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This thesis develops a new theoretical and algorithmic frame-
work for practical distributed power control in wireless networks.
It proposes and investigates fast optimal distributed power con-
trol algorithms applicable to LTE as well as cognitive radio.
The proposed algorithms beat the well-known Qualcomm’ s
load-spillage distributed power control algorithm in [HandeRan-

ganChiangWu08] and the distributed weighted proportional S-



INR algorithm in [TanChiangSrikant11] in terms of both the
optimality of the solution and the convergence speed.

Wireless network utility maximization via distributed power
control is a classical and challenging issue that has attracted
much research attention. The problem is often formulated as a
system utility optimization problem under some transmit pow-
er constraints, where the system utility function is typically an
increasing function of link signal-to-interference-plus-noise-ratio
(SINR). This problem is complicated by the fact that these wire-
less devices may interfere with each other. In particular, the
wireless devices are affected by each other’s transmit power,
and the transmit powers and interferences experienced by the
devices are interwoven in a complex manner.

Despite that, there have been good centralized algorithms for
solving the problem. “Decentralized” solutions, on the other
hand, are a different story. In practice, decentralized algorithms

in which the devices interact with each other in a loosely cou-
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pled manner to improve the network utility, are easier to deploy
than centralized algorithms. However, the design of workable
(and provably workable in the mathematical sense) solution is
very challenging. Small neglects can lead to solutions that are
invalid or non-convergent. For example, although both paper-
s [HandeRanganChiangWu08] and [TanChiangSrikant11] claim
their distributed algorithms to be optimal, we discover some
experimental evidence suggesting that certain parts of these al-
gorithms are not quite right. Oftentimes, the former fails to
converge or converges extremely slowly, while the latter could
diverge in the first few iterations.

To fix these glitches and to broaden the scope of the problem,
we develop a new analytical and algorithmic framework with a
more general formulation. With this framework, we can identify
the sources of the defects and shortcomings of prior algorithm-
s. We further construct an optimal distributed (sub)gradient

projection algorithm with provably valid step size rules. Rig-
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orous convergence proof and complexity analysis for our algo-
rithm are given (note: convergence proof and complexity anal-
ysis were missing in [HandeRanganChiangWu08] and incorrect
in [TanChiangSrikant11]). In some scenarios, our algorithm can
be further accelerated to yield even better performance. Exten-
sive simulation experiments confirm that our algorithms always
outperform the prior algorithms, in terms of both optimality
and efficiency. Specifically, simulation demonstrates at least 100
times faster convergence than the prior algorithms under certain
scenarios.

In summary, this thesis solves the important SINR-based u-
tility maximization problem and achieves significantly better
results than existing work. It develops a new theoretical and
algorithmic framework which completely addresses the difficult
convergence and step-size issues. Going forward, we believe the
foundation established in this work will open doors to other fast

distributed wireless and mobile solutions to problems beyond
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the power control problem addressed here.



WXAE: BT oA REHBERNNTENERA KA
1k,

E# : KXR

FR . BHERXAF

¥%: BRIARFR

. T¥EL

HE

ARXFEET Mo HHWERMEEELEARTL WL
A A B RATHR P A bk A R o R R,
FHAWAET RAHRART, WA FEMLEE, WwEFATE
B T THLTER A 40 0 4 e P 4 . 6 78 AR Y S A0 M DL R sk
HEEHE TN T F 4 W e E N w0 R A LA
EEH EiE (fF T E Zib X [HandeRanganChiangWu08)])
DR AR R B A TR AEFTE (REXTEEZ®
X [TanChiangSrikant11])

AN EEMERIRMEHARRA, &iLH A K h
REGAELEWERA MR A M —EXE W F oL &L

vi



E. RFTEHARBELEERAKZR Y — M RAME L, B
EEEGENREHET, RUERREWHRASERK. (£
P, AGWNRAEREAETZELERRASRBZENE TR W
BEH. ) WAACEZF T TEWEFXABATE, EHR
AEMRE. EZTHE. ENEZANSHAAMETENK
B, AHEREFHRERATTHLARAMATE, XEEAN S
HREE—MAERTHNGERETRHENHEAN
M. MAAREZEAWHETHRALEGSHEZHNE
FXRAEBIFRAKBERERE, EHEERITE, RAW
BRH T S B MMA T RTREE T RS Flw, RE®
X [HandeRanganChiangWu08] #2 [TanChiangSrikant 11) %5 & #f £&-
B AR AEERET AN RME, ERNELASHH
EEBRURERFRLA b, RONLIHRiE 25
HARGEEFE L B EE AL RRS, EARSBERELE,
" oA KA A H ) Y48 T b Bk M E % LR R Z
% B2 K

BN RET 2o MR EEER, HEEE 2E A

vil



F-BRAUNEARKEL. (HRBXHOTERZELTE
MR BRI AN EAR, ) EhERE, ROZE—KRBT
HMREEFNBRZA, A LTHRINNIFRABERE
EEHEE, WREZHTRH S KAN . RITZHBIEHT
ZFRANG AR T ER S, ZtE, FEHETH
EEREW SN, (E8RZT, [HandeRanganChiangWu08] %
HEBRGMIEHLERETF, CECFTENAZ AW,
il [TanChiangSrikant11] 7 & £ W St LB & £ B B4 1%, &
HeHERFFZ M, ) EXLERAT, RAMNNFETUH
— S RAEFRAZATHR. KREWHEAEZEELRINHA L E
SR W B PR R B AT R B T B AR R R AR AR R
T, RINFZEWlsEE FEER T RH %,

R EZ, AWXRIAMEHRT EEH SR AR AR E
MR R XEHFHER, CTALLHFWERPTEER, 7
ARRERT FRKANFh S, RIEEXEER, BERE, &
114815, Ab Xk Ve o RAEH AL T A A fE B 8wk 77 82 P B
RAATT REmE b Ea. RINHFZERERREREES

vill



W
3

facing
x

el
I

X



Thesis/Assessment Committee

Professor YEUNG Wai-Ho (Chair)

Professor LIEW Soung-Chang (Thesis Supervisor)

Professor HUANG Jianwei (Committee Member)

Professor NAIR Chandra M. (Committee Member)

Professor LAU Vincent (External Examiner)



Acknowledgments

I would like to express my hearty gratitude to my supervisor, Professor
LIEW Soung Chang for kindly providing valuable advice, direction and
support throughout my postgraduate study. He guided me the first step
into research, from revising a sentence in a paper, delivering a message
in a presentation, to breaking an intractable problem naturally and intu-
itively into tractable pieces. His enthusiasm in research, his insight, and
his efficiency is highly impressive. His words: “To be Newton and Einstein,
to publish seminal work rather than incremental work” have been always

encouraging me to keep on going forward in my research.

I would also greatly appreciate Professor Cheewei Tan, Professor Mung
Chiang, Professor Minghua Chen, Professor Jianwei Huang, Professor Wing-
Cheong Lau, Professor Sid Chau, Professor Angela Zhang, Professor Robert
Li, Professor Anthony So, Professor Will Ng, Professor Raymond Yeung,
Professor Dah-Ming Chiu, Professor Wing Wong, Professor Ken Ma and
Professor Tony Lee for their helpful discussion and suggestion in my re-
search. Sincere thanks are also given to all other professors in IE depart-
ment, my colleagues, my friends, especially Ms. Dr. Liqun Fu, Dr. Caihong
Kai, Dr. Lu Lu, Dr. Shengli Zhang, Mr. Jianghao He, Mr. Shen Feng, Mr.

x1



Qing Yang, Mr. Taotao Wang, Mr. Lizhao You and Ms. Meng Wang, for

their encouragements and help.

Finally, this thesis is dedicated to my family. Their endless love contributes

to the source of my strength to face challenges and overcome difficulties.

x11



Contents

Introduction
1.1 OVErvIEBW . . . . o o o o e e e e e e e e e e e e e
1.2 Thesis Organization. . . . . . . . . . . . it

1.3 Notations . . . . . . . . . . e e

System Model and Problem Formulation

2.1 System Model . . . . . . ... e
2.2 Nonnegative Linear Power Constraints . . . .. ... ... ...........
2.3 Network Utility . . . . . . . . . e
2.4 Problem Formulation . . . .. ... ... . ... .. o
2.5 Characterization of T'c . . . . . . . . .

2.6 Multiple Constraints . . . . . . . . . . . . e

Nice Properties of SINR Constraints

3.1 Convexity, Differentiability and Monotonicity . . . . . ... .. .. ... ....

3.2 Fast Distributed Gradient Computation . . . . . ... ... ...........
3.2.1 Distributed SINR-Driven Single-Constrained Power Control . . . . . .
3.2.2 Network Duality . ... ... ... ... ... ... . ... .. .. ...,

3.3 The Case of Multiple Constraints . . . . . . ... ... ... ...........

X111

10

11

13

16

18



4 Network Utility Maximization in Log-SINR Domain

4.1 Single Active Constraint and Ascent Directions . . . . . ... ... .......

4.2 Multiple Constraints and Subgradient Projection . . ... ... ........

4.3 Unconstrained Equivalence and Complexity resultsof M =1 . . ... .. ..

4.4 Simulation Experiments . . . .. .. .. ... .. ... . ... .

4.4.1 Simulation Settings

4.4.2 Negative results of algorithm 6 in[7]. . . ... ... ...........

4.4.3 Negative results of Qualcomm’s load-spillage algorithm in [25]. . . . .

4.4.4 More results of our algorithms

5 Related Work

6 Conclusion

7 Appendix

X1V

32

34

39

46

52

52

54

56

62

64

68

72



List of Figures

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

networkduality . . .. ... .. . ... ...

