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SUMMARY

Corticospinal and intracortical excitability are excitability measures of the

central nervous system responsible for motor generation, and are studied for their

contribution to fine motor skill execution and learning. Since the need for proper

execution of fine motor skills is ever-present and necessary for everyday life, iden-

tification of physiological pathways that may disrupt or enhance corticospinal and

intracortical excitability is an important research topic. This thesis investigates the

effects of baroreceptor unloading on corticospinal and intracortical excitability during

various motor tasks. Baroreceptor unloading is a physiological response to common

hemodynamic stress (e.g. hypovolemia and orthostasis). The motor tasks investi-

gated are complete muscular relaxation, individual isometric low-force contraction of

a muscle, and an isometric co-contraction of a muscle in a joint-stabilizing task. The

effects of baroreceptor unloading on corticospinal and intracortical excitability appear

to be very task specific. The results are discussed in view of available pharmacologi-

cal and physiological research, and potential neural pathways for the observed effects

are suggested. The overall conclusion is that baroreceptor unloading increases corti-

cospinal excitability and decreases intracortical inhibition in a resting muscle, does

not produce any observable effects during individual muscle activity, and decreases

corticospinal excitability during joint-stabilizing co-contraction.

xiii



CHAPTER I

BACKGROUND

1.1 Introduction

Think back to the time you learned how to write with a pen. Children spend multiple

grades improving their handwriting. Penmanship is an example of a fine motor skill,

a motor pattern that requires precise coordination of various muscles acting across

multiple joints, producing very small and precisely controlled forces [110]. To execute

fine motor skills successfully, an individual may need to recruit muscles individually

(for movement) or to co-contract multiple muscles (for joint stabilization). The high

degree of aptitude for fine motor skills among humans makes tasks that require fine

motor skills commonplace. An individuals quality of life, source of income, indepen-

dence, and, in extreme cases, life itself can all depend on the ability to execute fine

motor skills.

Humans talent for executing fine motor skills results from the way the nervous

system controls motor tasks. The most direct path for a motor command, originating

in the primary motor cortex, to take to reach the spinal motor-neurons is via the cor-

ticospinal tract neurons [6, 82]. Corticospinal tack neurons are nerve cells that form

monosynaptic connections between the primary motor cortex and the spinal motor-

neurons [6, 82]. Muscles commonly involved in fine motor skills, such as muscles

that control the hands and wrists, show greater corticospinal innervation than mus-

cles involved in more gross movements, such as the trunk muscles [133]. Excitability

of the corticospinal tract (corticospinal excitability) and of the primary motor cor-

tex (intracortical excitability) are, therefore, investigated in studies focusing on the

mechanisms of fine motor skill production.
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The ability to execute fine motor skills is susceptible to various physiological

stressors. To use the example above, compare the appearance of your writing before

and immediately after running for 3.14 miles. Under physiological stress muscle force

production and coordination [93, 147, 151, 155] are altered, leading to decreased fine

motor skill performance [155]. Considering the importance of fine motor skills and

the ubiquity of physiological stressors experienced daily, a thorough knowledge of

the modification of the mechanisms of fine motor skill would prove useful not only in

better characterizing the effects of physiological stress, but also in developing practice

regimes for ameliorating such effect.

This thesis establishes the effects of baroreceptor unloading on corticospinal and

intracortical excitability during three different motor tasks that would be involved

in fine motor skill. Baroreceptor unloading was chosen as the physiological stress

of study because of the wealth of knowledge of the mechanisms activated by the

baroreceptor reflex and because baroreceptor unloading is a common physiological

stress experienced throughout the day [26, 50]. The three motor tasks studied were

1) no muscle activity, 2) individual muscle activity, and 3) co-contraction of muscles

in a joint-stabilizing task. Following the relevant scientific background, each Specific

Aim (Table 1) is explored separately. Then, the results of all three aims are integrated

together, the scientific and functional significance of this work is discussed, and future

directions of research are suggested.

1.2 Baroreceptor unloading

Baroreceptors are a group of tonically active stretch-sensitive sensory organs located

on arteries whose discharge frequency is directly related to the amount of mechan-

ical distension they experience. Baroreceptors sense blood pressure within arteries

indirectly by sensing the amount of arterial distension and provide an input to the

baroreceptor reflex – a negative feedback loop for short-term control of arterial blood
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pressure mediated via the autonomic nervous system. The main baroreceptor signal

comes from the baroreceptors located in the carotid sinus and the aortic arch, key

high pressure sites within the circulatory system [10].

The processing of the baroreceptor signal is performed by a group of medullary

nuclei, collectively called the medullary cardiovascular center. The medullary cardio-

vascular center received and integrates input from various parts of the central and

peripheral nervous systems, including peripheral baroreceptors and chemoreceptors,

the hypothalamus, and the cerebral cortex. The baroreceptors project to and excite

a portion of the medulla called the nucleus of the solitary tract (NTS). NTS projects

to and inhibits the vasomotor area of the ventrolateral medulla and the cardioac-

celeratory area of the dorsal medulla. The vasomotor and cardioacceleratory areas

projects to sympathetic preganglionic neurons in the spinal cord, which, in turn, ex-

cite postganglionic sympathetic nerves, increasing vasoconstriction, heart rate, and

heart contractility. Some preganglionic sympathetic neurons innervate the chromaffin

cells of the adrenal medulla. Chromaffin cells release epinephrine and norepinephrine

into the bloodstream in response to excitation by the preganglionic sympathetic neu-

rons. Inhibition of the dorsal ventrolateral medulla (and subsequent inhibition of

sympathetic nerve activity, SNA) by interneurons from the NTS provides the vascu-

lar control and a portion of the cardiac control of the baroreceptor reflex. Additional

cardiac control of the baroreceptor reflex comes from the cardioinhibitory area, made

up of the dorsal motor nucleus of the vagus and nucleus ambiguus, activated by

excitatory interneurons from the NTS. The cardioinhibitory area is composed of pre-

ganglionic parasympathetic neurons, which project to small parasympathetic ganglia

in the atria of the heart. Postganglionic parasympathetic neurons innervate the SA

node, the atria, and the ventricles. Activity of the postganglionic parasympathetic

fibers slows conduction through the heart [10].

Baroreceptor unloading constitutes any stimulus (e.g. hypovolemia, orthostasis)
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that decreases the distension of the baroreceptors. Unloading of the baroreceptors

decreases their discharge frequency, thereby decreasing the input to the NTS. Less

active NTS, in turn, produces less inhibition of the vasomotor and cardioaccelera-

tory areas and less excitation of the cardioinhibitory area. Removal of inhibition of

the vasomotor and cardioacceleratory areas raises SNA, thereby increasing vasocon-

striction, heart rate, heart contractility, and plasma epinephrine and norepinephrine.

Decrease in excitation of the cardioinhibitory area lowers the parasympathetic input

to the heart, diminishing its heart rate lowering effects. Vasoconstriction increases ve-

nous return and increased heart rate and heart contractility increase cardiac output,

thereby restoring arterial blood pressure back to the pre-stress level.

The lower body negative pressure (LBNP) procedure is a human model of acute

central hypovolemia [26, 50]. LBNP of 40 mmHg unloads baroreceptors and results in

increased plasma epinephrine and norepinephrine [145, 58], increased discharge rate

of muscle sympathetic nerves [143, 145, 31], increased low-frequency content of heart

rate variability [85], and increased heart rate with little change in mean arterial blood

pressure [143, 145, 31, 137]. During the LBNP procedure the participant lies supine

with their lower body inside the LBNP chamber. Baroreceptor unloading is achieved

by lowering the pressure inside the chamber. The LBNP procedure was employed in

the current studies to unload the baroreceptors.

1.3 Methods for quantifying neuromuscular pathways of
fine motor skill

Figure 1 depicts a simplified view of the neuromuscular pathway of a motor command

for a fine motor skill. The command originates in the interneurons of the motor

cortex. From their, the most direct path to the spinal motor-neurons of the muscle

is via the monosynaptic corticospinal neurons [6, 82]. Some corticospinal neurons

project to spinal interneurons. The spinal interneurons may modify spinal motor-

neuron activity and excitability, influencing the motor command at the spinal level.
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Cortical interneurons Corticospinal neurons 

Spinal interneurons 

Spinal motor neurons Muscle fibers 

Figure 1: This schematic illustrates the groups of neurons involved in fine motor skill
execution. The motor command originates in the interneurons of the motor cortex.
From there, the most direct path to the spinal motor-neurons of the muscle is via
the monosynaptic corticospinal neurons. Some corticospinal neurons project to spinal
interneurons. The spinal interneurons may modify spinal motor-neuron activity and
excitability, influencing the motor command at the spinal level. Ultimately, the motor
command travels down the spinal motor-neuron to activate the muscle fibers.

Ultimately, the motor command travels down the spinal motor-neuron to activate the

muscle fibers. Various techniques, discussed below, exist for measuring the activity

and excitability of the different sections of this neuromuscular pathway.

1.3.1 Corticospinal Excitability

Corticospinal excitability is a measure of the excitability of the corticospinal tract

neurons. Corticospinal neurons form monosynaptic projections from the motor cor-

tex to spinal interneurons and to spinal motor-neurons of muscle [6, 82]. Muscles

commonly involved in fine motor skills, such as muscles that control the hands and

wrists, show greater monosynaptic corticospinal innervation than muscles involved in

more gross movements, such as the trunk muscles [133]. Monosynaptic corticospinal

projections to spinal motor-neurons are greatly involved during execution of fine mo-

tor skills [95, 111, 12, 13, 88, 129, 132]. Corticospinal excitability increases during

voluntary muscle activity [30], with administration of adrenergic [8, 117, 118, 67] and

serotonergic [66, 47] drugs, and during encoding of a novel fine motor skill within the

motor cortex [113, 114]. A decrease in corticospinal excitability can be observed with

the administration of dopaminergic drugs [78] and following the acquisition of a fine
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motor skill [113]. Corticospinal excitability is, therefore, studied as one of the mech-

anisms of voluntary fine motor skill production [88, 129, 132] and of neural plasticity

of the primary motor cortex [113, 114].

Various tools exist for studying corticospinal excitability. Transcranial magnetic

stimulation (TMS) is a novel technique that is able to assess corticospinal excitability

noninvasively and painlessly, using principles of magnetic induction. TMS induces

an electrical field in the brain. At threshold TMS intensity, the induced electrical

field activates the corticospinal neurons proximally to the axon hillock [130, 36]. The

precise mode of activation is not clear – threshold TMS may active the corticospinal

neurons trans-synaptically, by activating the axons of the low-threshold excitatory

interneurons that synapse onto corticospinal neurons [33, 32, 131, 130], or at the

soma of the corticospinal neurons themselves [38, 39, 101]. Pharmacological studies

reveal that the TMS threshold is mainly dependent on Na+ and K+ channel kinetics

[156]. It is likely that at threshold intensity, the electrical field set up by TMS cre-

ates depolarizing currents in the axons of the low-threshold excitatory interneurons,

generating action potentials which cause excitatory neurotransmitter release onto the

corticospinal neurons; or it results in enough depolarizing currents at the soma of the

corticospinal neurons to generate an action potential. Either way, however, responses

evoked by TMS are influenced by cortical pathways.

As TMS intensity increases, higher threshold cortical excitatory interneurons are

recruited (Fig. 2) [36]. The latency of the descending spinal volleys generated by TMS

is used to infer the populations of excitatory interneurons activated by TMS. For a

resting hand muscle, with the TMS coil held with the handle pointing posteriorly

at an angle of approximately 45 degrees to the sagittal plane yielding an E-field

perpendicular to the central sulcus, at threshold intensity, TMS generates the first

indirect wave (I-1 wave) [11, 36]. As TMS intensity increases later indirect waves

(e.g. I-2 and I-3 waves) are generated [36]. At sufficiently high TMS intensity direct
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excitation of the corticospinal tract is possible [36]. Due to the cortical nature of

corticospinal neuron activation by TMS, reversing the direction of the induced current

within the brain increases the motor threshold [11]. With this “reversed orientation”

TMS, the first descending volleys elicited are I-3 waves [150].

TMS delivered over a muscle’s motor representation area at threshold intensity

and higher produces a motor evoked potential (MEP) in the corresponding muscle.

The size of the MEP is often used to quantify corticospinal excitability [115]. How-

ever, the MEP is not a straight forward measure of the monosynaptic corticospinal

neuron excitability. If TMS activates corticospinal neurons at the soma, an increase

in MEP size for a given stimulation could result from an increase in the number of

discharges of a single corticospinal axons or an increase in the total number of corti-

cospinal neurons activated. If TMS activates corticospinal neurons trans-synaptically,

an increase in MEP size may additionally result from an increase in recruitment of

excitatory interneurons leading to activation of more corticospinal neurons. Since the

MEP reflects descending activity in multiple corticospinal neurons, synchronicity of

the descending activity will affect MEP size. Changes in synchronicity of the descend-

ing activity can be inferred from differences in the response of MEP area and MEP

peak-to-peak amplitude. Disynaptic contribution to MEP size cannot be excluded

[115]. An addition of a chemical synapse to otherwise direct descending projections

to the motor-neurons may increase the conduction time by as much as 2 ms [97],

which is not enough to discern in an MEP with a duration of 20 ms. Therefore, parts

of the MEP may reflect corticospinal activity influencing motor-neurons via spinal

interneurons. Other variables that may affect MEP size include, spinal interneuron

activity, spinal motor-neuron excitability, and muscle fiber excitability. Consideration

of these variables is important in properly interpreting MEP data.
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Somatosensory activity, which is present during voluntary contraction, can aug-

ment corticospinal excitability. In a resting muscle, electrical stimulation over so-

matosensory afferents of a muscle was shown to be capable of increasing and de-

creasing MEP size in that muscle, depending on the interval between the peripheral

stimulation and TMS [34]. This suggests that somatosensory activity provides an

input to both inhibitory and excitatory motor pathways within the central nervous

system. Of course, the short, precisely timed pulses of somatosensory input caused

by electrical stimulation are physiologically different from the tonic increase in so-

matosensory activity during voluntary contraction. During small isometric contrac-

tion, corticospinal excitability increases and MEP variability decreases [30]. This

increase in corticospinal excitability likely reflects the net effect of somatosensory in-

put on various motor pathways, as well as the contributions of central motor command

and the activation of descending motor pathways, and underscores the need for inves-

tigating corticospinal excitability during different tasks for a thorough understanding

of the motor system.

1.3.2 Intracortical Excitability

Intracortical excitability is a measure of the excitability of the excitatory and in-

hibitory interneurons within the motor cortex. The cortical interneurons can con-

tribute to motor command by modifying corticospinal excitability [80]. Some intra-

cortical excitability measures are associated with activity via the NMDA receptor,

a molecular coincidence detector underlying cortical neural plasticity [89, 136]. In-

tracortical excitability is, thus, studied for its contribution to neural plasticity and

motor command.

By delivering two stimuli in rapid succession of each other, paired-pulse TMS can

be used to infer the excitability of distinct populations of intracortical excitatory and

inhibitory interneurons. Depending on the interstimulus interval and the order of
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ICF (Glu  NMDAR) 

SICI (GABAR) 

Figure 2: Schematic of populations of intracortical neurons and the paired-pulse
protocols used to assess their excitability. Excitatory interneurons are denoted with
forks at their axon terminals; inhibitory interneurons are denoted with solid circles.
SICF, short-interval intracortical facilitation; SICI, short-interval intracortical inhi-
bition; ICF, intracortical facilitation; GABAR, GABA receptor pathway; NMDAR,
NMDA receptor pathway; Glu, glutamate.

the two stimulation pulses, a subthreshold conditioning TMS pulse can decrease or

increase the amplitude of the suprathreshold test pulse MEP [80, 56]. In order to

ensure that the paired-pulse stimulation is assessing cortical effects, the subthreshold

conditioning pulse is often set below the MEP threshold for the active muscle. Such

low stimulation is unlikely to produce any spinal volleys, supporting the notion that

any measured effects are localized supraspinally [37].

The excitability of a portion of the excitatory glutamatergic interneurons that

generate later I-waves can be investigated with short-interval intracortical facilitation

(SICF, Fig. 2) [56]. In this paired-pulse stimulation design, the subthreshold con-

ditioning pulse is delivered 1.5 ms after the suprathreshold test pulse. The 1.5 ms

interstimulus interval corresponds to the delay between I-waves [36]. In the SICF

procedure, the suprathreshold test stimulation activates the later I-wave generating
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interneurons. Approximately 1.5 ms later these interneurons produce excitatory post-

synaptic potentials (EPSP) at their target neurons (I-1 wave generating 0neurons).

At this moment, the subthreshold conditioning stimulation is able to activate the

I-1 wave generating interneurons that were brought closer to threshold by the test

stimulation [56]. Since, by itself, the test stimulation also activates the lower thresh-

old I-1 wave generating interneurons, comparison of the MEP in response to paired

stimulation versus test stimulation can reveal the excitability of later I-wave generat-

ing interneurons. Study of SICF during voluntary contraction may provide additional

perspective on the SICF pathway, as low-force voluntary contraction activates the ex-

citatory interneurons that synapse onto the corticospinal tract neurons and decreases

the threshold for SICF [109].

When the conditioning pulse precedes the test pulse by 1-5 ms, the test pulse

MEP is decreased in amplitude [80]. This stimulation design is termed short-interval

intracortical inhibition (SICI). SICI has two peaks of maximal inhibition around 1

and 2.5 ms [44, 127]. The decrease in MEP amplitude during SICI is primarily

caused by synaptic inhibition [127] and allows for the assessment of the excitability

of a population of inhibitory interneurons (Fig. 2) (though neuronal refractoriness

may contribute at the 1 ms interstimulus interval [44]). The subthreshold condi-

tioning stimulation activates low-threshold interneurons. 1-5 ms after stimulation

net inhibition of the motor cortex is observed. This is most likely caused by in-

hibitory interneurons, which produce inhibitory post-synaptic potentials (IPSP) on

their target neurons, including later I-wave generating interneurons [37]. When the

suprathreshold test stimulation is administered, it encounters hyperpolarized later

I-wave generating interneurons. Since they are hyperpolarized, fewer later I-wave

generating interneurons are recruited by the test stimulation, which leads to lower

corticospinal tract activation and a smaller MEP. The short interstimulus interval

used in SICI suggests involvement of the fast-acting ionic gamma-aminobutyric acid

10



(GABA) A receptor. The amount of inhibition produced during SICI can be increased

with the administration of GABAA agonists [159]. Therefore, SICI is often used as

an indirect measure of intracortical GABAA-ergic activity [98].

Though robust, the SICI measurement can sometimes be contaminated by facil-

itation [98]. In a resting condition, if the interstimulus interval used to assess SICI

corresponds to an SICF peak, inhibition will be reduced [116]. This can be avoided

by choosing an interstimulus interval corresponding to an SICF trough, such as 2

ms [116]. SICI decreases during voluntary muscle contraction [126, 109]. Part of

this decrease in SICI during contraction has been attributed to contamination from

SICF, primarily due to a decrease in SICF threshold with contraction [109]. Decreas-

ing the intensity of the subthreshold conditioning stimulus was shown to allow SICI

assessment free from SICF interference during voluntary contraction [109].

The decrease in SICI during voluntary contraction [126, 109] may also be due to

somatosensory input. Electrical stimulation over motor axons [141, 34] and electrical

stimulation of digits [125, 124, 92] was shown to decrease SICI. However, the decrease

in SICI is abolished if the interval between digit stimulation and TMS is altered [77].

Hence, the potential effect of somatosensory afferent input on SICI is not robust.

When the conditioning pulse precedes the test pulse by 10-25 ms, the test pulse

MEP is increased in amplitude [80]. Termed intracortical facilitation (ICF), this stim-

ulation design allows for the assessment of the excitability of a portion of excitatory

interneurons that are physiologically distinct from the population of interneurons as-

sessed with SICF (Fig. 2). Similar to SICI, the subthreshold conditioning stimulation

activates low-threshold interneurons. 10-25 ms after the conditioning stimulation the

excitatory glutamatergic interneurons enact their effects on their target neurons, gen-

erating EPSP. If a suprathreshold test stimulation is delivered while the cortical neu-

rons are brought closer to threshold by the EPSP, the resulting MEP will be greater

than when the test stimulation is given alone. The ICF measure disappears during
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voluntary muscle activity [109], making it impossible to assess the excitability of the

underlying interneuron pathways for a contracting muscle. ICF is decreased with

administration of N-Methyl-D-aspartic acid (NMDA) receptor antagonists [134, 158],

suggesting that ICF can be used as an indirect measure of excitatory glutamater-

gic intracortical excitability mediated via the NMDA receptor. The NMDA receptor

has been shown to function as a molecular coincidence detector [89, 136], making

the NMDA receptor pathway one potential molecular pathway underlying cortical

neural plasticity. Hence, assessment of ICF is of particular interest to the study of

neural plasticity and motor learning. However, the ICF response is also decreased

with GABAA-ergic activity [159]. Therefore, assessment of both SICI and ICF, and

their interpretation in concert, is necessary to properly infer effects on NMDA-ergic

activity.

When TMS is delivered during voluntary muscle activity, the MEP is followed

by a momentary absence of contractile activity [90]. Past 50 ms, this absence of

activity, termed the cortical silent period, is attributed to lasting effects of intracor-

tical inhibitory pathways activated by TMS [150]. During voluntary muscle activity,

intracortical inhibition is suppressed [126, 109]. TMS delivered during voluntary

muscle contraction activates intracortical inhibitory interneurons. The inhibitory in-

terneurons produce IPSP in the excitatory cortical interneurons that were generating

muscle activity. The IPSP hyperpolarize the excitatory cortical interneurons, tem-

porarily blocking the descending cortical drive to the muscle. Pharmacological evi-

dence suggests that the duration of the cortical silent period elicited by low intensity

stimulation is indicative of excitability of the GABAA-ergic pathway [74], while the

duration of the cortical silent period elicited by high intensity stimulation is indicative

of GABAB-ergic pathway excitability [74]. Though the cortical silent period and SICI

are both used to assess the inhibitory GABA-ergic pathway within the motor cortex,

the two TMS protocols assess slightly different, potentially overlapping populations

12



of interneurons. The intensity of stimulation used in cortical silent period assess-

ment is suprathreshold, allowing for the recruitment of higher threshold inhibitory

interneurons. The cortical silent period assesses inhibition over interneurons recruited

during voluntary motor activity, while SICI represents inhibition of later I-waves, i.e.

interneurons recruited by TMS. At present, it is not known if TMS recruitment of

cortical interneurons follows voluntary interneuron recruitment.

