan myös, että pienikokoisella antennilla on mahdollista herättää korkeamman kertalu-
vun muotoja pistetaajuudella käyttämällä useita heräte-elementtejä.

Asiasanat: diversiteettitekniikat, keskinäiskytkentä, komplementaarinen antenni, laajakaistainen
antenni, MIMO, monielementtiantenni, pienet antennit, rakoantennit, UWB
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Preface

My carrier in the field of radio engineering began at the University of Oulu in 2002 under
the supervision of Prof. Erkki Salonen. After receiving my M.Sc degree in December
2004, I began my Ph.D. studies in 2005. As I was mostly carrying out research with
antenna measurements by developing a measurement system for adaptive antennas
in the department of Electrical Engineering, I began to focus my research on mutual
coupling and mobile terminal antennas at the beginning of the Ph.D. studies.

During the first year of the Ph.D. studies, I received a three year project manager
task (2005–2007) in a Tekes funded project "Future Active Multi-Frequency Antennas -
TAMTAM". This naturally slowed down the progress of my research and PhD studies.
After this three year period of project management, a new Tekes funded project called
"Adaptation of Antennas to Usage Environments - AATE" was established in 2008–2010.
The project studied different effects in a usage environment and how to compensate for
them. This was the point where I began my research exchange period.

Previously, before the AATE-project started, I contacted Prof. Miguel Ferrando
Bataller at the Universitat Politècnica de València in Spain to open up a new research
contact with him and his antenna research team. The funding was first scheduled for
nine months during 2008, but because of the fruitful cooperation, the exchange period
finally took 18 months till the end of 2009, with a grant from the Universitat Politècnica
de València. During the exchange period, antenna structures that are less sensitive to
the user vicinity were studied. The research was chosen to carry out on wideband and
multi-element antennas in mobile applications, which finally came to the title of my
dissertation.

Later, a seven month research exchange period took place during 2010–2011 in
a Tekes funded project "MIMO Terminal Testing Over-the-Air - MIMOTA". In the
project, a wideband dual-polarized probe for a MIMO OTA test system was developed.
During the visit, on the advice of Prof. Ferrando Bataller, I began the writing process
of my dissertation and to think about the contents. At the beginning of 2012, Prof.
Ferrando Bataller was officially accepted as the second supervisor to my dissertation by
the management board of the University of Oulu Graduate School (UniOGS).

At the time of finalizing the dissertation for the review process, I was pleased to work
for a three weeks exchange period in cooperation with Drexel University in Philadelphia.
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A Tekes funded project "Reconfigurable Antenna Based Enhancement of Dynamic
Spectrum Access Algorithms - RADSA" took place at the beginning of 2012. The
project was focusing on Cognitive Radio, where my task was to design a wideband
antenna array to a WAPR (Wireless Open-Access Research Platform) demonstrator.
As a part of the project, a research exchange with the antenna research community in
Drexel was established.

The Ph.D. research work was funded by the Finnish Funding Agency for Technology
and Innovation (Tekes) during the years 2005–2012. Additionally, the year 2012 was
financially supported by the Infotech Oulu Graduate School.

As there are a numerous number of people who have had a great role in my research
and finalizing the dissertation, I would first like to thank my supervisors Dr. Erkki
Salonen and Prof. Miguel Ferrando Bataller for providing me with an interesting
research topic and by sharing their scientific knowledge through kind and innovating
supervision.

I would also like to thank my instructor Dr. Eva Antonino Daviu, for providing help
and support with topics related to the mobile antenna research and scientific writing.

My deepest gratitude for my present and former research colleagues, Prof. Pentti
Leppänen, Dr. Marta Cabedo Fabrés, Dr. Daniel Sánchez Escuderos, Dr. Juha-Pekka
Mäkelä, Dr. Markus Berg, Dr. Esperanza Alfonso Alós, Dr. Seppo Karhu, Lic. Tech.
Timo Kumpuniemi, Lic. Tech. Risto Vuohtoniemi, Lic. Tech. Pekka Lilja, M.Sc. Ana
Rodríguez Pérez, M.Sc. Jukka Kyröläinen, M.Sc. Veikko Hovinen, M.Sc. Juha Pihlaja,
M.Sc. Antonio Berenguer Verdú, M.Sc. Tommi Tuovinen, M.Sc. Emmi Kaivanto, B.Sc.
Tuomas Jääskö, and B.Sc. Mikko Heikkinen for offering priceless scientific background
and help to my work.

My compliments to Anssi Rimpiläinen, Jari Pakarinen, Antti Nevantalo, Vesa Kaltio,
Antonio Vila Jiménez, and Bernat Bernardo Clemente of manufacturing prototype
antennas. Without their professional skills, complicated prototype antenna structures
could not be fabricated. Also, laboratory engineer Jari Sillanpää and department
secretary Varpu Pitkänen deserve warm thanks for organizing practical things related to
my research work and PhD studies.

Acknowledgement to the University of Oulu, the Universitat Politècnica de València,
the Nokia Foundation, the Tauno Tönning foundation, COST ASSIST IC0603, the
Seppo Säynäjäkangas foundation, and the Ulla Tuominen foundation for financially
supporting my PhD studies.
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Finally, I would like to thank all my family members for their endless support and
understanding towards my research work and encouraging my career.
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Abbreviations

1G First generation analog mobile phone system

2G Second generation digital mobile phone system

3D Three Dimensional

3G Third generation digital multimedia mobile phone system

3GPP 3rd Generation Partnership Project

3.5G Digital multimedia mobile phone system between 3G and 4G systems

4G Fourth generation digital multimedia mobile phone system

ACA Auto-Complementary Antenna

AoA Angle of Arrival

AMC Artificial Magnetic Conductor

AMG Artificial Magnetic Ground plane

CCE Capacitive Coupling Element

CST Computer Simulation Technology

DASY Dosimetric Assessment SYstem

DCS Digital Cellular System

DGS Defected Ground Structures

DVB-H Digital Video Broadcast Handset

DUT Device Under Test

EBG Electromagnetic Band Gap

EDG Effective Diversity Gain

E-GSM Extended Global System for Mobile communications

EMC Electromagnetic Compatibility

EurAAP European Association on Antennas and Propagation

FCC Federal Communications Commission

FRC Federal Radio Commission

GNSS Global Navigation Satellite System

GSM Global System for Mobile communications

HFSS High Frequency Structure Simulator

HPF High Pass Filter

IEEE Institute of Electrical and Electronics Engineers

IFA Inverted F-Antenna
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i.i.d. Identically distributed

ILA Inverted L-Antenna

LC Inductor (L) Capacitor (C)

LPF Low Pass Filter

LTE Long Term Evolution

LOS Line Of Sight

MB Metal Bezel antenna structure

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MSA Microstrip Antenna

NFC Near-Field Communication system

OQCA Optimized Quasi-Complementary Antenna

OQCAS Optimized Quasi-Complementary Antenna with Switch

OTA Over The Air

PAS Power Angular Spectrum

PBG Photonic BandGap

PCB Printed Circuit Board

PCS Personal Communications Service

PDA Personal Digital Assistant

PIFA Planar Inverted F-Antenna

QCA Quasi-Complementary Antenna

RF Radio Frequency

RFID Radio Frequency IDentification

SAR Specific Absorption Rate

SCM Spatial Channel Model

SCME Extended Spatial Channel Model

SFD Symmetrical Folded Dipole

SIMO Single Input Multiple Output

SMA SubMiniature version A

SNR Signal to Noise Ratio

TCM Theory of Characteristic Modes

TE Transverse Electric wave

TM Transverse Magnetic wave

UMTS Universal Mobile Telecommunications System

UWB Ultra Wideband
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VNA Vector Network Analyzer

WLAN Wireless Local Area Network

ε Characteristic angle

ε Permittivity

η Wave impedance

η0 Free-space wave impedance

ηrad,n Radiation efficiency of nth antenna element

ηMIMO MIMO efficiency

θ Elevation angle

λn Eigenvalues

µ Permeability

ρ Complex cross correlation coefficient

ρe Envelope correlation

φ Azimuth angle

ψ Complex scalar wave function

ω Angular frequency

Ω Solid angle, characteristic impedance

∇ Nabla

Ar Magnetic field component
~A Magnetic vector potential

bn(kr) Spherical Bessel function of nth order

Bn(kr) Ordinary Bessel function of nth order

B̂n(kr) Spherical vector Bessel function of nth order

Cn,m Constant in a spherical wave functions, magnetic vector potential

Ctr Mutual coupling

d Slot separation, antenna separation

Dn,m Constant in a spherical wave functions, electric vector potential

E i Incident field

Er r component of the electric field

Eφ φ component of the electric field

Eθ θ component of the electric field

Fr Electric field component
~F Electric vector potential
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~F(θ ,φ) Radiated field of the ith excited antenna element

h(mφ) Spherical harmonics of mth degree

h(1)n (kr) Hankel function of 1nd kind

h(2)n (kr) Hankel function of 2nd kind

Hr r component of the magnetic field

Hφ φ component of the magnetic field

Hθ θ component of the magnetic field

jn(kr) Bessel function of 1st kind

J Total current of Characteristic modes

Jn Characteristic modes
~Jn Eigenfunctions, Eigencurrents

k Wave number

L Length of the ground plane

Lm
n (cosθ) Legendre function

m Degree of a spherical mode, integer

n Order of a spherical mode, integer

nn(kr) Bessel function of 2nd kind

N Number of spherical modes

PD Power radiated by the excited antenna

PL Power delivered to the load of the unexcited antenna

Q Quality factor

r0 Radius of a minimum sphere over an antenna

r Radius from the origin

~r Radius vector from the origin

Pm
n (cosθ) Associated Legendre function of the first kind

Qm
n (cosθ) Associated Legendre function of the second kind

R Real part of impedance operator

s Slot width

Sii Reflection coefficient

Si j Transmission coefficient

V i
n Modal excitation coefficient

w Antenna spacing

W Width of the ground plane

X Imaginary part of impedance operator

Z Impedance operator
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Z0 Input impedance

Zslot Input impedance of areal slot

Zmetal Input impedance of metal conductor
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1 Introduction

1.1 Background of the research

Consumers are more and more demanding of the services that their mobile phones are
offering. They are used to getting a data connection or making phone calls with their
smartphones, and to use applications which require high data rates almost everywhere.
An exponential growth in using social networks and audio and video streams is increasing
the traffic – advanced smartphones are pushing wireless networks to their limits. Today
and in the future, there is and will be a need for multiple radio interfaces for several
wireless standards in mobile devices [1].

Multiple radio interfaces and wide bandwidths are required when, at the same time,
the data rates are increased. One possibility to increase data rates in mobile applications
is to use diversity techniques [2] or an MIMO-system (Multiple-Input-Multiple-Output)
[3]. Roughly, diversity techniques improve the reliability of radio links, and can be
employed in the MIMO-system as well, whereas MIMO multiplexing is used to improve
spectrum efficiency.

A cognitive radio is also under investigation and has shown great interest in scientific
communities and commercial companies. In the cognitive radio system, the frequency
spectrum resources are shared dynamically and efficiently over a wide frequency range
by covering multiple wireless standards [4] such as DVB-H (Digital Video Broadcast
Handset), mobile standards, WLANs (Wireless Local Area Network), and UWB (Ultra
WideBand). When multiple radio interfaces are required to sense different frequencies
simultaneously, wideband antenna characteristics become very attractive.

For all of the wireless communication systems, such as LTE (Long Term Evolution)
and LTE Advanced [5], efficient antenna solutions are needed. In addition, the RF
(Radio Frequency) front-end design will also have to respond with these challenges.
To connect a smartphone to the outer world with a mobile or wireless connection, an
antenna is needed to transfer and receive a data stream efficiently [6]. Without this
crucial part, making a connection becomes impractical or even impossible.

So, what are these so called antennas? Antennas are devices which convert an
alternative current in a guided waveguide into a radiating electromagnetic wave in
an unguided medium [7]. This is a technique when the antenna is in a transmitting
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mode. The phenomenon is opposite when the antenna is in a receiving mode; an
electromagnetic wave is converted to an alternative current.

Nowadays, antennas are needed in almost every application related to radio engi-
neering. A high growth in applications at different radio frequencies or radio interfaces
is providing strict demands on antennas; the shape and size are strongly dependent
on the frequency and the purpose of use. Antennas can be divided in different groups,
e.g., by the way they are radiating; current element, aperture, antenna array, and so
on. They can also be divided by the system in which antennas are used, e.g., mobile
communications, body-wear, radars, satellites, amateur purposes, etc [7–9].

One important part of antenna design is antenna measurements [7, 10]. When talking
about mobile applications, impedance bandwidth, real or complex radiation patters,
polarization and radiation or total efficiencies are the most important parameters to
investigate the antenna performance. As the impedance bandwidth is easy to measure,
e.g., with a Vector Network Analyzer (VNA), to measure radiation patterns, more
complicated systems are required. In general, the radiation pattern measurement systems
can be separated in four different ways, which are: (1) conventional far-field range,
(2) compact range, (3) array of probes, and (4) scanning with a single probe [11]. The
first two are far-field measurement systems, whereas, the last two are categorized as
near-field measurement systems. Far-field measurement systems are implemented
in an anechoic chamber (indoor) or in an outdoor range which is not protected from
environmental conditions. Nowadays, a number of near-field antenna measurement
systems are also commercially available (e.g. Satimo, EMScan, Nearfield Systems Inc.).
The near-field antenna measurement systems offer a quick way to measure antennas in
an indoor environment.

Since the space in mobile devices is limited, instead of using an individual antenna
for every communication system, one way is to use multi-resonance antennas with
frequency tuning/switching, or antennas with wideband characteristics. To further
extend the wideband antenna perspective, which is the topic of this dissertation, to a
closely packed multi-element antenna solution in a mobile device, interaction between
the individual antenna elements arise as a problem in terms of mutual coupling [12, 13].
Mutual coupling affects the correlation between multiple antenna elements, and, thus, to
the system data transmission capacity. To overcome the aforementioned challenges,
methods to compensate for mutual coupling need to be found.

Also, an investigation of wideband multi-element antenna solutions with a MIMO or
diversity characteristics must be considered to enable higher date rates. The vicinity of a
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user also cannot be neglected nowadays in a mobile terminal antenna designing. When
the effect of a user is counted in the design procedure, it enables a better link budget and
improved coverage of a telecommunication system by saving battery energy at the same
time [14].

When investigating antenna characteristics, the modal theory is a well known method
that is used in physics and electromagnetism. In general, the modal theory is studying
dynamic properties of structures under oscillating excitation. In this dissertation, the
spherical mode theory [15] and the characteristics mode theory [16] are considered
and discussed. As the most common coordinate systems used in antenna studies are
cartesian, cylindrical, and spherical coordinate systems [15], only the spherical system
is considered in this dissertation.

By using the spherical mode theory, the physical limitations of the omnidirectional
antennas can be calculated [17]. On the other hand, when measuring antennas in a
near-field, the spherical mode theory also plays an important role [18]. It determinate the
number of measurement points on a sphere to achieve an appropriate far-field antenna
radiation pattern. On the other hand, by using the characteristic modes theory [16], the
current modes of arbitrary shaped conducting bodies can be computed. These theories
are used here to study the limited number of modes in a planar mobile ground plane,
and how current modes in these ground planes can be excited to gain corresponding
radiating modes.

1.2 State of the art and motivation

Remarkable progress in mobile communications systems has been occurred in the
last decade. Mobile phone systems have evolved from first generation (1G) analogue
systems to digital second generation (2G) systems, and further to third generation (3G)
multimedia systems. Now, the 3G systems are being advanced to fourth generation
(4G) systems (LTE Advanced) through 3.5G systems, which stand between 3G and 4G
systems, in order to transition to 4G systems smoothly from 3G systems [8].

In addition, various wireless mobile systems other than mobile phone systems have
been deployed and service areas rather narrow territories, ranging from very short
distances to intermediate distances, whereas mobile phone systems provide nation-wide
services. The systems not only provide communication services but also perform
control, data transmission, identification, and sensing, either through their network or
their own structure. Typical systems are e.g. multi-band Global Navigation Satellite

27



System (GNSS), UWB, Radio Frequency IDentification (RFID), Bluetooth, Near-Field
Communications (NFC) systems, WLAN (2.4 and 5.2 GHz) and 60 GHz, TV, FM radio,
and mobile WiMAX (Worldwide Interoperability for Microwave Access). Among them,
some broadband systems feature capabilities of very high data-rate transmission, even
while in motion at very high speed [19].

Another significant possibility with these newly developed wireless systems is
to achieve seamless communication links by connection these systems to each other,
including mobile phone systems. The operating frequencies used by these systems
range from kilohertz region to as high as gigahertz region, depending on the system
performance, complexity, transmitting media, data, and so forth. Various antenna
solutions to use in these systems have been developed, and accordingly the antenna
technology has made progress along with the development of these systems [8].

Antennas used in wireless mobile systems, including mobile phones, must be small
in size, compact, built-in, light in weight, multi-band, and yet functional. Increased use
of multimedia services has sped deployment of high speed, high data-rate transmission
systems, for which advanced antenna systems like adaptive arrays and MIMO arrays
have been developed. For example, a smartphone needs to support more than ten 4G and
3.5G networks and all 2G and 3G networks for global coverage and roaming, which
means dozens of cellular radio frequency bands plus multi-antenna systems in some of
the bands. For MIMO and diversity applications in WLAN, 3.5G, and 4G systems, the
multi-antenna systems require low mutual coupling and radiation pattern correlation
between antennas in order to realize good diversity and MIMO performance [19].

Before 1998, most of the mobile phone antennas were external, which are simple
and easy to reuse. Nowadays, the antennas are internal and it has followed the trend of
the mobile phone to become a multimedia handset. The main types of internal antennas
are the PIFA [20], the folded monopole antenna [21], loop antenna [22], and dielectric
resonator antenna (DRA) [23]. The first systematic analysis work about bandwidth
enhancement by using the mobile chassis mode of the mobile chassis was done by Prof.
Pertti Vainikainen’s group [24], where theoretical maximum relative −6 dB impedance
bandwidth of a mobile chassis was simulated to be 95%. In most of the published papers
the mobile chassis exploit to excite the fundamental mode (the 1st order mode) [25–27],
whereas only few papers present excitation of higher order modes [28]. A survey of
internal mobile phone antennas in the last decade can be found in [29].

In a mobile chassis, there exists not only a single resonant mode but several ones,
which can be computed in terms of the Theory of Characteristic Modes (TCM) [16].
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Prof. Miguel Ferrando’s group has developed a simulation tool to compute these modes
on planar arbitrary shaped antenna at wide frequency range [30, 31]. These characteristic
modes can be used to improve a handset radiating properties by choosing the excitation
so that a particular mode is excited without disturbance of other modes. As each
resonant mode represents a different resonant frequency and bandwidth properties, the
information provided by each mode is very helpful in the antenna design process [32].

Since characteristic modes form a set of orthogonal functions, they can be used to
excite a set of orthogonal higher order modes on a single antenna element. For example,
on a mobile chassis, by using multiple excitation elements, orthogonal radiation patterns
can achieved at a single frequency [28]. In [33], a study of a loop shaped MIMO antenna
with four excitation sources is presented to obtain orthogonal radiating modes. The
paper presents a design procedure of a multimode MIMO antenna based on the TCM.
By properly choosing the excitation mechanism for each mode, a simple and compact
antenna for MIMO applications can be designed.

Nowadays there are multiple radio interfaces in mobile and wireless devices to cover
different wireless applications. Moreover, the trend for mobile devices is to increase
the number of operating frequency bands. In such devices, the space might become a
limiting criterion for multiple antenna configurations. One way to reduce the number of
antenna elements to cover multiple radio interfaces at wide frequency range is usage of
frequency-tunable [34–37], or multi-band antennas [38–41]. In addition, one option is
to use wideband antennas [42–45]. These wideband antennas have a relative −6 dB
impedance bandwidth between 30–87%, depending on the structure. Among the others,
UWB antennas are also studied for mobile applications [46–49].

In [50], a wideband antenna is determined as one which is matched over 10% of a
relative frequency band or more with respect to the center frequency, whereas narrow
band antenna is matched over less than couple per cent of the relative bandwidth. Still,
the required bandwidth of the antenna can depend on the application in question, and the
term wideband can mean a different frequency range for different applications [51].

Under normal operating conditions, a mobile terminal will be in interaction with
human body and its immediate surroundings, like a head and hand [52, 53]. The effect
of the hand is more difficult to quantify as every user holds a terminal differently. This
problem is especially important in case of internal antenna, since certain cases the
antenna may totally be masked and, thus, affecting dramatically to the link budget [14].
On the other hand, when considering requirements of the radiation absorbed to a human
body, the Specific Absorption Rate (SAR) is measured [54].
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Lately, the new challenges for the near-field issue in a mobile phone handset were
born from the RF multi-transmitters in MIMO, such as how to arrange and control the
antenna elements, and how to design a slim handset while still meeting safety limits [19].
MIMO, such as LTE and WLAN will introduce multi-radio transmitter and multiple
antennas in a compact terminal. The body tissue property such as the conductivity
and permittivity are frequency dependent, which increases the complexity of the SAR
problem. The research on minimizing SAR such as the antenna types, the antenna
arrangement, and smart adaptive control RF architecture in the mobile terminal is
on-going [55]. To shorten the SAR evaluation for the handset with multiple transmitters
and antennas, Federal Communication Commission (FCC) has proposed a simplified
test method [56].

Recently, the mobile systems have been deployed worldwide to support high-speed
data communication in the cellular system. The compact MIMO and diversity antenna
design is essential to such terminals with multi-band [57]. Other option is antennas
with wideband characteristics [58–60]. These wideband antennas have relative −6 dB
impedance bandwidths between 60–81%, depending on structure. Also correlation
coefficient between antenna elements is an important parameter to describe behaviour
between radiation patterns. The parameter can be calculated from 3D complex radiation
pattern of the antennas [2] or by using scattering parameters [61]. Using scattering
parameters is practical when correlation is needed to investigated at wide frequency
range.

The effectiveness of diversity antenna system is usually presented in terms of
diversity gain (DG). The DG can be defined as the improvement in time-averaged
signal-to-noise ratio (SNR) of a combined signal from diversity antenna system, relative
to the SNR from a single antenna system [62]. An effective diversity gain (EDG) is
defined to include the total antenna efficiency, which includes reflection losses, ohmic
losses, mutual coupling losses, and correlation between the antenna elements [62]. Thus,
the isotropic random environment seems to be a good simplified scenario to evaluate the
diversity performance [63].

What comes to the MIMO systems, the parameter to describe MIMO performance is
called multiplexing efficiency. The multiplexing efficiency in 2x2 MIMO case includes
the same parameters as the EDG, except now the total antenna efficiency of both
antennas are counted [64]. As the EDG and MIMO efficiency dependents on correlation,
e.g. when maximum ratio combining is used for the received signal, the correlation
between antenna elements should be less than 0.5 [2].

30



A good mobile terminal antenna radiates roughly 50% (−3 dB) of the power
available from the transmitter [65]. This value is including different components in a
mobile terminal like battery, display etc., and, thus, it can be considered good. However,
if the antenna is studied only as an antenna, a higher value for total efficiency can be
considered by keeping 50% efficiency as a minimum requirement. If −1 dB (80%)
total efficiency for an individual antenna element is accepted [66] with 0.5 maximum
correlation between two antennas, and these values are added to formulas 27 and 28,
a comparable minimum EDG and MIMO efficiency is defined equal to 7.0 and 0.7,
respectively.

To realize a compact MIMO antenna, the antenna system also needs low mutual
coupling between the antenna elements. One option to achieve low coupling between
the antenna ports is to realize orthogonal radiating modes by combining electric dipole
and magnetic dipole such as loop or slot antennas [67, 68]. Another way to reduce
mutual coupling is to use parasitic scatterer, which can be used to modify ground plane
by notches and slots [69–71], where better than 19 dB isolation can be achieved within
relatively narrow frequency range. In [72, 73], compact MIMO antenna structures with
isolation better than 18 dB over wide frequency range are presented.

As closed space antennas have strong mutual coupling, by reducing it, low correlation
between antenna radiation patterns with good radiation efficiencies can be achieved
according to achieve good multiplexing efficiency. For example, in [69, 74] the achieved
isolation between the antenna elements in a mobile terminal is better 18 dB, the
antenna efficiency 80%, and the correlation smaller than 0.2. In MIMO systems, the
minimum physical separation between antenna elements for an appropriate limit in
correlation between the multitude of received signals is commonly referred to be λ /2.
However, there is no minimum distance condition but rather a definition of the acceptable
correlation level to insure the effectiveness of the MIMO system [54].

For mobile phone case, MIMO and diversity performance can be also obtained
by using radiation pattern diversity. To achieve radiation pattern diversity, multiple
antenna elements can be used to excite orthogonal radiation patterns on a small mobile
terminal chassis at the same frequency [28, 75, 76]. The radiation pattern diversity with
orthogonal modes can be amount to polarization diversity, where two orthogonal dipoles
represents two orthogonal radiating modes, or to space diversity, where two antenna
elements represents two separate modes.

In the future, there is a huge need for practical solutions in portable devices to find
efficient antennas for wireless communication systems. Multiple radio interfaces and
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wide bandwidths are required when, at the same time the data rates are increased leading
to multiple-antenna MIMO/diversity systems. Because of the space in a portable device
is limited, instead of using individual antennas for different radio interfaces, alternative
approach is to use single or multi-element antennas with frequency tuning/switching or
with wideband characteristics. Alternatively, when multiple antennas are closely packed,
problems with interaction between the individual antenna elements arise in terms of
mutual coupling.

The motivation of the work is to study novel small planar antenna structures for
mobile terminals from wideband and multi-element perspective. It is shown how, by
exciting only one antenna mode, a wideband impedance bandwidth can be achieved
when, at the same time, the antenna structures satisfy good radiation efficiency. Also,
a structure to excite orthogonal higher order modes by using one small antenna with
multiple excitation elements is presented. These orthogonal radiating modes can be used
in MIMO/diversity applications where one mode represents one antenna element in a
multi-element system. Also methods to reduce mutual coupling between closely spaced
antenna elements is presented.

1.3 Objectives of the dissertation

This section presents topics related to the state-of-art discussed in the previous section
in terms of general and specific objectives. The presented results in the dissertation
can be divided into three main topics, which are excitation of higher order modes
on a mobile chassis by using multiple excitation elements, wideband antennas by
exciting only one mode to avoid the excitation of higher order modes, and wideband
multi-antenna structures implemented on the same ground plane with low mutual
coupling and correlation between the antenna elements.

As the space is limited in a mobile terminal, the idea is to design planar, simple,
small, and robust antenna structures at wide impedance bandwidth to cover multiple
wireless standards. The antenna structures also need good radiation efficiency over the
bandwidth with omni-directional radiation patterns to satisfy a mobile environment
challenges.

The section is divided into two separate parts, which are general and specific
objectives. The general part describes the challenges related to wideband and multi-
element antenna designing in a mobile application, whereas the specific part defines
targeted parameters related to the general part, and also to the state of art.
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1.3.1 General objectives

According to the spherical mode theory, it is possible to excite higher order spherical
modes when using larger antenna aperture size [18]. Mostly small antennas in mobile
terminal are used without excitation of a mobile ground plane. On the other hand, if
mobile ground plane is used as an antenna, only one or fundamental mode is usually
excited, which are based on studies presented in [24]. However, the excitation of the
higher order modes is not widely studied in the literature.

The second objective of the dissertation considers wideband antennas. This is an
important issue as there is no space in mobile devices for separate antennas for different
wireless standards. In such a case, where an antenna element is closely spaced to an
electric conductor, an electric boundary condition is valid, and, thus, the currents in
the antenna element and the electric conductor propagate into different directions by
canceling the radiation.

The third objective of the dissertation is focusing on wideband multi-element
antennas. To guarantee good impedance matching and isolation between closely spaced
antenna elements in a mobile terminal, interaction between the antenna elements is need
to be taken in to account in terms of mutual coupling. This is important to ensure low
correlation between antenna elements, and, thus, to achieve good MIMO and diversity
performance of the multi-element system.