(Sub)gradient computation of f. (B). A by product is the computation

~

of the projeetion FE0) « o « = + ww 55 ¢ 5 5 B a s 85 86 6665 8 854 58

Bijective projection mappings between Pareto frontier and 1+. . . . .

An illustrative example of the iterations in Algorithm 4.1 with I, = 2
links and M — 2 constraints. The horizontal (vertical) red (pur-
ple) arrows denote the subgradient (projection) moves. The blue and
green curves represent respectively two active constraints. . . . . . .

Algorithm 6 in [7] diverges. One link quickly grabs all power and
starves other links, resulting in the worst —oo utility just in the first
fewiterations. . . ... ... .. ... ... ...

Our algorithm 4.1 with diminishing step size rule hftf] = 1/t +1
converges to within-2% (10%)-suboptimality in 3700 (160) iterations
or 3dms (1.5ms). . . . . . . . ...

Our accelerated algorithm 4.3 with constant step size rule h[t] = 3.3
further reduce the convergence time to 14 (6) iterations or 0.33ms
(OABIAS): & 2 50 5 @ 8 68 5 @ 1 8 % 8.8 5 & 5§ B & 5 8 5 B E BE 5 & 1 B B

QLS with step-size rule 1 does not converge. The overall simulation
time is 3.5s or 1 million iterations. . . .. ... ... .. ... .....

QLS with step-size rule 2 converges extremely slowly. The overall
simulation time is 5.6s or 1 million iterations. . ... ... ... ...

Our algorithm 4.1 with diminishing step size rule hftf] = 1/t +1
converges to within-2% (10%)-suboptimality in 3700 (160) iterations
OF BTMNE (LBIAS): 5 v ¢ 66 5 @ 1 8 ¢ 8.6 5 & 5 6.2 5 8 5 658 68 5 & 1 & & d

XV



4.9 Our accelerated algorithm 4.3 with constant step size rule ht] =
0.0014 further reduce the convergence time to 800 iterations or 15ms
for within-2% suboptimality. . . . . . ... ... ... .. ... ..... 61

4.10 For proportionally fair Shannon rate allocation, our algorithm 4.1
with diminishing step size rule h[t] = 1/y/t + 1 converges to within-
2% (10%)-suboptimality in 11000 (140) iterations or 110ms (1.4ms). . 62

4.11 For an arbitrary random network of M = L = 10 random power
constraints, our algorithm 4.1 with diminishing step size rule h[t] =
1/v/t+ 1 converges to within-2%-suboptimality in only 12 iterations
O QBIMIS: = mw s m s s 5 & 3 B 5 B G M M P M B R4 P H®s W 63

xvi



List of Tables

4.1 Notation correspondence. (At optimality, \* = \*/ (psfe*).) .. 59

5.1 Comparison between algorithms in prior work and ours . . . . 65

XVii



Chapter 1

Introduction

1.1 Overview

Power control is an instrumental and fundamental technique to boost the
performance and efficiency of wireless systems. It plays a critical role in
many wireless communication systems, including LTE, femtocell, cognitive
radio and heterogeneous network, just to name a few. It is a powerful mech-
anism for energy management, interference mitigation, connectivity man-
agement and system utility maximization. It adapts the transmit powers to
combat the impairment due to channel fading and mutual interference to
ensure reliable communication and good performance. Important system
performance metrics like data rate, bit error rate and outage probability,
are related to signal-to-interference-plus-noise-ratio (SINR), which in turn

depends on power allocation.

In essence, power control is an exercise of resource sharing among commu-



nication links in the system. On one hand, a communication link must be
allocated enough power to maintain a satisfactory SINR; on the other hand,
the allocated power should not be too high to generate excessive interfer-
ence to other links, or to violate power regulations like maximal transmit-
ted power determined by the dynamic range of the power amplifier. Such
resource allocation problem is often formulated as a system utility opti-
mization problem under some power constraints, where the system utility
function is typically an increasing function of link SINRs. This is the core

problem that this thesis examines.

For scalability and deployment feasibility, we need a fast optimal power
control algorithm that is amenable to distributed implementation, which
turns out to be a very challenging problem. In general, there are two major

sources of difficulties in distributed power control:

1. The lack of global coordination and information. Each link has to
make its own decision and perform computation based on local mea-

surements and local information exchange.

2. The difficulty arising from the problem structure. For example, a non-
convex problem is hard even for a centralized solver. And in practice,

the system utility is usually nonconvex in power.

To get some insight on how the existing distributed power control algo-
rithms handle these two difficulties, we first consider the Foschini-Miljanic
algorithm [21], the most famous and widely implemented distributed power

control algorithm. This algorithm is simple, elegant and insightful: each



link just iteratively scales its power according to the ratio of its target SINR
toits current SINR. The point is that the global information needed for each
link is already summarized in the current SINR, which is locally measur-
able. However, as was pointed out in [25], the Foschini-Miljanic algorithm
only works well in the non-power-constrained scenario with feasible and
prefixed target SINR. An infeasible target SINR may keep driving the sys-
tem to increase the overall power, resulting in instability and excessive mu-
tual interference. The algorithm by itself does not provide any distributed
feasibility check, nor a mechanism for the choice and update of the target

SINRs. Therefore, it does not provide a satisfactory solution on its own.

A groundbreaking remedy, well-known as Qualcomm’s load-spillage dis-
tributed power control algorithm, is proposed in the seminal work [25]. As-
suming special box power constraints or box interference constraints, [25]
first discovers an analytical framework to transform the nonconvex prob-
lem in power domain to a convex problem in SINR domain, which works
for a broad spectrum of practical system utilities. This turns the power
control problem into an “SINR control” problem, which turns out to have
a distributedly computable ascent direction for a “suitable choice” of step
size. Accordingly, the two-time-scale iterative load-spillage algorithm com-
putes this ascent direction and updates the target SINRs in its large-time-
scale iteration process; and for each and every target SINR update, runs
a small-time-scale patched Foschini-Miljanic power control algorithm. The
patch to the Foschini-Miljanic algorithm is suggested only for the special
cases of box power constraint and box interference constraint: Each link is

responsible for the feasibility check for its own constraint. If its constraint



is violated, it will automatically “penalize” itself by reducing its own target

SINR.

Although [25] claims its load-spillage algorithm to be optimal, we discover
that oftentimes this claim may be invalid. Instead, the algorithm contains

several drawbacks as follows:

1. It fails to provide a general valid step size rule, and a corresponding

rigorous proof of convergence. Nor a complexity bound.

2. The “penalization” in the patched Foschini-Miljanic algorithm also

subjects to a similar step-size-rule issue.

3. It only provides two empirical step-size rules. Simulation shows that,
usually, applying these rules result in non convergence or very slow
convergence. Therefore, they are by no mean “suitable choice” in gen-

eral.

An alternative remedy is given by the algorithm 6 in the recent work [7].

It is quite similar to the load-spillage one, except that

1. The analytical framework of [7] assumes a special sum power con-

straint.

2. The large-time-scale SINR update in algorithm 6 is done by a gradient

projection algorithm.

3. It fixes the small-time-scale Foschini-Miljanic algorithm by adding a

normalization step, relying on the special structure of the sum power



constraint. This normalization ensures that the target SINRs will
always return to the feasible region where the Foschini-Miljanic algo-

rithm works well.

Coincidentally, we also disprove the claim of optimality in [7] and discover

a number of its defects and errors:

1. Our analysis showed that its gradient projection algorithm does not
generate ascent direction of the system utility in general, and its proof

of convergence is incorrect. The complexity bound is also missing.

2. Simulation shows that, its algorithm 6 could diverge in the first few

1terations.

Therefore, the optimal solution to the problems above was still pending
after [25] and [7], and to our knowledge, no one had filled the gap until this

thesis.

As will be shown, this thesis fills the gap, and solves a more general dis-
tributed SINR-based utility maximization problem with multiple linear
power constraints applicable to LTE as well as cognitive radio. We con-
struct a theoretical framework that simplifies the formulation and anal-
ysis of the core problem drastically. With the framework, we propose an
optimal distributed (sub)gradient projection algorithm with provably valid
step size rules. A thorough and rigorous convergence proof and complex-
ity analysis are also given. We further identify the sources of the defects

and several disadvantages of prior algorithms. Extensive simulation ex-



periments demonstrated the superiority of our algorithm over prior algo-
rithms in terms of both solution optimality and convergence speed. For in-
stance, under certain scenarios, our algorithm achieves at least 100 times
faster convergence. In the long term, we believe the algorithms and the
theoretical framework established in this thesis will open doors to new dis-
tributed optimization techniques in other wireless communications prob-

lems beyond power control.

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 presents the system model, background knowledge of linear
power constraints, network utility functions and problem formulation. Specif-
ically, we show how to transform linear power constraints to SINR con-

straints, a key step to simplify our problem.

Chapter 3 shows some nice properties of the transformed SINR constraints

that facilitate distributed fast optimization.