Methodological considerations exist for assessing the cortical silent period. The

duration of the cortical silent period can depend on the contraction intensity and

steadiness of contraction before and after TMS [90]. Variability of the cortical silent

period can be diminished by increasing the contraction intensity and by requiring

the subjects to sustain a steady contraction past the stimulation [90]. However, a

greater contraction intensity would recruit a greater number of intracortical excitatory

interneurons that generate muscle activity and may induce fatigue. Therefore, care

must be taken when designing a procedure to assess the cortical silent period.

1.3.3 Spinal motor-neuron excitability

Spinal motor-neurons are neurons that originate in the central nervous system and

synapse onto muscle. This thesis will focus on somatic motor-neurons. These are

motor-neurons that innervate skeletal muscle. Alpha motor-neurons innervate extra-

fusal muscle fibers – the main force generating muscle fibers; gamma motor-neurons

innervate intrafusal muscle fibers, which adjust the sensitivity of muscle spindles –

one of the somatosensory organs in the muscle [25].

All descending motor signal, including TMS-generated activity that results in an

MEP, has to travel via the spinal motor-neurons to reach the muscle. Consequently,

motor-neuron excitability can influence MEP size. Motor-neuron pool excitability

can be estimated using the Hoffmann reflex (H-reflex) [112]. One of the inputs to

alpha motor-neurons is from somatosensory afferents of the muscle. By electrically
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stimulating the somatosensory afferent axons and observing the size of the evoked

motor activity the H-reflex can estimate alpha motor-neuron pool excitability. Since

the stimulation is given over somatosensory axons, the size of the H-reflex depends

primarily on excitability of the alpha motor-neurons (though presynaptic inhibition

of the somatosensory afferents can also contribute).

The H-reflex technique only provides a partial estimate of alpha motor-neuron

pool excitability. Anatomically, the somatosensory afferent axons and the motor-

neuron axons lie in the same nerve bundle. Electrical stimulation over the nerve

bundle meant to activate somatosensory afferents can also activate the motor-neurons.

This is especially true at higher intensities of stimulation [112]. The antidromic

activity generated in the motor-neurons by electrical stimulation will interfere with

and diminish the H-reflex [112]. Furthermore, the motor-neurons activated in the H-

reflex may not be the ones activated by TMS [115]. As such, H-reflex results should

be interpreted appropriately.

1.3.4 Spinal interneuron excitability

Spinal interneurons are neurons in the spinal chord that allow for local processing

of the motor signal. The Ia inhibitory interneurons, for example, inhibit the alpha

motor-neurons of a muscle. Ia inhibitory interneurons receive input from group I

somatosensory afferents of various muscles [99, 148, 103] and from descending cor-

ticospinal neurons [43]. Inhibition of alpha motor-neurons by the Ia inhibitory in-

terneuron due to somatosensory activity from a muscle is called disynaptic inhibition.

Changes in the activity and excitability of spinal interneurons can modify spinal mo-

tor neuron excitability and affect MEP size.

For true antagonist pairs, such as ankle plantar- and dorsiflexors, somatosensory

afferents from one muscle inhibit alpha motor-neurons of the antagonist [99]. Thus,

during activation of the soleus muscle, disynaptic inhibition insures minimal opposing
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activity from the tibialis anterior muscle, and vice-versa [99]. This is beneficial when

the muscle is activated as a primary mover [103]. During a co-contraction task, such

as for joint stabilization, the excitability of the Ia inhibitory interneuron is greatly

reduced [99, 103]. Though not true antagonist pairs [148], flexor (FCR) and extensor

carpi radialis (ECR) muscles of the forearm exhibit similar disynaptic inhibitory be-

havior [99]: somatosensory afferents from the ECR inhibit FCR alpha motor-neurons

via the Ia inhibitory interneurons, and the excitability of the Ia inhibitory interneu-

rons is reduced during co-contraction of the two muscles in a joint-stabilizing task.

In the forearm, it is possible to quantify disynaptic inhibition from the extensor

to the flexor, and from it infer the excitability of the Ia inhibitory interneuron pool,

using the conditioned H-reflex technique. Electrical stimulation of the ECR afferents

would result in excitation of the Ia inhibitory interneurons and subsequent inhibition

of the alpha motor-neurons of the FCR muscle. By timing the conditioning electrical

stimulation of the ECR afferents with the H-reflex of the FCR muscle, and comparing

the evoked motor activity with the unconditioned FCR H-reflex, it is possible to assign

a value to the amount of disynaptic inhibition present at the spinal level.

1.3.5 Muscle fiber excitability

Muscle fibers are similar to neurons in that their excitability is determined by a

membrane potential set up by ion channels. To check whether muscle fiber excitabil-

ity remains constant during the course of an experiment, electrical stimulation can

be used. By stimulating the alpha motor-neuron axons a compound muscle action

potential (M-wave) will be elicited. Since the stimulation is delivered over the motor-

neuron axons, the M-wave represents excitability at and distal to the motor end-plate

[112].
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1.4 Joint-stabilizing co-contraction

The previous section gave an overview of the motor pathways involved in fine mo-

tor skill generation, methods of assessing their excitability, and the influence that

individual voluntary muscle contraction may have over these pathways. However, in

addition to individual muscle contraction, fine motor skills may require co-contraction

of multiple muscles to stabilize a joint. As already alluded to in the spinal interneuron

subsection, neural control of joint-stabilizing co-contraction is different from individ-

ual muscle contraction [103], and differences have been observed at the corticospinal

neuron level, as well [1].

At comparable activation levels, corticospinal excitability of a muscle is greater

during individual muscle recruitment than during co-contraction of muscles in a joint-

stabilizing task [1]. This reduction due to co-contraction has been attributed to de-

creased excitability of the monosynaptic corticospinal neurons [1] for two reasons:

1) a decrease in the short-latency facilitation of the H-reflex by TMS [102], and 2)

a decrease in the short-latency TMS induced peak of the post-stimulus time his-

togram of single motor unit discharges [1]. Due to their temporal dynamics, both,

the short-latency facilitation of the H-reflex and the short-latency peak of the motor

unit post-stimulus time histogram assess the monosynaptic projections from the mo-

tor cortex to the spinal motor-neuron pool [103]. When the H-reflex is adjusted to

produce a comparable amplitude between single muscle and co-contraction tasks, the

amount of TMS induced H-reflex facilitation is not affected by spinal motor-neuron

excitability. Maintenance of comparable muscle contraction levels between the two

tasks ensures that the observed effects are not influenced by the number of recruited

spinal motor-neurons [103]. Finally, transcranial electrical stimulation, at threshold

levels, activates the axons of corticospinal neurons [36] and is therefore unaffected by

changes in the excitability of the soma of the corticospinal neurons [130]. The monosy-

naptic corticospinal explanation for the reduction in MEP size during co-contraction
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is further supported by the absence of significant effects of co-contraction on the

short-latency facilitation of the H-reflex [102] and on short-latency peak of the post-

stimulus time histogram of single motor unit discharges in response to transcranial

electrical stimulation [1].

The reduction in corticospinal excitability during joint-stabilizing co-contraction

is not due to greater inhibition from the GABA-ergic interneurons assessed with SICI.

Comparison of SICI during ECR contraction and ECR-FCR co-contraction did not

reveal any differences [1]. Put another way, the SICI pathway is not influenced by

joint-stabilizing co-contraction.

Other potential causes of the reduced corticospinal excitability during joint-stabilizing

co-contraction are 1) cortical reciprocal inhibition and 2) recruitment of co-contraction

specific corticospinal tract neurons (Fig. 3). Anatomical studies of the cat motor cor-

tex reveal reciprocal pathways between cortical representations of the wrist flexors and

extensors [17]. Functional cortical reciprocal inhibition was recently demonstrated in

human electrophysiological studies [7, 62]. Electrical stimulation of the somatosensory

afferents of the FCR muscle inhibited TMS evoked MEP in the ECR muscle [7, 62].

The cortical nature of such inhibition is supported by the latency of the inhibition,

the dependence of the inhibition on TMS coil orientation, and the lack of inhibi-

tion of MEP evoked by transcranial electrical stimulation [7, 36, 150]. Activation of

such cortical reciprocal inhibitory pathway during joint-stabilizing co-contraction can

decrease corticospinal excitability during co-contraction.

Joint-stabilizing co-contraction may involve co-contraction specific corticospinal

neurons that are distinct from those recruited during individual muscle activity. In

the monkey motor cortex, multiple representations of a single muscle have been found,

suggesting the existence of multiple subgroups of descending neurons, possibly used

for functionally distinct tasks [71]. Similarly, an imaging study in humans compar-

ing cortical activation during ankle plantar/dorsiflexion with co-contraction shows
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Figure 3: Schematic model of corticospinal neurons (denoted with triangular soma)
in a co-contraction task. The low threshold corticospinal neurons in the foreground
project to spinal motor-neurons and to Ia inhibitory interneurons. The higher thresh-
old co-contraction specific corticospinal neurons project to the spinal motor-neurons,
only. They are in the background, denoted with a thicker contour. Spinal Ia inhibitory
interneurons and cortical reciprocal interneurons are denoted with solid circles at their
axon terminals.
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a shift in the location of cortical peak activation [69]. Groups of cortical neurons

exist that are active during co-contraction only, but not during flexion/extension

[65]. In the spinal chord, groups of monosynaptic corticospinal neurons with excita-

tory projections to wrist flexors and inhibitory projections to the extensors show a

decrease in activity during co-contraction, as compared to simple flexion/extension

[43]. Other descending tract neurons have been identified that are vigorously active

during wrist co-contraction, and project to the wrist flexors without presenting any

inhibition to the extensors [43]. It is, therefore, possible that different groups of

corticospinal neurons are recruited for individual muscle contraction and for joint-

stabilizing co-contraction tasks. In this case, the decrease in corticospinal excitability

during co-contraction may simply reflect neurophysiological differences between the

corticospinal neurons specific to flexion/extension and to co-contraction.

1.5 Potential for influence of baroreceptor unloading over
motor pathways of fine motor skill

Baroreceptor unloading may influence the motor pathway via central or peripheral

pathways. Baroreceptor unloading dis-inhibits the dorsal ventrolateral medulla, which

projects to the locus coeruleus [41, 64]. Mild hypovolemia increases catecholamine

release from the locus coeruleus [138, 70], which robustly innervates the neocortex

[45, 35]. The locus coeruleus also innervates the dorsal raphe nucleus from which sero-

tonergic neurons spread to higher brain structures. Serotonin release is increased with

adrenergic stimulation of the raphe nucleus [23]. Hence, baroreceptor unloading may

result in increased function of neuromodulatory monoamines (i.e. norepinephrine,

dopamine, and serotonin) within the motor cortex. Drug studies of monoaminergic

agents demonstrate profound influence of norepinephrine, dopamine, and serotonin

over corticospinal and intracortical excitability [156]. In general, norepinephrine and

serotonin agonists increase corticospinal excitability and decrease intracortical inhi-

bition [152, 8, 117, 118, 66, 67, 47], while dopamine agonists have the opposite effect
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[157, 160, 78].

Similarly, activation of the locus coeruleus and raphe nucleus by baroreceptor

unloading may affect the descending motor pathway at the spinal level [94]. Both,

the locus coeruleus and raphe nuclei project to the spinal cord [24, 105, 153, 81] and

secrete norepinephrine and serotonin, respectively. The locus coeruleus and raphe

nuclei innervate spinal motor-neurons [49, 61, 120, 2], various spinal interneurons

[52, 91, 21, 68], descending neurons [52, 53], and motor-sensory neurons [52, 53, 68].

In general, both norepinephrine and serotonin, acting at the spinal cord level, can

increase excitability of spinal interneurons and motor-neurons [40, 107, 144, 140, 154,

28, 63, 29], can increase responses evoked by group I motor afferents [68], and can

have varying effects on responses evoked by group II motor afferents [104, 123, 52, 68].

Thus activation of locus coeruleus and raphe nuclei by baroreceptor unloading can

influence the neural motor pathways at various levels of the central nervous system.

The primary dopaminergic input to the spinal cord comes from the hypothalamus

[60, 119, 139]. Dopaminergic neurons innervate spinal motor-neurons [54], various

spinal interneurons [54, 55] and motor sensory afferents [4, 20, 22]. Dopamine appears

to increase spinal motor-neurons excitability [54] and decrease afferent monosynaptic

transmission [20, 22]. The hypothalamus provides one of the inputs to the medullary

cardiovascular center [10]. In a purely peripheral unloading of baroreceptors the

hypothalamus is unlikely to change in activity. Therefore, dopaminergic influence of

motor pathways at the spinal level in response to baroreceptor unloading is not as

likely as that of norepinephrine and serotonin.

Baroreceptor unloading also disinhibits sympathetic nerve activity [143]. Sympa-

thetic nerves innervate muscle spindles [3]. Though controversy exists over whether

increased sympathetic nerve activity influences muscle spindle discharges [87], a pos-

sible increase in somatosensory afferent input is suggested from an increased stretch
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Table 1: Table of the motor tasks performed in each Specific Aim

Specific Aim 1 Specific Aim 2 Specific Aim 3
Target muscle At rest At rest/Active Active/Active
Secondary muscle At rest At rest/At rest At rest/Active

reflex [59, 72] in the presence of an unaltered H-reflex [72] with physiologically height-

ened sympathetic nerve activity. Electrical stimulation of motor axons and digits has

opposing effects on SICI and MEP [125, 141, 124, 92, 34, 77], depending on the timing

of the somatosensory input. Thus, baroreceptor unloading may alter the neural mo-

tor system by influencing the peripheral motor pathways. Collectively, baroreceptor

unloading may influence neuromuscular pathway centrally and peripherally.

1.6 Specific aims

This thesis establishes the effects of baroreceptor unloading on corticospinal and in-

tracortical excitability during three different motor tasks that would be involved in

fine motor skill. Baroreceptor unloading was chosen as the physiological stress of

study because of the wealth of knowledge of the mechanisms activated by the barore-

ceptor reflex and because baroreceptor unloading is a common physiological stress

experienced throughout the day [26, 50]. The three motor tasks studied were 1) no

muscle activity, 2) individual muscle activity, and 3) co-activation of muscles in a

joint-stabilizing task. Each Specific Aim (Table 1) is explored separately. Then, the

results of all three aims are integrated together, the functional implications of this

work are discussed, and future directions of research are suggested.

1.6.1 Specific Aim 1

Purpose: Observe the net effect of baroreceptor unloading on corticospinal excitabil-

ity for a resting muscle. Hypothesis: Unloading of the baroreceptors with 40 mmHg
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LBNP will increase corticospinal excitability, as measured by the size of MEP in re-

sponse to TMS.

Rationale: The first Specific Aim was meant as exploratory. Since influence of

physiological stress over the motor system is a novel line of research, a simple investi-

gation into the effects during rest was undertaken. Hemodynamic stress is a common

physiological stress that results in baroreceptor unloading; baroreceptor unloading

dis-inhibits the dorsal ventrolateral medulla, which projects to the locus coeruleus

[41, 64]. Mild hypovolemia increases catecholamine release from the locus coeruleus

[138, 70], which robustly innervates the neocortex [45, 35]. The locus coeruleus also

innervates the dorsal raphe nucleus from which serotonergic neurons spread to higher

brain structures. Serotonin release is increased with adrenergic stimulation of the

raphe nucleus [23]. Hence, baroreceptor unloading may result in increased function of

neuromodulatory monoamines (i.e. norepinephrine, dopamine, and serotonin) within

the motor cortex, which have been shown to affect corticospinal excitability in oppos-

ing fashion [156]. While norepinephrine and serotonin agonists increase corticospinal

excitability [8, 117, 118, 66, 67, 47], dopamine agonists have the opposite effect [78].

Similarly, activation of the locus coeruleus and raphe nucleus by baroreceptor

unloading may affect the descending motor pathway at the spinal level [94]. Both,

the locus coeruleus and raphe nuclei project to the spinal cord [24, 105, 153, 81]

and innervate spinal motor-neurons [49, 61, 120, 2], various spinal interneurons [52,

91, 21, 68], descending neurons [52, 53], and motor-sensory neurons [52, 53, 68].

In general, both norepinephrine and serotonin, acting at the spinal cord level, can

increase excitability of spinal interneurons and motor-neurons [40, 107, 144, 140, 154,

28, 63, 29], can increase responses evoked by group I motor afferents [68], and can

have varying effects on responses evoked by group II motor afferents [104, 123, 52, 68].

Finally, baroreceptor unloading heightens sympathetic nerve activity (SNA) [143],
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which may alter somatosensory input peripherally. Peripheral effects on the neuro-

muscular system are suggested by an increased stretch reflex [59, 72] in the pres-

ence of an unaltered H-reflex [72] with physiologically heightened SNA. Depending

on the timing, somatosensory input has the potential to increase or suppress corti-

cospinal excitability [34]. Collectively, baroreceptor unloading may alter corticospinal

excitability by influencing the neuromuscular pathways centrally and peripherally; the

directionality of the net effect is not clear. Due to the high increase in norepinephrine

in blood plasma with the application of LBNP [145, 58], corticospinal excitability was

hypothesized to increase with LBNP.

1.6.2 Specific Aim 2

Purpose: Examine the effects of baroreceptor unloading on intracortical excitability

for a muscle at rest and during voluntary contraction. Hypothesis: Unloading of the

baroreceptors with 40 mmHg LBNP will increase intracortical facilitatory pathways

or decrease intracortical inhibitory pathways

Rationale: Results of Specific Aim 1 demonstrated an increase in corticospinal

excitability. The increase in corticospinal excitability was observed only at higher

TMS intensity. TMS of higher intensity recruits interneurons that generate later

I-waves (i.e. I-2 and I-3 waves) in the motor cortex [36], suggesting that greater

contribution of later I-waves leads to increased corticospinal excitability with barore-

ceptor unloading. Contribution of later I-waves to corticospinal excitability may be

increased by 1) increasing the activity of the intracortical excitatory glutamatergic

pathway responsible for later I-wave generation, assessed with SICF [56] or 2) de-

creasing the activity of the intracortical inhibitory GABAA-ergic [159] pathway that

inhibits later I-waves [37], assessed with SICI [80].

Baroreceptor unloading can affect interneuron excitability at varying levels of the

motor system. Baroreceptor unloading dis-inhibits the dorsal ventrolateral medulla,
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which projects to the locus coeruleus [41, 64]. Mild hypovolemia increases cate-

cholamine release from the locus coeruleus [138, 70], which robustly innervates the

neocortex [45, 35]. The locus coeruleus also innervates the dorsal raphe nucleus from

which serotonergic neurons spread to higher brain structures. Serotonin release is

increased with adrenergic stimulation of the raphe nucleus [23]. Hence, barorecep-

tor unloading may result in increased function of neuromodulatory monoamines (i.e.

norepinephrine, serotonin, and dopamine) within the motor cortex. Norepinephrine

and serotonin agonists decrease SICI [117, 118, 67, 152, 66, 47] while dopamine ago-

nists increase SICI and decrease SICF [157, 160, 78].

Intracortical excitability may also be affected by somatosensory afferent input.

Electrical stimulation of motor axons and digits was shown to decrease SICI [125,

141, 124, 92, 34, 77], depending on the timing of the somatosensory input. Barore-

ceptor unloading can alter somatosensory input centrally and peripherally. Both, the

locus coeruleus and raphe nuclei project to the spinal cord [24, 105, 153, 81] and mod-

ulate activity of motor-sensory neurons [52, 53, 68]. Activation of the locus coeruleus

and raphe nuclei by baroreceptor unloading may lead to increased norepinephrine

and serotonin activity at the spinal cord level, which was shown to increase responses

evoked by group I motor afferents [68], and have varying effects on responses evoked

by group II motor afferents [104, 123, 52, 68]. Finally, baroreceptor unloading height-

ens SNA [143], which may alter somatosensory input peripherally. Peripheral effects

on the neuromuscular system are suggested by an increased stretch reflex [59, 72]

in the presence of an unaltered H-reflex [72] with physiologically heightened SNA.

Collectively, baroreceptor unloading may alter intracortical excitability by influenc-

ing the motor system centrally and peripherally. It was predicted that baroreceptor

unloading would change at least one of the TMS measures of intracortical excitatory

and inhibitory pathways in the direction for increasing intracortical excitability. In-

tracortical excitability was studied at rest and during voluntary muscle contraction
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because muscle contraction alters intracortical excitability [126, 109] and, as such,

may interfere with the effects of LBNP.

1.6.3 Specific Aim 3

Purpose: Examine the effects of baroreceptor unloading on corticospinal excitabil-

ity for a muscle contracting in a joint-stabilizing co-contraction and individually.

Hypothesis: Unloading of the baroreceptors with 40 mmHg LBNP will not affect

corticospinal excitability of a muscle contracting individually and will increase corti-

cospinal excitability of a muscle co-contracted in a joint-stabilizing task, as measured

by the size of the motor potentials evoked by transcranial magnetic stimulation.

Rationale: Specific Aims 1 and 2 demonstrated that, for a resting muscle, barore-

ceptor unloading increases corticospinal excitability [15], and this increase is, at least

partially, explained by decreased GABA-ergic inhibition (as assessed with SICI) at

the motor cortex. No effect of baroreceptor unloading on intracortical excitability was

observed during voluntary muscle contraction. Voluntary contraction also decreases

GABA-ergic inhibition [126, 109]. The lack of effect of baroreceptor unloading on

intracortical excitability during voluntary muscle contraction implies that either the

disinhibiting effects of baroreceptor unloading were present, however, eclipsed by the

disinhibiting effects of contraction or that the effects of baroreceptor unloading on the

neuromuscular system were shut off during voluntary contraction. Observing some

motor effect of baroreceptor unloading during voluntary contraction would rule out

the latter and suggest the former possibility.