1.3.2 Specific objectives

As discussed in the Section 1.2, there are several wireless standards in small mobile
devices operating at different frequency bands. To come up with these challenges and
cover multiple radio interfaces, antenna research will play an important role as they
offer a wireless connection to the other devices and mobile services. To cover multiple
wireless standards, a mobile antenna designing can be separated into three subareas:
frequency-tuneable antennas, multi-frequency antennas, and wideband antennas. This
dissertation concentrates on the last one.

As previously mentioned, in most of the published papers the fundamental mode or
one mode of a mobile ground plane is excited. Only few published papers present the
excitation of higher order modes [28, 75]. It is shown, from theoretical point of view,
numerically by electromagnetic simulations, and by using multiple excitation elements,
that excitation of more than four orthogonal higher order modes on a planar mobile
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ground plane is possible. This is one of the objectives of the dissertation how to obtain
more than four orthogonal higher order modes on a small mobile ground plane.

How to place wideband multiple antenna elements into a small multi-standard mobile
device with limited space is an important issue. The question is can an antenna element
be excited in a close vicinity of an electric conductor without spoiling impedance
matching and radiation properties of the antenna, and how to exploit this at wide
frequency range.

As discussed the Section 1.2, an antenna has wideband characteristics if its relative
impedance bandwidth is greater than 10% [50]. The dissertation is focusing on finding
wideband antenna structures with a relative −6 dB bandwidth better than 30% [44]. The
objective is to find methods to excite a single current mode within a wide frequency
range by avoiding the excitation of higher order current modes of a mobile ground plane,
and, thus, extend the antenna frequency bandwidth.

When a wideband antenna element is combined to a multi-element structure, it is
possible to obtain a wideband two element antenna system for mobile diversity and/or
MIMO application. How to integrate multiple wideband antenna elements into a small
multi-standard mobile device without disturbing the antenna impedance matching and
radiation properties is another objective of the dissertation.

As discussed previously, for MIMO/diversity system the relative −6 dB impedance
bandwidth should be better than 30% when, at the same time the measured total
efficiency of an individual antenna is at most −1 dB (≤ 80%) [66] but better than −3 dB
(≥ 50%) [65]. On the other hand, the isolation between the antenna elements must be
better than 18 dB [69] with correlation smaller than 0.5 [50]. In addition, the EDG was
defined to be better than 7.0, and MIMO efficiency better than 0.7. The objective of
this dissertation is to show that it is possible to obtain correlation smaller that 0.2 [74]
between two antenna elements. By using formulas 27 and 28, this leads to a minimum
requirement for EDG and MIMO efficiency, which are 7.8 and 0.78, respectively.

Notice, that the total efficiency of antenna structures in this dissertation are also
presented in terms of an average total efficiency over the operating bandwidth. This is
because the total efficiency is usually poor at both ends of the frequency bandwidth, and
otherwise variation is very small within the operating bandwidth. Thus, the averaged
value is easier to compare to the defined total efficiency of the antenna structures
(−3. . .−1 dB), as it varies over a wide frequency range.
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The Table 1 lists the specific objectives to obtain in the dissertation compared to the
values in the literature. Values for EDG and MIMO efficiency are calculated from limits
defined by correlation and total efficiency.

Table 1. Objectives of the dissertation compared to the literature.

Literature / Reference Specific objectives

Number of modes 4 / [28] 6

Relative -6 dB BW [%] > 10 / [50] > 30

Mutual coupling [dB] <−18 / [72] <−18

Average total efficiency [dB] ≥−3 / [65] −3 . . .−1

Measured correlation < 0.5 / [50] < 0.2

EDG > 7.0 / Calculated > 7.8

MIMO efficiency [%] > 0.70 / Calculated > 0.78

1.4 Structure of the dissertation

The first chapter of this dissertation, Chapter 1, provides a general perspective to the
area of the work. In this section, the structure of the dissertation is presented chapter by
chapter to better understand the concept.

Chapter 2 will combine together the theory later needed to compare and understand
the discussions done in Chapters 3 and 4. In Chapter 2, the modal theory related to
spherical and characteristic modes will be presented. First, the theory related to the
spherical scalar function will be presented with numerical results and corresponding
point sources on a sphere. Second, the spherical vector function will be presented with
numerical results and be compared to the scalar case. Both TM- and TE-modes are
studied in vector form with corresponding surface currents on a sphere. Finally, the
characteristic modes theory will be discussed, and some of the higher order characteristic
current modes on a mobile ground plane will be presented. These current modes are
compared to the previously studied spherical vector modes, and it will be shown how to
obtain these same radiating modes on a planar structure, rather than on a sphere.

Chapter 3 will discuss basic antenna elements, ultra-wide bands and complementary
antennas. The wideband antenna structures in mobile terminals found in literature will
be compared to the novel antennas that are presented in this dissertation [II, III, IX, X].
The chapter will also discuss different antenna feeding techniques, baluns and basic

35



narrow band antennas to better understand the presented results of the novel antenna
structures.

Chapter 4 will present wideband multi-element antennas for mobile applications
[VI, VII, VIII, IX, X]. The image theory and boundary conditions will be discussed
and it is shown how they are used to create magnetic boundary conditions on a mobile
ground plane [VI], and manufacture a prototype antenna [VI]. The diversity and MIMO
techniques will also be discussed and how, by decreasing mutual coupling [IV, V], a
space diversity can be achieved. The wideband antennas presented in Section 3.4.1 will
be combined here as multi-element structures to gain space and polarization diversity
[IX, X]. Radiation pattern diversity will be presented with multiple dipoles as excitation
elements to gain orthogonal radiation patterns [I]. Also, the parameters to study diversity
and MIMO performances will be presented in terms of envelope correlation, effective
diversity gain, and MIMO efficiency.

Chapter 5 will summarize the results of the original papers that are presented in this
dissertation. Results are also compared to the values defined in the objectives.

Chapter 6 will discuss and compare the results presented in the dissertation to the
previously published results. Also, how commercial companies can exploit the results
will be discussed and recommendations for future work will be presented.

Chapter 7 will summarize the most important findings of the dissertation, whereas,
the Chapter 8, will conclude the results related to the state-of-art defined in the Section
1.2.
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2 Theory of spherical and characteristic
modes

This chapter presents the basic theory related to the spherical and characteristic modes.
The theoretical examination starts from spherical scalar modes as a background to
the spherical vector modes. In both cases, a few radiating modes are presented with
corresponding point sources in scalar cases, and with surface currents on a sphere in
vector cases. Only a few modes are presented, because when considering the size of a
mobile ground plane, it can only support a few higher order modes [28, 75].

It is also shown how the same modes excited on a sphere can be found on a planar
radiating ground plane. Numerical results are presented in every case and the results are
compared to find the correlation between the modes. The theoretical results presented in
this chapter are later compared in Chapters 3 and 4 to the antenna structures presented in
the original papers [I] - [X].

2.1 Theory of spherical modes

As a background, the first modal approach to antennas was taken by Chu in 1948 [17],
and later, in 1960, Harrington was able to determine the fundamental limitations of
antennas [77]. They assumed that any radiating field of an antenna can be written as a
sum of spherical vector waves, enclosed by a sphere. The radiated power of an antenna
is then calculated from the propagating modes within the sphere, while all the modes
contribute reactive power.

When the sphere enclosing the antenna is very small, there are no propagating modes
in the spherical waveguide, as all modes are evanescent (below the cut-off). However, if
the sphere containing the antenna is large enough, several propagating modes will be
supported. This is a well known property in the spherical antenna measurement theory.
When the size of the antenna is limited, only a reduced number of radiating modes can
be measured [18]. The minimum sphere for an antenna is defined by the smallest radius
completely bounding the antenna. The number of resonating modes is given by N = kr0,
where k is the wave number and r0 is a radius of the minimum sphere enclosing the
antenna.
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Fig 1. Spherical coordinate system.

The theoretical part of the spherical modes are presented here, first with scalar modes
(charges) and then with vector modes (currents) on a sphere. The sphere is used to study
the modes because it is a simple canonical surface and easy to analyze. Additionally,
the spherical case is general and any planar surface is possible to find by decreasing
the radius of a sphere [31]. In the vector case, the purpose is to show the relationship
between the currents in a sphere and how they correspond to the radiated field. And as it
will be shown later with the characteristic modes theory, the radiating modes in a planar
structure are very similar to those with the spherical ones. The spherical modes connect
together the theory, and how they can be used to analyze the limited number of excited
modes of small antennas. In [31], spherical modes have been studied on a conventional
sphere, but these modes have never been compared exactly to the modes excited on a
planar mobile ground plane.

The spherical coordinate system is presented in Fig. 1. It can be considered as a
geocentric system, the origin of which is the mass center of the Earth. The Z-axis is
orientated to the North as a direction of the Earth’s axis of revolution, and the plane
determined by the XY-axis is considered to be the equatorial line of the Earth.

2.1.1 Spherical scalar wave function

This section introduces the theory of spherical scalar wave function based on Harrington’s
book [15]. Spherical modes are presented in a spherical coordinate system, the definition
of which is shown in Fig. 1, where φ (Phi) is an azimuth angle and θ (Theta) is an
elevation angle.
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To solve the wave equation, the source-free scalar Helmholtz equation in the
spherical coordinate system to construct the electromagnetic field is needed. The general
form of the Helmholtz equation is

∇
2
ψ + k2

ψ = 0, (1)

where ψ is a complex scalar wave function, ∇2ψ represents a scalar Laplace scalar
operator, and k is a wave number. In the spherical coordinates, the Helmholtz equation
gets the form

1
r2

∂

∂ r

(
r2 ∂ψ

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1
r2 sin2

θ

∂ 2ψ

∂φ 2 + k2
ψ = 0. (2)

The equation (2) is separated into three different functions. The r dependence is closely
related to Bessel’s equation and it is called spherical Bessel functions (Appendix 1),
denoted as bn(kr). These functions are related to the ordinary Bessel functions by

bn(kr) =
√

π

2kr
Bn+1/2(kr). (3)

The second dependence of θ is related to Legendre’s functions (Appendix 2) and it is
called associated Legendre function. Commonly used solutions are

Lm
n (cosθ)∼ Pm

n (cosθ), Qm
n (cosθ), (4)

where Pm
n (cosθ) are the associated Legendre functions of the first kind and Qm

n (cosθ)

are the associated Legendre functions of the second kind. In this dissertation, the
Legendre function of the first kind is used in the calculations.

The third dependence of φ is a harmonic function, giving the solution h(mφ).
Commonly used harmonic functions are

sin(mφ), cos(mφ), e jmφ , e− jmφ (5)

with m as an integer.
Forming the product solutions (3) - (5) to the Helmholtz equation, the elementary

wave functions for the spherical coordinate system is

ψm,n = bn(kr)Lm
n (cosθ)h(mφ). (6)

By forming linear combinations of the elementary wave functions, a more general
solution to the Helmholtz can be constructed

ψ = ∑
m

∑
n

Cm,nψm,n

ψ = ∑
m

∑
n

Cm,nbn(kr)Lm
n (cosθ)h(mφ),

(7)
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where Cm,n are constants. The solutions to the associated Legendre equation have
singularities at θ = 0 or θ = π , except the Pm

n (cosθ ) with n an integer.
The behaviour of the spherical Bessel functions is different depending on the studied

case. For k real, jn(kr) (Bessel function of the 1st kind) and nn(kr) (Bessel function
of the 2nd kind) represent standing waves, when h(1)n (kr) (Hankel function of the 1st
kind) represents an inward-travelling wave, and h(2)n (kr) (Hankel function of 2nd kind)
represents an outward-travelling wave. The zero-order Bessel functions can be found in
Appendix 1, based on [18].

To represent a finite field outside of a sphere, which is more interesting from an
antenna radiation point of view, outward-travelling waves are

ψm,n = h(2)n (kr)Pm
n (cosθ)e jmφ (8)

with m and n integers are the wanted elementary wave functions.

2.1.2 Numerical results of spherical scalar modes

This section presents the numerical results related to the theory that were presented in
the previous section (2.1.1). The fundamental solutions for spherical modes can be
calculated by using (6), where index m is related to the degree of the azimuthal variation,
while the index n denotes (order) the number of total variation in the elevation and
azimuth.

The special case of the spherical modes is the case with symmetry in the azimuth
plane or revolution in symmetry, when m = 0. These modes are presented in Fig. 2. The
coordinate system which is used to study the modes is the same as shown in Fig. 1. The
sphere under the mode represents a polarization of the point sources used to excite the
corresponding scalar mode. The red corresponds to a positive charge and blue as a
negative charge. These previously presented modal solutions can be associated to a fixed
number of sources located on the surface of a sphere.

In Fig. 3, some of the fundamental modes proportional to the harmonics function
cos(mφ) are presented. The modes of harmonics sin(mφ) are the same after applying a
90 degree rotation in the azimuth plane. The presented modes can be seen as a radiation
of a set of different signal sources. Notice that the index m ≤ n. The coordinate system
which is used to study the modes is the same as shown in Fig. 1.
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(a) m = 0, n = 0 (b) m = 0, n = 1 (c) m = 0, n = 2

Fig 2. Special cases of spherical scalar modes with no azimuthal variation (degree
m = 0).

(a) m = 1, n = 1 (b) m = 1, n = 2 (c) m = 2, n = 2

Fig 3. Some fundamental higher order spherical scalar modes.

2.1.3 Spherical vector wave function

This section introduces the theory of spherical vector wave function based on Harrington
[15]. The wave function ψ can be represented in terms of electromagnetic fields as
vector potentials. To do so, a presentation of an arbitrary electromagnetic field in
spherical coordinates is possible by constructing the field as a superposition of two parts;

41



one TM mode (Transverse Magnetic) to r and the other TE mode (Transverse Electric)
to r. For this, magnetic vector potential ~A = Ar r̂ and electric vector potential ~F = Fr r̂

are presented, where r̂ represent a radius vector from the origin. The field components
Ar and Fr, with respect to r, are not solutions to the scalar Helmholtz equation ∇2Ar 6=
(∇2~A)r (see Appendix 3) [15]. The vector form for Ar is(

∇
2 + k2)Ar

r
= 0, (9)

where Ar/r is a solution to the scalar Helmholtz equation (ψ).
A dual development applies to the electric vector potential ~F = Fr r̂, as(

∇
2 + k2)Fr

r
= 0. (10)

The ψ’s in (9) and (10) have r dependence, and, thus, it is convenient to introduce
another spherical vector Bessel function, defined as

B̂n(kr) = krbn(kr) =

√
πkr

2
Bn+1/2(kr). (11)

And then, the general form to represent Ar and Fr in terms of the spherical Bessel
function, is

∑
m,n

Cm,nB̂n(kr)Lm
n (cosθ)h(mφ), (12)

where Cm,n are constants.
The explicit formulas for the field components to satisfy the vector Helmholtz

equation ∇2~ψ + k2~ψ = 0 in spherical coordinate system can be presented in terms of Ar

and Fr as follows
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(13)
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When Fr = 0, which means only Ar exists, we have field TM to r. Similarly, when
Ar = 0, the equations represent a field of TE-mode to r.

2.1.4 Numerical results of spherical vector modes

This section presents the numerical results of the spherical vector modes presented in
2.1.3. The coordinate system which is used in the study is the same as shown in Fig. 1.

The formulation starts from (13). First, by studying TM-modes against the Z-axis,
the electric field component Fr is set to 0. By adding (12) to (13), the components of the
electric field in the TM-mode get the following form

Er =
1

jωε

(
∂ 2

∂ r2 + k2
)

∑
m,n

Cm,nB̂n(kr)Lm
n (cosθ)h(mφ)

Eθ =
1

jωεr
∂ 2

∂ r∂θ
∑
m,n

Cm,nB̂n(kr)Lm
n (cosθ)h(mφ)

Eφ =
1

jωεr sinθ

∂ 2

∂ r∂φ
∑
m,n

Cm,nB̂n(kr)Lm
n (cosθ)h(mφ),

(14)

where Cm,n corresponds to a magnetic vector potential. Mark h(mφ) = cos(mφ) as done
in the scalar case. The low-order normalized Legendre polynomials, to calculate the
electric field, can be found in Appendix 2, based on [18].

To gain TE-modes, the magnetic field component Ar is set to 0. Now, the components
of the TE-mode get the following form

Eθ =− 1
r sinθ

∂

∂φ
∑
m,n

Dm,nB̂n(kr)Lm
n (cosθ)h(mφ)

Eφ =
1
r

∂

∂θ
∑
m,n

Dm,nB̂n(kr)Lm
n (cosθ)h(mφ),

(15)

where Dm,n represents an electric vector potential. As it can be notice the radial
component of the field vanish in TE case.

As mentioned in Section 2.1.2, the special case of the spherical modes is the
symmetry in the azimuth plane, when m = 0. Figure 4 presents the vector TM-mode
equivalent for scalar modes presented in Fig. 2. Below the corresponding mode, the
excitation of the vector modes is marked as surface currents on a sphere. The coordinate
system which is used to study the modes is the same as shown in Fig. 1.

Figure 5 presents the vector TE-mode, which is equivalent to TM-modes in Fig. 4.
Notice how the total field of the both modes are exactly the same. The only difference
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(a) m = 0, n = 0 (b) m = 0, n = 1 (c) m = 0, n = 2

Fig 4. Special cases of spherical vector TM-modes with no azimuthal variation
(order m = 0) against Z-axis. Below the spherical mode, the surface currents on a
sphere are presented, related to the corresponding mode.

appears in the surface currents; The TM-mode has a vertical current in every mode,
since the TE-mode has horizontal (loop) currents.

Figures 6 and 7 presents a number of higher order vector modes which have the
same form as in the scalar case. The mode (m = 0, n = 0) can be considered to be a
fundamental mode. The mode represents a dipole kind of radiation. Other modes are
higher order modes, with a variation in θ and a φ component.

It is good to notice that the mode (m = 0, n = 0) should be a sphere as in the scalar
case. But, as it is well known, an isotropic radiator is physically not possible, and, thus,
zeros appear in θ = 0 and θ = π , as can be seen in the radiation pattern. This is due to
the fact that the direction of the electric field vectors propagating towards the same pole
are cancelling each other. Thus, the vector mode m = 0, n = 0 can be seen as a scalar
mode, multiplied by the radiation pattern of a dipole.
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(a) m = 0, n = 0 (b) m = 0, n = 1 (c) m = 0, n = 2

Fig 5. Special cases of spherical vector TE-modes with no azimuthal variation
(order m = 0) against a Z-axis. Below the spherical mode, the surface currents on
a sphere are presented related to the corresponding mode.

(a) m = 1, n = 1 (b) m = 1, n = 2 (c) m = 2, n = 2

Fig 6. Some fundamental higher order spherical vector TM modes against the
Z-axis. Below the spherical mode, the surface currents on a sphere are presented,
related to the corresponding mode.
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(a) m = 1, n = 1 (b) m = 1, n = 2 (c) m = 2, n = 2

Fig 7. Some fundamental higher order spherical vector TE modes against the
Z-axis. Below the spherical mode, the surface currents on a sphere are presented
related to the corresponding mode.

2.2 Introduction to characteristic modes theory

This chapter shortly introduces the Theory of Characteristic Modes (TCM), which was
first developed by Garbacz [78] and later refined by Harrington and Mautz during the
seventies [16]. It can be used to obtain the radiating modes of any arbitrarily-shaped
metallic structure. These radiating modes, known as characteristic modes, not only
present really attractive orthogonality properties, but also bring physical insight into the
radiating phenomena that is taking place on the antenna. Because of these advantages,
TCM is extremely useful for systematic analysis and the design of an antenna. Recently,
TCM has been used for the design of diverse wire and planar antennas in [30–32, 75]
and [VI]. A commercial 3D electromagnetic simulations software, called FEKO
(FEldberechnung für Körper mit beliebiger Oberfläche, Field Calculations for Bodies
with Arbitrary Surface), includes an option to analyze characteristic modes, and brings
the characteristic modes analysis to the commercial field. The software uses the antenna
structure, published in [33], to demonstrate the characteristic modes of a metallic ring.
The antenna is designed in Universitat Politècnica de València, by the researches in the
Group of Electromagnetic Radiation.

46



As explained in [16], characteristic modes or characteristic currents can be obtained
as the eigenfunctions of the following particular weighted eigenvalue equation

X(~Jn) = λnR(~Jn), (16)

where λn are the eigenvalues, ~Jn are the eigenfunctions or eigencurrents, and R and X

are the real and imaginary parts of the impedance operator

Z = R+ jX . (17)

Characteristic modes can be defined as a set of orthogonal real surface currents associated
to any conducting object, which depend on its shape and size, and are independent of
any excitation source. As characteristic modes form a set of orthogonal functions, they
can be used to expand the total current J on the surface of the antenna, as follows:

J = ∑
n

V i
nJn

1+ jλn
, (18)

where Jn are the eigencurrents or characteristic modes, λn are the eigenvalues, and V i
n is

the modal excitation coefficient. The modal excitation coefficient can be obtained as

V i
n = 〈Jn,E i〉=

‹
Jn ·E ids. (19)

The product V i
nJn in (18) models coupling between the excitation and nth mode, and

determines which mode will be excited by the antenna feed or incident field (E i). Note
that the total current in (18) also depends on λn, which is the eigenvalue associated to
the nth characteristic current mode.

The variation of the eigenvalues as a function frequency provides information about
the resonance frequency and radiating bandwidth of the different current modes. In
general, eigenvalues range from -∞ to +∞. Considering that a mode is at resonance
when its associated eigenvalue is zero, it is inferred that the smaller the magnitude of the
eigenvalue is, the more efficiently the mode radiates when excited. Additionally, the
sign of the eigenvalue determines whether the mode contributes stored magnetic energy
(λn > 0) or electric energy (λn < 0).

The resonance frequency of the current modes can be determined, using the
information provided by its associated characteristic angles (αn). Characteristic angles
can be defined as

αn = 180◦− tan−1(λn), (20)
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(a) Antenna mode (b) Transmission line mode

Fig 8. Analogy between an elliptical loop and a folded dipole.

where λn are the eigenvalues associated to each characteristic mode. From a physical
point of view, the characteristic angle models the phase angle between a characteristic
current Jn and the associated characteristic field En. Hence, a mode is at resonance when
its characteristic angle αn is 180◦. The closer the characteristic angle is to 180◦, the
better radiating behaviour the mode presents.

Related to the behaviour of the characteristic angle, the characteristic modes can be
separated into two different modes, depending on their behaviour: antenna mode in
Fig. 8(a) and transmission line mode in Fig. 8(b) [11]. Whereas the antenna modes
are efficient radiators representing the gentle slope of the characteristic angle, the
transmission line modes are characterized by a poor radiating performance with the
steep slope of the characteristic angle. As in the antenna mode, the currents propagate in
phase (Fig. 8(a)), it is considered to be an efficient radiator. In contrast, currents in the
transmission line mode (Fig. 8(b)) propagate in the opposite phase, so the radiation of
the mode is weak. As a result, from the antenna design point of view, it is suitable to
excite antenna modes to gain a good performance.

2.2.1 Characteristic modes in a small radiating ground
plane with corresponding spherical modes

The section shows that it is possible to obtain higher order modes with a planar structure,
which are all orthogonal to each other. The section studies surface current distributions
on a planar radiating ground plane, and shows how the radiation corresponds to the
spherical vector modes presented in Section 2.1.4.
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(a) Mode 0 (b) Mode 1 (c) Mode 2 (d) Mode 3 (e) Mode 4

Fig 9. The first five characteristic current modes appearing in a conducting ground
plane (I, published by permission of EurAAP).

Surface current distribution shows the total current over the surface of the antenna.
This total current is a combination of different current modes, and can be expressed as
the sum of the characteristic modes. If one mode is very dominant at a certain frequency,
the total current distribution is practically the modal current. And so, the total current
distribution will be the same as the mode in question. In practise, at some frequencies,
the behaviour of the antenna is due to the combination of two or more modes, and,
therefore, the total current is not only one modal current, but a combination of current
modes.

Figure 9 presents the first five characteristic current modes appearing in a planar
rectangle shaped conducting ground plane. Notice that the Mode 0 (TE mode) is
a special case by representing a non-radiating current loop contributing a magnetic
energy. The excitation of this mode is avoided due to its poor radiating properties. The
radiation pattern of this mode is similar to an electrically small loop antenna. Mode 1 is
considered to be a fundamental mode, whereas modes 2–4 are higher order modes that
appear at higher frequencies.

Mode 1 is characterized with vertical currents (TM mode) and it is the first radiating
mode awaking in a rectangular ground plane. The current zeros are at both ends of the
ground plane, corresponding to dipole like radiation.

Mode 2 is a higher order mode with a vertical current distribution (TM mode).
Current zeros appear at both ends and in the middle of the ground plane as an equatorial
cut. This corresponds to a radiation pattern, where two maximums appear at both ends
of the ground plane with a zero in the middle.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Fig 10. The first four surface current modes appearing in a conducting ground
plane with corresponding radiating mode. The modes in (a) and (b) correspond to
a TM mode, whereas (c) and (d) to the TE mode.

Mode 3 is characterized with horizontal currents (TE mode). Currents of this mode
are orthogonal to Mode 1. The mode generates current zeros on the every edge of the
ground plane and, thus, the radiation pattern has two spheres on both sides of the ground
plane.

As the previous mode, Mode 4 is orthogonal to Mode 2 with horizontal currents
(TE mode). This mode has current zeros on every edge of the ground plane, just like
Mode 3, but one vertical zero appears in the middle of the ground plane, creating a
clover kind of radiation pattern.

In Fig. 10, the surface currents on the conducting ground plane and their correspond-
ing spherical vector modes are shown, as previously studied in 2.1.4. Spherical modes
of the corresponding characteristic modes can be categorized in two groups related to
the propagation direction of the surface current, as was discussed in 2.1.4. These are TE
or TM modes. As can be clearly seen, modes 1 and 2 belong to the TM mode, whereas
modes 3 and 4 to the TE mode.

As the modes in Fig. 10 (a) and (b) are corresponding to a TM mode, they
characteristic currents are flowing vertically in a mobile ground plane. The equivalent
spherical vector mode for the characteristic current Mode 1 is TM mode m = 0, n = 0.
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Fig 11. The special case of the non-radiating characteristic loop mode, Mode 0.
The mode is corresponding to a TE mode m = 0, n = 0.

This is the fundamental mode and corresponds to a dipole kind of radiation. Mode 2 is a
higher order vertical current mode whose radiation pattern corresponds to the TM mode
m = 0, n = 1, respectively. The mode is generating a zero in the middle of the ground
plane and that can be seen in the spherical vector mode as an equatorial zero in the
radiation pattern.

The modes in Fig. 10 (c) and (d) are corresponding to a TE vector mode with
horizontally propagating characteristic currents. The similarity of the characteristic
current Mode 3 can be seen with TE mode m = 1, n = 1. The mode is generating a zero
around a radiated sphere from the North to the South. In proportion, the characteristic
current Mode 4 is equivalent to the vector TE mode m = 2, n = 2. The radiation pattern
is clearly creating a clover kind of radiation pattern.

Notice that the radiating modes are slightly different compared to the theoretical
spherical vector modes. This is due to the fact that the ground plane has an asymmetrical
shape. When exciting a square shaped ground plane instead of a rectangular one, the
generated modes would be similar to those with the theoretical ones.

Mode 0 of Fig. 11 is corresponding to a spherical vector TE mode m = 0, n = 0. This
can be easily seen when pushing the North and South poles of the sphere in Fig. 5 (a)
down against the Z-axis, so that the structure becomes flat. The surface currents then
propagate on both sides of the ground plane, rather than on a sphere.

2.3 Summary

The chapter briefly discussed the theory related to the spherical and characteristic modes.
The first section presented scalar spherical modes as a base for the spherical vector
modes presentation in the second section. In both sections, numerical results were
presented and the modes were compared.
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In the scalar case, the point sources were presented with corresponding numerical
results, whereas in the vector case, the corresponding surface currents were presented on
a sphere. In the third section, characteristic modes were discussed and current modes on
a planar mobile ground plane were presented with corresponding radiation patterns.

