
DEVELOPMENT OF METHODOLOGIES FOR MEMORY

MANAGEMENT AND DESIGN SPACE EXPLORATION OF

SW/HW COMPUTER ARCHITECTURES FOR DESIGNING

EMBEDDED SYSTEMS

Angeliki Stavros Kritikakou
Department of Electrical and Computer Engineering

School of Engineering, University of Patras

Dissertation for the degree of

Doctor of Philosophy (Ph.D)

PhD dissertation No: 305
Patras, May 2013

All rights are reserved. Reproduction in whole or in part is prohibited without
the written consent of the copyright owners

A. Kritikakou & University of Patras & IMEC-Leuven 2013

UNIVERSITY OF PATRAS
SCHOOL of ENGINEERING

Dissertation for the degree of
Doctor of Philosophy (PhD)

of

Angeliki Stavros Kritikakou

Electrical and Computer Engineer

submitted to the

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

entitled

DEVELOPMENT OF METHODOLOGIES FOR MEMORY

MANAGEMENT AND DESIGN SPACE EXPLORATION OF

SW/HW COMPUTER ARCHITECTURES FOR DESIGNING

EMBEDDED SYSTEMS

Patras, May 2013

[This page is intentionally left blank]

[This page is intentionally left blank]

Members of PhD Defense Committee

• Costas Goutis, Emeritus Professor of the Department of Electrical and Computer Engi-
neering of Polytechnic Faculty of University of Patras, Greece (supervisor).

• Francky Catthoor, Professor of the Department of Electrical Engineering of Engineer-
ing Faculty of Catholic University of Leuven and fellow in Interuniversity Microelectronics
Centre (IMEC), Belgium (Advisory committee member).

• Spyridon Nikolaidis, Associate Professor of the Department of Physics of Aristotle Uni-
versity of Thessaloniki, Greece (Advisory committee member).

• Odysseas Koufopavlou, Professor of the Department of Electrical and Computer Engineer-
ing of University of Patras, Greece.

• Dimitris Nikolos, Professor of the Department of Computer Engineering and Informatics
of University of Patras, Greece.

• George Theodoridis, Assistant Professor of the Department of Electrical and Computer
Engineering of University of Patras, Greece.

• Dimitrios Soudris, Assistant Professor of the Department of Electrical and Computer En-
gineering of National Technical University of Athens, Greece.

v

[This page is intentionally left blank]

To the ones that make me a better person...

[This page is intentionally left blank]

Acknowledgements

The present PhD dissertation conducted in the VLSI Laboratory of the Department of
Electrical and Computer Engineering, School of Engineering, University of Patras in
collaboration with Interuniversitair Micro-Elektronica Centrum (IMEC), Belgium. It
has been partially funded by Public Welfare Foundation ``Propondis'' research funds.

Before going into the details of the PhD dissertation, I would like to strongly thank
for their contribution in the completion of this work:

Initially, Dr. Costas Goutis, Em. Professor of Electrical and Computer Engineer-
ing Department of the University of Patras, whom I warmly thank for enriching my
knowledge and research experience and for the moral support throughout the study.

I would also like to cordially thank Francky Catthoor, who has always been an excel-
lent mentor and a role model, supportive and willing to help in any kind of problem
during our collaboration. I would like to express my deep appreciation and especially
thank him for broaden my horizons and helping me to improve myself, first of all as
a person, and secondly as a researcher.

I also want to thank the member of the three-member advisory Committee Dr. Spyri-
don Nikolaidis, Associate Professor of Physics Department of Aristotle University of
Thessaloniki, for his guidance during the PhD dissertation. I would like to thank Prof.
Odysseas Koufopavlou, Prof. Dimitris Nikolos, Assistant Prof. Dimitrios Soudris and
Assistant Prof. George Theodoridis. Their comments aided me substantially in the
improvement of this dissertation.

I would like to give my cardial thanks to Sofia-Kalliopi Passa for her priceless help
and support.

I would like to express my respect to my colleagues in our Lab for their support and
the nice environment, Vasilis Kelefouras, George Athanasiou and Andreas Emeretlis.

This study would not have been completed without the full moral support of people
that are standing close to me. As a minimum return, I sincere thank my friends that
were and will be by my side, for our meaningful conversations, their advice and their
different point of view, their motivation and support and for all our moments that
played an very importnat role inmy life. I would like to name some of them: Thodoris,
Ntina, Angelos, Xristina, Tasoula, Giorgia, Iosif, Dimitris, Magda, Christos, Sofia,
Maria, Vasilis, Dimitra, Lia, Ifigenia, Antonia, Anna, Nikos, Efi, Katerina, Sofia M,
Kokkonas, Giannakos, Kostas...

Finally, I would like to express my gratitude to my family who always helps me by all
means and always encouraged me.

Angeliki S. Kritikakou

Patras, May 2013

Abstract

This PhD dissertation proposes innovativemethodologies to support the designing and themapping
process of embedded systems.

Due to the increasing requirements, embedded systems have become quite complex, as they
consist of several partially dependent heterogeneous components. Systematic Design Space Explo-
ration (DSE) methodologies are required to support the near-optimal design of embedded systems
within the available short time-to-market. In this target domain, the existing DSE approaches ei-
ther require too much exploration time to find near-optimal designs due to the high number of
parameters and the correlations between the parameters of the target domain, or they end up with
a less efficient trade-off result in order to find a design within acceptable time. In this dissertation,
an alternative DSE methodology is presented, which is based on systematic creation of scalable
and near-optimal DSE frameworks. The frameworks describe all the available options of the ex-
ploration space in a finite set of classes. A set of principles is presented which is used in the
reusable DSE methodology to create a scalable and near-optimal framework and to efficiently use
it to derive scalable and near-optimal design solutions within a Pareto trade-off space.

The DSE reusable methodology is applied to several stages of the embedded system design flow
to derive scalable and near-optimal methodologies. The first part of the dissertation is dedicated to
the development of mapping methodologies for storing large embedded system data arrays in the
lower layers of the on-chip background data memory hierarchy, and the second part to the DSE
methodologies for the processing part of SW/HW architectures in embedded systems including the
foreground memory systems.

Existing mapping approaches for the background memory part are either enumerative, sym-
bolic/polyhedral and worst case (heuristics) approximations. The enumerative approaches require
too much exploration time, the worst case approximation lead to overestimation of the storage
requirements, whereas the symbolic/polytope approaches are scalable and near-optimal for solid
and regular iteration spaces. By applying the new reusable DSE methodology, we have developed
an intra-signal in-place optimization methodology which is scalable and near-optimal for highly ir-
regular access schemes. Scalable and near-optimal solutions for the different cases of the proposed
methodology have been developed for the cases of non-overlapping and overlapping store and load
access schemes. To support the proposed methodology, a new representation of the array access
schemes, which is appropriate to express the irregular shapes in a scalable and near-optimal way,
is presented. A general pattern formulation has been proposed which describes the access scheme
in a compact and repetitive way. Pattern operations were developed to combine the patterns in a
scalable and near-optimal way under all the potential pattern combination cases, which may exist
in the application under study.

In the processing oriented part of the dissertation, a DSE methodology is developed for map-
ping instances of a predefined target application domain onto a partially fixed architecture platform
template, which consists of one processor core and several custom hardware accelerators. The
DSE methodology consists of uni-directional steps, which are implemented through parametric

xi

templates and are applied without costly design iterations. The proposed DSE methodology ex-
plores the space by instantiating the steps and propagating design constraints which prune design
options following the steps ordering. The result is a final Pareto trade-off curve with the most
relevant near-optimal designs. As the scheduling and the assignment are the major tasks of both
the foreground and the datapath, near-optimal and scalable techniques are required to support
the parametric templates of the proposed DSE methodology. A framework which describes the
scheduling and assignment of the scalars into the registers and the scheduling and assignment of
the operations into the function units of the data path is developed. Based on the framework,
a systematic methodology to arrive at parametric templates for scheduling and assignment tech-
niques which satisfy the target domain constraints is developed. In this way, a scalable parametric
template for scheduling and assignment tasks is created, which guarantees near-optimality for the
domain under study. The developed template can be used in the Foreground Memory Manage-
ment step and Data-path mapping step of the overall design flow. For the DSE of the domain under
study, near-optimal results are hence achieved through a truly scalable technique.

xii

Contents

Contents xiii

List of Figures xix

List of Tables xxv

Nomenclature xxix

1 Introduction & Motivation 1

1.1 Goal & Context . 1
1.2 Existing Design Space Exploration methodologies & limitations 3
1.3 Scope & Main Contributions . 5
1.4 Overview of Chapters . 7

2 Reusable methodology for scalable & near-optimal DSE 11

2.1 Introduction . 11
2.2 Principles . 12
2.3 Framework creation . 15

2.3.1 Methodology steps . 16
2.3.2 Framework properties . 17
2.3.3 Framework types . 19

2.4 Framework usage . 20
2.4.1 Insight of the DSE options . 20
2.4.2 Framework projection . 20
2.4.3 Trade-off exploration . 21

2.5 Unified system design meta-flow . 23
2.5.1 Processor Level DTSE . 26
2.5.2 Operations Concurrency Management 27

2.6 Conclusions . 29

xiii

CONTENTS

I Background memory management methodologies 31

3 Development of intra-signal in-place methodology 33
3.1 Introduction . 33
3.2 Motivational Example . 35
3.3 Related Work . 36

3.3.1 Enumerative approaches . 36
3.3.2 Symbolic approaches (including polyhedral techniques) 36
3.3.3 Approximation approaches . 37

3.4 Problem Formulation & Target Application Domain 38
3.4.1 Problem Formulation . 38
3.4.2 Target Application Domain . 39
3.4.3 Analysis of index expression (fx function) 40

3.5 Development of intra-signal in-place methodology 43
3.5.1 Intra-signal in-place cases . 45
3.5.2 Translation cases . 47
3.5.3 Analysis cases . 49

3.6 Step 1: Analysis . 51
3.7 Conclusions . 53

4 Pattern representation 55
4.1 Introduction . 55
4.2 Motivation . 56
4.3 General Pattern Formulation . 57
4.4 Pattern Combination Cases . 60
4.5 Pattern Operations . 61

4.5.1 Non-overlapping Operations . 61
4.5.2 Fully aligned Operations . 62
4.5.3 AND Operation (&&) . 64
4.5.4 Skew Operation . 65
4.5.5 Pattern Combination Process . 70

4.6 Demonstration case study . 72
4.7 Conclusions . 73

5 Intra-signal in-place methodology for non-overlapping & overlapping scenario 75
5.1 Introduction . 75
5.2 Step 2: Translation . 76

5.2.1 One loop dimension . 76
5.3 Step 3: Intra-signal in-place optimization for non-overlapping case 80

5.3.1 One loop dimension . 80
5.3.2 Several loop dimensions . 81

xiv

CONTENTS

5.3.3 Demonstration case study description 88
5.3.4 Results . 89

5.4 Step 3: Intra-signal in-place optimization for overlapping case 92
5.4.1 Intra-signal in-place cases . 93
5.4.2 Condition Statements . 94
5.4.3 One loop dimension . 96
5.4.4 Extension to Several loop dimensions 98
5.4.5 Dominant Segment in Outer Dimension 99
5.4.6 Non-Dominant Segment in Outer Dimension 105
5.4.7 Combinations in different dimensions 108
5.4.8 PCS storage size . 112
5.4.9 Experimental Results . 113

5.5 Conclusions . 116

II Processing related mapping methodologies 117

6 Design Exploration Methodology for Microprocessor & HW accelerators 119
6.1 Introduction . 119
6.2 Related Work . 120
6.3 Systematic Template-Based Mapping Methodology 122

6.3.1 Step 1: Application & Platform Domain Analysis 124
6.3.2 Step 2: Microprocessor & HW Accelerators Inter-Organization 128
6.3.3 Step 3: Foreground Memory Management 131
6.3.4 Step 4: Data Path Mapping & Final Design 133

6.4 Demonstrator Design: Real-Life Microfluid Application 135
6.4.1 Step 1: Application & Domain Analysis 135
6.4.2 Step 2: Microprocessor & HW Accelerators Organization 137
6.4.3 Step 3: Foreground Memory Management 138
6.4.4 Step 4: Data Path Mapping & Final Design 138

6.5 Experimental Results . 139
6.5.1 Real-Life Microfluid Application . 139
6.5.2 PolyBench Benchmark Suite . 141
6.5.3 Relative Comparison . 142

6.6 Conclusions . 143

7 Design-time scheduling techniques framework 145
7.1 Introduction . 145
7.2 Target domain and problem formulation . 146
7.3 Related work in global scheduling classifications 148
7.4 The proposed systematic classification . 153

xv

CONTENTS

7.4.1 Deterministic techniques . 156
7.4.2 Stochastic techniques . 159
7.4.3 Horizontal uni-directional constraint propagation 163

7.5 Illustration of the systematic classification . 166
7.5.1 Adaptive global scheduling techniques 167
7.5.2 Rigid global techniques . 167
7.5.3 Pruning techniques . 168
7.5.4 Near-optimal hybrid techniques . 169
7.5.5 Formally optimal techniques . 170
7.5.6 Simulated Annealing based techniques 171
7.5.7 Genetic Algorithm based techniques 172
7.5.8 Simulated Evolution based techniques 173
7.5.9 Tabu search based techniques . 173
7.5.10 Seed based techniques . 174

7.6 Conclusions . 174

8 Methodology to develop design-time scheduling techniques under constraints 175

8.1 Introduction . 175
8.2 Motivation . 177

8.2.1 Target domain . 177
8.2.2 Performance of scheduling techniques 178

8.3 Related Work . 179
8.3.1 Scheduling software tools . 179
8.3.2 Conventional Scheduling Techniques 180

8.4 Proposed Methodology . 182
8.4.1 Step 1: Initialization . 187
8.4.2 Step 2: Application & Platform Domain Analysis 187
8.4.3 Step 3: Propagation of Domain Constraints 188
8.4.4 Step 4: Propagation of Design Constraints 188
8.4.5 Instantiation of combined parametric template 189

8.5 Demonstration case studies . 190
8.5.1 Small and uncoupled critical subgraphs 190
8.5.2 High number of critical subgraphs domain 199
8.5.3 Large and strongly connected subgraphs 202

8.6 Conclusions . 205

9 Conclusions & Future Directions 207

9.1 Conclusions . 207
9.2 Future directions . 208

xvi

CONTENTS

A Publication List 211
A.1 Journals . 211
A.2 Conferences . 212

B Εκτεταμένη Περίληψη στα Ελληνικά 213
B.1 Εισαγωγή . 213
B.2 Υπάρχουσες μεθοδολογίες και περιορισμοί 216
B.3 Σκοπός και συνεισφορές . 218
B.4 Οργάνωση κεφαλαίων . 221
B.5 Eπαναχρησιμοποιούμενη μεθοδολογία για επεκτάσιμα και σχεδόν βέλτιστα

DSE πλαίσια (frameworks). 224
B.6 Ανάπτυξη επεκτάσιμης και σχεδόν βέλτιστης μεθοδολογίας για το ελάχιστο

μέγεθος μνήμης για τα δεδομένα ενός πίνακα. 228
B.7 Επεκτάσιμη και σχεδόν βέλτιστη αναπαράσταση των προσπελάσεων στη

κύρια μνήμη βασισμένη σε μοτίβα . 231
B.8 Επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία για το μέγεθος μνήμης για

τα δεδομένα ενός πίνακα για μη επικαλυπτόμενες και επικαλυπτόμενες
εντολές εγγραφής και ανάγνωσης. 234

B.9 Μεθοδολογία για τη απεικόνιση σε πλατφόρμα με έναν επεξεργαστή
ελεγχόμενο από εντολών και ποικίλους συνεπεξεργαστές. 242

B.10 Πλαίσιο με τις σχεδόν βέλτιστες τεχνικές χρονοπρογραμματισμού και
ανάθεσης πόρων. 248

B.11 Μεθοδολογία για την ανάπτυξη παραμετρικών πλαισίων για σχεδόν
βέλτιστες και επεκτάσιμες τεχνικές χρονοπρογραμματισμού και ανάθεσης. 250

References 255

xvii

List of Figures

1.1 Dependency graph of chapters . 8

2.1 The partitioning of the complete space described by the black curve and the top-
down split described by the gray curve, which divides the space into two sub-cases. 13

2.2 The partitioning of the complete space described by the black curve and the top-
down split described by the gray curve and the arrow of the unidirectional con-
straint propagation. 14

2.3 The partitioning of the complete space into the sub-cases and the sub-cases order-
ing by iteratively applying top-down splits and the horizontal propagation principle. 14

2.4 The pruning of a sub-case due to constraints vertically propagates to a top-down
split. 15

2.5 Schematic representation of the result of applying the principles of gray-box top-
down approach in a parent case. 17

2.6 Framework with the sub-cases of the complete space of the problem under study
after applying the principles of the reusable DSE methodology. 17

2.7 Combination of what type and how type splits in a framework. The sub-cases
labeled options are derived by what type of top-down splits and the sub-cases
labeled steps derive from how top-down splits. 19

2.8 Pruned tree after applying the vertical constraint propagation principle. The char-
acteristics of the sub-cases from the root to each leaf are merged and flattened into
a sub-case. 21

2.9 Schematic description of a parametric template. The boxes describe the options
and the rhombus the if expressions to lead to the different options 22

2.10 Three sub-cases with the exploration of the parametric templates. The parametric
templates and the corresponding partial pareto curves are combined following the
uni-directional constraint propagation. 23

2.11 Unified system design meta-flow. 24
2.12 Design steps of instruction layer abstraction for DTSE. 26
2.13 Design steps of instruction layer abstraction for OCM. 28

3.1 Motivational example: (a) Application code with three conditions and a write ac-
cess statement and (b) Iteration space with the accesses to array A. 35

xix

LIST OF FIGURES

3.2 The set with the index expressions cases after applying the principles of the
reusable DSE methodology. 41

3.3 The sub-goals of the intra-signal in-place methodology after applying the princi-
ples of the reusable DSE methodology. 44

3.4 The set with the cases of the intra-signal in-place sub-goal after applying the prin-
ciples of the reusable DSE methodology. 45

3.5 The set with the translation cases after applying the principles of the reusable DSE
methodology. 48

3.6 The set with the analysis cases after applying the principles of the reusable DSE
methodology. 50

4.1 Motivational example: (a) Application code with three conditions and a write ac-
cess statement and (b) Iteration space with the accesses to array A. 57

4.2 The pattern consists of N parts, each part has a PIR and a PT, the pattern is valid
from LB up to UB and it is repeated M times. 58

4.3 Application code examples with one access statement for the array: (a) Without
conditions, (b) With one ECS, (c) With one ECH and (d) With one PCH 59

4.4 Set of possible pattern combination cases with the corresponding operations. . . . 61
4.5 Result of non-overlapping operations. 62
4.6 Fully aligned OR operation: (a)Two parts of the patterns FPCH and SPCH, (b)

When PT of both parts is H or the part with the smaller PIR has PT=A, the PIR of
the PCH part is equal to the small PIR and the PIR of the next part of the pattern
with the larger PIR is increased by the PIR difference, i.e. large(PIR)-small(PIR)
and (c) When PT of both parts is A or the part with the larger PIR has PT=A, the
PIR of the PCH part is equal to the larger PIR and the PIR of the next part of the
pattern with the small PIR is reduced by the PIR difference. 64

4.7 Example of applying Skew operation. The initial PCH pattern is {3A 2H 3A 5H
2A} and after applying the skew operation the ECS1, ECH2 and PCH' are created. 65

4.8 LB Alignment operation: (a) General Case: The PCH is the initial pattern, the
Bound is the new LB and defines the position to split the PCH. The result is a new
PCH1, ECS1, ECS2 and PCH2. The right section is skewed to align the PCH2
to the new LB and (b) Example: The initial pattern is {3A 3H 2A 4H} and the
Bound is 25. 67

4.9 Demonstration case study code. 72
4.10 Process to compute the storage requirements through pattern operations: (a) Ini-

tial patterns derived from primitive conditions, (b) New PCH2 after applying PS
modification operation, (c) New PCH1, ECS2 and ECS3 after applying LB align-
ment operation, (d) New PCH2 and ECS4 after applying UB alignment operation,
(e) Result pattern after applying fully aligned OR operation and (f) Global pattern
describing the storage requirements . 73

xx

LIST OF FIGURES

5.1 Schematic description of translation step: (a) Initial patterns derived from prim-
itive conditions (C1, C2, C3) and read access pattern (RD), (b) New patterns
after applying LB and UB alignment pattern operations, (c) Combined condition
pattern results after applying OR, sequential non-overlapping and non-sequential
non-overlapping pattern operation, (d) Final pattern for read statement after apply-
ing AND pattern operation between the read pattern and the combined condition
pattern and (e) Shifted pattern of the accessed elements due to index expression i+b. 78

5.2 Examples with one loop dimension: (a) SIS and (b) ISH with ECH 79

5.3 Schematic description of two read patterns RD1 and RD2 and the result of the OR
pattern operation (RD) for I dimension. The intra-signal in-place storage size is
the summation of the black parts of the final RD pattern: (a) for SIS and (b) for
ISH with ECH conditions. 81

5.4 Schematic description of the RD patterns for I and J independent dimensions. The
intra-signal in-place storage size is the sum of the gray areas for: (a) for SIS and
(b) for ISH and ECH conditions in I loop dimension and code examples for (c)
SIS and (d) ISH with ECH in I loop iterator . 83

5.5 Schematic description of the final RD patterns for 2 decoupled dimensions. The
combined storage size is the sum of the gray areas: (a) SIS, (b) ISH with ECH
coupled with OR primitive operation, (c) ISH with PCH coupling conditions and
(d) ISH with PCH and ECH combined through OR primitive operation. Code
examples are presented in : (e) SIS, (f) ISH with ECH, (g) ISH with PCH and (h)
ISH with PCH and ECH. 85

5.6 Demonstration case: (a) Code and (b) initial part of the iteration space, where
each different color indicate accesses due to one condition. 88

5.7 Exploration time comparison, when the number of accesses is increased due to
an increase by: i) a factor over the loop bounds for pgp-outdec benchmark (a)
and blowfish-decode/encode (c) and ii) a factor over the number of patterns in the
application kernel for pgp-outdec benchmark (b) and blowfish-decode/encode (d). 93

5.8 The overlapping intra-signal in-place cases. 94

5.9 The cases for the condition statements of the target domain are derived by the
leaves and their combinations. 95

5.10 Iteration spaces of WR (gray cells in WRI) and RD (dark gray cells in RDI) for
I dimension. The 0 to I indicates the direction of increasing the iterator. For one
iteration instance, the WRI black cell is the written element and the WRI white
cell is the read element in next RD iteration (white cell in RDI). The black line
shows the dominant segment/pattern section. The examples are: (a) Dominant
segment & SIS, (b) Dominant Segment & ISH and (c) Non-Dominant segment &
ISH. The application codes are (d), (e) and (f), respectively. 97

xxi

LIST OF FIGURES

5.11 Iteration spaces for I and J dimension for the Dominant Segment in Outer Dimen-
sion & Dominant Outer Dimension for: (a) ECH/ECS combined with AND for
ISH, (b) ECH/ECS combined with AND for SIS, (c) PCH of < && > type and
(d) ECH/ECS combined with OR. The corresponding application codes are in (e),
(f), (h) and (g), respectively. 100

5.12 Iteration spaces for I and J dimensions for the Dominant Segment in Outer Di-
mension & Non-Dominant Outer Dimension for (a) ECS/ECH combined with OR
at 1st iteration, (b) ECS/ECH combined with OR & not in the 1st iteration and
(c) PCH 6=. 105

5.13 Iteration spaces for I and J dimensions for the Non-Dominant Segment in Outer
Dimension for: (a) ECS/ECH combined with AND for ISH, (b) ECS/ECH com-
bined with OR when the next WR iteration is A, (c) ECS/ECH combined with OR
when the next WR iteration is H and the selected pattern section is in 1st iteration,
(d) ECS/ECH combined with OR when the next WR iteration is H, the selected
section is not in the 1st iteration and the last WR iteration is H, (e) ECS/ECH
combined with OR when the next WR iteration is A, the selected section is not in
the 1st iteration and the last WR iteration is H and (f) PCH 6=. 107

5.14 Demonstration case: (a) Code, (b) initial part of the iteration space for the WR
iterations and the accessed elements. Each color corresponds to a condition and
(c) the execution of the RD statements in the iteration space. 112

5.15 Schematic illustration of the WRI and RDI of an increasing PCS in the two di-
mension case. 113

5.16 Exploration time comparison, when the number of accesses is increased due to an
increase by a factor over the loop bounds for (a) Jpeg**: xbuf1 benchmark and
(b) Pegwit**: roundKeys_e benchmark. 115

6.1 The flow of the proposed methodology. 123
6.2 Inter-Organization of the microprocessor & the HW accelerator parametric template.129
6.3 Real-time bioimaging application:(a) Pseudocode and (b) image taken by the

micro-fluid device camera: the box is the outline frame and the dotted box is
the angle detection window. 136

6.4 The HW platform architecture and the final design for theMicroblaze and the HW
accelerator of the demonstrator application. 138

6.5 Pareto curve for 200x16 window. 140
6.6 Pareto curves for 2mm, 3mm and Gemm for data size 128. 142
6.7 Exploration time comparison when the application size is increased by a factor. . 143

7.1 A classification scheme of the scheduling techniques consisting of independent
classes presented by McFarland et al. 149

xxii

LIST OF FIGURES

7.2 The taxonomy of the scheduling techniques for distributed resource management
scheduling problem consists of interacting classes and policies presented by Casa-
vant et al. 151

7.3 The proposed systematic classification of techniques globally solving design time
mapping emphasizing in ordering in time and assignment in place. The gray classes
are the leaves which describe a set of characteristics belonging to a component of
a technique or a technique. 155

7.4 The proposed systematic classification with the number of rule of the horizontal
constraint propagation principles for each top-down split. 164

8.1 (a) Critical subgraph at the end of one loop of a large CDFG. A near-optimal
schedule (b) has two cycles difference with the optimal schedule (c) in one loop
iteration. 179

8.2 Dependencies of the methodology notation. 183
8.3 (a) The tree describing the complete set of design time scheduling techniques and

(b) Uni-directional design constraints propagation of brother nodes. 184
8.4 Flow chart of the proposed methodology steps. 186
8.5 Step Results for the demonstration case study: (a)Domain Constraint Propagation

step: the gray classes are pruned due to incompatibility with the propagated con-
straints, (b) Partial flattening step: the tree with the selected classes is reduced,
(c) Full flattening of the tree: the outer box in the deterministic classes is used
to describe the common part of the flattened classes to avoid redundancy and (d)
Combined Parameterized template . 191

8.6 The ASA process (left part) partially freezes the schedule during temperature re-
duction. The range of the applied random moves is defined by the temperature
Temp. When a level in the structural hierarchy has been explored, the allowed
range is lower than the cost impact of reordering of the hierarchical graphs at that
level. Then, the ASA proceeds at a finer granularity inside those graphs. It identi-
fies four Critical Subgraphs (CSs), which are then propagated to the B&B to find
the optimal schedule for each CS. 196

8.7 Schedule lengths for the demonstration case study domain. 198
8.8 Domain Constraint Propagation step result for high number of critical subgraphs. 200
8.9 Partial flattening step result for high number of critical subgraphs. 200
8.10 Full flattening step result for high number of critical subgraphs. 201
8.11 Combined Parameterized template for high number of critical subgraphs. 201
8.12 Schedule lengths for high number of critical subgraphs domain. 202
8.13 Domain Constraint Propagation step result for large, strongly connected subgraphs. 203
8.14 Partial flattening step result for large, strongly connected subgraphs. 203
8.15 Full flattening step result for large, strongly connected subgraphs. 204
8.16 Combined Parameterized template for large, strongly connected subgraphs. . . . 204

xxiii

LIST OF FIGURES

B.1 Γράφος που απεικονίζει τις εξαρτήσεις των κεφαλαίων 222
B.2 Ροή για την σχεδίαση ενσωματωμένων συστημάτων που βασίζεται σε

μονοκατευθυντήρια διάδοση περιορισμών. 226
B.3 Σχεδιαστικά βήματα για την οργάνωση της αποθήκευσης και της

μεταφοράς των δεδομένων. 227
B.4 Σχεδιαστικά βήματα για το επεξεργαστικό τμήμα. 227
B.5 Το σύνολό των index expressions που προκύπτει μετά την εφαρμογή των

αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας. 230
B.6 Οι υπο-στόχοι της intra-signal in-place μεθοδολογίας μετά την εφαρμογή των

αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας. 230
B.7 Το σύνολο των περιπτώσεων του intra-signal in-place υπο-στόχου μετά την

εφαρμογή των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας. . . 231
B.8 Το σύνολο των περιπτώσεων του υπο-στόχου της μετάφρασης μετά την

εφαρμογή των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας. . . 231
B.9 Το σύνολο των περιπτώσεων του υπο-στόχου της ανάλυσης μετά την

εφαρμογή των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας. . . 232
B.10 Μοτίβο που περιγράφει τον ενεργό χώρο επαναλήψεων. 233
B.11 Το σύνολο των πιθανών περιπτώσεων ένωσης μοτίβων και οι αντίστοιχες

προτεινόμενες πράξεις. 234
B.12 Σχηματική περιγραφή του βήματος της μετάφρασης για μία διάσταση. . . . 235
B.13 Σχηματική αναπαράσταση των μοτίβων ανάγνωσης για τις διαστάσεις Ι και

J, οι οποίες είναι ανεξάρτητες. 236
B.14 Σχηματική αναπαράσταση για τα τελικά μοτίβα ανάγνωσης για 2 decoupled

διαστάσεις. 236
B.15 Σύγκριση του χρόνου εξερεύνησης για την εύρεση του ελαχίστου

απαιτούμενου μεγέθους μνήμης για μη επικαλυπτόμενες εντολές γραφής
και ανάγνωσης (a)-(d) και για επικαλυπτόμενες εντολές γραφής και
ανάγνωσης (ε). 242

B.16 Η ροή και τα βήματα της προτεινόμενης μεθοδολογίας. 243
B.17 Pareto καμπύλη για παράθυρο εφαρμογής 200x16 της ρουτίνας για την

εύρεση της γωνίας απόκλισης. 246
B.18 Pareto καμπύλες για τις εφαρμογές 2mm, 3mm και Gemm για μέγεθος

δεδομένων 128. 247
B.19 Χρόνος εξερεύνησης όταν το μέγεθος της εφαρμογής αυξάνεται κατά έναν

παράγοντα. 248
B.20 Η προτεινόμενη κατηγοριοποίηση των τεχνικών που επιλύουν σχεδόν

βέλτιστα το πρόβλημα χρονοπρογραμματισμού και ανάθεσης πόρων.
Ο αριθμός κάτω από κάθε διαχωρισμό περιγράφει τον κανόνα που
εφαρμόστηκε για να προσδιοριστεί η κατεύθυνση της διάδοσης των
περιορισμών. 249

xxiv

List of Tables

5.1 Comparison results for MediaBench. The '-' mark is used in the cases where
Memory Error produced during simulation. 90

5.2 Comparison results for MediaBench. The '-' mark is used in the cases where
Memory Error produced during simulation. 91

5.3 Comparison results for the PolyBench(*1), MiBench(*2) and the translations
demonstration case study. The '-' mark is used in the cases where Memory Error
produced during simulation. 92

5.4 Representative condition cases. 96
5.5 Computation of the cases in intra-signal in-place equations. 102
5.6 Dominant Segment in Outer Dimension, Non-Dominant Outer Dimension case &

Dominant Condition Statements. 103
5.7 Non-Dominant Segment in Outer Dimension case & Dominant Condition State-

ments. 106
5.8 Dominant Segment in Outer Dimension. 114
5.9 Non-Dominant Segment in Outer Dimension. 114

6.1 Main Application and platform domain Parameters used by the proposed method. 125
6.2 Truth table of Microprocessor & HW Accelerators Inter-Organization 129
6.3 Performance & area for demonstration case study. 140
6.4 Performance & area for PolyBench Benchmark Suite. 141
6.5 Comparison results for the proposed and the iterative improvement approach. . . 142

8.1 Summary of methodology notation. 183
8.2 Schedule length for Large, strongly connected subgraphs 205

B.1 Αποτελέσματα για την περίπτωση με κυρίαρχο τμήμα στην εξωτερική
διάσταση για επικαλυπτόμενες εντολές γραφής και ανάγνωσης. 237

B.2 Αποτελέσματα για την περίπτωση χωρίς κυρίαρχο τμήμα στην εξωτερική
διάστασή για επικαλυπτόμενες εντολές γραφής και ανάγνωσης. 238

B.3 Αποτελέσματα για τα MediaBench για μη επικαλυπτόμενες εντολές
ανάγνωσης και γραφής. Το σύμβολο '-' χρησιμοποιείται όταν δημιουργείται
Memory Error κατά την διάρκεια των προσομοιώσεων. 239

xxv

Nomenclature

B.4 Αποτελέσματα για τα MediaBench για μη επικαλυπτόμενες εντολές
εγγραφής και ανάγνωσης. Το σύμβολο '-' χρησιμοποιείται όταν
δημιουργείται Memory Error κατά την διάρκεια των προσομοιώσεων. 240

B.5 Αποτελέσματα για τα PolyBench(*1), MiBench(*2) και την εφαρμογή που
χρησιμοποιήθηκε για την επίδειξη του βήματος της μετάφρασης για
μη επικαλυπτόμενες εντολές γραφής και ανάγνωσης. Το σύμβολο '-'
χρησιμοποιείται όταν δημιουργείται Memory Error κατά την διάρκεια των
προσομοιώσεων. 241

B.6 Απόδοση και επιφάνεια ολοκλήρωσης για την πραγματικού χρόνου
βιοϊατρική εφαρμογή που βασίζεται σε ένα μικροροικό FPGA. 246

B.7 Απόδοση και επιφάνεια ολοκλήρωσης για το PolyBench Benchmark Suite. . . 247
B.8 Αποτελέσματα για την προτεινομένη μεθοδολογία και για μια

επαναληπτική μεθοδολογία (iterative improvement). 248

xxvi

Nomenclature

A Access
A-FUs Add Function Unit
A2A Access to Access
A2H Access to Hole
AI Artificial Intelligent
ALAP As Late As Possible
ASA Adaptive Simulated Annealing
ASAP As Soon As Possible
ASIC Application-Specific Integrated Circuit
ASIP Application Specific Instruction Set Processors
B&B Branch & Bound
BF Breadth First
BG BackGround
CDFG Control and Data Flow Graph
CS Critical Subgraph
DF Depth First
DL Data Level
DL DTSE Data Level DTSE
DLP Data Level Parallelism
DMA Direct Memory Access
DP Data-Path
DPM Dynamic Power Management
DPMa Data Parallelization Management
DS Design Space
DSE Design Space Exploration
DSP Digital Signal Processing
DTSE Data Transfer and Storage Exploration
DVFS Dynamic Voltage and Frequency Scaling
E Evolution
ECH Enumerative Conditions for Iteration Space with Holes
ECS Enumerative Conditions for Solid iteration space
EDF Earliest Deadline First

xxvii

Nomenclature

FCFS First Come First Served
FDCT Fast Discrete Cosine Transform
FFT Fast Fourier Transformation
FG ForeGround
FPCH First PCH
FPS Fixed Priority Scheduling
FR Frame Rate
FSL Fast Simplex Link
FSM Finite State Machine
FU Function Unit
GA Genetic Algorithms
GCD Greatest Common Divisor
H Hole
H2A Hole to Access
HDFG Hierarchical Data Flow Graph
HID Hole Iterator Domain
HNF Heavy Node First
II Iterative Improvement
IL Instruction Level
ILP Integer Linear Programming
IR Iterator Range
ISH Iteration Space with Holes
LB Low Bound
LC Linear Clustering
LCM Least Common Multiple
LCTD Clustering with Task Duplication
LoC Lab-on-Chip
LP Linear Programming
MAA Memory Allocation & Assignment
MIBP Mixed-Integer Bilinear Programming
MILP Mixed Integer Linear Programming
MLP Memory Level Parallelism
MSPCD Multiprocessor Scheduling Problem with Communication Delays
NP-hard Non-deterministic Polynomial-time hard
NPI Native Port Interface
NRE Non-Recurring Engineering
OCM Operations Concurrency Management
OL Ordered List
PAI Processor Architecture Intergration
PCH Parametric Conditions for Iteration Space with Holes

xxviii

Nomenclature

PCS Parametric Conditions for Solid iteration space
PIR Part Iterator Range
PL Processor Level
PL DTSE Processor Level Data Transfer and Storage Exploration
PLB Processor Local Bus
PS Pattern Size
PSGA Problem-Space Genetic Algorithm
PT Part Type
QEA Quantum-inspired Evolutionary Algorithm
R Repetition factor
RCS Resource Constraint Scheduling
RD Read
RISC Reduce Instruction Set Computer
S-FUs Shift Function Unit
SA Simulated Annealing
SCBD Storage Cycle Budget Distribution
SCIP Standalone Custom IP
SE Simulated Evolution
SHA Secure Hash Algorithm
ShA Shift-Add
SID Segment Iterator Domain
SIMD Single Instruction Multiple Data
SIS Solid Iteration Space
SPCH Second PCH
SW/HW SoftWare/HardWare
TCM Task Concurrency Management
TCS Time Constraint Scheduling
TF Thread Frame
TF DTSE Thread Frame Data Transfer and Storage Exploration
TLP Task Level Parallelism
TRCS Time Resource Constraint Scheduling
UB Upper Bound
UF Unrolling Factor
VLIW Very Long Instruction Word

xxix

Chapter 1

Introduction & Motivation

1.1 Goal & Context

Embedded systems are computer systems which execute applications dedicated to a specific goal,
without indented to be a general purpose computer. Embedded systems contain a collection of pro-
grammable parts and components, which interact with the environment. Examples of embedded
systems are mobile devices, bio-medical devices, security devices, multimedia devices etc.

The embedded applications are usually from multimedia, graphics, wireless, biomedical, au-
tomotive, signal processing application domains. Except their complexity, the embedded applica-
tions impose constraints and trade-offs on several metrics of the embedded systems that will exe-
cute them. Additional constraints and trade-offs are imposed by the environment, i.e. the market,
the designing and manufacturing company and the users. The constraints describe the minimum
acceptable value in the metric that should be satisfied in order the system to function correctly.
Any design that has a value in a metric below the constraints is considered as inappropriate. The
trade-offs are choices which can reside in a range of values of the metric, which are better points
than the constraints.

Several applications of embedded systems have usually constraints on the performance, which
is expressed through the execution time or the throughput of the system. Whether the performance
and the time requirements of the application are a hard or soft constraint depends on the remaining
characteristics of the application. For instance, when a strict deadline exist in the execution of
the application, that imposes a constraint in the performance. Most embedded systems operate
with batteries and thus energy consumption is very crucial in order to extend the system lifetime.
Hence, the minimum acceptable lifetime defines the constraint in energy consumption. Then, a
further reduction of execution time or the energy consumption can be decided during exploration
of the multi-dimension trade-off space of the different design options.

To meet the imposed constraints, the embedded systems consists of heterogeneous multipro-
cessors, such as RISC, VLIW or SIMD, different operations modes, such as Dynamic Voltage
and Frequency Scaling (DVFS) and Dynamic Power Management (DPM), Application Specific
Instruction Set Processors (ASIP), DSP and ASIC, reconfigurable processing units, complex data

1

1. INTRODUCTION &MOTIVATION

memory hierarchies, advanced interfaces etc. Due to the system requirements, software designs
cannot be performed independently from the under-laying hardware and both software and hard-
ware must be taken into account during the design [122].

The multidimensional trade-off space is created by a set of objective axes. A set of high
weighted objectives is performance, area and energy consumption. As embedded systems are
usually real-time systems, the time execution, i.e. performance expressed in latency or through-
put is a crucial objective. As embedded systems are portable, energy consumption is also crucial.
Leakage energy consumption is indirectly affected by the area of the embedded systems. As the
number of gates is increased, leakage energy is also increased. However, these major objectives
cannot be concurrently satisfied, as one contradicts the other. We further describe this compli-
cated trade-off. To further reduce the time execution, several design options exists, i.e. mapping
of critical parts into custom HW accelerators and components, potential parallelization of the plat-
form components and microprocessors, higher frequency in HW parts, more dense scheduling of
the operations and the memory accesses. These design options lead to energy consumption and
area increase. Any extra requirement in the hardware part increases the number of gates and thus
the leakage energy. The more dense scheduling which optimize the elements accessing leads to
increase in the required storage size, as the lifetimes of the variables are extended. The increase
in the storage size requirements leads to larger memories, which also leads to an increase in the
energy per access.

However, embedded systems are mass products in highly competitive markets and thus the final
system should have a low cost unit, which expresses both the manufacturing and the design cost.
The manufacturing cost is expressed by the unit cost, i.e. the cost of manufacturing one copy of
the system. When the power consumption is increased, the unit cost is also increased due to the
requirements of stronger power supply and of more expensive cooling system. When the area is
increased due to size increase of the physical space, measured in bytes for software and gates for
hardware is increased, the unit cost is also increased, since larger memories are required to be used.
The design cost is expressed by the Non-Recurring Engineering (NRE), which is a pre-production
effort of designing the system, and the engineering effort required for modification of the system.
Hence, flexibility to target multiple application instances in a domain on the same shared platform
instance is also an important objective, as it describes the ability to change system functionality
without heavy NRE cost. To increase flexibility, additional area has to be used. Fortunately, when
the system is targeting a large domain this also means that (much) higher chip production volumes
can be realized. That heavily reduces the cost per chip so high flexibility is heavily weighted in the
overall cost equation and thus a somewhat larger area is clearly acceptable.

The high competition of the markets imposes short time to market, i.e. the time required to
design and manufacture the system in order to be ready to be sold. A short delay of the product
release can have catastrophic financial consequences and thus it is a highly weighted objective in the
overall trade-offs space. The time-to-market should remain within a market window, which affect
the time available for the design of the system. The available design time allows a better exploration
of the multi-objective design space. The more time is available for the system design, the better

2

exploration of the multi-objective space is performed, leading to closed to optimal designs and a
better yield and a lower unit cost. However, the NRE cost is increased. When the design time is
reduced or the NRE cost is lower, a more aggressive pruning is performed in the exploration space
leading to results that are somewhat less optimal, but still within an acceptable tolerance margin.

Due to the increase in the complexity of the embedded system hardware and software, the
strong time and power constraints of the applications, the low cost and the short time to market
and the overall multidimensional objective space, ad-hoc design approaches based on the expe-
rience of the designer, which must be expert in both hardware and software fields, cannot lead
to near-optimal results. The design process takes too much time and without upfront guarantee
of meeting the constraints and designing a near-optimal system from the design space created by
the several contradicting trade-offs. Hence, DSE methodologies, which also for large application
codes efficiently explore the design options in the design space of the different trade-offs of the
system and provide near-optimal designs in short time-to-market are required.

1.2 Existing Design Space Exploration methodologies & limi-

tations

The DSE methodologies searches the options of the architecture, the components, the interfaces
and the data mapping to achieve a near-optimal system which satisfies the constraints and mini-
mizes the multidimensional trade-off space. During the DSE the input and output requirements,
the storage requirements, the processing requirements and the system control are explored.

Academia research focuses more on DSE methodologies that provide near-optimal designs.
The ideal DSE methodology is to address all mapping problems simultaneously in a single phase.
However, the ideal DSE methodology cannot be achieved. The design of embedded systems is
a very complex process, which consists of several mapping phases, thus no good way exist to
optimally formulate the single phase solution. Hence, the DSE methodology has to be divided into
a number of sub-tasks in order to be manageable [122].

Hence, the DSE methodologies divide the DSE process into steps. The division into step is
performed in an ad-hoc way and thus the sub-steps are usually bidirectionally affect each other.
In the case of bidirectionally connected steps, iterations between steps are required to search for
near-optimal solutions. Due to the bi-directional correlation of the sub-steps, no guarantee exists
that the DSE will be finalized in a reasonable execution time with a near-optimal design. When
the number of software and hardware parameters is increased, the costly design iterations of the
bi-directionally correlated sub-steps of the DSE lead to not scalable approaches. For instance,
an iterative DSE method starts from the designer's base configuration, changes the value of one
parameter each time and uses the results to predict the optimal design is proposed in [175]. The
aforementioned DSE approach may lead to less efficient designs when a high number of parameters
and interdependencies exists.

In addition, each mapping step consists of tasks which are solving NP-hard problems. The con-

3

1. INTRODUCTION &MOTIVATION

ventional techniques applied in one step can achieve near-optimality only for small design problems
in the available exploration time. When the complexity of the design problem is increased, which
is usually the case, the conventional techniques are incapable of identifying the solution within
reasonable search time. For instance, stochastic approaches require unacceptable exploration time
to reach near-optimal solutions in a large exploration space. The stochastic approaches search the
space based on different types of random moves. In order to reach a near-optimal result in the
target domain, they need too many search attempts in near-by regions of the design exploration
space. For instance, the quality of the Quantum-inspired Evolutionary Algorithm (QEA) for the
multiprocessor mapping is highly based on the number applied generations. The increase in the
number of generations increases the chances to reach a near-optimal solution [3]. A DSE method-
ology with stochastic algorithms is proposed in [147] and a simulated annealing DSE approach
of object detection accelerators is proposed in [73]. Deterministic design approaches, like Integer
Linear Programming (ILP) techniques, require too much exploration time when applied in medium
and large design problems. The branch and bound design methods also require increased search
time to guarantee optimal results. In order to reduce the exploration time, the branch and bound
process has to apply a more aggressive pruning in the available design options, which reduces the
final quality of the final design. Heuristic and greedy design methods search the design exploration
space based on a set of predefined rules, which cannot guarantee optimal solutions to the problem
in its most general form [39].

Compilers are mainly used by DSE methodologies in order to map the application in the dif-
ferent designs. The main subtasks of the compiler are: 1) code selection, i.e. mapping of machine
instructions of the target processor, 2) the register allocation, i.e. mapping of scalars to registers in
order to minimize the memory references during program execution, 3) register assignment, i.e.
determine in which physical register a value is stored, 4) instruction scheduling, i.e. the reordering
of the instructions sequence to exploit parallelism and 5) resource allocation, i.e. the assignment
of functional units and buses to operations. The phases as defined above in conventional compiler
flows, execute sub-tasks that are heavily interdependent, i.e. bi-directionally connected, as deci-
sions of one phase may impose restrictions to other phases leading to sub-optimal overall solution.
For instance, in an embedded system compiler the code selection phase assigns virtual registers
from several classes and the class to be selected is only known during the register allocation phase.
The register allocation phase cannot precede the code selection phase, since the required registers
are only known after the code selection phase [121]. In the literature this is known as the phase
coupling problem, and it is commonly believed that this dilemma is inevitable in practical com-
piler approaches due to its NP completeness in the traditional approaches [188]. Much research
has been performed on the compiler phase ordering problem, i.e. to identify the best order between
compiler phases. In [103] it is stated that no universal optimization phase order exists, as it de-
pends on the function being compiled, the compiler and the architecture characteristics. However,
in this dissertation we will show that this dilemma is only inevitable within the traditional step-wise
approach. The conventional DSE approaches provide a sub-optimal combination of sub-optimal
partial results per phase without the proper splitting into sub-steps with constraint propagation in

4

between. This leads to a less efficient overall trade-off solution.
In order to reduce the exploration time for bigger applications, dependencies between the bidi-

rectional steps are partially overlooked. For instance, Ref. [176] sorts the parameters based on the
impact determined by the maximum parameter value change. All combinations of the first two
high impact parameters are considered. The independence of the parameters is used to prune the
space, which usually is quite restricted, and to derive the Pareto curve in Platune [147]. Divide
and conquer approaches cannot efficiently explore the structure of the design problem under study.
Hence, they overlook the existing constraints during division. Then, they solve each design sub-
problem independently and when they combine the partial results, they end up in at least partly
sub-optimal solutions.

In industry, the design problems to be solved are large and complex, thus the DSE approaches
have to fully give up on near-optimality in order to achieve scalability. Hence, design steps are
applied partially independently and with low complexity heuristics per step to reduce exploration
time. State-of-the-art tools do not take into account the inter-dependencies among processing,
memory and communication constraints, leading to less optimal designs. When the near-optimal
designs per step are combined, design quality is reduced due to conflict constraints in the different
steps which lead to overlooking near-optimal designs.

Hence, a strong dilemma is present in existing DSE methodologies and tools: to either give up
on design near-optimality or to give up on scalability.

1.3 Scope & Main Contributions

The scope of this dissertation is to provide a totally different direction to address the
scalability/near-optimality dilemma by proposing a DSE approach which is capable of achieving
both near-optimal designs and scalable exploration. The proposed DSE methodology divides the
complex design problem in a special way into smaller and less complex design steps, achieving
scalability. In contrast to existing DSE methodologies, the splits between the steps are selected
in such a way that they can be connected through uni-directional constraint propagation. In this
way, near-optimality is achieved as dependencies are not ignored, which happens when the steps
are considered independent. Costly design iterations are avoided, whereas the conventional DSE
methodologies split the design problem into bidirectionally connected steps, which require design
iterations, highly increasing the exploration time. We apply the proposed reusable scalable and
near-optimal DSE methodology in several stages of the higher layers of the design of embed-
ded systems, especially for the intra-signal in-place optimization step of the background memory,
which explores the performance-area-energy trade-off, and the processing mapping part, which
explores the design time-performance-area trade-offs.

5

1. INTRODUCTION &MOTIVATION

The main contributions of the dissertation are:

• Reusable methodology for scalable and near-optimal DSE frameworks.
The design problem is divided into smaller and less complex design steps, which are con-
nected through uni-directional constraint propagation. Near-optimality is achieved as con-
straints are not ignored and scalability is maintained as design iterations are not required.

• Development of scalable and near-optimal intra-signal in-place optimization method-
ology.
The principles of the reusable methodology are applied in the context of intra-signal in-place
background memory optimization to develop a scalable and near-optimal methodology for
highly irregular access schemes. The methodology is described by a DSE framework with
ordered sub-goals and the complete set of ordered cases per sub-goal.

• Scalable and near-optimal representation based on patterns and pattern operations.
The context of irregular access schemes of the background memory has lead to the proposal
of a representation, which uses patterns and pattern operation to near-optimally and in a
scalable way describe the irregular access schemes. The pattern describe the access scheme
per condition and the pattern operations are applied to consistently combine the patterns to
describe the overall iteration space, when several conditions co-exist in the application code.

• Scalable and near-optimal intra-signal in-place methodology for non-overlapping and
overlapping store and load cases.
Scalable and near-optimal solution in closed form equations and functions, i.e. parametric
templates, are proposed to solve the cases of each step of the developed intra-signal in-place
methodology of irregular access schemes for the non-overlapping and the overlapping write
and read access cases.

• DSE methodology for the processing part, i.e. the instruction set processor mapping
for an platform with a processor and several HW accelerators.
A scalable and near-optimal Design Space Exploration methodology is proposed for ex-
ploring the mapping of data-dominated and loop-dominated applications onto a partially
fixed hardware platform with one microprocessor and several HW accelerators. Paramet-
ric templates are applied per methodology step. The proposed DSE methodology creates a
partial pareto curve with the different near-optimal designs per mapping step. The partial
pareto curve of the first step is propagated to the next DSE methodology steps and prunes
sub-optimal options. The remaining options are merged with the propagated partial pareto
curve to create a new partial pareto curve which is propagated to the next step. The process
is repeated for all DSE methodology steps and the result is the final Pareto curve of the DSE.

• Framework of near-optimal design-time scheduling techniques.
The partitioning and the ordering of the available options in scheduling and assignment tech-
niques, applicable for foreground memory management and data path mapping, are defined

6

by a classification DSE framework. The classification framework efficiently describes the
complete set of options of the exploration space and provides the constraint propagation
between the different scheduling and assignment techniques.

• Systematic methodology to develop parametric templates for near-optimal and scal-
able scheduling and assignment techniques.
A DSE methodology is proposed, which uses the classification framework as basis and
projects it into a new framework taking into account the constraints of the target domain
under study each time. The scheduling and assignment classes of the projected framework
are described by parametric templates, which are combined following the class ordering
and develop the final parametric template, which describes the scalable and near-optimal
scheduling and assignment for the target domain.

The dissertation addresses the high layers of the DSE exploration and not at the final layers
with the very detailed mapping into the hardware platform, i.e. scheduling and assignment map-
ping layers, without including code generation and net-list synthesis. As we propose a different
type of DSE, the verification step of the design process is also a relevant research topic, which
however is not addressed by the dissertation. Similar approaches to [85] can be re-projected to the
methodologies described in this thesis.

1.4 Overview of Chapters

The dissertation consists of two parts. The first part consists of Chapters 3 to 5 and it is dedicated
to the storing part of the embedded systems, i.e. background memory. The second part consists of
Chapters 6 to 8 and is dedicated to processing part of SW/HW architectures of embedded systems.
The dependencies between the chapters are depicted in Fig. 1.1. The overview of the chapters is:

• Chapter 2 describes a reusable methodology to develop and use scalable and near-optimal
DSE frameworks. The DSE reusable methodology of Chapter 2 is applied in the different
contexts of the dissertation to derive scalable and near-optimal methodologies.

• Chapter 3 defines the background memory mapping problem under study, i.e. the intra-
signal in-place optimization, which remains scalable and near-optimal in irregular access
schemes. The reusable DSE methodology is applied in the context of intra-signal in-place
optimization to compose a framework with the general steps of the proposed scalable and
near-optimal intra-signal in-place methodology. The goal is split into the intra-signal in-
place sub-goal, i.e. the computation of final storage size, the translation sub-goal, i.e. the
translation of the access scheme information into a scalable and near-optimal representation
and the analysis sub-goal, i.e. the profiling of the access scheme information. The DSE
reusable methodology is applied per sub-goal to develop an efficient partitioning of the po-
tential cases. The parametric templates, which describe the solutions per case are described
in Chapter 5.

7

1. INTRODUCTION &MOTIVATION

Chapter 1:
Introduction

Chapter 2:
Reusable DSE methodology

Chapter 3:
Development of intra-signal in-place methodology

Chapter 5:
Intra-signal in-place methodology:

non-overlapping & overlapping case

Chapter 4:
Pattern representation

Chapter 6:
DSE for instruction-set processor mapping

Chapter 8:
Methodology to develop scheduling parametric

templates under domain constraints

Chapter 7:
Design-time scheduling framework

Background memory part Processing part

Chapter 9:
Conclusions & Future directions

Appendix A:
Extended Greek summary

Figure 1.1: Dependency graph of chapters

• Chapter 4 describes the proposed representation of the array access schemes, which is ap-
propriate to express the irregular shapes in a scalable and near-optimal way. A general
pattern formulation has been proposed which describes the access scheme in a compact and
repetitive way. Pattern operations were developed to combine the patterns in a scalable and
near-optimal way under all the potential pattern combination cases, which may exist in the
application under study. The complete set of potential combination cases is derived by the
reusable DSE methodology of Chapter 2. The pattern representation is used to the solution
to the translation cases.

• Chapter 5 describes the parametric templates of the developed methodology for the intra-
signal in-place for irregular access schemes for the non-overlapping and overlapping store
and load cases. The methodology consists of the analysis step, the translation step and the
intra-signal in-place step. The analysis step describes the application domain and the dif-
ferent cases of the conditions that may exist in a unified application template and parses
the required information from the application instance. The translation step describes the
solution for the different cases using the patterns and the pattern operations described in
Chapter 4.

• Chapter 6 describes a DSEmethodologywhich creates the Pareto trade-off curve of themap-
ping of an application domain into a partially fixed architecture platform of instruction-set
processors, which consists of one processor core and several custom hardware accelerators.
The proposed methodology is derived by applying the principles of Chapter 2 in the context
of mapping for partially fixed SW/HW architectures with a microprocessor and several ac-
celerators. The methodology steps are the analysis and verification that the constraints are

8

satisfied through high level estimations, the SW/HW organization, the ForeGround (FG)
memory management and the data path mapping. The parametric templates of each step are
defined by the software and hardware parameters and constraints. The proposed methodol-
ogy explores the space by profiling of the application and deriving the values in the param-
eters of the first step. The result is propagated to the next step, where options and values
of the second template parameters are pruned due to the propagation from the first step.
The valid options are merged with the propagated options of the first step and the process is
repeated up to the Data-Path (DP) mapping step.

• Chapter 7 describes the result of applying the principles of the reusable DSEmethodology of
framework creation in the context of near-optimal design time scheduling techniques used
in the Foreground Memory Management and Data-path mapping of the DSE methodol-
ogy of Chapter 6. The scheduling and assignment of the scalars into the registers in the
Foreground Memory management step and the scheduling and assignment of the operation
into the function Units of the data path are the major mapping tasks. The result is a sys-
tematic classification with the complete set and the ordering of scheduling and assignment
techniques for foreground memory management and data path mapping, which efficiently
describes the available options of the exploration space.

• Chapter 8 applies the principles of the reusable DSE approach in the near-optimal design-
time scheduling classification to create a systematic methodology to develop parametric tem-
plates for scheduling and assignment techniques which satisfy the target domain constraints.
In this way, a scalable parametric template for scheduling and assignment tasks is created,
which guarantees near-optimality for the domain under study. The developed template can
be used in Foreground Memory Management step and Data-path mapping step when DSE
is performed for the domain under study.

• Chapter 9 presents a summary with the conclusions of the dissertation and with a list of
future work directions.

• Appendix A presents the publication list of the PhD dissertation results.

• Appendix B is dedicated to the extended summary of the PhD dissertation inGreek language.

9

[This page is intentionally left blank]

Chapter 2

Reusable methodology for scalable &
near-optimal DSE

2.1 Introduction

Our goal is to provide a way to solve complex, dependent and large DSE problems in a near-optimal
and scalable way. In this target domain, as shown in Chapter 1, the conventional solution techniques
are less appropriate, because they are inherently based on bottom-up approaches without splits
driven by constraint propagation. As a result, they either require too much exploration time to
find near-optimal designs due to the high number of parameters and the correlations between the
parameters of the target domain or they end up with a less efficient result in order to find a design
within acceptable time.

In order to achieve near-optimal designs in reasonable exploration time, an approach which
divides the problem into smaller sub-problems (to reduce exploration time) and which maintains
the full functionality of the subproblems (to guarantee near-optimality) is required. When the
design problem has been divided into small enough sub-problems, the more conventional design
techniques can achieve near-optimal results in reasonable exploration time per sub-problem. The
division of the design problem into sub-problems could be performed by enumeration of all the
possible valid division options and combinations of those options. This enumeration process will
lead to a huge explosion of the possible combinations and thus cannot be applied in large design
problems. The alternative option is to apply a gray-box top-down approach, where instead of
enumeration of all the possible division options, the different options are explored and refined in
hierarchical abstraction layers and in a nested way. In each layer, the different options are grouped
in caseswith known interface (what aspect) but with unknown internal part (how aspect). The cases
are not independent and in each layer the constraints are explicitly derived. The constraints show
how the cases affect each other in a uni-directional way allowing an efficient combination of the
diverse cases. Examples of the uni-directional propagation have been applied in the unified design
meta-flow of [51] which have been applied in the abstract layers of design flow, as described in
Section 2.5. The current PhD dissertation systematically presents the gray-box top-down approach

11

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

and applies it for DSE and mapping in the background memory and SW/HW co-design in the
processor abstraction level of the unified design meta-flow. With this gray-box top-down process,
the near-optimality is maintained, since constraints are not overlooked during combination. In
addition, sub-optimal combinations are pruned by the uni-directional constraint propagation. The
gray-box top-down process is iteratively applied starting from the problem to be solved in order
to refine it in a complete set with all the cases and the constraint propagation between them. The
refinement process is repeated until the cases are small enough to be near-optimally and within
reasonable exploration time solved by more conventional techniques. Then, each subproblem is
solved and the results are propagated following the uni-directional constraints.

In the rest of this chapter, we describe the principles of the reusable methodology to compose a
scalable and near-optimal DSE framework in Section 2.2. Section 2.3 presents how the principles
are applied to derive a complete DSE framework with the partitioning of all the available options
into cases. Section 2.4 describes how the DSE framework is used to select the near-optimal and
scalable solutions for the design problem of a target domain in a reasonable time. In the remaining
chapters, we present the DSE frameworks derived by applying the reusable methodology. In this
way we obtain scalable and near-optimal DSE frameworks in several contexts of large and complex
design problems and we use the developed frameworks to determine effective solutions for the
target domains under study.

2.2 Principles

The reusable methodology to develop scalable and near-optimal DSE frameworks is applied to a
context in order to create the DSE framework with the partitioning of all the available options
into cases. The framework derives by systematically applying a set of principles, which guarantee
completeness during partitioning of the cases and provide uni-directional efficient ordering between
the cases.

The first principle of the reusable DSEmethodology is the gray-box top-down division principle
and defines the space partitioning process.

Principle 1. The gray-box top-down division principle rigorously applies top-down splits.

Definition 1. A top-down split divides the main characteristics of a parent case P into two children
sub-cases S1 and S2, i.e. S1 ⊂ P and S2 ⊂ P , by detecting an asymmetry in the characteristics.
The sub-cases have the following requirements:

1. Complementary. The parent case P is spit into a sub-case describing the ``X'' part and a
sub-case describing the ``not X'' part of the detected asymmetry, i.e. X = P −X .

2. Positive. The ``not X'' sub-case is reformulated into a positive description in order for both
sub-cases to be positive, i.e. S1 = X and S2 = X .

3. Non-overlapping. The intersection of the sub-case is zero, i.e. S1 ∩ S2 = X ∩X = ∅.

12

Complete Space

Sub-case 2

Sub-case 1

Figure 2.1: The partitioning of the complete space described by the black curve and the top-down
split described by the gray curve, which divides the space into two sub-cases.

4. Complete. The sub-cases together still compose all feasible options covering the total parent
space P , i.e. S1 ∪ S2 = X ∪X = P .

5. Balanced. The size of the space describes by the sub-cases is similar, i.e. S1 ≈ S2.

Depending on the properties of the case, the detected asymmetry may describe the different
instantiations of the parent case (top-down split of what type) or required steps to achieve the parent
class (top down split of how type). This division also describes an asymmetry of what type: in
the what type split one case is enough to instantiate the parent case, while in the how type both
sub-cases are required to instantiate the parent case. A schematic description of the division of the
space in a top-down split is depicted in Fig. 2.1.

The second principle of the reusable DSE methodology the horizontal propagation of con-
straints in a top-down split. It defines the ordering of the sub-cases based on the asymmetry of the
split.

Principle 2. The constraints of the sub-cases of a top-down split are described by horizontal prop-
agation of constraints in a uni-directional way.

In a top-down split, the source sub-case is solved first and the solution and the decisions made
in the source are propagated following the horizontal uni-directional propagation of constraints to
the destination case. The unidirectional-propagation of constraints is schematically depicted by an
arrow between the sub-classes, as depicted in Fig. 2.2. The uni-directional ordering of the sub-
cases is defined by a set of constraint propagation rules, which are instantiated based on the context
of the problem under study. The constraint propagation rules are:

1. The source case provides parameters to the destination case, which are required in order to
apply/perform the solution of the destination case.

2. The source case provides parameters to the destination case, which are required in order to
define/select the solution of the destination case.

3. The characteristics and nature of the source case (heavily) prune unrealistic or sub-optimal
case combinations.

4. The result and the decisions of the source case do not remove potential promising options
in the destination case.

13

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

Complete Space

Sub-case 2

Sub-case 1

Figure 2.2: The partitioning of the complete space described by the black curve and the top-down
split described by the gray curve and the arrow of the unidirectional constraint propagation.

Complete Space

Figure 2.3: The partitioning of the complete space into the sub-cases and the sub-cases ordering
by iteratively applying top-down splits and the horizontal propagation principle.

If no constraints exists between the sub-cases, they are independent and hence no arrow is imposed
between the sub-classes. This is rarely the case in practice though.

The third principle of the gray-box top-down approach is the reusability principle, which is
applied during the creation of the framework with all the available cases. When top-down splits
are iteratively applied, we start from the more reusable splits. In this way, the more general sub-
cases are at higher layers during the design problem partitioning, which can partially reused in
similar goals and contexts. The splits in lower layers are refined more, and thus become more and
more concrete.

Principle 3. The reusability principle favors the application of the more reusable top-down splits
first among the existing top-down splits.

When the principles are applied into a context and a goal to create the framework with the
partitioning of the available cases, top-down splits with horizontal propagation of constraints are
iteratively applied. The result is an ordered partition of the cases, as depicted in Fig. 2.3. The first
top-down split partitions the complete design space into two sub-cases, as depicted by the dark
gray line of Fig. 2.3 and the horizontal propagation of constraints defines the direction of the dark
gray arrow between the sub-cases. Per sub-case top down splits are applied, depicted by the gray
lines in Fig. 2.3, which divide again each case into two complete and non-overlapping sub-cases.
The final ordering is defined by the gray arrows. The process is repeated per sub-case to create
further partitions in the space, e.g. light gray arrows etc.

The next set of principles is used after the creation of the framework with the partitioning into
the available cases.

The fourth principle is the vertical propagation of constraints.

Principle 4. The sub-cases of a top-down split should satisfy the properties of the parent case.

14

Complete Space

Sub-case 2

Sub-case 1

Figure 2.4: The pruning of a sub-case due to constraints vertically propagates to a top-down split.

The vertical propagation principle is responsible for the consistency of the sub-cases in a top-
down split, when the split is used for a partial instantiation of the parent case. The partial instan-
tiation of a parent case is more restricted than the initial parent case and thus inserts additional
constraints. For instance, scheduling techniques are divided into stochastic and deterministic ap-
proaches. A partial instantiation of the parent case is represented by scheduling techniques in-
tended specifically for dealing with small graphs. With the vertical propagation, the additional
constraints are propagated to the sub-cases. If a sub-case is not compatible with the additional
constraints, i.e. the options that describe are not valid under the propagated constraint, the sub-
case is pruned. For instance, the additional constraint of small graphs is vertically propagated and
prunes the stochastic techniques. In Fig. 2.4, the gray sub-case is pruned due to the constraint
propagated from the partially instantiated parent case.

The fifth principle is the combination principle.

Principle 5. When sub-cases are combined, the destination class should satisfy the properties and
the solutions of the source class, which are propagated as design constraints by the arrows of the
horizontal constraint propagation.

The horizontal propagation of constraints has derived the direction constraints should be prop-
agated between two sub-cases in order not to prune optimal solutions. Hence, when the solutions
of the sub-cases are applied, the solutions of the sub-case in the source of the arrow are propagated
to the destination of the arrow. Then, the solutions which are not compatible with the design con-
straints propagated by the solutions of the source class should be pruned to satisfy the horizontal
uni-directional arrow. In this way, the sub-case is refined into a more specific sub-case.

In the next section we apply the principles to develop a methodology which creates DSE frame-
works for a given goal and context and a methodology which uses the frameworks to derive near-
optimal and scalable solutions for partially instantiated target domains, inside the goal and the
context of the DSE framework.

2.3 Framework creation

In order to create the DSE framework with the partitioning and the ordering of all the available
cases, the problem is defined and the principles of the Section 2.2 are systematically applied.

15

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

ALGORITHM 1: Pseudocode of the methodology to develop the framework with the par-
titioning of the complete space by applying the gray-box top-down principles.
Input: Context
Output: Framework
Define properties of context(v);
v← root ;
Q = list of parent cases;
Enqueue(Q,v);
while (Q 6= ∅) do

Select a parent P from Q;
Identify relevant top-down splits within parent characteristics;
Select based on reusability of candidate splits;
Prefer more balanced splits, |S1| ≈ |S2|;
Apply split by creating X = S1 and X sub-cases;
Positively reformulate X to S2 sub-sub-case;
Apply horizontal uni-directional constraint propagation rules;
if (further refinement is required) then

Enqueue(Q,S1,S2);

2.3.1 Methodology steps

The steps of the reusable methodology to create the framework with the partitions of the com-
plete design exploration space are summarized in the pseudocode of Alg. 1. The first step in the
framework creation process is to carefully and unambiguously formulate the problem under study
and the goal. The problem formulation and the goal are analyzed to identify the most important
constraints, objective axes and properties. This step is very crucial since it describes the context of
the framework. The root of the framework is described by the goal of the problem under study,
which should meet the constraints. Then, the refinement process is applied. The root is divided
into two smaller sub-cases by applying the DSE principles. The top-down split searches in the
context of the problem under study and in the goal properties to detect an asymmetry in the space.
The reusability principle favors the asymmetries that are more reusable and general in the initial
layers of the top-down refinements. Then, the gray-box top-down principle is applied based on
the detected and selected asymmetry. The result is two sub-cases, which describe smaller set of
options that the root and satisfy the properties of the root. The size of the described space, i.e. the
options, is similar between the sub-cases due to the balanced property. Each sub-case describes
non-overlapping parts of the space and they, together, describe the complete space of the root.
The horizontal uni-directional constraint propagation principle is applied in the top-down split to
define the ordering of the sub-cases, except when they are independent. Based on the detected
asymmetry, which is used in the top-down split, the corresponding constraint rules are applied.
The result is an ordering of the two sub-cases connected with a uni-directional arrow, which de-
scribes the constraint propagation between the sub-cases. The negative sub-case is reformulated
into a positive description, e.g. non-stochastic scheduling approaches are reformulated into the
deterministic approaches. The top-down split with the uni-directional arrow is schematically de-

16

Parent Case

Right Sub-case Left Sub-case

rule

Figure 2.5: Schematic representation of the result of applying the principles of gray-box top-down
approach in a parent case.

Goal

Sub-case Sub-case
rule

Sub-case Sub-case
rule

Sub-case Sub-case
rule

Sub-case Sub-case

rule

Sub-case Sub-case

rule
Sub-case Sub-case

rule

Sub-case Sub-case

rule

Sub-case Sub-case

rule
Sub-case Sub-case

rule

Sub-case Sub-case

rule

Sub-case Sub-case

rule

Sub-case Sub-case

rule

Sub-case Sub-case

rule

Sub-case Sub-case

Sub-case Sub-case

Sub-case Sub-case Sub-case

Figure 2.6: Framework with the sub-cases of the complete space of the problem under study after
applying the principles of the reusable DSE methodology.

picted in Fig. 2.5, where the parent case is split into the left sub-case, which propagates constraints
into the right sub-case and the rule above the uni-directional arrow describes the rule which is ap-
plied by the horizontal uni-directional constraint propagation principle to derive the corresponding
arrow.

The process is iteratively applied for each of the sub-cases creating a tree structure T with the
sub-cases and the unidirectional arrows, as schematically depicted in Fig. 2.6. The uni-directional
arrows of higher layers are valid also in the sub-cases of the branches. The refinement process
terminates, when the sub-cases are small enough to be solved by in a scalable and near-optimal
way from bottom up approaches, e.g. specific conventional techniques or generalized techniques
described by parametric templates.

2.3.2 Framework properties

2.3.2.1 Framework completeness

Each case i has a label s(i) to indicate its position in T and describes the path from the root to case
i. The elements of the label are L and R, where the L describes the Left sub-case and the R the
Right sub-case in a top-down split in T . The length of the label length(s(i)) indicates the depth
of the case in T (case layer).

Definition 2. Two sub-cases i and j are called brother sub-cases when they derive from a split ap-
plied in the parent case p. They belong to the same layer of T , i.e. length(s(i)) = length(s(j)) =

length(s(p)) + 1. The brother labels s(i) and s(j) differ in the last element. They derive from
concatenating the parent label s(p) with a L or a R element depending on the position of the child

17

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

sub-case in T , i.e. s(i) = s(p)|L or s(i) = s(p)|R.

Definition 3. A couple of sub-casesm and n is: m− n.

Based on the gray-box top-down division principle we remedy the fact that missing points exist,
leading to the Theorem 1. The cases of the framework branches still cover all the possible options
and describe non-overlapping areas of the search space, as characteristics and options loss cannot
occur during the framework creation process. This completeness is crucial to guarantee a global
DSE framework of all the different available feasible options, and to have near-optimality.
Theorem 1. The derived framework provides a complete and consistent partitioning of the available
cases of the goal under study.

Proof. The process starts from the root, which describes the goal under study, and in each layer
applies top-down splits which lead to complementary, non-overlapping, positive and complete sub-
cases. This is enabled due to the positive reformulation of the sub-cases, which allows the splitting
process to continue. Let's assume that the derived framework is not complete. Then an option
exists which meets the goal properties and constraints but it is excluded from the framework. The
characteristics of this option are not included in any of the proposed cases. That means that a split
without the top-down split properties exists in the proposed framework. The latter means that the
process to derive the framework does not strictly applies the gray-box top-down division principle,
which contradicts the Principle 1.

2.3.2.2 Compactness

The characteristics of the sub-cases can be shared following the constraint propagation arrows.
This reuse allows the description of all options with a reduced number of unique sub-cases leading
to a quite compact DSE framework, which is essential for an effective DSE.
Theorem 2. The DSE framework consists of a limited set of the unique primitive sub-cases.

Proof. Assuming that the DSE framework consists of more than the required sub-cases, then it
is considered as redundant. Then, two sub-cases N and M describe the same area in the explo-
ration space. If the redundant classes N and M are children of the same parent, this contradicts
the properties of the top-down split, because they describe not complementary parts. If they are
children of different parents, redundancy exists in their ancestors. Following the DSE framework
tree in a backward way from the classes N and M to their ancestors, we can identify which splits
are responsible for the redundant nodes. Due to the tree structure of the DSE framework, they will
be children of the same parent which describe non-complementary set of characteristics, which
contradicts the properties of the top-down splits.
Theorem 3. The DSE framework is a compact scheme.

Proof. By Theorem 1 the DSE framework is a complete approach. By principle 2.4 the sub-cases
are restricted by the characteristics of the parent. The Theorem 2 does not allow redundancy to
exist. Hence, all options can be described by sharing of unique sub-cases indicating a compact
scheme.

18

Goal

Option Option
rule

Option Option
rule

Option Option
rule

Step Step

rule

Step Step

rule

Step Step

rule

Step Step

rule

Step Step

rule

Step Step

rule
Option Option

rule

Step Step
rule

Option Option
rule

Figure 2.7: Combination of what type and how type splits in a framework. The sub-cases labeled
options are derived by what type of top-down splits and the sub-cases labeled steps derive from
how top-down splits.

2.3.3 Framework types

Depending on the properties of the goal and the context to be refined, the resulting framework
may describe the different ways in which the goal can be achieved (what type framework) or may
partitioning the goal into smaller tasks (how type framework) or a combination of a what and
how type of framework. The hybrid framework of what and how type is achieved by applying
what type of top-down splits in several layers and, then, per each sub-case of the what type top-
down splits, we apply how type top-down splits and visa versa. A hybrid framework is depicted
in Fig. 2.7. For instance, when the goal is to describe the complete set of existing design-time
scheduling techniques, what type top-down splits are applied to define the complete set of different
ways to perform scheduling. When the goal is to find the steps of a specific scheduling technique,
e.g. Simulated Annealing (SA), how type splits are applied per scheduling case. We describe the
creation of the resulting hybridDSE framework for near-optimal design-time scheduling techniques
in Chapter 7.

We apply the reusable methodology for scalable and near-optimal DSE framework creation
in several chapters of the dissertation for different contexts. The most refined frameworks are
worked out in the different DSE chapters. Chapter 3 describes how the different index expres-
sions cases are defined (what type), how the intra-signal in-place methodology is divided into
sub-goals (how type), and how each sub-goal is refined into the different cases (what type). The
developed methodology combines the above frameworks, thus it is a hybrid framework. Chap-
ter 4 contains the DSE framework for the intra-signal in-place step and it describes the different
pattern combination cases. Chapter 5 continues with the further refinement of the sub-steps of
the intra-signal in-place for non-overlapping and overlapping cases (what type), Chapter 6 define
the sub-steps of mapping on platforms with one processor and several hardware accelerators (how
type). Scheduling is a major problem to be solved during this mapping so Chapter 7 describes
the classification framework for the creation of global design-time scheduling techniques (Hybrid
type).

19

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

2.4 Framework usage

The framework describes the partitions and the ordering of the sub-cases which completely de-
scribe the space of the problem under study. When the goal is restricted, several of the sub-cases
should be pruned due to incompatibility reasons.

2.4.1 Insight of the DSE options

TheDSE framework has well-defined sub-cases describing non-overlapping areas which are reused
and shared in a systematic way. Hence, the DSE framework offers useful insight into the sub-
cases, as it efficiently supports their analysis. This is achieved by decomposing the properties
of a restricted context and the goal into its primitive components, i.e. the sub-cases of the DSE
framework. This enables the understanding of their similarities, differences, main characteristics
and interrelationships of the different options in the DSE, which is essential for their efficient use
and their further improvement and optimization. The DSE framework can precisely identify the
similarities in every sub-case, as each sub-case is unique with non-overlapping characteristics. In
addition, the DSE framework identifies the most relevant and unambiguous differences between
the different sub-cases due to the asymmetries used to create the top-down splits. The similarities
and differences do not form each other's direct complement. This process is essential for the in-
depth understanding of the DSE options and thus for their efficient use and improvement with a
minimized waste of time and effort comparing to the previous frameworks or to individual ad-hoc
study of all the existing options.

2.4.2 Framework projection

The vertical propagation principle is responsible for the consistency of the splits in a DSE frame-
work, when the DSE framework is used to select near-optimal solutions for a partially instantiated
target domain. The target domain is a partial instantiation of the goal and the context of the DSE
framework. For instance, assume a framework which describes the scheduling techniques, which
are applied at design-time and that can search in the entire solution space for near-optimal so-
lutions. That framework can be used for several partially instantiated target domains, such as
scheduling of applications described by small graphs, of applications with large subgraphs and
hidden hierarchy etc. The partially instantiated target domain is more restricted than the initial
goal and context and thus inserts additional constraints to the parent case. Depending on the type
of the goal and the context that the DSE framework describes, the result of the projection can be
either an DSE methodology flow, the different required properties of a solution to the problem
under study or the different cases that may occur during the problem solving.

The additional constraints of the restricted target domain are combined with the properties of
the root leading to a restricted goal. The additional constraints of the restricted goal are vertically
propagated to prune the initial DSE framework. The vertical constraint propagation propagates
the constraints of the restricted goal down to the two sub-cases. First, for the sub-case, which is

20

Restricted Goal

Sub-case Sub-case
rule

Sub-case Sub-case
rule

Sub-case

Sub-case Sub-case

rule

Sub-case Sub-case Sub-case

rule

Sub-case Sub-case

rule
Sub-case

Sub-case

Sub-case Sub-case

rule

Sub-case

Sub-case Sub-case Sub-case Sub-case Sub-case Sub-case Sub-case

Figure 2.8: Pruned tree after applying the vertical constraint propagation principle. The charac-
teristics of the sub-cases from the root to each leaf are merged and flattened into a sub-case.

the source of the uni-directional horizontal constraint propagation arrow, it is verified whether it
meets the vertically propagated constraints. If it meets them, then the sub-case is not pruned. The
vertical constraint propagation continues with the branch below the source sub-case. The sub-cases
are compared with the vertically propagated constraints by verifying first the source sub-case of
the unidirectional arrow etc. If the source sub-case is incompatible with the vertically propagated
properties, it is pruned and the branch below the source sub-case is not further explored. Then,
the destination sub-case is explored for compatibility with the vertically propagated constraints.
After the process of the vertical constraint propagation, the framework has been pruned and the
sub-cases that have been left are valid. In Fig. 2.6, the initial framework for the problem under
study is depicted and Fig. 2.8 shows the pruned tree after the vertical constraint propagation. The
result is a chain of the valid sub-cases following the uni-directional arrows, which derives after
flattening the valid sub-cases. Flattening is performed by merging the characteristics of each leaf
with the characteristics of the sub-cases that lead from the root to the leaf. After flattening, each
sub-case can be filled with near-optimal and scalable conventional techniques or by parametric
templates (see below) which describe the different options of each sub-case. The result is a chain
of sub-cases connected through uni-directional arrows.

2.4.3 Trade-off exploration

During the framework creation process only the constraints of the problem under study have been
taken into account. During the use of the framework, the trade-offs have to also be considered
in order to guide the decisions towards the most promising solution of the design problem under
study.

For each flattened sub-case of the framework, the different options can be defined by either a
parametric template, which describes a generalized solutionwith parameters, algorithms and closed
form equations, or by conventional existing approaches, which now are however near-optimal
because the limited scope and size of each subproblem. In this way, they are also scalable for

21

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

Opt.1 Opt.2 Opt.N …

…

p==a
yes no

Figure 2.9: Schematic description of a parametric template. The boxes describe the options and
the rhombus the if expressions to lead to the different options

the specific sub-case. In Fig. 2.9 we schematically depict a parametric template with the different
options described in an efficient what-if structure. To have an overall Pareto curve to describe the
overall trade-offs, the relevant trade-off axes have to be explored per sub-case and the combining
principle describes how the trade-offs of the sub-cases are merged into the final Pareto curve.
Initially, we estimate the value of the tradeoff axes for the different options in the first sub-case
of the chain. In this way, a partial pareto trade-off curve with the near-optimal options and the
corresponding decisions is created for the first sub-case. Based on the combining principle, the
results of the first sub-case in the chain are propagated to the remaining sub-cases following the
horizontal uni-directional constraint propagation. The options of the next sub-cases are explored
taking into account the propagated results of the first sub-case. In this way, the options of the
parametric template, which are incompatible with the decisions propagated from the first sub-
case, are pruned and only the valid options in the parametric template of the second sub-case are
considered. In Fig. 2.10, the gray options are pruned due to incompatibility with the propagated
design constraints of the first parametric template. In this way the options of the second sub-case
are explored under the constraints created by the valid options of the first sub-case. The pruning
of the second sub-case does not remove promising solutions. The latter has been taken case by the
horizontal propagation principle which decided the uni-directional arrows based on rules during
the DSE framework creation. The result is a partial pareto curve, where the points describe the
near-optimal valid points for both sub-cases. The process is repeated for all the sub-cases of the
chain. In the last sub-case, the result is the final overall pareto curve, with points that describe
near-optimal solutions for the problem under study.

The process is schematically depicted in Fig. 2.10, where we assume 3 sub-cases connected
by uni-directional propagation of constraints. The options of each sub-case are described by a
parametric template. The partial pareto curve of the first sub-case is created (P1, P2 etc. points in
Fig. 2.10) by giving valid values to the parameters of the first parametric template. The results are
propagated to the second sub-case, where the valid parameters of each point of the first sub-case
prune incompatible options of the parameters of the second parametric template. The result is the
second partial pareto curve, which describes the valid options of both sub-cases, i.e. points P1, P2
and P1, P3 etc. in Fig. 2.10. P1 is the point propagated from first sub-case and P2 and P3 are
the only valid points of parametric template of second sub-case for the propagated values of P1,
creating two pareto points. The final sub-case is explored based on the points of the propagated

22

Sub-case Sub-case Sub-case

x

x

x

x

P1

P2

P3

P4

x

x

x

x

x

P1,P2

P1,P3

P2,P2

P3,P2

P4,P3

x

x

x

x

x

P1,P2,P1

P1,P3,P1

P2,P2,P3

P3,P2,P3

P4,P3,P2

P1 P2 PN …

…

P1 P2 PN …

…
P1 P2 … P3 P4

… …

O1

O2

O1

O2

O1

O2

Figure 2.10: Three sub-cases with the exploration of the parametric templates. The parametric
templates and the corresponding partial pareto curves are combined following the uni-directional
constraint propagation.

pareto curve and the combined result is the overall pareto curve of the problem under study. The
points of the final pareto curve are P1, P2, P1 and P1, P3, P1 in Fig. 2.10. The pareto curve can
be used to select the most promising point based on the specification of the problem under study.

The use of the frameworks to perform scalable and near-optimal DSE is reapplied in several
contexts in this dissertation. The most representative examples are in Chapter 5, where the intra-
signal in-place storage size optimization methodology uses the unidirectional constraint propaga-
tion to remove suboptimal options of the parametric templates of the steps for the non-overlapping
and the overlapping case, Chapter 6, where we present a design-space exploration methodology
based on partial pareto curves and horizontal propagation of constraints for the context of mapping
in a microprocessor and several hardware accelerators and in Chapter 8, where a methodology to
develop scalable and near-optimal parametric templates for target domains in the context of near-
optimal design-time scheduling techniques is presented.

2.5 Unified system design meta-flow

The principles of the DSE framework creation have been applied in the higher layers of the design
flow of embedded systems in [21] [19]to develop an abstract but unified design flow, depicted in
Fig. 2.11.

Due to the properties of the approach of Chapter 2, the unified design flow for global mapping
DSE does not include overlapping design steps or redundant design iterations. Hence, it is sep-
arated into different abstraction layers which are connected through uni-directional propagation
of constraints. The layers of the unified system design meta-flow derive from applying top-down
splits in the context of system design. The goal is divided into the algorithm level and the Design
Space Exploration. The algorithm level provides a complete and formal description of the system
which should efficient deal with temporal correctness and the data types are refined. The result of

23

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

Unified Design Meta-flow

Algorithm Level DSE

Dynamic /
Non-deterministic

Static/
Deterministic

(2)

(2)

Inter-
Task
DTSE

Task
Concurrency
Management

(2)
Array (Data)

Level
Instruction

Level

(2)

Intra-
task

DTSE

Data
Parallelization
Management

(2)
Processor

Level
DTSE

Instruction
Level

Concurrency
Management

(2)

Figure 2.11: Unified system design meta-flow.

the algorithm level is an optimized system specification with a set of concurrent communication
tasks with timing requirements. The DSE is divided into the part that is dedicated to the mapping
of the dynamic and non-deterministic elements of the algorithm and the part which is dedicated
to the mapping of the static/deterministic elements. The dynamic/non-deterministic part is dealt
with by the stages at the task (or thread frame) level.

The Thread Frame Level (TF) mapping deals with the dynamism of the application which is
expressed in a non-deterministic way. It mainly focuses on the not-stochastic events which dy-
namically trigger the creation of application thread frames. The Thread Frames are heterogeneous
in nature. The use of the system scenario concept among thread frames, i.e. the inter-thread frame
system scenario approach, allows to modify the thread frame behavior to have the overall applica-
tion graph become more deterministic. However, the complete thread frame behavior cannot be
fully transformed to a deterministic equivalent and thus a part of the thread frame remains non-
deterministic. Since the thread frames are dynamic and heterogeneous, the hardware platform
resources should also be dynamic and heterogeneous in order to support an efficient mapping of
these thread frame characteristics to the hardware platform properties. The heterogeneous hard-
ware platform resources should be described by a virtual layer to support the required dynamism,
which results in a view based on abstract processors. In this way it is possible to dynamically as-
sign parts of the existing heterogeneous resources to the concurrent thread frames. The task level
is divided into the storage mapping stage, i.e. inter-task Data Transfer and Storage Exploration
(TF DTSE) stage and the processing related mapping part, i.e. the Task Concurrency Manage-
ment (TCM) stage. The TF DTSE stage decides for the assignment of the dynamically created
and accessed data on the virtual run-time platform layer. The TCM stage performs the manage-
ment of the concurrency between the thread frames; it explores the parallelization opportunities in
the mapping of the dynamically created thread frames, i.e. the allocation of the dynamically cre-
ated tasks to the virtual run-time layer heterogeneous processors; and it decides on the run-time
management of the communication among the abstract processors, and up to the virtual memory
hierarchy.

When the application has deterministic characteristics, the Array (or Data) Level (DL) and the

24

Processor Level (PL) or Instruction Level (IL) mapping are efficiently mapping the application.
Deterministic characteristics can bemanifest and static or data-dependent, which inserts dynamism.
The deterministic dynamism is inserted due to the data dependencies in the conditions and the
loops. It can be removed by using system scenarios inside the thread frames, i.e. the intra thread
frame system scenario approach. The instantiations of the data dependent application with similar
behavior are clustered in one intra-thread frame system scenario. Then, the worst-case instance
inside each individual scenario is used as the representative case for further manifest analysis. In
this way, for each scenario, the dynamism both among the thread frames and inside each thread
frame has been converted to a manifest/static projection. Inside the resulting graph projection no
dynamic task creation, event handling and synchronization or data-dependent conditions remain.
In this way, these graphs (one per scenario) can be efficiently dealt by the Data Level and the
Processor Level mapping.

The Data Level mapping is dedicated to homogeneous concurrency characteristics inside the
thread frames of the heterogeneous Thread Frame Level mapping. A Thread Frame can be de-
scribed by functions, which are clusters of non-uniform operations, and uniform operations among
the clusters. The homogeneous software characteristics are defined by the operations which have
uniform behavior, i.e. they are operations of the same type, they use the same type of operands
(e.g. same word length) and the dependencies allow parallelism to exist. The uniform operations
are mapped to an array of homogeneous super-processors with internal data memory hierarchy.
The Data level is split into the Data Level DTSE (DL DTSE) and the Data Parallelization Manage-
ment (DPM) stages. The Data Level DTSE stage decides the background memory management
of the regularly accessed data of uniform operations inside a thread frame. The DPM is dedi-
cated to the homogeneous mapping of the operations on the arrays of super-processors and the
communication of the homogeneous super-processors.

The Processor Level mapping is dedicated to the remaining heterogeneous characteristics of
the application, i.e. the functions with the operations which have non-uniform behavior. The
non-uniform operations are mapped to heterogeneous resources, i.e. a super-processor with a data
memory hierarchy, which include all the required resources to execute the functions of the pro-
cessor level mapping. The instruction layer is split into the Processor Level DTSE (PL DTSE) and
the Operations Concurrency Management (OCM) stages. The Processor Level DTSE is applied
first to decide the background memory management of the accessed data of the irregular internal
thread frame behavior, i.e. non-uniform operations. The Processor Level DTSE decision is prop-
agated to the next steps of the OCM. The propagation is in this direction since the result of the
Processor Level DTSE, i.e. the assignment and the access ordering of the arrays, is required for the
address optimization, the communication and the intra-processor mapping. Moreover the back-
ground memory related decisions have a higher cost impact than the OCM decisions and they leave
sufficient freedom for the OCM decisions to come up with near-optimal results (see [21] [19]).
Finally, the circuit level stage maps the design on the target technology platform, i.e. custom IC or
reconfigurable FPGA.

The unified system design meta-flow is not a specific detailed design flow for a specific ap-

25

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

IL Design

DTSE OCM

Global
Transformations

Memory Hierarchy
Layer Mapping

Storage Cycle
Budget Distribution

Memory Allocation
& Assignment

Memory Layout
Optimization

Access
Ordering

Intra-signal
in-place

Inter-signal
in-place

Layout
mapping

Figure 2.12: Design steps of instruction layer abstraction for DTSE.

plication domain and large research effort is needed to derive a customize flow for a specific do-
main [51]. For a specific domain, not all steps of the unified design meta-flow are crucial, as the
characteristics and the constraints of the domain may be irrelevant to some steps. Hence, the ir-
relevant steps should be pruned when the customized design flow is created. For the remaining
steps, appropriate techniques need to be selected or developed to near-optimally and in a scal-
able way implement the steps. The selection or development of the required techniques is domain
dependent.

The scope of this dissertation is to further refine the steps of the abstract unified system design
meta-flow in [21] [19], by applying the principles of the reusable methodology of Chapter 2 to
create scalable and near-optimal DSE frameworks. In particular, we focus on the Processor Level
of the unified system design meta-flow and apply the principles of the creation of scalable and
near-optimal DSE framework to develop scalable and near-optimal DSE methodologies both for
the background memory (PL DTSE) and the processing part (OCM). The steps of the PL DTSE
have been presented in [20] and are summarized in Section 2.5.1. The steps of the OCM stage
are described in [21] and are summarized in Section 2.5.2. The focus of the dissertation is to
develop a complete methodology for near-optimal and scalable intra-signal in-place optimization
design step of PL DTSE part, which is applicable to highly irregular access scheme, in contrast to
polyhedral approaches of existing DTSE methodology. We also apply the principles to the OCM
part to develop DSE methodologies for the target domain of a microprocessor with several HW
accelerators and scheduling and assignment techniques for Foreground memory management and
datapath mapping steps.