From Specific Aim 2 it is known that baroreceptor unloading, assessed with the

lower body negative pressure (LBNP) procedure [26, 50], can modulate cortical path-

ways, in general, and disinhibits the motor cortex, in particular (by suppressing the

GABA-ergic pathway). It is, then, possible that the LBNP procedure exerts influ-

ence over other cortical inhibitory pathways, as well. Joint-stabilizing co-contraction
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is a motor task during which corticospinal excitability decreases [1]. This decrease

in corticospinal excitability appears to be cortical in nature and is not mediated via

the GABA-ergic pathway [1]. Joint-stabilizing co-contraction, therefore, presents an

opportunity to further test if LBNP exerts influence over the neuromuscular system

during voluntary contraction.

The purpose of this study was to observe the changes in corticospinal excitability

for two tasks – joint-stabilizing co-contraction and individual muscle contraction –

during baroreceptor unloading by means of the LBNP technique. Individual muscle

contraction was investigated in addition to co-contraction for better interpretation of

the data in the context of previous research. In Specific Aim 2, LBNP was shown

to exert disinhibitory effects at the cortical level. The decrease in corticospinal ex-

citability during joint-stabilizing co-contraction suggests inhibitory cortical activity

[1]. An increase in corticospinal excitability with 40 mmHg LBNP was predicted dur-

ing joint stabilizing co-contraction because this would imply cortical disinhibition.

No effect of LBNP on corticospinal excitability during individual muscle contraction

was predicted because of the lack of cortical inhibition during this task [126, 109] and

because intracortical excitability was not altered by LBNP in Specific Aim 2.
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CHAPTER II

AIM 1: CORTICOSPINAL EXCITABILITY AT REST

2.1 Introduction

Corticospinal excitability, as measured by transcranial magnetic stimulation (TMS),

serves as a representation of the summed excitabilities of the central and peripheral

nervous systems, and the muscle fibers. Corticospinal excitability is associated not

only with the voluntary activation of the motor cortex [88, 129, 132], but with the

plasticity of the primary motor cortex [113, 114]. Accordingly, identification of physi-

ological pathways and interventions that enhance corticospinal excitability in humans

is an important research topic.

Hemodynamic stress is a common physiological stress that results in barorecep-

tor unloading. Baroreceptor unloading can influence the motor system centrally and

peripherally. Baroreceptor unloading dis-inhibits the dorsal ventrolateral medulla,

which projects to the locus coeruleus [41, 64]. Mild hypovolemia increases cate-

cholamine release from the locus coeruleus [138, 70], which robustly innervates the

neocortex [45, 35]. The locus coeruleus also innervates the dorsal raphe nucleus from

which serotonergic neurons spread to higher brain structures. Serotonin release is in-

creased with adrenergic stimulation of the raphe nucleus [23]. Hence, baroreceptor un-

loading may result in increased function of neuromodulatory monoamines (i.e. nore-

pinephrine, dopamine, and serotonin) within the motor cortex, which have been shown

to affect corticospinal excitability in opposing fashion [156]. While norepinephrine and

serotonin agonists increase corticospinal excitability [8, 117, 118, 66, 67, 47], dopamine

agonists have the opposite effect [78]. Similarly, activation of the locus coeruleus and

raphe nucleus by baroreceptor unloading may affect the descending motor pathway
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at the spinal level [94]. Both, the locus coeruleus and raphe nuclei project to the

spinal cord [24, 105, 153, 81] and innervate spinal motor-neurons [49, 61, 120, 2],

various spinal interneurons [52, 91, 21, 68] and descending neurons [52, 53], and

motor-sensory neurons [52, 53, 68]. In general, both norepinephrine and serotonin,

acting at the spinal cord level, can increase excitability of spinal interneurons and

motor-neurons [40, 107, 144, 140, 154, 28, 63, 29], can increase responses evoked by

group I motor afferents [68], and can have varying effects on responses evoked by

group II motor afferents [104, 123, 52, 68]. Finally, baroreceptor unloading heightens

sympathetic nerve activity (SNA) [143], which may alter somatosensory input periph-

erally. Peripheral effects on the neuromuscular system are suggested by an increased

stretch reflex [59, 72] in the presence of an unaltered H-reflex [72] with physiologically

heightened SNA. Depending on the timing, somatosensory input has the potential to

increase or suppress corticospinal excitability [34]. Collectively, baroreceptor unload-

ing may alter corticospinal excitability by influencing the neuromuscular pathways

centrally and peripherally; the directionality of the net effect is not clear.

The purpose of this study was to observe the net effect of baroreceptor unloading

on corticospinal excitability for a resting muscle, quantified as the size of the MEP

evoked by TMS. To accomplish this purpose, the size of MEP was compared between

physiological conditions with and without the application of lower body negative

pressure (LBNP), a human model of acute central hypovolemia [26], in healthy human

adults. Due to the high increase in norepinephrine concentration in blood plasma

with the application of LBNP [145, 58], corticospinal excitability was hypothesized

to increase with LBNP.
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Table 2: Baseline characteristics of participants in the Specific Aim 1 study, separated
by group. Measurements were taken prior to Trial 1. % MSO, % maximum stimulator
output. No significant differences were observed.

Experimental group Control group
N 12 9
Age, years 20.9 ± 1.70 20.1 ± 1.45
Handedness index 0.81 ± 0.14 0.82 ± 0.16
Heart rate, beats/min 60.9 ± 8.2 61.0 ± 7.1
Mean arterial blood pressure, mmHg 89.0 ± 7.6 87.9 ± 10.0
Resting motor threshold, % MSO 45.3 ± 7.01 45.9 ± 7.39

2.2 Methods

2.2.1 Subjects

Twenty-one healthy adults (20.6 ± 1.6 years of age, 9 women) were randomly assigned

to either the Experimental (n = 12) or Control (n = 9) group. This subject number

was originally based on an a priori sample size calculation performed with GPower

version 3.1.5 (Universität Kiel, Germany). For a between-within study design with

two groups, two measurements of each dependent variable, an alpha error probability

of 0.05, power of 0.95, and a small effect size of 0.2, the a priori sample size was

twenty subjects. All subjects were right-handed, as confirmed with the Edinburgh

handedness inventory (Table 2) [106]. Volunteers were free of any signs of chronic

altered sympathetic nerve activity: no history of diabetes, cardiovascular problems,

brain or nerve disorder, obesity, hypertension, or hypotension [83]. They did not

perform extensive hand grip activity, exhibit skilled use of hands report arthritis of

the hands, or take any medication that may affect motor control and/or brain and

nerve function. In addition, subjects were not allowed to participate if they had a

family history of seizure or epilepsy, skin allergies, were pregnant, were prone to severe

headaches, or had metal in their head other than dental fillings [73]. To minimize the

variability in the basal physiologic level and responsiveness of SNA across subjects,
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Figure 4: Schematic of protocol used in the Specific Aim 1 study. Both groups of
subjects went through two trials of data collection. Lower body negative pressure
(LBNP) was applied only in Trial 2 of the Experimental group.

all experiments were conducted at 8 am; participants abstained from food and drink,

with the exception of water, for 10 hours prior to the experiment [5]. Women were

tested during their follicular phase to avoid potential confounding effects of estrogen

and progesterone [96]. All subjects gave written informed consent. Local Institutional

Review Boards approved the study.

2.2.2 Experimental approach

Figure 4 shows a schematic of the protocol the subjects went through. MEP of the

resting first dorsal interosseus (FDI) muscle was measured in both groups. In the

Experimental group, MEP was recorded during 0 mmHg LBNP (basal condition)

in Trial 1 and during 40 mmHg LBNP (unloaded baroreceptors) in Trial 2. The

two trials were separated by 1 hour. The experimental protocol followed an ordered

design to avoid interference of any possible carryover effects of the LBNP procedure.

To account for possible effects of order, the Control group went through the same

study procedure as the Experimental group above, except MEP was measured during

0 mmHg LBNP (basal condition) in both Trials 1 and 2. Effects of baroreceptor
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unloading on corticospinal excitability were assessed as the difference in MEP size

between Trial 1 and Trial 2, compared between the two groups.

2.2.3 Baroreceptor unloading

Baroreceptor unloading was accomplished using the LBNP procedure. The partici-

pants lay supine with their lower body inside the LBNP chamber (1.2 m × 0.6 m ×

0.5 m). Subjects wore a neoprene belt about their hips at the level of the iliac crest.

An airtight flexible nylon cover was fit over the opening of the LBNP chamber to form

a seal between the chamber and the belt. A bicycle saddle in the chamber prevented

subject displacement during the application of LBNP. A commercial vacuum (Dayton

Industrial, Dayton, OH, USA) attached to the chamber was used to lower the pres-

sure inside the chamber. The LBNP was adjusted with a valve between the vacuum

and the chamber. This setup has been used repeatedly in LBNP studies by Seals

and colleagues [135, 145, 31]. During Trial 2 in the Experimental group, the pressure

in the chamber was gradually reduced to -40 mmHg relative to ambient pressure in

20 s. LBNP of 40 mmHg is known to significantly and substantially increase plasma

norepinephrine concentration [145, 58] and heart rate with little changes in blood

pressure [137]. The vacuum remained on during the recording of MEPs across trials

including when the valve was closed for 0 mmHg LBNP (Trial 1 in the Experimental

group and Trials 1 and 2 in the Control group). Blood pressure at the brachial artery

in the left arm and heart rate (averaged over 5-7 s) at the fingertip were monitored

noninvasively (Cardiocap/5, GE Healthcare, Giles, UK) and recorded at each TMS

intensity, 30 s into the block. Measurement of blood pressure took approximately 30

s.

2.2.4 Corticospinal excitability

Corticospinal excitability was assessed noninvasively with single-pulse TMS (Magstim

2002, by way of BiStim module, Magstim Co, Wales, UK) of the left primary motor
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cortex. The head was oriented in neutral position on a pillow; the arms lay at the

subjects sides with the right hand resting on the bed in pronation. The subjects were

instructed not to move their arms or hands during measurement. The orientation of

the right hand was monitored visually throughout the experiment.

The experiment was conducted in an electrically shielded room. Surface elec-

tromyogram (EMG) was recorded using 2 Ag-AgCl electrodes (E224A, IVM, Healds-

burg, CA, USA) placed on the skin overlying the right FDI in a belly-tendon montage.

One electrode was placed over the belly of the FDI muscle and the other was attached

to the skin over the base of the proximal phalanx of the index finger, after abrasion of

the skin. A wet circumferential strap electrode (F-E10SG1, Grass Technologies, West

Warwick, RI, USA) was placed around the right wrist for a reference. The EMG was

differentially pre-amplified 300 times (Y03-000, MotionLabs, NY, USA) and further

amplified with a custom-built amplifier for a total gain of 1,000.

A figure-of-eight coil (Magstim second generation double 70 mm remote coil,

Magstim Co, Wales, UK) was held over the left primary motor cortex at the op-

timum position (i.e. hotspot) for eliciting an MEP in the resting FDI muscle of the

right hand. The coil was held with the handle pointing posteriorly at an angle of

approximately 45 degrees to the sagittal plane yielding an E-field perpendicular to

the central sulcus [11]. A TMS coil navigation system (NDI TMS Manager, Northern

Digital Inc, Waterloo, Ontario, Canada) was used to maintain the coil position in

3-dimensional space relative to the head. The data were sampled at 5,000 samples/s

with an analog-to-digital converter (Power 1401, Cambridge Electronic Design Ltd,

Cambridge, UK) and data acquisition software (Signal 4.0, Cambridge Electronic De-

sign Ltd, Cambridge, UK) for online monitoring, storage, and offline analysis. Visual

feedback of the pre-stimulus EMG was provided to ensure relaxation of the FDI.

The resting motor threshold (RMT) was determined as the smallest TMS intensity

needed to elicit an MEP with peak-to-peak amplitude (PPamp) greater than 50 µV
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in 5 out of 10 consecutive stimulations [16, 30]. RMT was measured in percentage of

maximal stimulator output for each subject at basal SNA, with the vacuum turned

off. Previous studies show that the effects of norepinephrine, serotonin, or dopamine

agonists on corticospinal excitability may depend on TMS intensity [8, 117, 118, 66,

67, 47, 78]. Therefore, MEPs were collected in response to six intensities of TMS, i.e.,

90%, 100%, 110%, 120%, 130%, and 140% of RMT in each subject. Measurements

were made in blocks, with 12 MEP responses per block (i.e. per TMS intensity),

and the order of the TMS intensity blocks was randomized. In Trial 1, MEPs were

collected at ambient pressure (0 mmHg LBNP) in both groups. One hour later, MEPs

were collected again at ambient pressure in the Control group and at 40 mmHg LBNP

in the Experimental group in Trial 2.

2.2.5 M-wave (supplemental experiment)

After completing the TMS data analysis, a supplemental experiment was performed

in a separate group of three subjects to explore the effect of LBNP on the compound

muscle action potential (M-wave) of the FDI. These subjects were tested on two

days, separated by at least one week, in the same experimental setup as for the

TMS experiment. On the Experimental day, the M-wave was measured at 0 mmHg

(Trial 1) followed by 40 mmHg (Trial 2). On the Control day, the M-wave was

recorded at 0 mmHg in both Trials. The two trials were separated by 1 h, and the

testing days were randomized. Electrical stimulation was delivered to the ulnar nerve

transcutaneously via two stimulating electrodes at the wrist using a constant current

stimulator (Digitimer DS7AH, Digitimer Limited, Herdfordshire, UK). Three levels

of submaximal stimulation intensities were set to elicit target M-wave PPamps within

the range of 1-3 mV in Trial 1. The target amplitudes were chosen to approximately

cover the amplitude range of the MEP observed during the TMS at higher intensities.

Supramaximal M-wave was also collected at 150% of stimulation intensity for the
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maximal M-wave. Twenty-five stimulations were delivered at each intensity, separated

by 10 s. The supramaximal M-wave was collected first, followed by the submaximal

M-waves, in random order.

2.2.6 Data reduction

The first 2 MEP responses in each block were discarded to control for any possi-

ble startle responses. All remaining recordings were inspected, and, recordings that

showed obvious pre-stimulus EMG activity 100 ms preceding the TMS were discarded

by visual inspection. The MEP PPamp, the area bound by the MEP and the 0 mV

axis (MEP area), and the root mean square (RMS) amplitude of the pre-stimulus

EMG were calculated for each response (Fig. 5). Figure 5 shows EMG recordings

from Trials 1 and 2 of two representative subjects, one from the Experimental group

(top row) and one from the Control group (bottom row). The EMG in the period be-

tween 20 and 50 ms following application of TMS was used to measure MEP PPamp

and MEP area. In addition to PPamp, MEP area was analyzed to account for po-

tential changes in MEP that may not be reflected in PPamp. The RMS amplitude of

the pre-stimulus EMG was calculated from data 100 ms preceding the application of

TMS. Values in each response were averaged together within each intensity block.

As supplemental assessment for exploring the potential alteration in the associ-

ation between MEP and TMS intensity, the linear phase of MEP stimulus-response

curve was approximated with the standardized slope of the regression line through the

middle four intensities (100-130% RMT). The standardized regression slope was calcu-

lated by dividing the slope of a regression line by the ratio of the SDs of each variable,

using SPSS software (SPSS Statistics, IBM, Armonk, NY, USA). The standardized

regression slope was used because it accounts for differences in the distribution of

variables.

M-wave data were analyzed similar to MEP data. The first 2 responses at each
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Figure 5: Representative recordings of pre-stimulus electromyogram (EMG) and
motor evoked potential (MEP) recorded from the right hand first dorsal interosseus
muscle in the Experimental and Control groups. The recordings in response to 130%
resting motor threshold stimulation were taken from a subject in the Experimental
group during Trial 1 (0 mmHg LBNP) and Trial 2 (40 mmHg LBNP) on the top row
and from a subject in the Control group during Trial 1 (0 mmHg LBNP) and Trial
2 (0 mmHg LBNP) on the bottom row. Pre-stimulus EMG 100 ms preceding the
transcranial magnetic stimulation (TMS) is indicated (open underscore). Peak-to-
peak amplitude and area of MEP were measured in 20-50 ms post stimulus artifact
(dark underscore).
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intensity of stimulation were discarded to control for possible startle effects. Record-

ings that showed obvious pre-stimulus EMG activity 100 ms preceding the stimulation

were discarded. For the remaining responses, the M-wave PPamp between 3 and 25

ms following stimulation were averaged at each intensity. The relative change in M-

wave PPamp from Trial 1 to Trial 2 was calculated by subtracting Trial 1 value from

Trial 2, and dividing by Trial 1 value.

2.2.7 Statistical analysis

Subject characteristics include the age, handedness index, baseline heart rate, base-

line mean blood pressure, and RMT. The baseline heart rate, baseline mean blood

pressure and heart rate were measured with the vacuum turned off before Trial 1.

These variables were compared between the two groups with a Students indepen-

dent samples t-test. The main dependent variables for corticospinal excitability were

MEP PPamp and MEP area. The independent variables were Group (Control and

Experimental), Trial (1 and 2), and Intensity (90%-140% RMT). To test the effects of

baroreceptor unloading on corticospinal excitability, a three-factor (Group, Trial, In-

tensity) analysis of variance (ANOVA) with repeated measures for Trial and Intensity

was used. A significant three-factor interaction with significant differences between

Trials 1 and 2 in the Experimental group would indicate effects of LBNP on MEP

PPamp and MEP area. Standardized slope of the regression line was analyzed with a

two-factor (Group, Trial) ANOVA with repeated measures for Trial. RMS amplitude

of the pre-stimulus EMG, heart rate, and mean arterial blood pressure were analyzed

with a three-factor (Group, Trial, Intensity) ANOVA with repeated measures to test

for differences in pre-stimulus muscle activation and measures of SNA. Inclusion of

the Control group in the ANOVAs ensured that any differences seen between Trials 1

and 2 in the Experimental group were not due to order effect. An alpha level of 0.05

was used for all significance testing and P > 0.05, textitP < 0.05, and textitP < 0.01
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were noted where appropriate. In all repeated measures ANOVA models, Mauchly

Test of Sphericity for the interaction was found to be significant. All P -values were

adjusted using the Huynh-Feldt Epsilon correction factor. Significant interactions

were tested with the Bonferroni post hoc test. Statistical analyses were performed

using Statistica 9.0 (StatSoft Inc., Tulsa, OK, USA). Unless stated otherwise, the

data are presented as mean ± SD in the text and tables and as mean ± standard

error of mean in the figures.

2.3 Results

Basic subject characteristics including age, handedness index, baseline heart rate,

baseline mean blood pressure, and RMT were not significantly different between the

groups (P > 0.05, Table 2). Pre-stimulus EMG did not vary with Intensity, Trial, or

Group significantly (P > 0.05). Pre-stimulus EMG values were 3.60 ± 0.17 µV and

3.62 ± 0.12 µV in Trials 1 and 2 in the Control group, and were 3.78 ± 1.29 µV and

3.77 ± 1.26 µV in Trials 1 and 2 in the Experimental group, respectively.

2.3.1 Cardiovascular response

In the Control group, heart rate was 60.0 ± 7.1 and 61.8 ± 6.9 beats/min in Trials 1

and 2, respectively. In the Experimental group, heart rate increased from 60.0 ± 7.0

beats/min in Trial 1 to 70.4 ± 9.2 beats/min in Trial 2. After detecting the significant

effect of Trial (P < 0.01) and Group × Trial interaction (P < 0.01), post-hoc testing

revealed that heart rate increased significantly from Trial 1 to Trial 2 only in the

Experimental group (P < 0.01). Mean arterial blood pressure was 86.8 ± 8.7 and

89.0 ± 8.8 mmHg in Trials 1 and 2, respectively, in the Control group. Mean arterial

blood pressure was 88.4 ± 6.3 and 89.6 ± 8.6 mmHg in Trials 1 and 2, respectively, in

the Experimental group. Although there was a significant effect of trial (P < 0.05),

the change in mean arterial pressure from Trial 1 to Trial 2 was as small as 1.6 mmHg

when collapsed across groups. Mean arterial blood pressure was not influenced by
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Figure 6: MEP peak-to-peak amplitude in two trials as a function of TMS intensity
in the Experimental and Control groups. Square and diamond symbols indicate
measurements taken during Trial 1 and Trial 2, respectively. LBNP of 40 mmHg
was applied during Trial 2 (filled diamond) in the Experimental group on the left.
MEP was enhanced with LBNP in the Experimental group. * P < 0.05, ** P < 0.01
between trials at the corresponding intensity, revealed by post hoc test of the Group
× Trial × Intensity interaction. MEP, motor evoked potential; RMT, resting motor
threshold.

any interaction.

2.3.2 Corticospinal excitability

The results of two indices of MEP size (PPamp and MEP area) were comparable, and

hence only the PPamp results are presented (Fig. 6). The MEP PPamp was influenced

by stimulus Intensity (P < 0.01), Trial (P < 0.01), their interaction (P < 0.01), and

an interaction of Group, Trial, and stimulus Intensity (P < 0.01). Post-hoc testing

showed the MEP PPamp in Trial 2 was greater compared with Trial 1 only at 130%

RMT (by 42%, P < 0.01) and 140% RMT (by 19%, P < 0.05) in the Experimental

group (Fig. 6, left), but not in the Control group (Fig. 6, right). The standardized
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slope of the linear regression of the MEP PPamp was not significantly influenced by

Group or Trial, but had a significant Group × Trial interaction (P < 0.05). The

slope was 0.673 ± 0.147 and 0.619 ± 0.154 in Trials 1 and 2, respectively, of the

Control group, and 0.610 ± 0.184 and 0.727 ± 0.144, in Trials 1 and 2, respectively,

of the Experimental group. Although the post-hoc test did not detect statistical

significance, the slope showed a trend for a 19% increase of MEP PPamp from Trial

1 to Trial 2 in the Experimental group, on average.