The surface currents on a planar ground plane was studied with respect to the
characteristic mode theory and compared to the obtained spherical vector modes. With
different excitation configurations, the surface currents of a planar antenna can be forced
to higher order forms to obtain orthogonal radiation patterns. The results obtained in the
theoretical foundation will be compared to the simulated and measured results in later
chapters.

As a conclusion, it was shown that it is possible to excite the same radiating modes
on a planar rectangular ground plane as on a conventional sphere with corresponding
surface current distributions.
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3 Wideband antennas

The chapter presents wideband antennas for mobile applications. The chapter starts
with a discussion on impedance matching and baluns related to the antenna feeding
mechanisms used in the prototype antennas presented in original papers [III] - [X]. The
electrically small antennas are discussed with general principles, and in the terms of
designing a mobile antenna.

Ultra-wideband antennas and complementary antennas are discussed, and an ultra-
wideband quasi-complementary bowtie antenna for a mobile application with switching
capability is presented in [II].

The final section presents planar quasi-complementary antenna structures, created
by using an electric conductor and a magnetic notch or a magnetic square slot. The
structures use monopole excitation, as presented in [III], or dipole excitations as
presented in [IX] and [X]. By using a properly designed magnetic slot, the monopole
and dipoles can be closely spaced to a conducting ground plane, and, thus, the antenna
performance can be enhanced compared to a reference case without the magnetic slot.
The enhancement in the antenna performance is achieved in terms of input impedance,
bandwidth, and radiation efficiency as the currents in the ground plane can be reinforced.

The quasi-complementary antenna elements presented in this chapter with a dipole
excitation ([IX] and [X]) are combined to multi-element antenna structures in Chapter 4
to create mobile diversity and MIMO systems.

By designing an efficient feeding network, it is possible to excite a radiating current
mode on a planar ground plane in such a way that it remains over a wide frequency
range without the disturbance of higher order modes. The chapter focuses on finding
novel and simple wideband antenna structures which relative −6 dB bandwidth is better
than 30%, defined as criteria of a wideband antenna in Section 1.3.2 (Table 1). The
antenna structures presented in this chapter utilize a ground plane of a mobile chassis as
a radiating element.

3.1 Antenna feeding

Most antennas are connected to radio modules using three different methods. The
first one, and maybe the most common way, is to use coaxial cable where an antenna
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is connected to the inner connector and the outer connector to the antenna ground
plane. Typically, quarter-wave monopoles, helical antennas, and some planar antennas
(microstrip antennas) use coaxial feeds in wireless applications.

Coaxial connections can be made over a range of characteristic impedance to simplify
matching between antenna and radio, although most standard coaxial connectors have a
50 Ω characteristic impedance. Coaxial connections are unbalanced and require a balun
to feed balanced antennas, such as a dipole [79]. Coaxial feeding mechanism has been
used in the prototype antennas presented in original papers [III] - [X]. 50 Ω coaxial feed
without a separate impedance matching network is used in original papers [III] - [V].

The second connection option is the use of a microstrip feed between radio and
antenna. The connection is suitable for cases where the radio module and antenna are on
the same circuit board. This type of connection can directly incorporate impedance
matching circuitry and be fabricated along with the using common printed circuit
techniques [79]. A microstrip feed has been used in the antenna structure presented in
[VIII].

The third connection is electromagnetic coupling that is also common in portable
wireless devices. It relies on the transmission of signals between the radio and the
antenna without a direct connection. Much of its popularity results from its decreased
cost relative to other fixed connections that require moulded, machined, or complex feed
structures. This kind of connection can take on a variety of forms depending on the
antenna and space available in the package to establish the coupling.

The electromagnetic coupling of a microstrip or planar antenna via a slot in a ground
plane (aperture coupling) or via a buried microstrip line (proximity coupling) often
eliminates the need for a matching network and can broaden the bandwidth of the
antenna [79]. The electromagnetic coupling to a mobile chassis was first presented by
Vainikainen [24].

In the original papers, a monopole [III] or a dipole ([IX] and [X]) is used as a
coupling element. Also in [VIII], presented in Section 4.3.2, symmetrically excited
patch elements are used to couple energy to the mobile ground plane.

3.1.1 Impedance matching

Impedance matching is a control of impedance for the purpose of obtaining a maximum
power transfer or minimum reflection. Usually, the radio module and the antenna for
wireless applications are designed for standard characteristic impedance, so that no
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impedance matching network is necessary. However, if the antenna impedance does not
match with the radio input impedance, an impedance matching network is required.

In the case of resonant antennas, an impedance match can be established using
quarter-wave transformers, transmission line tubes, or lumped elements. These solutions
provide relatively narrow bandwidths, but usually meet system requirements since the
antenna has narrow bandwidth. Cascading multiple quarter-wave transformers or the use
of tapered transmission lines can provide broader impedance bandwidths [79]. One way
to change the input impedance of a dipole is to use asymmetrical feeding by displacing
the feed point off-centre [9].

Lumped elements have been used to carry out impedance matching in the original
papers [VI] and [VII], where the matching network functions as a part of a balun.
Tapered transmission lines to perform impedance matching have been used in papers
[IX] and [X], where the matching is also carried out as part of a balun. It is good to
notice that in papers [III] - [V] and [VIII] - [X], the antenna structure itself can be
modified to gain impedance matching in certain limitations. In [III], [IV], [IX], and [X],
the input impedance can be modified by changing the slot dimensions related to the
excitation element(s), whereas in [V] and [VIII], by varying patch dimensions and patch
feeding points, different input impedances can be achieved.

3.1.2 Baluns

When connecting an antenna to a transmission line, it is important to deliver all the
available power from the transmitter or to the receiver. There are two primary conditions
to satisfy a good feed: the impedance matching between the antenna and transmission
line, and the excitation of the current distribution of the antenna. The former needs, in
certain cases, the balancing of the currents. Some of the antennas have a symmetrical
nature (half-wave dipole or loop antenna), thus, the currents should also be symmetrical
(or balanced).

In the balanced case, the currents on the transmission line are equal in magnitude
and opposite in direction, which yields a small radiation from the transmission line for
a closely spaced conductor (Fig. 12(a)). For unbalanced operations, the currents in
a transmission line are non-equal and there is a net current flow on the transmission
line leading to uncontrolled radiation towards the desired direction or of the desired
polarization (Fig. 12(b)) [9].
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(a) Balanced
currents, I1 = I2

(b) Unbalanced cur-
rents, I1 > I2

Fig 12. Balanced and unbalanced signals of a centre-fed dipole.

Parallel wire lines are naturally balanced in that if an incident wave is launched
down the line, it will excite balanced currents on a symmetrical antenna. On the other
hand, a coaxial transmission line is not balanced. A wave travelling down the coax may
have a balanced current mode, that is, the currents on the inner conductor and the inside
of the outer conductor are equal in magnitude and opposite in direction. However, when
this wave reaches the symmetrical antenna, the current may flow back on the outside of
the outer conductor, which unbalances the antenna and transmission line. To suppress
this outside surface current, a balun (balanced to unbalanced transformer) is used [9].

Antennas, if not driven properly, may interact in undesirable and unpredictable ways
with their environment. Frequently, this interaction can be minimized by enforcing a
balanced operation, e.g., the currents in the two arms of a symmetric dipole should be
equal. A balun is a 3-port network, designed to couple an unbalanced transmission line
at one port to a balanced transmission line at the other two ports. A balun may be a
current balun, which forces the currents at the balanced ports to be equal and opposite,
or a voltage balun which does the same for the voltages at the balanced ports. Though
many types of different baluns, many of them also possess an impedance transformation
properties [10].

A common balun structure is a reciprocal element, and, thus, it is possible to change
an input port with an output port and maintain the same functionality. So, if a signal
from an unbalanced port is the input signal, the balun structure has to transform it
into a signal on a balanced port. Therefore, the input signal must be turned into two
non-ground signals. This can be done by using a low pass branch generating a +90◦
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Fig 13. The principal of an LC-balun structure.

signal, and a high pass branch generating a −90◦ signal. Using this as a balanced signal
fulfils the desired needs for a balun transformer [10].

In the next sections, two different wideband baluns are presented. Both are used in
the antenna prototypes that are presented in the original papers.

LC-balun

In LC-balun, the incoming unbalanced wave energy is divided equally between two
channels, one providing a 90◦ lead, the other, a 90◦ lag. The output voltage is balanced
with respect to the ground, and it is in quadrature with the input voltage. The lattice
may be proportioned to match any two (input and output) resistance values as shown
in Fig. 13. The LC-balun consists of a high-pass filter (HPF), and a low-pass filter
(LPF) to generate a phase difference with a balanced signal [80]. While the inductor is
passing signal at lower frequencies, the capacitor does the same at higher frequencies.
An LC-balun design is a compromise for an intersection point between LPF and HPF.

The lumped-element reactances may also be replaced by transmission line stubs,
which are particularly suitable for printed-circuit applications [10].

The lattice balun may be generalized to a higher-order circuit to improve bandwidth
[10]. Fig. 14 shows a cascaded LC-balun to feed the symmetrical folded dipole
published in [VI] and [VII]. The cascaded LC-balun in the figure only presents the feed
of a one port, as the other port is symmetrical. Symmetrical feeding is discussed later in
Section 4.3.
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Fig 14. A cascaded LC-balun structure used to feed a symmetrical folded dipole
(VI, published by permission of IEEE).

Tapered microstrip line balun

A tapered microstrip line balun is a transmission line that converts from an unbalanced
line (coaxial or stripline) to a balanced two conductor line. The tapered microstrip balun
has an advantage that the impedance can be matched by tapering the width of the strips.
It can be designed for bandwidths that are several octaves wide [10]. Fig. 15(a) shows
the principal of the tapered microstrip line balun.

When a microstrip line is joined to a balanced stripline, a step discontinuity between
the ground plane of the microstrip line and the bottom conductor of the balanced stripline
exists. A step discontinuity also exists between the top strip conductors of these two
lines. But the step discontinuity in the former case is larger than in the later case [81].
Transmission line tapers are generally employed to achieve a good match between the
two lines [82]. The tapered microstrip line balun presented in Fig. 15(b) is used to feed
prototype antennas in original publications [IX] and [X].

3.2 Basic narrow band antennas

This section discusses the principles and needs for designing mobile antennas. As there
are many types of antennas used, they are only shortly discussed and the principles are
presented.

Mobile antennas are subjected to a wide range of variations in the environment that
they encounter. The propagation conditions vary from wideband multipath arrival of
angle (AoA) to very strong Line-of-Sight (LOS) component. The orientation of the
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(a) the principal of a tapered microstrip line
balun.

(b) Tapered microstrip line balun to feed quasi-
complementary antenna.

Fig 15. Tapered microstrip line balun (b, IX, published by permission of IEEE).

mobile phone is mostly random, they need to operate in close proximity of a user, and
are suitable for manufacturing in very large volumes. Users also prefer antenna to be
fully integrated to the terminal [83].

In general, antenna design can be classically separated in different requirements,
which are radiation pattern, input impedance, bandwidth, operating frequency, polar-
ization, size, and radiation efficiency [79]. Still, as the future lies in small, internally
mounted antennas that are able to work well over a wide frequency range, additional
factors need to be taken into account, like small physical size, mechanical robustness,
and cost. On the other hand, the interaction between the antenna and the user (e.g. SAR)
is an important design parameter as well [54].

Various antenna elements have been used for mobile applications. There is no single
specific type of antenna element, but designs that differ depending on the practical
mobile systems. The most typical linear structures are dipole, monopole, loop, inverted-
L antenna (ILA), inverted-F antenna (IFA), normal mode helix (omni-directional),
and meander line antenna. When it comes to planar antennas, the most common are
microstrip antenna (MSA), planar inverted F-antenna (PIFA), parallel plate antenna, and
slot antenna. Small ceramic ships are also commonly used [8].

Mobile antennas can often be classified as electrically small antennas [17, 84, 85],
defined as those whose radiating structure can be obtained within a sphere of radius r0,
such that kr0 < 1, where r0 = λ0/2π . Electrically small antennas with a limited aperture
size cannot achieve high directivity [86].

Similarly, the bandwidth and directivity cannot both be increased if the antenna is
kept small. For a losses antenna, the effects are a high Q factor (quality factor) and,
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hence, small bandwidth, a small radiation resistance resulting in a low efficiency, and a
likely greater antenna sensitivity to mechanical and electrical tolerances. When the
antenna has intrinsic losses, the bandwidth is less narrow. The smallest Q within a given
size of enclosed sphere is obtained from a dipole-type field, operating at a fundamental
mode of the antenna [87] (Mode 1 in Fig. 9).

The excitation of higher order modes should be avoided as they disturb the perfor-
mance of the fundamental mode. Unless the mode in issue is wanted to be excited e.g.
in case of radiation pattern diversity, as presented in Section 4.7.1. Assuming a resistive
matched load, for a first order mode, weather electric or magnetic, the Q is related to the
electric size of the antenna by [87]

Q =
1

(kr)3 +
1
kr
. (21)

3.3 Ultra-wideband antennas in mobile applications

This section is shortly discussion a basics of the Ultra-wideband (UWB) antennas
based on [10]. The UWB is a technology for short-range high-data-rate wireless
communications, high-accuracy image radar, and localization systems. UWB antenna
design is challenging due to the extreme broad bandwidth and carrier-free features.
UWB antenna is an antenna which is capable of producing similar radiation (pattern and
gain) over a very wire frequency range. Notice that defining an antenna bandwidth
which is based on a return loss (S11) being lower than −10 dB does not guarantee strong
radiation. When an antenna contains absorptive materials, a low return loss indicates a
low return, and nothing about the radiation.

UWB antenna radiation can be separated by three different approaches. In the first
one (i), a perturbing electromagnetic resonance is broadening a resonance peak. These
kinds of UWB antennas achieve a wide bandwidth by introducing incoherent resonance
and effectively lowering the quality factor of the electromagnetic resonance. Common
antenna types in this category are dipoles [88–92] and monopoles [93–97]. On the other
hand, to avoid an excitation of the 2nd or higher modes, exciting only the fundamental
1st order mode also offers wideband antenna characteristics.

The second one (ii) only allows one dominant radiation region that is physically
small compared with wavelengths. These UWB antennas achieve wide bandwidth
by controlling diffraction on the antenna structures via careful geometry design or
the proper utilization of absorptive loading [98–100]. Antennas in this category often
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produce some degree of frequency-dependent gain and patterns because of the fraction
and absorption as functions of frequency. For instance, a curved section of an antenna
may appear to be smooth for short wavelengths and produce less diffraction, but may
suddenly bend for long wavelengths (e.g. tapered slot antenna [101–103]). Similarly, a
section of tapered resistive loading could be long and have smooth tapering for short
wavelengths, but would be short and sudden for long wavelengths [104].

The third one (iii) is maintaining a similar radiation/scattering geometry (shape and
dimension) in terms of wavelengths. This group of UWB antenna are probably the most
widely used. This type of antenna adopts frequency-independent or frequency-scaled
geometries. Among them, angle defined geometry, complementary antenna with an
electric conductor and a magnetic slot [105–107], where the imaginary part of the
electric conductor cancels the imaginary part of the magnetic slot (presented in the next
section), and log-periodic geometry are the best known [108, 109].

Several UWB antennas for mobile devices have been proposed in [47, 110–116].
Also, a wide variety of different UWB antennas for portable devices can be found in
[117, 118].

3.3.1 Complementary antenna

Consider a metal antenna with an input impedance Zmetal . A dual structure can be
formed by replacing the metal with air. The resulting complementary antenna has input
impedance Zslot . Babinet’s principal in (22) can be used to find the impedance of a
complementary antenna, where η0 is the wave impedance in free space. This assumes
that no dielectric or magnetic materials are present. If so, the proper η must be used.

ZmetalZslot =
η2

0
4
. (22)

The product of the impedance (22) of two complementary antennas is constant. If
the antenna is its own complement, frequency-independent impedance behaviour is
achieved. This is so called self-complementary property, in which the antenna and
its complement are identical. A self-complementary structure can be made to exactly
overlay its complement through translation or rotation [9].

The value of the impedance for self-complementary antennas is Zmetal = Zslot = η0/2
[119]. The origin of the complementary antennas comes from Babinet’s principal in
optics, which Booker extended to vector electromagnetic fields [120].
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3.3.2 Complementary antenna for mobile terminal with
switching capability

The section presents an optimization of auto-complementary antenna to a quasi-
complementary monopole antenna with switching capability, originally studied in
[II]. The purpose is to find an antenna structure for mobile terminals, which covers
UWB-standard (3.1–10.6 GHz) [121] and some lower frequencies. In the studies,
three different antennas are simulated and compared: Auto-Complementary Antenna
(ACA), Quasi- Complementary Antenna (QCA), and Optimized Quasi- Complementary
Antenna (OQCA). The QCA is a scaled folded bow-tie antenna, presented in [122].

The optimized antenna structures are presented in Fig. 16. For comparison, the initial
relationship of the dimensions W and H1 of the ACA and the OQCA were calculated, so
that the area of the antenna in all cases is 1600 mm2.

After finding the optimized dimensions for the OQCA, the structure is split in half
as a monopole and integrated to a ground plane of a portable device as mentioned
previously. The optimization is performed with the monopole as well. The width of the
monopole is fixed to W = 40 mm, which is the width of a ground plane. The length of
the ground plane is 90 mm, respectively. The ratio of the width and height (W/H2)
of the monopole antenna is calculated by using the ratio of the optimized cases. This
is because the area of the antenna cannot be the same in this case, as it is fixed to the
ground plane.

In Fig. 16(b), the switches are added to the end of the folded elements. The structure
is called Optimized Quasi-Complementary Antenna with Switching capability (OQCAS).
This simulates a capability of switching the antenna to cover other wireless standards at
lower frequencies.

In Fig. 17(a), the simulated frequency responses of the ACA, QCA, and OQCA are
presented. One can notice with the optimized structure that the −10 dB lower frequency
limit can be reached related to the QCA; the difference is only 120 MHz. The benefit is
that the whole −10 dB impedance bandwidth can be covered without an upward peak at
6.5 GHz. The lower frequency of the QCA is 2.1 GHz against the 2.22 GHz frequency
of the optimized structure. With the ACA, the −10 dB lower frequency is 2.42 GHz.

Figure 17(b) presents the frequency responses of the monopole structure with the
ground plane. It can be seen that the difference between the antennas is getting relatively
smaller. The −10 dB lower frequency is 3.2 GHz with QCA against 3.3 GHz with
OQCA. At the same time, the −10 dB lower frequency with the ACA is 3.45 GHz. The
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(a) (b)

Fig 16. (a) ACA (W = 40 mm, H1 = 40mm) to be optimized to QCA (W = 34.6 mm, H1

= 46.2 mm. (b) OQC monopole antenna (W = 40 mm, H2 = 23.6 mm) with a ground
plane and switching capability (II, published by permission of EurAAP).

return loss of more than −10 dB around 5.5 GHz is avoided in this case as well. The
OQCAS, the switched case is also presented in Fig. 17(b). By using the switches, the
−6 dB frequency band can be covered up from 0.94 GHz with a band-notch behaviour
between 1.44 GHz and 3.72 GHz.

As comparing the results to the UWB-standard, it can be observed that the lower
frequency limit (3.1 GHz) is not exactly achieved. This is due to the fact that the antenna
width is limited to 40 mm. This can be easily corrected by increasing the ground plane
width by few millimeters. The 40 mm width is used here as a reference as done in the
original papers [I], [VI]-[X].

In Fig. 18, the simulated 3D-radiation patterns and the corresponding surface current
distributions at 1.2, 3.45, 7.5, and 10 GHz center frequencies are presented. Figure 18(a)
represents the monopole with a switching capability, whereas, in Figures 18(b), 18(c),
and 18(d) the optimized monopole with a ground plane is presented. The radiation
patterns are omni-directional, even at the 3.45 GHz, the antenna is slightly directive to
the direction of -Y. This is caused by the surface currents on the ground plane.

In Fig. 18(a), it can be observed that the radiating surface currents are concentrated
on the longitudinal sides of the ground plane. This corresponds to a fundamental
characteristic mode, Mode 1. When using an open circuit, the currents are coupled to
the ground plane causing the radiation pattern similar to a dipole (TM vector mode
m = 0, n = 0) at the 1.2 GHz center frequency. The strong surface currents around the
triangular slots are in transmission line mode, and thus not radiating.
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(a) (b)

Fig 17. Simulated frequency responses of studied antenna structures (a) and with
a mobile ground plane (b). OQCAS presents the switching to lower frequencies (II,
published by permission of EurAAP).

When it comes to the surface currents at 3.45 GHz in Fig. 18(b), the radiating
currents are on both sides of the monopole structure. This time, the currents are partly on
the ground plane as well, which corresponds to the 44 mm half-wave length at 3.45 GHz.
The radiating mode is very close to the higher order TM vector mode (m = 0, n = 2).
One can also notice at 7.5 GHz and 10 GHz in Figures 18(c) and 18(d), the surface
currents are concentrated around the monopole structure. This can be seen well in the
corresponding radiation patterns.

When comparing the results to UWB antennas for mobile applications presented in
[48, 49, 113, 114, 116], it can be notice the results remain very similar what comes to
the frequency range. This is natural as the standard [121] defines the −10 dB impedance
bandwidth.

The major difference compared to the references is that the OQCAS antenna structure
has a switching capability, which allows the structure exploit the fundamental mode
(Mode 1) of the mobile chassis at low frequencies. In this case the center frequency is
around 1.2 GHz, with 42% relative impedance bandwidth (0.94–1.44 GHz), and still
allowing the usage of the wireless standards at higher frequencies up from 3.72 GHz.
It can be concluded, that the relative −6 dB impedance bandwidth better that 30%
(Table 1), was achieved.
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(a) (b) (c) (d)

Fig 18. Simulated surface current distribution and radiation patterns of OQCA
with ground plane (a) at 1.2 GHz with 2.1 dB realized gain, (b) at 3.45 GHz with
4.9 dB realized gain, (c) at 7.5 GHz with 6.4 dB realized gain, and (d) at 10 GHz
with 7.3 dB realized gain. The scale of the presented surface current distribution
is between 0. . .5 A/m, and the radiation patterns between −30. . .8 dB (II, published
by permission of EurAAP).

3.4 Wideband antennas for mobile applications

In many applications, an antenna must operate efficiently over a wide frequency range.
Wideband antennas refer to a category of antennas with a relatively constant performance
over a wide frequency band. However, this is a general statement as an antenna has
several electrical parameters, including bandwidth, input impedance, gain, polarization,
losses, and radiation efficiency. This is due to the fact that an antenna can have very
diverse applications and its desirable parameters can vary significantly. The bandwidth
can depend on the application and the term wideband can mean a different frequency
range for different applications [8, 51].

Wideband antenna characteristics can be achieved in different ways. One possibility
to address this problem is to use the ground plane of the device as a radiating element
[24, 123–126]. A large radiating ground plane is usually available in devices with
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big screens, for example, mini-laptops. By adding a slot to the ground plane, the
antenna operating frequencies and bandwidth can be modified [127, 128]. The other
approach to cover a wide frequency range is to use frequency-tuneable antennas instead
of wideband antennas [129–132]. One way to achieve wideband characteristics is to
combine multiple resonances to one antenna [133–140] or wideband antennas [42–45].

In this section, slotted ground planes are used as a radiating element and the antenna
feeding is designed to avoid the excitation of higher order modes at wide frequency
range.

3.4.1 Quasi-complementary antennas with dipole feed

This section presents wideband quasi-complementary antenna structures. Two different
slot structures are presented: a notch presented in [IX], and a square slot presented in
[X]. By the antenna structure, a sort of magnetic boundary condition can be created
with a combination of an electric dipole and a conducting ground plane. In order to
establish this condition, the electric dipole is used as an excitation element, closely
spaced (0.5 mm) to the conducting ground plane including a magnetic slot. As shown
in [X] by simulations, the QCA element is easy to scale to other frequency ranges.
By scaling the antenna structure by 3, the size corresponds to a modern smartphone
(120 mm × 70 mm), covering the 0.7–2.1 GHz frequency band.

Figure 19(a) shows three different antenna structures that are compared in terms of
the input impedance (real and imaginary parts separately), reflection coefficient, and
surface current distribution. The compared antennas are a simple electric dipole, a
magnetic slot cut into an electric conductor, and a combination of both as the QCA.
Additionally, Fig. 19(b) presents an electric dipole with a magnetic square shaped
quasi-complementary slot cut into a conducting ground plane. The antenna is considered
to be an improved structure compared to the notch in Fig. 19(a). The distance of the
electric dipole from the conducting ground plane is 0.5 mm as in the notch case. This
Quasi-Complementary Antenna (QCA) structure is compared by the same terms as the
notch structure: to a dipole, to a dipole closely-spaced to an electric conductor, and to a
symmetrically excited square slot. Symmetrical excitation means that both sources have
the same amplitude and phase. It can be noticed how the electric length of the slot is
half of the length of the dipole for both structures.

In Figures 20(a) and 20(b), the antennas are compared in terms of the real and
imaginary parts of the input impedance. Notice, that Active Z is determined here

66



(a)

(b)

Fig 19. Quasi-complementary antennas with (a) a notch and (b) a square shape
slot. Antenna structures to be compared with the QCA structures, are presented
in the same figure (IX and X, published by permission of IEEE).

as (Z11 +Z21), and it represents a symmetrical excitation of both sources (with same
amplitude and phase) of the square slot shown in Fig. 19(b), which count the coupling
between the sources. The average of the real part of the notch QCA in Fig. 20(a) is
approximately 125 Ω, in contrast to the magnetic slot with 250 Ω. Respectively, for the
square shape QCA, the same values are approximately 150 Ω and 200 Ω. As observed,
all of the structures that include the electric dipole exhibit a common resonance at
approximately 3.3 GHz.

As expected, in Fig. 20(a) (square slot), it can be seen that the real part of the input
impedance is smaller in the case of the dipole close to the ground plane with a slot rather
than the isolated dipole. This means that there is not a good coupling between the dipole
and the conducting ground plane, and that the presence of the ground plane close to the
dipole does not significantly improve the performance of the isolated electric dipole.
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(a) Real part of the input impedance

(b) Imaginary part of the input impedance

(c) Reflection coefficient

Fig 20. Simulated (a) real part and (b) imaginary part of the input impedance, and
(c) reflection coefficient of the QCA antenna elements and the reference structures
(modified from IX and X, published by permission of IEEE).

However, this coupling can be enhanced by cutting a magnetic slot into the conducting
ground plane.

As can be observed in the imaginary part of both antenna structures in Fig. 20(b), the
complementary behaviour of the electric dipole and the magnetic slot are compensating
each other in the QCA structure in terms of capacitive and inductive behaviour. This is
approximately between 2 and 5 GHz for the notch QCA and between 2 and 6 GHz for

68



the square shape QCA. As a result, the imaginary part of the input impedance for the
QCA structure exhibits a very flat profile that favours the impedance matching. This is
the main reason for the wideband characteristics of the QCA.

It should also be highlighted that the imaginary part of the input impedance of the
single dipole, and the structure formed by the conducting ground plane and the dipole, is
very similar at the lowest frequencies, but rather different above 4.5 GHz.

Figure 20(c) represents the reflection coefficient of the QCA antenna structures.
For comparison, the input impedance of a resonant dipole (75 Ω, approximately) is
chosen as the reference impedance for all of the analyzed structures. As observed,
the −6 dB impedance bandwidth of the notch QCA is from 2.1 to 5.2 GHz, which
represents an 85% relative bandwidth. For the square shape QCA, the −6 dB impedance
bandwidth is from 2.2 GHz to 6.1 GHz, corresponding to a 94% relative bandwidth,
whereas, the −6 dB relative impedance bandwidth of the dipole is limited to 28.5%. The
symmetrically excited square slot is presented as the Active S parameter (S11 +S21) and
since it can be seen, it operates at a higher frequency band. As observed, the dipole
close to the electric conductor without a slot (Fig. 20(c)) is unmatched over the whole
bandwidth.

