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This thesis develops a new theoretical and algorithmic frame-

work for practical distributed power control in wireless networks. 

It proposes and investigates fast optimal distributed power con-

trol algorithms applicable to LTE as well as cognitive radio. 

The proposed algorithms beat the well-known Qualcomm ‘ s 

load-spillage distributed power control algorithm in [HandeRan-

ganChiangWu08] and the distributed weighted proportional S-



INR algorithm in [TanChiangSrikantll] in terms of both the 

optimality of the solution and the convergence speed. 

Wireless network utility maximization via distributed power 

control is a classical and challenging issue that has attracted 

much research attention. The problem is often formulated as a 

system utility optimization problem under some transmit pow-

er constraints, where the system utility function is typically an 

increasing function of link signal-to-interference-plus-noise-ratio 

(SINR). This problem is complicated by the fact that these wire-

less devices may interfere with each other. In particular, the 

wireless devices are affected by each other's transmit power, 

and the transmit powers and interferences experienced by the 

devices are interwoven in a complex manner. 

Despite that, there have been good centralized algorithms for 

solving the problem. “Decentralized，，solutions, on the other 

hand, are a different story. In practice, decentralized algorithms 

in which the devices interact with each other in a loosely cou-
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pled manner to improve the network utility, are easier to deploy 

than centralized algorithms. However, the design of workable 

(and provably workable in the mathematical sense) solution is 

very challenging. Small neglects can lead to solutions that are 

invalid or non-convergent. For example, although both paper-

s [HandeRanganChiangWu08] and [TanChiangSrikant11] claim 

their distributed algorithms to be optimal, we discover some 

experimental evidence suggesting that certain parts of these al-

gorithms are not quite right. Oftentimes, the former fails to 

converge or converges extremely slowly, while the latter could 

diverge in the first few iterations. 

To fix these glitches and to broaden the scope of the problem, 

we develop a new analytical and algorithmic framework with a 

more general formulation. With this framework, we can identify 

the sources of the defects and shortcomings of prior algorithm-

s. We further construct an optimal distributed (sub)gradient 

projection algorithm with provably valid step size rules. Rig-
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orous convergence proof and complexity analysis for our algo-

rithm are given (note: convergence proof and complexity anal-

ysis were missing in [HandeRanganChiangWu08] and incorrect 

in [TanChiangSrikant11]). In some scenarios, our algorithm can 

be further accelerated to yield even better performance. Exten-

sive simulation experiments confirm that our algorithms always 

outperform the prior algorithms, in terms of both optimality 

and efficiency. Specifically, simulation demonstrates at least 100 

times faster convergence than the prior algorithms under certain 

scenarios. 

In summary, this thesis solves the important SINR-based u-

tility maximization problem and achieves significantly better 

results than existing work. It develops a new theoretical and 

algorithmic framework which completely addresses the difficult 

convergence and step-size issues. Going forward, we believe the 

foundation established in this work will open doors to other fast 

distributed wireless and mobile solutions to problems beyond 
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the power control problem addressed here. 
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作 者 ： 张 家 良 

学校 ： 香港中文大学 

学系 ： 信息工程学系 

修读学位：哲学博士 

摘要 

本论文开发出了一个全新的理论和算法框架用於无线网络 

的分布式功率控制。我们提出两种快速分布式功率控制算法， 

并对此作了深入的研究。此种算法相当普适，比如适用于目 

前热门的 L T E和认知无线电网络�它在解的最优性以及收敛 

速度等方面击败了著名的高通公司的”荷载溢出型分布式功 

率控制算法”（收录于重要论文[HandeRanganChiangWu08]) 

以及”分布式加权比例型信干噪比均衡算法”（收录于重要论 

文[TanChiangSrikant11])� 

作为一个重要而富有挑战性的研究课题，通过分布式功 

率 控 制 迖 至 无 线 网 络 效 用 的 最 大 化 一 直 受 到 业 界 的 普 遍 关 
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在某些功率约束条件下，优化整体系统的效用函数。 

中 ， 系 统 的 效 用 函 数 通 常 是 各 无 线 收 发 链 路 的 信 干 噪 比 的 

增 函 数 。 ) 此 问 题 已 经 有 了 不 错 的 集 中 式 解 决 方 案 ， 但 成 

本 更 低 廉 、 更 易 于 布 置 、 更 为 实 用 的 分 布 式 解 决 方 案 则 欠 

奉，尤其是经严格证明可行的分布式解决方案。这是因为分 

布 式 算 法 一 般 只 适 用 于 相 对 简 单 或 者 有 特 殊 结 构 的 优 化 问 

题 。 而 无 线 设 备 之 间 的 相 互 干 扰 和 各 自 信 号 功 率 之 间 的 复 

杂 关 系 使 得 分 布 式 求 解 极 其 困 难 。 在 算 法 设 计 上 ， 很 小 的 

疏 漏 就 可 能 导 致 解 决 方 案 无 效 或 者 不 收 敛 。 例 如 ， 尽 管 论 

文[HandeRanganChiangWu08]和[TanChiangSrikant11]都声称各 

自的分布式算法提供了问题的最优解，但我们通过大量的仿 

真实验以及理论研究发现并非如此。我们发现 ” 荷载溢出型分 

布式功率控制算法”时常要么无法收敛，要么收敛得极其慢。 

而”分布式加权比例型信干噪比均衡算法”则经常在几次迭代之 

後就已经发散。 

我们开发出了全新的分析和算法框架，并将其推广到适用 

注。这方面的研究通常把问题表述为一个最优化问题， M P 

其
 

vii 



于一般线性功率约束的情况。（前述论文的分析框架是基于某 

些非常特殊的线性功率约束。）在此基础上，我们逐一找出了 

前述算法中的错漏之处，并设计出我们的分布式梯度投影功 

率控制算法，以及与之相匹配的步长规则。我们严格证明了 

该步长规则的有效性和算法的收敛性、最优性，并给出了算 

法复杂度的分析。（相较之下，[HandeRanganChiangWu08]在 

算 法 收 敛 性 证 明 上 语 焉 不 详 ， 在 其 它 方 面 则 付 之 阙 如 ； 

而丨TanChiangSrikant11j的算法收敛性证明存在明显错误，在 

其它方面同样付之阙如。）在某些情况下，我们的算法可以进 

一步提速并提升运行性能。大量的仿真实验证实我们的算法在 

解的最优性和运行速度两方面都较前述算法优越。在某些情况 

下，我们算法的收敛速度上百倍快于前述算法。 

总而言之，本论文成功解决了重要的效用优化问题并取得 

比前述论文更好的结果。它开发出全新的理论和算法框架，完 

全解决了步长规则和收敛性、最优性这些难题。展望未来，我 

们相信，本论文为快速功率控制在无线和移动解决方案中的应 

用打下了坚实的理论基础。我们期待该理论框架能够提供更多 
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问题的解决方案。 
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Chapter 1 

Introduction 

1.1 Overview 
Power control is an instrumental and fundamental technique to boost the 
performance and efficiency of wireless systems. It plays a critical role in 
many wireless communication systems, including LTE, femtocell, cognitive 
radio and heterogeneous network, just to name a few. It is a powerful mech-
anism for energy management, interference mitigation, connectivity man-
agement and system utility maximization. It adapts the transmit powers to 
combat the impairment due to channel fading and mutual interference to 
ensure reliable communication and good performance. Important system 
performance metrics like data rate, bit error rate and outage probability, 
are related to signal-to-interference-plus-noise-ratio (SINR), which in turn 
depends on power allocation. 

In essence, power control is an exercise of resource sharing among commu-

1 



nication links in the system. On one hand, a communication link must be 
allocated enough power to maintain a satisfactory SINR; on the other hand, 
the allocated power should not be too high to generate excessive interfer-
ence to other links, or to violate power regulations like maximal transmit-
ted power determined by the dynamic range of the power amplifier. Such 
resource allocation problem is often formulated as a system utility opti-
mization problem under some power constraints, where the system utility 
function is typically an increasing function of link SINRs. This is the core 
problem that this thesis examines. 

For scalability and deployment feasibility, we need a fast optimal power 
control algorithm that is amenable to distributed implementation, which 
turns out to be a very challenging problem. In general, there are two major 
sources of difficulties in distributed power control: 

1. The lack of global coordination and information. Each link has to 
make its own decision and perform computation based on local mea-
surements and local information exchange. 

2. The difficulty arising from the problem structure. For example, a non-
convex problem is hard even for a centralized solver. And in practice, 
the system utility is usually nonconvex in power. 

To get some insight on how the existing distributed power control algo-
rithms handle these two difficulties, we first consider the Foschini-Miljanic 
algorithm [21], the most famous and widely implemented distributed power 
control algorithm. This algorithm is simple, elegant and insightful: each 
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link just iteratively scales its power according to the ratio of its target SINR 
to its current SINR. The point is that the global information needed for each 
link is already summarized in the current SINR, which is locally measur-
able. However, as was pointed out in [25], the Foschini-Miljanic algorithm 
only works well in the non-power-constrained scenario with feasible and 
prefixed target SINR. An infeasible target SINR may keep driving the sys-
tem to increase the overall power, resulting in instability and excessive mu-
tual interference. The algorithm by itself does not provide any distributed 
feasibility check, nor a mechanism for the choice and update of the target 
SINRs. Therefore, it does not provide a satisfactory solution on its own. 

A groundbreaking remedy, well-known as Qualcomm's load-spillage dis-
tributed power control algorithm, is proposed in the seminal work [25]. As-
suming special box power constraints or box interference constraints, [25] 
first discovers an analytical framework to transform the nonconvex prob-
lem in power domain to a convex problem in SINR domain, which works 
for a broad spectrum of practical system utilities. This turns the power 
control problem into an “SINR control” problem, which turns out to have 
a distributedly computable ascent direction for a “suitable choice” of step 
size. Accordingly, the two-time-scale iterative load-spillage algorithm com-
putes this ascent direction and updates the target SINRs in its large-time-
scale iteration process; and for each and every target SINR update, runs 
a small-time-scale patched Foschini-Miljanic power control algorithm. The 
patch to the Foschini-Miljanic algorithm is suggested only for the special 
cases of box power constraint and box interference constraint: Each link is 
responsible for the feasibility check for its own constraint. If its constraint 
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is violated, it will automatically "penalize" itself by reducing its own target 
SINR. 

Although [25] claims its load-spillage algorithm to be optimal, we discover 
that oftentimes this claim may be invalid. Instead, the algorithm contains 
several drawbacks as follows: 

1. It fails to provide a general valid step size rule, and a corresponding 
rigorous proof of convergence. Nor a complexity bound. 

2. The “penalization，，in the patched Foschini-Miljanic algorithm also 
subjects to a similar step-size-rule issue. 

3. It only provides two empirical step-size rules. Simulation shows that, 
usually, applying these rules result in non convergence or very slow 
convergence. Therefore, they are by no mean “suitable choice， in gen-
eral. 

An alternative remedy is given by the algorithm 6 in the recent work [7]. 
It is quite similar to the load-spillage one, except that 

1. The analytical framework of [7] assumes a special sum power con-
straint. 

2. The large-time-scale SINR update in algorithm 6 is done by a gradient 
projection algorithm. 

3. It fixes the small-time-scale Foschini-Miljanic algorithm by adding a 
normalization step, relying on the special structure of the sum power 
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constraint. This normalization ensures that the target SINRs will 
always return to the feasible region where the Foschini-Miljanic algo-
rithm works well. 

Coincidentally, we also disprove the claim of optimality in [7] and discover 
a number of its defects and errors: 

1. Our analysis showed that its gradient projection algorithm does not 
generate ascent direction of the system utility in general, and its proof 
of convergence is incorrect. The complexity bound is also missing. 

2. Simulation shows that, its algorithm 6 could diverge in the first few 
iterations. 

Therefore, the optimal solution to the problems above was still pending 
after [25] and [7], and to our knowledge, no one had filled the gap until this 
thesis. 

As will be shown, this thesis fills the gap, and solves a more general dis-
tributed SINR-based utility maximization problem with multiple linear 
power constraints applicable to LTE as well as cognitive radio. We con-
struct a theoretical framework that simplifies the formulation and anal-
ysis of the core problem drastically. With the framework, we propose an 
optimal distributed (sub)gradient projection algorithm with provably valid 
step size rules. A thorough and rigorous convergence proof and complex-
ity analysis are also given. We further identify the sources of the defects 
and several disadvantages of prior algorithms. Extensive simulation ex-
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periments demonstrated the superiority of our algorithm over prior algo-
rithms in terms of both solution optimality and convergence speed. For in-
stance, under certain scenarios, our algorithm achieves at least 100 times 
faster convergence. In the long term, we believe the algorithms and the 
theoretical framework established in this thesis will open doors to new dis-
tributed optimization techniques in other wireless communications prob-
lems beyond power control. 

1.2 Thesis Organization 
The remainder of this thesis is organized as follows: 

Chapter 2 presents the system model, background knowledge of linear 
power constraints, network utility functions and problem formulation. Specif-
ically, we show how to transform linear power constraints to SINR con-
straints, a key step to simplify our problem. 

Chapter 3 shows some nice properties of the transformed SINR constraints 
that facilitate distributed fast optimization. 