2.3.3 M-wave (supplemental experiment)

The elicited M-wave PPamp at each intensity were 1.4 ± 0.3, 2.0 ± 0.2, 2.9 ± 0.6,

and 18.5 ± 6.3 mV when averaged across trials, days, and subjects. The changes in

M-wave PPamp from Trial 1 to Trial 2 were variable with no clear trend of consistent

increase or decrease on the Experimental day. The relative changes in M-wave PPamp

from Trial 1 to Trial 2 in each subject were -19.9 ± 14.6% vs. -9.0 ± 31.7%, 9.5 ± 6.7%

vs. -3.4 ± 9.2%, and -11.3 ± 5.3% vs. 13.3 ± 11.1% for Control vs. Experimental

days, respectively, when averaged across intensities. When further averaged across

subjects, the relative change in M-wave PPamp between Trials 1 and 2 was -7.2 ±

15.6% on the Control day and 0.3 ± 20.7% on the Experimental day.

2.4 Discussion

The main findings are the significant increases in the MEP PPamp during the ap-

plication of LBNP compared with ambient pressure at 130% and 140% RMT TMS

intensity in the Experimental group.

2.4.1 Cardiovascular response

Baroreceptor unloading with LBNP in the Experimental group was supported by

cardiovascular measurements. In response to LBNP, heart rate increased significantly,

while there was little change in mean arterial blood pressure. The mild increase
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in heart rate with little change in blood pressure has been observed using similar

LBNP procedures (see [50] for review). The LBNP procedure is a commonly used

intervention that is regarded as a human model for acute central hypovolemia [26],

reducing central venous pressure. The drop in central venous pressure is sensed by

baroreceptors, resulting in the heightening of SNA via the baroreflex response [143].

Heightened SNA increases heart rate, cardiac contractility, and peripheral resistance

of the cardiovascular system to maintain mean arterial blood pressure [145]. The

increased heart rate with little change in mean arterial blood pressure observed in

Trial 2 of the Experimental group suggests that the current LBNP protocol was

effective at unloading the baroreceptors and heightening SNA [26].

2.4.2 Corticospinal excitability

The influence of baroreceptor unloading on MEP size was examined between trials

with and without LBNP in the Experimental and Control groups, respectively. The

absence of pre-stimulus EMG activity and lack of difference in the level of pre-stimulus

EMG between groups and trials indicated that subjects maintained a resting state

across measurements. Significantly greater values in both indices of MEP at 130%

and 140% RMT in Trial 2 (with LBNP) compared with Trial 1 (no LBNP) in the Ex-

perimental group indicated increased corticospinal excitability with LBNP regardless

of the index of MEP size. This indication was strengthened by the significant Group

× Trial interaction for the standardized slope of the MEP size. In the supplemental

experiment employing the same LBNP protocol as was used for recording MEP, no

clear trend of consistent change was observed in M-wave amplitude due to 40 mmHg

LBNP. Hence, the mechanisms responsible for the increased MEP amplitude with

LBNP appear to mostly likely be proximal to the neuromuscular junction.
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2.4.3 Potential mechanisms

As explained in the Introduction of this chapter, baroreceptor unloading may in-

fluence corticospinal excitability via somatosensory afferent input and via central

activity of monoamines (norepinephrine, serotonin, dopamine). Neuromuscular stud-

ies employing conditioning of TMS MEP by electrical stimulation over motor axons

[34] show that somatosensory afferent input can increase or decrease MEP size, de-

pending on the delay. Centrally mediated increase in somatosensory afferent input

may arise from norepinephrine and serotonin activity at the spinal level. Both, nore-

pinephrine and serotonin can increase responses evoked by group I motor afferents

[68], while having varying effects on responses evoked by group II motor afferents

[104, 123, 52, 68]. Peripherally, baroreceptor unloading may increase somatosensory

afferent input by increasing SNA [143]. While no influence of SNA on muscle spindle

discharge is observed in humans [87], an increased stretch reflex [59, 72] in the pres-

ence of an unaltered H-reflex [72] due to physiological heightening of SNA suggests an

SNA-induced increase in gain of the somatosensory afferent input. The impact of the

potential increase in somatosensory afferent input, or in its gain, in the resting FDI

is questionable considering that the corticospinal excitability is not increased with

LBNP through TMS intensity of 120% RMT.

The influences of monoamines on corticospinal excitability may be inferred by

comparing the current physiological results with previous studies using pharmacolog-

ical agents for norepinephrine, serotonin, and dopamine in healthy humans. Adminis-

tration of yohimbine and reboxetine, both norepinephrine facilitating agents, increases

corticospinal excitability at and above 130% and 150% RMT TMS intensity, respec-

tively [117, 118]. Administration of the serotonin agonists sertraline and paroxetine,

both selective serotonin reuptake inhibitors, also increases corticospinal excitability,

but immediately above the resting motor threshold [66, 47]. On the other hand, the

dopamine agonist cabergoline decreases corticospinal excitability and does so at TMS
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intensities 120% RMT and higher [78]. Methylphenidate and d-amphetamine, both

indirect agonists of the dopamine and norepinephrine systems, also increase corti-

cospinal excitability. While methylphenidate starts doing so around 135% RMT [67],

d-amphetamine, which has a much greater influence (10 fold at threshold levels) on

dopamine function [79] has no significant effect on MEP size at intensities of stim-

ulation as high as 150% RMT [8], potentially reflecting the net result of opposing

influences from the two monoamines. In all, the observed increase in corticospinal

excitability with LBNP is likely indicative of noradrenergic function, and potentially

serotonergic and somatosensory afferent functions, overriding dopaminergic function

with baroreceptor unloading.

2.4.4 Implication

Facilitation of MEP at higher TMS intensities provides possibilities that higher TMS

intensity is needed to either directly reach (e.g. depth-wise) or activate the popula-

tions of neurons most responsive to upregulated noradrenergic function. At the motor

cortex, increased monoamine concentration may modulate the responsiveness of cor-

ticospinal tract neurons or interneurons, such as the inhibitory gamma-Aminobutyric

acid interneurons and facilitatory N-Methyl-D-aspartic acid interneurons. TMS ac-

tivates the corticospinal tract neurons either at the soma [38, 39, 101] or trans-

synaptically, by depolarizing the axons of interneurons that synapse onto the tract

neurons [33, 32, 131, 130]. As TMS intensity increases, higher threshold interneurons

are recruited [36]. The indifferent MEP response to 90-110% RMT TMS intensity

with the manipulation of the baroreflex (Fig. 6) indicates that the excitability of

the corticospinal tract neurons remains unaffected. Increased synaptic strength or

increased excitability of higher-threshold interneurons are, then, the cortical mech-

anisms potentially underlying the enhanced MEP at higher TMS intensities due to

acute mild central hypovolemia induced by LBNP. Both, increased synaptic strength
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and increased excitability of the higher-threshold interneurons would recruit more

corticospinal tract neurons, leading to a larger MEP.

In conclusion, corticospinal excitability was enhanced with baroreceptor unloading

by means of lower body negative pressure [15].
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CHAPTER III

AIM 2: INTRACORTICAL EXCITABILITY AT REST

AND DURING INDIVIDUAL MUSCLE CONTRACTION

3.1 Introduction

Intracortical excitability contributes to motor command and neural plasticity. In

Specific Aim 1 it was shown that corticospinal excitability increases with barore-

ceptor unloading [15]. Baroreceptor unloading accompanies increased motor cortex

activation in an imaging study [75]. The increase in corticospinal excitability with

baroreceptor unloading observed in Specific Aim 1 was specific to higher TMS inten-

sity [15]. TMS of higher intensity recruits interneurons that generate later I-waves

(i.e. I-2 and I-3 waves) in the motor cortex [36], suggesting that greater contribution

of later I-waves leads to increased corticospinal excitability with baroreceptor unload-

ing. Contribution of later I-waves to corticospinal excitability may be increased by 1)

increasing the activity of the intracortical excitatory glutamatergic pathway respon-

sible for later I-wave generation, assessed with short-interval intracortical facilitation

(SICF) [56] or 2) decreasing the activity of the intracortical inhibitory GABAA-ergic

[159] pathway that inhibits later I-waves [37], assessed with short-interval intracor-

tical inhibition (SICI) [80]. The effects of baroreceptor unloading on intracortical

excitatory and inhibitory pathways in the motor cortex are unknown.

Baroreceptor unloading can affect interneuron excitability at varying levels of

the motor system. The lower body negative pressure (LBNP) procedure, a human

model of acute central hypovolemia, can be used to study baroreceptor unloading [26].

Baroreceptor unloading dis-inhibits the dorsal ventrolateral medulla, which projects

to the locus coeruleus [41, 64]. Mild hypovolemia increases catecholamine release from
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the locus coeruleus [138, 70], which robustly innervates the neocortex [45, 35]. The

locus coeruleus also innervates the dorsal raphe nucleus from which serotonergic neu-

rons spread to higher brain structures. Serotonin release is increased with adrenergic

stimulation of the raphe nucleus [23]. Hence, baroreceptor unloading may result in

increased function of neuromodulatory monoamines (i.e. norepinephrine, serotonin,

and dopamine) within the motor cortex. Norepinephrine and serotonin agonists de-

crease SICI [117, 118, 67, 152, 66, 47] while dopamine agonists increase SICI and

decrease SICF [157, 160, 78].

Intracortical excitability may also be affected by somatosensory afferent input.

Electrical stimulation of motor axons and digits was shown to decrease SICI [125, 141,

124, 92, 34, 77], depending on the timing of the somatosensory input. Baroreceptor

unloading can alter somatosensory input centrally and peripherally. Both, the locus

coeruleus and raphe nuclei project to the spinal cord [24, 105, 153, 81] and modulate

activity of motor-sensory neurons [52, 53, 68]. Activation of the locus coeruleus

and raphe nuclei by baroreceptor unloading may lead to increased norepinephrine

and serotonin activity at the spinal cord level, which was shown to increase responses

evoked by group I motor afferents [68], and have varying effects on responses evoked by

group II motor afferents [104, 123, 52, 68]. Finally, baroreceptor unloading heightens

SNA [143], which may alter somatosensory input peripherally. Peripheral effects

on the neuromuscular system are suggested by an increased stretch reflex [59, 72]

in the presence of an unaltered H-reflex [72] with physiologically heightened SNA.

Collectively, baroreceptor unloading may alter intracortical excitability by influencing

the motor system centrally and peripherally.

Based on the results in Specific Aim 1, it was predicted that baroreceptor un-

loading would change at least one of the TMS measures of intracortical excitatory

and inhibitory pathways in the direction for increasing intracortical excitability. In-

tracortical excitability was studied at rest and during voluntary muscle contraction
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because muscle contraction alters intracortical excitability [126, 109] and, as such,

may interfere with the effects of LBNP.

3.2 Methods

3.2.1 Subjects

Sixteen healthy adults (19.8 ± 1.5 years of age, 6 women) participated in the study on

two days separated by approximately four weeks. This subject number was originally

based on an a priori sample size calculation performed with GPower version 3.1.5

(Universität Kiel, Germany). For a within-group study design with two measurements

of each dependent variable, an alpha error probability of 0.05, power of 0.95, and a

small effect size of 0.2, the a priori sample size was nineteen subjects. Since fewer

subjects were recruiter, it should be noted that the obtained sample size is sufficient

for statistical testing with power of 0.90, not 0.95. Women were tested during their

follicular phase to avoid potential confounding effects of estrogen and progesterone

[96]. All subjects were right-handed, as confirmed with the Edinburgh handedness

inventory (laterality quotient: 0.82 ± 0.155) [106]. Volunteers were free of any signs of

chronic altered SNA: no history of diabetes, cardiovascular problems, brain or nerve

disorder, obesity, hypertension, or hypotension [83]. They did not perform extensive

hand grip activity, exhibit skilled use of hands, report arthritis of the hands, or

take any medication that may affect motor control or brain and nerve function. In

addition, subjects were excluded if they had a family history of seizure or epilepsy, skin

allergies, were pregnant, were prone to severe headaches, or had metal in their head,

excluding dental fillings [128]. To minimize the variability in the basal physiological

level and responsiveness of SNA across subjects, all experiments were conducted at 8

am; participants abstained from food and drink, with the exception of water, for 10

hours prior to the experiment [5]. All subjects gave written informed consent. The

study conforms to the Code of Ethics of the World Medical Association [122], and
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Figure 7: Schematic of protocol used in the Specific Aim 2 study. In this cross-over
study design, a total of 16 subjects were tested on two separate days. Intracortical
excitability was assessed on both days, at basal condition on the Control day and at
40 mmHg LBNP on the LBNP day. The order of the days was assigned at random.

was approved by the Georgia Institute of Technology and Emory Institutional Review

Boards.

3.2.2 Experimental approach

Figure 7 depicts the cross-over study design of Specific Aim 2. Intracortical excitabil-

ity was assessed with TMS, delivered over the motor representation area of the first

dorsal interosseus (FDI) muscle. Motor evoked potentials (MEP) were recorded from

the FDI muscle in the right hand with unloaded baroreceptors on the LBNP day

and with non-manipulated baroreflex on the Control day. The duration of the ex-

periment session and the tolerability of the experiment procedure by the subjects

dictated assessment of intracortical excitability on two separate days. Since intra-

cortical excitability may change with the time of day [84], the experiment protocol

of each subject was temporally comparable between the two days. On a given day,

intracortical excitability was assessed at rest (Resting stage), followed by FDI con-

traction (Active stage) with a 10-min intermission (Intermission stage) in between.
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The LBNP vacuum was turned off during the Intermission stage. Effects of LBNP

on intracortical excitability were interpreted from the differences of corresponding

measures between the Control day and the LBNP day. The order of the two days

was randomized across subjects.

3.2.3 Baroreceptor unloading

The LBNP procedure in our previous study [15] was employed to unload the barore-

ceptors. The participants lay supine with their lower body inside the LBNP chamber

(1.2 m × 0.6 m × 0.5 m). Subjects wore a neoprene belt about their hips at the level

of the iliac crest. An air tight flexible nylon cover was fit over the opening of the

LBNP chamber to form a seal between the chamber and the belt. A bicycle saddle

in the chamber prevented subject displacement during the application of LBNP. A

commercial vacuum (Model 3Z708B, Dayton Industrial, Dayton, OH, USA) attached

to the chamber was used to lower the pressure inside the chamber. The LBNP was

adjusted with a valve between the vacuum and the chamber. This setup has been

used repeatedly in LBNP studies by Seals and colleagues [135, 145, 31] and in our

previous study [15]. On the LBNP day, baroreceptors were unloaded by gradually

reducing the pressure in the chamber to -40 mmHg relative to ambient pressure in

20 s. MEP testing commenced 30 s after application of LBNP. LBNP of 40 mmHg is

known to physiologically unload the baroreceptors and heighten SNA in general, in-

creasing epinephrine and norepinephrine concentration in plasma [58] and increasing

heart rate with little changes in blood pressure [15]. On the Control day, the vacuum

remained on and the pressure was set to 0 mmHg during the recording of MEPs.

Blood pressure at the brachial artery in the left arm and heart rate at the fingertip

were monitored noninvasively (Cardiocap/5, GE Healthcare, Giles, UK), and mean

arterial blood pressure was recorded in each TMS block. The ECG (Cardiocap/5, GE

Healthcare, Giles, UK) was sampled at 10,000 samples/s with an analogue-to-digital
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converter (Power 1401, Cambridge Electronic Design Ltd, Cambridge, UK) and data

acquisition software (Spike2 v7.0, Cambridge Electronic Design Ltd, Cambridge, UK)

for offline analysis of heart rate variability. ECG was not obtained in one subject due

to technical issues. These cardiovascular data were recorded during TMS, as well as,

before delivery of TMS (Baseline stage) and during the 10-min intermission (Inter-

mission stage).

3.2.4 Intracortical excitability

Intracortical excitability was assessed noninvasively with single- and paired-pulse

TMS (BiStim, Magstim Co, Wales, UK) of the left primary motor cortex. The

head was oriented in neutral position on a pillow. The arms of each subject lay at

his/her sides with the right hand in pronation, in a wooden brace when producing

isometric contractions, or resting on the bed when not. The subjects were instructed

not to move their arms or hands during measurement. The orientation of the arms

and hands was monitored visually throughout the experiment. Subjects did not have

vision of their hands because it was interrupted by the LBNP tube.

The experiment was conducted in an electrically shielded room. Surface EMG

was recorded using Ag-AgCl electrodes (E224A, IVM, Healdsburg, CA, USA) placed

on the skin overlying the right FDI in a belly-tendon montage. One electrode was

placed over the belly of the muscle and the other was attached to the skin over the

distal tendon, after abrasion of the skin. A wet circumferential strap electrode (F-

E10SG1, Grass Technologies, West Warwick, RI, USA) was placed around the right

wrist for a reference. The EMG was differentially amplified 300 times and bandpass

filtered between 15 and 2,000 Hz (Y03-000, MotionLabs, NY, USA). The EMG data

were sampled at 5,000 samples/s with an analog-to-digital converter (Power 1401,

Cambridge Electronic Design Ltd, Cambridge, UK) and data acquisition software

(Signal 5.0, Cambridge Electronic Design Ltd, Cambridge, UK) for online monitoring,
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storage, and offline analysis.

Contraction intensity was determined based on the EMG amplitude of FDI during

maximal voluntary isometric contraction. A rectified running average EMG with an

averaging window of 0.175 s was used to provide visual feedback to subjects and to

calculate the maximal EMG (EMGmax) of the FDI. With their right hand secured

in the hand brace, subjects increased their EMG to maximum in a ramp fashion over

3 s, and maintained it at maximum for 2 s before relaxing. Verbal instruction and

encouragement were provided while the right hand of subjects was visually monitored.

TMS intensity was adjusted based on MEP in FDI. A figure-of-eight coil (Magstim

second generation double 70 mm remote coil, Magstim Co, Wales, UK) was held over

the left primary motor cortex at the optimum position (i.e. hotspot) for eliciting an

MEP in the resting FDI of the right hand. The coil was held with the handle pointing

posteriorly at an angle of approximately 45 degrees to the sagittal plane yielding

an E-field perpendicular to the central sulcus [11]. A TMS coil navigation system

(NDI TMS Manager, Northern Digital Inc., Waterloo, Ontario, Canada) was used to

maintain the coil position in 3-dimensional space relative to the head. A continuous

running visual feedback of the EMG was provided to the subject to ensure relaxation

or appropriate activation of the FDI when necessary. The pre-stimulus EMG was

monitored by the experimenter.

The resting motor threshold (RMT) was determined as the smallest TMS inten-

sity needed to elicit an MEP with peak-to-peak amplitude (PPamp) greater than 50

µV in 5 out of 10 consecutive stimulations in the relaxed FDI [16, 30]. Active motor

threshold (AMT) was assessed during the isometric contraction of FDI at 10% EMG-

max. Due to difficulty in differentiating between MEP and background contraction

EMG in single stimulation traces, the AMT was defined as the largest TMS intensity

that produced an EMG response less than 50 µV above background EMG activity in

the triggered average of ten consecutive rectified stimulation traces [109]. RMT and
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Figure 8: Schematic of populations of intracortical neurons assessed in Specific Aim
2. Excitatory interneurons are denoted with forks at their axon terminals; inhibitory
interneurons are denoted with solid circles.

AMT were measured in percentage of maximal stimulator output.

During the Resting stage, activity of the intracortical later I-wave, GABAA-ergic,

and NMDA-ergic pathways (Fig. 8) in the resting FDI were assessed with the paired-

pulse TMS paradigms for SICF [56], SICI [159], and ICF [158, 134], respectively

(Fig. 9). Test stimulus for the paired-pulse stimulation in the Resting stage was

determined as the TMS intensity that produced an average MEP with PPamp of 1 mV

for ten consecutive stimulation pulses in the relaxed FDI [109]. SICF was measured

by delivering the 0.9 × AMT pulse 1.5 ms after the suprathreshold test stimulus

pulse [109]. For SICI and ICF, a subthreshold 0.9 × AMT pulse was followed by

the suprathreshold test stimulus pulse with the interval of 2 and 10 ms, respectively

[80, 109]. An interstimulus interval of 2 ms was used for SICI assessment to avoid

contamination of SICI measurement by SICF peaks [116]. MEPs in response to test

stimulation were collected first, followed by SICF, SICI, and ICF in random order.
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Figure 9: Representative recordings of motor evoked potentials (MEP) in response
to transcranial magnetic stimulation (TMS) recorded from the first dorsal interosseus
muscle in one subject on the Control day. The traces represent different TMS proto-
cols (row 1), a single MEP in the Resting stage (row 2), and an average of 10 MEPs
in the Active stage (row 3) without lower body negative pressure. Test, single-pulse
test stimulation; SICF, short-interval intracortical facilitation; SICI, short-interval
intracortical inhibition; ICF, intracortical facilitation. The vertical scale is for rows
2 and 3.

TMS was delivered every 6 s. Seventeen MEPs were collected for each TMS paradigm

in the Resting stage. Due to technical issues, SICF was not measured in one subject.

During the Active stage, the primary variables of interest were activity of the

intracortical GABAA-ergic and GABAB-ergic pathways, assessed with cortical silent

period in the contracting FDI. Cortical silent period was measured during isometric

contraction at 50% EMGmax to minimize variability of the cortical silent period due

to contraction strategy of subjects [90] and to delineate potential effects of LBNP

on intracortical GABAA and GABAB-ergic pathways [74]. Subjects were instructed
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to ramp up to the 50% EMGmax contraction, maintain the contraction through the

ensuing stimulation, and to relax only when told to do so by the experimenter, at least

1 s after TMS [90]. Subjects who failed to follow this instruction were removed from

analysis of 50% EMGmax data (2 subjects). Cortical silent period was measured

in response to TMS at RMT (CSPL) and TMS at 2 × RMT (CSPH), separately,

because the response to low and high intensity TMS is indicative of GABAA-ergic

and GABAB-ergic activity, respectively [74]. For those subjects whose 2 × RMT

was greater than 100% maximal stimulator output (n = 4), TMS at 100% maximal

stimulator output was used to assess CSPH. TMS was delivered every 15 s. CSPL

and CSPH were collected in this order, and twelve responses were collected for each.