In Chapter 4, we establish optimality conditions, propose fast optimal dis-
tributed algorithms with proof of convergence and analysis of convergence
rate. We also evaluate its performance and show its correctness and effi-

ciency over prior algorithms via simulation experiments.

Chapter 5 compares our work with prior work and highlights our contri-

butions.



Chapter 6 concludes this thesis and remarks on future research directions.

Appendix collects lengthy proofs and some subtle remarks.

1.3 Notations

The following notations are used. Boldface uppercase letters denote ma-
trices, boldface lowercase letters denote column vectors, and italics denote
scalars. For component-wise matrix (vector) comparison, A > B (u > v)
implies A — B (u — v) is nonnegative, A > B (u > v) implies each ele-
ment of A — B (u — v) is positive, and A = B (u = v) implies at least
one element of A — B (u — v) is positive. For symmetric matrices A and
B, A > B implies A — B is positive semi-definite. The Perron-Frobenius
eigenvalue of a non-negative square matrix B is denoted by p(B), and
the Perron (right) and left eigenvectors of B associated with p(B) are de-
noted by x(B) and y(B), respectively. The superscripts ()7 and (-)" de-
note transpose and complex conjugate transpose, respectively. For an [ x 1
vector x, we denote e* = [e*, ... e"L|T, logx = [logay,...,logxr]T, and

i, e i]T . The diagonal matrix formed by the components of x

x 1=
is denoted by diag(x). The element-wise product of I x 1 vector x and y is
denoted by x oy := |11, ..., 2y.]T. For a positive integer L, denote by (L)
the set {1,...,L}. Let P: X — Y be a mapping from the space X to the
space Y. For a subset 7 C X, we denote by P(Z) the image of 7. Finally,
e; denotes the /th unit coordinate vector, I denotes the identity matrix, and

0, 1 respectively denote the all zero and all one matrix (or vector) whose

dimensions can be easily inferred from the context.



Chapter 2

System Model and Problem

Formulation

2.1 System Model

Consider a general wireless system consisting of . logical unidirectional
links labeled 1, ..., L. We use nonnegative vector p = [p,...,pr]” to denote
the transmit power vector in which p; is the transmit power of link {. We
also use L x L positive matrix G = [Gy;],, , and L x 1 positive vector n —
[n1,...,n1]T to specify the channel power gain and noise power, respectively.
Specifically, G;; is the channel power gain from the transmitter of the jth
link to the receiver of the ith link, and »n; is the power of additive white
Gaussian noise (AWGN) at the /th receiver. We adopt the conventional
Gaussian interference channel model and assume a linear matched filter at

each receiver (treating multiuser interference as AWGN). Then the Signal-



to-Interference-plus-Noise Ratio (SINR) for the /th user is defined as the
ratio of the received signal power G;p; to the cumulative interference plus

noise power ¢; = 3 ) Giip; + ni. We denote it by ~: v = Gupi/¢i. Let

JALj€
v o= |v,...,v|t and ¢ = [¢1,...,¢.]7 . When G and n are given, v is a
functional mapping of p. To specify this mapping in a compact form, let
g = |Gi1,...,Grr]t be the vector formed by the main diagonal of G, and
G = G — diag(g) be a punctured version of G by setting its main diagonal
to zeros. Then v(p) = g o po ¢~! where ¢ = Gp + n. On the other hand, to

get the inverse mapping p(v), we have

p = diag(y o g~ )Gp + diag(yog™")n, (2.1)

from the defining equation of SINR. It is well-known that if v € I' := {~ :
p(diag(vog™")G) < 1,7 > 0}, (2.1) has a unique solution p(v) = [I — diag(yo
g 1G] 'diag(yog~"')n; otherwise, there is no solution. Hence, v(p) : RY — T
and p(y) : I' = R} are a pair of inverse mappings, which characterize the
one-to-one correspondence between points in unconstrained power domain

R* and SINR domain I' (see, e.g., Lemma 2.1 in [8]).

2.2 Nonnegative Linear Power Constraints

Power is limited by many practical concerns in wireless communication,
and many of them can be modeled as a set of nonnegative linear power
constraints. As an example, in cognitive radio, the secondary users are

not allowed to generate excessive interference at certain frequency band



to avoid affecting the operation of the primary network. To guarantee
this, FCC proposed that interference-temperature constraints be imposed
to regulate the secondary network [9]. Control stations of the primary
network will monitor the cumulative interference from the secondary net-
work and perform access control to make sure such interference is below
a prescribed power threshold. Let p; be the transmit power of the [(th
link in the secondary network, G.,; be the channel power gain from the
transmitter of [th link to a control station and P+ be the threshold, then
the interference-temperature constraint is a nonnegative linear power con-
straint } ) Gesipr < Prr. Other popular examples include individual link
power constraint p; < p;, VI € (L) [5, 251, sum power constraint 1”p < P[7],
individual link interference constraint > ey Gupitme = ¢y < o,V € (L)
[25], just to name a few. We note that any nonnegative linear power con-
straint can be specified in the form of ¢c”p < 1 where ¢ 2 0. For instance,
we have ¢ = [Goo1/Prr, . . ., Ges.r./ Prr]* for the cognitive radio case, ¢ = e;/p;
for the individual link power constraint of link /, and ¢ = 1/P for the sum

power constraint.

2.3 Network Utility

In this thesis, we consider the same family of network utility functions as
in [7] and [25]. Every utility U(y) is strictly increasing with link SINRs
~v. To enable distributed implementation, we assume that the utility is a
product form or summation of separable terms of the SINRs of different

receivers. Thus our network utility can be written as U(v) = > 1y Ui().

10



(For product form, just take logarithm.)

In this thesis, we limit our scope to convex optimization. For reasons that
will become clear later, we assume that U;(~;)’s are concave in log~,. For
analytical tractability, we also impose a mild condition that U,(v)’s are
twice continuously differentiable. We notice that this utility family cov-
ers a broad spectrum of system performance metrics in practice. An ex-
ample is the o-fair utility functions defined on the Shannon rate function
r(v) with @ > 1 [25]. Shannon rate function r(v;) = K;log(l + Kyv) is of
critical importance in digital communication. Different positive constants
K, and K, can model Shannon capacity and realistic link rates under dif-
ferent bandwidth allocation schemes, modulations and BER requirements.
When o = 1, the utility represents proportionally fair link rate allocation:
U(v) = iy log(r(v)). When a > 1, the utility stands for o-fair link
rate allocation: U(y) = > iy [r(v)]'=*/(1 — a). Yet another example is
the weighted proportionally fair SINR allocation U(y) = 2.z, wilog(v).
It is regarded as a good approximation to the weighted sum rate utility

U(v) = 21y wilog(l + ) at the high SINR region.

2.4 Problem Formulation

The core of our thesis is to solve the following general network utility max-

imization problem with A/ nonnegative linear power constraints:

11



max  U(v(p))

p=>0

s.t. cflp <1, Vme (M). (2.2)

The primary hurdle is the nonconvexity of U(v(p)) in p, induced by the cou-
pled mutual-interference terms in the denominator of the SINR. The prior
work [7] and [25] investigated the special cases of problem (2.2) with spe-
cially chosen simple power constraints. The former considers a sum power
constraint (M = 1, ¢ = 1/P ) while the latter a box power/interference
constraint (M = L, p < p or ¢ < ¢). With the benefit from the special prob-
lem structure, they provide different angles of attack to make the prob-
lem convex. The former overcomes this hurdle by transforming the sum
power constraint to a convex log-SINR constraint and optimizing in the
log-SINR domain. The latter transforms the power/interference domain to
the load/spillage domain. As will be shown later with our unifying frame-
work, these two approaches are equivalent. Our transformation in princi-
ple follows [7], yet with a nontrivial generalization to resolve issues arising
from the general linear power constraints. More importantly, we provide a

correct fast optimal distributed solution to the transformed problem.

We commence our study by deriving the image of a single power constraint
{p:cfp < 1,p > 0} in SINR domain, denoted by I'.. It is an entry point
to further tackle the complicated case of multiple constraints {p : cIp <

1, ¥m € (M),p >0} .

12



2.5 Characterization of ['.

To characterize I, it suffices to find the Pareto frontier of I'., denoted by

I, thanks to the following monotonicity property of I'.:

Lemma 1. The function p(v) is monotone on ...

p(y) > pB)ifyelcandy> 3> 0. (2.3)

Equality holds if and only if v = (5. Furthermore, the set I'. is monotonic

with respect to the order >. That is, if v € ' and v > 3 > 0 then § € I'...

(For the proof and remark, please refer to Appendix A.)

Given I'., the SINR region can then be represented by I'. = {v : 38 ¢
[e,3 > ~}. More importantly, in many realistic scenarios where the net-
work utilities are component-wisely increasing with ~ , the optimal v must
locate on the Pareto frontiers. One can hence restrict the focus on ', with-
out compromising optimality, as seen later. To figure out I'., without loss
of generality, we consider the case v > 0. In the remainder of this section
, we show an essential property that I'. is the image of c’p — 1, given by

{~v: p(diag(y o g=)(G + ncT)) = 1}. Specifically, we will demonstrate that

1. ¢’'p(y) = 1 is necessary for Pareto efficiency;
2. c'p(y) = 1is equivalent to p(diag(y o g ')(G + nc”)) = 1; and

3. p(diag(vog ") (G + nc’)) = 1 is also sufficient for Pareto efficiency.
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Indeed, recall the definition of SINR that v, = Gllpl/(Zj;ﬁl,je(M Giipj+m), vl €
(L). We have p > 0 and ¢p > 0 from v > 0. For any feasible p, if
c’p < 1, one can always proportionally increase the power p by a factor
of a = 1/cp. Then ap is feasible (c’ap = 1) and yields strongly Pareto
dominant SINR performance v(ap) > v(p) (viap) = Gupi/ (324 jeqry Guipi +
mifa) > Gupr/ (35 5ey Guypi +m) = w(p),Vl € (L)). Therefore c'p = 11is

necessary for the Pareto efficiency.