In Chapter 4, we establish optimality conditions, propose fast optimal dis-
tributed algorithms with proof of convergence and analysis of convergence 
rate. We also evaluate its performance and show its correctness and effi-
ciency over prior algorithms via simulation experiments. 

Chapter 5 compares our work with prior work and highlights our contri-
butions. 
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Chapter 6 concludes this thesis and remarks on future research directions. 

Appendix collects lengthy proofs and some subtle remarks. 

1.3 Notations 
The following notations are used. Boldface uppercase letters denote ma-
trices, boldface lowercase letters denote column vectors, and italics denote 
scalars. For component-wise matrix (vector) comparison, A > B (u > v) 
implies A — B (u — v) is nonnegative, A > B (u > v) implies each ele-
ment of A — B (u — v) is positive, and A ^ B (u ^ v) implies at least 
one element of A — B (u — v) is positive. For symmetric matrices A and 
B, A >： B implies A — B is positive semi-definite. The Perron-Frobenius 
eigenvalue of a non-negative square matrix B is denoted by p(B), and 
the Perron (right) and left eigenvectors of B associated with p(B) are de-
noted by x(B) and y(B), respectively. The superscripts ( ) T and ( )t de-
note transpose and complex conjugate transpose, respectively. For an L x 1 
vector x, we denote e x := [ e x 1 , . . . , e X L ] T , logx := [ l o g x i , . . . , l o g X L ] t , and 
x - 1 := [ - 1 , . . . , x 1 ] T . The diagonal matrix formed by the components of x 
is denoted by diag (x). The element-wise product of L x 1 vector x and y is 
denoted by x o y ：= [ x iy i , . . . , xLyL]T. For a positive integer L, denote by (L) 
the set {1,..., L}. Let P ： X ^ Y be a mapping from the space X to the 
space Y. For a subset Z c X, we denote by P(Z) the image of Z. Finally, 
ei denotes the /th unit coordinate vector, I denotes the identity matrix, and 
0, 1 respectively denote the all zero and all one matrix (or vector) whose 
dimensions can be easily inferred from the context. 
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Chapter 2 

System Model and Problem 
Formulation 

2.1 System Model 
Consider a general wireless system consisting of L logical unidirectional 
links labeled 1 , . . . ,L. We use nonnegative vector p = [ p I , . . . ,pL]T to denote 
the transmit power vector in which pi is the transmit power of link l. We 
also use L x L positive matrix G = [Gij]LXL and L x 1 positive vector n = 
[ n I , . . . , UL]T to specify the channel power gain and noise power, respectively. 
Specifically, Gij is the channel power gain from the transmitter of the jth 
link to the receiver of the ith link, and n\ is the power of additive white 
Gaussian noise (AWGN) at the lth receiver. We adopt the conventional 
Gaussian interference channel model and assume a linear matched filter at 
each receiver (treating multiuser interference as AWGN). Then the Signal-
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to-Interference-plus-Noise Ratio (SINR) for the Ith user is defined as the 
ratio of the received signal power Gupi to the cumulative interference plus 
noise power 咖=拟L�GijPj + n. We denote it by 飞：Y = GupI/^. Let 
Y := [71，..., Y L ] T and • := [ 0 1 , . . . ,沴L ] T . When G and n are given, 7 is a 
functional mapping of p. To specify this mapping in a compact form, let 
g := [G11 ” . .，G L L ] T be the vector formed by the main diagonal of G, and 
G := G — diag(g) be a punctured version of G by setting its main diagonal 
to zeros. Then 7(p) = g 0 p 0 0-1 where 0 = Gp + n. On the other hand, to 
get the inverse mapping p(7), we have 

p = diag(7 0 g-1)GGp + diag(7 0 g - 1 )n， (2.1) 

from the defining equation of SINR. It is well-known that if 7 G r := {7 : 
p(diag(7 0 g - 1 ) G ) < 1 ,7 > 0}, (2.1) has a unique solution p(7) = [I — diag(7 0 

g-1)GG]-1diag(7〇g-1 )n; otherwise, there is no solution. Hence, 7(p) : R+ ^ r 
and p(7): r ^ R+ are a pair of inverse mappings, which characterize the 
one-to-one correspondence between points in unconstrained power domain 
R+ and SINR domain r (see, e.g., Lemma 2.1 in [8]). 

Power is limited by many practical concerns in wireless communication, 
and many of them can be modeled as a set of nonnegative linear power 
constraints. As an example, in cognitive radio, the secondary users are 
not allowed to generate excessive interference at certain frequency band 
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to avoid affecting the operation of the primary network. To guarantee 
this, FCC proposed that interference-temperature constraints be imposed 
to regulate the secondary network [9]. Control stations of the primary 
network will monitor the cumulative interference from the secondary net-
work and perform access control to make sure such interference is below 
a prescribed power threshold. Let pi be the transmit power of the /th 
link in the secondary network, Gcs,i be the channel power gain from the 
transmitter of /th link to a control station and PJT be the threshold, then 
the interference-temperature constraint is a nonnegative linear power con-
straint E i e { L ) Gcs,iPi < PIT. Other popular examples include individual link 
power constraint pi < pi, V/ G (L) [5, 25], sum power constraint 1 T p < P [7], 
individual link interference constraint X j弁 j e � L � G i j P j + n i =办 < (pi, V/ G (L) 
[25], just to name a few. We note that any nonnegative linear power con-
straint can be specified in the form of cTp < 1 where c ^ 0. For instance, 
we have c = [GCS,I/PIT,..., GCS,L/PIT]T for the cognitive radio case, c = e“pi 

for the individual link power constraint of link /, and c = 1/P for the sum 
power constraint. 

2.3 Network Utility 
In this thesis, we consider the same family of network utility functions as 
in [7] and [25]. Every utility U(7) is strictly increasing with link SINRs 
7. To enable distributed implementation, we assume that the utility is a 
product form or summation of separable terms of the SINRs of different 
receivers. Thus our network utility can be written as U(7) = Eie�L�Ui(YI). 
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(For product form, just take logarithm.) 

In this thesis, we limit our scope to convex optimization. For reasons that 
will become clear later, we assume that U/(7/)，s are concave in log71. For 
analytical tractability, we also impose a mild condition that UI(YI)，s are 
twice continuously differentiable. We notice that this utility family cov-
ers a broad spectrum of system performance metrics in practice. An ex-
ample is the a-fair utility functions defined on the Shannon rate function 
T(YI) with a > 1 [25]. Shannon rate function T(YI) = KI log(l + K2Y1) is of 
critical importance in digital communication. Different positive constants 
KI and K2 can model Shannon capacity and realistic link rates under dif-
ferent bandwidth allocation schemes, modulations and BER requirements. 
When a = 1, the utility represents proportionally fair link rate allocation: 
U(Y) = E i e { L ) log(r(Yi)). When a > 1, the utility stands for a-fair link 
rate allocation: U(7) = E z e � L � [r ( Y ) ] 1 - a / ( 1 — a ) . Yet another example is 
the weighted proportionally fair SINR allocation U(7) = E i e � L �w i log(7i). 
It is regarded as a good approximation to the weighted sum rate utility 
U(7) = ^ i € � L � w i log(1 + 7i) at the high SINR region. 

2.4 Problem Formulation 
The core of our thesis is to solve the following general network utility max-
imization problem with M nonnegative linear power constraints: 
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m a x U (7 (p)) p>0 
s.t. � p < 1, Vm G ( M �. (2.2) 

The primary hurdle is the nonconvexity of U(7(p)) in p, induced by the cou-
pled mutual-interference terms in the denominator of the SINR. The prior 
work [7] and [25] investigated the special cases of problem (2.2) with spe-
cially chosen simple power constraints. The former considers a sum power 
constraint (M = 1, c = 1 / , ) while the latter a box power/interference 
constraint (M = L, p < p or • < 圣).With the benefit from the special prob-
lem structure, they provide different angles of attack to make the prob-
lem convex. The former overcomes this hurdle by transforming the sum 
power constraint to a convex log-SINR constraint and optimizing in the 
log-SINR domain. The latter transforms the power/interference domain to 
the load/spillage domain. As will be shown later with our unifying frame-
work, these two approaches are equivalent. Our transformation in princi-
ple follows [7], yet with a nontrivial generalization to resolve issues arising 
from the general linear power constraints. More importantly, we provide a 
correct fast optimal distributed solution to the transformed problem. 
We commence our study by deriving the image of a single power constraint 
{p ： c T p < 1, p > 0} in SINR domain, denoted by r c . It is an entry point 
to further tackle the complicated case of multiple constraints {p ： c^p < 
1, Vm G (M〉, p > 0}. 
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2.5 Characterization of r � 
To characterize r c , it suffices to find the Pareto frontier of r c , denoted by 
rc, thanks to the following monotonicity property of r ^ 

Lemma 1. The function p(Y) is monotone on r ^ 

P(Y) > P(/9) ifY e r c andY > ^ > 0. (2.3) 

Equality holds if and only if Y =卢.Furthermore, the set & is monotonic 
with respect to the order >. That is, if Y e & and Y > 卢 > 0 then 卢 G r � . 

(For the proof and remark, please refer to Appendix A.) 

Given rc, the SINR region can then be represented by r � = {Y :彐卢 e 
rc,P > Y}. More importantly, in many realistic scenarios where the net-
work utilities are component-wisely increasing with Y , the optimal Y must 
locate on the Pareto frontiers. One can hence restrict the focus on rc with-
out compromising optimality, as seen later. To figure out rc, without loss 
of generality, we consider the case Y > 0. In the remainder of this section 
,we show an essential property that rc is the image of c T p = 1, given by 
{ 7 : p(diag(Y • g-1)(GG + nc T )) = 1}. Specifically, we will demonstrate that 

1. cTp(7) = 1 is necessary for Pareto efficiency; 

2. c T p ( Y ) = 1 is equivalent to p(diag(7 o g-1)(GG + nc T )) = 1; and 

3. p(diag(7 o g-1)(GG + nc T )) = 1 is also sufficient for Pareto efficiency. 
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Indeed, recall the definition of SINR that yi = Gn pi/^2 j=i,je(L) Gij P j ) , V/ G 

(L). We have p > 0 and c T p > 0 from 7 > 0. For any feasible p, if 
c T p < 1, one can always proportionally increase the power p by a factor 
of a = 1/c T p. Then ap is feasible (c T ap = 1) and yields strongly Pareto 
dominant SINR performance 7(ap) > 7(p) (71 (ap) = GupJ(Ej=i,j€{L) G jPj + 
ni/a) > G i i P i / ( ^ j = i j e { L ) GijPj + n) = 71 (p), V/ G (L)). Therefore c T p = 1 is 
necessary for the Pareto efficiency. 

To see the image of {p : p > 0, c T p = 1} in the SINR domain, we note the 
following lemma adapted from Theorem 6 and Lemma 8 in [1]. 

Lemma 2. Let A be a nonnegative irreducible matrix, and b, c 圣 0 two 
nonnegative vectors. Then the conditional eigenvalue problem 

Ap = Ap + b, A G R, p > 0, c T p = 1 

has a unique solution (A*, p*)，where Â  = p(A + bc T ) and p^ is the unique 
normalized Perron vector of A + b c T . 

As a consequence, the equation p = (Ap + b)/[c T (Ap + b)] has a unique 
nonnegative solution, which is p*. 

We defer the proof and remark to Appendix B. 

Apply this lemma to equation (2.1), by letting A = A* = 1, A(y) = diag(7 0 

g-1)CG，and b(7) = diag(7 0 g - 1 ) n . Notice that 7 > 0 and G > 0 implies that 
A(7) = diag(70g - 1)GG is irreducible. So is A(7) + b(7)c T = diag(70g - 1)(GG + 
nc T ) . We can see that any positive 7 in {7 : p(diag(7 0 g-1)(GG + nc T )) = 1} 
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corresponds to a unique positive Perron vector of diag(Y〇g-1 )(G+nc T), p(7), 
which satisfies cTp(Y) = 1. On the other hand, for any positive p satisfying 
c T p = 1, Y(p) = g〇p〇(Gp + n ) - 1 must satisfy p(diag(y(p)〇g-1)(G+ncT)) = 1 

and Y > 0. This establishes the one to one correspondence between {7 : 
p(diag(Y 〇 g - 1)((G + ncT)) = 1 , 7 > 0} and {p : p > 0, c T p = 1}. For brevity, 
we let B denote diag(g - 1 )(G + ncT) in the following discussion. 
Now we are ready to show that c T p = 1 (or equivalently, p(diag(j)B) = 1) 
is also sufficient for the Pareto efficiency in r c . Suppose this is not the 
case, i.e., there exists a non Pareto efficient 7 satisfying {p(diag(7)B)= 
1,7 > 0}. Then there also exists a 卢 such that 卢 ^ 7 > 0 and 卢 G For 
any irreducible nonnegative matrix A, p( A) is a strictly increasing function 
of the elements in A [10]. Hence p(diag(p)B) > p(diag(7)B) = 1, which 
leads to c T p (卢 ) = 1 . Since ^ G r o we must have c Tp(卢)< 1. However, 
卢 ^ 7 > 0 implies p(卢)^ p(7) > 0, which leads to a contradiction 1 = 
c T p(7) < cTp(卢)< 1. This justifies the Pareto efficiency of p(diag(7)B) = 1. 
In fact, for any 7 > 0, let a = p(diag(7)B), then 7/a is on the Pareto frontier. 
Therefore, we have 7 G r � i f a < 1 and 7 G r�o the rwise . To summarize, 
Fc = {7 ： p(diag(7)B) < 1} for the case 7 > 0. 

