
RECONFIGURABLE ANALOG CIRCUITS FOR

AUTONOMOUS VEHICLES

A Dissertation
Presented to

The Academic Faculty

By

Scott Michael Koziol

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Robotics

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2013

Copyright© 2013 by Scott Michael Koziol

RECONFIGURABLE ANALOG CIRCUITS FOR

AUTONOMOUS VEHICLES

Approved by:

Dr. Jennifer Hasler, Advisor
Professor, School of ECE
Georgia Institute of Technology

Dr. Magnus Egerstedt
Professor, School of ECE
Georgia Institute of Technology

Dr. Fumin Zhang
Associate Professor, School of ECE
Georgia Institute of Technology

Dr. Henrik Christensen
Distinguished Professor, School of Interactive
Computing
Georgia Institute of Technology

Dr. Mike Stilman
Assistant Professor, School of Interactive Com-
puting
Georgia Institute of Technology

Date Approved: August 20, 2013

ACKNOWLEDGMENTS

I owe a big thank you to my advisor, my commimttee, lab mates, friends, family, and my

God. Proverbs 3:5-6.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xxi

CHAPTER 1 RECONFIGURABLE ANALOG CIRCUITS FOR PATH PLAN-
NING AND IMAGE PROCESSING 1

1.1 The Problem Being Addressed. 3
1.2 Why This Problem Is Important. 3
1.3 Dissertation Contributions. 4

1.3.1 Design Principals Used in this Dissertation. 6
1.3.2 Principals in Practice. 7

1.4 Related Work . 8
1.5 Other Application Domains. 9
1.6 Dissertation Summary. 10
1.7 Chapter Summaries. 12

CHAPTER 2 FPAAS FOR EMBEDDED SIGNAL PROCESSING 15
2.1 FPAA Background and Foundational Material. 15
2.2 FPAA Hardware Infrastructure. 16

2.2.1 Research Board. 18
2.2.2 Class-oriented Board. 21
2.2.3 Stand-alone Board. 21

2.3 FPAA Software Infrastructure. 22
2.4 Design Flow Using a Demonstration Test Circuit. 25
2.5 Floating-Gate Transistors. 25
2.6 Summary. 27

CHAPTER 3 RESISTIVE GRID PATH PLANNING 28
3.1 Mathematical Analysis of Analog Planner. 30
3.2 Constraint Based Path Finding in AVLSI. 32
3.3 Path Finding on the RASP 2.8 FPAA. 34

3.3.1 Experiment 1: Solving a simple grid problem. 34
3.3.2 Experiment 2: Integration of FPAA and Robot. 43

3.4 Path Finding on the RASP 2.9v FPAA. 51
3.4.1 Software. 55
3.4.2 FPAA Hardware Results and Analysis. 56
3.4.3 Summary . 65

iv

CHAPTER 4 NEURON PATH PLANNING 66
4.1 Wavefront Neuron Analog Planner Setup. 72
4.2 Neuron IC Hardware Results and Analysis. 76

4.2.1 Time Complexity . 76
4.2.2 Space Complexity. 79
4.2.3 Completeness. 83
4.2.4 Optimality. 85
4.2.5 Neuron IC Implementation vs. Digital. 85
4.2.6 Experiments with Non-uniform and Asymmetrical Edge Weights . 87
4.2.7 Scalability. 92
4.2.8 Power Costs. 94

4.3 Summary. 94

CHAPTER 5 CONTROL WITH FPAAS . 96
5.1 The Mobile Manipulator and FPAA. 96
5.2 Related Work . 98

5.2.1 Playing with Robots. 98
5.2.2 Analog Control . 98

5.3 Architecture for Sensing, Thinking, and Acting. 98
5.3.1 Sensing . 99
5.3.2 Thinking. 99
5.3.3 Acting . 107

5.4 Hardware Implementation. 110
5.5 Summary. 111

CHAPTER 6 IMAGE PROCESSING . 112
6.1 FPAA Based Image Processing Algorithm. 112

6.1.1 Subsampling Algorithm. 112
6.1.2 Circuit Architecture for the Subsampling Algorithm. 115

6.2 Robotic Testbed Development. 132
6.2.1 RASP 2.9V Modular Board System. 133
6.2.2 RASP 3.0 System. 133

CHAPTER 7 CONCLUSIONS . 138
7.1 Chapter Reviews. 138
7.2 Extending Analog Reconfigurable Circuits to Additional Autonomous Sys-

tem Problems . 140
7.3 HMMs, Dendrites, Diffusors, Analog ICs and Robotics. 142
7.4 Converting Discrete HMMs to Continuous HMMs. 143

7.4.1 Discrete Hidden Markov Models. 143
7.4.2 Continuous Hidden Markov Models. 146

7.5 Diffusors Implementing HMM Computation. 150
7.5.1 RC Delay Line Diffusor . 150

7.6 HMMs and Analog Systems for Robot Navigation. 154

v

REFERENCES . 159

vi

LIST OF TABLES

Table 1 Sampling of Matlab commands used to interface with FPAA 25

Table 2 Grid Programming Times according to path type. 48

Table 3 Rasp 2.8: Comparing FPAA to BFS. 49

Table 4 Grid Programming Times according to path type. 59

Table 5 RASP29V: Comparing FPAA to BFS (whereb is the branching factor,
b=4 for Figure 46), andd is the depth of the goal node [1].. 62

Table 6 Comparing Neuron IC planner to digital methods, whered is the depth
of the solution in the search tree.. 84

Table 7 Analog Proportional Integral Derivative Controllerdesign with and with-
out parasitic capacitances. 106

Table 8 Estimated Performance Parameters for VMM with Inputs Coming in
Serially; with Buffered Input stage using:C = 1.6pF, Vdd = 2.4 V,
UT = 0.026 . 132

Table 9 Estimated Performance Parameters for VMM with Inputs Coming in
Serially; with Log-amp Input stage using:C = 1.6pF, Vdd = 2.4 V,
UT = 0.026,A = 165 . 132

Table 10 Comparing HMM PDE and RC Delay Line Terms. 152

Table 11 Comparing HMM PDE and RC Delay Line Terms w/Assumptions. . . . 154

vii

LIST OF FIGURES

Figure 1 This shows a goal of this research: To use reconfigurable analog circuits
called Field Programmable Analog Array Integrated Circuits(FPAA IC)
to plan a path for small robot through an environment in an effort to
conserve limited battery resources and extend operation times [2]. 2

Figure 2 Reproduced from [3], this figure illustrates the details that the rate of
improvement in computations per unit energy in processors over the last
30 years is decreasing, and if the trend illustrated in this figure continues
it is approaching a “wall.” . 5

Figure 3 This cartoon depicts the idea of weight vs. computational capability and
also shows how we plan to add more computation/gram using a hybrid
analog-digital approach.. 5

Figure 4 Using the physics of transistors to perform multiplication: Digital multi-
plication requires hundreds or more transistors to performa multiplica-
tion [4]. Analog can perform a multiplication using about 10transistors.. 7

Figure 5 In analog, when the signal is a current, the additionoperation of vector
matrix multiplication is “free.” . 8

Figure 6 a) Guidance: Thehigh levelprocess of planning a path from the Start to
the Goal. b) Navigation: Agent uses sensor input to determine its state
(Position, Velocity, Acceleration). c) Control: Thelow levelprocess of
tracking guidance commands while maintaining stability.. 11

Figure 7 Roadmap of the current and estimated future GT FPAA ICdevelopment
[5]. 16

Figure 8 Research in this dissertation was based on the following FPAA ICs: a)
RASP 2.8a used for path planning and control, b) RASP 2.9v used for
path planning, and c) Neuron IC used for path planning.. 17

Figure 9 FPAA Programming and Control Board (25.76 square inches). Note the
USB connection on the top left; 40 pin DIP microcontroller module to
the right of the serial connector; the 100 pin ZIF socket for inserting the
FPAA ICs; many 2x4 pin headers connected to FPAA I/O, DAC outputs,
ADC inputs, FPAA control pins, and power/ground; 4 SMA for FPAA
I/O interface; and the audio jacks (on the lower right).. 18

Figure 10 Adaptor Board (4.16 square inches). This custom PCB has a quad flat
pack (QFP) packaged FPAA IC on one side and pins on the other side.
The pins plug into the 100 pin ZIF socket on the programming and con-
trol board.. 19

viii

Figure 11 Block Diagram of the FPAA programming and control board. The board
has been designed to be self-contained and portable, only needing a lap-
top. The user chooses between USB or serial communication. The
power is supplied by the USB port. The microcontroller (µC) is a 40
pin DIP plug-in module which uses an ATMEL 32 Bit ARM processor.
The FPAA I/O can be reconfigurably connected to the discrete ADC and
DACs using headers and jumpers. MP3 players can easily be usedas
inputs to the FPAA by using the audio input port and audio amplifiers. . 20

Figure 12 Class-oriented Board (8.74 square inches). Note theUSB connection
on the left for direct connection with the user’s computer. The FPAA is
the large square IC in the center above the two SMA jacks. The audio
interface jacks are on the right.. 20

Figure 13 Stand-alone Board on the left (6.2 square inches). Note the removable
ribbon cable plugged into the stand-alone board’s header. The other end
of the ribbon cable plugs into a Research Board’s ZIF socket as ameans
of programming the stand-alone board.. 22

Figure 14 This illustrates the basic idea of how circuits arecreated on the FPAA. . 23

Figure 15 Header Map used as a legend to identify pins on the programming and
control FPAA board. U*, D *, L *, R * are FPAA I/O pins. 24

Figure 16 Software flow for designing systems on the FPAA. Toplevel designs are
done in Simulink. Sim2Spiceconverts it to a Spice netlist, which can
then be compiled into an FPAA switch list [6].. 24

Figure 17 Design Flow for a low pass filter. (a) Simulink Block Diagram. (b)
SPICE list generated bySim2Spicetool. (c) FPAA switch list generated
by GRASPER tool. (d) RAT Figure showing switch list routing on RASP
2.9 IC. (e) Measured Results from RASP IC: blue is the input signal,
black is the lowpass filtered output.. 26

Figure 18 Floating-gate transistor. 27

Figure 19 This shows the system view of path planning in an unknown environment.29

Figure 20 Converting the office grid world into an AVLSI representation [2]. a)
Office with walls as obstacles. b) Simplified grid representation of office.
c) floating-gate transistors used to implement the obstacles. 30

ix

Figure 21 a) Toy problem two dimensional office environment where the goal is to
plan a path for a MAV from the window to a specific desk. The envi-
ronment that has been discretized into a grid with labeled nodes. Two
path solutions are identified. b) This figure shows the locations of the
Start, Goal, and Obstacles in the Cadence simulations. The shortest path
to the goal is through the red line: Start=(1,1)-(2,1)-(3,1)-(3,2)-(4,2)-
(4,3)=Goal. The alternate path to the goal is by the blue line. c) The
solution tree to the toy problem has two solutions (red and blue paths) [7]. 35

Figure 22 a) This experiment was for a 4x4 grid structure withno obstacles. The
robot is at node (1,1), and the goal is at node (4,4). The floating-gate
pFETs were each programmed to 1e-006 A and the measurements were
performed with the current source pFET’s gate voltage at 1.5V. b) Node
voltage measurements were made directly at the node and did not use
the fgOTA buffers. Coordinate (1,1) is top left, and coordinate (4,4) is
bottom right. c) Surface plot of the data in b [7].. 36

Figure 23 This experiment compares the results of using the fgOTA buffers when
measuring the node voltages [7] a) This experiment was for a 4x4 grid
structure with 8 obstacles. The robot is at node (1,1), and the goal is at
node (4,3). The floating-gate pFETs for the paths were each programmed
to 1e-006 A and the obstacles were set to 0 A. The measurementswere
performed with the current source pFET’s gate voltage at 1.5V for b and
1.5421V for c. b) Node voltage measurements were made directly at the
node and did not use the fgOTA buffers. c) Node voltage measurements
were made using fgOTA buffers. The measurements were calibrated us-
ing fgOTA characterization curves, Figure 28.. 37

Figure 24 The data in Figure 22 is from a vertical slice of thisdata when the x-axis
is 1.5 V [7]. This shows each node’s steady state response to varying
levels of input current.. 38

Figure 25 The data in Figure 23b is from a vertical slice of this data when the x-
axis is 1.5421 V. This shows each node’s steady state response to varying
levels of input current. The sink node is about 0.44 V, but is not displayed
[7]. 39

Figure 26 The data in Figure 23c isderivedfrom a vertical slice of this data when
the x-axis is 1.5421 V. These are the raw measurements made from the
fgOTA buffers at the nodes. Because offsets exist in the buffers, this
data needs to be calibrated to the correct value. The measurements were
calibrated using fgOTA characterization curves shown in Figure 28. . . . 40

Figure 27 The data in Figure 23c is from a vertical slice of this data. These are the
calibrated measurements derived from the fgOTA buffer measurements
at the nodes. 41

x

Figure 28 These curves show the fgOTA characterization results [7]. Voltages be-
tween 1.5 and 2.4 V were applied to the input to the buffer and the output
was measured. Ideally, the output should equal the input, but that is not
the case as the curves are shifted up and down from the ideal. Curves
are fit to these data points and are used to calibrate the fgOTAmeasure-
ments. The red lines show the calculation of the calibrated values used
to produce the surface plot in Figure 23c.. 41

Figure 29 Verifying Input Current= Output current: Input current pFET is con-
nected to Node (1,1) of a 4x4 grid. Node 15 is grounded througha diode
connected nFET.. 42

Figure 30 Our experimental environment showing a) the robotwith coordinate axes
and b-c) the implementation of an FPAA generated plan.. 43

Figure 31 a) High level control system block diagram and b) software flow of the
Executer designed to integrate the analog planner and the robot. 44

Figure 32 a) Measured FPAA hardware results for a 4x4 grid like the configuration
of the robot start, goal, and obstacles in Figure 20c. b) A table of the
measured voltages with path identified by the pink squares. c) Measured
node voltage settling times of the example office 4x4 resistor grid as a
function of grid location. 47

Figure 33 This is an image of a simulated office environment used in a FPAA Hard-
ware in the Loop (HWIL) test. 48

Figure 34 a) Comparing the Time complexity of the FPAA to BFS. b)Compar-
ing worst case Space complexities of the FPAA to BFS. c) Comparing
Computation Time of the FPAA to an estimate for BFS.. 49

Figure 35 Measured transient responses for node voltages.. 50

Figure 36 This figure compares the “rat’s nest” of wires and multiplexer ICs used
to measure the data with the RASP 2.8a IC path planning system vs. the
simplified system for the RASP 2.9v IC.. 51

Figure 37 This figure illustrates how a 4x4 grid is implemented as a bipartite graph
in the FPAA’s routing fabric.. 52

Figure 38 The basics of the FPAA Path planner algorithm flow.. 53

xi

Figure 39 This figure shows how the input, output, and buffers are implemented in
the RASP 2.9V FPAA IC. a) The input current to the grid is supplied
by a pFET transistor. b) The current sink (representing the goal) is im-
plemented by a diode connected nFET transistor. c) A buffer connected
Operational Transconductance Amplifier (OTA) is used as part of the
node voltage sensing circuitry. Multiplexers are used to place the pFET,
diode connected nFET and OTA buffer on any of the nodes.. 54

Figure 40 This shows how the input current pFET, output current (sink) nFET, path
switches, and OTA buffer are routed onto a RASP 2.9V IC for a com-
pletely connected 14x14 grid. This illustration can be compared to the
IC die photo in Figure 8b. 55

Figure 41 a) Three dimensional grid space. b) Mapping of Nodes 1-12 of a onto a
RASP 2.9V FPAA using a bipartite grid.. 56

Figure 42 This MATLAB GUI allows users to visually modify grid paths by point-
ing and clicking on lines. Each red line represents a floating-gate con-
nection between nodes (red=obstacle; clicking between nodes makes a
red line appear OR disappear) [7].. 57

Figure 43 Statistics of the Monte Carlo scenarios used in the experiments. a) Per-
formance as a function of the total number of obstacles. b) Distribution
of obstacles in the scenarios. c) Distribution of optimal solution path
length. 57

Figure 44 a) Measured Steady State FPAA hardware results fora 14x14 grid with
no obstacles. b) Measured FPAA hardware results for a 14x14 grid with
obstacles. Input current at 141, Sink node at 126.. 60

Figure 45 Measured transient responses for node voltages. a) Experiment setup: a
step input voltage was asserted on the gate terminal of the input current
pFET at node A (1,1). This implemented a step input current torepresent
the robot’s location at this node. A current sink was implemented at node
D (14,14) to represent the goal. b) Settling time as a function of position
on the 14x14 grid. c) Settling time for the input node as a function of
grid size. 61

Figure 46 a) Comparing the Time Complexity of the FPAA to BFS. b) Compar-
ing space complexities of the FPAA to BFS. c) Comparing Computation
Time of the FPAA to an estimate for BFS.. 61

Figure 47 This figure illustrates that using a node’s neighbor node voltages to choose
the path does not always result in an optimal solution.. 63

xii

Figure 48 Measured results from FPAA compared to BFS. Red line edges represent
obstacles. It is acceptable in this graph to passthrough two parallel
connected edges, but it is not acceptable to movealongthe red connected
edges: S= Start and G= Goal. a) Optimal FPAA solution. b) Sub-
optimal FPAA solution. c) Incorrect FPAA solution.. 63

Figure 49 The goal of this research: to use a reconfigurable neuron Array IC to plan
a path for small robot from point A to point Z through an environment.
a) Maze environment which is discretized into grid points (shown here as
A,B,C,D,...). b) A simplified grid representation of the maze in a. Note
that some edge connections are not active between nodes (marked by
two hash marks). This represents a wall. c) This work uses bidirectional
connected neurons to implement the edges between nodes. As in b, some
axon-dendrite connections are not made (marked by two hash marks) for
the neurons representing nodes separated by a wall.. 67

Figure 50 The path planning block is one subsystem needed foran autonomous
vehicle operating in an unknown environment. There are three broad
categories of subsystems on the vehicle: Sensing, Thinking, and Acting.
The neuron IC and planning block fits into the Thinking category [8, 9]. . 70

Figure 51 This figure illustrates the basics of the wavefrontplanner. a) Scene where
the robot is trying to reach the goal while avoiding obstacles and trav-
eling in the shortest path. b) The grid is discretized and a wavefront is
propagated away from the goal. The number represents a time stamp
of when the wavefront reached the square. c) The shortest wavefront
reaches the goal in 9 moves.. 71

Figure 52 This figure shows how the neurons of a fully connected grid pass spikes.
a) A signal is originated in neuron 1 and this causes neuron 2 to fire at
a later time. Dots in the raster plot show when the spikes occur. b) The
outer large circle represents the map grid location and is implemented
using a neuron with soma, dendrite, axon, and synapse components.
The dendrites in these neurons are represented by wires. Thesynapse
strengths are set with floating-gate transistors. c) This represents a fully
connected grid. The number in the neurons show how the wavefront of
a signal initiated in the upper left of the grid propagates. The numbers
represent increasing time stamps of the propagating wavefront. The 1
represents time 1, the 2 in the neurons show which neurons fireat time
2, etc. 71