To see the image of {p : p > 0,c'p = 1} in the SINR domain, we note the

following lemma adapted from Theorem 6 and Lemma 8 in [1].

Lemma 2. Let A be a nonnegative irreducible matrix, and b,c = 0 two

nonnegative vectors. Then the conditional eigenvalue problem

Ap=Ap+b, AeR, p>0,clp=1

has a unique solution ()., p.), where )\, = p(A + bc?) and p, is the unique

normalized Perron vector of A + bc”.

As a consequence, the equation p = (Ap + b)/[cT(Ap + b)| has a unique

nonnegative solution, which is p,.

We defer the proof and remark to Appendix B.

Apply this lemma to equation (2.1), by letting A = A\, = 1, A(y) = diag(v o
g G, and b(y) = diag(y o g~')n. Notice that v > 0 and G > 0 implies that
A(v) = diag(yog=!)G is irreducible. Sois A(vy) +b(y)c” = diag(yog " )(G +

nc!). We can see that any positive v in {7 : p(diag(y o g )(G + nc?)) = 1}
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corresponds to a unique positive Perron vector of diag(yog™!)(G+nc?), p(v),
which satisfies ¢! p(y) = 1. On the other hand, for any positive p satisfying
c"p =1,7(p) = gopo(Gp+n)~" must satisfy p(diag(y(p)og™")(G+nc”)) = 1
and v > 0. This establishes the one to one correspondence between {~ :
p(diag(vog™ (G +nc?)) =1,v>0}and {p: p > 0,c”p = 1}. For brevity,

we let B denote diag(g™')(G + nc”) in the following discussion.

Now we are ready to show that c’p = 1 (or equivalently, p(diag(v)B) = 1)
is also sufficient for the Pareto efficiency in I'.. Suppose this is not the
case, i.e., there exists a non Pareto efficient v satisfying {p(diag(v)B) =
1,v > 0}. Then there also exists a 5 such that § =2 v > 0 and § € I'.. For
any irreducible nonnegative matrix A, p(A) is a strictly increasing function
of the elements in A [10]. Hence p(diag(6)B) > p(diag(~v)B) = 1, which
leads to cT'p(B) # 1. Since 3 € I'., we must have c’p(3) < 1. However,
g = v > 0 implies p(8) = p(y) > 0, which leads to a contradiction 1 =
cT'p(y) < cT'p(B) < 1. This justifies the Pareto efficiency of p(diag(~)B) = 1.
In fact, for any v > 0, let a = p(diag(+v)B), then v/a is on the Pareto frontier.
Therefore, we have v € ['. if ¢ < 1 and v ¢ ['. otherwise. To summarize,

I'e ={v: p(diag(v)B) < 1} for the case v > 0.

The case where some components of v are 0 is similar. We leave it in Ap-
pendix C and summarize the above discussion by the key theorem of this

thesis.

Key Theorem: The nonnegative linear power constraint c'p < 1 is equiv-
alent to the SINR constraint p(diag(v)B) < 1. In particular, c'p = 1 is

equivalent to p(diag(v)B) = L.
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2.6 Multiple Constraints

Note the above discussion can be further generalized. Similar equiva-

lence exists in the presence of multiple constraints, that is, feasible regions

{p: max(clp) <1} = N {p: clp<l}<= NI, = N {v:
me (M) me (M) me (M) me (M)

p(diag(v)By) < 1} = {v: m%>p(diag(7)Bm) < 1}, and their corresponding
me

Pareto frontiers {p : max

me(M)

the same token, Lemma 2 can be readily enhanced:

(chp) =1} = {7: Jnax p(diag(y)Bm) = 1}. By

Lemma 3. Let A be a nonnegative irreducible matrix, and b, c,, = 0, Vm €

(M) nonnegative vectors. Then the conditional eigenvalue problem

Ap=Ap+b, AeR, p>0, max (cp)=1
me(M)

has a unique solution (\,,p.), where )\, = ngrel?%p(A + bel) and p, is the
unique normalized Perron vector of A + bcl,. Here m, can be arbitrary
element in the set arg maxp(A + bcl). Different choices of m, (if applicable)
result in the same n%ianz;lized Perron vector p,.

As a consequence, the equation p = (Ap+b)/ m?%[cfz(Ap + b)| has a unique
me

nonnegative solution, which is p..

See Appendix D for the proof. It is worth pointing out that this enhanced
lemma can help us in the sequel to cherry pick an active constraint from
a set of constrains, which reduces the multi-constrained problems to easily

solvable single-constrained problems.

Finally, we can reformulate our problem (2.2) in the SINR domain:
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max  U(y)

720

s.t.  p(diag(v)Bn) <1, Ym e (M), (2.4)

where B,, = diag(g~")(G + ncl), Ym € (M).

m
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Chapter 3

Nice Properties of SINR

Constraints

HE key theorem provides a way to transform network utility max-
T imization problems from the power domain to the SINR domain.
However, compared with the linear power constraint c’p < 1, the SINR
constraint p(diag(v)B) < 1 looks much more ugly and complicated. Worse
still, its closed form is usually unavailable. One may doubt whether this
transformation is helpful. We will remove this doubt by demonstrating
some nice properties of this SINR constraint and show how they facili-
tate efficient distributed optimization. In the following, we will continue
to focus on the all-active case where v > 0. We suggest a change of vari-
able v = ¢7 so that we can also operate in the log-SINR domain. Log-
SINR vector is denoted by 4 = [%1,...,49z]7 where 5, = log~,Vl € (L).
Then the log-SINR constraint becomes log p(diag(e’)B) < 0, and we use

logl', = {# : log p(diag(¢")B) < 0} and log'. = {# : log p(diag(e")B) = 0} to
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denote the corresponding feasible log-SINR region and its Pareto frontier.
We show that the function fg (%) := log p(diag(c7)B) is convex, differentiable
and strictly increasing. Moreover, its gradient can be computed distribut-
edly and efficiently, thanks to the intrinsic network-duality structure of
B = diag(g™')(G + nc?). This paves the way for the distributed optimiza-

tion algorithm in next chapter.

3.1 Convexity, Differentiability and Monotonic-

ity

Convexity is one of, if not, the most important properties in optimization.
The convexity of fg(5) has been proved 30 years ago ([11]). Here we give
an alternative “proof” by adding this new function to the cvx ([12]) library.
So far, fg(%) has not been a standard library function in today’s convex
optimization tools. For others’ convenience, we provide its source code in
cvx, one of the most popular Matlab-based modeling systems for convex
optimization. The idea is similar to that in section 4.5.4 of [19]. One can
readily use this function by simply downloading and incorporating the file
“logPFeig.m” ([11]) in the Matlab search path. We leave the details and
explanation of this file to Appendix E. A direct consequence of convex [ (%)
is that the feasible log-SINR region governed by any set of nonnegative
linear power constraints must be a convex set. In addition, we can easily

compute V [B(7).

Lemma 4. V f3(%) = x(diag(e")B) o y(diag(e")B), where the right and left
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Perron eigenvectors are normalized such that y(diag(e?V)B)x(diag(eV)B) =

1.

Remark: The proof is given in Appendix F. An alternative proof is to apply
the generalized Friedland-Karlin inequalities ([15]) to find out the unique
supporting hyperplane to the convex set fg(%) < 0 at any point on its Pareto

frontier, as shown in [8].

The strictly increasing monotonicity of fg(7) follows directly from the fact
that the right and left Perron vector x(diag(e’)B) and y(diag(e”)B) are pos-
itive, which implies the positivity of V fg(%) . This again justifies that the
Pareto frontier of log'. is {7 : fg(%) = 0}.

3.2 Fast Distributed Gradient Computation

Surprisingly interesting is the fact that the gradient V 5 (5) = x(diag(¢7)B)o
y(diag(e7)B) has a fast distributed computation algorithm inspired by net-

work duality. This is realized in three steps:

1. Distributed power control to compute x(diag(e?)B) which is the “Pareto

optimal primal power”.

2. Distributed power control to compute y(diag(e’)B) which is the “Pareto

optimal dual interference plus noise”.

3. Normalization.

The following derivation is a non-trivial generalization from the special one

in[7] assuming M = 1,c = 1/P and n — 1.
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3.2.1 Distributed SINR-Driven Single-Constrained Power

Control

First, to compute x(diag(e’)B), recall that the application of Lemma 2 to
equation (2.1) provides a fixed-point equation p = (Ap + b)/[c! (Ap + b)]
that has a unique positive solution p, = x(diag(5)B). Here A(5) = diag(f o
g VG, b(B) = diag(8og)n and 8 > 0 is on Pareto frontier such that

p(diag(5)B) = 1. An algorithm can be designed as follows:

Algorithm 3.1 Centralized Single-Constrained Power Control
1. Input: 5, G, n.