The case where some components of 7 are 0 is similar. We leave it in Ap-
pendix C and summarize the above discussion by the key theorem of this 
thesis. 

Key Theorem: The nonnegative linear power constraint c T p < 1 is equiv-
alent to the SINR constraint p(diag(7)B) < 1. In particular，cTp = 1 is 
equivalent to p(diag(7)B) = 1. 
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2.6 Multiple Constraints 
Note the above discussion can be further generalized. Similar equiva-
lence exists in the presence of multiple constraints, that is, feasible regions 
{p : max(cmp) < 1 } = 门 { p ： � p < 1 } 台 门 r - 全 门 { 7 ： 

m
€
( M) me{M〉 me{M〉 me{M〉 

p(diag(Y)Bm) < 1} = {7 ： max p(diag(^)Bm) < 1}, and their corresponding 
me{M� 

Pareto frontiers {p ： max (cmp) = 1} ^ ^ {7 ： max p(diag(7)B m) = 1}. By 
me{M� me{M� the same token, Lemma 2 can be readily enhanced: 

Lemma 3. Let A be a nonnegative irreducible matrix, and b, cm 圣 0, Vm G 
(M〉nonnegative vectors. Then the conditional eigenvalue problem 

Ap = Ap + b,入 G R , p > 0, max (clp) = 1 
me{M� 

has a unique solution (A*, p)，where A = max p(A + bcm) and p is the 
me{M� m 

unique normalized Perron vector of A + bc^^. Here m can be arbitrary 
element in the set arg maxp(A + bc^). Different choices of m* (if applicable) 

me{M� result in the same normalized Perron vector p*. 
As a consequence, the equation p = (Ap+b)/ max^[cm(Ap + b)] has a unique 
nonnegative solution, which is p*. 
See Appendix D for the proof. It is worth pointing out that this enhanced 
lemma can help us in the sequel to cherry pick an active constraint from 
a set of constrains, which reduces the multi-constrained problems to easily 
solvable single-constrained problems. 

Finally, we can reformulate our problem (2.2) in the SINR domain: 
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max U (7) 
7 > 0 

s.t. p(diag(Y)Bm) < 1, Vm G (M) , (2.4) 

where B m = diag(g-1)(G + ncm), Vm G (M). 

17 



Chapter 3 

Nice Properties of SINR 
Constraints 

THE key theorem provides a way to transform network utility max-
imization problems from the power domain to the SINR domain. 

However, compared with the linear power constraint c T p < 1 , the SINR 
constraint p(diag(j)B) < 1 looks much more ugly and complicated. Worse 
still, its closed form is usually unavailable. One may doubt whether this 
transformation is helpful. We will remove this doubt by demonstrating 
some nice properties of this SINR constraint and show how they facili-
tate efficient distributed optimization. In the following, we will continue 
to focus on the all-active case where 7 > 0. We suggest a change of vari-
able 7 = e，so that we can also operate in the log-SINR domain. Log-
SINR vector is denoted by 7 := [71,... ,7L]T where � i = log71, V/ G (L). 
Then the log-SINR constraint becomes logp(diag(e，)B) < 0, and we use 
log r c = {7 : logp(diag(e，()B) < 0} and log r c = {7 : logp(diag(e，)B) = 0} to 
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denote the corresponding feasible log-SINR region and its Pareto frontier. 
We show that the function /3(7) ：= log p(diag(e^()B) is convex, differentiable 
and strictly increasing. Moreover, its gradient can be computed distribut-
edly and efficiently, thanks to the intrinsic network-duality structure of 
B = diag(g - 1)(G + nc T ) . This paves the way for the distributed optimiza-
tion algorithm in next chapter. 

3.1 Convexity, Differentiability and Monotonic-
ity 

Convexity is one of, if not, the most important properties in optimization. 
The convexity of /b(7) has been proved 30 years ago ([11]). Here we give 
an alternative “proof，，by adding this new function to the cvx ([12]) library. 
So far, /b (7) has not been a standard library function in today's convex 
optimization tools. For others' convenience, we provide its source code in 
cvx, one of the most popular Matlab-based modeling systems for convex 
optimization. The idea is similar to that in section 4.5.4 of [19]. One can 
readily use this function by simply downloading and incorporating the file 
“logPFeig.m， ([11]) in the Matlab search path. We leave the details and 
explanation of this file to Appendix E. A direct consequence of convex /b(7) 
is that the feasible log-SINR region governed by any set of nonnegative 
linear power constraints must be a convex set. In addition, we can easily 
compute V / b ( 7 ) . 

Lemma 4. V / b ( 7 ) = x(diag(e，)B) o y(diag(e，)B), where the right and left 
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Perron eigenvectors are normalized such that y(diag(e^ f)B)Tx(diag(e^)B)= 
1. 

Remark: The proof is given in Appendix F. An alternative proof is to apply 
the generalized Friedland-Karlin inequalities ([15]) to find out the unique 
supporting hyperplane to the convex set f B (7) < 0 at any point on its Pareto 
frontier, as shown in [8]. 
The strictly increasing monotonicity of f B (7) follows directly from the fact 
that the right and left Perron vector x(diag(e”B) and y(diag(eY)B) are pos-
itive, which implies the positivity of V /B(7 ) . This again justifies that the 
Pareto frontier of log rc is {7 : fe(7) = 0}. 

3.2 Fast Distributed Gradient Computation 
Surprisingly interesting is the fact that the gradient V fe (7) = x(diag(e”B)o 
y(diag(e^)B) has a fast distributed computation algorithm inspired by net-
work duality. This is realized in three steps: 

1. Distributed power control to compute x(diag(e”B) which is the “Pareto 
optimal primal power”. 

2. Distributed power control to compute y (diag(e”B) which is the “Pareto 
optimal dual interference plus noise”. 

3. Normalization. 

The following derivation is a non-trivial generalization from the special one 
in [7] assuming M = 1, c = 1/P and n = 1. 
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3.2.1 Distributed SINR-Driven Single-Constrained Power 
Control 

First, to compute x(diag(e，)B), recall that the application of Lemma 2 to 
equation (2.1) provides a fixed-point equation p = (Ap + b)/[c T (Ap + b)] 
that has a unique positive solution p^ = x(diag(^)B). Here A(卢)=diag(p 0 

g - 1 ) G , b (卢 ) = d i a g ( p 0 g - 1 ) n and ^ > 0 is on Pareto frontier such that 
p(diag(p)B) = 1. An algorithm can be designed as follows: 
Algorithm 3.1 Centralized Single-Constrained Power Control 

1. Input: ^, G, n. 
2. Initialization. Compute parameter A = diag(p0g-1)G and b = diag(p0 

g - 1 ) n , and choose an initial p[0] such that cTp[0] > 0. 
3. Iteration. For k = 0,1, 2,.. . , compute p[k +1] ^ (Ap[k]+b)/[cT(Ap[k] + 

b)] iteratively until {p[k]} converges to p*. 
4. Output: p*. 

The convergence of this algorithm is guaranteed by Lemma 5 below. For 
Pareto efficient ^ > 0, this algorithm will converge to p* = p(卢).For other 
p > 0, let p(diag(p)B) = A. Then p/X > 0 is Pareto efficient. Noting that 

A ( " )p + b(" ) = A(p/A)p + b(P/A) 
c T [A(P)p+b(P) ] = c T[A(P/A)p+b(P/A)]， 

we have p* = p(P/A). So we can interpret the algorithm input p as a “target 
SINR”. The above algorithm then computes p* = x(diag(p)B) whose corre-
sponding SINR 7(p*) is proportional to p: 7(p*) = p/p(diag(p)B). Note that 
7(p*) lies on the Pareto frontier. Indeed, it is the intersection of the Pareto 
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frontier rc and the straight line passing through the origin and /3. Intu-
itively, we can view Y(p^) as the “projection，，of 3 onto rc. In other words, 
this algorithm computes the optimal solution p本 to the single-constrained 
weighted SINR balancing problem 

. 7 i ( P ) max m m ^ - ^ . p : c T p < 1 , p ^ 0 1 3 

The optimal value is 1/p(diag(3)B). Viewed in the log-SINR domain, the 
algorithm projects the target log-SINR vector 3 = log 3 to its Pareto effi-
cient correspondence / — 1 logp(diag(e^)B). The projection movement is in 
1 direction. Specifically in the case L = 2, it is a 45-degree line. 

Importantly, the above algorithm has a distributed equivalence: 
Algorithm 3.2 Distributed SINR-Driven Single-Constrained Power Con-
trol  

1. Initialization. Each link l e (L) sets its own target SINR 3i and 
chooses initial power pi [0]. 

2. Iteration. In [k+1]th iteration, each link l first updates its power pi [k+ 
1] ^ [3ihi(p[k])]pi[k], then normalizes pi[k+1] ^ p i [ k + 1 ] / ^ l e { L ) cipi[k+ 
1]. 

3. Termination. Iteration will not stop until convergence to p* (or some 
prescribed stopping criteria are satisfied). Then every link l obtains 
i ts own (p*)i and xi(diag(3)B) = ( p * � . 

Remark: In general, the weighted sum power E & � l � c i P i [k+1] in the normal-
ization step can be computed using the fast distributed gossip algorithm at 
each link [16]. In the special case like cognitive radio, the control station 
can simply measure the cumulative interference (J2ie�L�ciPi[k + 1]) from the 
secondary network and broadcast. 
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This distributed algorithm is simple and insightful. In every iteration, each 
link first performs a Foschini-Miljanic distributed power control step [21] 
(i.e., to scales its power according to the ratio of target SINR to current 
SINR), and then re-scale its power again to meet the power constraint. 
Every normalization make sure that the resultant SINR is Pareto efficient. 
Better still, its convergence is guaranteed to be geometrically fast under a 
mild condition on the initial power, thanks to the following lemma adapted 
from Theorem 1 in [2]. 
Lemma 5. Let f be the mapping operator such that 

TTp Ap + b 
c T (Ap + b) : 

where A(^) = 0 g - 1 )GG, b ( 卢 ) = 0 g - 1 ) n and ^ > 0. Then 
lim^^^ f k p = p* for all p : c T p > 0. The convergence speed is geometri-
cally fast. 

The proof and remark can be found in Appendix G. 

To sum up, in the first step, we distributedly compute the Pareto efficient 
power vector x(diag(e^)B) by algorithm 1 with target SINR ^ = e，. The 
resultant SINR vector is the "projection" of ^ onto r c , the gap is a factor of 
1/p(diag(卢)B). 

3.2.2 Network Duality 

The second step is to compute y(diag(^)B) from the target SINR 卢.Sur-
prisingly, this is readily done by a slight modification of algorithm 2, owing 
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to the nice network-duality properties. To see this realization, construct a 
dual network using the following rules adapted from [17]: 

1. "Reverse the directions of all links." For each link, a primal transmit-
ter (receiver) becomes a dual receiver (transmitter). 

2. Replace the channel power gain matrix G by its transpose GT. If the 
channels are reciprocal ([18]), operation 1 already achieves this goal. 

Practical examples of reciprocal wireless channels are those in time-division 
duplex (TDD) wireless systems, such as 802.11, 802.16, and TD-LTE. Through-
out this thesis, for simplicity, we assume reciprocal channels unless other-
wise specified. (The non-reciprocal case will be addressed in Remark 1 
under Algorithm 3.3.) Then the dual network is simply constructed by 
switching the roles of transmitter and receiver in each link. 

Between the primal and dual network we will see a beautiful symmetry. 
In the remainder of this section, for any parameter (p, ¢, 7, G, g, G, n, c or 
B) in primal network, we add a subscript d to denote its counterpart in the 
dual network. Then by definition, we have Gd = GT, gd = g and Gd = G T . 
Furthermore, we have the following useful network-duality lemma. 

Lemma 6. If CdnT = ncT，then both primal and dual networks share the 
same SINR region (and Pareto frontier as well). 

Proof Let F := G + n c T and Fd := Gd + ndcT. If CdnT = nc T , then we have 
Fd = F T . Note that p(A) = p(A T) and p(DA T) = p(AD) = p ( D A D D - 1 ) = 
p(DA) for any matrix A and invertible diagonal matrix D. Hence the SINR 
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region of the dual network is {7 ： 1 > p(diag(7d 〇 g - 1 ) F d ) = p(diag(7d 〇 

g - 1)F)},which is the same as the primal network. 口 

Lemma 6 leads to many profound consequences. One of them is the fact 
that any Pareto optimal SINR vector 7* has its one-to-one correspond-
ing primal power p* ：= p(7*)，primal cumulative interference plus noise 

：= g〇p* 〇 7 * - 1 , dual power p* ：= p^(7*) and dual cumulative interfer-
ence plus noise ：= g〇pd 〇 7 * - 1 , given c^nT = nc T . Here we add a su-
perscript • to denote Pareto optimality of parameters. Surprisingly, they 
have rather simple and symmetric relationships. Define the diagonal ma-
trix D* ：= diag(7* 〇 g - 1 ) . From this definition, we have p* = D*0* and 
pd = D*釣.At Pareto optimality, since c T p* = 1 and cTp* = 1, we also 
have 0* = Fp* and 釣 = F d p d . Then we can get 釣= F d D * 0 * and hence 
= x(F TD*) = y(D*F) = y(diag(7*)B). Similarly, we can solve p*, 0* 

and p* in terms of F and D*. Their subtle relationships are summarized 
in Figure 3.1. Based on what we have intensively discussed in the former 
section, we can see the left Perron vector y (diag(3)B) is the Pareto efficient 
cumulative interference plus noise 0d corresponding to the target SINR 3 
in the dual network, given c dnT = nc T . 