2.5.1 Processor Level DTSE

The Processor Level DTSE is dedicated to the management of data inside the application functions,
which consist of non-uniform operations. The sub-steps of PL DTSE are described by the DTSE
methodology in [20] and they are depicted in Fig 2.12.

The DTSE is split to the platform independent transformations and platform dependent map-
ping step. The platform independent transformations have as purpose to increase the data reuse
and to improve the objectives, e.g. the access speed, the area, the power etc. They include data
flow, loop and data reuse transformations. The platform dependent mapping step is further refined
into the step that performs the memory hierarchy mapping and the memory layer mapping. The

26

memory hierarchy mapping is applied in a heterogeneous way, since the memories in the different
layers have different characteristics, allowing an efficient use of the memory hierarchy. The mem-
ory hierarchy can be further divided into the platform-independent transformations to improve the
initial access behavior and the actual mapping to the memory hierarchy platform. The latter is
divided into the logical ordering and the assignment of the data to the memory hierarchy. The
memory layer mapping is divided into the mapping of a few heterogeneous resources and into
the mapping onto an increased number of homogeneous resources. This is the result of propagat-
ing the constraints from the real environment, where a high number of heterogeneous hardware
platform resources cannot exist in reality and the mapping to a few homogeneous resources is
trivial. The Processor Level mapping is dedicated to the non-uniform operations, which can have
both irregular and regular accesses of the data. The irregular array accesses are mapped in the
few heterogeneous resources mapping and the regular array accesses are mapped to the homoge-
neous resources mapping. The opposite option of mapping the regular accesses to heterogeneous
resources is suboptimal and the mapping of irregular accesses to homogeneous resources is not
possible.

In the case of the few heterogeneous resources a transformation step and a mapping step can
be applied. The transformation step applies only the transformations relevant to the characteristics
of the few heterogeneous resources. The mapping step describes the techniques to apply order-
ing in time and then assignment in space. In the PL DTSE, the ordering of the processor DTSE
with few heterogeneous resources is described as Storage Cycle Budget Distribution (SCBD) and
the corresponding assignment as Memory Allocation & Assignment (MAA). The ordering and
assignment decisions are essential since they propagate constraints to the OCM steps.

In the case of several homogeneous resources, a similar distinction is applied. However, the
transformations, the assignment and the ordering are dedicated to spatial characteristics. Hence, a
set of spatial transformations is applied to increase the spatial locality. Then, a spatial assignment
of the data to the homogeneous resources takes place, i.e. data layout. The data layout step applies
especially the in-place mapping to reduce the required storage space, both for the intra-signal, i.e.
accesses in the same array, and the inter-signal, i.e. accesses of different arrays. Then, the virtual
memory data layout takes place where the data are assignment to a set of virtual memories. Finally,
the physical memory data layout is composed by mapping the virtual memory data layout in the
physical homogeneous memory elements of the platform. When a hardware-controlled cache is
present, also a second data layout step is added related to conflict miss reduction. But that step will
not be addressed here further. The result of the memory data layout is propagated to the special
ordering to finalize the way the data are accessed.

2.5.2 Operations Concurrency Management

The sub-stages of the OCM stage described in [21] are depicted in Fig. 2.13. The first sub-stage of
the OCM, namely the processor architecture integration or PAI, is dedicated to the internal struc-
ture of the heterogeneous super-processor, which is decided in terms of individual homogeneous

27

2. REUSABLE METHODOLOGY FOR SCALABLE & NEAR-OPTIMAL DSE

IL Design

DTSE OCM

Processor
Architecture
Integration

High-Level
Address

Optimization Instruction set
processor mapping

Foreground
Memory

Management

Data-path
Mapping

Instruction
memory &

control

Custom processor
synthesis

Figure 2.13: Design steps of instruction layer abstraction for OCM.

processor cores, e.g. instruction-set processor or custom processor cores, and the threads to be
executed in the different processor styles are statically partitioned including decisions related to
their communication and synchronization.

Then, the address optimization of the memory accesses of the array elements based on the
result of the Processor Level DTSE is performed. The derived custommemory data layout includes
complex addresses, which increase the overhead in the address generation unit and the memory
accesses. The address optimization sub-stage is dedicated in the reduction of the complexity of
the addresses and provide the final address sequence for the array data to the processor mapping,
which is responsible for the actual hardware mapping for the address generation.

Then, the hardwaremapping for all the application graph behavior is performed for the different
processor styles. The processor mapping step should provide as a result a processor structure that
is capable of executing both the address generation operations and the application arithmetic and
logical operations. We will work this out in particular for the instruction-set processor style. Then,
the processor mapping sub-stage takes as an input the decision of the processor style and decides
over the Foreground Memory Organization, the Data Path execution mapping and the Instruction
Memory/Control bits.

The foreground memory management step is dedicated to the local memory used to store the
scalars or the individual array elements accessed from the data path. In the Foreground Memory
step, if the assignment of the scalar data is over-constraint, then either spill to background mem-
ory is applied and the excess data are stored in the free space of the background data memory,
or the foreground memory size is increased or the available cycles are increased up to the point
where the constraints (e.g. timing deadlines) are met. In the foreground memory management
step, platform independent and platform dependent transformations are applied, which can still
modify the Control and Data Flow Graph (CDFG) graph of the application. Then, the ordering
and the assignment of the scalars, which can be decided in this step, are performed on the het-
erogeneous memory resources of the foreground memory. If memory spilling is applied, several
scalars have been decided to be stored in the background memory. Then, the background memory
data layout and access ordering of the array data in the DTSE stage is updated to the final back-
ground memory access and data layout of both the arrays and the scalars. Since the array data

28

are the most dominant part of the background memory and communication overhead the result
of the DTSE, the address optimization and the Processor Architecture Integration (PAI) commu-
nication (sub)stages are not modified. Hence, the result of the foreground memory management
step regarding the background memory and the communication is augmented with the results of
the previous steps. The data path mapping is dedicated to the allocation of the primitive operators,
the scheduling and the assignment of the operations over the primitive operators, the potential
pipelining and parallelization of the data-path. The foreground memory management step and the
data-path mapping step will be discussed in more detail in Chapter 6.

2.6 Conclusions

In this chapter, we have presented the principles of the reusable methodology to develop scalable
and near-optimal DSE frameworks for large and complex design problems. The problem under
study is divided into a complete set of sub-problems connected with uni-directional propagation of
constraints, i.e. a framework. The completeness of the framework achieves near-optimality, since
sub-optimal approximations are avoided, and constraint propagation achieves scalability during
exploration. We have described the process of applying the principles to create the corresponding
framework with the partitioning and the ordering of the sub-cases. Then, we have described how
the derived framework can be used to provide an efficient exploration of the solutions for (par-
tial) instantiation of the framework goal. Finally, we have summarized the unified system design
meta-flow created by uni-directional constraint propagation and define the steps which form the
starting point and context of the work in the dissertation, i.e. the intra-signal in-place step and the
instruction-set processor mapping sub-stage. In the latter we focus especially on the foreground
memory management step.

29

Part I

Background memory management
methodologies

31

Chapter 3

Development of intra-signal in-place
methodology

3.1 Introduction

Storage size management techniques search the minimum number of resources required to store
the elements, without imposing an inefficient addressing during element accessing. The storage
size management techniques are applied in several domains, e.g. in the scratch pad memories of
embedded systems [37], in the hardware controlled caches of the general purpose systems [18] and
in factory storage management systems in industry, such as cargo systems [108]. The reduction
of the number of the resources is essential, as it is directly coupled with the system cost, area and
energy [18]. In the embedded systems, the power cost is heavily dominated by the storage of arrays,
thus the memory units compose a large part of the overall cost [18]. For commonly used embedded
applications, such as image, video and signal processing, where the dominated data are arrays, the
organization of the array data storage becomes a very essential part of the overall design process.
A less efficient organization leads to overestimation of the resources, which directly increases the
requirements in memory size and chip area, which increases the system energy consumption. To
achieve a globally near-optimal storage organization, both the individual size mapping for each
array, i.e. intra-signal in-place optimization, and the concurrent size mapping for the arrays, i.e.
inter-signal in-place optimization, are essential steps [42]. We present a methodology for the intra-
signal in-place optimization, which remains scalable and near-optimal in highly irregular access
schemes. A similar approach can be used to derive a scalable and near-optimal inter-signal in-
place methodology, which is left as future work.

Existing techniques for storage size management and intra-signal in-place optimization are
enumerative, symbolic/polyhedral or apply a worst case approximation of the storage size, as de-
scribed in Section 3.3. The enumerative techniques lead to the optimal size, but they are not
scalable. Hence, when the number of array accesses is increased, the exploration time reaches un-
acceptable values. The symbolic approaches, which are mainly polyhedral approaches [42] [31],
are scalable to the number of accesses, but operate efficiently only in solid iteration spaces [194],

33

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

i.e. access schemes without holes. With additional preprocessing, the symbolic approaches are ap-
plicable up to piecewise regular spaces (e.g. [55]), i.e. iteration spaces with quite regularly placed
holes. A polyhedral efficiently defines the storage size for one geometrical partition in the itera-
tions space, i.e. accesses in the iteration space that are either regular and can be represented by
lattice or have tiny holes that are approximated to solid regions. When several diverse geomet-
rical partitions exist, the polyhedral approaches either require too much exploration time or they
have to approximate too much leading to overestimation of the resources. Several geometrical
partitions exist. when the irregularity of the holes is increased, due to condition statements which
disturb the regularity of the access statements. Then, the symbolic approaches are not applicable
any longer or they have to approximate the access scheme to the worst case situation [160]. The
approximation approaches (e.g. [160]) consider the holes of the iteration space as solidly filled
with accesses, leading to sub-optimal storage size result. Hence, a methodology for intra-signal
in-place optimization for irregular access schemes, which remains near-optimal and scalable, is
highly desired.

The intra-signal in-place optimization methodology should take into account all the access
statements and the relative condition statements for one array in order to define the minimum
storage requirements during the application execution. The applications in the target domain under
study differ significantly in nature and thus they have different structures and condition and access
statements in their code. Hence, the applications create different intra-signal in-place optimization
cases, which require a different optimization process to achieve a near-optimal storage size. It is
not possible to have a fully general intra-signal in-place step, which can provide a near-optimal
result for all applications in a scalable way. Hence, to achieve both scalability and near-optimality
of the intra-signal in-place optimization methodology, a general methodology which is split into
steps with solutions dedicated to each possible intra-signal in-place case is required.

In this chapter, we apply the DSE framework of Chapter 2 to the goal of developing such a
scalable and near-optimal intra-signal in-place methodology in the context of complex iteration
spaces with irregular accesses created by array access statements in a loop structure with manifest
conditions. In Section 3.2 we motivate our approach with an illustrative example. Section 3.3
presents existing approaches for intra-signal in-place and storage size optimization. Section 3.4
describes the target domain and the problem formulation, which describe the goal and the context.
We apply the principles of the reusable DSE methodology of Chapter 2 to define all the possible
index expressions of the applications of the target domain. We identify the most relevant index
expression for the intra-signal in-place methodology based on how commonly it is used and how
many index expression cases can be mapped through transformations in this case. We select this
case as representative case to be used in the general intra-signal in-place optimization methodol-
ogy. We show how we can map the remaining index expressions to the representative case and
controllable approximations of the intra-signal in-place for the index expressions, where transfor-
mations are not applicable. Section 3.5 describes the sub-goals and the set with the different cases
per sub-goal. We select two representative cases of position of write and read access statements
to develop the intra-signal in-place step of the proposed methodology in chapter 5.

34

For (i=0; i<N; i++)
For (k=0; k<M; k++)
If ((i>8k)&&(i<8k+4)||(i 6=2k))
A[i]=...
EndIf
EndFor
EndFor

(a)

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

i

(b)

Figure 3.1: Motivational example: (a) Application code with three conditions and a write access
statement and (b) Iteration space with the accesses to array A.

3.2 Motivational Example

When the access statements are regularly executed, the iteration space is solid. A condition disturbs
the regularity of accessing an array, creating holes in the iteration space. When several conditions
coexist, even in the case where the condition statements create regular holes, their combination
leads to significantly complex and irregular iterations spaces. To illustrate the main problem, we
use the example in Fig. 3.1. The application code consists of: two for loops over the iterator i and
k with N andM are upper bounds, three manifest condition statements combined through an AND
and OR operation and a store access statement. When N and M are increased, the enumerative
approaches require too much CPU time, so they are not scalable. A schematic representation of the
initial part of the iteration space with M=10 is depicted in Fig. 3.1(b). When only the conditions
(i>8k)&&(i<8k+4) exist, the access shape consists of repetitive holes in a regular way (illustrated
by the black dots in Fig. 3.1(b)). This access scheme can be efficiently represented by symbolic
approaches [55] and the storage size is (near-)optimally computed. The symbolic approaches are
inherently scalable and near-optimal for solid iteration spaces and for piece-wise regular iteration
spaces, i.e. iteration spaces with quite regular holes. However, they cannot be directly applied to
iteration spaces with increased number of irregular holes. Then, approximations would have to be
applied, which insert suboptimalities, as holes of any size can be considered as accesses. By adding
the i6=2k condition (white dots in Fig. 3.1(b)) in our illustration, the repetition of the first access
shape is disturbed and irregularity is inserted, making the symbolic representation inappropriate.
Hence, a scalable and near-optimal methodology for iteration spaces with irregular holes is highly
required.

In realistic applications, the loop iterations are highly increased, several condition statements
are combined in expressions and several array access statements co-exist in the application code,
which create the irregularity in the iteration space. In this chapter, we present how to develop a
methodology for near-optimal and scalable intra-signal in-place optimization, which handles this
complex irregular iteration spaces, as explained in detail in the next sections.

35

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

3.3 Related Work

The existing storage size management techniques are enumerative, symbolic or worst case (heuris-
tics). The enumerative approaches are optimal, but not scalable when the number of accesses is
increased. The symbolic approaches are scalable and near-optimal for solid iteration spaces or
piece-wise regular iteration spaces. Hence, they are not appropriate for iteration spaces with in-
creased number of irregularly spread holes. Then, they have to approximate the iteration space,
which leads to sub-optimal results, since holes are considered as accesses.

3.3.1 Enumerative approaches

Enumerative storage size management techniques describe each access individually. An enumera-
tive storage size optimization approach is e.g. the symbolic evaluation for background memory size
estimation based on enumeration of the indexed signals of each index expressions [135]. Ref. [183]
proposes a custom memory data layout, i.e. placement of the elements into the memory resources,
focusing on parallelization of memory accesses based on the access pattern. Each access in the
array access pattern is analyzed and the accesses of independent array elements are placed in sepa-
rate partitions. The enumeration of the memory accesses is described through reference lists-based
schemes without applying any reference compression [143]. The enumeration of memory accesses
is usually achieved through profiling and instrumentation tools. A profiling based strategy to gen-
erate a memory access trace and a heuristic approach to exploit the scratch pad memory hierarchy
is proposed in [29]. Ref [8] enumerates through profiling the iterations, where the memory is
accessed, to derive the information for selecting candidates for data remapping [146]. Ref. [164]
searches all possible memory data layouts by iteratively prototyping candidate data layouts and
evaluating them on a representative trace of memory accesses. SHMAP [49] tool annotates the
application and collects memory reference traces for arrays. Gleipnir [76] collects memory access
traces and associates each access with the corresponding internal structure. Pin [118] provides an
instrumentation platform to create a trace of address and size of memory instructions. In [202]
profiling is used for data accesses through the instrumentation framework presented in [139]. Al-
though the enumerative approaches are optimal, when the number of accesses is increased, the
exploration time is unacceptable.

3.3.2 Symbolic approaches (including polyhedral techniques)

Other storage size management techniques are symbolic and apply solvers to compute the storage
size. For instance, in linear constraint-based schemes the array accesses are expressed as convex
regions in a geometrical space [143]. The storage requirements derive from the integer points
inside the convex regions of accesses. The symbolic approaches are scalable and near-optimal
in solid iteration spaces, as they efficiently represent the bounds of one convex region. For in-
stance, simplified constraint-based forms (e.g. [7]) are used to describe solid iteration spaces,
e.g. diagonal or triangular shapes, which are not applicable in iteration spaces with holes. Other

36

symbolic approaches, with some extensions, can also efficiently handle piece-wise regular spaces.
For instance, triple notation [177], i.e. lower bound, upper bound and stride per dimension, has
been used to describe regular spaces. Vectors have also been explored for storage size manage-
ment. Ref. [30] focuses on spatial locality optimization using utilization vectors to describe array
references. Ref. [75] uses memory access vectors, the loop nest depth and the array dimension.
In [82] an access matrix describes through the loop nest the array accesses to explore data lo-
cality. Distance vectors with data access matrices are used, which are, however, applicable for
uniform references [160]. The survey in [148] describes several symbolic techniques for esti-
mation of storage requirements. Polytope theory is commonly used for regular spaces, e.g. the
iteration space is represented by placing polytopes of signals in a common place with ILP tech-
niques [90]. Estimation on storage requirements with a partial fixed ordering through polytopes is
proposed in [89]. IMEC Atomium [19] supports memory related steps through interactive or in
a more automated way based on the polyhedral dependency graph [195]. The Data Transfer and
Storage Exploration (DTSE) methodology uses the polyhedral dependency graph to explore the
memory data layout optimization step. In [206] a data access graph based on polytopes is used
to describe all the memory operations in time for a given array, which is used as input to the data
reuse exploration and decision step of the memory hierarchy design. Ref [33] applies polytope
theory to memory partition and scheduling problem. Philips’ Phideo [115] is mainly oriented to
stream-based video applications and represents the iteration space as linear function of the itera-
tion index. In [38] lattice matrices are used to explore the memory allocation problem. In [110]
a mathematical framework to study modular memory allocations through strictly admissible lat-
tices is presented. Ref. [173] proposes a lattice intersection approach to count the integer points
in Z-polytopes. SUIF [123] and PIPS [35] add additional constraint to the linear constraint-based
representation to deal with a hole. In practical contexts, the application consists of several access
and condition statements, which create irregularity in the array accesses and a high number of
irregularly placed regions in the geometrical space. Then, the symbolic approaches are less appro-
priate, because to be applied, the access regions have to be widen in order to form a convex hull,
i.e. holes are considered as accesses, reducing quality. If additional symbolic constraints are used
to describe the high number of irregular holes, the exploration time is highly increased [143].

3.3.3 Approximation approaches

When the symbolic storage size management techniques are applied in complex iteration spaces
with irregular holes, a worst case approximation is used, i.e. the invalid parts are considered as
valid parts solidifying the iteration space. For instance, Ref. [160] approximates the number of
distinct references of non-uniform access statements based on the values of the index expressions
on the loop bounds. Other approximations are performed by compilers and techniques which
usually assume a fixed memory data layout, e.g. row-wise or column-wise, and transform the code
to improve the performance of the data accesses [214], [27]. When the application iteration space
does not match with the assumed one, the tools can easily produce sub-optimal solutions.

37

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

The next section describe how to develop a proposed methodology to apply storage size man-
agement for intra-signal in-place optimization, which remains scalable and near-optimal for irreg-
ular access schemes.

3.4 Problem Formulation & Target Application Domain

3.4.1 Problem Formulation

The storage size management techniques are applied in memory units of the lower layers of on-
chip background memory that can be controlled, e.g. scratch-pad memories in the embedded sys-
tems [37] and hardware controlled cache memories in the computer systems [18] and in industrial
domain for the cargo storage systems [108]. The intra-signal in-place storage size optimization
problem is to find the minimum storage requirements for a group of elements, e.g. an array, given
a finite set of accesses. The minimum storage requirements derives from the maximum number of
concurrently alive array elements. Scalability is of great importance, since the increase in the num-
ber of accesses may lead to prohibited exploration time. Near-optimality is crucial, as sub-optimal
results lead to overestimation of the storage resources increasing area, cost and power consump-
tion. Since the storage size result is used in the next mapping phases, i.e. inter-signal in-place
optimization, memory access scheduling and memory address generation [18], the quality of the
intra-signal in-place result affects the quality of the result of the next phases. An efficient address
scheme is required for the overall good performance of the system and it is achieved when the ad-
dresses are regular. For instance, the address generation and the accessing of sequential elements
is very efficient, e.g. when the burst mode of the memories can be efficiently used. Hence, the
intra-signal in-place result should not impose increased irregularity to the address generation.

The cost function to be minimized is the size of the required memory to store the elements
of an array. When the size is not minimized, the amount of required resources is overestimated,
which increases the area and thus the energy consumption. The energy per memory access is also
increased, since the memory partitions are increased due to the overestimation of the resources.
The overestimation of the resources also affects indirectly the performance. When the data are
fetch from the background memory, the process is performed in groups of data (e.g. defined by
the width of the bus to the memory) to have a gain in performance by hiding cycles. When holes
in the iteration space are considered as accesses, several of the data that are fetched are useless. In
addition, this leads to increase of the data which may now not fit in the cache hierarchy increasing
the misses and the performance loss and the energy due to increase in the transfers in the memory
hierarchy. Hence, a tradeoff exists between the performance and the memory size.

Our goal is to develop a systematic and scalable methodology to near-optimally solve the intra-
signal in-place storage size optimization problem for the target domain under study, described in
Section 3.4.2, without imposing significant overhead to the address generation. The methodology
can be applied with different control parameters to create a Pareto curve with the different memory
requirements, i.e. from optimal to controlled near-optimal, and provide this information to the next

38

ALGORITHM 2: Parametric structure to describe the application instances of the target
domain
a11=..., a1k=... ...
for (i=LBi;i < UBi;i++) do...

for (k=LBk;k < UBk;k++) do
S1:...=F1(A[f iterator

x]..[fADim
x]))

S2:...=F2(A[f iterator
x]..[fADim

x]))
...
if (C1(i,a1i ,type1i)..) then...

if (C2(k,a1k ,type1k)..) then...
S3:...=F3(A[f iterator

x]..[fADim
x]))...

for (j=LBj;j < UBj;j++) do...
for (l=LBl;l < UBl;l++) do...

if (C1(j,a1j ,type1j)..) then...
if (C2(l,a1l ,type1l)..) then...

S1: ...=F4(A[f iterator
x]..[fADim

x]))

memory optimization steps to compose the final pareto curve.

3.4.2 Target Application Domain

The target domain consists of applications of one thread frame, which has deterministic behavior,
i.e. consists of several condition statements and nested loops, but without including any event trig-
gered task generation or non-deterministic elements. The applications are highly loop-dominated
and data dominated, i.e. a high percentage of the executed code handles indexed array signals in the
context of loops. For instance, high-speed data intensive applications in the fields of speech, image
and video processing, which require significant amount of storage resources [77]. Manifest con-
dition statements on the iterators and one to many loop nests with single and multiple dimensions
in the array create complex iteration spaces with irregular holes. The data dependent conditions
and bounds can be translated to static based on the concept of the System Scenarios [161]. The
ranges of the data-dependent conditions and the performance of the corresponding application is
explored and grouped in scenarios. Per scenario, the representative application code is used and
mapped to the application template. The target domain uses single assignment code, i.e. every
array element can be written (stored) only once, but read (load) several times. We focus on the
non-overlapping and the overlapping write and read access schemes, i.e. for the former case all
write statements are executed before all read statements and for the second case writes and reads
can be concurrently executed in a loop iteration.

The applications of the target domain are described by the parametric structure of Alg. 2.
This representation is useful, as it is used as input to the analysis step and characterizes the ap-
plication instances of the target domain. The control flow consists of loops and conditions. The
parameters to describe the loop structure are: the loop dimension LoopDim, the low loop bound
LBIter, the upper loop bound UBIter and the iterator step STIter for each loop iterator. The condi-

39

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

tions are expressed through manifest data-dependent control statements: CX(iterator, expression,
comparison-operator) describes a condition of: ``iterator comparison-operator expression'', e.g.
C1(i, 5, <) describes i<5 condition. The iterator dependent kernels are executed when the cor-
responding manifest control statements are valid, i.e. the iterator has specific values. The array
access statements include the function Fx(A[f iterator

x]..[fADim
x])). Fx is a function of accessing

arrays, fx is the index expression per dimension, which describes a set of array accesses to the
background memory, ADim is the number of array dimensions and A is the array being accessed.
Array A is used as an example to describe the arrays of the application domain and many arrays
similar to A may exist in the application, for which the methodology is repeated. By parsing
the input application code, the values of the parameters of the parametric kernel can be identified.
Memory optimization steps before intra-signal in-place have decided over which elements are con-
sidered as arrays and which as scalars. The target domain does not include scalar values, which
are mainly stored in the foreground memory and not in the background memory. The scalar data
layout is explored in later design steps, i.e. Foreground Memory management.

In contrast to existing approaches, the developed methodology maintains the scalability and
near-optimality properties, when it is applied to the target domain of iteration spaces with several
holes irregularly spread, as shown in Chapter 5.

3.4.3 Analysis of index expression (fx function)

The intra-signal in-place methodology depends on the type of the index expression of the array
access statements, i.e. fx. Different in nature index expressions propagate different characteristics
to the intra-signal in-place optimization methodology, which require different in nature solutions
to derive near-optimal result. We define the complete set of the index expressions cases, we select
the representative index expression case to be used in proposed intra-signal in-place methodology
and provide transformations and controllable approximations for the remaining index expression
cases.

We apply the principles of the reusable DSEmethodology of Chapter 2 to partition the available
options, which can potentially occur in the applications of the target domain under study, into a set
of cases, which describe the different index expressions and their characteristics. The result and the
splits in the index expression cases are depicted in Fig. 3.2. The number under each split describes
the rule that has been applied to derive the ordering of the cases, as described in Chapter 2.

3.4.3.1 Index expression framework

The first split in the index expression types is between the index expressions of general piece-wise
affine and general non-piece-wise affine index expressions. The general non-piece-wise affine
index expressions are characterized by highly irregular structure of the accesses in the iteration
space and the access regions that they describe cannot be divided into a set of non-degenerate
geometrical regions, where an affine expression describes each access region. The geometrical
region includes tiny irregularly spread holes, which do not allow the split in piece-wise regions. The

40

Index expression cases

Set of “iterator+constant” Set of “coefficient*iterator+constant”

One iterator
per expression

Multiple iterators
per expression

Two iterators N iterators

One iterator per
expression (coefficient≠1)

Multiple iterators per
expression (coefficient≠1)

Two iterators N iterators

(1)

(1) (1)

(1) (1)

General piece-wise affine General non-piecewise affine (1)

Affine Piecewise affine

Figure 3.2: The set with the index expressions cases after applying the principles of the reusable
DSE methodology.

index expressions of this case are irregularly modified with the iterators. The general piece-wise
affine expressions potentially describe a highly irregular structure of accesses, but the asymmetry
with the non-piecewise case is that the accessed regions are non-degenerate intervals described
by affine index expression. In this sense, they internally consist of pseudo regular structures. For
instance, the index expression 4*i describes an access to the array every four iterations and the
index expression 2*i+1 describes the odd elements. When both co-exist, the describe an irregular
access scheme. Hence, the piecewise affine propagates the solution to the general non-piecewise
affine case, since the latter it requires it in order to provide a solution. The intra-signal in-place
solution for the general non-piece-wise affine index expression case is to approximate the irregular
structure of the accesses through a piece-wise affine convex hull. In this way the solution of the
general non-piece-wise affine index expression case is provided by the solutions of the piece-wise
affine index expression case.

The second split inside the general piece-wise affine case is the affine and the piece-wise
affine index expressions. The affine case describes index expressions are determined by a basis
of n vectors, which are not necessarily orthonormal. Hence, the axes of such an expression are
not necessarily mutually perpendicular nor have the same unit [203]. In a way, affine expressions
are a generalization of linear expressions. The piece-wise affine case describes the cases when the
accesses can be split into geometrical regions, which are are regularly placed due to affine expres-
sions in each region. Hence, transformations exists which can modify the geometrical regions and
map them to a regular geometrical space with different set of vectors. For instance, a piecewise
affine expressions, such as a modulo operation over the iterator, e.g. (i%a)+b, is translated into a
affine expression and the solution of the affine case is used by the solution of the constant modulo
operator. The constant modulo inserts an extra loop with size equal to the constant and the index
expression becomes k. For instance, for the index expression of i%4, a one k loop from 0 to 4 is
inserted and the index expression becomes k. Hence, the affine expressions propagate the solu-
tions to the piece-wise affine expressions, since the latter are mapped through transformations to
the affine expressions.

We further refine the affine index expression case into the cases of the set of ``itera-
tor+constant'' index expressions (e.g. i+b) and the set of ``coefficient*iterator+constant'' in-

41

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

dex expressions (e.g. a*i+b). The asymmetry between these cases is that no coefficient is used
to multiply the iterator, thus the index expression describes accesses to sequential elements. The
set of ``iterator+constant'' index expressions propagates the solution into the set of ``coeffi-
cient*iterator+constant'' index expressions, since the solution of the latter uses the solution of
the former. The set of ``coefficient*iterator+constant'' index expressions case is translated into
the set of ``iterator+constant'' index expressions case and a set of parametric manifest condi-
tions, which describe the holes in the accesses in the iteration space due to the coefficient. For
instance, index expression 2i+1 is expressed as index expression i+1 and a parametric condition
i==2k. Hence, the access statement with index expression i+1 is executed only when the i has even
value. This transformation is always possible, since it is one-to-one mapping, i.e. the coefficient
and the constant of the index expression create one manifest condition. In this way, the sub-cases
of the ``coefficient*iterator+constant'' are translated to the corresponding index expressions sub-
cases of the ``iterator+constant'' and use their solutions. The proposed methodology can always
deal through the representative index expression case with the ``coefficient*iterator+constant''.
The opposite transformation, usually used by symbolic approaches, as described in Section 3.3, is
not always possible, since a simple combination of manifest conditions may not lead to a closed
form index expression. For instance, (i>8k)&&(i<8k+4) requires enumeration of the different
accesses and the corresponding iterator step increase, i.e. 8i+1,8i+2 and 8i+3. When expressions
with different coefficients co-exist, the transformation may not possible. In this cases, the existing
symbolic approaches cannot be applied, because their transformations can only support few differ-
ent coefficients without highly increasing the number of constraint equations, e.g. [55] [160] [6].

The set of ``iterator+constant'' type of index expressions is further refined into the cases of one
iterator per expression (e.g. i+b) ormultiple iteratorsmay exist in one expression (e.g. i+j+...+b).
The multiple iterators case is divided into the two iterators (A[i+j+b]) and multiple - N iterators
(A[i+j+...+b]) case. The results of the N iterators case derive by generalizing the 2 iterators case.
The asymmetry between the one iterator and the multiple iterators cases is that the second case
couples different iterators. The one iterator case propagates the solution to the multiple iterators
case. When ``multiple iterators'' co-exist in an index expression, they are replaced by a new global
iterator that describes the accesses in the coupled dimensions. Internally, the coupled iterators
can use symbolic approachers, i.e. polytope approaches are applied, which achieve optimal results,
when the accesses are described by one or few geometrical regions, and provide approximations,
when the accesses are parametrically described by geometrical regions with holes between. Similar
splits can be applied to the index expression of the ``coefficient*iterator+constant'' case. It maymay
have one iterator per expression, e.g. A[a*i+b], or multiple iterators, e.g. A[a1*i+a2*j+..+b].
In the case of multiple iterators exist in the index expressions, we divide into the case of two
(A[a1*i+a2*j+b]) andmultiple - N iterators (A[a1*i+a2*j+...+b]).

42

3.4.3.2 Representative case

We select the representative index expressions based on the occurrence in real-life applications,
the number of remaining index expression cases that can be mapped to the representative case and
the convenience in presenting the developed intra-signal in-place methodology principles. The
representative case is the pure iterator of ``iterator+constant'' type, depicted by the gray box in
Fig. 3.2. The representative index expression case is the most occurring case in real-life appli-
cations and in several benchmark suites, e.g. [159] [107] [63], the ``iterator+constant'' type of
index expressions is highly used. The selected index expression allows a better explanation of the
intra-signal in-place methodology principles. The remaining index expressions can be transformed
to the ``iterator+constant'' case, since the pure iterator case combined with the manifest condition
statements of the applicationmay describe solid iteration spaces or iteration spaces with regular and
irregular holes. In summary, the proposed methodology with the representative index expression
case can near-optimally handle all piece-wise affine index expressions by applying the appropriate
preprocessing transformations and provide controllable approximations for the remaining cases.

3.5 Development of intra-signal in-place methodology

The goal is to develop an intra-signal in-place methodology, which defines the minimum storage
size required to store the elements of the application of the target domain, in a near-optimal and
scalable way. By applying the principles of Chapter 2, the goal is divided into a set of sub-goals
starting from the final sub-goal and propagating to the first sub-goal through ``how'' type of top-
down splits of Chapter 2. As depicted in Fig. 3.3, the first split, based on this constraint analysis, is
between the final sub-goal, i.e. the intra-signal in-place sub-goal which computes the final storage
size, and the required preprocessing to have the information to reach the intra-signal in-place sub-
goal. The preprocessing is divided into the second sub-goal, i.e. the translation of the access scheme
information into a representation, which supports near-optimality and scalability of the intra-signal
in-place step, and the third sub-goal, i.e. the analysis step, which maps the application instance to
a unified parametric template and extracts the information for the access scheme.

Per sub-goal we define the set of all the available diverse cases to create the methodology step
by applying the principles of Chapter 2. Initially, we define the cases of the intra-signal in-place
sub-goal having as context the target domain and as goal a scalable and near-optimal intra-signal
in-place optimization. The relevant part of the unified template is the loop nest structure, the
condition types and the type of the condition expressions for the representative index expression
case and also the position of the write and the read access statements, as described in Section 3.5.1.
The cases are still abstract as they describe a large group of similar application instantiations. The
result is propagated to the next sub-goal in order to take into account what it will be needed in the
next step during methodology execution. The step of the translation sub-goal is defined by applying
principles of the reusable DSE methodology, described in Chapter 2, having as context the target
domain and as goal a scalable and near-optimal intra-signal in-place optimization and taking into

43

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

Develop scalable & near-optimal
Intra-signal in-place methodology

Translation to scalable &
near-optimal representation

Access scheme
information

(2)

Storage size
computation

Preprocessing
(2)

Figure 3.3: The sub-goals of the intra-signal in-place methodology after applying the principles of
the reusable DSE methodology.

account the cases propagated by the intra-signal in-place sub-goal. The results are propagated
to the analysis sub-goal.The different cases of analysis are defined based on the intra-signal and
translation cases propagated from the previous sub-goals. The analysis cases are a set of primitive
conditions and primitive operations in a unified parametric template, which support all the cases
propagated from the translation and the intra-signal in-place sub-goals. The methodology steps are
described by parameterized templates, i.e. structures with closed form equations, algorithms and
parameters, which provide scalable and near-optimal solutions per step case.

The corresponding steps per sub-goal are the intra-signal in-place step, the translation step
and the analysis step. When the methodology is applied to an application instance, the steps are
executed in the opposite direction, but with only uni-directional dependencies between them, as
described in Chapter 5. The process of the analysis step is the parsing and the mapping of the
application instance to the unified parametric template and the extraction of the access informa-
tion and which primitive condition cases are valid for this application instance. This information
is propagated to the translation step to select the translation cases that are valid for the specific
application. Then, the results are propagated to the intra-signal in-place step to compute the final
storage size by selecting the valid intra-signal in-place cases based on the propagated information.
The division into steps is required to achieve a scalable and near-optimal methodology avoiding
the bi-directional dependencies in the final steps to be executed. Scalability is achieved during the
execution of the methodology, as the propagated values from the previous steps select the active
cases in the next step step by efficiently comparing the propagated values with the different pos-
sible cases. This uni-directional propagation allows to keep the overall complexity low due to the
avoidance of global iteration loops, as no bi-directional dependency circle occurs. Near-optimality
is achieved, as the different cases of the steps are grouped based on similar characteristics and
the available cases describe all the possible options. Hence, no instance exists that does not fit
into a dedicated case, i.e. it provides a near-optimal solution. In this way, solutions which are
inappropriate for a specific instance cannot be used.

In Section 3.6 we present the parametric template of the analysis step. The analysis step
is the parsing of the essential information. It is used for the intra-signal in-place mapping and
other memory optimization steps, thus it can be reused. The scalable and near-optimal parametric
templates with closed form equations and algorithms to compute the storage requirements of the
translation and the intra-signal in-place step are described in Chapter 5. However, to support the
solutions of the cases of translation step, we define a scalable and near-optimal representation for

44

Cases of Intra-signal in-place sub-goal

One RD loop Many RD loops

One RD Many RDs

(1)

(1)

Sequential
RDs & WRs

Interleaved
RDs&WRs

(1)

One dimension Multiple Dimensions (2)

Overlapping Non-overlapping (3) Dimensions Iteration Result Propagation
(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

Solid Space Space
with Holes

(1) Solid Space (1) Space
with Holes

One segment (1) Dominant
segment

Figure 3.4: The set with the cases of the intra-signal in-place sub-goal after applying the principles
of the reusable DSE methodology.

the information derived by the analysis step in Chapter 4.

3.5.1 Intra-signal in-place cases

Based on the number of loops, the number and the ordering of the write and the read statements,
we define the complete set of the cases that may exist in the applications of the target domain under
study. We select the representative cases to compose the parametric intra-signal in-place templates
and provide transformations and approximation for the remaining cases.

We apply the principles of the reusable DSE methodology in the context of the structure of
the application and the goal of computing the final storage size, The derived different cases, are
depicted in Fig. 3.4, where the WR stands for WRite and RD for ReaD access statement. The
numbers under the top-down splits describe the rule applied to derive the ordering of the sub-
cases, as explained in Chapter 2.

The first split is based on the sequence of the different types of accesses and divides the available
options into the sequential case and the interleaved case. The sequential case has all the write
access statements executed before the read access statements. For instance, the sequential case is
valid when only one write access statement exists in the application code, i.e. single-assignment
code, when the write statements are in different loop nests and they are independent or when hey
are in the same loop nest following a sequence of writes and then a sequence of reads statements.
In the interleaved case, the write and the read statements are interleaved in the application code,
thus write statements may exist after the read statements, The interleaved case is active when the
statements are combined in the same loop nest. The sequential cases propagates the solution to the
interleaved case to by used as solutions for the interleaved case after applying some transformations.
The interleaved case can be split into couples of write and read statements that are sequential. Then,
per couple, the solutions of the sequential case are applied.

45

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

3.5.1.1 Sequential case

Focusing on the sequential case, the next split derives between one loop with read statements or
multiple loops with read statements. The one read loop propagates the solution to the multiple
read loop nest case, which it uses to create the solution for the multiple read loop case. The latter
is transformed by applying a virtual loop merging. The result is one loop that includes all the read
statements. Then, the solution of one read loop is applied.

In the case of one loop with read statements, a further division derives if only one read state-
ment or several read statements exist in the loop of the application code. The one read statement
case propagates its solution to the several read statements case. The latter uses the propagated
solution, as the several read statements can be merged into one statement with inserting additional
manifest conditions. The inserted manifest conditions allow the statement to be correctly exe-
cuted. The next division is based on the number of dimensions in the RD statement, i.e. the case
ofmultiple dimensions and the case of one dimension. The multiple dimensions case propagates
the required information to the one dimension case in order to select the corresponding sub-case
and apply the solution. The case of multiple dimensions is divided into the iteration over the
dimensions and the propagation of the result between the dimensions. The iteration over the
dimensions provides the required information to apply a consistent propagation of results between
dimensions. The iteration over the dimensions selects the next dimension to be explored based
on the order of the loops. The dimension selection is performed through the loop dimensions,
from the outer to the inner dimension. The outer loop dimension is explored first, because it heav-
ily affects the storage occupation of the inner loop dimensions. This information is propagated
to the one dimension case. The propagation of the result is further refined into the decoupled
dimensions and the fully coupled dimensions. The result of the partially coupled dimensions
is propagated to the fully coupled dimensions, since the solution of the fully coupled dimensions
cannot be used by the partially coupled dimensions. The partially coupled dimensions are split into
the fully independent dimensions and the decoupled dimensions. The partial storage size of the
fully independent dimensions is calculated and the propagation is performed in a straightforward
way, as the complete size of both dimensions is used. In the decoupled case, the partial storage
size can be defined separately, but the combined storage size is computed by using parts of the
partial storage sizes. The solution of the independent case is propagated to the decoupled case.
The decoupled solution adds or removes parts of the size computed by the independent cases,
depending on the type of decoupling.

The next split in the one dimension case is derived by the potential overlapping between the
iterations instances while executing the write and read statements. Depending on the difference in
the index expressions of the write and the read statements and the iteration range of the statements,
the write and the read statements may be overlapping or non-overlapping in the iteration space.
When the statements are overlapping, in at least in one iteration both the write and the read access
statements are executed. In the non-overlapping case all the write instances of the write statement
are executed in previous iterations than the read statements. The overlapping case is first in the

46

ordering in order to avoid non existing combinations, i.e. if the non-overlapping case is valid, then
all the remaining inner dimensions are non-overlapping. The non-overlapping case is further split
into the solid iteration space and the iteration space with holes. The solution of the solid iteration
space is propagated to the iteration space with holes, as it can be used to provide the solution per
segment between the holes. The overlapping case has a similar split into the solid iteration space
and the iteration space with holes. The solid iteration space of the overlapping case is further
refined into the one segment and the dominant segment case. In the one segment case, no holes
exist. In the case of the dominant segment, several segments exist, but the storage size is derived
only by the dominant segment, since it covers the storage size of the remaining segments. The
solution of the one segment is propagated to the dominant segment as it is used for the dominant
segment solution. This split is not valid in the non-overlapping case, where all segments have to
be taken into account to compute the storage size, since no overlapping exists.

3.5.1.2 Combinations

The combinations of above different cases are also valid cases. When both sequential and in-
terleaved cases co-exist, the interleaved cases are transformed into a coupled combination of se-
quential cases. Then, the storage size is computed per sequential couple and the global size is
given by the dominant couple, i.e. the storage size of the couple that requires more storage size.
The combination of the multiple dimension solution and the one dimension solution describes
the solution to compute the storage size for all the dimensions. The multiple dimension selects
the outer dimension and propagates to the one-dimensional case to apply the overlapping or the
non-overlapping solution and have the first partial storage size. The process is iteratively repeated
over all the dimensions by verifying if the dimension is overlapping or non-overlapping, applying
the corresponding solution and merge the result with the propagated partial storage size from the
previous dimensions. When the outer dimension is non-overlapping, this is propagated to the inner
dimensions, which are considered as non-overlapping. If the outer dimension is non-overlapping,
then the inner dimensions cannot be overlapping. In the case that reads have not been merged into
one read statement and both overlapping and non-overlapping cases occur, then the dominant case
gives the storage size, if reads are referring to overlapping to different iteration values.

The parametric templates for the computation of the storage size of the different cases and
the combination of the cases are described in Chapter 5 for the two representative cases of non-
overlapping and overlapping write and read access statements in Section 5.3 and Section 5.4, re-
spectively.

3.5.2 Translation cases

The translation sub-goal is to provide a scalable and near-optimal representation of the access
scheme, which avoids enumeration of the accesses and efficiently describes the potential irregularly
spread holes of the iteration space. Hence, we determine the different cases that the translation step
will have to represent having as constraints the cases of the intra-signal in-place sub-goal. Hence,

47

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

Cases of Translation Sub-goal

Condition Expressions Access statement (2)

Space
type

Coupling
type

Space
with holes

Solid
space

(1)

(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

In one
dimension

Combinations
of different D

(1)

Enumerative
Type

(1)

Logic
operations

Parametric
Type

Combinations
in D

Space
with holes

Solid
space

(1)

Space
type

Coupling
type

Space
with holes

Solid
space

(1)

(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

Space
with holes

Solid
space

(1)

(1)

Figure 3.5: The set with the translation cases after applying the principles of the reusable DSE
methodology.

the translation cases should support all intra-signal in-place cases, meeting both intra-signal in-
place and translation sub-goals.

The first splits derive from the access information which is relevant to the access scheme, as
it will have to be translated to find the in-place. The first split is the condition expressions and
the access statement. The condition expressions propagate their solution to the access statement
which is combined with the solid space described by the solution of the access statement to have
the final representation solution. The condition expressions are further divided into the condition
expressions in one dimension and combination of conditions in different dimensions. The re-
sult of the one dimension condition expressions is used as part of the solution the combinations
of different dimensions case. The conditions in one dimension case are divided into the enumer-
ative type and combinations in one dimension. The enumerative conditions use one dimension
and a constant value. The enumerative type is propagated to the combinations in one dimension,
since the translation of the combination case used the translation of the enumerative conditions
in one dimension. The combinations of different dimensions is divided into the parametric type
of conditions and the logic operations which combine conditions of different dimensions. The
parametric conditions use two iterators of different dimensions and describe a coupling between
dimensions and the space in a parametric way. The parametric type is propagated to the logic
operations, since the parametric result is used to compose the result of the condition expression in
the translation step.

The parametric conditions, the enumerative conditions and the combinations translation cases
in one or multiple dimensions satisfy the intra-signal in-place cases propagated from the intra-signal
in-place sub-goal. Since the goal is to support the cases of the intra-signal in-place step, we further
refine the type of intra-signal cases that the translation cases can cover. The propagated constraints
from the intra-signal in-place cases describe asymmetries which create top-down splits, which are

48

refined in a similar way as for the low layer splits of the intra-signal in-place. The enumerative
type is refined based on the type of spaces that can describe, i.e. solid space and space with holes.
The solid space is propagated to the space with holes as the latter consists of several segments
of solid space. The space that the combinations in one dimension can describe is solid space
and space with holes. The parametric conditions are further split into the coupling type and the
space type that they describe. The coupling type is propagated to the space type, as it the type
of space described is affected by the type of coupling between dimensions. The coupling type can
be either partially coupled or fully coupled. The partially coupled propagate constraints into the
fully coupled, otherwise the fully coupled case will dominate over the partially coupling case. The
partially coupling case is divided into the independent or decoupled case. In a similar way, the
independent case propagates the solution into the decoupled case, otherwise the decoupled case
would be dominant over the independent case. Similar splits are applied to define the coupling and
space type that describe the logic operations in combinations of different dimensions case.

The solutions for the representation for parametric, enumerative and their combinations are
described in Chapter 4 and in Chapter 5, where we illustrate how they are applied in the translation
step of the intra-signal in-place methodology.

3.5.3 Analysis cases

The Analysis sub-goal maps the applications of the target domain into a unified parametric struc-
ture, which provides the information for the access scheme to the next intra-signal in-place steps,
when the methodology is executed. The translation cases and the intra-signal in-place cases prop-
agated from the previous sub-goals should be satisfied by the cases of the analysis sub-goal.

The first splits derive from the application information that has to be propagated to the trans-
lation and intra-signal analysis step to define the storage size. The first split consists of the loop
structure and the kernel. The information of the loop structure is propagated to the kernel, as
the value of the iterator affects the kernel statements. The loop structure is further refined into
the dimensions information and the dimensions order. The information of the dimensions is
required to define their order, e.g. we have to know which dimensions exist in order to define an
ordering between them. This information is relevant, as it is required from the intra-signal in-place
step in order to apply the parametric templates. Then, the kernel is split into the condition expres-
sion statements and access statements. The condition expression statements are propagated to the
access statements, as their result affect the execution of the access statements. The condition ex-
pressions statements are further refined into condition expressions in one dimension and different
dimensions. The result of the one dimension condition expressions is used as part of the solution
the combinations of different dimensions case.

The conditions in one dimension case are divided into the enumerative type and combinations
of enumerative conditions. The enumerative type is propagated to the combinations, since the
latter combines the enumerative conditions in one dimension. Since the goal is to provide a unified
representation, which represents the application of the target domain under study, the enumerative

49

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

Cases of Analysis sub-goal

Loop structure Kernel (2)

Order Dimensions (2) Condition Expressions

Access statements

In one
dimension

Combinations
of different D

(1)

Enumerative
Type

(1)

Composite Primitive (2)

Logic
operations

Parametric
Type

(1)

(1)

Structure Info Per Access
(2)

Accesses Order (2)

WR RD
(2)

Multiple One (2) Multiple One (2)

Type Index
expression

(2)

WR (2)

Combinations
in D

Composite Primitive (2) Composite
Logic

Operations

Primitive
Logic

operations

(2)

RD

Space
with holes

Solid
space

(1)
Space

with holes
Solid
space

(1)

Composite Primitive (2)

Figure 3.6: The set with the analysis cases after applying the principles of the reusable DSE
methodology.

conditions are divided into the primitive enumerative and the composite enumerative conditions.
The primitive conditions are propagated to the composite solutions, since the latter are transformed
into primitive conditions. The primitive enumerative conditions are used in the analysis and they
can describe solid iteration spaces and iteration spaces with holes. The combinations are also
divided into the primitive logic operations and the composite logic operations. The composite
logic operations are transformed into the primitive logic operations.

The case of combinations of condition expressions in different dimensions is divided into the
parametric type of conditions, which are capable of coupling two iterators of different dimensions
and the logic operations, which also couple conditions of parametric or enumerative type between
different dimensions. The parametric type is propagated to the logic operations, since the latter is
applied on top of conditions. The parametric type of condition is further refined into the primitive
parametric and the composite parametric conditions. The primitive parametric is explored in the
analysis step, whereas the composite type solution is created by using the solution of the primitive
type by applying transformations to the primitive type. In a similar way, the logic operations are
divided into the primitive logic operations and the composite logic operations.

The access statements are divided into the accesses structure and the information per access.
The access structure provides information to define the one access case. The access structure is
divided into the access statements and the access statements order. The former propagates to
the later, as the information of the accesses is required to provide the order between them. The
accesses are further refined to theWR access type and RD access type. Both are divided into one
or many access statements. The one access statement propagates the solution to the many access
statements, as the latter can be transformed to the one access case.

In a similar way with the translation refinement, the lower layer splits are similar to the lower
layer splits of the translation cases and the intra-signal in-place cases. This similarity is created
due to the propagated constraints from the previous sub-goals. The major goal of the analysis step

50

is to be able to provide the required information for execution of the translation and intra-signal
in-place step. For instance, the dimensions and the order are required from the intra-signal in-place
step in order to decide in which way the patterns are explored. The information of the enumera-
tive type, the parametric type and the combinations of conditions are required for the translation
step to decide the active translation case and translate the conditions into patterns and perform
the corresponding operations. The primitive conditions and operations of the unified application
template should support solid iteration spaces and iteration spaces with holes, as required by the
propagated constraint from the intra-signal in-place step. The information of the structure analysis
of the access statements is required as it is partially used from the translation case and used in the
intra-signal in-place step in order to select which intra-signal in-place case is valid and to compute
the storage size.

3.6 Step 1: Analysis

We present an unified parametric template to describe the cases of the analysis sub-goal. This step
is not worked out in that much detail because it requires less research in terms of its refinement. We
believe indeed that it does not contain any complex exploration or decision-making so it is relatively
easy to provide near-optimal results, and it is also quite straightforward to make it scalable to large
codes. Hence, the development of this step mostly involves applying the proper (existing) software
engineering principles. Still, it is useful to identify the major sub-steps/cases which have to be
considered, as shown below.

The unified parametric template provides the required information to translation and intra-
signal in-place steps, which are executed after the analysis step, when the methodology is applied
to an application instance. Since the analysis step is used for all cases and for next storage size
optimization steps, i.e. inter-signal in-place optimization, it is more reusable and, thus, it is pre-
sented in this chapter. The Analysis step maps the applications of the target domain into the unified
parametric structure of Alg. 3. The template consists of a for loop nested structure with manifest
conditions. To map the application loops to the unified structure, the loops are virtually merged.

Since the index expressions are of ``iterator+constant'' type, the nested loops are virtually
merged by replacing the iterators with the unified iterators, e.g. I, and inserting manifest if state-
ments to guarantee correct iteration bounds per statement. The bounds of the virtually merged
loop are given by LBI = min(LBi, ..., LBj) and UBI = max(UBi, ..., UBj) and the manifest
conditions can affect the Low Bound (I>LB), the Upper Bound (I<UB) or both bounds (I>LB
&& I<UB). Each access statement FX(A(fx)) is labeled as Sm

ii , where m gives the statement
numbering and ii is the initial iterator, where the statement belonged before the virtual loop merge.
The conditions are labeled as Cn

ii , where n gives the condition numbering and ii is the initial iter-
ator, where the statement belonged before the virtual loop merge.

The unified template applies primitive operations, which are defined as OR (||) and AND (&&)
operations and are used to combine primitive conditions into condition expressions. The remain-

51

3. DEVELOPMENT OF INTRA-SIGNAL IN-PLACE METHODOLOGY

ALGORITHM 3: Unified parametric structure of Analysis step
a1i =..., a1k=... ...
for (I=LBI; I< UBI; I++) do...

for (K=LBK; K< UBK; K++) do
if (I> LBi) && (I< UBi) then...

if (K> LBk) && (K< UBk) then
S1
i,..,k:...=F1(A[I+b1i]..[K+b1k])

S2
i,..,k:...=F2(A[I+b2i]..[K+b2k])

...
if (C1

i (I,a
1
i ,type

1
i)..) then...

if (C1
k (K,a

1
k ,type

1
k)..) then...

S3
i,..,k:...=F3(A[I+b3i]..[K+b3k])

if (I > LBj) && (I< UBj) then
if (K > LBl) && (K< UBl) then

if (C1
j (I,a

1
j ,type

1
j)) then...

if (C1
l (K,a

1
l ,type

1
l)..) then...

S4
j,..l:...=F4(A[I+b1j]..[K+b1l])

ing logical operations that may exist in the applications can be expressed as combinations of the
primitive operations. Two types of conditions can exist in applications: 1) the conditions which
describe a Solid Iteration Space (SIS) and 2) the conditions which describe an Iteration Space
with Holes (ISH). The SIS conditions change the bounds of the iteration space. The ISH condi-
tions describe accesses or holes in the internal iteration space. The primitive conditions are either
enumerative conditions, i.e. conditions which use constants, or parametric conditions, i.e. condi-
tions which use linear expressions. The conditions in the application can be expressed through the
following 4 classes of primitive conditions. So this covers all realistic cases in an application code
belonging to our target domain.

The SIS conditions which use constants, e.g. i<3, are mapped to primitive SIS conditions,
called Enumerative Conditions for Solid iteration space (ECS). The ECS use the < comparison
operator or the > comparison operator or a combination of the < and the > with the AND logic
operator to represent concurrent conditions for the low and upper bound of the iterator in a compact
form. If the constant SIS condition in the application uses another comparison operator, it is
mapped to the primitive condition operator. For instance, the condition i≥LB is mapped to the
condition i>LB' with LB'=LB-1, e.g. i≥3 is mapped to i>2.

The ISH conditions which use constants, e.g. i==4, are mapped to primitive ISH conditions,
called Enumerative Conditions for Iteration Space with Holes (ECH) , which are defined as con-
ditions that describe accesses, thus they are expressed by the == comparison operator or by a
combination of an > comparison operator with a < comparison operator through an OR opera-
tor. Whenever the application constant ISH conditions are not primitive, they are mapped to ECH
primitive conditions. For instance, the condition i 6=d is mapped to the condition (i<d)||(i>d).

The parametric expression for SIS is called Parametric Conditions for Solid iteration space
(PCS) , e.g. i<2*k+1. They use the < or > comparison operator for the iteration space bounds.

The primitive parametric conditions for ISH are called Parametric Conditions for Iteration
Space with Holes (PCH), which use the == or 6= comparison operator or a combination of < and
> comparison operators using an AND logic operator, e.g. i>c*l+d1 && i<c*k+d2 (with d1<c

52

and d2<c). The parametric ISH conditions can be primitive PCH or a combination of PCHs.
When the analysis step is applied to an application of the target domain, the unified parametric

template is instantiated and the required information for the next steps is extracted, i.e. the number
and the ordering of the dimensions and the ordering of the condition and access statements and
the parameters of each condition and access statement. This information is propagated to the
translation and intra-signal in-place steps, which selects the active cases from the corresponding
parameterized templates and applies the corresponding solution processes.

3.7 Conclusions

In this chapter, we have illustrated the results of applying the principles of the reusable DSE
methodology to develop a scalable and near-optimal intra-signal in-place methodology for the
applications of the target domain. We have applied the principles of Chapter 2 to define a set with
all the possible index expressions and to select a representative index expression case for the intra-
signal in-place methodology. The developed methodology consists of the sub-goal of computing
the storage size (intra-signal in-place sub-goal), the translation of the access scheme information to
a scalable and near-optimal representation for intra-signal in-place optimization and the analysis
sub-goal which provides the information of the access scheme. The possible cases of the intra-
signal sub-goal have been defined by applying top-down splits and based on the uni-directional
arrows, they have been propagated, as constraints to the next sub-goals. The process has been
repeated for the translation and analysis sub-goal, taking into account the propagated constraints
each time. Per sub-goal a step is required with scalable and near-optimal parametric templates per
case. During the methodology execution, the steps are applied following the opposite order in
order to reach the final goal, as described in Chapter 5.

53

Chapter 4

Pattern representation

4.1 Introduction

The storage size management techniques take as input the access scheme, i.e. the global valid iter-
ation space, which is defined by the application structure, e.g. the loops, the conditions statements
and the memory access statements. For instance, commonly used applications in embedded sys-
tems, such as image, video and signal processing, have, as dominated data, arrays with very regular
memory accesses inside application loops with conditions. The conditions disturb the regularity
of the memory access statements making parts of the iteration space invalid, i.e. ``holes'' in the
iteration space. When a high number of holes (due to the conditions) and several array access state-
ments exist, the valid iteration space becomes highly complicated. Previous approaches describe
the valid iteration space in an enumerative way, in a symbolic way or by worst case approxima-
tion, as explained in Section 3.3 of Chapter 3. The enumerative representations (e.g. [135]) are
optimal, but not scalable, as the storage size exploration time is increased to unacceptable values.
Further, the symbolic representations are scalable and near-optimal, but are applicable up to itera-
tion spaces with holes of regular structures, i.e. piecewise regular (e.g. [55]). In irregular iteration
spaces, they approximate the iteration regions. The approximation representations (e.g. [160])
use a worst case approximation by considering invalid parts as valid leading to overestimation of
the storage size. Hence, a near-optimal and scalable representation is highly desired to be used
in the translation step of the developed intra-signal in-place optimization methodology of Chap-
ter 3 to enable efficient and scalable storage solutions in intra-signal-in-place step of the developed
methodology.

In this chapter, we propose a representation of the access scheme, which is scalable and near-
optimal for complex iteration spaces with irregular holes created by the application array access
statements in a loop structure with several manifest conditions. Section 4.2 motivates this work
through the motivational example used in Chapter 3. To achieve a near-optimal and scalable stor-
age size management we require a representation, which avoids the enumeration of the different
valid iteration space parts and can describe a high number of parts. Parts are pruned by a finite and,
usually, small set of condition statements in the application. One enumerative condition describes

55

4. PATTERN REPRESENTATION

one pruned/accessed part, whereas one parametric condition describes several pruned/accessed
parts in a regular way. When several conditions exist, the iteration space is the combination of
the individual iteration spaces of each condition and access statement. The result is several invalid
parts irregularly spread in the iteration space, increasing the complexity of shape. We introduce the
concept of the patterns to achieve a scalable and near-optimal representation of the iteration space
and the storage management, which is described in detail in Section 4.3. A pattern represents
the valid iteration space of a condition or an access statement through a compact and repetitive
description in the iteration space, thus avoiding enumeration. By including the holes, the iteration
space can be described in a regular and repetitive way due to the loop structure. The percentage
of near-optimalities introduced in the pattern representation is controlled by the size of the holes,
which create address irregularity and are not expressed in the pattern, i.e. holes of size one. In
this way, the iteration space shape due to a parametric condition can be scalable and efficiently
represented. The pattern is defined as a sequence of two parameters: 1) the number of consec-
utive iteration values where the statement has the same behavior and 2) the statement behavior,
i.e. Access (A) or Hole (H). In this way, the invalid iteration space parts are described avoiding
suboptimal approximations. E.g. {1H 1A} repeated 5 times represents the behavior of a condition
statement, which accesses only in the odd iterators from 0 to 10.

The application under study has different conditions, loop structure and access statements,
which lead to different patterns and pattern combinations. The iteration space part of each con-
dition is represented by a pattern. To describe the valid iteration space per access statement, the
relevant condition patterns and the access pattern have to be consistently combined in a scalable
and near-optimal way. To achieve the consistent combination of patterns, we define a set of pattern
operations, which are described in Section 4.4. Based on the application structure, the patterns
can be combined under different cases. Hence, we identify a complete set of the different pattern
combination cases that may occur in the unified application structure applying the reusable DSE
methodology of Chapter 2. Then, we provide scalable and near-optimal operations per combina-
tion case to systematically combine the corresponding patterns. Section 4.5 describes the pattern
operations per case verifying the scalability and near-optimality per operation. In realistic contexts,
the process of combining patterns is applied in a finite small set of patterns, which is defined by
the number of conditions and access statements. We demonstrate how the patterns are composed
and how operations are applied to compose a final read pattern, from where the final storage size is
computed, through a demonstration case study. The final storage size is computed by combining
the final patterns of the read access statements through OR pattern operations and adding the size
of the parts with access behavior.

4.2 Motivation

As described in motivational example of Chapter 3, which is repeated in Fig. 4.1, the enumera-
tive approaches require too much exploration time, when the number of accesses is increased, and

56

For (i=0; i<N; i++)
For (k=0; k<M; k++)
If ((i>8k)&&(i<8k+4)||(i 6=2k))
A[i]=...
EndIf
EndFor
EndFor

(a)

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

i

(b)

Figure 4.1: Motivational example: (a) Application code with three conditions and a write access
statement and (b) Iteration space with the accesses to array A.

the symbolic approaches are inappropriate for iteration spaces with increased number of irregular
holes. Then, approximations would have to be applied, which insert suboptimalities. Instead, the
proposed methodology represents the irregularities in a near-optimal and scalable way through pat-
terns. The first and the second condition are expressed through pattern {1H 3A 4H} repeated N/8.
The third condition is expressed by pattern {1H 1A} repeated N/2 times. By applying operations
on the patterns, a global pattern is computed, which efficiently represent the valid iteration space,
i.e. {1H 3A 1H 1A 1H 1A} repeated N/8 times. With the pattern representation the minimum
storage size can be computed. As the example belong to non-overlapping store and load statements
case, the minimum storage size is given by the summation of the array elements that are accessed
in the iteration space. The storage size is given by the A in the final pattern multiplied by the rep-
etition factor, (N/8)*5. The gray boxes over I axis in Fig. 4.1(b) show the array elements which
are accessed. In realistic applications, the loop iterations are highly increased, several compli-
cated condition expressions and array access statements coexist, which create a complex iteration
space with irregular holes. In this chapter, we present a near-optimal and scalable representation
to handle this complex irregular iteration spaces.

4.3 General Pattern Formulation

This section defines the pattern formulation of the proposed representation and describes how
primitive conditions and access statement are translated into patterns.

The pattern represents in a scalable and near-optimal way the iteration space described by an
access/condition statement and the loop structure by using a compact and repetitive description of
the statement behavior in the iteration space. A statement based on the value of the iterator either
accesses or not the array. When the statement has the same behavior (A or H) in consecutive
iterator values, the iterator values are grouped in iteration space parts. An iteration space part is
described by the length and the behavior. The length is the number of subsequent values of the
iterator where the statement has the same behavior (Part Iterator Range - PIR). The behavior is
A for access or H for hole in the PIR (Part Type - PT). When the iterator values are traversed
following the loop structure, a new iteration space part is created when the behavior of the access

57

4. PATTERN REPRESENTATION

PCH 1PIR 1PT NPIR NPT Part 1 … Part N

IR LB UB

Part 1

…

Part N Pattern 2

Pattern 1

… Part 1 … Part N

Pattern M

Figure 4.2: The pattern consists of N parts, each part has a PIR and a PT, the pattern is valid from
LB up to UB and it is repeated M times.

statement is modified. The loop structure describes the repetition of the statement execution and
thus, the repetition of the pattern in the iteration space. Hence, one pattern with few parameters is
sufficient to describe the behavior of the statement avoiding enumeration. Fig. 4.2 shows a pattern
which consists of N different parts and each part has a PIR and a PT. The pattern is repeated M
times starting from the lower loop bound (LB) and terminating in the upper loop bound (UB).
Based on the type of conditions the LB and UB are computed by Eq. 4.1 and Eq. 4.2. The Iterator
Range (IR), i.e. the range of the iterator values where the pattern is valid, is computed by Eq. 4.3.
The Pattern Size (PS) is the summation of the lengths of all parts in the pattern (Eq. 4.4) and the
Repetition factor (R) describes the times the pattern is repeated in the IR (Eq. 4.5). In the next
paragraphs, we describe the behavior of an access statement and different primitive conditions
using the pattern formulation. The PIRs of the pattern with PT equal to A are access segments
and the summation of their length is the Segment Iterator Domain (SID) defined by Eq. 4.6. The
summation of the length of the parts with type equal to hole is defined by Hole Iterator Domain
(HID) (Eq. 4.7).

SIS&ECH: (I>a): LB = max(LBI, a)

PCH: (I>c*K+b): LB = max(LBI, c ∗ (LBK + 1) + b− 1) (4.1)
SIS & ECH: (I<b): UB = min(UBI, b)

PCH: (I<c*K+b): UB = min(UBI, c ∗ (UBK − 1) + c) (4.2)

IR = UB − LB − 1 (4.3)

PS =

Parts∑
i=1

iPIR (4.4)

R =
IR

PS
(4.5)

SID =
PIRs∑
i=0

PIR(RD)(PT==A) (4.6)

HID =
PIRs∑
i=0

PIR(RD)(PT==H) (4.7)

The simplest case is when no conditions exist in the code and the pattern is one part, as the
code in Fig. 4.3(a). In this example, the LB is 2 (due to consistency reasons with the primitive
conditions, where the LB is defined by > comparison operator), the UB=10 and the IR=7. In the
first iteration, the iterator has the value of 3 and the statement accesses the array. The A behavior

58

For (I=3; I<10; I++)
...=A[I-3]

EndFor

(a)

For (I=3; I<10; I++)
If (I>6)
...=A[I-3]

EndIf
EndFor

(b)

For (I=3; I<10; I++)
If (I<4) || (I>6)
...=A[I-3]

EndIf
EndFor

(c)

For (I=3; I<10; I++)
For (K=0; K<4; K++)
If (I==2*K+1)
...=A[I-3]

EndIf
EndFor

EndFor

(d)

Figure 4.3: Application code examples with one access statement for the array: (a) Without con-
ditions, (b) With one ECS, (c) With one ECH and (d) With one PCH

is valid up to i=9, where the loop is terminated. The pattern is {7A}, i.e. the length is 7 and the
type of behavior is A and the repetition factor is 1.

An ECS condition modifies the access pattern, as depicted in the example of Fig. 4.3(b). The
i>a type is used, where the LB is derived from the maximum value between the condition expres-
sion and the LB of the loop structure, i.e. LB = max(LB,a) = max(2,6) = 6. If an ECS condition
of i<b exists, the UB of the pattern is the minimum value between the condition and the UB of
the loop structure, i.e. UB=min(UB,b). The IR=UB-LB-1=3, the PS=IR, the R=1, the PT=A, the
PIR=IR and the pattern is ECS=PIR PT={3A}.

An ECH condition disturbs the regularity of the A behavior. In Fig. 4.3(c) an ECH of type
(i>a)||(i<b) is used as example. The array A is not accessed in iterator values 4, 5 and 6. The
LB=2, UB=4, IR=1 and the pattern is {1A}. For the second condition LB=6, UB=10, IR=3 and
the pattern is {3A}. By combining both patterns the result is {1A 3H 3A} with LB=2, UB=10,
IR=7 and R=1.

The regularity of A accesses is also disturbed by PCH condition, e.g. i==c*K+b type in
Fig. 4.3(d). The LB of the pattern is the maximum value between the value of the condition expres-
sion in the LB of K iterator and the LB of the loop structure. The LB=max(LBI,(c*(LBK+1)+b-
1)=max(2,0)=2. The UB of the pattern is the minimum value between the condition expression
in the UB of K iterator extended by the PS of PCH, i.e. c, and the LB of the loop structure,
UB=min(UBI,(c*(UBK-1)+c)=min(9,9)=9. The IR=6, PS=2, R=3, the first part is 1PIR=1 and
1PT=A, the second part is 2PIR=PS-1PIR and 2PT=H. The pattern is {1A 1H}. If the UB of
iterator k is increased to 5, the pattern is {1A 1H} with R=5, since the UB=10.

In realistic applications, several control statements with more complicated conditions and array
access statements are combined in different ways creating complex iteration spaces with irregular
holes which require an efficient way to represent them. We discuss how our methodology handles
this issue in the next paragraphs.

59

4. PATTERN REPRESENTATION

4.4 Pattern Combination Cases

In order to handle all the possible combination cases of the patterns that may exist, we define a
complete set with the different cases, which derives by applying the reusable DSE methodology
to the goal of identifying the possible pattern combination cases. Fig. 4.4 depicted the different
possible pattern combination cases (white boxes) and the corresponding pattern operations per case
(gray boxes). In the following paragraphs, we describe the different combination cases (text in
bold) and link them to the corresponding pattern operations (text in italic). The developed pattern
operations are described in Section 4.5.

The first split in the combination cases is the overlapping or non-overlapping patterns. The
overlapping patterns have parts that are referring to the same iterator values and potentially de-
scribe different behavior for the statement. For instance, the patterns in Fig. 4.3(a) ({7A} from
i>2 till i<10) and in Fig. 4.3(d) ({1A 1H} for i>3 till i<9) are overlapping. The non-overlapping
patterns describe the statement behavior for different iterator values. The non-overlapping pat-
terns may be sequential, i.e. one pattern describes up to the iterator value x and the other pattern
describes from x + 1 and on. The sequential non-overlapping operation is described in Sec-
tion 4.5.1.1. The non-sequential patterns have iterator values between them which are not de-
scribed by either pattern, i.e. one pattern describes up to the value x and the other pattern from
x+ y. The non-sequential non-overlapping operation is described in par. 4.5.1.2. The overlapping
patterns are further divided into the cases where they have same or different PS. In case of same
PS, the patterns may be fully aligned or not-aligned. When the patterns are fully aligned, the LB
and UB of the patterns are equal and the primitive operations can be safely applied. The primitive
operation can be an OR operation, which is explained in Section 4.5.2.1, or an AND operation,
which is described in Section 4.5.3. The resulting pattern may require post-processing due to the
existence of sequential parts of the same behavior or repetition of a smaller pattern inside
the resulting pattern. The sequential parts of the same behavior in the internal of the resulting
pattern are identified and merged into one part during the primitive operation. The merging of
the first part with the last part due to same behavior is explored through the skewing operation,
which is described in detail in Section 4.5.4. For instance, the PCH={3A 4H 3A} is modified to
PCH'={4H 6A} and two ECS conditions. The repetition of a smaller pattern is explored through
the repetition search operation, described in Section 4.5.4.1. If PCH={3A 4H 3A 4H} with a
R=10, the PCH is modified to PCH'={3A 4H} with a R=20. When the patterns have the same
PS and are not-aligned, LB misalignment or/and UB misalignment may exist. The alignment
operations are applied by first applying the LB alignment operation described in Section 4.5.4.2.1,
and then the UB alignment operation, described in Section 4.5.4.2.2.

When the patterns have different PS, operations for modifying the pattern size are applied.
The Least Common Multiple (LCM) of the PS of the patterns is computed, e.g. when PS1=3 and
PS2=4, LCM is 12. The LCM is marked as acceptable when the modified PS after unrolling based
on the LCM is quite low and thus not close to enumeration of the iteration space. If the LCM is
acceptable, a PS modification operation, which is described in Section 4.5.4.3, is applied, which

60

Fully Aligned

Pattern Cases

Overlapping Non-overlapping

Non-Sequential Sequential Different PS Same PS

Fully Aligned Not-Aligned

LB UB Result Operation

AND OR

Not-acceptable LCM Acceptable LCM

Divisible PS

Large PS

Indivisible PS

One small PS

Indivisible PS Divisible PS

Sub-pattern Search Decomposition
to Small Patterns

Regularity
Medium Search

LB Alig/nt

PS Modification

Sequential

Skew UB Alig/nt

Regularity
Small Search

Non-Sequential

Case

Operations

Repetition Search

Figure 4.4: Set of possible pattern combination cases with the corresponding operations.

partially unrolls the patterns to have a PS equal to the LCM. If the LCM is not acceptable, the
OR and AND operations should be performed in a way that avoids enumeration of the iteration
space. We propose search operations based on the relative PS of the patterns. If one pattern
has a relative small PS comparing with the other pattern, two cases exist: the pattern with the
small PS that is a factor of the PS of the other pattern (Divisible PS) or the PS of the patterns are
Indivisible. In the first case, regularity small search operations of Section 4.5.4.6 are applied to
search for sub-pattern repetition. In the latter case, sub-pattern search operations of Section 4.5.4.4
apply an iterative partial OR between the small pattern and a part of the other pattern and searches
for repetition in the result. When both patterns have large PS, the PS of one pattern (medium
pattern) may be a factor of the PS of the other pattern (Divisible PS) or the PS of the patterns are
Indivisible. In the first case, regularity medium search operations of Section 4.5.4.7 are applied
to search for pattern repetition. In the latter case, the decomposition operation to small patterns of
Section 4.5.4.4 is introduced to split the medium pattern to smaller patterns. Then, the operations
for the case of one small PS are applied.

4.5 Pattern Operations

This section describes the pattern operations using two patterns, First PCH (FPCH) and Second
PCH (SPCH), and illustrates that scalability and near-optimality are maintained per operation. The
following sections describe the pattern operation required per pattern combination case presented
in Section 4.4.

4.5.1 Non-overlapping Operations

The non-overlapping operations join two patterns, which refer to different iterator values, into one
pattern. The length and the behavior of the pattern parts is not modified and thus near-optimality
is maintained. The operations are applied in a scalable way as the patterns are not required to be
unrolled. In non-overlapping patterns only the OR primitive operation is valid, which is a pattern
concatenation. The AND operation over different iterator values results to the null pattern.

61

4. PATTERN REPRESENTATION

1 Part

UB LB

SPCH

FPCH N Part ...

IR

UB
LB

M Part ...

IR

1 Part

1 Part

UB=UB(SPCH) LB=LB(FPCH)

PCH N Part ...

IR=IR(FPCH)+IR(SPCH)

M Part ... 1 Part

(a) Sequential OR Operation

1 Part

UB LB

SPCH

FPCH N Part ...

IR

UB LB

M Part ...

IR

1 Part

1 Part
UB=UB(SPCH) LB=LB(FPCH)

PCH N Part ...

IR=IR(FPCH)+HIR+IR(SPCH)

M Part ... 1 Part HIR

(b) Non-sequential OR Operation

Figure 4.5: Result of non-overlapping operations.

4.5.1.1 Sequential Operation

In the general case, the UB of the first pattern is equal to the LB of the second pattern and the OR
operation results to a concatenated pattern. The operation is schematically depicted in Fig. 4.5(a).
The FPCH and the SPCH are not modified and are combined through concatenation into a common
pattern PCH. In case the patterns to be combined are the same, the result is a pattern with the same
part and modified LB, UB and a repetition factor increased to R = IR(PCH)

PS
.

4.5.1.2 Non-Sequential Operation

The non-sequential OR operation is similar to the general case of the sequential operation but with
a new part of length HIR=LB(SPCH)-UB(FPCH) of PT=H is inserted between the FPCH and the
SPCH. The OR operation result is depicted in Fig. 4.5(b), where during concatenation of FPCH
and SPCH, a third pattern, which describes holes, is inserted.

4.5.2 Fully aligned Operations

They are applied to patterns with the same PS, aligned LB and UB. Due to the address generation
overhead, the irregular holes of size one are considered as virtual accesses inserting near-optimality
in the result. The near-optimality is fully controllable, since the methodology is aware of where it
is introduced and it can explicitly compute it. The operations are applied pattern part by pattern
part without unrolling. Since the patterns consist of small number of parts (due to pattern nature
and post-processing operations) scalability is maintained.

4.5.2.1 OR Operation (||)

The LB, the UB and the PS of the result pattern (PCH) are the same with that of the initial patterns
FPCH and SPCH. The OR operation defines the PCH pattern based on the type and the position of
the FPCH and SPCH parts. The operation is iteratively applied part by part until the result pattern
reaches the PS. In each iteration, an OR operation is applied between a FPCH and a SPCH part.
The size of the parts is potentially modified depending on the size of the part with the dominant
type, i.e. A, as explained in detail in the next paragraph.

62

ALGORITHM 4: Fully aligned OR Operation.
UB(PCH)=UB(FPCH)
LB(PCH)=LB(FPCH)
PS(PCH)=PS(FPCH)
MPS=0
while (MPS 6=PS(PCH)) do

if (PIR(FPCH)==PIR(SPCH)) then
PIR(PCH)=PIR(FPCH)
if (PT(FPCH)==A||(PT(SPCH)==A) then

PT(PCH)=A
else

PT(PCH)=H
else

if (PIR(FPCH)>PIR(SPCH)) then
max=FPCH
min=SPCH

else
max=SPCH
min=FPCH

if (PT(max)==A then
PT(PCH)=A
PIR(PCH)=PIR(max)
next PIR(min)=next PIR(min)-(PIR(max)-PIR(min))

else
PIR(PCH)=PIR(min)
next PIR(max)=next PIR(max)-(PIR(max)+PIR(min))
if (PT(min)==A&&PT(max)==H) then

PT(PCH)=A
else

PT(PCH)=H
PCH=MPC|PIR PT
MPS=MPS+PIR
Next PIR(FPCH), PIR(SPCH)

The pseudocode of the operation is described in Alg. 4. In each iteration, the PIR and the PT
of one result part are defined based on the PIR and the PT of the FPCH and SPCH parts that are
merged in the current iteration. In case the PIR of FPCH and SPCH parts are equal, the PIR of
the PCH part is equal to PIR(FPCH). If the PT of both FPCH and SPCH parts is H, the PT of the
PCH part is also H. Otherwise, it is A. When the FPCH and SPCH PIRs are different, the PIR of
the result depends on the PT. If both parts are of H type, the length is defined by the minimum
PIR and the PT is H. The part with the maximum PIR is modified by split into two parts: one
part with PIR equal to the minimum PIR of FPCH and SPCH used in the current OR iteration
and another part with PIR equal to max(PIR(FPCH),PIR(SPCH))-min(PIR(FPCH),PIR(SPCH))
used in the next iteration. This modification is depicted in Fig. 4.6(b), where the SPCH has larger
PIR and is split into a part equal to the PIR of FPCH and a gray part that is left for the next
iteration. If at least one part is of A type, the PT of the result is A. The PIR of the result de-
pends on which part has PT=A. If the maximum PIR has A type, the PIR of the result part is
equal to the max(PIR). Then, the pattern with the minimum PIR is modified: the PIR of the
next part is reduced by max(PIR(FPCH),PIR(SPCH))-min(PIR(FPCH),PIR(SPCH)), as depicted
in Fig. 4.6(c). The next part of the FPCH is reduced by the gray part. If only the part with the min-
imum PIR is of A type, the PIR of the result part is the min(PIR(FPCH),PIR(SPCH)). The PIR of

63

4. PATTERN REPRESENTATION

FPCH … PIR Next PIR

SPCH … PIR Next PIR …

…

(a)

FPCH … PIR Next PIR

SPCH … PIR Next PIR …

…

… PIR(FPCH) Next PIR … PCH

(b)

FPCH … PIR Next PIR

SPCH … PIR Next PIR …

…

… PIR(SPCH) Next PIR … PCH

(c)

Figure 4.6: Fully aligned OR operation: (a)Two parts of the patterns FPCH and SPCH, (b) When
PT of both parts is H or the part with the smaller PIR has PT=A, the PIR of the PCH part is equal
to the small PIR and the PIR of the next part of the pattern with the larger PIR is increased by the
PIR difference, i.e. large(PIR)-small(PIR) and (c) When PT of both parts is A or the part with the
larger PIR has PT=A, the PIR of the PCH part is equal to the larger PIR and the PIR of the next
part of the pattern with the small PIR is reduced by the PIR difference.

the next part of the pattern with the maximum PIR is increased by max(PIR(FPCH),PIR(SPCH))-
min(PIR(FPCH),PIR(SPCH)). The PT is checked for equality with the PT of the previous PCH
part in order to be stored in one part and reduce the total number of pattern parts. The process is
repeated for the next FPCH and SPCH parts.

4.5.3 AND Operation (&&)

The LB, the UB and the PS of the result pattern (PCH) remain the same with that of the initial
FPCH and SPCH. The way the AND operation is applied is similar to the OR operation, but the
modification of the parts is adapted to the AND operation.

In more details, when the AND operation is applied into the FPCH and SPCH parts and these
parts have equal PIR, the PIR of the resulting pattern, i.e. PCH, is equal to the parts. If the PT of
both parts is A, the PT of the result is A. If at least one of the FPCH or SPCH parts has PT of H type,
the PT of the result is H. If the PIR of the FPCH part is different from the PIR of the SPCH part,
the PIR of the result depends on the PT. If both parts are of A type, the PIR of the result is defined
by the minimum PIR and the PT is A. The part with the maximum PIR is modified by splitting
into: 1) one part with PIR equal to the minimum PIR and one part with PIR equal to the difference
of the FPCH and SPCH parts, i.e. max(PIR(FPCH),PIR(SPCH))-min(PIR(FPCH),PIR(SPCH)).
When at least one part of the FPCH and SPCH parts has PT of H type, the PT of the result is H.
The PIR of the result depends on which of the two initial parts has PT equal to H. If the maximum
PIR is H, the PIR of the result is max(PIR). Then, the PIR of the next part of the pattern with the
minimum PIR part is reduced by the difference of the two parts. If only the minimum PIR is of H
type, the PIR of the result is equal to the minimum. The PIR of the next part of the pattern with the
maximum PIR is increased by the difference of the two parts. If the PT of the PCH part is equal
with the PT of the previous PCH part, the parts are stored as one part. The process is repeated for
the next couple of FPCH and SPCH parts.

64

PCH 3A 2H 3A 5H 2A

4*15 0 61

PCH’

61 0
3*15

ECS1 ECH2

3A

3A 2H 3A 5H 2A 3A 2H 3A 5H 2A 3A 2H 3A 5H 2A

2H 3A 5H 5A 2H 3A 5H 5A 2H 3A 5H 5A 2H 3A 5H 2A

Figure 4.7: Example of applying Skew operation. The initial PCH pattern is {3A 2H 3A 5H 2A}
and after applying the skew operation the ECS1, ECH2 and PCH' are created.

4.5.4 Skew Operation

The skew operation merges the first and the last part, when they have the same type. In this way,
the number of pattern parts is reduced, the length of the parts is increased and the corresponding
iteration space is described in a more compact way. The PT of the parts are not modified and
thus near-optimality is maintained. The operation is applied on the pattern without requiring to
enumerate the behavior in the overall iteration space maintaining scalability. The skew operation
splits one repetition of the pattern to allow the skewing of the first part into the last part. The skew
operation modifies the PIR of the first and last part, the LB, UB, R and IR. The initial PCH is
split into an ECS (e.g. ECS1 in Fig. 4.7), which describes the first part of the first repetition of the
PCH, a new PCH (e.g. PCH' in Fig. 4.7), with the first and the last part merged, and an ECH (e.g.
ECH2 in Fig. 4.7), which describes the remaining parts of the first repetition of the initial PCH.
The different patterns are given by Eq. 4.8, 4.9 and 4.10.

ECS1={1PIR 1PT} : LB = LB(PCH), UB = LB + 1PIR+ 1 (4.8)
PCH'={2PIR 2PT ... (NPIR+1PIR) NPT} :

LB = UB(ECS1)− 1, UB = UB(PCH)−
PCHParts∑

i=1

iPIR, R = R(PCH)− 1 (4.9)

ECS2={2PIR 2PT ... NPIR NPT} : LB = UB(PCH ′)− 1, UB = UB(PCH). (4.10)

For instance, in Fig. 4.7 the PCH is {3A 2H 3A 5H 2A} with LB=0, PS=15, R=4 and UB=61.
After skew operation: the ECS1=3A with LB=0, PS=3, UB=4, the PCH' is {2H 3A 5H 5A} has
LB=3, PS=15, R=3 and UB=49, and the ECS2=2H 3A 5H 2A with LB=48 and UB=61.

4.5.4.1 Repetition Search Operation

The repetition search operation searches inside the PCH result to identify potential repetition of
smaller patterns to reduce the number of pattern parts. The operation is applied in groups of parts
and it is repeated for a small number of times, i.e. half the number of parts in the pattern, avoiding
enumeration of the statement behavior in the iteration space. The potential new internal pattern is
initialized with the first two parts and the remaining parts are compared in groups of two to verify
repetition. The search continues by increasing the new internal pattern by one part and comparing
the remaining pattern in groups of three etc. The operation terminates when the internal pattern

65

4. PATTERN REPRESENTATION

ALGORITHM 5: LB Alignment Operation
Size2=0, R=0, IR=(bound+1)-LB(PCH)-1, flag=0
if (IR/PS(PCH) 6=0) then

PCH1=PCH
LB(PCH1)=LB(PCH)
R(PCH1)=int(IRPS)
UB(PCH1)=R(PCH1)*PS

if ((bound%PS) 6=0) then
Size1=UB(PCH1)
ECS1, PIR(PCH), Diff=Find Pattern(Size1, PCH,
bound+1)
LB(ECS1)=max(UB(PCH1)-1,LB(PCH))
UB(ECS1)=bound+1
Size2=PIR(PCH)-Diff

LB(PCH2)=bound

if (Size26=0) then
R(PCH2)=R(PCH)-R(PCH1)-1
PCH2=Size2 PT
ECH2=Size2 PT
Next PIR(PCH)
while (Size2+PIR(PCH)≤PS) do

PCH2=PCH2|PIR PT
Size2=Size2+PIR(PCH)
if
(flag==0&&((bound%PS)+Size2+PIR(PCH))≤PS)
then

ECS2=ECS2|PIR PT
else

flag=1
Diff=PS-Size2
ECS2=ECS2|Diff PT

Next PIR(PCH)
Diff=PS-Size2
PCH2=PCH2|Diff PT

if (Size2==0) then
UB(PCH2)=UB(PCH)
R(PCH2)=R(PCH)-R(PCH1)

Find Pattern(Size, PCH, bound){
while (Size+PIR(PCH)<bound) do

Size=Size+PIR(PCH)
PCH'=PCH'| PIR(PCH) PT(PCH)
Next PIR(PCH)

Diff=(bound)-Size
return PCH'|Diff PT(PCH), PIR(PCH), Diff
}

consists of half the parts of the initial pattern. The operation does not modify the parts of the
pattern maintaining near-optimality.

4.5.4.2 Alignment Operations

The alignment operations are applied in patterns with not-aligned bounds and split the pattern
into: one pattern with aligned bound and one non-overlapping sequential pattern. The alignment
operation depends on where the new bound cuts the initial pattern. The operation is applied in the
pattern parts avoiding enumeration. The PT of the parts is not modified, i.e. the number of the
holes is identical to the number before applying the operations, maintaining near-optimality.

4.5.4.2.1 LB alignment The LB alignment operation, depending on where the new bound cuts
the initial pattern, may split intomaximum four sub-patterns. The PCH represents the initial pattern
to be aligned and the bound represents the new LB in the pseudocode of Alg. 5. The most general
case is when the bound cuts the PCH somewhere in the middle of the pattern and in the middle of
the repetitions. Then, two patterns with R>1, i.e. PCH1 and PCH2 in Fig 4.8(a), and two patterns
with R=1, i.e. ECH1 and ECH2 in Fig 4.8(a), are created. The operation explores the initial pattern
part by part to define the new patterns. The repetition factor of the initial PCH is R1+R2+1. The

66

PCH P

Bound

P P P P

PCH1

P P P' P P P''

PCH2

R*PS LB UB

UB LB
R1*PS R2*PS

ECH1 ECH2

PCH1

P P P' P''' P''' P''

PCH2’

UB LB
R1*PS R2*PS

ECH1 ECH2

Bound

(a)

PCH

25

PCH1 PCH2

5*12 0 61

61 0
2*12 2*12

ECS1 ECH2

2A 3H
2A 4H

PCH1 PCH2’

61 0
2*12 2*12

ECS1 ECH2

2A 3H
2A 4H

25

2A 3H 2A 4H 1A 2A 3H 2A 4H 1A 1A

1A

3A 3H 2A 4H 3A 3H 2A 4H 3A 3H 2A 4H 3A 3H 2A 4H 3A 3H 2A 4H

3A 3H 2A 4H 3A 3H 2A 4H 3A 3H 2A 4H 3A 3H 2A 4H

3A 3H 2A 4H 3A 3H 2A 4H

(b)

Figure 4.8: LB Alignment operation: (a) General Case: The PCH is the initial pattern, the Bound
is the new LB and defines the position to split the PCH. The result is a new PCH1, ECS1, ECS2
and PCH2. The right section is skewed to align the PCH2 to the new LB and (b) Example: The
initial pattern is {3A 3H 2A 4H} and the Bound is 25.

first section of the PCH, i.e. the section on the left side of the bound, has IR=(bound+1)-LB(PCH)-
1. If the left section is larger than two times the PS, the repetition occurs and a PCH1 is created
with LB equal to the LB of the initial pattern, R equal to (int) IR

PS
and UB=LB+R*PS+1. The

repetition, where the new bound cuts the initial pattern, creates the ECH1 and ECH2 patterns.
The LB of ECH1 is the maximum value of the UB(PCH1)-1 and the LB of the PCH. The UB is
equal to bound+1. To define the parts of ECH1 and ECH2, the initial pattern (P) is traversed part
by part to identify in which part the bound belongs to (PartBound). The parts of the ECH1 are the
parts of P before the bound, including the corresponding part, i.e. up to the bound, of PartBound).
The remaining PartBound and the parts after the bound compose the ECH2 pattern. This pattern
split does not yet lead to LB alignment with the PCH2, since the ECH2 has to be moved after the
PCH2. This is achieved by skewing the PCH2. The PS is maintained, whereas the pattern and the
bounds are modified. The skewed PCH2 pattern, i.e. PCH2' in Fig. 4.8(a), is {ECH2 ECS1}, the
LB is equal to the bound and the UB is given by R2*PS+bound+1. The ECH2 has LB equal to
R2*PS+bound and UB equal to the UB of the initial PCH. A degenerate case is when the bound is
a factor of the PS of the initial pattern. Then, the PCH is split into two PCH1 and PCH2 patterns
with parts that are the same with the parts of the initial PCH. The PCH1 has LB equal to the LB
of the PCH, UB equal to bound+1, repetition factor equal to IR(PCH1)

PS
. The PCH2 has LB equal

to bound, UB equal to the UB of the initial PCH and R = IR(PCH2)
PS

.
An example (Fig. 4.8(b)) is the pattern {3A 3H 2A 4H} with LB=0, UB=61, R=5, PS=12 and

the bound at 25. The LB alignment operation splits the pattern to {1A} | {2A 3H 2A 4H}. The
PCH1 is {3A 3H 2A 4H} with LB=1, UB=2*12+1=25, R=2, IR=24, PS=12. The ECS1={1A}
with LB=24, UB=26, R=1, PS=1. The ECS2 is the remaining pattern of PCH, i.e. {2A 3H 2A
4H}. To align at the LB, the pattern of the PCH2 is skewed resulting to PCH2'={2A 3H 2A 4H
1A}, as depicted in Fig. 4.8(b). The PCH2' has LB=25, UB=50, R=2, PS=12 and ECS2 has
LB=49, UB=61, PS=11 and R=1.

67

4. PATTERN REPRESENTATION

4.5.4.2.2 UB alignment The UB alignment operation is applied after LB alignment operation,
thus the LB of the patterns is already aligned. Since the PS of both patterns is the same, the position
of the new aligned UB, i.e. the smaller UB of the patterns, is always a factor of the PS. Hence, the
pattern is not modified. The initial PCH pattern is split into a left pattern and the right pattern due
to the new bound. The LB of the left pattern is the LB of the PCH, the UB is the new UB, the
R is defined by IR(PCH1)

PS
. The remaining pattern has LB equal to the bound-1, UB equal to the

UB(PCH), the R is defined by IR(PCH2)
PS

. Both new patterns can be a PCH1 (R>1) or an ECS1
(R=1). The PT of the parts is not modified and near-optimality is not affected.