Figure 53 This figure shows how signal propagation velocity can be modeled using
various methods: a) neuron, b) diffusive, and c) hyperbolic. 75

xiii

Figure 54 Statistics of the Monte Carlo scenarios used in the experiments. a) Dis-
tribution of the Robot start states, b) Distribution of the Robot goal states,
and c) Distribution of number of obstacles used in the experiments. . . . 75

Figure 55 This figure shows how the neurons of a specific maze case are configured
to represent free paths and obstacles. a) The maze which willbe repre-
sented with neurons. The goal is at Node 77, the robot is at Node 22. The
IC will plan an optimal path between these two nodes. b) This is how the
neurons are configured for the maze case in (a). There are bidirectional
paths between neurons where free paths exist and no connections where
obstacles exist. c) This shows how the neurons are connectedwithin the
IC. Address Event Representation (AER) circuitry enables the circuit to
time stamp when each of the neurons fires [10].. 77

Figure 56 Results from one case that was solved on the Neuron IC.a) This is a grid
environment example that the neuron IC solved. The robot is located
at Node 22 and the goal is at Node 77. A wavefront is initiated at the
goal (Node 77) and propagated throughout the Neuron grid. b)Raster
plot of the solution nodes. Neuron 77 causes neuron 76 to fire,which
caused neuron 75 to fire, etc. c) Zoomed raster plot of the solution nodes.
A linear fit shows that the wavefront propagation has a nearlyconstant
velocity of 1.091 neurons/ms. 78

Figure 57 This shows how the solution for the maze in Figure 56is backed out of
the AER spike timing information. The rows of circles represent non-
obstacle neighbors. The numbers represent the time that each node first
spiked. The solution is found as follows. Node 22 has three non-obstacle
neighbors (as represented by the three circles). The neighbor which fired
first is Node 23 (It fired at 10.2 ms which is earlier than the other two
node firings.). Thus, one may conclude that Node 23 caused Node 22 to
fire, and it is selected as a node on the optimum path (in gray).. 81

Figure 58 This figure shows the dominant capacitance which limits the velocity
(and efficiency) of the neuron propagation. The capacitance is on the
output of the current starved inverter. The velocity of the neuron firing
is related to the time it takes to charge and discharge this capacitance.
Therefore, the velocity of the system is proportional to thepower and
efficiency of the system.Vbp andVbn are floating-gate transistors used to
set the gate waveform driving the synapse transistor. Details of how these
are changed (programmed) can be found in previous papers [11, 10]. . . 81

Figure 59 This shows the system view of path planning in an unknown environment
with this neuron IC. 83

xiv

Figure 60 Space and Time Complexity for the Neuron IC. a) Space Complexity:
This shows experimental Neuron IC data and how it compares tothe
Space Complexity models in Table 6. Based on this curve, one may
assume that the refractory period in the experimental data is closer to
being a long time than short. b) Time Complexity: This curve compares
our Neuron IC performance to a state of the art FPGA implementation
of Aker’s wavefront algorithm [12]. The top line representsthe Time
Complexity for the Neuron IC with a signal propagation time of1091
neurons/second. If this is increased by a factor of 100, then it is estimated
that the Time Complexity of the Neuron IC will outperform the FPGA
implementation when the solution depth is greater than approximately
315. 84

Figure 61 Wavefront propagation in the Neuron IC and the Space Complexity. a)
This depicts the wavefront emanating from the goal. Each wave is rep-
resented at a depthd in the raster plot in b. This represents a numerical
potential field with a local minimum at the goal [13]. b) Rasterplot
showing all the events captured by AER (up until the solution) for the
maze case in a.c) This chart shows the number of spikes for ourset of
experiments. This directly correlates to the time and SpaceComplexity
for our Neuron IC. Since the refractory period of the neurons is less than
the solution time, neurons have a chance to fire more than once. This
shows that for the programmed refractory period in these 47 experimen-
tal cases, the number ofextraspikes was approximately twice that of the
number of initial spikes. (Note: 55 Monte Carlo cases were randomly
generated. Based on the start, goal, and obstacle conditions, only 47 of
these have a possible solution.). 85

Figure 62 This figure shows how the actual implementation of an asymmetrical
weighted node is implemented using multiple neurons in the Neuron IC.
a) This is the desired weighting configuration for the node. The gray cen-
ter node has different cost weights associated with propagating a wave
to each of its four neighbors. b) The gray node in the center of(a) is
implemented in the Neuron IC using four neurons. Each incoming edge
must excite all four of the neurons which compose the center node. . . . 86

Figure 63 This figure highlights how neurons can be paired to create an asymmetric
edge weight architecture. a) This cartoon illustrates the “cost” associated
with the directionality of two paths. b) This maze represents (a) and is
implemented on the Neuron IC.. 89

xv

Figure 64 This figure is measured Neuron IC data for the experimental setup in
Figure 63. For this experiment the autonomous agent is planning a path
from Nodes 1 to 100. Path A was chosen by the Neuron IC. a) Raster
plot showing the sequence of nodes for Path A (in black). There is ap-
proximately a 1ms delay between neuron firings. This shows that the toll
booth was not crossed. b) Raster plot showing the sequence of nodes for
Path B (in black). Notice the approximate 4ms delay between Nodes 63
and 53. This shows that the toll boothwascrossed.. 90

Figure 65 This figure is measured Neuron IC data for the experimental setup in
Figure 63. For this experiment the autonomous agent is planning a path
from Nodes 100 to 1. Path B was chosen by the Neuron IC. a) Raster
plot showing the sequence of nodes for Path A (in black). Notice the
approximate 4ms delay between Nodes 37 and 38. This shows that the
toll boothwascrossed. b) Raster plot showing the sequence of nodes for
Path B (in black). There is approximately a 1ms delay betweenneuron
firings. This shows that the toll booth was not crossed.. 91

Figure 66 These experimental Neuron IC results demonstratethat weighting the
edges between neurons differently can push the autonomous agent away
from obstacles and generate a path solution taking into consideration not
only path length, but also proximity to obstacles. a) A ring of nodes
around each obstacle is given a weight of 2 to enter each node.The
best cost path is chosen to be the shortest in length, but alsothe one
that comes closest to the obstacles for the longest amount oftime. b)
Propagation time between nodes for the edges selected for the best path
in the experiment in (a). c) A ring of nodes around each obstacle is given
a weight of 2.5 to enter each node. The best cost path in this experiment,
in contrast to (a), is not the shortest path. This path, however, avoids
getting close to the obstacles. d) Propagation time betweennodes for the
edges selected for the best path in the experiment in (c).. 93

Figure 67 Two neuron ICs can be connected via the Tx/Rx pins in order to expand
the grid size. 95

Figure 68 This is the big picture of the system: a client software calledPlayer
interacts with either the real world or a simulated world andsolves the
classic Towers of Hanoi puzzle. Additionally, the softwarehas the ability
to interact with a reconfigurable analog co-processor [8].. 97

Figure 69 This figure shows a high level flowchart of the Thinking tasks [8]. 100

xvi

Figure 70 This figure illustrates an example of how an analog co-processor PID
controller could be merged with the digital controller for initial test-
ing. The control system implemented for this project uses a Digital
Proportional-Derivative closed loop control system to control the robot’s
position and orientation [8].. 101

Figure 71 This figure illustrates that the Tracker first segments the image based
on color (in this example it was asked to track the red disk). It then
calculates the radius of the disks [8].. 102

Figure 72 Design Flow for an OTA based PID controller. a) OTA based PID con-
troller based on [14]. Unlike [28], this model includes parasitic capaci-
tances that are a part of an actual implementation and affect performance.
b) Simulink Block Diagram of controller. c) SPICE list generated by
Sim2Spicetool. d) FPAA switch list generated by GRASPER tool. e)
RAT Figure showing switch list routing on RASP 2.8a IC [8].. 103

Figure 73 This figure illustrates the overall guidance and control strategy. The
robot will perform this loop for each high level command in the plan-
ning sequence [8].. 103

Figure 74 High level control System Block Diagram: this figureshows how the
sensing, thinking, and acting systems are combined and where the analog
co-processor fits into the larger robot system [8].. 104

Figure 75 Characterizing selected OTAs in Figure 72a. a) Tanhcurve as in (25). b)
This figure illustrates that changing theIbias changes theGm. Note that
there is not much variability among OTAs whenIbias increases.. 106

Figure 76 Bode Plot of the Analog Proportional Controller. ThegainsGs1, Gs4,
and the parasitic capacitanceCsp is estimated and used to plot a curve
over the experimental data. AnIbias = 0.05e-07 Amps was programmed
for bothGs1 andGs4 OTAs. 107

Figure 77 Bode Plot of the Analog Integral Controller. The gains Gs2*Gi1 and the
parasitic capacitance (Ci+Cip) are estimated and used to plot a curve over
the experimental data. AnIbias = 0.05e-07 Amps was programmed for
Gi1, Gs2, andGs4 OTAs. The curve being fit here is actually the transfer
function for the Integral only controller multiplied bys. 108

Figure 78 Bode Plot of the Analog Derivative Controller. The gainsGd1, Gd2, Gd3,
Gs3 and the parasitic capacitancesCd andCdp are estimated and used
to plot a curve over the experimental data. AnIbias = 0.05e-07 Amps
was programmed for the OTAs. The curve being fit here is actually the
transfer function for the Derivative only controller multiplied bys. 109

xvii

Figure 79 This figure compares the tracker images from the overhead camera in the
simulation to real life overhead camera hardware.. 110

Figure 80 Big picture of the subsampling operation of the mixed signal image pro-
cessing algorithm. 113

Figure 81 The equations showing the effects of the image processing and subsam-
pling. 114

Figure 82 Matlab simulation of image processing: a) 480x640Image, b) Non-
overlapping blocks to be processed, c) 15x15 Laplacian of Gaussian
(LoG) kernel withσ = 1.4 used for processing, and d) 32x42 processed
and subsampled image output.. 115

Figure 83 Matlab simulation of image processing: a) 480x640Image, b) Non-
overlapping blocks to be processed, c) 15x15 Laplacian of Gaussian
(LoG) kernel withσ = 1.4 used for processing, and d) 32x42 processed
and subsampled image output.. 116

Figure 84 FPAA image processing signal flow architecture. a)This shows the en-
tire architecture. The vector matrix multiplication is performed by the n
by n array of weighted floating-gates. The shift registers, when clocked
as in c, route the signals through the proper kernel matrix weight and
then to the proper analog memory element. b) This is the Digital to Ana-
log Converter (DAC) schematic which converts m+1 bit digital voltages
to log compressed values. c) This shows the registers’ clocktiming for
an example 24x18 image and a 3x3 kernel.. 118

Figure 85 The input data is streamed in from the imager one rowat a time. Parts of
each subblock are processed in series. This shows processing row ONE
of blocks (1,1) (1,2) and (1,3).. 119

Figure 86 This illustrates the next step after Figure 85. This shows processing row
TWO of blocks (1,1) (1,2) and (1,3).. 120

Figure 87 Signal Flow for processing a single pixel.. 124

Figure 88 The main circuit components which perform the analog image process-
ing are: a) Source follower circuit which performs Digital to Analog
Conversion current sensing, b) Source-coupled topology fora weighted
current mirror [15], and c) Storage circuit for weighted current. The in-
tegrator circuit which holds the intermediate processed values. C2 and
C3 are parasitic capacitances.. 125

Figure 89 The unity gain follower configuration of an Operational Transconduc-
tance Amplifier (OTA).. 127

Figure 90 High frequency MOSFET model [16, 17].. 131

xviii

Figure 91 a) Block diagram of Electronic Module stackup for avionics system. b)
Side view of fabricated boards: stand alone FPAA programmerboard
(bottom), FPAA/camera board (middle), and UC Berkeley sensor board
(top) [18]. c) Measured data from the FPAA programmer/Rasp 2.9V
FPAA board stackup. Successful results from characterizing a source
follower setup similar to Figure 88a for converting digitalbits to current. 133

Figure 92 a) RASP 3.0 Control Board (about 4 square inches). Notethe USB con-
nection on the top left; 40 pin header on the right to plug intothe RASP
3.0 IC board. b) RASP 3.0a IC Board (about 7.5 square inches) contains
the RASP 3.0a IC which is a smaller version of the RASP 3.0a.. 134

Figure 93 A picture of the RASP 3.0 IC layout.. 135

Figure 94 System block diagram for the interface between theRASP 3.0 control
board and the RASP 3.0 IC.. 135

Figure 95 Measured Data from RASP 3.0. Loopback Switch test: connecting [I/O
W 22] to [I/O W 23] using 8 digitally programed floating-gate switches.
Input was applied at one I/O pin, passed through the FPAA, and mea-
sured on another I/O pin. 136

Figure 96 a) RC Controlled AR.Drone [19]. b) Ardudrone interface board which
enables access into the AR.Drone control system [20].. 137

Figure 97 The FPAA could piggy-back onto the Ardudrone interface system to en-
able access into the AR.Drone control system [20]. The original Radio
Control system of the Ardudrone could be maintained to use as asafety
override system during testing.. 137

Figure 98 a) Three dimensional grid space. b) Mapping of Nodes 1-12 of the 3D
grid in (a) onto a RASP 2.9V FPAA using a bipartite grid.. 141

Figure 99 Representing the office environment as a Visibility graph. a) Office en-
vironment. b) Nodes of visibility graph are the start and endnodes and
the corners of the obstacles, walls, and along boundaries [21]. 142

Figure 100 Visualizing the recursion for the discrete HMM using a trellis diagram.
The observation sequence in this example is[o1,o2,o3,o4], wherea12

represents state transition probability from state 1 to state 2, andb1(o3)
represents the probability of getting observationo3 at n= 3 while in state 1.146

Figure 101 A three dimensional surface representing the recursion variableϕ in the
continuous HMM as a function of continuous time and state.. 147

Figure 102 RC Delay line model.. 150

Figure 103 Voltages for a 7 tap RC Delay Line (R= .9 , G= .9, C= .01).. 151

xix

Figure 104 a) Future research seeks to make a connection among HMMs, Kalman
filters, Dendrites and CMOS transistors. There are two main recursive
steps in the Kalman filter [22] b) Time update step which estimates first
the covariance and expected state. After calculating the expected state,
one may predict the expected measurement. c) Measurement update step
first calculates the Kalman gain matrix using, among other things, the
expected covariance from step (b). This gain matrix is then used to com-
pute an update to the Covariance matrix and also and update to the state.
d) A Temporal Model is useful for modeling Navigation. The HMM
and Kalman Filter are two such types of Temporal Models. The inputs
to these temporal models are transition models and sensor models [1].
e) Probabilistic Independence Network for HMM (grey circles are ob-
served) [23, 22, 24]. f) Left-Right HMM model [25].. 155

Figure 105 INS figures a) from [26]. b) Aided Inertial Navigation System (AIS)
from [27]. c) Using a Kalman filter to combine the sensor data from an
INS and GPS [28].. 157

xx

SUMMARY

Path planning and image processing are critical signal processing tasks for robots, au-

tonomous vehicles, animated characters, etc. The ultimategoal of the path planning prob-

lem being addressed in this dissertation is how to use a reconfigurable Analog Very Large

Scale Integration (AVLSI) circuit to plan a path for a Micro Aerial Vehicle (MAV) (or simi-

lar power constrained ground or sea robot) through an environment in an effort to conserve

its limited battery resources. Path planning can be summarized with the following three

tasks given that states, actions, an initial state, and a goal state are provided. The robot

should: 1) Find a sequence of actions that take the robot fromits Initial state to its Goal

state. 2) Find actions that take the robot from any state to the Goal state, and 3) Decide

the best action for the robot to take now in order to improve its odds of reaching the Goal.

Image processing techniques can be used to visually track anobject. Segmenting the ob-

ject from the background is one subtask in this problem. Digital image processing can be

very computationally expensive in terms of memory and data manipulation. Path planning

and image processing computations are typically executed on digital microprocessors. This

dissertation explores an evolution of analog signal processing using Field Programmable

Analog Arrays (FPAAs); it describes techniques for mappingdifferent solutions onto the

hardware, and it describes the benefits and limitations. Themotivation is lower power,

more capable solutions that also provide better algorithm performance metrics such as time

and space complexity. This may be a significant advantage forMAVs, ocean gliders or

other robot applications where the power budget for on-board signal processing is limited.

xxi

CHAPTER 1

RECONFIGURABLE ANALOG CIRCUITS FOR PATH PLANNING
AND IMAGE PROCESSING

Path planning and image processing are critical signal processing tasks for robots, au-

tonomous vehicles, animated characters, etc. Figure1 is a cartoon showing the ultimate

goal of the path planning problem being addressed in this dissertation, namely how to use

a reconfigurable Analog Very Large Scale Integration (AVLSI) circuit to plan a path for a

Micro Aerial Vehicle (MAV) (or similar power constrained ground or sea robot) through

an environment in an effort to conserve its limited battery resources. Path planning can be

summarized with the following three tasks given that states, actions, an initial state, and a

goal state are provided. The robot should:

1. Find a sequence of actions that take the robot from its Initial state to its Goal state

2. Find actions that take the robot fromanystate to the Goal state

3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

Image processing techniques can be used to visually track anobject. Segmenting the

object from the background is one subtask in this problem. Digital image processing can be

very computationally expensive in terms of memory and data manipulation. Path planning

and image processing computations are typically executed on digital microprocessors. This

dissertation explores an evolution of analog signal processing using Field Programmable

Analog Arrays (FPAAs); it describes techniques for mappingdifferent solutions onto the

hardware, and it describes the benefits and limitations. Themotivation is lower power,

more capable solutions that also provide better algorithhmperformance metrics such as

time and space complexity [7, 2]. This may be a significant advantage for MAVs, ocean

gliders or other robot applications where the power budget for Guidance, Navigation, and

1

Figure 1. This shows a goal of this research: To use reconfigurable analog circuits called Field Pro-
grammable Analog Array Integrated Circuits (FPAA IC) to pla n a path for small robot through an
environment in an effort to conserve limited battery resources and extend operation times [2].

Control is limited [29, 30].

A custom Application Specific Integrated Circuit (ASIC) couldbe developed to imple-

ment analog path planning, however custom ASIC designs are fixed so any revisions would

incur a long design cycle/fabrication time. FPAAs, however, allow the designer or theau-

tonomous agent itself to reconfigure the analog connectionswithin the Integrated Circuit

(IC) using software and hardware infrastructure. This allows quick design changes and re-

use of a single IC [31, 7]. Chapter2 describes the FPAA embedded system infrastructure

used in this path planning research.

In summary, analog path planning is explored because it represents a potential decrease

in time and space complexity, a potential reduction in powerneeded for computation, and

potential decrease of computation time. An FPAA analog pathplanning implementation

is useful because reconfigurable AVLSI systems provide circuit tune-ability and flexibility

that custom ASICs do not provide [7, 2].