Additionally, activity of the later I-wave and GABAA-ergic pathways of the active

FDI were investigated with the paired-pulse protocols for SICF and SICI during iso-

metric contraction at 10% EMGmax (Fig. 9). Note that activity of the intracortical

NMDA-ergic pathway cannot be measured during muscle contraction due to the dis-

appearance of ICF [109]. The test stimulus for paired-pulse stimulation in the Active

stage was determined as the TMS intensity that produced a peak amplitude between

0.5 mV and 1 mV in the average of ten consecutive rectified stimulation traces during

10% EMGmax contraction in FDI [109]. SICF was measured by delivering the 0.9 ×

AMT pulse 1.5 ms after the suprathreshold test pulse [109]. For SICI, a subthreshold

0.7 × AMT pulse was followed by suprathreshold test stimulus pulse at 2 ms. Previ-

ously, it was suggested that the decrease in SICI with voluntary muscle contraction

[126, 109] may also be due to contamination of the response by SICF [109]. The 2 ms

interval was chosen to avoid SICF contamination [116]. The conditioning stimulus

for SICI was set at 0.7 × AMT, rather than 0.9 × AMT used in the Resting stage, to

prevent interference from SICF during voluntary contraction [109]. Response to 0.9

× AMT single-pulse stimulation was also measured to check whether the conditioning

stimulation produced an MEP. MEPs in response to test stimulation were collected
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first, followed by SICF, SICI, and single-pulse TMS at 0.9 × AMT, in random order,

during 10% EMGmax contraction of FDI. TMS was delivered every 6 s, and the sub-

ject maintained the contraction level for the duration of each TMS paradigm block.

Twelve MEP responses were collected for each TMS paradigm.

3.2.5 Data collection sequence

The following data recording order was chosen to prevent potential residual effects of

muscle contraction on subsequent recordings of intracortical excitability at rest. On a

given day, the cardiovascular measurements in the Baseline stage were assessed once

the subject was situated in the experiment arrangement. After identifying EMGmax,

RMT, and AMT, determination of test stimulus and data collection for the Resting

stage were performed with the LBNP set to the appropriate value for the day. At

the end of a 10-min Intermission stage following the Resting stage, cardiovascular

measurements were recorded. After identifying the test stimulus for the Active stage

with the LBNP set to the appropriate value for the day, data for Active stage were

collected with the contraction at 10% EMGmax followed by the contraction at 50%

EMGmax.

3.2.6 Data reduction

The first 2 recordings in each TMS paradigm were discarded to control for possible

startle responses. In the Resting stage, EMG recordings that showed pre-stimulus

EMG activity above baseline 100 ms preceding TMS were discarded. The root mean

square (RMS) amplitude of the pre-stimulus EMG, the MEP PPamp, and the MEP

area bound by the MEP and the 0 mV axis (MEP area) were calculated for each

response. The RMS amplitude of the pre-stimulus EMG was calculated from data

100 ms preceding the application of TMS. The EMG in the period between 20 and 50

ms following application of TMS was used to measure MEP PPamp and MEP area.

MEP area was analyzed to account for potential changes in MEP that may not be
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reflected in PPamp. MEP PPamp and area of each response were averaged together

within each paradigm block and expressed relative to the corresponding values for

test stimulation.

During the Active stage, collected recordings were inspected for comparable muscle

activation. At each contraction level, those recordings whose RMS amplitude of the

pre-stimulus EMG fell 2 standard deviations outside of the mean were discarded. The

recordings collected during subthreshold 0.9 × AMT TMS were averaged together.

To observe whether sub-threshold TMS produced an MEP during 10% EMGmax con-

traction, the PPamp of the pre-stimulus EMG and the PPamp between 20 and 50 ms

post TMS were calculated. PPamp was calculated 1) to take into account possible

fluctuations in the pre-stimulus EMG and 2) to not underestimate the MEP response.

All other recordings were rectified and averaged together within each paradigm block.

The automated cumulative sum method was used to measure the cortical silent period

[76]. The start and end of the CSPL and CSPH were defined as the times, following

the MEP, from when the average rectified EMG fell below and increased back up to

the pre-stimulus EMG level, respectively. Each cortical silent period was expressed

in ms, and, in addition, normalized to the peak amplitude and area of the accom-

panying MEP to take the variability in TMS response into consideration [108]. The

normalized value for CSPH was not available in one subject due to a technical issue

in the EMG gain for measuring MEP size during CSPH. The MEP peak amplitude

and MEP area of paired-pulse stimulations were calculated and expressed relative to

the corresponding values for test stimulation.

As measures of baroreflex-dependent SNA, heart rate and heart rate variability

were assessed from the ECG recordings taken during Baseline, Resting, Intermission,

and Active stages. All ECG recordings used in calculation of heart rate variability

were greater than two minutes in duration. From the ECG recording, all R-wave

peaks were identified, marked, and visually inspected to rule out artifacts. Then the
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power spectrum of the R-to-R interval was calculated. Low frequency (0.05-0.15 Hz)

power was expressed relative to the power in total frequencies (0.05-0.50 Hz) and was

used as a measure of SNA [19].

3.2.7 Statistical analysis

In this within-subject study design, the main independent variable was Day (Control

vs. LBNP). First, to test whether the conditioning stimulation produced the expected

facilitation or inhibition of the test stimulation on the Control day, the paired-pulse

MEP was compared to the test MEP on the Control day for all paired-pulse TMS

protocols using a paired samples t-test. The main dependent variables for intracortical

excitability were the appropriate ratios of MEP PPamp, MEP area, and MEP peak

amplitude of SICI, ICF and SICF to the corresponding values for test stimulation,

and the absolute and normalized durations of CSPL and CSPH. EMGmax, RMT,

AMT, test stimulation intensity for Resting and Active stages, pre-stimulus EMG

from the Resting stage, and the main dependent variables were individually tested

for difference between the two days using a two-tailed paired samples t-test. To

test whether the sub-threshold stimulation produced motor activity, PPamp of the

unrectified pre-stimulus EMG (i.e. 100 ms period preceding TMS) was tested against

the PPamp within the MEP period of the unrectified sub-threshold 0.9 × AMT TMS

response during 10% EMGmax contraction, using a two-tailed paired samples t-test.

Effects of LBNP on heart rate, mean arterial blood pressure, and HRLF were each

tested with a two-factor (day, stage) ANOVA with repeated measures, where factor

stage had four levels: Baseline, Resting, Intermission, and Active. Significant main

effects and interaction of all ANOVA were further tested with the Bonferroni post

hoc. To test the effects of experiment day order, the data were reorganized such that

the independent variable Day reflected either day 1 or day 2 of the experiment, and

the same statistical analyses were repeated. An alpha level of 0.05 was used for all
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Table 3: Neuromuscular characteristics in the first dorsal interosseus muscle used for
the TMS protocol in Specific Aim 2. The left two columns compare between LBNP
and Control days. The right two columns compare the same variables between days
1 and 2. Lower body negative pressure was applied on the LBNP day. EMGmax,
electromyogram amplitude during maximal voluntary contraction; RMT, resting mo-
tor threshold; MSO, maximal stimulator output; AMT, active motor threshold; TSR,
test stimulation intensity during the Resting stage; PPamp, peak-to-peak amplitude;
TSA, test stimulation intensity during the Active stage. No significant difference
between day types (LBNP vs. Control) or between days 1 and 2.

LBNP Control Day 1 Day 2
EMGmax, mV 0.95 ± 0.32 0.95 ± 0.29 1.00 ± 0.32 0.90 ± 0.28
RMT, % MSO 44.3 ± 7.1 44.7 ± 7.15 44.3 ± 7.56 44.7 ± 7.20
AMT, % MSO 32.7 ± 8.09 32.4 ± 5.75 33.1 ± 7.93 32.0 ± 5.92
TSR PPamp, mV 1.0 ± 0.36 1.2 ± 0.37 1.1 ± 0.48 1.2 ± 0.33
TSR area, mV·ms 3.4 ± 1.31 4.7 ± 2.00 3.9 ± 1.87 4.2 ± 1.77
TSR, % MSO 55.6 ± 12.52 53.9 ± 10.04 54.8 ± 12.80 54.7 ± 9.76
TSR, % RMT 122.5 ± 11.23 118.7 ± 9.44 120.8 ± 11.83 120.4 ± 9.09
TSA peak, mV 0.9 ± 0.26 0.8 ± 0.31 0.9 ± 0.32 0.8 ± 0.25
TSA area, mV·ms 7.2 ± 2.30 7.2 ± 2.69 7.2 ± 2.53 7.2 ± 2.48
TSA, % MSO 39.8 ± 8.64 38.5 ± 7.93 39.4 ± 8.64 38.6 ± 7.81

significance testing. If the MauchlyS sphericity test was violated, the Huyn-Feldt

adjusted P -value was used. P < 0.05 and P < 0.01 were noted where appropriate.

Statistical analyses were performed using Statistica 9.0 (StatSoft Inc., Tulsa, OK,

USA). Unless stated otherwise, the data are presented as mean ± SD in the text and

tables and as mean ± standard error of mean in the figures.

3.3 Results

3.3.1 Subject characteristics

Basic subject characteristics, including EMGmax, RMT, AMT, and test stimulation

MEP and intensity for Resting and Active stages were not different between day types

(LBNP vs. Control) or between days 1 and 2 (Table 3). On average, MEP PPamp

during the single-pulse stimulation was 1.10 ± 0.38 mV in the resting muscle and

MEP peak amplitude was 0.88 ± 0.29 mV in the contracting muscle, respectively,
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when collapsed across days.

3.3.2 Cardiovascular response

With the application of 40 mmHg LBNP on the LBNP day, both heart rate and

HRLF were increased while mean arterial blood pressure was not significantly different

compared with Control day (Fig. 10). There were main effects of Day (P < 0.01),

Stage (P < 0.01), and their interaction (P < 0.01) on heart rate. Similarly, main

effects of Day (P < 0.05), Stage (P < 0.05), and their interaction (P < 0.01) were

detected for HRLF. Heart rate was greater on the LBNP day when 40 mmHg LBNP

was applied in Resting (by 11 bpm, P < 0.01) and Active (by 12 bpm, P < 0.01)

stages, respectively, compared with the Baseline and Intermission stages of the same

day. HRLF was also greater on the LBNP day by 48% in Resting stage (P < 0.01)

and by 40% in Active stage (P < 0.01) compared with the Baseline and Intermission

stages of the same day. There was no significant difference in heart rate or HRLF

between days during Baseline or Intermission stage. There was no significant effect of

day, but there was a main effect of Stage (P < 0.05) on mean arterial blood pressure.

Mean arterial blood pressure was slightly greater at the end of data collection (Active

stage, 88.6 ± 7.3 mmHg when collapsed across days) compared with the beginning of

data collection (Baseline stage, 86.1 ± 6.8 mmHg, P < 0.05). No effects of day order

were observed for heart rate, HRLF, or mean arterial blood pressure (Table 4).

3.3.3 Intracortical excitability, at rest

In the Resting stage, RMS amplitude of the pre-stimulus EMG did not vary between

days in either muscle (Table 5). The stimulation intensity needed to elicit 1 mV

PPamp MEP in the resting FDI did not vary significantly between days (Table 3),

and was 120.6 ± 10.4% of RMT when averaged across days. MEP PPamp and MEP

area during SICF, SICI, and ICF paired-pulse protocols were expressed relative to

the MEP PPamp and MEP area during the single-pulse test stimulation, respectively
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Figure 10: Cardiovascular measurements during different stages of the Specific Aim 2
experiment on the Control and LBNP days. Filled symbols indicate when sympathetic
nerve activity was heightened (Resting and Active stages of the LBNP day, only).
AU, arbitrary units of heart rate variability power in the low frequency (0.05-0.15 Hz)
expressed relative to the power in total frequencies (0.05-0.50 Hz); Base, Baseline
stage; Rest, Resting stage; Inter., Intermission stage. **P < 0.01 between stages
during LBNP day, as tested with Bonferroni post hoc test of significant Day × Stage
interaction.
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Table 4: Cardiovascular measures at each stage on Days 1 and 2 in the Specific Aim
2 study. HR, heart rate; bpm, beats per minute; HRLF, low-frequency (0.05 – 0.15
Hz ) power of heart rate variability relative to the total power of the R-to-R interval
spectrum; MAP, mean arterial blood pressure. No significant effect of Day order or
significant interaction was detected for the comparison between Day 1 and Day 2.

Baseline Resting Intermission Active
HR Day 1 62.1 ± 7.98 68.9 ± 10.51 61.5 ± 6.07 70.5 ± 9.07
(bpm) Day 2 60.9 ± 7.26 62.8 ± 10.06 61.9 ± 8.99 65.6 ± 9.69

HRLF Day 1 0.41 ± 0.149 0.53 ± 0.244 0.42 ± 0.174 0.53 ± 0.229
(A.U.) Day 2 0.45 ± 0.150 0.44 ± 0.193 0.49 ± 0.156 0.44 ± 0.154

MAP Day 1 87.1 ± 7.14 87.2 ± 7.23 87.8 ± 8.10 88.3 ± 7.48
(mmHg) Day 2 85.1 ± 6.56 86.4 ± 7.64 86.8 ± 7.78 88.8 ± 7.40

Table 5: Root mean square amplitude of EMG preceding TMS application in Specific
Aim 2. Left two columns compare between LBNP and Control days. The right two
columns compare the same variables between days 1 and 2. EMG, electromyogram;
TMS, transcranial magnetic stimulation; EMGmax, amplitude of electromyogram
during maximal voluntary contraction. No significant differences observed between
days.

LBNP Control Day 1 Day 2
Resting stage, µV 4.17 ± 0.61 3.80 ± 0.29 4.16 ± 0.56 3.81 ± 0.39
10% EMGmax, µV 123 ± 44.1 152 ± 71.4 117 ± 40.8 157 ± 70.6
50% EMGmax, µV 474 ± 129.5 473 ± 207.4 441 ± 99.6 506 ± 218.2

(Fig. 11). No significant effects of day order were observed for any of the intracortical

excitability measures (Table 6).

The SICF protocol resulted in facilitation on the Control day. On the Control day,

the conditioned MEP PPamp and MEP area were 52.6% and 46.6% greater than the

test MEP PPamp and MEP area, respectively (P < 0.01). There was no significant

difference in SICF ratios between LBNP and Control days (Fig. 11).

The conditioned MEP PPamp and MEP area were 56.1% and 48.6% lower than

the test MEP PPamp and MEP area, respectively, on the Control day during the
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Figure 11: Intracortical excitability in the first dorsal interosseus muscle during the
Resting stage on the Control and LBNP days of the Specific Aim 2 study. The y-axis
shows the MEP peak-to-peak amplitude (top panel) and MEP area (bottom panel),
in response to paired-pulse stimulation, normalized to the corresponding value during
single-pulse test stimulation. Unloading of baroreceptors was performed on the LBNP
day. * P < 0.05 compared with Control in the respective measure.
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Table 6: Measures of intracortical excitability in resting first dorsal interosseus muscle
on Days 1 and 2 of the Specific Aim 2 study. Data are relative to the values for single-
pulse test stimulation. SICF, short-interval intracortical facilitation (n = 15); SICI,
short-interval intracortical inhibition (n = 16); ICF, intracortical facilitation (n =
16); MEP, motor evoked potential; PPamp, peak-to-peak amplitude; No statistical
differences observed between Day 1 and Day 2.

SICF SICI ICF
MEP PPamp Day 1 1.64 ± 0.70 0.62 ± 0.41 1.07 ± 0.49

Day 2 1.65 ± 0.71 0.58 ± 0.44 1.23 ± 0.50

MEP Area Day 1 1.70 ± 0.74 0.63 ± 0.41 1.07 ± 0.52
Day 2 1.76 ± 0.87 0.59 ± 0.45 1.25 ± 0.53

SICI protocol (P < 0.01). Inhibition was significantly reduced with LBNP, resulting

in 63% greater MEP PPamp (P < 0.05) and 60% greater MEP area (P < 0.05) ratios

on the LBNP day compared with the Control day (Fig. 11).

During the ICF protocol only 11 out of the 16 subjects showed facilitation on the

Control day. Across all subjects, the conditioned MEP was not significantly greater

than the test MEP on the Control day. Subjects presented average ratios of 15% and

16% of MEP PPamp and MEP area, respectively, when collapsed across days. No

significant effect of LBNP was observed on these ICF measures (Fig. 11).

3.3.4 Intracortical excitability, during muscle activity

In assessing intracortical excitability in the active FDI muscle, the RMS amplitude of

pre-stimulus EMG of the FDI did not differ significantly between LBNP and Control

days during 10% EMGmax or during 50% EMGmax (Table 5). There was no sig-

nificant difference in the duration of the cortical silent period for either the CSPL or

CSPH when measured in ms, or when normalized to the corresponding MEP peak or

area, between days (Table 7). On average, CSPL and CSPH were 55.9 ± 26.6 ms and

242.9 ± 52.8 ms, respectively, when collapsed across days. In 4 subjects, the TMS

intensity for CSPH was less than 2 × RMT due to their high RMT relative to the
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Table 7: MEP and cortical silent period in the first dorsal interosseus muscle during
50% EMGmax voluntary muscle contraction tested with high- and low- intensity
stimulations in the Specific Aim 2 study. First two columns compare between LBNP
and Control days. Second two columns compare the same variables between Days 1
and 2. Peak, peak amplitude of the average rectified MEP; Area, area of the average
rectified MEP; CSPL, cortical silent period in response to low intensity TMS at resting
motor threshold; CSPH, cortical silent period in response to high intensity TMS at 2
× resting motor threshold. No significant differences observed between days.

LBNP Control Day 1 Day 2
Low stimulation
Peak, mV 5.77 ± 2.45 4.74 ± 2.13 5.61 ± 2.33 4.90 ± 2.32
Area, mV·ms 40.48 ± 13.75 34.80 ± 13.10 41.15 ± 14.08 34.14 ± 12.38
CSPL, ms 53.5 ± 20.26 58.4 ± 32.36 61.2 ± 23.39 50.7 ± 29.40
CSPL Peak−1 10.9 ± 5.83 17.4 ± 18.58 12.4 ± 5.71 15.9 ± 19.05
CSPL Area−1 1.4 ± 0.66 1.9 ± 1.20 1.6 ± 0.62 1.8 ± 1.26

High stimulation
Peak, mV 6.10 ± 3.35 5.70 ± 2.87 5.92 ± 3.44 5.87 ± 2.78
Area, mV·ms 50.97 ± 24.89 45.95 ± 22.46 50.77 ± 25.84 46.15 ± 21.42
CSPH, ms 249.1 ± 57.38 236.6 ± 49.03 253.1 ± 50.68 232.6 ± 54.65
CSPH Peak−1 64.8 ± 53.99 73.8 ± 92.29 68.9 ± 54.28 69.6 ± 92.35
CSPH Area−1 6.8 ± 4.76 7.7 ± 7.59 7.0 ± 4.68 7.5 ± 7.66

capacity of the TMS equipment. Removal of these subjects from the analysis did not

influence the statistical results.

During voluntary muscle activity, the conditioned MEP PPamp and MEP area

were 112% and 83% greater than the test MEP PPamp and MEP area, respectively (P

< 0.01) in the SICF protocol on the Control day. There was no significant difference

in SICF ratios between LBNP and Control days (Fig. 12).

The SICI protocol did not result in any significant differences between the con-

ditioned and test MEP on the Control day, during voluntary muscle activity. No

significant effects of day were observed for MEP ratios (Fig. 12). MEP PPamp and

MEP area ratios during the SICI protocol were 1.16 ± 1.06 AU and 1.12 ± 0.78 AU,

respectively.
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Figure 12: Intracortical excitability in the 10% EMGmax active first dorsal in-
terosseus muscle on the Control and LBNP days of the Specific Aim 2 study. The
y-axis shows the MEP peak-to-peak amplitude (top panel) and MEP area (bottom
panel), in response to paired-pulse stimulation, normalized to the corresponding value
during single-pulse test stimulation. Unloading of baroreceptors was performed on
the LBNP day. No significant differences were observed between days.
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To confirm that sub-threshold conditioning TMS at 0.9 × AMT did not produce

measurable motor activity, the PPamp of the potential response to the sub-threshold

TMS was compared with the PPamp of unrectified EMG during the background

contraction. The PPamp after the sub-threshold TMS (304 ± 143 µV) was not

significantly different from the PPamp before the sub-threshold TMS (338 ± 206 µV)

during 10% EMGmax contraction.

3.4 Discussion

The major finding is that SICI in the Resting stage was decreased on the LBNP day

when LBNP of 40 mmHg was applied compared with the Control day. No significant

differences between days were found in other measures in the Resting stage (SICF

and ICF) or any measures (cortical silent period, SICI, and SICF) in the Active stage.

3.4.1 Cardiovascular response

LBNP of 40 mmHg unloads the baroreceptors, thereby heightening SNA for various

organs, as evidenced by increases in norepinephrine concentration in the plasma [145,

58], muscle sympathetic nerve discharges [143, 145, 31], heart rate [143, 145, 31, 15],

and low-frequency content of heart rate variability [85]. In the present study, heart

rate and HRLF were significantly greater on the LBNP day during application of

LBNP of 40 mmHg, while mean arterial blood pressure was maintained. The 11-12

bpm increase in heart rate with minimal change in blood pressure due to LBNP of 40

mmHg is comparable to previous studies [143, 145, 31, 15]. These findings support

that the current LBNP protocol was effective for unloading the baroreceptors and

heightening SNA [26].

3.4.2 Intracortical excitability

SICI in the Resting stage decreased on the LBNP day when LBNP of 40 mmHg

was applied. SICI represents the inhibition of later I-waves (i.e. I-2 and I-3 waves)
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[37] and probes the activity of the intracortical inhibitory pathway that modulates

the excitability of corticospinal neurons through GABAA receptors [159]. Several

technical considerations ensured the proper measurement of intracortical excitability.