Now the question remains how to make sure c dnT = nc T . A simple way 
to implement this is to force = n and = c. However, in the real net-
work, the noise vector at the dual receivers (i.e., the primal transmitters) 
nd is not controllable and with high probability n d = c. Luckily we have 
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Transmitter in primal network Receiver in dual network 

p ^ = XI � D * F ) = i y ( D * F ) 
/ t 

P* = D V p / = i) V c 
f � t 

()>• = x ( F D * ) P ； � y ( F D * ) 
Receiver in primal network Transmitter in dual network 

Figure 3.1: network duality 

the following trick. For each dual link l, the cumulative interference plus 
noise it perceives is 知 ^ S j = i j e � L � G d , i j P d j + nd,i. Since link l can estimate 
nd,i, it can extract the cumulative interference E j = i je�L�Gd,ijpd,j, compute a 
virtual cumulative interference plus noise +v,i = X j卢 , j € � l � G d , i j p d , j + Q and 
scale its power accordingly. Then we have the following distributed algo-
rithm: 
Algorithm 3.3 Distributed Computation of y(diag(3)B) in Reciprocal 
Channels  

1. Initialization. Reverse the link direction to construct the dual net-
work. Each link l e (L) sets its own target SINR 3i and chooses initial 
power pd,i [0]. 

2. Iteration. In [k + 1]th iteration, each link l first computes its vir-
tual cumulative interference plus noise from its perceived counter-
part: h(Pd[k]) = 0d,i(Pd[k]) + ( Q — ), then updates its power 
Pd,i[k + 1] ̂  3i^v,i(Pd[k])/gi, and finally normalizes pd,i[k + 1] ̂  Pd,i[k + 
1 ]

/ E i € � L �U l P d , l [ k + 1]. 
3. Termination. Iteration will not stop until convergence to Pd*. Then 

every link l obtains its own (知》,and y i ( d i a g ( 3 ) B )=(知》 . 
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Remark: 

1. For non-reciprocal channels, each link l can still use gossip algorithm 
to compute the cumulative interference Xj卢 je{L�GjiPd,j, and then com-
pute . In this case, distributed implementation is still feasible, al-
beit complicated. 

2. The above results of network duality and distributed power control 
are also applicable to MIMO beamforming networks. (See [7] for more 
details.) As a focus, this thesis will limit its scope to power-based 
SINR optimization without considering the optimization in beamform-
ers. 

Note that x(diag(卢)B) and y(diag(^)B) computed in the first two steps 
are unique up to a positive scaling factor. The computation of V / B ( t ) = 

x(diag(e，)B) oy(diag(e，)B)/x(diag(e”B) Ty(diag(e”B) requires another nor-
malization, which is easily done by invoking the gossip algorithm again. 

As a summary to these two sections, we have shown that the function 
/B(7) ：= logp(diag(e^)B) is convex, strictly increasing and differentiable. 
Its gradient V / B ( t ) = x(diag(e，)B) o y(diag(e，)B) can be computed dis-
tributedly and efficiently. 

3.3 The Case of Multiple Constraints 
We now consider the generalization to the multi-constrained feasible log-
SINR region 门 log r c m = {7 ： max log p(diag(e，)Bm) < 0} and its Pareto 

me{M� m e { M〉 
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frontier {7 ： max log p(diag(e，)Bm) = 0}. Despite of the certain nondiffer-
me{M〉 

entiability introduced by the max operator, the case of multiple constraints 
largely inherits the nice properties of its single-constrained counterpart. 
For example, the function /(7) = max logp(diag(e”Bm) is still convex, and 

me{M� thus continuous, since max operator preserves the convexity of the com-
m£{M� 

ponent functions logp(diag(e，)Bm), Vm G (M). Moreover, it is piecewise 
differentiable and always subdifferentiable. Let AI(7) = {m ： /B m (7)= 
/(7)} denote the index set of “active" component functions at 7. Then the 
subdifferential d/(7) is the convex hull of {V/Bm (7)|m G AI(7)}. In par-
ticular, if AI(7) = {m(7)} is a singleton set, then /(7) is differentiable: 
• / ( 7 ) = V/Bm(̂ } (7). In practice, this happens with high probability. In 
case that /(7) is nondifferentiable at 7, then AI(7) must contain more than 
one element. Any gradient V/Bm (7), m G AI(7) of active component func-
tions still serves as a subgradient of /(7). Further, due to the positivity of 
{V/Bm (7) Vm G (M)}, /(7) is strictly increasing. These results are based on 
the well-known elementary convex optimization theory and can be found in, 
say, [14]. Of critical concern is whether efficient distributed (sub)gradient 
computation is still available. The answer is “Yes，，，thanks to the power-
SINR equivalence relationship max (cmp(7)) < 1 ^ ^ max p(diag(Y)Bm) < T 二 m I 

m e { M y � … — me{M�' 
1, Lemma 3, and Lemma 7 given below. 

Lemma 7. Let f be the mapping operator such that 

Ap + b fTp 
m a x c m ( A p + b ) 

me{M� 

where A(^) = diag(^ o g - 1 )G, b (卢 )=d iag(^ o g - 1 ) n and p > 0. Then 
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lim^^oo rTkp = p for all p : max (cLp) > 0. The convergence speed is ge-
me�M� 

ometrically fast. 

Lemma 7 is the multi-constrained counterpart of Lemma 5. Their proofs 
are similar. Interested readers are referred to the remark in Appendix G. 

Using Lemma 7 we can develop the multi-constrained counterpart of Algo-
rithm 3.2. 

Algorithm 3.4 Distributed SINR-Driven Multi-Constrained Power Control 

1. Initialization. Each link / G (L) sets its own target SINR 伪 and 
chooses initial power pi [0]. 

2. Iteration. In [k + 1]th iteration, each link / first updates its power 
Pi [k + 1] ^ [ A h i (p[k])]pi [k], then normalizes pi[k + 1] ^ pi[k + 

1 ]
/

 m a x E i e � L ) Cm,lPl[
k + 1 ] ) . m£�M〉 、

1 

3. Termination. Iteration will not stop until convergence to p* (or some 
prescribed stopping criteria are satisfied). Then every link / obtains 
i t s own (p*)i a n d xi(diag(A)Bm*) = (p*)i. 

4. Interface to Algorithm 3.3. All links also agree on the final ac-
tive constraint whose index is an arbitrary element m* in the set 
argmax(cmp*). Such constraint will be assigned to Algorithm 3.3: 

me�M� c ^~ . 

Remark: Again, in general, the weighted sum powers E i e � L � cm , i p i [k+1] Vm G 

(M), their maximum in the normalization step and the final consensus on 
m* can be computed using the fast distributed gossip algorithm. An extra 
O(M) factor in complexity is expected over that of the single-constrained 
case. 
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Similarly, the above algorithm computes p* = x(diag(p)Bm^) with target 
SINR p to get a projected Pareto efficient SINR 

7(p*) = P / max p(diag(p)Bm), 
me{M〉 

where m* G AI(log[7(p*)]). In other words, it computes the optimal solution 
p* to the multi-constrained weighted SINR balancing problem 

. 7 i ( p ) max mm ^ - ^ . 
p : m a x x ( c m p ) < 1 , p ^ ° i p i 

mE{M� 

The optimal value is 1/ max p(diag(p)Bm). Viewed in the log-SINR domain, 
me{M� 

the algorithm projects the target log-SINR p to its Pareto efficient corre-
spondence n(/3) = /3 — 1 max logp(diag(e")Bm). The projection movement is 

m € � M� 

still in 1 direction. (We will see in next chapter that 1 is a special direction 
which serves as the key of our network utility maximization algorithm.) 
Likewise, the corresponding distributed (sub)gradient computation is effi-
ciently done by invoking both algorithms 3.4 and 3.3 (cf. Fig. 3.2). It re-
turns the gradient of /(3) once differentiable, and a subgradient otherwise. 
As observed in all of our simulation experiments, the above algorithms 3.2, 
3.3 and 3.4 converge very fast . For example, we observe that after 10 
iterations, the maximal link-wise relative error of SINR 

max 
化�L� 

7i (p[10]) — 7i(p*) 
7i ( p* ) 

is bounded by a tiny constant, 0.12%. In other words, 7(p[10]) is already 
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Figure 3.2: (Sub)gradient computation of /(3). A by product is the compu-
tation of the projection n(3). 

a fairly good approximation of 7(p^) in practice. Hence, we will adopt this 
10-iteration termination rule in our subsequent simulation. 

Now we are ready to solve our core problem. 
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Chapter 4 

Network Utility Maximization 
in Log-SINR Domain 

IN what follows we will propose our algorithm to solve the network util-
ity maximization problem (2.2), together with a simple convergence 

proof and complexity analysis. We will evaluate its performance by simula-
tion experiments and demonstrate its advantages over algorithms in prior 
work [7] and [25]. 

We first show that our problem is a well-defined convex optimization prob-
lem with a unique solution. By transforming (2.4) to the log-SINR domain, 
our problem becomes 

max IJ (7) 
s.t. l o g p ( d i a g ( e ) B m ) < 0, Vm e (M) , (4.1) 
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where B m = diag(g-1)(G + nc^), Vm G (M), and f/(7) = U(e，）. To specify 
our problem in a compact form, let pm(7) = logp(diag(e，)Bm). Then (4.1) is 
rewritten as 

max U (7) 
s.t. p m(7) < 0, Vm G ( M) . 

Recall that our assumption on U(7) in section 2.3 is equivalent to that 
7 ( 7 ) = E i e { L � U i d i ) is concave, twice continuously differentiable and strictly 
increasing with 7, where Ui(7u) = Ui(e卞).Therefore our problem is a con-
vex optimization problem. Based on the nice properties pertaining to the 
special direction 1, we show the following lemma. 

Lemma 8. The convex problem (4.1) has a unique global maximum and 
zero duality gap. 

Proof. For any realistic system, the power p is always bounded above, and 
the noise n is always positive and bounded away from 0. Therefore the 
SINR region is bounded. It is also closed (c.f. the "<" in the SINR con-
straints). From the well-known Weierstrass Theorem, a continuous U(7) 
can always attain its global maximum in the closed and bounded SINR re-
gion (in fact, on the Pareto frontier due to the strict monotonicity of U(7)). 
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So can [/(7). This proves the existence of a global optimum. Consequently, 
any local maximum is also global, and the set of all global maxima is con-
vex. 

Next, we prove by contradiction that the global maximum is unique. Sup-
pose there are two distinct global maxima /3 and 夕.Since they are Pareto 
optimal, we must have 7 - / = a l , Va G R. Then / � = ( 7 + / ) / 2 must be 
a global maximum as well, due to the convexity of the global maxima set. 
However, note from [11] that p m(7) Vm G (M) is strictly convex except in the 
direction 1. Then / 5 m ( / � ) < [pm(/!) + Pm(/)]/2 < 0 Vm G (M). / � is therefore 
strictly feasible rather than Pareto optimal, leading to a contradiction. 

Finally, project 7 = 0 to get its Pareto efficient correspondence n ( 0 ) = 
—1 max logp(B m). From Lemma 1, there are infinite many 

m£{M) 

7 : 7 < —1 max log p(Bm) 
me{M) 

that are strictly feasible, and hence the Slater's condition is valid. Strong 
duality and complementary slackness holds. The KKT conditions are both 
sufficient and necessary for primal-dual optimality. • 

4.1 Single Active Constraint and Ascent Di-
rections 

Conventional line of analysis usually involves introducing an Lagrangian 
function L(7, A) = [/(7) - E m ^ � M � A m p m ( 7 ) with multiple multipliers A := 
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[Ai,..., Am ] t > 0 to perform primal-dual iterations. As M grows, the ex-
cessive computational complexity of M-multiplier updates (which usually 
involves solving a bundle of nonlinear equations), however, is a curse to 
distributed implementation. The observation from our extensive simula-
tion suggests that the number of active constraints is almost always one, 
when our iterate 7[t] glides along the Pareto frontier. This is the sparse 
structure to exploit. 