2

1.1 The Problem Being Addressed

This dissertation answers the questions:

Can robot path planning and image processing problems be solved using new analog

signal processing systems and techniques which are based on floating-gate based reconfig-

urable analog hardware? If so, what is the performance comparison of these systems and

techniques to other computational approaches? How are different solutions mapped onto

the hardware, and what are the limitations?

A major part of the “new” aspect of this solution is that it uses floating-gate transistors.

Techniques will be described for mapping the algorithms on this floating-gate hardware.

Performance comparisons will include complexity analysisof the algorithms which mea-

sure solution computation time and memory requirements. Also, computations per energy

will be another metric used to assess performance.

1.2 Why This Problem Is Important

There is an energy efficiency wall trend, Figure2, that has been identified with digital

computation. This trend shows that the number of computations per unit of energy has

been increasing over time however this trend is slowing downand approaching a line

or “Efficiency Wall”. If this trend continues it will negatively impact the growth of the

computational capability of an all-digital approach to robotic computation [3]. Given this

efficiency wall, the significance of this work is twofold:Low powerand more capable

hybrid analog-digital solutions will provide longer operation times and more computing

capability than currently available for power budget constrained autonomous agents us-

ing an all-digital approach. This claim is founded on previous research which shows

that reconfigurable analog systems called Field Programmable Analog Arrays (FPAA)s

are providing a low-power hardware technology enabling analog computational efficiency

of 1000 over digital solutions [32, 15]. This may be a significant advantage for Micro

3

Aerial Vehicles (MAVs) or other robot applications such as Autonomous Underwater Vehi-

cles (AUVs) where the computational capability and power budget for signal processingis

limited [33, 34, 35, 36, 29, 30, 37, 38]. The general goal is illustrated in Figure3. In this

figure, the lower left quadrant represents small, light autonomous systems which are limited

in computational capability [39]. The upper right quadrant represents heavy autonomous

systems which have the capability to carry a significant amount of computational equip-

ment [40]. The goal is to be able to impact the left side of this graph and give smaller

systems more capability.

Computation for robotics often takes on two forms: on-board computing, and cloud

computing. There is a heavy movement of robotics computation into thecloud (instead

of being resident on the robot) [41]. Leveraging computation from the cloud helps, for

example, computationally expensive tasks such as image processing [42]. Cloud robotics is

also important from a networked robotics point of view as it allows robots to communicate

with one another and, among other things, coordinate movements and activities. However,

if we want billions and billions of robots then putting a majority of computation in the

cloud could be a problem. This is one reason why continuing toincrease the capability of

on-board computing and enable systems to push past the efficiency wall trend is important.

1.3 Dissertation Contributions

Contributions of this dissertation include the following three areas:

• Floating-gate basedresistive grid structurescan be used for path planning. This

method is different from previous resistive grid research which use traditional tran-

sistors and active elements to make variable or fixed resistances [43, 44]. Instead,

floating-gate transistors provide the ability to weight differently the edges in the map.

Floating-gate weighting provides a simple circuit method to implement the weights.

Floating-gate based weights also have the feature that implementation is non-volatile

(it will hold it’s weight even when the power is removed). Three dimensional grids

4

The computations/Joule

are not trending to meet

the future needs

Future Processing Needs

Efficiency Wall

Figure 2. Reproduced from [3], this figure illustrates the details that the rate of improvement in com-
putations per unit energy in processors over the last 30 years is decreasing, and if the trend illustrated
in this figure continues it is approaching a “wall.”

Figure 3. This cartoon depicts the idea of weight vs. computational capability and also shows how we
plan to add more computation/gram using a hybrid analog-digital approach.

5

are also possible with the hardware described in this thesis.

• Floating-gate basedreconfigurable neuron structurescan be used for path planning.

Analysis is shown that the parallel computation nature of the system provides a lower

Time Complexity metric in certain conditions than typical wavefront planners. One

of the items that distinguishes this research from other neural network planners, [45,

46], is that this work shows results and analysis from an actualanalog hardware that

uses neurons which have realistic dynamics.

• New computational hardware is described which is designed to do subsampled im-

age convolution. Analysis on the analog image convolution technique is provided.

Analysis is shown that image processing using analog vectormatrix multiplication

in this system has an expected capability of approximately 800 Giga to 132000 Giga

Computations per Joule. This is a significant improvement over the energy wall trend

of approximately 10 Giga Computations per Joule [3].

1.3.1 Design Principals Used in this Dissertation

This thesis applies a couple of computation principals described by Carver Mead [47].

Mead stated that there is a “Factor of 1 million unaccounted for between what it costs to

make a transistor work and what is required to do an operationthe way we do it in a digital

computer [47].” This is largely because in digital systems, energy is spent charging wires

and not the gate, and these systems use far more than one transistor to do an operation. A

couple of solutions Mead proposes for increasing the efficiency of computation are:

1. Make Algorithms LOCAL (don’t ship data all over the place)

2. Use the physics of a device to do the operation instead of using a bunch of AND and

OR gates

He further points out that the above approaches require adaptive techniques to correct for

differences between nominally identical components.

6

Figure 4. Using the physics of transistors to perform multiplication: Digital multiplication requires
hundreds or more transistors to perform a multiplication [4]. Analog can perform a multiplication
using about 10 transistors.

1.3.2 Principals in Practice

This dissertation applies the above two principles in the following ways:

1. Principal: Make Algorithms LOCAL;Implementation: Use analog memory to hold

intermediate algorithm computations

2. Principal: Use the physics of a device;Implementation: Analog vector matrix mul-

tiplication and Parallel Processing

Figure4 and Figure5 illustrate how the physics of transistors are used to implement

vector matrix multiplication with fewer transistors than in digital. Further, floating-gate

transistors provide an adaptive technique to correct for differences between nominally iden-

tical components in analog processing.

7

Figure 5. In analog, when the signal is a current, the addition operation of vector matrix multiplication
is “free.”

1.4 Related Work

Previous works have used custom Application Specific Integrated Circuits (ASICS) or pro-

posed to use circuits to implement path planning and in analog. Previous analog work in

analog path planning includes the following: [48, 49, 50, 44, 51, 52, 53, 54, 55, 56, 57, 45].

A potential fields type path-planning method that can be implemented using parallel AVLSI

circuits is found in [48]. Obstacles are represented as non-conducting elements ina con-

ducting medium. The start point is a current source, and the goal is a current sink. The

robot’s workspace, conducting, and non-conducting elements are implemented with a re-

sistive grid. Obstacles have a high resistance and non-obstacles have a lower resistance.

The path from start to goal is found by 1) placing a constant current source at the start

node, 2) waiting until the resistive grid settles into a steady state, 3) reading the node volt-

ages, and 4) finding the path from start to goal using voltage measurements from successive

nodes. The authors propose hardware, but only show simulation results. Other AVLSI re-

sistive grid networks used for robot path-planning are found in [44, 58]. The authors use

three parallel structures to accomplish the planning. The first layer, theMemorylayer, con-

tains information about obstacles, the source, and the goal. The second layer, theResistive

8

Net layer, uses PMOS or NMOS transistors to model resistors. These transistors (and a

current source) establish a gradient in the resistive grid.The third layer, theComparison

Circuit layer, computes the path by using comparators or awinner-take-allcircuit to com-

pare node voltages on the resistive grid layer. The authors describe fabricated hardware,

but only show simulation results. A couple of United States patent applications have also

been identified which deal with analog processing. First, one uses an analog processing

integrated circuit which receives obstacle data from an inertial measurement unit (IMU)

and an obstacle detection sensor. Analog resistive grids are then used to map obstacles.

An electronic device that solves the Laplace’s equation is described [59]. Another patent

application presents a Laplacian path planner. The system is designed to help autonomous

vehicles avoid obstacles while navigating through a seriesof waypoints [60]. A system

is described in [61] that attempts to use the AVLSI planner developed by [44]. Finally,

[62] gives an analog robotic motion control scheme developed for obstacle avoidance and

target-seeking. According to their paper, “a possible application is in the control of ex-

tremely lightweight autonomous machines in the style of Braitenberg Vehicles or Tilden

BEAM robots.”

A spike based neuron path planner and simulation results arepresented in [45]. That

work inspired the neuron planning algorithm described in this dissertation. Unlike neural

networks which are often trained for classification and pattern recognition tasks [63, 64],

the path planner neuron circuitry uses a propagating wavefront to perform the planning

operation.

1.5 Other Application Domains

In addition to path planning, analog networks have been proposed for other signal process-

ing tasks such as early vision (which is the problem of converting light into three dimen-

sional shape [65]), surface interpolation [66], edge detection, shape from shading, velocity

field estimation, color, and structure from motion (see [67] for this list with additional

9

citations) [43].

1.6 Dissertation Summary

There are two main drawbacks to using custom ASICs for analog solutions: 1) circuit

designs are fixed to some extent (not changeable) and 2) long design cycle/fabrication

time (order of months). Reconfigurable analog circuits such as FPAAs have been used

to implement a variety of AVLSI circuits in a short time (order of minutes). This allows

quick design changes and re-use of a single IC [31]. This work is therefore set apart from

previous research in two major ways: 1) the implementation is on a reconfigurable floating-

gate based analog platform, and 2) new hybrid analog-digital solutions that exploit the

capability of this reconfigurable FPAA IC are developed.

The focus of this dissertation is integrating a reconfigurable analog processor capable

of implementing hybrid analog-digital algorithms with a robot for path planning and image

processing. Control with reconfigurable analog circuits is also explored. Path planning is

often calledGuidance, which is the process of determining a path for the robot to reach the

goal;Navigationis determining the robot’s state such as position, velocityand attitude; and

Control is tracking guidance commands while maintaining stability. Figure6 is a cartoon

showing Guidance, Navigation, and Control tasks. Table6 lists each of these functions

and some associated standard methods. The ultimate long term goal of this research is to

develop an autonomous micro robot that is capable of autonomous navigation, guidance

and control using, in part, analog signal processing systems.

The complete Analog-Digital Hardware/Software/Robot co-design problem is consid-

ered. Multiple analog-digital embedded systems have been developed in our lab at Georgia

Tech, and these are the initial computation platforms on which the hybrid analog-digital

algorithms are developed and executed [68]. These embedded systems are also the founda-

tion upon which more specific hardware is developed. At the heart of the embedded systems

10

Function Answers these Standard Method
Agent’s Questions

Guidance Path Planning What roads A* (A-star)
should I take?

Navigation Determining a Where am I now? Kalman Filter
robot’s state

Control Tracks guidance How do I adjust the Proportional, Integral,
commands while acceleration and Derivative (PID)

maintaining stability steering? controller

Figure 6. a) Guidance: Thehigh level process of planning a path from the Start to the Goal. b) Naviga-
tion: Agent uses sensor input to determine its state (Position, Velocity, Acceleration). c) Control: The
low level process of tracking guidance commands while maintaining stability.

is a reconfigurable analog integrated circuit (IC) called a Field Programmable Analog Ar-

ray (FPAA) [31]. This custom IC, developed by the Integrated Computational Electronics

(ICE) Lab at Georgia Tech, allows a user to configure circuits using basic analog compo-

nent primitives (such as transistors, amplifiers, and capacitors). Much like digital’s Field

Programmable Gate Array (FPGA’s), these FPAAs can be erasedand re-programmed using

a software interface. More detailed information about FPAAs and the embedded system is

found in Chapter2. A major thrust of this research is the design of hybrid analog-digital

circuits that are equivalent (in function, not necessarilyform) to their all digital counter-

parts.

Algorithm development has focused on performing path planning and image process-

ing for a mobile robot. Previous work in combining digital and analog solutions are found

in [69, 70, 71]. The overall goal for path planning is found in Figure6a. In this cartoon

a power constrained mobile robot uses an FPAA or other reconfigurable IC, programmed

11

with a model of the environment, to navigate a maze or an office environment. This disser-

tation demonstrates two hybrid analog-digital solutions for path planning. First, Chapter3

shows that FPAAs can be used for Guidance (Path Planning) using a resistive grid based

potential fields type approach [2, 7, 72]. Second, Chapter4, shows hardware results for

a wavefront path planning algorithm using a neuron array integrated circuit. These two

approaches are described in the following sections. Figure6c shows the overall goal of

control is for the robot to track the guidance commands while maintaining stability. This is

considered a low level control task.

1.7 Chapter Summaries

Chapter2presents three hardware and software infrastructures usedwith a family of floating-

gate based FPAAs being developed at Georgia Tech. These compact and portable systems

provide the user with a comprehensive set of tools for customanalog circuit design and im-

plementation. The infrastructure includes the FPAA IC, microcontrollers for interfacing the

FPAA with the user’s computer, and Matlab and targeting software. The FPAA hardware

can communicate with Matlab over a USB connection. When connected to a computer,

the USB connection also provides the FPAA hardware’s power.Some of the software tools

include three major systems: a Matlab Simulink FPAA program, a SPICE to FPAA com-

piler called GRASPER, and a visualization tool called RAT. Thischapter also presents a

description of a floating-gate transistor because this is the key enabling technology that

allows the FPAA to program arbitrary circuits (and also implement resistive elements).

Chapter3 presents path planning using resistive grids implemented on two different

FPAA ICs: the RASP 2.8a and the RASP 2.9V [31, 73]. The resistive grids elements are

implemented with floating-gate transistors. The general idea is similar to the well-known

potential field approach to path planning [74] in that the robot’s location is the high point of

an energy surface and the goal is at the low point and the path to goal follows the gradient.

This chapter presents hardware results using reconfigurable AVLSI circuits developed at

12

Georgia Tech to implement a path planning algorithm. Experimental results are presented

for a large number of environment scenarios. Also, an experimental result of interfacing

the FPAA with a Pioneer robot is described.

Chapter4 presents hardware results for a neuromorphic approach to path planning us-

ing a neuron array IC. The algorithm is explained and experimental results are presented

showing 100% correct and optimal performance for a large number of randomized maze

environment scenarios. Based on neuron signal propagation speed, neuron IC path planning

may offer a computational advantage over state-of-the-art wavefront planners implemented

on FPGAs. Analytical Time and Space complexity metrics are developed in this chapter

for a Neuron IC planner, and these are verified against experimental data. Optimality and

Completeness are also addressed. The neuron structure allows one to develop sophisticated

graphs with varied edge weights between nodes of the grid. Two interesting cases are pre-

sented. First, asymmetric edge costs are assigned to describe cases which have a certain

cost to travel a path in one direction, but a different cost to travel the same path but in

the opposite direction. The application of this feature cantranslate to real world problems

involving hills, traffic patterns, etc. Second, cases are presented where the nodesnear an

obstacle are given higher costs to visit these nodes. This isin an effort to keep the au-

tonomous agent at a safe distance from obstacles. This grid weighting can also be used to

differentiate among terrains such as sand, ice, gravel, or smooth pavement. Experimental

results are presented for both cases.

Chapter5 presents results of a mobile manipulator robot tasked to play the classic

Towers of Hanoi game. First, the control algorithms necessary to enable necessary game-

playing behavior are discussed and results are provided of implementing the methodology

in a high fidelity 3D environment. After attaining success inthe simulation environment,

results are shown on implementation of the same control software using physical robot

hardware. Additionally, analysis for implementing analogProportional-Integral-Derivative

13

(PID) control on this platform using a floating-gate based reconfigurable analog IC is ex-

plored. Using this concept of floating-gate analog arrays for control enables off-loading of

the processing, which could be helpful for real-time implementation of robot behavior.

Chapter6 first describes an analog image processing algorithm which uses floating-

gate transistors to implement multiplication weights. Further, analog storage elements are

described as holding places for intermediate values in the computation. Two hardware

systems being developed on which to implement this hybrid analog-digital approach to

image processing are also described. One of these systems isbased on the RASP 2.9v IC,

and the second is based on the RASP 3.0 IC. Each has its own PCB embedded system

which is also described.

Chapter7 provides chapter summaries and current and future possibleresearch using

Hidden Markov Models and dendrite classifiers.

14

CHAPTER 2

FPAAS FOR EMBEDDED SIGNAL PROCESSING

The two main electronic hardware components used in the signal processing systems in

this dissertation are the FPAA ICs and the embedded system into which the FPAAs are in-

tegrated. FPAA technology, while continuing to develop, issufficiently advanced at this

time to allow one to perform algorithm development and demonstration. This chapter

will describe the FPAA ICs, embedded system, and will also provide information about

floating-gate transistors because these unique devices, among other things, are a key en-

abling technology for FPAAs to be able to reconfigure their internal wiring.

2.1 FPAA Background and Foundational Material

Field Programmable Analog Arrays (FPAAs) are useful for both research and teaching

[75]. Previous Georgia Tech FPAA ICs have been programmed using aself-contained de-

velopment platform that included a commercial FPGA development board, a custom FPAA

board, and a AC-DC power module. This previous hardware platform [76] fit into an en-

closure about the size of a shoe box and communicated with thecomputer using Ethernet.

The new platforms described in this chapter are significantly smaller and communicate over

USB. The power supply systems have also been changed and improve upon the portability.

The infrastructure is a proven system as it has seen use in a DARPA project workshop at the

University of Southern California, two workshops in Telluride, CO, and two more work-

shops at Georgia Tech. The boards have also been the primary laboratory infrastructure

for two semesters of a graduate course in Neuromorphic Analog VLSI Circuits at Georgia

Tech.

FPAAs are the main enabling technology for this Analog-Digital robotic signal pro-

cessing. They provide a low-power, low-cost, reconfigurable, and reusable hardware tech-

nology, while still enabling analog computational efficiency of 1000 over digital solutions

15

Figure 7. Roadmap of the current and estimated future GT FPAA IC development [5].

[15]. Figure7 shows the timeline of many FPAA devices [5]. The FPAAs, developed at

Georgia Tech, are based on the Reconfigurable Analog Signal Processor (RASP) family

of ICs. Each generation of ICs enabled a higher level of computation and a wider range

of applications. The ICs include the RASP 1.5 [77], RASP 2.5 [78], RASP 2.8 [79, 80],

RASP 2.9, the recent digitally enhanced ICs RASP 2.9v: Dynamic Reconfigurable [73],

FPAAD [81], and combination FPAA/microprocessor RASP 3.0. Further FPAA results

can be found in [82, 83, 84, 85, 86, 87, 88, 89].

Section2.2discusses the basics of FPAAs as well as the embedded hardware interface,

Section2.3discusses software tools, Section2.4shows the design flow using a demonstra-

tion test circuit, and Section2.6 is a closing summary.

2.2 FPAA Hardware Infrastructure

This work uses four instances of the RASP family of ICs: RASP 2.8a, RASP 2.9v, Neuron

IC, and RASP 3.0. Figure8 shows three of these FPAA ICs. The RASP 2.8a IC is 3x3 mm

in size and arranged in a 4x8 array of computational analog blocks (CAB)s [31] The RASP

2.9v IC is 5x5 mm in size and arranged in a 6x13 array of CABs [90, 73].The Neuron IC

is 5x5 mm in size and arranged with 100 neurons and 30,000 synapses [10].