Care was taken to ensure that only resting data were analyzed since SICI is influenced

by muscle activation [126, 109]. Lack of difference in pre-stimulus EMG activity

between days further supports the maintenance of resting status across days. LBNP

of 40 mmHg increases corticospinal excitability in the resting muscle when stimulated

only at 130% or higher RMT [15]. Since the employed intensity of test stimulation was

below 130% RMT and was not different between days, it is likely that the current

measurements were made within the range for consistent input-output properties

of corticospinal neurons. Since the order of LBNP and Control days was assigned

randomly, it is unlikely that the tested interneurons were systematically different

between days. Since the conditioning stimulation was chosen below the AMT and no

discernible MEP was produced during the Active stage, the employed conditioning

stimulation likely did not produce descending volleys. Additionally, the amount of

SICI in the Resting stage on the Control day was comparable to previous reports

[126, 109]. Hence, the decreased SICI in the Resting stage on the LBNP day indicates

a decrease in SICI due to baroreceptor unloading, supporting our prediction. The

decrease in SICI suggests that baroreceptor unloading results in decreased activity of

the intracortical inhibitory GABAA-ergic pathway [159], leading to less inhibition of

later I-waves [37].

In contrast to the resting muscle, there was no significant effect of day on the

measures of intracortical inhibitory pathways in the Active stage. SICI was used

to assess GABAA-ergic activity, and CSPL and CSPH assessed GABAA-ergic and

GABAB-ergic activities, respectively [74]. The absence of significant effect of days on

these measures suggests that baroreceptor unloading did not influence GABAA-ergic
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or GABAB-ergic activity during muscle contraction. Note that inhibition was not ob-

served during SICI in the contracting muscle, in contrast to the approximately 38%

inhibition in a previous report [109]. It is possible that peculiarities of the experimen-

tal setup, such as lack of vision of the hand that influences somatosensory intracortical

inhibition [18] may have influenced these measures of intracortical inhibition in the

contracting muscle.

SICF in the current protocol tested the activity of a portion of the intracorti-

cal pathway implicated in generating later I-waves [56]. The absence of significant

effect of day on SICF during resting and active muscle states suggests that barore-

ceptor unloading did not influence the intracortical excitatory later I-wave generating

pathways.

A limitation in interpreting the effects of LBNP on ICF mechanisms is that the ICF

protocol did not result in significant facilitation of the test MEP on the Control day.

Though not anticipated during the study design, the 69% facilitatory response rate

among participants on the Control day is comparable to literature [149]. Currently,

with the lack of significant effect of LBNP on ICF it is impossible to state whether

LBNP does not influence the excitatory NMDA-ergic pathway probed with the ICF

protocol [158, 134], or whether the NMDA-ergic pathway simply was not assessed.

3.4.3 Potential mechanisms

While the identification of the actual mechanisms for the current observations is be-

yond the scope of this study, it would be worthwhile to explore the potential mecha-

nisms for the significant effect of LBNP (i.e. decrease in SICI). Based on the literature,

the decreased SICI due to LBNP may involve the potential influences of baroreflex

processes on 1) somatosensory afferent input and/or 2) cortical monoamines (i.e.

norepinephrine, serotonin, dopamine). As presented in the Introduction, barorecep-

tor unloading may influence somatosensory afferent activity centrally, via release of
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norepinephrine and serotonin from descending projections of the locus coeruleus and

raphe nuclei [104, 123, 52, 68], or peripherally, via an increase in SNA [143]. Electrical

stimulation over motor axons [141, 34] and electrical stimulation of digits [125, 124, 92]

can decrease SICI. However, the decrease in SICI is abolished if the interval between

digit stimulation and TMS is altered [77]. Hence, the potential effect of somatosen-

sory afferent input on SICI is not robust. Furthermore, there is controversy over

whether physiologically heightened SNA can modulate somatosensory afferent input.

While no influence of SNA on muscle spindle discharge is observed in humans [87],

an increased stretch reflex [59, 72] in the presence of an unaltered H-reflex [72] due

to physiological heightening of SNA suggests an SNA-induced increase in gain of the

somatosensory afferent input. However, the impact of this possible increase in so-

matosensory afferent input, or its gain, in the resting FDI is questionable considering

that the corticospinal excitability is not increased with LBNP through TMS intensity

of 120% RMT in the resting FDI [15].

The potential influences of baroreflex processes on cortical monoamines affect-

ing SICI are inferred from the following evidence. As explained in the Introduc-

tion to this chapter, baroreceptor unloading may result in increased noradrener-

gic, serotonergic, and dopaminergic function within the motor cortex. The influ-

ences of these neuromodulatory monoamines on SICI are variable. Administration of

pharmacological agents that facilitate noradrenergic or serotonergic functions, includ-

ing noradrenergic agonists [57, 67, 48] and serotonergic agonists [152] can decrease

SICI and, similar to the application of LBNP [15], increase corticospinal excitabil-

ity [8, 117, 66, 118, 67, 47]. The decreased SICI with LBNP contrasts with the in-

creased SICI due to the administration of dopamine agonists [157, 160, 78], which were

also shown to decrease corticospinal excitability [78]. Hence, baroreceptor unloading

may inhibit intracortical inhibitory GABAA-ergic activity possibly due to facilitation

of noradrenergic and potentially serotonergic functions overriding the dopaminergic

68



functions on GABAA-ergic activity.

3.4.4 Implication

Collectively, baroreceptor unloading decreases the intracortical GABAA-ergic path-

way in the resting hand muscle, probably by altering intracortical neuromodulatory

activity and perhaps somatosensory afferent input. The current findings may be

further integrated into exploring the potential mechanisms for the previous observa-

tion of increased corticospinal excitability with baroreceptor unloading only at higher

TMS intensities (130% RMT and greater) in Specific Aim 1 [15]. Such higher TMS

intensity is necessary to produce descending volleys with 2 ms delay and longer (later

I-waves) [36]. As judged from the decrease in SICI with LBNP, baroreceptor unload-

ing may decrease the activity of intracortical inhibitory GABAA-ergic pathway that

inhibits later I-waves 2 ms after excitation [37], and thus allow the excitatory later

I-wave generating interneurons to recruit a larger number of corticospinal neurons

and generate greater descending corticospinal activity.

The disinhibiting effects of LBNP were not seen during muscle contraction. Vol-

untary muscle contraction decreases SICI [126, 109]. In this study, SICI was decreased

to the point of not being observed. The lack of effect of LBNP on intracortical ex-

citability during voluntary muscle contraction implies either that the disinhibiting

effects of LBNP were present, however, eclipsed by the disinhibiting effects of con-

traction or that the effects of LBNP on the neuromuscular system were shut off during

voluntary contraction. Observing some motor effect of LBNP during voluntary con-

traction would rule out the latter and suggest the former possibility. Since, from

the resting state data, LBNP appears to influence the GABA-ergic inhibitory path-

way at the cortical level, it may influence other cortical inhibitory pathways, as well.

Joint-stabilizing co-contraction is a motor task during which corticospinal excitability

is decreased [1]. This decrease in excitability does not depend on the GABA-ergic
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activity [1]. Co-contraction, therefore, provides an opportunity to further test the

effects of LBNP during contraction.

In conclusion, baroreceptor unloading significantly decreased SICI, and did not

affect SICF or ICF, in a resting hand muscle. In an active muscle, baroreceptor

unloading had no effect on cortical silent period, SICF, or SICI. These findings suggest

that baroreceptor unloading diminishes intracortical inhibition, at least in the resting

muscle.
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CHAPTER IV

AIM 3: CORTICOSPINAL EXCITABILITY DURING

INDIVIDUAL MUSCLE CONTRACTION AND DURING

JOINT-STABILIZING CO-CONTRACTION

4.1 Introduction

Specific Aims 1 and 2 demonstrated that, for a resting muscle, baroreceptor unload-

ing increases corticospinal excitability [15], and this increase is, at least partially,

explained by decreased GABA-ergic inhibition (as assessed with short-interval intra-

cortical inhibition, SICI) at the motor cortex. No effect of baroreceptor unloading on

intracortical excitability was observed during voluntary muscle contraction. Volun-

tary contraction also decreases GABA-ergic inhibition [126, 109]. The lack of effect

of baroreceptor unloading on intracortical excitability during voluntary muscle con-

traction implies that either the disinhibiting effects of baroreceptor unloading were

present, however, eclipsed by the disinhibiting effects of contraction or that the effects

of baroreceptor unloading on the neuromuscular system were shut off during voluntary

contraction. Observing some motor effect of baroreceptor unloading during voluntary

contraction would rule out the latter and suggest the former possibility.

From Specific Aim 2 it is known that baroreceptor unloading, assessed with the

lower body negative pressure (LBNP) procedure [26, 50], can modulate cortical path-

ways, in general, and disinhibits the motor cortex, in particular (by suppressing the

GABA-ergic pathway). It is, then, possible that the LBNP procedure exerts influ-

ence over other cortical inhibitory pathways, as well. Joint-stabilizing co-contraction

is a motor task during which corticospinal excitability decreases [1]. This decrease

in corticospinal excitability appears to be cortical in nature and is not mediated via
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the GABA-ergic pathway [1]. Joint-stabilizing co-contraction, therefore, presents an

opportunity to further test if LBNP exerts influence over the neuromuscular system

during voluntary contraction.

The purpose of this study was to observe the changes in corticospinal excitability

for two tasks – joint-stabilizing co-contraction and individual muscle contraction –

during baroreceptor unloading by means of the LBNP technique. Individual muscle

contraction was investigated in addition to co-contraction for better interpretation of

the data in the context of previous research. In Specific Aim 2, LBNP was shown

to exert disinhibitory effects at the cortical level. The decrease in corticospinal ex-

citability during joint-stabilizing co-contraction suggests inhibitory cortical activity

[1]. An increase in corticospinal excitability with 40 mmHg LBNP was predicted dur-

ing joint stabilizing co-contraction because this would imply cortical disinhibition.

No effect of LBNP on corticospinal excitability during individual muscle contraction

was predicted because of the lack of cortical inhibition during this task [126, 109] and

because intracortical excitability was not altered by LBNP in Specific Aim 2.

4.2 Methods

4.2.1 Subjects

Twenty two healthy young adults (22.2 ± 4.4 years of age, 7 women) participated

in the study. This subject number was originally based on an a priori sample size

calculation performed with GPower version 3.1.5 (Universität Kiel, Germany). For a

between-within study design with two groups, two measurements of each dependent

variable, an alpha error probability of 0.05, power of 0.95, and a small effect size of

0.2, the a priori sample size was twenty subjects. All subjects were right-handed, as

confirmed with the Edinburgh handedness inventory (Table 1) [106]. Participants did

not present any signs of altered autonomic nervous activity (e.g.: diabetes, cardiovas-

cular problems, brain or nerve disorder, obesity, hypertension, or hypotension [83]).
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Figure 13: Schematic of protocol used in the Specific Aim 3 study. Both groups
of subjects went through two trials of data collection. During each Trial corti-
cospinal excitability was assessed for two tasks: individual muscle contraction and
joint-stabilizing co-contraction. Lower body negative pressure (LBNP) was applied
only in Trial 2 of the Test group.

They did not exhibit skilled use of hands or perform extensive hand grip activity.

Subjects did not take any medication that may affect motor control or brain and

nerve function. In addition, subjects were not allowed to participate if they had a

family history of seizure or epilepsy, skin allergies, were pregnant, were prone to se-

vere headaches, or had metal in their head, besides dental fillings [128]. To minimize

the variability in the basal physiologic level and responsiveness of SNA to the LBNP

procedure across subjects, all experiments were conducted at 8 am; participants ab-

stained from food and drink, with the exception of water, for 10 hours prior to the

experiment [5] and from all forms of exercise for 12 hours prior to the experiment. To

avoid potential confounding effects of estrogen and progesterone on SNA, women were

tested during their follicular phase [96]. All subjects gave written informed consent.

The local Institutional Review Board approved the study.
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4.2.2 Experimental approach

Figure 13 depicts the protocol used in the Specific Aim 3 study. Subjects were ran-

domly assigned to either the Test (n = 12) or Control (n = 10) group. In both

groups, subjects performed two motor tasks: isometric wrist flexion and isometric co-

contraction of the wrist flexor and extensor muscles in the right forearm. The muscle

of interest was the flexor carpi radialis muscle (FCR). Motor evoked potentials (MEP)

were measured in both groups in response to transcranial magnetic stimulation (TMS)

over the motor hotspot during the motor tasks. Supramaximal compound muscle ac-

tion potential (Mmax) during rest and disynaptic inhibition during co-contraction

were also measured. In the Test group, measurements were made without LBNP

intervention (basal condition) in Trial 1 and with LBNP of 40 mmHg (condition with

unloaded baroreceptors) in Trial 2. An ordered protocol was followed to avoid inter-

ference of possible residual effects of the LBNP procedure. To account for potential

effects of order, a Control group, which was tested at basal condition in both Trials 1

and 2, was included in the study design. Effects of LBNP on corticospinal excitability

during Flexion and Co-contraction were assessed from the MEP area during Trial 1

and Trial 2 for each task, compared between the two groups.

4.2.3 Motor task

The experiment was conducted in an electrically shielded room. The head was ori-

ented in neutral position on a pillow; the right shoulder was abducted approximately

30 degrees and the forearm was secured midway between pronation and supination

in a brace with a dowel inside the palm. The subjects were instructed to either flex

their wrist against the dowel (Flexion) or co-contract their wrist flexor and exten-

sor muscles (Co-contraction), depending on the task being assessed. Prior to data

collection the subjects were instructed that the Co-contraction task was meant to

stabilized the wrist in neutral position and increase the wrist joint stiffness and were
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given approximately 10 minutes to become comfortable with executing the task. The

orientation of the right hand was monitored throughout the experiment to ensure con-

sistency. Bipolar surface electromyogram (EMG) was recorded from the right FCR

and extensor carpi radialis (ECR) muscles using pairs of Ag-AgCl electrodes (E224A,

IVM, Healdsburg, CA, USA) placed on the skin over the muscle bellies, in line with

the long axis of the muscle. On each muscle the electrodes were separated by 2 cm.

A sticky disposable electrode (Telectrode/T716, Bio Protech, Wonju si, Gangwon-do,

Korea) was placed on the medial epicondyle of the right arm to serve as the reference.

The EMG was differentially pre-amplified 300 times and bandpass filtered 15 – 2,000

Hz (Y03-000, MotionLabs, NY, USA).

Contraction intensity was determined based on the EMG amplitude of FCR during

maximal voluntary isometric contraction that was performed in the following manner.

With their wrist clamped between two boards with C-clamps midway between flex-

ion and extension, subjects increased their EMG amplitude to maximum in a ramp

fashion over 3 s, and maintained it at maximum for 2 s before relaxing. Subjects were

told to use only their FCR, and to relax all other muscles. Verbal instruction and en-

couragement were provided while the right hand of subjects was visually monitored.

A rectified running average EMG with an averaging window of 0.175 s was used to

provide visual feedback to subjects and to calculate the maximal EMG (EMGmax) of

the FCR. We decided to use the average window of 0.175 s because, during the pilot

study, we found the use of this window reduces the distracting high-frequency signals

for judging the level of muscle activity while it does not lose the responsiveness of

detecting the changes in muscle activity.

Subjects were provided visual feedback of FCR and ECR activity and instructed

to match their FCR activity level to a target set no greater than 10% EMGmax. The

target level did not change through out the experiment. Flexion and Co-contraction

tasks were performed using the same visual feedback of EMG (Fig. 14). Subjects were
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Figure 14: a. The traces are individual 0.8 s recordings of interference electromyo-
gram recorded from a single subject during Trial 1 in the Specific Aim 3 study in re-
sponse to transcranial magnetic stimulation delivered 0.4 s into the presented record-
ings. The top row shows recordings from the flexor carpi radialis (FCR), the bottom
row – - extensor carpi radialis (ECR). Left column was recorded during Flexion, while
the right column was recorded during Co-contraction. b. Traces from the FCR in a.,
zoomed in on the time axis to demonstrate the waveform.
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repeatedly asked of their fatigue perception and breaks were given in between TMS

blocks as necessary. The instruction to the subjects during Flexion was to flex their

hand against the dowel. During Co-contraction, subjects were instructed to stabilize

or harden the wrist joint, and not radially deviate the wrist or squeeze the fingers.

Instructions with regard to a specific target level of ECR activity were not provided

because of the difficulty in adjusting the amount of ECR activity to reach the same

level across subjects. Instead, subjects were instructed to maintain the achieved level

of ECR activity throughout the Co-contraction task. One subject in the Test group

was unable to complete the experiment during Co-contraction of Trial 2.

4.2.4 Baroreceptor unloading

The LBNP technique was used to unload the baroreceptors, similar to our previous

studies [15] and Specific Aim 2. The lower body of the subjects was sealed inside

an airtight LBNP chamber, at the level of the iliac crest. A bicycle seat inside the

chamber insured the subject remained in a stable position during application of 40

mmHg LBNP. The pressure inside the chamber was controlled with the aid of a valve

and a commercial vacuum (Dayton Industrial, Dayton, OH, USA). In Trial 2 of the

Test group, the pressure in the chamber was gradually reduced to -40 mmHg relative

to ambient pressure and maintained at this value during data collection. LBNP of

40 mmHg is known to unload the baroreceptors and increase SNA, as evidenced by

increased muscle sympathetic nerve discharges [143, 31, 145], increased epinephrine

and norepinephrine concentration in plasma [58], and increased heart rate with little

changes in blood pressure [15, 137] and Specific Aim 2. During Trial 1 for the Test

group and Trials 1 and 2 for the Control group (i.e. all trials besides Trial 2 in the

Test group), data collection was performed with the pressure set to ambient (0 mmHg

LBNP) and the vacuum turned on. Blood pressure at the brachial artery of the left

arm and heart rate (averaged over 5-7 s) from the electrocardiogram (ECG) were
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monitored noninvasively (Cardiocap/5, GE Healthcare, Giles, UK) and recorded in

between TMS blocks. Measurement of blood pressure took approximately 30 s. The

ECG was sampled at 100 samples/s with an analog-to-digital converter (Power 1401,

Cambridge Electronic Design Ltd, Cambridge, UK) and data acquisition software

(Spike 2 v.7, Cambridge Electronic Design Ltd, Cambridge, UK) for offline analysis

of heart rate variability.

4.2.5 Corticospinal excitability

Corticospinal excitability was assessed noninvasively with single-pulse TMS (Magstim

2002, by way of BiStim module, Magstim Co, Wales, UK) of the left primary motor

cortex. A figure-of-eight coil (Magstim second generation double 70 mm remote

coil, Magstim Co, Wales, UK) was held over the left primary motor cortex at the

optimum position (i.e. hotspot) for eliciting an MEP in the resting FCR muscle of

the right forearm. The coil was held with the handle pointing posteriorly at an angle

of approximately 45 degrees to the sagittal plane yielding an E-field perpendicular to

the central sulcus [11]. A TMS coil navigation system (NDI TMS Manager, Northern

Digital Inc, Waterloo, Ontario, Canada) was used to maintain the coil position in

3-dimensional space relative to the head. The EMG data were sampled at 5000

samples/s with an analog-to-digital converter (Power 1401, Cambridge Electronic

Design Ltd, Cambridge, UK) and data acquisition software (Signal v.5, Cambridge

Electronic Design Ltd, Cambridge, UK) for online monitoring, storage, and offline

analysis.

The resting motor threshold (RMT) for the FCR muscle was determined as the

smallest TMS intensity needed to elicit an MEP with peak-to-peak amplitude greater

than 50 µV in 5 out of 10 consecutive stimulations [30, 16] in the resting FCR. RMT

was measured in percentage of maximal stimulator output for each subject, with the

LBNP vacuum turned off. MEPs were collected at TMS intensity of 110% of RMT
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and greater, at 10% RMT increments. TMS was delivered every 6 s. Measurements

were made in blocks, with 12 MEP responses per block (i.e. per TMS intensity),

and the order of the TMS intensity blocks was randomized. Breaks were given in

between blocks as needed to prevent fatigue. MEPs were collected during Flexion and

Co-contraction tasks. In Trial 1, MEPs from both tasks were collected at ambient

pressure (0 mmHg LBNP) in both groups. In Trial 2, MEPs were collected again at

ambient pressure in the Control group and at 40 mmHg LBNP in the Test group.

Assessment of corticospinal excitability was not possible in one subject from the Test

group and one subject from the Control group due to equipment issues.

4.2.6 H-reflex and Mmax

Effect of LBNP on Mmax and on the disynaptic inhibition of FCR [99, 148] were in-

vestigated using transcutaneous bipolar electrical stimulation of the median nerve and

radial nerve. The electrical stimulation was delivered via pairs of spherical stimulating

electrodes, separated by 2 cm, connected to a constant current stimulator (S88-SIU5-

CCU1, Grass Products, Natus Neurology Inc., Warwick, RI, USA). Potential increase

in SNA due to pain of the electrical stimulation would present a confounding vari-

able to increase in SNA with LBNP [143, 31, 145]. Mmax and disynaptic inhibition

were assessed only in those subjects who did not perceive the electrical stimulation

as painful. Mmax of the FCR muscle was assessed with a 1 ms square-wave elec-

trical stimulation delivered to the median nerve at supramaximal intensity: 150% of

intensity that elicited maximum compound muscle action potential. Twelve Mmax

responses were measured from the resting FCR, while electrical stimulation was de-

livered every 10 s. Mmax was obtained from nine and eight subjects from the Test

and Control groups, respectively.

Disynaptic inhibition was assessed during Co-contraction as the reduction of the

H-reflex in FCR due to conditioning stimulation of the radial nerve (Fig. 15) [99].
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Figure 15: a. The traces are individual 0.8 s recordings of interference electromyo-
gram recorded from a single subject during Trial 1 in the Specific Aim 3 study in
response to electrical stimulation delivered 0.4 s into the presented recordings. The
top row shows recordings from the flexor carpi radialis (FCR), the bottom row –
- extensor carpi radialis (ECR). Left column shows the H-reflex elicited by median
nerve stimulation. The right column shows the H-reflex conditioned by stimulation
of the radial nerve. b. Traces from the FCR in a., zoomed in on the time axis to
demonstrate the waveform.
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The H-reflex in FCR was produced by the electrical stimulation of median nerve at

an intensity on the ascending limb of the recruitment curve for the H-reflex. Between

trials, intensity of stimulation was adjusted as necessary to maintain an H-reflex of

comparable size. The radial nerve was conditionally stimulated at motor threshold,

as judged by the appearance of a muscle compound action potential in the EMG

of resting ECR. Both nerves were stimulated with a 1 ms square-wave pulse. First,

the FCR H-reflex was observed in the resting FCR muscle. Then, the reduction of

the resting FCR H-reflex by electrical stimulation of the radial nerve preceding the

median nerve stimulation by 0 and 1 ms was measured. The interval that gave the

greatest reduction in resting FCR H-reflex was subsequently used to assess disynap-

tic inhibition during Co-contraction. Responses to twelve unconditioned and twelve

conditioned stimulations delivered every 6 s were recorded from the FCR. H-reflexes

were successfully measured in eight and six subjects from the Test and Control groups,

respectively.