4.5.4.3 PS modification Operation

When the LCM of the PS is acceptable, i.e. has a low value avoiding enumeration, the patterns are
modified to have PS equal to the LCM. This is achieved by unrolling the patterns by the required
Unrolling Factor (UF), which is quite low because of the acceptable LCM. The parts of the patterns
are not modified and thus near-optimality is not affected. The UF for a pattern PCH derives from
Eq. 4.11. The LB and the UB remain the same, the R is updated using Eq. 4.12. For instance, the
FPCH is {2A 2H} with PS=4, R=30 and SPCH is {2A 1H} with PS=3 and R=20. The LCM is 12.
The modified patterns are: FPCH={2A 2H 2A 2H 2A 2H} with PS=12, R=10 and SPCH={2A
1H 2A 1H 2A 1H 2A 1H} with PS=12, R=10.

UF (PCH) =
LCM

PS(PCH)
(4.11)

R(PCH) =
R(PCH)

UF (PCH)
(4.12)

4.5.4.4 Sub-pattern Search Operation

The operation is applied between a pattern with small PS and a pattern with large PS when the
LCM is not acceptable. If a primitive operation is fully applied to the small and large pattern, it
requires a highUFwhichmay lead to results close to enumeration. Tomaintain the scalability of our
methodology, the sub-pattern search operation is proposed to apply the operation in sections. The
operation searches for the sub-patterns, which are repetitive in the complete result of the operation
but without computing through enumeration the operation result, which has unacceptable size. The
operation is applied in iterations and each iteration explores a sub-pattern. The sub-patterns are
described by the parts where the result is not upfront defined. For instance, for the OR operation
in patterns {2A 3H} and {3A 4H 2A 4H}, the result may not be A only in the positions where
both parts have PT=H. Hence, it is sufficient to search for sub-patterns with parts of H type. A
similar reasoning hold for the AND operation, where the differentiation derives from the parts of
A type. We present the operation for the OR case.

The operation is applied in iterations. In each iteration the small pattern and a section of the
large pattern with size equal to the small PS are explored. In this way enumeration is avoided,
since the exploration of the sub-patterns is performed in an finite set of positions and the operation
is applied for a small PS. In Alg. 6 the process is described in detail. Variable x defines the

68

ALGORITHM 6: Sub-pattern search operation
sub-pattern_exist=0
for (x=0; x<LCM; x=x+PS(min)) do

section=Find Section(max, x, PS(min))
sub-pattern=Merging(section, min)
if (Find zeros(sub-pattern)!=0 then

if (sub-pattern_exist==0 then
subpatterns[k]=sub-pattern
pos_cnt=0
positions[sub-pattern][pos_cnt]=x
pos_cnt++
R=1
sub-pattern_exist=1

else
for (j=0; j<i; j++) do

if (sub-pattern==subpattern[j] then
positions[j][pos_cnt]=x
R=R+1
k++

for (j=0; j<k; j++) do
irregular=Find Regularity(sub-pattern[j])
if (irregular==0) then

PCH=sub-pattern[j]
LB=position[j][0]
UB=R*PS(min)

else
Split-pattern=sub-pattern[j]
while (PS(Split-pattern))>1) do

Split-pattern=Split
sub-patterns(Split-pattern)

Find Section(max, x, PS(min)){
crt_size=0
section=Find Pattern(crt_size, max, x)
Next PIR
crt_size=Diff
return Find Pattern(crt_size, max, PS(min))
}
Find Regularity(sub-pattern){
period=position[sub-pattern][1]-position[sub-pattern][0]
for (m=1; m<positions(sub-pattern); m++) do

period(m)=position[sub-pattern][m+1]-
position[sub-pattern][m]
if (period(m)!=period) then

return 1
return 0
}
Split sub-patterns(sub-pattern){
PS(sub-pattern)=PS(sub-pattern)-1
size=0
return Find Pattern(size, sub-pattern, PS(sub-pattern))
}

starting point of the positions that are searched, i.e. the start of the large pattern section. To
define the section, we start from the x position and add large pattern parts until the section size
is equal to the small PS. Then, the OR operation is applied between the small pattern and the
section. If the sub-pattern contains H, the x position and the sub-pattern are stored. If the sub-
pattern already exists, only the x position is stored and the R is increased. After the sub-patterns
identification, the repetition period of the sub-patterns is computed. This exploration affects the
near-optimality because if the sub-pattern is not repetitive (or has a low R), it can be assumed as
an access pattern. The gain of maintaining the non-repetitive patterns achieved by the storage size
management techniques cannot be compensated with the significant overhead that they introduce
in the address generation phase, as explained in Section 3.4. In this way we control the near-
optimalities introduced in the resulting pattern. If the different starting positions of the sub-pattern
are regular, the sub-pattern is maintained as a pattern with LB=min(x) and UB=R*PS. Otherwise
the sub-pattern is further split to smaller sub-patterns and regularity over the period is explored
for each sub-pattern. The process is scalable as it is repeated few times, i.e. from PS(sub-pattern)
which is small up to a PS equal to two.

69

4. PATTERN REPRESENTATION

4.5.4.5 Decomposition to Small Patterns Operation

This operation is similar to the sub-pattern search operation, but it is applied when both patterns
have large PS and it searches for small patterns instead of sub-patterns. The operation is applied in
iterations. Each iteration explores a small pattern by applying the operation between the medium
pattern and a section of the large pattern of medium size. The positions that are searched are
factors of the medium PS. If the small pattern contains H, the start position and the small pattern
are stored. If the small pattern has been identified in a previous iteration, the new start position is
stored and the R is increased. Scalability is maintained, since the operation is applied in a finite
set of positions. The repetition period of the small patterns is computed. If the small pattern is
not repetitive (or has a low R), it can be assumed as a virtual accesses due to address generation
overhead. The virtual accesses are small and few in number, due to low repetition factor. In this
way, the proposed methodology controls the near-optimalities in the pattern representation.

4.5.4.6 Regularity Small Search Operation

This operation is applied when the LCM is not acceptable for a small and a large pattern, where the
PS of the small pattern is a factor of the PS of the large pattern. The operation explores the potential
repetition of smaller patterns which may exist in the result without computing the final result. It is
applied in sections of the pattern in a similar way to the post-processing repetition search, which is
however applied in pattern parts. Initially, the potential repetitive pattern is computed by the OR
operation of the first small pattern and a section of the large pattern with size equal to the PS of the
small pattern. The next candidate to be searched is computed by an OR operation of the second
small pattern and the corresponding section of the large pattern. If the result is equal to the first
result, the result pattern is repetitive and the next iteration and searches the remaining sections.
Otherwise, the potential repetitive pattern is increased by one small pattern (until the half the size
of the large pattern) and the process is repeated. The scalability is maintained since the operation is
applied in a few pattern sizes (PScnt) each time and in a limited set of specific positions in the large
pattern (POScnt). When scaling up the pattern size, PScnt and POScnt will not rise proportionally
in practical cases.

4.5.4.7 Regularity Medium Search Operation

The operation is similar to the Regularity Small Search Operation, but it is applied when both
patterns are large and it uses the medium pattern in the position of the small pattern.

4.5.5 Pattern Combination Process

This section describes how the patterns and the pattern operations of the proposed representation
are applied to combine a set of different patterns of read statements and manifest conditions. The
proposed representations describes each primitive condition and access statement by a pattern. It
applies pattern operations between the relevant condition patterns to compose the final pattern per

70

ALGORITHM 7: Finding the active combination case
if (PS(FPCH) 6= PS(SPCH)) then

if (PS(FPCH) ≥ PS(SPCH)) then
max=FPCH
min=SPCH

else
max=SPCH
min=FPCH

Find GCD(max,min)
Find LCM(max,min, GCD)
if (LCM < Threshold-LCM) then

PS Modification(FPCH,SPCH,LCM)
else

if (PS(max) && PS(min) > Threshold-PS)
then

if (GCD > 1) then
Regularity Medium Search(max,min)

else
Decomposition to small
Patterns(max,min)

if (PS(min) < Threshold-PS) then
if (GCD > 1) then

Regularity Small
Search(max,min)

else
Sub-pattern Search

else
if (LB(FPCH)+IR(FPCH) > LB(SPCH)) then

if (LB(FPCH)+IR(FPCH) 6= LB(SPCH) +
IR(SPCH)) then

if (LB(FPCH) < LB(SPCH)) then
LB alignment(FPCH,LB(SPCH))

if (UB(FPCH) 6= UB(SPCH)) then
if R(FPCH) > R(SPCH) then

max=FPCH
min=SPCH

else
max=SPCH
min=FPCH

UB alignment(max,UB(min))
if
(LB(FPCH)+IR(FPCH)==LB(SPCH)+IR(SPCH))
then

PCH=Fully aligned(FPCH,SPCH)
Repetition Search(PCH)

if (LB(FPCH)+IR(FPCH)==LB(SPCH)) then
Sequential(FPCH,SPCH)

if (LB(FPCH)+IR(FPCH) < LB(SPCH)) then
Non-sequential(FPCH,SPCH)

access statement. The final patterns per access statement are combined by applying OR pattern
operations. Since the read statements are applied after the write statements in the problem under
study, the final storage derives from the summation of the length of the A in the final pattern.

To compute the pattern per access statement, the pattern operations are applied on a sorted
pattern list in increasing LBs and in increasing IR, as second criteria. The first and the second
patterns are selected and their parameters are compared to decide in which pattern combination
case they belong to. Alg. 7 describes the conditions which decide the active pattern combination
case. Initially, the PS of the patterns are compared. When the patterns have different PS, the pattern
with the larger PS is defined (max pattern). The Greatest Common Divisor (GCD) and the Least
Common Multiple (LCM) of the pattern sizes are computed. If the LCM has a value that is lower
than the acceptable LCM threshold, the acceptable LCM is active and the PSmodification operation
is applied to the patterns. If the LCM is not acceptable, the PS of both patterns is compared with
the PS threshold, which distinguishes between the Large PS and the Small PS cases. The value of
the GCD decides between the Divisible PS case (GCD>1) or the Indivisible PS case (GCD=1).
When the patterns have the same PS, potential overlapping of the patterns is explored. When the
sum of the LB and the IR of the FPCH is larger than the LB of the SPCH, the overlapping case
is active. To distinguish the different overlapping cases, the sum of the LB and IR of the two
patterns are compared. If they are different, the patterns are not aligned. The LBs and the UBs are
respectively compared to define where the misalignment occurs and the corresponding operations
are applied. In the UB alignment case, the repetition factor is compared to define the larger pattern.
When the sums of the LB and IR of the two patterns are equal, the fully aligned case is active.

71

4. PATTERN REPRESENTATION

For (I=0; I<N; I++)
For (K=0; K<M; K++)
If ((I≥8K) && (I≤8K+2) || (I<1) || (I==4K+1))
...=A[I]

EndIf
EndFor

EndFor

Figure 4.9: Demonstration case study code.

Based on the type of the primitive operation, the OR or AND case is selected. When the sum of
the LB and IR of the FPCH is equal to the LB of the SPCH, the active case is the non-overlapping
sequential patterns. When the sum of the LB and IR of the FPCH is less than the LB of the SPCH,
the active case is the non-overlapping non-sequential patterns. The corresponding operations are
performed as described in previous sections. The result pattern is stored and the initial patterns
are removed from the sorted list. The new patterns created during the pattern operation are also
sorted in the list. The process is repeated, until the list has one pattern.

To define the final storage requirements, the OR pattern operation is applied to the final patterns
of the read statements. The result is the global read pattern of the application, which describes in
a near-optimal and compact way the global valid access scheme. The result pattern describes the
storage requirements (Eq. 4.13): each part with a PT equal to A has elements that are accessed and
thus are required to be stored, whereas the parts with PT=H describe zero resource requirements.
The repetition factor describes the times the pattern is applied in the iteration space.

SizeA =

PS∑
i=0

iPIR(PCH)(PT==A) ∗R+

ECS∑
i=0

PIR(i)(PT==A) (4.13)

4.6 Demonstration case study

This section demonstrates how the proposed pattern representation and the pattern operations are
applied to find the required storage size. The application code consists of two for nested loops and
threemanifest conditions over the iterator I, which control the accesses to the arrayA, as depicted in
Fig. 4.9. For the PCH conditions I≥8K&& (I≤8K+2), the LB of loop I is defined by LB'=max(-1,
8*(LBK+1)-1)=max(-1,-1)=-1, the UB is defined by UB'=min(N, 8*(UBK-1)+8=min(N, 8(M-
1)+8). The PCH condition i==4k+1 has LB'=max(-1,4*(LBk+1)+1-1)=max(-1,0)=0. The UB is
defined by UB'=min(N, 4*(UBk-1)+4=min(N, 4(M-1)+4).

In Fig. 4.10(a) the patterns of the three conditions are schematically depicted. The OR primi-
tive operation is applied between the patterns. We describe the OR operation between PCH1 and
PCH2. The result is merged with ECS1. The PCH1 and PCH2 have different PS, i.e. PS(PCH1)=8
and PS(PCH2)=4. The LCM is 8 which is acceptable. The pattern PCH2 is modified to PCH2' by
applying the PS modification operation, as depicted in Fig. 4.10(b). The PCH1 and new PCH2
patterns have both the LB and the UB not aligned. First the LB alignment operation is applied.
The result is depicted in Fig. 4.10(c), where the PCH1 has been divided into an ECS2 and an ECS3

72

PCH1 3A

8 0

ECH1

5H

7

PCH2 A

4 1

N-2

4

… 3A 5H 3A 5H

3H A 3H … A

N-1

A

0
3H A 3H A 3H A 3H

(a)

PCH2’ A

8 1 8

3H A 3H … A

N-1
3H A 3H A 3H A 3H

(b)

PCH1’ 2A

8

0

5H

8

N-2
…

A

1

A 2A 5H A

2A 5H

ECS2

ECS3
N-9

(c)

N-9

ECS4

A

8 1 8

3H A 3H … A
N-1

3H A 3H

A 3H A 3H

PCH2’

(d)

N-9 8 1 8

A … PCH 2A 2H 2H A A 2A 2H 2H A

(e)

N-1 8 1 8

… PCH A

0
A 2A 2H 2H A

N-9

A 2A 2H 3H

(f)

Figure 4.10: Process to compute the storage requirements through pattern operations: (a) Initial
patterns derived from primitive conditions, (b) New PCH2 after applying PS modification opera-
tion, (c) New PCH1, ECS2 and ECS3 after applying LB alignment operation, (d) New PCH2 and
ECS4 after applying UB alignment operation, (e) Result pattern after applying fully aligned OR
operation and (f) Global pattern describing the storage requirements

and a new PCH1 (PCH1'). The next step is to align the UB of the PCH2' in order to fully align the
two patterns. The result is depicted in Fig. 4.10(d) where UB of PCH2' has been reduced to the
UB(PCH1') and a new ECS4 has been inserted. The PCH1 and PCH2 are fully aligned and the
OR operation is applied in Fig. 4.10(e). The ECS conditions are also merged and attached to the
global pattern, which describes the final pattern (Fig. 4.10(f)) Since the read statements are applied
after the write statements, the final pattern describes the storage size. The latter is computed by
the summation of the PIRs of A type, i.e. 1+R*4+3.

4.7 Conclusions

This chapter present a systematic representation to achieve a near-optimal and scalable intra-signal
in-place step, which is applicable for iteration spaces with irregularly placed holes. The proposed
methodology: 1) introduces the formulation of the patterns to describe the condition and the access
statements, 2) defines the different pattern combination cases and present scalable and near-optimal
operation to perform the combination per case and 3) applies the patterns and the operations to
compute the final read pattern, used to compute the storage requirements in the next step of the
developed intra-signal in-place methodology.

73

Chapter 5

Intra-signal in-place methodology for
non-overlapping & overlapping scenario

5.1 Introduction

In this chapter we describe how the pattern representation of Chapter 4 is used in the translation
step and the parametric templates for intra-signal in-place step of the developed methodology of
Chapter 3 for the cases of non-overlapping store and load access scheme, i.e. all the store state-
ments are executed before the load statements, and overlapping store and load access scheme,
i.e. the store statements are executed concurrently with the load statements. The first step is the
Analysis, which maps the application instance to a unified parametric template and extracts the
information for the access scheme, as described in Chapter 3. The translation step translates the
access scheme information into a representation, which supports near-optimality and scalability of
the intra-signal in-place step, using patterns. The composed patterns, are propagated to the intra-
signal in-place step, where the final storage size is computed. The analysis and the translation step
is similar for both the non-overlapping and the overlapping store and load case. We fully describe
the methodology for the non-overlapping case for all the steps, whereas in the overlapping case we
fully describe the intra-signal in-place step and provide the differences with the non-overlapping
case for the translation step. The analysis step remains the same. The proposed methodology is
systematically applied: the analysis of the application instance gives specific values to the param-
eters of the first step. The constraint propagation of the values of the source step selects the valid
cases in the destination step. The corresponding solutions are applied and the parameters of the
destination step are instantiated. We support our contribution by demonstrating how the proposed
methodology is applied and evaluate our methodology for several representative test vehicles of
PolyBench, MediaBench and Mibench benchmark suites.

75

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

5.2 Step 2: Translation

The translation step provides a scalable and near-optimal representation of the access scheme
per statement, which avoids enumeration of the different iteration space parts and efficiently de-
scribes the potential irregular holes. The conditions of enumerative type (e.g. i<5) describe one
pruned/accessed part, whereas the conditions of parametric type (e.g. i!=2k+1) describe a poten-
tially high number of pruned/accessed parts. When several conditions co-exist, the access scheme
is the result of the consistent combination of the iteration spaces of the conditions and the access
statements. The result consists of irregularly spread access regions. To deal with the complexity of
the iteration space shape, the translation step uses the concept of patterns and pattern operations to
represent the access scheme. The output of the translation step is combined patterns, depending on
the condition types, per dimension. Hence, the translation process is applied per access statement:
it translates the information of the access statement and of the primitive conditions relevant to the
access statement into primitive patterns per dimension and depending on which translation option
is valid, the primitive patterns may be combined through pattern operations into the final patterns
per dimension.

The translation cases, described in Chapter 3, depend on the loop structure dimensions, the
number of index expressions in the access statement, i.e. one index expression (e.g. A[i-1]) or
several index expressions (e.g. A[i-1][j+1]), the type of the index expressions, the type of the
primitive condition cases and the potential coupling of the loop dimensions due to conditions. The
cases, which are valid per application instance, are selected by the information propagated by the
analysis step. In realistic contexts, the translation process is applied in a quite small set of primitive
patterns, which is defined by the number of conditions and access statements in the application
kernel, maintaining the scalability of the translation step. As the storage size result should support
a pseudo-regular address generation, the holes in the iteration space, which are too small to provide
a gain in the storage size, i.e. parts of size one, while they introduce a high address generation cost
due to disabling repetition can be considered as ``virtual'' accesses. This process will insert near-
optimalities, which are, however, fully controllable. The next paragraphs describe the translation
cases.

5.2.1 One loop dimension

When the loop consist of one loop dimension, the primitive conditions that may exist in the unified
application template are: 1) SIS of ECS type and 2) ISH of ECH type, since a second iterator does
not exist to form a parametric condition. The valid condition expressions are combinations of ECS
and ECH type through AND and OR operations. We schematically describe the translation process
through Fig. 5.1. Each primitive condition and the access statement is translated into a primitive
pattern following the process described in Chapter 4. Fig. 5.1(b) schematically depicts the patterns
of three primitive conditions (C1, C2, C3) and one read statement (RD). Pattern operations are
applied to the primitive condition patterns to compose the final condition pattern, following the

76

process in Chapter 4. The pattern operations pre-process the patterns, when needed it (e.g. align-
ment operations are required), and perform the OR or AND operation of the application condition
expression. For instance, when the primitive condition patterns are not aligned, LB alignment or
UB alignment operations are applied to align the bounds, as depicted in Fig. 5.1(c). The overlap-
ping patterns with non-align bounds (C1, C2) are split into patterns, which have aligned bounds,
e.g. C1 is split into two patterns: C1 pattern, which is non-overlapping sequential with the C2,
and C1' pattern, which is overlapping with C2. Then, C2 is split into C2 pattern, which is fully
aligned pattern with C1', and a non-overlapping sequential C2' pattern. Then, the OR condition
expression operation is applied over C1' and C2, the sequential non-overlapping operations be-
tween C1, the resulting pattern of the OR operation and C2' and non-sequential non-overlapping
operation between the result of previous operations and C3. The resulting pattern is depicted in
Fig. 5.1(d). After the final condition pattern has been computed, it is combined with the access
pattern through an AND operation. The AND operation is used because both condition and ac-
cess statement should be concurrently valid in order to access the array elements. The result is
depicted in Fig. 5.1(e). We take as reference that the index expression of the write pattern has a
constant equal to zero. In case the index expression of the read access pattern has also a constant
equal to zero, the pattern describes both the access scheme, i.e. the iterators where the statement
is executed, and the array elements that are accessed. When the constant is not zero, the pattern
requires a shift in order to describe the accessed elements. If the constant is negative, the pattern
is shifted left (Fig. 5.1(f)), otherwise is shifted right.

For instance, in the SIS example of Fig. 5.2(a), the condition pattern of first read statement
is {5A}, LB=4, UB=10, IR=5, PS=5 and R=1, the condition pattern of second read statement is
{4A}, LB=4, UB=9, IR=4, PS=4 and R=1. The condition pattern of write statement is {5A},
LB=-1, UB=5, IR=5, PS=5 and R=1, the access pattern of first and second read and the write
statement is {11A}, LB=-1, UB=10, IR=11, PS=11 and R=1. By applying the AND operation
between the condition pattern and the access pattern, the results are: for the first read {5A}, LB=4,
UB=10, IR=5, PS=5 and R=1, for the second read {4A}, LB=4, UB=9, IR=4, PS=4 and R=1 and
for the write {5A}, LB=-1, UB=5, IR=5, PS=5 and R=1, and R=1. Since the index expression
of both read is ``iterator+constant'', the pattern of the first read is shifted left by 5 and the second
by 3, i.e. R1: {5A} LB=-1, UB=5, IR=5, PS=5 and R=1 and R2: {4A}, LB=0, UB=5, IR=4,
PS=4 and R=1. In the ISH example of Fig. 5.2(b), the pattern of first primitive ECH condition
in the first read statement is {1A}, LB=4, UB=6, IR=1, PS=1 and R=1 and the pattern of the
second primitive ECS condition is {2A}, LB=7, UB=10, IR=2, PS=2 and R=1. By applying the
OR operation in the condition expression the result is {1A 2H 2A} with LB=4, UB=10, IR=5,
PS=5 and R=1. The pattern of the read statement is {11A} with LB=-1, UB=11, IR=11, PS=11
and R=1. After applying the AND operation between the combined condition pattern and the read
pattern the result is {1A 2H 2A} with LB=4, UB=10, IR=5, PS=5 and R=1. Since the index
expression is i-5, the pattern is shifted left by 5, i.e. LB=-1 and UB=5. The final pattern of the
second read statement after applying the AND and the shift operation is {1A} with LB=1, UB=3,
IR=1, PS=1 and R=1. In a similar way, the final pattern of the write statement is {1A 1H 3A},

77

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

For (i=0; i<UB(RD); i++)
If C1(i>LB(C1)&&i<UB(C1))||
C2(i>LB(C2)&&i<UB(C2))||
C3(i>LB(C3)&&i<UB(C3))
A[i]=...

EndIf
EndFor

(a)

C1

C2

RD
Iterator(I)

0

C3

LB(C1) LB(C2) UB(C1) UB(C2) LB(C3) UB(C3) LB(RD) … UB(RD)

(b)

C1

C2
Iterator(I)

0

C3

LB(C1) LB(C2)=UB(C1)=LB(C1’) LB(C3) UB(C3) …

C1’

C2’

(c)

RD
Iterator(I)

0 LB(C1) UB(C2) LB(C3) UB(C3) LB(RD) … UB(RD)

C1 C3 C2’ Hole C2||C1’

(d)

Iterator(I)

0 LB(RD) … UB(RD)

RD RD Hole

(e)

Iterator(I)

0 LB(RD)-b … UB(RD)-b

RD RD Hole

(f)

Figure 5.1: Schematic description of translation step: (a) Initial patterns derived from primitive
conditions (C1, C2, C3) and read access pattern (RD), (b) New patterns after applying LB and UB
alignment pattern operations, (c) Combined condition pattern results after applying OR, sequen-
tial non-overlapping and non-sequential non-overlapping pattern operation, (d) Final pattern for
read statement after applying AND pattern operation between the read pattern and the combined
condition pattern and (e) Shifted pattern of the accessed elements due to index expression i+b.

LB=-1, UB=5, IR=5, PS=5 and R=1.

5.2.1.1 Several loop dimensions

When the loop consist of more than one loop dimension, each loop dimension describes part of
the final storage size. The partial storage size result of the outer dimension affect the size described
by the inner dimensions. The exploration of the partial storage size of each dimension cannot be
performed independently due to potential coupling of the dimensions. The coupling is created
due the parametric primitive conditions, where more than one loop iterators are required, and in
condition expressions, which combine primitive conditions of different iterators. However, in some
cases the loop dimensions can be decoupled. Then, each dimension is translated independently,
as described in Section 5.2.1.1.1 and Section 5.2.1.1.2. If decoupling is not possible, the coupled
loop dimensions are explored together, as explained in Section 5.2.1.1.3.

5.2.1.1.1 Independent iterators The loop dimensions are independent when: 1) no condition
expressions exist, 2) condition expressions of ECS andECHare in one loop dimension, 3) condition
expressions of ECS and ECH are coupled through AND operation, 4) PCH of == or < && >

type for only two dimensions, 5) PCH of == or < && > type combined through AND primitive
operation and PCH of == or < && > type combined through AND primitive operation with
6= type for only two dimensions and 6) PCH combined through AND primitive operations with

78

For (I=0; I<11; I++)
If (I<5)
A[I]=...

EndIf
If (4<I<10)
...=A[I-5]

EndIf
If (4<I<9)
...=A[I-4]

EndIf
EndFor

(a)

For (I=0; I<11; I++)
If (I==0) || (1<I<5)
A[I]=...

EndIf
If (I==5) || (7<I<10)
...=A[I-5]

EndIf
If (I==6)
...=A[I-4]

EndIf
EndFor

(b)

Figure 5.2: Examples with one loop dimension: (a) SIS and (b) ISH with ECH

ECS and ECH of different dimensions. Then, each loop dimension is translated independently
into patterns, following the process of one loop dimension case of Section 5.2.1 for ECS and ECH
conditions and the decoupled case of Section 5.2.1.1.2 for PCH conditions.

5.2.1.1.2 Decoupled iterators The decoupling of the loop dimensions is possible in the cases
described in the next paragraphs.

a. Iterator excluded from index expressions: When the iterator of the dimension which is
explored (e.g. I) is coupled to another loop iterator (e.g. K), which is not in any index expression
of the array, the dimension can be eliminated for the intra-signal in-place optimization. The loop
iterator extends the accesses of the elements by one dimension (when K is inner dimension) or
repeats the access scheme (when K is outer dimension), but it does not affect the storage size.
The same elements are accessed, but in different times. The decoupling process is a consistent
replacement of the coupling conditions. The replacement policy derives from the different type of
coupling conditions: i) Parametric condition type: The accesses in the k iterator are described by
the parametric pattern in I iterator. For instance, a condition I==2K is described by the pattern
{1A 1H}, I>6K && I<6K+3 is described by the pattern {1H 2A 3H} and I 6=2K is described by
the pattern {1H 1A}. The I<c*K+d is mapped to i<((c*UBk-1)+d)+1 and I>c*K+d is mapped
to i<((c*LBk+1)+d)-1 and ii) Condition expressions through primitive operations: 1) AND: The
conditions over the K iterator are eliminated without replacement, because for one valid K iterator,
only the valid I iterators (due to AND) will allow the access statement to execute and 2) OR: The
conditions over the K iterator are replaced by the condition which describes all the iterator values
on I iterator, because for one valid K iterator, all the I iterators (due to OR) will allow the access
statement to execute.

b. Iterators included in different index expressions: When the iterator of the dimension
which is explored (e.g. I) is coupled to another loop iterator (e.g. J), decoupling can be achieved
in the cases of: i) Parametric conditions of PCH of 6= type and ii) Condition expressions: 1) PCH
combined through AND operation with ECH or ECS applied in the same dimensions, 2) ECS/ECH

79

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

through OR operation, 3) PCH with ECH or ECS with OR operation and 4) PCH through OR.
The translation step creates the primitive patterns following the translation process in one di-

mension and combines the ECH and ECS conditions to a combined pattern. The PCH conditions
are translated into primitive patterns per coupling iterators and are explored in the next step due to
their coupling effect.

5.2.1.1.3 Coupled iterators The coupling is due to conditions of parametric type of PCS for
SIS. When the loop dimensions are fully coupled, the translation step does not modify the infor-
mation and propagate it to the intra-signal in-place step.

5.3 Step 3: Intra-signal in-place optimization for non-

overlapping case

The intra-signal in-place optimization step computes in a scalable and near-optimal way the storage
size for the target domain described in Section 3.4. The different intra-signal in-place cases depend
on the combinations of the unified template parameters and the translation step cases. Based on
the patterns and application structure information, which is propagated from the previous steps,
the appropriate intra-signal in-place cases are selected and the corresponding solutions are applied.
The next paragraphs describe the non overlapping intra-signal in-place cases and the corresponding
solutions.

5.3.1 One loop dimension

When one dimension exists in the loop structure, the array dimension of the access statements
is also one and the index expression includes the loop iterator. The storage size depends on the
position of the read and write access statements. To compute the final storage requirements, the
patterns of the read access statements are combined through an OR operation. The OR operation
is used, since the final access scheme, thus the storage size, should take into account every read of
the array in the iteration space. An element is accessed when at least one of the read statements is
executed and the corresponding condition expressions are true. The result is the global read pattern,
which describes in a near-optimal and compact way the access scheme. We perform the analysis of
the storage size requirements based on the read patterns, since they provide the life of the variables
for the problem under study. The global read patterns describe the storage requirements: each part
with a PT equal to A has elements that are accessed and, thus, are required to be stored, whereas
the parts with PT equal to H describe zero resource requirements. The repetition factor of the final
pattern describes the times the pattern is applied in the iteration space.

80

RD2

RD1

Iterator(I)

0 LB(RD2)-b …

RD

UB(RD1)-c

(a)

RD2

RD1

Iterator(I)

0 LB(RD2)-b … UB(RD1)-c

H

RD H RD H RD

RD1 RD1 H

RD2 H RD2 H

H H

RD H H

(b)

Figure 5.3: Schematic description of two read patterns RD1 and RD2 and the result of the OR
pattern operation (RD) for I dimension. The intra-signal in-place storage size is the summation of
the black parts of the final RD pattern: (a) for SIS and (b) for ISH with ECH conditions.

5.3.1.1 SIS

This case is valid, when all patterns describe solid iteration spaces. Fig. 5.3(a) schematically il-
lustrates the patterns of two read statements, i.e. RD1 with index expression ``i+c'' and RD2 with
index expression ``i+b'' and their OR combination in the iteration space, RD. The final read pattern
(RD) describes a SIS and the storage size is given by Eq. 5.1. For instance, in Fig. 5.2(a) the OR
pattern operation between the read patterns results to {5A}, LB=-1, UB=5, IR=5, PS=5 and R=1,
which is identical to the write pattern and the final storage size is 5.

Size = IR(RD) (5.1)

5.3.1.2 ISH

This case is valid when at least one pattern describes holes in the iteration space. The schematic
illustration of the ISH for RD1 with index expression ``i+c'' and for RD2 with index expression
``i+b'' is depicted in Fig. 5.3(b). The storage size is given by the regions that are accessed, i.e. the
summation of the PIRs parts of the final RD with PT equal to A (defined as SID in Eq.. 4.6) mul-
tiplied by the corresponding repetition factor, as described in Eq. 5.2. For instance, in Fig. 5.2(b)
the OR operation between the two read patterns propagated by the translation step results to {1A
1H 3A} with LB=-1, UB=5, IR=5, PS=5 and R=1 and the final storage is 5, i.e. 1*1+3*1.

Size =
∑
i=0

NumPatternsSIDi ∗Ri (5.2)

5.3.2 Several loop dimensions

When several loop dimensions exist, the final storage size derives from consistent combination of
the partial storage size result of each dimension through propagation. The intra-signal in-place
propagation case is selected by the type of the patterns of the outer dimension. The corresponding
process is applied to compute the combined storage size. When more than two dimensions exist,
the combined storage size result is used as size of outer dimension in the next combined size
computation. The solutions per case are described in Section 5.3.2.1 and the process for the final
storage size computation in Section 5.3.2.4.

81

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

5.3.2.1 Propagation cases: Independent iterators

When the patterns propagated from the translation step belong to independent loop dimensions,
the intra-signal in place step computes the combined storage size by propagating the partial storage
size of the outer dimension to the inner using Eq. 5.3. We assume that I-J-K is the order of
loop dimensions throughout the paper. The partial storage size per dimension is described by
the propagated patterns. For enumerative conditions, the partial storage size is computed by the
intra-signal in-place step of one loop dimension process, as described in Section 5.3.1. The partial
storage of the parametric condition depended on the propagated case. In the next paragraphs, we
illustrate the instantiation of Eq. 5.3 depending on the type of the propagated patterns.

SizeI,J = SizeI ∗ SizeJ (5.3)

a. SIS: This case is valid when both patterns describe solid iteration spaces through ECS
conditions potentially over both dimensions, i.e. ECS of different iterators coupled by an AND
operation. Fig. 5.4(a) schematically illustrates the RD patterns of two independent iterators I and J
and the combined storage size, i.e. the gray area. The storage size is given by the multiplication of
the number of accesses in the I dimension by the accesses in J dimension (Eq. 5.4). For instance,
in Fig. 5.4(c) the final RD pattern of I is {6A}, LB=-1, UB=6, IR=6, PS=6 and R=1 and the final
RD pattern of J is {3A}, LB=1, UB=5, IR=3, PS=3 and R=1 and the final storage size is 18, i.e.
6*3.

SizeI,J = IR(RDI) ∗ IR(RDJ) (5.4)

b. ISH: This case is valid, when at least one pattern describes ISH:

1. ECH conditions only in one dimension. The combined size is given by Eq. 5.5, when the
ECH are in I dimension. The schematic illustration of the final RD patterns of I and J and
the combined storage size (sum of gray areas) are depicted in Fig. 5.4(b). For instance, in
Fig. 5.4(d) the RD pattern for I iterator is {1A 1H 2A} with LB=1, UB=6, IR=4, PS=4 and
R=1, the RD pattern for J iterator is {5A} with LB=-1, UB=6, IR=5, PS=5 and R=1 and
the final storage is 15, i.e. (1+2)*5.

SizeI,J = SIDI ∗ IR(LJ) (5.5)

2. ECH conditions coupled with AND operator. The storage size is given by Eq. 5.6, when
both I and J have ECH conditions.

SizeI,J = SIDI ∗ SIDJ (5.6)

3. PCH conditions of== or< && > type for only two dimension, i.e. Eq. 5.7, since I iterator

82

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

R
D

I

RDJ

(a)

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

H

R
D

I

RDJ

(b)

For (I=6;I<12;I++)
For (J=0;J<5;J++)
If (J>1)
...=A[I-5][J-2]

EndIf
If (J>2)
...=A[I-5][J-2]

EndIf
EndFor

EndFor

(c)

For (I=6;I<12;I++)
For (J=0;J<5;J++)
If (I==8)||(I>9)
...=A[I-5][J]

EndIf
EndFor

EndFor

(d)

Figure 5.4: Schematic description of the RD patterns for I and J independent dimensions. The
intra-signal in-place storage size is the sum of the gray areas for: (a) for SIS and (b) for ISH and
ECH conditions in I loop dimension and code examples for (c) SIS and (d) ISH with ECH in I loop
iterator

is dominant and, thus, the SizeJ=1.

SizeI,J = SIDI ∗RI (5.7)

4. PCH conditions of == or < && > coupled through an AND primitive operation and PCH
conditions of == or < && > coupled with 6= type through an AND primitive operation
for only two dimensions. The combined size is given by Eq. 5.8, where CP is the combined
pattern of the primitive condition pattern with AND operation.

SizeI,J = SIDCP ∗RCP (5.8)

5. PCH conditions coupled through an AND primitive operation with ECH/ECS of different
dimensions. The size is given by Eq. 5.9, where SizePCH is derived by Eq. 5.7, for== and
< && > type, or by Eq. 5.14, for 6= type. We assume that PCH couples I and J dimensions
and ECS/ECH is in K dimension.

SizeI,J,K = SizePCH ∗ SIDK (5.9)

5.3.2.2 Propagation cases: Decoupled iterators

When the dimensions can be decoupled, the partial storage size of each dimension is independently
computed by applying the 1 loop dimension case or the independent case. The propagation of the
outer dimension to the inner dimension is given by Eq. 5.10, where SizeLJ

is the size of the
complete loop of J iterator. When more than two dimensions exist, the result of the partial size
computation is used as size of outer dimension (i.e. SizeLI

) in the next combination of partial
storage sizes and the number of holes is the total holes in both dimensions of previous propagation,
as explained in Section 5.3.2.4. The instantiation of Eq. 5.10 depends on the type of the iteration

83

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

space described by the patterns, on the type of the conditions (enumerative of parametric) and on
the type of coupling, as described in the next paragraphs.

SizeI,J = SizeI ∗ SizeLJ
+HolesI ∗ SizeJ (5.10)

5.3.2.2.1 SIS: This case describes the combined storage size, when both patterns describe solid
iteration spaces and are combined with OR primitive operator. Fig. 5.5(a) schematically illustrates
the final read patterns of two decoupled iterators I and J and the final storage size (total gray area).
In case the IR of the I dimension is equal to the IR of the RD pattern of the I dimension, the I loop
is dominant, i.e. no holes exist in the outer dimension, thus no additional space is required to be
computed due to the J iterator. In this case, the I iterator includes all the information, since the dark
gray area of J iterator of Fig. 5.5(a) will be completely covered by the gray area of the I dimension.
The storage size is given by the multiplication of the number of accesses in the I dimension by the
size of the J dimension loop (IR(LJ)) in the dominant case (Eq. 5.11). Otherwise, the storage
size has to be increased by the accesses of the RD pattern of J that have not been yet computed.
The latter is given by the number of holes in I dimension, i.e. the difference of the size of loop
and the size of the RD in I dimension, multiplied by the size of the RD pattern in the J dimension.
The corresponding equation is Eq. 5.12. The additional storage size due to the J iterator is the
dark gray area in Fig. 5.5(a). For instance, in Fig. 5.5(e) the final RD pattern of I is {4A}, LB=-1,
UB=6, IR=4, PS=4 and R=1 and the final RD pattern of j is {2A}, LB=1, UB=4, IR=3, PS=2
and R=1 and the final storage size is 28, i.e. 4*6+2*2.

SizeI,J = IR(RDI) ∗ IR(LJ) (5.11)
SizeI,J = IR(RDI) ∗ IR(LJ) + (IR(LI)− IR(RDI)) ∗ IR(RDJ) (5.12)

5.3.2.2.2 ISH
i. ECH coupled with OR primitive operation: This case is valid when ECH conditions exist in
the iterators, which are coupled through OR primitive operations. The schematic illustration of the
RD patterns in the iteration space and the corresponding storage size are depicted in Fig. 5.5(b).
The combined storage size is given by Eq. 5.13, since both dimensions describe iteration spaces
with holes. For instance, in Fig. 5.5(f) the I dimension is not dominant. The RD pattern for I
iterator is {1A 1H 1A} with LB=0, UB=4, IR=3, PS=3 and R=1, the RD pattern for J iterator is
{1A 1H 1A} with LB=0, UB=4, IR=3, PS=3 and R=1 and the final storage is 20, i.e. 2*6+4*2.

SizeI,J = SID(I) ∗ IR(LJ) +HIDI ∗ SID(J) (5.13)

ii. PCH 6= type: The size is given by Eq. 5.14, where the number of accesses in the I
dimension are multiplied by the length of the J dimension and adds the accesses in the J dimension,
when holes exist in the I dimension. The latter is the size of the loop in J dimension minus 1 due

84

LB(RDJ) UB(RDJ)

J 0

LB(RDI)

UB(RDI)

I

R
D

I

RDJ

(a)

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

H

H

(b)

I J

H

R
D

I,
J

H

H

K

(c)
I

H

LB(RDI)

UB(RDI)

LB(RDJ) UB(RDJ)
J 0 RDJ H

(d)

For (I=0;I<6;I++)
For (J=0;J<6;J++)
If (0<I<5)||(1<J<4)
...=A[I][J]
EndIf
EndFor
EndFor

(e)

For (I=0;I<6;I++)
For (J=0;J<6;J++)
If (I==1)||(I==3)||
(J==1)||(J==3)
...=A[I][J]
EndIf

EndFor
EndFor

(f)

For (I=0;I<9;I++)
For (J=0;J<3;J++)
For (K=0;K<3;K++)
If (I6=3J+1)||(I==2K)
...=A[I][J][K]
EndIf
EndFor
EndFor
EndFor

(g)

For (I=0;I<10;I++)
For (J=0;J<5;J++)
If (I==2J+1)||
(J<2)||(J>3)
...=A[I][J]
EndIf

EndFor
EndFor

(h)

Figure 5.5: Schematic description of the final RD patterns for 2 decoupled dimensions. The com-
bined storage size is the sum of the gray areas: (a) SIS, (b) ISH with ECH coupled with OR
primitive operation, (c) ISH with PCH coupling conditions and (d) ISH with PCH and ECH com-
bined through OR primitive operation. Code examples are presented in : (e) SIS, (f) ISH with
ECH, (g) ISH with PCH and (h) ISH with PCH and ECH.

to hole of I dimension.

SizeI,J = SID(I) ∗RI ∗ IR(LJ) +HID(I) ∗RI ∗ (IR(LJ)− 1) (5.14)

iii. PCH coupling of different dimensions through OR primitive operation: The schematic
description of the patterns and the combined storage size is given in Fig. 5.5(c). The storage
described by the PCH1 is the gray area. The size of PCH2 is the black area. The combined
storage is the summation of the gray and black areas. When at least one PCH is of 6= type, it is
considered as dominant. The combined storage size is the size of the PCH 6= multiplied by the
size of the dimension not used in PCH 6= plus the number of holes of pattern 6= that are becoming
accesses in the second PCH (H2A), multiplied by 1, if PCH is == or < && > type (Eq. 5.15),
or by the dimension not used in PCH pattern, minus potential accesses only in J dimension, if PCH
is 6= type (Eq. 5.16). We assume that the I and J dimension are coupled by PCH of 6= type and
the second PCH couples I with K dimension. If both patterns are of == or < && > type, the
size is derived by Eq. 5.17, i.e. the size of PCH1 is multiplied by the size of the dimension not
used in PCH1 plus the number of holes of PCH1 pattern that are becoming accesses in the PCH2

85

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

pattern (H2A) multiplied by the dimension not used in PCH2, minus potential accesses only in
J dimension, and the number of accesses of PCH1 pattern that are also accesses in the PCH2
pattern (A2A) multiplied by the dimension not used in PCH2, minus potential accesses only in
J dimension, minus 1. For instance in Fig 5.5(g), the 6= pattern for I-J iterator is {1A 1H 1A}
with LB=-1, UB=12, IR=12, PS=3 and R=4. The pattern of I-K iterator is {1A 1H} with LB=-1,
UB=6, IR=6, PS=2 and R=3. The size of SizeI,J=8*4+4*3 from Eq. 5.14. The total size is
24*3+1=25. The first term of Eq. 5.15 is 2*3*3+1*3*2=24 and the second term is 1 since one H
has become A in I-K pattern.

SizeI,J,K = SizePCH 6= ∗ IR(LK) +H2A(PCH 6=, PCH) (5.15)
SizeI,J,K = SizePCH 6= ∗ IR(LK) +H2A(PCH6=, PCH) ∗ (IR(LJ)− SIDJ) (5.16)

SizeI,J,K = SizePCH1) ∗ IR(LK) +H2A(PCH1, PCH2) ∗ (IR(LJ)− SIDJ)

+ A2A(PCH1, PCH2)(IR(LJ)− SIDJ − 1) (5.17)

iv. PCH (at least one 6= type) coupling of different dimensions through AND primitive
operation: This case is similar to the previous, but due to AND operation, we subtract the elements
not accessed due to the second pattern. If one pattern is of == or < && > type, it is considered
as dominant, i.e. PCH1. The size is the size of the PCH1 multiplied by the size of the dimension
not used in PCH1 minus the number of accesses of PCH1 that are becoming holes in the PCH2
(A2H) (Eq. 5.18). If both PCH are of 6= type, last term is multiplied by the dimension not used in
PCH pattern (Eq. 5.19). We assume that the I and J dimension are coupled by PCH1 and PCH2
couples I with K dimensions.

SizeI,J,K = SizePCH1 ∗ IR(LK)−A2H(PCH1, PCH2) (5.18)
SizeI,J,K = SizePCH1 ∗ IR(LK)−A2H(PCH1, PCH2) ∗ IR(LJ) (5.19)

v. PCH coupling of same dimensions through OR primitive operation: This case is similar
to the previous cases, but due to same dimension the sizes are not multiplied by a third dimension
and the additional elements are always of size 1. In case where at least one PCH is of 6= type, the
combined size is given by Eq. 5.20. When all PCH are of == or < && > type, the size is given
by the size of PCH1 plus the number of holes that are becoming accesses in PCH2 plus the number
of accesses of PCH1 that are also accesses in PCH2 minus 1, due to the first repetition (Eq. 5.21).

SizeI,J = SizePCH 6= ∗ IR(LK) +H2A(PCH 6=, PCH) (5.20)
SizeI,J = SizePCH1 +H2A(PCH1, PCH2) +A2A(PCH1, PCH2)− 1 (5.21)

vi. PCH coupling with ECH\ECS of same dimensions: When the PCH and ECH conditions
are applied to the same dimensions and are combined with OR primitive operator, the iterator of
the ECH condition type (J dimension) is considered as dominant and the size of ECH is considered
as basis. The combined size is given by the size of ECH in J dimension adding the storage due to the
additional accesses in PCH, i.e. the holes in J dimension multiplied by SIDI,J in PCH (Eq 5.22).

86

The SIDI,J is for: 1)== type: 1, 2) 6= type: IR(LI)−1 and 3)< && > type: given by Eq. 4.6.
In case of AND operation, the iterator of the PCH is dominant and the size is reduced by the holes
created due to J dimension. The combined size is given by Eq. 5.23. The size of PCH is given by
Eq. 5.7, for == and < && > type, and by Eq. 5.14, for 6= type. The schematic illustration of the
RD patterns and the combined storage size are depicted in Fig. 5.5(d). For instance, in Fig. 5.5(h)
the RD pattern for PCH between I and J iterator is {1H 1A} with LB=-1, UB=10, IR=10, PS=2
and R=5, the RD pattern for ECH in J iterator is {2A 2H 1A} with LB=-1, UB=5, IR=5, PS=5
and R=1 and the final storage is 32, i.e. 3*10+2*1.

SizeI,J = SIDJ ∗ IR(LI) +HIDJ ∗ SIDI,J (5.22)
SizeI,J = SizePCH −HIDJ ∗ SIDI,J (5.23)

vii. PCH coupling with ECH/ECS of different dimensions through OR primitive opera-
tion: This case is similar to the coupling of PCH and ECH/ECS with same dimensions. Instead
of the 1 dimension size and the SID, the size of both PCH dimensions and the size of PCH are
respectively used, as shown in Eq. 5.24.

SizeI,J,K = SIDK ∗ IR(LI) ∗ IR(LJ) +HIDK ∗ SizePCH (5.24)

5.3.2.3 Propagation cases: PCS Coupled iterators

The coupled loop dimensions are due to parametric conditions of solid iteration space. The intra-
signal in-place solution for this case is to apply intra-signal in-place methods based on polytope
theory per PCS. In realistic applications, the number of coupled loop dimensions, which cannot
be decoupled after translation step, is small. Hence, polytope theory provides near-optimal partial
storage size results for this case. Then, the PCS partial storage sizes are combined by propagating
the result of the outer dimensions to the inner dimensions. To merge the partial storage size of
PCS with the remaining cases, the active case from Section 5.3.2.2 is selected, as PCS are PCH
without holes. The partial storage size computed by polytope theory is used as SizePCH in the
corresponding equations or as outer dimension size, as explained in Section 5.3.2.4.

5.3.2.4 Computation of the final storage size

When several dimensions exist in the application, many of the intra-signal in-place combinations
may be concurrently valid. To compute the final storage size, we propagate the results from the
outer dimension to the inner dimensions. Initially, the outer dimension, e.g. dimension 0, is com-
bined with the first inner dimension, e.g. dimension 1. Based on the type of the patterns and
the potential coupling, the intra-signal in-place cases are selected from Section 5.3.2.1. The cor-
responding closed form equations are applied to compute the combined storage size. Then, the
next dimension is explored, which either is independent from both previous dimensions or it is
decoupled/coupled to the previous dimensions. The result of the previous combination is used as
the size of the outer dimension, i.e. dimension I in the closed form equations of Section 5.3.2.1.

87

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

For (I=0; I<1024; I++)
For (J=0; J<128; J++)
For (K=0; K<512; K++)
If ((I≥8J)&&(I≤8J+2))||(J==7)||(J==4)||(I==2K+1)
A[I][J][K]=...
EndIf
EndIf
EndFor
EndFor

(a)

J
I

K

(b)

Figure 5.6: Demonstration case: (a) Code and (b) initial part of the iteration space, where each
different color indicate accesses due to one condition.

When information is required from the outer dimension, it is given by the patterns of the combined
dimensions.

5.3.3 Demonstration case study description

This section demonstrates how the proposed methodology is applied to compute the final required
storage size. The application code is depicted in Fig. 5.6(a). The analysis step provides the infor-
mation of three for nested loops in the order I-J-K, five manifest conditions: two PCH conditions,
which couple iterator I and J combined with an && primitive operation, one PCH condition,
which couples the I and K iterator and two ECH conditions on iterator H, combined by the || oper-
ation. The propagated information from the analysis step selects: the independent case for PCH of
< && > type in I and J, the independent case for ECH in one dimension and the decoupled case of
ISH for 6= type. The translation step creates the primitive patterns of the PCH conditions per cou-
ple of dimensions: for condition I≥8J && (I≤8J+2), the LB of loop I is defined by LB'=max(-1,
8*(LBJ+1)-1)=max(-1,-1)=-1, the UB is defined by UB'=min(1024, 8*(UBJ -1)+8=min(1024,
1024)=1024, the PS is 8, IR is 1024, the R is 128 and the PCH1 pattern is {3A 5H}. Fig. 5.6(b)
depicts the first part of the accessed elements of the three dimensional array. The PCH1 access
the light gray elements. The ECH condition of J == 4 creates a ECH2 of {1A} pattern with
LB'=max(-1,7)=3, UB'=min(1024,5)=5, the PS is 1, IR is 1, the R is 1. The ECH condition of
J == 7 creates a ECH1 of {1A} pattern with LB'==max(-1,6)=6, UB'=min(1024,8)=8, the PS
is 1, IR is 1, the R is 1. In Fig. 5.6(b), the ECH1 and ECH2 access the dark gray elements. The
PCH condition I==2K+1 has LB'=max(-1,2*(LBK+1)-1)=max(-1,-1)=-1. The UB is defined
by UB'=min(1024, 2*(UBJ -1)+2=min(1024, 1024)=1024, the PS is 2, the IR is 1024, the R is
512 and the PCH3 pattern is {1H 1A}. The PCH2 access the black elements. During translation
step, the ECH conditions are combined in a pattern by applying non-sequential non-overlapping

88

operation and the result is ECH {1A 2H 1A} pattern with LB'=3, UB'=8, the PS is 5, IR is 5, the
R is 1. In the intra-signal in-place step, the process of computing the final storage size starts from
the outer dimension. The ISH for PCH coupling with ECS/ECH conditions of same dimensions
through || operation is selected. The combined size is given by Eq. 5.22. The combined storage
size is SizeI,J=2*1024+126*3=2,426. The combined patterns of PCH and ECH after || operation
are {3A 1H 1A 2H 1A} with LB'=-1, UB'=8, the PS is 8, IR is 8, the R is 1 and {3A 5H} with
LB'=7 UB'=16, the PS is 8, IR is 1016, the R is 127. Then, we proceed to the next dimension,
where the PCH for coupling of different dimensions through || primitive operations is selected and
the final storage size is given by Eq. 5.17. The first term of Eq. 5.17 is 2,426*512=1,242,112, the
second terms due to the two combined patterns in I and J dimension are given by (2*512/4)*(128-
2)=32,256 and (3*512/4)*(128)=49,152, and the third terms by (1*512/4)*(128-2-1)=16,000
and (1*512/4)*(128-1)=16,256 .The total size is SizeI,J,K=1,355,776.

5.3.4 Results

In this section, the proposed methodology is compared with an enumerative approach (lower
bound) and an approximation approach (upper bound). The enumerative approach uses explicitly
each access in the iteration space to compute the storage size by consistently adding the num-
ber of accesses, taking into account all the read statements. Hence, the enumerative approach
has optimal results. An approximation approach to estimate an upper bound in the storage size
is used when the techniques cannot be applied due to irregularity/non-uniformity of the accesses
in the iteration space. The upper bound is computed using the approximation of non-uniform
access of [160]. The upper bound is given by Size = max(UBx) − min(LBx) + 1, where
LBx = fx(i = LBi, j = LBj, ...), UBx = fx(i = UBi, j = UBj, ...) and fx is index expression
of each access. Whenever the function cannot be calculated due to conditions, the approximation
solidifies the iteration space.

We have implemented a prototyping tool for the proposed methodology, which fully com-
putes the partial storage size for a dimension and manually propagate the partial sizes between
dimensions. We also implemented the enumerative approach and performed experiments for a set
of benchmarks from the Polybench [159], MiBench [63] and the MediaBench [107] to evaluate
both the exploration time and the quality of the results. For each benchmark, we explore different
sizes in the number of accesses in the overall iteration space by increasing the loop bounds by a
factor. The results are depicted in Tables 5.1 and 5.2 for MediaBench, Table 5.3 for PolyBench,
Mibench benchmarks and for the demonstration case study of Chapter 4, which explores a large set
of different pattern operations. From the experimental results, the proposed methodology achieves
optimal results and the exploration time remains stable, as the loop bounds are increased, because
only few parameters are changed, i.e. R, UB and IR, which do not affect the exploration time of
the proposed methodology. The exploration time of enumerative approach is highly coupled with
the number of accesses in the iteration space. The exploration times for the proposed methodology
are quite close to each other for all the benchmarks, which is a very promising indication for the

89

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.1: Comparison results for MediaBench. The '-' mark is used in the cases where Memory
Error produced during simulation.

Algorithm: Array
(init.bounds)

Bound Proposed Methodology Enumerative Appr. Approx.
Increase Storage Expl. Time Storage Expl. Time Storage
Factor Size (ms) Size (ms) Size

Jpeg-
Decode&Quant.:
DCTblock (256)

1 7,680 0.148 7,680 34.667 10,239
3 23,040 0.147 23,040 103.736 30,719
5 38,400 0.149 38,400 162.533 51,199
7 53,760 0.145 53,760 228.764 71,679
9 69,120 0.147 69,120 281.893 92,159
11 84,480 0.145 84,480 350.931 112,639
13 99,840 0.145 99,840 413.799 133,119

Jpeg-
Decode&Quant.:
DCTblock (512)

1 15,360 0.146 15,360 65.987 20,476
2 30,720 0.150 30,720 128.877 40,959
3 46,080 0.147 46,080 212.997 61,439
4 61,440 0.146 61,440 264.078 81,919
5 76,800 0.149 76,800 318.667 102,399
6 92,160 0.149 92,160 389.390 122,879

Epic: image (240)

1 4,257 1.313 4,257 101.116 11,520
2 17,265 1.302 17,265 1,067.983 138,144
3 34,609 1.301 34,609 3,888.289 522,016
4 69,297 1.337 69,297 16,329.751 2,027,040
5 138,673 1.367 138,673 64,824.346 7,986,208
6 277,425 1.318 277,425 249,110.047 31,701,024

Mpeg:
curr_frame
(64x32)

1 34,833 1.801 34,833 852.955 65,537
2 69,649 1.840 69,649 1,703.624 131,073
3 139,281 1.806 139,281 3,317.909 262,145
4 278,545 1.813 278,545 7,167.751 524,289
5 557,073 1.818 557,073 30,241.290 2,097,185

Mpeg:
curr_frame
(128x32)

1 69,649 1.840 69,649 1,703.624 131,073
2 139,281 1.806 139,281 3,317.909 262,145
3 278,545 1.813 278,545 7,167.751 524,289
4 557,073 1.818 557,073 30,241.290 2,097,185

Motion
estimation-full
pel: p1/p2 (32)

1 3,576 0.147 3,576 51.922 12,759
2 11,512 0.146 11,512 232.104 65,991
3 39,672 0.147 39,672 1,399.778 389,031
4 145,144 0.147 145,144 9,093.884 2,589,543
5 552,696 0.146 552,696 66,325.246 18,713,319
6 2,154,232 0.147 - - 141,892,071

Motion
estimation-full
pel: p1/p2 (80)

1 39,672 0.147 39,672 1,399.778 389,031
2 145,144 0.147 145,144 9,093.884 2,589,543
3 552,696 0.146 552,696 66,325.246 18,713,319
4 2,154,232 0.147 - - 141,892,071

Motion
estimation-half
pel: p1/p2 (272)

1 40,800 0.149 40,800 2,181.419 657,152
2 79,200 0.151 79,200 8,034 2,492,160
3 156,000 0.149 156,000 34,129.439 9,701,120
4 309,600 0.149 309,600 133,794.569 38,274,816
5 616,800 0.148 - - 152,045,312

limited complexity of our approach. The cases where the time is increased is whenmore operations
are required, e.g. increased number of patterns which are misaligned (benchmarks demonstration
case study, epic, mpeg). The approximation approach describes an upper bound in the storage size
which leads to high quality loss depending on the number of holes that are considered as accesses.

In Fig. 5.7 we compare the exploration times of the proposed and the enumerative approach,
when the number of accesses is increased. Fig. 5.7 and Fig. 5.7(c) present the exploration times,
when the overall accesses are increased due to increase of the loop bounds by a factor for bench-
mark pgp-outdec and blowfish-decode/encode, respectively. Fig. 5.7(b) and Fig. 5.7(d) present
the exploration times, when the overall accesses are increased due to an increase in the number
of patterns of one iteration of the application by a factor for benchmark pgp-outdec and blowfish-
decode/encode, respectively. From the experimental results, it is verified that the exploration time

90

Table 5.2: Comparison results for MediaBench. The '-' mark is used in the cases where Memory
Error produced during simulation.

Algorithm: Array
(init.bounds)

Bound Proposed Methodology Enumerative Appr. Approx.
Increase Storage Expl. Time Storage Expl. Time Storage
Factor Size (ms) Size (ms) Size

Motion
estimation-half
pel: p1/p2 (48)

1 7,200 0.151 7,200 69.523 19,231
2 12,000 0.153 12,000 193.411 55,071
3 21,600 0.155 21,600 615.794 182,047
4 40,800 0.149 40,800 2,181.419 657,152
5 79,200 0.151 79,200 8,034 2,492,160
6 156,000 0.149 156,000 34,129.439 9,701,120
7 309,600 0.149 309,600 133,794.569 38,274,816
8 616,800 0.148 - - 152,045,312

Motion
estimation-half
pel: p1a (272)

1 27,200 0.157 27,200 2,239.512 657,183
2 52,800 0.154 52,800 8,325.536 2,492,191
3 104,000 0.159 104,000 36,410.136 9,701,151
4 206,400 0.156 206,400 129,134.210 38,274,847
5 411,200 0.165 - - 152,045,343

Motion
estimation-half
pel: p1a (48)

1 4,800 0.155 4,800 93.294 19,231
2 8,000 0.158 8,000 192.457 55,071
3 14,400 0.156 14,400 640.237 182,047
4 27,200 0.157 27,200 2,239.512 657,183
5 52,800 0.154 52,800 8,325.536 2,492,191
6 104,000 0.159 104,000 36,410.136 9,701,151
7 206,400 0.156 206,400 129,134.210 38,274,847
8 411,200 0.165 - - 152,045,343

Pgp-outdec: p
(48)

1 3,072 0.143 3,072 11.911 3,074
3 12,288 0.148 12,288 43.058 12,290
6 196,608 0.149 196,608 683.534 196,610
8 786,432 0.155 786,432 2,732.710 786,434
11 6,291,456 0.146 6,291,456 21,838.798 6,291,458
13 15,165,824 0.153 15,165,824 88,559.484 15,165,826
16 134,217,728 0.150 - - 134,217,730

Pgp-outdec: p
(262,144)

1 4,194,304 0.146 4,194,304 21,838.798 6,291,458
2 8,388,608 0.147 8,388,608 40,522.5 12,582,914
3 16,777,216 0.153 16,777,216 88,559.484 25,165,826
4 33,554,432 0.147 33,554,432 171,213.572 50,331,650
5 67,108,864 0.150 - - 100,663,298

Mesa-light:
frontcolor &
backcolor (10)

1 5 0.147 5 0.131 10
10 50 0.145 50 0.410 10
102 500 0.146 500 3.290 100
103 5 K 0.149 5 K 34.657 1 K
104 50 K 0.147 50 K 375.118 10 K
105 500 K 0.152 500 K 3,492.222 100 K

Mesa-light:
frontcolor &
backcolor (102)

1 50 0.147 50 0.410 102

104 5*103 0.149 5*103 34.657 104

106 5*105 0.152 5*105 3,492.222 106

108 5*107 0.151 5*107 338,464.414 109

of the enumerative approach is highly increased with the loops bounds, whereas the exploration
time of the proposed approach remains stable (around 0.146 ms), as the patterns are not modified.
When the number of patterns is increased, the exploration time of the enumerative approach is
significantly increased, whereas the exploration time of the proposed technique is lower by a mag-
nitude of 2. In realistic applications, the number of patterns in our approach remains quite low, as
it is described by the number of condition and access statements in one iteration of the application.

91

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.3: Comparison results for the PolyBench(*1), MiBench(*2) and the translations demon-
stration case study. The '-' mark is used in the cases where Memory Error produced during simu-
lation.

Algorithm: Array
(init.bounds)

Bound Proposed Methodology Enumerative Appr. Approx.
Increase Storage Expl. Time Storage Expl. Time Storage
Factor Size (ms) Size (ms) Size

Correlation: data
(32) *1

1 0.25 M 0.343 0.25 M 2,886.159 0.25 M
2 1 M 0.340 1 M 11,732.231 1 M
3 4 M 0.337 4 M 48,614.943 4 M
4 16 M 0.347 16 M 188,547.256 16 M
5 64 M 0.333 64 M 780,152.034 64 M
6 256 M 0.345 - - 256 M

Jacobi-1D: A
(500) *1

1 1,004 0.674 1,004 5.428 1,004
2 2,004 0.660 2,004 9.998 2,004
3 4,004 0.676 4,004 21.646 4,004
4 8,004 0.664 8,004 40.701 8,004
5 16,004 0.656 16,004 78.056 16,004
6 32,004 0.658 32,004 159.161 32,004

Blowfish
Decode/Encode:
p (2,048) *2

1 256 0.146 256 6.899 2,040
4 1,024 0.147 1,024 29.753 8,184
7 1,792 0.149 1,792 45.805 14,328
10 2,560 0.148 2,560 66.517 20,472
13 3,328 0.148 3,328 86.228 26,616
16 4,096 0.147 4,096 105.264 32,760
19 4,864 0.149 4,864 120.938 38,904

Blowfish
Decode/Encode:
p (4,096) *2

1 512 0.146 512 15.065 4,088
2 1,024 0.147 1,024 29.753 8,184
3 1,536 0.148 1,536 39.888 12,288
4 2,048 0.148 2,048 51.536 16,376
5 2,560 0.148 2,560 66.517 20,472
6 3,072 0.148 3,072 79.722 24,568
7 3,584 0.149 3,584 90.756 28,664
8 4,096 0.147 4,096 105.264 32,760
9 4,608 0.147 4,608 114.122 36,856
10 5,120 0.146 5,120 132.905 40,952

Translation
Demonstration
case: A (64)

1 32 0.799 32 0.487 507
3 128 0.804 128 1.694 2,043
5 512 0.798 512 6.308 8,187
7 2,048 0.810 2,048 25.776 32,763
9 8,192 0.793 8,192 97.852 131,067
11 32,768 0.796 32,768 395.624 524,283
13 131,072 0.793 131,072 1,629.237 2,097,147

5.4 Step 3: Intra-signal in-place optimization for overlapping

case

This section describes the cases of the intra-signal in-place step, which have been carefully se-
lected to group those instances that resemble each other sufficiently to share the same in-place
size equations, while they still do not lead to an explosion. In the next sections, we provide the
fully analytical parametric templates per case, which provide a scalable solution to near-optimally
compute the minimum required storage size, and illustrate the templates instantiations for different
condition statements.

The minimum required storage size for the array depends on the relative position of the write
and read access statements, which defines the lifetime of the array elements. The minimum storage
size is the maximum of the number of elements that have been written, but not yet read, for the
instances of write and read access statements in all values of the loop iterator, i.e. the iteration
range (IR). As the methodology aims at computing the near-optimal case, in one iteration, we

92

0

50

100

150

200

1 3 5 7 9 11 13 15 17
Ex

p
lo

ra
ti

o
n

 t
im

e
 (

s)

Bound Factor

Proposed Methodology

0.146*10-3

(a)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ex
p

lo
ra

ti
o

n
 t

im
e

 (
m

s)

Pattern Factor

Enumerative Approach

1.271

(b)

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
m

s)

Bound Factor

0.146

(c)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
m

s)

Pattern Factor

0.89

(d)

Figure 5.7: Exploration time comparison, when the number of accesses is increased due to
an increase by: i) a factor over the loop bounds for pgp-outdec benchmark (a) and blowfish-
decode/encode (c) and ii) a factor over the number of patterns in the application kernel for pgp-
outdec benchmark (b) and blowfish-decode/encode (d).

first read the array element to free a memory position and then write the array element, whenever
this is possible, i.e. the array element that is read is not the array element written in this iteration.
To avoid the enumeration of the write and read instances in the iteration space, we use the relative
position of the write and the read access statements, which defines the exploration window of the
written, but not yet read array elements. The relative position is given from the DiffIterator.

5.4.1 Intra-signal in-place cases

We define the intra-signal in-place cases based on the loop structure, the size of the exploration
window and the condition statements. The different cases in our carefully organized classifica-
tion, which covers all the possible cases in the target domain, are depicted in Fig 5.8. The first
split is between the one loop dimension and several loop dimensions. The one loop dimension
case is divided into the dominant segment case, i.e. an accessed part of the iteration space is large
enough (larger than the index difference) and thus defines the overall required size, and the non-
dominant segment, i.e. all accessed parts of the iteration space are small and the size cannot be
found by exploring only one part. In the several loop dimensions the computation is performed
from the outer to the inner dimensions, by computing the partial outer size due to the outer in-
dex difference and adding the elements required to be stored due to the inner index difference.
Hence, the split is between the cases of dominant segment in outer dimension and non-dominant
segment in outer dimension. In the first case, the outer dimension has a large segment, which is
solid, whereas in the second case, the sizes of the segments are too small to cover the index dif-

93

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Overlapping Intra signal in-place Cases

One Loop Dimension (Dim) (5.4.3) Several Loop Dims (5.4.4)

Dominant Segment (DS)
(5.4.3.1)

DS in Outer Dim (5.4.5) NDS in Outer Dim (5.4.6)

Non-Dominant Segment (NDS)
(5.4.3.2)

D Cond.
Stat/s

(5.4.5.2.1)

ND Cond.
Stat/s

(5.4.5.2.2)

Dominant (D) Outer Dim
(5.4.5.1)

Non-Dominant (ND)
Outer Dim (5.4.5.2)

D Cond.
Stat/s

(5.4.6.2.1)

ND Cond.
Stat/s

(5.4.6.2.2)

D Outer Dim
(5.4.6.1)

ND Outer Dim
(5.4.6.2)

D Cond.
Stat/s

(5.4.6.1.1)

ND Cond.
Stat/s

(5.4.6.1.2)

D Cond.
Stat/s

(5.4.5.1.1)

ND Cond.
Stat/s

(5.4.5.1.2)

Figure 5.8: The overlapping intra-signal in-place cases.

ference of the outer dimension. The dominant segment case is further split into dominant outer
dimension and the non-dominant outer dimension. The aforementioned split is essential, because
in the dominant outer dimension case, the iteration after the exploration window is A, as the index
difference is smaller than the dominant segment size. Because of the A in the I dimension, the
J pattern is accessed. Hence, computing the additional written elements in the I iteration gives
the maximum additional storage size that may exist. The condition statements and the J pattern
defines the way to compute the additional written elements. However, some condition statements
are dominant in the sense that they affect the additional elements, as they prohibit the A in the
inner dimension, if no A exist in the outer dimension, as explained in Section 5.4.2. For instance,
a condition I>5&&I<10&&J>2&&J<8, requires an A in the I dimension, i.e. an iterator above
5 and below 10, in order to access the 5 elements described in J dimension. Hence, a further split
exists between the Dominant Condition Statements and the Non-Dominant Condition Statements.
In the non-dominant outer dimension case, the iteration after the exploration window is H, be-
cause the size of the dominant segment is equal to the index difference. Hence, the conditions and
the J pattern have to be explored to define the additional written and not-yet read elements due
to the inner index difference. The split between the Dominant Condition Statements and the Non-
Dominant Condition Statements also exists, as it simplifies the exploration process. The Dominant
Condition Statements do not allow additional elements in the inner dimension and, thus no further
exploration is required. The Non-Dominant Condition Statements require exploration to define
the additional elements. Similar splits exist in the non-dominant segment in the outer dimension
case.

5.4.2 Condition Statements

The set of all the condition statements, that may exist in the application domain, are described by
the leaves and the combinations of the leaves in Fig. 5.9. The splits are refined based on the loop
structure and the condition statements. The first split is between one and several loop dimensions.
The one loop dimension may have one condition or several conditions in condition expressions.
Based on the primitive condition the one condition is enumerative (due to one dimension) and it

94

Condition Statements

Condition
types

Condition
Dimensions

One condition Condition expressions

Enumerative Parametric Terms Primitive
Operation

Same
Types

Different
Types

Same
Dimensions

Different
Dimensions

AND OR
ECS ECH PCS PCH

One Loop Dimension Several Loop Dimensions

One
condition

Condition
expressions

ECS ECH AND OR

Figure 5.9: The cases for the condition statements of the target domain are derived by the leaves
and their combinations.

can be ECS and/or ECH. The condition expression combines the conditions with AND and/or OR
primitive operations. The several loop dimensions are refined to one condition and condition ex-
pressions. Due to the existence of several dimensions, both enumerative and parametric conditions
may exist in the application. The parametric ones are PCS and/or PCH. The condition expressions
are split into the terms and the primitive operation. The terms are refined into the condition types
and the condition dimensions. The condition types can be of same type or of different type. The
same split applies to condition dimensions.

We cluster the aforementioned condition cases into the six representative condition cases de-
picted in Table 5.4, which are used to illustrate the proposed methodology through the paper. We
focus on ECS, ECH and PCH conditions, which are considered as representative. The ECH and
PCH describe iteration spaces with holes, which is crucial for the target domain. The ECS and
the PCS both describe solid spaces and thus are similar in nature. We present the ECS conditions
in this paper. The PCS can be computed in a similar way to ECS, since the worst case size in the
PCS is the ECS described by the loop bounds. The process and an illustrative example is given
in Section 5.4.8. In Table 5.4 the condition cases are: i) It describes the primitive enumerative
conditions ECS, ECH and the combination of ECS and/or ECH with AND primitive operation for
same dimensions. ii) This case describes the primitive parametric conditions PCH of ==, which
is representative for the PCH of <&&> type, as only the SID is increased. The case ii is repre-
sentative for the cases: 1) PCH of== type combined with OR for same dimensions and same PS,
2) PCH of == type combined with AND with PCH, ECH, ECS for same dimensions, 3) PCH of
at least one == type combined with AND for different dimensions. In these cases, the result of
the operation is a pruned/modified PCH of== type, which determines the size. iii) The condition
case iii describes the enumerative conditions ECS, ECHwith OR primitive operation with the PCH
of == type for same dimensions. iv) It describes the primitive parametric conditions PCH of ==

combined with OR for same dimensions and different PS. The condition statements i, ii, iii and iv
belong to the dominant condition statements case of Fig. 5.8, because they do not allow accesses
in the inner dimension, if no A exist in the outer dimension. For instance, the condition statement
i≥5&&j>8, does not allow accesses in J pattern to occur, when the I dimension has holes, i.e. the
iterator is lower than 5. v) The condition case v describes the combination of ECS and/or ECH
with OR primitive operation. vi) The condition case vi describes the primitive parametric condi-

95

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.4: Representative condition cases.
Cond. cases Representative description
i ECS,ECH (AND)
ii PCH of == type
iii ECS,ECH (OR) PCH of == type same dimensions
iv PCH of == type (OR) for same dimensions, different PS
v ECH/ECS (OR)
vi PCH of 6= type

tions PCH of 6= type and it is representative for the cases: 1) PCH of 6= type combined with AND
for same dimensions, 2) At least one PCH of 6= type and PCH, ECH, ECS combined with OR for
same dimensions, 3) PCH of 6= type and ECH/ECS combined with AND for same dimensions.
The result of the operation leads to a PCH of 6= type, which defines the storage size. The condi-
tion statements v and vi belong to the non-dominant condition statements case of Fig. 5.8, because
accesses may exist in the inner dimension, even if a H exist in the outer dimension. For instance,
the condition statement i>5||j>8, does not prohibit accesses in J pattern, when the I dimension
has holes. The solution for the combination of conditions in different dimensions is derived by
combining the solutions of the representative cases, as illustrated Section 5.4.7.

5.4.3 One loop dimension

The one loop dimension cases are split into the Dominant Segment and the Non-Dominant Seg-
ment cases. The dominant segment case is valid when the exploration window, i.e. the distance
between the WR and RD index expressions, is smaller than or equal to the size of the SIS or the
maximum segment with accesses in ISH: DiffI ≤ ID(I))||DiffI ≤ max(

∑UBI
i=LBI

SID(i)),
where ID is the iteration domain, i.e. the UB-LB-1 for SIS. The analysis of only the dominant
segment is enough to define the minimum storage size, as a single rectangular in the iteration space
is sufficient to describe the lifetime of the elements. The non-dominant segment is defined when
the exploration window is larger than the maximum segment size. In this case, the storage size is
derived from exploration of the segments inside the exploration window.

5.4.3.1 Dominant Segment

The storage size is defined by the size of the exploration window, since the dominant SID has only
A, i.e. Eq. 5.25.

SizeI = DiffI (5.25)

The dominant segment case for SIS is schematically depicted in Fig. 5.10(a). The gray area
in WRI describes both the iterations where the elements are written and the written elements,
since the WR index expression is I. The dark gray area in RDI describes the iterations where the
elements are read. The black line shows the dominant segment. One instance of the storage size
in a specific iteration is depicted in the WRI of Fig. 5.10(a). The size is given by the cells between
the element which is written in this iteration (black cell) and the element which is read in the next

96

LB(WRI)

UB(WRI)

I

0

W
R

I

LB(RDI)

UB(RDI) I

0

R
D

I

(a)

LB(WRI)

UB(WRI) I

0

W
R

I
H

LB(RDI)

I

0

R
D

I
H

UB(RDI)

(b)

LB(WRI)

UB(WRI) I

0

W
R

I
H

H

LB(RDI)

I

0

R
D

I
H

UB(RDI)

H

(c)

For (I=0;I<11;I++)
If (I<6)
B[I]=...
If (4<I<11)
...=B[I-5]

(d)

For (I=0;I<10;I++)
If (I<7)||(I>7)
B[I]=...
For (I=5;I<15;I++)
If (I<12)||(I>12)
...=B[I-5]

(e)

For (I=0;I<11;I++)
If (I==0)||(2<I<6)||(I==7)
B[I]=...
If (I==5)||(7<I<11)||(I==12)
...=B[I-5]

(f)

Figure 5.10: Iteration spaces of WR (gray cells in WRI) and RD (dark gray cells in RDI) for I
dimension. The 0 to I indicates the direction of increasing the iterator. For one iteration instance,
the WRI black cell is the written element and the WRI white cell is the read element in next
RD iteration (white cell in RDI). The black line shows the dominant segment/pattern section. The
examples are: (a) Dominant segment & SIS, (b) Dominant Segment & ISH and (c) Non-Dominant
segment & ISH. The application codes are (d), (e) and (f), respectively.

iteration (white cell). The white cell in RDI shows the next read iteration. In Fig. 5.10(a) the
storage instance is given for the 6th iteration. The element B[5] is written, the element B[1] is
read in the next iteration and maximum 5 elements are required to be stored. The corresponding
code is depicted in Fig. 5.10(d). The RD pattern which describes the read iterations is {6A},
LB=4, UB=11, IR=6, PS=6 and R=1. The RD pattern, which describes the elements, is derived
by shifting left 5 positions, due to the -5 of the RD index expression. The result is {6A}, LB=-1,
UB=6, IR=6, PS=6 and R=1, which is identical to the WR pattern, as the application writes only
the elements that are read. The final storage size is 5. The dominant segment case for ISH is
schematically depicted in Fig. 5.10(b). The instance is given in the 6th iteration, where the B[5] is
written (black cell in WRI) and the B[1] (white cell in WRI) is read in the next iteration (white cell
in RDI). The corresponding code is in Fig. 5.10(e). The RD pattern which describes the elements
is {7A 1H 2A}, LB=-1, UB=10, IR=10, PS=10 and R=1. The index difference is 5 and thus, the
storage size is 5.

5.4.3.2 Non-dominant Segment

This case is valid when the maximum segment has smaller size than the exploration window. As
no dominant segment exists, the storage size is given by the pattern section with the maximum
number of elements that are accessed in the exploration window. The exploration for the section

97

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

ALGORITHM 8: Selection of pattern section.
max=0; Part=0; Start=0
for (k=LBI+1; k< UBI-DiffI; k++) do

Size=0
if (k==Start+ID(part)) then

Start+=ID(part)
Offset=0

else Offset++
Length=0
while (Length+(ID(Part)-Offset) <= DiffI) do

if (PT(Part)==A) then Size+=SID(Part)
Length+=ID(Part)-Offset

Rem=DiffI-Length+(ID(Part)-Offset)
if (PT(Part)==A) then Size+=Rem
if (Size>max) then max=Size

is scalable, as it is performed only in the pattern and in sections of size DiffI. Per section, the
SIDs are added. The first pattern section with the maximum number of A is used to define the
storage size. The storage size is computed by the maximum sum of SIDs in the pattern section,
i.e. MaxAInIndex. The size is described by Eq. 5.26 and the process is described in Alg. 8.
The schematic illustration of the non-dominant segment case is depicted in Fig. 5.10(c). The
application code is in Fig. 5.10(f). The read pattern is {1A 2H 3A 1H 1A} with LB=-1, UB=8,
IR=8, PS=8 and R=1. The index difference is 5, the 1st SID is 1, the 2nd SID is 3 and the 3rd
SID is 1. The size is 4.

For(k = LBI + 1; k < UBI −DiffI; k ++){

SizeI,curr =
DiffI∑
l=k

SIDI(l)

if (SizeI < SizeI,curr) : SizeI = SizeI,curr}

(5.26)

5.4.4 Extension to Several loop dimensions

When several loop dimensions exist, the intra-signal in-place is given by following the loop order-
ing and computing the partial storage size of the outer dimension and propagate the result to the
inner dimensions to potentially add extra storage size. We assume that I-J-K is the order of loop
dimensions throughout the description of the different cases.

In the two dimensions, the storage size is given by the partial storage size of outer dimen-
sion PSizeI,J created by the I index difference and taking into account the conditions in I and J
dimension and the additional size ASizeJ(J) due to J index difference, taking into account the
conditions in J. The PSizeI,J is the elements that are written in the outer dimension, WritesI,
multiplied by the size of the inner dimension, SizeJ. The WritesI for the two dimensions case
are computed using the equations of one loop dimension in Section 5.4.3. The size of the in-
ner dimension is depends on the conditions and the operations that combine the conditions. The
ASizeJ(J) is the maximum between the elements that have been additionally written and the el-
ements that have not yet been read due to the J index difference. The additional written elements
are defined by the writes in the next WR iteration of I dimension of the exploration window. The
additional not yet read elements are defined by the elements stored, but not yet read, before the

98

RD exploration window, i.e. the last WR iteration of the I dimension of the exploration window.
The general equation is Eq. 5.27. In one loop dimension case, Eq. 5.27 is simplified intoWritesI,
which describes the accesses in the outer dimension, since no inner dimension exist, i.e. SizeJ=1
and ASizeJ(J)=0. For more than two dimensions, the Eq. 5.27 is refined and iteratively applied,
as described in Eq. 5.28 for three dimensions. Initially, the storage size is computed for the two
outer dimensions I and J, as described in the next sections. The result is used in the position of
the SizeI,J for the computation of the size of the next dimension. The additional size is given
by the additional elements due to the K index difference and depends on the type of operations
which combine the conditions. Due to page limitation, we focus on the two dimensions cases for
all the intra-signal in-place cases and the condition statement cases of Table 5.4. We illustrate the
extension to more dimensions and provide representative examples in Section 5.4.7.

SizeI,J = PSizeI,J +ASizeJ (J)

= WritesI ∗ SizeJ +max(WritesJ, ReadsJ)
(5.27)

SizeI,J,K = SizeI,J ∗ Sizek +
K∑

k=J

ASizek(k) (5.28)

5.4.5 Dominant Segment in Outer Dimension

This case is valid when the size of the SIS or the maximum segment of ISH of the outer dimension
is larger than or equal to the index difference of the outer iteration. Due to the dominant segment,
the exploration window has only A and the writes in I are given by index difference, as described
in Eq. 5.25. The size, the additional writes and reads of J dimension depend on the dominant
segment size, the index difference, the type of operations, as explained in the next paragraphs.

5.4.5.1 Dominant Outer Dimension

This case is valid when the dominant segment has larger size than the index difference. Hence, the
next WR iteration after the exploration window is always A and the J pattern is always accessed.
The additional writes will always cover or be equal to the not yet read elements. Hence, Eq. 5.27
is simplified to Eq. 5.29. In the next paragraphs, we illustrate the instantiation of Eq. 5.29 on the
different condition cases of Table 5.4.

SizeI,J = WritesI ∗ SizeJ +WritesJ (5.29)

5.4.5.1.1 Dominant Condition Statements
Cond. Case i: The size of the J dimension is given by the summation of A in the J pattern due

to the AND operation. The additional writes are the SIDs of the J pattern inside the exploration
window of the J dimension. When the index difference is larger than the UB(J)WR, the accumu-

99

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)

I

J 0 WRJ
H

W

R
I

UB(RDJ)

LB(RDI)

LB(RDJ)

J 0 RDJ

H

R
D

I

UB(RDI)

I

H H

(a)

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)

J 0

W
R

I

WRJ

I

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI)

J
0

R
D

I

RDJ

I

(b)

W
R

I

LB(WRI,J)

UB(WRI,J)
I

0

H

J

I

R
D

I

LB(RDI,J)

UB(RDI,J)

0 J

H

(c)

 WRJ

W
R

I

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI) I

J 0

H

H

 RDJ

R
D

I

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI)

I

J 0

H

H

H H H H

(d)

For (I=0;I<15;I++)
For (J=0;J<8;J++)
If (I<7)||(7<I<10) && (J<4)||(4<J<6)
B[I][J]=...
If (4<I<12)||(12<I<15) && (1<J<6)||(6<J<8)
...=B[I-5][J-2]

(e)

For (I=0;I<10;I++)
For (J=0;J<5;J++)
If (I<5) && (J<3)
B[I][J]=...
If (2<I<8) && (1<J)
...=B[I-3][J-2]

(f)

For (I=0;I<15;I++)
For (J=0;J<3;J++)
If (I>6J)&&(I>6(J+1))&&(J<2)
B[I][J]=...
If (J>0)&&(I>6J-3)&&(I>6(J+1)-3)
...=B[I-3][J-1]

(g)

For (I=0;I<8;I++)
For (J=0;J<5;J++)
If (0<I<5)||(I==6)||(J==0)||(1<J<4)
B[I][J]=...

For (I=2;I<10;I++)
For (J=2;J<8;J++)
If (3<I<8)||(I==9)&&(J==3)||(4<J<7)
...=B[I-3][J-3]

(h)

Figure 5.11: Iteration spaces for I and J dimension for the Dominant Segment in Outer Dimension
& Dominant Outer Dimension for: (a) ECH/ECS combined with AND for ISH, (b) ECH/ECS
combined with AND for SIS, (c) PCH of < && > type and (d) ECH/ECS combined with OR.
The corresponding application codes are in (e), (f), (h) and (g), respectively.

lation reaches the upper bound of the pattern. The result of the instantiation of Eq. 5.29 is given in
Eq. 5.30. Fig. 5.11(a) schematically illustrates the WR and the RD patterns of two iterators I and
J, where J describes ISH. The dominant segment is marked by the black line. The code is depicted
in Fig. 5.11(e). The RD pattern of I is {7A 1H 2A}, LB=-1, UB=10, IR=10, PS=10 and R=1 and
the RD pattern of J is {4A 1H 1A}, LB=-1, UB=6, IR=6, PS=6 and R=1. The index difference
is 5 in I dimension and 2 in J dimension. The final storage size is 27, i.e. 5*(4+1)+2. When
the J dimension is SIS, the Eq. 5.30 can be simplified to the Eq. 5.31 by replacing the sums with
the ID(J). Fig. 5.11(b) gives an example of SIS. One instance of the size is the cells between the
black cell (element that is written) and the white cell (element that is read) in WRI. The dominant
segment is marked by the black line. The code is depicted in Fig. 5.11(f). The RD pattern of I
is {5A}, LB=-1, UB=5, IR=5, PS=5 and R=1 and the RD pattern of J is {3A}, LB=-1, UB=3,
IR=3, PS=3 and R=1. The index difference is 3 in I dimension and 2 in J dimension. The storage
size is 11, i.e. 3*3+min(2,3).

100

SizeI,J = DiffI ∗
UBJ∑

k=LBJ

SIDJ(k) +
min(DiffJ,UBJ)∑

k=LBJ

SIDJ(k) (5.30)

SizeI,J = DiffI ∗ ID(J) +min(DiffJ, ID(J)) (5.31)

Cond. Case ii: The size of the J dimension is 1. The additional elements are computed based
on casePCH==,A,I−J in Table 5.5. The DiffI

PS(PCH)
shows the repetition of the PCH in the outer index

difference. When the inner index difference is larger than DiffI
PS(PCH)

, an additional element requires
to be stored. The storage size is given by Eq. 5.32. In the case of different dimensions with AND,
an additional element is required to be stored when at least one of the inner index differences is
larger than DiffI

PS(PCH)
and the PCH is the combined pattern. Fig. 5.11(c) illustrates the WR and the

RD patterns of PCH< && > type and the corresponding code is in Fig. 5.11(g). The RD pattern
of I is {1H 5A}, LB=-1, UB=12, IR=12, PS=6 and R=2. The dominant segment is marked by
the black line. The index difference is 3 for I dimension and 1 for J dimension. The final storage
size is 4, i.e. 3*1+1.

SizeI,J = DiffI + casePCH==,A,I−J (5.32)

Cond. Case iii: The size derives from combination of the condition case i and case ii. Case i
computes the size due to the ECH condition. The result of Eq. 5.30 is increased by the elements
accessed due to the PCH, i.e. the A of the PCH in the H of the ECH. The A of PCH in the A of
ECH have been already computed by equation of case i. As the PCH has a dominant segment in
the outer dimension, we find the holes that exist in the ECH, i.e.MaxHInLenJ , for length equal
to L = DiffI

PS(PCH)
+ 1. The number of holes are multiplied by the SID of the PCH pattern up to

DiffI. We also add the casePCH==,A,I−J . The result is Eq. 5.33.

SizeI,J = DiffI ∗
UBJ∑

k=LBJ

SIDJ(k) +
min(DiffJ,UBJ)∑

k=LBJ

SIDJ(k)

+MaxHInLenJ ∗
DiffI∑
k=LBI

SIDPCH(k) + casePCH==,A,I−J

(5.33)

Cond. Case iv: The size derives from combination of the condition case ii for two PCH. The
size of the larger PCH pattern is given by Eq. 5.32. The result is increased by the written elements
of the smaller PCH due to the J index difference, which are the elements of the larger pattern that
are also accessed in the second pattern, i.e. Access to Access (A2A). For the A2A elements in the
dominant segment, we check the RD iteration in the Combined Pattern (CP). If the RD iteration
is H, an extra element is required to be stored due to the A in the second PCH. If the RD iteration
is A, an extra element is required to be stored only when the J index difference is larger than one.
The last term exists when the repetition factor of the CP is larger than one. The result is Eq. 5.34.

101

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.5: Computation of the cases in intra-signal in-place equations.
Conditions Case Value

casePCH==,A,I−J
DiffI

PS(PCH)
≥ DiffJ 0

DiffI
PS(PCH)

< DiffJ 1
casePCH==,OR

(RD(CP) == H) || 1
(RD(CP) == A &&DiffJ > 1)

caseWR
DiffJ ≤ LB(J)WR + 1 0

DiffJ > LB(J)WR + 1 && MaxALen(DiffJ-LB(J)WR-1)DiffJ < UB(J)WR
DiffJ ≥ UB(J)WR

∑UBI
k=LBI

SIDJ(k)

caseRD,A
UB(J)RD ≤ IR(J) 0

LB(J)RD + 1 < IR(J) && MaxAPos(IR(J)-LB(J)RD-1)UB(J)RD > IR(J)

LB(J)RD + 1 ≥ IR(J)
∑UBI

k=LBI
SIDJ(k)

caseRD,H
UB(J)RD ≤ UB(J)WR 0

LB(J)RD + 1 < UB(J)WR && MaxAPos(UB(J)WR-LB(J)RD-1)UB(J)RD > UB(J)WR
LB(J)RD + 1 ≥ UB(J)WR

∑UBI
k=LBI

SIDJ(k)

casePCH6=,H
DiffJ ≤ IR(J)− 1 0
DiffJ > IR(J)− 1 -1

SizeI,J = DiffI + casePCH==,A,I−J +
A2A∑

k=LBCP

casePCH==,OR (5.34)

5.4.5.1.2 Non-Dominant Condition Statements

Cond. Case v: The size of the J dimension is the J values, i.e. IR(J), due to the OR primitive
operation type. In contrast to case i, whether J dimension describes SIS or ISH does not affect the
J size. The additional stored elements are defined by J index difference and IR(J), because the next
WR iteration after the exploration window is A and the complete J dimension is accessed due to
the OR operation. The size is given by Eq. 5.35. An example is depicted in Fig. 5.11(d) and the
code in Fig. 5.11(h). The RD pattern of I for the elements is {1H 4A 1H 1A}, LB=-1, UB=7,
IR=7, PS=7 and R=1 and the RD pattern of J is {1A 1H 2A 1H}, LB=-1, UB=5, IR=5, PS=5
and R=1. The index difference is 3 in I dimension and 3 in J dimension. The dominant segment
is described by the black line. The final storage size is 18, i.e. 3*5+min(3,5).

SizeI,J = DiffI ∗ IR(J) +min(DiffJ, IR(J)) (5.35)

Cond. Case vi: The size of the J dimension is IR(J) due to the 6= type of condition. The
size is given by Eq. 5.36. The equation is same to Eq. 5.35, since in both cases the additional
writes are given by the J index difference, because of the A in the next WR iteration (Dominant
Outer Dimension case). However, we consider the 6= type as a different case, because when the
outer dimension is not dominant, the additional elements are computed by the conditions type, as
depicted in Section 5.4.5.2.2. In the non-dominant segment case in Section 5.4.6.1.2, the type of

102

Table 5.6: Dominant Segment in Outer Dimension, Non-Dominant Outer Dimension case &Dom-
inant Condition Statements.