To get some insight, we first consider the single-constraint case M = 1. We 
rewrite our problem to be 

max U (7) 
s.t. p(7) < 0, 

where /3(7) = max p m(7). When M = 1, recall that p(7) is differentiable 
me�M� 

everywhere: Vp(7) = n(7)/1 Tn(7), where n(7) = x(diag(e^)B) oy(diag(e”B). 
A 八 

We introduce a single-multiplier Lagrangian function LA(7) = (J(7) — Ap(7) 
and can write down the KKT equations as follows: 

VL A ( 7 ) = V J (7 ) — AVp(7) = 0 
P(7 ) = 0 

A > 0. 
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Note that 1TVp(7) = 1, V7. Then at optimality, 

A* 
Vp(7*) 

v l a * (7*) 

1 T vf/(7*) 
VU / (7*) 

IT V[>(7*) 
0. 

(4.2) 

Here we add a superscript • to denote optimal solutions. Now we are ready 
to introduce a simple gradient projection algorithm to solve this optimiza-
tion problem. 

Algorithm 4.1 (Sub)gradient Projected Network Utility Maximization 
1. Initialization. Input an arbitrary Pareto efficient 7[0] and Vp(7[0]). 

Compute A[0] ^ 1TVU>(7[0]). 
2. Iteration. In [t + 1]th iteration, 

(a) First compute VLA[tJ(7[t]) ^ Vf/(7[t]) - A[t]^Vp(7[t]). 
(b) Then set a gradient step A7'[t] — LA[TJ(7[t]), and project 7[t] + 

A7'[t] to the Pareto frontier to get 7[t + 1] and Vp(7[t + 1]). 
(c) Compute A[t + 1] — 1TVf>(7[t + 1]). Repeat. 

Remark: 

1. As will be shown in the next section, this algorithm also works for the 
case of M > 1, where /3(7) = max pm(7) is piecewise differentiable and 

me{M� 
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always subdifferentiable. To be more accurate, here we use subgra-
dient operator 勺 in place of gradient V where appropriate. For the 
current case of interest (M = 1), both operators are equivalent. 

2. To get Pareto efficient 今[0] and VVp(今[0]), one can invoke algorithms 3.4 
and 3.3 . 

3. X[t] can be computed using the fast distributed gossip algorithm. 
4. h[t] is the step size. 

5. The gradient step and the projection step are orthogonal to each other: 
明[tt]丄-1/3(7[tt] + A 7 [t]). To see this, note that 1TVLA[i](7[t]) = 0. 
Particularly when L = 2, the gradient moves along a 135-degree line, 
while the projection is 45-degree. 

6. 7[t + 1 ] = 嚇 ] + M[t]) = 7[t] + M[t] - 1p(7[t] + M[t]). 

7. Thanks to the projection step, our iterate 今[力]is always Pareto effi-
cient. Then we always have LA(今[力])=U/(7[t]), regardless of A's value. 
On the Pareto frontier, maximizing [/(7) is equivalent to maximizing 
LA (7). This explains the reason why the gradient is proportional to 
VLA[t](7[t]). Indeed, the projected gradient A7[t] = 7[t + 1] — 7 [ t ] = 
A7'[t] — 1p(7[t] + A [t]) is an ascent direction with a proper step size 
h[t], which leads to the following nice convergence property. 

Lemma 9. Algorithm 4.1 converges with appropriately chosen step size 
{h[t]}, under the mild assumption that the first and second order deriva-
tives of IJ and p are bounded: 

1 T V J ( 7 ) < V A , V 2 J ( 7 ) ^ —VUI, V 2p(7) ^ vpi,V7 
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where VA> VU and Vp are some positive constants. 

Here is the sketch of the proof. The key step is to show that under mild con-
ditions, the projected gradient A^' [t] — 1p(3[t] + A^' [t]) is an ascent direction 
with a proper step size h[t]. Specifically, we show that 

U>(7[t + 1]) — U>(7[t]) > ||VLA M(7[t])||2{h[t] — Kh[t]2
/2}, (4.3) 

where K = V A V P+VU (L+1). Then let h[t] = 1 /K, we have LI(3[t+1}) — lJ(3[t}) > 

l|VLAW(7[t])||2
/(2K). Note that 咖—夕(3[0]) > ( 聊 + 1]) — L7(t[0]) > 

ET=o ||VLA[t](7[t])||2
/(2K), as a consequence, ||VLAW(7[tt])|| — 0 as t —⑴. 

Thanks to the strong duality proved in Lemma 8, this implies 3[t] — 3*as 
t — The proof of (4.3) is given in the Appendix H. 
We notice that the network utility series {L7(7[t])} is strictly monotonically 
increasing over time and converges eventually. Inspired by propositions 
6.9.1 and 6.9.2 in [24], we may make a guess that our algorithm 4.1 has 
an iteration bound t = O ( ^ - 1 ) for convergence to a ^-suboptimal solution 
3[t] : f/(7[t]) > [/(3^) — 5. Adding a deliberately chosen extrapolation step 
to our projected gradient step is expected to further reduce the number of 
iterations to t = O ( 5 - 1 / 2 ) . This guess turns out to be true, and reasons will 
become clear in section 4.3. 

We also want to emphasize that without a provably valid step size rule, 
convergence can not be guaranteed even if one always operates with as-
cent gradient directions. This is actually a missing part in the prior work 
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[7] and [25]. An appropriate step size rule is especially crucial for dis-
tributed implementation, since we intentionally avoid those adaptive yet 
complicated step size rules such as Armijo rule, Goldstein rule and (lim-
ited) minimization rule [23], which require centralized computation or ex-
cessive effort of global information exchange. (Note that each link may not 
even know whether the overall network utility is improving or not.) In 
practice, simple step size rules like diminishing step size rule and constant 
step size rule are mostly used. The key for a valid constant step size rule 
h[t] = h is to ensure the monotonic improvement of { U(7M)}. One needs 
to carefully choose the step size h G ( 0 , 1 / { V X V P + VU(L + 1)}]. However, 
Vx, VU and Vp may not be known beforehand in reality. One may want to 
do some field experiments to estimate these parameters in advance, and 
conservatively select small enough {h[t]}. Smaller step sizes will probably 
result in slower convergence. In contrast, a properly chosen diminishing 
step size rule (say, h[t] = h^t + 1) can eventually zoom into the targeted 
interval (0,1/{VxV p + VU(L + 1)}] after some initial attempts. As will be 
shown shortly, under a milder condition, the diminishing step size rule 
h[t] = h^t + 1 ensures universal convergence to the global optimum, in 
the sense that l i m s u p t ^ ^ U7(7[t]) = U(7*). 

4.2 Multiple Constraints and Subgradient Pro-
jection 

A careful examination on the derivation of algorithm 4.1 shows that it 
is by and large applicable to the multiple-constraint case. Recall that 
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p(7) = max pm(7) is differentiable almost everywhere except at those sin-
me{M� 

gular points where the active index set AI(7) is not a singleton. Therefore, 
if at optimality only one constraint is active, the optimality conditions (4.2) 
are still valid. The optimality conditions (4.2) may only become invalid 
where AI(7*) is not a singleton. In this case, Vp(Y*) does not exist and 
a single Lagrangian multiplier fails to capture the optimality. This is the 
first problem introduced by the multiple constraints. 
Another problem, from the scenario where 7[t] happens to be a singular 
point, is that • LA[tJ(7[t]) = VU7(7[t])—A[t]V7/3(7[t]) is a subgradient of LA[t](7[t]), 
rather than a gradient. (Here we use • in place of V to emphasize the 
difference between subgradient and gradient. ) It is well-known that a 
subgradient does not need to be an ascent direction. 
The worst is that we may no longer have a constant step size that is uni-
formly bounded: h[t] = 1/[VAVp + VU(L + 1)], even if we replace the mild 
condition V2p(7) ^ VPI, V7 in Lemma 9 with V2pm(7) ^ VPI, Vm G ( M) , V7. 
What happens is that upon the projected gradient move, our iterate may 
transit from one active constraint to another. In other words, we may have 
m*(7[t]) G A I (7[t +1]), where m*(7[t]) is the choice of active constraint index 
when computing • p(7[t]). And m*(7[t]) G AI(7[力 + 1]) is critical for (4.3) to 
be valid. For a nonsingular 7[t], although one can always choose the step 
size to be small enough such that 7[t] and 7[t + 1] are with the same active 
constraint, but we have no idea how small is enough. A sufficient improve-
ment at each iteration such that U7(7[t + 1]) — U7(7[t]) > | | V L a w ( 7 _ | 2 / ( 2 k ) 
may no longer be valid. 

The first two problems are not essential, and rarely occur in practice, be-
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cause /5(3) is differentiable almost everywhere, and J ( 7 ) is twice contin-
uously differentiable. An arbitrarily small random perturbation on J can 
recover differentiability with high probability. And even if ||VLA(7*)|| does 
not exist, for the nonsingular J ^ 7*, we still have | | V L a ( 7 ) I I ^ 0. The last 
problem is critical and challenging, because constant step size is no longer 
provably valid, even if Vx, Vu and Vp is known. 

We now provide a remedy to these problems in one shot. The key is to 
understand the true meaning of the “subgradient” and “projection” in our 
algorithm 4.1. Distinct from the classic subgradient projection algorithms 
(see [22, 23, 24]), our “projection” n(J) = J — 1 / 3 ( j ) is along the special 
direction 1 to the Pareto frontier, rather than an Euclidean projection on 
the closed convex feasible region 

EP(7) = arg min 7 — j3 . 
P ( / 3 ) < 0 2 

The traditional subgradient projection method relies on the non expansion 
property of the Euclidean projection 

EP (J) — EP ( j ) < 7 — j 
2 2 

to show that the distance of the current iterate to J* is reduced with a 
proper step size. The non expansion property, however, does not come along 
with our “projection”. In fact, we have 

V
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if / — 7 丄 1 and / = / . Surprisingly interesting is that there is a way to 
show almost the same thing. 
Consider the special direction 1. It spans a subspace of R L { / : / = a1, a G 
R}, with an orthogonal complement 1 丄={/ : 1 T / = 0}. We discover that 
there is a bijective mapping between the Pareto frontier and 1 丄，the hyper-
plane passing through the origin, as depicted below. In fact, our algorithm 
3.4 maps any point / in R L (including those on 1^) to its unique Pareto 
efficient counterpart n ( / ) = 7 — 1 max logp(diag(e，)Bm). Conversely, any 

me�M) 
point on the Pareto frontier finds its way to 1 丄 by simply conducting an 
orthogonal projection a(/) : R L — R L , where a(/) = [I — 11 T /L]/ . 
Note that in the subgradient case, we still have 1T勺LA[tJ(7[t]) = 0. Then 
each iteration corresponds to a subgradient moving “horizontally” along 
1丄，followed by a projection moving "vertically" along direction 1 to return 
to the Pareto frontier. Therefore, / [ t ] — � if and only if a ( / [ t ] ) — a(7*). In 
other words, the iterate /[t] slides along the Pareto frontier approaching � 
is equivalent to its "shadow" a( / [ t ] ) moves along 1 丄 approaching a (7*). (An 
illustrative example of L = M = 2 is depicted in Fig. 4.2.) What matters is 
the distance | |a(/[ t]) — a(7*)|| restricted on 1 丄，which is only affected by the 
subgradient move £入[幻 ( 7间 ) . N o w we have 
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O � f ) 

Figure 4.2: An illustrative example of the iterations in Algorithm 4.1 with 
L = 2 links and M = 2 constraints. The horizontal (vertical) red (purple) ar-
rows denote the subgradient (projection) moves. The blue and green curves 
represent respectively two active constraints. 
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Ik(7 [ t + 1] )—晰)|| 2  

=11啡反 Lx [ t ](7[t]) + 嚇])—a(7*) | | 2 

= | k ( 7 [ t ] ) — ^(7*)||2 + h [ t ] 2 Lx [ t ] ( 7 [ t ] ) | | 2 

+2h[t]V Lx W (7[t]) T [I — 11 T/L]{7[t] — 7*} 
= | k ( 7 [ t ] ) — ^(7*)||2 + h[t] 2 ||V Lx[t](7[t])||2 + 2h[t]VV Lx[t](7[t])T {7[t] — 7*} 
< | k _ — ^(7*)||2 + h[t] 2 ||V Lx[t](7[t])||2 + 2h[t]{Lx[t](7[t]) — Lx[t](7*)} 

^ ^ 八 八 

= | k ( 7 [ t ] ) — ^(7*)||2 + h[t]2||VLx[t](7[t])||2 + 2h[t]{U(7[t]) — U(7*)}, (4.4) 

where the last inequality follows from the concavity of L冲](7) in U. This is 
exactly the well-known basic inequality in the convergence proof and com-
plexity bound analysis of subgradient algorithms. It suggests that our al-
gorithm 4.1 is equivalent to a standard subgradient algorithm on 1̂ . Then 
follows from the standard treatment and classical results in [22, 23, 24], 
we have 
Lemma 10. Under the mild assumption that the first order derivatives of 
U is bounded: 

1
T V U

( 7 ) < V x , V7, 

algorithm 4.1 converges: l i m s u p t — � U7(7[t]) = U
(7*)，with the proper step 

size rules satisfying^=�Mt] = h[t] ̂  0. 

Here is the sketch of the proof. Note that ||VV Lx[t] (7[t])|| < ||V Lx[t](7[t])||1 < 
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2{1 tVf>(7[t])} < 2 V A . Then | |V7L a w ( 7 �) | | is uniformly bounded. From (4.4) 
we have 

3(7*) - max /(7[t]) < 11 咖 0 ] ) - 晰 + 4 时它 = h [ t ] 2 . 
仏权 2 ET=g h[t] 

Then simply let T —⑴ concludes the proof. 