4.2.7 Data collection sequence

During Trial 1, Mmax was measured first, followed by corticospinal excitability during

Flexion, corticospinal excitability during Co-contraction, and disynaptic reciprocal

inhibition during Co-contraction in random order. Trial 2 followed the same order as

Trial 1.

4.2.8 Data reduction

The first 2 MEP responses in each block were discarded to control for possible startle

responses. Mmax recordings that showed obvious pre-stimulus EMG activity in FCR

and Flexion task recordings that showed obvious EMG activity in ECR 400 ms pre-

ceding the TMS were discarded by visual inspection. All remaining EMG recordings

were rectified and averaged within stimulation blocks. The mean pre-stimulus EMG

amplitude in FCR and ECR were calculated for all recordings; the pre-stimulus EMG
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amplitude in FCR was expressed relative to EMGmax in FCR. The MEP was defined

as the EMG response between 12 and 50 ms post TMS. Peak amplitude of the average

rectified MEP (MEP peak) and the area bound by the average rectified MEP and

the 0 mV axis (MEP area) were calculated for each TMS response. The area mea-

surement in response to electrical stimulation was performed similarly. For assessing

disynaptic inhibition, the ratio of the H-reflex area during conditioned stimulation to

the area during unconditioned stimulation was calculated (H-reflex ratio).

The automated cumulative sum method was used to measure the cortical silent

period [76] in the FCR produced by TMS during the motor task. The start and end

of the cortical silent period were defined as the times, following the MEP, from when

the average rectified EMG fell below and increased back up to the pre-stimulus EMG

level, respectively.

To examine autonomic responses to LBNP, heart rate variability was assessed

from the ECG recordings taken during measure of corticospinal excitability during

the motor task. All ECG recordings used in calculation of heart rate variability were

greater than three minutes in duration. From the ECG recording, all R-wave peaks

were identified, marked, and visually inspected to rule out artifacts. Then the power

spectrum of the R-to-R interval was calculated. Low frequency (0.05 – 0.15 Hz) power

was expressed relative to the power in total frequencies (0.05 – 0.50 Hz, HRLF) and

was used as a measure of SNA [19].

4.2.9 Statistical analysis

Subject characteristics include the age, handedness index, baseline heart rate, baseline

mean arterial blood pressure (MAP), and RMT that was measured with the vacuum

turned off before Trial 1. These variables were compared between the two groups with

a Students independent samples t-test. Effects of LBNP on Mmax, unconditioned

H-reflex, and H-reflex ratio were assessed with a two-factor (Group × Trial) analysis
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of variance (ANOVA) with repeated measures for Trial. Effects of LBNP on heart

rate, HRLF, MAP, pre-stimulus EMG amplitude, MEP peak, MEP area, and cortical

silent period were assessed using a three-factor (Group × Trial × Task) ANOVA with

repeated measures for Trial and Task. Effects of LBNP were judged from within-

Group effects of Trial. Inclusion of the Control group in the ANOVAs ensured that

any differences seen between trials 1 and 2 in the Experimental group were not due

to order effect. When a 3-factor interaction was found, to clarify if Task affected the

variables without the influence of LBNP, the variables in Trial 1 were assessed with a

two-factor (Group × Task) ANOVA with repeated measures for Task. An alpha level

of 0.05 was used for all significance testing, and P < 0.05 and P < 0.01 were noted

where appropriate. Tukey post-hoc test was used to test significant interactions when

appropriate. Statistical analyses were performed using Statistica 9.0 (StatSoft Inc.,

Tulsa, OK, USA). Unless stated otherwise, the data are presented as mean ± SD in

the text and tables and as mean ± standard error of mean in the figures.

4.3 Results

4.3.1 Subject characteristics

Basic subject characteristics, including age, L.Q. value, EMGmax, heart rate, mean

arterial blood pressure, and RMT were not different between groups (Test vs. Control,

Table 8)

4.3.2 Cardiovascular response

For heart rate, there were a main effect of Trial (P < 0.01), Task (P < 0.01), an

interaction of Group and Trial (P < 0.01), and an interaction of Group, Trial, and

Task (P < 0.05). As a within-Group effect, heart rate in Trial 2 was greater compared

with Trial 1 by 15.9 bpm (P < 0.01) in the Test group, but not in the Control group

(Fig. 16). During Trial 1 (i.e. without effects of LBNP) heart rate was found to be

affected by the Task (P < 0.01). In Trial 1, heart rate during Co-contraction (61.2
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Figure 16: Cardiovascular measurements during different stages of the Specific Aim 3
experiment in the Test and Control groups. Heart rate (top) and heart rate variability
(bottom, 0.05 – 0.15 Hz power fraction of heart rate variability relative to the total
power of the R-to-R interval spectrum); A.U., arbitrary units of heart rate variability
power fraction. **P < 0.01 post hoc analysis of significant Group × Trial interaction.
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Table 8: Baseline characteristics of each group in Specific Aim 3 study. L.Q., lat-
erality quotient for right handedness; EMGmax, electromyogram amplitude during
maximal voluntary contraction; bpm, beats per minute; MAP, mean arterial blood
pressure; RMT, resting motor threshold; MSO, maximal stimulator output. No sig-
nificant difference between groups

Test group Control group
N 12 10
Age, years 22.67 ± 5.45 21.70 ± 2.98
L.Q. value 0.76 ± 0.22 0.68 ± 0.19
EMGmax, mV 0.31 ± 0.28 0.39 ± 0.27
Heart rate, bpm 57.3 ± 10.35 61 ± 5.46
MAP, mmHg 85.4 ± 9.75 83.5 ± 7.82
RMT, % MSO 51.00 ± 10.39 50.10 ± 7.84

± 8.79 bpm) was greater than during Flexion (58.3 ± 8.28 bpm) by 2.9 bpm, on

average, across groups.

For HRLF, there were a main effect of Trial (P < 0.01) and an interaction of Group

and Trial (P < 0.01). HRLF increased from Trials 1 to 2 in the Test group (47.4%, P

< 0.01, Fig. 16), but not in the Control group.

Mean arterial blood pressure was maintained around 84.1 ± 8.5 mmHg, on av-

erage, throughout the experiment. There was no significant effect or interaction of

Group, Trial, or Task on mean arterial blood pressure.

4.3.3 Background contraction

Subjects were asked to produce a steady contraction with their FCR less than 10%

of EMGmax during the motor tasks. With a main effect of Group (P < 0.05), pre-

stimulus EMG amplitude in FCR resulted in 6.9 ± 2.8% EMGmax in the Test group

and 5.3 ± 2.2% EMGmax in the Control group. There were no significant effects or

interactions of Task or Trial on pre-stimulus EMG amplitude in FCR.

For ECR, with a main effect of Task (P < 0.01), pre-stimulus EMG amplitude of

ECR increased approximately 8 fold from 3.2 ± 0.6 µV during Flexion to 24.0 ± 19.2
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Figure 17: FCR MEP response of two representative subjects in the Specific Aim
3 study. The subject on the left is from the Test group and the subject on the
right is from the Control group. Solid lines indicate response during Trial 1; broken
lines indicate response during Trial 2; square symbols denote response during wrist
flexion; circles denote response during wrist co-contraction; filled symbols indicate
when sympathetic nerve activity was heightened (Trial 2 of Test group, only). MEP,
motor evoked potential; RMT, resting motor threshold.

µV during Co-contraction. There were no significant effects or interactions of Group

or Trial on pre-stimulus EMG amplitude of ECR.

4.3.4 Corticospinal excitability

Figure 17 shows the MEP area response of FCR in two representative subjects during

Flexion and Co-contraction in trials 1 and 2. One subject is from the Test group (left

panel) and another one is from the Control group (right panel). In Trial 2, the subject

from the Test group, i.e. with the application of LBNP, appeared to show increased

MEP amplitude during Flexion and, conversely, decreased MEP amplitude during

Co-contraction, compared with Trial 1.

These observations in individual subjects were statistically tested in the grouped

data. There were a main effect of Task (P < 0.01) and Group × Task (P < 0.01)

and Trial × Task (P < 0.05) interactions for MEP peak; and a main effect of Task (P
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Figure 18: Corticospinal excitability in the Specific Aim 3 study. Response of Test
group and Control group subjects during Flexion and Co-contraction tasks in Trials
1 and 2. MEP, motor evoked potential. **P < 0.01 between trials for the specified
Task in the Group.

< 0.01) and Group × Task (P < 0.01), Group × Trial (P < 0.05), Trial × Task (P

< 0.01), and Group × Trial × Task (P < 0.01) interactions for MEP area. Post hoc

analysis did not reveal any significant within-Group effects of Trial for MEP peak.

Post hoc analysis of the Group × Trial × Task interaction of MEP area revealed that,

in the Test group, MEP area in Trial 2 during Co-contraction was decreased by 22%

compared with Trial 1 (P < 0.01, Fig. 18). During Flexion in the Test group, there

was no significant difference between Trial 1 and Trial 2. In the Control group, MEP

area was not significantly different across tasks and trials. When the effect of Task

on MEP area without the influence of LBNP was further examined by testing Trial

1 data only, both groups presented lower MEP area during Co-contraction (4.90 ±

2.83 mV·ms) by 8.6% compared with Flexion (5.36 ± 3.25 mV·ms) in Trial 1, with

the presence of a main effect of Task in a 2-factor ANOVA (P < 0.05).
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Figure 19: Cortical silent period in the Specific Aim 3 study, measured, in ms, from
the flexor carpi radialis.

4.3.5 Cortical silent period

There was a main effect of Group (P < 0.01) and a Group × Trial interaction (P <

0.05) on cortical silent period. On average, cortical silent period in the Test group

(125 ± 42 ms) was 20 ms longer compared with the Control group (105 ± 27 ms). In

each group, cortical silent period was not significantly different across tasks and trials

as post hoc analysis of the Group × Trial interaction did not reveal any significant

within-Group effects (Fig. 19).

4.3.6 H-reflex and Mmax

To examine the amount of disynaptic inhibition in the FCR, H-reflex ratio between

unconditioned and conditioned stimulation was obtained with the peripheral stim-

ulation intensity that was expected to yield the comparable unconditioned H-reflex

in the FCR across trials. On average, the unconditioned H-reflex was 3.81 ± 2.73

mV·ms and was not significantly different between trials or groups. With a main ef-

fect of Group (P < 0.05), H-reflex ratio in Test group (0.89 ± 0.18 A.U.) was greater

than in the Control group (0.64 ± 0.25 A.U.) across trials (Table 9). There was no
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Table 9: Peripheral effects of lower body negative pressure, measured from the flexor
carpi radialis in the Specific Aim 3 study. Lower body negative pressure of 40 mmHg
was applied during Trial 2 in the Test group, only. A.U. arbitrary units; Mmax,
compound muscle action potential in response to supramaximal electrical stimulation.
A main effect of Group was detected for the H-reflex ratio.

Test group Control group
H-reflex ratio (A.U.) Trial 1 0.86 ± 0.11 0.61 ± 0.23

Trial 2 0.92 ± 0.23 0.67 ± 0.29

Mmax (mV·ms) Trial 1 25.5 ± 16.5 25.1 ± 13.1
Trial 2 26.1 ± 15.9 24.5 ± 13.0

significant main effect of Trial or interaction on the H-reflex ratio.

To examine the excitability at and distal to motor endplate, Mmax in the FCR

was obtained with supramaximal peripheral stimulation. There was no significant

effect or interaction of Group or Trial on Mmax (Table 9).

4.4 Discussion

The major findings of this study are the decrease in MEP area during Co-contraction

but not during Flexion in Trial 2 in the Test group, in which LBNP of 40 mmHg was

applied. In the Control group, there were no differences in MEP area across tasks

and trials.

4.4.1 Cardiovascular response

LBNP of 40 mmHg is known to unload the baroreceptors and heighten SNA as

evidenced by increases in muscle sympathetic nerve discharges [143, 31, 145], con-

centration of epinephrine and norepinephrine in the plasma [145, 58], heart rate

[143, 15, 31, 145], and HRLF [85]. In the current study, LBNP of 40 mmHg in

Trial 2 of the Test group increased heart rate and HRLF, while maintaining mean

arterial blood pressure. In the Control group, there were no significant differences in

these cardiovascular measures. These cardiovascular responses in the Test group are
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comparable to previous studies employing LBNP [143, 15, 31, 145, 85], and support

unloading of baroreceptors with the application of LBNP.

4.4.2 Corticospinal excitability

Within each group, subjects maintained comparable contraction intensity across tri-

als and tasks as shown by the indifferent pre-stimulus EMG amplitude. A slight

difference in pre-stimulus EMG amplitude between groups (less than 2% EMGmax)

is not related to baroreceptor unloading because there was no significant interaction

of Group and Trial. No significant difference in resting Mmax across groups and tasks

is consistent with the absence of effect of LBNP on Mmax at rest observed in Specific

Aim 1 [15], indicating that the efferent pathways at and distal to the motor-end plate

are not influenced by baroreceptor unloading.

No influence of baroreceptor unloading on corticospinal excitability during agonist

contraction is suggested by the absence of significant effect of Trial on MEP peak and

MEP area during Flexion in the current study. This finding in FCR is in line with the

absence of effects of LBNP on measures of intracortical excitability during index finger

abduction with the first dorsal interosseus muscle, previously observed in Specific Aim

2. The current findings thus extend the absence of effect of baroreceptor unloading

on intracortical excitability during agonist contraction from an intrinsic hand muscle

to absence of effect on corticospinal excitability during agonist contraction of a more

proximal forearm muscle.

A reduction in corticospinal excitability due to co-contraction is suggested by

smaller MEP area during Co-contraction compared with Flexion during Trial 1 (i.e.

without LBNP) in the current study. This finding is consistent with a similar study

during wrist co-contraction in which ECR corticospinal excitability was shown to

decrease during co-contraction [1], and thus supports that the current subjects com-

pleted the tasks appropriately. Comparable pre-stimulus EMG amplitude between
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Flexion and Co-contraction suggests comparable activation of spinal motor-neurons

between the tasks and supports the previous suggestion that the decline in corti-

cospinal excitability with co-contraction is likely not caused by potential alterations

at the spinal motor-neuron level, but by a reduction in the excitability of the monosy-

naptic corticospinal neurons at the motor cortex [1].

MEP area proved more responsive than MEP peak amplitude to LBNP during

Co-contraction as the latter measure did not show any significant effects of LBNP

during Co-contraction. This discrepancy between the two measures of MEP size can

be statistical or physiological in nature. The MEP is measured from the EMG signal,

an interference signal composed of the temporal summation of the action potentials

generated along the muscle fibers underlying the recording electrodes [42]. Since

the MEP peak amplitude measure is dependent on the precise alignment of action

potentials, it is more susceptible to variability of the EMG generating components

(e.g. proximity of the muscle fibers stimulated by TMS to the recording electrodes).

The variability of the MEP peak response during Co-contraction may have been too

great to observe any significant effects of LBNP. On the other hand, the MEP peak

amplitude may have remained unaltered in the presence of a decrease in MEP area if

there was a physiological change in the onset of muscle fiber action potentials (due to

changes in conduction velocity or arrival delay of descending activity). A reduction in

corticospinal excitability accompanied by a decrease in the arrival delay of later MEP

generating neural activity, for example, would maintain the MEP peak amplitude and

shorten the MEP duration, thereby decreasing MEP area.

A reduction in corticospinal excitability due to LBNP during Co-contraction is

suggested by the decrease in MEP area of FCR during Co-contraction in Trial 2 (i.e.

with LBNP) compared with Trial 1 (i.e. without LBNP) in Test group in the current

study. This finding is contrary to our hypothesis of increased corticospinal excitabil-

ity due to baroreceptor unloading. Maintenance of comparable pre-stimulation EMG
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amplitude in FCR between Flexion and Co-contraction suggests comparable volun-

tary activation of spinal motor-neurons between the two tasks and supports that the

decline in corticospinal excitability during co-contraction is likely not caused by a po-

tential alteration in the excitability of the spinal motor-neurons [1, 103]. Since there

appears to be no influence of baroreceptor unloading on the major neural pathways

within FCR during Flexion, the decrease in MEP area of FCR during Co-contraction

is most likely induced by the effect of baroreceptor unloading on the neural pathways

that are additionally recruited or modulated with the wrist co-contraction. The ma-

jor additional neural pathways due to co-contraction include 1) disynaptic inhibition

in the spinal cord [99, 148], 2) cortical reciprocal inhibition [7, 62], and 3) the cor-

ticospinal neurons recruited specifically during co-contraction [43]. These pathways

are summarized in Figure 20.

As a first potential pathway, disynaptic inhibition refers to the inhibition of spinal

motor-neurons by Ia inhibitory interneurons [99, 148, 103]. For the FCR muscle, the

Ia inhibitory interneurons (i.e. the ones that inhibit the FCR motor-neurons) can

be recruited by group I afferents of the FCR and ECR [148] and can be modulated

by corticospinal neurons of the ECR [43]. An increase in disynaptic inhibition with

baroreceptor unloading could potentially decrease the excitability of the FCR spinal

motor-neurons, and result in a smaller MEP during wrist co-contraction. However,

this possible influence of baroreceptor unloading on disynaptic inhibition in the spinal

cord is not supported by the invariable H-reflex ratio observed between trials in the

present study.

A second potential pathway is cortical reciprocal inhibition that refers to in-

hibitory action of somatosensory afferents of ECR muscle on corticospinal outputs

to the FCR muscle via cortical interneurons [7, 62, 17]. An increase in cortical recip-

rocal inhibition could result from a) increased activity of the somatosensory afferents
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Figure 20: Schematic model of co-contraction specific neuromuscular pathways po-
tentially affected by baroreceptor unloading. The model depicts disynaptic inhibition,
cortical reciprocal inhibition, and co-contraction specific corticospinal neurons. Cor-
ticospinal neurons are denoted with triangular soma. The low threshold corticospinal
neurons in the foreground project to spinal motor-neurons and to Ia inhibitory in-
terneurons. The higher threshold co-contraction specific corticospinal neurons project
to the spinal motor-neurons, only. They are in the background, denoted with a thicker
contour. Spinal Ia inhibitory interneurons and cortical reciprocal interneurons are de-
noted with solid circles at their axon terminals.
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or b) increased excitability of the reciprocal inhibitory interneurons in the cortex. In-

creased activity of the somatosensory afferents with baroreceptor unloading was not

supported by the invariable H-reflex ratio between trials during Co-contraction. Ad-

ditionally, the invariable MEP area during Flexion between trials does not support

increased activity of the somatosensory afferents with baroreceptor unloading. In

contrast, there are no available data or report that may help suggest whether barore-

ceptor unloading increases the excitability of the reciprocal inhibitory interneurons

in the cortex.

A third potential pathway suggested involves corticospinal neurons that are re-

cruited specifically during co-contraction [43]. According to studies on the primate

neuromuscular system, there exist at least two functionally distinct corticospinal neu-

rons that are preferentially recruited based on the contraction task [43, 65]. The cor-

ticospinal neurons that synapse onto both spinal motor-neurons of a muscle and the

coupled Ia inhibitory interneurons are suggested to be recruited during simple agonist

contraction, while the ones that only synapse onto spinal motor-neurons of a muscle

are suggested to be recruited during co-contraction [43, 65]. In humans, recruitment

of distinct corticospinal neurons during co-contraction is supported by a shift in the

peak activation area in the motor cortex between tasks of agonist contraction and

antagonist co-contraction in a brain imaging study [69]. The possibility of whether or

not baroreceptor unloading exerts a net inhibitory effect on the corticospinal neurons

specific to co-contraction cannot be inferred or refuted from the current data.

Taken together, the LBNP-induced reduction in corticospinal excitability during

Co-contraction may involve greater cortical reciprocal inhibition or inhibition of the

corticospinal neurons specific to co-contraction due to baroreceptor unloading. Fur-

ther research is warranted to delineate these mechanisms.
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4.4.3 Cortical silent period

Cortical silent period was not significantly affected by trials during either Flexion or

Co-contraction in either group, in contrast to MEP. The duration of the cortical silent

period can be affected by the contraction intensity and steadiness of contraction before

and after TMS [90]. Given feedback of their EMG amplitude, all subjects maintained

a steady contraction through stimulation, and pre-stimulus EMG activity did not

show significant differences between trials or tasks, suggesting comparable contraction

steadiness and intensity between tasks and trials. Therefore, the results suggest that

baroreceptor unloading does not affect the cortical silent period during contraction

of wrist flexors or co-contraction. These findings corroborate a finding in the first

dorsal interosseus muscle during index finger abduction (Specific Aim 2) and extend

the knowledge in that an absence of effect of baroreceptor unloading on the cortical

silent period does not depend on contraction tasks with regard to the involvement of

co-contraction.

4.4.4 Implication

The current findings demonstrate that the effects of LBNP on MEP size show a task

dependency, while effects of LBNP on cortical silent period do not. This contrasting

effect of LBNP implies different influences of baroreceptor unloading on distinct in-

tracortical mechanisms for MEP size and cortical silent period duration. As stated

above, the reduction in MEP size with LBNP during Co-contraction may involve

greater cortical reciprocal inhibition or inhibition of corticospinal neurons specific to

co-contraction. The cortical silent period, on the other hand, indicates intracorti-

cal GABA-ergic activity [74]. While GABA-ergic activity would influence MEP size,

GABA-ergic activity is not affected by co-contraction [1]. Nor is GABA-ergic activity

affected by LBNP during muscle contraction (Specific Aim 2). Therefore, the task

dependency of the effects of LBNP on MEP area and the apparent absence of such
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task dependency for cortical silent period imply that the decrease in MEP size during

Co-contraction with baroreceptor unloading is not due to GABA-ergic mechanisms.