Case Equation for storage size
i DiffI ∗

∑UBJ
k=LBJ

SIDJ(k)

ii DiffI

iii DiffI ∗
UBJ∑

k=LBJ

SIDJ(k) +MaxHInLenJ ∗
DiffI∑
k=LBI

SIDPCH(k)

iv DiffI +
∑A2A

k=LBCP
casePCH==,OR

the condition also affects the size of J, i.e. IR(J) for an A in the I dimension and IR(J)-1 for a H
in the I dimension. In the case of PCH of 6= type and ECH/ECS combined with AND for same
dimensions, the size of J is the sum of SIDs in the J pattern and the additional elements are the
sum of SIDs in J pattern up to J index difference, as the AND operation prunes accesses in I but
not in J dimension.

SizeI,J = DiffI ∗ IR(J) +min(DiffJ, IR(J)) (5.36)

5.4.5.2 Non-Dominant Outer Dimension

In this case, the dominant segment has size equal to the exploration window of the outer dimension.
The next WR iteration after the exploration window is always H. Further exploration is required
to define the additional written and not yet read elements due to the J index difference. The size
is given by Eq. 5.27. The solutions for the partial outer storage size PSizeI,J are the same with
Section 5.4.5.1. However, the additional sizeASizeJ(J) depends on the position of the dominant
segment, the type of conditions and primitive operations, as explained in the next sections.

5.4.5.2.1 Dominant Condition Statements As the next WR iteration in I dimension is always
H, no access is allowed in the J dimension, due to the dominant conditions. Hence, the terms that
describe the additional WR elements in Section 5.4.5.1 are pruned and the results are depicted
in Table 5.6. For instance, the term

∑min(DiffJ,UBJ)
k=LBJ

SIDJ(k) of Eq. 5.30 is pruned in case i of
Table 5.6, since no additional elements are accessed in the J dimension. The other cases are derived
in a similar way.

5.4.5.2.2 Non-dominant Condition Statements The next WR iteration in I has H and the
conditions are non-dominant, additional elements exist due to the J index difference.

Cond. Case v: The position of the dominant segment defines if not yet read elements exist
before the RD dominant segment, i.e. in the last I iteration of the WR dominant segment.

a. Dominant segment is in the 1st iteration. The first RD is just executed after the I index
difference, so not yet read elements do not exist. Hence, Eq. 5.27 is simplified to Eq. 5.29, which
is instantiated to Eq. 5.37, where caseWR describes the additional written elements due to the
J dimension, i.e. WritesJ. The computation of caseWR is described in Table 5.5. If the J index
difference is lower than the first WR element, i.e. LB(J)WR+1 (row 1 in caseWR of Table 5.5), no

103

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

additional elements have been writen. If the index difference is larger than the last stored element,
i.e. UB(J)WR (row 3 in caseWR of Table 5.5), all the SIDs in the J pattern have been written.
Otherwise the J index difference resides between the lower and the upper bound (row 2 in caseWR

of Table 5.5). Then, the additional written elements are given by the summation of SIDs in the J
pattern for length equal to theDiffJ−LB(J)WR−1. An example is depicted in Fig. 5.12(a). Due
to space limitations, we do not present the codes in the rest of the paper, as they can be derived
from the figures. The RD pattern of I for the elements is {4A 2H}, LB=-1, UB=6, IR=6, PS=6
and R=1, the RD pattern of J is {1A 1H 2A}, LB=-1, UB=4, IR=4, PS=4 and R=1. The index
difference is 4 in I dimension and 2 in J dimension. The size is 21, i.e. 4*5+1, as 2>0&&2<4
and 1 A exists in J pattern for length equal to 2.

SizeI,J = DiffI ∗ IR(J) + caseWR (5.37)

b. Dominant segment is not in the 1st iteration. In this case, RDs exist before the RD dom-
inant segment, so not yet read elements exist. Due to the dominant segment in outer dimension
case, the last WR iteration in I, before the RD dominant segment, is always A. Eq. 5.27 computes
the size, which is instantiated into Eq. 5.38. Eq. 5.37 derives from Eq. 5.38 by simplifying the
max(caseWR, caseRD,A) into caseWR, as no yet reads exist. The caseWR gives the additional writ-
ten elements in J dimension and it is computed by Table 5.5. The caseRD,A describes the additional
not yet read elements in J dimension and it is computed by Table 5.5. If the last read element is
lower than or equal to the IR(J) (row 1 in caseRD,A of Table 5.5), all elements of J pattern have
been read. If the first read element is lower than the IR(J) and the last read element is larger than
the IR(J) (row 2 in caseRD,A of Table 5.5), the not yet read elements are given by the summation of
SIDs in J pattern starting at the position IR(J)−LB(J)RD− 1. Otherwise the first read element
is larger than the IR(J) (row 3 in caseRD,A of Table 5.5) and the not yet read elements are given
by the summation of the SIDs in the complete J pattern. An example is depicted in Fig. 5.12(b).
The RD pattern of I for the elements is {2H 4A 2H}, LB=-1, UB=8, IR=8, PS=8 and R=1, the
RD pattern of J is {1A 1H 2A}, LB=-1, UB=4, IR=4, PS=4 and R=1. The index difference is 4
in I dimension and 1 in J dimension. The size is 21, i.e. 4*5+1, as caseWR=1 (1>0&&1<4 and
1 A in length 1) and caseRD,A=0 (4<5).

SizeI,J = DiffI ∗ IR(J) +max(caseWR, caseRD,A) (5.38)

Cond. Case vi: The size is given by Eq. 5.39. The casePCH6=,H is used to describe the case in
which the J index difference is smaller or equal to the parts created by the hole and, thus, it defines
the additional elements (row 0 in casePCH6=,H). Otherwise the hole should be subtracted from the
overall size (row 1 in casePCH 6=,H). When an additional J pattern exists, e.g. due to combination
with an ECH, we verify if the hole of PCH in the next WR iteration still exists or it is filled with an
A due to the ECH. The position of the PCH hole in the J dimensions for the next WR iteration is
given by DiffI

PS(PCH)
. When the ECH is combined with AND, the IR(J) is replaced by the sum of the

104

 WRJ

W
R

I

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)
I

J 0

H

H RDJ

R
D

I

LB(WRJ) UB(WRJ)

LB(RDI)

UB(RDI)

I

J
0

H

H

(a)

 WRJ

W
R

I

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)
I

J
0

H

H

H

 RDJ

W
R

I

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI)
I

J
0

H

H

H

(b)

LB(RDI,J)

UB(RDI,J)

I

J 0

H

UB(RDI,J)

LB(RDI,J)

I

J 0

H

(c)

Figure 5.12: Iteration spaces for I and J dimensions for the Dominant Segment in Outer Dimen-
sion & Non-Dominant Outer Dimension for (a) ECS/ECH combined with OR at 1st iteration, (b)
ECS/ECH combined with OR & not in the 1st iteration and (c) PCH 6=.

SIDs in the J pattern and theDiffJ by the sum of SIDs in the J pattern for length equal toDiffJ.

SizeI,J = DiffI ∗ IR(J) +min(DiffI, IR(J)) + casePCH6=,H (5.39)

5.4.6 Non-Dominant Segment in Outer Dimension

In this case the size of the SIS or the maximum segment of ISH is smaller than the index difference
of the outer iteration. The WritesI is given by the summation of SIDs in the selected pattern
section, i.e.MaxAInIndex, as explained in Section 5.4.3.2, and the sum of HIDs in the selected
pattern, i.e. MaxHInIndex, depending of the type of conditions. The J size and the additional
elements due to the J index difference depend on the iteration space shape, the type of conditions
and primitive operations, as explained in the next sections.

5.4.6.1 Dominant Outer Dimension

In this case, the next WR iteration after the selected pattern section is always A. This case is similar
to dominant segment in outer dimension case in Section 5.4.5.1, but the WritesI are defined by
accesses and the holes in the exploration window of the outer dimension and the condition cases.

5.4.6.1.1 Dominant Condition Statement Due to the dominant conditions, when a H is in
the I dimension, the J dimension is not accessed. For instance, in Fig. 5.13(a), when I is 6, which
is H, the J dimension is not accessed. Hence, theWritesI are given by theMaxAInIndex. The
equations are similar to Section 5.4.5.1.1, but withMaxAInIndex instead ofDiffI, as depicted
in the top part of Table 5.7. An example for case i is depicted in Fig. 5.13(a). The RD pattern of I
is {1A 3H 2A 1H 3A}, LB=-1, UB=10, IR=10, PS=10 and R=1 and the RD pattern of J is {2A
1H 1A}, LB=-1, UB=4, IR=4, PS=4 and R=1. The selected pattern section is marked with the
black line. The index difference is 5 and 2 for the I and the J dimension, respectively. The size is
14, i.e. (2+2)*(2+1)+2.

105

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.7: Non-Dominant Segment in Outer Dimension case & Dominant Condition Statements.
Case Equation for Storage Size

Dominant Outer Dimension (5.4.6.1)
i MaxAInIndexI ∗

∑UBJ
k=LBJ

SIDJ(k) +
∑DiffJ

k=LBJ
SIDJ(k)

ii MaxAInIndexI + casePCH==,A,I−J

iii MaxAInIndexI ∗
∑UBJ

k=LBJ
SIDJ(k) +

∑DiffJ
k=LBJ

SIDJ(k) +MaxHInLenJ ∗
∑DiffI

k=LBI
SIDPCH(k) + casePCH==,A,I−J

iv MaxAInIndexI + casePCH==,A,I−J +
∑A2A

k=LBI
casePCH==,OR

Non-Dominant Outer Dimension (5.4.6.2)
i MaxAInIndexI ∗

∑UBJ
k=LBJ

SIDJ(k)

ii MaxAInIndexI
iii MaxAInIndexI ∗

∑UBJ
k=LBJ

SIDJ(k) +MaxHInLenJ ∗
∑DiffI

k=LBI
SIDPCH(k)

iv MaxAInIndexI +
∑A2A

k=LBI
casePCH==,OR

5.4.6.1.2 Non-Dominant Condition Statements Due to the non-dominant condition state-
ments, when a H exists in the I dimension, an A may exist in the J dimension. The partial outer
size is given by the summation of SIDs in the selected pattern sectionMaxAInIndex multiplied
by the IR(J) and the number of H in the selected pattern section MaxHInIndex multiplied by
the summation of SID in the J pattern. The additional elements due to the J index difference are
computed by the additional written elements, as explained in the cases of Section 5.4.5.1.2. In the
remaining paragraphs we illustrate the equation instantiation for the different condition cases.

Cond. Case v: The size is given by Eq. 5.40, where the additional elements are
min(DiffJ, IR(J)). An example is depicted in Fig. 5.13(b). The selected section with the max-
imum A is marked by the black line. The RD pattern for the elements in I dimension is {1H
1A 1H 2A 1H 1A 2H}, LB=-1, UB=9, IR=9, PS=9 and R=1, the RD pattern of J is {1A 2H
2A}, LB=-1, UB=5, IR=5, PS=5 and R=1. The index difference is 5 in I dimension and 1 in
J dimension. The selected pattern section is {1A 1H 2A 1H}. The final storage size is 22, i.e.
(1+2)*5+(1+1)*(1+2)+min(1,5).

SizeI,J = MaxAInIndexI ∗ IR(J) +MaxHinIndexI ∗
UBJ∑

k=LBJ

SIDJ(k)

+min(DiffJ, IR(J))

(5.40)

Cond. Case vi: The outer dimension is given by the multiplication of the sum of SIDs in the
selected pattern by the IR(J) plus the sum of HIDs in the selected pattern multiplied by IR(J)-1, i.e.
the sum of SID in the J pattern due to the 6= type. The additional elements aremin(DiffI, IR(J))

due to the dominant outer dimension. The result is Eq. 5.41.

SizeI,J = MaxAInIndexI ∗ IR(J) +MaxHInIndexI ∗ (IR(J)− 1)

+min(DiffI, IR(J))
(5.41)

5.4.6.2 Non-Dominant Outer Dimension

In this case, the next WR iteration of I dimension is H and the storage size depends on the type
of conditions. The case is similar to Section 5.4.5.2, but theWritesI are defined by accesses and
the holes in the exploration window of the outer dimension and the condition cases.

106

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)

I

J 0 WRJ

H

W
R

I
H

H
UB(RDJ)

LB(RDI)

UB(RDI) I

LB(RDJ)

J
0

RDJ

H
 R

D
I

H

H

(a)

 WRJ
LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)
I

J 0

H

H

H

H

W
R

I
H

 RDJ

 R

D
I

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI)

I

J
0

H

H

H

H

H

(b)

 W

R
I

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)
I

J 0
WRJ

 R

D
I

LB(RDJ) UB(RDJ)

UB(RDI)

I

J
0

LB(RDI)

RDJ

H

H

(c)

J WRJ
LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)

I

0

H

H

H

W
R

I

UB(RDI)

 RDJ
LB(RDJ) UB(RDJ)

LB(RDI)

I

J
0 H

H

R
D

I H

H

H

(d)

J

UB(RDI)

 WRJ
LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)
I

0

H

H

H

H

W
R

I

 RDJ
LB(RDJ) UB(RDJ)

LB(RDI)

I

J 0 H

H

H

H

R
D

I

(e)

LB(RDI,J)

UB(RDI,J)

I

J 0

H

UB(RDI,J)

LB(RDI,J)

I

J 0

H

(f)

Figure 5.13: Iteration spaces for I and J dimensions for the Non-Dominant Segment in Outer
Dimension for: (a) ECS/ECH combined with AND for ISH, (b) ECS/ECH combined with OR
when the next WR iteration is A, (c) ECS/ECH combined with OR when the next WR iteration is
H and the selected pattern section is in 1st iteration, (d) ECS/ECH combined with OR when the
next WR iteration is H, the selected section is not in the 1st iteration and the last WR iteration is
H, (e) ECS/ECH combined with OR when the next WR iteration is A, the selected section is not
in the 1st iteration and the last WR iteration is H and (f) PCH 6=.

5.4.6.2.1 Dominant Condition Statements Similar to Section 5.4.5.2.1, the terms which de-
scribe the additional elements are pruned due to the dominant condition statements, as illustrated
in the equations at the bottom of Table 5.7.

5.4.6.2.2 Non-Dominant Condition Statements In this case, the additional elements due to
the J index difference depend on type of conditions and operations, the RD pattern and the index
difference of J dimension.

Cond. Case v: a. Pattern section is in the 1st iteration. The selected pattern section is in the first
iteration, so not yet read elements do not exist. The size is given by Eq. 5.29, where theWritesI

are given by the sum of A and sum of H in the outer dimension multiplied by the corresponding J
size. The additional writesWritesJ due to J dimension are computed by caseWR using Table 5.5.
The result is Eq. 5.42. An example is depicted in Fig. 5.13(c). The selected section is marked with
the black line. The RD pattern of I for the elements is {3A 2H 1A}, LB=-1, UB=6, IR=6, PS=6
and R=1, the RD pattern of J is {1A}, LB=1, UB=3, IR=1, PS=1 and R=1. The index difference
is 4 in I dimension and 1 in J dimension. The final storage size is 16, i.e. 3*5+1*1+0.

107

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

SizeI,J = MaxAInIndexI ∗ IR(J) +MaxHinIndexI ∗
UBJ∑

k=LBJ

SIDJ(k)

+ caseWR

(5.42)

b. Pattern section is not in the 1st iteration. In this case, RDs exist before the execution
of the selected pattern section. The size is given by Eq. 5.27 which is instantiated to Eq. 5.43.
The WritesI are given by the sum of A and sum of H in the outer dimension multiplied by the
corresponding J size. The caseWR describes theWritesJ , which are computed by Table 5.5. The
caseRD describes the ReadsJ . Due to the non-dominant segment in the outer dimension, the last
WR iteration in I dimension can be either A or H, affecting the computation of the caseRD. If the
last Iteration in the selected pattern section is A, the caseRD=caseRD,A. If it is H, caseRD=caseRD,H.
The caseRD,A and caseRD,H are computed in Table 5.5. An example with A as last WR iteration
is depicted in Fig. 5.13(d). The selected pattern section is depicted by the black line. The RD
pattern for the elements in I dimension is {2A 2H 3A 1H 1A 1H 1A}, LB=-1, UB=11, IR=11,
PS=11 and R=1, the RD pattern of J is {1A 2H 2A}, LB=-1, UB=5, IR=5, PS=5 and R=1.
The index difference is 5 in I dimension and 2 in J dimension. The final storage size is 25, i.e.
(3+1)*5+1*(1+2)+2. An example with H as last WR iteration is depicted in Fig. 5.13(e). The
selected section is marked with black line, i.e. the first section which starts with A and has the
maximum number of A. The RD pattern for the elements in I dimension is {2H 1A 1H 2A 4H},
LB=-1, UB=10, IR=10, PS=10 and R=1, the RD pattern of J is {1A 2H 2A}, LB=-1, UB=5,
IR=5, PS=5 and R=1. The index difference is 5 in I dimension and 2 in J dimension. The final
storage size is 23, i.e. (1+2)*5+(1+1)*(1+2)+2.

SizeI,J = MaxAInIndexI ∗ IR(J) +MaxHinIndexI ∗
UBJ∑

k=LBJ

SIDJ(k)

+max(caseWR, caseRD)

(5.43)

Cond. Case vi: The size is given by Eq. 5.44, where the partial outer size is defined by the max
of SIDs in the selected pattern multiplied by the IR(J) plus the holes in the pattern multiplied by
the IR(J)-1, as one element is not accessed in the J dimension due to the H in the outer dimension.
The additional elements are defined by casePCH6=,H in Table 5.5.

SizeI,J = MaxAInIndexI ∗ IR(J) +MaxHInIndexI ∗ (IR(J)− 1)

+min(DiffI, IR(J)) + casePCH6=,H

(5.44)

5.4.7 Combinations in different dimensions

When multiple dimensions are combined, the computation of the storage size starts from the outer
dimension and propagates the result to the inner dimensions. The propagation is performed by
using the computed size of the outer as SizeI,J in Eq. 5.28 when instantiated for the inner dimen-
sions, as described in Section 5.4.4. The initial SizeI,J in Eq. 5.28 is computed by the equations

108

from Section 5.4.5 to Section 5.4.6, which explore the combinations of the conditions in the same
dimensions. The propagation of the SizeI,J between different dimensions depends on the oper-
ations which combine the conditions, which affect both the size of the inner dimension and the
additional size. We instantiate Eq. 5.28 for the primitive operations || and &&. When both ||
and && exist between the different dimensions, the equations are combined and the || operation
dominates in the computation of the storage size. We illustrate the processes through a selected
set of representative examples. The selection has been performed based on the principle that the
examples have multiple condition statements, which couple conditions in more than two dimen-
sions affecting the shape of the required storage size. In case the conditions are applied only in
two dimensions, the terms of equations of Sections 5.4.5.1 to Section 5.4.6 are multiplied by the
size of the loops without conditions.

5.4.7.1 AND primitive operation

If the operation is &&, the SizeK is given by the valid elements in K dimension, i.e.∑UBK
k=LBK

SIDk. The additional elements are given by the inner dimension, i.e. ASizeK(K), and
the computation is performed as described in the intra-signal in-place cases of Section 5.4.5 to
Section 5.4.6. The result is Eq. 5.45.

SizeI,J,K = SizeI,J ∗
UBK∑

k=LBK

SIDK(k) +ASizeK(K) (5.45)

We illustrate an instantiation of Eq. 5.45 in the example of PCH condition combined with
ECS/ECH with AND primitive operation in dominant segment in outer dimension case & non-
dominant inner dimension case: When a PCH in I-J and a ECH in K iterator are combined through
AND primitive operation, the case iii (PCH of == type) is combined with with case i (ECS/ECH
with AND). Due to AND operation, the partial outer storage size is multiplied with the summation
of SID in the K dimension. The additional elements in K dimension are also added. The result is
Eq. 5.46.

SizeI,J,K = DiffI ∗
UBK∑

k=LBK

SIDK(k) +
DiffK∑
k=LBK

SIDK(k) (5.46)

5.4.7.2 OR primitive operation

If the combined operation is ||, the SizeK is given by IR(K), since all the elements of the inner
dimension are accessed. The additional size due to inner dimension is: 1) the ASizeI(K), i.e. the
additional elements due to the conditions in I for K index difference, 2) the PSizeK,J multiplied
by the IR(J) minus the accessed elements already counted in the conditions of the I dimension,
3) the ASizeK(J), i.e. the additional elements due to the J index difference for the conditions
in K, minus ASizeI(J), i.e. the already counted elements due to conditions in I, multiplied by
the SizeK and 4) the ASizeK(K), i.e. elements due to K index difference due to conditions in

109

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

K, minus ASizeI(K), i.e. the already counted elements in K due to conditions in I. The result
is Eq. 5.47. We illustrate in a set of representative instantiations of Eq. 5.47 in the following
examples.

SizeI,J,K = SizeI,J ∗ IR(K) +ASizeI(K) + PSizeK ∗ IR(J)

−
DiffI∑
k=LBI

UBJ∑
l=LBJ

SIDJ (l) + (ASizeK(J)−ASizeI(J))

∗ IR(K) +ASizeK(K)−ASizeI(K)

(5.47)

a) PCH of == type (dominant segment in outer dimension & non-dominant outer dimension
case) combined with OR with ECS/ECH (dominant segment in outer dimension & dominant outer
dimension case): The PCH in I-J defines the partial outer size (Eq. 5.32) which is multiplied by the
size of the inner dimension IR(K) due to the || operation. The result is extended by the additional
elements due to ECH (Eq. 5.30), i.e. the size due to the dominant segment multiplied by IR(J)
minus the A in the PCH for I index difference and the additional elements due to K index difference
multiplied by IR(J) minus the A in the PCH for J index difference. The result is Eq. 5.48.

SizeI,J,K = DiffI ∗ IR(K) +

DiffK∑
k=LBK

SIDK(k) + (DiffI ∗
UBK∑

k=LBK

SIDK(k)

∗ IR(J))−
DiffI∑
k=LBI

PCH + (

DiffJ∑
k=LBJ

SIDK(k)−
DiffJ∑
k=LBJ

PCH)

∗ IR(J) +

DiffK∑
k=LBK

SIDK(k)−
DiffI∑
k=LBI

SIDK(k) (5.48)

b) PCH of == type (non-dominant segment in outer dimension & dominant outer dimension
case) combined with OR with PCH of == type (dominant segment in outer dimension & non-
dominant outer dimension case) in different dimensions: The PCH in I-J, defines the partial outer
size (Eq. 5.32) which is multiplied by the size of the inner dimension IR(K) due to the || operation.
The result is extended by the additional elements required to be stored due to the PCH in I-J and
the K index difference and due to the PCH in I-K, i.e. the dominant segment size of PCH in I-K
multiplied by the IR(J) minus one access in the PCH I-J dimension. Other additional elements
due to K index difference do not exist due to the dominant segment in outer dimension case and
non-dominant outer dimension case of second PCH. The result is Eq. 5.49.

SizeI,J,K = (MaxAinIndexI + casePCH==,A,I−J) ∗ IR(K)

+

DiffK∑
k=LBK

SIDI(k) + (DiffI + casePCH==,A,I−K) ∗ IR(J)

−MaxAinIndexI

(5.49)

c) PCH of 6= type (dominant segment in outer dimension) combined with OR with ECS/ECH
(dominant segment in outer dimension): The size of PCH in I-J is multiplied by IR(K) due to OR
operation. The result is extended by the K index difference due to PCH. The additional elements

110

are the size of ECH multiplied by IR(J) minus the accesses in the I-J dimensions, i.e. . The result
is Eq. 5.50.

SizeI,J,K = (DiffI ∗ IR(J) +min(DiffJ, IR(J))) ∗ IR(K)

+

DiffK∑
k=LBK

SIDI(k) + (DiffI ∗
UBK∑

k=LBK

SIDK(k) ∗ IR(J))

− (

DiffI∑
k=LBI

SID(PCH) ∗ IR(J) +

DiffI∑
k=LBI

HID(PCH)

∗ (IR(J)− 1)) + (

DiffJ∑
k=LBJ

SIDK(k)−min(DiffJ, IR(J)))

∗ IR(J) +

DiffK∑
k=LBK

SIDK(k)−
DiffK∑
k=LBK

SIDI(k)

(5.50)

5.4.7.3 Demonstration case study

In this section we apply the overlapping intra-signal in-place methodology for the example in
Fig. 5.14(a). The analysis step provides the information: three for nested loops, loop order I-J-K,
a PCH condition which couples iterator I and J (PCH1) of < && > type, two ECH conditions
on iterator J (ECH1 and ECH2) and a PCH condition which couples iterator I and K (PCH2).
All conditions are combined with || operation. The I index difference is 2, the J index difference
is 1 and the K index difference is 1. The translation step creates the primitive patterns of the
PCH conditions per couple of dimensions: for condition I≥4J && (I≤4J+2), the LB of loop I
is defined by LB=max(-1, 4*(LBJ+1)-1)=max(-1,-1)=-1, the UB is defined by UB=min(1024,
4*(UBJ -1)+8=min(1024, 1024)=1024, the PS is 4, IR is 1024, the R is 256 and the PCH1 pat-
tern is {3A 1H}. The light gray elements of Fig. 5.14(b) depict the first part of the accessed
elements of PCH1 of the three dimensional array. The ECH1 condition of J == 4 creates a
ECH2 of {1A} pattern with LB=max(-1,3)=3, UB=min(1024,5)=5, the PS is 1, IR is 1, the R
is 1. The ECH2 condition of J == 7 creates a ECH1 of {1A} pattern with LB==max(-1,6)=6,
UB=min(1024,8)=8, the PS is 1, IR is 1, the R is 1. The ECH1 and ECH2 access the dark gray
elements in Fig. 5.14(b). The PCH2 condition I==2K has LB=max(-1,2*(LBK+1)-1)=max(-1,-
1)=-1, UB=min(1024, 2*(UBJ -1)+2=min(1024, 1024)=1024, the PS is 2, the IR is 1024, the R
is 512 and the PCH2 pattern is {1A 1H}. The PCH2 access the black elements of Fig. 5.14(b).
In the intra-signal in-place step, the process of computing the final storage size starts from the
outer dimension. The combined pattern of ECH1 and ECH2 is {1A 2H 1A} pattern with LB'=3,
UB'=8, the PS is 5, IR is 5, the R is 1. The dominant segment case in outer dimension is se-
lected since ECH is in inner dimensions and due to || operation the complete I dimension is ac-
cessed. The case iii of Table 5.4 is selected and the partial storage size is given by Eq. 5.33,
i.e. SizeI,J = 2 ∗ (1 + 1) + 1 + 1 ∗ 2 + 1 = 8. Then, we proceed to the next dimension
K. The propagation multiplies the partial storage size SizeI,J by size of K due to || operation
based on Eq. 5.47. For the K index difference, the dominant segment in outer dimension and
the non-dominant outer dimension case is valid. The partial storage size of K is given by case
ii in Table 5.6. The additional elements in all dimensions due to K index difference are pruned.

111

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

For (I=0; I<1024; I++)
For (J=0; J<256; J++)
For (K=0; K<512; K++)
If ((I≥4J)&&(I≤4J+3))||
(J==7)||(J==4)||(I==2K)
B[I][J][K]=...

For (I=2; I<1026; I++)
For (J=1; J<257; J++)
For (K=1; K<513; K++)
If ((I≥4J)&&(I≤4J+3))||
(J==8)||(J==5)||(I==2K)
B[I-2][J-1][K-1]=...

(a)

K

J I

(b)

K

J I

(c)

Figure 5.14: Demonstration case: (a) Code, (b) initial part of the iteration space for the WR
iterations and the accessed elements. Each color corresponds to a condition and (c) the execution
of the RD statements in the iteration space.

Hence, the additional elements in K dimension are given by the size in K dimension multiplied by
the IR(J) minus the sum of A in the combined pattern of I and J dimensions. The final result is
SizeI,J,K = 8 ∗ 512 + 1 ∗ (256− 3) = 4, 349.

5.4.8 PCS storage size

The PCS conditions describe solid iteration spaces in a parametric way, which creates triangular
type of shapes in the iteration space. Since the computation of the storage size is based on the
maximum number of concurrently alive elements during the execution of the application, the PCS
storage size is defined by the worst case in the parametric expression, i.e. the difference of the inner
loop bounds. The size derives from Eq. 5.27. TheWritesI are multiplied by the SizeJ minus the
holes due to the triangular type of shape included in the I index difference, i.e. the PS of PCS
multiplied by the index difference minus one. The additional elements are defined by the index
difference in J dimension and the iteration before the exploration window, if the PCS is increasing
over I dimension and the iteration after the exploration window, if the PCS is decreasing over I
dimension. In Fig. 5.15, the index difference is 5 in the I dimension and 2 in the J dimension and
the PCS is increasing over I. The worst case is described in the end of the iterations, where ID(J)
elements are required to be stored. Hence, the exploration window is from UB(I)-DiffI up to
UB(I)-1, e.g. 1 to 5 for Fig. 5.15. The last A in the exploration window is multiplied by ID(J) and
the remaining 4 A in the exploration window of A are multiplied by the size of J is decreased by
1 (due to the size of PCS) each time. This is expressed by multiplying the index difference in I
dimension by the size of J and subtracting the holes in the J dimension, as depicted in Eq. 5.51. The
additional elements are computed based on the index difference in J and the size of J in the iteration
after/before the exploration window of I, i.e. SizePCS. The SizePCS is given by multiplying the
times PCS has been executed in the I index difference with the PS(PCS) and subtract the result
from ID(J), ID(J) − PS(PCS) ∗ DiffI. In the example of Fig. 5.15 the I index difference is
5, the PS(PCS) is 1 and, thus the SizePCS=6-5*1=1. Hence, the additional elements are given by

112

LB(WRJ) UB(WRJ)

LB(WRI)

UB(WRI)

I

J 0 WRJ

W
R

I

UB(RDJ)

LB(RDI)

LB(RDJ)

J 0 RDJ

R
D

I

UB(RDI) I

Figure 5.15: Schematic illustration of theWRI and RDI of an increasing PCS in the two dimension
case.

min(2,1)=1.

SizeI,J = DiffI ∗ IDJ − (DiffI − 1) ∗ PS(PCS) +min(DiffJ, SizePCS) (5.51)

5.4.9 Experimental Results

This section presents the results of comparing the proposed methodology with an enumerative ap-
proach (lower bound) and an approximation approach (upper bound). The enumerative approach
computes the storage size by consistently adding the number of stored elements between the write
and the last read of an array element. The process is applied for all elements and the maximum
result defines the required storage size. The enumerative approach produces optimal results be-
cause all the cases are exhaustively explored. The approximation approach to estimate an upper
bound in the ISH cases derives from approximating the H of the patterns with A and computing
the storage size based on the equations of Section 5.4.5.1, i.e. based on the index differences and
the loop sizes. This approach is quite effective and scalable, and novel on its own already. It also
mimics the result of an efficient approximation applied by the symbolic/polyhedral approaches,
when applied in irregular iteration spaces. The polyhedral approaches compute the size in irregu-
lar ISH cases by creating the convex hull in the iteration space between the WR and the RD of the
elements. For instance, in Fig. 5.13(d) the polyhedral approaches approximate the 2x2 and 1x2
holes by accesses to have a convex hull 11x5. The optimistic heuristic of polytopes approximation
computes the storage size as in SIS, i.e. solidifies the exploration window. Hence, this approxima-
tion approach computes an optimistic upper bound. Other heuristics, which solidify the iteration
space, are proposed, e.g. the heuristic in [160] applied when the symbolic techniques cannot be
applied due to irregularity/non-uniformity of the accesses. However, it leads to quite pessimistic
upper bounds for the case of overlapping store and load accesses. Hence, we have not incorporated
it in our experiments.

We present the exploration time and the storage size in number of stored elements for bench-
marks from the PolyBench [159] and the MediaBench [107]. The presented benchmarks are

113

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

Table 5.8: Dominant Segment in Outer Dimension.
Alg.: Func:
Array
(init.bounds)

Proposed Meth. Enumerative Appr.
Solution F Size Time Size Time

(elem.) (ms) (elem.) (ms)

Atax*: A
(32)(32)

Eq. 5.31
Sec. 5.4.5.1.1

1 32 0.101 32 14.866
4 128 0.103 128 816.279
8 512 0.104 512 52,059.418
12 2,048 0.101 - -

Reg_detect*:
path
(20)(20)

Eq. 5.35
Sec. 5.4.5.1.2

1 21 0.104 21 4.107
2 61 0.102 61 89.263
3 201 0.104 201 3,070.95
4 601 0.102 601 86,142.682
5 2001 0.100 - -

Gsm**: Up-
date_residual_
signal P3:
drp
(100)(3)(40)

Table 5.6:
case i
Sec. 5.4.5.2.1

1 80 0.100 80 153.295
2 160 0.102 160 608.821
3 240 0.104 240 1,341.206
4 480 0.103 480 5,376.844
5 920 0.104 920 19,166.318

Jacobi-2D*:
A (128)(32)

Eq. 5.37
Sec. 5.4.5.2.2

1 34 0.177 34 31.102
2 66 0.181 66 113.017
3 1,002 0.190 1,002 23,439.816
4 8,002 0.175 8,002 1,577,880.183

Doitgen*:
sum
(10)(10)(10)

Eq. 5.28
Sec. 5.4.4

1 111 0.108 111 41.545
2 273 0.104 273 452.183
3 813 0.103 813 6,585.703
4 1,057 0.103 1,057 12,954.013

(*) Polybench, (**) MediaBench, (-) Memory Overflow

Table 5.9: Non-Dominant Segment in Outer Dimension.
Alg.: Func:
Array
(init.bounds)

Proposed Meth. Enumerative Approach Approximation
Solution F Size Time Size Time Size

(elem.) (ms) (elem.) (ms) (elem.)
Jpeg**:
idct_2x2:
wsptr
(32)(256)

Table 5.7:
5.4.6.1:
case i
Sec. 5.4.6.1.1

1 84 0.901 84 131.853 132
2 164 0.896 164 2,558.200 260
3 644 0.902 644 44,243.614 1,028
4 1,924 0.899 1,924 5,842,417.563 3,076

Jpeg**: de-
compress_
smooth_data:
coef_bits
(4)(228)

Eq. 5.41
Sect. 5.4.6.1.2

1 5 0.158 5 18.782 6
2 10 0.175 10 65.887 12
3 15 0.183 15 138.009 18
4 20 0.219 20 234.046 24
5 25 0.219 25 365.003 30

Jpeg**:
idct_2x2:
wsptr (un)
(32)(256)

Table 5.7:
5.4.6.2:
case i
Sec. 5.4.6.2.1

1 80 0.798 80 113.259 132
2 160 0.793 160 2,542.592 260
3 640 0.795 640 44,142.714 1,028
4 1,920 0.792 1,920 5,843,373.740 3,076

Gauss-
Seidel: A
(32)(32)

Eq. 5.44
Sec. 5.4.6.2.2

1 31 0.161 31 32
2 499 0.162 499 47,432.427 500
3 999 0.164 999 397,211.781 1,000
4 1,999 0.163 1,999 3,066,944.504 2,000

(**) MediaBench

selected to cover all the multidimensional intra-signal in-place cases of Fig. 5.8. Each benchmark
belongs to one condition case in the intra-signal in-place cases used as representative example in
order to have a reasonable result tables size. We have selected to present the multidimensional
case as it is more representative of realistic application codes. The time and the size for the one
loop dimension cases have also been verified, e.g. for y array in Atax benchmark the time of the
proposed methodology is stable around 0.093 ms and the enumerative is from 1.486 - 86,270.273
ms depending on the number of accesses. We also provide one case study of a three dimensional
case, i.e. the Doitgen benchmark in Table 5.8. Table 5.8 describes the results of the proposed
methodology and the enumerative approach for the dominant segment in outer dimension cases.
When the segment which defines the size is solid, the approximation is identical to the proposed
methodology, which achieves optimal size with low exploration time. Table 5.9 describes the
results for the proposed methodology, the enumerative approach and the approximation for the

114

0.0

1.0

2.0

3.0

4.0

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

Ex
p

lo
ra

ti
o

n
 T

im
e

 (
s)

Proposed Enumerative

~0.100*10-3

Loop Bounds Factor

~0.101*10-3

(a) (b)

Figure 5.16: Exploration time comparison, when the number of accesses is increased due to an
increase by a factor over the loop bounds for (a) Jpeg**: xbuf1 benchmark and (b) Pegwit**:
roundKeys_e benchmark.

non-dominant segment in the outer dimension cases. Due to the holes, the approximation leads
to size overestimation, as H are considered as A. In contrast, the proposed methodology still has
optimal results.

In both tables, the column ``Solution'' describes the applied equation of the intra signal in-
place case and the corresponding section per benchmark. For each benchmark, different sizes in
the number of accesses in the overall iteration space are explored by increasing the loop bounds
by a factor F. From the experimental results, the exploration time of the enumerative approach in-
creases super-polynomially with the increase of the accesses in the iteration space. In contrast, the
proposed methodology achieves optimal storage size with stable exploration time both for the SIS
and the ISH spaces. The increase in the loop bounds modifies the pattern parameters R, UB and
IR, which, however, does not affect the methodology exploration time. The time is dominated by
the setup times for the equations and the computation of their main primitive components, which
are not directly depending on the main size parameters of the loop nests. The exploration times are
quite close for all the benchmarks indicating a limited complexity of the proposed methodology.
The cases, where the time is slightly increased, is in the non-dominant segment case, where explo-
ration of the outer pattern is applied to select the pattern section, e.g. benchmarks in Table 5.9. We
further explore the behavior of our approach in the non-dominant segment cases, when also the
index difference is increased by a factor. Then, the proposed methodology adds the SIDs of larger
pattern sections during the selection of the pattern section. The exploration time of the proposed
methodology is slightly increased due to the increase in the index difference and only for the non-
dominant segment in outer dimension cases. In contrast, the exploration time of the enumerative
approach is increased both by the increase in the index difference and the increased in the loop
bounds for all the cases. For instance, in array coef_bits of the Jpeg** benchmark, the proposed
methodology is increased by a factor of 10.9% due to the increase in the index difference, whereas
the enumerative approach is increased by a factor of 317.77%, which is the multiplication of fac-
tor due to the index difference (39.19%) and the factor due to the loop bound increase (81.09%).
We illustrate the behavior of the exploration time of the proposed methodology and the enumer-
ative approach, when the number of accesses is increased for several factors for two additional
benchmarks, i.e. array xbuf1 in benchmark Jpeg:make_funny_pointers in Fig. 5.16-(a) and array

115

5. INTRA-SIGNAL IN-PLACE METHODOLOGY FOR NON-OVERLAPPING &
OVERLAPPING SCENARIO

roundKeys_e in Pegwit: squareexpandkey benchmark in Fig. 5.16-(b).
When holes exist in the iteration space, the proposed methodology also maintains optimal

results and low exploration times, as depicted in Table 5.9. The approximation approach describes
an upper bound in the storage size, which overestimates the storage size as the holes are considered
as accesses. The size overestimation is increased with the increase in the loop bounds, when
more than one loop dimension exist. When the approximation approach considers a H as an A
in the I dimension, the complete J dimension is considered as accessed, which increases the size
loss. For instance, in the Jpeg benchmark for the wsptr cases in Table 5.9, although the cases
are different, the approximation approach leads to the same results, as it does not distinguishes
between the dominant outer dimension case and the non-dominant outer dimension case (wsptr
with uninteresting components). The size loss in the non-dominant outer dimension case is larger,
since the H of the next WR iteration is considered as an A. The time of the enumerative approach
in both cases is similar, as the benchmarks difference is the behavior of the outer dimension.

5.5 Conclusions

The proposed methodology computes the storage requirements and remains near-optimal and scal-
able in iteration spaces with highly irregularly placed holes. The proposed methodology: 1) is split
into steps connected by uni-directional constraint propagation, 2) describes the possible cases per
step and provides solutions with closed form equations and 3) uses the propagated constraints to
select the valid cases per step and apply the corresponding solutions for the non-overlapping and
the overlapping case. From the result, the proposed methodology achieves optimal storage size
with low exploration time.

116

Part II

Processing related mapping methodologies

117

Chapter 6

Design Exploration Methodology for
Microprocessor & HW accelerators

6.1 Introduction

Embedded systems usually have hard real-time constraints, which require custom HW designs.
Although, they improve the performance, they have a high design cost and very limited flexibility,
even when they are made partly configurable. The SW designs provide the required flexibility
for a wide range of applications at the cost of reduced performance. Hence, a hybrid SW/HW
approach is a promising solution, as it balances the SW flexibility with the HW performance [92].
Existing design tools offer a partially automatic customization of soft microprocessors. These
tools usually require a high exploration time as they may explore a wide range of design instances,
which are, however, restricted and focused on a relatively limited area of the Design Space (DS)
(Section 6.2). When the application characteristics match less with the explored area, this approach
leads to suboptimal designs. A very broad DSE corresponds to a very difficult and time consuming
task due to the high number of SW and HW design parameters. Hence, the designers usually create
SW/HWdesigns by following ad-hoc or trial and error ways based on their experience [131], which
usually require costly design iterations. Hence, a systematic methodology is desired to support a
scalable DSE for near-optimal SW/HW co-design [176].

The main contribution of this paper is a scalable DSE methodology to near-optimally map
an application domain to a SW/HW FPGA design with a microprocessor core and HW accel-
erators. The proposed methodology splits the co-design process into sequential mapping steps
connected with uni-directional propagation of design constraints avoiding non-scalable steps and
needless design iterations. The steps are the Inter-Organization between the microprocessor and
the HW accelerators, the Foreground (FG) Memory Management (i.e. the memory attached to
the data path) and the Data Path (DP) Mapping. They are described by parametric templates, i.e.
a scalable structure with the relevant parameters, equations and functions connected with propa-
gation of constraints, which support efficient and scalable exploration. By giving valid values to
the parameters and applying the functions, a Pareto curve with performance-area tradeoff points is

119

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

produced per step. The decisions in a mapping step are propagated as design constraints to the next
mapping steps to prune incompatible options. An option is incompatible when, in order to be fea-
sible, requires to overlook the design constraints propagated from the previous steps. For instance,
scheduling decisions for the critical part are propagated to decide the scheduling of the not-critical
part. The options which require to change the scheduling of the critical part are incompatible and
thus pruned from the DS. In this way, only the valid and promising DS part is explored based on
an efficient pruning through a what-if analysis of the parameters and a scalable DSE is achieved
from the early mapping steps of the co-design processing. Scalability is maintained as illustrated in
Section 6.5 where the application size increase still allows linear exploration time. The design ob-
jectives is to reduce the area and, thus, the required gates for the design, and indirectly the energy
consumption, meeting the real-time constraints. Our second main contribution is to demonstrate
how the proposed methodology is effectively applied in a set of benchmarks. The most detailed
results are provided for a real-time bio-imaging application of a microfluidic-based FPGA. The
design gain is 47.11% on performance and 72.29% on area compared with pure SW and HW
implementations respectively. Further experimental results for 10 PolyBench benchmarks [159]
are presented to substantiate the effectiveness and sufficiently broad applicability of our approach.

The chapter organization is: Section 6.2 presents existing co-design approaches, Section 6.3
describes the proposed methodology, Section 6.4 demonstrates the approach by a real-time bio-
imaging application, Section 6.5 shows experimental results for Section 6.4 and for the PolyBench
benchmarks. Section 6.6 concludes this study.

6.2 Related Work

Both academic and commercial customizablemicroprocessors, e.g.Microblaze or NiosII, allow the
designer to insert HW components for SW/HW implementations. Several approaches exist in the
literature whichmodify the HWplatforms to providemore efficient ways to insert HWaccelerators.
Some approaches provide a more generic HW accelerator which is capable of executing several
applications domain but less efficient for a specific application domain, as it includes redundant
resources. For instance, an generic custom unit extension is presented in [196]. Ref [127] presents
a generic accelerator which includes several processor clusters and shared memory. In [140] a
parameterizable embedded FPGA architecture is used as a HW accelerator and the flow to create
the layout, vhdl code and the configuration is described.

However, the tools and the development methodologies are less supportive for a scalable ex-
ploration of the efficient mapping options of the applications to (re-)configurable embedded sys-
tems [80]. Several design tools exist to partially customize soft microprocessors. Synopsys Syn-
phony C compiler [186] creates accelerators from sequential code. CriticalBlue cascade [36] is
an automated co-processors synthesis solution. Cosmos, Handel-C and ImpulseC (a survey avail-
able in [32]), provide RTL extensions to C for FPGA design, but providing less efficient results
than custom HW designs. The tools identify automated design flows and implement the custom

120

instructions, but they also require specification of new HW resources and rewriting part of the ap-
plication [92]. In [48], the compiler generates custom instructions by finding the instruction data
paths that can be reused across similar pieces of code and adding them to the customizable proces-
sor. However, the exploration and verification time induces a significant overhead [92], while the
design may still remain quite suboptimal [48]. ROCCC [62] generates VHDL code for the data
path and the control flow of operations for the HW execution in the FPGA. These approaches usu-
ally require a high exploration time to create the accelerators focusing on a relatively limited part
of the design space and applying costly design iterations. They typically avoid exploration of the
options in the organization of the cores and the FG memory by narrowing their search space and
thus promising solutions in the unexplored design space cannot be identified. When the applica-
tion characteristics match less with the search space, the tools can produce sub-optimal solutions.
Designers' effort is required to improve the co-design. The alternative broad DSE is difficult and
time consuming due to the high number of SW and HW parameters [147].

The designers in industry typically propose designs for the specific applications by following
ad-hoc or trial and error ways increasing the costly design iterations. They propose several designs
using FPGA manufactures tools, such as Xilinx EDK and Altera SOPC Builder. For instance, a
design of an object tracking co-processor was proposed in [174] and a design for an object detection
application in [54]. Since substantial time and effort are required to evaluate a design, they usually
evaluate few final choices, usually the ones evaluated quickly based on previous experience [56].
Hence, potentially promising options are easily overlooked. In [15] a reconfigurable HW is used
as a general-purpose accelerator. Application blocks are mapped using a module library partially
exploring the design options as custom units details are overlooked.

Several of the existing DSE methodologies mainly focus on a step of the overall mapping pro-
cess without taking into account the design constraints of the other mapping steps. For instance,
a methodology based on evolutionary Multi-Objective Optimization creates the DP of a HW ac-
celerator for a JPEG algorithm [52]. The compiler in [113] extracts loop parameters to decide
memory code transformations, such as unrolling and SW pipelining. Most of the DSE method-
ologies are recursive approaches, which usually require too much exploration time and are less
scalable. Stochastic approaches require too much exploration time to reach near-optimal solutions
in a large exploration space. For instance, a Quantum-Inspired Evolutionary algorithm (QEA)
is proposed for the multiprocessor mapping problem in [3]. The QEA is an improved heuristic
which, however, the optimality of the solution is highly based on the number applied generations,
since the increase in the number of generations increases the chances to reach a near-optimal solu-
tion. A DSE methodology with stochastic algorithms is proposed in [147]. The independence of
the parameters is used to prune the space, which usually is quite restricted, and to derive the Pareto
curve in Platune [147]. A simulated annealing approach for DSE of object detection accelerators is
proposed in [73]. Another iterative method starts from the designer's base configuration, changes
the value of one parameter each time and uses the results to predict the optimal design [175]. It
may lead to less efficient designs when a high number of parameters and interdependencies exists.
Ref. [176] sorts the parameters based on the impact determined by the maximum parameter value

121

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

change. All combinations of the first two high impact parameters are considered.
The proposed methodology describes a scalable DSE which finds the near-optimal co-designs

of an application domain to a FPGA with one microprocessor and several HW accelerators. This
highly supports the design process since the near-optimal designs can be identified even for large
benchmarks. The final design can be selected based on the requirements from the early stages of
the design process. The proposedmethodology is scalable as it consists of uni-directionally ordered
mapping steps, which are required to be applied once and they propagate the design constraints to
the next step to prune suboptimal options, as explained in the next Section. This is substantiated
by experimental results (section 6.5.3) where show a near-optimal result as opposed to what can
be achieved with local iterative improvement techniques.

6.3 Systematic Template-Based Mapping Methodology

The proposed methodology is a scalable DSE to provide the near-optimal designs including the
design of the required HW accelerators, which meet timing and resource constraints under perfor-
mance - area objectives (Pareto Curve). The input of the methodology is the application and the
hardware platform and their characteristics are incorporated as domain constraints, which restrict
the behavior and the design of the HW accelerators. For instance, the application deadline gives the
maximum time that can be allowed to execute the application in the HW accelerators. Hence, any
design that has a performance above the deadline constraint is incompatible and pruned. Although
constraints exist, the platform provide a significant flexibility in the co-design. The methodology
steps are described by a parametric template. A parametric template is created by finding the rel-
evant SW and HW parameters, the functions and how the parameters and the functions affect
each other in order to define the direction of propagating the design constraints. The methodology
explores per mapping step the valid options inside the available flexibility by giving specific values
to the not-constraint parameters of the step (template instantiation). The partial mappings and the
decisions are uni-directionally propagated as design constraints to the next step to systematically
prune sub-optimal and over-constraint design options from the large exploration space based on
constraint analysis. The remaining potentially optimal options are mainly trade-offs which are ex-
plored based on a scalable what-if analysis of template parameters. In this way the costly design
iterations are avoided. At the final step, the near-optimal designs are depicted in a Pareto curve,
where the Pareto points are placed quite close to each other, and from where the designer selects
a high quality SH/HW co-design based on the specifications each time.

The main design objective is the area reduction. It reduces the number of gates and indirectly
the leakage energy consumption. The dynamic energy consumption is not proportional to the active
area. Hence, when constraints are met, the methodology tries to further improve the activity in
order to reduce the dynamic energy consumption as a second objective. The real-time constraints
imposed from the application context should always remain guaranteed though.

The methodology flow chart is depicted in Fig. 6.1 and the mapping steps are explained in

122

Time to fetch data

from Memory (TBG)

Select PC-HW design

TBG≤D
yes

Step 2:

Microprocessor &

HW Accelerators

Inter-Organization

Min Number of

register & accesses

Allocate Primitive

operators for single

HW with UFFG

CPHW≤tHW

Parallelize/

Increase f

yes

Step 4:

Data-Path

Mapping
fHW≥fPC

Insert Pipeline

Allocate ports &

connect DP with FG

Platform Analysis

Application Analysis

Step 1:

Application &

Platform Domain

Analysis
Select kernel i

SW execution time of

application (TSW)

TSW≤DExit
yes

Opt. Application

Critical Path (CP)

CP≤D
yes

Available BandWidth

from BG (ABWBG)

ABWBG≤RBW
Increase

tHW

yes

Opt.Critical Path (CP)

CP≤tHW

yes

Available BandWidth

to HW (ABWHW)

ABWHW≤RBW

Available BandWidth

to HW (ABWHW)

ABWHW≤RBW

Select Num. Parallel

Transfers

Organize Transfers

Select HW primitive

operations

Step 3:

ForeGround

Memory

Management

HDFG

Left-edge

Transform costly &

less used operations

R≤RMax

yes

FG Critical Path (CPFG)

Register

Spilling

FG Ports Number

Available BandWidth

from FG (ABWFG)

Register utilization (UFR)

Estimate

UFFG

UFG≥UThr

Operators Utilization (Uop)

CPFG≥tHW

Explore

time slack

yes

yes

Estimate UFHW

Uop≥UThr

yes

Schedule&Assign

single HW

yes

Figure 6.1: The flow of the proposed methodology.

the remaining section following the design constraints propagation order. The Application &
Platform Domain Analysis step identifies the SW and HW parameters, e.g. the real-time con-
straints, the critical kernels and their characteristics, which are propagated as constraints to the
Inter-Organization step to decide the microprocessor and the HW accelerators connection. The
result is propagated to the FG Memory Management step and then to the DP Mapping, where the
final SH/HW design is composed. In the scope of this paper, the communication of the Back-
ground (BG) Memory is organized by the SW executed on the microprocessor, using the HW of
the memory and the cache controllers of the target platform. Hence, the array accesses in SW are
compiled into load/store operations and the cache controller handles the data [70]. Application
platform independent transformations have been upfront applied.

The application domain under study is described by embedded systems applications with one
thread frame. The thread frame has deterministic behavior, i.e. consists of several condition
statements and nested loops, but without including any event triggered task generation or non-
deterministic elements. The application is highly data dominated with increased computation re-
quirements. The application real-time constraints are expressed as latency constraints, i.e. the

123

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

ALGORITHM 9: Application & Platform Domain Analysis
Step 1.1: Platform Analysis\
Determine HW parameters();
Step 1.2: Application Analysis\
Identify basic kernels;
for (i=0;i<NumOfKernels;i++) do

Profile ti;
Identify SW parameters();

Kernels=Sort based on ti;
Identify control flow;
Step 1.3: Decide SW & HW execution\
Step 1.3.1: Application Constraints\
fPC = max(AvfPC);
tSW=Assign(Application, PC);
ttot=tSW;
if (ttot <D) then

Exit;
High level estimate(tTR,Opt,CDFG);
if (tTR,Opt,CDFG > tHW) then

Exit(Change HW parameters);
High level estimate(CPHW,Opt,CDFG);
if (CPHW,Opt,CDFG > tHW) then

Exit(Change HW parameters);

High level estimate(tTR,Opt,CDFG);
if (tTR,Opt,CDFG > tHW) then

Exit(Change HW parameters);
Step 1.3.2: Kernel Constraints\
while (ttot > D) do

k=select i from Kernels;
tSW=ttot-ti;
tHW=(1-slack)*(D-tSW);
Assign(k,HW);
Compute BandW , ABandWBG,Opt;
if (BandW > ABandWBG) then

Repeat=1; break;
Compute ABandWPC−HW,Opt;
if (BandW > ABandWPC−HW,Opt) then

Repeat=1; break;
High level estimate(CPHW,Opt);
if (CPHW,Opt > tHW) then

Repeat=1; break;
if (Repeat==1 && SWsolution==1) then

ttot=tSW+tHW;
else

Exit(Change HW parameters);

allowed time between two parts of the application, and as throughput constraints, i.e. the number
of application executions that should be completed in a given time interval, or as their combina-
tion. The throughput is translated into a latency constraint and the kernel is unrolled based on the
Iteration Interval [106]. The derived latency constraint and the transformed kernel are inputs to
the methodology. When a combination of latency and throughput constraints exists, the through-
put constraint is translated to a latency constraint and the most restricting one is selected. For
instance, wireless applications usually have a throughput constraint per incoming sample and a
latency constraint over the payload processing of the wireless baseband. Multiple real-time con-
straints for different parts of the application are handled by distributing their effect over the dif-
ferent parts/kernels of the application code. When they focus on the same part, their requirements
are combined into a common delay constraint set. The platform domain is a heterogeneous FPGA
with a microprocessor core and parallel HW accelerators. When the platform or application do-
main is partly modified with similar characteristics, the main principles will remain valid and they
can be reprojected to produce the mapping methodology. For larger modifications to domains with
clearly different characteristics, a more extensive exploration of the new principles and projections
has to be initiated.

6.3.1 Step 1: Application & Platform Domain Analysis

The pseudocode of Application & Platform Domain Analysis step is depicted in Alg. 9 and ex-
plained in the next paragraphs.

124

Table 6.1: Main Application and platform domain Parameters used by the proposed method.
SW Parameters HW Parameters

Parameter Description Parameter Description
D Execution Deadline fHW Hardware Frequency
TP Throughput AvfHW Available HW Frequencies
tTot Total Execution Time fPC MicroPC Frequency
tSW Exec. Time in MicroPC AvfPC Av. MicroPC Frequencies
tHW Exec. Time in HW acc. fMem Memory Frequency

For each kernel i fMemBus Memory Bus Frequency
Regular Data-Dependent execution WMemBus Memory Bus Width
Data Number of transfered Data fBusPC−HW MicroPC & HW acc. Bus Freq.
DType Type of Data WBusPC−HW MicroPC & HW acc. bus Width
RF Iterations between Data reuse BusPC−HW MicroPC & HW acc. buses
RData Number of reused Data AvBusPC−HW Av. MicroPC & HW acc. buses
RType Type of RData SizeFG Size of FG memory
Res Number of results AvSizeFG Av. Sizes of FG memory
ResType Type of results WPLB PLB bus Width
V arData Variables for Ops. fPLB PLB bus Frequency
V TypeData Type of variables for Ops. MemBus Memory Buses
V arCntr Variables for control flow
V TypeCntr Type of control flow variables
OPsArithm Number of Arithmetic Ops.
OPsTypeArithm Type of Arithmetic Ops.
CostOPsTypeArithm Arithmetic Op Cost
OccOPsTypeArithm Arithmetic Op Occupation
OPsCntr Number of Control Flow Ops.
OPsTypeCntr Type of Control Flow Ops.
CostOPsTypeCntr Control Flow Cost
t execution time
iter Loop iterations

6.3.1.1 Step 1.1: Platform Analysis Step

The platform is analyzed to determine the HW parameters, which describe the physical constraints
of the main memory, the memory buses, the microprocessors, the buses between the cores, the
local memory, the HW accelerator. The main HW parameters are depicted in Table 6.1.

6.3.1.2 Step 1.2: Application Analysis Step

This steps determines the SW parameters by analyzing the application. The main SW parameters
are described in the left part of Table 6.1. The application real-time constraints determine the
throughput TP and the deadline D, which defines the maximum bound on the application execu-
tion time tTot, tTot ≤ D. For instance, in video applications the TP derives from the Frame Rate
(FR), i.e. frames per second, and D = 1/TP .

Based on the application structure, the loops, the basic kernels and the kernels execution time ti
are profiled. The kernel type is defined through the parameterRegular, i.e. whenRegular=1 it is
executed in every loop iteration, otherwise the execution depends on the specific values of the data
in the control flow operations. The kernel arithmetic operations are identified and characterized
by the cost (in terms of number of gates) and by the occupation factor. The number and the type
of the data required from the memory, the results, the variables of the arithmetic operations, their
dependencies etc. are identified. The control flow operations (e.g. parameters OPsCntr(p)) and
the corresponding variables (e.g. V arCntr(k)) are identified (Table 6.1). The main SW parameters
are depicted in left part of Table 6.1. The kernels are sorted by ti to identify the most critical ones.

125

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

6.3.1.3 Step 1.3: Decide SW & HW execution

This step decides the kernels to be mapped to SW and to HW. The microprocessor frequency fPC
is set to the maximum available. The time required to execute the application in SW, i.e. in the
microprocessor, is computed. If the ttot is smaller than the available timeD, the SW design meets
the timing constraints. A further exploration to decrease fPC while timing constrains are met, can
be applied. If ttot is larger than D, SW/HW designs are required. Then, a lower frequency for the
microprocessor is less efficient, because in order to meet D, parallelization of HW accelerators
would be required increasing the FPGA active area and energy consumption. This option will be
efficient if the TP and theD of the application requirements are quite low. Then, the microproces-
sor probably also meets the real-time constraints. To motivate a microprocessor lower frequency,
the platform should provide a fine-grained voltage selection or have a frequency reduction by at
least a factor of 2 for significant gain.

6.3.1.3.1 Step 1.3.1.: Application Constraints In this step is verified if the overall design
is possible based on constraint reasoning. In case operator strength reduction [34] has not been
applied during platform independent transformations, we replace the constant operations with sim-
pler operations, e.g. a constant multiplication is replaced by a sequence of Shift-Add (ShA) oper-
ations [142]. The bandwidth required to transfer the data from the memory is given by Eq. 6.2,
where the number and the type of data per kernel are accumulated (DataCDFG given by Eq. 6.1)
and divided by the available time D. The available bandwidth is given by Eq. 6.3. If D is less
than the time required to transfer the data, the problem is over-constraint. Hence, changes in the
platform characteristics, i.e. HW parameters changes, are required. Otherwise, SW/HW designs
are explored.

DataCDFG =
kernels∑
i=0

DTypes∑
j=0

Data(j) ∗DType(j) ∗ Iter(i) (6.1)

BandW =
DataCDFG

D
(6.2)

ABandWBG,Opt = MemBus ∗WMemBus ∗min(fMem, fMemBus) (6.3)

The critical path of the application CPCDFG,Opt is estimated in a high level way considering an
optimal mapping to the HW accelerator and taking into account potential HW area constraints,
e.g. based on the method of [47]. If the estimated critical path is higher than the available time,
D, the problem is over-constraint and HW parameters changes should be applied.

6.3.1.3.2 Step 1.3.2.: Kernel Constraints The SW/HW DSE is mainly based on the basic
kernels, which take nearly all of the required workload on the platform resources. The remaining
non-critical part of the code, which is usually dedicated to initializations, is assumed to be absorbed
in the slack that is introduced during themapping steps. For instance, the preamble/postamble code,
which may introduce non-regularity, is mapped to the microprocessor when the speed up factor

126

required to meet real-time constraints is quite low. When the speed up factor is significantly high
or the communication overhead is highly increasing [87], it is mapped to the HW accelerators. In
this way we can restrict the design-time spent on the entire application and the effort of industrial
designers. The available time is then fully focused on obtaining a near-optimal result for the kernels.
That part of the design effort should remain scalable because real-life applications will still involve
a substantial amount of code (several kernels) to be dealt with. The proposed methodology ensures
these characteristics.

The control flow operations can be executed either in the microblaze, i.e. parameterOPsCntr ∈
SW or implemented in the HW accelerator, OPsCntr ∈ HW . In the first case, the complexity
is moved to the microprocessor, whereas in the second case, dedicated control and diverse FUs
are inserted to the HW accelerator. By propagating the design objectives to these two options,
the control statements are selected to be executed in the microprocessor. In this way, the HW
accelerator design complexity and the synchronization between the microprocessor and the HW
accelerators is reduced, which allows a very efficient and high-performance HW accelerator CP
design dedicated only to the execution of the arithmetic operations.

The design objectives, i.e. area reduction, are propagated to select the kernels for mapping
in the HW accelerators. Hence, the smallest number of kernels should be mapped in the small-
est number of HW accelerators. The kernel with the highest ti is initially selected. When two
kernels have similar ti, the kernel with Regular = 1 is favored, due to the high HW accelerator
use, the execution regularity and the simpler synchronization scheme between microprocessor and
accelerators. The irregular part of the application is mapped to the microprocessor.

When kernel i is selected, the HW part has in the worst case tHW = (1− slack) ∗ (D − tSW)

using a slack percentage for the non-critical code. The kernel constraint verification is performed
based on the HW parameters and the optimal design. Hence, pipelining between the data fetching
from the memory, the data transferring to the HW accelerator and the computation of the HW
accelerators is assumed. The number of data required fromBGmemory are given by Eq. 6.4, where
Data(j) is the number of data with data type j for one iteration of the kernel i. The total number
of data is given by Eq. 6.5, where Iter(i) are the loop iterations of kernel i in the available time
tHW. The required (available) transfer bandwidth is given by Eq. 6.6 (Eq. 6.7). Similar equations
exists for the microprocessor to the HW accelerator transfer assuming optimal design, i.e. the bus
with the maximum bandwidth (Eq. 6.8). If the required bandwidth from the memory (to the
HW accelerator) is larger than the available one, the problem is over-constraint. In this case two
potential options exist: 1) HW solution: change the HW parameters, or 2)SW solution: increase
the available time tHW. The latter is expressed by mapping in HW the best candidate to reduce

127

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

ALGORITHM 10:Microprocessor & HW Accelerators Inter-Organization
Dependent=1;CoProcessor=1;Control=0;
Compute ABandWPC−HW;
if (BandW > ABandWPC−HW) then

Dependent=0;NPI=0;
Compute ABandWPC−HWPLB ;
if (tTR,PC−HWPLB > tHW) then

NPI=1;
Explore(SCIP-NPI);

High level estimate of tTR,PC−HW;
if (tTR,PC−HW << CPHW,OPt) then

tHW = tHW − tTR,PC−HW
Compute BusPC−HW;

tSW, and, thus increase tHW and reduce the required bandwidth.

Data =

DTypes∑
j=0

Data(j) ∗DType(j) (6.4)

DataTot = Data ∗ Iter(i) (6.5)

BandW =
DataTot
tHW

(6.6)

ABandWBG,Opt = MemBus ∗WMemBus ∗min(fMem, fMemBus) (6.7)
ABandWPC−HW,Opt = max(AvBus,PC−HW,max) ∗WBus,PC−HW,max ∗ fBus,PC−HW,max (6.8)

The next step is to estimate in a high-level way the critical pathCPHW,Opt of the HW accelerator
DP. This is achieved considering an optimal HW accelerator design that the platform constraints
allow based on the minimum possible path in terms of delay for the given target technology [47].
In this way, we can verify that the optimal HW accelerator can support the execution of the kernel.
If the optimal estimated critical path is larger than the available time, either the HW parameters
have to be modified or the tHW has to be increased.

6.3.2 Step 2: Microprocessor & HW Accelerators Inter-Organization

This step decides the organization of the microprocessor and the accelerators and the transferring
of the data between the cores. The pseudocode is depicted in Alg. 10.

6.3.2.1 Step 2.1: Microprocessor & HW acceleration connection

This step decides the organization of the microprocessor and the accelerators. A HW accelerator
can be integrated into the platform in several ways as depicted in the parametric template of Fig. 6.2.
Table 6.2 shows the corresponding design options.

A HW accelerator can be fully independent or partially dependent on the microprocessor
(parameter Dependent). When the parameter Dependent = 1, the HW accelerator partially
depends on the microprocessor. It reuses the microprocessor resources, e.g. memory inter-
face, which reduces the custom design complexity, the area and the energy consumption. When

128

Table 6.2: Truth table of Microprocessor & HW Accelerators Inter-Organization
Parameters HW Accelerator Connection

Dependent Co-processor Control NPI
0 Not-care Not-care 1 Standalone Custom IP-NPI
0 Not-care Not-care 0 Standalone Custom IP-PLB
1 0 Not-care Not-care Internal FU
1 1 0 Not-care Base Co-processor
1 1 1 Not-care Control Co-processor

SDRAM

Processor Local Bus (PLB)

…
Controllers, other IPs, etc...

I-Cache BRAM

D-Cache BRAM

BRAM

PLB

Initial Microprocessor

1 0

HW accelerator

CoProcessor

1 0

Fast Simplex

Links (FSLs)

…

…

Custom HW

Fast Simplex

Links (FSLs)

…

…

HW accelerator

…

Microprocessor

HW accelerator

…
…

Dependent

1 0 HW acceleratorNPI

…

HW accelerator

HW

Control

Unit
FG Memory &

Datapath

Control

Figure 6.2: Inter-Organization of the microprocessor & the HW accelerator parametric template.

Dependent = 1, the HW accelerator can be implemented as an extension of the internal Function
Units (FUs) of the microprocessor or as external co-processor (parameter CoProcessor). When
CoProcessor = 0, the HW accelerator is implemented as an internal FU. This implementation
affects the critical path of the microprocessor potentially reducing the fHW(fPC), which is not ac-
ceptable since real-time constraints may be not met. The implementation of the HW accelerator
as a co-processor (CoProcessor = 1) removes these limitations. The microprocessor and the
co-processor can execute different parts of the application at the same time. Hence, the micropro-
cessor can be used for the memory address generation and the fetching of data from the memory,
while the co-processor executes the kernel operations. The interconnection of the microprocessor
and the co-processor is quite fast, a small latency (one or two cycles) is required to write (read) the
data to (from) the co-processor, which makes this option Pareto (near-)optimal for our domain,
when constraints allow it.

When parameterDependent = 0, the HW accelerator is connected independently from other
HW resources to the communication channel (Standalone Custom IP - SCIP). In this design, apart
from the FG memory and the DP, the HW accelerator has a BG memory interface, similar to
``Fire and Forget'' model. The BG interface can be implemented by: 1) a custom design, e.g.
an Native Port Interface (NPI) [207] (expressed through parameter NPI=1) designed to control
the memory in the most efficient way, or 2) using a common bus protocol, e.g. Processor Local
Bus (PLB) (NPI=0). The first case is optimal, but with higher area and design effort, which is
acceptable when other approaches are over-constraint (see below). The second case is less efficient

129

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

due to the bus protocol bottleneck. In the case when the bus option cannot provide the required
bandwidth, a NoC based communication topology can be explored as valid option to replace the
bus option.

In the co-processor implementation two further options exist for the control, i.e. loop organiza-
tion, control operations and structure. It can be common or different between the microprocessor
and the co-processor. When parameter Control = 0, the microprocessor takes care of the control
of the kernel operations that are executed on the DP of the co-processor. The responsibility for
the synchronization of the data between the two cores resides on the microprocessor. This allows
a more efficient, smaller area and lower energy consumption design of the co-processor (Base co-
processor). This option fully meets the design objectives, so it is a Pareto (near-)optimal for simple
synchronization schemes. The microprocessor is responsible for invoking the co-processor, which
executes the operations and writes back the result. If Control = 1, different control structures can
exist in the processor and in the co-processor. The co-processor requires a HW Control Unit, e.g.
Finite State Machine (FSM), to support the correct functionality of the DP and the communication
from/to the microprocessor. By propagating the design objectives, this option is potentially sub-
optimal due the increased co-processor area. However, when the design synchronization is more
complex, this option should be valid.

6.3.2.2 Step 2.2: Microprocessor & HW acceleration communication

This step is dedicated to organizing the transferring of the data between the cores. The available
bandwidth to transfer the data between the cores for the less costly design is verified if it is suf-
ficient. The available bandwidth of the Base co-processor design is given by Eq. 6.9 considering
optimal data transfer, i.e. the maximum number of buses between the cores. When the bandwidth
is insufficient, the alternative designs are explored. The next less costly option is the Standalone
Custom IP with PLB and last the high design effort option of the Standalone Custom IP with NPI.

ABandWTR,PC−HW = max(AvBus,PC−HW) ∗WBus,PC−HW ∗ fPC (6.9)

If the bandwidth of the optimal parallel transfer is acceptable and the time required to transfer
the data tTR,PC−HW is computed. The available time tHW is updated based on the time required
to transfer the data from the background memory and it is verified if enough time is available
to transfer the data. The number of minimum required parallel transfers, i.e. the BusPC−HW,min,
derives from Eq. 6.10. If tTR,PC−HW is negligible compared to the estimated critical path of the
DP, sequential data transfer can be selected to reduce the design effort. In this case, the lifetime
of the variables in the FG memory is increased, which restricts the next mapping step. By giving
different values to the number of transfers (which still satisfy the minimum requirements) different
pareto points are produced. The available time for computation is updated, tHW=tHW-tTR,PC−HW.

BusPC−HW = (int)
BandW

ABandWTR,PC−HW
(6.10)

130

The application is transformed accordingly with the corresponding operations to write and read
the data to the bus connecting the microprocessor and the HW accelerator. The scheduling of the
transfers and their address generation (e.g. DMA or Load/Store instructions) is taken care of by
the Microprocessor compiler.

6.3.3 Step 3: Foreground Memory Management

The dimensioning and the management of the FG Memory is decided in this step. The corre-
sponding pseudocode is depicted in Alg. 11. The size of the FG Memory of the microprocessor
is given by the platform parameters, whereas the FG memory of the HW accelerator is deter-
mined by the required data for the kernel execution. The FG dimensioning and the operations
executed in the HW accelerator depend on the constraints propagated from the previous steps:
WhenDependent = 1 and Coprocessor = 0, the FG of the HW accelerator is the FG of the mi-
croprocessor. When the Coprocessor = 1, the scalars to be stored in the FG Memory are based
on the Control parameter. If Control = 0 only the scalars for arithmetic operations are stored in
the FG, i.e. the Data from BG memory, the arithmetic variables, the intermediate results and the
final results. If Control = 1, the scalars for the control flow are also stored in the FG, since the
control flow operations are executed in the HW accelerator. The FG should be sufficiently large
to support all the control and flow operations, increasing energy consumption and reducing the
opportunities for DP parallelism. When the parameter Dependent = 0, the FG Memory of the
HW accelerator should store the scalars required for control and arithmetic operations.

The bandwidth and the energy requirements for BG memory are reduced by replacing several
BG accesses with FG ones. In the Pareto optimal case, only the new Data are transfered from
the BG memory and the intermediate results are kept in the FG memory avoiding register spilling.
Otherwise the most used scalars are maintained in the FG memory and the remaining ones are
stored back to the BG memory, increasing the latency and the number of future accesses to FG
memory. The spilling option is acceptable, if HW parameters restrict the optimal option.

Initially, a cost operations analysis takes place, as it affects the scalars required to be stored in the
FG memory. Each operation type of the kernel is evaluated based on the number of gates and the
occupation factor. If an operation type is characterized as costly (during application analysis) and
has a low occupation factor, exploration is applied to replace it by smaller and simpler operations,
which require less gates to be executed. In this way the area is reduced and the use of the simple
resources is highly increased. The kernel loop is transformed accordingly.

The next step is to define theHWaccelerator primitive operations, i.e. the operations used in the
data path. This step is similar to the instruction set selection process in microcoded processors [91],
but modified for the HW accelerator operations. The primitive operation selection can be achieved
through exploration based on techniques that use cost functions related to the utilization of the
operations, the area cost, the critical path etc. After the primitive operation set selection, the
application code is modified accordingly and a new estimation of the critical path is used to verify
that the real-time constraints are met.

131

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

ALGORITHM 11: Foreground Memory Management
OPs =

∑OPsTypeArithm
n=0 OPsArithm(n)

if (Coprocessor==0) then
SizeFG = SizeRegFile; Exit;

if (Dependent==0)||(Dependent==1 &&
Coprocessor==0 && Control=1) then

OPs = OPs+
∑OPsTypeCntr

n=0 OPsCntr(n)
Evaluate(OPs);
Select primitive operations;
UFFG=1;
Evaluate Reg(UFFG);
Compute UFG;
NumReg=FG;
Exploration(UFFG,∞);
if (NumReg < NumReg,Max) then

NumReg=FG;
Exploration(UFFG, NumReg,Max);

AccessesFG=Count(RD,WR,MLT);
FG Exploration(UFG,Max){

while (UFG < UThr) do
Update UFFG; Evaluate Reg(UFFG,Max);
Compute UR;

while (CPFG < tHW) do
Reduce NumReg;
Evaluate Reg(UFFG,NumReg);

}
Evaluate(OPsType){
for (j=0;j<OPsType;j++) do

if (Costj >Threshold) then
Explore for transformation of operation(j);
Update(SW Parameters);
Transform(Code);

}
Evaluate Reg(UF,PF,Max){
Compose HDFG(UF,PF);
Compute life time(HDFG);
SLT=Sort(life time);
MLT=Left edge algorithm(SLT,Max);
NumReg=Count(MLT);
}

A Hierarchical Data Flow Graph (HDFG) with the primitive operations is introduced, which
includes the data dependencies, (satisfying the control dependencies), the operations of both
branches in a control flow operation and the loop structure information. The HDFG provides
a relevant ordering of the operations based on a realistic optimistic scheduling, i.e. As Soon As
Possible (ASAP) of the critical path and As Late As Possible (ALAP) of the remaining operations.
This realistic optimistic scheduling leads to smaller scalar life times. The next step computes the
life time of the scalars of the HDFG, e.g. using technique in [157]. The result is sorted per slot in
increasing scalar lifetime to enable an efficient register allocation algorithm, e.g. left edge [170].
It merges the scalars with non-overlapping lifetime. It starts from the second slot and moves the
scalars to the left to be merged with scalars whose lifetime has terminated. The result NumReg

provides the minimum number of registers for the realistic optimistic scheduling.
TheHDFGof the one execution of the kernel i is explored and theminimumnumber of registers

is computed (NumReg) for this maximally parallel execution order. The utilization of the scalars
UFG is computed by Eq. 6.11. If the scalars are distributed in a less balanced way and several holes
exists, unrolling by a factor of UF is explored to increase the utilization of the FG resources. The
UFFG is estimated by Eq. 6.12 and the FG dimensioning process is repeated.

UFG =

∑NumReg
i=0 Holes(i)

NumReg ∗ Slots
(6.11) UFFG =

1

UFG
(6.12)

The FG critical path is computed based on the control and data dependencies and on an es-
timation of the fHW, e.g. the lower bound of fPC. If the critical path is lower than tHW, the time
slack can be used to increase the schedule length and to reduce the number of registers. In case

132

ALGORITHM 12: Data Path Mapping
Step 4.1: DP Mapping\
Allocate(Primitive Ops,Single HW);
Schedule, Assign(UFFG,Single HW);
UFHW=1;
Compute UOp;
while (UOp < UThr) do

Update UFHW;
Schedule, Assign(UFHW,Single HW);
Compute UR;

if (fHW > fPC) then
Estimate PL stages;
Pipeline(PL);

if (CPHW < tHW) then
Parallelize(PF,Single HW);

if (CPHW < tHW) then
Pipeline(PL);

Step 4.2: FG Memory Connection\
Estimate ABandWFG;
NumFG,Ports= BandW

ABandWFG
;

Allocate ports;
Connect(DP,FG);

a HW parameter constraints the number of available registers (NumReg,max) and it is lower than
the NumReg of the realistic optimistic scheduling with explored potential time slack, the left edge
algorithm is repeated by taking the NumReg,max constraint into account. The scalars with small
lifetimes are allocated in the available registers, whereas the scalars with long lifetimes are the first
candidates for spilling to BG memory. Although the register spilling increases the latency and the
number of FG accesses, it also reduces the maximal size of the simultaneously alive scalars and,
thus, also the FG memory size, as desired. Based on the requirements different design points for
the FG memory management are produced. The register width ismax(DType, V Type,Rtype).
The number of accesses, i.e. reads and writes, to the FG memory are computed by Eq. 6.13. The
available FGmemory bandwidth is also required to determine the ports of FGmemoryNumFG,Port.
However, we can postpone the computation of the available bandwidth as it is not essential for DP
mapping. The number of ports and the final FG memory scheduling are decided after the data
path mapping, where the required information is available.

AccessesFG =

Numi∑
i=0

Scalars(i)∑
j=0

(WRj +RDj) (6.13)

6.3.4 Step 4: Data Path Mapping & Final Design

The data path design and the connection to the FG memory are decided in this step. The pseu-
docode is depicted in Alg. 12.

6.3.4.1 Step 4.1: DP mapping

This step determines the data path design based on propagated design constraints of previous steps.
When the parameter Dependent = 0, the DP of the HW accelerator executes both control and
arithmetic operations. When Dependent = 1 and Coprocessor = 0, the DP executes only the
arithmetic operations and the control is at the microprocessor. When the Coprocessor = 1, the
size of the DP and the executed operations are based on the Control parameter. If Control =

133

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

1, the control is executed on the co-processor. If Control = 0, the HW accelerator control is
executed on the processor DP and the arithmetic operations on the HW accelerator DP. The size
of the DP of both the processor and the HW accelerator should support the maximum length of
the Data and the V ariables.

The FGmemory management step propagates the kernel i potentially unrolled by the estimated
UFFG. The primitive operators are allocated, the kernel is scheduled and assigned on the single
HW accelerator (a survey of techniques is available in [101]). The utilization of the primitive
operators UHW is given by Eq. 6.14 and it is used to decide on further unrolling to better utilize the
HW operators. The scheduling and assignment step is reapplied with UFHW.

UHW =

∑NumHWOps
i=0 Holes(i)

NumHWOps ∗ Slots
(6.14) UFHW =

1

UHW
(6.15)

The critical path of the single HW accelerator CPHW is computed by accumulating the latency
of the operators in the critical path of the design. and the fHW is determined (fHW = 1

CPHW
). If

fHW ≥ fPC, the fHW is set equal to fPC in order not to increase unnecessarily the area. If a further
increase is required, it will be verified in the next step. If the fHW < fPC, pipelining is inserted
to increase the fHW up to fPC. The number of pipeline stages PL (Eq. 6.16) is determined by
a balanced split of the critical path. An unbalanced split is a less efficient trade-off option since
the unbalanced ``fast'' pipeline stages consume more energy than required. If the CPHW ≤ tHW,
where tHW describes the available time left, the single HW accelerator design meets the real-time
constraints. Otherwise parallelization across multiple HW accelerators (each with their own FG
memory access ports) is considered to meet the real-time constraints. The Parallelization Factor
PF is given by Eq. 6.17. The critical path is reduced (Eq. 6.18), since the different iterations are
executed in PF HW accelerators.

PL =
fPC
fHW

(6.16)

PF =
tHW

CPHW
(6.17)

CPHW =
CPHW
PF

(6.18)

If HW constraints exist over the PF and we still cannot meet the application timing require-
ments, the last option is to use a different frequency in the HW accelerator and the Microproces-
sor. This introduces additional overhead due to the required synchronization of the cores, which
increases the area and the operations. However, it is a valid option when the other design options
are over-constraint. A further exploration is to produce a design by selecting the next kernel in the
sorted list of candidates to be assigned to a HW accelerator. The time required on the Micropro-
cessor (which is in the overall critical path) is reduced and hence it allows to increase the available
time for the HW accelerator execution. The objective function results of these two alternatives
should then be compared to identify the most Pareto-optimal one. Hence, different pareto points
are finally developed and the over-constraint ones are removed (as illustrated in Section 6.5).

134

6.3.4.2 Step 4.2: FG Memory Connection

This step determined the FGMemory Connection. The FG memory bandwidth is determined and
the available bandwidth per register with one port is computed by Eq. 6.20. The required bandwidth
derives from Eq. 6.19 and thus the required number of ports is given by Eq. 6.21. The allocation of
ports and the final scheduling of the FG memory is performed, e.g. by using the technique in [16].
The final connections between FG registers and the accelerator logic are inserted [11].

RBandWFG =
AccessesFG

tHW
(6.19)

ABandWFG = fHW ∗NumReg (6.20)

NumFG,Port =
RBandWFG
ABandWFG

(6.21)

6.4 Demonstrator Design: Real-Life Microfluid Application

This section illustrates the proposed methodology by deriving a near-optimal SW/HWmapping of
a bioimaging application on a FPGA board. For different application characteristics, the proposed
methodology develops different near-optimal designs which create the Pareto curve (Section 6.5).

6.4.1 Step 1: Application & Domain Analysis

6.4.1.1 Step 1.1: Platform Analysis

Our target HW platform is the Virtex-5 FPGAML-507 Evaluation Platform with one Microblaze
Soft processor set. A SDRAMDDR2main memory, a data and an instruction cache of 16 KB and
a local memory of 32 KB are used. The data and the instructions are fetched by the HW cache
controller. The HW parameters are identified from the board characteristics, e.g. WBusPC−HW=32
bit, BusPC−HW=16, AvBusPC−HW=1 to 16 etc.

6.4.1.2 Step 1.2: Application Analysis

The demonstrator is a bio-image analysis used in a blood analysis application executed on a Lab-
on-Chip (LoC)micro-fluid device. The image taken by the FPGA camera is depicted in Fig. 6.3(b).
During the set-up, the frame (the continuous box of Fig. 6.3(b)) and the coordinates of the micro-
fluid pipes are detected. Based on the application specifications, the frame can be rotated only
±3◦. During the LoC device normal function, an angle detection algorithm and a detection of the
fluid's fronts coordinates algorithm is executed in each frame. The pseudocode of the application
is depicted in Fig. 6.3(a). The fluid velocity is computed based on the coordinates of the fronts
determining the provision of required liquid quantity. The angle detection algorithm requires only
the vertical line in the window where it is applied (dotted box of Fig. 6.3(b)). It applies the Canny
algorithm for finding the intensity gradient of the image using a horizontal contrast 3x3 Sobel

135

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

uint8 f[N][M];
int Coordinates, Mask[3][3], Gx[M]; Angle[M];
if (Set-up):
Detect Frame position(f);
Identify pipes coordinate(f);
/*AngleDetection*/
for (row=1; row<N-1; row++):
Initialization();
for (col=1; col<M-1; col++):
for (rowOff=-1; rowOff≤1; rowOff++):
for (colOff=-1; colOff≤1; colOff++):
Gx[col] +=
f[row+rowOff][col+colOff]*Mask[rowOff+1][colOff+1];

Gx[col] = abs(Gx[col]);
if (Gx[col]! =0):{Angle[col]=90;}
else:{Angle[col]=0;}
if (Angle[col-1]==90):
if (Gx[col-2]<Gx[col] || Gx[col-1]<Gx[col-2])):
if (Gx[col-1]>Threshold): {HoughAccum.(row,col);}

LineSuppression;
FluidDetection(f);

(a)

(b)

Figure 6.3: Real-time bioimaging application:(a) Pseudocode and (b) image taken by the micro-
fluid device camera: the box is the outline frame and the dotted box is the angle detection window.

(middle column multiplicands are 0) and a Hough transform version, since the vertical line com-
putations are required with small angles, e.g. [−3◦,+3◦]. If the Sobel kernel's result is an edge
point, the Hough transform maps it to the Hough space and stores the results to the accumulator
matrix. The final line is detected by suppressing the neighborhood lines. The fluid coordinates are
derived by subtracting the micro-fluid pipes of two successive frames and by computing the cen-
troid of the result. The SW parameters are defined, e.g. for the intensity gradient kernel Data=6,
since 6 pixels are required for the horizontal contrast 3x3 Sobel mask, Res=2 for the angle and
the gradient, ResType=32 bits etc.

We demonstrate the proposed methodology for a 200x16 window and FR=100 frames/sec.
The throughput is given by the video frame ratio, i.e. TP=100. The D=10 msec to execute the
angle detection algorithm and the algorithm for the detection of the fluid fronts, tTot = tAngle+tFluid.

6.4.1.3 Step 1.3: Decide SW & HW execution

The Microblaze frequency is set to the maximum allowed, i.e. fPC=max(AvfPC)= 125 MHz,
tFluid=4.87 msec and the tAngle=2.87 msec. The SW design meets the deadline constraints and
thus no HW accelerator is required. To demonstrate the next steps of the proposed methodol-
ogy we use a frequency of fPC=83,33 MHz. In this case, the platform is compatible with Avnet
Spartan-6 LX150T Development Kit, wheremax(AvfPC)=83,33 MHz. The detection of the fluid
fronts' coordinates depends on the number of fluids fronts and the frame resolution. For small
frame resolution (640x480) and 2 fluids fronts, it executes in 1.23 msec in SW. For the minimum
quality application specifications (small frame and 3 edges) the average execution time is estimated
at 3.9 msec and for the maximum quality (1024x1024 and 7 edges) is 7.3 msec. The angle detec-

136

tion requires 4.31 msec (Subsection 6.4) when executed on the Microblaze Soft microprocessor.
The execution time of the application for a 200x16 window is tTot = 4.31+(3.9 to 7.3) msec=8.21
to 11.61 msec. Hence, real-time behavior is not always achieved (tTot,MinQ < D < tTot,MaxQ), and
thus SW/HW designs are required.

6.4.1.3.1 Step 1.3.1: Application Constraints We apply strength reduction to remove the
costly multiplications by constant, e.g the constant values of multiplications are analyzed, the mul-
tiplications with the value of 1 and 0 are removed and the remaining ones are replaced by Shift and
Add operations. Based on application profiling the most time consuming regular task is the angle
detection algorithm and thus its critical kernels should be explored for mapping on HW acceler-
ators. Since the application time exceeds the D for a small value, it is possible by mapping part
of it to the HW accelerator to meet the real-time constraints. The bandwidth required to trans-
fer the data for the kernels to the microprocessor BandWCDFG=227,556 bits/msec and the band-
width provided by the BGmemory of the platform in the optimistic caseABandWBG=10,666,240
bits/msec.

6.4.1.3.2 Step 1.3.2: Kernel Constraints To safely meet the real-time constraints, the avail-
able time for executing the angle detection is tAngle = D − tFluid=10.0-(3.9 to 7.3) msec=6.1 to
2.7 msec, and the worst-case is considered, i.e. tAngle=2.7 msec. Based on the profiling of the
application analysis, the main loop takes 68% to execute the kernel for the intensity gradient of
the image and the kernel for creating the Hough accumulator array. The execution time of the
two kernels is similar (31% and 33% respectively) with the intensity gradient kernel to be regular.
The application of the horizontal 3x3 Sobel mask is the 90% of the intensity gradient kernel, so it
is the first candidate for implementation in HW (RegularSobel=1). When a slack of 10% is used
for the non-critical part of the code, the available time is tHW=0.9*(0.9*0.31*2.7)= 0.677 msec.
The data required to be transfered are Data=614,400, when 32 bits are used to store the data of
the image and the required bandwidth to transfer the data is BandW=906,235 bits/msec. The
available bandwidth of the BG memory ABandWBG is 10,666,240 bits/sec., when 128 bits are
transfered and 2,666,560 bits/msec when 32 bits are transfered. The available bandwidth to trans-
fer the data from the microblaze to the HW accelerator is ABandWPC−HW=42,664,960 bits/msec
when all Fast Simplex Links (FSLs) are used in parallel. An estimation on the optimal critical
path is CPHW,Opt=0.028 msec without area constraints using a LatencyADD/SUB/COMP=2 nsec
from the FPGA platform. Hence, mapping the most critical kernel withRegular = 1, i.e. the 3x3
Sobel mask, on HW accelerator is enough to meet the real-time constraints.

6.4.2 Step 2: Microprocessor & HW Accelerators Organization

Since the design objectives are minimizing the area and thus reducing the energy consumption
while the real-time constraints are met, the HW accelerator is efficiently connected through FSL
to the Microblaze Soft Processor as a co-processor (CoProcessor = 1 and Dependent = 1).

137

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

The Microblaze is responsible for the synchronization and the loop organization between the com-
ponents (Control = 0). Hence, the application loops are modified accordingly to support the
common control of both cores. The Microblaze provides the appropriate information for one ex-
ecution of the co-processor in the corresponding FSL, i.e. the required pixels accessed from the
memory. Then the co-processor reads the data, executes the operations and writes the results, i.e.
the gradient and the angle, to the FSL. The FSL width should be WBusPC→HW = 32bits to support
the maximum width of transfered data. The required bandwidth to transfer the data within tHW

is 906,235 bits/msec and the available bandwidth in the optimistic case, i.e. 16 FSL are used, is
42,664,960 bits/msec, which is sufficient. The time required to transfer the data is tTR=0.014 msec
when all FSL are available. The bandwidth of one FSL is 2,666,560 bits/msec. The minimum re-
quired parallel transfers is 1 and the transfer time is 0.23 msec.

6.4.3 Step 3: Foreground Memory Management

The cost operation analysis does not modify the kernel, since the operations after strength reduction
are simple and highly used. In this case study, the inner kernel is mapped to a primitive operation.
The HDFG is the degenerated case of 6 registers for the inputs, each one with 1 write and 1 read
operation to the FG memory, and 2 registers for the results, each one with 1 write and 1 read.
The registers width is 32 bits to support the maximum data type. The total AccessesFG=56,000
and one register port provides 83,330 accesses/msec. The FG critical path is estimated by 11,200
accesses and the lower allowed frequency (fPC=83,33 MHz) at 0.134 msec.

6.4.4 Step 4: Data Path Mapping & Final Design

6.4.4.1 Step 4.1: Data Path Mapping

Fast Simplex

Links (FSLs)

SDRAM

Processor Local Bus (PLB)

…
Controlers, IPs, etc...

I-Cache BRAM

D-Cache BRAM

Sobel

Co-Processor

+<<

REG -
<< +

+
- comp

…

Custom

HW

BRAM

…

REG

Figure 6.4: The HW platform architecture and the final design for the Microblaze and the HW
accelerator of the demonstrator application.

The control of the loops, the FG memory scheduling and the initialization code are executed
on the Microblaze DP. The primitive operator is described by the arithmetic operations executed
on the co-processor, i.e. OPs = NumSHIFT +NumADD/SUB/COMP=2+6, which are implemented
by 2 Shift FUs (S-FUs) and 6 Add/Sub/Comp FUs (A-FUs). To reduce the area, a S-FU can

138

be combined with an A-FU in one Shift-Add (SA) FU and thus 4 SA-FUs and 8 A-FUs. The
DP bus width should support the result and the operands of the primitive operation, i.e. 32 bits.
Further unrolling is not required since full utilization of the primitive operations is achieved. The
CPHW=0.0177 msec and fHW=157,679 MHZ. The frequency is set to fPC to avoid extra synchro-
nization and meet the real-time constraints, CPHW=0.0336 msec. When the data transfer and the
computation are executed sequentially the total time is 0.628 msec.