The effect of a mobile ground plane with the square QCA structure is compared in
Fig. 20(c) by the simulations, as well. The length of the compared ground plane is
110 mm, which is the same as the length of the prototype antennas presented in Section
4.6.1 and 4.8.4. It is interesting to notice how the length of the conducting ground plane
does not significantly affect the −6 dB impedance bandwidth of the antenna. This is due
to the fact that the radiating currents in the ground plane are concentrated around or
close to the slot.

In Fig. 21, a simulation result of the scaled QCA structure in Fig. 19(b) is presented.
The scaling factor is 3, and, thus, the antenna size has become (120 × 70)mm2, which
corresponds with the size of a modern smartphone. With the scaled structure, a −6 dB
impedance bandwidth from 700 MHz to 2.1 GHz is achieved, corresponding to 100%
relative frequency bandwidth. In the simulation, the slot width and dipole distance
from the ground plane are the same as shown in Fig. 19(b), which is 0.5 mm. The slot
dimensions are L = 43 mm and W = 37 mm, whereas in Fig. 19(b), L = 12.5 mm and
W = 16 mm, and thus, slightly modified after scaling the antenna.

The simulated surface current distributions at 2, 3, 4, and 5 GHz are presented in
Fig. 22 for the QCA structures, and for a reference structure without a slot. Black arrows
represent the propagating direction of the surface currents in the electric conductor with
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Fig 21. Simulated frequency response of a square shaped slot QCA structure,
scaled by factor 3. (X, published by permission of IEEE).

a magnetic slot, whereas, the white arrows show the direction of the propagated surface
currents in the electric dipole.

Figure 22(a) presents the surface currents at 2 GHz. As can be observed, these
current modes correspond with the vertical current mode (Mode 1) of a rectangular
ground plane [32]. As observed, the presence of the magnetic slot disturbs the vertical
current flow, forcing the currents to meander. This meandering creates a horizontal
current component that reduces the theoretical resonance frequency of the rectangular
ground plane.

It is good to notice that the currents appearing around the slot are very strong. Also
note that the electric dipole couples to the ground plane in an electric way. As a result,
the vertical currents in the dipole flow in the opposite phase to the currents in the ground
plane, so there is a current cancellation and the contribution to the radiation of the
dipole itself is very small in this mode. The same phenomenon can be seen at the higher
frequencies, with the reference structure without a slot.
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(a)

(b)

(c)

(d)

Fig 22. Simulated surface currents distribution of reference dipole and the QCA
structures at (a) 2 GHz (b) 3 GHz, (c) 4 GHz, and (d) 5 GHz. On the left, the reference
dipole is close to a conducting ground plane without a slot, in the middle QCA
with a notch, and on the right, QCA with a square slot (modified from IX and X,
published by permission of IEEE).

71



Figure 22(b) shows the surface current distributions at 3 GHz. This current is a
result of the simultaneous excitation of mode in Fig. 22(a) and a dipole mode. The
contribution of the mode appearing at 2 GHz can be seen in the left part of the ground
plane which presents vertical currents (Mode 1). The resonance frequency of this mode
is close to the electric length of the dipole, approximately λ /2, and, thus, the dipole can
be seen as a main radiator.

The surface current distribution at 4 GHz is presented in Fig. 22(c). This current
results in a linear combination of the previous modes. The currents around the slot can
be connected to mode at 2 GHz, the currents along the dipole to mode at 3 GHz, and the
currents flowing in an upper and low part of the ground plane are considered as higher
order modes.

The surface current distribution at 5 GHz is shown in Fig. 22(d). Again, these
currents are a combination of the same modes as shown at 4 GHz. The currents at the
left border of the ground are now quite weak, while the currents around the slots and at
the dipole are the dominant ones. Notice, that with the notch, QCA creates currents
which flow in the same direction in the dipole and the ground plane. At 5 GHz, the
electrical length of the external perimeter of the slots is close to 1λ , and, therefore, the
slots are at their first resonance.

The surface currents of the QCAs can be considered as a linear combination of
different current modes, as discussed previously. As observed in all cases, the presence
of the magnetic slot in the ground plane and the excitation by means of the electric
dipole, forces a strong vertical current distribution in the ground plane, which has the
same propagation direction as the dipole, and thus, they can be seen to reinforce each
other.

An electric boundary condition is present at the interface between the electric dipole
and the conducting ground plane in all the studied cases, except the notch at 5 GHz. The
vertical current mode in the ground plane represents the fundamental mode (Mode 1),
and exhibits very wideband radiating properties. It is then responsible for the improved
behaviour of the proposed structure [141], compared to the studied references.

The presented QCA antenna structures are planar, and they can be also considered as
a mobile chassis size as the simulated frequency response shows in Fig. 21. When
comparing the −6 dB impedance bandwidth to the results presented in [24], where
theoretical maximum relative bandwidth of a mobile chassis was simulated to be 95%,
the corresponding values for QCA elements are 85, 94, and 100%, and, thus, well
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correlates with the theory. It can be concluded, that the relative −6 dB impedance
bandwidth better that 30% (Table 1), was achieved.

However, in [24] two resonances appear over the simulated frequency band as the
QCA structures have three resonances; this is due to the magnetic slot as discussed
previously. Still, it can be clearly seen from the surface current distributions in Fig. 22
how horizontal currents are canceling each other. Thus, only vertical currents remain
by offering good radiation properties as they propagate to the same direction with the
excitation dipole, and corresponds with the fundamental mode (Mode 1).

3.4.2 Quasi-complementary antenna with monopole feed

Nowadays, many countries offer a digital video broadcasting handheld (DVB-H) service
to mobile phones. The DVB-H system operates at a lower frequency than other mobile
phone communication bands and requires a broad impedance bandwidth 474. . .858 MHz
(58% relative bandwidth), satisfying an antenna gain greater than −10 to −5 dBi over
the frequency range [142].

When considering the size of an antenna at DVB-H frequencies, the limited space
available in a portable device becomes critical. One possibility to address this problem
in low frequencies is to use the ground plane of the device as a radiating element. A
large radiating ground plane is usually available in devices with big screens, for example,
mini-laptops.

This section studies a planar radiating ground plane, originally presented in [III],
and shows how it can be excited over a very wide bandwidth by using a narrow
complementary slot. A complementary slot serves as a matching element for a monopole
to couple energy to a radiating ground plane. The resulting structure is very simple and
easy to implement in practical applications.

Figure 23 presents the structure and dimensions of the planar radiating ground plane.
The dimensions of the ground plane are designed to correspond approximately to those
of a mini-laptop, large PDA (Personal Digital Assistant), or a tablet. The prototype of
the fabricated antenna is shown in Fig. 23(b), where both monopoles are supported
by a small piece of white foam (ε = 1). As shown, the slot which is associated with
Monopole 2 is hidden by one of the pieces.

The radiating ground plane is excited by two monopoles, 34 and 90 mm in length,
which act as coupling elements. Moreover, two complementary slots (26 and 90 mm in
length) are implemented orthogonally to the corresponding monopoles into the radiating
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(a) (b)

Fig 23. Quasi-complementary antenna for portable device. In figure (a) a planar ra-
diating ground plane, and in (b), a prototype antenna are presented (III, published
by permission of John Wiley and Sons).

ground plane. The positions of the slots in the ground plane were optimized using CST
Microwave Studio.

Monopole 2 and its corresponding slot have relatively different dimensions compared
with Monopole 1, because both monopoles see the ground plane as a different size.
Furthermore, the ground plane for Monopole 2 can be seen scaled from the main ground
plane, limited by the 90 mm slot.

By optimizing the slot position and length, it is possible to find an optimum value of
a 50 Ω input impedance of the excited monopole. Using the slot, the monopole antenna
can be located very close to the ground plane, providing good coupling to the ground
plane, and by offering good antenna performance.

The measured and simulated reflection coefficient and measured maximum gain of
Monopole 1 are presented in Fig. 25(a). The measured total gain in the DVB-H band
is approximately −5 dBi at 474 MHz and 4 dBi at 858 MHz. The maximum gain is
5–10 dB higher than the minimum requirements of the DVB-H standard [142] and,
thus, exceedingly satisfies the standard, as presented in the same figure. The impedance
matching at 474 MHz is −1.8 dB, which, in turn, satisfies the standard, based on studies
presented in [143].
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(a) (b)

Fig 24. Measured and simulated S-parameters (a) for Monopole 1, with a measured
maximum gain and (b) for Monopole 2, with a measured total efficiency. Simulated
S parameters are compared with the case without a slot (III, published by permis-
sion of John Wiley and Sons).

Separated from the DVB-H standard (474–858 MHz), the GSM850 and GSM900
bands can be covered within the −6 dB impedance bandwidth with the Monopole 1.
The relative −6 dB bandwidth of the Monopole 1 is 57%. Additionally, the measured
isolation between Monopoles 1 and 2 is higher than 25 dB over the whole operating
bandwidth. For comparison, to demonstrate the effectiveness of the slot, the simulated
frequency response without the slot is also presented in Fig. 25(a). It can be noticed that
by properly optimizing the slot, matching can be improved significantly over a very
wide bandwidth.

Figure 24(b) presents the measured and simulated reflection coefficient for Monopole
2. The measured −6 dB impedance bandwidth ranges from 1.53 to 3.0 GHz and the
simulations predicted the same bandwidth with a slightly better matching. The measured
relative bandwidth, in the case of Monopole 2, is 65%. The measured isolation over the
operating bandwidth is once again over 25 dB, as in the lower frequency band.

As previously, the case with the slot in the ground plane is compared with the case
without the slot. As shown, matching is dramatically improved in this case as well.
Fig. 24(b) also presents the measured total efficiency of Monopole 2. The total efficiency
is defined as the relation between the radiated power (Prad) of the antenna and the
power delivered to the antenna port (Pdel). In a logarithmic scale, the total efficiency is
presented as 10log10(Prad /Pdel). It can be observed that the total efficiency is more than
−3 dB over the operating impedance bandwidth, and the average is −1.81 dB.
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(a) (b)

Fig 25. Performance of simulated S-parameters for structures with elevated and
coplanar monopole: (a) Monopole 1 and (b) Monopole 2 (III, published by permis-
sion of John Wiley and Sons).

The monopole can be implemented to the side of the ground plane to make the
structure coplanar. Fig. 25 shows a comparison of the simulated S-parameters obtained
with the coplanar monopole and the elevated monopole. In both cases, the distance
of the monopole from the ground plane is 5 mm. As observed, the behaviour of the
antenna is very similar in both cases.

The measured radiation patterns of Monopole 1 at 500 and 900 MHz are presented
in Figures 26(a) and 26(b), respectively. As one can notice, the radiation patterns at the
measured frequencies do not show very deep nulls, so the propagated signal can be
easily received from all directions. The maximum gain at 500 MHz is −2.3 dBi, which
is approximately the same in every cut. The radiation pattern can be observed as being
dipole-like. The maximum 3.2 dBi gain at 900 MHz can be found in the YZ plane. It is
also notable that the radiation pattern at 900 MHz corresponds well with the radiation of
a monopole on a ground plane.

Figures 26(c) and 26(d) depict the measured radiation patterns of Monopole 2 at 1.70
and 2.75 GHz. A 3.9 dBi maximum gain at 1.7 GHz can be observed at the intersection
of the XY and YZ planes, while a 4.1 dBi maximum at 2.75 GHz can be found in the
XY plane. It is also notable that the radiation patterns at both measured frequencies have
no deep nulls. The same was observed with Monopole 1 in the lower frequency band.

In Fig. 27(a), two separate current paths on both sides of the ground plane can be
observed in the structure with the slot at 500 MHz. Strong vertical currents in the ground
plane are corresponding to the fundamental mode, Mode 1. This is the main reason for
the radiation of the antenna, with no deep nulls at the lower frequencies. Notice that the
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(a) (b)

(c) (d)

Fig 26. Measured radiation patterns in total gain at (a) 500 MHz, (b) 900 MHz, (c)
1.70 GHz, and (d) 2.75 GHz (III, published by permission of John Wiley and Sons).

slot itself also reinforces the symmetrical vertical currents on the left side of the ground
plane.

At 900 MHz in Fig. 27(b), it can be seen that the presence of the slot keeps the
surface currents propagating vertically in the ground plane (Mode 1), as observed at the
previous frequency. These currents above the slot create a monopole on a ground plane
kind of radiation, which can be seen in Fig. 26(b), whereas the currents below the slot
represent low radiation.

The surface current distributions at 1.70 GHz are presented in Fig. 27(c). In this
case, the main mechanism of radiation is the currents that are propagating horizontally in
the bottom part of the ground plane, which correlates with a higher order mode, Mode 3.

Figure 27(d) depicts the surface currents of Monopole 2 at 2.75 GHz. As the
frequency increases, nulls start to appear in the horizontal and vertical current distribution,
as a combination of two or more higher order current modes. At 2.75 GHz, currents
around the slot are in resonance with vertical currents on both sides of the ground plane
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(a) (b)

(c) (d)

Fig 27. Simulated surface current distributions at (a) 500 MHz, (b) 900 MHz, (c)
1.70 GHz, and (d) 2.75 GHz. On the left side, the structure without the slot is pre-
sented. The scale is normalized to 5 A/m. Black arrows are included to facilitate
visualization of the current flow (III, published by permission of John Wiley and
Sons).

limited by the 90 mm slot. These vertical currents are responsible for the radiating
behavior that is exhibited by the antenna at this frequency (54 mm wavelength).

It can be observed that the presence of the slot reinforces the coupling of the field to
the radiating ground plane at the studied frequencies within both operating bandwidths.
When comparing the results to [143], clear difference is that, instead of awakening 3
resonances, the studied antenna structure represents only fundamental mode over the
DVB-H band. This can be seen in the surface currents in Figures 27(a) and 27(b). On
the other hand, both structures satisfy the DVB-H standard in terms of maximum gain.
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The antenna structure presented in section has higher maximum gain, which is explained
with larger antenna size and better impedance matching.

As in [143], a matching circuitry is used to broaden the impedance bandwidth of the
capacitive coupling element (CCE) for the DVB-H bandwidth, which increases the total
losses of the antenna structures. The structure presented in this section has very simple
feeding mechanism, and, thus, the losses are also very low.

As only maximum gain is measured at the low band, the measured total efficiency at
the higher band is predicting good total efficiency at the lower band as well because the
structures are scaled. On the other hand, by using monopole excitation, a narrow notch
is needed to cut into the ground plane. This may decrease the mechanical strength of the
antenna structure, whereas by using CCE kind of an excitation this can be avoided.

The objective of the wideband antenna structures is to gain relative−6 dB impedance
bandwidth better than 30% (Table 1). As the antennas are supporting 57% and 65%
relative −6 dB impedance bandwidths at lower and higher bands, respectively, they
satisfy the criteria of a wideband antenna.

With the proposed antenna structure, the DVB-H standard, GSM standards, UMTS
standards, 2.45 GHz WLAN, and future LTE bands can be covered.

3.5 Summary

This chapter presented wideband antennas for mobile terminals. It also discussed the
required impedance matching techniques and balun structures when designing wideband
antennas, or antennas in general.

The presented novel and simple antenna structures were based on an idea of a
complementary antenna, with an electric conductor (inductive behaviour) close to a
conducting ground plane slot cut into it (capacitive behaviour). These two opposite
components were canceling each other in terms of the imaginary part of the input
impedance at wide frequency range. The structures supported the idea of a single current
mode excitation.

To gain a wide frequency bandwidth, the structures were modified by simulations to
find a quasi-complementary shape, meaning that the electric conductor and the magnetic
slot are not exactly complementary. The antenna structures utilize a ground plane of a
portable device as a radiating element.

In conclusion, it was shown that by designing an antenna feeding properly, a
fundamental radiating antenna mode can be excited at a wide frequency bandwidth. By
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proper antenna feeding, the excitation of higher order modes was avoided, and, thus, the
disturbance of unwanted modes can be neglected. It was shown that the radiating and
current modes of the antenna structures presented in the original papers correlates well
with the modes presented in the theory part of the dissertation.
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4 Wideband multi-element antennas

This chapter presents the wideband multi-element antennas related to mobile and
wireless applications. The two first sections of this chapter will discuss the electric
and magnetic boundary conditions, as well as the image theory. It is shown, by
using characteristic modes theory and symmetrical feeding, how a magnetic boundary
condition can be created to a conducting mobile ground plane [VI].

The image theory is used to implement a prototype antenna in [VI]. The image theory
and characteristic mode theory are compared to show the similarities in both theories. It
is shown how the magnetic boundary condition in the image theory corresponds to
the antenna modes in the characteristic mode theory, and that the electric boundary
condition corresponds to transmission line modes, respectively.

Next, wideband multi-element antennas with symmetrical feeding are discussed,
based on [VI], [VII] and [VIII]. In [VII], a metal bezel extension of a symmetrical
folded dipole is presented with measurement results, and these results are compared.
To study the vicinity of a head phantom close to the antenna structures, the measured
SAR-values and S11-parameters are compared.

Then, diversity in mobile applications is discussed in general matter. The space
diversity technique is first presented and it is shown how, by reducing mutual coupling
between closely spaced antennas in [IV] and [V], good isolation can be achieved at a
wide frequency bandwidth. Then, polarization diversity and radiation pattern diversity
methods are presented with corresponding examples related to the original papers [IX]
and [I], respectively.

The final part of the chapter briefly discusses MIMO systems with diversity and
multiplexing approaches. An implementation of a multi-element antenna for a mobile
MIMO application is presented, based on [X]. And finally, parameters to study MIMO
and diversity performances are presented with practical examples based on [I], [IX], and
[X].

For MIMO/diversity systems, the relative −6 dB impedance bandwidth should be
better than 30%, when at the same time the measured maximum total efficiency of
an individual antenna is at most −1 dB (≤ 80%) but better than −3 dB (50%). On
the other hand, the isolation between the antenna elements must be better than 18 dB
with correlation smaller than 0.2. With these values, the limit for effective diversity
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gain (EDG) is better than 7.8 and for MIMO efficiency better than 0.78, as defined in
objectives (Table 1).

It is good to mention that the quasi-complementary antennas presented in Section
3.4.1, are combined in this Chapter to two different multi-element antennas to obtain
diversity with a low correlation between the antenna elements presented in [IX] and [X].

4.1 Electric and magnetic boundary conditions

Magnetic and electric conductors are well known basic concepts in literature. They are
useful tools when studying boundary conditions in electromagnetic problems. Boundary
conditions specify how the tangential and normal components of the electromagnetic
field in one medium are related to the components of the field across the boundary in
another medium.

An electric boundary condition may be a boundary of an electric conductor and a
dielectric material. In such a condition, the lines of the electric field point away from
the conducting surface, where the charge density is positive and directly toward the
conducting surface where the charge density is negative. In other words, the electric
field is always normal to the surface at the conducting boundary [144]. When a unit
vector is pointing normally away from the conducting surface, the tangential component
of the electric field vanishes; a metal conductor is shorting the tangential component by
forcing it to zero. This is important when considering antennas that are close to the
conducting material, since such an antenna has a negative image current and it radiates
almost nothing.

In a magnetic condition, respectively, the normal component of a magnetic flux is
continuous across the boundary between two adjacent media. The tangential component
of the electric field is continuous across the boundary, whereas the tangential component
of the magnetic field has vanished [144]. This condition is important from the antenna
radiation point of view. Still, such a condition does not physically exist. The magnetic
condition is used more as a tool in electromagnetic analysis.

One possibility to physically create a magnetic condition is to use periodical
structures such as high-impedance electromagnetic surfaces or photonic bandgaps (PBG)
[145, 146]. They are also called artificial magnetic conductors (AMC) or artificial
magnetic ground planes (AMG). By using these materials, an antenna can be laid very
close to such a surface without disturbing its radiation properties [147, 148].
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A magnetic conductor can be seen as a medium with a high permeability, when a
good electric conductor can be seen as a highly conductive metal or dielectric with very
high permittivity. When the reflection coefficient of the electric conductor is −1, for the
magnetic conductor it is +1. This means that the phase difference of the reflected wave
is 0◦ for a magnetic conductor representing an open circuit, and the electric conductor
shows a 180◦ phase shift representing a short circuit. This is an important definition
when considering antenna radiation properties [149].

Figure 28 presents the basic mechanism for creating an artificial magnetic boundary
condition in a radiating mobile ground plane by using the symmetrical excitation
presented in [VI]. The black line in the middle of the ground plane represents the line of
symmetry of the ground plane where the magnetic condition is created. The dashed
lines represent the lines of symmetry of the two separate planes, dividing them both into
halves. When the ground plane is separated into two parts that are uniform in width,
the surface impedance of the separate parts is equal, thus, leading to good antenna
performance.

As depicted in Fig. 28, having sources at the longer edges of the ground plane
provokes a vertical current distribution at the centre of the radiating ground plane, i.e., a
magnetic boundary condition is imposed along the central line of symmetry. To create
the magnetic boundary condition, both sources need to be excited symmetrically, so
that the symmetrical excitation introduces simultaneous amplitudes and phases in both
sources. The arrows pointing upward correspond to the directions of the currents when
the magnetic boundary condition is valid.

In order to physically implement the magnetic boundary condition in a radiating
ground plane, the structure in Fig. 29(a) is presented. It consists of a slotted ground
plane, where two symmetrical excitations are used to create the magnetic condition
along the line of symmetry. As observed, the structure is the result of a combination of
two symmetrical planar folded dipoles with the overall dimensions of a typical mobile
handset. The symmetry criterion for dividing the ground plane is the same as presented
in Fig. 29(a). The slot length is 106 mm and the input impedance of Source 1 and 2 is
300 Ω.

Figure 29(b) shows the normalized current distribution at resonance for the character-
istic mode (Mode 1) of the symmetrical folded dipole at 1.3 GHz, originally presented in
[VI]. The antenna mode exhibits a magnetic boundary condition at the axis of symmetry
of the radiating ground plane, so all the currents over the structure are in phase at the
resonance frequency representing excellent radiation properties.
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Fig 28. On the left side, a ground plane is divided into symmetrical planes, where a
magnetic boundary condition is applied along the central line of symmetry. On the
right side, a magnetic boundary condition is imposed by applying double symmet-
rical feeding at the longer edges of the ground plane (VI, published by permission
of IEEE).

(a) (b)

Fig 29. (a) Two symmetrical folded planar dipoles are combined to create an artifi-
cial magnetic boundary condition between the dipoles. (b) The result is a symmet-
rical folded dipole, which creates symmetrical currents to the ground plane (VI,
published by permission of IEEE).

It can clearly be seen from the characteristics mode how the currents are strong
at the points where symmetrical feeding is correctly implemented. The characteristic
modes analysis of the antenna structure is presented and discussed in the next section.
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Fig 30. Characteristic modes analysis of the symmetrical folded dipole (VI, pub-
lished by permission of IEEE).

4.1.1 Modal analysis of symmetrical folded dipole to
demonstrate magnetic boundary condition

A modal analysis of the symmetrical folded dipole is performed by means of the
Theory of Characteristic Modes to illustrate the interest of creating a magnetic boundary
condition in a slotted radiating ground plane. The analysis is based on the original paper
[VI].

This analysis reveals that two kinds of modes can be excited in the slotted ground
plane: Antenna modes and transmission line modes presented in Section (2.2). The
creation of a magnetic boundary condition in the plane of the symmetry of the structure
is necessary to force an excitation of antenna modes that exhibit a broader radiation
band and enhanced radiating efficiency. Moreover, the excitation of some higher order
modes, which disturb the radiating behaviour of the antenna, is avoided by means of this
feeding technique.

A modal study of the symmetrical folded dipole described in Fig. 29(a) is presented
in Fig. 30. The figure shows the normalized current distributions at resonance for the
first six characteristic modes of the symmetrical folded dipole. Antenna modes J1, J3,
and J5 exhibit a magnetic boundary condition at the axis of symmetry of the radiating
ground plane, so all of the currents over the structure are in phase at the resonance
frequency. On the contrary, transmission line modes J0, J2, and J4 present currents
flowing in the opposite phase, generating poor radiation.

Figure 31 depicts the characteristic angles curves for the first six characteristic
modes of the symmetrical folded dipole shown in Fig. 30. Again, there is a special
non-resonant inductive mode, whose currents form a closed loop around the structure.
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Fig 31. Variation of the characteristic angles as a function of frequency associated
to the first six characteristic modes of the symmetrical folded dipole (VI, published
by permission of IEEE).

The antenna modes J1, J3, and J5 present the softest slope at 180◦, and hence, the largest
radiation bandwidth.

Figure 32 illustrates the contribution of each mode to the total power radiated by
the antenna when it is fed symmetrically. As observed, the symmetrical feeding only
favours the excitation of those modes that exhibit a magnetic condition in the symmetry
plane of the ground plane. As confirmed by Fig. 32, the modes J1 and J5 are precisely
the ones that present the widest radiating bandwidth (together with mode J3, which is
not excited, as it presents zero current at the feeding points). Once more, the mode J1

plays an essential role in the structure. It dominates at the lowest frequencies and it
keeps its contribution to the total radiated power long after the resonance. This mode
combines with mode J5 to create the radiation maximum observed at 4 GHz.

Figure 33 shows the Active S-parameter computed with different reference impedances,
when the symmetrical folded dipole is symmetrically fed. Again, the best matching for
the excited antenna modes J1 and J5 is obtained for the reference impedance of 300 Ω.

The modal analysis of the symmetrical folded dipole demonstrated that it is possible
to only excite those modes whose currents flow symmetrically with respect to the
symmetry plane of the ground plane (i.e., they exhibit a magnetic condition in the
symmetry plane). By using symmetrical feeding, the appearance of some transmission
line modes, whose excitation would ruin the matching bandwidth, can be avoided.
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Fig 32. Contribution of each mode to the total radiated power of the symmetrical
folded dipole, when it is fed simultaneously at the centre of the upper and lower
dipoles (VI, published by permission of IEEE).

Fig 33. Active S-parameter calculated for different reference impedances of the
symmetrical folded dipole excited with symmetry (VI, published by permission of
IEEE).

Therefore, since the excitation of transmission line J4 mode is avoided by means of the
magnetic condition imposed by the symmetrical feeding, an increment in the impedance
bandwidth can be obtained if a smooth transition between the mode J1 and mode J5 is
achieved. This can be accomplished if the length of the slot is decreased.
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Fig 34. Active S-parameter calculated for different reference impedances of the
symmetrical folded dipole excited with symmetry (VI, published by permission of
IEEE).

In this case, the modes excited in the antenna are the same as in the case of a 106 mm
slot length, so neither the resonance frequency nor the radiating bandwidth of these
modes is altered by the length of the slots. However, the transition from mode J1 to
mode J5 can be improved by increasing the impedance bandwidth of the antenna.

The length value required to obtain the maximum impedance bandwidth is 50 mm,
and the results obtained for the Active S-parameter, computed for different reference
impedances, are plotted in Fig. 34. As observed, a larger −6 dB relative impedance
bandwidth is obtained (80%) with the 50 mm slot length than with the 106 mm slot
length, where a relative impedance bandwidth of 53% was achieved. This increment of
the operating bandwidth favours the antenna to cover different mobile standards.

4.2 Image theory

An important method to simplify electromagnetic problems is image theory. To analyze
the performance of an antenna near an infinite plane conductor, virtual sources or images
can be introduced, as presented in Fig. 35(a). For analysis purposes only, the equivalent
charge gives the same radiated field on and above the conductor as the actual charge
itself [11].

88



(a) (b)

Fig 35. (a) Electric source above and its image below electric conductor (elec-
tric boundary condition). (b) Electric source above and it image below magnetic
conductor (magnetic boundary condition).