16

Figure 8. Research in this dissertation was based on the following FPAA ICs: a) RASP 2.8a used for
path planning and control, b) RASP 2.9v used for path planning, and c) Neuron IC used for path
planning.

These reconfigurable analog platforms utilize a switch matrix of programmable floating-

gate transistors as switch elements. These switch elementshave a dual role as computa-

tional elements [91]. This specific feature is exploited in this work. The reconfigurable

nature of the platforms allow rapid building and testing of different circuit configura-

tions [31, 79].The arrays have a mixture of analog granularity, so that one has access to

transistor-level functions, as well as some higher signal processing features. Programmable

floating-gate circuit technology enables the FPAAs to provide area-efficient, accurately pro-

grammable analog circuitry that can be easily integrated into a larger digital/mixed-signal

system [90, 76]. A closed loop control system is used to program the floating-gate elements

[92]. Some floating-gate switches may befully on whereas others may be programmed to

specific currents. In our present implementation, Matlab interfaces with the control board’s

ARM Core microprocessor to implement the control algorithm. In the future, this control

algorithm can be moved entirely to the ARM core microprocessor. The FPAA ICs contain

on-chip programming structures which measure the level to which the floating-gates are

programmed.

The main embedded hardware developed consists of a family offive PCB designs which

include the following:

17

Figure 9. FPAA Programming and Control Board (25.76 square inches). Note the USB connection on
the top left; 40 pin DIP microcontroller module to the right o f the serial connector; the 100 pin ZIF
socket for inserting the FPAA ICs; many 2x4 pin headers connected to FPAA I/O, DAC outputs, ADC
inputs, FPAA control pins, and power/ground; 4 SMA for FPAA I /O interface; and the audio jacks (on
the lower right).

1. Research-oriented FPAA board which allows maximum accessto and control of the

FPAA pins

2. Class-oriented board which is a scaled down version of the research board

3. Stand-alone board for integrating the FPAA into robots and other systems

4. Modular board for integrating the FPAA into robots and other systems

5. FPAA/Microcontroller interface board to support the new RASP3.0 ICs

The first three embedded systems are described in the following sections, and the last

two are described in Chapter6.

2.2.1 Research Board

The Research Board, Fig9, was for many years the workhorse of our FPAA infrastructure

family. It has header pins which allow easy access to most of the FPAA pins. This is helpful

for many things including power measurements, circuit debugging, etc. The research board

has a 100 pin zero insertion force (ZIF) socket into which theFPAA IC is placed. This

18

Figure 10.Adaptor Board (4.16 square inches). This custom PCB has a quad flat pack (QFP) packaged
FPAA IC on one side and pins on the other side. The pins plug into the 100 pin ZIF socket on the
programming and control board.

socket makes the Research Board a good general platform for testing many families of

FPAAs such as our General, Sensor, Bio, Mite, and Adaptive versions. The FPAAs are

typically packaged in plastic surface mount packages. We have developed adaptor board

PCBs which convert the surface mount packages to pins, Fig.10. These pins then plug into

the ZIF socket on the programming and control board.

The programming and control board has the following features: USB or Serial commu-

nication capabilities, USB power or external DC power, SMA connectors for connecting

to FPAA I/O pins, a discrete 14-Bit DAC IC which has forty channels (mostof which can

be used as inputs to FPAA I/O pins), a discrete 8-bit ADC that can also be used to connect

to FPAA I/O pins, amplifiers to be used as I/O buffers, and finally an audio amplifier and

audio jacks which can be used for audio input and output connections to the FPAA. The

board also has 3.3V, 5V, and 12V supplies. The board uses an Atmel AT91SAM7S ARM

based microcontroller to communicate via USB to a desktop orlaptop computer. The soft-

ware emulates a serial communications device class (CDC) connection, and most modern

operating systems have drivers for this software out-of-the-box. The ARM Core micropro-

cessor on the board was purchased as a 40 pin DIP plug-in module. A block diagram of the

system is found in Figure11.

19

USB

Circuitry

μC

3.3, 5, 12V

Power

40 Channel

DAC

4 Channel

ADC

Serial

Com

FPAA
Audio

Amplifiers

Figure 11.Block Diagram of the FPAA programming and control board. The board has been designed
to be self-contained and portable, only needing a laptop. The user chooses between USB or serial
communication. The power is supplied by the USB port. The microcontroller (µC) is a 40 pin DIP
plug-in module which uses an ATMEL 32 Bit ARM processor. The FPAA I /O can be reconfigurably
connected to the discrete ADC and DACs using headers and jumpers. MP3 players can easily be used
as inputs to the FPAA by using the audio input port and audio amplifiers.

Figure 12. Class-oriented Board (8.74 square inches). Note the USB connection on the left for direct
connection with the user’s computer. The FPAA is the large square IC in the center above the two SMA
jacks. The audio interface jacks are on the right.

20

2.2.2 Class-oriented Board

The small Class-oriented board, Fig12, is basically a subset of the Research Board. It

was developed with three main goals in mind: 1) easy to learn and use, 2) inexpensive,

and 3) small. The easy-to-learn-and-use goal was accomplished by removing as many of

the “intimidating header pins” as possible. To make this possible, many of the FPAA I/O

pins that are connected to headers on the Research Board are nowhardwired to ADC or

DAC pins. Only a small number of I/O are pinned out to headers. There are thirty-two

header pins on the Research Board that are considered “factorysettings” and are normally

jumpered to certain pins. These pins were hardwired to theirrespective signals. The goal

of reducing the cost was accomplished by reducing part countand changing some parts.

For example, the discrete ADC IC was removed in favor of usingthe ARM Core micro-

processor’s onboard ADC, and the forty channel DAC was replaced with a less expensive

eight channel DAC. The ARM Core microprocessor on the Research Board was purchased

as a 40 pin DIP plug-in module. To save cost, the class-oriented board has the micropro-

cessor IC and associated circuitry integrated directly onto the FPAA board. The cost goal

was accomplished. The parts alone for the class-oriented board are more than fifty percent

cheaper than the Research Board ($100 vs. $230). The size goal was accomplished too as

it is sixty-six percent smaller than the Research Board.

2.2.3 Stand-alone Board

The stand-alone board, Fig13, was developed as a way to separate the FPAA from the

programming infrastructure so that an FPAA can easily be integrated into robotic and other

systems. The stand-alone board consists of a surface mounted RASP 2.8 FPAA IC, power

circuitry, a header used for programming, and connections to FPAA I/O pins. The board

also has an IC footprint for a motor driver circuit.

21

Figure 13.Stand-alone Board on the left (6.2 square inches). Note the removable ribbon cable plugged
into the stand-alone board’s header. The other end of the ribbon cable plugs into a Research Board’s
ZIF socket as a means of programming the stand-alone board.

2.3 FPAA Software Infrastructure

The pre-existing FPAA software tools include a Matlab Simulink FPAA program, a SPICE

to FPAA compiler called GRASPER (Generic Reconfigurable ArraySpecification & Pro-

gramming Environment), and a visualization tool called theRAT (Routing Analysis Tool).

Two new software tools were developed to support this work. These are 1) a tool to convert

the obstacle map into a transistor map on the FPAA and 2) a map/obstacle visualization

and modification program called the Path RAT.

Regarding the existing tools, the Matlab Simulink Tool is an automation tool which

converts Simulink models to a SPICE netlist, which can then beautomatically compiled to

FPAA targeting code and implemented on an FPAA [93]. The GRASPER tool converts a

circuit’s SPICE file into a list of FPAA switches that implement the circuit on the FPAA

[94, 95, 96, 97]. The RAT is a Matlab GUI which graphically shows the topologyof how

a circuit is routed on the FPAA switches, Figure17d. Using the RAT, new designs can be

created or existing designs can be modified by pointing and clicking with the mouse [68].

Figure14 (a-b) illustrates the basic idea of how circuits are createdon the FPAA. As-

sume that Figure14a represents a circuit schematic that one would like to program onto an

22

Figure 14.This illustrates the basic idea of how circuits are created on the FPAA.

FPAA. It consists of three components: an OTA, a floating-gate pFET, and an nFET. Figure

14b represents a simplified, small portion of what’s inside an FPAA. The colored dots in

(a) and (b) correspond to each other. In this case, six coordinate parameters specify the

topology of the circuit: (1,1), (2,2), (3,3), (4,4), (5,3),and (6,4). The floating-gate pFET

is shown at an angle in Figure14b. It is programmed to have a certain conductance value.

Actually, although not shown explicitly in the illustration, there is a floating-gate pFET at

every row-column intersection of the switch matrix. The colored dots in the switch matrix

that represent connections are actually fully turned on floating-gate pFET transistors that

are used to make the connections.

Once an FPAA is targeted, the user can interface with the FPAAI/O in a couple of ways.

First the user can jumper FPAA I/O to the discrete DAC and/or ADC ICs. These ICs are

controlled through the Matlab interface. Table1 lists a few sample Matlab commands. The

user can also interface with the FPAA by using the audio amplifier ports. Fig.15shows the

legend used to identify the various headers. There are thirty-two header pins on the board

that are considered “factory settings” and are normally jumpered to specific control pins.

23

Figure 15.Header Map used as a legend to identify pins on the programmingand control FPAA board.
U *, D *, L *, R * are FPAA I /O pins.

Simulink

GRASPER

SPICE

FPAA

Block

Model

Sub-

Circuit

.mdl

MATLAB

Struct

Netlist

Switch

List

sim2spice

RAT

Library

Netlist

Generator

Parser

Figure 16. Software flow for designing systems on the FPAA. Top level designs are done in Simulink.
Sim2Spice converts it to a Spice netlist, which can then be compiled into an FPAA switch list [6].

24

Table 1.Sampling of Matlab commands used to interface with FPAA
Matlab Function Description
SET DAC USB sets one of the 40 channels on the DAC IC

READ ADC USB reads into Matlab a value from the ADC IC.
PROGRAMaa used to program a list of elements on the FPAA

2.4 Design Flow Using a Demonstration Test Circuit

Figure17 shows the design flow for implementing a lowpass filter on an FPAA. First a

Simulink block diagram of the system was generated, Figure17a. Although not shown in

this picture, this system can be digitally simulated in Matlab. Next, theSim2spicetool,

Figure16, is used to generate a SPICE file from the Simulink block diagram, Figure17b.

Figure17c shows the text file which is the output of the GRASPER compiler. The first

two numbers in each line are the row and column locations of a particular floating-gate

transistor on the FPAA, and the last number on the line represents the desired current in

the transistor. Figure17(d) shows the topology of the GRASPER routing on a RASP 2.9

IC. The switch list was targeted onto a RASP IC and a step input (blue) was applied to the

input pin. The result was measured and shown in black in Figure17(e).

2.5 Floating-Gate Transistors

Floating-gate transistors are well known for their use as the nonvolatile memory element in

flash memories [98]. They are also thesecret sauceof the FPAA. This is largely because,

among other things, floating-gate transistors are used to make circuit connections within the

FPAA. This process is illustrated in Figure14. floating-gate transistors are unique because

they can be programmed to conduct current by adjusting the charge on the gate terminal

of the transistor. Unlike a conventional transistor, floating-gate transistors have an isolated

gate terminal which, like a capacitor, can hold charge. Thisis advantageous because one

does not need to actively maintain a voltage on the transistor’s gate terminal in order to

maintain its state (on, off, or resistive). Once programmed, the gate is set and the circuit

has memory so it will maintain its map even if the power is removed from the IC. This is

25

0 5 10 15 20 25 30 35

0

20

40

60

80

100

0 5 10 15 20 25 30 35

0

20

40

60

80

100

IO
 D

N
<

2
>

IO
 D

N
<

3
>

IO
 D

N
<

4
>

IO LT<0>
IO RT<0>IO LT<1>IO RT<1>

IO LT<2>
IO RT<2>IO LT<3>IO RT<3>

IO LT<4>
IO RT<4>IO LT<5>IO RT<5>

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

(0,13)

(19,1) (19,31)

(42,20) (42,31)
(43,13) (43,31)

(44,20) (44,31)

(20,20) (20,31)

(24,1) (24,31)
(25,20) (25,31)

(26,4) (26,31)
(27,20) (27,31)

(28,4) (28,31)
(26,32)

(42,32)

0 1 2 3 4 5 6

x 10
−4

0.05

0.1

0.15

0.2

0.25

0.3

Time (Sec)

V
o

ta
g

e
 (

V
)

Out 1

1

lpf

Vin Vout
first−order

low−pass filter

OTA _buffer

Vin VoutOTA _buffer

In 1

1

0 13 1.8

81 1 1.8

42 20 1.8

43 13 1.8

44 20 1.8

82 20 1.8

86 1 1.8

87 20 1.8

88 4 1.8

89 20 1.8

90 4 1.8

88 32 1e-3

42 32 1e-09

(a)

(c) (d) (e)

*spice file generated by sim2spice.

.INCLUDE fpaa_tech.sp

*INPORT invector

*>> pin io_lt 0 net vin

xlpf vin vout lpf PARAMS: Ibias=10n

;Low Pass Filter - 1st order

.subckt lpf Vin Vout PARAMS: Ibias=10n

XOTA Vin Vout Vout ota PARAMS: Ib={Ibias}

XC1 Vout 0 C500F

.ends

*OUTPORT Out1

*>> pin io_up 0 net vout

*>> devicefile rasp2_8.dev

*>> project work

(b)

Figure 17. Design Flow for a low pass filter. (a) Simulink Block Diagram. (b) SPICE list generated
by Sim2Spice tool. (c) FPAA switch list generated by GRASPER tool. (d) RATFigure showing switch
list routing on RASP 2.9 IC. (e) Measured Results from RASP IC:blue is the input signal, black is the
lowpass filtered output.

26

Vs

Vd

Vg

Vtun

Csmall (MOS cap)

Cbig (poly-poly cap)

Floating

 node

Figure 18.Floating-gate transistor

called nonvolatile.

Floating-gate transistors are programmed using Hot-Electron Injection and Tunneling

processes [99, 98, 100, 101]. Hot-Electron Injection reduces the amount of charge on the

gate (adds electrons), and Tunneling increases the amount of charge on the gate (removes

electrons). There are four parameters that can be used when programming a floating-gate

transistor: Drain voltage, Source voltage, Gate voltage, and Tunneling voltage, Fig.18.

2.6 Summary

This chapter has described a comprehensive set of software and hardware tools that lets

users quickly and easily create custom AVLSI circuits. The software tools allow users with

varying levels of circuit design experience to be successful at synthesizing circuits. The

hardware infrastructure platform allows users extreme flexibility to monitor and control the

FPAA pins. The adaptor board allows users to quickly interchange FPAAs on the main

programming and control board.

27

CHAPTER 3

RESISTIVE GRID PATH PLANNING

Path planning is a critical task for robots, autonomous vehicles, animated characters, etc.

Figure 1 is a cartoon showing the ultimate goal of the problem being addressed in this

chapter, namely how to use a reconfigurable Analog Very LargeScale Integration (AVLSI)

circuit to plan a path for a Micro Aerial Vehicle (MAV) (or similar power constrained

ground or sea robot) through an environment in an effort to conserve its limited battery

resources. Path planning can be summarized with the following three tasks given that

states, actions, an initial state, and a goal state are provided. The robot should:

1. Find a sequence of actions that take the robot from its Initial state to its Goal state

2. Find actions that take the robot fromanystate to the Goal state

3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

Figure19 shows the system view of path planning in the context of an unknown en-

vironment. Path planning computations are typically executed on digital microprocessors.

This chapter presents results of using two different floating-gate based Field Programmable

Analog Arrays (FPAA) for the path planning computation, theRASP 2.8a and the RASP

2.9V. A motivating reason for using AVLSI for path planning is the potential for better

time and space complexity and lower power processing capabilities when compared to a

microprocessor [7, 2]. This may be a significant advantage for MAVs, ocean glidersor

other robot applications where the power budget for Guidance, Navigation, and Control

is limited [29, 30]. Path planning for UAVs is further addressed in many other sources

[102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112]. MAVs “have been defined to have

no length dimension greater than 6 in. with gross takeoffweights of approximately 200 g or

less [113].” The electronics are estimated to be between 10% and 25% ofthe MAVs mass,

28

Figure 19.This shows the system view of path planning in an unknown environment.

and the battery mass is estimated between 25% and 42% [102, 104, 105]. Because the

battery is such a significant portion of a MAV’s mass, power savings could be significant

in this application. Woods estimates a preliminary power budget of 50 mW for a 2220 mg

MAV glider [103]. Although not a MAV, the microcontroller and embedded computer for

a common research robot (Pioneer 3DX) has been calculated touse approximately 48% of

the power [114]. Existing FPGA planners include an implementation of an entire Genetic

Algorithm-based path planner entirely on FPGA hardware [115] and FPGA implementa-

tions of planners based on wavefront or stencil based gradient calculations [116, 12]. In

[12] the authors describe processing 33 maps with a resolution of 1024x1024 per second

on a midsize Virtex-5 FPGA. They also point out that a main bottleneck in applications like

path planning on FPGAs is often the external memory bandwidth. In the FPAA planner,

the nodes themselves contain the important path information so memory bandwidth does

not seem to be an issue with this system.

A custom Application Specific Integrated Circuit (ASIC) couldbe developed to imple-

ment analog path planning, however custom ASIC designs are fixed so any revisions would

incur a long design cycle/fabrication time. FPAAs, however, allow the designer or theau-

tonomous agent itself to reconfigure the analog connectionswithin the Integrated Circuit

(IC) using software and hardware infrastructure. This allows quick design changes and

re-use of a single IC [31, 7]. Chapter2 describes the FPAA embedded system infrastruc-

ture used in this path planning research. This chapter is based upon work presented at two

conferences [7, 2] and upon a journal paper to be reviewed [72].

29

Figure 20. Converting the office grid world into an AVLSI representation [2]. a) Office with walls as
obstacles. b) Simplified grid representation of office. c) floating-gate transistors used to implement the
obstacles.

In summary, analog path planning is explored because it represents a potential decrease

in time and space complexity, a potential reduction in powerneeded for computation, and

potential decrease of computation time. An FPAA analog pathplanning implementation

is useful because reconfigurable AVLSI systems provide circuit tune-ability and flexibility

that custom ASICs do not provide [7, 2]. A mathematical analysis of an analog planner is

presented in Section3.1. A reconfigurable analog implementation of analog path planning

is described in Sections3.2. Experimental results using the RASP 2.8 FPAA hardware

along with analysis are shown in Section3.3. Experimental results using the RASP 2.9v

FPAA hardware along with analysis are shown in Section3.4.

3.1 Mathematical Analysis of Analog Planner

Assume that there exists a two dimensional resistive grid where the edges between nodes

are resistive elements, Figure20c. Further assume that there is a single source of current

input into one node of the grid (of dimension X by Y), and thereis a single current sink on

a node of the grid. At some time,t, the node voltages will settle to a steady state voltage.