6.4.4.2 Step 4.2: FG Memory Connection

The required FG bandwidth RBandWFG is 82,600 accesses/msec, the available FG bandwidth of
one port is 83,330 and thus 1 port is sufficient to meet the bandwidth.

6.5 Experimental Results

In this section, we show a broad range of different designs derived from the proposed methodology
based on the application characteristics to create a Pareto curve for mapping of the application to
the FPGA. The performance is measured by execution and the microcode provided by SDK for
ML-507 cx5vfx70t-ff1136 platform, the HW accelerator area from XST and the Total area from
the XPS EDK Xilinx tool.

6.5.1 Real-Life Microfluid Application

The angle detection algorithm is applied for a 640x480 frame resolution, a 200x16 window and
100 frames/sec. The results for the different designs are depicted in Table 6.3. The SW Sobel
MUL in the execution of the reference angle detection routine with multiplications on the Mi-
croblaze Soft processor, the SW/HW MUL design puts the critical kernel in a co-processor with
multipliers and it is representative for the existing state-of-the-art HW/SW FPGA mapping tech-
niques (Section 6.2). The estimated results based on the microcode provided from the Xilinx
compiler lead to at least 225,900 cycles. The extra area is quite large, i.e. 32 slices and 12 DSP48e
Slices. The DSP48e Slices are more complex and the total area will be significantly larger. A
lower bound is computed based on DSPSlices = 4 ∗ CLBTot = 4 ∗ 2 ∗ Slices, i.e. ≈ 128
slices. The SW/HW-1FSL design derived from our methodology achieves gain of 47.11% and
the extra HW area is 231 slices. The proposed SW/HW design hides the overhead of the address
generation and the memory accesses as they are executed by the processor, while the co-processor
computes the set of the Sobel masks. The DP of the co-processor includes no idle cycles during
the mask execution, since the data are already available and efficient mapping of the operations
to the co-processor is achieved. To compare the proposed design, we insert the HW design with
the memory management performed by the Microblaze with a lower bound of 69,484 cycles and
of 375 slices. The most performance-efficient design is the application-specific HW with custom
memory management and DP dedicated to the specific application, which requires a very large

139

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

Table 6.3: Performance & area for demonstration case study.
Design Performance Performance Area

200x16 Window 300x75 Window HW Acc. Total
Cycles Time(ms) Cycles Time(ms) Slices Slices

SW MUL Ops 358,996 4.31 1,458,006 17.50 0 4210
SW/HWMUL 231,444* 2.78* 765,901* 9.19* ≈128* 4284*
SW/HW-1FSL 189,864 2.28 439,591 5.27 114 4255
SW/HW-6FSL 176,004 2.11 330,821 3.97 114 4268
SW/HW-2PF-1FSL 174,618 2.09 319,944 3.84 231 4374
SW/HW-2PF-6FSL 167,688 1.98 265,559 3.19 231 4385
SW/HW Sobel&Hough-6FSL 98,705* 1.19* 196,576* 2.36* 314* 4505*
HW &Microblaze M.M. >70,000* >0.84* >182,638* >2.19* >375* >4581*
HW & Custom M.M. >46,000* > 0.56* >142,218* >1.77* >550* >4721*

*estimated

0

50

100

150

200

250

300

350

4200 4300 4400 4500 4600 4700 4800

P
e

rf
o

rm
an

ce
(K

C
yc

le
s)

System Area(Slices)

SW MUL Ops SW/HW MUL

SW/HW-1FSL SW/HW-6FSL

SW/HW-2PF-1FSL SW/HW-2PF-6FSL

SW/HW Sobel&Hough-6FSL HW Microblaze M.M.

HW Custom M.M.

Figure 6.5: Pareto curve for 200x16 window.

design effort and time. Those are not reusable across different applications so the NRE cost will
be shared for a relatively small market volume. For deep sub-micron process technologies with
hugely increasing NRE costs, that is a clear disadvantage. The proposed methodology design
achieves gain of 79.29% in area compared to the conventional HW design.

We modify the application requirements and briefly describe the different SW/HW designs
derived from the proposed methodology to compose the Pareto Curve depicted in Fig. 6.5. When
the frame rate is increased to 105 frames/sec, D=9.52 msec, tAngle=2.22 msec and tHW=0.558
msec (Alg. 9). The time estimation of transferring the data is 0.23 msec from the BG memory
(Eq.6.1-Eq.6.3), 0.23 msec to the co-processor (Eq.6.4-Eq.6.8) and 1.168 msec is the critical path
of the FG and the DP (Alg. 10). Then, parallel FSL (Eq. 6.10) are required to transfer the data
to decrease the transfer time to 0.038 msec (SW/HW-6FSL). When the frame rate is increased
to 115 frames/sec, tAngle=1.39 msec and tHW=0.351 msec. The time estimation is 0.23 msec
for transferring from the BG memory (Eq.6.1-Eq.6.3) and to the co-processor (Eq.6.4-Eq.6.8),
which exceeds the available time. Hence, parallel FSL are required (Eq. 6.10). Even then the
required time is 0.439, which exceeds the available time. Parallelization is explored with a factor
of PF=3 (Eq. 6.17). The total time is estimated at 0.32 msec (Alg. 12). Since the PF is highly
increased, the option of mapping the second kernel to a HW accelerator is explored. Then, the
tHW=0.765 msec, the BandW=1,271,706 bits/msec (Eq. 6.6), the estimated critical path of the
Hough kernel is CPHW,Hough=0.039 msec and the total critical path based on the dependencies is

140

Table 6.4: Performance & area for PolyBench Benchmark Suite.
Bench. Design

Performance HW Acc.
(Cycles) Primitive CP f Slices DSP Total

Operations (ns) (MHz) Slices Slices

2mm

SW 6,000,208 - - - - - -
SW/HW 2,155,152 1-2PL 10.17 98.32 38 6 1342 10.11 98.87 24 3

SW/HW-2PF 1,298,043 1-3PL 10.44 95.8 71 12 2632 11.49 87.06 48 6
3mm SW 9,067,317 - - - - - -

SW/HW 3,227,592 1 10.13 98.67 22 3 46
SW/HW-2PF 1,832,904 1 11.48 87.08 50 6 98

Bicg SW 128,678 - - - - - -
SW/HW 48,256 1 10.11 98.91 42 6 90

Gemm
SW 3,648,404 - - - - - -

SW/HW 2,246,593 1-2PL 10.22 97.81 41 6 89
SW/HW-3PL 2,190,881 1-2PF 10.65 93.9 73 12 169

Gesummv
SW 143,301 - - - - - -

SW/HW 70,753 1 10.11 98.87 24 3 48
SW/HW-2PF 65,633 1 11.49 87.06 48 6 96

Atax SW 139,420 - - - - - -
SW/HW 80,790 1 10.13 98.67 22 3 46

Cholesky SW 374,334 - - - - - -
SW/HW 70,753 1 10.31 96.99 25 3 49

Gemver

SW 251,550 - - - - - -

SW/HW 96,650
1 11.48 87.08 50 6

2032-2PL 10.17 98.32 39 6
3 2.67 374.96 18 0

Jacobi_2d SW 1,333,510 - - - - - -
SW/HW 303,464 1 6.59 151.86 80 0 80

Correlation

SW 4,413,504 - - - - - -

SW/HW 1,084,299
1 2.65 376.65 16 0

11942 11.91 83.97 32 6
3-3PL 44.82 22.31 1028 3
4 10.13 98.67 22 3

SW: Software, SW/HW: Co-design, PF=Parallel Factor, PL=Pipeline stages

CPHW,Tot=0.082 msec. When 1 FSL is used (Eq. 6.10), the total time exceeds the available. With
6 parallel transfers for the Sobel kernel and a sequential transfer for the Hough, the total estimated
time is 0.675 msec. The window of applying the angle detection is increased (300x75) and 8 bits
are used to store the data. Then, more cycles are required for the execution and less bandwidth
for the transfer. For 60 frames/sec, D=16.06 msec, tAngle=9.36 msec and tHW=2.351 msec. The
required bandwidth is BandW=115,303 bits/msec (Eq. 6.6), the estimated time for BG transfers
is 0.40 msec (Eq.6.1-Eq.6.3), for parallel FSLs is 0.067 msec (Eq.6.4-Eq.6.8) and the critical path
is 2.33 msec. Parallelization is explored (with PF=2 (Eq. 6.17)) to meet real-time constraints.

Industrial design practices with experienced designers will potentially also reach these results,
but with substantial design effort and without the guarantee of systematically finding the relevant
Pareto points.

6.5.2 PolyBench Benchmark Suite

The PolyBench benchmarks [159] is a polyhedral benchmark suite with static control parts and
has as purpose to uniformize the execution and monitoring of kernels. It includes linear-algebra,
data-mining, medley and stencils kernels. The PolyBench benchmarks are usually used as parts
of more complex applications with real-time constraints, e.g. matrix matrix multiplication is used
in signal processing applications, jacobi is used to determine solutions of linear equations etc. A

141

6. DESIGN EXPLORATION METHODOLOGY FORMICROPROCESSOR & HW
ACCELERATORS

0

100

200

300

400

500

600

0 50 100 150 200 250 300

P
e

rf
o

rm
an

ce
 (

M
C

yc
le

s)

2mm-SW
2mm-SW/HW-2PL
2mm-SW/HW-2PF-3PL
3mm-SW
3mm-SW/HW
3mm-SW/HW-2PF
Gemm-SW
Gemm-SW/HW-2PL
Gemm-SW/HW-2PF-3PL

HW Accelerators Area (Slices)

Figure 6.6: Pareto curves for 2mm, 3mm and Gemm for data size 128.
Table 6.5: Comparison results for the proposed and the iterative improvement approach.

Algorithm
Iterative Improvement Proposed Methodology

Perf. Area Time Perf. Area Time
(ms) (LUT) (ms) (ms) (LUT) (ms)

Seidel-2d

0.02020892 72

118,686.089

0.02020892 72

1,125.692

0.02024000 64 0.02022202 64
0.02524778 56 0.02521426 56
0.02526088 48 0.02521426 48
0.03525846 40 0.03062306 40

- - 0.04059266 32

Gemm

0.1609017 40

50,451.987

0.1609017 40

256.6950.1609075 32 0.1609075 32
0.2418297 24 0.2418297 24

Syr2k 0.3217926 40 55,155.037 0.3217926 40 265.9310.3217984 32 0.3217984 32
0.48365575 24 0.48365575 24

selected set of SW reference designs and SW/HW co-designs for 10 different PolyBenchmarks
derived from our methodology is depicted in Table 6.4. The Pareto Curves for a set of PolyBench-
marks are summarized in Fig. 6.6. They show the effectiveness and broad applicability of our
approach. Notably we also produce a wide range of Pareto working points which are crucial in
practical design contexts where trade-offs typically exists between the different objectives.

6.5.3 Relative Comparison

Existing methodologies and frameworks mainly use different architectural assumptions and
valid options in the designs. To provide a useful comparison in terms of performance, area and
the exploration time, we have implemented an Iterative Improvement (II) approach, similar to
the existing in the current literature (as much as possible mimicking it). The comparison is per-
formed for one of the most complicated steps of our methodology, i.e. the ForeGround memory
management step. The remaining steps have in the worst case similar behavior and thus the rela-
tive comparison remain representative for the other steps also. The II approach applies a register
scheduling and assignment step and an improvement step. The first step is based on the mobility
of the FG memory operations. After the first step and the scheduling and assignment of the se-
lected operations, the improvement step is applied. The improvement step selects different nodes

142

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
G

se
c)

Size increase factor

Iterative Improvement

Proposed Methodology

Figure 6.7: Exploration time comparison when the application size is increased by a factor.

in previous iteration steps to search for potential improvements. The results of our approach and
the II approach for a set of test cases are depicted in Table 6.5. For the seidel-2d benchmark the
II has less optimal results because it selects to schedule later a node whose successors affect the
critical path, as it has the same mobility with the other ready to be scheduled nodes. The proposed
methodology uses different types of nodes. It schedules and assigns based on the node type and
unidirectionally propagates constraints, i.e. scheduling decisions, to the nodes of the next-to-be-
scheduled type. In this way it can identify points, which are outside the local scope of the II.
For smaller benchmarks, the II potentially has similar quality with the proposed approach but the
points require a much higher exploration time to be produced. When the number of nodes in the
application graph is increased the exploration time of the II is strong polynomially increased and
the proposed methodology remains linear (Fig 6.7).

6.6 Conclusions

A systematic stepwise template-based methodology is described to compose a Pareto Curve for
near-optimal mapping of an application to a SW/HW design with a processor and a (set of) HW
accelerator(s) taking into account the SW/HW organization, the FG Memory Management and
the DP Mapping. The suboptimal options are pruned early in the design process based on scalable
what-if analysis and the constraints propagation of each step leading to a scalable and efficient
approach.

143

Chapter 7

Design-time scheduling techniques
framework

7.1 Introduction

The scheduling problem is an optimization problem with fundamental principles applicable in sev-
eral fields [141], e.g. computer science, economics, job scheduling, project management, produc-
tion e.t.c. Both research and development community have already invested decades of research
and experiments to the techniques solving several instances of the scheduling problem in computer
science. Important advances have appeared to the scheduling problem as it applies to design time
mapping on multiprocessing platforms emphasizing on ordering in time and assignment in place.
However, it cannot be considered as fully solved yet. Publications are becoming available and
significant space for improvement is present, as e.g. explained in [182].

The prerequirement to achieve this improvement is the understanding of the scheduling ap-
proaches. As it is explicitly stated in [182], the ``Better understanding of the behavior of search
algorithms in scheduling search spaces should ultimately lead to development of more effective
scheduling procedures''. This understanding is supported by effectively classifying the schedul-
ing techniques. A complete classification provides a thorough overview of all the available and
diverse categories in the wide variety of existing and future scheduling techniques. It efficiently
partitions the techniques into classes with unique and verifiable characteristics. The main features,
the similarities and the differences of the distinct categories are clearly illustrated. It supports the
meaningful evaluation and comparison of techniques with similar characteristics. In this way, an
in-depth understanding of each category and of their interrelationships is acquired. The latter as-
sists in contributing in novel ways to the broad domain of (near-) optimal scheduling techniques.
The existing techniques can be improved, the less explored areas can be identified and new tech-
niques can be proposed.

The literature presented until recent years has relatively few classification proposals
([125], [126], [17], [151], [152], [171], [141] and [60]) on design time mapping on single and
multiprocessing platforms emphasizing on ordering in time and assignment in place. They are

145

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

less systematic and thus relatively incomplete, partially redundant lacking efficiency. Other recent
studies ([114], [79] and [182]) focus on addressing the advances instead of proposing a new com-
plete classification. The existing approaches are capable of partially covering the entire space of
scheduling techniques in a less guaranteed way and less efficiently supporting their understanding
and improvement (Section 7.3).

In this chapter, we propose a new classification scheme for design time mapping techniques on
single and multiprocessing platforms focusing on ordering in time and assignment in place. The
classification is derived by using the reusable DSE principles of the framework creation described in
Chapter 2 in the context of global design-time scheduling techniques. The context does not include
operation system or frequent run time and preemptive approaches though. Our main contribution is
to present a new systematic way of classifying the scheduling techniques. We present and describe
the output of our approach and we show that the proposed classification systematically provides
a complete overview of the existing distinct categories of techniques. We also show why our
approach will remain valid for future techniques as long as they belong in our target domain. Our
second contribution is to illustrate how the proposed scheme efficiently classifies representative
examples which cover the exploration space. The proposed classification encounters a technique
as a potential combination of classes and it decomposes it to primitive components which belong to
different classes. In the Chapter 7, the derived framework, i.e. the proposed classification scheme,
is used as a basis in order to develop parametric templates for design-time scheduling techniques
for a target domain, which is an instantiation of the context of the classification.

In Section 7.2 we describe the context, the problem formulation and the goal of the classifica-
tion framework. Section 7.3 presents existing classification schemes of scheduling techniques and
motivates the need for a new systematic classification approach. Section 7.4 presents the derived
classification framework after applying the reusable DSE principles in the context of global design-
time scheduling techniques, describes the classes and the uni-directional arrows. Section 7.5 illus-
trates and verifies the classification scheme through several representative examples.

7.2 Target domain and problem formulation

This Section describes the bounds of which scheduling techniques are under study by the proposed
classification. This is achieved by defining the properties of the scheduling problem solved by the
under study techniques and the assumptions made for the scheduling techniques. This is a crucial
step as it determines the initial class, i.e. the root of the proposed classification tree.

An application is modeled by a graph T = {Ti : i = 1, ..., N}, or a set of graphs T , with N
partitions describing individual operations or group of operations, memory references or commu-
nication transactions of the application. The edges of the graph(s) describe the control and data
dependencies of the application. A set R = {ri : i = 1, ...,M} of M same resources describes
each resource type. A hardware resource may refer to homogeneous or heterogeneous, coarse
or fine grained processing elements, e.g. processors or function units respectively, memories or

146

intercommunication networks. In this way, a quite generic computing platform is considered.
The constraints of the problem are specified by a set D = {di : i = 1, ..., K}, where di

describes the timing and resource constraints. Constraints are potentially imposed by the environ-
ment, e.g. a deadline before which the task must finish its execution, by the task, e.g. ordering in
data fetching and operation execution, and by the different computing platforms, e.g. number of
interconnections, storing and execution components.

The objective function is given by a set C = {wi ∗ ci : i = 1, ..., L}, which describes the
crucial ci elements of the system weighted properly by a wi constant. Crucial objectives can be the
number of control steps required to execute the task parts, the total number of required hardware
modules, the energy consumed by the execution of the task parts to a given platform, the area of
the required architecture etc. and also combinations of different objectives.

The mapping problem is the assignment of a finite set of task parts T onto the sets of different
resources Rj (assignment in space) and the determination of the start time of the execution of a
task part CS = {csi : i = 1, ..., N} on the assigned resource (ordering in time) in a way that
all dependencies and constraints D are satisfied and the objective function C is minimized. The
assignment of a task part to a resource and its execution start time is described by bi = {Ti, ri, csi}.

A solution is defined by a set of N assignments X = {bi : i = 1, ..., N}. The exploration
space S is all the possible combinations of N assignments. A solution is feasible when it satisfies
all dependencies and constraints D. The feasible explorations space F is all the combinations of
feasible solutions. Themapping problem is to find a solutionX∗ which belongs toF andminimizes
the objective function C, i.e. C∗ = min{C}.

This study focuses on the classification of the existing and future global techniques solving
design time mapping problem focusing on ordering in time and assignment in space. A technique
is global when it is capable of searching the optimal solution X∗ or a near-optimal solution in the
complete exploration space. The non-global techniques are omitted, i.e. the techniques which do
not intend to reach the optimal solution or guarantee that potentially optimal areas are excluded
from their search space. The context of the problem under study is described by:

1. The systematic classification refers to design time mapping techniques focusing on ordering
in time and assignment in space.

2. The classified scheduling techniques search for an (near-)optimal solution, thus the tech-
niques are global, i.e. they potentially search in the entire exploration space. Otherwise they
could not be (near-) optimal scheduling approaches.

3. The constraints met by the techniques are imposed by the specific context of the scheduling
problem to be solved. They refer to timing constraints occurring in the present or near future
and to resource constraints of the platform they are executed on.

4. The objectives (costs) for the solution techniques are not restricted to one dimension, but
they potentially express different axes which compete one another formulating a multi-
dimensional objective space.

147

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

The target domain (context) of the proposed classification focuses on scheduling techniques
applied to problems where the major characteristics of the application are known and execution
time of the scheduling technique is not a constraint [208], i.e. design time (offline) and infrequent
set-up time. The latter case describes techniques applied in pre-run time or techniques which can be
applied infrequently during the execution to reschedule the application in a near-optimal way. The
classification refers to design time and infrequent set-up time techniques which solve Instruction
Level Parallelism (ILP), Task Level Parallelism (TLP) and Data Level Parallelism (DLP) mapping
problem on generic single and multiprocessing platforms. It also applies in Memory Level Par-
allelism (MLP) on distributed memory platforms and in communication transactions ordering in
time and assignment on communication networks.

Techniques dedicated to scheduling problems where the major characteristics of the processes
are unknown andwith very hard time restrictions, where a new different task arrives very frequently
and rescheduling of the application is required at fast run-time or on-line, are excluded from our
study. Run time decisions to find (near-) optimal solutions within a limited available time do not
meet our assumptions. This target domain of scheduling techniques has additional properties, e.g. it
strictly requires reduced execution time to achieve timing constraints of the application. However,
parts of these very dynamic techniques are included in the design time and infrequent set-up time
classification, due to the nature of the scheduling techniques. But since the current study does
not focus on fast run-time and online domain, guarantee on completeness for this domain is not
claimed.

7.3 Related work in global scheduling classifications

The current literature consists of less systematic classifications of global scheduling techniques
which may belong to one of the two categories: a classification with independent classes, which do
not allow any class interaction, or a classification with partial interaction between different parts of
the classification, i.e. classes and policies. Survey type studies also exist, but they only present the
new advances in this field.

The previous classifications of global scheduling techniques are less systematically composed
and thus they have several limitations: a) they are partially complete approaches since they ex-
clude several existing well-known scheduling classes, b) they are less consistent, as they include
unrealistic scheduling techniques in their scheme, c) they are partially redundant, as the character-
istics of a class overlap with characteristics of other classes confusing the classification process, d)
difficulties exist during the classification of several techniques leading to less useful schemes which
support only a partial understanding of the scheduling techniques methodology. These limitations
are explained and illustrated through examples for existing classifications in the next paragraphs.
Other recent studies are mostly of survey type addressing the new advances of scheduling tech-
niques without indenting to update the previous classifications or to propose new complete ones.
Hence, an updated complete and efficient classification of the wide variety of the global scheduling

148

techniques is highly desired to systematically support the understanding and improvement of the
techniques, the identification of less explored areas and the proposal of new promising approaches.

One category of the existing classifications consists of independent classes which do not interact
with each other. One example is the classification of [126] and [125] depicted in Fig. 7.1, which
is adapted by a majority of publications [43], [167], [119], [187], [74] and [198].

Scheduling techniques

Scheduling task Allocation task

Scheduling type Iterative /
Constructive

Global Interaction
with

allocation

Iterative /
Constructive

Transformational

Local
&

Global
Selection

Criteria

Exhaustive Local
Selection
Criteria

Global
Selection
Criteria

Branch
&

Bound

Heuristics

Global
Rules

Local
Rules

Mathematical Graph
Theory

Figure 7.1: A classification scheme of the scheduling techniques consisting of independent classes
presented by McFarland et al.

The ``scheduling'' techniques are divided into the transformational and the itera-
tive/constructive. A transformational technique begins with a default maximally serial or maxi-
mally parallel schedule and applies transformations, which move serial operations in parallel and
visa versa, to obtain other schedules. Based on how they choose what transformations to apply
they are divided into the exhaustive, the branch-and-bound and the heuristics. The exhaustive
try all possible combinations of serial and parallel transformations [9]. The branch-and-bound
cut off the exploration space by recognizing suboptimal paths. The heuristics guide the process
to choose the transformations which promise to move the solution closer to optimal [154]. The
iterative/constructive techniques add operations one at a time until all operations have been sched-
uled. Based on how they choose the next operation to be scheduled and on how they determine
where to schedule each operation they are divided into a local selection criteria, a global selection
criteria and a local affected by more global operation selection criteria class. For instance, the
``As Soon As Possible'' (ASAP) technique belongs to the local class [71]. The freedom-based and
force-directed [151] techniques reside in the global class. The list scheduling techniques [124]
belong to the local class with global criteria. The ``allocation'' techniques are divided into itera-
tive/constructive and global techniques. The iterative/constructive techniques assign elements one
at a time selected based on global [71] or on local rules [93]. The global techniques assign a num-
ber of elements each time. They can be mathematical techniques, i.e. exhaustive search [64], or
graph theoretic techniques, i.e. clique partitioning [190].

This approach separately classifies the ordering in time task, ``scheduling'', and the assignment
in space, ``allocation'' as defined in Section 7.2. Although it also includes classes describing non-
global techniques, we consider the global classes of this approach in our study.

149

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

This classification is partially complete, since it excludes several classes that describe
global techniques. Several stochastic classes are not implicitly included, e.g. Tabu search
([168], [50], [53]), Seed techniques [144], Simulated Annealing (SA) ([145], [137], [43]), Ge-
netic Algorithms (GA) ([112], [44], [184], [67]) and Simulated Evolution (SE) [119]. The clas-
sification of these techniques using this classification is ambiguous, since the class they belong to
is missing. For instance, the SE technique can be viewed as ``a constructive synthesis with the
ability to escape from local minimum or it may be viewed as transformational synthesis in which
arbitrarily complex design transformations are generated on the fly'' [119]. Hence, it may belong
to the transformational heuristic class, where normalized cost and freedom based priority guides
the transformations to be applied. But it may also be assigned to the iterative/constractive global
class, where it starts from a partial solution based on normalized cost and where freedom based
priority scheduling is applied. The GA based techniques may be classified in the transformational
heuristic class, where schedule decoding and fitness guide the applied transformations. But they
may also be assigned to the iterative/constractive global class, where schedule decoding selects the
operation to be scheduled. Other important scheduling categories are also excluded, e.g. parti-
tioning, clustering and adaptive techniques. For instance, the technique in [150] is classified to
the local with global selection criteria class. However, the partitioning characteristics of this tech-
nique are not described. The technique [109] belongs to the local with global criteria class but the
clustering characteristic is not included. The learning process of the adaptive technique of [69] is
excluded from the classification tree. Therefore, the way to extend this classification to include the
techniques whose class is ambiguous, is currently too vague.

Another limitation derives from the less systematic composition of the classification. For each
different combination of main characteristics of a technique a new class is created. In this way,
characteristics of one class may overlap with those of other classes leading to a partially redundant
and non-compact scheme. For instance, the local with global selection criteria class has overlapping
characteristics with local selection criteria and global selection criteria class.

Difficulties and non-trivial decisions appear during classification of techniques. Hence, a useful
understanding of the techniques cannot be obtained and a less meaningful comparison of existing
techniques is achieved. This classification encounters the techniques as one component and does
not allow their systematic decomposition. Hence, they classify hybrid techniques in one class. For
instance, the formally optimal techniques, e.g. [74], belong to the exhaustive class. The hybrid
technique in [179] is also classified to the same class, although it has additional recursive charac-
teristics that distinguish it from a classical exhaustive technique. An approach that decomposes the
techniques into more primitive components to express their main characteristics is missing, e.g.
the rigid and the optimal class for [179]. The pruning techniques [61], [128], [134] can be par-
tially classified to the Branch and Bound (B&B) class, as this class expresses the way to reduce the
solution space. However, their fundamental methodology is different from a typical B&B tech-
nique. Section 7.5 illustrates through examples how the limitations of the existing classifications
are solved by the proposed approach.

Other classifications belonging to the same category have also been proposed in the literature.

150

But they usually restrict their scope and focus only on a part of the global scheduling techniques.
One instance is the scheduling classification of [60]. The first proposed split is based on the instan-
tiation of the scheduling problem to be solved heavily restricting the generality of the techniques.
And a significant part of this classification is dedicated to non-global techniques. The approach
of [152] and [151] is dedicated only to one part of the overall scheme of the scheduling techniques,
i.e. the non-global techniques. The approach of [171] addresses on the stochastic part while the
taxonomy [141] focuses on the different Artificial Intelligent (AI) approaches. The review in [65]
is dedicated to evolutionary techniques. The taxonomy in [104] focuses on the task graph, the
cost, the communication and the resource constraints of the techniques.

The other category of existing classifications consists of a part of independent classes and a part
of policies which are allowed to interact with the classes. One instance is the classification depicted
in Fig. 7.2 as it applies to distributed resource management scheduling problem [17].

Scheduling techniques

Multi
Processors

Single
Processor

Dynamically Updated
Decision Process

Statically Defined
Decision Process

Optimal
Final Result

Sub-optimal
Final Result

Enumerative

Near-Optimal
(Approximate)

Graph
Mathematical
Programming

Queuing
Theory

Physically
Distributed

Decision

Cooperation

Probabilistic Adaptive
Load

balancing
Bidding

One-time
assignment

Dynamic
reassignment

Non-adaptive

Flat:

Far from Optimal
(Heuristic) No Cooperation

Optimal
Final Result

Sub-optimal
Final Result

Near-Optimal
(Approximate)

Far from Optimal
(Heuristic)

Physically
Non-Distributed

Decision

Figure 7.2: The taxonomy of the scheduling techniques for distributed resource management
scheduling problem consists of interacting classes and policies presented by Casavant et al.

The techniques are distinguished between techniques applied for a single processor, i.e. ``lo-
cal'' techniques, and for multiprocessors, i.e. ``global'' techniques (the term ``global'' used in the
study of [17] is different from our definition in Section 7.2). The ``global'' branch is further refined
based on the time a decision is taken to static and dynamic scheduling. Static scheduling is divided
into optimal and sub-optimal final result classes. The latter is separated to near-optimal final result
(approximate) and far away from optimal final result (heuristic) classes, including also non-global
scheduling techniques, which are not considered in this study. The remaining classes, i.e. approx-
imate sub-optimal and optimal classes, are maintained since they refer to the global scheduling
techniques which potentially reach the (near-)optimal solution. They are separated to: solution
space enumeration and search, graph theoretic, mathematical programming and queuing theoretic
classes. The authors further present a flat classification of policies which scheduling techniques
may possess. These policies may fit in any of the above classes. The flat classification consists of

151

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

adaptive or non-adaptive, load balancing, bidding, probabilistic, one-time assignment or dynamic
reassignment policies.

The limitation over completeness property exist also for the classification of [17]. It is still
only partially complete without any hard guarantee on the completeness, as it excludes important
categories of the existing techniques, e.g. pruning, partitioning and clustering approaches. For
instance, the approach does not explicitly indicate which class describes the pruning techniques,
e.g. [61], [128], [134]. The technique in [150] is classified to the graph class. However, the
partitioning characteristics of the technique are not described. The load balancing policy used in the
classification of [17] is one instance of the priority class. However, other approaches for the priority
class also exist, e.g. cost, which are not depicted in any class of the classification tree. Although
this hybrid classification allows class and policies combinations to exist, a combination among
the classes of the hierarchical part is excluded. For instance, a combination of an approximate
technique and an optimal approach, where the former finds a near-optimal solution and this output
is used as an initial solution by the latter technique to achieve optimality is excluded.

Another limitation is that the classification is composed in a less systematic way and unreal-
istic techniques are potentially included in the classification. Although it is a hybrid classification
and it is the first attempt which allows combinations of characteristics to occur, it is less consis-
tent. The combinations among classes and policies are performed without any restrictions or rules
following an ad-hoc way. In this way, it potentially includes scheduling techniques which cannot
be realistically implemented, e.g. a combination of an enumerative technique with a probabilistic
policy.

Difficulties may appear during the classification of several techniques affecting the understand-
ing of their methodology. For instance, the technique in [150] with partitioning characteristics is
classified to the graph class. A technique based on the priorities [213] belong to the same class,
although it does not apply any partition to the scheduling problem. The technique in [74] and
in [179] belong to the mathematical programming class. Although the latter applies the mathe-
matical technique for several iterations, this recursive characteristic cannot be distinguished from
a classic mathematical programming technique. Another example is the Tabu search, Seed tech-
nique, SA based, GA based and SE based techniques which reside in the probabilistic policy of
the flat classification without presenting further refinement among these techniques. Hence, an less
meaningful distinction among techniques is offered since different in nature techniques belong to
the same class. An approach to refine the probabilistic policy by providing classes to describe the
distinct non-overlapping areas of the stochastic techniques, to clearly illustrate their interface and
provide the main components of each technique is required.

Other more recent studies [114], [182] and [79] present the new advances of the scheduling
techniques. However they do not adapt the previous classifications to include the new described
approaches or provide a new complete classification scheme.

The existing related work in classification of global scheduling techniques from early till recent
years has not been sufficiently matured yet. The previous classifications are partially complete and
not future-proved, i.e. they do not prove their capability of including new techniques, which is a

152

very crucial missing feature. They use a wide set of classes describing overlapping characteristics.
In this way, several scheduling techniques are ambiguously classified, a meaningful comparison is
not achieved and useful insight in the techniques is not obtained. Hence, a complete, consistent
and compact classification for design time global techniques to support our goals (Section 7.1) is
strongly desired. In this study, we present a systematic methodology to compose this classification,
we describe the derived scheme and we illustrate how the proposed classification classifies existing
techniques while remedying the limitations of the previous approaches.

7.4 The proposed systematic classification

The proposed systematic classification offers a complete, future-proved and updated picture of the
global scheduling techniques. It classifies in a systematic way any existing technique which meets
our assumptions (Section 7.2). As long as future techniques still meet these assumptions they will
be included into the systematic classification due to its completeness property and the way it is
composed. Other classifications presented in the literature have not been systematically created
and typically miss parts of the existing techniques (Section 7.3).

In our proposal every class is described by unique set of characteristics through the whole
classification scheme. Each branch differs in at least one unambiguous characteristic. This still
means that the characteristics can be partly shared among classes. Indeed, the characteristics of
different classes are reused in the hybrid combinations following the horizontal arrows of the uni-
directional propagation of constraints. In this way the redundancy is avoided and the classification
uses a reduced amount of required classes in a compact form to describe the features of all the
techniques. With the proposed classification scheme every global scheduling technique following
our assumptions (Section 7.2) can be classified either by belonging to one specific class or to a
hybrid combination of primitive classes, as illustrated in the next sections. The classification com-
pleteness is experimentally supported by a quite large but still selected set of publications which is
used in order to representatively cover the entire exploration space as effectively and globally as
feasible, as presented in Section 7.5. These publications are widely spread in the exploration space
and their characteristics have been chosen to be as diverse as possible. In this way we maximize
the probability of covering all the different existing techniques. The publications are studied and
analyzed using the systematic classification in order to verify its completeness and consistency.
We use a subset of them also as illustration examples throughout this chapter.

The classification decomposes a technique to primitive components with specific characteris-
tics and into interrelationships that are easier to be analyzed and understood. Each component
belongs to the class matching its characteristics. This leads to a straightforward classification and
in an unequivocal scheme even for techniques that are difficult to be classified in the conventional
approaches. In this way the main features and the structure of the techniques are clearly illustrated.
Their similarities and differences are made more concrete. Hence, a better understanding of the
wide variety of the techniques is achieved which is essential for their efficient use. The proposed

153

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

classification can be used to supports the selection of the most promising scheduling techniques
for a given application domain by instantiating the principles and the usage framework process of
chapter 2. This can be achieved by analyzing the requirements of the domain and by matching
them with the classes, which efficiently address them. The set of the matched classes describe
the hybrid combination of scheduling techniques which efficiently schedule the given application
domain. The selection of different members of this hybrid combination creates different schedul-
ing techniques for applications within this domain. Suppose that an application is (near-)optimally
scheduled by a technique which belongs into a hybrid combination. Another application with same
requirements should have a solution that belongs to the same hybrid combination. The classifica-
tion framework can also be used to support the development of new approaches. Different classes
can be combined and different options inside classes can be used to create new promising tech-
niques. If the required characteristics of a technique are known upfront, the classes that exclude
these characteristics will not be part of the final technique. For instance, if optimality is strictly
required, the near-optimal class is excluded. In this way, they can be discarded early in the decision
process from the potentially available solutions. Based on the proposed systematic classification,
the components of scheduling techniques belonging to non-global classes can be identified. They
are replaced or modified to fit in a global class converting the initial non-global scheduling tech-
nique changes to a global one. The development of parametric templates for the target domain of
large and complex CDFGs is presented in Chapter 8.

Following the framework creation methodology of Chapter 2 we derive the systematic classi-
fication depicted in Fig. 7.3. Initially, the properties of the techniques to be classified are clearly
determined. This step is crucial since it describes the target domain of the classification. These
properties hold for the complete classification tree and thus during refinement they are vertically
propagated to the subclasses. The next step is the iterative refinement process. Each iteration ap-
plies the general step of the framework creation methodology, i.e. create a top-down split and the
uni-directional constraint propagation arrow. In the initial iterations, i.e. high levels of the classifi-
cation tree, more general splits are preferred in order to compose a stable classification. In addition,
we prefer to apply the split, which leads to more balanced branches, as it approximately equally
divide the fundamental characteristics of the parent class into the children subclasses and the gran-
ularity of primitive classes is similar through the total classification scheme. In this way, a close
to equal search is applied in the space of the available techniques. For instance, the split between
stochastic and deterministic techniques creates two balanced branches describing the approaches
to compose an algorithmic process. After the application of the selected top-down split, the de-
scription of the negative subclass is reformulated to a positive term to prepare the subclass for the
next iteration. For instance, the not stochastic techniques are renamed to a term that encompasses
all the techniques that are not stochastic, i.e. the deterministic techniques. If more refinement is
required, the subclasses are inserted to list of parent classes. The process is repeated until the list
of parent classes is empty. The iterative refinement process terminates when the distinction among
techniques is meaningful and the classification can be efficiently used. In case further distinction
among techniques residing in one or more classes is desired, the framework creation process should

154

be applied. Our classification is scalable since after refinement it will be expanded in depth keeping
the upper levels identical and maintaining its important properties. During the iterative refinement
process the characteristics of each class are vertically propagated by the consistent top-down splits
to the leaves following parent-children relationships. This allows the classification to obtain very
meaningful results, as the derived classes, i.e. the leaves, are very restricted and concrete.

Global scheduling techniques

Deterministic

Stochastic

Stepwise Recursive

Adaptive Rigid

Potentially
Sub-optimal

Theoretically
Optimal

Optimality Control
(Simulated Annealing based)

Best effort Optimality
(Evolution based)

Iterative Pruning
Solution Space

Division

Near-optimal Formally Optimal

Searching

Ordered Arbitrary

Traversing

Depth
First

Breadth
First

Different species evolution
(Simulated Evolution based)

Same species evolution
(Genetic Algorithms based)

Seed
based

Seedless
(Tabu based)

Formulation Solver

Priority Evaluation Choice

Clustering Partitioning

Adaptive
SA

Static
SA

Dynamic
GA

Static
GA

Epochs Generations

Pruning
Decision Space

Exploration

Control
Near-optimality

Exact

Branch Bound

Forward Backward

Mutation Offspring
Generation

Crossover Selection

GA
Iterations

 GA
Components

Partial
Solution
Selection

Complete
Solution

Generation

SE
Components

Temperature
Calibration

Convergence
per step

 SA
Components

SE
Iterations

Type of SA
Components

Figure 7.3: The proposed systematic classification of techniques globally solving design time map-
ping emphasizing in ordering in time and assignment in place. The gray classes are the leaves which
describe a set of characteristics belonging to a component of a technique or a technique.

In the derived classification of Fig 7.3, the deterministic branch is split into the recursive and
the stepwise (not recursive) branch. The recursive branch is refined into the adaptive and rigid
(not adaptive) classes. The stepwise branch is divided into the pruning of solution space and the
iterative classes. The iterative class is split into the near-optimal and the formally optimal classes.
The near-optimal class is divided into the pruning of the decision space class, which is split into
the exact and near-optimal classes, and the exploration class, which is refined into the division and
the searching classes. The division class can be achieved through partitioning and clustering and
the search class through arbitrary search and ordered search. The arbitrary search class is split into
the way to perform the arbitrary choice and the evaluation of that choice. The ordered class is
refined into the class which describes the priority of the nodes and the class which describes the
way to traverse the nodes. The traversal class is split into the bound and the branching classes.
The branching class is split into the forward branch class, which is refined into the Breadth first
and Depth first classes, and the backward branch class. The formally optimal search class is split
into the formulation and solver classes.

155

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

The stochastic branch is split into the potentially sub-optimal and the theoretically optimal
classes. The former is divided into the Tabu search based and the Seed based classes. The lat-
ter is refined to the class which provides best effort on the optimality of the solution (evolution
based) and the class which provides a control mechanism over the optimality (Simulated Anneal-
ing based). The evolution based class is refined to the same species evolution and different species
evolution classes. The same species evolution class is divided into the class which describes the
way to perform the iterations, which are refined into dynamic and static classes, and the class
which describes the components. The latter is split into the mutation and the offspring generation
classes. The offspring generation class is split into the crossover and selection classes. The differ-
ent species evolution class is refined to the class which describes the way to perform the iterations,
which is split into the Epochs and generations class, and class which describes the components.
The latter are refined into the partial solution selection and complete solution generation classes.
The Simulated Annealing based class is refined into the class which describes the type of the com-
ponents, which is split into the adaptive and the static classes, and the class which describes the
actual components. The latter is refined into the class which describes the temperature calibration
and the class which describes the conversion per step.

In the next subsections, we describe the classes of the classification tree starting from top layers
towards the final leaves. Then, we present the uni-directional propagation of constraints between
the classes.

7.4.1 Deterministic techniques

One major branch of the global scheduling techniques is the techniques which are deterministic in
nature, i.e. they occur in a completely predictable fashion. Note though that their process will still
contain potentially complex structures, e.g. heavily data-dependent loops and branches. But for a
given set of input stimuli, they will always provide exactly the same outcome. So the deterministic
process do not contain any random number generators or the input stimuli does not trigger any
unpredictable task of the deterministic scheduling process. The deterministic techniques search
the exploration space to find the (near-)optimal solution generating a subsequent state by following
a predefined sequence of steps. The latter explicitly determines how the transition from the current
state to the next one is performed and when it converges to the (near-)optimal solution. The
quality of the obtained solution is imposed by the objective function and the properties of the
sequence. The deterministic techniques provide (near-) optimal solutions usually in specific and
not generic cases. Their performance depends on the instance of the problem to be solved [167]
and on the effectiveness of the the deterministic technique's nature to this type of problem [189].
Hence, explicit exploitable characteristics and correlations are present and the classes are potentially
combined to produce a global scheduling technique with the required attributes each time.

156

7.4.1.1 Recursive techniques

A part of the deterministic techniques has the repeatability property. These techniques belong
to the recursive class and control the iterations of their entire process until it converges, i.e. the
termination criteria define that the (near-)optimal solution is reached. The recursive techniques are
split to the techniques which have adaptability and into the techniques which maintain the same
process through the iterations.

The adaptive class defines the recursive techniques which are capable of self-training and self-
learning. They start from an initial state and they indicate when and how the applied process
is modified and when it converges to the (near-)optimal solution. For example, some adaptive
deterministic techniques use neural nets [69] which are composed of the net topology, the node
characteristics and a set of training rules indicating the initial weights and their adaptation [116].
The adaptive techniques try to converge to the (near-) optimal solution by following the charac-
teristics of the solution space shape. These techniques are quite effective in solution spaces with
implicit correlations which can be exploited to vary the effort spent during the search progress.

In the rigid class belong the rest of the recursive techniques, which are stable. They start from
an initial state, i.e. an arbitrary solution [179], and they iterate the same fixed process, i.e. update
solution based on the worst incremental cost direction [179]. Their aim is to converge to the (near-
)optimal solution after a number of iterations without modifying the applied process and they can
be used when no hidden correlations exist in the solution space.

7.4.1.2 Stepwise techniques

The remaining deterministic techniques belong to the stepwise class. The process of the stepwise
techniques is applied only once. However, it may consist of several intermediate steps. The step-
wise techniques are divided into the pruning of solution space approaches and into the iterative
techniques.

The pruning of solution space class describes the part of the stepwise techniques, which
reduces in an exact way the solution space before search. These techniques describe the imple-
mentation of the space pruning which is achieved by removing areas that include unfeasible and
sub-optimal solutions. Unfeasible solutions can be pruned by satisfying the problem constraints,
e.g. by analyzing the imposed constraints and establishing extra edges which exclude unfeasible
solutions [128]. Sub-optimal solutions can be pruned based on the objective function, e.g. by in-
serting penalty terms to avoid sub-optimal solutions. A solution space pruning technique is useful
in complex problems which provide information which can be used to prune solutions from the
space.

The iterative class includes the remaining stepwise techniques. The iterative class determines
how the detection of the (near-)optimal solution into the exploration space is performed. Based on
the quality of the obtained solution the techniques are classified to near-optimal techniques and to
formally optimal ones. The near-optimal techniques control the near-optimality of their solutions
and in special cases they can lead to a guaranteed optimal result. The formally optimal techniques

157

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

use an exact problem formulation and global solver.

7.4.1.2.1 Near-optimal The set of the near-optimal classes describe the different potential
steps applied during the search, thus they are usually met in hybrid combinations in global schedul-
ing techniques. The near-optimal class is divided into the way the pruning in decision space is
applied and into the way the exploration of the search space is performed.

The way the pruning of the local decision space is implemented in each component deter-
mines the quality of the solutions of the near-optimal techniques. In case exact pruning approaches
are used in all the components of the technique, an optimal approach is composed. Otherwise,
at least one component uses an approach which is in a controlled way near-optimal to reduce
the available options. Using exact or controlled near-optimality depends on the problem to be
solved. For instance, exact decision pruning may be useful in cases where optimality is required
but within a reasonable time, whereas controlled near-optimality is effective when time is crucial
and optimality is not so essential. However, it should still be controlled, i.e. it would not become
lower than the acceptable usually user-defined threshold.

The implementation of the exploration of a near-optimal technique is performed in several
ways. A part of the near-optimal techniques apply division of the scheduling problem to smaller
regions. This division is implemented by partitioning or clustering. The partitioning techniques
divide the overall problem in smaller sectors based on specific rules, e.g. the operations are parti-
tioned to critical path and non-critical path ones [150]. The clustering techniques combine small
problem parts to create common sectors based on rules, e.g. operations are grouped if they have no
further parallelism to be exploited and to reduce the number of clusters to the number of processing
units [109]. Division classes can be applied in problems with quite incremented set of potential
solutions.

The remaining near-optimal techniques solve the entire scheduling problem and belong to the
searching class. This class contains the techniques which find their way through the exploration
space with a search based strategy. The search is implemented by ordered and arbitrary techniques.

The arbitrary techniques perform a pure arbitrary choice of the node to be scheduled without
using any random number generator though. They include the class describing how the choice
of the node is implemented, e.g. critical operations are scheduled in a ``First Come First Served''
(FCFS) strategy [150], and the class which evaluates the choice.

The ordered techniques solve the scheduling problem in an ordered predefined way. They are
split into the sorting of the nodes and the way the traversing of this sorting is implemented. They
use the priority class to sort the nodes based on a function, which potentially supports the efficient
search of the solution space. For example, the non-critical path operations are scheduled based
on the freedom priority [150]. The traversing class defines how the nodes are traversed. This is
divided into the bounds used in each node and the how the branch of the nodes is performed. A
good estimation of the bounds leads to more efficient and faster techniques. The branch has a for-
ward direction and a backward direction. The forward direction of branching can be performed
in either Breadth-First (BF) or Depth-First (DF) strategy.

158

7.4.1.2.2 Formally optimal The formally optimal techniques converge to the optimal solution.
They are divided into the formulation class which describes in an appropriate way the problem
to be solved and the global solver class which describes the actual solver of the problem. For
example, constraint analysis through polyhedral theory determine the scheduling polytope to be
solved. It is formulated as an Integer Linear Programming (ILP) model [25]. The solver class
provides the actual solver of the formulated problem, such as a Mixed Integer Linear Programming
solver (MILP) [23]. The formally optimal approaches are quite effective in scheduling problems
are sufficiently decreased in size, have a largely linear solution space and require guarantee on
optimality.

7.4.2 Stochastic techniques

The remaining techniques are the stochastic ones which systematically guess the (near-)optimal
solution in the exploration space. The stochastic techniques start from an initial state and use
probabilities and randomness to determine the next state which is potentially closer to the (near-
)optimal solution. The next state generation iterates until some termination criteria are met. These
usually indicate that the obtained solution has reached the (near-)optimal one or that the search
for a better solution is too costly, whereas the gained quality is too low; accordingly, the process
terminates. The way of generating subsequent states and which objective function is minimized
determine the quality of the obtained solution. The stochastic techniques typically behave quite
well in solution spaces with several local minima. Due to their probabilistic acceptance they are
capable of applying ``hill climbing'' moves. However, in the initial steps of execution they move
very fast to a good solution, but then they are not capable of quickly identifying the global (near-)
optimal. Based on the optimality of the obtained solution, the stochastic techniques are divided
into the techniques which are theoretically proven to be optimal and the techniques which miss the
optimality proof.

7.4.2.1 Theoretically Optimal

A part of the stochastic techniques show or even prove that their process converges to the (near-
)optimal solution under specific conditions, which are only theoretically achievable though. These
form the theoretically optimal stochastic class, which is further divided into the techniques which
provide control on the solution optimality. In the current literature, this class can be highly rep-
resented by Simulated Annealing (SA) based techniques. In the next sections, the SA based term
is used to describe this class. The remaining techniques provide less control on optimality and
are described as best effort techniques. In the existing literature they can be represented by the
Evolution (E) based techniques. The E based term to refer to this class in this chapter.

7.4.2.1.1 Control over optimality According to existing theoretical results, the techniques
with effective termination criteria or SA based techniques, asymptotically approach the global op-
timal of the exploration space [163]. The SA based class is split into the type of SA components

159

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

and the SA components themselves.
The type of the SA based componentsmay be adaptive or static determining the final applied

process. The stochastic process of the SA based techniques may be implemented using adaptive
parameters, which are modified during the execution to more efficiently search the exploration
space. The SA based techniques have properties which allow such an efficient adaptive imple-
mentation. They are useful for irregular solution spaces with hidden correlations. In an irregular
area or in the edges between areas of the exploration space, the stochastic process continues more
carefully by decreasing the step of the temperature reduction and increasing the number of itera-
tions in the conversion step. In smooth areas the process performs larger steps and thus reduces
the required execution time. The other class is to implement the SA based stochastic process using
static parameters and equations, i.e. fixed number of iterations and parameter reduction factor.
These approaches are useful in rather homogeneous solution spaces, otherwise they require too
much time to reach equilibrium.

The SA based components consist of the calibration of the ``temperature-like'' component
and the conversion step for each temperature. The SA based process uses through the calibration
component a parameter to specify the allowed range of the random moves, e.g. the tempera-
ture [43]. In the initial process steps, the parameters allow moves with large changes to occur, e.g.
a high temperature allowing the interchange of distant placed operations. The parameter can be
modified, e.g. temperature reduction to allow smaller changes to occur. They SA based techniques
start from an initial temperature and an initial solution, e.g. the one created by a random configu-
ration [13]. In the conversion step component, random moves are applied to the current solution,
i.e. a random displacement changing the scheduling and the outcome of the objective function,
e.g. an interchange of two operations [43]. If the result has a positive impact, i.e. it reduces the
objective function, the move is maintained. In case it has a negative impact, the decision of its ac-
ceptance is treated probabilistically, e.g. if a random number is smaller than the value e−CostChange

T ,
it is accepted. The probabilistic acceptance allows ``hill climbing'' moves to occur during search.
The process is iterated until conversion, i.e. it reaches a stable or determined state, e.g. no more
changes occur or a predefined number of iterations is reached.

The SA based techniques differ in the type of components, the temperature calibration compo-
nent, the way they implement the randommoves and the termination criteria. The implementations
of techniques which lead to sub-optimal approaches and thus do not satisfy our assumptions are not
included in our proposal. For instance, a SA based technique implemented with a ``predictable''
acceptance criterion, e.g. using always the same ``seed'', is converted to a deterministic but not
global approach.

7.4.2.1.2 Best effort optimality The best effort in optimality techniques or the E based tech-
niques mimic the process of the natural evolution. They start from an initial state, i.e. solution
or population of potential solutions, such as the ones created by applying ``As Soon As Possible''
(ASAP) or ``As Late As Possible'' (ALAP) [168]. They generate a next state which is similar
but not the same to the current one. This is achieved by probabilistically maintaining the superior

160

elements of the current state, e.g. the most fit ones [168], and discarding the inferior ones. The
new state includes the survived elements and new ones, e.g. deriving from crossover and mutation
genetic operators. The generation step iterates to obtain new solutions until a termination criterion
is met. The state with the minimum value in the objective function is returned as solution with the
evolution process termination. The E based techniques differ in the way they create the similar
solutions to search the exploration space. The E based techniques are divided into the evolution
of same species techniques, which are represented by the Genetic Algorithm (GA) based tech-
niques, and the evolution of different species, which are represented by the Simulated Evolution
(SE) based techniques.

Both the SA and the E based techniques apply iteratively a probabilistic step to reach the optimal
solution until some termination criteria are met. Their main difference is the way of implementing
the probabilistic modification of the current solution. The SA based techniques apply and accept
random moves whereas the E based ones create a similar state where the superior elements of the
current state are maintained and the remaining ones are new.

The GA based techniques theoretically converge to the optimal solution [59] and it is stated
that ``a tradeoff between their convergence and their long-time performance exist'' [78]. The GA
based techniques retain a population of potential solutions and search concurrently many dimen-
sions of the exploration space. They start with a population of potential encoded solutions in
chromosomes, e.g. created by ASAP or ALAP [168]. They iteratively apply GA components to
create a new population until a termination criterion is met. The GA based techniques are split
into the type of GA applied iterations and the GA components which are applied.

The type of GA based iterations are divided into the dynamic approaches, which apply dis-
ruptive changes in the populations, and the static, which apply several fixed genetic operations to
a number of populations. Several ways exist to dynamically control the process, e.g. by controlling
the crossover and mutation parameters during the GA based process [133].

The GA based components are the mutation and the offspring generation. Amutation com-
ponent can be applied to the population for disruptive changes of the chromosomes. The offspring
generation component consist of crossover and selection of the offsprings is applied. In the off-
spring generation component recombination genetic crossover operators, e.g. crossing and copy-
ing, mate parent chromosomes to generate offsprings. In this way new chromosomes are produced
which potentially initiate the next population depending on the selection component. The decod-
ing of each solution allows the calculation of its cost. The latter determines its fitness which is used
to distinguish superior from inferior solutions. The solutions with best fitness values have more
possibilities to be chosen as parent chromosomes since they are selected as members of the new
population. After the termination criteria are met, the best solution of the populations is returned.

The GA based techniques may differ in the way they implement the mutation, the recombina-
tion genetic operators, the decoding of the chromosomes, the fitness evaluation and the termination
criteria. Our classification is dedicated to global techniques and thus the GA based implementa-
tions which lead to sub-optimal approaches are excluded as they do not satisfy our assumptions
(Section 7.2).

161

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

The SEbased techniques asymptotically obtain the global optimum independently of the initial
solutions [119]. The SE based techniques generate a subsequent state by applying iteratively a select
and a generate component. The SE based techniques are split into the type of SE based iterations
and the SE based components.

The type of SE based iterations may be epochs or generations. In the epochs case, it is a
dynamic approach which has as scope to increase the quality of the obtained solution. Each epoch
may have a different stop criterion, a different duration and its generations may be developed in a
quite different way. In the generations case, the SE based techniques are static approaches that
apply several generations under one stop criterion.

The SE based components are split into the partial solution selection component and the
complete solution generation component. The partial solution selection component probabilis-
tically discards the inferior elements based on their contribution to the objective function, i.e. the
elements increasing more the objective function, composing a partial solution. The complete solu-
tion generation component completes the solution by reconstructing the missing elements based
on priority rules, e.g. freedom scheduling of nodes [119]. The state with the minimum value of
the objective function through the iterations is the best solution. The approaches differ in the de-
termination of the superior parts, the reconstruction of the missing elements and the termination
criteria. The ambiguous classification of the SE technique in [119], as presented in Section 7.3, is
resolved since the proposed scheme classifies it to the SE based class. The SE based techniques po-
tentially may incorporate a form of dynamism in their search processes, which significantly differs
from an adaptive SA based technique, as they are quite complex implementations which cannot
provide guarantee on optimality.

Both the GA based techniques and the SE based techniques apply iteratively a probabilistic step
to the current state to create a similar state. Their main difference is the way of creating this similar
next state. The GA applies genetic operators for perturbation on the surviving encoded solutions.
The SE based techniques modify the current solution by keeping the least costly elements and by
generating new ones.

7.4.2.2 Potentially sub-optimal

The remaining stochastic techniques provide weak or no proof of converging to the (near-) optimal
solution. However, they still belong to our target class because in practice they behave quite well
in specific domains.

A part of these stochastic techniques are independent of the initial solution and belong to the
seedless class. The latter can be represented by Tabu search based approaches. They scan the
neighborhood by creating several candidates applying a number of not prohibited moves selected
by probabilities. From the derived candidates, they choose the best one. In this way they accept
moves that increase the cost function to avoid local minimum solutions. If themove is accepted, the
reverse move can be prohibited to avoid cycling for several iterations depending on the aspiration
criterion. The latter is recorded as a restriction in their short term memory, namely the Tabu list.

162

The process is iterated until it reaches a specified number of moves with no improvement.
The remaining techniques depend on the initial solution and compose the Seed based class.

They require an initial solution which affects the quality of the outcome, like Monte Carlo sam-
pling [144]. They use random samples derived from a distribution which are weighted and the
best permutation is selected, hoping to reach the optimal solution.

With our systematic classification a technique may belong to one primitive class or to a hybrid
combination of such classes. Any class can be selected or not to classify the final global scheduling
technique and several options of the selected classes can be combined.

7.4.3 Horizontal uni-directional constraint propagation

During our study we analyzed a large set of techniques selected to cover the complete space. Based
on their main characteristics, nature and on the classification splits, we derive several restrictions in
the combinations. These are expressed through uni-directional arrows imposed on the systematic
classification.

In every top-down split, it is determined if a uni-directional arrow between subclasses exists
or not. If it exists, the source subclass of the arrow propagates its decision as a constraint to the
destination subclass. Uni-directional arrows are included in the T splits to describe the design
constraint propagation. The ordering is guided by four rules of horizontal uni-directional con-
straint propagation instantiated in the context of scheduling top-down splits: (1) The source class
provides parameters to the destination class, which are required for the execution of the schedul-
ing approaches they describe, e.g. a schedule derived from a tabu based technique is given as an
initial solution (``seed'') to the seed based techniques (left top part of tree in Fig. 7.4-(a)), (2) the
parameters of the source class characterize the destination class, e.g. when the pruning of the ex-
ploration space applied during scheduling decisions is exact (Exact class under Pruning Decision
Space class) and it is propagated to the Exploration class, it requires from the Exploration class pa-
rameters to guarantee that the parts of the search space, which are pruned during the exploration,
do not include the optimal schedule, (3) the source class nature prunes unrealistic or sub-optimal
class combinations, e.g. the unrealistic combination of a formally optimal class with a near-optimal
class, since the optimal schedule would have been already found by the optimal class before ap-
plying the near-optimal one and (4) the source class does not remove potential promising options
in the destination class leading to near-optimal hybrid techniques, e.g. using a deterministic solu-
tion as initial solution to a stochastic class removes several options in the stochastic parameters,
e.g. range of moves, termination criteria etc. The number in each top-down split of Fig. 7.4-(a)
describes which rule is applied to derive the class ordering. In the next paragraphs, we describe
the potential combination and the arrow between the subclasses of each split.

The first design constraint propagation has as source the stochastic class and propagates the
decision in the deterministic class (top part of Fig 7.4-(a)). This arrow prohibits the combina-
tion of a deterministic class followed by a stochastic class, which is a less efficient combination as
propagating the deterministic result would heavily constrain the available options in the stochastic

163

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

Near-optimal DT scheduling techniques

Deterministic

Stochastic

Stepwise Recursive

Adaptive Rigid

Potentially
Sub-optimal

Theoretically
Optimal

Optimality Control
(Simulated Annealing based)

Best effort Optimality
(Evolution based)

Iterative Pruning
Solution Space

Division

Near-optimal Formally Optimal

Searching

Ordered Arbitrary

Traversing

Depth
First

Breadth
First

Different species evolution
(Simulated Evolution based)

Same species evolution
(Genetic Algorithms based)

Seed
based

Seedless
(Tabu based)

Formulation Solver

Priority Evaluation Choice

Clustering Partitioning

Adaptive
SA

Static
SA

Dynamic
GA

Static
GA

Epochs Generations

Pruning
Decision Space

Exploration

Control
Near-optimality

Exact

Branch Bound

Forward Backward

Mutation Offspring
Generation

Crossover Selection

GA
Iterations

 GA
Components

Partial
Solution
Selection

Complete
Solution

Generation

SE
Components

Temperature
Calibration

Convergence
per step

 SA
Components

SE
Iterations

Type of SA
Components

(4)

(3)

(1) (3)

(2)

(4) (1)

(4)

(2) (2)

(4) (1) (4) (1)

(1)

(4)

(4) (3)

(3)

(2) (1)

(3)
(3)

(4) (3)

(1) (1)

(1)

(1)

(3)

Parent Class

Left Subclass Right Subclass

(rule)

(b)

(a)

Figure 7.4: The proposed systematic classification with the number of rule of the horizontal con-
straint propagation principles for each top-down split.

class because it restricts its freedom, it localizes its process and leads to potential loss on optimality
and convergence control. For instance, the imposed initial solution by the deterministic class may
significantly increase the exploration time of the stochastic part and destroying convergence. In
the stochastic split, the potential sub-optimal component is applied first and its output is used by
a theoretically optimal component. Otherwise the sub-optimal part would overwrite the conver-
gence benefit of the theoretically optimal component creating a suboptimal final technique. The
tabu search based class determines a solution which is used as a ``seed'' by the seed based com-
ponent. The opposite direction composes less meaningful combination of these classes. The best
effort optimality or Evolution (E) based class determines the population evolution and the output
is used by the optimality control or Simulated Annealing (SA) based class. The latter provides the
effective termination criteria to obtain optimality. The opposite combination would not benefit
from the control on optimality of the SA based class. The decision in the type of SA based com-
ponents is propagated to the actual components to decide their implementation. First the adaptive
type is decided and then the static one. Otherwise the adaptive part would be restricted, as the
static decision may not allow several modifications to be applied. In the SA components class,
the temperature calibration is decided and then propagated to the conversion per temperature step
to decide the equilibrium. The way the temperature is reduced is required to efficiently define
how the convergence in each temperature step will be performed supporting the normal process
of the conversion per temperature step. For the E class, the same species evolution or Genetic Al-

164

gorithms (GA) based class gives a partial solution to the different species evolution or Simulated
Evolution (SE) based class. The opposite direction would overwrite the result of SE based process
because of the mutation characteristic of the GA based process. The GA iterations are decided and
propagated to the implementation of the GA components. The GA iterations combine dynamic
and then static type, otherwise several dynamic options may be prohibited. The GA components
combine the mutation with the offsprings generation. The opposite would destroy the impact of
the mutation effect to the offspring generation. The offspring generation applies crossover oper-
ation to generate the offsprings and then the offsprings to be maintained are selected. A similar
reasoning holds for the components of the SE based class.

In the deterministic class, the recursive class is determined and the stepwise class, i.e. the step
of the technique's kernel, is selected. Determining first the steps would heavily constrain the avail-
able options in the recursive class. For example, using an ILP technique with a poor ability of
modifications constrains the options in the adaptive class. In the recursive split, the adaptive class
determines the modification of the kernel and then the iterations of one kernel instance are de-
fined, i.e. the rigid class. The opposite way would constrain the adaptive options, e.g. selecting a
specific number of kernel iterations restricts the modification options which cooperate well with
this number. In the stepwise class, the solution space pruning is decided first and is propagated to
the solution search process. The reverse combination neglects the reduced space characteristics
which may indicate the iterative technique to be used in the iterative class. First a near-optimal
technique is applied and its output, which is a good initial solution, is propagated to the optimal
class. In the reverse direction the solution would have been found before applying the near-optimal
part. The selection of the decision space pruning class is propagated to the exploration class to
indicate how the scheduling exploration should be performed and thus affecting the implementa-
tion of the exploration components. The exact way is combined with the controlled near-optimal
way. When the pruning is exact, it indicates to the exploration class that the next classes should be
implemented in a way that the optimal solution is always included in the remaining search space.
In the exploration class a technique may first cut the problem to smaller regions (division) and then
searches for a solution within each region (searching class). Otherwise the searching part would
reduce the options of the division part. For example, deciding first to use the the arbitrary search
demands from the division part to create appropriate regions where this search can be applied. In
the division split, the partitioning class first partitions the problem to smaller sectors and then parts
within each sector are clustered. Otherwise, the clustering decision diminish the possible ways of
partitioning the problem, because the partitioning is applied on already clustered groups which
prohibit potentially promising partitions to be applied.

In the searching class, the arbitrary part first determines the jumps in the search space and then
the ordered part searches in the place indicated by the arbitrary. The combination following the
opposite direction would (heavily) reduce the potential arbitrary jumps due to the imposed con-
straints to the search. For the arbitrary part, the way to select a node is decided and propagated to
the choice evaluation, since the evaluation cannot be performed if the way of choosing is unknown.
In the order class, the priority of the CDFG nodes is determined. This information is propagated

165

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

to the traversing class, as it is required to decide an efficient way of traversing the CDFG based on
the priority function. The reverse way does not take into account the characteristics of the priority
function while deciding the traversing strategy. In the traversing class, the bound class propagates
to the branching class, as it is required to decide an efficient branching. For example, determining
first a depth-first traversing strategy and then the priority, e.g. force priority, leads to a less opti-
mal result. The force priority is not taken into account during the traversal strategy selection. The
bounds are decided and then propagated to the branching class. The opposite direction does not
support efficient decisions on how the branching is performed. In the branching class, the forward
direction is propagated to the backward direction in order to decide how to implement the latter
step. In the forward branching, the more promising combination is to apply a Breadth-First (BF)
and then a Depth-First (DF) approach. In the formally optimal class, the formulation class of an
optimal technique defines the problem. This is propagated to the solver class to describe the way
to solve it. The inverse combination does not seem to produce any promising solution, so it is
discarded.

In case of propagating the decisions following the opposite direction would remove potential
promising solutions. For instance, the output of the best effort optimality class is propagated to
the optimality control class. Following the opposite in this combination, the composed techniques
would not benefit from the effective termination criteria on optimality of the optimality control
class leading to a suboptimal technique. The constraint propagation is performed following one-
way directions in the top-down splits. They impose the way to propagate the decisions of the
source class as constraints to the next classes. In case bi-directional relationships are used in the
top-down splits, the subclasses would strongly affect each other. This lead to infinite iterations and
increased CPU time and to obtain a result, the process should be preliminary terminated, leading
to suboptimal approaches.

7.5 Illustration of the systematic classification

In this section we classify a series of illustration examples using the proposed systematic scheme.
We use as much as possible representative and well established techniques covering a wide range of
the published literature. The purpose is to verify our approach by showing how existing approaches
are valid members, i.e. instances, of the proposed primitive classes, to illustrate the fundamental
philosophy of all the distinct classes and to indicate the main principles in the way the classes can
be combined. The global scheduling techniques are often hybrid combinations, which combine
instantiations of different classes. Hence, we present the illustration examples for several different
groups which cover all the classes. In this way, we can better illustrate how classes are combined
in one scheduling technique. The groups have derived their name from the higher common class
of the classification tree. For the deterministic branch, the illustration examples are described in
the groups: adaptive techniques, rigid techniques, solution space pruning techniques, near-optimal
hybrid techniques and formally optimal techniques. The groups for the stochastic part are: SA

166

based techniques, GA based techniques, SE based techniques, Tabu search based techniques and
Seed based techniques.

7.5.1 Adaptive global scheduling techniques

A high-level synthesis scheduling problem is solved by a hybrid technique of the adaptive and
the priority class [69]. The adaptive characteristics derive from the learning process based on
the Kohonen's rule for self organization. The operations Ti to be scheduled are described by a
CDFG. The set of constraints is D = (N, T, PD,GT, LT), where N is Number of resources, T
is Type of resources, PD is Propagation Delay, GT is global time constraint and LT is local time
constraints. The network consists of the input node pair, i.e. random variables with uniform prob-
ability distribution, and the output nodes, i.e. the operations Ti. Every output node is connected
to the input node by a weight pair (ri, csi) corresponding to the node's position in the schedule
space. From an initial solution, the net is trained on every iteration by presenting input vectors at
the input nodes and adapting the weights of the output nodes. The operation selected to be sched-
uled is the one with the minimum distance, i.e. the data dependency distance between the input
vector and the weight pair of the operations. The selected operation is moved towards the position
specified by the input vector pulling its neighbors. The objective function C is proportional to the
data dependency distance and the neighborhood radius. The process is repeated until it converges
to the near-optimal solution, i.e. until the current neighborhood radius σ(t) is equal to zero.

7.5.2 Rigid global techniques

A hybrid technique of the rigid and the optimal class solves a data path synthesis scheduling prob-
lem in [179]. The technique starts from an arbitrary initial solution which may not satisfy all
constraintsD = (Cmod, GT, LT), where Cmod is the cost of module,GT is global time constraint
and LT is local time constraints. In each iteration an improved solution is found based on the gra-
dient of the objective function, i.e. the direction of most rapidly increasing. Given the maximum
number of control steps and satisfying the constraints set they minimize the objective function
C = Σ(wi ∗ V Termi) + Cmod, where wi is the weight for each violation term per constraint
V Termi. The weights are small at initial steps, whereas at the end increase in order the solution
to satisfy all constraints. The solution is updated by an optimal technique, where the set of con-
straints are formulated as integer variables and an ILP solver is used. If the solution change is
small, the weights w of the constraint violation parameters are increased. Then, the same process
is repeated. When the solution satisfies all constraints the problem has converged.

A technique combining the rigid and the optimal branch to solve high-level synthesis is pre-
sented in [25]. The Time-Constrained Scheduling (TCS) problem is solved by generating missing
resource constraints di, i.e. tight lower bounds on the functional units number of each type. It
is converted to an easier-to-solve Time-Resource-Constrained Scheduling (TRCS) problem. A
careful ILP formulation through polyhedral theory is used which characterizes the set of feasible

167

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

schedules in terms of assignment, precedence, and resource constraints [26]. The objective func-
tion is C = f(Numcs), where Numcs is the total number of control steps. If TRCS produces a
feasible schedule, it is guaranteed to be optimal, otherwise the resource constraints are increased
and the process is repeated. A similar approach holds for the Resource-Constrained-Scheduling
(RCS) problem with lower bounds on timing constraints.

A similar rigid and optimal hybrid technique [57] formulates the size of the search space
through polyhedral theory [138]. The operations Ti are nodes of a DFG, constraints are D =

(area, latency) and objective function is C = f(throughput). It starts with the initial ILP prob-
lem and it continues solving successive ILP problems. When it reaches the point with no further
improvement, it terminates as it has obtained the optimal solution under the specific constraints.

7.5.3 Pruning techniques

A pruning technique reduces the exploration space by analyzing the problem constraints D =

(L,RC, TC), where L is latency, RC is resource conflicts and TC is timing conflicts. It can
identify sequencing constraints di between operations additional to the precedence ones. Extra
edges are added based on rules to reduce the solution space [128]. For instance, two conflicting
operations cannot be scheduled at the same ``potential'' bi. If their distance would cause them to
be scheduled at the same bi, the execution start time csi has to be increased by at least one clock
cycle.

Another pruning technique [134] reduces the search space by identifying possible conflicts
and by posing constraints di to resolve them. The initial set of constraints is D = (Temp,CR),
where Temp is temporal and CR is capacity resources. The technique estimates the activity de-
mand and the resource contention. The objective function C determines the activities which are
most likely to contribute to the bottleneck contention. They are sorted by inserting appropriate
temporal constraints according to the activity demand. Another pruning technique starts from a
maximal parallel flow graph and establishes supplementary edges [61]. Unallowed sets are used,
i.e. sets with operations Ti which cannot be executed concurrently, i.e. they have different ri, csi.
Rules are assigned which determine all the alternatives to solve conflicts in an unallowed set. The
conflict solution can be applied by introducing edges in the graph to serialize the conflict opera-
tions. However, the resolution of conflicts should be applied in an exact way without excluding
the optimal solution.

These pruning techniques can be improved by combination with a technique which belongs
to the iterative class to further optimize their output, e.g. a pruning [61] with an iterative optimal
technique [74].

A global known periodic task scheduling problem on heterogeneous multiprocessor platforms
is solved in [37]. This technique analyzes the tasks and their periods and prunes the search space
by propagating constraints, ordering variables, ordering values and adding constraints. Although
the technique searches for a feasible solution, we use it as an illustration example to show how our
approach applies also for real-time techniques within our target domain.

168

7.5.4 Near-optimal hybrid techniques

A technique combines the near-optimal pruning of the decision space, the partitioning, the ordered
and the arbitrary class in [150]. It partitions the operations Ti to the critical and non-critical paths.
The critical ones are scheduled by an arbitrary technique without indicating a strict priority in
the way the scheduling is performed, i.e. a FCFS strategy. The non-critical ones are scheduled
by an ordered technique using the least freedom priority, i.e. the difference between the time the
input values are needed and the time the operation's result is required. The objective function is
C = f(cost) or C = f(speed) and the set of constraints is D = (temporal) or D = (cost).
If a constraint is not met, the schedule length is increased and operations are rescheduled. The
technique does not guarantee that can visit all the possible combinations and thus it is non-global.
But we use it as an illustration example of a hybrid combination of near-optimal techniques of
our classification since the authors intuitively mention that adding the backtracking property, i.e.
backward branching, modifies it to a global one.

A scheduling technique deals with the scheduling problem of instructions Ti through three
steps: clustering, compiler merging and placement [109]. The instructions with no parallelism
are clustered together. The clusters are merged to be reduced to the number of processing units.
Placement maps the merged clusters to the processing units by minimizing the objective function
C = f(Bcom, Ctot), where Bcom is communication bandwidth and Ctot is total cost. It does
not provide guarantee of the near-optimal solution. However, we use it to illustrate the potential
of our classification scheme to extend such heuristic, i.e. non-global techniques with additional
elements to reach near-optimal behavior. In particular, we can combine the near-optimal pruning
of the decision space, the clustering and the ordered class of our scheme by properly modifying
the technique's non-global part to include all the potential near-optimal solutions by including
backward branch and near-optimality control in decision space pruning.

The memory scheduling problem is solved by a clustering technique where the memories are
merged based on high cost gain [115]. Another technique maps arrays to multiple memories and
combines the partitioning, the clustering and the ordered class [149]. The arrays are partitioned
to ``logical arrays'' based on their access. Then they are clustered to ``logical memories'' based
on their possibility of interleaving and mapped to physical memories minimizing the objective
function C = f(TC), where TC is transition count. These approaches do not guarantee the
optimal solution as they miss the backward branching class, but are used as examples of applying
the proposed scheme to classify memory scheduling techniques.

Many existing techniques belong to the ordered class using different priorities and traversing
strategies.

The technique in [81] uses an exact ordered technique for the tasks Ti assignment in hetero-
geneous computing systems. The authors use the objective function C = f(Cexecution), where
Cexecution is the cost of execution and the cheapest solution through a node is selected. Each node
has an estimated lower bound for the cost consisting of the path from the root to the node and the
lower bound estimation of the path from node to the total solution. The branching is performed

169

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

in a combination of Breadth-First and Depth-First strategy and backtracks based on the lower cost
priority.

A hardware-software system implementation scheduling problem is solved by an ordered tech-
nique which assigns tasks Ti to SoftWare (SW) and HardWare (HW) processors in [24]. The tasks
are sorted based on their suitability and are assigned to balance the load between processors us-
ing depth-first strategy. It binds exhaustively the tasks which are not inclined towards either HW
or SW implementation and keeps fixed the ones which are strongly inclined. If the constraints
D = (time, area) are not satisfied, it backtracks and changes the previous solution. The task
assignment to processor cores is solved by a similar approach [117] by merging nodes with the
maximum edge weight priority. When a solution is not found a backtrackingmechanism is applied.

Another near-optimal ordered technique has the least function cost as priority function [213]. It
expands the W most promising nodes in breadth-first order, where W is the search width. With W
is equal to one is a depth-first strategy and with W equal to unlimited is a breadth-first strategy. All
the intermediate values represent a hybrid technique of these classes. Systematic backtracking is
integrated to make the technique global. The technique does not terminate when it finds a solution,
but continues until all layers are ``backtracking'' complete.

An ordered technique for instruction scheduling in VLIW processors uses the amount of slack
as priority [1]. Another technique schedules applications in VLIW architecture with height priority
and backtracking capability [197].

A near-optimal real-time multiprocessor scheduling technique meeting all deadline constraints
is presented in [209]. It uses the lateness of any schedule from a node as a bound estimation. The
node with the least bound is selected for forward branching each time. The problem of assigning
and scheduling periodic task modules Ti to processing nodes in distributed real-time systems is
solved by a near-optimal technique in [72]. The objective function C is the probability of meeting
tasks deadlines. The bound is a tight upper bound in the objective function and the forward branch-
ing generates children of an intermediate nodes following a dominant relationship. The version
of the A* algorithm of [156] is an ordered technique applied in multiprocessor task scheduling
problem in [155]. It is the Branch Join Path isomorphism, where the priority is the cost function
and the bound is the static level of a task. The forward branch of the nodes is performed based on
the minimum cost function.

7.5.5 Formally optimal techniques

One optimal technique describes mathematically scheduling objectives and constraints which are
easily translated into ILP formulations [74]. A feasible scheduling formulation is performed by
carefully arranging the data dependencies and by usingASAP,ALAP and list scheduling techniques
which allow computing an upper limit on control steps number. A lower and an upper limit on the
function units numberR of each type prevents many unnecessary searches. The objective function
C = f(Costfu, Cin, Costreg). Then, they solve the feasible scheduling problem.

Another optimal technique derives the IP formulation model from polyhedral theory [58]. The

170

objective function is C = f(time, Cfu, Creg), where Cfu is the cost of functional units and Creg

is the cost of registers. Equations ensure the unique use of constraints per cycle. The constraints
D, e.g. each operator, functional unit, and register, are transformed into a graph to derive integral
facets, i.e. cliques. The solver is based on the cubic polynomial Karmarkar algorithm for Linear
Programming (LP) [83]. Algebraic equations satisfy the constraints D in [64]. Relations model
the execution of an operation on an operator, the storage of a value in a storage element and the
correct hardware resource sharing. Themodel is based on a system of constraints which is solved as
a MILP problem [120]. Another optimal technique provides a flexible ILP problem formulation to
find periodic schedules under timing and resource constraintsD and power consumption objective
function C [23]. In [40] they propose a Mixed-Integer Bilinear Programming (MIBP) formulation
to find optimal solutions to the Multiprocessor Scheduling Problem with Communication Delays
(MSPCD). They minimize the objective function is C = tmakespan to run a set of tasks with fixed
lengths Li on homogeneous processors.

7.5.6 Simulated Annealing based techniques

Themain principles of the SA based technique have been introduced in [88]. A scheduling problem
is the formulation of the data path synthesis as a two-dimensional placement of microinstructions
Ti in space and in time, i.e. bi = (Ti, ri, csi) [43]. It is solved by a SA based technique which
searches the near optimal placement of microinstructions. It is a static approach which fractionally
reduces the temperature and the number of states to converge per temperature value is a multi-
ple of the number of code operations. Its random moves are: operations interchange, operations
displacement and variable interchange in symmetric operations [43]. A move is always accepted
if it reduces the objective function, e.g. C = w1 ∗ Texec + w2 ∗ Nalu + w3 ∗ Nreg + w4 ∗ Nbus.
Otherwise it is accepted if a random number is smaller that the e−

CostChange
T . When no change

occurs for three successive temperature points, the process terminates.
A SA technique searches for an optimal design considering the set of constraints D in speed,

area e.t.c. in [166] and [165]. It belongs to the SA based class with static parameters. The
temperature is Tk = To ∗ ak, with a a constant equal to 0.92 and k equal to the number of moves.
Its random moves are global, i.e. a move up or down from a control step csi of a randomly chosen
branch to another, or local, i.e. ``rescheduling'' of one operation Ti or merging of two consecutive
operations. The moves causing reduction of objective function C are always accepted; otherwise,
probabilities are used. Another technique performs ordering in time, assignment in space and
module selection in high level synthesis [167]. Based on the proposed classification, the authors
use a SA based technique with static parameters for ordering in time and assignment in space
combined with pseudo-deterministic control for the module selection. They apply global or local
moves [166] [165] and the initial temperature is computed such that any new configuration is
accepted.

The multiprocessor scheduling problem is solved by a SA with static parameters based tech-
nique [137]. The temperature is reduced based on T = T ∗K, where K a constant value. They

171

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

apply random interchanges on tasks Ti. A move is accepted if the new system weight is smaller or
if a random number is smaller than e

Wold−Wnew
T . When the temperature is less than 1, the process

terminates. Another SA technique solves multiprocessor scheduling with an minimum execution-
time objective function C, which includes scheduling an application T on an appropriate subset of
the resources R [211]. The problem of scheduling periodic and aperiodic tasks Ti onto pipelined
parallel architectures is solved by a SA technique in [145].

7.5.7 Genetic Algorithm based techniques

The high-level synthesis resource constrained scheduling problem is solved by a GA based tech-
nique [67]. They use a data flow graph, the set of constraintsD are the number and the type of the
hardware resources and the objective function C is the completion time of the schedule. Recombi-
nation elements are selected through roulette wheel. Generation of new elements is implemented
by uniform crossover and inversion [130]. The selection is based on the schedule encoding, which
is performed by permutation of operations used as priorities for a list scheduler. The process ter-
minates when it meets the lower time bound or the number of iterations reaches 100. The authors
also modify the genetic recombination operators introducing rules to avoid identical schedules.

The GA based technique solves a time constrained scheduling problem in [68]. They use a
data flow graph, the constraint D denotes the cycle step before which each operation must have
finished its execution and the objective function C is the set R of the number of the function units
required. Different genetic recombination operators and solution decoding methods are used. Rel-
ative displacements for each operation specify the order, the uniform crossover, the inversion and
the mutation genetic operations. Permutations are used as priorities for a list scheduler or for a
topological order scheduler to decode the schedule [68] and drive the selection. An absolute dis-
placement to each operation, simple crossover and mutation genetic operators are used in [201].
They also use a special crossover operator to avoid illegal solutions. In [41] a chromosome is
mapped to a solution through an order-based encoding of a chromosome, a uniform order-based
crossover operator and a decoder. The execution time of the derived schedule is used as an objec-
tive function C to calculate the fitness of the solution. The selection of the encoded solutions is
implemented by roulette wheel. The process terminates after a specified number of runs or when
the solution meets the lower bound estimation.

The data path synthesis scheduling problem is solved by a GA based technique [46] known
as Problem-Space Genetic Algorithm (PSGA) [184]. They use a different encoding structure
called ``problem space''. The PSGA chromosome encodes a solution as a Heuristic/Problem pair
(H,P). It has a ``functional-units part'' which describes the constraintsD, i.e. the number and type
of functional units, and a ``work-remaining part''. The latter is used as priority rule to generate
the global schedule and to calculate the objective and fitness function. The exploration space is
searched by perturbing the problem input data parameters. The recombination of chromosomes
is performed through a simple one-point crossover genetic operator while the mutation genetic
operator randomly selects a gene and perturbs its value.

172

A GA based technique solves the global scheduling of precedence constrained task graphs
with non-negligible intertask communication onto fully connected multiprocessor systems [44]. It
is based on problem-space genetic algorithm using a simple one-point crossover, mutation and a
list based scheduling method for decoding the chromosomes.

A real-time task scheduling for multiprocessors using a problem-specific GA scheduling tech-
nique is presented in [112]. The tasks Ti have a set of constraints D = f(t, tl,m), where t is
arrival time, tl is the computation length on any processor and m the number of processors. The
objective function to be minimized is C = average(timeresponse). The chromosome is coded to
describe the task and the corresponding processor, the fitness function is the normalized average
response time, specialized crossover and mutation are used.

7.5.8 Simulated Evolution based techniques

A high level synthesis scheduling problem is solved by a SE based technique [119]. Their SE
technique solves separately the assignment of the control data flow graph nodes Ti to control
steps csi and the assignment ri of hardware cells to the nodes and the edges. The selection of
partial solution is based the objective function C = f(Costoverall) and the inferior elements
have high contribution to it. An element is removed from the solution, if its normalized cost
norm = C(element)−min(C)

max(C)−min(C)
is less than a random cost between -δ and 1. The complete solution is

generated by creating the missing elements with a freedom based priority scheduling, where the
highest priority element is chosen. If a random number between 0 and 1 is less than the mutation
probability, a mutation operator is performed, else the assignment with the lowest incremental
cost is applied. When a satisfactory solution is found or when the number of SE iterations reaches
a maximum, the process is terminated. The authors also present an extended SE based technique
which generates the next state applying the SE technique and probabilistically accepts it.

7.5.9 Tabu search based techniques

A Tabu search based technique schedules operations Ti in a high-level synthesis problem [168].
The objective function is C = WCS ∗NCS +Wreg ∗Nreg+Wbus ∗Nbus+Wfu ∗Nfu+Wic ∗Nic,
where W is the weight, N the number, cs the control steps, reg the registers, bus the buses, fu
the functional units and ic the interconnections. Three types of moves are performed: moves to
change the control step, moves to change the functional unit assignment and moves to change the
functional unit input assignment of variables. The move type is selected probabilistically based on
its importance on the objective function. A number of the selected move is generated. Although
the derived solutions are always feasible, not all of them pass the aspiration criterion. If the best
appliedmove is not in the Tabu list or if the cost after performing themove is less than the aspiration
level criterion, it is accepted. Otherwise another set of the same candidate moves is generated.
The process terminates after a given number of iterations. Another tabu search based technique
is the ant colony optimization. For a number of colonies each ant gradually reaches a solution by

173

7. DESIGN-TIME SCHEDULING TECHNIQUES FRAMEWORK

probabilistically deciding the applied moves [50] [53]. The latter are maintained in a list and the
best solution of each colony reinforces its moves in the next colony.

7.5.10 Seed based techniques

ASeed based technique is a crudeMonte Carlo scheduling technique [144]. The objective function
can be expressed as C = f(Timetot) or C = f(Timeidle). The constraintsD include the number
of resources. It samples permutations at random. The best permutation is selected from a large
number of samples without checking for repetition or using already found better solutions. Another
similar technique is a Chain Monte Carlo which selects permutations at random within a certain
distance according to some current permutation measure until a better one is found. Then the latter
becomes the current permutation and the sampling is continued until no improvement occurs for
some time [144].

7.6 Conclusions

In this chapter, we present a systematic classification which provides a complete and consistent
overview of the different categories of techniques solving design time mapping problem on sin-
gle and multiprocessing platforms emphasizing on ordering in time and assignment in place. The
classification has derived by applying the reusable DSE framework principles in the classification
context. Our classification is capable of classifying in a systematic way any existing and future
technique satisfying our assumptions creating a reliable and generally applicable scheme. In con-
trast with previous approaches, our proposal classifies a technique to one primitive class or to a
hybrid combination of such classes. The decomposition into primitive components enables their
systematic and efficient classification. The classes have unique set of characteristics describing
non-overlapping search areas. Hence, our classification is able to straightforward classify even
complicated techniques allowing their in-depth understanding, i.e. their main characteristics, their
structure and the interrelationships of their classes. This is essential for the efficient use of the
techniques. The thorough understanding is of crucial importance in the identification of less ex-
plored areas and the improvement of the existing and in the development of new global scheduling
techniques, as described in Chapter 7.

174

Chapter 8

Methodology to develop design-time
scheduling techniques under constraints

8.1 Introduction

The scheduling techniques heavily affect the system design and performance, as they are respon-
sible for meeting the system specifications, e.g. real-time behavior, minimal energy consumption,
reliability etc. The scheduling technique assigns operations, groups of operations, memory refer-
ences or communication transactions to control steps and hardware resources (homogeneous or
heterogeneous processing elements, function units, memories or intercommunication networks) to
these operations. The dependencies and constraints should be satisfied, whereas the values of the
functions, which describe the crucial objectives of the system, should be minimized. Constraints
are imposed by the environment, e.g. a deadline before which the task must finish its execution,
by the task, e.g. ordering in data fetching and operation execution, and by the target architecture,
e.g. number of interconnections, storing and execution components. Crucial objectives are the re-
quired control steps to finish execution, the required hardware resources etc. and also combinations
of different objectives.

Although decades of research and experiments have been invested in the design-time schedul-
ing on hardware platforms with single and multi instruction set processors, significant space for
improvement exists [182]. Software tools offer automatic scheduling of applications to the tar-
get architectures. However, they provide limited coverage, as they apply only specific scheduling
techniques for all application domains, e.g. Cheddar [181]. Usually the tools explore a wide range
of scheduling instances, which are, however, restricted and focused on a relatively limited explo-
ration area. When the application characteristics do not match very well with the explored area (i.e.
the scheduling technique to reach (near-)optimal schedule for this application domain has differ-
ent characteristics than the available tool techniques), this approach leads to less efficient designs.
Tools cannot provide advice on which scheduling techniques are most promising to minimize the
crucial objectives for a given application domain. A framework to support the decision of a promis-
ing scheduling strategy for a problem domain is missing [5]. Applying a very broad exploration is

175

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

a very difficult and time consuming task due to the high number of different in nature scheduling
approaches and scheduling parameters. Hence, the designers, usually, develop scheduling tech-
niques which can potentially achieve (near-) optimality for very similar applications by following
ad-hoc or less systematic ways, e.g. trial and error, based on their previous expertise. This process
requires costly design iterations. Usually, the practical application domains include different in
nature application instances with complex and large CDFG and real-time constraints to be met.
Then, the aforementioned techniques sacrifice the schedule quality or significantly increase their
execution time, e.g. Integer Linear Programming (ILP) scheduling techniques guarantee optimal-
ity, but are applicable for small CDFG. A systematic methodology to develop, from the very early
steps of the design process, scheduling techniques, which meet domain constraints, e.g. schedule
(near-)optimality and technique scalability, is highly desired, as design effort and time are reduced.

In this chapter, we use the framework for design-time scheduling techniques created in Chap-
ter 7 by applying the principles of the reusable DSE to create a systematic methodology which
develops parametric template for design-time techniques to schedule single-thread applications of
embedded systems in single and multiprocessing platforms, under near-optimality and scalability
constraints for large and complex CDFGs. The principles of the usage of the framework described
in Chapter 2 are applied in the context of developing design-time scheduling techniques which are
near-optimal and scalable for a target domain, which is covered by the root of the classification
tree of Chapter 7. The proposed methodology is a projection of the framework usage process
described in Chapter 2. The proposed methodology consists of four steps. The first step initial-
izes the structures used in the next methodology steps. The second step analyses the application
and platform domain properties, such as the size and the structure of CDFGs, the required op-
timality of the solution, the available search time etc. These properties are characterized as the
domain constraints, which should be satisfied by the developed scheduling techniques. In the third
step, the domain constraints are vertically propagated based on the vertical constraint propagation
principle to a complete set of non-overlapping classes, which are structured as a tree. Each class
describes a different scheduling approach through a prestored template with parameters and func-
tions, as described in Chapter 7. During vertical constraint propagation, the domain constraints
prune the incompatible classes. For instance, an optimality domain constraint prunes the near-
optimal scheduling class. The result is a reduced tree with the compatible classes. In the forth
step, the tree is flattened, the prestored templates of the compatible classes are selected and com-
bined into a parameterized template by following the horizontal design constraint propagations.
The combined parameterized template is the output result of the proposed methodology and de-
scribes the proposed scheduling techniques for the targeted application domain. We demonstrate
the proposed methodology in an application domain with complex and large CDFG and real-time
constraints. We also present variations of the objective functions and the CDFG characteristics to
show how they affect the space exploration. A lower bound on performance gain of the combined
parameterized template of 13-18% is estimated for several real-time applications of the Mibench
benchmark suite, e.g. 18,2% for Forward DCT in jpeg encoding. The output result can be used
to guide the automatic scheduling provided by existing software frameworks: the most promising

176

technique for a specific application of the domain can be efficiently selected from the template by
instantiating the parameters. This process will generate the actual instantiated scheduling tech-
nique, which will be implemented in the software framework. The instantiation process is not
covered by the dissertation and it is considered as future work.