Note that universally applicable step size rules such as h[t] = h/(t + 1) and 
h[t] = h^Vt + 1 ensure convergence. Note also that the subgradient method 
and Lemma 10 can be further generalized to the case where Ui(Yl)'s are 
nondifferentiable, just to replace the mild condition by 

1TV7f/(7) < VA, VV7f/(7) G 5f>(7), V7. 

The price to pay for universally applicable step size rules, nondifferentia-
bility, and milder condition is that the convergence is in a weaker sense 
and may be more slower. Convergence to a J-suboptimal solution 7[t]： 

maxO<t<T U/(7[t]) > 3 (7*) — J requires O ( J - 2 ) iterations. See, for example, 
[14, 22] for more details. 

4.3 Unconstrained Equivalence and Complex-
ity results of M = 1 

As a summary to the last two sections, let us provide an alternative per-
spective to look at our core problem (4.1). We have shown that its optimal 
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solution can only be attained on the Pareto frontier, resulting in the follow-
ing equivalent formulation: 

max J (7) 

s.t. /5(7) = 0. 

The bijective mapping between the Pareto frontier {J ： p(7) = 0} and 1 丄= 

{J ： 1
TJ = 0} further transforms the problem to 

m a x U7 ( 7 ) = 5(丌(’)） 

s.t. 7 G 1丄. 

Therefore, the constrained convex optimization problem (4.1) is equivalent 
to an unconstrained convex optimization problem max [/(7) on domain 1丄. 
(The concavity of 7 (7) can be readily seen by noting that 

J ( n ( 7 ) ) = J ( 7 一 1p(7)) = ^ [ � 一 p(7)), 
ie<L> 

in which [)^(7¾—p(7)) is a composition of two concave functions, and invoking 
the composition rules (3.11) in [19].) 
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This perspective is useful to resolve the outstanding complexity issue of 
M = 1 near the end of section 4.1, because we can readily adapt the proof 
of (4.3) in Appendix H to show that IJ(7) has Lipschitz continuous gradient 
with the constant k: 

VU7(7) — V17(7) < k 7 — 3 , V7, 7 e 1丄， （4.5) 

which is the principal premise for the well-known O ( ^ - 1 ) and O ( ^ - 1 / 2 ) com-
plexity bounds given in, e.g., propositions 6.9.1 and 6.9.2 of [24]. 

Now let us revisit the case where M = 1, and )'s are twice continuously 
differentiable. Then J (n(Y)) is also twice continuously differentiable. The 
steepest ascent direction of such unconstrained problem is given by 

V7(7) = V J ( n ( 7 ) ) dn(7) T 
Vn J ( n ( 7 ) ) 57 

[I 一 •，p(7)1T]Vn J ( n ( 7 ) ) 
Vn J (n(7)) — VY p(7)1T Vn J (n(7)) 

• n J (n(7)) — VY p(n(7))[1T Vn J(n(7))], 

where •，p(7) = •〜p(n(7)) follows from the fact that •，p(7+a1) = •〜[/5(7) + 

a] = •，p(7). We notice that •，J(n(7)) is exactly VLA(7) where A = 1T• J ( 7 ) 
and 7 = n(7). This manifests the equivalence between our gradient-projection 
algorithm 4.1 w.r.t. iterate series {7[t]} and its steepest-ascent-gradient 
counterpart w.r.t. {7[t] = ^(7[t])} given below. 
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Algorithm 4.2 (Sub)gradient Network Utility Maximization on 1 丄 

1. Initialization. Input an arbitrary 今[0] G 1 丄（say,今[0] ̂  0). 

2. Iteration. In [t+1]th iteration, set a gradient step A ŷ[t] ̂  h[t]VU7(7[t]). 
(Therefore, 7ft + 1] = + A^[t].) Repeat. 

We also notice that 

•知U7(n(7)) = [I — VM(7)1T]VL 7(n(7))[I - V^(7)1 T ] T 

p(7)1 T Vn 7 ( n ( 7 ) ) . 

Similar to the proof of (4.3), it is easy to show that 

U>(n(7)) ^ —VAVpI, 

and 

A 7 T [I — V，p(7)1T]VL 7 (n (7) ) [ I — V ^ ( 7 ) 1 t ] t A 7 

> —VU A 7 T [I — V ^ ( 7 ) 1 t ] [ I — 1 V ^ ( 7 ) T ] A T 

= — V U A 7 t [I + LV^p(7)V^p(7)T ]A7 
> —VU (L + 1)A7 tAY, VA7,7 G 1 丄 
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Therefore 

AYf •知 J ( n ( 7 ) ) A 7 > —kA7TA7, V A ^ 今 G 1丄, 

and hence 

U(X( + A 7 ) —刚— • 〜 J ( n ( 7 ) ) T A > — kAT tA 7 , VA7, 7 G 1丄, 

which implies (4.5), the key premise to apply propositions 6.9.1 and 6.9.2 
in [24]. Both propositions assume a constant step size rule h[t] = 1/k. 
From proposition 6.9.1, we get an iteration bound t < k||Y[0] — 7*|| 2/[2^]= 
O ( ^ - 1 ) for convergence to a J-suboptimal solution 7[t] : U(7[t]) > J ( 7 * ) — 

This complexity bound can be further improved to t < 2n/8\\xf[0] — 7*II — 

1 = O(5-1/2), due to proposition 6.9.2, if we add in a deliberately chosen 
extrapolation step. Toward this end, we replace the gradient step 7[t +1] ^ 
7[t] + h[t]vU(7[t]) in algorithm 4.2 by 

j [ t ] ^ 7 [ t ] + 0[t}(7[t] — 7[t — 1]) 
7[t + 1 ] ^ j [ t ] + hVU(j[t]), 
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where h = 1 / K ,今[0] = 7[—1] and 

叩] 

t=0 

(t — 1) / ( t + 2) t = 1 , 2, 

0 

Equivalently, our algorithm 4.1 has an accelerated variant as well. 

Algorithm 4.3 Accelerated (Sub)gradient Projected Network Utility Max-
imization 

1. Initialization. Input an arbitrary Pareto efficient 3[0], let A7 [—1] ^ 0 
and h [ 1 / K . 

2. Iteration. In [t + 1]th iteration, 
(a) First compute p[t] ^ 3[t] + 職A3' [ t — 1]), and project it to the 

Pareto efficient n(/3[t]). 
(b) Secondly, compute A[t] ^ 1

TVf>(n(/5[t])), and VL A W(n(/[t])) ^ 
Vf/(n(p[t])) — A[t]V p(n(p[t])). 

(c) Then set a gradient step A3''[t] ^ hVL\[t](n(p[t])), compute 
A3'[t] ^ 叩 ] (A3' [ t — 1]) + A3''[t], and project 7[力]+ A[t] to the 
Pareto frontier to get 3[t + 1]. Repeat. 

It is well-known that these accelerated algorithms are optimal in terms of 
the complexity order. In addition, if there exists a positive k! such that 

VL/(T) — • [ / ( / ) > K; 7 — P，yp, 7 G 1丄, 

then our accelerated algorithms converges geometrically fast: t = O(— log 5). 
See, e.g., Theorem 2.2.2 in [22]. For more details, we refer interested read-
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ers to the the standard treatment and classical results in the online sup-
plementary chapter 6 of [24]. 

Before concluding this section, it is worth pointing out that the accelerated 
variant of algorithm 4.1 can be readily adapted to the case of M > 1. Ex-
tensive simulations suggest that algorithm 4.3 still converges quickly (e.g., 
see Fig. 4.9 in the next section). However, the above convergence and com-
plexity analysis of algorithm 4.3 is only rigorous for the case of M = 1. 
Except for the insight that [/(^(7)) is almost differentiable everywhere, we 
currently have no idea how to extend the rigorous analysis to the case of 
M > 1. 

4.4 Simulation Experiments 
In the following, we will demonstrate by simulation experiments that our 
algorithms are efficient and optimal, beating its counterparts in prior work 
[7] and [25]. 

4.4.1 Simulation Settings 

We first describe the settings for the following simulation experiments. We 
consider two different scenarios: arbitrary random networks and uplink 
LTE networks. 

1. In the arbitrary random networks, we randomly generate i.i.d. chan-
nel gain matrices G, noise power n and power constraints cmp < 
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1, Vm G�M〉of different network sizes L and numbers of constraints 
M, according to various distributions. Extensive simulations in such 
type of networks help demonstrate the robustness and universal ap-
plicability of our algorithms. 

2. In the uplink LTE networks, we adopt similar settings as in [25]. 
We assume a standard 19-hexagonal-cell layout with wrap around 
to avoid edge effect, which is widely accepted in LTE cell planning 
and performance evaluation. Each cell is further divided into 3 sec-
tors. So there are total 57 base stations. Each sector is served by 
one directional antenna operating at 2GHz to communicate with mo-
bile users who use omnidirectional antennas. The antenna model, 
path loss model, shadowing model and noise model are specified in 
[26]. The total uplink system bandwidth is 10MHz and is evenly di-
vided into 10 channels. At any snapshot, each base station will receive 
packets simultaneously from 10 mobile users with random locations 
within the corresponding sector. So there are altogether L = 57 active 
links sharing one channel in the network. Extensive simulations in 
such type of networks help demonstrate the practical applicability of 
our algorithms. 

In both scenarios, two typical network utility functions are chosen for per-
formance evaluation: 

1. Equally weighted proportionally fair SINR allocation: 

U(7) = E l o s(7i)/L； 
化�L� 
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2. Proportionally fair Shannon rate allocation: 

U (7 ) = J ] log( log(1 + 7i ))/L. 
i€�L) 

Note that while the former satisfies the mild condition in lemma 9 with 
Vx = 1 and VU = 0, the latter does not have a bounded V�. But it turns out 
later that the our algorithms can still converge to a neighborhood of the 
global optimum very quickly in extensive simulations. 

Finally, for performance benchmark, we also compute the global optimal 
solutions via a centralized cvx solver which is built upon our contributed 
Matlab function “logPFeig”. For comparison of different distributed algo-
rithms, we record their numbers of iterations and time for convergence to 
within 2% or 10% suboptimality. We performed simulation experiments 
with MATLAB 7.0 on a Intel Core i7 870 desktop. 

4.4.2 Negative results of algorithm 6 in [7] 

We first report the negative results of algorithm 6 in [7]. Algorithm 6 tar-
gets at a special case of our problem (2.2). Specifically, they consider a sole 
sum power constraint (M = 1) and assumes unit noise powers, i.e., c = 1 /P 
and n = 1. Obviously, this special setting naturally satisfies the network 
duality premise nc T = cn T , and gets rid of the involved issues arising from 
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multiple constraints and the case where some components of c are zeros. 
However, in our simulation, we observe that oftentimes algorithm 6 di-
verges in the first few iterations, especially when L is large. One link will 
quickly grab all power and starves other links, resulting in the worst — � 
utility. 

We remark that such unfair allocation is due to the holes in the algorithm 
6, of which the convergence proof is also incorrect. Note that algorithm 6 is 
very similar to our algorithm 4.1. According to equation (57) in [7], it also 
contains a gradient step plus a projection step: 

7[t + 1] = 7[t] — 1p(7[t]) + A7'[t] 
AY[t] = h [ t ] { V U A M。 [ ^ 3 ( 7 ^ ) ] - 1 — 1}. 

However, it is a projection to the Pareto frontier followed by a gradient. 
The gradient is along the supporting hyperplane of the feasible region since 
A [t]TVp3(7[t]) = 0. Therefore, the resultant 7[t + 1] must not be feasible, 
unless 7[t] = 7*. This disproves the feasibility of 7[t + 1] in their conver-
gence proof. More importantly, although such projected gradient move is a 
diagonally scaled version of our gradient move, it could be descending. Es-
pecially when Vp(7[t])i of some link l is relatively too small, a huge step of 
steep descent is possible. Such link may drive the system to an extremely 
unfair state as we observed from the simulation. Fortunately, our algo-
rithms provide a fix to it. For instance, consider the equally weighted pro-
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Figure 4.3: Algorithm 6 in [7] diverges. One link quickly grabs all power 
and starves other links, resulting in the worst — � utility just in the first 
few iterations. 
portionally fair SINR allocation problem in an uplink LTE network with 
one sum power constraint. Starting from the same initial 3[0], algorithm 6 
diverges in the first few iterations, while both our algorithms converge to 
within-2%-suboptimality in a short time. See figures 4.3, 4.4 and 4.5 for 
more details. (We remark that the convergence time, say 34ms and 1.5ms 
in Fig. 4.4, is the ideal per-link computation time, which does not include 
the time for message passing, distributed gossip algorithms and other over-
heads of control signaling, similarly hereinafter.) 