One can represent this by the scalar function in (1).

V = f (x, y) (1)

30

The gradient in this problem is a vector field which can be evaluated at each node in the

grid. The gradient (or vector) at each node points in the direction of the node where the

voltage increases most. The magnitude of the vector tells how fast the voltage rises in that

direction. Expressed using unit vectors (2) [2]:

∇ f =

(

∂ f
∂x
,
∂ f
∂y

)

=
∂ f
∂x

î +
∂ f
∂y

ĵ (2)

The Laplacian, (3), is a differential operator that effectively provides the partial deriva-

tives of the gradient (which in this problem is the second partial derivative of the voltage

function) [117]. Some of the first implementations of using Laplace’s equation for path

planning are [118, 119, 7, 2].

∆ f =
∂2 f
∂x2
+
∂2 f
∂y2

(3)

One can approximate the Laplacian for our problem by using the discrete Laplacian

and specifically, the Five Point Stencil finite difference method, (4), whereh is the grid

size. One can derive (4) using the Taylor series and assuming that higher order terms are

negligible [120, 118, 7].

∆ f (x, y) ≈
f (x−h,y)+ f (x+h,y)+ f (x,y−h)+ f (x,y+h)−4 f (x,y)

h2

(4)

TheLaplace’s equation, (5), uses the Laplace operator on a function and sets it to zero

[117]:

∆ f = 0 (5)

Substituting (4) into the Laplace equation, (5) gives (6). This shows that if the function

describing the grid’s voltage is the solution to the Laplaceequation, then the voltage at each

node is the average of its four neighbors:

31

f (x− h, y) + f (x+ h, y)

+ f (x, y− h) + f (x, y+ h) = −4 f (x, y)
(6)

3.2 Constraint Based Path Finding in AVLSI

Figure 20 shows how an office environment is modeled using a transistor based resis-

tive grid. The transistors in the free path regions are turned fully on by programming

the floating-gates to conduct current, and the transistors representing obstacles (in red)

are turned off by programming the floating-gate transistors such that theywould not con-

duct current. This resistive grid is then used to solve a pathplanning problem. Low

conductance transistors represent blocked paths, and highconductance transistors repre-

sent clear paths. The transistors used for planning in the FPAA are a special type of

transistor calledfloating-gatetransistors. This sets this work apart from earlier works in

VLSI path planning which used either resistors or non-floating-gate transistors for the grid

[49, 48, 50, 44, 51, 52, 53, 54, 55, 56, 57].

The key part of the floating-gate devices is that each of them can be used in an analog

way, as well as in a configurable approach. Other approaches do not allow all of those op-

tions. A transistor can be operated in above threshold or sub-threshold regimes. Subthresh-

old operation results in much lower power use because less current is being conducted. The

current in a pFET transistor in subthreshold operation may be described in (7) [121].

I = I0e
Vdd(κ−1)

UT e
−κVg+Vs

UT

[

1− e
−Vsd
UT

]

(7)

In (7), I0 is a constant representing pre-exponential factors,κ is a constant representing

the capacitive coupling ratio from gate to channel, andUT is the thermal voltage [122, 121].

Taylor expanding (7) with respect toVsd about zero and dropping all higher order terms

gives an expression for the pFET’s resistance whenVsd is small.

32

R=
UT

Ix
(8)

WhereIx, (9), can be programmed from fA to uA [123]. Programming accuracy can be

achieved at 9 bits of floating-gate voltage [31].

Ix ≡ I0e
Vdd(κ−1)

UT e
−κVg+Vs

UT (9)

Floating-gate transistors are unique because they can be programmed to conduct cur-

rent by adjusting the charge on the gate terminal of the transistor. Unlike a conventional

transistor, floating-gate transistors have an isolated gate terminal which, like a capacitor,

can hold charge. This is advantageous because one does not need to actively maintain a

voltage on each gate terminal of the grid. Once programmed, the gate is set and the circuit

has memory so it will maintain its map even if the power is removed from the IC.

There are two novelties to FPAA implementations. First, they are novel because this

path planner is being implemented on a generic reconfigurable analog platform. Second,

the transistors used to represent the paths and obstacles inthe resistive grid are not, as used

in previous papers, conventional transistors. The resistors are implemented using floating-

gate transistors.

A family of floating-gate based large-scale FPAAs is being developed at Georgia Tech.

As described in Chapter2, these reconfigurable analog platforms utilize a switch matrix of

programmable floating-gate transistors as switch elements. These switch elements have a

dual role as computational elements [91]. This specific feature is exploited in this chapter.

The reconfigurable nature of the platforms allows rapid building and testing of different

circuit configurations [31]. In the next two sections, two FPAA ICs are used for path

planning.

33

3.3 Path Finding on the RASP 2.8 FPAA

The RASP 2.8 IC was used to demonstrate FPAA based AVLSI path planning [7]. A die

photo of the RASP 2.8 IC is found in Figure8a. Two experiments are described.

3.3.1 Experiment 1: Solving a simple grid problem

A toy problem was first developed to illustrate how an FPAA canbe used for path planning.

Consider an indoor office environment as in Figure21a [7] and the problem of planning a

path for a MAV from the window to a specific desk. The space has been discretized into

grids and the nodes labeled by their row and column numbers. The robot starts at node

(1,1) and the goal is node (4,3). It is assumed that all obstacle free edges have the same

cost value. There are two solutions to this problem. If we assume that traversing each edge

has a cost of 1, the best solution has a cost of five, and the second solution has a cost of

nine. The toy problem can be re-drawn generically as in Figure 21b. Two solution paths

are shown, and decision points are labeled. The solution tree for this problem is found in

21c. Two solutions are distinguished by red or blue. Traditionally, this grid world can be

evaluated for a solution using methods such as the Breadth-First-Search (BFS) or Depth-

First-Search (DFS) algorithm [1].

A resistive grid similar to the one in Figure20c was implemented on the hardware plat-

form of Figure9 and using a RASP 2.8 FPAA IC. Each node in this grid also has buffer

circuitry in the actual hardware version for proper readingof the grid voltages. The grid

voltages can be read with either an an Analog-to-Digital Converter (ADC) on the FPAA

control board or an external multimeter or oscilloscope. The buffer circuit is a floating-gate

input Operational Transconductance Amplifier (fgOTA) in a unity gain buffer configura-

tion.

Finally, the method used to insert current into the system was to use a conventional

pFET (a component in the FPAA CAB) connected to three I/O pins. The source is con-

nected to Vdd, the drain is connected to the start grid node, Node (1,1), and the gate was

connected to a DAC channel on the FPAA programming and control board. Similarly, the

34

WINDOW

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

WINDOW

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

WINDOWWINDOW

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

1,1

2,1

3,1 2,2

1,2

1,3

1,4 2,3

2,4

3,4

3,3 4,4

4,3

3,2 4,1

4,2

1,1

2,1

3,1 2,2

1,2

1,3

1,4 2,3

2,4

3,4

3,3 4,4

4,3

3,2 4,1

4,2

Obstacle

Obstacle

Start

Goal

1,1 1,2 1,3

4,1
4,2

1,4

Obstacle
3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

Obstacle

O
b
s
ta
c
le

ObstacleObstacle

Obstacle

Start

Goal

1,1 1,2 1,3

4,1
4,2

1,4

Obstacle
3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

Obstacle

O
b
s
ta
c
le

O
b
s
ta
c
le

Obstacle
O
b
s
ta
c
le

a) b) c)

Figure 21. a) Toy problem two dimensional office environment where the goal is to plan a path for
a MAV from the window to a specific desk. The environment that has been discretized into a grid
with labeled nodes. Two path solutions are identified. b) This figure shows the locations of the Start,
Goal, and Obstacles in the Cadence simulations. The shortest path to the goal is through the red line:
Start=(1,1)-(2,1)-(3,1)-(3,2)-(4,2)-(4,3)=Goal. The alternate path to the goal is by the blue line. c) The
solution tree to the toy problem has two solutions (red and blue paths) [7].

goal Node (4,3) was connected to the drain of a pinned-out diode connected nFET in the

FPAA CAB, and its source was connected to ground.

3.3.1.1 Results

Figure22 through Figure29 show measured results from the RASP 2.8 FPAA. Figure22

shows a grid with no obstacles. Figure23 shows the data for the problem proposed in

Figure21. There are four decision points of interest in this map. Two decision points for

the optimum red path are at Nodes (2,1) and (3,1), and two decision points for the non-

optimum blue path are at Nodes (1,3) and (3,4). When interpreting the data in Figure23b

and c, one is looking for the path of largest current. Since there is not a current meter on

each path, one may use node voltage measurements. When at a decision node, the best

route to take is the route with the lowest voltage on the next available node (so that there

is the greatest voltage drop). The data corresponding to thedecision points for the blue

and red routes guide the robot. Figure24 through Figure27 show a broader range of the

grid’s response to varying input currents. Also, experiments were performed to characterize

the performance of the floating-gate OTAs, Figure28. Finally, Figure29 shows that, as

expected, the current into the grid is equal to the current out of the grid. In order to show

35

1

2

3

4

1

2

3

4

2.25

2.3

2.35

2.4

Col Nodes
Row Nodes

M
e

a
s
u

re
d

 V
o

lt
a

g
e

 (
V

)

Start

Goal

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

Start

Goal

1,1 1,2 1,3

4,1
4,2

1,4

3,1 3,2 3,3 3,4

4,4

2,1

2,2 2,3

2,4

4,3

a)

b)

c)

Figure 22.a) This experiment was for a 4x4 grid structure with no obstacles. The robot is at node (1,1),
and the goal is at node (4,4). The floating-gate pFETs were each programmed to 1e-006 A and the
measurements were performed with the current source pFET’sgate voltage at 1.5V. b) Node voltage
measurements were made directly at the node and did not use the fgOTA buffers. Coordinate (1,1) is
top left, and coordinate (4,4) is bottom right. c) Surface plot of the data in b [7].

36

Figure 23.This experiment compares the results of using the fgOTA buffers when measuring the node
voltages [7] a) This experiment was for a 4x4 grid structure with 8 obstacles. The robot is at node (1,1),
and the goal is at node (4,3). The floating-gate pFETs for the paths were each programmed to 1e-006 A
and the obstacles were set to 0 A. The measurements were performed with the current source pFET’s
gate voltage at 1.5V for b and 1.5421V for c. b) Node voltage measurements were made directly at
the node and did not use the fgOTA buffers. c) Node voltage measurements were made using fgOTA
buffers. The measurements were calibrated using fgOTA characterization curves, Figure 28.

37

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Input pFET V
g

(V)

M
e

a
s
u

re
d

 N
o

d
e

 V
o

lt
a

g
e

 (
V

)

Node (1,1

Node (1,2)

Node (2,1)

Node (1,3)

Node (3,1)

Node (1,4)

Node (4,1)

Node (2,2)

Node (3,2)

Node (2,3)

Node (3,3)

Node (4,2)

Node (2,4)

Node (3,4)

Node (4,3)

Node (4,4)

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

0.5

1

1.5

2

Input pFET V
g

(V)

M
e
a
s
u
re

d
 N

o
d
e
 V

o
lt
a
g
e
 (

V
)

Node (1,1

Node (1,2)

Node (2,1)

Node (1,3)

Node (3,1)

Node (1,4)

Node (4,1)

Node (2,2)

Node (3,2)

Node (2,3)

Node (3,3)

Node (4,2)

Node (2,4)

Node (3,4)

Node (4,3)

Node (4,4)

Sink Node

Figure 24. The data in Figure 22 is from a vertical slice of this data whenthe x-axis is 1.5 V [7]. This
shows each node’s steady state response to varying levels ofinput current.

38

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
2.1

2.15

2.2

2.25

2.3

2.35

Input pFET V
g

M
ea

su
re

d
N

od
e

V
ol

ta
ge

 (
V

)

Node (1,1
Node (1,2)
Node (1,3)
Node (1,4)
Node (2,1)
Node (2,2)
Node (2,3)
Node (2,4)
Node (3,1)
Node (3,2)
Node (3,3)
Node (3,4)
Node (4,1)
Node (4,2)
Node (4,3)
Node (4,4)

Figure 25.The data in Figure 23b is from a vertical slice of this data when the x-axis is 1.5421 V. This
shows each node’s steady state response to varying levels ofinput current. The sink node is about 0.44
V, but is not displayed [7].

39

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Input pFET V
g

M
ea

su
re

d
N

od
e

V
ol

ta
ge

 (
V

)

Node (1,1
Node (1,2)
Node (1,3)
Node (1,4)
Node (2,1)
Node (2,2)
Node (2,3)
Node (2,4)
Node (3,1)
Node (3,2)
Node (3,3)
Node (3,4)
Node (4,1)
Node (4,2)
Node (4,3)
Node (4,4)

Figure 26.The data in Figure 23c isderived from a vertical slice of this data when the x-axis is 1.5421
V. These are the raw measurements made from the fgOTA buffers at the nodes. Because offsets exist
in the buffers, this data needs to be calibrated to the correct value. The measurements were calibrated
using fgOTA characterization curves shown in Figure 28.

this, current measurements were taken at the input node to the grid to characterize the input

current. The output current was correlated to the input current by measuring the sink node’s

voltage response for various input currents and then deriving the output current from the

diode’s characterized current/voltage curve.

3.3.1.2 Experiment 1 Summary

In the toy problem discussed in this chapter, it is feasible to apply the input at the start

node, and measure all of the outputs to establish the entire plan from start to goal. In

a real system, however, with a much larger grid, the node voltages become too small to

definitively measure all nodes because the current has to spread over a much larger grid

[44]. In this case, it is common to re-apply the input to the robot’s current grid square

when the robot reaches a new node, and then measure the surrounding node voltages. The

drawback to this system is more computation time and power used. A second issue is

40

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Input pFET V
g

fg
O

T
A

 O
ffs

et
 C

or
re

ct
ed

 N
od

e
V

ol
ta

ge
 (

V
)

Node (1,1
Node (1,2)
Node (1,3)
Node (1,4)
Node (2,1)
Node (2,2)
Node (2,3)
Node (2,4)
Node (3,1)
Node (3,2)
Node (3,3)
Node (3,4)
Node (4,1)
Node (4,2)
Node (4,3)
Node (4,4)

Figure 27.The data in Figure 23c is from a vertical slice of this data. These are the calibrated measure-
ments derived from the fgOTA buffer measurements at the nodes.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

1.4

1.6

1.8

2

2.2

2.4

Voltage at Node (i.e. fgOTA input) (V)

V
ol

ta
ge

 a
t f

gO
T

A
 o

ut
pu

t t
er

m
in

al
 (

V
)

Figure 28. These curves show the fgOTA characterization results [7]. Voltages between 1.5 and 2.4 V
were applied to the input to the buffer and the output was measured. Ideally, the output should equal
the input, but that is not the case as the curves are shifted upand down from the ideal. Curves are
fit to these data points and are used to calibrate the fgOTA measurements. The red lines show the
calculation of the calibrated values used to produce the surface plot in Figure 23c.

41

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
0

1

2

3

4
x 10

−7

Input pFET V
g

pF
E

T
 I d

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9

0.35

0.4

0.45

0.5

Input pFET V
gM

ea
su

re
d

D
io

de
 C

on
ne

ct
ed

 n
F

E
T

 V
d

Measuring nFET diode V
d
 when sweeping input pFET V

g

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−12

10
−10

10
−8

10
−6

nFET diode V
d
 set by DAC

nF
E

T
 d

io
de

 I d

nFET Diode IV Curve (DAC−>PA−>nFET drain/gate)

Measured diode I/V Data
Fit Curve
Calculated I from diode connected nFETs V

d
 measurements

Measured input pFET current
Calculated output diode current

Figure 29.Verifying Input Current = Output current: Input current pFET is connected to Node (1,1)
of a 4x4 grid. Node 15 is grounded through a diode connected nFET.

42

(a) Mobile Robots
AmigoBot [125]

(b) Experimental setup (c) Measured Results

Figure 30. Our experimental environment showing a) the robot with coordinate axes and b-c) the im-
plementation of an FPAA generated plan.

reading the node voltages. In this toy problem, we can easilyread out each individual node

voltage, but larger grids would likely need to use another system.

3.3.2 Experiment 2: Integration of FPAA and Robot

We are using an AmigoBot robot to demonstrate the analog planning system, Figure30a.

The FPAA and AmigoBot robot are integrated such that the FPAA acts as a “planning co-

processor” for the robot. A block diagram showing how the analog resistive grid’s planner

fits into the larger robot system is found in Figure31a. The Executor’s function is to

act as an interface between the FPAA and the low-level digital controller. An example

software flow is found in Figure31b. This simple, proof-of-concept flow assumes four

things: a known map, a static environment, the robot’s starting location is known, and the

goal location is known. More complex flows could move the current source to follow the

robot in the grid [48] and can also incorporate re-planning. The task of the Navigation

block in Figure31a is to convert high level plans such as “Move from the window to the

desk at grid (4,3)” in Figure20a to low level commands. A position-stabilizing controller

adjusts the robot’s forward and angular velocity and is usedto drive the robot to points in

the grid [124]. The control equations are based on feedback linearization. The kinematic

equations of motion are shown in (10).

43

Figure 31.a) High level control system block diagram and b) software flow of the Executer designed to
integrate the analog planner and the robot.

ẋ

ẏ

θ̇

λ̇

=

0

0

0

−c (λ − ε)

+

cos(θ) 0

sin(θ) 0

0 1

0 0

v

ω

(10)

This uses a coordinate transformation where aλ offset is chosen from the center of

rotation (see axis overlaid over Figure30a. An overhead camera is used for localization.

Image processing routines segment three dots on the back of the robot and these are used

to locate the robot in (x,y,θ) image space [126].

For this proof-of-concept system, two programming environments were integrated: the

44

Matlab of the FPAA and the C++ code forPlayer. An extensive body of Matlab code has

been developed by the Integrated Computational Electronics(ICE) Lab at Georgia Tech to

program and communicate with the FPAA board. Open sourcePlayer software, [127], is

used for interfacing with the FPAA (via Matlab) and for controlling the AmigoBot robot.

The FPAA Matlab code is called byPlayerusing Matlab engine functions [8].

3.3.2.1 Experimental Results

This section presents our initial results of integrating a robot with an AVLSI co-processor.

The experimental setup is shown in Figure30b. The robot is shown in the background,

the FPAA is shown on the left corner of the desk, and the overhead camera is above (not

shown). All are tethered to the laptop runningPlayer via USB cables. Figure30c shows

our initial experimental results from a robot in a four by four grid world. The AVLSI FPAA

hardware has been integrated intoPlayeras a co-planner for the AmigoBot robot. This is

an image taken from the overhead camera used for localization. The results are for an

experiment in a 4x4 office grid world. The cubicle partitions are marked in black tape on

the floor. The overlaid red dots are the recorded trajectory of the robot moving from node

(1,1) to node (4,3) The overlaid blue circles mark the grid nodes. At each node traversed

by the robot, the FPAA was consulted for the next node.