In the remaining sections, we present the projection of the usage of the framework in the
context of developing design-time scheduling techniques, which are scalable and near-optimal for
a partially instantiated target domain. The latter, however, should be covered by the goal described
in the root of the used framework. Initially, we provide an example to illustrate that the existing
scheduling techniques cannot achieve scalability and near-optimality for large and complexCDFGs.
In this way we motivate the necessity for a methodology that systematically creates scheduling
techniques, which meet the scalability and near-optimality constraints for the domain under study,
from the early stages of the design process. In Section 8.3 describes existing design-time scheduling
approaches and scheduling software tools. The proposed methodology is presented in Section 8.4
presents and a demonstration case study and several variations of it are presented in Section 8.5.

8.2 Motivation

8.2.1 Target domain

The main objective function is to minimize the execution time meeting the hard real-time con-
straints, while reducing secondary objectives, e.g. energy consumption, which is proportional to
cycle count for important practical target architectures, like VLIWs, that are instruction and data
memory/register-file dominated, or RISCs with simple arithmetic units [169]. The platform do-
main includes a wide range of hardware architectures, where the system control is derived by
the instruction set of the processing elements, such as Application Specific Instruction Processors
(ASIP). They support loop buffer structures to maintain near-optimal performance and reduce en-
ergy consumption [22]. Hence, code transformations to increase schedule freedom in cost of code
size are considered less appropriate, as they prohibit the efficient use of loop buffers. Pure hard-
ware controlled architectures, such as platforms with Finite State Machine (FSM) control and pure
Application Specific Integrated Circuits (ASIC) are excluded.

The application domain consists of applications for embedded systems, which have hard con-
straints on time execution, and thus (near-) optimal schedule is crucial to achieve real-time be-
havior. The applications are described by large and complex CDFG (1st domain constraint) and
the operations of the application are separated to basic blocks. The blocks may be parametric on
the data input, e.g. the loops iterations in an image processing application depend on the frame
size at start-up time. As design-time techniques cannot exploit this information, optimizing trans-
formations across parametric blocks, to create more freedom in the scheduling process, cannot
be applied. Several blocks can be optimally scheduled following design-time conventional tech-
niques, e.g. stochastic or deterministic approaches. But some blocks, due to the position of several
operations, are hard-to-be optimally scheduled by conventional techniques, containing critical sub-

177

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

graphs.

Definition 4. A critical CDFG subgraph consists of operations with dependencies which allow only
few opportunities for parallelism and in order to derive optimal schedule, the ready operations with
flexibility should be postponed.

When the critical subgraphs are optimally scheduled, the complete application can be opti-
mally scheduled, since the remaining operations schedule is relatively easy. Otherwise, potential
optimality is not feasible. Hence, the critical subgraph optimality is the second domain constraint.
We assume that the critical subgraphs have weak dependencies and thus they can be separated in
relative small and uncoupled CDFG subgraphs (3rd domain constraint). On practical industrial
contexts, where the overall application CDFG is very large, an upper bound exists for the available
execution time of the design process. Hence, the fourth domain constraint is to keep the search
time low and thus to have a technique with complexity scalable to large application graphs and as
close as possible to linear (and certainly not exponential) in the overall problem size. Section 8.5
presents the results of the methodology applied in the target domains with near-optimal critical
subgraphs constraint and with strongly connected subgraphs constraint.

8.2.2 Performance of scheduling techniques

This section describes the performance of existing conventional scheduling techniques and the
techniques developed by the proposed methodology for the target domain of Section 8.2.1. We
explore the worst case, i.e. the critical subgraphs position is such that the impact on the overall
schedule cannot be hidden by scheduling other operations. The critical subgraph is in the very last
operations of a basic block or all next operations fully depend on the subgraph output.

One critical subgraph is depicted in Fig. 8.1-(a), which shows the end of a block of a large ap-
plication CDFG. It consists of five operations, which require the same type of hardware resources.
Two hardware resources exist to perform this operation type. The number next to each node de-
scribes the execution time of the operation. A limited amount of parallelism available through
operation (e). The critical path is a-b-c and a-d-c. Applying conventional scheduling techniques,
which are presented in Subsection 8.3.2, a near-optimal schedule is derived for this critical sub-
graph. The deterministic techniques compose a schedule based on the dependencies of the CDFG
and start scheduling from the entry nodes of the large CDFG [105], pulling the nodes upwards.
When they reach the last operations, they end up with a near-optimal schedule due to the lack
of a look ahead scheme and the lack of compromises between early and late decisions [200]. In
the examples of Fig. 8.1-(a), they select the operation a, as it belongs to the critical path. The
operation e, which is ready to be scheduled, is also selected for scheduling, since no other node of
the critical path is ready. The schedule result is depicted in Fig. 8.1-(b). The stochastic techniques
do not intent to place the operations at any specific position. The postponement of the operation
e, required to achieve optimal schedule (Fig. 8.1-(c)), is based on random moves. To achieve an
optimal solution, a more global view on the overall scheduling situation involving more than the

178

a

b

c

d

e 2

2

4

2

4

…

…
 a

e
b

d

c

0
R2 R1

2

4

6

10
(b) (a)

a

b d

c

0
R2 R1

2

4

8

(c)

e

Figure 8.1: (a) Critical subgraph at the end of one loop of a large CDFG. A near-optimal schedule
(b) has two cycles difference with the optimal schedule (c) in one loop iteration.

neighboring CDFG nodes is required. In existing conventional techniques, the global view can
only be systematically obtained by a time-consuming global exploration techniques, such as ap-
proaches that apply a very detailed search at the fine-grain operation level (e.g. ILP solvers) or very
gradually evolving stochastic techniques. Both types are too slow to be scalable to large real-time
CDFGs with critical subgraphs with more operations and with platforms with multiple hardware
resources. Efficient partitioning which leads to optimal schedule, is not possible, as conventional
techniques are incapable of exploiting the application structure on the fly to identify the critical
subgraphs.

The developed template by the proposed methodology describes techniques which optimally
schedule the critical subgraphs of the CDFG. The detailed description is provided in Section 8.5.
An Adaptive Simulated Annealing (ASA) based stochastic part is used to quite fast and optimally
schedule the easy to be scheduled operations (outside the critical subgraphs). The time that ASA
requires to converge in a temperature step is analyzed to find the critical subgraphs. When the
convergence time is increased, a critical subgraph exist within the range of the ASA randommoves.
Then, the ASA part is terminated. The critical subgraphs are propagated to aB&B part to finalize
the search. Since the B&B is performed only in the critical subgraphs with a good initial solution
(ASA schedule), it can apply a fine-grained search within the limited CPU time and identify that the
postponement of the operation with parallelism, i.e. e, achieves the optimal schedule, as depicted
in Fig. 8.1-(c). In this way significant exploration space is pruned and the complexity is reduced,
even for large application sizes. We will come back in more detail in Section 8.5.

8.3 Related Work

8.3.1 Scheduling software tools

Several existing software tools automatically schedule an application to the target hardware plat-
form. They include a library with a range of conventional scheduling techniques, but, they pro-
vide a relatively limited coverage. In practical application domains, e.g. domains with complex
and large CDFG and real-time constraints which need to be met, the tools use conventional tech-
niques, which either sacrifice the schedule quality or significantly increase execution time leading
to less efficient results, as explained in Section 8.3.2. For instance, Cheddar [181] includes most
of classical real-time scheduling techniques and provides tools to the designer to compose design

179

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

specific schedulers. Times [102] uses automata to describe scheduling strategies, e.g. Fixed Pri-
ority Scheduling (FPS) or Earliest Deadline First (EDF). A tool which uses a greedy algorithm to
allocate tasks to processors is presented in [14]. GAST [79] decomposes several of the existing
scheduling policies into independent parameters in its library. CASCH [2] includes several of the
existing techniques, e.g. list scheduling and clustering [79], allowing the designer to select different
techniques to evaluate their performance in specific applications and architectures. Parallax [111]
offers an environment with seven classical scheduling techniques on various architectures [104].
Hypertool [205] is used in message passing systems and applies scheduling based on the critical
path methods. PYRROS [210] provides automatic scheduling for static graphs based on the Dom-
inant Sequence algorithm to cluster the task graph applying a balanced mapping. PARSA [180] ap-
plies automatic scheduling on multiprocessors systems based on Heavy Node First (HNF), Linear
Clustering (LC) and Linear Clustering with Task Duplication (LCTD) partitioning and scheduling
techniques. The existing tools offer a wide range of scheduling instances, which are, however,
(near-)optimal approaches for dedicated applications, i.e. the applications which match very well
with the scheduling techniques that the tool explores. The existing tools miss a way to guide
which scheduling technique is most promising to be used in an application domain. For instance,
SUIF [185] consists of scheduling modules, which allow the designer to create a scheduling ap-
proach. Parafrase-2 [158] is a tool for experimentations with transformations and scheduling ap-
proaches for parallel supercomputers. Hence, the development of the scheduling technique is left
fully to the designer. In order to improve the design process of scheduling techniques, effort from
the designers is required. The alternative is a very broad design space exploration which involves
a very difficult and time consuming task due to the high number of different in nature scheduling
classes and scheduling parameters. Hence, the designers develop conventional scheduling tech-
niques to potentially achieve (near-)optimality for very similar application instances by following
ad-hoc or trial and error ways based on their previous expertise.

8.3.2 Conventional Scheduling Techniques

The scheduling techniques considered as conventional may belong to one scheduling class, i.e.
stochastic or deterministic, or they are hybrid techniques, which are combinations of different
scheduling classes. In practical application domains with complex and large CDFGs, as described
in Section 8.2, which require (near-) optimal solutions, the conventional techniques sacrifice quality
or require prohibited execution time.

The deterministic techniques cannot achieve (near-) optimal solution in these practical appli-
cation domains, as they are applied in the complete large CDFG leading to significant increase to
their execution time. The time required for deterministic techniques to converge is relative to the
problem size [12], which is crucial for large CDFGs. In addition, they cannot efficiently select
the direction of perturbation to visit all local minima in the search space [66] and a local minima
may trap in a sub-optimal search [84]. The deterministic techniques compose a schedule based
on the dependencies of the CDFG. They start from the initial operations of the basic blocks of the

180

CDFG, as they traverse the graph from the entry nodes to the exit nodes [105], pulling the nodes
as much as possible upwards. When they reach the operations of the critical subgraphs at the
end of the basic blocks, they end up in near-optimal schedule for the last operations. In order the
deterministic techniques to achieve an optimal schedule for the critical subgraphs, a very detailed
search at the fine-grain operation level is required to identify the optimal schedule from the large
number of near-optimal schedules. Otherwise the result will not be optimal, due to the lack of a
look ahead scheme and the lack of compromises between early and late decisions [200]. As the
number of application operations increases, the deterministic techniques would require too much
CPU time to perform this very detailed exploration.

For instance, a formally optimal/enumerative technique is an unacceptable option due to the
prohibited CPU time that requires [136]. Such techniques are: e.g. ILP formulation to find peri-
odic schedules under timing and resource constraints presented in [23], the Mixed-Integer Bilin-
ear Programming (MIBP) formulation to find optimal solutions to the Multiprocessor Scheduling
Problem with Communication Delays (MSPCD) in [40] etc. An adaptive deterministic technique
tries to converge by using implicit correlations in the shape of the search space. Due to the critical
subgraphs, they cannot efficiently exploit the space, and thus the complexity grows (far) beyond
linear in the problem size. Similarly, applying a Branch & Bound (B&B) method directly to the
initial space leads to a prohibitive complexity and CPU time, when a domain constraint for opti-
mality exists. Such techniques are: e.g. the technique to assign tasks to heterogeneous computing
systems of [81], the task assignment to processor cores of [117], where nodes with the maximum
edge weight priority are merged and a backtracking mechanism is available, Ref. [213] which uses
the least function cost as priority to expand the W most promising nodes in breadth-first order,
where W is the search width, a version of the A* algorithm of [156] is applied in multiprocessor
task scheduling problem in [155] etc. A heuristic approach cannot guarantee the schedule opti-
mality in a broad domain. It searches with predefined rules with which is almost impossible to
achieve optimal results. No single good heuristic exist for prioritizing the CDFG nodes across a
range of applications using list scheduling [200], as none heuristic can be applied to the problem
in its most general form [39]. The best choice depends on the CDFG structure [199].

The stochastic techniques cannot find the (near-) optimal solution with linear complexity in
terms of the problem size for these practical application domains due to their probabilistic nature,
which does not intent to place the operations at any specific position. The postponement of the
scheduling of the ready operations with flexibility of the critical subgraphs, which is required to
achieve optimal schedule, as explained in Section 8.2, is based on randomness. The identification
of the optimal schedule of the large and complex CDFGs will require too large time. The more
theoretically optimal stochastic techniques may lead to (near-)optimal solution but they require too
much exploration time. Hence, using only a pure stochastic scheduling technique leads to subopti-
mal schedules, as they either require too much time to converge or when they are early terminated,
a good, but typically not sufficiently optimal schedule is found. For instance, such techniques are:
ant colony optimization [53], where each ant gradually reaches a solution by deciding probabilis-
tically the applied moves. A tabu search scans the neighborhood by creating several candidates

181

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

selected by probabilities [168], [50]. A Simulated Annealing (SA) technique for periodic and
aperiodic tasks onto pipelined parallel architectures is presented in [145]. The multiprocessor
scheduling problem is solved by a SA in [211] and by a SA with static parameters in [137]. A Ge-
netic Algorithm (GA) for multiprocessors is presented in [112], where the chromosome describes
the task and the processor and the fitness function is the normalized average response time. A
problem-space GA technique for precedence constrained task graphs with non-negligible intertask
communication is presented in [44]. Simulated Evolution (SE) [119] selects a partial schedule by
the objective function and generates the complete schedule using a freedom based priority.

The alternative is to use techniques which are combinations of the deterministic and the
stochastic classes. Existing combinations are techniques which implement some features of the
first class, e.g. stochastic (deterministic), using the second class, e.g. deterministic (stochastic).
In this way the combination is a heuristic of the primary class, which behaves in a similar way
to the primary class without really exploiting the benefits of the second class. For instance, the
chromosomes of Genetic Algorithms (GA) in [10] and [45] provide the priority of the CDFG
nodes in order to be scheduled. In [204] a Simulated Annealing (SA) technique defines the CDFG
nodes to be scheduled. Other existing combinations use completely the stochastic and the deter-
ministic class. They are usually heuristics which may achieve the optimal schedule but for one
specific application. They provide a less efficient schedule for the different applications in the
target application domain since their complexity is increased to find the (near-)optimal solution.
For instance, [178] presents a combination of a GA heuristic with a B&B method for large scale
resource allocation which achieves a near-optimal schedule. However, the GA heuristic cannot
identify the critical subgraphs and thus the B&B method has to be applied in the overall search
space. In this way, the complexity is increased and the optimal solution cannot be identified within
the available CPU time. A Simulated Annealing (SA) technique [153] is interleaved with a local
algorithm to search in nearby regions for a better solution. This combination has still increased
complexity and cannot guarantee optimality for the critical subgraphs.

Conventional techniques have deficiencies to fully meet the domain constraints and achieve a
(near-)optimal schedule for domains with complex and large CDFGs. The proposed methodol-
ogy supports the development of scalable and (near-) optimal design-time scheduling techniques
for applications with complex and large CDFG and real-time constraints by efficiently searching
the overall exploration space from the early stages of the design process without applying costly
iterations, as explained in the next Sections.

8.4 Proposed Methodology

The target domain of scheduling techniques under study is described by:

1. Techniques which are applied at Design-time,

2. Techniques which search for the schedule in the complete exploration space,

182

Table 8.1: Summary of methodology notation.
Definitions

Top-down Split P class split into complementary, positive,non-
overlapping, complete subclasses S1 and S2

Brother classes Subclasses S1 and S2
Couple of Classes Couple of classesm and n is: m− n
Class Combination An order list of classes

Axiom
Valid Brother classes Uni-directional arrow of S1 and S2 is met

Lemmas
Valid Couple of classes Layer where m and n ancestors are valid brothers
Valid class combination The order list describes only valid couples of classes

Assumptions
Scheduling technique Combination of classes
Combination of classes Satisfying uni-directional arrows

Theorem
Valid Scheduling technique Valid Ordered list of classes

D1: Top Down Split

D2: Brother Classes D3: Couple of Classes

L1: Valid Couple of classes

Ax1: Valid Brother Nodes

Tree with Classes

D: Definition L: Lemma Ax: Axiom

D4: Class Combination

L2: Valid Class Combination

T1: Valid scheduling technique

T: Theorem

A1: Methodology uses D4 A2: Methodology meets A1

A: Assumption

Figure 8.2: Dependencies of the methodology notation.

3. Time and Resource constraints, e.g. real-time constraints which require an optimal solution

4. The schedule objectives are not restricted to one dimension, but they may express compet-
itive axes, formulating a multi-dimensional objective space.

A summary of the notation of Chapter 2 and Chapter 7 is depicted in Table 8.1. Fig. 8.2 de-
scribes how the notation of Chapter 2 is combined to derive the theorem of the proposed method-
ology. The top-down split definition is used to compose the tree with the design-time scheduling
classes. Based on the tree, the terms of the brother classes, the couple of classes and the combina-
tion of classes are defined. The axiom of the valid brother nodes, in combination with the couple
of classes, leads to the valid couple of classes lemma. The latter, combined with the class combi-
nation definition, leads to the valid class combination lemma. The assumptions that the proposed
methodology uses class combinations, which satisfy the axiom of valid brother nodes, combined
with the valid class combination lemma, leads to the main theorem of a valid scheduling technique.

The framework with the partitioning of all the available scheduling approaches of the tech-
niques under study is described by the classification tree T depicted in Fig. 8.3-(a), which derives
by applying top-down splits as described in Chapter 7. Further potential in-depth extensions of
the tree structure can be applied by applying new top-down splits following the methodology of
Chapter 2.

183

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

Near-optimal DT scheduling techniques

Deterministic

Stochastic

Stepwise Recursive

Adaptive Rigid

Potentially
Sub-optimal

Theoretically
Optimal

Optimality Control
(Simulated Annealing based)

Best effort Optimality
(Evolution based)

Iterative Pruning
Solution Space

Division

Near-optimal Formally Optimal

Searching

Ordered Arbitrary

Traversing

Depth
First

Breadth
First

Different species evolution
(Simulated Evolution based)

Same species evolution
(Genetic Algorithms based)

Seed
based

Seedless
(Tabu based)

Formulation Solver

Priority Evaluation Choice

Clustering Partitioning

Adaptive
SA

Static
SA

Dynamic
GA

Static
GA

Epochs Generations

Pruning
Decision Space

Exploration

Control
Near-optimality

Exact

Branch Bound

Forward Backward

Mutation Offspring
Generation

Crossover Selection

GA
Iterations

 GA
Components

Partial
Solution
Selection

Complete
Solution

Generation

SE
Components

Temperature
Calibration

Convergence
per step

 SA
Components

SE
Iterations

Type of SA
Components

(4)

(3)

(1) (3)

(2)

(4) (1)

(4)

(2) (2)

(4) (1) (4) (1)

(1)

(4)

(4) (3)

(3)

(2) (1)

(3)
(3)

(4) (3)

(1) (1)

(1)

(1)

(3)

Parent Class

Left Subclass Right Subclass

(rule)

(b)

(a)

Figure 8.3: (a) The tree describing the complete set of design time scheduling techniques and (b)
Uni-directional design constraints propagation of brother nodes.

For instance, the root, which is the scheduling techniques under study, is split to stochastic and
not stochastic class. The latter is reformulated to a positive description, i.e. the deterministic class.
In each level, top-down splits are applied, which lead to complementary, non-overlapping, positive
and complete subclasses. This process is enabled by the positive reformulation of the subclasses
which allows the splitting process to continue. Hence, characteristics and class loss cannot occur
during the class creation process. The final classes cover all the possible options and describe non-
overlapping areas of the search space, as explained in detail in Chapter 7. Since the classes are
allowed to be combined following the uni-directional arrows, the complete set of techniques is
described.

A scheduling technique may belong to only one class or to a combination of classes in order to
share the unique characteristics of each class. The class combinations are performed by propagating
the characteristics of one class, as design constraints, to the next classes. The ordering of the
propagation expressed through an arrow in the top-down split (Fig. 8.3-(b)). The arrow source is
the left subclass and propagates the design constraints to the destination, i.e. the right subclass.

Based on the combination principle, axiom 1 is introduced to describe the valid combination
of brother sub-cases.

Axiom 1. A combination of brother classes is valid, when the uni-directional arrow is satisfied.

184

Lemma 1. A couple of classes m − n is valid if: (1) the classes m and n or (2) the class m and
one ancestor of the class n or (3) the class n and one ancestor of the classm or (4) the ancestors of
both classesm and n, is a valid combination of brother classes (Axiom 1)

Proof. The classes are structured in a tree T . Based on the tree structure, the brother classes can
be: (1) the classesm and n of a couple of classesm−n, (2) one classm (class n) with one ancestor
of the class n (class m) and (3) the ancestors of class m and class n. In the first case, the classes
m and n of the couple m − n are brother classes. Combining two brother classes, following the
opposite direction of the uni-directional arrow of the corresponding split in T , composes an invalid
combination of brother nodes (Axiom 1), which is an invalid couple. When the ancestors of both
classesm and n or a classm (class n) with the ancestor of the class n (classm) are brother classes,
they belong to a lower depth of T . In this level, the brother classes should satisfy the uni-directional
arrow in the corresponding split to be a valid brother combination and, thus, the classes to be a
valid couple.

Definition 5. A class combination is described by an ordered list of classes {i, ..., n}. The order
describes the direction of combining the classes, which indicates a path in T .

Lemma 2. A class combination is valid iff every couple of classes, which follows the order of the
list, is valid.

Proof. -If the ordered list is valid, then every couple of classes, which follows the order of the list
is valid: Only one class is an ordered list of one element, which is always valid since no combi-
nations can be created. When the ordered list consists of more classes {i, ..., n}, the list describes
several couples of classes which follow the list ordering, i.e. how the design constraints have been
propagated, when the classes have been combined to form couples and thus the final path in T . A
valid ordered list describes an ordering of combining classes which satisfies all the arrows in the
path. Hence, all the class couples, that have been combined based on the order provided by the
list, are valid.

-If every couple of classes in the list is valid, then the ordered list is valid: When all the couples
of classes are valid, they follow the uni-directional arrow in the corresponding level for each couple.
The combination of all the valid couples describe the final path in T . The final path in T is the
ordered list of classes, which is valid since the path in T is valid and is provided by valid couples.

We assume that the following assumption hold in the proposed methodology:

Hypothesis 1. The proposed methodology develops a scheduling technique by combining T classes.

Hypothesis 2. The class combination is performed by following the uni-directional arrows in T

splits.

185

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

Initialization
Application & Platform

Domain Analysis

Pruning of

Incompatible

Classes

Tree T: All

scheduling classes

Partial Tree

Flattening

Full Tree

Flattening

Combination

Selected Parametric

Templates

Prestored

Parametric

Templates

Combined Parametric

Template

Application &

Platform Domain

Figure 8.4: Flow chart of the proposed methodology steps.

The above assumptions are verified in the next sections, which analyze the proposed method-
ology and provide a demonstration case study. The main theorem of the developed methodology
is:

Theorem 4. A valid scheduling technique is a valid ordered list of classes.

Proof. Based on Hyp. 1, a scheduling technique is composed by combining one or more classes.
In the former case, one class is an ordered list of one element, which is always a valid ordered
list, thus the technique is also valid. In the second case, several classes are combined forming a
class combination expressed by an ordered list of tree classes {i, ..., n}. The list is valid, when
the class combination is valid (Lemma 2). Suppose that the proposed methodology composes a
valid scheduling technique, which is described by an invalid ordered list of classes. Then, at least
one couple of classes, which follows the order of the list, is invalid. Hence, the corresponding
uni-directional arrow for the invalid couple is not satisfied. The latter contradicts the Hyp. 2.

The proposed methodology develops design-time scheduling techniques for an application do-
main by guiding in a systematic way the valid combination of classes, i.e. by creating valid ordered
lists. The flow chart and the steps of the proposed methodology is depicted in Fig. 8.4 and Alg. 13,
respectively. In the next paragraphs, we explain in details the steps.

The inputs of the proposed methodology are the application and platform domain. The tree
T with all scheduling classes and the individual parametric templates of each class are prestored.
A prestored code template describes the parameters and the functions of the scheduling class. For
instance, the prestored template of an SA component consists of parameters and functions which
describe: the type of the components used in the SA, the way the SA temperature is calibrated
during iterations, e.g. Temp = Temp∗K [137], the range of the randommoves that the technique
applies in each step, the number and type of the random moves that are applied in each step, the
criteria that are used to accept a new schedule, e.g. e

Wold−Wnew
Temp [137], the criteria that are used to

decide if equilibrium has been reach, i.e. the technique has converged for a specific temperature
and the final convergence criteria, which terminate the technique, e.g. when Temp < 1. The
prestored template of a B&B consists of the parameters which describe how the pruning of the
search space is performed in each step, the priority function to sort the CDFG nodes, the initial
bound estimation, e.g. a tight upper bound in the objective function [72], the function of updating
the bounds, the forward and backward CDFG branch, e.g. the node with the least bound is selected
for forward branching [209]. All T classes have similar predefined parametric templates.

186

ALGORITHM 13: Proposed methodology.
Input: Application and Platform Domain
Output: Combined Parameterized Template of

Developed Techniques
Step 1\
Class list Q← The set of all T classes
v← root of T
Search list S← ∅
Enqueue(S,v);
Pruned Classes list P← ∅
Step 2\
Constraints = Analysis(App.&Platf.Domain);
Step 3a\
while (S ! = ∅) do
Dequeue(u,S);
for (i=0;i<NumOfConstraints;i++) do
if (Label(u) 6= constraint[i]) then
Dequeue(u,Q);

else
Enqueue(S,LeftChild(u));
Enqueue(S,RightChild(u));

Step 3b\

for (i=0;i<length(Q);i++) do
Dequeue(i,Q);
while (NumOfChildren(i)==1) do
Dequeue(Child(i),Q);
u=Merge(i,Child(i));
Enqueue(Q,u));

Step 4a\
Search list S← ∅ ;
v← root of Q ;
Enqueue(S,v));
while (S! = ∅) do
Dequeue(u,S);
if (NumOfChildren(u)==0) then
n=Merge(u, acc);
Enqueue(F,n);
if (Arrow(u) exists) then
Enqueue(S, Dest(Arrow(u)));

else
Backtrack();
Acc=Remove(u,Acc);

else
Acc=Merge(u,acc);
Enqueue(S, LeftChild(u));

Step 4b\
for (i=0;i<length(F);i++) do
t=SelectTemplate(i)
AddToCombinedParametric(t)

8.4.1 Step 1: Initialization

The Class list Q describes the selected scheduling classes for the application and platform domain
under study. It is initialized with all the available scheduling classes provided by T . A list S is used
to support the efficient search of the tree T and it is initialized with the T root. The Pruned classes
list P describes the scheduling classes which are incompatible with the domain constraints and it is
initialized with the empty set. To efficiently schedule the domain, the developed techniques should
at least have one class per domain constraint.

8.4.2 Step 2: Application & Platform Domain Analysis

The application and platform domain analysis derive the domain constraints which the developed
scheduling techniques should satisfy in order to achieve a (near-) optimal schedule. The domain
constraints describe relevant information from the application structure which can derive from
profiling tools, e.g. the size of the application (internal kernels, loop bounds), the available par-
allelism due to dependencies, the existence of cross-iteration dependencies, which define the real
critical path etc, and the objectives of the problem under study, e.g. optimality in the cost func-
tion, low execution time. The developed techniques are described by the class combination of the
selected classes, which satisfy and match with the domain constraints. In this way, the developed

187

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

techniques have the required characteristics to achieve an efficient schedule.

8.4.3 Step 3: Propagation of Domain Constraints

8.4.3.1 Step 3a: Pruning Incompatible Classes

In this step, the compatible classes are selected based on a systematic propagation of the domain
constraints in the tree T , which prunes the incompatible classes. The selection is performed in
each level of the tree T by comparing the characteristics of a class with the set of imposed con-
straints through labels. The characteristics are used to label the classes with the promising domain
constraints, i.e. the domains where the techniques described by the class are very promising ap-
proaches. When a propagated domain constraint matches with a label, the class is selected. If the
characteristics of one class are incompatible with a constraint, the class is removed from the list
Q. It is placed in the list P and, thus, it is not further explored. In this way an efficient search in
the T is achieved, since the subclasses of the pruned class are also incompatible classes, due to the
tree structure. If the characteristics of the class meet the propagated domain constraint, the class
will be part of the developed scheduling technique. In this way, some classes are favored against
others for a given application domain. The children of each compatible class are further exploited.
The class selection is performed for all the domain constraints determined by the previous step
of the proposed methodology. The output of the propagation of the domain constraints step is a
reduced tree described by the list Q. The domain constraints, which are propagated to the tree,
are also propagated to the prestored parametric templates of the selected classes. The propagated
constraints partially define the templates, because they provide values for several parameters. For
instance, the reduced search time constraint implies that the parameter describing the type of the
SA components should be adaptive, since it more efficiently searches the space. The estimation
of the bounds in the B&B template is very crucial, as it is responsible for the optimality of the
obtained schedule. The optimality domain constraint partially defines the B&B template by us-
ing an exact minimum cost for the node bounds. Further illustration of this step is provided in
Section 8.5.

8.4.3.2 Step 3b: Partial Tree Flattening

Since several classes have been pruned from the tree due to mismatching with the domain con-
straints, several of the selected classes have remained with only one compatible child. The tree is
further reduced by merging the parent class with the unique child class into one class in the tree
described by Q.

8.4.4 Step 4: Propagation of Design Constraints

In this step, the partially defined parametric templates are merged in a systematic way to the com-
bined parametric template, which describes the set of the developed techniques. The systematic

188

combination follows the uni-directional arrows of the tree T , derived from Axiom 1, to compose
an Ordered List (OL) of the selected classes.

8.4.4.1 Step 4a: Full Flattening of the reduced tree

The process starts from the root of the tree Q and it applies an in-depth search. It first selects the
left class in every split, which is the source class of the arrow. During the in-depth search, the
characteristics of the classes in this path are accumulated. When the search reaches the class in the
last level of the first left branch, e.g.N , the accumulated characteristics of the classes of the (N−1)
levels and the characteristics of the last class of level N are merged into a flattened class, which
fully describes the path from the root to the last class. The flattened class is stored to the ordered list
OL. Then, if an arrow exists in this level (i.e.N) from the current class to a right class, the process
follows the arrow. If the right class is also at the last level of the right branch, the accumulated
characteristics from the classes of the (N−1) levels are merged with the characteristics of the right
class, creating a new flattened class, which is stored in OL. If the right class is not the last level,
but it is further split (level N + 1), the in-depth search and the accumulation of characteristics is
repeated. If no arrow exists from the left class, the search backtracks one level (i.e. N − 1) to the
parent class. The characteristics of the parent class are removed from the set of the accumulated
characteristics (which now describe the characteristics of the classes until (N − 2) level). The
process checks if an uni-directional arrow exists in (N − 1) level. If the arrow is missing, the
search backtracks one more layer and the process is repeated until an arrow is found. The process
terminates when the root has been reached through backtracking steps. The output is an ordered
list OL with the flattened scheduling classes and their ordering.

8.4.4.2 Step 4b: Combination of prestored parametric templates

The combination of the flattened classes is the output of the proposed methodology, i.e. a com-
bined parametric template with the developed techniques which satisfy the domain constraints,
thus providing a (near-) optimal solution for this domain. Each flattened class is described by the
prestored partially defined parametric template. The combination is performed by selecting the
prestored template of the first class in the ordering of OL and propagate the template output and
to the template of the next class in OL.

8.4.5 Instantiation of combined parametric template

The output of the proposed methodology can be used to efficiently select a specific scheduling
technique. This process provides specific values to the parameters of the template based on the
specific application instance and, thus, instantiates it to a specific technique. A similar methodol-
ogy can be created to guide the template instantiation by refining the principles of the proposed
methodology. The instantiation will start from the selection of the values of the parameters and
the functions of the prestored template of the first class. The decisions are propagated as a design

189

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

constraint to the next templates following the arrows. Then, the parameters of the next template
are instantiated under the design constraints of the instantiated parameters of first template. The
step is repeated, until all template parameters have specific values.

8.5 Demonstration case studies

This section demonstrates how the proposed methodology leads to a combined parametric tem-
plate to develop techniques for the main demonstration case study, i.e. the domain characterized
by applications with large and complex CDFG with real-time constraints, which is described in
Section 8.2. We also present several variations of the objective functions and the domain charac-
teristics to illustrate how the proposed methodology leads to different combination of classes.

8.5.1 Small and uncoupled critical subgraphs

The main demonstration case study is the target domain described in Section 8.2.

8.5.1.1 Step 1: Initialization

The Class list Q is initialized with all T classes, list S with the T root and the Pruned list P with
the empty set.

8.5.1.2 Step 2: Application & Platform Domain Analysis

The analysis, which is described in Section 8.2, leads to the domain constraints of: large applica-
tions, optimal schedule for the critical subgraphs, relative small and uncoupled subgraphs, linear
complexity in terms of problem size in order to find the (near-)optimal schedule within a reasonable
search time.

8.5.1.3 Step 3: Propagation of Domain Constraints

8.5.1.3.1 Step 3a: Pruning Incompatible Classes The set of domain constraints is propagated
to the tree T . The next paragraphs explain how the propagation of the domain constraints to the
initial tree of Fig. 8.3-(a) selects the classes of the scheduling technique. The result is Fig. 8.5(a),
where the pruned classes are marked with gray.

Propagating the domain constraint of large CDFG, the stochastic class (top left part of Fig. 8.3-
(a)) matches quite well with this constraint. The characteristics of the stochastic class is that it finds
feasible schedules in problems with high dimensions [172] due to the random moves that applies.
The probabilistic way of accepting a schedule allows to ``hill climbing'' moves to occur and thus
the search can escape from a local minima [211]. The domain constraint of optimal schedule of
the critical subgraphs prunes more the stochastic classes which are incompatible with this con-
straint. In order to have optimality in the subgraphs, an optimality control should be available in
the developed scheduling technique, i.e. the scheduling technique should have an mechanism to

190

Design-Time techniques

Deterministic Stochastic

Stepwise Recursive Theoretically
Optimal

Iterative Optimality Control
(Simulated Annealing

(SA) based) Near-Optimal Formally
Optimal

Pruning
Solution Space Best Effort Optimality

(Evolution (E) based)

Potentially
Sub-Optimal

Division Searching

Ordered Arbitrary

Traversing Priority

Pruning
Decision space

Exploration

Control
Near-optimality

Exact

Branch Bound

Adaptive
SA

Static
SA

Temperature
Calibration

Conversion
per step

 SA
Components

Type of SA
Components

(a)

Design-Time techniques

Deterministic Stepwise
Iterative Near-Optimal

Stochastic
SA based

Traversing Priority

Exact Pruning
Decision space

Ordered Searching
Exploration

Branch Bound

Temperature
Calibration

Conversion
per step

 SA
Components

Adaptive
Type of SA

Components

(b)

SA based
Temperature
Calibration

Adaptive
type of

SA based
com/nts

SA based
Conversion

per step

Exact
Pruning of
Decision
Space

Priority of
Ordered

Searching
Exploration

Bounds in the
Traversing of
the Ordered
Searching
Exploration

Branching in
the Traversing
of the Ordered

Searching
Exploration

Deterministic Stepwise Iterative Near-optimal

(c)

Adaptive
type of

SA
com/nts

Parameter
Calibration

Range of
Random Moves

Number&Type of
Random Moves

Equilibrium per
Iteration step

Acceptance
Criteria&Rules

New state
Evaluation

Convergence per
 adaptive step

Priority
function

Initial bound
estimation

Branch in a
Forward way

Branch in a
Backward way

Update
bounds

Optimality
Criteria

Temperature
Calibration class

Conversion per step class
Stochastic SA based

Deterministic B&B based
Branch class Bound class

Exact
Pruning of
Decision
Space

(d)

Figure 8.5: Step Results for the demonstration case study: (a)Domain Constraint Propagation
step: the gray classes are pruned due to incompatibility with the propagated constraints, (b) Partial
flattening step: the tree with the selected classes is reduced, (c) Full flattening of the tree: the outer
box in the deterministic classes is used to describe the common part of the flattened classes to avoid
redundancy and (d) Combined Parameterized template

191

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

control how optimal is schedule obtained from the scheduling technique, e.g. entropy in SA tech-
niques. Techniques without a schedule optimality control are less efficient in our domain, since
they cannot provide guarantee for their convergence process. The potentially sub-optimal stochas-
tic class, e.g. Monte Carlo [144] or tabu search [168], is pruned, because they cannot guarantee
the optimality constraint. The Evolution based (E) class is also pruned because it does not have
a control mechanism for the optimality of the obtained schedule, e.g. a Genetic Algorithm [112].
The class that meets the optimality domain constraint is the stochastic class with a control over
the schedule optimality (SA based). The optimality can be achieved, but not in limited time for
large scale applications. The constraint of the linear complexity of the scheduling technique in
terms of problem size requires a class that is capable of quite fast exploration. However, not all
stochastic classes with control over the schedule optimality can reach a quite good solution within
a reasonable amount of time. If their stochastic process uses static type of stochastic components,
they will quite fast reach a good solution only in the specific cases where the parameters of the
stochastic components efficiently characterize the solution space, which is quite complex for our
domain. Otherwise, small steps and a lot of iterations must be performed by the stochastic class in
order to converge [66], increasing the complexity to unacceptable values. Hence, the static type
of components is pruned. However, an adaptive type is likely to find a schedule with good quality
already within a reasonable amount of time. The complexity of the ASA class is proportional to
the dimension of the problem by the possibility of having samples in the improved regions [212].
The ASA converges faster when the problem tolerates it and goes (much) slower when the anneal-
ing temperature becomes very critical, otherwise the sensitivity of making erroneous decisions
becomes too high. The way the annealing temperature is adapted is used to identify the critical
subgraphs.

The propagation of the domain constraintsmatches alsowith deterministic classes (top right part
of Fig. 8.3-(a)). They can explore more efficient and faster small areas with several good solution
than the stochastic techniques. To ensure the optimality of the critical subgraphs, the tree is pruned
to the deterministic classes, which are optimal or offer a way to control the schedule optimality
(exact) of the obtained schedule. The recursive class is also pruned, since it is less useful, when it is
combined with an optimal/exact class. The class that prunes the search space in a near-optimal, but
controlled way (Pruning Decision Space/Control near-optimality) is removed, because an optimal
schedule in the critical subgraphs is required. Because of the domain constraint for reduced search
time, the formally optimal class, which meets the optimality constraint, it is pruned since it is
incompatible with the linear complexity in terms of problem size constraint. The division class and
the arbitrary class are also pruned since they require too much time to reach an optimal schedule.
The pruning of the overall solution space in the initial search steps (Pruning Solution Space) class
is removed based on the domain constraint of uncoupled subgraphs with weak dependencies. The
class which matches with the constraints, i.e. can guarantee schedule optimality and may prune
the search space, is the ordered class. It consist of the priority function to describe the CDFG
nodes sorting, the bounds estimation of the schedules and the branching during the search. The
complexity of a standard B&B technique heavily depends on the size of the application and the

192

pruning of the schedules. When it is applied on small subgraphs, the complexity becomes close to
linear on the overall problem size and significantly less time is required for convergence comparing
with the initial complexity.

8.5.1.3.2 Step 3b: Partial Tree Flattening The output of the pruning of incompatible classes
step is a reduced class tree, where several classes have been left with one unique child. The char-
acteristics of these classes are further merged to one class. The stochastic class, the theoretically
optimal class and the optimality control (SA based) class are merged into one new flattened class,
i.e. the Stochastic SA based class, as depicted in the left part of Fig. 8.5(b). The type of SA compo-
nents and the adaptive class are combined into the adaptive type of SA components. By applying
this process to the pruned tree of Fig. 8.5(a), the tree of Fig. 8.5(b) is composed. Each class is de-
scribed by a prestored parametric template with the parameters and the functions that implement
the class scheduling approach. Due to the propagation of the domain constraints and the flattening
step, parameters from the templates take specific values. E.g. the parameter that describes the
type of SA components is set to adaptive, thus the exact minimum cost function is selected for the
Bounds of the nodes.

8.5.1.4 Step 4: Propagation of Design Constraints

8.5.1.4.1 Step 4a: Full Flattening of the reduced tree Following the in-depth search with
priority to the left branch, the characteristics of the left branch are accumulated (stochastic SA
based class). In the last level, the characteristics of the adaptive are merged with the accumulated
characteristics to compose a flat class, i.e. Adaptive type of Stochastic SA based components of
design-time scheduling techniques (left part of Fig. 8.5(c)). Since an uni-directional arrow exists
in this level, it is followed to reach the right class. The right class describes the implementation of
the SA components, which are further split into the temperature calibration and the convergence
per step classes. At this level, a similar merging is applied in order to create the flat classes of the
Temperature Calibration of Stochastic SA based component of design-time scheduling techniques
and the Stochastic SA Convergence per temperature step, as depicted in Fig. 8.5(c). Since no
arrow exists in this level, the search backtracks to the stochastic SA based class, where it follows
the arrow to the deterministic branch. In a similar way, the characteristics of deterministic classes
are merged and flattened. The result is depicted in Fig. 8.5(c).

8.5.1.4.2 Step 4b: Combination of prestored parametric templates Following the order
imposed by the flattened tree, we compose an ordered list of scheduling classes. Based on this
ordering, the partially defined parametrized templates of the flattened classes are combined by
propagating design constraints to compose the combined parametric template. The partially defined
parametric templates of the selected stochastic classes and deterministic classes are depicted by the
stochastic and the deterministic box, respectively, in Fig. 8.5(d).

The first is the stochastic template (top part of Fig. 8.5(d)) described by the parameter SA com-

193

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

ALGORITHM 14: Combined parametric template.
begin ASA part
Input: Application,platform domain
Output: Set of critical subgraphs, Partial scheduling
S ← Initial state generation; Temp← Init. temp.
Temp0;
while (Cost(S)>CostThr.) do
while (Entropy>Entr.Thr.) do
R = Sel RM range(Temp);
N = Sel RM number(Temp);
Type = Sel RM type(Temp,N);
S′ = Sel random state
(Neighborhood(S),R,N ,Type);
Cost(S′) = evaluate(S′);
if (Cost(S′) < Cost(S)) then
S = S′;

else
r = random(0,1);
if (r< e

Cost(S)−Cost(S′)
Temp) then

S = S′;
if (R ≈ Rmin) then Break;

Adaptively Update(T);
Identify Crit.Subgraphs(R,Entropy);

begin B&B part
Input: Critical subgraphs, Partial scheduling
Output: Final scheduling
for (i=0;i<Subgraphs;i++) do
Best← Cost(stochastic solution);
v← root of subgraph;
Node list Q← ∅;
Enqueue (Q, v);
for (j in Subgraph nodes) do
Compute node bound Bj ;

while (Q! = ∅) do
Select n=min(Bj);
for (each child u of n) do
if (Cost(u) < Best) then
Best=Cost(u);
Update(Bj);

if (B(u) < Best) then Enqueue(Q,u);
Dequeue (Q,n);

*RM=Random Moves

ponent type, which is set to the adaptive option. The latter is propagated, as a design constraint, to
the temperature calibration class, which is described by a parametric function of how the temper-
ature parameter is modified during the search and a parametric function of how the convergence
per temperature step is verified. The design constraint propagation imposes to the parametric
functions of the temperature calibration class to be adaptive. In this way, when the search en-
ters a smoother area, the temperature modification can be relaxed and the search goes faster. In
the critical subgraphs, the temperature change is restricted to continue more carefully. The ratio
of the temperature change is used to identify the critical subgraphs (Subsection 8.5.1.5 describes
the parametric technique in details). These decisions are propagated as design constraints to the
Convergence per step class. The parametric template is described by the parameters that deter-
mine the range, the number and the types of the applied random moves to create a new schedule.
For instance, one instantiation of the random moves is described in [28], [162]. One parametric
function describes the procedure of how to create the new schedule. Another parametric function
evaluates the new schedule based on the value of the objective function of the current schedule and
decides, in a stochastic way, to maintain it or not. Another parametric function is used to decide if
the technique has converged for a given temperature step or another iteration of randomly selected
moves is performed for this specific temperature value. Otherwise the convergence criteria deter-
mine the overall convergence or decide another adaptive parameter calibration. The adaptive way
of modifying the temperature, which is propagated from the previous parametric templates, affect
the implementation of the aforementioned parametric functions. The ASA parametric templates
pseudocode is shown in Alg. 14.

The remaining parametric templates describe the B&B classes (bottom part of Fig. 8.5(d)).

194

The parameter that defines the pruning during the search decisions is set to exact. This decision
is propagated to the parametric templates of the priority, the bound and the branching class. The
bound template is described by the parametric function of estimating the bounds and the para-
metric function of updating the bounds. The propagated exact pruning constraint implies an exact
minimum cost of bounds, i.e. a lower cost than the real lower cost of all the schedules, which pass
from each node in the B&B search tree. In this way, it guarantees the schedule optimality in a
fully controlled way. The decisions are propagated to the parametric template of the branch class,
which includes parametric functions to describe the branching in a forward way, the branching in a
backward way and decision over the optimality of the obtained schedule. The forward branching is
performed using the estimation of bounds (propagated as design constraint from the previous step)
and the current optimal, which is initially the propagated solution. With a good initial solution,
i.e. the solution propagated from the ASA class, significant node pruning can be expected. Hence,
the complexity of the B&B is significantly reduced, which also reduces the complexity of the
developed techniques. During the forward branching, the node with the smaller cost is expanded.
If the new expanded nodes are more costly than the already expanded ones, the search backtracks
to the less costly node (function of backward branching). When the real cost of a solution is found,
the optimality function verifies the acceptance of the schedule. The process terminates, otherwise
a potential update in the estimation of bounds is performed in an exact way and another iteration
is applied. The pseudocode of the B&B part is depicted in second block of Alg. 14.

8.5.1.5 Combined Parameterized Template

The scheduling process described by the combined paramaterized template is illustrated via the ex-
ample of Fig. 8.6. The light gray boxes describe the main loops of the application. At the left part,
the search of the ASA class is described through the temperature reduction and the identification
of the Critical Subgraphs (CS). The ASA temperature calibration process is highly benefited from
the hierarchical structure of the CDFG of the application. At high temperatures (Temp high), the
range of the random ASA moves is large, as depicted by the arrow of Temp high. The sched-
ule of nearly none operation is ``frozen'' and the relative position has not been decided yet, i.e.
moves applied in the subsequent temperature steps can still easily change the schedule decisions.
When the temperature is further decreased (e.g. Temp medium), the range of random moves is
also decreased (arrow of Temp medium) and, thus, the impact of the moves in the schedule is
decreased.

For illustration purposes, we assume that we have two hierarchical levels: the schedule between
the critical subgraphs and the internal schedule of each subgraph (the process can extend further
to more hierarchical levels). This hierarchy is typically not known beforehand, so it should be
determined on-the-fly during the ASA execution. The ASA temperature calibration process can
be performed faster with large temperature steps. The ASA convergence per step process can be
performed with fewer iterations of random moves at a given temperature, when the range of the
random moves is larger than the typical cost impact of the random moves within one of these

195

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

R1 R2

6

3

4

1 2

ASA

10

23 24

20

27 28

29

21 22

25 26

5

16

8 7

11

17

12

18

30

14

15

19

13

9

Loop A

Loop B

Loop C

Loop D

31

32 33

34 35

CS2

R1 R2

3

5

1 2

Good Solution

CS4

CS3

10

23 24

20

27 28

29

21 22

25 26

4

16

8 7

11

17

18

30

14 13

9

31

32 33

34 35

Temp low

Temp medium

Temp high

Temp low

Temp low

Initial Solution Search process

5

0

R1 5

16

R2

R1 R2

B&B Tree Search for CS1

16

6 R1 R2 6

4 R1 R2 4

20 R1 R2 20 20 R1 R2 20

…

…

…

CS1
6

3 R1 3 R2

7

0

R1 7

8

R2

R1 R2

B&B Tree Search for CS2

8

9 R1 R2 9

17 R1 R2 17

29 R1 R2 29 29 R1 R2 29

…

…

…

3 R1 3 R2

10

0

R1 10

11

R2

R1 R2

B&B Tree Search for CS3

11

12 R1 R2 12

18 R1 R2 18

21 R1 R2 21 21 R1 R2 21

…

…

…

3 R1 3 R2

…

…

…

…

13

0

R1 13

14

R2

R1 R2

B&B Tree Search for CS4

14

15 R1 R2 15

19 R1 R2 19

30 R1 R2 30 30 R1 R2 30

…

…

…

3 R1 3 R2

B&B

Temp medium

Temp low

12

15

19

CS1

Figure 8.6: TheASA process (left part) partially freezes the schedule during temperature reduction.
The range of the applied random moves is defined by the temperature Temp. When a level in the
structural hierarchy has been explored, the allowed range is lower than the cost impact of reordering
of the hierarchical graphs at that level. Then, the ASA proceeds at a finer granularity inside those
graphs. It identifies four Critical Subgraphs (CSs), which are then propagated to the B&B to find
the optimal schedule for each CS.

196

hierarchical levels. When the range comes close to that critical zone, i.e. the search proceeds
to a critical subgraphs, the process has to be adapted in order to slow down to a very detailed
search, where the equilibrium criterion of the ASA technique is maintained at every iteration.
When the equilibrium has been reached, we have frozen the schedule decisions for that subgraph
ordering. Then, we can again proceed faster for the schedule inside the subgraph. The random
moves with distance larger than this critical range are now prohibited, thus a partial schedule in the
higher hierarchy levels is decided. E.g. in the example of Fig. 8.6, the schedule of Loop A group
of operations and Loop B group of operations cannot be exchanged with the Loop C group of
operations and Loop D group of operations. When the temperature is further decreased, the next
schedule decision is the partial schedule inside the group of Loop A and Loop B and the group of
Loop C and Loop D. The reduction process continues until the random range is reduced to relative
small critical subgraphs in the same hierarchy level (Temp low). When the sensitivity of taking
erroneous schedule decisions and the complexity for the remaining temperature range become too
high, the ASA approach requires too much time in the detailed search and thus it is terminated.
The regions that are still explored in this stage by ASA can then be considered as the only ones
that need to be further explored by a more suited method. In this way, the critical subgraphs
are localized independently of their type, as they are the ``non-frozen'' parts of the CDFG. The
``frozen'' are described by the (near-) optimal schedule of ASA of the search space, where the
process is smooth and the random moves can still place the operations in optimal positions, i.e. the
CDFG nodes between the critical subgraphs.

The critical subgraphs (dark gray circles in Fig. 8.6) and the schedule of the interface CDFG
nodes (gray nodes in Fig. 8.6) found by ASA are propagated to theB&B, as illustrated at the right
part of Fig. 8.6. The latter applies a pseudoexhaustive search for each critical subgraph to optimally
schedule them. The overall solution consists of most of the schedule obtained quite fast by the ASA,
besides the critical subgraphs, and the optimal schedule of the critical subgraphs obtained by the
B&B. This reduces the complexity of the developed technique, since a large exploration area is
pruned and the very detailed search to find the optimal is performed in a much smaller search area.
Hence, the developed technique is still scalable. When the operations are increased, the ASA can
still identify the position of all critical subgraphs. As only the critical subgraphs and the interfaces
are given to the B&B and the critical subgraphs are uncoupled, the B&B can be concurrently
applied per subgraph.

8.5.1.6 Results for MiBench benchmark suite

The output of the proposed methodology is the combined paramaterized template, which para-
metrically describes a group of similar in nature scheduling techniques. The narrow instantiation
of the combined parametric template in one specific scheduling technique is inappropriate to be
used in the evaluation process, because when the parameters have specific values, they affect the
final result. Hence, we have to estimate a lower bound on the gains provided by the techniques
described in the combined parameterized template. In this way, we evaluate the combined parame-

197

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

393.2

655.4
611.7

301.1

458.8

720.9 699.1

351.2

0

100

200

300

400

500

600

700

800

P
e

rf
o

rm
an

ce
 (

K
C

yc
le

s)

49.9

5.1

30.7

2.6

57.3

6.1

35.8

3.1

0

10

20

30

40

50

60

70
Developed Template
Conventional Techniques

Figure 8.7: Schedule lengths for the demonstration case study domain.

terized template and not only one specific technique. We used several applications of the MiBench
benchmark suite [63]. The CDFG of each application has been analyzed to identify the dominant
basic blocks and their dominant loops, which are responsible for the large number of execution
cycles. For each basic block, the structure of the internal operations, the dependencies between
operations and the critical number of available resources in the platform are considered. Based on
this information, the worst case critical subgraphs, placed at the end of a basic block, are identi-
fied. In these hardest-to-be-optimally scheduled subgraphs, the schedule result of the conventional
approaches takes at least one cycle more in one iteration execution of the critical subgraph com-
pared with the optimal schedule. In this way, a pessimistic lower bound of one cycle performance
gain is achieved for the scheduling techniques which are capable of finding the optimal schedule,
e.g. the techniques of the developed template. In several cases, depending on the type of the re-
sources and the cycles of the operations, the gain can be increased, e.g. two cycles in the example
of Section 8.2. The approximated length of the schedule of the proposed methodology is derived
by multiplying the length of the optimal schedule for the critical subgraph by the number of loop
iterations of the basic block, which contains the critical subgraph. The final length is computed
by adding the schedule lengths of all the critical subgraphs occurring in the application, which is
substantial as several blocks in loops with one critical subgraph often simultaneously exist. For
the conventional techniques we apply the same approximation considering a schedule which has
a length equal to the optimal length increased by one cycle due to the pessimistic lower bound on
the gain.

The schedule length derived from the conventional approaches and the developed template
is depicted in Fig. 8.7 for several dominant basic block of the MiBench benchmark suite. The
analyzed dominant blocks are usually parts of other applications, e.g. FDCT jpeg encoding exist in
jpeg decoding benchmark, the FFT transformation is applied in signal processing algorithms and
SHA transformation in cryptography algorithms e.t.c. For the basic blocks which load the data
in the Fast Discrete Cosine Transform (FDCT) application, a gain of 14.3% is expected when the
schedule derives from the developed template. When the developed template is used to schedule
the FDCT processing a gain of 18.2% is achieved. For the quantization of the coefficients and
the Huffman encoding, we have a gain of 12.5% in the schedule length and a gain of 14.3%,

198

respectively. The schedule of the transformation of the Secure Hash Algorithm (SHA) and the
schedule of SHA reversing of bits function based on the developed template has a gain of 12.9% and
16.7%, respectively. Finally, the schedule length of the developed technique for the transformation
of the Fast Fourier Transformation (FFT) and the FFT reversing of bits function has a gain of 14.3%
and 16.7%, respectively.

8.5.2 High number of critical subgraphs domain

We present the results of applying the proposed methodology to a second domain, i.e. the initial
domain, but with high number of critical subgraphs. Step 1, i.e. initialization step, is omitted as it
is the same with the demonstration case study.

8.5.2.1 Step 2: Application & Platform Domain Analysis

The domain constraints of the demonstration case study are modified: the number of critical sub-
graphs is highly increased and thus the optimality of the schedule of the critical subgraphs is not
feasible within the available CPU time. However, the loss on the critical subgraphs schedule op-
timality should be limited and controllable. The remaining domain constraints are: large appli-
cations, relative small and uncoupled subgraphs, linear complexity of the scheduling technique in
terms of problem size in order to find the (near-)optimal schedule within a reasonable search time.
In the remaining steps, we provide the output per step and describe the differences with the result
of the demonstration case study steps.

8.5.2.2 Step 3: Propagation of Domain Constraints

By propagating the domain constraint of large CDFG, the control of the optimality of the schedule
and the linear complexity of the scheduling technique in terms of problem size requires an adaptive
stochastic class. The propagation of the domain constraints matches also with the deterministic
classes. The propagation of the control over the optimality constraint to the tree T , the near-
optimality control of the pruning of space during the decisions (Pruning Decision Space/Control
Optimality) is selected and the exact class is pruned. The recursive class is now compatible with
near-optimality domain constraint, which provides the way the selected deterministic classes are
applied in each iteration and the interface between consecutive iterations. The result is depicted in
Fig. 8.8. After partial tree flattening step, the characteristics of the compatible classes are merged
to one class, as depicted in Fig. 8.9.

8.5.2.3 Step 4: Propagation of Design Constraints

The fully flattened tree is depicted in Fig. 8.10. After the flattening, the combined parametric
template includes the deterministic recursive class and the control near-optimality pruning decision
space class, as depicted in Fig. 8.11. The stochastic template is explained in the demonstration case
study. The recursive template consists of the type of the recursion, which can be set to adaptive

199

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

Design-Time techniques

Deterministic Stochastic

Stepwise Recursive Theoretically
Optimal

Iterative Optimality Control
(Simulated Annealing

(SA) based) Near-Optimal Formally
Optimal

Pruning
Solution Space Best Effort Optimality

(Evolution (E) based)

Potentially
Sub-Optimal

Division Searching

Ordered Arbitrary

Traversing Priority

Pruning
Decision space

Exploration

Control
Near-optimality

Exact

Branch Bound

Adaptive
SA

Static
SA

Temperature
Calibration

Conversion
per step

 SA
Components

Type of SA
Components

Figure 8.8: Domain Constraint Propagation step result for high number of critical subgraphs.

Design-Time techniques

Deterministic Stochastic
SA based

Traversing Priority

Control Near-Optimality
Pruning Decision space

Ordered Searching
Exploration

Branch Bound

Temperature
Calibration

Conversion
per step

 SA
Components

Adaptive
Type of SA

Components

Recursive Stepwise
Iterative Near-Optimal

Figure 8.9: Partial flattening step result for high number of critical subgraphs.

or rigid, the calibration of the parameters of the process and the recursion termination criteria.
The pruning during the search decisions is set to controlled near-optimal. This design constraint
propagation partially defines the B&B template in a different way as in the demonstration case
study. The bounds of the B&B class are estimated in a less exact, but tight and still controllable
way, and, thus, the branching of the nodes can apply a more aggressive pruning, e.g. based on the
average case, to process in a faster way.

8.5.2.4 Combined Parameterized Template & Results for MiBench benchmark suite

The ASA part identifies the critical subgraphs and (near-)optimally schedules the non-critical
nodes. The critical subgraph, the initial subgraph schedule and the schedule of the interface nodes
are propagated to the deterministic classes. The subgraph size and the number of iterations is used
to select the most dominant critical subgraphs. The subgraph size gives an estimate of the CPU
time required for the B&B part and the number of iterations describes the impact on the overall
schedule. Hence, the graphs with high number of iterations are selected as dominant. The B&B
part applies exact minimum cost of the bounds of the nodes to achieve optimal schedule for the
dominant subgraphs. For the less dominant subgraphs, it obtains in a fast way a controlled near-
optimal schedule for each subgraph using less exact and tight bounds in a controlled way. The

200

Near-Optimal
Pruning of

Decision Space

Priority of
Ordered

Searching
Exploration

Bounds in the
Traversing of
the Ordered
Searching
Exploration

Branching in
the Traversing
of the Ordered

Searching
Exploration

Deterministic Stepwise Iterative Near-optimal

Deterministic
Recursive

Adaptive
type of SA

based
com/nts

SA based
Conversion

per step

SA based
Temperature
Calibration

Figure 8.10: Full flattening step result for high number of critical subgraphs.

Adaptive
type of

SA
com/nts

Parameter
Calibration

Range of
Random Moves

Number&Type of
Random Moves

Equilibrium per
Iteration step

Acceptance
Criteria&Rules

New state
Evaluation

Convergence per
 adaptive step

Priority
function

Initial bound
estimation

Branch in a
Forward way

Branch in a
Backward way

Update
bounds

Optimality
Criteria

Temperature
Calibration class

Conversion per step class
Stochastic SA based

Deterministic B&B based
Branch class Bound class

Type

Recursion
Criteria

Near-Optimal
Decision Space

Pruning

Parameter
Calibration

Recursive Class

Figure 8.11: Combined Parameterized template for high number of critical subgraphs.

bounds estimation, which gives the control, is performed based on the available time. If enough
time is available, closer to exact bounds are used to have a loss of one cycle. If less time is avail-
able, a more aggressive pruning is performed, increasing the cycle loss. The information to make
the selection is provided by a set of pareto points, which depict the lower bounds on schedule
quality and upper bounds on time execution for different bound estimations. Depending on the
CPU time available, the B&B for each critical subgraph can be repeated using as an input the
solution obtained by the previous iteration. The recursions of the search are selected based on
the actual requirements in quality and available time. In this way, the schedule optimality loss
of the developed template is inserted only due to the more aggressive B&B in the less dominant
critical subgraphs. The estimation on the performance of the developed template derives analyz-
ing the CDFG to identify the basic blocks, the loops and the worst case critical subgraphs, placed
at the end of a basic block. In these hardest-to-be-optimally scheduled subgraphs, the dominant
subgraphs are optimally scheduled and the less dominant are near-optimally scheduled with one
cycle performance loss. The approximated length derives by multiplying the length of the optimal
schedule for the dominant subgraphs and the length of the optimal plus one by the corresponding
number of surrounding loop iterations, which can vary depending on the depth of the subgraph
in the overall loop nest, and adding the results. For the conventional techniques we apply the
same approximation to derive a lower bound on the optimality loss. For all critical subgraphs, a
schedule which has a length equal to the optimal length increased by one cycle is multiplied by
the corresponding number of surrounding loop iterations. Depending on the type of the resources
and the cycles of the operations, the cycle loss may be increased, e.g. two cycles in the example
of Section II. The estimated gains are depicted in Fig. 8.12.

201

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

11.8

19.7 18.4

9.0

12.8

20.6 19.7

9.8

13.8

21.6 21.0

10.5

0

5

10

15

20

25

P
e

rf
o

rm
an

ce
 (

M
C

yc
le

s)

1.498

0.154

0.922

0.077

1.582

0.169

0.998

0.084

1.720

0.184

1.075

0.092

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2 Optimal
Developed Template
Conventional Techniques

Figure 8.12: Schedule lengths for high number of critical subgraphs domain.

8.5.3 Large and strongly connected subgraphs

The second case study is the initial domain, but with large and strongly connected subgraphs. Step
1, i.e. initialization step, is omitted as it is the same with the demonstration case study.

8.5.3.1 Step 2: Application & Platform Domain Analysis

The domain constraints of the demonstration case study are modified: the CDFG is composed by
several basic blocks which have subgraphs with strong dependencies between them. Hence, the
CDFG subgraphs are strongly connected and coupled components with increased size. A poten-
tial separation of the strongly connected subgraphs will lead to sub-optimal results. The remaining
domain constraints are: large applications, optimal schedule for the critical subgraphs, linear com-
plexity of the scheduling technique in terms of problem size in order to find the (near-)optimal
schedule within a reasonable search time. In the remaining steps, we provide the output and de-
scribe the differences with the result of the demonstration case study.

8.5.3.2 Step 3: Propagation of Domain Constraints

By propagating the domain constraints of large CDFG, of optimal schedule of the critical sub-
graphs and of the linear complexity of the scheduling technique in terms of problem size, they
require an adaptive stochastic class to find a (near-) optimal solution for the operations outside
the critical subgraphs and to identify the critical subgraphs position. The propagation of the do-
main constraints matches also with the deterministic classes, which control the schedule optimality
(exact). Again, because of the domain constraint for reduced search time, the formally optimal
class is pruned, since it is incompatible with the linear complexity in terms of problem size con-
straint. By propagating the constraint of coupled subgraphs (instead of weak dependencies in the
demonstration case study) the pruning of the overall solution space in the initial search steps (Prun-
ing Solution Space) class is now compatible with the domain constraint. The result is depicted in
Fig. 8.13. After partial tree flattening step, the characteristics of the compatible classes are merged,
as depicted in Fig. 8.14.

202

Design-Time techniques

Deterministic Stochastic

Stepwise Recursive Theoretically
Optimal

Iterative Optimality Control
(Simulated Annealing

(SA) based) Near-Optimal Formally
Optimal

Pruning
Solution Space Best Effort Optimality

(Evolution (E) based)

Potentially
Sub-Optimal

Division Searching

Ordered Arbitrary

Traversing Priority

Pruning
Decision space

Exploration

Control
Near-optimality

Exact

Branch Bound

Adaptive
SA

Static
SA

Temperature
Calibration

Conversion
per step

 SA
Components

Type of SA
Components

Figure 8.13: Domain Constraint Propagation step result for large, strongly connected subgraphs.

Design-Time techniques

Deterministic Stepwise
Stochastic
SA based

Traversing Priority

Exact Pruning
Decision space

Ordered Searching
Exploration

Branch Bound

Temperature
Calibration

Conversion
per step

 SA
Components

Adaptive
Type of SA

Components

Pruning
Solution space

Iterative
Near-Optimal

Figure 8.14: Partial flattening step result for large, strongly connected subgraphs.

8.5.3.3 Step 4: Propagation of Design Constraints

Following the in-depth search with priority to the left branch, the partial flattened tree is fully flat-
tened as depicted in Fig. 8.15. The partially defined parametric templates of the selected stochastic
classes and deterministic classes are depicted by the stochastic and the deterministic box respec-
tively in Fig. 8.16. The first is the stochastic template, which is explained in the demonstration
case study. The pruning of solution space class template is described by a high level function to
estimate the quality of the solution and the function for the pruning criteria. The propagation of
the optimality constraint to the pruning of the solution space imposes to the high level function to
optimistically estimate the quality. Then, the pruning criteria are defined to prune the nodes that
have an optimal high level estimation worst than the lower quality threshold. The pruning during
the search decisions is also set to exact. The B&B template is described in demonstration case
study.

203

8. METHODOLOGY TO DEVELOP DESIGN-TIME SCHEDULING TECHNIQUES
UNDER CONSTRAINTS

SA based
Temperature
Calibration

Adaptive
type of

SA based
com/nts

SA based
Conversion

per step

Exact
Pruning of
Decision
Space

Priority of
Ordered

Searching
Exploration

Bounds in the
Traversing of
the Ordered
Searching
Exploration

Branching in
the Traversing
of the Ordered

Searching
Exploration

Deterministic Stepwise Iterative Near-optimal

Deterministic
Stepwise Pruning
of Solution Space

Figure 8.15: Full flattening step result for large, strongly connected subgraphs.

Adaptive
type of

SA
com/nts

Parameter
Calibration

Range of
Random Moves

Number&Type of
Random Moves

Equilibrium per
Iteration step

Acceptance
Criteria&Rules

New state
Evaluation

Convergence per
 adaptive step

Priority
function

Initial bound
estimation

Branch in a
Forward way

Branch in a
Backward way

Update
bounds

Optimality
Criteria

Temperature
Calibration class

Conversion per step class
Stochastic SA based

Deterministic
Branch class Bound class

Exact
Pruning of
Decision
Space

High Level
estimation

Pruning
criteria

Solution Pruning class

Figure 8.16: Combined Parameterized template for large, strongly connected subgraphs.

8.5.3.4 Combined Parameterized Template & Results for MiBench benchmark suite

The critical subgraphs, their initial schedule and the schedule of the interface CDFG nodes iden-
tified by the ASA are propagated to the deterministic classes, where a further high level pruning
can be achieved before the B&B is applied. The pruning of solution space explores the hierarchy
of the application. It schedules from the end of the large critical graph. During the scheduling, the
dependencies, which couple the different parts of the subgraphs, are removed. When these de-
pendencies are removed, the remaining parts are decoupled and can be independently scheduled.
The process can be repeated in a nested way and when the subgraphs reach acceptable size, they
are propagated to the B&B part. For instance, in the case of a large FFT kernel, the last stage is
responsible for the coupling of the subgraphs. By scheduling the last stage in the pruning of solu-
tions space, a relative schedule between the inner FFT stages is computed. Depending on the size
of the FFT, the process can be repeated for further decoupling. Then, the remaining early stages
can be passed to the B&B part. The schedule length of the developed template is estimated by
optimal schedule in the inner critical subgraphs and one cycle loss in the schedule of the intermedi-
ate nodes, which couple the subgraphs. The schedule lengths are multiplied by the number of the
loop iterations, which include each part, and the summation of the results gives the estimation of
the developed template performance. If the large subgraphs were propagated directly to the B&B
part, quite significant time may be required to reach the optimal solution. Now the decoupling in
the up-front pruning template reduces the required exploration time for the B&B part, leading to
overall near-optimal results. The conventional techniques will have at least one cycle loss in the
critical subgraphs at the end of the basic blocks, as explained in Section VI-F-1. Hence, the esti-
mated lower bound loss derives by considering the optimal length increased by one for the critical
subgraphs and the optimal length for the remaining nodes. The schedule lengths are multiplied by

204

the corresponding number of surrounding loop iterations and the results are added. The schedule
length are depicted in Table II of Section VI-F. The schedule lengths are in Table 8.2.

Table 8.2: Schedule length for Large, strongly connected subgraphs
Algorithm Optimal Developed Conventional

(MCycles) (MCycles) (MCycles)
FDCT Transformation 83.902 83.911 92.291
FFT Transformation 29.491 30.081 34.210

8.6 Conclusions

In this chapter, we show how the principles and the process of using the framework with the par-
titions of all the cases of Chapter 2 is projected to the goal of developing parametric template
of design-time scheduling techniques, which near-optimally and in a scalable way schedule the
target domain. The systematic methodology, which is derived by the projection, develops a para-
metric template of design-time scheduling techniques which satisfy the target domain constraints.
The target domain constraints are propagated to the framework of the complete set of scheduling
classes. Each class is described by prestored parametric template. The vertical constraint propa-
gation principle selects the compatible classes and the combination principle combines the partial
parametric templates to the final parametric template of the developed techniques by propagating
design constraints.

205

Chapter 9

Conclusions & Future Directions

9.1 Conclusions

We have proposed a reusable methodology which achieves near-optimal and scalable DSE frame-
works. We have applied the proposed DSE into both the storing part of embedded systems and
the processing part of the embedded systems.

In the storing part, we have focused on the intra-signal in-place optimization steps of the
background memory. In Chapter 3 we have applied the reusable methodology to develop the
uni-directionally connected steps of a scalable and near-optimal intra-signal in-place methodol-
ogy [96], [98] [97]. Per step we have defined a framework with the different possible cases.
In Chapter 4 we have presented a scalable and near-optimal representation for irregular access
schemes to support the translation step of the developed intra-signal in-place optimization method-
ology [98]. In Chapter 5 we have proposed the parametric templates which provide the scalable
and near-optimal solution processes for each valid option for the non-overlapping [96] and the
overlapping case [97] of intra-signal in-place cases for irregular access schemes. We have eval-
uated the results of our methodologies and we have shown that we achieve near-optimal results
with low exploration time, which remains stable when the number of accesses is increased due
to increase in the loop bound. The exploration time of existing approaches is highly increased
with the increase in the accesses. In addition, part of the PhD contributions on the storing part
of the embedded systems has been performed in cooperation with PhD candidate V. Kelefouras.
The contributions are not described in the current PhD dissertation, as they are described by the
PhD dissertation of the first author. The contributions have focused on methodologies to improve
the data locality with performance objectives with focus on global optimization transformations
and the exploration of the data reuse in the memory hierarchy of the on-chip background mem-
ory [86], [4].

In the processing part, we have applied the reusable methodology to describe the steps of a
DSE methodology for an FPGA architecture platform with one microprocessor and several HW
accelerators [95], [94]. We have developed the partial pareto curves per step and by following
the uni-directional constraint propagation of the steps, we have developed the final pareto curve,
as described in Chapter 6. The latter can be used to select the final design based on the specified

207

9. CONCLUSIONS & FUTURE DIRECTIONS

requirements of the system each time. The foreground memory management and the datapath
mapping steps of the developed DSE methodology have as main task the scheduling and the as-
signment process. In order to provide a scalable and near-optimal scheduling and assignment
process for the domain under study, we have applied the reusable methodology principles to cre-
ate a framework with the complete set of scheduling and assignment processes in Chapter 7 [99].
Then, in Chapter 8, we have developed a methodology by applying the principles of the reusable
DSE methodology to create a scalable and near-optimal parametric template for the target domain
under study [100]. The developed parametric templates for large and complex CDFGs achieve
near-optimal designs in acceptable CPU time. The developed parametric template can be used to
select the solutions for the scheduling and the assignment tasks of the foreground and data-path
mapping step of the developed DSE methodology.In addition, part of the PhD contributions on
the processing part of the embedded systems has been performed in cooperation with PhD can-
didate D. Tsitsipis. The contributions have as context the Wireless Sensor Networks and focus
on the proposal of clustering scheduling and assignment techniques to improve the energy and the
packet loss during transmissions [192], [193], [191]. Another part of the PhD contributions on the
processing part of the embedded systems has been performed in cooperation with Dr. H. Michail
and focus on the co-design of a SHA256 cryptographic module [129].

In conclusions, applying the principles of the methodology to create and use scalable and near-
optimal DSE frameworks in the storing and processing context of the dissertation has lead to near-
optimal and scalable solutions. Hence, we believe that by applying the proposed DSE principles to
the remaining steps of the design flow will lead to similar results.

9.2 Future directions

In the current PhD dissertation, we have applied the reusable DSE methodology in the context of
the processor level data transfer and storage exploration to propose methodologies for the intra-
signal in-place optimization step. As a future direction, thorough application of the proposed
methodologies through several different realistic case studies can be performed. In addition, more
application for several case studies can be also applied in the DSE framework for the processing
part and the methodology to develop near-optimal and scalable parametric templates for a target
domain.

In the current PhD dissertation we have applied the DSEmethodology to create the DSE frame-
works for several steps and options in the problems under study. However, we have made several
assumptions in order not to open all the possible cases of the DSE framework. For instance, in the
intra-signal in-place methodologies we have focused on the affine expressions and provided hints
on how to deal with non-affine cases. Another example is the regularity of the application parts in
the DSE mapping methodology of the processing part. Hence, as a future direction, the different
cases that have not been further refined can be explored by applying the DSE methodology and
provide the corresponding parametric templates with the solutions.

208

For the storing part of the processor level system design, a similar methodology can be devel-
oped for the inter-signal in-place optimization step, i.e. the minimum number of resources required
to store the elements of all the arrays of the application. The cases for the inter-signal in-place
methodology should be defined. The analysis step and the pattern representation of the transla-
tion step of the intra-signal in-place optimization step can be partially reused for the inter-signal
in-place methodology. Then, parametric templates will be developed to solve in a scalable and
near-optimal way the different inter-signal cases. The reusable methodology can be also applied
for other mapping steps in the storing part, i.e. memory hierarchy level assignment optimization
step, memory allocation and assignment, storage order optimization etc [21]. By propagating the
characteristics of the Processor Level heterogeneous ordering and assignment of irregular data to
the Design-Time Global Scheduling Classification of Chapter 7, which describes the scheduling
and assignment of heterogeneous resources, we can define the techniques which are promising for
these steps of the background memory mapping methodology.

For the processing part of the processor level, DSE methodologies can be developed for other
partially fixed platform architectures, e.g. FPGA with multiple microprocessors and multiple HW
accelerators or other platforms with different but still relevant HW characteristics. The DSE
methodologies can be developed by applying and partially re-project the principles of the reusable
DSE methodology of Chapter 6. The different valid cases for each step can be defined by creating
the corresponding DSE framework following the reusable DSE methodology described in Chap-
ter 2. The methodology to develop near-optimal and scalable scheduling parametric templates,
as described in Chapter 8 and illustrated for large and complex CDFGs, is applicable for several
domains with different characteristics and constraints. In addition, another future work is to ap-
ply the reusable DSE methodology of Chapter 2 in the developed parametric template having as
goal to propose a methodology which will fully instantiate the parametric template to a specific
scheduling and assignment technique by giving specific values to the parameters of the template,
based on the characteristics of the application instance.

Finally, other future directions is the application of the reusable methodology for scalable and
near-optimal in the context of the remaining steps of the unified design flow described in Chapter 2.
Attempts and early experiments on this direction have been performed in [132] for the task level
concurrency management of the thread frame abstraction layer, whereas the data level has not been
explored yet.

209

Appendix A

Publication List

A.1 Journals

1. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “A Systematic Approach to Classify
Design Time Global Scheduling Techniques”, Journal of ACM Computed Surveys, Vol. 45,
No. 2, Feb, 2013, pp. 14:1 -- 14:30, DOI: 10.1145/2431211.2431213

2. A.Kritikakou, F. Catthoor, G.S. Athanasiou, V. Kelefouras and C. Goutis, “Near-optimal
Microprocessor & Accelerators Co-Design with Latency & Throughput Constraints”, ACM
Trans. Architecture and Code Optimization, Vol.10, No.2, May, 2013, pp. 6:1--6:25, DOI:
10.1145/2459316.2459317

3. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “A Scalable &Near-optimal Repre-
sentation for Storage SizeManagement”, ACMTrans. Architecture and Code Optimization,
conditionally accepted, 2013.

4. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “Near-optimal & Scalable Intra-
signal In-place for Non-overlapping & Irregular Access Scheme”, ACM Trans. Design Au-
tomation of Electronic Systems (TODAES), conditionally accepted, 2013.

5. V.I. Kelefouras, G.S. Athanasiou, N. Alachiotis, H. E. Michail, A. S. Kritikakou and
C.E. Goutis, “A memory efficient Fast Fourier Transform (FFT) methodology”, IEEE
Transactions on Signal Processing, 2011, Vol.59, No. 12, pp. 6217-6226, DOI:
10.1109/TSP.2011.2168525.

6. N. Alachiotis, V. Kelefouras, G. Athanasiou, H. Michail, A. Kritikakou and C. Goutis, “A
Data Locality Methodology for Matrix-Matrix Multiplication Algorithm”, The journal of
Supercomputing, Springer, 2012, Vol. 59, No. 2, pp. 830—851, DOI: 10.1007/s11227-
010-0474-3.

7. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “A Systematic Methodology to
DevelopNewGlobal Design Time Scheduling Techniques”, Submitted inACMTransactions
on Design Automation of Electronic Systems (TODAES), 2013.

211

A. PUBLICATION LIST

8. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “Scalable & Near-Optimal Array
Storage Size under Overlapping & Irregular Accesses”, Submitted in IEEE Trans. Comput-
ers (TC), 2013.

9. A.Kritikakou, F. Catthoor, V. Kelefouras and C. Goutis, “Scalable & Near-Optimal Fore-
Ground Memory Allocation”, to be submitted, 2013.

A.2 Conferences

1. A. Kritikakou, F.Catthoor, G.S. Athanasiou, V. Kelefouras and C. Goutis, “A Template-
based Methodology for Efficient Microprocessor and FPGA Accelerator Co-Design”,
Proc. Int’l Conf. Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), 16-19 July 2012, Samos, Greece.

2. H. Michail, A. Gregoriades, V. Papadopoulou, G. Athanasiou, A. Kritikakou and C. Goutis,
“High Throughput Hardware/Software Codesign Methodology For Designing SHA-256
Hashing Cryptographic Module in Hardware”, in Proc. Int'l Conf. Security and Cryp-
tography (SECRYPT), 26-28 July 2010, Athens, Greece.

3. D. Tsitsipis, S.M. Dima, A.Kritikakou, C. Panagiotou, and S.Koubias, “Data Merge: A
data aggregation technique for Wireless Sensor Networks”, Proc. Int’l Conf. Emerging
Technologies and Factory Automation (ETFA), 5-9 Sep 2011, Toulouse, France.

4. D. Tsitsipis, S.M. Dima, A.Kritikakou, C. Panagiotou, and S.Koubias, “Segmentation and
Reassembly Data Merge (SaRDaM) Technique for Wireless Sensor Networks”, Proc. Int’l
Conf. Industrial Technology (ICIT), 19-21 Mar 2012, Athens, Greece.

5. D. Tsitsipis, S.M. Dima, A.Kritikakou, C. Panagiotou, J. Gialelis, H.Michail and S.Koubias,
“Prioritized Segmentation and Reassembly Data Merge (PSaRDaM) Technique for Wire-
less Sensor Networks”, Proc. Int’l Conf. Emerging Technologies and Factory Automation
(ETFA),17-21 Sep 2012, Cracow, Poland.

212

Appendix B

Εκτεταμένη Περίληψη στα Ελληνικά

B.1 Εισαγωγή

Τα ενσωματωμένα συστήματα είναι υπολογιστικά συστήματα τα οποία εκτελούν
εφαρμογές αφιερωμένες σε ένα συγκεκριμένο σκοπό και δεν είναι υπολογιστές
γενικού σκοπού. Τα ενσωματωμένα συστήματα αποτελούνται από μια συλλογή
προγραμματιστικών μερών και στοιχείων, η οποία επικοινωνεί με το περιβάλλον.
Παραδείγματα ενσωματωμένων συστημάτων αποτελούν οι συσκευές κινητών τηλεφώνων,
συσκευές βιοϊατρικής, συσκευές που χρησιμοποιούνται στην ασφάλεια επικοινωνίας και
σε πολυμέσα.

Οι εφαρμογές ενσωματωμένων συστημάτων προέρχονται από τομείς όπως τα
πολυμέσα, τα γραφικά, τις ασύρματες συνδέσεις, την βιοϊατρική, την επεξεργασία
σημάτων. Οι εφαρμογές ενσωματωμένων συστημάτων, εκτός από την πολυπλοκότητα που
έχουν, εισάγουν αυστηρούς περιορισμούς (constraints) και ελαστικούς περιορισμούς (trade-
offs) που μετρούν την απόδοση του συστήματος. Επιπρόσθετοι περιορισμοί τίθενται από το
περιβάλλον, π.χ. την αγορά, την εταιρία σχεδίασης και παραγωγής των ενσωματωμένων
συστημάτων και τους χρήστες. Τα constraints περιγράφουν την ελάχιστη ή μέγιστη
(ανάλογα με την περίπτωση) αποδεκτή τιμή που μπορεί να έχει ένας παράγοντας
σχεδιασμού του συστήματος, ενώ τα trade-offs περιγράφουν ένα εύρος τιμών για τις
σχεδιαστικές μετρικές που είναι πάνω από την ελάχιστη αποδεκτή τιμή.

Οι περισσότερες εφαρμογές για ενσωματωμένα συστήματα έχουν constraints στην
απόδοση που εκφράζονται μέσω του χρόνου εκτέλεσης της εφαρμογής και του ρυθμού
παραγωγής των αποτελεσμάτων της εφαρμογής. Π.χ. όταν η εφαρμογή πρέπει να
έχει εκτελεστεί πριν από μια συγκεκριμένη χρονική στιγμή δημιουργεί ένα χρονικό con-
straint στην απόδοση του ενσωματωμένου συστήματος. Τα περισσότερα ενσωματωμένα
συστήματα λειτουργούν με μπαταριές και επομένως η κατανάλωση ενέργειας είναι πολύ
κρίσιμη για την διάρκεια που θα λειτουργεί το σύστημα χωρίς επαναφόρτιση. Η ελάχιστη

213

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

απαιτούμενη διάρκεια ζωής του συστήματος ανάμεσα στις επαναφορτίσεις καθορίζει το
constraint στην κατανάλωση ενέργειας. Επιπρόσθετη μείωση στον χρόνο εκτέλεσης και
στην κατανάλωση ενέργειας της εφαρμογής από την ελάχιστη τιμή που ορίζουν τα con-
straints μπορεί να αποφασιστεί με την εξερεύνηση του πολυδιάστατου trade-offs χώρου
λύσεων.

Για να ικανοποιηθούν τα constraints του συστήματος, τα ενσωματωμένα συστήματα
αποτελούνται από ποικίλους ετερογενείς πολυεπεξεργαστές, όπως Reduced Instruction Set
Computer (RISC), Very Long Instruction Word (VLIW) ή Single Instruction Multiple Data
(SIMD),Application Specific Instruction Set Processors (ASIP), Digital Signal Processor (DSP)
και Application-Specific Integrated Circuit (ASIC), και χρησιμοποιούν διάφορους τρόπους
λειτουργίας των πολυεπεξεργαστών, όπως Dynamic Voltage and Frequency Scaling (DVFS)
και Dynamic PowerManagement (DPM), ενώ περιέχουν επαναπρογραμματιζόμενες μονάδες
επεξεργασίας, πολύπλοκες δομές και ιεραρχίες μνημών, πολύπλοκες διεπαφές. Λόγω των
απαιτήσεων του συστήματος, οι σχεδιασμοί βασισμένοι μόνο στο λογισμικό (software) δεν
μπορούν να πραγματοποιηθούν ανεξάρτητα από το υλικό (hardware). Επομένως, υλικό και
λογισμικό πρέπει να αναπτυχθούν παράλληλα κατά την σχεδίαση του συστήματος για να
ικανοποιήσουν τις απαιτήσεις του συστήματος [122].

Ο πολυδιάστατος trade-offs χώρος λύσεων δημιουργείται από ένα σύνολό αξόνων
που περιγράφουν τις σχεδιαστικές μετρικές και οι οποίες χαρακτηρίζουν την συνολική
απόδοση του συστήματος. Οι σχεδιαστικές μετρικές με υψηλό συντελεστή βαρύτητας είναι
η απόδοση, η επιφάνεια ολοκλήρωσης και η κατανάλωση ενέργειας του συστήματος. Τα
ενσωματωμένα συστήματα είναι συνήθως συστήματα πραγματικού χρόνου και επομένως
ο χρόνος εκτέλεσης της εφαρμογής είναι ένας βασικός άξονας στον πολυδιάστατο trade-
offs χώρο. Επιπρόσθετα, τα ενσωματωμένα συστήματα είναι φορητά και επομένως η
κατανάλωση ενέργειας παίζει πολύ σημαντικό ρόλο. Η leackage κατανάλωση ενέργειας
είναι έμμεσα συσχετιζόμενη με την επιφάνεια ολοκλήρωσης, δηλαδή την περιοχή που
καταλαμβάνει το ενσωματωμένο σύστημα. Καθώς αυξάνει ο αριθμός των πυλών
που χρειάζονται για την ολοκλήρωση του συστήματος, αυξάνει και η κατανάλωση
ενέργειας λόγω αύξησης του ρεύματος διαφυγής. Οι σχεδιαστικές μετρικές με υψηλό
συντελεστή βαρύτητας δεν μπορούν να ικανοποιηθούν ταυτόχρονα διότι η μία μετρική
συνήθως αντικρούει άλλες μετρικές. Για να μειωθεί περαιτέρω ο χρόνος εκτέλεσης
της εφαρμογής, υπάρχουν διάφορες επιλογές στην σχεδίαση του συστήματος, όπως
η απεικόνιση των κρίσιμων τμημάτων της εφαρμογής σε υλικό ειδικού σκοπού, ο
πιθανός παραλληλισμός τμημάτων της αρχιτεκτονικής πλατφόρμας, η επιλογή υψηλότερης
συχνότητας στα τμήματα υλικού ή ακόμα πιο πυκνό χρονοπρογραμματισμό των εντολών
και τον προσπελάσεων στη μνήμη. Οι προαναφερθείσες σχεδιαστικές επιλογές οδηγούν σε
αύξηση της κατανάλωσης ενέργειας και της απαιτούμενης επιφάνειας ολοκλήρωσης. Οι
επιπρόσθετες απαιτήσεις σε υλικό αυξάνουν τον αριθμό των πυλών που χρησιμοποιούνται
για την σχεδίαση του συστήματος και επομένως την κατανάλωση ενέργειας. Ο πιο πυκνός
χρονοπρογραμματισμός βελτιστοποιεί τις προσπελάσεις στην μνήμη, αλλά αυξάνει τον

214

απαιτούμενο χώρο αποθήκευσης των δεδομένων διότι αυξάνεται η διάρκεια ζωής των
δεδομένων. Η αύξηση στον απαιτούμενο χώρο αποθήκευσης οδηγεί σε μεγαλύτερες μνήμες
και σε αύξηση της κατανάλωσης ενέργειας ανά προσπέλαση.

Τα ενσωματωμένα συστήματα είναι προϊόντα μεγάλης παραγωγικότητας σε αγορές
υψηλού ανταγωνισμού. Επομένως, το τελικό σύστημα, που είναι και το προϊόν προς
πώληση, οφείλει να έχει χαμηλό κόστος μονάδας. Το κόστος μονάδας εκφράζει τόσο το
κόστος κατασκευής όσο και το κόστος σχεδίασης. Το κόστος κατασκευής εκφράζεται
είναι το κόστος κατασκευής ενός συστήματος. Όταν η κατανάλωση της ενέργειας
και της ισχύος του συστήματος αυξάνεται, το κόστος μονάδας αυξάνεται λόγω των
αυξημένων απαιτήσεων σε παροχή ισχύος αλλά και στο σύστημα ψύξης. Όταν αυξάνεται
η αναγκαία επιφάνεια ολοκλήρωσης του συστήματος λόγω αύξησης του μεγέθους στο
απαιτούμενο φυσικό χώρο, ο οποίος μετριέται σε Bytes για το λογισμικό και σε πύλες για το
υλικό, αυξάνεται το κόστος μονάδας. Το κόστος σχεδίασης εκφράζεται μέσω του Non-
Recurring Engineering (NRE) κόστους, το οποίο περιγράφει το κόστος για την σχεδίαση
του συστήματος πριν την κατασκευή του και το κόστος για τροποποίηση του συστήματος.
Επομένως, ένα επιπρόσθετος παράγοντας είναι η ευελιξία του συστήματος, που περιγράφει
την δυνατότητα να μεταβληθεί η λειτουργικότητα του συστήματος χωρίς υψηλό NRE
κόστος. Για να αυξηθεί η ευελιξία του συστήματος, απαιτείται επιπρόσθετη επιφάνεια
ολοκλήρωσης όταν οι πραγματικού χρόνου περιορισμοί δεν ικανοποιούνται. Όταν το
σύστημα παράγεται σε υψηλές ποσότητες, ο συντελεστής βαρύτητας για την ευελιξία του
συστήματος είναι υψηλός και επομένως μια μεγαλύτερη επιφάνεια ολοκλήρωσης είναι
πιθανόν να είναι αποδεκτή διότι παρέχει υψηλότερο κέρδος.

Η υψηλή ανταγωνιστικότητα στις αγορές απαιτεί μικρό χρόνο μέχρι το προϊόν να είναι
έτοιμο στην αγορά, δηλαδή μικρό συνολικό χρόνο για τον σχεδιασμό και την κατασκευή
του προϊόντος. Μια μικρή καθυστέρηση στο χρόνο προς την αγορά μπορεί να έχει
καταστροφικές οικονομικές συνέπειες. Επομένως ο χρόνος προς την αγορά (time-to-
market) έχει υψηλό συντελεστή βαρύτητας στον πολυδιάστατο trade-offs χώρο λύσεων. Ο
χρόνος προς την αγορά θα πρέπει να παραμείνει εντός ενός χρονικού παραθύρου που
προσδιορίζει τον διαθέσιμο χρόνο για την σχεδίαση του συστήματος και για την εξερεύνηση
των πιθανών σχεδιάσεων. Όταν περισσότερος χρόνος είναι διαθέσιμος για την σχεδίαση
του συστήματος, τότε μπορεί να επιτευχθεί καλύτερη εξερεύνηση του πολυδιάστατου
χώρου λύσεων, η οποία οδηγεί σε σχεδόν βέλτιστους σχεδιασμούς με χαμηλότερο κόστος
παραγωγής. Ωστόσο, σε αυτή την περίπτωση το κόστος NRE αυξάνεται. Όταν ο
διαθέσιμος χρόνος για την σχεδίαση του προϊόντος ή το NRE κόστος είναι χαμηλότερα,
πραγματοποιείται μια πιο επιθετική μείωση του χώρου λύσεων, η οποία οδηγεί σε όχι τόσο
βέλτιστες, αλλά ακόμα αποδεκτές, σχεδιάσεις.