The image theory states that any given charge above an infinite perfectly conducting
plane, is electrically equivalent to the charge and its image with the conducting plane
removed [144]. From an antenna point of view, a virtual source or image can be
placed below the ground plane to represent the reflections from the ground plane.
The electromagnetic field above the ground plane can be considered as a sum of the
electromagnetic fields due to the real source and the image source with ground plane
removed.

Figure 36 shows the relationship between the characteristic modes theory, presented
in Section 2.2, and the image theory. As the image theory states that the ground plane
should be infinite, the characteristic modes can be used to analyze a finite or limited size
conducting ground plane. The relationship between these methods is that when the
characteristic modes state that the mode is an antenna mode shown in Fig. 36(b), it is
equivalent to the magnetic boundary condition in the image theory, shown in Fig. 35(b).
Respectively, the transmission line mode in Fig. 36(a) in the characteristic modes theory
corresponds to an electric boundary condition in the image theory in Fig. 35(b).

A monopole antenna results from applying image theory to a dipole. If the conducting
ground plane is placed below a single element of length L/2 carrying a current in
Fig. 37(a), then, the combined system acts identically to a dipole of length L. Except
that the radiation only takes place above the conducting plane so that the directivity is
doubled and radiation resistance is halved. The quarter-wave length monopole, thus,
approximates the half-wave length dipole [83].

The image theory was successfully used in original paper [VI] for making a
symmetrical folded dipole prototype antenna. The prototype is presented in Fig. 37(b)
with a large ground plane size 300 mm × 300 mm.
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(a) (b)

Fig 36. (a) An antenna mode in the characteristic theory corresponds to a mag-
netic boundary condition in the image theory. (b) A transmission line mode in the
characteristic theory corresponds to an electric boundary condition in the image
theory.

(a) (b)

Fig 37. (a) Image theory applied to a monopole antenna. (b) Symmetrical folded
dipole prototype antenna implemented by using image theory with a ground plane
size 300 mm x 300 mm (b, VI, published by permission of IEEE).

4.3 Wideband multi-element antennas with symmetrical
feeding

The use of a radiating ground plane as part of the antenna in mobile devices was
proposed about 10 years ago to increase antenna radiation efficiency and bandwidth
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[24]. But, using a symmetrical feeding to excite currents on a mobile ground plane is
not a commonly used principal. The idea of using symmetrical feeding is to modify
surface currents to behave in a certain way.

Some compact antenna structures with symmetrical feeding are presented in [150–
153]. Also, a multiport MIMO antenna with symmetrical feeding to gain orthogonal
radiation patterns is proposed in [154]. A monopole antenna with symmetrical feeding
is used to avoid the excitation of higher order modes in [155]. In addition, some studies
to excite orthogonal current modes have been presented in [30, 31].

In this section, two antenna structures to couple energy a mobile ground plane are
presented based on [VI] and [VIII].

4.3.1 Symmetrical folded dipole and its metal bezel
extension

This section presents a comparison of antenna structures which supports the excitation
of a single current mode within a wide frequency range, and avoids the excitation of
higher order current modes of a mobile ground plane. Avoiding the excitation of these
modes, symmetrical feeding studied in Section 4.1.1 is used with the compared antenna
structures. The method creates a magnetic boundary condition between two adjacent
folded dipoles by favoring an excitation of radiating antenna mode. Objectives to gain
with the antenna structure can be found in Table 1.

In [VI], the measurement results of the prototype planar symmetrical folded dipole
(SFD) were presented. This section compares SFD to a further investigated metal bezel
(MB), published in [VII]. The MB ground plane is widened, compared to SFD, so
that the structure is still symmetrical, as presented in Fig. 29. Both antenna structures
represent the fundamental mode (Mode 1) shown in Figures 9(b) and 10(a).

In the metal bezel structure, the slots in the ground plane are separated closer to the
edge of a mobile chassis, while the antenna is integrated as part of the device. This kind
of antenna solution will release space inside the mobile terminal when separate antennas
for different operating frequencies are no longer needed. Figure 38(a) presents the
compared antennas structures, together with the coordinate system and the dimensions.
It can be noticed that the structures are very similar, except the ground plane of the
metal bezel is extended in width and bent up to represent a mobile chassis frame.
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(a)

(b)

Fig 38. (a) layout of the symmetrical folded dipole and metal bezel. In (b), the
prototype antennas of both structures are presented (VII, published by permission
of IEEE).

Figure 39 presents the measured S11-parameter and the total efficiency of the SFD
and MB in free space. The −6 dB impedance bandwidth of SFD is from 904 MHz
to 1960 MHz, whereas the MB ranges from 908 MHz to 1993 MHz, corresponding
to 74% and 75% relative impedance bandwidths, respectively. This is very close
to the theoretical impedance bandwidth presented in Fig. 34. The total efficiencies
at the aforementioned bands are between −3.3. . .−0.7 dB (average −1.63 dB) and
−3.3. . .−0.6 dB (average −1.42 dB), respectively.

Figure 40 presents the radiation patterns of SFD and MB at 950 MHz and 1950
MHz. The radiation patterns and the total efficiency measurements of the antennas are
performed with Satimo StarLab. The maximum gain for SFD at 950 MHz is 1.9 dBi,
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Fig 39. Measured S-parameters of the symmetrical folded dipole and its metal
bezel extension (VII, published by permission of IEEE).

and for MB, 0.2 dBi. The higher gain of SFD is due to the slightly directive behaviour
of the radiation, approximately in ±75◦ (XZ- and YZ-planes). At 1950 MHz, the
values are 1.2 dBi and 1.7 dBi, respectively. The radiated vector mode of both antennas
corresponds to the TM mode of order m = 0 and n = 0, as presented in Fig. 5(a).

Therefore, it can be concluded that the impedance bandwidth and total efficiencies
are very similar with both antennas. The main difference in the impedance bandwidth
is caused by the antenna feeding and the values of the lumped components that are
used in the balun. The difference in the radiation patterns is caused by the LC-balun
implementation. Also, the improved balun design in the case of MB can be observed in
the symmetry of the radiation patterns, especially at 1950 MHz.

When comparing the results to a wideband folded dipole antenna presented in [156],
by using symmetrical feeding it is possible to improve the relative −6 dB impedance
bandwidth from 63% to 75% (20% improvement). This is reached by using symmetrical
feeding by avoiding the excitation of higher order modes, and by creating a magnetic
boundary condition between the folded dipoles. The value also shows that the determined
−6 dB impedance bandwidth better than 30% was achieved.

On the other hand, when comparing the total efficiencies to the wideband PIFA for
mobile terminals presented in [45], the maximum values are very similar: PIFA−0.3 dB,
against −0.7 dB and −0.6 dB for the symmetrically fed structures in this section. On
the other hand, the minimum total efficiencies are little lower: PIFA −2.22 dB, against
−3.3 dB for the symmetrically fed structures. This is explained with losses of the
lumped components in the symmetrical feeding network.
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(a)

(b)

Fig 40. Radiation patterns of symmetrical folded dipole (on left) and metal bezel
(on right) at (a) 950 MHz (b) 1950 MHz. Feeding implemented by using cascaded
LC-baluns (VII, published by permission of IEEE).

Still, average total efficiencies are −1.63 dB (69%) for symmetrical folded dipole,
and −1.42 dB (72%) for metal bezel. This is slightly lower than −1 dB (80%) but much
better than −3 dB (50%), and, thus, well satisfies the goal defined in Table 1.

With the proposed antenna structure, E-GSM (880–960 MHz), GPS, DCS-1800
(1710–1880 MHz), and PCS-1900 (1850–1990 MHz) can be covered.
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Effect of a head phantom to the performance of the SFD and the metal
bezel in terms of SAR and S11-parameter

The user influence on the mobile terminal antenna performance has been known for a
long period. Since the first studies were presented decades ago [157], the effect of the
user has been investigated with different user effect scenarios, including calling and
browsing modes [158–160].

The amount of user effects depends on the antenna type (internal or external), the
operation frequency, and, in particular, the operating environment. PIFA types of
antennas are relatively robust against the vicinity of the user. However, with the most
harmful hand grips, the performance decreases in both calling and browsing mode
usages [158, 161].

Several solutions to mitigate the performance degradation of a mobile terminal,
caused by a lossy tissue, have been developed. Appropriate design practices include the
shaping of the terminal ground plane [162], optimization of the antenna location [163],
and the use of balanced antennas [164]. Also, metal stripes have been proposed between
the mobile antenna and the user to reduce radiation towards the head [165]. Moreover,
active methods exist which include dynamically switchable antenna structures [166] and
control of the antenna impedance matching [167]. The highest drawbacks of actively
controlled antennas are increased power consumption due to component losses and the
cost of the control system itself.

In order to identify the human head or hand near the antenna, the use of proximity
sensors has also been proposed. A capacitive solution to detect human tissue has
been developed in [168]. However, the implementation of a sensing system increases
the power consumption of actively controllable antennas. Still, CPU processing and
communications can be seen as the largest energy consumers in mobile devices. Also,
screens nowadays, when they are not in a screensaver mode, are large energy consumers
[169].

In this section, an effect of a head phantom to the performance of the symmetrical
folded dipole and the metal bezel is shortly discussed in terms of SAR-measurements
with corresponding S-parameters, presented in [VII]. The passive measurements are
carried out with the DASY4 [170] measurement system.

The specific absorption rate (SAR) measures the energy absorbed by the body when
it is exposed to an electromagnetic field. The measured SAR-values are compared at
898 MHz (E-GSM), 1747 MHz (DCS-1800), 1880 MHz (PCS-1900), and 1950 MHz
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Table 2. Measured SAR-values of the symmetrical folded dipole and the metal
bezel (VII, published by permission of IEEE).

898 MHz 1747 MHz 1880 MHz 1950 MHz
S11 (dB)

SFD −9.7 −10.6 −7.9 −6.1
MB1 −6.9 −10.6 −6.2 −5.8
MB2 −12.5 −6.7 −6.9 −6.2

SAR in W/kg over 10 g of averaged mass
SFD 1.2 0.17 0.10 0.68
MB1 1.01 0.15 0.27 0.45
MB2 0.95 0.16 0.29 0.92

SAR in W/kg over 1 g of averaged mass
SFD 1.86 0.29 0.19 1.38
MB1 1.6 0.28 0.59 0.77
MB2 1.42 0.29 0.61 1.94

TX Power 31.9 dBm 27.8 dBm 27.8 dBm 24.0 dBm
Phantom medium

σ = 0.96(Ωm)−1 σ = 1.36(Ωm)−1 σ = 1.4(Ωm)−1 σ = 1.4(Ωm)−1

ε = 41.8 ε = 41.1 ε = 40.2 ε = 40.2
ρ = 1000kg/m3 ρ = 1000kg/m3 ρ = 1000kg/m3 ρ = 1000kg/m3

(UMTS) in Table 2 with the corresponding S11. The center frequencies are chosen,
so that they are in the middle of the studied mobile standard uplink. The TX-powers
presented in Table 2 are digitally modulated continuous powers of the mobile standards
transmitted to the antenna under test.

The IEEE C95.1 - 2005 standard [171], which is used in Europe, Japan, and Korea,
defines the SAR-limit to be 2 W/kg over 10 g of averaged mass. The 47FRC2.1093 [172]
standard limit (Australia, Canada, New Zealand, U.S.) is 1.6 W/kg over 1 g of averaged
mass. The lower limit of 47FRC2.1093 is stricter, because it is volume-averaged over a
smaller amount of tissue.

The ground plane distance in the measurements from the head phantom is 5 mm as
proposed in [171], corresponding to the height of the metal bezel, and the upper edge of
the ground plane is 10 mm from the centre of the ear (see a cross in Fig. 38(a)).

MB1 means that the Y-direction of metal bezel is toward the phantom, and in MB2,
the Y-direction is outwards from the phantom. The measured S11 changes, compared
to the free space, when the antenna is taken close to the measurement phantom, and,
thus, it is also presented in Table 2 for comparison. It can be noticed how, especially at
898 MHz, the matching is improved due to the vicinity of the phantom.
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As can be noticed, the measured SAR-values satisfy the IEEE C95.1 - 2005 standard
well, whereas the value exceeds the 47FRC2.1093 standard with SFD at 898 MHz and
MB2 at 1950 MHz. This is due to slightly directive radiation patterns, and can be seen
in the direction of +90◦ (SFD) and −90◦ (MB2) in the XY- and YZ-planes (towards
the head). The SAR-values well correlates with the PIFA results in [173], where the
distance of the ground plane from head phantom was also 5 mm.

Since the SAR-values are exceeding the 47FRC2.1093 standard at a few frequencies,
this must be taken into account when designing mobile phone terminals for end users to
keep the SAR-values within the acceptable limits. With the measured antenna structures,
this can be done by implementing the antenna so that the radiation is outwards from the
user’s head. As the metal bezel antenna structure is closer to a real application, it means
that the bezel itself, as a directive element, can be placed outward from the head to
reduce radiation towards the head.

Fig. 41 shows the measured S-parameters of the studied antenna structures related
to the free space measurement. In the figure, a down shift in the frequency can be
observed at 1 GHz resonance with both antennas, caused by the capacitive loading of the
head phantom. MB2 is the most sensitive for the head phantom in terms of impedance
matching, since the bezel is against the head and, thus, the antenna structure is closer to
the head. At the higher frequencies, the matching with the metal bezel gets slightly
poorer, when, with SFD, the matching gets better or stays the same. Still, the impedance
matching is below −6 dB.

When considering narrow band antennas, the frequency shift might arise as a
problem when it decreases the matching and needs a tuning system to get the resonance
back at the central frequency [174]. As the results propose, when considering wideband
antennas, the frequency shift still remains, but it cannot be seen as harmful as compared
to a narrow band antenna.

More about the user effects and its compensation methods can be found in the
following dissertations [52, 53].

4.3.2 Chassis coupling with symmetrically excited patches

As discussed in the previous section with symmetrical feeding, the dissertation is
focusing on finding wideband antenna structures defined in Table 1.

This section presents a chassis coupling antenna structure with multiple patch
elements based on original paper [VIII]. The excitation is carried out by symmetrically
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Fig 41. Measured S-parameters of the symmetrical folded dipole and its metal
bezel extension in vicinity of head phantom, and in free space.

implemented and excited patch elements. The structure forces the surface currents to
propagate along the mobile chassis by offering wide impedance bandwidth and good
radiation properties. The excitation method supports the excitation of radiating mode,
Mode 2, at wide frequency range.

The antenna structure, with symmetrically implemented patches, is presented in
Fig. 42. The structure has a total of four patch elements where, at both ends of the
mobile chassis, the pair of patches is excited symmetrically. The elements 1 and 2 have
the same source, and the signal of the source is divided to both patches equally. The
elements 3 and 4 are excited with the same principal. The symmetrical feeding in this
case means that the pair of patch elements is excited with the same amplitude and phase.
A 50 Ω transmission line is used to deliver the signal to the pair of patch elements.

Figure 43 presents the measured and simulated reflection coefficient of the patch
elements 1 and 2 (S11) with the isolation to the elements 3 and 4 (S21). The measured
−6 dB impedance bandwidth from 2.415 GHz to 3.535 GHz offers a 1.12 GHz
bandwidth which corresponds to a 37.6% relative bandwidth. At the same time, the
measured isolation is less than −14 dB. It can be noticed the simulated S-parameters
correspond well with the measured ones.

In Fig. 43, the measured total efficiency is also presented. At the −6 dB impedance
bandwidth, the total efficiency is better than −3 dB (average −1.86 dB). This proves
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Fig 42. Symmetrically implemented multi-element antenna structure with coordi-
nate system. Dimensions are in mm (VIII, published by permission of EurAAP).

that the antenna is radiating well at the whole bandwidth. To measure the antenna
radiation characteristics, the commercial measurement system, Satimo StarLab, is used.
The elements 1 and 2 are measured when the transmission line of the elements 3 and 4
is terminated with a 50 Ω load to avoid reflections in an open circuit. The radiation
patterns are measured with the same method.

In Fig. 44, the measured radiation patterns at 2.45 GHz and 3.55 GHz are presented.
The maximum total gain is 0.6 dBi and 4.0 dBi at the related frequencies. For both
frequencies, the maximum can be found in the XZ-plane. One can notice asymmetrical
radiation behaviour in the XY- and YZ-planes at both frequencies. This is caused by the
absorbing material which is used to cover the 50 Ω termination to avoid reflections. For
the very same reason, the total efficiency and radiation patterns are slightly poorer since
part of the radiated power is absorbed. The absorbing material is located to the position
of φ = −90◦ in the XY-plane and θ = −90◦ in the YZ-plane.

Surface current distributions of the symmetrically excited patches 1 and 2 are
presented in Fig. 45. The frequencies are the same as in Fig. 44, where the radiation
patterns are presented. The figures shows how the currents are propagating vertically
along the chassis. The direction of the surface currents explains the radiation patterns
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Fig 43. Measured and simulated frequency responses of the studied antenna
structure. In the same plot, the measured total efficiency is presented as a func-
tion of frequency. S11 represents the reflection coefficient of the symmetrical feed-
ing for patches 1 and 2. S21 represents the isolation between patches 1 and 2 and
patches 3 and 4 (VIII, published by permission of EurAAP).

(a) (b)

Fig 44. Measured radiation patterns of the symmetrically excited patches 1 and 2
at (a) 2.45 GHz with 0.6 dBi maximum gain, and (b) 3.55 GHz with 4.0 dBi maximum
gain. The radiation patterns represent the total gain in dBi (VIII, published by
permission of EurAAP).

well. The radiation is symmetrical in the XY- and YZ-planes as expected. Whereas,
the directive radiation in the XZ-plane, in angle between 0–45◦, is caused by the
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(a) (b)

Fig 45. Simulated surface currents distributions at (a) 2.45 GHz and (b) 3.55 GHz
(modified from VIII, published by permission of EurAAP).

asymmetrical placing of the patches related to the ground plane. The current modes at
both frequencies correspond well with Mode 2 in Fig. 9(c), even the though second zero
appears at 3.55 GHz.

When comparing the results to papers [28, 75, 76], where higher order modes are
studied on a mobile ground plane in, it can be concluded it is a difficult task. The
simulated relative −6 dB impedance bandwidths of the structures for Mode 2 are 8, 6.5,
and 40%, respectively. The antenna structure in this section presents 37.6% relative
bandwidth for Mode 2. The relative −6 dB bandwidth (40%) of the excited Mode 2 in
[76], corresponds well with the antenna structure presented in this section.

On the other hand, the simulated total efficiency of Mode 2 in [28] is −0.8 dB (83%)
at 2.5 GHz. For comparison, the presented antenna structure has a maximum total
efficiency of −0.73 (84%) at 2.55 GHz, and minimum −3 dB (50%) at 2.415 GHz, with
average −1.86 dB (65.6%).

It can be concluded the antenna structure has slightly lower average total efficiency
over the −6 dB bandwidth than defined in objectives, which was −1 dB (80%). The
total efficiency can be still considered good because it is much better than the defined
minimum total efficiency, which was −3 dB (50%). Results also well correlates with the
referred paper. Also, the relative −6 dB impedance bandwidth (> 30%) is exceeded.
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With the proposed antenna structure, Bluetooth (2.4 GHz) 2.45 GHz WLAN,
3.5 GHz WiMAX, and LTE band (2496–3600 MHz), can be covered.

4.4 Diversity in mobile applications

This section describes the basics of the diversity used in wireless communications.
Wireless system operates via the transmission of electromagnetic waves. Various
propagation effects, such as reflections of electromagnetic waves from the wall, occur
depending on the environment. Various means by which the wave reaches the receiver
are referred to as propagation paths. Usually, the signal arriving at a receiver is
a combination of many components arriving from various directions as a result of
multipath propagation. Transmission systems suffer from multipath, because the wave
coming from different directions at different times interfere, causing the received signal
power to fluctuate randomly as a function of distance. This causes signal distortion
called fading [10].

In such a condition, any communication scheme will likely suffer from errors. A
solution to improve the performance is to ensure that the information symbols pass
through multiple independent signal paths. This ensures that a reliable communication
is possible for as long as one of the paths is strong. The technique is called diversity and
it can dramatically improve the performance over a fading radio channel.

There are many ways to achieve independently fading channels. Diversity over
time can be obtained via coding and interleaving. This means that the information is
coded and the coded symbols are dispersed over time in different coherent periods,
so that different parts of the codewords experience independent fading. Analogously,
diversity can be exploited over frequency in so far as the channel is frequency selective.
In a channel with multiple transmit or receive antennas that are spaced sufficiently
far enough, diversity can also be obtained over space. In general, since diversity is an
important resource, a wireless system typically uses several types of diversity [175].

When in a radio channel where 1 transmit antenna and 2 or more receiving antennas
are used, the channel is called SIMO (single-input-multiple-output), as shown in Fig.
46(a). The receiver diversity combines independent fading paths associated with multiple
receive antennas to obtain resultant signal. The combining process can be done in
several ways which vary in complexity and overall performance. Most of the combining
techniques are linear, which means that the output of the combiner is a weighted sum of
the different fading paths or receiving branches [175–177].

102



(a) (b)

Fig 46. Principal of (a) SIMO and (b) MISO radio channel models.

When considering transmit diversity, multiple antennas are used in the transmitter
end of the radio channel and one antenna to receive. The radio channel is called MISO
(multiple-input-single-output) and is shown in Fig. 46(b). This is commonly used in the
downlink of a cellular system, since it is often easier to have multiple antennas at the
base station than in a mobile handset.

It is easy to achieve a diversity gain by simply transmitting the same symbol over
different antennas during different symbol times. At any time, only one antenna is
turned on when the rest are silent. This is called a repetition code. It only uses one
antenna at a time and transmits the coded symbols of the time diversity code successfully
over the different antennas by providing coding gain over repeated codes [175].

The diversity performance is measured with diversity gain, and can be shown as a
decibels value of equivalent signal-to-noise ratio. The diversity gain depends on the
number of branches, the signal combination algorithm, and the mutual statistics of the
signals between the branches. In good diversity performance, the mean powers of the
branches should be similar and the fading nature of the branches should be mutually
uncorrelated. If the branch mean powers are too different, then the more-powerful
branch dominates and there is a corresponding decrease in the diversity gain. Similarly,
as the branch mutual correlation increases, the diversity gain reduces relative to the
uncorrelated case. There is a small reduction in the diversity gain as a long correlation is
reasonably low, and uncorrelated branches are often taken to be envelope correlation
coefficient values less than 0.7 [50].

In this section, the diversity techniques studied in the original papers are presented.
Space, polarization, and radiation pattern diversity techniques are discussed.
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4.5 Space diversity

Space diversity, or antenna/spatial diversity, can be obtained by placing multiple antennas
at the transmitter and/or the receiver [177]. If the antennas are placed sufficiently far
apart, the channel gains between different antenna pairs fade more or less independently,
and, thus, independent signal paths are created.

The required antenna separation depends on the local scattering environment, as
well as on the carrier frequency. For a mobile which is near to the ground with many
scatterers around, the channel de-correlates over shorter spatial distances, and a typical
antenna separation d of half to one carrier wavelength is sufficient [178] (Fig. 47(a)).
For base stations on high towers, a larger antenna separation of several to 10’s of
wavelengths may be required.

The use of space transmitting or receiving antennas is a very common way to achieve
diversity. In its simplest form, a single transmitting antenna beam radiates a certain
amount of the scattering or reflecting medium. Viewed from the receiver side, radiated
energy has an angular spread, which is a function of the transmitting beamwidth, the
distance from each terminal to the radiated energy, and the direction of scattering or
reflection.

The energy carrying rays arriving at the receiving point appear to radiate over some
angular spread. The additional stochastic nature of a medium will cause observations at
the receiving point to indicate an apparent variation in an angle of arrival for an incident
radiation, within this angular spread [177].

4.5.1 Space diversity with closely spaced antennas in low
mutual coupling

Mutual coupling is a well known effect in multi-element antennas and antenna arrays,
in both receive and transmit modes. The effect becomes more critical when the inter-
element spacing of antenna elements is reduced. This kind of situation can occur in
mobile communications, especially in mobile phones, where limitations in space become
an important variable.

Mutual coupling is a phenomenon that distorts the behaviour of radiating elements
by another antenna element(s). Every antenna element affects every other element by
radiating through the air or by propagating surface currents through a ground plane.
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(a) (b)

Fig 47. Principal of (a) space diversity and (b) polarization diversity.

Surface currents might cause a larger problem, especially when antenna elements are
closely packed.

The calculation of mutual coupling in a two antenna system is presented in [179]. In
the calculation of mutual coupling in the transmission mode, an excitation source is
placed at the feed of one antenna element, while the other antenna element is terminated
to a matched load. Mutual coupling is then calculated by

Ctr =
PL

PD
, (23)

where PD is the power radiated by the excited antenna, and PL is the power delivered to
the load of the unexcited antenna. The measured S-parameters between the two antennas
are related to the transmission mode coupling calculation by

Ctr =
|S21|2

1−|S11|2
. (24)

Mutual coupling modifies the phase and distribution on each antenna element of the
included current. As a result, antenna gain, beamwidth, pattern, resonance frequency,
and input impedance are affected. Analytical studies with half wavelength dipoles have
shown that mutual coupling decrease proportional to 1/d2 as the distance d increases in
wavelengths between the antenna elements [9]. This implies that mutual coupling will
also depend on the frequency.

The effect of mutual coupling on spatial diversity and multiple input-multiple output
(MIMO) systems can be desirable, depending upon the antenna configuration and the
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environment. For example, in a poor scattering environment, mutual coupling decreases
the correlation between individual antennas by generating dissimilar antenna element
patterns, which leads to radiation pattern diversity [180]. However, the mutual coupling
is an unwanted phenomenon in most of the cases, like in antenna arrays, spatial diversity
and MIMO systems.

In [181], a reduction in mutual coupling was studied using a simulated quarter-
wavelength slot between two compactly-spaced monopole antennas on a printed circuit
board (PCB). By using a 13.5 mm slot between the antennas, the mutual coupling can be
reduced by approximately 6 dB at a center frequency of 3.5 GHz, when compared to
the reference arrangement without the quarter-wavelength slot. By using the slot, the
diversity characteristics could be improved, in terms of total efficiency, by 20% for each
antenna element. The correlation coefficient and diversity gain were also improved.

A microstrip filter using defected ground structures (DGS) has slots in a ground
plane that are perpendicular to the wave propagation direction, disturbing the current
distribution in the ground plane and having a resonant behaviour. DGS is able to provide
a bandstop filtering effect due to the combination of inductance and capacitance [182].
In [183], the simulated DGS structure between patch antennas is used to reduce mutual
coupling by 18 dB at a 6 GHz center frequency, when compared to a conventional
ground plane, and still keep the radiation characteristics of an antenna.

The slotted ground plane in [184, 185] has been used to reduce the mutual coupling
effect in closely spaced antenna elements. With this kind of slit arrangement, a
very compact structure can be achieved and the antennas will retain good radiation
characteristics. The structure is measured with 0.093λ spaced monopole antennas and a
16 dB reduction in mutual coupling is achieved over the reference ground plane at a 2.53
GHz center frequency.

Electromagnetic band gap (EBG), where a periodical structure is placed between the
antenna elements, is used to achieve low mutual coupling between antenna elements
in [186, 187]. In these two EBG references, the mutual coupling improvement at the
resonant frequencies was between 8–13 dB.

As discussed in the objectives, the isolation between the antenna elements must be
better than 18 dB for MIMO/diversity systems. At the same time, the relative −6 dB
impedance bandwidth should be better than 30%. In next sections, methods to reduce
mutual coupling between closely spaced antenna elements are presented with wide
frequency band and low mutual coupling.
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Fig 48. Studied monopole array with two λ /2 slots to reduce mutual coupling (IV,
published by permission of IEEE).

Mutual coupling reduction by using two λ /2 slots between monopole
antennas

This section presents a mutual coupling reduction between monopole antenna by using
two λ /2 slots. The structure was originally presented in [IV]. The studied ground plane
structure is shown in Fig. 48. It consists of a pair of slots, each half a wavelength long
at 2.45 GHz, of width s and slot separation d. The slots are cut through the ground
plane and are air-insulated. The thickness of the ground plane was 1.5 mm. The length
and diameter of the monopole antennas used in this study were designed to match a
50Ω transmission line. The antennas were quarter-wavelength monopoles at 2.45 GHz.
Different cases were tested in [IV] to understand the phenomenon of mutual coupling
and its relationship to radiation characteristics, as only the best results are presented
here.