Although this is a trivial planning problem, it demonstrates two major goals. First, our

system can make complete plans using floating-gate resistive grids (based on our limited

experiments). Second, the supporting FPAA hardware and software are at a level of sophis-

tication where they can be reliably integrated into robot platforms. This system has three

modes of operation. These three methods provide useful options when debugging various

parts of the system. A brief discussion of each of the modes isnow presented.

Real Robot, Real FPAA Results:The FPAA and an AmigoBot robot were integrated

together and localization was performed using an overhead camera (640x480 pixel resolu-

tion). The robot successfully navigated its path on the flooras directed by the FPAA. Figure

45

30c shows in red the path the robot made from its start to its goal. At each node (repre-

sented by a blue circle),Player queried the FPAA co-processor to help decide whether to

go straight, or turn left or right at each node in order to reach the goal.

Real FPAA, Simulated Robot Results:This is a Hardware in the Loop (HWIL) envi-

ronment where the actual FPAA hardware is being called byPlayerand is interacting with

a virtual robot in a three dimensional robot simulator with dynamics. This environment is

calledGazeboand interacts withPlayerusing the same control code. Ideally, one can take

the samePlayer control code to control a virtual robot or the real thing. Figure33 shows

an image from aGazebosimulation. Virtually identical software is used for this HWIL

simulation as in the section regardingReal Robot, Real FPAA Results.

Simulated FPAA, Simulated Results: Finally, it is possible to simulate the FPAA

results by using Matlab to solve for node voltage values using, for example, Kirchhoff’s

laws.

3.3.2.2 Analysis

This path planning problem can be formulated as a tree searchproblem. These problems

are typically evaluated with four metrics: Completeness, Optimality, Time Complexity, and

Space Complexity [1]. Time and Space Complexity are addressed further in the following

sections. Time complexity is typically measured by the number of nodes generated [1].

Space complexity is measured in terms of the maximum number of nodes stored in memory

[1].

3.3.2.2.1 Time Complexity Time complexity is not as simple as number of nodes

generated with the FPAA. There are three items to consider when calculating the total time

cost of the FPAA planner: FPAA grid programming time, solution computation time, and

time to read the solution from the grid. Each of these are addressed below.

3.3.2.2.1.1 FPAA Programming Time MeasurementsProgramming a grid map onto

the FPAA is done in two main phases. First, the FPAA is erased and prepared for program-

ming. Second, the new map is programmed onto the FPAA. With our current software,

46

Figure 32.a) Measured FPAA hardware results for a 4x4 grid like the configuration of the robot start,
goal, and obstacles in Figure 20c. b) A table of the measured voltages with path identified by the pink
squares. c) Measured node voltage settling times of the example office 4x4 resistor grid as a function of
grid location.

it takes approximately 35 seconds to erase and prepare the FPAA for programming. This

amount of time is independent of the size of map that will be programmed. The time needed

to program the map is a function of two parameters: size of mapand type of paths which

connect the nodes on the map. There are three types of paths that we will consider. Type 1:

impassable paths, Type 2: completely passable paths, and Type 3: a path which is passable,

but with some degree of difficulty. This may be due to terrain such as sand, an incline, etc.

The programming times for each of these paths is summarized in Table2. As the state of

the art in floating-gate programming advances, these times are expected to decrease.

In the 4x4 grid example, 38 floating-gate switches were used in the circuit. Of these,

22 switches wereoverhead. That is, they were needed to program the grid, but were not

pathelements. This overhead number changes according to grid size. The switches were

generated automatically usingGRASPERsoftware [31]. In this example, this overhead

represents about 58% of the total number of switches. Due to obstacles, the number of free

paths was only about 67% of the total paths possible in a 4x4 grid. If we consider N as

the number of nodes on the side of an NxN square grid, the number of possible paths is

O(2N2).

3.3.2.2.1.2 Solution computation timeThe computation time for the FPAA is based

on the time it takes for all of the grid’s node voltages to settle to steady state in response

to a current step input. For the 4x4 grid example, the computation time of this grid based

47

Figure 33. This is an image of a simulated office environment used in a FPAA Hardware in the Loop
(HWIL) test.

Table 2.Grid Programming Times according to path type
Type 1 Type 2 Type 3

Measured Erase and Initialize grid (sec) 35 35 35
Measured Program time per path (sec) 0 0.0486 4.4332

Expected Program times (sec) [31] 0 0.001 .050

FPAA planner is approximately 4.5ms. Figure35 shows the transient response of each of

the sixteen nodes in the grid. The limiting factor in this case is Node 15 which took about

4.5ms to settle. Figure32a-b shows node voltage measurements from a 4x4 grid world, (c)

shows the node settling times for each of the nodes. A step input voltage was placed on the

pFETs gate at node (1,1) and this implemented a step input current to represent therobot’s

location at this node. A current sink was implemented at node(4,3) to represent the goal.

The last node to reach steady state took 4.5ms.

3.3.2.2.1.3 Solution access timeIn the FPAA, once the nodes have settled, the so-

lution is found by readingd nodes, whered is the depth of the shallowest goal node. We

could say then, that the FPAA has Time complexity ofO(d). For comparison, Breadth-

First-Search (BFS) has Time Complexity ofO
(

bd+1
)

, where the branching factorb = 4,

andd is the depth of the shallowest solution. Figure34a compares Analog-to-Digital Time

Complexity as a function of shallowest solution.

3.3.2.2.2 Space Complexity To calculate a final path solution the FPAA planning

system needs to maintain an adjacency list. This lists, for each node, all nodes that are one

48

Figure 34. a) Comparing the Time complexity of the FPAA to BFS. b) Comparing worst case Space
complexities of the FPAA to BFS. c) Comparing Computation Time of the FPAA to an estimate for
BFS.

Table 3.Rasp 2.8: Comparing FPAA to BFS
Criterion FPAA Breadth First

Complete? Yes (based on limited experiment) Yes
Time O(d) O

(

bd+1
)

Space O (4N (N − 1) + 1) O
(

bd+1
)

step away through Type 2 or Type 3 paths. This list can have theform [source node , list

of adjacent nodes]. For example, in the 4x4 grid of Figure20, the robot can reach nodes

(1,1), (2,2), and (3,1) from node (2,1). The corresponding adjacency list would be [(2,1),

(1,1) (2,2) (3,1)]. This information is contained in MATLABand combined with the node

voltages read from the FPAA to choose a path. Assuming no obstacles for maximum space

complexity, the worst case space complexity of the FPAA isO (4N (N − 1) + 1), whereN

is the number of nodes on a side of a square map, i.e. NxN map. This is calculated using

(11) whereNx terms are numbers i.e.Nmiddle−nodesis the number of middle nodes, andA are

numbers of adjacencies. BFS worst case Space Complexity isO
(

bd+1
)

, where b= 4 and d

is the depth of the DEEPEST solution.

S pacecomplexityFPAA = (Ncorners∗ Acorner)

+

Nnon−corner−nodes−on−grid−edge−side

∗Anon−corner−nodes−on−grid−edge−side∗ 4

+ (Nmiddlenodes∗ Amiddlenodes) + 1

(11)

Table3 summarizes the Time and Space Complexity comparisons between the FPAA

49

Figure 35.Measured transient responses for node voltages.

and Breadth-First-Search (BFS) [1].

3.3.2.2.3 Calculation Time Estimate Ideally, one would like to compare the ac-

tual solution times of the digital and analog solutions and not just operation numbers like

Time Complexity. As an estimate, assume that the BFS algorithmis being executed on an

a processor such as the ATMEL ARM7TDMI RISC processor operating at 55MHz max

clock speed. Further assume that the solution is at the deepest solution of the grid. If one

multiplies the BFS Time Complexity number by the inverse of theARM7 clock then we

can have a crude estimate of the digital computation time. Toestimate the computation

time of the FPAA, we extract a curve from the diagonal delay times of Figure32c. Since

BFS is in terms ofb andd, and the FPAA settling time estimate is in terms ofN, we use

N = (d/2)+1 as the transformation. A comparison plot is shown in Figure46c. Estimate of

BFS Computation Time for 55 MHz processor:O
(

bd+1
)

∗
(

1
55Mhz

)

where b= 4. Estimated

FPAA Computation Time is based on extrapolation of the diagonals of the 4x4 delay mea-

surement data in Figure32c. Based on this graph, the prediction is that an FPAA solution

may be faster than digital for solution depths greater than 8. This plot estimates that the

FPAA will be quicker at solving plans where the solution depth is greater than 8. This

corresponds to the deepest solution of a 5x5 grid.

50

a) RASP2.8 path planner b) RASP2.9v path planner

Figure 36.This figure compares the “rat’s nest” of wires and multiplexer ICs used to measure the data
with the RASP 2.8a IC path planning system vs. the simplified system for the RASP 2.9v IC.

3.3.2.3 Summary

Figure34a and b have shown that the Time Complexity and Space Complexityof the FPAA

are orders of magnitude lower than that of BFS. Figure34c also describes the solution

depth at which FPAAs may find a solution quicker than BFS. Finally, the FPAA embedded

planning system was successfully integrated with a real robot. One of the difficult parts

of using the RASP 2.8a for path planning was accessing and measuring each of the nodes.

Figure36a shows the “rat’s nest” of wires and multiplexer ICs used to measure the data.

In the next section, the RASP 2.9v IC is used, and features of this IC greatly simplify the

readout of the node voltages.

3.4 Path Finding on the RASP 2.9v FPAA

This section presents the results of path planning using theRASP 2.9v FPAA IC. The RASP

2.9V has a special feature that can be used to access any pointin the routing fabric. This

is accomplished using horizontal and vertical registers that are connected to the FPAA’s

routing fabric. These registers are addressed and controlled by the ARM core micropro-

cessor and a Matlab interface. The Matlab interface could beremoved for a FPAA system

connected to an autonomous agent. This special feature allows one to avoid such a “rat’s

51

Figure 37. This figure illustrates how a 4x4 grid is implemented as a bipartite graph in the FPAA’s
routing fabric.

nest” of wires as depicted in the RASP 2.8 IC system in Figure36a in favor of Figure36b.

The grid structure for a path planning problem such as Figure20 is implemented on

the 2.9v FPAA using a bipartite graph configuration. With thecurrent routing algorithm,

if there areN total nodes, one needsN/2 horizontal rows andN/2 vertical columns to im-

plement this structure in the FPAA’s routing fabric. Figure37 illustrates how a 4x4 graph

(N=16) is implemented on the FPAA routing fabric. The floating-gate transistors, when

programmed to conduct, will make a connection between the horizontal and vertical lines.

If a transistor is turned off, then this represents an obstacle.

A non-floating-gate pFET transistor is used to input currentinto the grid. This nomi-

nally represents where the robot is located. A diode configured nFET transistor is used as

a current sink in the grid. This is placed at the goal node. Next, the algorithm commences

with measuring the voltages of the neighbors of the input current location. The neighbor

with the lowest voltage is the place where the robot should bemoved. A flow chart of

the algorithm is found in Figure38. Performance was increased when the input pFET was

actually moved only every five iterations on the path planner[48]. To calculate a final path

solution the FPAA planning system needs to maintain an adjacency list to define neighbor

52

Figure 38.The basics of the FPAA Path planner algorithm flow.

53

Figure 39. This figure shows how the input, output, and buffers are implemented in the RASP 2.9V
FPAA IC. a) The input current to the grid is supplied by a pFET t ransistor. b) The current sink
(representing the goal) is implemented by a diode connectednFET transistor. c) A buffer connected
Operational Transconductance Amplifier (OTA) is used as part of the node voltage sensing circuitry.
Multiplexers are used to place the pFET, diode connected nFETand OTA buffer on any of the nodes.

nodes. This lists, for each node, all nodes that are one step away through passable paths.

This list can have the form[source node, list of adjacent nodes]. For example, in the 4x4

grid of Figure20, the robot can reach nodes (1,1), (2,2), and (3,1) from node (2,1). The

corresponding adjacency list would be [(2,1), (1,1) (2,2) (3,1)]. This information is com-

bined with the node voltages read from the FPAA to choose a path. The present system

implementation uses Matlab for this operation, but the operation can be moved to the mi-

croprocessor in the future. A buffer configured Operational Transconductance Amplifier

(OTA) is used in the voltage sensing circuitry. The buffer helps one to measure the node

voltage with the Analog-to-Digital Converter (ADC) without affecting the grid circuit. Fig-

ure39 illustrates how the registers on the RASP 2.9v IC allow one to place the input pFET,

output nFET, and OTA at specific locations in the grid. An image of how these electronic

components are routed onto a RASP 2.9 IC is shown in Figure40.

Concerning grid scalability, in this bipartite implementation of the grid on the FPAA,

the grid size is limited by the number of global and horizontal lines in the FPAA routing

fabric. The RASP 2.9v has the capability for 100 global rows and 150 global columns.

Therefore, with the RASP 2.9v and this particular bipartite algorithm, one is limited to a

grid with two hundred nodes. The limiting factor is the 100 global rows. The maximum

54

Figure 40. This shows how the input current pFET, output current (sink) nFET, path switches, and
OTA buffer are routed onto a RASP 2.9V IC for a completely connected 14x14 grid. This illustration
can be compared to the IC die photo in Figure 8b.

square grid is then 14x14 (N=196). Future IC designs could increase the number of global

horizontal and vertical lines to allow for larger grids and also include microprocessors in-

tegrated with floating-gate routing fabric. With this integrated microcontroller many other

control functions could be expected to be integrated together as an important co-design

problem.

3.4.1 Software

Two new software tools were developed to support this work. These are 1) a tool to convert

the obstacle map into a transistor map on the FPAA and 2) a map/obstacle visualization and

modification program called the Path RAT. The tool which converts the obstacle map into a

transistor map on the RASP 2.9v FPAA uses an algorithm to arrange the map and obstacles

into a bipartite graph. Abipartite graph“consists of two distinct kinds of nodes, and all

links go between nodes of opposite type [128].” Figure 37a shows one type of node as red

55

Figure 41. a) Three dimensional grid space. b) Mapping of Nodes 1-12 of a onto a RASP 2.9V FPAA
using a bipartite grid.

circles and the second type of node as blue squares. The figureillustrates that all links in

this two dimensional grid configuration go between nodes of the opposite type. Figure37b

illustrates how the routing algorithm uses global horizontal FPAA rows for nodes of one

type and global vertical FPAA rows for nodes of the second type. In theory, the bipartite

grid algorithm is amenable to three dimensions. Figure41 shows how a simple 3D grid

is mapped onto the RASP 2.9v IC. The 3D planner may also be usefulfor cases such as a

non-holonomic robot [129].

The second new tool developed for FPAA path planning is the Path Routing Analysis

Tool or,Path RAT, in Figure42. This was developed to allow the user to visually construct

a map scenario of obstacles and free paths [7].

3.4.2 FPAA Hardware Results and Analysis

The FPAA hardware was used to evaluate twenty-four different experimental cases and was

95.8% correct. The cases are generated randomly as follows.The number of obstacles in

each case is a pseudorandom integer value drawn from a discrete uniform distribution in

the range from 1 to 90. The location of the obstacles in each case is randomly placed using

a pseudorandom integer value drawn from a discrete uniform distribution in the range from

56

Figure 42. This MATLAB GUI allows users to visually modify grid paths by p ointing and clicking
on lines. Each red line represents a floating-gate connection between nodes (red=obstacle; clicking
between nodes makes a red line appear OR disappear) [7].

Figure 43.Statistics of the Monte Carlo scenarios used in the experiments. a) Performance as a function
of the total number of obstacles. b) Distribution of obstacles in the scenarios. c) Distribution of optimal
solution path length.

57

1 to the maximum number of edges in the grid,((nR-1)*nC)+ ((nC-1)*nR), wherenRis the

number of rows in the grid andnC is the number of columns in the grid. The node locations

of the starting node and goal nodes are each drawn from a discrete uniform distribution in

the range from 1 to the maximum number of nodes in the grid (196for a 14x14 grid). The

statistics of the path and obstacle scenarios are found in Figure43. We compare the FPAA

hardware results to a common search strategy called Breadth-First-Search (BFS), where

the BFS algorithm is implemented on a computer processor. BFS is auninformed search

method. This type of strategy can only generate successor nodes and evaluate if a node is

the goal. This is in contrast to aninformedstrategy such as A* (pronounced A-star), where

heuristics are used to generate successor nodes that are more promising than others. BFS is

complete (assuming a finite depth of the solution) and is optimal for the specific case when

all paths have the same cost [1].

This path planning problem can be formulated as a tree searchproblem. These problems

are typically evaluated with four metrics: Time Complexity,Space Complexity, Complete-

ness, and Optimality, [1]. Time Complexity is typically measured by the number of nodes

generated [1]. Space Complexity is measured in terms of the maximum numberof nodes

stored in memory [1]. Completeness ensures that a solution is found if it exists and also

must ensure that that if a solution does not exist then the algorithm terminates and says so.

Optimality ensures that thebestsolution is found if it exists.

3.4.2.1 Time Complexity

Time Complexity is typically measured by the number of nodes generated [1]. Time Com-

plexity is not as simple as number of nodes generated with theFPAA. There are three items

to consider when calculating the total time cost of the FPAA planner: FPAA grid program-

ming time, solution computation time, and time to read the solution from the grid. Each of

these are addressed below.

58

Table 4.Grid Programming Times according to path type
Type 1 Type 2 Type 3

Measured Erase and Initialize grid (sec)5.52 5.52 5.52
Measured Program time per path (sec) 0 0.059 3.96

Expected Program times (sec) [31] 0 0.001 .050

3.4.2.1.1 FPAA Programming Time Measurements Programming a grid map onto

the FPAA is done in two main phases: First, the FPAA is erased and prepared for program-

ming. Second, the new map is programmed onto the FPAA. With our current software, it

takes approximately 5.52 seconds to erase and prepare the FPAA for programming. This

amount of time is independent of the size of map that will be programmed. The time needed

to program the map is a function of two parameters: size of mapand type of paths which

connect the nodes on the map. There are three types of paths that we will consider. Type 1:

completely impassable paths, Type 2: completely passable paths, and Type 3: a path which

is passable, but with some degree of difficulty. This may be due to terrain such as sand, an

incline, etc. The programming times for each of these paths is summarized in Table4. As

an example, if one has a 3x3 map with all completely passable paths, the total programming

time= 5.52+ (12*0.059) seconds. The first number is the erasing and preparation phase (a

constant), and the second number represents 12 total edges between nodes which each take

0.059 seconds to program. As the state of the art in floating-gate programming advances,

these times are expected to decrease.

In addition to the path switches, some extra routing switches are also needed when using

the routing algorithm and RASP 2.9v IC. Most of these extra switches are used to create

global lines out of local lines. In theory, this overhead number could change according

to grid size. For simplicity, however, the current routing algorithm activates all overhead

switches in the global columns that are used.