4.4.3 Negative results of Qualcomm's load-spillage al-
gorithm in [25]. 

Next we look at the Qualcomm's load-spillage distributed power control 
algorithm (abbreviated as QLS) in the seminal paper [25]. It also targets at 
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Figure 4.4: Our algorithm 4.1 with diminishing step size rule h [ t ] = 
1/VtTT converges to within-2% (10%)-suboptimality in 3700 (160) itera-
tions or 34ms (1.5ms). 
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Alg. 4.3 converges to within-2%-suboptimality in only 14 iterations 
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Figure 4.5: Our accelerated algorithm 4.3 with constant step size rule 
h[t] = 3.3 further reduce the convergence time to 14 (6) iterations or 0.33ms 
(0.16ms). 
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a special case of our problem (2.2). Specifically, they consider a box power 
constraint p < p or box interference constraint • < ¢. (Obviously, here 
M = L.) They derive a similar network-duality relationship (cf. Fig. 3.1). 
Roughly speaking, in their paper, "load", "spillage" and "price" correspond 
to our dual power, dual interference plus noise and dual noise respectively. 
Comparison shows that their KKT condition is exactly equivalent to ours 
(see table 4.1). The difference is that, while we utilize the sparse problem 
structure and focus on the update of L + 1 optimizing variables (7, A), they 
try to balance a bunch of variables by distributed pricing. Specifically, at 
each iteration, they need to update 2L optimizing variables (s, v): 

s[t + 1] = s[t] + h1[t]As[t] 
v [t + 1 ] = v [ t ]+ h2[t](p[t] — p). 

Although they prove that their update corresponds to an ascent direction 
of utility, the valid step size rule, convergence proof and complexity bound 
are missing. Only two empirical step size rules are provided in simulation: 

1. h 1 [ t = h b h 2 [t] = h2； 

2. h1[t] = h 1 , h2[t] = h 2 / t , 

where h1 = 0.1 and h2 = 0.01. These rules, however, fail in different set-
tings. For illustration, consider the equally weighted proportionally fair 
SINR allocation problem in an uplink LTE network with a box power con-
straint. Starting from the same initial 7[0], oftentimes QLS either runs 
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Parameters in [25] Notations in [25] Represented in our notations 
power p g〇p path gain matrix G G diag(g - 1 ) 

interference plus noise q 0 SINR 7 7 
load s Apd 

spillage r Ag-1〇 0d price v Ag-1〇 nd KKT condition VU/(7*) = s* 〇 q* VU/(7*) = A*pd 〇 0* 
Table 4.1: Notation correspondence. (At optimality, A* = A*/(pdT0*).) 

into non-convergent oscillation (Fig. 4.6) or exhibits extremely slow con-
vergence (Fig. 4.7). Such performance deterioration is mainly due to 

1. No valid step size rule: ascent direction by itself can not ensure per-
formance improvement; 

2. Foschini-Miljanic distributed power control plus soft pricing v[t + 1]= 
v [t] + h2 [t](p[t] — p) can not guarantee feasible operating points that 
obey power constraints; 

3. There are too many equations to balance, which is quite sensitive to 
initialization and the choice of step size rule. 

Again, our algorithms also provide a fix to it. Both our algorithms converge 
to within-2%-suboptimality very quickly. See figures 4.8 and 4.9 for more 
details. 
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QLS exhibits non-convergent oscillation and operates in regions violating power constraints 

0 1 2 3 4 5 6 7 8 9 1 0 

Iteration count x -IQ5 

Figure 4.6: QLS with step-size rule 1 does not converge. The overall simu-
lation time is 3.5s or 1 million iterations. 

Figure 4.7: QLS with step-size rule 2 converges extremely slowly. The 
overall simulation time is 5.6s or 1 million iterations. 
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Alg. 4.1 converges to within-2%-suboptimality in only 12 iterations 
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Figure 4.8: Our algorithm 4.1 with diminishing step size rule h [ t ] = 
1 / V t T I converges to within-2% (10%)-suboptimality in 3700 (160) itera-
tions or 37ms (1.6ms). 
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Figure 4.9: Our accelerated algorithm 4.3 with constant step size rule h[t]= 
0.0014 further reduce the convergence time to 800 iterations or 15ms for 
within-2% suboptimality. 
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Alg. 4.1 converges to within-2%-suboptimality in only 12 iterations 
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Figure 4.10: For proportionally fair Shannon rate allocation, our algorithm 
4.1 with diminishing step size rule h[t] = 1 ̂ t + 1 converges to within-2% 
(10%)-suboptimality in 11000 (140) iterations or 110ms (1.4ms). 

4.4.4 More results of our algorithms 

Our algorithms still preserve good convergence performance in simulation, 
even if the network utility function is changed to the proportionally fair 
Shannon rate allocation. An example is shown in Fig. 4.10 (where other 
settings coincide with those in Fig. 4.8). Note that such utility no longer 
has a bounded Va. Surprisingly, our algorithms can still converge to the 
neighborhood of the global optimum very quickly. 

Consider yet another scenario where an arbitrary random network of M = 
L = 10 random power constraints is assumed. Likewise, our algorithm 
converges pretty fast. See Fig. 4.11. 

We have also performed extensive simulation experiments with other pa-
rameter settings. Specifically, we also try various scenarios with different 
utility functions, different node distributions and topologies, different num-
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Figure 4.11: For an arbitrary random network of M = L = 10 ran-
dom power constraints, our algorithm 4.1 with diminishing step size rule 
h[t] = 1 /\/力 + 1 converges to within-2%-suboptimality in only 12 iterations 
or 0.83ms. 
bers of links L, different numbers of power constraints M. Interestingly, 
similar results are observed. 

To conclude this chapter, we see from both theoretical analysis and sim-
ulation experiment that our distributed algorithms are fast and optimal, 
fixing a number of defects and shortcomings of prior algorithms. 
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Chapter 5 

Related Work 

IN the last section of chapter 4, we have intensively discussed the con-
nection and difference between our work and the prior work [7] and 

[25]. Here we briefly summarize them in Table 5.1. 

Besides the prior work [7] and [25], there was an even earlier work [31] on 
this topic using the idea of fictitious game theory. Its Asynchronous Dis-
tributed Pricing (ADP) algorithm ensures global fast convergence to the 
unique optimal solution without using any step size, under a more re-
stricted family of utility functions and box power constraint. (Link-wise 
utility function UI(YI) with — ll�(；了) G [1, 2] is assumed in [31]. In contrast, 
—；了) G [1,⑴)is assumed in [7], [25] and this thesis. See section 2.3.) 
Besides the restricted problem scope, another drawback of this algorithm 
is that it relies on an expensive flooding algorithm to exchange the price 
globally and periodically; while our algorithms exchange information more 
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Performance Ours QLS in [25] Alg. 6 in [7] 
index 

Convergence Guaranteed Not guaranteed Not guaranteed 
Speed of 

Convergence 
Fast Slow (if 

converges) 
Initialization 

dependent 
Proof of 

Convergence 
Standard proof 

in textbook 
Sketch of proof. 

Important 
details missing. 

Algorithm 
contains defects. 
Incorrect Proof. 

Complexity 
Bound 

Possible and 
given 

Missing Missing 
Power 

Regulation 
Always 

satisfied and is 
Pareto optimal 

May be violated 
significantly 

May be violated 
significantly 

Sensitivity to 
Initialization? 

Robust to 
random 

initialization 
Very sensitive, 
wrong choice 

results in 
performance 
degradation. 

Very sensitive, 
wrong choice 

results in 
performance 
degradation. 

Valid Step Size 
Rule? 

Prefix, 
universally 
applicable 

Missing Missing 

Applicable 
Scenarios 

General 
nonnegative 
linear power 
Constraints 

Box power or 
interference 
constraint 

Sum power 
constraint 

Table 5.1: Comparison between algorithms in prior work and ours 
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efficiently, thanks to the underlying gossip algorithm (cf. [16]). Neverthe-
less, there are two advantages of the ADP algorithm over ours. One is that 
it is provably workable for asynchronous networks. The other is that it 
requires fewer iterations for convergence. For instance, consider the simu-
lation settings in subsection 4.4.3, the ADP algorithm usually converges to 
within-2%-suboptimality in less than 10 iterations. 

We also notice that the authors of [28] and us independently discovered 
the solution to the multi-constrained weighted SINR balancing problem 
(cf. Section 3.3) with different approaches. The subtle difference, roughly 
speaking, is that we assume a more general nonnegative power constraints 
while they assume positive ones. As is discussed in Appendix G, our case 
is more involved. We have to spend significantly more effort to adapt the 
underlying previous results from norm to seminorm. More importantly, dif-
ferent from [28], our ultimate goal is general utility maximization, rather 
than simply balancing the weighted SINR. The multi-constrained weighted 
SINR balancing only serves as a building block in our network utility max-
imization algorithms. 

Tan, the first author of [7], also generated fruitful research outputs closely 
related to [7], e.g., [4, 5, 6, 8, 29], just to name a few. We believe that our 
remedy to [7] strengthen these related works by tying up some of their loose 
ends. 

Finally, we remark that there have been extensive studies on classical dis-
tributed or centralized power control problems. We refer interested readers 
to, e.g., the monograph [20] and the citations therein. In addition, there 
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have been a number of relevant papers on the characterization of the SINR 
region. Interested readers are referred to [32] and the reference therein. 
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Chapter 6 

Conclusion 

T H E main contributions of this thesis can be summarized as follows: 

1. The investigations here are a first attempt to uncover and fix some 
of the shortcomings of prior distributed network utility maximization 
algorithms in [7] and [25]. Observation shows that oftentimes the for-
mer diverges in the first few iterations; and the latter fails to converge 
or converges extremely slowly. Careful examination reveals some of 
their drawbacks and suggests a pertinent remedy through reformula-
tion of the optimization approach to attack the problem. 

2. A novel distributed (sub)gradient projection power control algorithm 
4.1 has been devised to fill the gap, based on rigorous derivation. 
First, we develop key theorem to transform a linear power constraint 
in power domain to a convex differentiable log-Perron-Frobenius con-
straint in the log-SINR domain, making our core problem to be a stan-
dard convex constrained optimization problem. Second, we show that 
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the derivative of such log-Perron-Frobenius constraint can also be ef-
ficiently distributedly evaluated at any given log-SINR. At the end of 
such computation, the log-SINR will automatically be projected to the 
Pareto frontier, ensuring the iterates' Pareto efficiency. 

3. An elegant bijective mapping between Pareto frontier and the 1 � hy-
perplane has been discovered. The mapping simply transforms the 
above convex constrained optimization problem to an equivalent un-
constrained counterpart, and our (sub)gradient projection algorithm 
to an equivalent standard (sub)gradient algorithm on 1 � . 

4. Backed by rich theory of (sub)gradient algorithms, off-the-shelf con-
vergence proof and complexity analysis are readily applicable. Uni-
versally applicable diminishing step size for subgradient algorithm 
4.1 and properly chosen constant step size for accelerated (sub)gradient 
algorithm 4.3 are proposed. The new algorithms easily outperform 
the algorithms of prior work in terms of efficiency and optimality in 
simulation experiments. 

5. Last but not least, the applicability of our analytical and algorithmic 
framework is wider in scope than prior work [7] and [25]. It can take 
care of multiple general nonnegative linear power constraints, which 
are critical in the control and optimization of today's LTE and cogni-
tive radio networks. 

In addition to the above contributions, we believe that our novel 
algorithms and the corresponding analysis framework provided in this 
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thesis open up many fruitful areas for further research. Some examples 
are given below: 

Asynchronous Power Update - This thesis has implicitly assumed 
synchronous power update. It is well known that Foschini-Miljanic 
algorithm and the ADP algorithm in [31]work well also in the 
asynchronous case. A generalization to the asynchronous case, say, for the 
multi-constrained weighted SINR balancing problem, will be interesting. 

Nonlinear Power Constraint - This thesis assumes general linear power 
constraints. In general, power constraints can be nonlinear [30]. Is the 
Perron Frobenius transformation from power domain to SINR domain is 
still valid for nonlinear power constraints? What will be the image of an 
nonlinear power constraint? 

Math Properties of our (Sub)gradient "Projection" Method - Note that our 
(sub)gradient "projection" method is a new member to the family of gener-
alized subgradient projection methods [22, 23, 24]. We are interested to 
know its "designated use" as well as its connection and difference with 
other "family members", especially those popular ones such as approxi-
mate (sub)gradient method, incremental (sub)gradient method and prox-
imal method. 

Nonconvex Optimization - This thesis limits its scope to convex optimiza-
tion. If nonconvex utility is considered, the good properties in the proof of 
Lemma 8 will be gone. For example, KKT condition may no longer be suf-
ficient for optimality. We may end up with a local optimum. Can we still 
have some performance guarantee? 
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We believe the above will be promising directions for our future research. 