Λόγω της αύξησης της πολυπλοκότητας του υλικού και του λογισμικού των
ενσωματωμένων συστημάτων, του αυστηρού χρόνου και των περιορισμών κατανάλωσης
των εφαρμογών, το χαμηλό κόστος και τον λίγο διαθέσιμο χρόνο προς την αγορά και
τον πολυδιάστατο χώρο λύσεων, οι σχεδιάσεις βασισμένες σε τυχαίες επιλογές και στην

215

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

προηγούμενη εμπειρία των σχεδιαστών δεν οδηγούν σε σχεδόν βέλτιστες σχεδιάσεις.
Η διαδικασία για την σχεδίαση του συστήματος παίρνει πολύ χρόνο και δεν παρέχει
εγγύηση ότι θα ικανοποιηθούν οι περιορισμοί του συστήματος και ότι θα σχεδιαστεί ένα
σχεδόν βέλτιστο σύστημα λαμβάνοντας υπόψιν όλες τις σχεδιαστικές μετρικές. Επομένως,
απαιτούνται μεθοδολογίες για την εξερεύνηση των σχεδιασμών (Design Space Exploration
- DSE), οι οποίες εξερευνούν αποδοτικά τις επιλογές σχεδίασης στον πολυδιάστατο χώρο
λύσεων του συστήματος και παρέχουν σχεδόν βέλτιστες σχεδιάσεις σε μικρό χρόνο προς
την αγορά.

B.2 Υπάρχουσες μεθοδολογίες και περιορισμοί

Οι DSE μεθοδολογίες εξερευνούν τις επιλογές της αρχιτεκτονικής, των στοιχείων, των
διεπαφών και της απεικόνισης των δεδομένων, ώστε να επιτύχουν ένα σχεδόν βέλτιστο
σύστημα το οποίο ικανοποιεί τους περιορισμούς και ελαχιστοποιεί το κόστος στον
πολυδιάστατο trade-off χώρο λύσεων. Κατά την διάρκεια εξερεύνησης του χώρου
λύσεων εξερευνούνται οι απαιτήσεις σε είσοδο και έξοδο των δεδομένων, σε αποθήκευση
δεδομένων, σε επεξεργασία δεδομένων και στον έλεγχο του συστήματος των διαφόρων
επιλογών.

Η έρευνα από την ακαδημαϊκή κοινότητα έχει περισσότερο επικεντρωθεί σε
μεθοδολογίες εξερεύνησης σχεδιασμών οι οποίες παρέχουν σχεδόν βέλτιστες σχεδιάσεις.
Η ιδανική μεθοδολογία εξερεύνησης σχεδιασμών αντιμετωπίζει όλα τα προβλήματα
απεικόνισης του λογισμικό στο υλικό ταυτόχρονα σε μια μοναδική φάση. Ωστόσο η ιδανική
μεθοδολογία εξερεύνησης δεν μπορεί να πραγματοποιηθεί. Η διαδικασία σχεδιασμού
ενσωματωμένων συστημάτων είναι πολύ περίπλοκη και αποτελείται από ποικίλες φάσεις
και δεν υπάρχει μοναδικός τρόπος να αναπαρασταθεί αποδοτικά το πρόβλημα. Επομένως,
η μεθοδολογία εξερεύνησης του χώρου λύσεων πρέπει να διαιρεθεί σε ένα σύνολο βημάτων
ούτως ώστε να είναι διαχειρίσιμη [122].

Οι υπάρχουσες μεθοδολογίες για εξερεύνηση των σχεδιασμών χωρίζουν την διαδικασία
σε βήματα. Ωστόσο ο διαχωρισμός υλοποιείται με τυχαίο τρόπο και τα βήματα τα
οποία προκύπτουν επηρεάζουν με δικατευθυντήριο τρόπο το ένα το άλλο, δημιουργώντας
κυκλικές εξαρτήσεις. Λόγω των εξαρτήσεων απαιτούνται επαναλήψεις των βημάτων
για την εύρεση σχεδόν βέλτιστων σχεδιασμών, ενώ δεν υπάρχει εγγύηση ότι μια σχεδόν
βέλτιστη σχεδίαση θα ευρεθεί εντός του διαθέσιμου χρόνου εξερεύνησης. Όταν ο αριθμός
των παραμέτρων του υλικού και του λογισμικού αυξάνεται, οι ακριβές σχεδιαστικές
επαναλήψεις των βημάτων που συσχετίζονται με δικαυτευθυντήριο τρόπο οδηγούν σε μη
επεκτάσιμες μεθοδολογίες. Για παράδειγμα, μια επαναλήψιμη DSE μεθοδολογία ξεκινά
την εξερεύνηση από μια βασική σχεδίαση από τον σχεδιαστή, τροποποιεί την τιμή μιας
παραμέτρου κάθε φορά και χρησιμοποιεί τα αποτελέσματα για να προβλέψει τον βέλτιστο
σχεδιασμό [175]. Η DSE μεθοδολογία μπορεί να οδηγήσει σε λιγότερους αποδοτικούς

216

σχεδιασμούς όταν υπάρχει υψηλός αριθμός παραμέτρων και εξαρτήσεων.
Επιπρόσθετα, κάθε βήμα απεικόνισης του λογισμικού στο υλικό αποτελείται από

διεργασίες οι οποίες είναι NP-complete προβλήματα. Οι συνήθης τεχνικές που
εφαρμόζονται σε ένα βήμα απεικόνισης μπορούν να επιτύχουν σχεδόν βέλτιστα
αποτελέσματα και εντός του διαθέσιμου χρόνου μόνο για μικρά σχεδιαστικά προβλήματα.
Όταν η πολυπλοκότητα του συστήματος αυξάνεται, οι συνήθης τεχνικές δεν είναι ικανές
στην εύρεση της σχεδόν βέλτιστης λύσης εντός του διαθέσιμου χρόνου. Για παράδειγμα,
οι στοχαστικές τεχνικές απαιτούν μη αποδεκτό χρόνο εξερεύνησης για να βρουν σχεδόν
βέλτιστες λύσεις σε ένα μεγάλο χώρο λύσεων. Οι στοχαστικές τεχνικές ψάχνουν τον χώρο
βασιζόμενες σε τυχαίες κινήσεις. Για να επιτύχουν σχεδόν βέλτιστες λύσεις χρειάζονται
υψηλό αριθμό τυχαίων κινήσεων σε γειτονικές περιοχές. Για παράδειγμα, η απόδοση
του quantum-inspired evolutionary algorithm (QEA) για την απεικόνιση πολυεπεξεργαστών
βασίζεται στον αριθμό των γενιών που θα εφαρμοστούν. Η αύξηση του αριθμού των
γενιών αυξάνει και τις πιθανότητες να επιτύχουν έναν σχεδόν βέλτιστο σχεδιασμό [3]. Μια
μεθοδολογία εξερεύνησης με στοχαστικούς αλγορίθμους προτάθηκε στο [147] και μια sim-
ulated annealing DSE τεχνική για την εύρεση συνεπεξεργαστών στο [73]. Ντετερμινιστικές
τεχνικές σχεδιασμού, όπως Integer Linear Programming (ILP) τεχνικές, απαιτούν αρκετό
χρόνο εξερεύνησης όταν εφαρμόζονται σε μεσαία και μεγάλα προβλήματα σχεδιασμού.
Τεχνικές σχεδίασης τύπου branch and bound επίσης χρειάζονται αυξημένο χρόνο
εξερεύνησης για να εγγυηθούν σχεδόν βέλτιστους σχεδιασμούς. Για την μείωση του
απαιτούμενου χρόνου εξερεύνησης, η branch and bound τεχνικές πρέπει να εφαρμόσουν
ένα πιο επιθετικό κλάδεμα λύσεων στο χώρο εξερεύνησης, ο οποίος μειώνει την ποιότητα
του τελικού σχεδιασμού. Ευριστικές μέθοδοι σχεδιασμού ψάχνουν το χώρο λύσεων με
προκαθορισμένους κανόνες, οι οποίοι δεν μπορούν εγγυηθούν βέλτιστες λύσεις στο στο
γενικό πρόβλημα σχεδιασμού [39].

Οι μεταγλωττιστές είναι βασικό τμήμα των μεθοδολογιών εξερεύνησης και έχουν ως
στόχο την απεικόνιση της εφαρμογής στους διαφορετικούς σχεδιασμούς. Τα βασικά
στάδια ενός μεταγλωττιστή είναι: 1) η επιλογή κώδικα, δηλαδή η απεικόνιση των
εντολών μηχανής στον εκάστοτε επεξεργαστή, 2) η επιλογή καταχωρητών, δηλαδή η
απεικόνιση των μεταβλητών στους καταχωρητές με στόχο την μείωση των αναφορών
στη μνήμη κατά την εκτέλεση της εφαρμογής, 3) η ανάθεση σε καταχωρητές, δηλαδή
ο καθορισμός σε ποιον φυσικό καταχωρητή θα αποθηκευτεί μια μεταβλητή, 4) ο
χρονοπρογραμματισμός των εντολών, δηλαδή η αναδιοργάνωση των εντολών για να
εξερευνήσουν και να εκμεταλλευτούν την πιθανή παραλληλία στις εντολές και η ανάθεση
πόρων, δηλαδή ο καθορισμός των επεξεργαστικών μονάδων και των διαύλων στις πράξεις
της εφαρμογής. Οι φάσεις που εκτελούν οι μεταγλωττιστές είναι συσχετιζόμενες με
δικαυτευθυντήριο τρόπο, διότι οι αποφάσεις μιας φάσης επηρεάζουν και επιβάλουν
περιορισμούς σε επόμενες φάσεις και συνολικά οδηγούν σε υποβέλτιστες λύσεις. Για
παράδειγμα, σε έναν μεταγλωττιστή για ενσωματωμένα συστήματα η φάση επιλογής
κώδικα τοποθετεί εικονικούς καταχωρητές από διάφορες κλάσεις, αλλά η κλάση από την

217

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

οποία πρέπει να επιλεγούν οι καταχωρητές είναι γνωστή μόνο μετά την φάση επιλογής
καταχωρητών. Η φάση επιλογής καταχωρητών δεν μπορεί να προηγηθεί από την φάση
επιλογής κώδικα, διότι οι απαιτούμενοι καταχωρητές είναι γνωστοί μετά τη φάση επιλογής
κώδικα [121]. Οι συνήθεις DSE μεθοδολογίες παρέχουν μη βέλτιστο συνδυασμό των μη
βέλτιστων αποτελεσμάτων ανά φάση το οποίο οδηγεί σε συνολικά υπο-βέλτιστη λύση.
Ερευνά έχει πραγματοποιηθεί και για την εύρεση της βέλτιστης σειράς εκτέλεσης των
φάσεων του μεταγλωττιστή. Δεν έχει ευρεθεί συνολικά βέλτιστη σειρά εκτέλεσης των
φάσεων του μεταγλωττιστή η οποία να οδηγεί σε βέλτιστο αποτέλεσμα, διότι επηρεάζεται
από την εφαρμογή προς μεταγλώττιση, τον μεταγλωττιστή και την αρχιτεκτονική του
συστήματος [103].

Για να μειωθεί ο χρόνος εξερεύνησης, οι περιορισμοί ανάμεσα στα βήματα απεικόνισης,
τα οποία είναι συσχετιζόμενα με δικατευθυντήριο τρόπο, δεν λαμβάνονται υπόψιν. Για
παράδειγμα, οι παράμετροι σχεδίασης ταξινομούνται με βάση την επιρροή την οποία έχουν
και η οποία καθορίζεται από την μέγιστη μεταβολή στην τιμή των παραμέτρων [176].
Όλοι οι συνδυασμοί των δύο πρώτων παραμέτρων λαμβάνονται υπόψιν για περαιτέρω
εξερεύνηση. Σε άλλες περιπτώσεις η ανεξαρτησία των παραμέτρων χρησιμοποιείται ώστε
να μειώσει το χώρο εξερεύνησης η οποία είναι συνήθως περιορισμένη, και να παράγει
την Pareto καμπύλη στο Platune [147]. Τεχνικές που ακολουθούν το διαιρεί και βασίλευε
δεν μπορούν να εξερευνήσουν αποδοτικά την δομή του προβλήματος προς σχεδίαση και
αγνοούν τους περιορισμούς κατά την διαίρεση σε υπο-προβλήματα. Επιλύουν κάθε υπο-
πρόβλημα μεμονωμένα και ανεξάρτητα και όταν συνδυάζουν τα μερικά αποτελέσματα
καταλήγουν σε υπο-βέλτιστες λύσεις.

Στην βιομηχανία, τα προβλήματα σχεδίασης είναι μεγάλα και περίπλοκα και επομένως
οι DSE μεθοδολογίες πρέπει να εγκαταλείψουν την απαίτηση για σχεδόν βέλτιστη λύση,
ούτως ώστε να επιτύχουν την επεκτασιμότητα των μεθοδολογιών σε μεγάλα προβλήματα
σχεδίασης. Επομένως, τα βήματα σχεδιασμού εκτελούνται με μερικώς ανεξάρτητο τρόπο
για να μειώσουν τις εξαρτήσεις και τον χρόνο εξερεύνησης. Τα υπάρχοντα εργαλεία δεν
λαμβάνουν υπόψιν τις κυκλικές εξαρτήσεις ανάμεσα στην επεξεργασία, την μνήμη και
την επικοινωνία με αποτέλεσμα την δημιουργία λιγότερο αποδοτικών σχεδιάσεων. Όταν
συνδυάζονται τα αποτελέσματα από τα εκάστοτε βήματα, η ποιότητα του σχεδιασμού
μειώνεται λόγω συγκρουόμενων αποφάσεων στα διαφορετικά βήματα.

Συμπερασματικά, υπάρχει ένα δίλημμα στις υπάρχουσες μεθοδολογίες εξερεύνησης:
είτε να εγκαταλείψουν την απαίτηση για σχεδόν βέλτιστη ποιότητα του τελικού σχεδιασμού
ή να εγκαταλείψουν την επεκτασιμότητα στην μεθοδολογία εξερεύνησης.

B.3 Σκοπός και συνεισφορές

Η παρούσα διδακτορική διατριβή παρουσιάζει μια εναλλακτική μεθοδολογία εξερεύνησης
σχεδιασμών η οποία να απαντά στο δίλημμα για σχεδόν βέλτιστη σχεδίαση και επεκτάσιμη

218

μεθοδολογία. Η προτεινόμενη DSE μεθοδολογία χωρίζει τον περίπλοκο πρόβλημα
σχεδιασμού σε μικρότερα και λιγότερο περίπλοκα βήματα σχεδιασμού επιτυγχάνοντας
επεκτασιμότητα στη μεθοδολογία. Εν αντιθέσει με τις υπάρχουσες μεθοδολογίες
εξερεύνησης του χώρου λύσεων, τα βήματα της προτεινόμενης μεθοδολογίας είναι
συνδεδεμένα με διάδοση περιορισμών που ακολουθεί μονοκατευθυντήριο και όχι
δικατευθυντήριο τρόπο. Με αυτόν τον τρόπο, επιτυγχάνονται σχεδόν βέλτιστοι σχεδιασμοί
διότι δεν αγνοούνται περιορισμοί, το οποίο συμβαίνει όταν τα βήματα θεωρηθούν
ανεξάρτητα. Οι ακριβές επαναλήψεις στην εξερεύνηση αποφεύγονται. Στην συνήθεις
μεθοδολογίες εξερεύνησης σχεδιασμών το πρόβλημα σχεδίασης χωρίζεται σε βήματα,
τα οποία είναι συνδεδεμένα με δικατευθυντήριο τρόπο, και απαιτούν σχεδιαστικές
επαναλήψεις, οι οποίες αυξάνουν σημαντικά τον χρόνο εξερεύνησης. Στην παρούσα
διδακτορική διατριβή εφαρμόζουμε την επαναχρησιμοποιούμενη επεκτάσιμη και σχεδόν
βέλτιστη μεθοδολογία εξερεύνησης του χώρου σχεδιάσεων σε διάφορα στάδια στην
σχεδίαση ενσωματωμένων συστημάτων σε υψηλό επίπεδο, και ειδικά για την εύρεση του
ελάχιστου μεγέθους μνήμης για την τοποθέτηση των δεδομένων ενός πίνακα στην κύρια
μνήμη (intra-signal in-place optimization problem), που εξερευνά τα trade-offs απόδοσης,
επιφάνειας ολοκλήρωσης και κατανάλωσης ενέργειας, και για την απεικόνιση του
επεξεργαστικού τμήματος του ενσωματωμένου συστήματος, που εξερευνά το trade-off
μεταξύ χρόνου σχεδίασης, απόδοσης και επιφάνειας ολοκλήρωσης.

Οι συνεισφορές της παρούσας διδακτορικής διατριβής συνοψίζονται ως εξής:

• Επαναχρησιμοποιούμενη μεθοδολογία για επεκτάσιμα και σχεδόν βέλτιστα
DSE πλαίσια (frameworks).
Το πρόβλημα σχεδίασης χωρίζεται σε μικρότερα και λιγότερο πολύπλοκα
βήματα σχεδίασης, τα οποία είναι συνδεδεμένα μέσω διάδοσης περιορισμών
με μονοκατευθυντήριο τρόπο. Σχεδόν βέλτιστοι σχεδιασμοί επιτυγχάνονται διότι οι
περιορισμοί δεν αγνοούνται και η επεκτασιμότητα διατηρείται διότι δεν γίνονται
σχεδιαστικές επαναλήψεις.

• Ανάπτυξη επεκτάσιμης και σχεδόν βέλτιστης μεθοδολογίας για την εύρεση του
ελάχιστου μεγέθους απαιτούμενης μνήμης για την τοποθέτηση των δεδομένων
ενός πίνακα.
Οι αρχές της επαναχρησιμοποιύμενης μεθοδολογίας εφαρμόζονται στο πρόβλημα
εύρεσης του ελάχιστου μεγέθους απαιτούμενης μνήμης για την τοποθέτηση των
δεδομένων ενός πίνακα και δημιουργούν μια επεκτάσιμη και σχεδόν βέλτιστη
μεθοδολογία για σχήματα προσπελάσεων που έχουν υψηλό βαθμό ανομοιογένειας.

• Επεκτάσιμη και σχεδόν βέλτιστη αναπαράσταση των προσπελάσεων στη μνήμη
βασισμένη σε μοτίβα και πράξεις μοτίβων.
Οι προσπελάσεις στην κύρια μνήμη οι οποίες χαρακτηρίζονται από υψηλό βαθμό
ανομοιογένειας οδήγησαν στην ανάγκη για μια αναπαράσταση, η οποία είναι

219

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

βασισμένη σε μοτίβα και πράξεις επί τον μοτίβων, ούτως ώστε να περιγράψει
με σχεδόν βέλτιστο και επεκτάσιμο τρόπο τις ανομοιογενείς προσπελάσεις. Τα
προτεινόμενα μοτίβα περιγράφουν τις προσπελάσεις ανά συνθήκη. Οι πράξεις
εφαρμόζονται στα μοτίβα για να τα συνδυάσουν και να περιγράψουν τον συνολικό
χώρο επαναλήψεων (Iteration space), όταν ποικίλες συνθήκες υπάρχουν ταυτόχρονα
στην εφαρμογή.

• Επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία για την εύρεση του ελάχιστου
μεγέθους απαιτούμενης μνήμης για την τοποθέτηση των δεδομένων ενός πίνακα
για μη επικαλυπτόμενες και επικαλυπτόμενες εντολές εγγραφής και ανάγνωσης.
Επεκτάσιμες και σχεδόν βέλτιστες λύσεις προτείνονται σε κλειστού τύπου εξισώσεις
και ρουτίνες (παραμετρικά πλαίσια) για να επιλύσουν τις διάφορες περιπτώσεις
σε κάθε βήμα της προτεινόμενης μεθοδολογίας για την εύρεση του ελάχιστου
μεγέθους απαιτούμενης μνήμης για την τοποθέτηση των δεδομένων ενός πίνακα με
ανομοιογενείς προσπελάσεις και μη επικαλυπτόμενες και επικαλυπτόμενες εγγραφές
και αναγνώσεις δεδομένων.

• Ανάπτυξη μεθοδολογίας για το επεξεργαστικό τμήμα για τη απεικόνιση
περιοχής εφαρμογών σε αρχιτεκτονική πλατφόρμα με έναν επεξεργαστή και
ποικίλους συνεπεξεργαστές στο υλικό.
Μια επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία εξερεύνησης του χώρου
σχεδιάσεων προτείνεται για την απεικόνιση εφαρμογών κυριαρχούμενων από
δεδομένα και από βρόγχους σε μια μερικώς προ-αποφασισμένη πλατφόρμα με ένα
μικροεπεξεργαστή και ποικίλους συνεπεξεργαστές στο υλικό. Παραμετρικά πλαίσια
εφαρμόζονται για κάθε βήμα της μεθοδολογίας. Η προτεινόμενη μεθοδολογία
εξερεύνησης δημιουργεί μια μερική Pareto καμπύλη με τους διάφορους σχεδιασμούς
για κάθε βήμα απεικόνισης. Η μερική καμπύλη του πρώτου βήματος διαδίδεται
στα επόμενα βήματα της μεθοδολογίας και κλαδεύει υποβέλτιστες λύσεις. Οι
εναπομείναντες λύσεις συνδυάζονται με την καμπύλη που διαδόθηκε από το
προηγούμενο βήμα και δημιουργούν μια καινούργια Pareto καμπύλη, η οποία
διαδίδεται στα επόμενα βήματα. Η διαδικασία επαναλαμβάνεται για όλα τα βήματα
της μεθοδολογίας εξερεύνησης και το αποτέλεσμα είναι η τελική Pareto καμπύλη με
τους διάφορους σχεδιασμούς.

• Πλαίσιο που περιγράφει τις σχεδόν βέλτιστες τεχνικές χρονοπρογραμματισμού
και ανάθεσης πόρων που εφαρμόζονται κατά την διάρκεια σχεδίασης.
Ο διαχωρισμός και η χρονική ταξινόμηση των διαθέσιμων επιλογών στις τεχνικές
που λύνουν το πρόβλημα του χρονοπρογραμματισμού και της ανάθεσης των πόρων
που περιγράφεται σε μια κατηγοριοποίηση μέσω ενός DSE framework. Οι τεχνικές
εφαρμόζονται στην διαχείριση της μνήμης στο επεξεργαστικό τμήμα του συστήματος
(foreground) και στην εκτέλεση των εντολών (data path). Η κατηγοριοποίηση

220

περιγράφει αποδοτικά το σύνολο των επιλογών του χρόνου εξερεύνησης για τις
τεχνικές και περιγράφει την διάδοση περιορισμών ανάμεσα στις τεχνικές.

• Συστηματική μεθοδολογία για την ανάπτυξη παραμετρικών πλαισίων για
σχεδόν βέλτιστες και επεκτάσιμες τεχνικές χρονοπρογραμματισμού και
ανάθεσης πόρων.
Προτείνεται μια συστηματική μεθοδολογία εξερεύνησης που χρησιμοποιεί την
κατηγοριοποίηση των τεχνικών που λύνουν το πρόβλημα του χρονοπρογραμματισμού
και της ανάθεσης των πόρων σαν βάση και παράγει ένα νέο framework στο οποίο
λαμβάνονται οι επιπρόσθετοι περιορισμοί της περιοχής που μελετάται κάθε
φορά. Οι κλάσεις που περιγράφουν τις τεχνικές που λύνουν το πρόβλημα
του χρονοπρογραμματισμού και της ανάθεσης των πόρων του καινούργιου
framework περιγράφονται από παραμετρικά πλαίσια, τα οποία συνδυάζονται
ακολουθώντας μονοκατευθυντήρια διάδοση περιορισμών. Το αποτέλεσμα είναι
το τελικό παραμετρικό πλαίσιο που περιγράφει επεκτάσιμες και σχεδόν βέλτιστες
τεχνικές που λύνουν το πρόβλημα του χρονοπρογραμματισμού και της ανάθεσης
των πόρων για την υπο μελέτη περιοχή.

Η παρούσα διδακτορική διατριβή μελετά τα υψηλά επίπεδα εξερεύνησης σχεδιασμών
και δεν επικεντρώνεται στα χαμηλότερα επίπεδα που περιγράφουν τη λεπτομερή
απεικόνιση στην αρχιτεκτονική πλατφόρμα, π.χ. τα επίπεδα χρονοπρογραμματισμού
και ανάθεσης πόρων χωρίς να περιλαμβάνουν την δημιουργία τελικού κώδικα και
την αρχιτεκτονική σύνθεση. Στην παρούσα διδακτορική διατριβή περιγράφεται
ένα διαφορετικό είδος εξερεύνησης σχεδιασμών. Η επιβεβαίωση της σχεδιαστικής
διαδικασίας αποτελεί ένα σχετικό ερευνητικό θέμα, το οποίο ωστόσο δεν προσεγγίζεται
στην παρούσα διδακτορική διατριβή. Παρεμφερείς μεθοδολογίες μπορούν να
δημιουργηθούν ακολουθώντας τις τεχνικές που περιγράφονται στην αναφορά [85]
για τις μεθοδολογίες τις παρούσας διδακτορικής διατριβής.

B.4 Οργάνωση κεφαλαίων

Η παρούσα διδακτορική διατριβή αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται
από τα κεφάλαια 3 έως 5 και πραγματεύεται στο αποθηκευτικό τμήμα των ενσωματωμένων
συστημάτων και πιο συγκεκριμένα στην κύρια μνήμη. Το δεύτερο τμήμα αποτελείται από
τα κεφάλαια 6 έως 8 και είναι αφιερωμένο στο επεξεργαστικό τμήμα των αρχιτεκτονικών
υλικού και λογισμικού των ενσωματωμένων συστημάτων. Οι εξαρτήσεις των κεφαλαίων
παρουσιάζονται στο Σχ. B.1.

• Το κεφάλαιο 2 περιγράφει την επεναχρησιμοποιούμενη μεθοδολογία για την
δημιουργία και την χρήση επεκτάσιμων και σχεδόν βέλτιστων Design Space Ex-
ploration (DSE) frameworks. Η επαναχρησιμοποιούμενη DSE μεθοδολογία του

221

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Chapter 1:
Introduction

Chapter 2:
Reusable DSE methodology

Chapter 3:
Development of intra-signal in-place methodology

Chapter 5:
Intra-signal in-place methodology:

non-overlapping & overlapping case

Chapter 4:
Pattern representation

Chapter 6:
DSE for instruction-set processor mapping

Chapter 8:
Methodology to develop scheduling parametric

templates under domain constraints

Chapter 7:
Design-time scheduling framework

Background memory part Processing part

Chapter 9:
Conclusions & Future directions

Appendix A:
Extended Greek summary

Σχ. B.1: Γράφος που απεικονίζει τις εξαρτήσεις των κεφαλαίων

κεφαλαίου 2 εφαρμόζεται σε πολλαπλά και διαφορετικά περιεχόμενα και στάδια
σχεδίασης στην παρούσα διδακτορική διατριβή με στόχο την ανάπτυξη επεκτάσιμων
και σχεδόν βέλτιστων μεθοδολογιών.

• Το κεφάλαιο 3 περιγράφει το υπο μελέτη πρόβλημα απεικόνισης για την κύρια
μνήμη, δηλαδή την εύρεση της ελάχιστης απαιτούμενης μνήμης για την τοποθέτηση
των δεδομένων ενός πίνακα με προσπελάσεις οι οποίες έχουν υψηλό βαθμό
ανομοιογένειας. Η επαναχρησιμοποιούμενη DSE μεθοδολογία εφαρμόστηκε στο
πρόβλημα της εύρεσης του ελάχιστου απαιτούμενου χώρου και δημιούργησε ένα
framework που περιγράφει τα γενικά βήματα και την διάδοση περιορισμών ανάμεσα
στα βήματα για να παραχθεί μια επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία. Ο
στόχος χωρίζεται σε υπο-στόχους, δηλαδή στον υπολογισμό του ελαχίστου μεγέθους,
στη μετάφραση του σχήματος των προσπελάσεων σε μια επεκτάσιμη και σχεδόν
βέλτιστη αναπαράσταση και στην ανάλυση της εφαρμογής για την εύρεση της
πληροφορίας σχετικά με την δομή του προγράμματος και τις προσπελάσεις στη
μνήμη. Η επαναχρησιμοποιούμενηDSE μεθοδολογία εφαρμόζεται ανά υπο-στόχο για
να αναπτυχθούν αποδοτικοί διαχωρισμοί των πιθανόν περιπτώσεων και λύσεων ανά
υπο-στόχο. Τα παραμετρικά πλαίσια που προκύπτουν και περιγράφουν τις λύσεις
των διαφόρων περιπτώσεων παρουσιάζονται στο κεφάλαιο 5.

• Το κεφάλαιο 4 περιγράφει την προτεινόμενη αναπαράσταση για τις προσπελάσεις
των δεδομένων των πινάκων, η οποία είναι κατάλληλη για να εκφράζει
ανομοιογενείς προσπελάσεις με επεκτάσιμο και σχεδόν βέλτιστο τρόπο. Προτείνεται
αναπαράσταση βασισμένη σε μοτίβα τα οποία περιγράφουν τις προσπελάσεις με

222

συμπαγή και επαναληπτικό τρόπο. Επιπρόσθετα προτείνονται πράξεις που ενεργούν
επάνω στα μοτίβα με στόχο να ενώσουν τα μοτίβα με επεκτάσιμο και σχεδόν βέλτιστο
τρόπο κάτω από όλες τις πιθανές συνθήκες που μπορούν να δημιουργηθούν από
την εφαρμογή. Το σύνολο όλων των πιθανών περιπτώσεων σύνδεσης μοτίβων
προκύπτει από την εφαρμογή της επαναχρησιμοποιούμενης DSE μεθοδολογίας του
κεφαλαίου 2. Η αναπαράσταση βασισμένη σε μοτίβα χρησιμοποιείται στις λύσεις
που προτείνονται στο βήμα της μετάφρασης της μεθοδολογίας για την εύρεση του
ελάχιστου απαιτούμενου χώρου.

• Το κεφάλαιο 5 περιγράφει τα παραμετρικά πλαίσια της προτεινόμενης μεθοδολογίας
για την εύρεση του ελάχιστου απαιτούμενου χώρου στην κύρια μνήμη για την
τοποθέτηση των δεδομένων ενός πίνακα για ανομοιογενείς προσπελάσεις και με
μη επικαλυπτόμενες και επικαλυπτόμενες εντολές εγγραφής και ανάγνωσης. Η
προτεινόμενη μεθοδολογία αποτελείται από το βήμα της ανάλυσης, το βήμα της
μετάφρασης και το βήμα υπολογισμού του απαιτούμενου χώρου. Το βήμα της
ανάλυσης περιγράφει τις εφαρμογές υπό μελέτη και τις διαφορετικές συνθήκες που
μπορεί να υπάρξουν σε ένα μοναδικό πλαίσιο, το οποίο περιγράφει την εφαρμογή και
παρέχει την απαιτούμενη πληροφορία από την εφαρμογή που εξετάζεται. Το βήμα
της μετάφρασης περιγράφει τις λύσεις για τις διάφορες συνθήκες μεταφράσεις που
μπορεί να υπάρχουν χρησιμοποιώντας μοτίβα και πράξεις επάνω στα μοτίβα, όπως
περιγράφηκαν στο κεφάλαιο 4.

• Το κεφάλαιο 6 περιγράφει μια μεθοδολογία εξερεύνησης των διαφόρων σχεδιασμών,
η οποία δημιουργεί μια καμπύλη Pareto για την απεικόνιση της εφαρμογής σε
μια μερικώς προαποφασισμένη αρχιτεκτονική πλατφόρμα που αποτελείται από
επεξεργαστές, οι οποίοι ελέγχονται από εντολές, και περιλαμβάνουν ένα πυρήνα
επεξεργαστή και πολλαπλούς συνεπεξεργαστές στο υλικό. Η προτεινόμενη
μεθοδολογία προέρχεται από την εφαρμογή των αρχών του κεφαλαίου 2 στην
απεικόνιση μερικών προαποφασισμένων πλατφορμών υλικού και λογισμικού
με ένα μικροεπεξεργαστή και ποικίλους συνεπεξεργαστές. Τα βήματα της
μεθοδολογίας είναι η ανάλυση και η επιβεβαίωση ότι οι περιορισμοί του συστήματος
ικανοποιούνται μέσω προσεγγίσεων σε υψηλό επίπεδο, η οργάνωση μεταξύ υλικού
και λογισμικού, η οργάνωση της μνήμης στο επεξεργαστικό τμήμα και η εκτέλεση των
πράξεων. Για κάθε βήμα χρησιμοποιούνται παραμετρικά πλαίσια με παραμέτρους
από το λογισμικό και το υλικό. Στο πρώτο βήμα γίνεται ανάγνωση της εφαρμογής για
την παροχή τιμών στις παραμέτρους του πρώτου βήματος. Το αποτέλεσμα διαδίδεται
στο επόμενο βήμα, όπου οι επιλογές και οι τιμές των παραμέτρων του δεύτερου
παραμετρικού πλαισίου αποκλείονται με βάση τις τιμές που διαδόθηκαν από το
πρώτο βήμα. Οι επιλογές που παρέμειναν ενώνονται με τις επιλογές που διαδόθηκαν
από το πρώτο βήμα και η διαδικασία επαναλαμβάνεται μέχρι το τελικό βήμα όπου
γίνεται η απεικόνιση των πράξεων στις μονάδες εκτέλεσης.

223

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

• Το κεφάλαιο 7 περιγράφει το αποτέλεσμα της εφαρμογής των αρχών της
επαναχρησιμοποιούμενης μεθοδολογίας εξερεύνησης σε σχεδόν βέλτιστες τεχνικές
χρονοπρογραμματισμού και ανάθεσης πόρων. Οι τεχνικές εφαρμόζονται στο
χρονοπρογραμματισμό και την ανάθεση των μεταβλητών στους καταχωρητές στην
διαχείριση της μνήμης στο επεξεργαστικό τμήμα και το χρονοπρογραμματισμός
και την ανάθεση των εντολών στις μονάδες εκτέλεσης. Το αποτέλεσμα είναι μια
κατηγοριοποίηση με το σύνολο των τεχνικών χρονοπρογραμματισμού και ανάθεσης
πόρων και την χρονική ταξινόμηση των τεχνικών. Η κατηγοριοποίηση περιγράφει
αποδοτικά τις δυνατές περιπτώσεις του χώρου λύσεων.

• Το κεφάλαιο 8 εφαρμόζει τις αρχές της επαναχρησιμοποιούμενης μεθοδολογίας
εξερεύνησης στην κατηγοριοποίηση των σχεδόν βέλτιστων τεχνικών
χρονοπρογραμματισμού και ανάθεσης πόρων για να δημιουργήσει μια συστηματική
μεθοδολογία που αναπτύσσει παραμετρικά πλαίσια για τον χρονοπρογραμματισμό
και την ανάθεση πόρων που ικανοποιούν τους περιορισμούς που τίθενται από
την υπό εξερεύνηση περιοχή. Με αυτό τον τρόπο δημιουργούνται επεκτάσιμα και
παραμετρικά πλαίσια για τον χρονοπρογραμματισμό και την ανάθεση πόρων τα
οποία εγγυούνται σχεδόν βέλτιστα αποτελέσματα για την υπο μελέτη περιοχή. Το
αναπτυσσόμενο πλαίσιο μπορεί να χρησιμοποιηθεί από την μνήμη που βρίσκεται
στο επεξεργαστικό τμήμα και στην απεικόνιση των εντολών στις μονάδες εκτέλεσης.

• Το κεφάλαιο 9 παρουσιάζει μια σύνοψη με τα συμπεράσματα και τις μελλοντικές
κατευθύνσεις.

B.5 Eπαναχρησιμοποιούμενη μεθοδολογία για

επεκτάσιμα και σχεδόν βέλτιστα DSE πλαίσια (frame-

works).

Ο στόχος είναι να δημιουργήσουμε έναν τρόπο ώστε να επιλύονται μεγάλα, περίπλοκα και
εξαρτημένα προβλήματα εξερεύνησης των σχεδιάσεων με σχεδόν βέλτιστο και επεκτάσιμο
τρόπο. Σε αυτή την υπο μελέτη περιοχή, οι συνήθεις τεχνικές είναι λιγότερο αποδοτικές
γιατί βασίζονται σε bottom-up προσεγγίσεις χωρίς διαχωρισμούς που να δημιουργούνται
λόγω διάδοσης περιορισμών. Επομένως, οι συνήθεις τεχνικές απαιτούν αυξημένο χρόνο
εξερεύνησης για να εντοπίσουν σχεδόν βέλτιστους συνδυασμούς, λόγω του υψηλού
αριθμού παραμέτρων και των συσχετίσεων ανάμεσα στις παραμέτρους, ή καταλήγουν
με ένα λιγότερο βέλτιστο αποτέλεσμα ούτως ώστε να ολοκληρώσουν την εξερεύνηση των
σχεδιασμών εντός του διαθέσιμου χρόνου.

Για να επιτύχουμε σχεδόν βέλτιστες σχεδιάσεις σε αποδεκτό χρόνο εξερεύνησης

224

απαιτείται μια μεθοδολογία που διαιρεί το πρόβλημα σε υπο-προβλήματα, με αποτέλεσμα
την μείωση του χρόνου εξερεύνησης, και να διατηρεί όλη την λειτουργικότητα των
υπο-προβλημάτων, για να εγγυηθεί σχεδόν βέλτιστες σχεδιάσεις. Όταν το σχεδιαστικό
πρόβλημα έχει διαιρεθεί σε μικρότερα υπο-προβλήματα, οι συνήθεις τεχνικές σχεδιασμού
μπορούν να επιτύχουν σχεδόν βέλτιστες σχεδιάσεις σε αποδεκτό χρόνο εξερεύνησης για
κάθε υπο-πρόβλημα. Ο διαχωρισμός σε υπο-προβλήματα μπορεί να πραγματοποιηθεί
με εύρεση όλων των πιθανών διαχωρισμών και των συνδυασμών τους. Η καταμέτρηση
όλων των πιθανών συνδυασμών οδηγεί σε τεράστιο αριθμό και δεν μπορεί να εφαρμοστεί
σε μεγάλα σχεδιαστικά προβλήματα. Μια εναλλακτική λύση είναι η εφαρμογή μιας top-
down μεθοδολογίας που βασίζεται σε γκρι κουτιά. Αντί για καταμέτρηση όλων των
πιθανών επιλογών, οι επιλογές εξερευνούνται σε ιεραρχικά αφαιρετικά επίπεδα και
με επαναλήψιμο τρόπο. Σε κάθε επίπεδο, οι επιλογές ομαδοποιούνται σε περιπτώσεις
με δεδομένη διεπαφή (προσδιορισμένο το ``τι'' επιλύουν) και σε άγνωστο εσωτερικό
τμήμα (απροσδιόριστο το ``πως'' το επιλύουν). Ωστόσο, οι περιπτώσεις δεν είναι
ανεξάρτητες. Σε κάθε επίπεδο οι περιπτώσεις συνδέονται μέσω διάδοσης περιορισμών με
μονοκατευθυντήριο τρόπο. Η κατεύθυνση διάδοσης περιγράφει ποια περίπτωση επηρεάζει
την άλλη. Ακολουθώντας την μονοκατευθυντήρια διάδοση των περιορισμών δημιουργείται
σχεδόν βέλτιστος συνδυασμός των διαφόρων περιπτώσεων, διότι οι περιορισμοί που
υπάρχουν δεν παραβλέπονται κατά τον συνδυασμό. Η μονοκατευθυντήρια διάδοση
περιορισμών περικόπτει συνδυασμούς οι οποίοι είναι υποβέλτιστοι. Το αποτέλεσμα
είναι ένα πλαίσιο (framework) με τον διαχωρισμό του χώρου εξερεύνησης σε ένα σύνολο
από περιπτώσεις που συνδέονται με μονοκατευθυντήριο τρόπο. Η μεθοδολογία για
την δημιουργία του framework εφαρμόζεται επαναληπτικά αρχίζοντας από το πρόβλημα
προς επίλυση με στόχο να το περιγράψει με ένα σύνολο υπο-προβλημάτων αρκετά
λιγότερο περίπλοκων και που συνδέονται με μονοκατευθυντήρια διάδοση παραμέτρων.
Η διαδικασία προσδιορισμού των υπο-περιπτώσεων επαναλαμβάνεται έως ότου οι υπο-
περιπτώσεις είναι αρκετά μικρές ώστε να μπορούν να επιλυθούν σχεδόν βέλτιστα και
σε αποδεκτό χρόνο από τις συνήθεις τεχνικές. Κάθε υπο-πρόβλημα επιλύεται και το
αποτέλεσμα διαδίδεται στο επόμενο υπο-πρόβλημαακολουθώντας την μονοκατευθυντήρια
διάδοση περιορισμών.

Στην παρούσα διδακτορική διατριβή προτείνεται μια επαναχρησιμοποιούμενη
μεθοδολογία η οποία βασίζεται στη συστηματική δημιουργία επεκτάσιμων (scal-
able) και σχεδόν βέλτιστων (near-optimal) πλαισίων (frameworks) για την εξερεύνηση
των διαφόρων σχεδιάσεων. Ένα DSE framework περιγράφει όλες τις διαθέσιμες
επιλογές στην εξερεύνηση του χώρου σχεδιάσεων με ένα πεπερασμένο σύνολο
περιπτώσεων. Παρουσιάζουμε τις βασικές αρχές που διέπουν την δημιουργία και
την χρήση των επεκτάσιμων και σχεδόν βέλτιστων DSE frameworks και παρουσιάζουμε
επαναχρησιμοποιημένες μεθοδολογίες για την δημιουργία και την χρήση των DSE
frameworks στο κεφάλαιο 2. Η εφαρμογή των αρχών στο πρόβλημα σχεδιασμού
των ενσωματωμένων συστημάτων παράγει ένα μοναδική σχεδιαστική ροή η οποία

225

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Unified Design Meta-flow

Algorithm Level DSE

Dynamic /
Non-deterministic

Static/
Deterministic

(2)

(2)

Inter-
Task
DTSE

Task
Concurrency
Management

(2)
Array (Data)

Level
Instruction

Level

(2)

Intra-
task

DTSE

Data
Parallelization
Management

(2)
Processor

Level
DTSE

Instruction
Level

Concurrency
Management

(2)

Σχ. B.2: Ροή για την σχεδίαση ενσωματωμένων συστημάτων που βασίζεται σε
μονοκατευθυντήρια διάδοση περιορισμών.

παρουσιάστηκε στα [21] [19] και απεικονίζεται στο Σχ. B.16
Λόγω των αρχών και των ιδιοτήτων της επαναχρησιμοποιούμενης DSE μεθοδολογίας,

η σχεδιαστική ροή δεν περιέχει επικαλυπτόμενα βήματα ή σχεδιαστικές επαναλήψεις.
Επομένως, διαχωρίζεται σε διαφορετικά αφαιρετικά επίπεδα που συνδέονται με
μονοκατευθυντήρια διάδοση παραμέτρων. Τα επίπεδα δημιουργήθηκαν από την
εφαρμογή top-down διαχωρισμών. Η περιγραφή των βημάτων παρουσιάζεται στο
κεφάλαιο 2.

Η σχεδιαστική ροή δεν είναι μια πολύ λεπτομερή ροή για μια συγκεκριμένη περιοχή
εφαρμογών και αρχιτεκτονικών. Χρειάζεται μεγάλη ερευνητική προσπάθεια για να
δημιουργηθεί για ειδική ροή για μία συγκεκριμένη περιοχή εφαρμογών [51]. Για
μια συγκεκριμένη περιοχή μπορεί να μην είναι κρίσιμα όλα τα βήματα της γενικής
σχεδιαστικής ροής διότι τα χαρακτηριστικά και οι περιορισμοί της ροής μπορεί να
μην συσχετίζονται με μερικά από τα βήματα. Τα μη σχετικά βήματα κόβονται όταν
δημιουργείται η ειδική σχεδιαστική ροή για μια περιοχή. Για τα υπόλοιπα βήματα που
υπάρχουν στην ειδική σχεδιαστική ροή, κατάλληλες τεχνικές θα πρέπει να επιλεγούν ή να
δημιουργηθούν για να υλοποιήσουν με σχεδόν βέλτιστο και επεκτάσιμο τρόπο το εκάστοτε
βήμα. Η ανάπτυξη και η δημιουργία των απαιτούμενων τεχνικών εξαρτάται από την υπό
μελέτη περιοχή κάθε φορά.

Ο στόχος της παρούσας διδακτορικής διατριβής είναι να προσδιορίσει περεταίρω
τα βήματα της σχεδιαστικής ροής [21] [19] με την εφαρμογή των αρχών της
επαναχρησιμοποιούμενης μεθοδολογίας εξερεύνησης που παρουσιάζεται στο κεφάλαιο 2
και να δημιουργήσει επεκτάσιμα και σχεδόν βέλτιστα DSE frameworks. Η παρούσα
διδακτορική διατριβή επικεντρώνεται στο επίπεδο του επεξεργαστή της σχεδιαστικής
ροής (Processor Level) και εφαρμόζει τις αρχές της επαναχρησιμοποιούμενης μεθοδολογίας
για την δημιουργία επεκτάσιμων και σχεδόν βέλτιστων λύσεων για την οργάνωση της
αποθήκευσης και της μεταφοράς των δεδομένων (Processor Level Data Transfer and Storage
Exploration) και το επεξεργαστικό τμήμα (Instruction Level Operation Concurrency Manage-

226

IL Design

DTSE OCM

Global
Transformations

Memory Hierarchy
Layer Mapping

Storage Cycle
Budget Distribution

Memory Allocation
& Assignment

Memory Layout
Optimization

Access
Ordering

Intra-signal
in-place

Inter-signal
in-place

Layout
mapping

Σχ. B.3: Σχεδιαστικά βήματα για την οργάνωση της αποθήκευσης και της μεταφοράς των
δεδομένων.

IL Design

DTSE OCM

Processor
Architecture
Integration

High-Level
Address

Optimization Instruction set
processor mapping

Foreground
Memory

Management

Data-path
Mapping

Instruction
memory &

control

Custom processor
synthesis

Σχ. B.4: Σχεδιαστικά βήματα για το επεξεργαστικό τμήμα.

ment). Τα σχεδιαστικά βήματα εμφανίζονται στο Σχ. B.3 και Σχ. B.4.

Οι προτεινόμενες αρχές και οι επαναχρησιμοποιημένες μεθοδολογίες εφαρμόστηκαν
σε στάδια της σχεδίασης των ενσωματωμένων συστημάτων με στόχο την ανάπτυξη
επεκτάσιμων και σχεδόν βέλτιστων μεθοδολογιών εξερεύνησης των σχεδιασμών. Η
παρούσα διδακτορική διατριβή αναπτύσσει μια μεθοδολογία για σχεδόν βέλτιστη
λύση στο πρόβλημα εύρεσης του ελαχίστου μεγέθους μνήμης για την αποθήκευση
των δεδομένων ενός πίνακα, η οποία παραμένει επεκτάσιμη και σχεδόν βέλτιστη
σε ανομοιογενείς προσπελάσεις δεδομένων, σε αντίθεση με τις υπάρχουσες τεχνικές.
Επιπρόσθετα εφαρμόστηκαν οι αρχές της επαναχρησιμοποιούμενης μεθοδολογίας στο
επεξεργαστικό τμήμα για την ανάπτυξη μεθοδολογίας εξερεύνησης των σχεδιασμών σε
αρχιτεκτονική πλατφόρμα με έναν επεξεργαστή και ποικίλους συνεπεξεργαστές και στις
τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων για την διαχείριση της μνήμης στο
επεξεργαστικό τμήμα και των εντολών στις μονάδες εκτέλεσης.

227

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

B.6 Ανάπτυξη επεκτάσιμης και σχεδόν βέλτιστης

μεθοδολογίας για το ελάχιστο μέγεθος μνήμης για τα

δεδομένα ενός πίνακα.

Οι τεχνικές για την διαχείριση του αποθηκευτικού χώρου του συστήματος και της κύριας
μνήμης ψάχνουν για το ελάχιστο αριθμό πόρων που απαιτούνται για την αποθήκευση
των στοιχείων της εφαρμογής δίχως να δημιουργούν μια μη αποδοτική διευθυνσιοδότηση
των στοιχείων κατά την προσπέλαση τους από την κύρια μνήμη. Οι τεχνικές διαχείρισης
αποθηκευτικού χώρου του συστήματος εφαρμόζονται σε διάφορες περιοχές όπως στις
μνήμες scratch pad των ενσωματωμένων συστημάτων [37], στις μνήμες που ελέγχονται από
hardware των συστημάτων γενικού σκοπού [18] και στην διαχείριση του αποθηκευτικού
χώρου στην βιομηχανία, όπως τα συστήματα cargo [108]. Η μείωση των αριθμών των πόρων
του συστήματος είναι σημαντική, διότι άμεσα συσχετίζεται με το κόστος του συστήματος,
την επιφάνεια ολοκλήρωσης και την κατανάλωση ενέργειας [18]. Στα ενσωματωμένα
συστήματα, το κόστος της κατανάλωσης ισχύος είναι κυριαρχούμενο από την αποθήκευση
των πινάκων, και, επομένως, τα στοιχεία μνήμης καταλαμβάνουν ένα μεγάλο μέρος
του συνολικού κόστους [18]. Για συχνά χρησιμοποιούμενες εφαρμογές ενσωματωμένων
συστημάτων, όπως εφαρμογές σε εικόνα, βίντεο και επεξεργασία σήματος, όπου τα
κυριαρχούμενα δεδομένα είναι πίνακες, η οργάνωση της αποθήκευσης των πινάκων
γίνεται ένα πολύ σημαντικό τμήμα της σχεδίασης. Μια λιγότερο αποδοτική οργάνωση
οδηγεί σε υπερεκτίμηση των αναγκαίων πόρων του συστήματος, η οποία άμεσα αυξάνει
τις απαιτήσεις σε μνήμη και σε επιφάνεια ολοκλήρωσης, αυξάνοντας την κατανάλωση
ενέργειας του συστήματος. Για να επιτευχθεί σχεδόν βέλτιστη οργάνωση της διαχείρισης
της μνήμης, τόσο η ανεξάρτητη απεικόνιση των πινάκων (intra-signal in-place optimization)
όσο και η ταυτόχρονη απεικόνιση όλων των πινάκων της εφαρμογής (inter-signal in-place op-
timization) είναι κρίσιμα βήματα κατά την σχεδίαση [42]. Η παρούσα διδακτορική διατριβή
παρουσιάζει μια μεθοδολογία για την ανεξάρτητη απεικόνιση ενός πίνακα, η οποία
είναι επεκτάσιμη και σχεδόν βέλτιστη για προσπελάσεις μνήμης που χαρακτηρίζονται
από υψηλή ανομοιογένεια. Μια παρεμφερής διαδικασία μπορεί να χρησιμοποιηθεί για
να αναπτύξει μια επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία για την ταυτόχρονη
αποθήκευση των πινάκων της εφαρμογής στην κύρια μνήμη.

Υπάρχουσες τεχνικές για την διαχείριση της μνήμης και για την ανεξάρτητη απεικόνιση
των στοιχείων ενός πίνακα στην κύρια μνήμη βασίζονται στην καταμέτρηση, σε
συμβολικές/πολύτοπες αναλύσεις και σε προσεγγίσεις με βάση την χειρότερη περίπτωση,
όπως περιγράφονται αναλυτικά στο κεφάλαιο 3. Οι τεχνικές καταμέτρησης βρίσκουν
το βέλτιστο απαιτούμενο χώρο αποθήκευσης, αλλά δεν είναι επεκτάσιμες. Επομένως,
όταν ο αριθμός των προσπελάσεων αυξάνεται, ο χρόνος εξερεύνησης φτάνει σε μη
αποδεκτές τιμές. Οι συμβολικές τεχνικές είναι κυρίως πολυεδρικές [42] [31], οι οποίες

228

είναι επεκτάσιμες με βάση των αριθμό των προσπελάσεων, αλλά λειτουργούν αποδοτικά
μόνο σε χώρους επαναλήψεων οι οποίοι είναι συνεχόμενοι [194], δηλαδή προσπελάσεις
χωρίς κενά στον χώρο επαναλήψεων. Με επιπλέον προεπεξεργασία οι συμβολικές
τεχνικές μπορούν να εφαρμοστούν σε ομοιογενείς χώρους (piecewise regular spaces), όπως
η τεχνική στο [55]) που εφαρμόζεται σε χώρους επαναλήψεων με σχεδόν ομοιογενή κενά.
Ένα πολύεδρο ορίζει αποδοτικά τον απαιτούμενο χώρο αποθήκευσης μιας γεωμετρικής
περιοχής, δηλαδή προσπελάσεις στον χώρο επαναλήψεων που είναι ομοιογενείς και
μπορούν να αναπαρασταθούν από πίνακες ή έχουν πολύ μικρού μεγέθους κενά, τα
οποία προσεγγίζονται από συνεχόμενες περιοχές, δηλαδή θεωρούνται ως προσπελάσεις.
Όταν υπάρχουν ποικίλες γεωμετρικές περιοχές, οι πολυεδρικές τεχνικές είτε χρειάζονται
αυξημένο χρόνο εξερεύνησης είτε πρέπει να προσεγγίσουν αρκετά το χώρο, οδηγώντας
σε υπερεκτίμηση των πόρων, διότι η ανομοιογένεια των κενών αυξάνεται λόγων των
συνθηκών που καταστρέφουν την συνεχόμενη εκτέλεση των εντολών προσπέλασης. Τότε,
οι συμβολικές τεχνικές πρέπει να χρησιμοποιήσουν προσεγγίσεις με βάση την χειρότερη
περίπτωση [160]. Οι τεχνικές που πραγματοποιούν τις προσεγγίσεις, π.χ. [160], θεωρούν
ότι τα κενά του χώρου επαναλήψεων είναι προσπελάσεις και δημιουργούν ένα συνεχόμενο
χώρο επαναλήψεων και υπολογίζουν ένα μη βέλτιστο αποτέλεσμα. Επομένως χρειάζεται
μια μεθοδολογία για την ανεξάρτητη απεικόνιση των στοιχείων, που να παραμένει
επεκτάσιμη και σχεδόν βέλτιστη σε προσπελάσεις με υψηλό βαθμό ανομοιογένειας.

Η μεθοδολογία για την εύρεση της ελάχιστης απαιτούμενης μνήμης για την αποθήκευση
των στοιχείων ενός πίνακα θα πρέπει να λαμβάνει υπόψιν όλες τις εντολές προσπέλασης
και τις σχετικές συνθήκες για τον πίνακα με στόχο να ορίσει τον ελάχιστο απαιτούμενο
χώρο κατά την διάρκεια εκτέλεσης της εφαρμογής. Οι υπο μελέτη εφαρμογές διαφέρουν
και επομένως έχουν διαφορετική δομή, διαφορετικές συνθήκες και εντολές προσπέλασης
στον κώδικά τους. Επομένως δημιουργούν διαφορετικές περιπτώσεις για την εύρεση
του ελαχίστου μεγέθους μνήμης που απαιτούν διαφορετική διαδικασία για να επιτύχουν
σχεδόν βέλτιστο μέγεθος. Δεν είναι δυνατή η δημιουργία μιας γενικής και επεκτάσιμης
μεθοδολογίας που να βρίσκει το βέλτιστο μέγεθος για όλες τις εφαρμογές και όλες τις
περιπτώσεις. Επομένως, για να επιτευχθεί τόσο η επεκτασιμότητα όσο και η σχεδόν
βέλτιστη λύση απαιτείται μια γενική μεθοδολογία που να χωρίζεται σε βήματα με λύσεις
για κάθε πιθανή περίπτωση.

Στο κεφάλαιο 3 εφαρμόζεται η επαναχρησιμοποιούμενη DSE μεθοδολογία του
κεφαλαίου 2 με σκοπό την ανάπτυξη μιας επεκτάσιμης και σχεδόν βέλτιστης μεθοδολογίας
για την εύρεση του ελαχίστου μεγέθους μνήμης για την αποθήκευση των στοιχείων ενός
πίνακα σε περιπτώσεις όπου υπάρχουν ανομοιογενείς προσπελάσεις που δημιουργούνται
από εντολές προσπέλασης μέσα σε ένα βρόχο με συνθήκες πάνω στην μεταβλητή του
βρόχου. Στο κεφάλαιο 3.2 δίνουμε το κίνητρο για την προτεινόμενη μεθοδολογία μέσω ενός
χαρακτηριστικού παραδείγματος. Επιπρόσθετα, σε αυτό το κεφάλαιο παρουσιάζονται οι
υπάρχουσες τεχνικές για την εύρεση του ελαχίστου μεγέθους μνήμης που απαιτείται για
την αποθήκευση των στοιχείων ενός πίνακα και παρουσιάζεται το υπό μελέτη πρόβλημα.

229

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Index expression cases

Set of “iterator+constant” Set of “coefficient*iterator+constant”

One iterator
per expression

Multiple iterators
per expression

Two iterators N iterators

One iterator per
expression (coefficient≠1)

Multiple iterators per
expression (coefficient≠1)

Two iterators N iterators

(1)

(1) (1)

(1) (1)

General piece-wise affine General non-piecewise affine (1)

Affine Piecewise affine

Σχ. B.5: Το σύνολό των index expressions που προκύπτει μετά την εφαρμογή των αρχών της
επαναχρησιμοποιούμενης DSE μεθοδολογίας.

Develop scalable & near-optimal
Intra-signal in-place methodology

Translation to scalable &
near-optimal representation

Access scheme
information

(2)

Storage size
computation

Preprocessing
(2)

Σχ. B.6: Οι υπο-στόχοι της intra-signal in-place μεθοδολογίας μετά την εφαρμογή των αρχών
της επαναχρησιμοποιούμενης DSE μεθοδολογίας.

Οι αρχές της επαναχρησιμοποιούμενης μεθοδολογίας εφαρμόζονται για να βρεθούν
όλες οι πιθανές περιπτώσεις στις εκφράσεις του συντελεστή του πίνακα (index expres-
sions), δηλαδή στην εντολή προσπέλασης A[i] ο συντελεστής πίνακα είναι το i. Από τα
πιθανά index expressions που εμφανίζονται στο Σχ. B.5 επιλέγουμε την αντιπροσωπευτική
περίπτωση με βάση την σχετικότητα στο υπο μελέτη πρόβλημα, την συχνότητα χρήσης και
τον αριθμό των index expressions που μπορούν να εκφράσει μετά από μετασχηματισμούς.
Επιπρόσθετα δείχνουμε πως μπορούμε να απεικονίσουμε τα εναπομείναντα index ex-
pressions στην αντιπροσωπευτική περίπτωση, δηλαδή ``iterator+constant''. Η μεθοδολογία
αναπτύσσεται με διαχωρισμό των βημάτων σε υπο-στόχους οι οποίοι απεικονίζονται στο
Σχ. B.6.

Ανά υπο-στόχο προσδιορίζονται όλες οι πιθανές περιπτώσεις. Το αποτέλεσμα για
τον υπο-στόχο εύρεσης του ελαχίστου απαιτούμενου μεγέθους μνήμης απεικονίζεται στο
Σχ. B.7. Επιλέγουμε δύο αντιπροσωπευτικές περιπτώσεις με βάση την θέση των εντολών
ανάγνωσης και εγγραφής του πίνακα και για να αναπτύξουμε το βήμα για την εύρεση του
ελάχιστου μεγέθους, το οποίο παρουσιάζεται στο κεφάλαιο 5. Το αποτέλεσμα για τον υπο-
στόχο της μετάφρασης απεικονίζεται στο Σχ. B.8. Το αποτέλεσμα για τον υπο-στόχο της
ανάλυσης απεικονίζεται στο Σχ. B.9.

230

Cases of Intra-signal in-place sub-goal

One RD loop Many RD loops

One RD Many RDs

(1)

(1)

Sequential
RDs & WRs

Interleaved
RDs&WRs

(1)

One dimension Multiple Dimensions (2)

Overlapping Non-overlapping (3) Dimensions Iteration Result Propagation
(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

Solid Space Space
with Holes

(1) Solid Space (1) Space
with Holes

One segment (1) Dominant
segment

Σχ. B.7: Το σύνολο των περιπτώσεων του intra-signal in-place υπο-στόχου μετά την
εφαρμογή των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας.

Cases of Translation Sub-goal

Condition Expressions Access statement (2)

Space
type

Coupling
type

Space
with holes

Solid
space

(1)

(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

In one
dimension

Combinations
of different D

(1)

Enumerative
Type

(1)

Logic
operations

Parametric
Type

Combinations
in D

Space
with holes

Solid
space

(1)

Space
type

Coupling
type

Space
with holes

Solid
space

(1)

(2)

Partially coupled Fully coupled (3)

Independent Decoupled (3)

Space
with holes

Solid
space

(1)

(1)

Σχ. B.8: Το σύνολο των περιπτώσεων του υπο-στόχου της μετάφρασης μετά την εφαρμογή
των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας.

B.7 Επεκτάσιμη και σχεδόν βέλτιστη αναπαράσταση των

προσπελάσεων στη κύρια μνήμη βασισμένη σε μοτίβα

Οι τεχνικές για την διαχείριση της μνήμης και ειδικά για την εύρεση του απαιτούμενου
μεγέθους παίρνουν ως είσοδο τις προσπελάσεις στην κύρια μνήμη. Οι προσπελάσεις στη
κύρια μνήμη είναι ο ενεργός χώρος επαναλήψεων, ο οποίος καθορίζεται από την δομή
της εφαρμογής, τους βρόχους, τις συνθήκες και τις εντολές προσπελάσεων στη κύρια
μνήμη. Για παράδειγμα, οι εφαρμογές ενσωματωμένων συστημάτων, όπως η εικόνα,
το βίντεο και η επεξεργασία σήματος, έχουν ως κυριαρχούμενα δεδομένα ομοιογενείς
προσπελάσεις στους πίνακες μέσω βρόχων που περιέχουν συνθήκες. Οι συνθήκες
καταστρέφουν την ομοιογένεια των προσπελάσεων και δημιουργούν κενά στον χώρο
επαναλήψεων. Όταν αυξάνεται ο αριθμός των κενών λόγω των συνθηκών και αυξάνεται ο
αριθμός εντολών προσπέλασης στην κύρια μνήμη, ο ενεργός χώρος επαναλήψεων γίνεται

231

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Cases of Analysis sub-goal

Loop structure Kernel (2)

Order Dimensions (2) Condition Expressions

Access statements

In one
dimension

Combinations
of different D

(1)

Enumerative
Type

(1)

Composite Primitive (2)

Logic
operations

Parametric
Type

(1)

(1)

Structure Info Per Access
(2)

Accesses Order (2)

WR RD
(2)

Multiple One (2) Multiple One (2)

Type Index
expression

(2)

WR (2)

Combinations
in D

Composite Primitive (2) Composite
Logic

Operations

Primitive
Logic

operations

(2)

RD

Space
with holes

Solid
space

(1)
Space

with holes
Solid
space

(1)

Composite Primitive (2)

Σχ. B.9: Το σύνολο των περιπτώσεων του υπο-στόχου της ανάλυσης μετά την εφαρμογή
των αρχών της επαναχρησιμοποιούμενης DSE μεθοδολογίας.

αρκετά περίπλοκος. Οι υπάρχουσες τεχνικές περιγράφουν τον ενεργό χώρο επαναλήψεων
χρησιμοποιώντας καταμέτρηση των προσπελάσεων στην κύρια μνήμη, χρησιμοποιώντας
συμβολική αναπαράσταση και χρησιμοποιώντας προσεγγίσεις, οι οποίες βασίζονται στην
χειρότερη περίπτωση. Η αναπαράσταση μέσω της καταμέτρησης των προσπελάσεων
στην κύρια μνήμη, π.χ. [135], είναι βέλτιστη. Όμως, η αναπαράσταση αυτή δεν είναι
επεκτάσιμη, διότι ο χρόνος εξερεύνησης για την εύρεση του ελαχίστου μεγέθους μνήμης
για την αποθήκευση των στοιχείων του πίνακα φτάνει μη αποδεκτές τιμές. Οι συμβολικές
αναπαραστάσεις είναι επεκτάσιμες και σχεδόν βέλτιστες, αλλά καλύπτουν χώρους
επαναλήψεων, οι οποίοι είτε είναι συμπαγής είτε αποτελούνται από κενά τοποθετημένα
με ομοιογενή τρόπο, π.χ. [55]. Σε ανομοιογενείς χώρους επαναλήψεων προσεγγίζουν τις
περιοχές όπου πραγματοποιούνται προσπελάσεις. Οι αναπαραστάσεις που βασίζονται σε
προσεγγίσεις, π.χ. [160], χρησιμοποιούν την χείριστη περίπτωση και θεωρούν περιοχές
του χώρου επαναλήψεων που δεν προσπελάσονται σαν πραγματικές προσπελάσεις με
αποτέλεσμα υπερεκτίμηση του απαιτούμενου μεγέθους μνήμης. Επομένως, χρειάζεται
μια σχεδόν βέλτιστη και ταυτόχρονα επεκτάσιμη αναπαράσταση των προσπελάσεων στην
κύρια μνήμη, η οποία θα χρησιμοποιηθεί στο βήμα της μετάφρασης και θα υποστηρίζει την
προτεινόμενη μεθοδολογία για την εύρεση του ελαχίστου απαιτούμενου χώρου μνήμης για
την αποθήκευση των στοιχείων ενός πίνακα.

Στο κεφάλαιο 4 προτείνεται μια αναπαράσταση των προσπελάσεων στην κύρια μνήμη,
η οποία παραμένει επεκτάσιμη και σχεδόν βέλτιστη σε περίπλοκους χώρους επαναλήψεων
όπου περιέχουν πολλά ανομοιογενή κενά που δημιουργούνται από προσπελάσεις στην
κύρια μνήμη μέσω βρόχων και συνθηκών. Για την επίτευξη μιας σχεδόν βέλτιστης και
επεκτάσιμη αναπαράστασης των προσπελάσεων απαιτείται μια αναπαράσταση η οποία
να μην καταμετρά τις προσπελάσεις και να μπορεί να περιγράφει έναν υψηλό αριθμό από
τμήματα του χώρου επαναλήψεων. Τα τμήματα του χώρου επαναλήψεων κλαδεύονται
και γίνονται ανενεργά από ένα συνήθως μικρο σύνολο από συνθήκες που υπάρχουν στον

232

PCH 1PIR 1PT NPIR NPT Part 1 … Part N

IR LB UB

Part 1

…

Part N Pattern 2

Pattern 1

… Part 1 … Part N

Pattern M

Σχ. B.10: Μοτίβο που περιγράφει τον ενεργό χώρο επαναλήψεων.

κώδικα της εφαρμογής. Μια συνθήκη καταμέτρησης μπορεί να περιγράψει ένα τμήμα
που προσπελάσεται ή όχι. Μια παραμετρική συνθήκη μπορεί να περιγράψει πολλαπλά
τμήματα με ομοιογενή τρόπο. Όταν πολλαπλές συνθήκες συνυπάρχουν στο κώδικα, ο
ενεργός χώρος επαναλήψεων περιγράφεται από των συνδυασμό των ενεργών χώρων
επαναλήψεων που περιγράφεται από κάθε συνθήκη. Το αποτέλεσμα είναι πολλαπλά μη
ενεργά τμήματα ανομοιογενώς τοποθετημένα στον χώρο επαναλήψεων που αυξάνουν την
πολυπλοκότητα περιγραφής του χώρου επαναλήψεων.

Στην παρούσα διδακτορική διατριβή προτείνουμε τα μοτίβα για να επιτύχουμε μια
επεκτάσιμη και σχεδόν βέλτιστη αναπαράσταση του ενεργού χώρου επαναλήψεων. Ένα
μοτίβο περιγράφει τον ενεργό χώρο επαναλήψεων μιας συνθήκης ή εντολής προσπέλασης
με συμπαγή και επαναλήψιμο τρόπο, αποφεύγοντας την καταμέτρηση των μεμονωμένων
προσπελάσεων από την εντολή. Με την χρήση των κενών στην περιγραφή, ο ενεργός χώρος
επαναλήψεων μπορεί να περιγραφεί με ομοιογενή και επαναλήψιμο τρόπο λόγω της δομής
του βρόχου της εφαρμογής. Το ποσοστό των κενών που θεωρούνται ως προσπελάσεις
ελέγχεται από το μέγεθός του κενού που θα αποφασιστεί να μην αναπαρασταθεί από το
μοτίβο. Αυτό συμβαίνει για λόγους υψηλής ανομοιογένειας κατά την διευθυνσιοδότηση,
δηλαδή κενά με μέγεθος ένα. Με αυτό τον τρόπο ο χώρος επαναλήψεων των παραμετρικών
συνθηκών περιγράφεται με επεκτάσιμο και αποδοτικό τρόπο. Ένα μοτίβο ορίζεται σαν
μια σειρά από δύο παραμέτρους: 1) τον αριθμό των συνεχόμενων τιμών στην μεταβλητή
του βρόχου που η εντολή προσπέλασης ή η συνθήκη έχουν την ίδια συμπεριφορά και 2)
την συμπεριφορά της εντολής προσπέλασης ή της συνθήκης, δηλαδή προσπέλαση (Access-
A) ή όχι προσπέλαση (Hole-H). Με αυτόν τον τρόπο τα ανενεργά τμήματα του χώρου
επαναλήψεων περιγράφονται αποφεύγοντας μη βέλτιστες προσεγγίσεις. Ένα μοτίβο
περιγράφεται στο Σχ. B.10, το οποίο αποτελείται από Ν τμήματα. Κάθε τμήμα έχει μέγεθος
PIR και συμπεριφορά PT. Το μοτίβο είναι ενεργό από το χαμηλότερο όριο LB μέχρι το
υψηλότερο όριο UB και επαναλαμβάνεται Μ φορές. Για παράδειγμα το μοτίβο {1H
1A} επαναλαμβάνεται 5 φορές και περιγράφει την συμπεριφορά μιας συνθήκης η οποία
προσπελάσει μόνο στους περιττούς iterators από το 0 έως το 10.

Η υπο μελέτη εφαρμογή έχει διαφορετικές συνθήκες, δομή βρόχου και εντολές
προσπελάσεων που οδηγούν σε διαφορετικά μοτίβα και συνδυασμούς μοτίβων. Ο ενεργός
χώρος επαναλήψεων κάθε συνθήκης περιγράφεται από ένα μοτίβο. Για να περιγραφεί
ο συνολικός ενεργός χώρος επαναλήψεων ανά εντολή προσπέλασης, τα μοτίβα που
προκύπτουν από τις συνθήκες πρέπει να ενωθούν με επεκτάσιμο και σχεδόν βέλτιστο

233

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Fully Aligned

Pattern Cases

Overlapping Non-overlapping

Non-Sequential Sequential Different PS Same PS

Fully Aligned Not-Aligned

LB UB Result Operation

AND OR

Not-acceptable LCM Acceptable LCM

Divisible PS

Large PS

Indivisible PS

One small PS

Indivisible PS Divisible PS

Sub-pattern Search Decomposition
to Small Patterns

Regularity
Medium Search

LB Alig/nt

PS Modification

Sequential

Skew UB Alig/nt

Regularity
Small Search

Non-Sequential

Case

Operations

Repetition Search

Σχ. B.11: Το σύνολο των πιθανών περιπτώσεων ένωσης μοτίβων και οι αντίστοιχες
προτεινόμενες πράξεις.

τρόπο. Για το σκοπό αυτό εισάγουμε ένα σύνολο που περιγράφει όλες τις πιθανές
περιπτώσεις κάτω από τις οποίες μπορεί να πραγματοποιηθεί μια ένωση ανάμεσα σε
μοτίβα. Το σύνολο των περιπτώσεων για την ένωση των μοτίβων προσδιορίζεται με βάση
την δομή της εφαρμογής και χρησιμοποιώντας τις αρχές τις επαναχρησιμοποιούμενης
DSE μεθοδολογίας του κεφαλαίου 2. Στην συνέχεια, προτείνουμε επεκτάσιμες και σχεδόν
βέλτιστες πράξεις που ενεργούν επάνω στα μοτίβα για κάθε περίπτωση ένωσης μοτίβων.
Το αποτέλεσμα περιγράφεται στο Σχ. B.11, όπου στα λευκά κουτιά περιγράφονται οι
διάφορες περιπτώσεις ένωσης μοτίβων και στα γκρι κουτιά οι αντίστοιχες προτεινόμενες
πράξεις.

Σε πραγματικές περιπτώσεις, η διαδικασία ένωσης των μοτίβων γίνεται σε ένα
πεπερασμένο μικρό σύνολο από μοτίβα, το οποίο προσδιορίζεται από το σύνολο των
συνθηκών και των εντολών προσπέλασης. Στο κεφάλαιο 4 περιγράφεται αναλυτικά
ο τρόπος που δημιουργούνται τα μοτίβα και πως εφαρμόζονται οι πράξεις για την
δημιουργία ενός τελικού μοτίβου που περιγράφει την ανάγνωση, από όπου προκύπτει το
τελικό απαιτούμενο μέγεθος.

B.8 Επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία για

το μέγεθος μνήμης για τα δεδομένα ενός πίνακα

για μη επικαλυπτόμενες και επικαλυπτόμενες εντολές

εγγραφής και ανάγνωσης.

Η αναπαράσταση βασισμένη σε μοτίβα χρησιμοποιείται στο βήμα της μετάφρασης
και χρησιμοποιείται από το βήμα εύρεσης του ελαχίστου μεγέθους μνήμης για την
αποθήκευση των δεδομένων ενός πίνακα στην μεθοδολογία που προτάθηκε στο κεφάλαιο 3
για τις περιπτώσεις μη επικαλυπτόμενων και επικαλυπτόμενων εντολών εγγραφής και

234

ανάγνωσης του πίνακα. Το πρώτο βήμα της προτεινόμενης μεθοδολογίας είναι η ανάλυση,
που απεικονίζει την υπο μελέτη εφαρμογή σε ένα παραμετρικό πλαίσιο και βρίσκει την
πληροφορία για τις προσπελάσεις του πίνακα. Το επόμενο βήμα είναι το βήμα της
μετάφρασης, που μεταφράζει την πληροφορία σε μια αναπαράσταση χρησιμοποιώντας
μοτίβα, η οποία υποστηρίζει επεκτάσιμη και σχεδόν βέλτιστη εύρεση του μεγέθους μνήμης.
Τα μοτίβα διαδίδονται στο επόμενο βήμα που βρίσκει το μέγεθος της απαιτούμενης μνήμης.
Η προτεινόμενη μεθοδολογία εφαρμόζεται με συστηματικό τρόπο: η ανάλυση της υπο
μελέτη εφαρμογής δίνει συγκεκριμένες τιμές στις παραμέτρους του πλαισίου του πρώτου
βήματος. Η διάδοση των τιμών αυτών σαν constraints στα επόμενα βήματα επιλέγει
την ενεργές περιπτώσεις. Οι λύσεις των ενεργών περιπτώσεων εφαρμόζονται και οι
παράμετροι των βημάτων παίρνουν συγκεκριμένες τιμές.

For (i=0; i<UB(RD); i++)
If C1(i>LB(C1)&&i<UB(C1))||
C2(i>LB(C2)&&i<UB(C2))||
C3(i>LB(C3)&&i<UB(C3))
A[i]=...

EndIf
EndFor

(a)

C1

C2

RD
Iterator(I)

0

C3

LB(C1) LB(C2) UB(C1) UB(C2) LB(C3) UB(C3) LB(RD) … UB(RD)

(b)

C1

C2
Iterator(I)

0

C3

LB(C1) LB(C2)=UB(C1)=LB(C1’) LB(C3) UB(C3) …

C1’

C2’

(c)

RD
Iterator(I)

0 LB(C1) UB(C2) LB(C3) UB(C3) LB(RD) … UB(RD)

C1 C3 C2’ Hole C2||C1’

(d)

Iterator(I)

0 LB(RD) … UB(RD)

RD RD Hole

(e)

Iterator(I)

0 LB(RD)-b … UB(RD)-b

RD RD Hole

(f)

Σχ. B.12: Σχηματική περιγραφή του βήματος της μετάφρασης για μία διάσταση.

Μερικές από τις περιπτώσεις των βημάτων της μετάφρασης και της εύρεσης
του μεγέθους παρουσιάζονται στα παρακάτω σχήματα, ενώ το σύνολό των βημάτων
παρουσιάζεται στο κεφάλαιο 5.

Στο Σχ. B.12 παρουσιάζεται η σχηματική περιγραφή του βήματος της μετάφρασης
για μία διάσταση. Στο (a) απεικονίζονται τα αρχικά μοτίβα από τις αρχικές συνθήκες
(C1, C2, C3) και μοτίβο της εντολής ανάγνωσης (RD). Στο (b) απεικονίζονται τα νέα
μοτίβα μετά την εφαρμογή των πράξεων ευθυγράμμισης του κάτω και του άνω ορίου,
ενώ στο (c) παρουσιάζεται το συνδυασμένο μοτίβο μετά την εφαρμογή των πράξεων OR,
συνεχόμενα μη επικαλυπτόμενα μοτίβα και μη συνεχόμενα μη επικαλυπτόμενα μοτίβα. Το
τελικό μοτίβο για την ανάγνωση μετά την εφαρμογή της πράξης AND ανάμεσα στο μοτίβο
ανάγνωσης και στο συνδυασμένο μοτίβο των συνθηκών απεικονίζεται στο (d). Τέλος, το
(e) παρουσιάζει το ολισθημένο μοτίβο των στοιχείων που προσπελάσονται λόγω του δείκτη

235

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

R
D

I

RDJ

(a)

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

H

R
D

I

RDJ

(b)

For (I=6;I<12;I++)
For (J=0;J<5;J++)
If (J>1)
...=A[I-5][J-2]

EndIf
If (J>2)
...=A[I-5][J-2]

EndIf
EndFor

EndFor

(c)

For (I=6;I<12;I++)
For (J=0;J<5;J++)
If (I==8)||(I>9)
...=A[I-5][J]

EndIf
EndFor

EndFor

(d)

Σχ. B.13: Σχηματική αναπαράσταση των μοτίβων ανάγνωσης για τις διαστάσεις Ι και J, οι
οποίες είναι ανεξάρτητες.

LB(RDJ) UB(RDJ)

J 0

LB(RDI)

UB(RDI)

I

R
D

I

RDJ

(a)

LB(RDJ) UB(RDJ)

LB(RDI)

UB(RDI) I

J 0

H

H

(b)

I J

H

R
D

I,
J

H

H

K

(c)
I

H

LB(RDI)

UB(RDI)

LB(RDJ) UB(RDJ)
J 0 RDJ H

(d)

For (I=0;I<6;I++)
For (J=0;J<6;J++)
If (0<I<5)||(1<J<4)
...=A[I][J]
EndIf
EndFor
EndFor

(e)

For (I=0;I<6;I++)
For (J=0;J<6;J++)
If (I==1)||(I==3)||
(J==1)||(J==3)
...=A[I][J]
EndIf

EndFor
EndFor

(f)

For (I=0;I<9;I++)
For (J=0;J<3;J++)
For (K=0;K<3;K++)
If (I 6=3J+1)||(I==2K)
...=A[I][J][K]
EndIf
EndFor
EndFor
EndFor

(g)

For (I=0;I<10;I++)
For (J=0;J<5;J++)
If (I==2J+1)||
(J<2)||(J>3)
...=A[I][J]
EndIf

EndFor
EndFor

(h)

Σχ. B.14: Σχηματική αναπαράσταση για τα τελικά μοτίβα ανάγνωσης για 2 decoupled
διαστάσεις.

του πίνακα i+b.
Στο Σχ. B.13 παρουσιάζεται η σχηματική αναπαράσταση των μοτίβων ανάγνωσης για

τις διαστάσεις Ι και J, οι οποίες είναι ανεξάρτητες. Το μέγεθος μνήμης που απαιτείται
για την αποθήκευση των στοιχείων προκύπτει από το άθροισμα των γκρι περιοχών για: (a)
ενιαίους χώρους επαναλήψεων (Solid Iteration Space - SIS) και (b) για χώρους επαναλήψεων

236

Πίνακας B.1: Αποτελέσματα για την περίπτωση με κυρίαρχο τμήμα στην εξωτερική
διάσταση για επικαλυπτόμενες εντολές γραφής και ανάγνωσης.

Εφαρμογή: Ρουτίνα:
Πίνακας (Αρχ.
Όρια)

Προτεινόμενη Μεθ. Μεθ. Καταμέτρησης
Λύση Παράγοντας Μέγεθος Χρόνος Μέγεθος Χρόνος

(στοιχεία) (ms) (στοιχεία) (ms)

Atax*: A (32)(32) Eq. 5.31
Sec. 5.4.5.1.1

1 32 0.101 32 14.866
4 128 0.103 128 816.279
8 512 0.104 512 52,059.418
12 2,048 0.101 - -

Reg_detect*: path
(20)(20)

Eq. 5.35
Sec. 5.4.5.1.2

1 21 0.104 21 4.107
2 61 0.102 61 89.263
3 201 0.104 201 3,070.95
4 601 0.102 601 86,142.682
5 2001 0.100 - -

Gsm**:
Update_residual_
signal P3: drp
(100)(3)(40)

Table 5.6:
case i
Sec. 5.4.5.2.1

1 80 0.100 80 153.295
2 160 0.102 160 608.821
3 240 0.104 240 1,341.206
4 480 0.103 480 5,376.844
5 920 0.104 920 19,166.318

Jacobi-2D*: A
(128)(32)

Eq. 5.37
Sec. 5.4.5.2.2

1 34 0.177 34 31.102
2 66 0.181 66 113.017
3 1,002 0.190 1,002 23,439.816
4 8,002 0.175 8,002 1,577,880.183

Doitgen*: sum
(10)(10)(10)

Eq. 5.28
Sec. 5.4.4

1 111 0.108 111 41.545
2 273 0.104 273 452.183
3 813 0.103 813 6,585.703
4 1,057 0.103 1,057 12,954.013

(*) Polybench, (**) MediaBench, (-) Memory Overflow

με κενά (Iteration Space with Holes - ISH) και συνθήκες καταμέτρησης (Enumerative Condi-
tions with Holes - ECH) στην I διάσταση και οι κώδικες για (c) SIS και (d) ISH με συνθήκες
καταμέτρησης στην I διάσταση.

Στο Σχ. B.14 παρουσιάζεται η σχηματική αναπαράσταση για τα τελικά μοτίβα
ανάγνωσης για 2 decoupled διαστάσεις. Το τελικό μέγεθός προκύπτει από το άθροισμα
των γκρι περιοχών: (a) SIS, (b) ISH με ECH που συνδέονται μέσω OR πράξης, (c) ISH με
παραμετρικές συνθήκες με κενά (Parametric Condition with Holes - PCH) και (d) ISH με PCH
και ECH συνδυασμένα με OR πράξη. Αντίστοιχοι κώδικές παρουσιάζονται για: (e) SIS, (f)
ISH με ECH, (g) ISH με PCH and (h) ISH με PCH και ECH.

Στην παρούσα διδακτορική διατριβή παρουσιάζουμε τον τρόπο με τον οποίο
εφαρμόζεται η προτεινόμενη μεθοδολογία και συγκρίνουμε την απόδοσή της για
διάφορες εφαρμογές από τα PolyBench, MediaBench και Mibench benchmark suites
(Πίνακες B.8, B.8, B.3, B.4, B.5).

Στο Σχ. B.19 παρουσιάζεται η σύγκριση του χρόνου εξερεύνησης για την εύρεση του
ελαχίστου απαιτούμενου μεγέθους μνήμης για μη επικαλυπτόμενες εντολές γραφής και
ανάγνωσης, όταν ο αριθμός των προσπελάσεων αυξάνεται κατά: i) ένα παράγοντα για τα
όρια του βρόχου για την εφαρμογή pgp-outdec (a) και την εφαρμογή blowfish-decode/encode
(c) και ii) ένα παράγοντα για τον αριθμό των μοτίβων που υπάρχουν σε έναν πυρήνα
της εφαρμογής για την εφαρμογή pgp-outdec benchmark (b) και την εφαρμογή blowfish-
decode/encode (d). Στο σχήμα (e) παρουσιάζεται ο χρόνος εξερεύνησης για την εύρεση

237

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Πίνακας B.2: Αποτελέσματα για την περίπτωση χωρίς κυρίαρχο τμήμα στην εξωτερική
διάστασή για επικαλυπτόμενες εντολές γραφής και ανάγνωσης.
Εφαρμογή: Ρουτίνα:
Πίνακας (Αρχ.
Όρια)

Προτεινόμενη Μεθοδολογία Μεθ. Καταμέτρησης Προσέγγιση
Λύση Παράγοντας Μέγεθος Χρόνος Μέγεθος Χρόνος Μέγεθος

(στοιχεία) (ms) (στοιχεία) (ms) (στοιχεία)

Jpeg**: idct_2x2:
wsptr (32)(256)

Table 5.7:
5.4.6.1:
case i
Sec. 5.4.6.1.1

1 84 0.901 84 131.853 132
2 164 0.896 164 2,558.200 260
3 644 0.902 644 44,243.614 1,028
4 1,924 0.899 1,924 5,842,417.563 3,076

Jpeg**: decompress_
smooth_data:
coef_bits (4)(228)

Eq. 5.41
Sect. 5.4.6.1.2

1 5 0.158 5 18.782 6
2 10 0.175 10 65.887 12
3 15 0.183 15 138.009 18
4 20 0.219 20 234.046 24
5 25 0.219 25 365.003 30

Jpeg**: idct_2x2:
wsptr (un) (32)(256)

Table 5.7:
5.4.6.2:
case i
Sec. 5.4.6.2.1

1 80 0.798 80 113.259 132
2 160 0.793 160 2,542.592 260
3 640 0.795 640 44,142.714 1,028
4 1,920 0.792 1,920 5,843,373.740 3,076

Gauss-Seidel: A
(32)(32)

Eq. 5.44
Sec. 5.4.6.2.2

1 31 0.161 31 32
2 499 0.162 499 47,432.427 500
3 999 0.164 999 397,211.781 1,000
4 1,999 0.163 1,999 3,066,944.504 2,000

(**) MediaBench

του ελαχίστου απαιτούμενου μεγέθους μνήμης για επικαλυπτόμενες εντολές γραφής και
ανάγνωσης για τα Benchmarks (a) Jpeg**: xbuf1 benchmark and (b) Pegwit**: roundKeys_e
benchmark.

238

Πίνακας B.3: Αποτελέσματα για τα MediaBench για μη επικαλυπτόμενες εντολές
ανάγνωσης και γραφής. Το σύμβολο '-' χρησιμοποιείται όταν δημιουργείται Memory Er-
ror κατά την διάρκεια των προσομοιώσεων.

Εφαρμογή:
Πίνακας
(Αρχ. Όρια)

Παράγοντας Προτεινόμενη μεθ. Μεθ. Καταμέτρησης Προσέγγιση
Αύξησης Μέγεθος Χρόνος Ευρ. Μέγεθος Χρόνος Εύρ. Μέγεθος

Μνήμης (ms) Μνήμης (ms) Μνήμης

Jpeg-
Decode&Quant.:
DCTblock
(256)

1 7,680 0.148 7,680 34.667 10,239
3 23,040 0.147 23,040 103.736 30,719
5 38,400 0.149 38,400 162.533 51,199
7 53,760 0.145 53,760 228.764 71,679
9 69,120 0.147 69,120 281.893 92,159
11 84,480 0.145 84,480 350.931 112,639
13 99,840 0.145 99,840 413.799 133,119

Jpeg-
Decode&Quant.:
DCTblock
(512)

1 15,360 0.146 15,360 65.987 20,476
2 30,720 0.150 30,720 128.877 40,959
3 46,080 0.147 46,080 212.997 61,439
4 61,440 0.146 61,440 264.078 81,919
5 76,800 0.149 76,800 318.667 102,399
6 92,160 0.149 92,160 389.390 122,879

Epic: image
(240)

1 4,257 1.313 4,257 101.116 11,520
2 17,265 1.302 17,265 1,067.983 138,144
3 34,609 1.301 34,609 3,888.289 522,016
4 69,297 1.337 69,297 16,329.751 2,027,040
5 138,673 1.367 138,673 64,824.346 7,986,208
6 277,425 1.318 277,425 249,110.047 31,701,024

Mpeg:
curr_frame
(64x32)

1 34,833 1.801 34,833 852.955 65,537
2 69,649 1.840 69,649 1,703.624 131,073
3 139,281 1.806 139,281 3,317.909 262,145
4 278,545 1.813 278,545 7,167.751 524,289
5 557,073 1.818 557,073 30,241.290 2,097,185

Mpeg:
curr_frame
(128x32)

1 69,649 1.840 69,649 1,703.624 131,073
2 139,281 1.806 139,281 3,317.909 262,145
3 278,545 1.813 278,545 7,167.751 524,289
4 557,073 1.818 557,073 30,241.290 2,097,185

Motion
estimation-full
pel: p1/p2
(32)

1 3,576 0.147 3,576 51.922 12,759
2 11,512 0.146 11,512 232.104 65,991
3 39,672 0.147 39,672 1,399.778 389,031
4 145,144 0.147 145,144 9,093.884 2,589,543
5 552,696 0.146 552,696 66,325.246 18,713,319
6 2,154,232 0.147 - - 141,892,071

Motion
estimation-full
pel: p1/p2
(80)

1 39,672 0.147 39,672 1,399.778 389,031
2 145,144 0.147 145,144 9,093.884 2,589,543
3 552,696 0.146 552,696 66,325.246 18,713,319
4 2,154,232 0.147 - - 141,892,071

Motion
estimation-
half pel:
p1/p2 (272)

1 40,800 0.149 40,800 2,181.419 657,152
2 79,200 0.151 79,200 8,034 2,492,160
3 156,000 0.149 156,000 34,129.439 9,701,120
4 309,600 0.149 309,600 133,794.569 38,274,816
5 616,800 0.148 - - 152,045,312

239

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Πίνακας B.4: Αποτελέσματα για ταMediaBench για μη επικαλυπτόμενες εντολές εγγραφής
και ανάγνωσης. Το σύμβολο '-' χρησιμοποιείται όταν δημιουργείται Memory Error κατά την
διάρκεια των προσομοιώσεων.

Εφαρμογή:
Πίνακας
(Αρχ. Όρια)

Παράγοντας Προτεινόμενη μεθ. Μεθ. Καταμέτρησης Προσέγγιση
Αύξησης Μέγεθος Χρόνος Ευρ. Μέγεθος Χρόνος Εύρ. Μέγεθος

Μνήμης (ms) Μνήμης (ms) Μνήμης

Motion
estimation-
half pel:
p1/p2 (48)

1 7,200 0.151 7,200 69.523 19,231
2 12,000 0.153 12,000 193.411 55,071
3 21,600 0.155 21,600 615.794 182,047
4 40,800 0.149 40,800 2,181.419 657,152
5 79,200 0.151 79,200 8,034 2,492,160
6 156,000 0.149 156,000 34,129.439 9,701,120
7 309,600 0.149 309,600 133,794.569 38,274,816
8 616,800 0.148 - - 152,045,312

Motion
estimation-
half pel: p1a
(272)

1 27,200 0.157 27,200 2,239.512 657,183
2 52,800 0.154 52,800 8,325.536 2,492,191
3 104,000 0.159 104,000 36,410.136 9,701,151
4 206,400 0.156 206,400 129,134.210 38,274,847
5 411,200 0.165 - - 152,045,343

Motion
estimation-
half pel: p1a
(48)

1 4,800 0.155 4,800 93.294 19,231
2 8,000 0.158 8,000 192.457 55,071
3 14,400 0.156 14,400 640.237 182,047
4 27,200 0.157 27,200 2,239.512 657,183
5 52,800 0.154 52,800 8,325.536 2,492,191
6 104,000 0.159 104,000 36,410.136 9,701,151
7 206,400 0.156 206,400 129,134.210 38,274,847
8 411,200 0.165 - - 152,045,343

Pgp-outdec: p
(48)

1 2,048 0.143 3,072 11.911 3,074
3 8,192 0.148 12,288 43.058 12,290
6 131,072 0.149 196,608 683.534 196,610
8 524,288 0.155 786,432 2,732.710 786,434
11 4,194,304 0.146 6,291,456 21,838.798 6,291,458
13 16,777,216 0.153 15,165,824 88,559.484 25,165,826
16 134,217,728 0.150 - - 201,326,594

Pgp-outdec: p
(262,144)

1 4,194,304 0.146 4,194,304 21,838.798 6,291,458
2 8,388,608 0.147 8,388,608 40,522.5 12,582,914
3 16,777,216 0.153 16,777,216 88,559.484 25,165,826
4 33,554,432 0.147 33,554,432 171,213.572 50,331,650
5 67,108,864 0.150 - - 100,663,298

Mesa-light:
frontcolor &
backcolor (10)

1 5 0.147 5 0.131 10
10 50 0.145 50 0.410 10
102 500 0.146 500 3.290 100
103 5 K 0.149 5 K 34.657 1 K
104 50 K 0.147 50 K 375.118 10 K
105 500 K 0.152 500 K 3,492.222 100 K

Mesa-light:
frontcolor &
backcolor
(102)

1 50 0.147 50 0.410 102

104 5*103 0.149 5*103 34.657 104

106 5*105 0.152 5*105 3,492.222 106

108 5*107 0.151 5*107 338,464.414 109

240

Πίνακας B.5: Αποτελέσματα για τα PolyBench(*1), MiBench(*2) και την εφαρμογή που
χρησιμοποιήθηκε για την επίδειξη του βήματος της μετάφρασης για μη επικαλυπτόμενες
εντολές γραφής και ανάγνωσης. Το σύμβολο '-' χρησιμοποιείται όταν δημιουργείται Mem-
ory Error κατά την διάρκεια των προσομοιώσεων.