2. Initialization. Compute parameter A — diag(3og™')G and b = diag(3o
g~ Yn, and choose an initial p[0] such that c’p[0] > 0.

3. Tteration. For k = 0,1,2,..., compute p|k+1] < (Apl|k|+b)/[cT (Ap|k|+
b)| iteratively until {p[k|} converges to p,.

4. Qutput: p,.

The convergence of this algorithm is guaranteed by Lemma 5 below. For
Pareto efficient § > 0, this algorithm will converge to p, = p(3). For other
B >0, let p(diag(8)B) = A. Then g/\ > 0 is Pareto efficient. Noting that

APp +bB) AB/Np BN
cTIAB)p+b(B)]  cT[A(B/Np+b(5/N)]

we have p, = p(5/)). So we can interpret the algorithm input 5 as a “target

SINR”. The above algorithm then computes p., = x(diag(5)B) whose corre-
sponding SINR ~(p.,) is proportional to 5: v(p.) = 5/p(diag(5)B). Note that

v(p«) lies on the Pareto frontier. Indeed, it is the intersection of the Pareto
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frontier I'. and the straight line passing through the origin and 3. Intu-
itively, we can view v(p,) as the “projection” of 3 onto I'.. In other words,
this algorithm computes the optimal solution p, to the single-constrained

weighted SINR balancing problem

. ’YZ(P)
max min .
p:eTp<lpz0 1 &1

The optimal value is 1/p(diag(5)B). Viewed in the log-SINR domain, the
algorithm projects the target log-SINR vector 5 = log 3 to its Pareto effi-
cient correspondence 5 — 1log p(diag(eB )B). The projection movement is in

1 direction. Specifically in the case L. = 2, it is a 45-degree line.

Importantly, the above algorithm has a distributed equivalence:

Algorithm 3.2 Distributed SINR-Driven Single-Constrained Power Con-
trol

1. Initialization. Each link | € (L) sets its own target SINR /5, and
chooses initial power p;[0].

2. Iteration. In [k+1|th iteration, each link [ first updates its power p; [k +
1] « [Bi/v(p[k])]pi[k], then normalizes pi[k+1] < pi[k+1]/ 3¢y cmilk+
1].

3. Termination. Iteration will not stop until convergence to p, (or some
prescribed stopping criteria are satisfied). Then every link [ obtains
its own (p,); and x;(diag(8)B) = (p.«):.

Remark: In general, the weighted sum power ), () Al |k-+1] in the normal-
ization step can be computed using the fast distributed gossip algorithm at
each link [16]. In the special case like cognitive radio, the control station
can simply measure the cumulative interference (3_, ;, cipi[k + 1]) from the

secondary network and broadcast.
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This distributed algorithm is simple and insightful. In every iteration, each
link first performs a Foschini-Miljanic distributed power control step [21]
(i.e., to scales its power according to the ratio of target SINR to current
SINR), and then re-scale its power again to meet the power constraint.
Every normalization make sure that the resultant SINR is Pareto efficient.
Better still, its convergence is guaranteed to be geometrically fast under a
mild condition on the initial power, thanks to the following lemma adapted

from Theorem 1 in [2].

Lemma 5. Let T be the mapping operator such that

= T(Ap1b)’

where A(B) = diag(B o g~ V)G, b(3) = diag(f o g™")n and 3 > 0. Then
limy_,oo T%p = p. for all p : I'p > 0. The convergence speed is geometri-

cally fast.

The proof and remark can be found in Appendix G.

To sum up, in the first step, we distributedly compute the Pareto efficient
power vector x(diag(e?’)B) by algorithm 1 with target SINR 3 = ¢7. The

resultant SINR vector is the “projection” of 3 onto I'., the gap is a factor of
1/p(diag(5)B).

3.2.2 Network Duality

The second step is to compute y(diag(5)B) from the target SINR 5. Sur-

prisingly, this is readily done by a slight modification of algorithm 2, owing
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to the nice network-duality properties. To see this realization, construct a

dual network using the following rules adapted from [17]:

1. “Reverse the directions of all links.” For each link, a primal transmit-

ter (receiver) becomes a dual receiver (transmitter).

2. Replace the channel power gain matrix G by its transpose G”. If the

channels are reciprocal ([18]), operation 1 already achieves this goal.

Practical examples of reciprocal wireless channels are those in time-division
duplex (TDD) wireless systems, such as 802.11, 802.16, and TD-LTE. Through-
out this thesis, for simplicity, we assume reciprocal channels unless other-
wise specified. (The non-reciprocal case will be addressed in Remark 1
under Algorithm 3.3.) Then the dual network is simply constructed by

switching the roles of transmitter and receiver in each link.

Between the primal and dual network we will see a beautiful symmetry.
In the remainder of this section, for any parameter (p,¢,v,G,g,G,n,c or
B) in primal network, we add a subscript d to denote its counterpart in the
dual network. Then by definition, we have G, — G”,g; — g and G, — G”.

Furthermore, we have the following useful network-duality lemma.
Lemma 6. If c;n] = nc?, then both primal and dual networks share the

same SINR region (and Pareto frontier as well).

Proof. Let F := G + nc and F; := Gy + ngcl. If ¢ynl = nc?, then we have
F, = FT. Note that p(A) = p(AT) and p(DAT) = p(AD) = p(DADD™!) =

p(DA) for any matrix A and invertible diagonal matrix D. Hence the SINR
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region of the dual network is {~; : 1 > p(diag(ya o g; " YFa) = p(diag(va o
g~ F)},which is the same as the primal network. O

Lemma 6 leads to many profound consequences. One of them is the fact
that any Pareto optimal SINR vector +* has its one-to-one correspond-
ing primal power p* := p(v*), primal cumulative interference plus noise
¢* = gop* o v*~1, dual power p% := py(7v*) and dual cumulative interfer-
ence plus noise ¢ = gopj o v !, given c;nl = nc’. Here we add a su-
perscript x to denote Pareto optimality of parameters. Surprisingly, they
have rather simple and symmetric relationships. Define the diagonal ma-
trix D* = diag(y* o g7'). From this definition, we have p* = D*¢* and
p; = D*¢5. At Pareto optimality, since ¢/p* = 1 and cIp} = 1, we also
have ¢* = Fp* and ¢; = Fypj. Then we can get ¢; = F,D*¢; and hence

* = x(FTD*) = y(D*F) = y(diag(~+*)B). Similarly, we can solve p*, ¢*
and p} in terms of F and D*. Their subtle relationships are summarized
in Figure 3.1. Based on what we have intensively discussed in the former
section, we can see the left Perron vector y(diag(3)B) is the Pareto efficient
cumulative interference plus noise ¢} corresponding to the target SINR /3

in the dual network, given c;n’ = nc?.

Now the question remains how to make sure c;n] = nc’. A simple way

to implement this is to force ¢; = n and n; = c. However, in the real net-
work, the noise vector at the dual receivers (i.e., the primal transmitters)

ny is not controllable and with high probability n; # c. Luckily we have
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P =x(D*F)| |6} =y |

¢* =x(FD*)| |p,” =y(FD*)

Figure 3.1: network duality

the following trick. For each dual link [, the cumulative interference plus

noise it perceives is ¢q; = > «y Gatjpa; + nay. Since link [ can estimate

N VIS

na4u, it can extract the cumulative interference ) «ry Gajpaj, compute a

J#lj€
virtual camulative interference plus noise ¢y = >_, 4 ey Gaypa; + ¢ and
scale its power accordingly. Then we have the following distributed algo-

rithm:

Algorithm 3.3 Distributed Computation of y(diag(5)B) in Reciprocal
Channels

1. Initialization. Reverse the link direction to construct the dual net-
work. Each link [ € (L) setsits own target SINR 5, and chooses initial
power pq,[0].

2. Iteration. In [k + 1]th iteration, each link [ first computes its vir-
tual cumulative interference plus noise from its perceived counter-
part: ¢, (palk]) = ¢ai(palk]) + (¢ — nas), then updates its power
pailk + 1] < Bidoi(palk]) /g, and finally normalizes pg, |k + 1] < pay|k +
1/ > ey mapaalk +1].

3. Termination. Iteration will not stop until convergence to ps.. Then
every link [ obtains its own (¢,.);, and y;(diag(8)B) = (v« )i-
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Remark:

1. For non-reciprocal channels, each link [ can still use gossip algorithm

to compute the cumulative interference ) | iy Gitpa,j, and then com-

RRE
pute ¢, ;. In this case, distributed implementation is still feasible, al-

beit complicated.

2. The above results of network duality and distributed power control
are also applicable to MIMO beamforming networks. (See [7] for more
details.) As a focus, this thesis will limit its scope to power-based
SINR optimization without considering the optimization in beamform-

ers.

Note that x(diag(5)B) and y(diag(5)B) computed in the first two steps
are unique up to a positive scaling factor. The computation of V [p(5) =
x(diag(e")B)oy(diag(e?)B)/x(diag(e’)B)Ty(diag(e”)B) requires another nor-

malization, which is easily done by invoking the gossip algorithm again.