The task dependent effects of baroreceptor unloading may have been caused by

the novelty and difficulty of the Co-contraction task. It can be argued that subjects

had less experience with isometrically contracting both the wrist flexors and extensors

while keeping their palm open and around a dowel than with isometrically flexing the

hand into the dowel. Certainly, nearly all subjects reported having more difficulty

with the Co-contraction task and used the 10 minute practice window prior to data

collection for practice of the Co-contraction task more than the Flexion task. Corti-

cospinal excitability increases during encoding of novel fine motor skills [113, 114]. If,

during the course of data collection, the subjects were inadvertently encoding a the

Co-contraction task, their corticospinal excitability may have been increased. This

increase in corticospinal excitability may then have allowed for the observation of

a decrease in corticospinal excitability with LBNP. Such possibility does not argue

against effects of LBNP over the motor system during voluntary contraction, since

both the Control and Test group would presumably experience motor encoding during

the course of the study. However, the effects of LBNP may not be evident once the

Co-contraction task is equally learned as Flexion and corticospinal excitability is no

longer increased due to encoding [113]. This possibility can be tested with a training

paradigm.

In conclusion, baroreceptor unloading exerts influence over the neuromuscular sys-

tem during voluntary contraction and this influence appears task dependent. Barore-

ceptor unloading by means of 40 mmHg LBNP did not influence corticospinal ex-

citability during wrist flexion but diminished corticospinal excitability during wrist

joint-stabilizing co-contraction.
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CHAPTER V

INTEGRATION

5.1 Neuromuscular pathways

Figure 21 shows a simplified schematic of the corticospinal pathway and associated

neuromuscular pathways investigated in this thesis for influence of baroreceptor un-

loading. Motor generating mechanisms at and distal to the motor endplate do not

appear to be influenced by baroreceptor unloading, as demonstrated by the lack of

significant effect of LBNP on maximum compound muscle action potential presented

in Specific Aims 1 and 3.

Spinal motor-neuron excitability was not tested directly in any of the Specific

Aims. However, none of the results collected from any of the aims support an influence

of baroreceptor unloading over spinal motor-neuron excitability. In Specific Aim 1,

MEP was increased at higher intensities of stimulation. This suggests that at least

the low threshold motor-neurons are not influenced by LBNP. The lack of effect of

LBNP on MEP during wrist flexion and the reduction of corticospinal excitability

during wrist co-contraction, but not during wrist flexion with LBNP, at comparable

levels of motor pool recruitment observed in Specific Aim 3 argues against an effect

of baroreceptor unloading on a partially active motor-neuron pool. Baroreceptor

unloading increases peripheral sympathetic nerve activity [143]. Lack of effect of

heightened sympathetic nerve activity on the H-reflex in a previous study [72] further

supports a lack of effect of baroreceptor unloading on spinal motor-neuron excitability.

Effects of baroreceptor unloading on the Ia inhibitory interneuron excitability were

tested with the conditioned H-reflex technique during joint-stabilizing co-contraction.

40 mmHg LBNP had no effect on the disynaptic inhibitory pathway, suggesting no
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Figure 21: A summary schematic model. The model depicts GABA-ergic intracorti-
cal inhibition, disynaptic inhibition, cortical reciprocal inhibition, and co-contraction
specific corticospinal neurons. Corticospinal neurons are denoted with triangular
soma. The low threshold corticospinal neurons in the foreground project to spinal
motor-neurons and to Ia inhibitory interneurons. The higher threshold later I-wave
generating interneurons and co-contraction specific corticospinal neurons are denoted
with a thicker contour. The higher threshold co-contraction specific corticospinal
neurons are in the background and project to the spinal motor-neurons, only. GABA-
ergic inhibitory interneurons, spinal Ia inhibitory interneurons, and cortical reciprocal
interneurons are denoted with solid circles at their axon terminals.
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influence over the Ia inhibitory interneuron excitability. However, excitability of the Ia

inhibitory interneurons is greatly suppressed during co-contraction [99]. It is possible

that the lack of effect is due to the suppression of the excitability of the Ia inhibitory

interneurons by co-contraction. This possibility can be tested with the disynaptic

inhibition technique performed at rest.

The main finding of Specific Aim 1 was an increase in corticospinal excitability of

a resting muscle with baroreceptor unloading at TMS intensity of 130% and greater

[15]. The lack of effect at lower intensities of stimulation suggests that at rest, the

low-threshold corticospinal neurons were not affected by LBNP. Since higher inten-

sity TMS activates higher threshold later I-wave generating interneurons [36], thereby

recruiting more corticospinal neurons, the results of Specific Aim 1 can suggest that

LBNP affects 1) higher threshold spinal motor-neurons, 2) higher threshold corti-

cospinal neurons and 3) higher threshold later I-wave generating interneurons. As

already discussed, though the effects of LBNP on spinal motor-neurons have not been

investigated, the findings of the three aims do not support an influence. Nonetheless,

an effect of LBNP over higher-threshold spinal motor-neurons cannot be excluded.

LBNP may have increased corticospinal excitability in Specific Aim 1 by exerting

influence over the higher-threshold corticospinal neurons. By bringing the membrane

potential of corticospinal neurons closer to threshold, LBNP may have caused higher-

threshold corticospinal neurons to activate at a lower TMS intensity, increasing the

MEP. However, the lack of effect at lower TMS intensities suggests that corticospinal

neurons’ membrane potential is not affected by LBNP, at least for low-threshold cor-

ticospinal neurons. LBNP may have also exerted influence over the higher-threshold

corticospinal neurons by decreasing presynaptic inhibition at the corticospinal-motor-

neuronal synapse, thereby increasing the number of spinal motor-neurons recruited.

99



Aside from preferential control of higher-threshold corticospinal neurons, this possi-

bility requires presynaptic inhibition of corticospinal neurons at the spinal level. Pre-

vious findings do not support presynaptic inhibition of corticospinal fibers [100]. The

intensity-dependent increase in corticospinal excitability with baroreceptor unloading

requires an influence over the higher-threshold corticospinal neurons, specifically.

Baroreceptor unloading may have increased corticospinal excitability at higher

intensities of TMS indirectly by influencing the higher-threshold interneurons that

activate corticospinal neurons. TMS of higher intensity recruits interneurons that

generate later I-waves (i.e. I-2 and I-3 waves) in the motor cortex [36], suggesting that

greater contribution of later I-waves leads to increased corticospinal excitability with

baroreceptor unloading. Contribution of later I-waves to corticospinal excitability

may be increased by 1) increasing the activity of the intracortical excitatory gluta-

matergic pathway responsible for later I-wave generation, assessed with SICF [56] or

2) decreasing the activity of the intracortical inhibitory GABAA-ergic [159] pathway

that inhibits later I-waves [37], assessed with SICI [80].

This final possibility was investigated in Specific Aim 2. In the resting muscle,

LBNP did not influence SICF and decreased SICI. The lack of influence of LBNP

over SICF suggests that baroreceptor unloading does not alter the excitatory later

I-wave generating interneurons. The decrease in SICI was interpreted as a decrease

in GABAA-ergic inhibition of the motor cortex with baroreceptor unloading. This

implies that baroreceptor unloading releases the excitatory higher-threshold later I-

wave generating interneurons from GABAA-ergic inhibition. Disinhibited later I-

wave generating interneurons would activate a larger number of corticospinal neurons,

leading to a greater MEP. However, since the later I-wave generating interneurons

have a higher TMS threshold [36], the increase in MEP would only be evident at higher

intensities of TMS, just as was the case in Specific Aim 1. LBNP may have decreased

activity of the GABAA-ergic pathway by hyperpolarizing the GABA-ergic neurons or
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by decreasing the synaptic strength (e.g. via blockade of the post synaptic GABA

receptors of the excitatory interneurons) between the GABA-ergic and excitatory

interneurons.

No effect of baroreceptor unloading on intracortical excitability was observed dur-

ing voluntary muscle contraction. The lack of effect on SICF is inline with the lack

of baroreceptor unloading on later I-wave generating interneurons, observed in the

resting muscle. The lack of effect of LBNP on SICI and the cortical silent period,

both measures of the GABA-ergic pathway, was different from the decrease in SICI

observed during rest. Since voluntary contraction also decreases GABA-ergic inhibi-

tion [126, 109], the lack of effect of baroreceptor unloading on intracortical excitability

during voluntary muscle contraction likely implies that the GABAA suppressing ef-

fects of baroreceptor unloading are present during voluntary contraction, but they are

difficult to measure using the TMS technique. This notion is further supported by

the observation of an influence of LBNP over the neural command during a voluntary

motor task in Specific Aim 3.

In Specific Aim 3 baroreceptor unloading did not affect corticospinal excitability

during individual muscle contraction. This is inline with the lack of effect of barore-

ceptor unloading on measures of GABA-ergic inhibition during voluntary contraction

in Specific Aim 2 and further supports cortical disinhibition as the underlying mech-

anism of the increase in corticospinal excitability in Specific Aim 1. Since voluntary

contraction suppresses GABA-ergic inhibition [126, 109], it can act as a control for

the GABA-ergic effects of LBNP. With the GABA-ergic effects removed by volun-

tary contraction, any changes in corticospinal excitability with baroreceptor unloading

would indicate an influence of LBNP over pathways other than the inhibitory GABA-

pathway. The lack of effect of baroreceptor unloading over corticospinal excitability

during voluntary contraction does not support the mechanisms previously listed to
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explain the increase in resting corticospinal excitability, other than the cortical in-

terneuron explanation.

Co-contraction of the wrist FCR and ECR decreased FCR corticospinal excitabil-

ity relative to activation of the FCR muscle by itself. This result is similar to the

decrease in ECR corticospinal excitability during co-contraction of FCR and ECR [1]

and suggests that the effects of co-contraction are not muscle (extensor vs. flexor)

specific.

Corticospinal excitability during joint-stabilizing co-contraction decreased with

baroreceptor unloading in Specific Aim 3. Since a similar effect was not seen during

individual muscle contraction at comparable intensity, the result cannot be explained

by pathways recruited during individual muscle contraction. Additional pathways

recruited during co-contraction include spinal disynaptic inhibition [99], cortical re-

ciprocal inhibition [7, 62, 17], and co-contraction specific corticospinal neurons [43].

As explained above, an effect of LBNP over the disynaptic inhibition is not supported

by the obtained data. The decrease in corticospinal excitability can be explained by

increased cortical reciprocal inhibition. An increase in the activity of the somatosen-

sory afferents or an increase in the activity of the cortical reciprocal inhibitory neurons

with LBNP would result in greater cortical reciprocal inhibition (Fig. 21). The lack

of change in disynaptic inhibition suggests that the potential effects of LBNP on the

cortical reciprocal inhibitory pathway are enacted post-synaptically at or proximal to

the peripheral somatosensory afferents.

Finally, the decrease in corticospinal excitability with baroreceptor unloading dur-

ing joint-stabilizing co-contraction can also be explained by an effect of LBNP ex-

clusively on the co-contraction specific corticospinal neurons. At present, it is not

known if the co-contraction specific corticospinal neurons are influenced differently

by LBNP. This can be tested by comparing the effects of LBNP on FCR corticospinal

excitability during joint-stabilizing co-contraction with the sum of the effects on FCR
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corticospinal excitability during FCR and during ECR individual contraction. If the

results during co-contraction can be explained by the sum of the results during indi-

vidual contractions, a preferential influence of LBNP over the co-contraction specific

corticospinal neurons would not be supported.

5.2 Potential pathways

The main effects of baroreceptor unloading observed in this thesis – an increase in

corticospinal excitability and decrease in intracortical GABAA-ergic inhibition dur-

ing rest, lack of effect during individual muscle contraction, and decrease in cor-

ticospinal excitability during joint-stabilizing co-contraction – can be explained by

the potential influence of baroreceptor unloading over central and peripheral mo-

tor pathways. Baroreceptor unloading dis-inhibits the dorsal ventrolateral medulla,

which projects to the locus coeruleus, the main site of norepinephrine synthesis in

the central nervous system [41, 64]. Mild hypovolemia increases catecholamine release

from the locus coeruleus [138, 70], which robustly innervates the neocortex [45, 35].

The locus coeruleus also innervates the dorsal raphe nucleus from which serotoner-

gic neurons spread to higher brain structures. Serotonin release is increased with

adrenergic stimulation of the raphe nucleus [23]. Hence, baroreceptor unloading may

result in increased function of neuromodulatory monoamines (i.e. norepinephrine,

dopamine, and serotonin) within the motor cortex. Drug studies of monoaminergic

agents demonstrate profound influence of norepinephrine, dopamine, and serotonin

over corticospinal and intracortical excitability [156]. In general, norepinephrine and

serotonin agonists increase corticospinal excitability and decrease intracortical inhi-

bition [152, 8, 117, 118, 66, 67, 47], while dopamine agonists have the opposite effect

[157, 160, 78].

Similarly, activation of the locus coeruleus and raphe nucleus by baroreceptor

unloading may affect the descending motor pathway at the spinal level [94]. Both,
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the locus coeruleus and raphe nuclei project to the spinal cord [24, 105, 153, 81]

and innervate spinal motor-neurons [49, 61, 120, 2], various spinal interneurons [52,

91, 21, 68], descending neurons [52, 53], and motor-sensory neurons [52, 53, 68].

In general, both norepinephrine and serotonin, acting at the spinal cord level, can

increase excitability of spinal interneurons and motor-neurons [40, 107, 144, 140, 154,

28, 63, 29], can increase responses evoked by group I motor afferents [68], and can

have varying effects on responses evoked by group II motor afferents [104, 123, 52, 68].

Thus activation of locus coeruleus and raphe nuclei by baroreceptor unloading can

influence the neural motor pathways at various levels of the central nervous system.

Baroreceptor unloading also disinhibits sympathetic nerve activity [143]. Sym-

pathetic nerves innervate muscle spindles [3] and may influence the neuromuscular

system peripherally. Though controversy exists over whether increased sympathetic

nerve activity influences muscle spindle discharges [87], a possible increase in so-

matosensory afferent input is suggested from an increased stretch reflex [59, 72] in

the presence of an unaltered H-reflex [72] with physiologically heightened sympathetic

nerve activity.

Electrical stimulation of motor axons and digits has opposing effects on SICI and

MEP [125, 141, 124, 92, 34, 77], depending on the timing of the somatosensory in-

put. Thus, the effects of peripheral somatosensory afferent activity on corticospinal

and intracortical excitability are not robust. Furthermore, as discussed in the Neu-

romuscular pathways subsection, effects of LBNP at the peripheral somatosensory

afferents, as well as spinal motor-neurons and spinal interneurons, are not supported

by the collected data. The results of this thesis study are, thus, best explained by

facilitation of norepinephrine and serotonin activity overriding dopamine activity in

the motor cortex and potentially at the the central motor afferents of the spinal cord.

The question of location of effects can be answered with further drug studies, deaf-

ferentation studies, and motor imagery studies. For example, a lack of increase in
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corticospinal excitability with baroreceptor unloading during peripheral nerve block

would suggest a peripheral somatosensory mechanism for the effects presented here.

5.3 Significance

An increase in corticospinal excitability of a resting muscle at higher intensities

of stimulation with baroreceptor unloading suggests that the response to a small

suprathreshold cortical motor signal would generate greater motor activity than oth-

erwise. The decrease in intracortical GABAA-ergic activity points to less inhibition

of cortical motor signal during the resting state. The decrease in corticospinal ex-

citability during joint-stabilizing co-contraction suggests the need for greater cortical

input for modulation of motor activity during co-contraction under baroreceptor un-

loading. These findings hold immediate significance, in the field of motor control and

otherwise, to individuals that may experience baroreceptor unloading (e.g. due to

blood loss, sudden change to an upright posture, flying a jet fighter plane in combat,

and returning to earth from microgravity [50]).

A decrease in SICI of resting muscle has been observed to precede muscle acti-

vation and movement initiation [121, 46]. Reduction of SICI and increase of corti-

cospinal excitability during situations of baroreceptor unloading may lead to quicker

movement initiation and to unintended movement. This can potentially allow individ-

uals to produce greater muscle force and more rapid movement with less intracortical

excitatory input at the cost of earlier onset of movement execution than intended.

Termination of motor activity was shown to be an active act of motor control that

relies on increased GABA-ergic inhibition prior to decrease in corticospinal excitabil-

ity and termination of voluntary activity [14, 146]. Though no effect of LBNP was

observed for intracortical and corticospinal excitability during individual muscle con-

traction, the decreased GABAA-ergic activity and increased corticospinal excitability

in the resting condition may influence termination of motor activity, preventing the
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increase in GABA-ergic inhibition and prolonging the termination response time.

The concept of surround inhibition (e.g. high pass filtering) has recently been ap-

plied to the motor system. In the study of motor control, surround inhibition refers to

active inhibition of unwanted movement (using any and all inhibitory pathways avail-

able) during generation of wanted movement [51]. GABAA-ergic inhibition may con-

tribute to surround inhibition. During phasic activation of the FDI muscle, increased

GABAA-ergic inhibition of the movement-unrelated abductor pollicis brevis muscle

was observed [142]. GABA-ergic inhibition may play a role in suppressing unwanted

motor activity during movement execution. Decreased intracortical GABAA-ergic

inhibition may impair surround inhibition and decrease movement accuracy.

In the no-go task, subjects are instructed to volitionally inhibit a prepared action.

Intracortical GABAA-ergic inhibition contributes to performance on the no-go task

[27] decreasing corticospinal excitability [86, 27]. Decreased intracortical inhibition

and increased corticospinal excitability due to baroreceptor unloading may impair

volitional inhibition of prepared action in “finger on the trigger” situations, leading to

execution of the prepared movement at an inappropriate time (and hopefully nothing

worse).

The findings that baroreceptor unloading increases corticospinal excitability and

decreases intracortical excitability in a resting muscle, and decreases corticospinal ex-

citability during joint-stabilizing co-contraction hold functional significance, as well.

As already described, reduction of SICI and increase of corticospinal excitability dur-

ing rest in situations of baroreceptor unloading may lead to unintended contraction,

resulting in increased antagonist co-contraction. Furthermore, once a co-contraction

is achieved, either intentionally or not, the decreased corticospinal excitability during

co-contraction would require greater intracortical input to modulate the joint stiff-

ness. This may be beneficial to maintaining a steady co-contraction (e.g. stabilizing a
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load in space) without perturbation, but detrimental to situations that require mod-

ulation of co-contraction (e.g. stability against perturbation, manipulation of objects

in space). Fine motor skill execution requires precise control of muscle activation

and activity during varying motor tasks. The effects of baroreceptor unloading pre-

sented in this thesis alter motor control and would potentially decrease fine motor

skill execution.

The seeming trend towards co-contraction with baroreceptor unloading may share

common mechanisms with (and may potentially explain) the freeze response of the

colloquial fight-flight-freeze response to a perceived harmful event. Similar to barore-

ceptor unloading, the integrated acute stress response activates the medullary cardio-

vascular center and (potentially similarly) the locus coeruleus and increases sympa-

thetic nerve activity. However, unlike baroreceptor unloading, the integrated acute

stress response originates entirely in the central nervous system, in the sensory centers

of the cortex, and depends on the activity of the amygdalae and hypothalamic nuclei

[9]. An investigation of the effects of additional central pathways activated during

the integrated acute stress response would be the next logical step in pursuing this

question further.

Individuals whose livelihood depends on fine motor skill execution, such doctors

and musicians, spend days, months and years practicing their fine motor skills. And

yet for a learned piece, compared to the rehearsal condition, pianists show greater

EMG magnitude of proximal muscles (biceps brachii and upper trapezius) and greater

co-contraction of antagonistic muscles in the forearm (extensor digitorum communis

and flexor digitorum superficialis) during competition condition [155]. This change

in motor control during a situation perceived as stressful can negatively affect mo-

tor performance. As stated above, a situation perceived as stressful activates a lot

of the same central regions as baroreceptor unloading. The findings in this thesis,

then, may present the mechanisms potentially responsible for the changes in motor
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control and may translate into novel practice suggestions to ameliorate said effects of

perceived stressful situations. For example, since during baroreceptor unloading co-

contraction appears unavoidable and corticospinal excitability during co-contraction

is diminished, it could prove more beneficial to practice modulating the levels of

co-contraction rather than trying to avoid co-contraction.

5.4 Future directions

This thesis established the existence of acute effects of baroreceptor unloading on

motor-cortical and corticospinal excitability during rest and voluntary motor activ-

ity. In doing so, it has opened up new and exciting avenues of research. The most

immediate is the further identification of effects of baroreceptor unloading on cortical

reciprocal inhibition and on co-contraction specific corticospinal neurons discussed in

Specific Aim 3. As stated throughout the thesis, the effects of baroreceptor unloading

may be of central or peripheral origin. Future drug and deafferentation studies can be

designed to narrow down the location of action. This thesis focused on neuromuscular

mechanisms of motor generation. Equally interesting on its own, a study of barore-

ceptor unloading on somatosensory pathways would compliment the findings of this

thesis. In this thesis, a physiological stress that unloads the baroreceptors was chosen

because of the (relatively) clearly delineated pathways it affects. Further research into

other physiological, as well as psychological stressors would expand our understand-

ing of the human motor-sensory system in various daily situations. As mentioned in

the introduction, corticospinal and intracortical excitability have been implicated in

neural plasticity and motor learning. Having observed effects of baroreceptor unload-

ing on corticospinal and intracortical excitability, studies of baroreceptor unloading

on neural plasticity and motor learning are now justified. Finally, this thesis was

concerned with acute effects of baroreceptor mediated physiological stress. Though

perhaps more difficult to study, researching the effects of chronic physiological stress
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on fine motor skill pathways may benefit the rehabilitation practices for patients with

chronic conditions.
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CHAPTER VI

CONCLUSION

In conclusion, baroreceptor unloading increased corticospinal excitability and de-

creased intracortical inhibition in a resting muscle, did not produce any effects dur-

ing individual muscle activity, and decreased corticospinal excitability during joint-

stabilizing co-contraction.
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