Εφαρμογή:
Πίνακας
(Αρχ. Όρια)

Παράγοντας Προτεινόμενη μεθ. Μεθ. Καταμέτρησης Προσέγγιση
Αύξησης Μέγεθος Χρόνος Ευρ. Μέγεθος Χρόνος Εύρ. Μέγεθος

Μνήμης (ms) Μνήμης (ms) Μνήμης

Correlation:
data (32) *1

1 0.25 M 0.343 0.25 M 2,886.159 0.25 M
2 1 M 0.340 1 M 11,732.231 1 M
3 4 M 0.337 4 M 48,614.943 4 M
4 16 M 0.347 16 M 188,547.256 16 M
5 64 M 0.333 64 M 780,152.034 64 M
6 256 M 0.345 - - 256 M

Jacobi-1D: A
(500) *1

1 1,004 0.674 1,004 5.428 1,004
2 2,004 0.660 2,004 9.998 2,004
3 4,004 0.676 4,004 21.646 4,004
4 8,004 0.664 8,004 40.701 8,004
5 16,004 0.656 16,004 78.056 16,004
6 32,004 0.658 32,004 159.161 32,004

Blowfish De-
code/Encode:
p (2,048) *2

1 256 0.146 256 6.899 2,040
4 1,024 0.147 1,024 29.753 8,184
7 1,792 0.149 1,792 45.805 14,328
10 2,560 0.148 2,560 66.517 20,472
13 3,328 0.148 3,328 86.228 26,616
16 4,096 0.147 4,096 105.264 32,760
19 4,864 0.149 4,864 120.938 38,904

Blowfish De-
code/Encode:
p (4,096) *2

1 512 0.146 512 15.065 4,088
2 1,024 0.147 1,024 29.753 8,184
3 1,536 0.148 1,536 39.888 12,288
4 2,048 0.148 2,048 51.536 16,376
5 2,560 0.148 2,560 66.517 20,472
6 3,072 0.148 3,072 79.722 24,568
7 3,584 0.149 3,584 90.756 28,664
8 4,096 0.147 4,096 105.264 32,760
9 4,608 0.147 4,608 114.122 36,856
10 5,120 0.146 5,120 132.905 40,952

Εφαρμογή
μετάφρασης:
A (64)

1 32 0.799 32 0.487 507
3 128 0.804 128 1.694 2,043
5 512 0.798 512 6.308 8,187
7 2,048 0.810 2,048 25.776 32,763
9 8,192 0.793 8,192 97.852 131,067
11 32,768 0.796 32,768 395.624 524,283
13 131,072 0.793 131,072 1,629.237 2,097,147

241

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

0

50

100

150

200

1 3 5 7 9 11 13 15 17

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
s)

Bound Factor

Proposed Methodology

0.146*10-3

(a)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ex
p

lo
ra

ti
o

n
 t

im
e

 (
m

s)

Pattern Factor

Enumerative Approach

1.271

(b)

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
m

s)

Bound Factor

0.146

(c)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11
Ex

p
lo

ra
ti

o
n

 t
im

e
 (

m
s)

Pattern Factor

0.89

(d)

0.0

1.0

2.0

3.0

4.0

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

Ex
p

lo
ra

ti
o

n
 T

im
e

 (
s)

Proposed Enumerative

~0.100*10-3

Loop Bounds Factor

~0.101*10-3

(a) (b)

(e)

Σχ. B.15: Σύγκριση του χρόνου εξερεύνησης για την εύρεση του ελαχίστου απαιτούμενου
μεγέθους μνήμης για μη επικαλυπτόμενες εντολές γραφής και ανάγνωσης (a)-(d) και για
επικαλυπτόμενες εντολές γραφής και ανάγνωσης (ε).

B.9 Μεθοδολογία για τη απεικόνιση σε πλατφόρμα

με έναν επεξεργαστή ελεγχόμενο από εντολών και

ποικίλους συνεπεξεργαστές.

Τα ενσωματωμένα συστήματα έχουν, συνήθως, αυστηρούς χρονικούς περιορισμούς, οι
οποίοι απαιτούν ειδικές σχεδιάσεις στο υλικό για να μπορέσουν να ικανοποιηθούν. Οι
ειδικές σχεδιάσεις στο υλικό αυξάνουν την απόδοση, αλλά έχουν μεγάλο κόστος στον
σχεδιασμό και πολύ περιορισμένη ευελιξία, ακόμα και όταν μπορούν να τροποποιηθούν
μερικώς. Οι σχεδιάσεις σε λογισμικό αυξάνουν την ευελιξία για μεγάλο εύρος εφαρμογών,
αλλά στο κόστος της μειωμένης απόδοσης. Επομένως, μια υβριδική σχεδίαση σε υλικό και
λογισμικό είναι μια υποσχόμενη λύση, η οποία ισορροπεί την ευελιξία των σχεδιάσεων σε

242

Time to fetch data

from Memory (TBG)

Select PC-HW design

TBG≤D
yes

Step 2:

Microprocessor &

HW Accelerators

Inter-Organization

Min Number of

register & accesses

Allocate Primitive

operators for single

HW with UFFG

CPHW≤tHW

Parallelize/

Increase f

yes

Step 4:

Data-Path

Mapping
fHW≥fPC

Insert Pipeline

Allocate ports &

connect DP with FG

Platform Analysis

Application Analysis

Step 1:

Application &

Platform Domain

Analysis
Select kernel i

SW execution time of

application (TSW)

TSW≤DExit
yes

Opt. Application

Critical Path (CP)

CP≤D
yes

Available BandWidth

from BG (ABWBG)

ABWBG≤RBW
Increase

tHW

yes

Opt.Critical Path (CP)

CP≤tHW

yes

Available BandWidth

to HW (ABWHW)

ABWHW≤RBW

Available BandWidth

to HW (ABWHW)

ABWHW≤RBW

Select Num. Parallel

Transfers

Organize Transfers

Select HW primitive

operations

Step 3:

ForeGround

Memory

Management

HDFG

Left-edge

Transform costly &

less used operations

R≤RMax

yes

FG Critical Path (CPFG)

Register

Spilling

FG Ports Number

Available BandWidth

from FG (ABWFG)

Register utilization (UFR)

Estimate

UFFG

UFG≥UThr

Operators Utilization (Uop)

CPFG≥tHW

Explore

time slack

yes

yes

Estimate UFHW

Uop≥UThr

yes

Schedule&Assign

single HW

yes

Σχ. B.16: Η ροή και τα βήματα της προτεινόμενης μεθοδολογίας.

λογισμικό και την απόδοση των σχεδιάσεων σε υλικό [92].
Υπάρχοντα εργαλεία για σχεδιάσεις προσφέρουν μια μερικώς αυτοματοποιημένη

διαδικασία για την δημιουργία ειδικών τμημάτων στους μικροεπεξεργαστές. Τα εργαλεία
αυτά απαιτούν μεγάλο χρόνο εξερεύνησης, διότι αναλύουν μεγάλο αριθμό σχεδιασμών,
οι οποίοι, ωστόσο, επικεντρώνονται σε περιορισμένη περιοχή του χώρου λύσεων. Όταν
τα χαρακτηριστικά της εφαρμογής δεν ταιριάζουν με αυτά της περιοχής που εξερευνά
το εργαλείο, το εργαλείο οδηγεί σε μη βέλτιστα αποτελέσματα. Μια ευρεία εξερεύνηση
του χώρου λύσεων που να καλύπτει όλους τους σχεδιασμούς είναι μια πολύ δύσκολη και
χρονοβόρα διαδικασία λόγου του υψηλού αριθμού σχεδιαστικών παραμέτρων τόσο στο
υλικό όσο και στο λογισμικό. Επομένως, οι σχεδιαστές δημιουργούν σχεδιασμούς στο υλικό
και το λογισμικό ακολουθώντας τυχαίες ή επαναληπτικές διαδικασίες που βασίζονται στην
εμπειρία τους [131]. Επομένως, απαιτείται μια συστηματική μεθοδολογία που θα παρέχει
εξερεύνηση του χώρου λύσεων με επεκτάσιμο τρόπο και θα οδηγεί σε σχεδόν βέλτιστους
σχεδιασμούς [176].

Στην παρούσα διδακτορική διατριβή προτείνεται μια επεκτάσιμη μεθοδολογία

243

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

εξερεύνησης των σχεδιασμών (DSE) που απεικονίζει μια περιοχή εφαρμογών σε
ένα SW/HW FPGA σχεδιασμό με ένα πυρήνα μικροεπεξεργαστή και ποικίλους HW
συνεπεξεργαστές. Η προτεινόμενη μεθοδολογία διαχωρίζει την διαδικασία σχεδίασης
σε συνεχόμενα βήματα απεικόνισης τα οποία συνδέονται με διάδοση περιορισμών
ακολουθώντας μονοκατευθυντήρια κατεύθυνση. Με αυτόν τον τρόπο αποφεύγονται τα
μη επεκτάσιμα βήματα απεικόνισης και οι επαναλήψεις στην διαδικασία της σχεδίασης.
Η ροή και τα βήματα της προτεινόμενης μεθοδολογίας απεικονίζονται στο Σχ. B.16

ALGORITHM 15: Βήμα Ανάλυσης.
Step 1.1: Platform Analysis\
Determine HW parameters();
Step 1.2: Application Analysis\
Identify basic kernels;
for (i=0;i<NumOfKernels;i++) do

Profile ti;
Identify SW parameters();

Kernels=Sort based on ti;
Identify control flow;
Step 1.3: Decide SW & HW execution\
Step 1.3.1: Application Constraints\
fPC = max(AvfPC);
tSW=Assign(Application, PC);
ttot=tSW;
if (ttot <D) then

Exit;
High level estimate(tTR,Opt,CDFG);
if (tTR,Opt,CDFG > tHW) then

Exit(Change HW parameters);
High level estimate(CPHW,Opt,CDFG);
if (CPHW,Opt,CDFG > tHW) then

Exit(Change HW parameters);

High level estimate(tTR,Opt,CDFG);
if (tTR,Opt,CDFG > tHW) then

Exit(Change HW parameters);
Step 1.3.2: Kernel Constraints\
while (ttot > D) do

k=select i from Kernels;
tSW=ttot-ti;
tHW=(1-slack)*(D-tSW);
Assign(k,HW);
Compute BandW , ABandWBG,Opt;
if (BandW > ABandWBG) then

Repeat=1; break;
Compute ABandWPC−HW,Opt;
if (BandW > ABandWPC−HW,Opt) then

Repeat=1; break;
High level estimate(CPHW,Opt);
if (CPHW,Opt > tHW) then

Repeat=1; break;
if (Repeat==1 && SWsolution==1) then

ttot=tSW+tHW;
else

Exit(Change HW parameters);

ALGORITHM 16: Βήμα οργάνωσης Microprocessor & HW Accelerators.
Dependent=1;CoProcessor=1;Control=0;
Compute ABandWPC−HW;
if (BandW > ABandWPC−HW) then

Dependent=0;NPI=0;
Compute ABandWPC−HWPLB ;
if (tTR,PC−HWPLB > tHW) then

NPI=1;
Explore(SCIP-NPI);

High level estimate of tTR,PC−HW;
if (tTR,PC−HW << CPHW,OPt) then

tHW = tHW − tTR,PC−HW
Compute BusPC−HW;

Τα βήματα της προτεινόμενης μεθοδολογίας είναι: η ανάλυση της εφαρμογής και
της πλατφόρμας (Σχ. 15), η οργάνωση μεταξύ μικροεπεξεργαστή και συνεπεξεργαστών

244

ALGORITHM 17: Βήμα Διαχείρισης Foreground Μνήμης.
OPs =

∑OPsTypeArithm
n=0 OPsArithm(n)

if (Coprocessor==0) then
SizeFG = SizeRegFile; Exit;

if (Dependent==0)||(Dependent==1 &&
Coprocessor==0 && Control=1) then

OPs = OPs+
∑OPsTypeCntr

n=0 OPsCntr(n)
Evaluate(OPs);
Select primitive operations;
UFFG=1;
Evaluate Reg(UFFG);
Compute UFG;
NumReg=FG;
Exploration(UFFG,∞);
if (NumReg < NumReg,Max) then

NumReg=FG;
Exploration(UFFG, NumReg,Max);

AccessesFG=Count(RD,WR,MLT);
FG Exploration(UFG,Max){

while (UFG < UThr) do
Update UFFG; Evaluate Reg(UFFG,Max);
Compute UR;

while (CPFG < tHW) do
Reduce NumReg;
Evaluate Reg(UFFG,NumReg);

}
Evaluate(OPsType){
for (j=0;j<OPsType;j++) do

if (Costj >Threshold) then
Explore for transformation of operation(j);
Update(SW Parameters);
Transform(Code);

}
Evaluate Reg(UF,PF,Max){
Compose HDFG(UF,PF);
Compute life time(HDFG);
SLT=Sort(life time);
MLT=Left edge algorithm(SLT,Max);
NumReg=Count(MLT);
}

ALGORITHM 18: Βήμα απεικόνισης στο Data Path.
Step 4.1: DP Mapping\
Allocate(Primitive Ops,Single HW);
Schedule, Assign(UFFG,Single HW);
UFHW=1;
Compute UOp;
while (UOp < UThr) do

Update UFHW;
Schedule, Assign(UFHW,Single HW);
Compute UR;

if (fHW > fPC) then
Estimate PL stages;
Pipeline(PL);

if (CPHW < tHW) then
Parallelize(PF,Single HW);

if (CPHW < tHW) then
Pipeline(PL);

Step 4.2: FG Memory Connection\
Estimate ABandWFG;
NumFG,Ports= BandW

ABandWFG
;

Allocate ports;
Connect(DP,FG);

(SW/HW Organization) (Σχ. 16), η διαχείριση της μνήμης στο επεξεργαστικό τμήμα (Fore-
ground (FG) Memory Management) (Σχ. 17) και η απεικόνιση στις μονάδες εκτέλεσης (Data
Path (DP) Mapping) (Σχ. 18). Κάθε βήμα περιγράφεται από παραμετρικά πλαίσια, δηλαδή
μια επεκτάσιμη δομή με τις σχετικές παραμέτρους, εξισώσεις και ρουτίνες που συνδέονται
με μονοκατευθυντήρια διάδοση περιορισμών. Η εισαγωγή τιμών στις παραμέτρους
και η εφαρμογή των ρουτινών παράγουν μια Pareto καμπύλη. Κάθε σημείο εξερευνά
ενεργές τιμές για τις παραμέτρους και οδηγεί σε διαφορετικές τιμές για την απόδοση
και την επιφάνεια ολοκλήρωσης. Οι επιλογές σε ένα βήμα απεικόνισης διαδίδονται σαν
σχεδιαστικοί περιορισμοί στα επόμενα βήματα για να αποκόψουν επιλογές οι οποίες δεν
είναι συμβατές. Μια επιλογή δεν είναι συμβατή όταν για να μπορεί να επιτευχθεί θα πρέπει

245

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

να αγνοηθεί ένας σχεδιαστικός περιορισμός από προηγούμενα βήματα. Για παράδειγμα, οι
αποφάσεις για το χρονοπρογραμματισμό για το κρίσιμο τμήμα της εφαρμογής διαδίδονται
σαν σχεδιαστικοί περιορισμοί στο μη κρίσιμο τμήμα. Οι επιλογές που απαιτούν την αλλαγή
του χρονοπρογραμματισμού του κρίσιμου τμήματος είναι μη συμβατές και επομένως
διαγράφονται σαν επιλογές. Με αυτόν τον τρόπο μόνο τα ενεργά και υποσχόμενα τμήματα
του χώρου λύσεων εξερευνούνται μέσω ενός αποδοτικού κλαδέματος που βασίζεται στις
τιμές των παραμέτρων που έχουν διαδοθεί και των περιπτώσεων απεικόνισης σε κάθε
βήμα. Η επεκτασιμότητα της μεθοδολογίας παραμένει, διότι ακόμα και όταν αυξάνει το
μέγεθος της εφαρμογής ο χρόνος εξερεύνησης παραμένει γραμμικός.

Πίνακας B.6: Απόδοση και επιφάνεια ολοκλήρωσης για την πραγματικού χρόνου
βιοϊατρική εφαρμογή που βασίζεται σε ένα μικροροικό FPGA.

Σχεδιασμός Απόδοση Απόδοση Περ.Ολοκ.
200x16 Window 300x75 Window HW Συν. Σύνολο

Κύκλοι Χρόνος(ms) Κύκλοι Χρόνος(ms) Slices Slices
SW MUL Ops 358,996 4.31 1,458,006 17.50 0 4210
SW/HWMUL 231,444* 2.78* 765,901* 9.19* ≈128* 4284*
SW/HW-1FSL 189,864 2.28 439,591 5.27 114 4255
SW/HW-6FSL 176,004 2.11 330,821 3.97 114 4268
SW/HW-2PF-1FSL 174,618 2.09 319,944 3.84 231 4374
SW/HW-2PF-6FSL 167,688 1.98 265,559 3.19 231 4385
SW/HW Sobel&Hough-6FSL 98,705* 1.19* 196,576* 2.36* 314* 4505*
HW &Microblaze M.M. >70,000* >0.84* >182,638* >2.19* >375* >4581*
HW & Custom M.M. >46,000* > 0.56* >142,218* >1.77* >550* >4721*

*estimated

0

50

100

150

200

250

300

350

4200 4300 4400 4500 4600 4700 4800

P
e

rf
o

rm
an

ce
(K

C
yc

le
s)

System Area(Slices)

SW MUL Ops SW/HW MUL

SW/HW-1FSL SW/HW-6FSL

SW/HW-2PF-1FSL SW/HW-2PF-6FSL

SW/HW Sobel&Hough-6FSL HW Microblaze M.M.

HW Custom M.M.

Σχ. B.17: Pareto καμπύλη για παράθυρο εφαρμογής 200x16 της ρουτίνας για την εύρεση
της γωνίας απόκλισης.

Επιπρόσθετα, περιγράφεται η εφαρμογή της προτεινόμενης μεθοδολογίας και
εφαρμόζεται σε ένα σύνολό από benchmarks. Τα πιο λεπτομερή αποτελέσματα
παρουσιάζονται για μια πραγματικού χρόνου βιοϊατρική εφαρμογή που βασίζεται σε ένα
μικροροικό FPGA. Το κέρδος σχεδίασης είναι 47.11% στην απόδοση και 72.29% στην
επιφάνεια ολοκλήρωσης για SW και HW υλοποιήσεις. Τα αποτελέσματα απεικονίζονται
στον Πίνακα B.6 και στο Σχ. B.17.

246

Πίνακας B.7: Απόδοση και επιφάνεια ολοκλήρωσης για το PolyBench Benchmark Suite.
Bench. Σχεδιασμός

Απόδοση HW Συν.
(Κύκλοι) Αρχικές CP f Slices DSP Σύνολο

Πράξεις (ns) (MHz) Slices Slices

2mm

SW 6,000,208 - - - - - -
SW/HW 2,155,152 1-2PL 10.17 98.32 38 6 1342 10.11 98.87 24 3

SW/HW-2PF 1,298,043 1-3PL 10.44 95.8 71 12 2632 11.49 87.06 48 6
3mm SW 9,067,317 - - - - - -

SW/HW 3,227,592 1 10.13 98.67 22 3 46
SW/HW-2PF 1,832,904 1 11.48 87.08 50 6 98

Bicg SW 128,678 - - - - - -
SW/HW 48,256 1 10.11 98.91 42 6 90

Gemm
SW 3,648,404 - - - - - -

SW/HW 2,246,593 1-2PL 10.22 97.81 41 6 89
SW/HW-3PL 2,190,881 1-2PF 10.65 93.9 73 12 169

Gesummv
SW 143,301 - - - - - -

SW/HW 70,753 1 10.11 98.87 24 3 48
SW/HW-2PF 65,633 1 11.49 87.06 48 6 96

Atax SW 139,420 - - - - - -
SW/HW 80,790 1 10.13 98.67 22 3 46

Cholesky SW 374,334 - - - - - -
SW/HW 70,753 1 10.31 96.99 25 3 49

Gemver

SW 251,550 - - - - - -

SW/HW 96,650
1 11.48 87.08 50 6

2032-2PL 10.17 98.32 39 6
3 2.67 374.96 18 0

Jacobi_2d SW 1,333,510 - - - - - -
SW/HW 303,464 1 6.59 151.86 80 0 80

Correlation

SW 4,413,504 - - - - - -

SW/HW 1,084,299
1 2.65 376.65 16 0

11942 11.91 83.97 32 6
3-3PL 44.82 22.31 1028 3
4 10.13 98.67 22 3

SW: Software, SW/HW: Co-design, PF=Parallel Factor, PL=Pipeline stages

Επιπρόσθετα περιγράφονται πειραματικά αποτελέσματα για 10 PolyBench bench-
marks [159] που δείχνουν την αποδοτικότητα και την ευρεία εφαρμογή της προτεινόμενης
μεθοδολογίας. Τα αποτελέσματα απεικονίζονται στον Πίνακα B.7. Οι αντίστοιχες
καμπύλες απεικονίζονται στο Σχ. B.18.

0

100

200

300

400

500

600

0 50 100 150 200 250 300

P
e

rf
o

rm
an

ce
 (

M
C

yc
le

s)

2mm-SW
2mm-SW/HW-2PL
2mm-SW/HW-2PF-3PL
3mm-SW
3mm-SW/HW
3mm-SW/HW-2PF
Gemm-SW
Gemm-SW/HW-2PL
Gemm-SW/HW-2PF-3PL

HW Accelerators Area (Slices)

Σχ. B.18: Pareto καμπύλες για τις εφαρμογές 2mm, 3mm και Gemm για μέγεθος δεδομένων
128.

Η προτεινόμενη μεθοδολογία συγκρίνεται με μια επαναληπτική μεθοδολογία για την
απόδοση και τον χρόνο εξερεύνησης. Τα αποτελέσματα παρουσιάζονται στο Σχ. B.8 και

247

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Σχ. B.19.

Πίνακας B.8: Αποτελέσματα για την προτεινομένη μεθοδολογία και για μια επαναληπτική
μεθοδολογία (iterative improvement).

Εφαρμογή
Επαναληπτική μεθ. Προτεινόμενη μεθ.

Απόδ. Περ.Ολοκ. Χρόνος Απόδ. Περ.Ολοκ. Χρόνος
(ms) (LUT) (ms) (ms) (LUT) (ms)

Seidel-2d

0.02020892 72

118,686.089

0.02020892 72

1,125.692

0.02024000 64 0.02022202 64
0.02524778 56 0.02521426 56
0.02526088 48 0.02521426 48
0.03525846 40 0.03062306 40

- - 0.04059266 32

Gemm

0.1609017 40

50,451.987

0.1609017 40

256.6950.1609075 32 0.1609075 32
0.2418297 24 0.2418297 24

Syr2k 0.3217926 40 55,155.037 0.3217926 40 265.9310.3217984 32 0.3217984 32
0.48365575 24 0.48365575 24

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ex
p

lo
ra

ti
o

n
 t

im
e

 (
G

se
c)

Size increase factor

Iterative Improvement

Proposed Methodology

Σχ. B.19: Χρόνος εξερεύνησης όταν το μέγεθος της εφαρμογής αυξάνεται κατά έναν
παράγοντα.

B.10 Πλαίσιο με τις σχεδόν βέλτιστες τεχνικές

χρονοπρογραμματισμού και ανάθεσης πόρων.

Το πρόβλημα χρονοπρογραμματισμού και ανάθεσης των πόρων εφαρμόζεται σε πολλές
περιοχές [141], όπως υπολογιστές, οικονομικά, χρονοπρογραμματισμός εργασίας,
διαχείριση προσωπικού, παραγωγή κτλ. Τόσο η ερευνητική όσο και η βιομηχανική
κοινότητα έχει επενδύσει δεκαετίες σε έρευνα και πειράματα στις τεχνικές που επιλύουν
το πρόβλημα του χρονοπρογραμματισμού και της ανάθεσης πόρων. Σημαντικές
εξελίξεις έχουν δημιουργηθεί στο χώρο απεικόνισης πολυεπεξεργαστικών συστημάτων

248

που ταξινομούν στο χώρο και στο χρόνο διεργασίες, μεταφορές δεδομένων και πράξεις.
Ωστόσο το πρόβλημα του χρονοπρογραμματισμού και της ανάθεσης των πόρων δεν έχει
λυθεί επαρκώς [182].

Όπως έχει αναφερθεί στην αναφορά ο [182], η καλύτερη κατανόηση της συμπεριφοράς
των αλγορίθμων του χρονοπρογραμματισμού και της ανάθεσης πόρων θα οδηγήσει
στην ανάπτυξη πιο αποδοτικών προσεγγίσεων. Η κατανόηση αυτή προκύπτει από
μια αποδοτική κατηγοριοποίηση του συνόλου των τεχνικών. Μια κατηγοριοποίηση
η οποία είναι ολοκληρωτική παρέχει μια πανοραμική περιγραφή όλων των δυνατών
τεχνικών χρονοπρογραμματισμού και ανάθεσης πόρων που μπορεί να υπάρξουν. Η
κατηγοριοποίηση χωρίζει αποδοτικά τις τεχνικές σε κλάσεις με μοναδικά χαρακτηριστικά.
Στην βιβλιογραφία υπάρχουν λίγες κατηγοριοποιήσεις ([125], [126], [17], [151], [152],
[171], [141] και [60]) για τις τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων
που εφαρμόζονται κατά την σχεδίαση για πλατφόρμες με έναν ή πολλαπλούς
επεξεργαστές. Οι υπάρχουσες κατηγοριοποιήσεις είναι μερικώς ολοκληρωμένες,
περιλαμβάνουν πλεονασμούς και δεν παρέχουν αποδοτικότητα. Άλλες μελέτες ([114], [79]
και [182]) επικεντρώνονται στην περιγραφή νέων τάσεων.

Near-optimal DT scheduling techniques

Deterministic

Stochastic

Stepwise Recursive

Adaptive Rigid

Potentially
Sub-optimal

Theoretically
Optimal

Optimality Control
(Simulated Annealing based)

Best effort Optimality
(Evolution based)

Iterative Pruning
Solution Space

Division

Near-optimal Formally Optimal

Searching

Ordered Arbitrary

Traversing

Depth
First

Breadth
First

Different species evolution
(Simulated Evolution based)

Same species evolution
(Genetic Algorithms based)

Seed
based

Seedless
(Tabu based)

Formulation Solver

Priority Evaluation Choice

Clustering Partitioning

Adaptive
SA

Static
SA

Dynamic
GA

Static
GA

Epochs Generations

Pruning
Decision Space

Exploration

Control
Near-optimality

Exact

Branch Bound

Forward Backward

Mutation Offspring
Generation

Crossover Selection

GA
Iterations

 GA
Components

Partial
Solution
Selection

Complete
Solution

Generation

SE
Components

Temperature
Calibration

Convergence
per step

 SA
Components

SE
Iterations

Type of SA
Components

(4)

(3)

(1) (3)

(2)

(4) (1)

(4)

(2) (2)

(4) (1) (4) (1)

(1)

(4)

(4) (3)

(3)

(2) (1)

(3)
(3)

(4) (3)

(1) (1)

(1)

(1)

(3)

Parent Class

Left Subclass Right Subclass

(rule)

(b)

(a)

Σχ. B.20: Η προτεινόμενη κατηγοριοποίηση των τεχνικών που επιλύουν σχεδόν βέλτιστα
το πρόβλημα χρονοπρογραμματισμού και ανάθεσης πόρων. Ο αριθμός κάτω από κάθε
διαχωρισμό περιγράφει τον κανόνα που εφαρμόστηκε για να προσδιοριστεί η κατεύθυνση
της διάδοσης των περιορισμών.

249

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

Στην παρούσα διδακτορική διατριβή προτείνεται μια νέα κατηγοριοποίηση για
τεχνικές που βρίσκουν σχεδόν βέλτιστο χρονοπρογραμματισμό και ανάθεση των πόρων
σε πλατφόρμες με ένα ή και περισσότερους επεξεργαστές. Η κατηγοριοποίηση
δημιουργείται εφαρμόζοντας τις αρχές της επαναχρησιμοποιούμενης DSE μεθοδολογίας
του κεφαλαίου 2. Το αποτέλεσμα απεικονίζεται στο Σχ. B.20. Παρουσιάζεται ένας νέος
και συστηματικός τρόπος για να κατηγοριοποιηθούν οι τεχνικές χρονοπρογραμματισμού
και ανάθεσης πόρων. Επιπρόσθετα στο κεφάλαιο 7 περιγράφεται πως η προτεινόμενη
κατηγοριοποίηση καλύπτει αποδοτικά όλες τις υπάρχουσες τεχνικές, αφού στην
προτεινόμενη κατηγοριοποίηση μια τεχνική μπορεί να ανήκει σε μια αρχική κλάση ή σε
συνδυασμό κλάσεων.

B.11 Μεθοδολογία για την ανάπτυξη παραμετρικών

πλαισίων για σχεδόν βέλτιστες και επεκτάσιμες

τεχνικές χρονοπρογραμματισμού και ανάθεσης.

Οι τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων επηρεάζουν τον σχεδιασμό
και την απόδοση του συστήματος διότι είναι υπεύθυνες για την πραγματικού χρόνου
συμπεριφορά, την ελάχιστη κατανάλωση ενέργειας, την αξιοπιστία του συστήματος κτλ.
Οι τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων αναθέτουν πράξεις, ομάδες
από πράξεις, αναφορές στην μνήμη ή μεταφορές δεδομένων σε βήματα ελέγχου με βάση
το χρόνο και σε πόρους του συστήματος με βάση το χώρο, όπως ομογενή ή ετερογενή
επεξεργαστικά στοιχεία, μνήμες, διαύλους κτλ. Οι περιορισμοί, όπως deadlines, πρέπει να
ικανοποιούνται και οι κρίσιμες μετρικές του συστήματος, όπως ο απαιτούμενος αριθμός
πόρων, πρέπει να μειώνονται ανάλογα με το υπο μελέτη πρόβλημα χρονοπρογραμματισμού
και ανάθεσης πόρων.

Το πρόβλημα του χρονοπρογραμματισμού και της ανάθεσης πόρων δεν έχει επιλυθεί
πλήρως και υπάρχει χώρος για περαιτέρω εξερεύνηση στις αρχιτεκτονικές πλατφόρμες
με έναν ή και πολλαπλούς επεξεργαστές [182]. Τα υπάρχοντα εργαλεία προσφέρουν με
αυτοματοποιημένο τρόπο χρονοπρογραμματισμό και ανάθεση πόρων στις αρχιτεκτονικές.
Ωστόσο παρέχουν περιορισμένη κάλυψη αφού εφαρμόζουν μόνο συγκεκριμένες τεχνικές
τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων για όλες τις περιοχές εφαρμογών,
π.χ. Cheddar [181]. Συνήθως τα εργαλεία εξερευνούν μια μεγάλη γκάμα από τεχνικές
χρονοπρογραμματισμού και ανάθεσης πόρων, οι οποίες επικεντρώνονται σε μια σχετικά
περιορισμένη περιοχή. Όταν τα χαρακτηριστικά της περιοχής δεν συμπίπτουν με
τα χαρακτηριστικά της εφαρμογής, το αποτέλεσμα είναι συνήθως μη βέλτιστο. Τα
εργαλεία δεν μπορούν παρέχουν συμβουλή για το ποια τεχνική χρονοπρογραμματισμού
και ανάθεσης πόρων είναι η πιο υποσχόμενη. Μια μεθοδολογία για την εύρεση της

250

πιο υποσχόμενης τεχνικής χρονοπρογραμματισμού και ανάθεσης πόρων για μια περιοχή
εφαρμογών λείπει από την υπάρχουσα βιβλιογραφία [5].

Η εφαρμογή μιας πολύ ευρείας εξερεύνησης για τις τεχνικές χρονοπρογραμματισμού
και ανάθεσης πόρων είναι χρονοβόρα λόγω του μεγάλου αριθμού από διαφορετικής
φύσεως τεχνικές. Επομένως, οι σχεδιαστές αναπτύσσουν τεχνικές χρονοπρογραμματισμού
και ανάθεσης πόρων, που μπορούν να επιτύχουν σχεδόν βέλτιστο αποτέλεσμα για πολύ
παρεμφερής εφαρμογές, βασιζόμενοι στην εμπειρία τους. Ωστόσο, πρακτικά, οι εφαρμογές
είναι πολύ διαφορετικές στην φύση τους και περιλαμβάνουν πολύπλοκους και μεγάλους
γράφους με χρονικούς περιορισμούς πραγματικού χρόνου. Σε αυτές τις περιπτώσεις
οι υπάρχοντες τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων είτε αυξάνουν
κατά πολύ τον χρόνο εξερεύνησης είτε μειώνουν την ποιότητα του αποτελέσματος.
Π.χ. Integer Linear Programming (ILP) τεχνικές χρονοπρογραμματισμού και ανάθεσης
πόρων βρίσκουν βέλτιστο αποτέλεσμα αλλά είναι εφαρμόσιμοι σε μικρούς σε μέγεθος
γράφους. Επομένως χρειάζεται μια συστηματική μεθοδολογία για την ανάπτυξη τεχνικών
χρονοπρογραμματισμού και ανάθεσης πόρων που ικανοποιούν τους περιορισμούς που
τίθενται από την υπο μελέτη περιοχή.

Στην παρούσα διδακτορική διατριβή εφαρμόζουμε τις αρχές της
επαναχρησιμοποιούμενης μεθοδολογίας στην κατηγοριοποίηση των τεχνικών
χρονοπρογραμματισμού και ανάθεσης πόρων για να αναπτύξουμε μια συστηματική
μεθοδολογία που δημιουργεί παραμετρικά πλαίσια για τεχνικές χρονοπρογραμματισμού
και ανάθεσης πόρων κάτω από περιορισμούς για σχεδόν βέλτιστο αποτέλεσμα και για
επεκτάσιμη τεχνική που εφαρμόζεται σε περίπλοκους και μεγάλους γράφους εφαρμογών.
Η προτεινόμενη μεθοδολογία αποτελείται από τέσσερα βήματα, που απεικονίζονται στο
Σχ. 19.

Το πρώτο βήμα αρχικοποιεί τις απαραίτητες δομές που χρησιμοποιούνται στα επόμενα
βήματα. Το δεύτερο βήμα αναλύει την εφαρμογή και την αρχιτεκτονική πλατφόρμα για
τα βρει τις χρήσιμες ιδιότητες, όπως το μέγεθος και την δομή των γράφων, το πόσο
βέλτιστο πρέπει να είναι το αποτέλεσμα, τον διαθέσιμο χρόνο για την εκτέλεση της τεχνικής
κτλ. Οι ιδιότητες αυτές χρησιμοποιούνται σαν περιορισμοί που τίθενται από την υπό
μελέτη περιοχή και πρέπει να ικανοποιούνται από την τεχνική που θα περιγράφεται
από το παραμετρικό πλαίσιο. Στο τρίτο βήμα, οι περιορισμοί διαδίδονται κάθετα στην
κατηγοριοποίηση των τεχνικών χρονοπρογραμματισμού και ανάθεσης πόρων. Κάθε κλάση
περιγράφει μια διαφορετική κατηγορία τεχνικών χρονοπρογραμματισμού και ανάθεσης
πόρων μέσω ενός παραμετρικού πλαισίου. Οι περιορισμοί που διαδίδονται αποκόπτουν τις
κλάσεις που δεν είναι συμβατές. Για παράδειγμα, ο περιορισμός για βέλτιστο αποτέλεσμα
αποκόπτει την κλάση που περιγράφει σχεδόν βέλτιστες τεχνικές. Το αποτέλεσμα είναι ένα
μειωμένο δέντρο με μόνο τις συμβατές κλάσεις. Στο τέταρτο βήμα το δέντρο γίνεται επίπεδο
και τα παραμετρικά πλαίσια ενώνονται και συνδυάζονται σε ένα τελικό παραμετρικό
πλαίσιο ακολουθώντας την οριζόντια διάδοση περιορισμών, όπως περιγράφεται στην
κατηγοριοποίηση των τεχνικών.

251

B. ΕΚΤΕΤΑΜΈΝΗ ΠΕΡΊΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΆ

ALGORITHM 19: Προτεινόμενη μεθοδολογία για την δημιουργία παραμετρικών
πλαισίων που περιγράφουν επεκτάσιμες και σχεδόν βέλτιστες τεχνικές
χρονοπρογραμματισμού.
Input: Application and Platform Domain
Output: Combined Parameterized Template of

Developed Techniques
Step 1\
Class list Q← The set of all T classes
v← root of T
Search list S← ∅
Enqueue(S,v);
Pruned Classes list P← ∅
Step 2\
Constraints = Analysis(App.&Platf.Domain);
Step 3a\
while (S ! = ∅) do
Dequeue(u,S);
for (i=0;i<NumOfConstraints;i++) do
if (Label(u) 6= constraint[i]) then
Dequeue(u,Q);

else
Enqueue(S,LeftChild(u));
Enqueue(S,RightChild(u));

Step 3b\

for (i=0;i<length(Q);i++) do
Dequeue(i,Q);
while (NumOfChildren(i)==1) do
Dequeue(Child(i),Q);
u=Merge(i,Child(i));
Enqueue(Q,u));

Step 4a\
Search list S← ∅ ;
v← root of Q ;
Enqueue(S,v));
while (S! = ∅) do
Dequeue(u,S);
if (NumOfChildren(u)==0) then
n=Merge(u, acc);
Enqueue(F,n);
if (Arrow(u) exists) then
Enqueue(S, Dest(Arrow(u)));

else
Backtrack();
Acc=Remove(u,Acc);

else
Acc=Merge(u,acc);
Enqueue(S, LeftChild(u));

Step 4b\
for (i=0;i<length(F);i++) do
t=SelectTemplate(i)
AddToCombinedParametric(t)

Το τελικό παραμετρικό πλαίσιο είναι το αποτέλεσμα της προτεινόμενης μεθοδολογίας
και περιγράφει τις προτεινόμενες τεχνικές χρονοπρογραμματισμού και ανάθεσης
πόρων για την υπο μελέτη περιοχή εφαρμογών. Στην παρούσα διδακτορική
διατριβή εφαρμόζουμε την προτεινόμενη μεθοδολογία στην περιοχή εφαρμογών με
μεγάλου μεγέθους και περίπλοκους γράφους και πραγματικού χρόνου απαιτήσεις.
Επιπρόσθετα παρουσιάζονται διαφοροποιήσεις στους περιορισμούς της υπο μελέτη
περιοχής εφαρμογών με στόχο να δείξουμε πως οι περιορισμοί επηρεάζουν την
εξερεύνηση του χώρου λύσεων. Το τελικό παραμετρικό πλαίσιο που προκύπτει από την
προτεινόμενη μεθοδολογία επιτυγχάνει κέρδος 13-18% στην απόδοση για εφαρμογές από
το Mibench benchmark suite, π.χ. 18,2% για την εφαρμογή Forward DCT. Το αποτέλεσμα
της προτεινόμενης μεθοδολογίας μπορεί να χρησιμοποιηθεί για να την αποδοτική
αυτοματοποίηση του χρονοπρογραμματισμού και της ανάθεσης πόρων σε υπάρχοντα
εργαλεία: η πιο υποσχόμενη τεχνική για την συγκεκριμένη περιοχή εφαρμογών μπορεί
να αποφασιστεί αποδοτικά από τις τεχνικές που περιγράφονται στο τελικό παραμετρικό
πλαίσιο δίνοντας συγκεκριμένες τιμές στις παραμέτρους του πλαισίου. Η διαδικασία
αυτή θα δημιουργήσει την τελική τεχνική χρονοπρογραμματισμού και ανάθεσης πόρων

252

η οποία θα υλοποιηθεί από το εργαλείο. Η μεθοδολογία συγκεκριμενοποίησης της
τεχνικής χρονοπρογραμματισμού και ανάθεσης πόρων από το παραμετρικό πλαίσιο δεν
αντιμετωπίζεται από την παρούσα διδακτορική διατριβή, αλλά αποτελεί μελλοντική
ερευνητική κατεύθυνση.

Στο κεφάλαιο 8 περιγράφεται λεπτομερώς η προβολή των αρχών και της χρήσης
του framework της επαναχρησιμοποιούμενης μεθοδολογίας εξερεύνησης στο πρόβλημα
ανάπτυξης υποσχόμενων τεχνικών χρονοπρογραμματισμού και ανάθεσης πόρων, οι οποίες
είναι επεκτάσιμες και παρέχουν σχεδόν βέλτιστο αποτέλεσμα για μια συγκεκριμένη
περιοχή εφαρμογών. Παρουσιάζεται ένα λεπτομερές παράδειγμα στο οποίο οι υπάρχουσες
τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων δεν μπορούν να επιτύχουν σχεδόν
βέλτιστα αποτελέσματα και δεν είναι επεκτάσιμες και παρουσιάζεται η ανάγκη και δίνεται
η λύση για μια μεθοδολογία που να αναπτύσσει τεχνικές οι οποίες να είναι επεκτάσιμες και
σχεδόν βέλτιστες για το υπό μελέτη πρόβλημα.

253

References

[1] T. Vander Aa, B.F. Mei, and B. De Sutter. A backtracking instruction scheduler using
predicate-based code hoisting to fill delay slots. In Proc. Int'l Conf. on Compilers, Archi-
tecture and Synthesis for Embedded Systems, pages 229--237, New York, NY, USA, 2007.
ACM. 170

[2] I. Ahmad et al. Automatic parallelization & scheduling of programs on multiprocessors
using casch. In ICPP, pages 288--291, 1997. 180

[3] Yongjin Ahn et al. Socdal: System-on-chip design accelerator. Trans. Des. Autom. Electron.
Syst., 13[1]:17:1--17:38, Feb 2008. 4, 121, 217

[4] Nicolaos Alachiotis, Vasileios I. Kelefouras, George S. Athanasiou, Harris E. Michail, An-
geliki S. Kritikakou, and Costas E. Goutis. A data locality methodology for matrix--matrix
multiplication algorithm. The Journal of Supercomputing, 59:830--851, 2012. 207

[5] F. Balarin et al. Scheduling for embedded real-time systems. Des.Test Comp., 15:71--82,
Jan. 1998. 175, 251

[6] Florin Balasa et al. Transformation of nested loops with modulo indexing to affine recur-
rences. Let. Parallel Proces., 4:271--280, 1994. 42

[7] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in
parallelism enhancing transformations. SIGPLAN Not., 24[7]:41--53, Jun 1989. 36

[8] A. Balboni et al. Partitioning and exploration strategies in the tosca co-design flow. In Proc.
Int'l Work. HW/SW CoDesign, pages 62--69, USA, 1996. IEEE Computer Society. 36

[9] M.R. Barbacci and D.P. Siewiorek. Automated exploration of the design space for register
transfer (rt) systems. In Proc. 1st annual Int'l Symp. Computer Architecture, pages 101--106,
New York, NY, USA, 1973. ACM. 149

[10] S.J. Beaty. Genetic algorithms and instruction scheduling. In Proc. Int'l Symp. Microar-
chitecture, pages 206--211. ACM, 1991. 182

[11] Tobias Bjerregaard et al. A survey of research and practices of network-on-chip. ACM
Comput. Surv., 38[1]:1--51, jun 2006. 135

255

REFERENCES

[12] C. G. E. Boender et al. A stochastic method for global optimization. Mathematical Pro-
gramming, 22:125--140, 1982. 180

[13] S.W. Bollinger and S.F. Midkif. Processor and link assignment in multicomputers using
simulated annealing. In Proc. IEEE Int'l Conf. Parallel Processing, Los Alamitos, CA, USA,
Jun 1988. IEEE Computer Society. 160

[14] Magnus Broberg et al. A tool for binding threads to processors. In Proc. Int'l Euro-Par
Conf. Par. Processing, pages 57--61. Springer-Verlag, 2001. 180

[15] T.J. Callahan et al. The garp architecture and c compiler. J. Computer, 33[4]:62--69, Apr.
2000. 121

[16] Andrea Capitanio et al. A hypergraph-based model for port allocation on multiple-register-
file vliw architectures. Int'l J. Parallel Programming, 23:499--513, 1995. 135

[17] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. Softw. Eng., 14[2]:141--154, Feb 1988. 145, 151, 152,
249

[18] F. Catthoor. Energy-delay efficient data storage and transfer architectures and methodolo-
gies: Current solutions and remaining problems. J. VLSI Signal Processing, 21:219--231,
1999. 33, 38, 228

[19] F. Catthoor et al. System-level transformations for low power data transfer and storage. In
Low-Power CMOS Design, pages 609--618, Los Alamitos, CA, USA, 1998. IEEE Press.
23, 25, 26, 37, 226

[20] Francky Catthoor, Eddy de Greef, and Sven Suytack. Custom Memory Management
Methodology: Exploration of Memory Organisation for Embedded Multimedia System De-
sign. Kluwer Academic Publishers, Norwell, MA, USA, 1998. 26

[21] Francky Catthoor, Eddy de Greef, and Sven Suytack. Unified low-power design flow for
data-dominated multi-media and telecom application. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000. 23, 25, 26, 27, 209, 226

[22] Francky Catthoor et al. Clustered l0 (loop) buffer organization and combination with data
clusters. In Ultra-Low Energy Domain-Specific Instruction-Set Processors, 0, pages 115--
141. Springer, 2010. 177

[23] N. Chabini and W. Wolf. Unification of scheduling, binding, and retiming to reduce power
consumption under timings and resources constraints. IEEE Trans. Very Large Scale In-
tegr.(VLSI) Syst., 13[10]:1113--1126, 2005. 159, 171, 181

256

REFERENCES

[24] K.S. Chatha and R. Vemuri. A tool for partitioning and pipelined scheduling of hardware-
software systems. In Proc. Int'l Symp. System Synthesis, pages 145--151, Los Alamitos, CA,
USA, 1998. IEEE Computer Society. 170

[25] S. Chaudhuri, S.A. Blthye, and R.A.Walker. A solutionmethodology for exact design space
exploration in a three-dimensional design space. IEEE Trans. Very Large Scale Integration
Systems, 5[1]:69--81, Mar 1997. 159, 167

[26] S. Chaudhuri, R.A. Walker, and J.E. Mitchell. Analyzing and exploiting the structure of the
constraints in the ilp approach to the scheduling problem. IEEE Trans. Very Large Scale
Integr.(VLSI) Syst., 2[4]:456--471, 1994. 168

[27] S. Che et al. Dymaxion: optimizing memory access patterns for heterogeneous systems. In
Proc. Int'l Conf. High Performance Computing (PC), pages 13:1--13:11, USA, 2011. ACM.
37

[28] S. Chen et al. Adaptive simulated annealing for optimization in signal processing applica-
tions. Signal Proc., 79[1]:117--128, Oct. 1999. 194

[29] D. Cho et al. Software controlled memory layout reorganization for irregular array access
patterns. In Proc. Int'l Conf. CASES, pages 179--188, New York, NY, USA, 2007. ACM.
36

[30] P. Clauss et al. Automatic memory layout transformations to optimize spatial locality in
parameterized loop nests. SIGARCH Comput. Archit. News, 28:11--19, Mar. 2000. 37

[31] Albert Cohen et al. Storage mapping optimization for parallel programs. In Proc. Int'l Euro-
Par Conf. Parallel Processing, pages 375--382, London, UK, UK, 1999. Springer-Verlag.
33, 228

[32] K. Compton et al. Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv., 34:171--210, Jun. 2002. 120

[33] Jason Cong et al. Automatic memory partitioning and scheduling for throughput and power
optimization. ACM Trans. Des. Autom. Electron. Syst., 16[2]:15:1--15:25, Apr 2011. 37

[34] Keith D. Cooper et al. Operator strength reduction. ACM Trans. Program. Lang. Syst.,
23[5]:603--625, Sep. 2001. 126

[35] Béatrice Creusillet and François Irigoin. Exact vs. approximate array region analyses, 1996.
37

[36] Criticalblue. Criticalblue cascade, programmable application coprocessor generation.
http://www.criticalblue.com, 2012. 120

257

http://www.criticalblue.com

REFERENCES

[37] L. Cucu-Grosjean and O. Buffet. Global multiprocessor real-time scheduling as a constraint
satisfaction problem. In Proc. Int'l Conf. Parallel Processing Workshops, pages 42--49,
Washington, DC, USA, 22-25 2009. IEEE Computer Society. 33, 38, 168, 228

[38] A. Darte et al. Lattice-Based Memory Allocation. Tran. Computers, 54:1242--1257, 2005.
37

[39] T. Davidović. Exhaustive list-scheduling heuristic for dense task graphs. YUJOR,
10[1]:123--36, 2000. 4, 181, 217

[40] Tatjana Davidović, Leo Liberti, Nelson Maculan, and Nenad Mladenović. Towards the
optimal solution of the multiprocessor scheduling problem with communication delays. In
Proc. Multi-Disciplinary Int'l Conf. Scheduling Theory and Applications, Nottingham, UK,
2007. Sherwood Press. 171, 181

[41] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Company, New York,
1991. 172

[42] Eddy De Greef et al. Memory size reduction through storage order optimization for em-
bedded parallel multimedia applications. In Parallel Computing, pages 84--98, 1997. 33,
228

[43] S. Devadas and A.R. Newton. Algorithms for hardware allocation in data path synthesis.
IEEE Trans. Computer-Aided Design of Integr. Circuits Syst., 8[7]:768--781, Jul 1989. 149,
150, 160, 171

[44] M.K. Dhodhi and I. Ahmad. A multiprocessor scheduling scheme using problem-space
genetic algorithm. In IEEE Proc. 1st Int'l Conf. Genetic Algorithms in Engineering Systems:
Innovations and Applications, pages 152--157, Los Alamitos, CA, USA, Sep 1995. IEEE
Computer Society. 150, 173, 182

[45] M.K.Dhodhi et al. Shemus: Synthesis of heterogeneousmultiprocessor systems.Microproc.
& Microsys., 19[6]:311--319, 1995. 182

[46] M.K. Dhodhi, F.H. Hielscher, R.H. Storer, and J. Bhasker. Datapath synthesis using a
problem-space genetic algorithm. IEEE Trans. Computer-Aided Design of Integr. Circuits
Syst., 14[8]:934--944, 1995. 172

[47] J. Ph. Diguet et al. A framework for high level estimations of signal processing vlsi imple-
mentations. J. VLSI Signal Process. Syst., 25[3]:261--284, Jul. 2000. 126, 128

[48] R. Dimond et al. Custard - a customisable threaded fpga soft processor and tools. In Proc.
Int'l Conf. Field Progr.Logic&Applic., pages 1--6, USA, 2005. IEEE. 121

258

REFERENCES

[49] J. Dongarra et al. A tool to aid in the design, implementation, and understanding of matrix
algorithms for parallel processors. J. Parallel & Distributed Computing, 9[2]:185--202,
1990. 36

[50] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst., Man, Cybern.B,Cybern., 26:29--41, 1996. 150,
174, 182

[51] F.Catthoor et al. Proposal for unified system design meta flow in task-level and instruction-
level design technology research for multi-media applications. In Proc. Intnl. Symp. System-
Level Synthesis, pages 89--95, Dec. 1998. 11, 26, 226

[52] F. Ferrandi et al. An evolutionary approach to area-time optimization of fpga designs. In
Proc. Int'l Conf. Embedded Computer SAMOS, pages 145--152, USA, Jul. 2007. IEEE. 121

[53] F. Ferrandi, P.L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. Ant colony heuristic for
mapping and scheduling tasks and communications on heterogeneous embedded systems.
Trans. Computer-Aided Desing Integr. Circuits Syst., 29[6]:911--924, 2010. 150, 174, 181

[54] H. Flatt et al. Mapping of a real-time object detection application to a configurable risc/
coprocessor architecture at full hd resolution. In ReConFig&FPGAs, pages 452--457, USA,
Dec. 2010. IEEE. 121

[55] F.H.M. Franssen et al. Modeling multidimensional data & control flow. VLSI, 1[3]:319--
327, Sep. 1993. 34, 35, 42, 55, 229, 232

[56] D. Gajski et al. Specsyn: an environment supporting the specify-explore-refine paradigm
for hardware/software system design. Trans. VLSI, 6[1]:84--100, Mar. 1998. 121

[57] C.H. Gebotys. Throughput optimized architectural synthesis. IEEE Trans. Very Large Scale
Integr.(VLSI) Syst., 1[3]:254--261, Sep 1993. 168

[58] C.H. Gebotys andM.I. Elmasry. A global optimization approach for architectural synthesis.
In IEEE Proc. Int'l Conf. Computer-Aided Design: Digest of Technical Papers, pages 258--
261, Los Alamitos, CA, USA, Nov 1990. IEEE Computer Society. 170

[59] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, New York, 1989. 161

[60] S. Govindarajan. Scheduling algorithms for high-level synthesis. Term Paper in Digital
Design Environments, 1995. 145, 151, 249

[61] W. Grass. A branch-and-bound method for optimal transformation of data flow graphs for
observing hardware constraints. In Proc. Eur. Conf. Design Automation, pages 73--77, Los
Alamitos, CA, USA, Mar 1990. IEEE Computer Society Press. 150, 152, 168

259

REFERENCES

[62] Z. Guo et al. Efficient hardware code generation for fpgas. ACMTrans. Archit. Code Optim.,
5[1]:6:1--6:26, May 2008. 121

[63] M. R. Guthaus et al. Mibench: A free, commercially representative embedded benchmark
suite. In Proc. Int'l Works. Workload Characterization, pages 3--14, Washington, DC, USA,
2001. IEEE. 43, 89, 198

[64] L.J. Hafer and A.C. Parker. A formal method for the specification, analysis, and design of
register-transfer level digital logic. IEEE Trans. Computer-Aided Design of Integr. Circuits
Syst., 2[1]:4--18, January 1983. 149, 171

[65] Emma Hart, Peter Ross, and David Corne. Evolutionary scheduling: A review. Genetic
Programming and Evolvable Machines, 6:191--220, 2005. 151

[66] Mohamad H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge,
MA, USA, 1st edition, 1995. 180, 192

[67] M.J.M. Heijligers, L.J.M. Cluitmans, and J.A.G. Jess. High-level synthesis scheduling and
allocation using genetic algorithms. In Proc. Asia and South Pacific Conf. Design Automa-
tion, page 11, New York, NY, USA, 1995. ACM. 150, 172

[68] M.J.M. Heijligers and J.A.G. Jess. High-level synthesis scheduling and allocation using
genetic algorithms based on constructive topological scheduling techniques. In Proc. IEEE
Int'l Conf. Evolutionary Computation, 1, pages 56--61, Los Alamitos, CA, USA, Nov-1 Dec
1995. IEEE Computer Society. 172

[69] A. Hemani and A. Postula. A neural net based self organising scheduling algorithm. In
IEEE Proc. European Conf. Design Automation, pages 136--140, Los Alamitos, CA, USA,
1990. IEEE Computer Society. 150, 157, 167

[70] J.L. Hennessy et al. Computer Architecture, Fourth Edition: A Quantitative Approach.
Mor.Kaufmann Pub., San Francisco, CA, USA, 2006. 123

[71] C.Y. Hitchcock and D.E. Thomas. A method of automatic data path synthesis. In
ACM/IEEE Proc. 20th Design Automation Conf., pages 484--489, New York, NY, USA,
1983. ACM. 149

[72] Chao-Ju Hou and K.G. Shin. Allocation of periodic task modules with precedence and
deadline constraints in distributed real-time systems. Trans. Computers, 46[12]:1338--1356,
Dec 1997. 170, 186

[73] C. Huang et al. Scalable object detection accelerators on fpgas using custom design space
exploration. In Proc. Symp. Application Specific Processors, pages 115--121, USA, Jun.
2011. IEEE. 4, 121, 217

260

REFERENCES

[74] C.T. Hwang, J.H. Lee, and Y.C. Hsu. A formal approach to the scheduling problem in high
level synthesis. IEEE Trans. Computer-Aided Design of Integr. Circuits Syst., 10[4]:464--
475, apr 1991. 149, 150, 152, 168, 170

[75] B. Jang et al. Exploiting memory access patterns to improve memory performance in data-
parallel architectures. Trans. Parallel & Distributed Systems, 22:105--118, 2011. 37

[76] T. Janjusic et al. Gleipnir: A memory analysis tool. In Proc. ICCS, pages 2058--2067,
2011. 36

[77] P.K. Jha et al. Library mapping for memories. In Proc. EDAC, pages 288--, USA, 1997.
IEEE. 39

[78] Shiyuan Jin, Guy Schiavone, and Damla Turgut. A performance study of multiprocessor
task scheduling algorithms. J. Supercomput., 43:77--97, January 2008. 161

[79] A. Jones and L.C. Rabelo. Survey of job shop scheduling techniques, 1998. 146, 152, 180,
249

[80] L. Jozwiak et al. Multi-objective optimal controller synthesis for heterogeneous embedded
systems. In Proc. Int'l Conf. EC-SAMOS, pages 177--184, USA, Jul. 2006. IEEE. 120

[81] M. Kafil and I. Ahmad. Optimal task assignment in heterogeneous computing systems. In
Proc. 6th Work. Heterogeneous Computing, pages 135--146, Washington, DC, USA, Apr
1997. IEEE Computer Society. 169, 181

[82] Mahmut Taylan Kandemir. A compiler technique for improving whole-program locality.
SIGPLAN Not., 36[3]:179--192, Jan 2001. 37

[83] N. Karmarkar. A new polynomial-time algorithm for linear programming. In STOC '84:
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302--
311, New York, NY, USA, 1984. ACM. 171

[84] Sanza T. Kazadi. Stochastic search methods, Feb 1995. 180

[85] M.Bruynooghe F.Catthoor G.Janssens K.C.Shashidar. An automatic verification technique
for loop and data reuse transformations based on geometric modeling of program. Compiler
Construction meets Compiler Verification, 3:248--269, 2003. 7, 221

[86] V.I. Kelefouras, G.S. Athanasiou, N. Alachiotis, H.E. Michail, A.S. Kritikakou, and C.E.
Goutis. A methodology for speeding up fast fourier transform focusing on memory ar-
chitecture utilization. Signal Processing, IEEE Transactions on, 59[12]:6217--6226, dec.
2011. 207

[87] Y. Kim et al. Improving performance of nested loops on reconfigurable array processors.
ACM Trans. Archit. Code Optim., 8[4]:32:1--32:23, Jan. 2012. 127

261

REFERENCES

[88] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Sci-
ence, 220[4598]:671--680, May 1983. 171

[89] P. G. Kjeldsberg et al. Storage requirement estimation for optimized design of data intensive
applications. ACM Trans. Des. Autom. Electron. Syst., 9[2]:133--158, Apr 2004. 37

[90] P.G. Kjeldsberg et al. Data dependency size estimation for use in memory optimization.
Trans. Computer-Aided Design of Integrated Circuits and Systems, 22:908--921, 2003. 37

[91] David Ryan Koes et al. Near-optimal instruction selection on dags. In Proc. Int'l Symp.
Code Generation & Optimization, pages 45--54, New York, NY, USA, 2008. ACM. 131

[92] G. Kornaros. A soft multi-core architecture for edge detection & data analysis of microarray
images. J. Syst. Archit., 56:48--62, Jan. 2010. 119, 121, 243

[93] T.J. Kowalski, D.J. Geiger, W.H. Wolf, and W. Fichtner. The vlsi design automation as-
sistant: From algorithms to silicon. IEEE Des. Test. Comput., 2[4]:33--43, Aug. 1985.
149

[94] A. Kritikakou, F. Catthoor, G.A. Athanasiou, V. Kelefouras, and C. Goutis. A template-
based methodology for efficient microprocessor & fpga accelerator co-design. In Proc. Int’l
Conf. EC-SAMOS, pages 15--22, Los Alamitos, USA, 2012. IEEE. 207

[95] A. Kritikakou, F. Catthoor, G.A. Athanasiou, V. Kelefouras, and C. Goutis. Near-optimal
microprocessor & accelerators co-design with latency & throughput constraints. ACM
Trans. Architecture and Code Optimization, 10[1], 2013. 207

[96] A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. Near-optimal & scalable intra-
signal in-place for non-overlapping & irregular access scheme. Trans. Design Automation
of Electronic Systems, [conditionally accepted], 2013. 207

[97] A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. Scalable & near-optimal array
storage size under overlapping & irregular accesses. IEEE Trans. Computers, [Submitted],
2013. 207

[98] A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. A scalable & near-optimal rep-
resentation for storage size management. ACM Trans. Architecture and Code Optimization,
[conditionally accepted], 2013. 207

[99] A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. A systematic approach to classify
global scheduling techniques. ACM J. Computing Surveys, 45[2]:14:1--14:30, 2013. 208

[100] A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. A systematic methodology to
develop new global design time scheduling techniques. ACM Trans. Design Automation of
Electronic Systems, [Submitted], 2013. 208

262

REFERENCES

[101] A. Kritikakou et al. A systematic approach to classify global scheduling techniques. ACM
J. Computing Surveys, (to appear), 2012. 134

[102] Pavel Krčál et al. Decidable and undecidable problems in schedulability analysis using timed
automata. In Proc. TACAS, pages 236--250, 2004. 180

[103] Prasad A. Kulkarni et al. In search of near-optimal optimization phase orderings. In Proc.
Conf. Languages, Compilers, and Tools for Embedded Systems, pages 83--92, 2006. 4, 218

[104] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31:406--471, Dec. 1999. 151, 180

[105] Yu-Kwong Kwok et al. Dynamic critical-path scheduling: an effective technique for allocat-
ing task graphs to multiprocessors. Tran. Parallel and Distributed Systems, 7[5]:506--521,
may 1996. 178, 181

[106] M. Lam. Software pipelining: an effective scheduling technique for vliw machines. SIG-
PLAN Not., 23[7]:318--328, Jun. 1988. 124

[107] Chunho Lee et al. Mediabench: a tool for evaluating & synthesizing multimedia & com-
municatons systems. In Proc. Int'l Symp. Microarchitecture, pages 330--335, Washington,
USA, 1997. IEEE. 43, 89, 113

[108] LooHay Lee et al. An optimization model for storage yard management in transshipment
hubs. In Container Terminals and Cargo Systems, pages 107--129. Springer, Berlin, Hei-
delberg, 2007. 33, 38, 228

[109] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe. Space-
time scheduling of instruction-level parallelism on a raw machine. ACM SIGOPS Operaing
Systems Review, 33[11]:46--57, 1998. 150, 158, 169

[110] V. Lefebvre et al. Automatic storage management for parallel programs. Parallel Comput.,
24[3-4]:649--671, May 1998. 37

[111] T. Lewis et al. Parallax: A tool for parallel program scheduling. Parallel Distributed Tech-
nology, 1:62--72, May 1993. 180

[112] Yajun Li, Yuhang Yang, Maode Ma, and Rongbo Zhu. A problem-specific genetic algo-
rithm for multiprocessor real-time task scheduling. In Proc. 3rd Int'l Conf. Innovative Com-
puting Information and Control, pages 186--, Washington, DC, USA, 2008. IEEE Computer
Society. 150, 173, 182, 192

[113] J. Liao et al. A model for hardware realization of kernel loops. In Proc. Int'l Conf. FPGA,
2778, pages 334--344, Berlin, Germany, 2003. Springer. 121

263

REFERENCES

[114] Y.L. Lin. Recent developments in high-level synthesis. ACM Trans. Des. Autom. Electron.
Syst., 2[1]:2--21, 1997. 146, 152, 249

[115] P. E. R. Lippens, J. L. van Meerbergen, W. F. J. Verhaegh, and A. van der Werf. Allo-
cation of multiport memories for hierarchical data stream. In IEEE/ACM Proc. Int'l Conf.
Computer-Aided Design, pages 728--735, Los Alamitos, CA, USA, 1993. IEEE Computer
Society Press. 37, 169

[116] R. Lippmann. An introduction to computing with neural nets. IEEE ASSPMagazine, 4[2]:4-
-22, Apr 1987. 157

[117] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core processor based
parallel system. In Proc. IFIP Int'l Conf. Network and Parallel Computing Workshops, pages
748--753, Washington, DC, USA, 2007. IEEE Computer Society. 170, 181

[118] Chi-Keung Luk et al. Pin: building customized program analysis tools with dynamic in-
strumentation. SIGPLAN Not., 40[6]:190--200, Jun 2005. 36

[119] T.A. Ly and J.T. Mowchenko. Applying simulated evolution to high level synthesis. IEEE
Trans. Computer-Aided Design of Integr. Circuits Syst., 12[3]:389--409, Mar 1993. 149,
150, 162, 173, 182

[120] C. Martin. BANDBX: An Enumeration Code for Pure and Mixed Zero-One Programming
Problems. Industrial and Systems Engineering Dept., Ohio State University, 1978. 171

[121] P. Marwedel. Building a compiler, 2006. 4, 218

[122] P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2011. 2, 3, 214, 216

[123] Dror E. Maydan et al. Array-data flow analysis and its use in array privatization. In Proc.
Symp. Principles of programming languages, pages 2--15, New York, NY, USA, 1993.
ACM. 37

[124] M.C. McFarland. Using bottom-up design techniques in the synthesis of digital hardware
from abstract behavioral descriptions. In ACM/IEEE Proc. 23rd Design Automation Conf.,
pages 474--480, New York, NY, USA, 1986. ACM. 149

[125] M.C. McFarland, A.C. Parker, and R. Camposano. Tutorial on high-level synthesis. In
ACM/IEEE Proc. 25th Conf. Design Automation, pages 330--336, Los Alamitos, CA, USA,
1988. IEEE Computer Society Press. 145, 149, 249

[126] M.C. McFarland, A.C. Parker, and R. Camposano. The high-level synthesis of digital sys-
tems. IEEE Proc., 78[2]:301--318, Feb. 1990. 145, 149, 249

264

REFERENCES

[127] D. Melpignano et al. Platform 2012, a many-core computing accelerator for embedded
socs: performance evaluation of visual analytics applications. In DAC, pages 1137--1142,
USA, 2012. ACM. 120

[128] B. Mesman, A.H. Timmer, J.L. van Meerbergen, and J.A.G. Jess. Constraint analysis for
dsp code generation. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 18[1]:44--
57, Jan 1999. 150, 152, 157, 168

[129] Harris E. Michail, George Athanasiou, Angeliki Kritikakou, Costas E. Goutis, Andreas
Gregoriades, and Vicky G. Papadopoulou. Ultra high speed sha256 hashing cryptographic
module for ipsec hardware/software codesign. InProc. Int'l Conf. Security andCryptography
(SECRYPT), pages 309--313, July 2010. 208

[130] Z. Michalewicz. Genetic algorithms + data structures = evolution programs (2nd, extended
ed.). Springer-Verlag New York, Inc., New York, NY, USA, 1994. 172

[131] P. Milder et al. Computer generation of hardware for linear digital signal processing trans-
forms. ACM Trans. Des. Autom. Electron. Syst., 17[2]:15:1--15:33, Apr. 2012. 119, 243

[132] Narasinga Rao Miniskarg. System Scenario Based Resource Management of Processing El-
ements on MPSoC. PhD thesis, ESAT/EE Dept., K.U.Leuven, Belgium, Dec. 2012. 209

[133] Li Minqiang and Kou Jisong. Phases-based dynamic genetic strategies for genetic algo-
rithms. In IEEE Int'l Conf. Systems, Man and Cybernetics, 1, pages 343--348, Los Alamitos,
CA, USA, Oct. 2003. IEEE Computer Society. 161

[134] N. Muscettola. Scheduling by iterative partition of bottleneck conflicts. In IEEE Proc. Conf.
Artificial Intelligence for Applications, pages 49--55, Los Alamitos, CA, USA, March 1993.
IEEE Computer Society Press. 150, 152, 168

[135] L. Nachtergaele et al. Specification and simulation front-end for hardware synthesis of dsp
applications. Int. J. Comp. Simulation, 2:213--2291, 1992. 36, 55, 232

[136] M. Narasimhan et al. A fast approach to computing exact solutions to the resource-
constrained scheduling problem. Trans. Des. Autom. Electron. Syst., 6:490--500, Oct. 2001.
181

[137] G. E. Nasr, A. Harb, and G. Meghabghab. Enhanced simulated annealing techniques for
multiprocessor scheduling. In Proc. 12th Int'l Florida Artificial Intelligence Research Society
Conf., pages 124--128, California, USA, 1999. AAAI Press. 150, 171, 182, 186

[138] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley
and Sons, New York, 1988. 168

[139] N. Nethercote et al. Building workload characterization tools with valgrind, Oct. 2006. 36

265

REFERENCES

[140] B. Neumann et al. Design flow for embedded fpgas based on a flexible architecture template.
In Proc. Conf. Design, Automation & Test in Europe, pages 56--61, USA, 2008. ACM. 120

[141] S.J. Noronha and V.V.S. Sarma. Knowledge-based approaches for scheduling problems:
A survey. IEEE Trans. Knowl. Data Eng., 3[2]:160--171, 1991. 145, 151, 248, 249

[142] D. Novo et al. Ultra low energy domain specific instruction-set processor for on-line surveil-
lance. In Proc. SASP, pages 30--35, Los Alamitos, CA, USA, Jun.e 2010. IEEE Computer
Society Press. 126

[143] Yunheung Paek et al. Efficient & precise array access analysis. TOPLAS, 24[1]:65--109,
Jan 2002. 36, 37

[144] E.S. Page. On monte carlo methods in congestion problems: I. searching for an optimum
in discrete situations. Operations Research, 13[2]:291--199, 1965. 150, 163, 174, 192

[145] P. Palazzari, L. Baldini, and M. Coli. Synthesis of pipelined systems for the contempora-
neous execution of periodic and aperiodic tasks with hard real-time constraints. Proc. Int'l
Symp. Parallel and Distributed Processing, 3:121a, 2004. 150, 172, 182

[146] K.V. Palem et al. Design space optimization of embedded memory systems via data remap-
ping. In Proc. Conf. Languages, Compilers & Tools for Embedded Systems, pages 28--37,
USA, 2002. ACM. 36

[147] G. Palermo et al. Multi-objective design space exploration of embedded systems. J. Em-
bedded Comput., 1:305--316, Aug. 2005. 4, 5, 121, 217, 218

[148] P. R. Panda et al. Data and memory optimization techniques for embedded systems. ACM
Trans. Des. Autom. Electron. Syst., 6[2]:149--206, Apr 2001. 37

[149] P.R. Panda and N.D. Dutt. Low-power memory mapping through reducing address bus
activity. IEEE Trans. Very Large Scale Integr.(VLSI) Syst., 7[3]:309--320, 1999. 169

[150] A.C. Parker, J. Pizarro, and M. Mlinar. Maha: A program for datapath synthesis. In
ACM/IEEE Proc. Conf. Design Automation, pages 461--466, Piscataway, NJ, USA, June
1986. IEEE Press. 150, 152, 158, 169

[151] P.G. Paulin and J.P. Knight. Force-directed scheduling in automatic data path synthesis.
In ACM/IEEE Proc. 24th Design Automation Conf., pages 195--202, New York, NY, USA,
1987. ACM. 145, 149, 151, 249

[152] P.G. Paulin and J.P. Knight. Force-directed scheduling for the behavioral synthesis of asics.
IEEE Trans. Computer-Aided Design of Integr. Circuits Syst., 8[6]:661--679, jun 1989. 145,
151, 249

266

REFERENCES

[153] C.S. Pedamallu et al. Investigating a hybrid simulated annealing and local search algorithm
for constrained optimization. J. Op. Res., 185[3]:1230--1245, 2008. 182

[154] Z. Peng. Synthesis of vlsi systems with the camad design aid. In ACM/IEEE Proc. 23rd
Design Automation Conf., pages 278--284, Piscataway, NJ, USA, 1986. IEEE Press. 149

[155] D. Piriyakumar, Paul Levi, and C. Murthy. Optimal scheduling of iterative data-flow pro-
grams onto multiprocessors with non-negligible interprocessor communication. In High-
Performance Computing and Networking, 1593 of Lecture Notes in Computer Science, pages
732--743. University of Stuttgart Institute of Parallel and Distributed High-Performance
Systems, Stuttgart, Germany, 1999. 170, 181

[156] Douglas Antony Louis Piriyakumar, C. Siva Ram Murthy, and Paul Levi. A new a* based
optimal task scheduling in heterogeneousmultiprocessor systems applied to computer vision.
In Proc. Int'l Conf. & Exh. High-Performance Computing and Networking, pages 315--323,
London, UK, 1998. Springer-Verlag. 170, 181

[157] Massimiliano Poletto et al. Linear scan register allocation. ACM Trans. Program. Lang.
Syst., 21[5]:895--913, Sep. 1999. 132

[158] C.D. Polychronopoulos et al. The structure of parafrase-2: an advanced parallelizing com-
piler for c & fortran. In LCPC, pages 423--453, 1990. 180

[159] Luis-Noel Pouchet et al. Polybenchmarks benchmark suite. http://www.cse.

ohio-state.edu/~pouchet/software/polybench/, 2012. 43, 89, 113,
120, 141, 247

[160] J. Ramanujam et al. Reducing memory requirements of nested loops for embedded systems.
In Proc. Conf. Design Automation, pages 359--364, New York, NY, USA, 2001. ACM. 34,
37, 42, 55, 89, 113, 229, 232

[161] Miniskar Narasinga Rao. System Scenario Based Resource Management of Processing Ele-
ments on MPSoC. PhD thesis, KULeuven, 2012. 39

[162] H. Edwin Romeijn et al. Simulated annealing and adaptive search in global optimization.
Prob.Eng.&Inf.Sciences, 8[1]:571--590, 1994. 194

[163] F. Romeo and A. Sangiovanni-Vincentelli. Probabilistic hill climbing algorithms: Properties
and applications. In Proc. Chapel Hill Conf. Very Large Scale Integration, pages 393--417,
New York, USA, Dec 1985. Computer Science Press. 159

[164] S. Rubin et al. An efficient profile-analysis framework for data-layout optimizations. SIG-
PLAN Not., 37:140--153, Jan. 2002. 36

267

http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

REFERENCES

[165] A. Safir and B. Zavidovique. On the synthesis of specific image processing automata by a
simulated annealing-based design space search. In IEEE Proc. Int'l Symp. Circuits and Sys-
tems), 2, pages 1374--1377, Los Alamitos, CA, USA, May 1989. IEEE Computer Society.
171

[166] A. Safir and B. Zavidovique. On the synthesis of specific image processing automata from
emulation results. In IEEE Proc. European Conf. Application Specific Integrated Circuits,
pages 104--115, Los Alamitos, CA, USA, Jan 1989. IEEE Computer Society. 171

[167] A. Safir and B. Zavidovique. Towards a global solution to high level synthesis problems. In
IEEE Proc. European Conf. Design Automation, pages 283--288, Los Alamitos, CA, USA,
1990. IEEE Computer Society. 149, 156, 171

[168] S.M. Sait, S.Ali, and M.S. Benten. Scheduling and allocation in high-level synthesis using
stochastic techniques. Microelectronics Journal, 27[8]:693--712, 1996. 150, 160, 161, 173,
182, 192

[169] M. Sami et al. An instruction-level energy model for embedded vliw architectures. Trans.
CAD, 21:998--1010, 2002. 177

[170] R.E. Sant'Anna et al. A left-edge algorithm approach for scheduling & allocation of hw
contexts in dynamically reconfigurable architectures. InFPGA, pages 259--259, USA, 2004.
ACM. 132

[171] F. Schoen. Stochastic techniques for global optimization: A survey of recent advances.
Journal of Global Optimization, 1:207--228, 1991. 145, 151, 249

[172] Fabio Schoen. Stochastic techniques for global optimization: A survey of recent advances.
J. Global Optimization, 1:207--228, 1991. 190

[173] Rachid Seghir et al. Integer affine transformations of parametric polytopes and applications
to loop nest optimization. ACM Trans. Archit. Code Optim., 9[2]:8:1--8:27, Jun 2012. 37

[174] M. Shahzad et al. Image coprocessor: A real-time approach towards object tracking. In
Proc. Int'l Conf. Digital Image Processing, pages 220--224, USA, Mar. 2009. IEEE. 121

[175] D. Sheldon et al. Application-specific customization of parameterized fpga soft-core pro-
cessors. In Proc. Int'l Conf. Computer-Aided Design, pages 261--268, USA, Nov. 2006.
IEEE. 3, 121, 216

[176] D. Sheldon et al. Making good points: application-specific pareto-point generation for dse
using statistical methods. In Proc. Int'l Symp. FPGA, pages 123--132, NY, USA, 2009.
ACM. 5, 119, 121, 218, 243

[177] Z. Shen, Z. Li, and P.C. Yew. An empirical study of fortran programs for parallelizing
compilers. IEEE Transactions on Parallel and Distributed Systems, 1:356--364, 1990. 37

268

REFERENCES

[178] V. Shestak et al. A hybrid branch & bound & evolutionary approach for allocating strings
of applications to heterogeneous distributed computing systems. Par. Distr. Comp., 68:410-
-426, Apr. 2008. 182

[179] H. Shin and N.S. Woo. A cost function based optimization technique for scheduling in
data path synthesis. In IEEE Proc. Int'l Conf. Computer Design: VLSI in Computers and
Processors, pages 424--427, Los Alamitos, CA, USA, Oct 1989. IEEE Computer Society
Press. 150, 152, 157, 167

[180] Behrooz Shirazi et al. Parsa: A parallel program scheduling and assessment environment.
In Proc. Parallel Processing, 2, pages 68--72, aug. 1993. 180

[181] Frank Singhoff et al. Investigating the usability of real-time scheduling theory with cheddar
project. Real-Time Sys., 43:259--295, 2009. 175, 179, 250

[182] S.F. Smith. Is scheduling a solved problem? In Proc. Multi-Disciplinary Int'l Conf. Schedul-
ing Theory and Applications, pages 3--18, Nottingham, UK, 2003. Sherwood Press. 145,
146, 152, 175, 249, 250

[183] B. So et al. Custom data layout for memory parallelism. In CGO, pages 291--, USA, 2004.
IEEE. 36

[184] R.H. Storer, S.D. Wu, and R. Vaccari. New search spaces for sequencing problems with
application to job shop scheduling. INFORMS Management Science, 38[10]:1495--1509,
1992. 150, 172

[185] SUIF. Suif compiler system, 2012. 180

[186] Synopsys. Synopsys synphony -- high level synthesis solution. http://www.

synopsys.com, 2012. 120

[187] D.E. Thomas, C.Y. III Hitchcock, T.J. Kowalski, J.V. Rajan, and R.A. Walker. Automatic
data path synthesis. IEEE Computer, 16[12]:59--70, 1983. 149

[188] Sid-Ahmed-Ali Touati et al. On the decidability of phase ordering problem in optimizing
compilation. In Proc. Conf. Computing frontiers, pages 147--156, New York, NY, USA,
2006. ACM. 4

[189] E.P.K. Tsang. Scheduling techniques -- a comparative study. British Telecom Technology
Journal, 13[1]:16--28, 1995. 156

[190] C.J. Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital systems. IEEE
Trans. Computer-Aided Design of Integr. Circuits Syst., 5[3]:379--395, 1986. 149

[191] D. Tsitsipis, S. Dima, A. Kritikakou, C. Panagiotou, and S. Koubias. Data merge: A data
aggregation technique for wireless sensor networks. In Proc. Int'l Conf. Emerging Tech-
nologies Factory Automation (ETFA), pages 1--4, sept. 2011. 208

269

http://www.synopsys.com
http://www.synopsys.com

REFERENCES

[192] D. Tsitsipis, S.M. Dima, A. Kritikakou, C. Panagiotou, John Gialelis, Harris Michail, and
S. Koubias. Priority handling aggregation technique (phat) for wireless sensor networks. In
Proc. Int'l Conf. Emerging Technologies Factory Automation (ETFA), Sep. 2012. 208

[193] D. Tsitsipis, S.M. Dima, A. Kritikakou, C. Panagiotou, and S. Koubias. Segmentation and
reassembly data merge (sardam) technique for wireless sensor networks. In Proc. Int'l Conf.
Industrial Technology (ICIT), pages 1014--1019, march 2012. 208

[194] R. Upadrasta et al. Potential and challenges of two-variable-per-inequality sub-polyhedral
compilation. 33, 229

[195] M. van Swaaij et al. Automating high level control flow transformations for dsp memory
management. In Proc. Work. VLSI Signal Processing, pages 397--406, USA, 1992. IEEE.
37

[196] N. Vassiliadis et al. The arise approach for extending embedded processors with arbitrary
hardware accelerators. Trans. VLSI, 17[2]:221--233, Feb. 2009. 120

[197] G. Payá Vayá, J. Martín-Langerwerf, P. Taptimthong, and P. Pirsch. Design space explo-
ration of media processors: A parameterized scheduler. In IEEE Proc. Int'l Conf. Embedded
Computer Systems: Architectures, Modeling and Simulation, pages 41--49, Los Alamitos,
CA, USA, 2007. IEEE Computer Society Press. 170

[198] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.H.M. Korst, A. van der Werf, and J.L.
van Meerbergen. Efficiency improvements for force-directed scheduling. In IEEE/ACM
Proc. Int'l Conf. Computer-Aided Design, pages 286--291, Los Alamitos, CA, USA, 1992.
IEEE Computer Society Press. 149

[199] R.A. Walker and S. Chaudhuri. Introduction to the scheduling problem. Design Test of
Computers, IEEE, 12[2]:60--69, 1995. 181

[200] Gang Wang et al. Operation scheduling: Algorithms & applications high-level synthesis. In
High-Level Synthesis, pages 231--255. Springer, 2008. 178, 181

[201] N.Wehn,M.Held, andM.Glesner. A novel scheduling and allocation approach for datapath
synthesis based on genetic paradigms. In Proc. IFIP Working Conf. Logic and Architecture
Synthesis, pages 47--56, Washington, DC, USA, 1991. IEEE Computer Society. 172

[202] J. Weidendorfer et al. A tool suite for simulation based analysis of memory access behavior.
In Proc. Int'l Conf. Computational Science, pages 440--447. Springer, 2004. 36

[203] E. Weisstein et al. Wolfram mathworld: Affine. http://mathworld.wolfram.

com/Affine.html, 2012. 41

[204] B.E. Wells et al. An augmented approach to task allocation: combining simulated annealing
with list-based heuristics. In Proc.Work.Par.& Distr.Proc., pages 508--515, Jan 1993. 182

270

http://mathworld.wolfram.com/Affine.html
http://mathworld.wolfram.com/Affine.html

REFERENCES

[205] Min-You Wu et al. Hypertool: A programming aid for message-passing systems. Trans.
Parallel & Distr.Systems, 1:330--343, 1990. 180

[206] Sven Wuytack et al. Formalized methodology for data reuse exploration for low-power
hierarchical memory mappings. Trans. Very Large Scale Integr. Syst., 6:529--537, Dec.
1998. 37

[207] Xilinx. Logicore ip multi-port memory controller, Mar. 2011. 129

[208] J. Xu and D. L. Parnas. On satisfying timing constraints in hard-real-time systems. IEEE
Trans. Softw. Eng., 19:70--84, Jan. 1993. 148

[209] Jia Xu. Multiprocessor scheduling of processes with release times, deadlines, precedence,
and exclusion relations. IEEE Trans. Softw. Eng., 19:139--154, 1993. 170, 186

[210] Tao Yang et al. Pyrros:static task scheduling&code generation for message passing multi-
processors. In Supercomp., pages 428--437, 1992. 180

[211] A. Yarkhan and J.J. Dongarra. Experiments with scheduling using simulated annealing in
a grid environment, 2002. 172, 182, 190

[212] Z.B. Zabinsky et al. Complexity Analysis Integrating Pure Adaptive Search & Pure Random
Search, pages 171--182. Kluwer Academic Publ., 1997. 192

[213] R. Zhou and E.A. Hansen. Beam-stack search: Integrating backtracking with beam search.
In Proc. Int'l Conf. Automated Planning and Scheduling, pages 90--98, California, USA,
2005. AAAI. 152, 170, 181

[214] X. Zhuang et al. A framework for parallelizing load/stores on embedded processors. In
Proc. Int'l Conf. Parallel Architectures and Compilation Techniques, pages 68--, USA, 2002.
IEEE. 37

271

[This page is intentionally left blank]

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction & Motivation
	1.1 Goal & Context
	1.2 Existing Design Space Exploration methodologies & limitations
	1.3 Scope & Main Contributions
	1.4 Overview of Chapters

	2 Reusable methodology for scalable & near-optimal DSE
	2.1 Introduction
	2.2 Principles
	2.3 Framework creation
	2.3.1 Methodology steps
	2.3.2 Framework properties
	2.3.3 Framework types

	2.4 Framework usage
	2.4.1 Insight of the DSE options
	2.4.2 Framework projection
	2.4.3 Trade-off exploration

	2.5 Unified system design meta-flow
	2.5.1 Processor Level DTSE
	2.5.2 Operations Concurrency Management

	2.6 Conclusions

	I Background memory management methodologies
	3 Development of intra-signal in-place methodology
	3.1 Introduction
	3.2 Motivational Example
	3.3 Related Work
	3.3.1 Enumerative approaches
	3.3.2 Symbolic approaches (including polyhedral techniques)
	3.3.3 Approximation approaches

	3.4 Problem Formulation & Target Application Domain
	3.4.1 Problem Formulation
	3.4.2 Target Application Domain
	3.4.3 Analysis of index expression (fx function)

	3.5 Development of intra-signal in-place methodology
	3.5.1 Intra-signal in-place cases
	3.5.2 Translation cases
	3.5.3 Analysis cases

	3.6 Step 1: Analysis
	3.7 Conclusions

	4 Pattern representation
	4.1 Introduction
	4.2 Motivation
	4.3 General Pattern Formulation
	4.4 Pattern Combination Cases
	4.5 Pattern Operations
	4.5.1 Non-overlapping Operations
	4.5.2 Fully aligned Operations
	4.5.3 AND Operation (&&)
	4.5.4 Skew Operation
	4.5.5 Pattern Combination Process

	4.6 Demonstration case study
	4.7 Conclusions

	5 Intra-signal in-place methodology for non-overlapping & overlapping scenario
	5.1 Introduction
	5.2 Step 2: Translation
	5.2.1 One loop dimension

	5.3 Step 3: Intra-signal in-place optimization for non-overlapping case
	5.3.1 One loop dimension
	5.3.2 Several loop dimensions
	5.3.3 Demonstration case study description
	5.3.4 Results

	5.4 Step 3: Intra-signal in-place optimization for overlapping case
	5.4.1 Intra-signal in-place cases
	5.4.2 Condition Statements
	5.4.3 One loop dimension
	5.4.4 Extension to Several loop dimensions
	5.4.5 Dominant Segment in Outer Dimension
	5.4.6 Non-Dominant Segment in Outer Dimension
	5.4.7 Combinations in different dimensions
	5.4.8 PCS storage size
	5.4.9 Experimental Results

	5.5 Conclusions

	II Processing related mapping methodologies
	6 Design Exploration Methodology for Microprocessor & HW accelerators
	6.1 Introduction
	6.2 Related Work
	6.3 Systematic Template-Based Mapping Methodology
	6.3.1 Step 1: Application & Platform Domain Analysis
	6.3.2 Step 2: Microprocessor & HW Accelerators Inter-Organization
	6.3.3 Step 3: Foreground Memory Management
	6.3.4 Step 4: Data Path Mapping & Final Design

	6.4 Demonstrator Design: Real-Life Microfluid Application
	6.4.1 Step 1: Application & Domain Analysis
	6.4.2 Step 2: Microprocessor & HW Accelerators Organization
	6.4.3 Step 3: Foreground Memory Management
	6.4.4 Step 4: Data Path Mapping & Final Design

	6.5 Experimental Results
	6.5.1 Real-Life Microfluid Application
	6.5.2 PolyBench Benchmark Suite
	6.5.3 Relative Comparison

	6.6 Conclusions

	7 Design-time scheduling techniques framework
	7.1 Introduction
	7.2 Target domain and problem formulation
	7.3 Related work in global scheduling classifications
	7.4 The proposed systematic classification
	7.4.1 Deterministic techniques
	7.4.2 Stochastic techniques
	7.4.3 Horizontal uni-directional constraint propagation

	7.5 Illustration of the systematic classification
	7.5.1 Adaptive global scheduling techniques
	7.5.2 Rigid global techniques
	7.5.3 Pruning techniques
	7.5.4 Near-optimal hybrid techniques
	7.5.5 Formally optimal techniques
	7.5.6 Simulated Annealing based techniques
	7.5.7 Genetic Algorithm based techniques
	7.5.8 Simulated Evolution based techniques
	7.5.9 Tabu search based techniques
	7.5.10 Seed based techniques

	7.6 Conclusions

	8 Methodology to develop design-time scheduling techniques under constraints
	8.1 Introduction
	8.2 Motivation
	8.2.1 Target domain
	8.2.2 Performance of scheduling techniques

	8.3 Related Work
	8.3.1 Scheduling software tools
	8.3.2 Conventional Scheduling Techniques

	8.4 Proposed Methodology
	8.4.1 Step 1: Initialization
	8.4.2 Step 2: Application & Platform Domain Analysis
	8.4.3 Step 3: Propagation of Domain Constraints
	8.4.4 Step 4: Propagation of Design Constraints
	8.4.5 Instantiation of combined parametric template

	8.5 Demonstration case studies
	8.5.1 Small and uncoupled critical subgraphs
	8.5.2 High number of critical subgraphs domain
	8.5.3 Large and strongly connected subgraphs

	8.6 Conclusions

	9 Conclusions & Future Directions
	9.1 Conclusions
	9.2 Future directions

	A Publication List
	A.1 Journals
	A.2 Conferences

	B Εκτεταμένη Περίληψη στα Ελληνικά
	B.1 Εισαγωγή
	B.2 Υπάρχουσες μεθοδολογίες και περιορισμοί
	B.3 Σκοπός και συνεισφορές
	B.4 Οργάνωση κεφαλαίων
	B.5 Eπαναχρησιμοποιούμενη μεθοδολογία για επεκτάσιμα και σχεδόν βέλτιστα DSE πλαίσια (frameworks).
	B.6 Ανάπτυξη επεκτάσιμης και σχεδόν βέλτιστης μεθοδολογίας για το ελάχιστο μέγεθος μνήμης για τα δεδομένα ενός πίνακα.
	B.7 Επεκτάσιμη και σχεδόν βέλτιστη αναπαράσταση των προσπελάσεων στη κύρια μνήμη βασισμένη σε μοτίβα
	B.8 Επεκτάσιμη και σχεδόν βέλτιστη μεθοδολογία για το μέγεθος μνήμης για τα δεδομένα ενός πίνακα για μη επικαλυπτόμενες και επικαλυπτόμενες εντολές εγγραφής και ανάγνωσης.
	B.9 Μεθοδολογία για τη απεικόνιση σε πλατφόρμα με έναν επεξεργαστή ελεγχόμενο από εντολών και ποικίλους συνεπεξεργαστές.
	B.10 Πλαίσιο με τις σχεδόν βέλτιστες τεχνικές χρονοπρογραμματισμού και ανάθεσης πόρων.
	B.11 Μεθοδολογία για την ανάπτυξη παραμετρικών πλαισίων για σχεδόν βέλτιστες και επεκτάσιμες τεχνικές χρονοπρογραμματισμού και ανάθεσης.

	References