As a summary to these two sections, we have shown that the function
f8(%) = log p(diag(¢7)B) is convex, strictly increasing and differentiable.
Its gradient V [g(%) = x(diag(e")B) o y(diag(e’)B) can be computed dis-
tributedly and efficiently.

3.3 The Case of Multiple Constraints

We now consider the generalization to the multi-constrained feasible log-

SINR region () logl., = {¥: mex, log p(diag(e¥)B,,) < 0} and its Pareto
me({M) me
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frontier {7 : ngrel?% log p(diag(e¥)B,,) = 0}. Despite of the certain nondiffer-
entiability introduced by the max operator, the case of multiple constraints
largely inherits the nice properties of its single-constrained counterpart.
For example, the function f(%) £ ngrel?% log p(diag(e?)B,,) 1s still convex, and
thus continuous, since n£I€l<aX operator preserves the convexity of the com-
ponent functions log p(diag(e?)B,,), Ym € (M). Moreover, it is piecewise
differentiable and always subdifferentiable. Let AI(3) = {m : fg, (%) =
f(3)} denote the index set of “active” component functions at 4. Then the
subdifferential df(%) is the convex hull of {V [, (3)|m € AI(%)}. In par-
ticular, if AI(7) = {m(%)} is a singleton set, then f(7) is differentiable:
V/(#) = Vs, (7). In practice, this happens with high probability. In
case that f(%) is nondifferentiable at ¥, then A/(%) must contain more than
one element. Any gradient V /g (%), m € AI(%) of active component func-
tions still serves as a subgradient of f(%). Further, due to the positivity of
{V [, (7)) Ym € (M)}, f(7) is strictly increasing. These results are based on
the well-known elementary convex optimization theory and can be found in,
say, [14]. Of critical concern is whether efficient distributed (sub)gradient
computation is still available. The answer is “Yes”, thanks to the power-
SINR equivalence relationship max (cI p(v)) < 1 < 77grel?%p(almg(fy)Bm) <

me(M)
1, Lemma 3, and Lemma 7 given below.

Lemma 7. Let T be the mapping operator such that

~ Ap+b

Tp = = :
Ap +b
Jfé%cm( p+b)

where A(B) = diag(f o g )G, b(B) = diag(3 o g )yn and 3 > 0. Then
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limysoe T%p = ps for all p : m?%(cfzp) > 0. The convergence speed is ge-
me

ometrically fast.

Lemma 7 is the multi-constrained counterpart of Lemma 5. Their proofs

are similar. Interested readers are referred to the remark in Appendix G.

Using Lemma 7 we can develop the multi-constrained counterpart of Algo-

rithm 3.2,

Algorithm 3.4 Distributed SINR-Driven Multi-Constrained Power Control

1. Initialization. Each link | € (L) sets its own target SINR /5, and
chooses initial power p;[0].

2. Iteration. In [k + 1]th iteration, each link / first updates its power
plk + 1 <« [6i/v(plk])|pi|k], then normalizes plk + 1| < plk +
1)/ et (S Conapilk + 1)

3. Termination. Iteration will not stop until convergence to p, (or some
prescribed stopping criteria are satisfied). Then every link [ obtains
its own (p.); and x;(diag(8)B.,) = (P«

4. Interface to Algorithm 3.3. All links also agree on the final ac-
tive constraint whose index is an arbitrary element m, in the set

argmax(cl p,). Such constraint will be assigned to Algorithm 3.3:
me(M)
C ¢ Cpy,.

Remark: Again, in general, the weighted sum powers Zl€< 1) CmD1 [k+1] Vm €
(M), their maximum in the normalization step and the final consensus on
m, can be computed using the fast distributed gossip algorithm. An extra
O(M) factor in complexity is expected over that of the single-constrained

case.
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Similarly, the above algorithm computes p. = x(diag(5)B,,,) with target
SINR /3 to get a projected Pareto efficient SINR

Y(ps) = ﬁ/ngg%p(diag(ﬁ)Bm),

where m, € Al(log|v(p«)]). In other words, it computes the optimal solution

p« to the multi-constrained weighted SINR balancing problem

7(p)

max min ——-.

p:mrg?%(t?%p)él,pio l B

The optimal valueis 1/ 77grelia%p(aliag(ﬁ)Bm). Viewed in the log-SINR domain,
the algorithm projects the target log-SINR [ to its Pareto efficient corre-
spondence 7(5) £ 5 —1 ngrel?% log p(diag(eB)Bm). The projection movement is
still in 1 direction. (We will see in next chapter that 1 is a special direction
which serves as the key of our network utility maximization algorithm.)
Likewise, the corresponding distributed (sub)gradient computation is effi-

ciently done by invoking both algorithms 3.4 and 3.3 (cf. Fig. 3.2). It re-

turns the gradient of f(4) once differentiable, and a subgradient otherwise.

As observed in all of our simulation experiments, the above algorithms 3.2,
3.3 and 3.4 converge very fast . For example, we observe that after 10

iterations, the maximal link-wise relative error of SINR

i Y (p[10]) — v (ps)
I€(L) Yi(P+)

is bounded by a tiny constant, 0.12%. In other words, ~(p[10]) is already
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< Alg.3.4

/

Target log-SINR ﬁ < m. e 4L(n(B))| € <c,,

p”‘ i ¢v*
p"‘Tq)v"‘

Gossip Alg. —

..

N Alg.3.3 I

Figure 3.2: (Sub)gradient computation of B (B). A by product is the compu-
tation of the projection 7 (5).

a fairly good approximation of v(p,) in practice. Hence, we will adopt this

10-iteration termination rule in our subsequent simulation.

Now we are ready to solve our core problem.

31



Chapter 4

Network Utility Maximization

in Log-SINR Domain

N what follows we will propose our algorithm to solve the network util-
I ity maximization problem (2.2), together with a simple convergence
proof and complexity analysis. We will evaluate its performance by simula-
tion experiments and demonstrate its advantages over algorithms in prior

work [7] and [25].

We first show that our problem is a well-defined convex optimization prob-
lem with a unique solution. By transforming (2.4) to the log-SINR domain,

our problem becomes

st.  logp(diag(e")B,,) <0, ¥Ym e (M), 4.1)

32



where B,, 2 diag(g~)(G 4+ ncl), VYm e (M), and U(%) £ U(e?). To specify
our problem in a compact form, let j,,,(3) = log p(diag(e¥)B,,). Then (4.1) is

rewritten as

Recall that our assumption on U(v) in section 2.3 is equivalent to that
UR) = > e U,(4;) is concave, twice continuously differentiable and strictly
increasing with 4, where U;(3,) £ U;(¢™). Therefore our problem is a con-
vex optimization problem. Based on the nice properties pertaining to the

special direction 1, we show the following lemma.

Lemma 8. The convex problem (4.1) has a unique global maximum and

zero duality gap.

Proof For any realistic system, the power p is always bounded above, and
the noise n is always positive and bounded away from 0. Therefore the
SINR region is bounded. It is also closed (c.f. the “<” in the SINR con-
straints). From the well-known Weierstrass Theorem, a continuous U(7)
can always attain its global maximum in the closed and bounded SINR re-

gion (in fact, on the Pareto frontier due to the strict monotonicity of U (v)).
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So can U(%). This proves the existence of a global optimum. Consequently,
any local maximum is also global, and the set of all global maxima is con-

vex.

Next, we prove by contradiction that the global maximum is unique. Sup-
pose there are two distinct global maxima 3 and /3. Since they are Pareto
optimal, we must have 3/ — 3 # a1, Ya € R. Then 5" = (3’ + ()/2 must be
a global maximum as well, due to the convexity of the global maxima set.
However, note from [11] that p,,,(%) Vm € (M) is strictly convex except in the
direction 1. Then p,,(5") < [pm(5) + pm(B)]/2 < 0 Vm € (M). " is therefore

strictly feasible rather than Pareto optimal, leading to a contradiction.

Finally, project 5 = 0 to get its Pareto efficient correspondence 7(0) =

-1 m?% log p(Bn). From Lemma 1, there are infinite many
me
¥y < -1 1 B
eak e, 1og B

that are strictly feasible, and hence the Slater’s condition is valid. Strong
duality and complementary slackness holds. The KKT conditions are both

sufficient and necessary for primal-dual optimality. ]

4.1 Single Active Constraint and Ascent Di-
rections

Conventional line of analysis usually involves introducing an Lagrangian

function £(3,)) £ U(#) - 3 1y AmPm () with multiple multipliers A :=

me
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[A1,..., Au]T > 0 to perform primal-dual iterations. As M grows, the ex-
cessive computational complexity of M-multiplier updates (which usually
involves solving a bundle of nonlinear equations), however, is a curse to
distributed implementation. The observation from our extensive simula-
tion suggests that the number of active constraints is almost always one,
when our iterate 7|t] glides along the Pareto frontier. This is the sparse

structure to exploit.

To get some insight, we first consider the single-constraint case A/ — 1. We

rewrite our problem to be

where 5(3) = m?%ﬁm(?y). When M = 1, recall that p(%) is differentiable
me
everywhere: V(%) = 1(%)/171(%), where 1(%) £ x(diag(¢7)B) oy (diag(e")B).

A

We introduce a single-multiplier Lagrangian function £,(%) £ U(%) — Ap(3)

and can write down the KKT equations as follows:
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Note that 17V (5) = 1, V4. Then at optimality,

Vo) = i (4.2)

Here we add a superscript x to denote optimal solutions. Now we are ready
to introduce a simple gradient projection algorithm to solve this optimiza-

tion problem.