Figure 49(a) shows the measured and simulated S-parameters with measured mutual
coupling against frequency for the reference ground plane and ground plane with slots
with w = 0.5λ antenna spacing at 2.45 GHz. The measured mutual coupling is calculated
from S11 and S21 measurements by using (24). HFSS was used in the simulations.

The measured −10 dB impedance bandwidth is 15% with a 2.45 GHz center
frequency, and the mutual coupling across the impedance bandwidth is approximately
−15 dB for the reference ground plane. For comparison, in Fig. 49(a), the measured
and simulated S-parameters with the measured mutual coupling for a ground plane
containing two half-wavelength slots, with s = 0.8 mm slot width, and d = 6.25 mm slot
separation. Mutual coupling between the antenna elements is significantly reduced
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within the same impedance bandwidth. At the aforementioned bandwidth, the mutual
coupling is between −42.0. . .−15.6 dB, where the lowest mutual coupling of −42.0 dB
is achieved at 2.493 GHz. This is a 27 dB improvement over the reference structure
without slots. S11 at 2.5 GHz is naturally improved as the mutual coupling is reduced.

Figure 49(b) shows the measured and simulated S-parameters with a measured
mutual coupling against frequency for the reference ground plane with antenna w =
0.173λ spacing at 2.45 GHz. As expected, the measured −10 dB impedance bandwidth
is very poor when the antennas are closely packed, only 1.96% of the 2.45 GHz
center frequency. This means that the mutual coupling is considerably more than
−10 dB across the bandwidth, approximately −7 dB. When comparing the results to
the ground plane structure with the same slot dimensions as in the w = 0.5λ antenna
separation (Fig. 49(a)), the measured mutual coupling against frequency shows a major
improvement between the antenna elements. The measured impedance bandwidth
improved significantly: 37.8% at the 2.45 GHz center frequency. Mutual coupling
within the impedance bandwidth was between −50. . .−13.7 dB. The lowest −50.0 dB
mutual coupling was achieved at 2.55 GHz, which corresponds to a 43 dB improvement,
compared with the reference.

The far-field radiation pattern measurements in four different cases are presented in
Fig. 50, in terms of total gain. For comparison, the slot dimensions s and d are the
same as in the case to study impedance matching. In the reference with an antenna
spacing of w = 0.5λ in Fig. 50(a), the radiation pattern is asymmetrical only in the XZ
plane. Monopole 2 is asymmetrically implemented related to the ground plane center
and, thus, effects the radiation properties in the asymmetric sense. Figure 50(b) also
presents radiation patterns of w = 0.5λ , antenna spacing with the λ /2 slots. The same
kind of behaviour can be observed as in the reference case, except now, the currents in
the +X-direction on the ground plane have a directive behaviour in the XZ plane, in the
direction of +45◦. Different current distributions over the slots are creating a deeper null
in the direction of −135◦.

Figure 50(b) presents the radiation properties of the reference ground plane with an
antenna spacing of w = 0.173λ . One can observe that when the measured Monopole 2 is
implemented closer to the centre of the ground plane, the radiation patterns in all of
the planes are now more symmetrical compared to the reference case with an antenna
spacing of λ /2.

When it comes to the structure with antenna spacing with the λ /2 slots in Fig.
50(b), major changes can be seen in the XZ plane. More similar current distributions

108



(a)

(b)

Fig 49. Measured and simulated S-parameters with measured mutual coupling
of the reference structure (on left) and structure with two λ /2 slots (on right).
Monopole separation w (a) 0.5λ , and (b) 0.173λ at 2.45 GHz (IV, published by per-
mission of IEEE).

of the slots create deeper nulls in the directions of −15◦ and +120◦. The directive
radiation in the direction of +45◦ is caused by the surface currents in the ground plane,
as was presented in w = 0.5λ case. Still, in the XZ plane, one can see leakage of the
radiating field passing through the slots under the ground plane. This is explained by the
asymmetric current distributions over the slots; the slot closer to Monopole 2 has a
stronger current than the slot closer to Monopole 1.

In Fig. 51, the simulated surface current distributions at 2.45 GHz over the reference
ground plane and the ground plane with two slots with the same s and d, and with
antenna spacing 0.5λ in Fig. 51(a), and 0.173λ in Fig. 51(b), are presented. Thus, the
figures correspond to the measured radiation patterns.

Comparisons of the figures show that the half-wavelength slot traps a large proportion
of the surface currents. The pictures prove how effectively the structure with two slots
reduces mutual coupling in the studied case. It is also notable that the currents around
the slots represents a transmission line mode shown in Fig. 8(b), and, thus, they do not
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(a)

(b)

Fig 50. Measured radiation patterns of reference structure (on the left) and struc-
ture with two λ /2 slots (on right) at 2.45 GHz. Monopole separation (a) 0.5λ , and
(b) 0.173λ at 2.45 GHz (IV, published by permission of IEEE).

represent significant radiation. CST Microwave Studio was used to simulate the surface
current distributions.

The improved characteristics of low mutual coupling can be seen to depend on
two different mechanisms that affect the surface currents. First, at both ends of the
slots, the surface currents are cancelled because of a half-wavelength phase difference,
and this can be seen as a downward peak in mutual coupling. Second, the propagation
direction of the surface currents on both sides of the λ /2 slot is opposite, as can be seen
in the vector presentations in Fig. 51. This has the effect of mutually cancelling the
electromagnetic fields on both sides of the slots.
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(a)

(b)

Fig 51. Simulated surface current distributions of the reference structure (on the
left) and a structure with two λ /2 slots (on the right) at 2.45 GHz. Monopole sepa-
ration (a) 0.5λ , and (b) 0.173λ at 2.45 GHz.

The results were showing that by using two slots between monopoles, the mutual
coupling can be reduced when, at the same time the impedance matching and bandwidth
can be improved. When comparing the results in [184], where slits were used to
reduce mutual coupling between two monopoles, the relative −6 dB bandwidth of
the slitted structure is 41% against 46% achieved with the λ /2 slot structure. Still,
the achieved −10 dB relative impedance bandwidth is much larger with the λ /2 slot
structure, meaning 36% against 27% for slitted structure.
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On the other hand, the mutual coupling smaller than −18 dB is achieved with both
structures in terms of relative frequency bandwidth, which with both structures are
around 2.5 GHz center frequency. For the λ /2 slot structure it is 16%, and slitted
structure 8%. However, the slitted structure is more compact when comparing the λ /2
slot structure.

When comparing the results to the objectives, it can be concluded the λ /2 slot
structure has better than 30% relative −6 dB impedance bandwidth and, on the other
hand, the mutual coupling was smaller than −18 dB around the center frequency.

Mutual coupling reduction by optimizing the dimensions of a patch
antenna structure

Another approach to reduce mutual coupling is presented in [V], where the dimensions
of two element patch arrays are optimized to gain good matching, when, at the same time,
the antenna elements are in good isolation. The antenna structure, with two microstrip
patch antennas, is presented with optimal dimensions to achieve good matching and low
mutual coupling at the studied 5.8 GHz center frequency. The structure itself is very
simple and only includes the two patches on an individual substrate, both air-insulated
from the ground plane. CST Microwave Studio is used in the simulations.

The two microstrip patch antenna structure, with the selected coordinate system,
is presented in Fig. 52. Both of the patches are matched to a 50 Ω transmission line
with SMA-connectors, and no external matching circuit is used. The matching to
50 Ω is done by adding the center of the coaxial feed 2 mm away from the edge of the
microstrip patch. The coaxial feeds of the patches have an approximately λ /2 separation
at 5.8 GHz.

Parameter W represents the width of the ground plane in the studied structure and
equals 120 mm. Parameter L = 70 mm is the length of the ground plane. The size of the
ground plane is the same as used in [IV], and the size of a smart phone ground plane
simulated in [X]. As shown in the original paper [V], the characteristics of the antenna
structure are more dependent on the interaction between patch elements than dimensions
of the ground plane.

The patches are made of Rogers RO4003 RF-laminate with a dielectric constant of
εr = 3.38, and the laminate has a copper patch, printed only on the upper side. The
patches are air-insulated from the aluminium ground plane, and the total height of the
patches is 5.5 mm.
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Fig 52. Optimized patch array structure to reduce mutual coupling (V, published
by permission of VDE Verlag).

The simulated and measured S-parameters are presented in Fig. 53. The mutual
coupling itself was calculated from the measured S-parameters by using (24). It can
be seen that the measured −10 dB impedance bandwidth of the two microstrip patch
antennas is 640 MHz. This equals an 11.7% bandwidth related to the 5.8 GHz center
frequency. The measured mutual coupling in the same bandwidth is less than −21 dB.
The bandwidth when the mutual coupling is less than−20 dB is 950 MHz, corresponding
to a 16.4% relative bandwidth. The measured S11 of the two patch antennas at the
5.8 GHz center frequency is −23.7 dB, when the mutual coupling is −27 dB. Mutual
coupling is slightly increased at both ends of the studied bandwidth, and this is basically
caused by the poorer matching of the antennas.

Figure 54 presents the measured radiation patterns in the XY, XZ, and YZ cuts in
Theta and Phi planes. The measurements were done by terminating Patch 1 with a 50 Ω

load, when the radiation properties of Patch 2 were measured. The maximum gain of
10.9 dBi at the 5.8 GHz center frequency is found in the YZ cut and in the Phi plane. It
can be observed that the radiation pattern is more directive in the direction of +20◦ in
the YZ plane, where the maximum gain is found, as well. This directivity is caused by
suppressed surface currents between the patches, which attenuate the surface currents
on the ground plane in the direction of −90◦. In the XZ cut and Theta plane, a zero is
observed in the radiation pattern in the direction of −50◦, caused by the surface currents
propagating in opposite directions in the patch element and the ground plane.

As studied in the original paper [V], the ground plane width or length does not
dramatically affect the antenna matching or mutual coupling performance. This is
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Fig 53. Measured and simulated S-parameters with measured mutual coupling of
the optimized patch array structure to reduce mutual coupling (V, published by
permission of VDE Verlag).

(a) XY (b) XZ (c) YZ

Fig 54. Measured radiation patterns at 5.8 GHz of the patch antennas in low mutual
coupling (V, published by permission of VDE Verlag).

because the patches are mutually in resonance and, thus, the size of the ground plane
does not play a major role in the performance.

In [184], the slitted ground plane was used to reduce mutual coupling between two
adjacent patch elements. The results were showing 4.7% relative −6 dB bandwidth
against 21.6% of the optimized patch structure in this section. Additionally, the mutual
coupling was less than −20 dB over the operating bandwidth, whereas in [184] mutual
coupling was less than −16 dB.

When comparing the results to the objectives in Table 1, it can be concluded that
the patch structure with optimized dimensions has much better relative impedance
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bandwidth than 10% and, on the other hand, the mutual coupling better than −18 dB
over the −6 dB impedance bandwidth.

However, the relative−6 dB impedance bandwidth defined in objectives (>30%) was
not achieved. The 21.6% relative −6 dB impedance bandwidth of the patch structure
is still good as they are relatively narrow band structures with 0.5–5% bandwith [54].
The improvement in bandwidth is due the fact that the structure has a bigger volume
compared to patch antennas in general as they are planar.

4.6 Polarization diversity

Polarization diversity implies a single polarization at the transmitter, with depolarization
in the propagation medium. Independent reception is possible with two orthogonal po-
larizations, and the two resulting signals do not fade in a correlated manner. Polarization
diversity is particularly attractive in mobile applications because of the limited space
available, whereas the antenna separation d can be very small, even zero (Fig. 47(b)).
An analysis of the effects is more complex given in the large angular spread and the
mutual interaction between antenna elements and a human body [83]. For the designing
of an antenna system for polarization diversity, antenna elements can have identical
radiation patterns, but orthogonal polarizations [50].

In mobile radio environments, signals transmitted on orthogonal polarizations
exhibit low fade correlation and, therefore, offer the potential for diversity combining.
Polarization diversity can be obtained either by explicit or implicit techniques. Note that
with polarization, only two branches are available as compared to space diversity, where
several branches can be obtained by using multiple antennas. In explicit polarization
diversity, the signal is transmitted and received in two orthogonal polarizations, as
shown in Fig. 47(b).

With mobile phones, it can be held at random orientations during a call. This results
in energy being launched with varying polarizations angles from the vertical to the
horizontal. This further increases the advantage of cross-polarization antennas at the
base station, since the two antennas can be combined to match the received signal
polarization. This makes polarization diversity even more attractive. Finally, it is notable
that cross-polarization antennas can be deployed in a compact antenna assembly and do
not need a large physical separation as required in space diversity antennas. This is an
important advantage where low profile antennas are needed [178].
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In mobile terminals, the space becomes limited for multiple antenna configurations.
Moreover, the trend for mobile terminals nowadays is to increase the number of operating
frequency bands, hence, covering different wireless applications. One way to reduce
the number of elements when covering different wireless standards is to use wideband
[188, 189] or multi-band antennas as discussed in the introduction of Section 3.4.
Therefore, structures with broadband behaviour may represent a very appealing solution
for a multi-standard device. Polarization diversity antennas for mobile terminals are
presented in [190, 191], being both relatively narrow bands. According to the author’s
best knowledge, wideband polarization diversity antennas for mobile terminals are not
widely presented in the literature.

4.6.1 Wideband polarization diversity antenna for mobile
terminals

In the mobile handset, the limited space with more than two antennas is a difficult
implement. In addition, the mobile terminal device miniaturization, making the spacing
between multi-antenna elements decreases, and the mutual coupling between antenna
elements affects the diversity system performance. On the other hand, the diversity
system should cover multiple radio interfaces at wide frequency range. Objectives for
antenna structures can be found in Table 1.

This section presents wideband planar antenna with polarization diversity for mobile
terminals based on [IX]. The antenna consists of two orthogonally oriented planar notch
QCAs (QCA 1 and QCA 2), presented earlier in Fig. 19(a). The antennas are located at
separate ends of a mobile ground plane. The geometry of the antenna structure, together
with its dimensions, is presented in Fig. 55(a). The thickness of the ground plane is
0.8 mm.

A prototype antenna structure is presented in Fig. 55(b). The wideband tapered
microstripline balun, used to excite the QCAs, is presented in Fig. 15(b). The feeding
of the prototype antenna has been optimized by simulations, taking into account the
relative dielectric constant of the substrate (ε = 2.2) used in the balun and the dipole. In
addition, the slot length has been optimized to match the increased electric length of
the dipole (compare with Fig. 19(a)) affected by the substrate and the thickness of the
ground plane.
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(a)

(b)

Fig 55. (a) layout and (b) prototype of the wideband diversity antenna with two
QCA antennas for mobile terminals (IX, published by permission of IEEE).

In Fig. 56, the measured S-parameters and the total efficiency of QCA 1 and QCA 2
are presented. As observed, both antennas have an approximate a −6 dB impedance
bandwidth that ranges from 1.8 to 4.6 GHz, corresponding to a 87.5% relative bandwidth.
This correlates well with the numerical results presented in Fig. 20(c). At the same
time, the measured S21 at the operating bandwidth is less than −18 dB. The shift in the
center frequency, compared to the simulated results in Fig. 3, is caused by the increased
electric length of the dipole and the slot.

Furthermore, the measured total efficiency for both antennas is between −3.5 and
−0.3 dB (average −0.95 dB) within the studied −6 dB impedance bandwidth. The total
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Fig 56. Measured S-parameters and the total efficiency of the QCA 1 and QCA 2
elements (IX, published by permission of IEEE).

efficiency is measured by terminating the passive antenna element with a standard 50 Ω

load.
The measured radiation patterns of the prototype antenna at 2 and 4 GHz are

presented in Fig. 57. The magnitude of the electric field (in decibels) for both antennas
is presented with Phi and Theta components. The method to measure radiation patterns
is the same as that which is used with the total efficiency. The maximum field, depending
on the cut, the frequency, and the measured antenna, is between 0.1 and 4.5 dB. It can be
noted that the amplitude of the radiated field varies between the cuts at the two measured
frequencies.

In general, when in one polarization, the difference in amplitude is good, the other
one has more equal components, and vice versa. As only two center frequencies are
compared here, in Section 4.9, the diversity antenna performance in terms of envelope
correlation and effective diversity gain within the whole operating bandwidth are
presented.
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(a)

(b)

(c)

Fig 57. Measured radiation patterns (in decibels) for Phi and Theta components
at 2 and 4 GHz in (a) XY cut, (b) XZ cut, and (c) YZ cut. The left patterns present
the radiation properties of the QCA 1 and the right one, QCA 2. (IX, published by
permission of IEEE).
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Polarization diversity antenna for mobile terminals is presented in [190]. The
structure offers 29% relative−6 dB impedance bandwidth against 87.5% of the structure
presented in this section. The measured isolation between antennas with orthogonal
polarizations in this section was better than 18 dB compared to [190], where maximum
isolation was better than 15 dB.

The computed result of the antenna structure in [191] showed maximum total
efficiencies −0.25 dB (94.4%), −0.98 dB (79.8%), and −0.67 dB (86.1%), depending
on feeding mechanism. The antenna structure presented in this section showed−0.95 dB
(80.4%) averaged total efficiency, and was from −3.5 to −0.3 dB over the operating
bandwidth.

It can be concluded that the polarization diversity antenna for mobile terminals well
satisfied the goals defined in objectives related to the −6 dB impedance bandwidth
(> 30%), isolation (> 18 dB), and maximum total efficiency at most −1 dB.

The lower limit of the total efficiency was slightly below the definition −3 dB
(> 50%), but the average total efficiency was −0.95 dB, which is better than the defined
maximum total efficiency of a wideband antenna −1 dB (< 80%).

With the proposed antenna structure, UMTS (2.1 GHz), DVB-SH S-band (2170–
2200 MHz), Bluetooth (2.4 GHz), WLAN (2.45 GHz), LTE (1.8–3.8 GHz), and WiMAX
(2.3–3.6 GHz) can be covered.

4.7 Radiation pattern diversity

A fading dip is created when multipath components, which usually come from different
directions, interfere destructively. If some of these waves are attenuated or eliminated,
the location of the fading dips changes. In other words, two co-located antennas with
different radiation patterns see differently weighted multipath components, so that the
multipath components interfere differently for the two antennas. This is the principal of
radiation pattern diversity. Radiation pattern diversity is usually used in conjunction
with spatial diversity; it enhances the decorrelation of signals at closely spaced antennas.
Different antenna patterns can be achieved easily by using different types of antennas.
But, even identical antennas can have different patterns when mounted close to each
other. This effect is due to mutual coupling between the antenna elements [192].

Directional antennas provide radiation pattern diversity by restricting the receive
antenna beamwidth to a given angle. If the angle is very small then, at most, one of
the multipath rays will fall within the receive beamwidth, so there is no multipath
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Fig 58. Rectangular waveguide excited with TE10 (dashed line) and TE20 (solid
line) modes. When excitation polarizations are positive in the (Σ) mode, TE10 is
excited. When opposite excitation polarizations (∆), mode TE20 is excited. At the
end of the waveguide, the opposite signal processing is performed to receive the
signal.

fading from multiple rays. However, this diversity technique requires either a sufficient
number of directional antennas to span all the possible directions of arrival or a single
antenna whose directivity can be steered to the angle of arrival of one of the multipath
components. Note also that with this technique, the SNR may decrease due to the loss
of multipath components that fall outside the received antenna beamwidth, unless the
directional gain of the antenna is sufficiently large to compensate for this lost power
[176].

This section discusses the basics of the radiation pattern diversity gained by exciting
higher order modes. In a radiation pattern diversity, one antenna element, such as
a ground plane of a portable device, can be excited with orthogonal modes. The
concept was first presented in the mid 60’s within a rectangular waveguide [193]. In the
waveguide, the fundamental mode (TE10) and a higher order mode (TE20) are excited as
shown in Fig. 58.

Consider the waveguide as a radio channel, with one end representing a transmitter
and the other one, a receiver. The Σ represents an excitation with the same amplitude
and phase, whereas the ∆ represents an excitation where the other probe is in an opposite
phase. As both orthogonal modes are excited at the same time at a certain frequency,
e.g., at the cut-off frequency of a higher order mode (TE20), the modes can deliver the
same or different information through individual channels.
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To extend the modes in a rectangular waveguide to modes in a free space, where the
free space is called a spherical waveguide [15], radiating modes are operating as a part
of a radio channel with different angle of arrival. These modes are comparable to a
multi-antenna system in such a way, that, e.g., the principal of the polarization diversity
presented in Fig. 47(b), the vertical polarization represents radiating Mode 2 in Fig. 59,
whereas the horizontal polarization represents an orthogonal radiating mode, Mode 3, in
Fig. 59.

When extending the idea to an N-element antenna array with space diversity, the
N orthogonal modes corresponds with the amount of N antenna elements in an array
to achieve the same capacity. The difference is that the space needed for a diversity
system become more compact by using orthogonal modes, and, thus, is more suitable
for mobile applications.

Fig. 59 shows spherical modes with excitations, comparable to ones in a waveguide.
Notice how the orthogonal modes respond differently to the LOS (Line-of-Sight)
component as to the reflected signal components in a radio channel. Figure 60(b) shows
a situation where the LOS component is blocked, but reflected signals in a radio channel
can be received by a diversity receiver. This mode corresponds to the spherical modes
TM01 or TE01, and it is referred to as Mode 2 in Fig. 9(c).

The second mode in Fig. 59(b) receives the LOS component of a radio channel. This
mode corresponds to the spherical modes TM11 or TE11, and it is referred to as Mode 3
in Fig. 9(d), or it can be referred as Mode 4 in Fig. 60(c). The mode is orthogonal to
Mode 2 [194].

As both of the modes are orthogonal, it is easy to receive reflected signals from a
different direction with one mode and an LOS component with the other mode. An
intelligent receiving/transmitting diversity system can excite several orthogonal modes
at the same time or choose a few modes to fit best to a current radio channel conditions.

4.7.1 Radiation pattern diversity with characteristic
currents on mobile ground plane

According to the spherical mode theory, it is possible to excite higher order spherical
modes when using larger antenna aperture size [18]. In most of the published cases, the
fundamental mode of the mobile chassis is excited, which is based on studies presented
in [24]. However, the excitation of the higher order modes is not widely studied in the
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(a) Mode 2, T M01, T E01

(b) Mode 3, T M11, T E11

Fig 59. Principal of radiation pattern diversity: (a) the LOS component is blocked,
but the reflected signals are received, and (b) where the LOS is received and the
reflected is neglected. Both of the presented modes are orthogonal to each other
to gain radiation pattern diversity.

literature. In this section, orthogonal higher order current modes on a small mobile
ground plane are presented, and these modes are compared to the orthogonal radiating
modes which are supporting the radiation pattern diversity.

To present the radiation pattern diversity with the characteristic currents based on
[I], 8 dipoles are used above a conducting ground plane of a mobile device, as shown
in Fig. 66. In Fig. 60, the same fundamental modes can be found as in Fig. 59. Note
that the radiation is directive because the excitation dipoles are only on one side of the
ground plane. The envelope correlation between different radiated modes in a mobile
ground plane can be found in Tables 4 and 5, in Section 4.9.

Additionally, the radiation pattern diversity can be gained with the structure presented
in [VI]. There are two different ways to use the excitation; one is symmetrical, as
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(a) Mode 1 (b) Mode 2 (c) Mode 4

Fig 60. Orthogonal modes in a mobile ground plane excited with 8 elevated
dipoles.

described in 4.3, and the other one is asymmetrical feeding. Asymmetrical feeding
means that both ports have the same amplitude, but they are in the opposite phase. As
can be seen, different excitation supports different modes.

The currents around the ground plane in Fig. 61(b) at 2 GHz create 4 current zeroes
for every corner of the ground plane. Notice that this mode is a higher order mode,
Mode J4, presented in Fig. 30. When comparing these currents to Fig. 61(a), it can be
observed that the simulated modes are orthogonal, corresponding to a very low envelope
correlation, approximately 10−6. However, as only two excitation elements are used
here, it limits the amount of the excited modes to two at a studied center frequency.

The radiation pattern diversity in mobile terminals is presented in [76, 195–198],
where multiple antenna element configurations are studied to generate orthogonal
radiation patterns. A proposal to excite 8 slots to gain orthogonal modes in a mobile
ground plane can be found in [75], whereas in [199], a concept for the selective excitation
of different characteristic modes on a mobile terminal chassis is presented. [200] presents
both approaches with capacitive and inductive coupling to excite ground plane modes.
Additionally, [33] presents a study of a loop antenna with four sources, which are excited
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(a) (b)

Fig 61. Simulated orthogonal radiation patterns with surface current distributions
of symmetrical folded dipole at 2 GHz with ports (a) symmetrically excited and (b)
asymmetrically excited. The envelope correlation between the radiation patterns
is 10−6. The scale is in realized gain.

in different phases to gain orthogonal radiating modes. For comparison, these papers are
presenting only an excitation of three or four radiating current modes.

It was shown, that excitation of higher order modes with multiple excitation elements,
it is possible to achieve orthogonal radiation patterns. As here only 3 modes were shown
with excitation by using 8 dipoles, the rest are compared in terms of envelope correlation
in Section 4.9. The idea of orthogonal radiating modes is to propose a solution for
radiation pattern diversity within a small space, as the size of a mobile terminal is
limited.

4.8 MIMO systems

MIMO (Multiple-Input-Multiple-Output) system is presented in Fig. 62, which employs
multiple transmit and multiple receive antenna elements, substantially improve the
data rates that can be transmitted over the channel and the reliability which they can
be received without any additional bandwidth. Higher data rates are achieved by
transmitting multiple data streams simultaneously using spatial multiplexing techniques.
Increased reliability is achieved by exploiting spatial diversity to significantly reduce
the probability that the channel is in a deep fade. While MIMO systems perform
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Fig 62. Principal of MIMO radio channel model.

impressively, they also increase the hardware and signal processing complexity, power
consumption, and component size in the transmitter and receiver. This increase in
complexity has reduced the widespread adoption of MIMO systems.

As an example, one solution to reduce the complexity of a MIMO system is to use
antenna selection. It reduces the hardware complexity of a transmitter and receiver by
using fewer RF-chains than the number of the antenna element [201].

4.8.1 MIMO diversity and multiplexing

In diversity MIMO, a number of transmitting antenna replicas of the same data stream are
transmitted by using different orthogonal channelization codes, but the same scrambling
code. Each transmitting antenna uses different channelization codes so that the base
station can separate the signals from different antennas and combine them later by using
maximal ratio combining. Thus, the scheme doubles the usage of uplink channelization
codes when compared to single antenna transmission [201]. This scheme is also referred
to as MIMO beamforming. Beamforming provides diversity gain through the coherent
combining of the multiple signal paths.

Channel knowledge at the receiver is typically assumed, since this is required for
coherent combining. The diversity gain then depends on whether or not the channel
is known at the transmitter. When the channel matrix is known, the received SNR is
optimized by choosing the vector weights of the channel matrix. When the channel is
unknown at the transmitter, the transmit antenna weights are all equal [176].

In the case of MIMO multiplexing, a composite data stream is multiplexed into two or
more independent sub-streams that are transmitted from separate antennas by employing
different scrambling codes. All of the streams contain different channelization and
control codes, so that in the base station they can be interpreted as signals from different
independent users [201].
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4.8.2 Multi-element antennas and MIMO capacity

The global wireless system reliability and a growing demand for high spectrum efficiency
have furthered recent achievements of diversity, smart antennas, and MIMO techniques.
Therefore, integrated multi-element antenna arrangements are expected to become more
common in the near future in the systems which exploit diversity. The optimization of
those arrangements needs aspects of antenna element design, integration, and multi-
element antenna design [8]. The integration of multiple antennas into a limited space
raises the additional problem of mutual coupling interaction between antenna elements.
Mutual coupling may have a significant effect in the MIMO channel capacity [202] and
antenna efficiency [203].