71 



Chapter 7 

Appendix 

A. Proof of Lemma 1 
Proof. Since r c c r , we have the Neumann expansion p(Y) = ^^=Q[diag(j o 
g-1)CG]kdiag(Y • g - 1 ) n from equation (2.1). It implies (2.3) and the equality 
case. Further, since c ^ 0, if 7 G r � a n d 7 > 卢 > 0, we have p(Y) > 
P(卢)> 0, and hence 1 > cTp(Y) > c T p(^). Therefore 卢 G r o this shows the 
monotonicity of the set r � 口 

Remark: this lemma is an extension and a direct consequence of Lemma 
2.2 in [8], which just simply replaces all r ^ s with r 's in our Lemma 1. 
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B. Proof and Remark of Lemma 2 
Proof. Substituting c T p = 1 into Ap = Ap + b gives Ap = Ap + b c T p = 
(A + bc T )p, which is a classical nonnegative-matrix eigenvalue problem. 
Note that the irreducibility of A carries over to A + bc T . (Nonnegative 
square matrix A is irreducible if and only if (I + A ) L - 1 > 0 or E二 A 1 > 0 
[10].) The well-known Perron-Frobenius theorem ensures that nonnegative 
irreducible matrix A + b c T has only one positive eigenvector p* (Perron 
vector), associated with the unique Perron-Frobenius eigenvalue A* = p(A+ 
bc T ) > 0. Moreover, p* is positive and uniquely determined by c Tp* = 1. 

• 

Remark: Notice that previous work [8] and [7] shows p(diag(7�g - 1)(CG + 
ncT)) < 1 for the special case c = e i / p i and c = 1 /P respectively. The 
former uses determinant analysis, while the latter is based on Theorem 6 
and Lemma 8 in [1]. The former method is difficult to generalize, while the 
latter one can be generalized to the case where c > 0. In fact, Theorem 6 
and Lemma 8 in [1] requires c T p to be a norm of p so that the corresponding 
dual norm exists. If c > 0, c T p = ||p|| ：= E i e {L�c i IP i I is a norm of p, with 
dual norm | | y | D ：= maxi^. However, if c contains some zero components, 
c T p is a seminorm without dual seminorm. The results of [1] thus fail to 
apply. Our Lemma 2, albeit not as elegant as Theorem 6 in [1], is tailored 
to the unified proof of c ^ 0. 
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C. Characterization of r^ The Case Where Some 
Components of 7 Are 0 
For the case where some components of 7 are 0, we notice that pi = 0 0 7 = 
0, which means some links are not transmitting. Let A denote the index set 
of the active transmitting links.We can simply repeat the previous investi-
gation by restricting consideration on A. Denote 7(A) the vector composed 
of positive entries of 7, and B(A) the principal submatrix of B with the 
rows and columns in A. (It is easy to see that B(A) = diag(g(A) - 1)(CG(A) + 
n(A)c(A)T).) If c(A) = 0, or equivalently, c (A)T p (A) > 0, by the same 
token, we still have Pareto frontier {7(A) : p(diag(j(A))B(A)) = 1} and 
feasible SINR region {7(A) : p(diag(j(A))B(A)) < 1}. It is straightforward 
to see 

p(dtag(7 )B) = p(dmg(j (A ) )B(A)), 

so the above conclusion remains unchanged. The rest is the “strange， 

case where c(A) = 0. In this case, proportionally increasing the power 
P will no longer affect the constraint c(A)T p(A), which remains 0. In fact, 
this is similar to the scenario with no power constraint. Then we have 
p(diag(7)B) = p(diag(7(A))B(A)) = p(diag(7(A) o g ( A ) - 1 ) G(A)) < 1. For 
such 7(A) , one can always activate a link l G A with positive ci by setting 
its power to be pi = 1/q. At the same time, all links in A proportionally 
increase their powers by a factor of maxj € ^(1 + gji/cinj). It can be shown 
that the resultant SINR 7'(Au{l}) is Pareto optimal and strictly dominates 
the original Y(A U {l}). Thus, we can still restrict our focus on the Pareto 
frontier. 
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D. Proof of Lemma 3 
Proof. This lemma directly follows from our Lemma 2 and Lemma 8, 3 and 
4 of [1]. For completeness, we restate those lemmas in [1] as follows: 

Let A be a nonnegative irreducible matrix, and b, c ^ 0 two nonnegative 
vectors. Then 

a) p(A + bc T ) > p(A), and the matrix A + b c T has only one Perron vector; 

b) For any nonnegative vector d, if the matrices A + b c T and A + b d T have 
the same spectral radius p(A + bc T ) = p(A + bd T ) , then their normalized 
Perron vector are equal; 

c) Let p denote the normalized Perron vector of A + bc T , then p(A + b c T ) = 
p(A + b d T ) 台 c T p = d T p . • 

E. Details on How We Design “logPFeig.m，，in 
cvx 
Note that any cvx-recognizable function must obey the disciplined convex 
programming ruleset. The idea of our source code is that we transform the 
function /B(7) to be the solution of a partially minimized convex problem. 
First, note that from Perron-Frobenius theorem, the Perron (right) eigen-
vector associated with an irreducible non-negative matrix is unique (up to 
a scaling factor) and positive. Hence, for the irreducible non-negative ma-
trix diag(e，)B, let its Perron eigenvector be x > 0. One can easily prove 
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that its Perron eigenvalue p(diag(e^)B) is the optimal value of the following 
optimization problem 

min A 
s.t. diag(e Y )Bx < Ax (7.1) 

x > 0 

It is easy to see that any feasible A must be positive. Let A = log A, and 
Xi = logXi for all i G (L). Then (7.1) is equivalent to the following: 

min A 
L 

s.t. log^y^ Bij exp(Xj)) < A + X — Yi (7.2) 
j = 1 

Vi G (L) 

Note that the L.H.S. of the constraints in (7.2) are log-sum-exp functions 
and the R.H.S. linear functions. So (7.2) is a disciplined convex optimiza-
tion problem. Also, from the “partial minimization rule， (Section 5.2 in 
[12]), the optimal value of (2), /B(7) = logp(diag(e^)B) must be a convex 
function in 7, which gives an alternative proof of its convexity. Finally, the 
specification of /B(7) in this way totally obeys the cvx rules, and hence can 
be recognized by cvx and readily used. 
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F. Proof of Lemma 4 
Proof The following derivation is inspired by the one in pp12 of [14]. From 
the property of spectral radius, we have 

h(7) ：= p(diag(e^f)B) = sup y T diag(e^)Bx. 
y T x = I 

So ^(7) is a point-wise supremum of gy,x(7) ：= y T d iag (e Y )Bx over y T x = 1. 
Note that the gradient of gy x with respect to 7 is 

Vgy,x(7) = [ y I e x p ( 7 I ) B I X , . . . , y L e x p ( 7 L ) B L x ] T , 

where Bi is the /th row of B. Hence, the subdifferential of h(7) is 5 h(7)= 

(Vgy,x(7)|diag(e^)Bx = p(diag(e^)B)x, y T diag(e^)B = y T p(diag(e^)B), y T x = 
1}. Note that diag(e^B is an irreducible nonnegative matrix, then p(diag(e^()B) 
is a simple root of its characteristic polynomial, and its right and left eigen-
vector x(diag(e，)B) and y (diag(e”B) are unique up to multiplication by con-
stant from Perron-Frobenius theorem. Hence dh(Y) is a single-point set, 
,and h(7) is differentiable. We have 

Vh(7) = [yI exp(7I)BIx,...，yL exp(7 L )B L x] T = p[yixi,... ,VLXL\T = px o y. 

(Here we abbreviate x(diag(e^)B), y(diag(e”B) and p(diag(e^)B) by x, y and 
p respectively.) Finally, we have 

Vlogh(Y) = Vh(7)/h(7) = x(diag(e^)B) o y(diag(e，)B), 
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where x(diag(e^)B) and y(diag(e^)B) are normalized such that 

y(diag(e^)B) T x(diag(e^)B) = 1. 

• 

G. Sketch of the Proof and Remark of Lemma 
5 
Proof. If c > 0, cTp is a norm of p. Then our proof is done by invoking 
Theorem 1 in [2]. However, if c contains some zero components, cTp is a 
seminorm rather than a norm. (Note: a seminorm is essentially a norm 
with the positivity property removed. The positivity property means that 
||p|| = 0 only if p = 0. ) Then Theorem 1 in [2] is no longer applicable. 
Fortunately, we find out a way to bypass the positivity property of the norm, 
after carefully examining its major proof given in [3]. 

The idea of our proof is similar to that of Theorem 1 in [2]. For Hilbert's 
projective metric on R++ given by 

d ( p , q ) = — l o g [ ( m i n p i / q i ) ( m i n qZpi)]， 
i6�L� i^�L) 

one shows that X = {p G R++ \c Tp = 1} is a complete metric space. Then 
one invokes the only theorem in [3] to show that f is a contraction for d 
asymptotically. Instead of showing that T : X ^ X is a contraction for 
d as adopted in[2], we show that T is a contraction for d after the first 
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iteration. Then one can apply Banach's contraction mapping principle to 
(X, d) and T to complete the proof. 

In the following we only highlight the part to show f is a contraction for 
d after the first iteration. By carefully examining the proof of the only 
theorem in [3], we note that its one-iteration-delay variant is still valid, as 
shown below: 

Let T be the mapping operator such that Tp = Ap + b. Then s(p) = c T p is 
a scale function, and Tp = Tp/s(p). (A continuous mapping s : R+ ^ R+ 
is called a scale function if s(p) is not identically 0; s(Ap) = As(p) for p > 
0, A > 0; and 0 < p < q implies s(p) < s(q).) Now suppose the mapping T 
satisfies the following conditions: 

(i)彐 numbers a , ^ > 0 (which only depends on the parameter A, b and c) 
such that a1 < TTp < p 1, Vp G X. 

(ii) For any p, q G X and 0 < A < 1: If Ap < q then ATp < Tq and if 
ATp < Tq with A < 1, then ATp < Tq. 

Then T has the following properties: 

(a) Tp = Ap has a unique solution p* G X, A* > 0. 

(b) lim“⑴ T k p = p* fo r al l p : s (p) > 0. 

To show the conditions (i) and (ii) are satisfied, the key step is to show 
that {TTp : Vp G X} is uniformly bounded above by some positive vector 
which only depends on the parameter A, b and c. Since T is a bounded 
nonnegative operator, it suffices to show that {Tp : Vp G X} is bounded 
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above. Without loss of generality, we assume ci > 0, V/ G {1 , . . . , l O } , and 
ci = 0, V/ G {/O + 1, . . . , L}. Since / , G, n > 0, we have b > 0, A” > 0 if i = j 
and Aij = 0, otherwise. For arbitrary p G X, let z := TTp, we must have 
z G X. Hence from c T p = 1 and c T z = 1, we have pi, zi < 1/ci, V/ G {1,... , /O}. 
For any / G {/O + 1 , . . . , L}, we have 

J A p + b ) L < i + 务 A + 令 _Aij_ 
c T (Ap + b) < c T b 十 cic Tb 十 d A i j . 

Hence z is uniformly bounded above, so is Tz. 

On the other hand, since we have Tp = Ap + b > b > 0, we can easily 
show that the remainder conditions are also satisfied. The rest of the proof 
is almost the same as in [2]. To conserve space, we omit it here. • 

Remark: Note that if a link sets its target SINR to be 0, its power will re-
main 0 at every iteration, then it can be regarded as inactive. Using similar 
argument as discussed in Appendix C that we can restrict consideration on 
the set of active links A, one can easily show that the above discussion 
is still valid for / ^ 0, except that the mild condition on initial power be-
comes c(A)T p(A) > 0. Also, one can easily adapt the proof to the case where 
s ( p ) = m a x ( c m p ) . 

me�M) 

H. Proof of Equation (4.3) 
Proof. From middle value theorem, we have 
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八 八 八 rrr m r\ 八 

U (7[t + 1]) — U (7[t]) = VU (7[t])T A7[t] + A7 [ t ] T V2 U (7[t] + a1A7 [ t ] )A7 [ t ] /2 , 

where 0 < 叫 < 1. 

• U (7[t])T A7[t] 

=|VLA[t](7[t]) + A[t]Vp(7[t])}T |h[t]VLA[t](7[t]) — 1p(7[t] + h[t]VLAW(7[ t]))} 

=h[t]||VLA[t](7[t])| | 2 + A[t]h[t]Vp(7[t])T VL圳(7[t]) — A[t]p(7[t] + 冲]VL圳(7[t])) 

= h [ t ] | |VL A W(7 [ t ] ) | | 2 — A[t]h[ t]2VLAW(7 [ t ] ) T V2p(7[t] + « 2 A 7 ' [t])VLAM(7[t])/2, 

where 0 < a2 < 1. 

Applying the mild conditions, we have 

U(7[t+1]) —U(7[t]) > h[t]||VLA[t](7[t])) | | 2—V AVph[t]2||VLAW(7[t])) | | 2/2—Vu||A7[t] | | 2/2. 

Note that 

l |A7[ t ] | | 2 = ||A7' _ 2 + ||1p(7[t] + A7' [t])|| 2 = ||A7' _ 2 + Lp2
(7[t] + A7' [t]), 

and 
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p 2(7[t] + A7'[t]) 
= I I AY [t] T Vp(7[t] + w [t])|| 2 

< | |A7' [t]|| 2 ||Vp(7[t]+ aSA7' [t])|| 2 

< | |AY [ t ] | | 2 1 T Vp(7[t] + 街 A [t]) 
= | | A 7 ' [t]|| 2, 

where 0 < a3 < 1. So we have 

八 八 a 八 / ( 7 [ t + 1]) — U/(7[t]) > ||VLA[t](7[t])||2{h[t] — 0 . 5 [ m + VU(L + 1)]h[t] 2}. 

• 
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