Algorithm 4.1 (Sub)gradient Projected Network Utility Maximization

1. Initialization. Input an arbitrary Pareto efficient 4(0] and VH(A[0]).
Compute A\[0] «+ 1TVU(5(0]).

2. Iteration. In [t + 1]th iteration,

(a) First compute VLyy(3[t]) < VUGI]) = AIVA([1])-
)

(b) Then set a gradient step AY'[t] < h[t]V Ly (5t]), and project 7[t] +-
A#'[t] to the Pareto frontier to get 4[t + 1] and Vi(3[t + 1]).

(¢c) Compute At + 1] < 17VU (5[t + 1]). Repeat.

Remark:

1. As will be shown in the next section, this algorithm also works for the

case of M > 1, where p(7) = m?% pm(7) s piecewise differentiable and

me
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always subdifferentiable. To be more accurate, here we use subgra-
dient operator V in place of gradient V where appropriate. For the

current case of interest (A = 1), both operators are equivalent.

2. To get Pareto efficient (0] and V(%[0]), one can invoke algorithms 3.4
and 3.3 .

3. Alt] can be computed using the fast distributed gossip algorithm.
4. hlt] is the step size.

5. The gradient step and the projection step are orthogonal to each other:
AL — 1p(3[t] + AY'[t]). To see this, note that 17V Ly, (5[t]) = 0.
Particularly when L = 2, the gradient moves along a 135-degree line,

while the projection is 45-degree.
6. At + 1] = w([t] + AY[E]) = Alt] + A [t] — 1p(3[] + AY [t)).

7. Thanks to the projection step, our iterate [t| is always Pareto effi-
cient. Then we always have £,(3]t]) = U(3][t]), regardless of \'s value.
On the Pareto frontier, maximizing U(5) is equivalent to maximizing
L(%). This explains the reason why the gradient is proportional to
VL (]t]). Indeed, the projected gradient AJ[t] = At + 1] — Aft] =
AY[t] — 1p(A[t] + A% [t]) is an ascent direction with a proper step size

h[t|, which leads to the following nice convergence property.

Lemma 9. Algorithm 4.1 converges with appropriately chosen step size
{h[t]}, under the mild assumption that the first and second order deriva-

tives of U and p are bounded:

1'VU®#) < WA, VU®H) = VT, V26(3) 2 V,1,v%
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where Vy, Vir and V, are some positive constants.

Here is the sketch of the proof. The key step is to show that under mild con-
ditions, the projected gradient A3'[t] — 15(%[t] +A#[t]) is an ascent direction

with a proper step size h[t]. Specifically, we show that

A

ULt +11) = UG > [[VLagGEDIP{Ale] — sh[t]*/2}, (4.3)

where = ViV,+Viy(L+1). Then let hlt] = 1/k, we have U(5[t+1])— U (3]t]) >
IV Ly (3[H)I[2/(2%). Note that U(*) — U(3[0]) > UGT + 1]) — UF[0]) >
ST IV Ly (F1E])]]?/(2r), as a consequence, |[VLyy(Y[t])]] — 0 as ¢t — oo.
Thanks to the strong duality proved in Lemma 8, this implies 5[t|] — 4*as

t — oco. The proof of (4.3) is given in the Appendix H.

We notice that the network utility series {U(5[t])} is strictly monotonically
increasing over time and converges eventually. Inspired by propositions
6.9.1 and 6.9.2 in [24], we may make a guess that our algorithm 4.1 has
an iteration bound ¢ = O(6~!) for convergence to a d-suboptimal solution
A[t] - UG > U(F*) — 6. Adding a deliberately chosen extrapolation step
to our projected gradient step is expected to further reduce the number of
iterations to t = O(6~'/2). This guess turns out to be true, and reasons will

become clear in section 4.3.

We also want to emphasize that without a provably valid step size rule,
convergence can not be guaranteed even if one always operates with as-

cent gradient directions. This is actually a missing part in the prior work
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[7] and [25]. An appropriate step size rule is especially crucial for dis-
tributed implementation, since we intentionally avoid those adaptive yet
complicated step size rules such as Armijo rule, Goldstein rule and (lim-
ited) minimization rule [23], which require centralized computation or ex-
cessive effort of global information exchange. (Note that each link may not
even know whether the overall network utility is improving or not.) In
practice, simple step size rules like diminishing step size rule and constant
step size rule are mostly used. The key for a valid constant step size rule
hlt] = h is to ensure the monotonic improvement of {U(5[t])}. One needs
to carefully choose the step size h € (0,1/{W\V, + V(L + 1)}|. However,
Vi, Vo and V, may not be known beforehand in reality. One may want to
do some field experiments to estimate these parameters in advance, and
conservatively select small enough {A[t]}. Smaller step sizes will probably
result in slower convergence. In contrast, a properly chosen diminishing
step size rule (say, hlt| = h/+/t + 1) can eventually zoom into the targeted
interval (0,1/{V\V, + V(L + 1)}] after some initial attempts. As will be
shown shortly, under a milder condition, the diminishing step size rule
hlt| = h/+/t + 1 ensures universal convergence to the global optimum, in

A

the sense that lim sup,_,.. U(3[t]) = U(3*).

4.2 Multiple Constraints and Subgradient Pro-

jection

A careful examination on the derivation of algorithm 4.1 shows that it

is by and large applicable to the multiple-constraint case. Recall that
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A

p(y) = n?el?%'ém(:y) is differentiable almost everywhere except at those sin-
gular points where the active index set A/(7) is not a singleton. Therefore,
if at optimality only one constraint is active, the optimality conditions (4.2)
are still valid. The optimality conditions (4.2) may only become invalid
where AI(7*) is not a singleton. In this case, Vp(7*) does not exist and
a single Lagrangian multiplier fails to capture the optimality. This is the

first problem introduced by the multiple constraints.

Another problem, from the scenario where #[t| happens to be a singular
point, is that VL (5[t]) = VU [t =A[t]VA(3[t]) is a subgradient of Lyg(71t]),
rather than a gradient. (Here we use V in place of V to emphasize the
difference between subgradient and gradient. ) It is well-known that a

subgradient does not need to be an ascent direction.

The worst 1s that we may no longer have a constant step size that is uni-
formly bounded: h[t] = 1/[V\V, + V(L + 1)], even if we replace the mild
condition V?)(%) < VI,V in Lemma 9 with V?p,,,(3) <X V,I,¥m € (M) V4.
What happens is that upon the projected gradient move, our iterate may
transit from one active constraint to another. In other words, we may have
ma(Y[t]) & AL(7[t+ 1]), where m,(7[t]) is the choice of active constraint index
when computing Vj(3[t]). And m,(]t]) € AI(3[t + 1]) is critical for (4.3) to
be valid. For a nonsingular (¢, although one can always choose the step
size to be small enough such that ¥[t| and ¥[t + 1] are with the same active
constraint, but we have no idea how small is enough. A sufficient improve-
ment at each iteration such that U (5[t + 1]) — U(3[t]) > ||V Lag FIED1%/(25)

may no longer be valid.

The first two problems are not essential, and rarely occur in practice, be-
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cause p(4) is differentiable almost everywhere, and U(9) is twice contin-
uously differentiable. An arbitrarily small random perturbation on 4 can
recover differentiability with high probability. And even if ||VL,(5*)|| does
not exist, for the nonsingular v — 4*, we still have ||[VL\(%)|| — 0. The last
problem is critical and challenging, because constant step size is no longer

provably valid, even if V), Vi and V, is known.

We now provide a remedy to these problems in one shot. The key is to
understand the true meaning of the “subgradient” and “projection” in our
algorithm 4.1. Distinct from the classic subgradient projection algorithms
(see [22, 23, 24]), our “projection” n(¥) = ¥ — 1p(7) is along the special
direction 1 to the Pareto frontier, rather than an Euclidean projection on

the closed convex feasible region

EP(%) £ arg min |5 — 3

p(B)<0

5 .

The traditional subgradient projection method relies on the non expansion

property of the Euclidean projection

35
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|2P6) - EP()

2

to show that the distance of the current iterate to +* is reduced with a
proper step size. The non expansion property, however, does not come along

with our “projection”. In fact, we have

&_B )

|~ - ~3)

=B -1G) - oD >

2
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if v — 411 and £ . Surprisingly interesting is that there is a way to

show almost the same thing.

Consider the special direction 1. It spans a subspace of R {4 : 4 = al,a €
R}, with an orthogonal complement 1+ £ {4 : 174 = 0}. We discover that
there is a bijective mapping between the Pareto frontier and 1+, the hyper-
plane passing through the origin, as depicted below. In fact, our algorithm
3.4 maps any point ¥ in R” (including those on 11) to its unique Pareto
efficient counterpart =(7) = 4 — 1 ngrel?% log p(diag(¢7)B,). Conversely, any
point on the Pareto frontier finds its way to 11 by simply conducting an

orthogonal projection o () : R — R”, where o(7) = [I — 117 /L}5.