The channel capacity is an important indicator to measure quality of a MIMO system.
The capacity depends on many things, like the number of transmitting and receiving
antennas and their spacing, the multipath environment, and how direction of angle of
arrival is spread. Assuming a propagation scenario in which the incident field shows
a uniform 3D random distribution, the envelope correlation can be obtained for two
antenna system by using scattering parameters at wide frequency range, or then radiation
patterns of individual antenna elements at a single frequency [54].

It has been shown that MIMO wireless system can provide increased capacity in rich
multipath environment [204]. In MIMO systems, the minimum physical separation
between antenna elements for an appropriate limit in correlation between the multitude
of received signals is commonly referred to be λ /2. However, there is no minimum
distance condition but rather a definition of the acceptable correlation level to insure the
effectiveness of the MIMO system. The correlation level in [2] is defined to be 0.5 when
maximum ratio combining is used for the received signal. For example, the distance can
be very small, especially in adjacent antenna elements, which are using orthogonal
polarization.

In a small mobile terminal, the number of antenna elements may range from two in a
small handheld, to four in a personal digital assistant (PDA), and up to sixteen or more
in a laptop computer [205]. In mobile or handheld communications, a two-antenna
approach to diversity is quite common due to the limited space in a mobile terminal. Two
diversity signals are received from two antennas, depending on the diversity techniques
employed, and the two signals are combined to maximize the SNR ratio after signal
combing.
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Mobile wireless communication systems quite often have to operate in such areas as
the inside and outside of buildings in a city environment where multipath propagation is
a severe problem. Thus, the use of multiple antennas can provide some diversity in these
situations, even on a small handset in areas where the signal strength is weak [79].

4.8.3 Antennas for mobile MIMO systems

MIMO systems take advantage of the spatial properties of the propagation channel.
Therefore, in the evaluation of MIMO antennas, it is necessary to use a proper character-
ization of the spatial channel properties. In wireless systems using digital transmission,
a multipath echo leads to a spreading of the received signal in time. Much of the
signal energy can be recovered in the detection process, through the use of equalizers.
Parameters, such as the angular spread of the waves impinging at the receiver, may
have a significant influence on the MIMO system performance. The combination of
sophisticated signal processing and multiple antennas leads to an adaptation of the
MIMO system to the multipath radio channel. In propagation environments, where the
MIMO system can be applied, the propagation situation changes rapidly. A meaningful
comparison of MIMO antennas can only be drawn if the spatial properties of a realistic
propagation channel have been taken into account [10].

Since the MIMO operates at a high level of complexity in order to take advantage of
the radio channel space-time recourses, to understand the space-time characteristics of
the channel is required to measure the potential performance of practical multi-element
antenna link. MIMO terminal performance is a combination of antenna characteristics,
signal propagation conditions, RF, baseband hardware, and software [10]. Therefore,
they need to be well understood through some form of MIMO OTA test system. The
conventional way of testing the antenna characteristics and the signal processing
performance does not measure the MIMO device performance realistically.

Due to the fact that the antennas and the propagation channel interact in MIMO
systems, the antenna configurations have to be chosen carefully. The antenna type, as
well as the arrangement of the elements, strongly influences the performance. Goals are
high antenna efficiency and a low correlation by exploiting various propagations paths.
The problem arises when multiple antennas need to be integrated into small devices with
limited antenna spacing [10]. The challenges for MIMO antenna designing for mobile
terminals are discussed in [206].
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Diversity and MIMO antennas for wireless devices have been the subject of much
attention in the last decade [66, 72, 76, 207–210]. The trend towards mobile terminals
nowadays is to increase the number of operating frequency bands, hence, covering
different applications. Therefore, a MIMO structure with broadband behaviour represents
a very appealing solution for a multi-standard device. Additionally, all of the diversity
methods and antennas presented in Section 4.4 can also be employed in MIMO systems.

4.8.4 Wideband multi-element antenna for mobile MIMO
systems

This section presents a wideband planar MIMO antenna for mobile terminals, based
on original paper [X]. By adding the basic QCA antenna structure with a square slot,
presented in Fig. 19(b), to the opposite ends of the ground plane of a mobile terminal as
presented in Fig. 63(a), a wideband MIMO antenna structure with high isolation and low
correlation can be created. Objectives for antenna structures can be found in Table 1.

The prototype MIMO antenna in Fig. 63(b) is fabricated with a wideband tapered
microstripline balun. The relative dielectric constant of the substrate used in the balun is
2.2. The balun has been optimized by simulations, by taking into account the combined
effect of the slot and the thickness of the ground plane. To find the best result in terms of
larger −6 dB impedance bandwidth, the slot dimensions need to be modified. Thus, the
slot length is longer now when compared with the slot in Fig. 19(b). The balun topology
which is used is the same as presented in Fig. 15(b).

The simulated and measured S-parameters and the total efficiency of the prototype
antenna are shown in Fig. 64. It can be observed that the measured relative −6 dB
impedance bandwidth (S11) is 95%, ranging from 2.0 to 5.6 GHz. The measured
S21 at the same bandwidth is less than −19 dB. The results are well correlated with
the numerical results that are presented in Fig. 20(c). The measured total efficiency
is between −2.3 and −0.1 dB, having an average of −0.85 dB within the −6 dB
impedance bandwidth. The total efficiency is measured by terminating the other antenna
element with a standard 50 Ω load.

Figure 65 presents the measured radiation patterns of the QCA 2 element in terms
of the total gain at 2 and 5 GHz. Radiation patterns have been measured the same
way as the total efficiency. It can be observed that the antenna radiation patterns
do not have deep nulls at both frequencies, which is desired in mobile applications.
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(a)

(b)

Fig 63. (a) layout and (b) prototype of the wideband MIMO antenna with two QCA
antennas for mobile terminals (X, published by permission of IEEE).

Fig 64. Measured and simulated S-parameters and the total efficiency of the QCA
1 and QCA 2 elements for MIMO (X, published by permission of IEEE).

Especially at 2 GHz, the radiation is almost isotropic, which agrees with the radiation of
a complementary antenna. The maximum total gains are 2.8 dBi and 5.7 dBi at 2 GHz
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(a) (b)

Fig 65. Measured radiation patterns (in dBi) of QCA 2 at (a) 2 GHz and (b) 5 GHz in
terms of total gain (X, published by permission of IEEE).

and 5 GHz, respectively. Notice that, as the coordinate system is located in the middle
of the antenna structure, the radiation patterns of QCA 1 are images for the QCA 2.

It can be mentioned at the end of the chapter that multi-element antennas presented
in the previous sections with space, polarization, and radiation pattern diversity can also
be used in an MIMO application because of the good isolation between antenna ports.
Also, a compensation of mutual coupling between closely spaced antenna elements is
very important to gain a low correlation and, thus, a good MIMO performance.

In [72] a wideband MIMO antenna with space diversity is presented. The antenna
system has relative −6 dB impedance bandwidth of 93%, which correlates well with
the antenna system presented in this section (95%). On the other hand, the mutual
coupling is better than −19 dB over the operating frequency, as the antenna system in
[72] presents maximum coupling better than −15 dB. At the same time, the measured
average total efficiency is −0.85 dB (82%) from −2.3 dB to −0.1 dB within the −6 dB
impedance bandwidth, whereas the antenna in [72] represents total efficiencies from
−3.3 dB to −1.3 dB.

It can be concluded that the MIMO antenna for mobile terminals well satisfied the
goals defined in objectives related to −6 dB impedance bandwidth better than 30%,
isolation better than 18 dB, and the total efficiency at most −1 dB (80%) but slightly
smaller than −3 dB (50%). Still, the average total efficiency was −0.85 dB, and it is
better than the defined maximum total efficiency of a wideband antenna.
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The antenna structure covers the UMTS (2.1 GHz), Bluetooth (2.4 GHz), WLAN
(2.45 GHz), DVB-SH S-band (2170–2200 MHz), LTE (2.0–3.8 GHz), and WiMAX
(2.3–5.4 GHz) standards.

4.9 Envelope correlation, effective diversity gain, and
MIMO efficiency

Section 4.7.1 was discussing the excitation of orthogonal higher order current modes on
mobile ground plane to achieve radiation pattern diversity at a single frequency by using
multiple excitation elements. In this section the study is continued by calculating the
envelope correlation between the excited radiation patterns. Objectives for antenna
structures can be found in Table 1.

This section presents parameters enabling the study of envelope correlation, diversity,
and MIMO performance in two antenna element systems. These parameters are an
effective diversity gain (EDG) and a MIMO efficiency, which both use envelope
correlation as a measure to investigate the system performance. All of these parameters
can be calculated at a single frequency by using antenna radiation patterns, or in a wide
frequency bandwidth by using S-parameters.

By using radiation patterns [2], the envelope correlation of two antenna systems can
be calculated as follows

ρe =

∣∣∣∣˜
4π

[~F1(θ ,φ)•~F2(θ ,φ)]dΩ

∣∣∣∣2
˜
4π

∣∣∣~F1(θ ,φ)
∣∣∣2 dΩ

˜
4π

∣∣∣~F1(θ ,φ)
∣∣∣2 dΩ

, (25)

where ~Fi(θ ,φ) is the radiated field of the ith excited antenna element, • denotes the
Hermitian product, and Ω is a solid angle over a sphere.

Table 3 presents the excitation polarization of the individual dipoles shown in Fig. 66.
The size of the ground plane in Fig. 66 is 110 mm x 40 mm, the dipole separation in
the vertical plane is 30 mm and in the horizontal plane, 20 mm, and the dipoles are
located 10 mm above the ground plane. The multi-element structure can be used to
excite orthogonal modes in the radiating ground plane. Each radiating mode, excited by
8 dipoles, can be considered to be one antenna. Later, in Table 4 and 5, the excited
modes are compared correspondingly to a two antenna system, based on (25).
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(a) (b)

Fig 66. Orientation of (a) the vertical (V) and (b) the horizontal (H) dipoles above a
radiating ground plane (I, published by permission of EurAAP).

Configurations EV1, EV2, and EV3 represent the excitation polarizations for the verti-
cal dipoles (DV1−DV8), whereas, EH1, EH2, and EH3 represent the same configurations
for the horizontal dipoles (DH1−DH8). The amplitude value 1 represents a 0◦ phase
shift, whereas −1 represents a 180◦ phase shift of the signal at the dipole feeding port.
The sign of the amplitudes are related to the polarization (±) shown in Fig. 66.

Table 3. Excitation of the vertical (V) and horizontal (H) dipoles shown in Fig. 66 (I,
published by permission of EurAAP).

Dipoles EV1 EV2 EV3 EH1 EH2 EH3

DV1/DH1 1 1 1 1 1 1

DV2/DH2 −1 1 1 1 1 −1

DV3/DH3 1 1 1 1 1 1

DV4/DH4 −1 1 1 1 1 −1

DV5/DH5 1 1 −1 −1 1 1

DV6/DH6 −1 1 −1 −1 1 −1

DV7/DH7 1 1 −1 −1 1 1

DV8/DH8 −1 1 −1 −1 1 −1
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Tables 4 and 5 presents envelope correlations at 2 GHz and 5 GHz with different
antenna configurations studied in [I], and shown in Fig. 66. The corresponding
excitations are shown in Table 3 with Phi and Theta polarizations. These antenna
configurations correspond with different excited current modes on a conducting mobile
ground plane. The envelope correlation calculations represents a radiation pattern
diversity system presented in 4.7.1.

Table 4. Envelope correlation of Phi and Theta polarization at 2 GHz, between
different 8 elevated dipole excitation configurations. The numbers above the di-
agonal represent the envelope correlation in Phi polarization, whereas, numbers
below the diagonal present a correlation in the Theta polarization (I, published by
permission of EurAAP).

Config. EV1 EV2 EV3 EH1 EH2 EH3

EV1 1 5.9 ·10−7 1.7 ·10−7 0.95 2.1 ·10−7 5.4 ·10−7

EV2 2.5 ·10−7 1 1.1 ·10−7 7.5 ·10−7 4.7 ·10−7 2.5 ·10−6

EV3 2.0 ·10−7 1.0 ·10−6 1 3.5 ·10−7 2.8 ·10−7 0.73

EH1 7.0 ·10−2 3.4 ·10−7 3.6 ·10−7 1 2.6 ·10−7 6.1 ·10−7

EH2 4.1 ·10−7 2.2 ·10−7 1.3 ·10−7 3.2 ·10−6 1 1.1 ·10−6

EH3 8.9 ·10−7 5.6 ·10−7 0.53 4.7 ·10−7 1.6 ·10−6 1

Table 5. Envelope correlation of Phi and Theta polarization at 5 GHz between 8
different elevated dipole excitation configurations. The numbers above the diago-
nal represent the envelope correlation in Phi polarization, whereas, the numbers
below the diagonal present a correlation in the Theta polarization (I, published by
permission of EurAAP).

Config. EV1 EV2 EV3 EH1 EH2 EH3

EV1 1 6.2 ·10−6 1.6 ·10−7 0.31 4.2 ·10−7 4.1 ·10−7

EV2 5.3 ·10−6 1 4.9 ·10−6 3.4 ·10−7 1.8 ·10−7 2.3 ·10−6

EV3 1.5 ·10−6 4.7 ·10−7 1 1.6 ·10−7 2.1 ·10−7 0.1

EH1 1.9 ·10−2 1.0 ·10−7 8.8 ·10−7 1 3.6 ·10−7 8.6 ·10−7

EH2 3.4 ·10−7 2.5 ·10−7 7.8 ·10−7 4.7 ·10−6 1 2.2 ·10−7

EH3 7.3 ·10−7 3.2 ·10−7 4.5 ·10−2 8.7 ·10−7 6.6 ·10−7 1

As in this dissertation, wideband antenna structures are discussed, the S-parameter
representation is also an attractive approach. The envelope correlation in terms of the
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S-parameters [61] can be studied with the following formulation

ρe =
|S∗11S12 +S∗21S22|2

(1− (|S11|2 + |S21|2))(1− (|S22|2 + |S12|2))
, (26)

where ∗ is a complex conjugate, S11 and S22 represent an impedance matching of antenna
1 and 2, whereas S21 and S12 are the coupling between the two studied antenna systems.
This formula assumes a uniformly distributed radio channel, meaning that the probability
to receive a signal in any possible direction on a sphere is equal. Additionally, port 2
terminates with a 50 Ω load, when port 1 is excited, and the antenna system is assumed
to be lossless [211].

As discussed in [211], ohmic losses must be very low to ensure good radiation
efficiency. To gain such a condition, good matching and low mutual coupling are
required to represent a lossless antenna system. In practice, when antenna systems
always include losses, the accurate calculations for a lossy system can be found in [212].
The antenna systems in this chapter exhibit high total efficiency with good impedance
matching and low mutual coupling, and the inaccuracy in the final results is assumed to
be very small. Thus, the lossless envelope correlation (26) is used to calculate the EDG
and MIMO efficiency.

The EDG is presented in (27), where low correlation and high radiation efficiency
corresponds with good diversity properties. The diversity gain is calculated by using a
selection combining criteria with maximum apparent diversity gain (10) at a 1% outage
rage [177]. In the calculations, the relation between the complex cross correlation
coefficient ρ and the envelope correlation coefficient ρe is |ρ|2 ≈ |ρe|2 [177]. Finally,
the EDG is calculated by multiplying the diversity gain with the radiation efficiency
(ηrad) of the most efficient antenna element [213].

EDG = ηrad ·10
√

1−|ρ|2. (27)

Notice that the radiation efficiency of an ideal antenna is 100%, and respectively the
radiation patterns are orthogonal to each other. This corresponds to a diversity gain of
10.

Figure 67 presents measured effective diversity gain with corresponding envelope
correlation of the polarization diversity antenna structure for mobile terminals presented
in [IX]. As can be observed, the antenna system represents excellent diversity properties
(>8.0) with a low envelope correlation (<0.01) over the −6 dB impedance bandwidth
(1.8–4.6 GHz).
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Fig 67. Effective diversity gain and the corresponding envelope correlation of
antenna structure, introduced in [IX] (IX, published by permission of IEEE).

The envelope correlation is also needed when studying MIMO efficiency, which
is also called MIMO multiplexing efficiency. MIMO efficiency is a measure of the
additional SNR (Signal to Noise Ratio) required for a prototype antenna, or an antenna
in a real application, to achieve the same capacity as an ideal antenna in an independent
and identically distributed (i.i.d.) Rayleigh fading radio channel [64]. In (28), the MIMO
efficiency is presented for a 2x2 MIMO system in good SNR condition

ηMIMO =
√

ηrad,1ηrad,2(1−|ρ|2), (28)

where ηrad,1 and ηrad,2 are the radiation efficiencies of antenna element 1 and 2,
respectively. In MIMO efficiency calculations, the relation between the complex cross
correlation coefficient ρ and the envelope correlation coefficient ρe is the same as
previously discussed with the EDG.

Figure 68 shows measured MIMO efficiency with a corresponding envelope cor-
relation for a MIMO system for mobile applications presented in [X]. As in the
EDG case, low correlation (<0.04) and good radiation properties leads to an excellent
MIMO performance over the studied frequency bandwidth (2.0–5.6 GHz), with MIMO
efficiency better than 0.9.

It was shown, that excitation of higher order modes with multiple excitation elements,
it is possible to achieve a low correlation between the excited radiation patterns. Totally
six orthogonal modes were excited and the radiation patterns were compared in terms of
envelope correlation, originally presented in [I].
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Fig 68. MIMO efficiency and the corresponding envelope correlation of antenna
structure introduced in [X] (X, published by permission of IEEE).

By exciting higher order modes with eight short dipoles above a mobile ground
plane, in 90% of the excited radiation patterns at 2 and 5 GHz center frequencies, the
correlation was less than 0.2. The results correspond with good orthogonality between
the excited radiating modes. The idea of orthogonal radiating modes is to propose a
solution for radiation pattern diversity within a small space, as the size of a mobile
terminal is limited.

When the polarization diversity antenna was studied in [IX], it presented excellent
wideband antenna characteristics with good average total efficiency (−0.95 dB) and
isolation between the antenna elements (> 18 dB). This led to a correlation smaller than
0.01 with EDG better that 8.0 over the operating frequency (1.8–4.6 GHz), which well
satisfies the predefined goals in the objectives.

On the other hand, the MIMO antenna in [X] also presented excellent antenna
characteristics over the operating frequency (2.0–5.6 GHz) with an average total
efficiency of −0.85 dB, and the isolation between the antenna elements better than
19 dB. As the correlation was smaller than 0.04, with these values the MIMO efficiency
was better than 0.9, and, thus, well satisfies the predefined goals in the objectives as well.

4.10 Summary

This chapter presented novel wideband multi-element antennas for mobile applications.
By using two symmetrically excited folded dipoles, oriented as mirror images for each
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other, it was shown how to create a magnetic boundary condition between these antenna
elements and, at the same time, achieve a wide frequency bandwidth.

The correlation between the image theory and the characteristic modes theory, in
terms of magnetic and electric boundary conditions, were presented. The image theory
was also used to build a prototype antenna. By extending the symmetrical folded dipole
to a more practical metal bezel structure, it was shown that the antenna performance is
not disturbed. The symmetrical folded dipole and the metal bezel was also discussed in
vicinity of a head phantom in terms of SAR-values and S11-parameter.

Next, wideband diversity antennas were discussed and examples for space and
polarization diversity techniques were presented. It was shown, by reducing mutual
coupling between closely spaced antenna elements, a good isolation was achieved and,
thus, antennas can be used in space diversity applications. Wideband polarization and
MIMO antennas were presented by combining two quasi-complementary antennas at
the opposite end of a mobile ground plane with good matching, isolation, and radiation
properties.

The principal of radiation pattern diversity was presented. By exciting orthogonal
higher order modes on a mobile ground plane with multiple antenna elements, it is
possible to gain low correlation between the radiated modes.

And finally, parameters to study diversity and MIMO performances were presented
to show the efficiency of the novel antenna structures presented in the chapter.

As a conclusion, by using symmetrical feeding, the excitation of higher order modes
can be avoided. On the other hand, by using well isolated antenna elements, good
correlation properties were achieved between the wideband antenna elements, closely
spaced to a conducting ground plane. Also excitation of higher order current modes is
possible with small antenna to achieve orthogonal radiation patterns in low correlation.
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5 Summary of the contributed papers

[I] Small Radiating Ground Plane with Higher Order Modes

In the publication [I], a planar small rectangular radiating ground plane with an excitation
study of orthogonal radiating modes is investigated. Eight short elevated dipoles were
used to excite the modes in the ground plane with different excitation configurations.
Instead of slots, the dipoles are used to couple energy to the ground plane to gain a
better surface current performance. The paper shows that the spherical modes excited
with the currents on a sphere presented in Section 2.1.4, which is a general case, can
also be excited with a planar structure. The paper also presents radiating modes in a
planar ground plane excited with the dipoles. The same excited modes can be found in
Section 2.2 for comparison. The numerical results were the prediction of low correlation
(< 0.2) with 90% of the studied cases corresponding good orthogonality between the
modes. The configurations providing low envelope correlation are the ones that are
used to gain pattern diversity. The presented approach has no practical solution and
the purpose is only to show that it is possible to excite higher order modes on a small
radiating ground plane.

[II] Optimized Dimensions of Ultra Wideband Quasi-Complementary
Antenna with Switching Capability

In publication [II], quasi- and auto-complementary antennas were compared. By
simulations, the structures were optimized to gain wide impedance matching (<−10 dB).
After the optimization, the antennas were split in half as a monopole, and situated
at the end of a mobile ground plane. With the optimized monopole structure, an
impedance matching over the Ultra Wideband (UWB) frequency range (3.1–10.8 GHz)
was achieved. The idea of using switches to cover lower frequencies was also presented.
By using an open circuit to demonstrate RF-switches, the antenna frequency band was
shifted down to around 950 MHz. At the lower frequencies, the antenna structure excites
the fundamental radiating mode, Mode 1.
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[III] Wideband Planar Slotted Radiating Ground Plane Antenna for
Portable Devices

In publication [III], two monopoles for separate frequency ranges were used as coupling
elements to excite surface currents in a planar radiating ground plane over a wide
frequency range with a 65% relative −6 dB impedance bandwidth. A complementary
slot was implemented into the ground plane as a matching element for both monopoles.
By studying the surface currents, it can be noticed how both monopoles excite the
fundamental radiating mode (Mode 1). The antenna operating principal is the same as in
[IX, X], in terms of compensating for the imaginary part of the input impedance, except
now, instead of a dipole, a monopole is used to excite the radiating mode. With the
antenna structure, DVB-H, GSM, and UMTS standards, 2.45 GHz WLAN, and future
LTE-bands can be covered. The main benefit of the antenna structure is a large effective
area, so it provides good radiation properties over a wide frequency range.

[IV] Low Mutual Coupling Between Monopole Antennas by Using Two λ /2
Slots

In publication [IV], two half-wavelength slots cut into the ground plane were used
between two monopole antennas to reduce mutual coupling. Low mutual coupling
(< −18 dB) over a wide bandwidth was achieved with good radiation properties. The
surface currents are propagating in the opposite direction on different sides of the slots,
and, thus, mutually cancelling each other at a wide frequency bandwidth. Dramatic
improvement was observed in the mutual coupling and the impedance matching. An
interesting result was that the mutual coupling was reduced when the antenna spacing
was reduced to less than a quarter of a wavelength, compared to the case where the
antenna elements had a half-wavelength separation. Thus, by the antenna structure, an
excellent diversity performance was gained with closely spaced antennas.

[V] Optimal Dimensions of Two Microstrip Patch Antennas for Low
Mutual Coupling at 5.8 GHz

In publication [V], a microstrip patch antenna structure with optimum dimensions
was presented. The structure is very simple and only includes the patches with no
external matching circuit. Good impedance matching and mutual coupling (< −18 dB)
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characteristics were achieved with good radiation properties and, thus, the antenna
is suitable for space diversity applications. The simulated effect of the ground plane
showed that the low mutual coupling and good impedance matching was only achieved
by optimizing the patch dimensions. The principal of the mutual coupling cancelation is
that the current path between the feeding points is half of the wavelength shorter than
the signal propagating via the patch edges.

[VI] Creation of a Magnetic Boundary Condition in a Radiating Ground
Plane to Excite Antenna Modes

In publication [VI], a planar rectangular radiating ground plane antenna with a symmet-
rical feeding was presented. The antenna consists of two folded dipoles which are planar
and orientated as a mirror image. The dipoles are excited symmetrically with an equal
amplitude and phase, which creates a magnetic boundary condition along the symmetry
line between the folded dipoles. The structure is called a symmetrical folded dipole
(SFD). Correctly designed symmetrical feeding counts the mutual coupling between the
folded dipoles, and, thus, it can be exploited to improve the matching. The Theory of
Characteristic Modes is used to identify the lowest order radiating mode (Mode 1) of
the antenna, as discussed in 2.2. The antenna structure is considered to be a wideband
multi-element antenna and it is designed to excite Mode 1 within a wide frequency
bandwidth. The measurements showed 75% relative −6 dB impedance bandwidth.
When using asymmetrical feeding (the amplitude of the sources is opposite) at the same
time as a symmetrical one (sources have the same amplitude), it is possible to achieve a
radiation pattern diversity, e.g., for a compact mobile MIMO system.

[VII] Performance Comparison of a Symmetrical Folded Dipole Antenna
for Mobile Terminals and Its Metal Bezel Extension

In publication [VII], a performance of the symmetrical folded dipole and a metal bezel
structure were compared. The metal bezel is extended in width and compared to the
original SFD antenna structure presented in [VI]. The purpose of the paper is to show
that it is possible to extended the ground plane and bend it’s sides up by combining
a mobile chassis and a bezel as one antenna element, without changing the antenna
performance. Both antennas excite the fundamental mode, Mode 1. The measured
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results show that the major difference between the antennas appears because of slightly
different cascaded LC-baluns designs that are used as a feeding mechanism.

[VIII] Wideband Multi-element Mobile Terminal Antenna with Symmetrical
Chassis Coupling

In publication [VIII], a multiple patch antenna structure was presented. In total, four
patches were separated into pairs, where adjacent patches were fed symmetrically with
the same amplitude and phase. The configuration was used to couple electromagnetic
energy to the mobile chassis at a wide frequency bandwidth. The measurements showed
37.6% relative −6 dB impedance bandwidth. The feeding mechanism excites the
radiating mode (Mode 3), presented in Section 2.2. Based on the radiation patterns, the
structure offers radiation pattern diversity for MIMO or diversity systems to increase the
reliability of the data transmission.

[IX] Planar Wideband Polarization Diversity Antenna for Mobile Terminals

In publication [IX], a planar wideband ground plane antenna is presented for mobile
terminals. The antenna consists of two quasi-complementary antenna (QCA) elements
located at both ends of a mobile ground plane to gain polarization diversity. One QCA
element includes an electric dipole, closely spaced to a ground plane with a magnetic
slot. The electric dipole and the magnetic slot compensate each other in terms of the
imaginary part of input impedance. By using a dipole as a coupling element to couple
energy to the radiating ground plane, the fundamental radiating mode (Mode 1) is
excited. The antenna offers a diversity performance in terms of effective diversity gain
(EDG) better than 8.0 over a wide frequency range. The antenna also provides excellent
relative −6 dB impedance bandwidth (87.5%), low mutual coupling (< −18 dB), good
radiation properties in terms of average total efficiency (−0.95 dB), and correlation
smaller than 0.01 over the operating bandwidth.

[X] Improved Planar Wideband Antenna Element and Its Usage in a
Mobile MIMO System

In publication [X], an improved planar wideband ground plane antenna, based on [IX],
is presented. The antenna consists of two quasi-complementary antenna (QCA) elements
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located at both ends of a mobile ground plane to gain space diversity. One QCA element
includes an electric dipole closely spaced to a ground plane with a magnetic square
shaped slot. The structure offers 95% relative −6 dB impedance bandwidth, mutual
coupling less than −19 dB, and average total efficiency −0.85 dB, and correlation
smaller than 0.04 over the operating bandwidth.