3.4.2.1.2 Solution computation time The computation time for the FPAA is based

on the time it takes for all of the grid’s node voltages to settle to steady state in response to

a current step input. Figure44shows measured data showing the voltage gradients for two

59

Figure 44. a) Measured Steady State FPAA hardware results for a 14x14 grid with no obstacles. b)
Measured FPAA hardware results for a 14x14 grid with obstacles. Input current at 141, Sink node at
126.

14x14 grids.

The computation time for the grid based FPAA planner is approximately 0.245ms. Fig-

ure45b shows the transient response for four nodes along the diagonal of a fully connected

14x14 grid. As shown in Figure45a, a step input voltage was placed on the pFETs gate

at node (1,1) and this implemented a step input current to represent therobot’s location at

this node. A current sink was implemented at node (14,14) to represent the goal. On grids

of this size, the sensing capacitance is the limiting factoron the transient convergence. The

transient settling time as a function of grid size was characterized in Figure45c. The trend

is that smaller grids exhibited a slower settling time.

60

Figure 45.Measured transient responses for node voltages. a) Experiment setup: a step input voltage
was asserted on the gate terminal of the input current pFET atnode A (1,1). This implemented a step
input current to represent the robot’s location at this node. A current sink was implemented at node
D (14,14) to represent the goal. b) Settling time as a function of position on the 14x14 grid. c) Settling
time for the input node as a function of grid size.

Figure 46.a) Comparing the Time Complexity of the FPAA to BFS. b) Comparing space complexities
of the FPAA to BFS. c) Comparing Computation Time of the FPAA to an estimate for BFS.

3.4.2.1.3 Solution access timeIn the FPAA, once the nodes have settled, the so-

lution is found by readingb*d nodes, whered is the depth of the goal node, andb is the

branching factor. The branching factor is 4 for a two dimensional grid where an agent can

move up, down, left and right. Sinceb is a constant, the asymptotic complexity of finding

a solution isO(d) [130]. For comparison, BFS has Time Complexity ofO
(

bd+1
)

, where

the branching factorb = 4, andd is the depth of the solution [1]. Figure 46a compares

Analog-to-Digital Time Complexity as a function of solutiondepth.

3.4.2.2 Space Complexity

Space Complexity is measured in terms of the maximum number ofnodes stored in mem-

ory [1]. Unlike BFS which must hold in memory every node that is generated, the FPAA

61

Table 5.RASP29V: Comparing FPAA to BFS (whereb is the branching factor, b=4 for Figure 46), and
d is the depth of the goal node [1].

Criterion FPAA Breadth First
Complete? No Yes

Time O(d) O
(

bd+1
)

Space O (d) O
(

bd+1
)

algorithm only needs to hold the path in memory. Therefore, the Space Complexity of the

FPAA is O (d). BFS worst case Space Complexity isO
(

bd+1
)

, where b= 4 and d is the

depth of the solution [1]. Figure46b compares Analog-to-Digital Space Complexity as a

function of solution depth. Table5 summarizes the Time and Space Complexity compar-

isons between the FPAA and BFS [1].

3.4.2.3 Completeness

In 1985, Khatib [74] was one of the first to combine the ideas of real time path planning and

potential fields. One of the drawbacks to this method is that it is not completebecause local

minima in the search space may lead to solutions which do not end in the goal. One of the

earliest references to using Laplace’s equation for path planning is Connolly’s work [118].

This method eliminates the local minima problem of potential fields. Harmonic functions

are solutions to Laplace’s equations. Harmonic potential fields are explored to eliminate

local minima of potential fields, [131, 132, 119]. Tarassenko, et. al. build upon Con-

nolly’s work, [118, 48]. First they propose using Neumann boundary conditions (instead of

Dirichlet) in an effort to overcome problems associated with the measurements becoming

too small to distinguish the best path (bad dynamic range). “Under certain assumptions

regarding the boundary conditions, a path planning scheme using harmonic functions is

complete up to the approximation of the environment [119].” The FPAA based grid pro-

grammer is statistically complete to the extent that our empirical data demonstrates it will

find a solution if one exists approximately 95.8% of the time.Also, the FPAA will indicate

that a solution is not possible if one does not exist. If a solution does not exist, then there

should be very little current draw out of the input pFET. Therefore, one can set a current

62

Start

Goal

Resistance = 9

Length = 15

Resistance = 13

Length = 13

I1

I2

V1 V2

V3

I1>I2 therefore V2 < V3.

Upper Path

to Goal

Lower Path

to Goal

Figure 47.This figure illustrates that using a node’s neighbor node voltages to choose the path does not
always result in an optimal solution.

Figure 48. Measured results from FPAA compared to BFS. Red line edges represent obstacles. It is
acceptable in this graph to passthrough two parallel connected edges, but it is not acceptable to move
along the red connected edges: S= Start and G = Goal. a) Optimal FPAA solution. b) Sub-optimal
FPAA solution. c) Incorrect FPAA solution.

threshold, and if this is not exceeded then a solution does not exist.

3.4.2.4 Optimality

The analog planner is not guaranteed to find the optimum solution. Fundamentally, alter-

nate parallel paths can lead the planner to a non-optimal solution. Figure47 describes a

situation where the planner will result in a sub-optimal solution. In this example, there are

two branching paths at the start. If one assumes that each of the edges between nodes has

the same resistance (say 1 ohm), then one may calculate two equivalent resistances between

the start and the goal. The upper path’s equivalent resistance is 9 ohms. The lower path’s

63

equivalent resistance is 13 ohms. Ohms law dictates then that I1 is larger thanI2. If this is

the case thenV2 is lower thanV3. Since the algorithm follows the path of greatest current

(i.e. largest voltage drop), the selected path would proceed along the upper path to the goal.

This is a sub-optimal solution because the shortest path from Start to Goal along the upper

path is 15 edges. This is a longer path when compared with the 13 edge length path along

the lower path. In the experiments run, however, the FPAA solution was optimal in 20 of

the 24 cases (83.3%). Figure48b shows one of the sub-optimal cases. Finite measurement

capability of the measurement circuitry may also lead to sub-optimal solutions.

3.4.2.5 Calculation Time Estimate

Ideally, one would like to compare the actual solution timesof the digital and analog so-

lutions and not just operation numbers like Time Complexity.As an estimate, assume that

the BFS algorithm is being executed on an a processor such as the ATMEL ARM7TDMI

RISC processor operating at 55MHz max clock speed. Further assume that the solution is

at the deepest solution of the grid. If one multiplies the BFS Time Complexity number by

the inverse of the ARM7 clock then we can have a crude estimate of the digital computation

time: O
(

bd+1
)

∗
(

1
55Mhz

)

where b= 4. To estimate the computation time of the FPAA, we

use the worst case transient settling time from Figure45c. A comparison plot is shown in

Figure46c. This plot estimates that the FPAA will be quicker at solving plans where the

solution depth is greater than 6. This corresponds to the deepest solution of a 4x4 grid.

3.4.2.6 Power Costs

The power used by this system can be split into three categories: grid (map) programming

power, solution finding power, and solution extraction power. We claim that the power used

by the FPAA to arrive at the solution is much less that that of adigital solution. We can not

make appropriate claims however of the grid programming power and solution extraction

power, because we have not optimized our system for these problems. The embedded

system which interfaces with Matlab uses current on the order of 400mA.

64

These FPAA planning results can be compared and contrasted with an FPGA imple-

mentation of the Breadth-First-Search algorithm in [133]. According to their experiments,

mostly all of the measured solution times for the hardware were at least two orders of mag-

nitude faster than their software solutions. (The processor speed for the software solutions

is not clear, however). A 10x10 grid solution in FPGA hardware took about 2.35us. A

30x30 grid in FPGA hardware took 28.2us. This is compared to their 10ms software so-

lution. There was a tradeoff, however, with respect to grid size. For smaller grids on the

order of 30x30, the software implementation was preferablebecause the time (although

still longer than the hardware implementation) is small, and the implementation is easier in

software than in hardware.

3.4.3 Summary

In this chapter, we continued to build upon the idea that Laplace’s equation and analog cir-

cuits can be used for path planning and are adding to the existing research which combines

analog VLSI and robotics [134]. This work is new for a few of reasons: First, it provides

an extensive amount of measured data representing different map scenarios from a fabri-

cated AVLSI IC. Second, our analog circuit implementation isdifferent from the existing

literature because it is implemented on a reconfigurable analog IC that uses floating-gate

transistors which provide, among other things, a non-volatile way to store the environment

map. Finally, this work has started to quantify the performance gain for using an analog

solution instead of a digital one in terms of Time and Space Complexity.

65

CHAPTER 4

NEURON PATH PLANNING

Neuromorphic engineering is an interdisciplinary field which combines concepts from

fields such as biology, neuroscience, computer science and engineering [135] [136] [137]

[121] [138]. The goal of this field is to design systems that are based on the principles

of biological nervous systems. Path planning is a critical task for robots, autonomous ve-

hicles, animated characters, etc. Figure49 is a cartoon showing the ultimate goal of the

problem being addressed in this chapter, namely how to use a neuromorphic approach and

neuron array integrated circuit (IC) [10] to plan a path for a Micro Aerial Vehicle (MAV)

(or similar power constrained ground or sea robot) through an environment in an effort to

conserve its limited battery resources. The IC used for the results in this work, Figure8c,

uses biologically realistic transistor based models whichoperate as neurons operate, how-

ever not necessarily how the brain does path planning. The IChas 100 Neurons and 30,000

synapses. It was constructed in a 0.35 micron process and thedie size is 5x5 mm. Floating-

gate transistors are used as the synapse elements. The floating-gate synapse transistors are

used to create the programmable routing. A synaptic weight is stored by an adjustable

charge on the gate of the floating-gate synapse transistor. Multiple synapses are connected

to a dendrite by adjusting the weights on the synapse transistors which are connected in

parallel to the dendrite wires. Unused synapses are not connected internally to the path

planning circuit. The floating-gates for these transistorsare not set to conduct. The system

uses Address Event Representation (AER) to record spike data from the neurons. Neuron

Elements include: soma, dendrite, synapses, and axons. Path planning can be summarized

with the following three tasks given that states, actions, an initial state, and a goal state are

provided. The robot should:

1. Find a sequence of actions that take the robot from its Initial state to its Goal state

2. Find actions that take the robot fromanystate to the Goal state

66

Figure 49.The goal of this research: to use a reconfigurable neuron Array IC to plan a path for small
robot from point A to point Z through an environment. a) Maze environment which is discretized into
grid points (shown here as A,B,C,D,...). b) A simplified gridrepresentation of the maze in a. Note that
some edge connections are not active between nodes (marked by two hash marks). This represents
a wall. c) This work uses bidirectional connected neurons toimplement the edges between nodes.
As in b, some axon-dendrite connections are not made (markedby two hash marks) for the neurons
representing nodes separated by a wall.

67

3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

In a comprehensive survey of autonomous rotorcraft unmanned aircraft systems, Kendoul

describes path planning methods and algorithms which represent the “most used and prac-

tical methods, with a particular focus on works with experimental results [139].” Accord-

ing to this survey, Navigation strategies used in RotorcraftUnmanned Aircraft Systems

(RUAS) include, among others, Road Maps (RM) and Potential Fields (PF) [139].

In RM methods, graphs are constructed using nodes to represent robot positions and

edges are used to represent paths between positions. A search algorithm is then often used

to plan a path among the nodes [139]. Among other groupings, search algorithms used

in path planning can be grouped intoUninformedstrategies andInformedstrategies. In-

formed strategies differ from Uninformed strategies in that they have a method to guide the

search to make it more efficient. Breadth-First-Search (BFS) and Dijkstra’s algorithmare

examples of Uninformed search strategies. BFS is optimal when path costs are equal, Di-

jkstra’s is optimal with non-equal path costs [1]. BFS has also been calledbrushfire[140]

, or grassfire[21] , since it resembles the way fire progresses in a dry grassland [140] .

Technically expressed, the grassfire transform “is simply breadth-first search implemented

in the constrained space of an adjacency array [21].” An early grassfire algorithm is called

NF1 [141]. NF1 is described as a wavefront expansion algorithm whichcalculates a navi-

gation function for each point in the workspace [141]. Although this results in a path which

is shortest from the robot to the goal, a problem with the NF1 algorithm is that it creates

paths that come close to obstacles [141]. Further, the wavefront propagation algorithm can

also be considered a specialized version of Dijkstras algorithm that optimizes the number

of stages to reach the goal [142]. Informed strategies include best-first search strategies

like Greedy best-first search and A* (pronounced A-star) [1]. These methods use a heuris-

tic to guide the search. A* is an extension of Dijkstras algorithm which tries to reduce the

number of explored states by using a heuristic [142]. An example of a heuristic in a two

68

dimensional grid map representation is the straight line distance between a point and the

goal.

In PF methods, the geometry of the workspace and obstacles isoften first discretized

into grids in what is called anApproximate cell decomposition. The obstacle grids are

programmed to produce a repulsive force and the goal grid represents an attractive force.

A force vector is calculated for each free space point in the workspace. This force vector is

a sum of the attractive and repulsive forces acting on it. Onemay follow the force vectors

at each point to find the path from each point in the grid to the goal. A problem with this

method is local minima. In practice, one RUAS planning system uses Laplace’s equation

with binary occupancy grid for a potential field approach. Their numerical solution is found

using a 1.8GHz Pentium M with 2MB L2 cache. A C implementationof their procedure

had a constant runtime of 0.07s for a three dimensional grid (64x64x32) and 0.6s for a

(128x128x64) grid [143, 144].

In some sense, wavefront or grassfire planners have characteristics of both RM and

PM methods. FPGAs have been used to implement planners basedon wavefront or stencil

based gradient calculations [116, 12]. The authors describe processing 33 maps with a

resolution of 1024x1024 per second on a midsize Virtex-5 FPGA [12]. Analog VLSI has

previously been used for path planning, however much of thiswork involves Laplacian

based potential field approaches and not analog VLSIneuronbased approaches like in this

chapter [44, 53, 7, 2, 72].

A motivating reason for using the neuron array IC for path planning is for better Time

Complexity (one of four main performance metrics used to compare path planners) and the

potential for lower power processing capabilities when compared to digital implementa-

tions. The Time Complexity advantage is driven by the Neuron IC’s capability to propa-

gate signals in parallel. This may be a significant advantagefor MAVs, ocean gliders or

other robot applications where the power budget for Guidance, Navigation, and Control

69

Figure 50. The path planning block is one subsystem needed for an autonomous vehicle operating in
an unknown environment. There are three broad categories ofsubsystems on the vehicle: Sensing,
Thinking, and Acting. The neuron IC and planning block fits into the Thinking category [8, 9].

is limited [102, 29]. A key feature of the neuron processor is that it performs the wave-

front expansion in parallel. Early discussions for parallelizing the wavefront computation

involved having a virtual processor for each point in the grid [13]. Although this “brute

force” parallelism could waste power, it was suggested thatthis was one of the only ways

for parallelism [13]. In our neuron implementation, the entire numerical potential field

does not need to be calculated in order to find the solution. Once the wavefront reaches the

start, the computation is done. One may use best-first-search for finding the path through

the wavefront produced gradient. In best-first search, the node “selected for expansion is

based on an evaluation function, f(n). Traditionally, the node with the lowest evaluation is

selected for expansion, because the evaluation measures distance to the goal [1].” In our

case, the evaluation function is extremely accurate and leads us to expand the best node.

The heuristic function in our case is the time it took for the wavefront to travel to each of a

nodes neighbors.

70

Figure 51.This figure illustrates the basics of the wavefront planner.a) Scene where the robot is trying
to reach the goal while avoiding obstacles and traveling in the shortest path. b) The grid is discretized
and a wavefront is propagated away from the goal. The number represents a time stamp of when the
wavefront reached the square. c) The shortest wavefront reaches the goal in 9 moves.

to
Synapse

on neighbor
neuron

a) b) c)

Spike Time

N
eu

ro
n

Neuron #1 Neuron #2

1

2

1 2

to
Synapse

on neighbor
neuron

Simplified Neuron
Representation

Synapse

Synapse

Figure 52. This figure shows how the neurons of a fully connected grid pass spikes. a) A signal is
originated in neuron 1 and this causes neuron 2 to fire at a later time. Dots in the raster plot show
when the spikes occur. b) The outer large circle represents the map grid location and is implemented
using a neuron with soma, dendrite, axon, and synapse components. The dendrites in these neurons are
represented by wires. The synapse strengths are set with floating-gate transistors. c) This represents
a fully connected grid. The number in the neurons show how thewavefront of a signal initiated in the
upper left of the grid propagates. The numbers represent increasing time stamps of the propagating
wavefront. The 1 represents time 1, the 2 in the neurons show which neurons fire at time 2, etc.

71

The path planning block is one of many subsystems needed for an autonomous vehicle

operating in an unknown environment [145, 146, 9]. There are three broad categories of

subsystems on the vehicle: Sensing, Thinking, and Acting. The neuron IC and planning

block fits into theThinkingcategory, Figure50 [8, 9]. Information on implementing the

other subsystems is beyond the scope of this chapter. This work assumes that the other

subsystems are able to sense and map the environment and represent the map in an NxM

grid (internal world model). The map representation is programmed onto the neuron array

IC using an embedded system described in Chapter2.

In summary, analog path planning is explored because it represents a potential decrease

in Time Complexity and a potential power savings. This neuronarray path planning IC

is useful because this reconfigurable AVLSI IC provides circuit tune-ability and flexibility

that custom ASICs often do not provide. The general idea of this planner is a grassfire

[141, 21, 147] or wavefront planner [148, 149]. A spike based neuron inspired wavefront

planner and simulation results were presented in [45]. This work in this chapter is new

because it provides successful path planning results and analysis of a wavefront planner

implemented on biologically inspired AVLSI hardware.

The wavefront based setup of the neuron analog planner is presented in Section4.1.

Hardware results and analysis are presented in Section4.2, and conclusions are made in

Section4.3.

4.1 Wavefront Neuron Analog Planner Setup

Our neuron IC implements a standard wavefront planner usingbiologically realistic neu-

rons [11]. An early paper presenting a wavefront planner is [150]. In the standard wavefront

planner algorithm, the goal node is given a value of1, and its neighbors which are not ob-

stacles are given the value of2, and all the non-obstacle neighbors of2 are given the value

of 3, etc. This is continued until the start point is reached. To find the path, the algorithm

starts at the start point, and takes steps in the direction ofdecreasing node value, until the

72

goal is reached [151, 141]. This process is illustrated in Figure51.

Neurons which are connected together in the IC pass spikes totheir neighbors. Like the

standard wavefront planner, this neuron IC initiates a waveat the goal neuron and this in

turn excites its non-obstacle neighbors. Time stamps are recorded at the point when each

neuron is excited. The time stamps when each neuron fires for the first time are used to

back out a solution.

Figure52 shows how the neurons of a fully connected grid pass spikes. In Figure52a

a signal is originated in neuron 1 and this causes neuron 2 to fire at a latter time. Dots in

the raster plot show when the spikes occur. A more detailed view of each of the neurons in

our model is shown in Figure52b. The dendrites in these neurons are represented by wires.