Note that in the subgradient case, we still have 17V Ly (5[t]) = 0. Then
each iteration corresponds to a subgradient moving “horizontally” along
1+, followed by a projection moving “vertically” along direction 1 to return
to the Pareto frontier. Therefore, ¥[t| — 4* if and only if o(¥[t]) — o(7*). In
other words, the iterate ¥[t| slides along the Pareto frontier approaching 7*
is equivalent to its “shadow” o(%[t|) moves along 1+ approaching ¢(5*). (An
illustrative example of L. = M — 2 is depicted in Fig. 4.2.) What matters is
the distance ||o(¥[t]) — o(5*)|| restricted on 1+, which is only affected by the

subgradient move h[t]V Ly (5[t]). Now we have
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Pareto frontier

Figure 4.1: Bijective projection mappings between Pareto frontier and 1.
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Figure 4.2: An illustrative example of the iterations in Algorithm 4.1 with
L = 2links and M = 2 constraints. The horizontal (vertical) red (purple) ar-
rows denote the subgradient (projection) moves. The blue and green curves
represent respectively two active constraints.
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llo (3]t + 1) = o ()1
= |AIVLA () + o (3t — o (377)II?

= |loGlt) — o (3P + Alt* IV Lag (1D 12

where the last inequality follows from the concavity of £;(%) in . This is
exactly the well-known basic inequality in the convergence proof and com-
plexity bound analysis of subgradient algorithms. It suggests that our al-
gorithm 4.1 is equivalent to a standard subgradient algorithm on 1+. Then
follows from the standard treatment and classical results in [22, 23, 24],

we have

Lemma 10. Under the mild assumption that the first order derivatives of
U/ is bounded:
1"V (H) < Wi, V4,

algorithm 4.1 converges: limsup,_,., U(3[t]) = U(%*), with the proper step

size rules satisfying > ., hlt]| = oo, h[t] — 0.

Here is the sketch of the proof. Note that ||@£A[t] AEH| < ||@Ex[t] AHI1 <
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2{1TVU(4[t])} < 2Vi. Then ||@£A[t] (%[t])|| is uniformly bounded. From (4.4)

we have

T mas DA lo(G10D) — o (7)1 + 4V2 5, hlt?
U(y) - max U(3[L]) < 25T i :

Then simply let 7" — oo concludes the proof.

Note that universally applicable step size rules such as hft] = h/(t + 1) and
hlt] = h/+/t + 1 ensure convergence. Note also that the subgradient method
and Lemma 10 can be further generalized to the case where U;(%,)’s are

nondifferentiable, just to replace the mild condition by
1"VU(3) < Va, VWU (4) € U (3), V4.

The price to pay for universally applicable step size rules, nondifferentia-
bility, and milder condition is that the convergence is in a weaker sense
and may be more slower. Convergence to a ¢-suboptimal solution 7[t| :
maxo<i<r U(3]t]) > U(5*) — & requires O(5~2) iterations. See, for example,

[14, 22] for more details.

4.3 Unconstrained Equivalence and Complex-

ity results of M/ =1

As a summary to the last two sections, let us provide an alternative per-

spective to look at our core problem (4.1). We have shown that its optimal
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solution can only be attained on the Pareto frontier, resulting in the follow-

ing equivalent formulation:

The bijective mapping between the Pareto frontier {# : p(3) = 0} and 1+ £

{#: 174 = 0} further transforms the problem to

Therefore, the constrained convex optimization problem (4.1) is equivalent
to an unconstrained convex optimization problem max /(%) on domain 1-.

(The concavity of U (%) can be readily seen by noting that

Ur() = Uy —15(9) = > U5 — p(¥)),

in which U, (¥,—p(%)) is a composition of two concave functions, and invoking

the composition rules (3.11) in [19].)
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This perspective is useful to resolve the outstanding complexity issue of
M = 1 near the end of section 4.1, because we can readily adapt the proof
of (4.3) in Appendix H to show that U/(%) has Lipschitz continuous gradient

with the constant x:

<wl|ly—8|, V8 ¥e1t (4.5)

E(

| v - v

which is the principal premise for the well-known O(6~!) and O(5~'/?) com-

plexity bounds given in, e.g., propositions 6.9.1 and 6.9.2 of [24].

Now let us revisit the case where M = 1, and Ul(f?l)’s are twice continuously
differentiable. Then U(x (%)) is also twice continuously differentiable. The

steepest ascent direction of such unconstrained problem is given by

. i B {52(’?)

. } V.U (3)
= [I—-Vyp

DVU (7 ()
= VU@ — Vap1TVLU (x(%))

= VaU(x®) = Vapr@)L VU (r($),

where V(%) = Vyp(n (%)) follows from the fact that Vi p(v+al) = Vs [p(¥)+
al = Vxp(77). Wenotice that V- U( (%)) is exactly VL, (7) where A = 17V (7)
and ¥ = 7 (¥). This manifests the equivalence between our gradient-projection
algorithm 4.1 wr.t. iterate series {7[({]} and its steepest-ascent-gradient

counterpart w.r.t. {¥[t|] = o(5[t])} given below.
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Algorithm 4.2 (Sub)gradient Network Utility Maximization on 1+

1. Initialization. Input an arbitrary ¥[0] € 1+ (say, ¥[0] « 0).

2. Tteration. In [t+1]th iteration, set a gradient step A%[t] < R[t|VU (%]t]).
(Therefore, Y[t + 1] = ~[t] + A¥[t].) Repeat.

We also notice that

— V3PN 1TVU (m ().

Similar to the proof of (4.3), it is easy to show that

~VEANLVUEH) = WL

~2¢
~2¢

and

AT = Vs p()1T V2, U () = Vsp(9)1" " AY

> VAT = Vap(9)17)[I — 1V p()71AY
= —VAY [T+ LV5p(5)Vxp(h)T1AY
> Vi(L + DAYTAY, VA%, % e 11,
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Therefore

AVELU (DY = —kAYTAY, VAY, % € 1,

and hence

U+ A%) — U) — ViUEENTAY > —cAYTAY, YAY, ¥ € 14,

which implies (4.5), the key premise to apply propositions 6.9.1 and 6.9.2
in [24]. Both propositions assume a constant step size rule hlt] = 1/k.
From proposition 6.9.1, we get an iteration bound ¢ < &||¥[0] — ¥*||?/[20] =
O(61) for convergence to a d-suboptimal solution %[¢] : U(¥[t]) > U(¥*) — 6.
This complexity bound can be further improved to ¢ < \/2r/5||5[0] — ¥*|| —
1 = O(67'/?), due to proposition 6.9.2, if we add in a deliberately chosen
extrapolation step. Toward this end, we replace the gradient step [t + 1] «+
Y[t] + h[t)]VU (%]t]) in algorithm 4.2 by

e

o
=

{5

— 1+ o131 -

2],

[t —=1])

~2G

¢

t+1] < Bl +hVU(
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where h = 1/k, 0] = ¥|—1] and

Equivalently, our algorithm 4.1 has an accelerated variant as well.

Algorithm 4.3 Accelerated (Sub)gradient Projected Network Utility Max-
imization

1. Initialization. Input an arbitrary Pareto efficient 7[0], let A% [—1] < 0
and h <+ 1/k.

2. Iteration. In [t + 1]th iteration,

(a) First compute /[t] « t] < At + Ot](AF ‘[t — 1]), and project it to the
Pareto efficient = (5]t]).

(b) Secondly, compute A[t] 1TVU(x(B]t])), and VLag(n(B[t]) «
VU(R(Bt) — A V(= (B[1]))- )

(c) Then set a gradient step AF'[t] « hVEA[t]( (3[t])), compute
AY[t] < O[] (ARt — 1]) + AR"[t], and project [t] + A% [t] to the
Pareto frontier to get 4|t + 1]. Repeat.

It is well-known that these accelerated algorithms are optimal in terms of

the complexity order. In addition, if there exists a positive ' such that

|vUe) - vo@)| > Y, e 1t

then our accelerated algorithms converges geometrically fast: t = O(—log ¢).

See, e.g., Theorem 2.2.2 in [22]. For more details, we refer interested read-
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ers to the the standard treatment and classical results in the online sup-

plementary chapter 6 of [24].

Before concluding this section, it is worth pointing out that the accelerated
variant of algorithm 4.1 can be readily adapted to the case of M > 1. Ex-
tensive simulations suggest that algorithm 4.3 still converges quickly (e.g.,
see Fig. 4.9 in the next section). However, the above convergence and com-
plexity analysis of algorithm 4.3 is only rigorous for the case of M = 1.
Except for the insight that U(x(%)) is almost differentiable everywhere, we
currently have no idea how to extend the rigorous analysis to the case of

M >1.

4.4 Simulation Experiments

In the following, we will demonstrate by simulation experiments that our
algorithms are efficient and optimal, beating its counterparts in prior work

[7] and [25].

4.4.1 Simulation Settings

We first describe the settings for the following simulation experiments. We
consider two different scenarios: arbitrary random networks and uplink

LTE networks.

1. In the arbitrary random networks, we randomly generate i.i.d. chan-

nel gain matrices G, noise power n and power constraints cLp <
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1, ¥m € (M) of different network sizes . and numbers of constraints
M, according to various distributions. Extensive simulations in such
type of networks help demonstrate the robustness and universal ap-

plicability of our algorithms.

2. In the uplink LTE networks, we adopt similar settings as in [25].
We assume a standard 19-hexagonal-cell layout with wrap around
to avoid edge effect, which is widely accepted in LTE cell planning
and performa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>