The antenna provides the fundamental mode (Mode 1) with different radiating
mechanisms. When in low frequencies, the vertical currents can be found in the ground
plane, in the center frequency, the dipole itself is radiating. In higher frequencies, the
ground plane radiates again with vertical radiating currents. All the same, the magnetic
slot in the ground plane, excited by the electric dipole ([IX] and [X]), offers a soft
variation of the imaginary part of the input impedance by avoiding the appearance of
strong anti-resonances that would ruin the impedance matching.

The simulations also showed that by scaling the antenna element to a size of a
smartphone (120 mm × 70 mm), and slightly modifying the square slot dimensions, a
frequency band from 700 MHz to 2.1 GHz (100%) can be achieved.

Table 6 summaries the characteristics of the antenna structures presented in the
original papers compared to the specific objective defined in Section 1.3.2 (Table 1).

Table 6. Summary of the results achieved with the antenna structures presented
in the original papers compared to the specific objectives of the dissertation.

Literature Specific objectives Achieved results

Number of modes 4 6 6

Relative -6 dB BW [%] > 10 > 30 21.6 . . .100

Mutual coupling [dB] <−18 <−18 <−18

Average total efficiency
[dB]

≥−3 −3 . . .−1 −1.83 . . .−0.85

Measured correlation < 0.5 < 0.2 ≤ 0.04

EDG > 7.0 > 7.8 > 8.0

MIMO efficiency [%] > 0.70 > 0.78 > 0.90

As observed, the specific objectives defined at the beginning of the dissertation was
achieved with a fair margin for the antenna structures presented in the dissertation.
There is only one exception as one of the antennas, presented in [V], does not fully
exceed the relative −6 dB impedance bandwidth. However, impedance bandwidth of the
patch structure is still good as patches are relatively narrow band structures (0.5–5%). It
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can concluded the antenna still satisfy the 10% relative impedance bandwidth which is
defined as a limit for wideband antenna.
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6 Discussion

This chapter will shortly discuss the results that are presented in the dissertation and
original papers. The chapter is divided into three parts. First, the theoretical implication
will discuss and compare the results to the previously published results. The second
part will present ideas on how the results can be exploited and what are the benefits
from a practical point of view. The final part will explain the future work and which
phenomenon will require further investigation.

6.1 Theoretical implication

The theory part of this dissertation presented spherical modes on a conventional sphere,
and the results were compared to characteristic modes on a planar mobile ground
plane. A clear correlation between the radiating and current modes was observed. The
theoretical foundation was compared to the results presented in the original papers.

The dissertation also presented novel wideband and multi-element antenna structures
for mobile terminals. Whereas, usually presented wideband antennas combine multiple
resonances to gain wideband characteristics, this dissertation concentrated on antenna
structures to cover a wide frequency range by exciting only one mode by avoiding the
excitation of higher order modes. The excited modes are described in the theoretical
foundation. To gain the excitation of only one mode, carefully designed antenna feeding
mechanisms were presented, by using well known principles found in literature.

When comparing results to the previously published wideband MIMO and diversity
antennas for mobile applications, these kinds of results are not very widely presented in
the literature. The radiation pattern diversity, with multiple excitation elements to gain
orthogonal radiation patterns, is also not widely studied in literature. The radiation
pattern diversity, by using multiple excitation elements, is an attractive technique, as the
ground plane of a device functions as an antenna.

6.2 Practical implementations

The results of this dissertation focused on wideband antenna technology in future
wireless applications. Whereas, the presented solutions concentrated on mobile terminal
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applications, the area of applications is not only limited for such usage. Individual
antenna elements which are presented in this dissertation can also be widened to research
areas or practical applications, such as wearable body antennas or sensors and textile
antennas.

It was shown by measurements that a metal bezel extension, as a practical implemen-
tation of a symmetrical folded dipole, the modification did not spoil the performance
of the antenna. Additionally, even the metal bezel radiates omni-directionally, the
measured SAR-values are still within the standard limits. Thus, the proposed metal
bezel structure is a good option in the future to cover multiple radio interfaces with
one antenna and, at the same time, leaving space for other equipments in a device, or
antennas for wireless standards at higher frequencies.

The radiation pattern diversity with excitation of higher modes represented a compact
solution for a MIMO antenna in a mobile or a portable device. As the ground plane is
excited with multiple antenna elements, and with different excitation configurations,
several orthogonal radiating modes can simultaneously take advantage of multiple
independent MIMO channels.

Quasi-complementary antenna elements with wideband characteristics are an
attractive solution as only one antenna system is needed, instead of using separate antenna
systems for every wireless standard. The quasi-complementary UWB bowtie antenna
with switching capability offers one antenna solution for high and low frequencies.
It can also be mentioned here that when placing an UWB bowtie to both ends of the
ground plane, space diversity systems can be implemented, which operate within a large
frequency bandwidth.

As the ground plane in the middle of a mobile chassis has been used as a radiator,
the antenna element itself cannot be touched by user’s hand or head [174]. As a metal
bezel structure was compared to a conventional PIFA in [174], the PIFA element became
sensitive for a user’s hand or finger, and, thus, needs alternative compensating structures
[162, 214]. When the surface currents are concentrated towards a wide area on a mobile
ground plane, the antenna becomes less sensitive to the user vicinity. This opens up an
opportunity to compensate for the effect caused by the usage environment. This plays an
important role when considering practical industrial antenna design, nowadays and in
the future.
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6.3 Future research topics and challenges

The dissertation was related to a wideband antenna research including multi-element
antennas for mobile applications. As the antenna structures were purely studied as an
antenna element, many issues related to the mobile antenna designing were left out from
the contents. This section discusses these issues, whereas also future research topics for
other researchers are presented.

It has been understood that antenna for mobile system should not be treated
independently as an isolated element, but instead should be designed by taking such
parameters into consideration as propagation, system requirements, and environmental
conditions. As this dissertation introduces wideband and multi-element antennas for
mobile terminals mostly as an antenna element, except in one case where SAR-values
and S11 are measured in a close vicinity of a head phantom, the environmental issues
will be discussed here.

A diversity application in a handset, the body will usually reduce the radiation
pattern correlation. The performance will drop due to the body loss and mismatching
[215]. The work of adaptive matching and adaptive control of distributed MIMO
antennas is a promising solution to overcome human body detuning and loading [216].
Also multi-element antennas can also be used to compensate the user effect [166, 217].

In [VII], the user effect of the symmetrical folded dipole and the metal bezel was
studied in terms of SAR-values and S11-parameters in the vicinity of a head phantom.
To get a complete picture of the vicinity of a user, measurements need to be done with
a hand and head phantom as well, and with different hand grips. Also, some more
parameters to describe the effect of a hand and head phantom should be studied, such as
losses in antenna total efficiency, reflection losses, and the Smith chart presentation.

The antenna structures presented in this dissertation were using a mobile ground
plane as a radiating element, and, in most of them, slots were cut to the ground plane to
couple energy into it. Thus, an effect of slots to the SAR-values needs to be considered
as well as the SAR-value is strongly dependent on the ground-plane geometry and the
antenna position. In [218], analysis of the human head interaction in handset antennas
has been done by studying several cases with slotted ground plane. Measurement results
showed that shorted-end slots presented lower SAR values than the open-ended slots.
Comparing the values to the reference ground plane without slot, it was demonstrated
that slots usually do not increase the SAR values. A general conclusion was that the
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SAR-values for slotted ground planes were not increased compared to a ground plane
without a slot.

Another thing to consider are differences in a SAR-distribution after adding other
components (display, battery, etc.) to the device, and how these components will modify
the SAR-values. Usually this means reduction in SAR-values, but SAR can also depend
on the electromagnetic field, and how the field is coupling to other components. As
metallic parts are used in mobile devices, these might arise problematic from SAR point
of view. When the field couples e.g. to a metal chassis or metallic parts in a display,
these can act as directive elements and steer the radiated field against the users head by
increasing SAR-value. The SAR-distributions should also be taking into account at the
very beginning of the system design.

One way to decrease SAR caused by the components (display, battery, etc.), is to
increase the number of the grounding pins in the chassis, which, on the other hand,
might affect to the ground plane surface current distributions. Another way is to use
multiple antenna elements to force the currents propagate into a certain direction. In that
manner, the excitation (amplitude, phase) of the multiple antenna elements counts the
uncertainties caused by the components on the ground plane. In any case, it is good to
mention here that the best way to couple the field or modes to the chassis with multiple
antenna elements is not solved in a proper way yet.

Whereas the mobile ground plane is very crowded with different kind of components,
obtaining the desired volume and position for the antennas is very difficult. Still, as an
antenna is a crucial part of a wireless device, it is needed to be taken into account at
the very beginning of a mobile device designing to find the best possible positions for
antennas. To gain proper or wanted antenna characteristics within a certain volume,
from the antenna designer point of view, this means cooperation with other professionals
related to the circuit, material, and component designing. That kind of cooperation will
be more and more important in the future when considering designing of mobile and
wireless devices.

As mentioned previously, the antenna structures were studied purely as an antenna
element. Making simulations and measurements with prototypes closer to the real
applications is another issue to make the antenna modeling closer to real applications.
This means modeling of such components in the mobile applications like battery,
circuitry over the slots in the ground plane, display, speaker, and the chassis itself as
it can be metallic. It is also understood that antenna for mobile system should not
be treated independently as an isolated element, but instead should be designed by
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taking such parameters into consideration as propagation, system requirements, and
environmental conditions.

Also the EMC (Electromagnetic Compatibility) aspects, and how they are affecting
to the current distributions on a mobile ground plane, are not discussed in the dissertation.
In general, there are some coupling between components and antennas in a real mobile
device. For example, if circuits are not properly EMC-protected, some harmonics of an
oscillator might disturb the transceiver, especially the receiver branch where the signal
levels are very low. On the other hand, if the antenna couples field to the transmission or
feeding lines, this is once again disturbing the current distributions. One way to prevent
the coupling is to isolate the most sensitive components, whereas, if metal boxes are
used to reduce EMC, this might cause problems from SAR perspective. Getting back to
the previous paragraphs, the EMC issues are needed to be taken into account in the very
beginning of the system level design as well.

In the future, such an antenna element as QCA [III, IX, X], which have a wide
impedance bandwidth, opens new areas on mm-wave mobile terminal environment,
or as an element in a wideband antenna array with certain antenna spacing limitation.
When scaling a QCA element by the factor 3 to the size of a modern smartphone
(120 mm × 70 mm), as presented in [X], a frequency range from 700 MHz to 2.1 GHz
was achieved. This is opening opportunity to add two smaller scale QCA elements to the
opposite end of the ground plane for a space diversity system [X]. On the other hand, a
polarization diversity approach is attractive as well, such as presented in [IX].

One of the future challenges is how a radiation pattern diversity system with multiple
excitation elements can be implemented in a compact space, as presented in [I]. The
applications need a complex feeding network or digital signal processing to excite
multiple orthogonal modes at the same time. Also mutual coupling between the multiple
excitation elements needs to be investigated to guarantee good antenna performance,
unless it can be utilized in the system. The question can also be set whether multiple
wideband antenna elements can be used to excite orthogonal modes on a mobile ground
plane in wide frequency range.

A MIMO-cube [219] is an interesting approach to excite orthogonal radiating modes.
The antenna includes multiple feeding elements to excite orthogonal modes in any
orientation and polarization related to the usage or radio channel conditions. Thus, it
includes a large degree of freedom of different excitations. As mentioned in the case
of radiation pattern diversity, a MIMO-cube provides huge challenges related to the
source excitation and mutual coupling compensation between the individual excitation
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elements. Related to the idea presented in [I], an approach to investigate a MIMO-cube
at a wide frequency range is also a big challenge.
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7 Summary

The dissertation presented wideband antennas and multi-element antennas for mobile
applications. The subject was first studied with a general approach by providing basic
knowledge of the spherical and the characteristic mode theories. The theory part
presented numerical results and showed that it is possible to excite the same radiating
modes on a planar radiating rectangular ground plane than on a conventional sphere.
The introduction to the mode theories was later used in the dissertation, when the results
based on the original papers [I] - [X] were analyzed.

The measured results were presented and a good correlation with simulations was
observed. The designed antenna structures also correlated with the modal studies that
were presented in the theory part. Some fundamental approaches were also taken by
only simulation (original papers [I] - [II]) to show the functionality of the original idea.

The antenna structures were first studied without a conducting ground plane. While
the ground plane was added close to the radiator, it was shown, by using a magnetic
slot in a ground plane, how the excitation of the higher order modes can be avoided to
increase the antenna frequency bandwidth and still, keep the antenna as an efficient
radiator. The principal to excite the certain modes at a wide frequency bandwidth was
cutting slots into a conducting ground plane and using monopoles, dipoles, and folded
dipoles to couple energy to the ground plane.

When designing an antenna where a certain mode is wanted to be excited at a
wideband frequency range, the antenna feeding and impedance matching plays a crucial
part. Symmetrical folded dipoles were used with a symmetrical feeding to create a
magnetic boundary condition in [VI] - [VII]. Symmetrical feeding was also used with
two patches to excite a current mode on a conducting ground plane [VIII]. As dipoles
were used as a coupling element, they required a wideband balun with a wideband
impedance transformation to feed the antenna structure itself. The dissertation presented
an LC-baluns ([VI] - [VII]) and tapered microstrip line baluns ([IX] - [X]) to feed such
antennas within a wide frequency bandwidth.

A coaxial line feed was used in [III] and [VIII] without any baluns or matching
circuitry. The slot dimensions of the antenna structure in [III] were modified so that the
antenna could be directly connected to the 50 Ω coaxial line. The structures in [IV] and
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[V] were also modified, so that no separate matching circuitry was needed, and so the
structure can be kept as simple as possible.

Wideband multi-element antennas were presented for space and polarization diversity
with excellent correlation, diversity gain, or MIMO efficiency properties ([IX] - [X]). It
was also shown how in [I], by using multiple antennas as a feed element, it is possible
to excite higher order modes on a mobile ground plane to achieve radiation pattern
diversity for compact MIMO applications.

Mutual coupling compensation methods were presented with closely spaced antenna
elements for diversity system. A pair of λ /2 slots between monopole antennas [IV],
and by optimizing dimensions of two patch antennas [V] were presented. With both
methods, the mutual coupling was significantly reduced at a wide frequency bandwidth,
while, at the same time, the matching of antenna elements was greatly improved.
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8 Conclusions

Nowadays, and in the future, there are several wireless standards in mobile devices. To
come up with these challenges and cover multiple radio interfaces, antenna research will
play an important role as they offer a wireless connection to the other devices and mobile
services. Wideband mobile antenna designing can be separated into three sub-areas:
frequency-tuneable antennas, multi-frequency antennas, and wideband antennas. This
dissertation was concentrating on wideband antennas. How to place wideband and
multiple antenna elements into a small multi-standard mobile device with limited space
was another issue of the dissertation.

The results of this dissertation were focusing on wideband and multi-element antenna
structures in mobile applications. It connected together the analysis of spherical modes
excited on a sphere and how characteristic modes on a planar mobile ground plane are
related to these spherical modes. The results obtained in the theoretical foundation were
later compared to the simulated and measured results presented in the original papers
[I] - [X]. To the best knowledge of the author, this kind of work has not been previously
presented in the literature.

In most of the published papers in the literature, the fundamental chassis mode is
excited. One of the dissertation’s topics was the excitation of higher order modes by
using mobile ground plane as a radiating element. In the theory part of the dissertation,
the higher order spherical modes were excited on a conventional sphere, and these modes
were compared to the radiation properties of excited current modes on a planar ground
plane. It was shown that the same radiating modes can be found on both surfaces with
corresponding surface current distributions. The surface currents on a planar ground
plane were studied with respect to the characteristic mode theory, and then compared
to the obtained spherical vector modes. The number of resonating modes is given by
N = kr0, and e.g. a ground plane size used in the dissertation (40 × 110)mm2 support 4
modes at 2 GHz.

With different excitation configurations, the surface currents of a planar antenna
could be forced to higher order orthogonal forms to obtain low correlation between the
radiation patterns. Three vertically and three horizontally polarized modes, totally six
modes, were excited. It was shown in [I], that by exciting higher order modes with eight
short dipoles above a mobile ground plane, in 90% of the excited radiation patterns at 2
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and 5 GHz center frequencies, the correlation was less than 0.2. The results correspond
with good orthogonality between the excited modes, as the correlation was defined to be
smaller than 0.2.

The excitation of the higher order modes at a single frequency can be considered as
radiation pattern diversity. Benefit of this kind of a diversity is that with orthogonally
excited radiation patterns, the diversity system can be exploited in a small space, e.g. in
a mobile terminal where the size of the device is limited.

As the second topic was wideband antennas, a novel and simple antenna structures
were presented in original papers [II] - [III] and [VI] - [X]. It was shown that, by
exciting a planar mobile ground plane with efficient feeding network, the radiating
current mode in the issue remained over a wide frequency range without the disturbance
of higher order modes. This required knowledge of the characteristic current modes of a
certain shape of a radiator. By knowing these principal modes and their surface current
distributions, the excitation was designed for the desired antenna mode.

One of the presented solutions to achieve a wide frequency range, was the usage of
an electrical excitation element (inductive behaviour) close to a conducting ground plane
with a magnetic slot cut into it (capacitive behaviour). The solutions were presented in
original papers [III] and [IX] - [X]. These two opposite components are cancelling each
other in terms of the imaginary part of the input impedance at wide frequency range.
The structures are called Quasi-Complementary Antennas (QCA). The QCA structure
supports the idea of a single current mode excitation.

Another solution was the usage of symmetrical feeding presented in [VI] and [VIII],
where antenna elements were excited with same amplitude and phase to support only
one radiating mode. Also by using this method, it is possible to create an artificial
magnetic ground plane between two adjacent folded dipoles, as presented in [VI].

The dissertation was focusing on finding wideband antenna structures which relative
−6 dB bandwidth is better than 30%. In practise, the relative −6 dB impedance
bandwidths of the presented wideband antenna structures were between 37.5–100% over
the operating bandwidth, depending on the antenna structure.

When the aforementioned single QCA element was combined as a multi-element
structure in [IX] and [X], it enabled to obtain a wideband two element antenna for
diversity and MIMO systems. The presented multi-element antenna structure for a
mobile diversity system was supporting polarization diversity, whereas the mobile
MIMO system supported space diversity.
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The wideband multi-element antennas were studied as diversity and MIMO systems
within a large relative −6 dB impedance bandwidth (> 30%) with correlation much
smaller than 0.2, antenna efficiency is at most −1 dB (80%) but better than −3 dB
(50%), and the isolation between the antenna elements better than 18 dB. In Section
1.3.2, the objective for the effective diversity gain was defined to be better than 7.8, and
for the MIMO efficiency better than 0.78.

The relative −6 dB impedance bandwidth of these multi-element antenna structures
were between 87.5–95%, and an individual antenna had measured average total efficiency
of −0.95. . .−0.85 dB over the −6 dB bandwidth. The isolation between the antenna
elements was better than 18 dB, when, at the same time, the measured correlation was
smaller than 0.04. Thus, the measured EDG was calculated to be better than 8.0, and the
measured MIMO efficiency better than 0.9 over the operating bandwidth.

The mutual coupling compensation between two antennas is important to achieve
low correlation in MIMO and diversity systems. To obtain this, a mutual coupling
between two adjacent antenna elements was defined to be lower than −18 dB. As the
dissertation presented wideband antenna elements, methods to compensate mutual
coupling at wide frequency range between the closely spaced antenna elements was
presented. Following methods were investigated: slots between two monopole antennas
[IV], optimizing the dimensions of two patch antennas so that the interaction between
the patches is very small [V], symmetrical feeding which counts the coupling between
two antenna elements [VI] - [VIII], and orthogonal polarizations [IX]. With all these
methods, good isolation between antenna elements was achieved over a wide frequency
range.

An interesting result in the monopole study was observed as the mutual coupling was
reduced when the antenna spacing was less than a quarter of a wavelength, compared to
the case where the antenna element spacing was a half-wavelength. Another interesting
result was reach with the patch antenna structure. The structure presents only optimum
dimensions of the adjacent patches, and, thus, the structure is very simple and includes
no external matching circuit or mutual coupling compensation.

The results related to the original papers [I] - [II] were presented numerically to
demonstrate the functionality of the studied methods. In [III] - [X] the numerical and
empirical results were presented to show the functionality of the proposed wideband and
wideband multi-element antenna structures at a wide frequency range.

In the dissertation, it was shown that the excitation of orthogonal higher order
modes on a mobile ground plane is possible with multiple excitation elements. On the
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other hand, the defined relative −6 dB impedance bandwidth better than 30% was well
exceeded with presented wideband antenna structures. This was achieved by exciting
only a single mode by avoiding the excitation of higher order modes.

Additionally, also the presented wideband multi-element antenna structures showed
excellent impedance bandwidth, good isolation between the antenna elements, and good
total efficiency of an individual antenna element. Good antenna performance led to
a good correlation between antenna elements, and, thus, good diversity and MIMO
properties. The wideband characteristics of the multi-element antennas were also based
on the excitation of single mode by avoiding the excitation of higher order modes.

It can be concluded that the parameters defined in the objectives of the dissertation
were obtained with a fair margin, and the comparison of the results to the literature and
the state of art justifies the novelty of the work.
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Appendix 1
Spherical Bessel functions

The purpose of this appendix is to provide a short introduction to the Spherical Bessel
functions that are used in this dissertation. The complete formulation can be found in
[220].

Bessel’s equations are solutions to the equations of Laplace and Helmholtz in
spherical coordinates (also cylindrical). The solutions to the spherical Bessel functions
are

1. jn(kr), the Spherical Bessel function of 1st kind. Representing a radial standing
wave, finite at the origin.

2. nn(kr), the Spherical Bessel function of 2nd kind. Representing a radial standing
wave, infinite at the origin.

3. h(1)n (kr), the Spherical Hankel function of 1st kind. Representing a radial ingoing
wave, infinite at the origin.

4. h(2)n (kr), the Spherical Hankel function of 2nd kind. Representing a radial outgoing
wave, infinite at the origin.

where (4) is the function representing an antenna radiation.
The Bessel function of order n+1/2 is used in the solution of the Helmholtz equation

in spherical coordinates [15]. In scalar-wave problems, the Spherical Bessel function is
defined as

bn(kr) =
√

π

2kr
Bn+1/2(kr).

The zero-order (n = 0) Bessel functions are when kr tends to infinity

j0(kr) =
sinkr

kr
h(1)0 (kr) =

e jkr

jkr

n0(kr) =−coskr
kr

h(2)0 (kr) =−e− jkr

jkr
.
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Appendix 2
Legendre functions

This appendix shortly presents Legendre function of the first kind and the associated low-
order polynomials [18] used in this dissertation. Once again, more detailed formulation
can be found in [220].

The Legendre polynomial Pn(cosθ) is a spherical harmonic of degree n, which is
independent of φ . The θ dependence of the spherical component of the Spherical wave
function are expressed with following three functions, where 0 ≤ θ ≤ π ,

P|m|n (cosθ),
m

sinθ
P|m|n (cosθ),

d
dθ

P|m|n (cosθ),

where P|m|n (cosθ) is the normalized associated Legendre function of 1st kind. The
normalization is defined by the following equation

P|m|n (cosθ) =

√
2n+1

2
(n−m)!
(n+m)!

Pm
n (cosθ),

where Pm
n (cosθ) is the associated Legendre function. Notice that only functions of

non-negative order |m| are applied. Pm
n (cosθ) is defined as n > 0 and m≥ 0 by

Pm
n (cosθ) = sin(θ)m dmPn(cosθ)

d(cosθ)m ,

where
Pn(cosθ) =

1
2nn!

dn

d(cosθ)n (cos2
θ −1)n

is the Legendre polynomial.
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The following tables presents low-order Legendre polynomials and their derivations
up to the first 2 orders (m) and 3 degrees (n). More polynomials for higher order modes
can be found in [18].

Table 7.
P|m|n cosθ

n = 1 n = 2 n = 3

m = 2 −
√

15
8 (cos2θ −1) −

√
105
16 (cos3θ − cosθ)

m = 1
√

3
2 sinθ

√
15
4 sin2θ

√
42

32 (5sin3θ + sinθ)

m = 0
√

6
2 cosθ

√
10
8 (3cos2θ +1)

√
14

16 (5cos3θ +3cosθ)

Table 8.
m

sinθ
P|m|n cosθ

n = 1 n = 2 n = 3

m = 2
√

15
2 sinθ

√
105
4 sin2θ

m = 1
√

3
2

√
15
2 cosθ

√
42

16 (5cos2θ +3)

m = 0 0 0 0

Table 9.
d

dsinθ
P|m|n cosθ

n = 1 n = 2 n = 3

m = 2
√

15
4 sin2θ

√
105
16 (3sin3θ − sinθ)

m = 1
√

3
2 cosθ

√
15
2 cos2θ

√
42

32 (15cos3θ + cosθ)

m = 0 −
√

6
2 sinθ − 3

√
10

4 sin2θ − 3
√

14
16 (5sin3θ + sinθ)
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Appendix 3
Vector differential operations of spherical
coordinate system

Gradient of a scalar

∇ψ = r̂
∂ψ

∂ r
+ θ̂

1
r

∂ψ

∂θ
+ φ̂

1
r sinθ

∂ψ

∂φ
.

Divergence of a vector

∇ ·~A =
1
r2

∂

∂ r
(r2Ar)+

1
r sinθ

∂

∂θ
(Aθ sinθ)+

1
r sinθ

∂Aφ

∂φ
.

Curl of a vector

∇×~A =
r̂

r sinθ

[
∂

∂θ
(Aφ sinθ)− ∂Aθ

∂φ

]
+

θ̂

r

[
1

sinθ

∂Ar

∂φ
− ∂

∂ r
(rAφ )

]
+

φ̂

r

[
∂

∂ r
(rAθ )−

∂Ar

∂θ

]
.

Laplacian of a scalar

∇
2
ψ =

1
r2

∂

∂ r

(
r2 ∂ψ

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1
r2 sin2

θ

∂ 2ψ

∂φ 2 .

Laplacian of a vector

∇
2~A = ∇(∇ ·~A)−∇×∇×~A.
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Laplacian of a vector in expanded form

∇
2~A = r̂

(
∂ 2Ar

∂ r2 +
2
r

∂Ar

∂ r
− 2

r2 Ar +
1
r2

∂ 2Ar

∂θ 2 +
cotθ

r2
∂Ar

∂θ
+

1
r2 sin2

θ

∂ 2Ar

∂φ 2

− 2
r2

∂Aθ

∂θ
− 2cotθ

r2 Aθ −
2

r2 sinθ

∂Aφ

∂φ

)
+ θ̂

(
∂ 2Aθ

∂ r2 +
2
r

∂Aθ

∂ r
− Aθ

r2 sin2
θ
+

1
r2

∂ 2Aθ

∂θ 2 +
cotθ

r2
∂Aθ

∂θ

+
1

r2 sin2
θ

∂ 2Aθ

∂φ 2 +
2
r2

∂Ar

∂θ
− 2cotθ

r2 sinθ

∂Aφ

∂φ

)
+ φ̂

(
∂ 2Aφ

∂ r2 +
2
r

∂Aφ

∂ r
− 1

r2 sin2
θ

Aφ +
1
r2

∂ 2Aφ

∂θ 2 +
cotθ

r2
∂Aφ

∂θ

+
1

r2 sin2
θ

∂ 2Aφ

∂φ 2 +
2

r2 sinθ

∂Ar

∂φ
+

2cotθ

r2 sinθ

∂Aθ

∂φ

)
.

Notice that ∇2~A 6= âr∇
2Ar + âθ ∇2Aθ + âφ ∇2Aφ , since the orientation of the unit

vectors r̂, φ̂ , and θ̂ varies with the r, φ , and θ coordinates.
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