Figure52c shows a fully connected grid. The number in each of the neurons show how

the wavefront of a signal initiated in the upper left of the grid propagates. The numbers

represent the time stamps indices of when each of the neuron fires.

This technique is similar to the radar path planner presented and simulated in [45]. Our

research furthers this technique by implementing the wavefront planner using analog neu-

ron circuits implemented in actual silicon hardware. Usinganalog neurons to pass signals

can be compared to other signal propagation methods in analog such as Resistor-Capacitor

integrator delay line circuits and delay lines formed by operational transconductance am-

plifier (OTA) based follower-integrator circuits, Figure53 [121] [122].

Figure55 shows how a maze environment is modeled using the neuron IC. Figure55a

shows the example maze problem. The robot is located at Node 22 and the goal is at Node

77. Figure55b shows the bidirectional connections between neurons thatrepresent free

paths in the maze. Figure55c shows how the connections are made in the neuron IC. A

system called Address Event Representation (AER) is used to record the time at which

spikes occur in each neuron [152]. The 100 waveforms represent the 100 neuron outputs,

and the grey dots represent synaptic connections. This figure shows how the outputs of the

neurons are connected to the dendritic inputs of neurons [10]. Figure56 shows details of

73

the solution for Figure55. A wavefront was initiated at the goal (Node 77) and propagated

throughout the neuron grid. Figure56b shows a raster plot of the solution nodes. Neuron

77 causes neuron 76 to fire, which causes neuron 75 to fire, etc.Figure56c shows a zoomed

raster plot of the solution nodes. A linear fit shows that the wavefront propagation has a

nearly constant velocity of 1.091 neurons/ms.

A flow chart of the algorithm solution for Figs55 and56 is found in Figure57. The

robot is located at Node 22. The circles connected to Node 22 represent its non-obstacle

neighbors. The numbers inside the circle are the timing index numbers from the AER

circuitry. Specifically, these numbers capture the time when the neighbors experienced

their first spike. The neighbor that fired first before Node 22 fired is Node23. The robot

should therefore move to Node 23 next. This represents the next move on the optimal path

to the goal. Node 23 has three non-obstacle neighbors. Its neighbor node that fired first is

Node 33. Node 33 is then the next path on the way to the goal. This procedure continues

until the full path is found.

One of the features of this algorithm is that the entire path solution can be found by

only a single excitation at the goal. Figure59 shows a couple of ways that the planner can

be incorporated into a robot system. In method 1, the entire path to the goal is planned each

time the robot moves. In method 2, only thenextlocation is found. If the robot’s environ-

ment is not static this second method may reduce the AER post-processing computations

after each move.

Regarding the software tools for this IC, we used PyNN [153] to specify the neuron

structure of the maze. PyNN is a Python-based network description of the maze environ-

ment.

Three specifications of the neurons’ settings include: the neuron’s refractory period, the

velocity of the propagated signal from neuron to neuron, andthe synaptic strengths. These

three items can be adjusted to affect performance.

74

Figure 53. This figure shows how signal propagation velocity can be modeled using various methods:
a) neuron, b) diffusive, and c) hyperbolic

Figure 54.Statistics of the Monte Carlo scenarios used in the experiments. a) Distribution of the Robot
start states, b) Distribution of the Robot goal states, and c) Distribution of number of obstacles used in
the experiments.

75

4.2 Neuron IC Hardware Results and Analysis

The neuron IC was used to evaluate 55 different experimental maze cases and was 100%

correct. The cases were generated randomly as follows. The number of obstacles in each

case was a pseudo random integer value drawn from a discrete uniform distribution in the

range from 1 to 90. The location of the obstacles in each case was randomly placed using a

pseudo random integer value drawn from a discrete uniform distribution in the range from

1 to the maximum number of edges in the grid,((nR− 1) · nC) + ((nC− 1) · nR), wherenR

is the number of rows in the grid andnC is the number of columns in the grid.nR and

nC were both 10 for our scenarios. The node locations of the starting node and goal nodes

are each drawn from a discrete uniform distribution in the range from 1 to the maximum

number of nodes in the grid (100 for our cases). The statistics of the path and obstacle

scenarios are found in Figure54.

Path planning problems are typically evaluated with four metrics: Time Complexity,

Space Complexity, Completeness, and Optimality [1]. Time Complexity is a measure of

the time needed to find a solution [1]. Space Complexity is a measure of the amount of

memory needed for the search [1]. Completeness ensures that a solution is found if it exists

and also must ensure that that if a solution does not exist then the algorithm terminates and

says so. Optimality ensures that thebestsolution is found if it exists. Each of these criteria

are discussed in the following sections.

4.2.1 Time Complexity

Qualitatively, Time Complexity is a measure of how long it takes to find a solution [1]. It

is often measured by the number of nodes generated when the algorithms are implemented

in digital computers [1]. This is a reasonable measurement for a system that sequentially

evaluates the nodes of a grid. For systems that can search multiple grid nodes in parallel,

such as the Neuron IC planner, one may use a different measurement. In the Neuron IC,

if we assume that all edges between nodes have the same weight, then the propagation of

the signal is uniform in the grid and effectively all of the nodes on the leading edge of the

76

Figure 55. This figure shows how the neurons of a specific maze case are configured to represent free
paths and obstacles. a) The maze which will be represented with neurons. The goal is at Node 77, the
robot is at Node 22. The IC will plan an optimal path between these two nodes. b) This is how the
neurons are configured for the maze case in (a). There are bidirectional paths between neurons where
free paths exist and no connections where obstacles exist. c) This shows how the neurons are connected
within the IC. Address Event Representation (AER) circuitry enables the circuit to time stamp when
each of the neurons fires [10].

wavefront are evaluated at approximately the same time. This allows one to say that the

solution time is a linear function of the depth of the solution,d. As shown in Figure56b and

Figure61b, each time the wavefront expands it reaches all of the neighbors at this depth in

a time that is a function of the depth and the velocity of propagation. Eq (12) is the Time

Complexity estimate for the Neuron IC planner. The estimate is written for an arbitrary

solution depthd, and arbitrary neuron propagation velocity,v.

TC =
d
v

(12)

The essence of Time Complexity is not as simple as number of nodes generated with the

Neuron Array IC. There are also four items to consider when calculating the total time cost

of the Neuron IC planner: Neuron pre-programming time, Environment map programming

time, Time to read the solution from the neurons, and Solution computation time. Each of

these are addressed below.

4.2.1.1 Neuron Pre-programming Time

Before being used for planning, the neurons need to be programmed. The neuron structures

can be pre-programmed onto the IC before the autonomous agent navigates its environment.

77

Figure 56. Results from one case that was solved on the Neuron IC. a) Thisis a grid environment
example that the neuron IC solved. The robot is located at Node 22 and the goal is at Node 77. A
wavefront is initiated at the goal (Node 77) and propagated throughout the Neuron grid. b) Raster
plot of the solution nodes. Neuron 77 causes neuron 76 to fire,which caused neuron 75 to fire, etc.
c) Zoomed raster plot of the solution nodes. A linear fit showsthat the wavefront propagation has a
nearly constant velocity of 1.091 neurons/ms.

This involves programming the biases among other settings.Programming the neurons for

a 10x10 grid currently takes on the order of 5-10 minutes. As shown in Figure58, a current

starved inverter [10] circuit is used to produce a gate waveform in the synapse circuit. This

gate waveform circuit and some operational transconductance amplifiers (OTAs) used for

detecting spikes in the neurons also need to be programmed. The current starved inverter

circuit has two floating-gate voltage settings,Vbp andVbn. Changing these alters the gate

waveform driving the synapse transistor. Details of how these are changed (programmed)

can be found in previous papers [11, 10]. The velocity at which the neurons fire is a

function of this gate waveform. If the velocities are changed this means modifying the

gate waveform programming. Changing one gate waveform requires that all gate wave

waveform circuits be erased and re-programmed. This reprogramming process takes on the

order of 5-10 minutes. The cap at the gate of the transistor chargingCmembraneis a coupling

capacitor between the processed output of a neuron and the floating-gate transistor device

operating as a synapse. The floating-gate of the transistor can be programmed and “can be

used to store a weight in a nonvolatile manner, compute a biological EPSP, and demonstrate

78

biological learning rules [10].” Programming accuracy can be achieved at 9 bits of floating-

gate voltage [31].

4.2.1.2 Environment Map Programming Time

In addition to setting up the neurons, the IC also needs to be programmed with the envi-

ronment map. The environment is mapped onto the array by setting the strengths of the

synapses. Programming time for a 10x10 map (i.e. synapses inthe array) is about 10 min-

utes. This assumes that the velocities (i.e. gate waveform circuits) are not changed. This

programming time can theoretically be reduced in three ways: 1) by using a digital injec-

tion instead of precise injection programming, 2) by doing row parallel injection, or 3) by

using precise programming but implementing it on the micro controller.

The velocity is set to about 1ms/neuron, but this can be adjusted to a point. Predicted

jitter on the velocity programming capability is estimatedto be+-1us. This is conservative

estimate based on a scale factor of gate delay jitter.

4.2.1.3 Time to Read the Solution From the Neurons

The AER system records the neuron spike events. The system can operate at about 1 event

per micro second. This is the limitation of the AER system. With our current neuron

velocity of 1ms/spike, the AER system could therefore keep up with approximately 1000

neurons firing before it starts to lose events.

4.2.1.4 Solution Computation Time

As in [148], the search of the raster plot runs in linear time with respect to path length, and

the computation time is proportional to the number of free cells in the environment. The

solution time for the next move is(pathLength) ·v ms, wherev is about 1 ms in this system.

If one is finding the entire path, then the time is slightly more.

4.2.2 Space Complexity

Space Complexity is measured in terms of the maximum number ofnodes stored in mem-

ory [1]. As was said in Section4.1, the neuron IC can operate in two modes as it plans the

79

optimal path to the goal. The first method plans the entire path to the goal, and in Method

2, only the next move to the goal is planned. These two operating strategies have different

Space Complexity requirements. Furthermore, there are different memory estimates de-

pending on the refractory period programmed into the neurons. Section4.1mentioned that

the refractory period of the neurons is adjustable in this system. The refractory period is

the time delay during which the neuron will not fire. There aredifferent Space Complexity

estimates depending on the refractory period programmed into the neurons. The following

section will address the details of a long and short refractory period where a long refrac-

tory period is defined to be a time much greater than the total time for the wavefront to

propagate from the goal to the start.

First, Method 1 is addressed. Method 1 finds the full solutionfrom the start to the

goal. This requires that the entire wavefront fanout be recorded in order to find the full

solution. If one assumes that there is a long refractory period, then one can estimate an

upper bound on the number of spikes generated as follows: As shown in Figure61a, each

time the wavefront expands it reaches 4d new neighbors. This is whered is the depth of the

solution. Assuming that each grid has a branching factor of 4(i.e. the autonomous agent

can, in the absence of an obstacle, move up, down, left, or right), one may calculate the

total number of nodes enclosed by the wavefront as follows.

SClong re f ractory = 4 · 1+ 4 · 2+ 4 · 3+ · · · + 4 · d (13)

= 4(1+ 2+ 3+ · · · + d) (14)

= 4

(

d2 + d
2

)

(15)

= 2
(

d2 + d
)

(16)

80

Figure 57.This shows how the solution for the maze in Figure 56 is backedout of the AER spike timing
information. The rows of circles represent non-obstacle neighbors. The numbers represent the time
that each node first spiked. The solution is found as follows.Node 22 has three non-obstacle neighbors
(as represented by the three circles). The neighbor which fired first is Node 23 (It fired at 10.2 ms which
is earlier than the other two node firings.). Thus, one may conclude that Node 23 caused Node 22 to
fire, and it is selected as a node on the optimum path (in gray).

Figure 58.This figure shows the dominant capacitance which limits the velocity (and efficiency) of the
neuron propagation. The capacitance is on the output of the current starved inverter. The velocity of
the neuron firing is related to the time it takes to charge and discharge this capacitance. Therefore,
the velocity of the system is proportional to the power and efficiency of the system.Vbp and Vbn are
floating-gate transistors used to set the gate waveform driving the synapse transistor. Details of how
these are changed (programmed) can be found in previous papers [11, 10].

81

= O
(

d2
)

(17)

Equation (17) is the upper bound for the number of nodes generated for a neuron system

with a long refractory period. For the other extreme case when there is little or no refractory

period for the neurons then one may make a very conservative estimate by assuming that

all of the neurons enclosed by the wavefront fire each time thewavefront expands. This

upper bound may be estimated as follows. At the first wavefront expansion one may apply

(16) and record the number of nodes (18):

2
(

12 + 1
)

(18)

When the second wavefront propagates, one may add all these firing neuronsand as-

sume that all of the first wavefront’s neurons fired again so the new total number of nodes

generated is (19).

2
(

12 + 1
)

+ 2
(

22 + 2
)

(19)

The number of nodes generated can be written for an arbitrarysolution depthd as

follows:

SCshort re f ractory =

2
[(

12 + 1
)

+
(

22 + 2
)

+ · · · +
(

d2 + d
)] (20)

Rearranging terms:

2
(

12 + 22 + · · · + d2
)

+ 2(1+ 2+ · · · + d) (21)

Using Faulhaber’s formula to further simplify (21):

= 2

(

d3 + 3d2 + d
6

)

+ 2

(

d2 + d
2

)

(22)

=
1
3

d3 + 2d2 +
4
3

d (23)

82

Figure 59.This shows the system view of path planning in an unknown environment with this neuron
IC.

= O
(

d3
)

(24)

One may therefore claim that (24) is the upper bound for the number of nodes generated

for a system with neurons with a short refractory period.

If one assumes that there is a long refractory period (i.e. a refractory period>> the

solution time), and also assumes that each grid has a branching factor of 4 (i.e. the au-

tonomous agent can, in the absence of an obstacle, move up, down, left, or right), one may

use (17) as an estimate for the Space Complexity. Likewise, if still using Method 1, but

assuming a short refractory time, one may express the Space Complexity as (24).

There is a maximum number of nodes required in memory in orderto find the solution.

The memory system could hold two items for each node: 1) a timestamp for when that

node first fired and 2) a list of accessible neighbors. In anMxN grid map with no obstacles,

this would require approximatelyMxN memory locations for the timing information and

4 · (MxN) memory locations for the neighbor information.

In Method 2, if one assumes a branching factor of 4, then the memory requirement is

O(4). That is, when planning the next optimal move to the goal,the Neuron IC algorithm

only needs to store data for when the four neighbor grid cellsare reached. This number is

the same for a long or short refractory period.

4.2.3 Completeness

A completeplanner will either always find a solution or inform the user that there is no

solution. This neuron IC planner is complete if the goal is atsome finite depth,d. If there

83

Table 6.Comparing Neuron IC planner to digital methods, whered is the depth of the solution in the
search tree.

Criterion Neuron IC wavefront
[142, 154, 140, 155]

Time Complexity d
v O

(

d2
)

Space Complexity Method 1/w long refractory:O
(

d2
)

(# of nodes ≤ O (MxN) O
(

d2
)

stored in memory) Method 1/w short refractory:O
(

d3
)

Method 2: O(4)
Resolution Complete?

(assuming Yes Yes
finite depthd)

Resolution Optimal?
(assuming equal Yes Yes

path length)

Figure 60. Space and Time Complexity for the Neuron IC. a) Space Complexity: This shows experi-
mental Neuron IC data and how it compares to the Space Complexity models in Table 6. Based on this
curve, one may assume that the refractory period in the experimental data is closer to being a long time
than short. b) Time Complexity: This curve compares our Neuron IC performance to a state of the
art FPGA implementation of Aker’s wavefront algorithm [12] . The top line represents the Time Com-
plexity for the Neuron IC with a signal propagation time of 1091 neurons/second. If this is increased
by a factor of 100, then it is estimated that the Time Complexity of the Neuron IC will outperform the
FPGA implementation when the solution depth is greater thanapproximately 315.

84

Figure 61. Wavefront propagation in the Neuron IC and the Space Complexity. a) This depicts the
wavefront emanating from the goal. Each wave is representedat a depth d in the raster plot in b. This
represents a numerical potential field with a local minimum at the goal [13]. b) Raster plot showing
all the events captured by AER (up until the solution) for themaze case in a.c) This chart shows the
number of spikes for our set of experiments. This directly correlates to the time and Space Complexity
for our Neuron IC. Since the refractory period of the neurons is less than the solution time, neurons
have a chance to fire more than once. This shows that for the programmed refractory period in these
47 experimental cases, the number ofextra spikes was approximately twice that of the number of initial
spikes. (Note: 55 Monte Carlo cases were randomly generated.Based on the start, goal, and obstacle
conditions, only 47 of these have a possible solution.)

is a solution, then one can calculate the maximum time,tmax, for finding it. If no solution is

found by this time, then the planner can return aNo Solutionflag. Assuming a 1ms/neuron

velocity and a 10x10 grid space of 100 nodes, the system wouldtime out at 100 ms (max

path length) as a bound on the case of no solution.

4.2.4 Optimality

A detailed optimality proof developed by Dr. Stephen Brink, can be found in [156].

4.2.5 Neuron IC Implementation vs. Digital

The Time Complexity of the Neuron IC planner can be compared todigital implementa-

tions of the wavefront algorithm. For digital implementations, the worst case Time Com-

plexity is calculated as a function of the number of cached points or grid cells [154]. For

a solution of depthd the number of cached points can be estimated using the derivation

for (17). Similarly, the Space Complexity can be calculated as a function of the number of

cached points or grid cells [154]. For a solution of depthd the number of cached points for

the Space Complexity can be estimated using the derivation for (17) also. A side by side

85

Figure 62. This figure shows how the actual implementation of an asymmetrical weighted node is im-
plemented using multiple neurons in the Neuron IC. a) This isthe desired weighting configuration for
the node. The gray center node has different cost weights associated with propagating a wave to each
of its four neighbors. b) The gray node in the center of (a) is implemented in the Neuron IC using four
neurons. Each incoming edge must excite all four of the neurons which compose the center node.

86

comparison of the Neuron implementation to a digital implementation is shown in Table

6. There are potential tradeoffs for the two implementations. The Time Complexity of the

Neuron planner may be a win if the signal propagation velocity is small. However the Space

Complexity may not be as good with the Neuron planner if the neurons are programmed

with a short refractory time. A state-of-the-art FPGA implementation of a wavefront based

planner is found in [12]. Based on their performance numbers, one may calculate thata

1024x1024 grid is processed in 1/33 seconds. This allows one to estimate that the FPGA

can process 34603008 nodes/second. Using this processing speed andd2 as the estimated

number of cached node cells for a given solution depth, one may estimate the Time Com-

plexity of the FPGA implementation as a function of solutiondepth. Figure60 compares

the Time Complexity of our Neuron IC using the experimental velocity information to the

estimated Time Complexity of the FPGA implementation. It canbe seen that if the neuron

velocity is increased by a factor of 100, then the Neuron IC should exhibit a performance

improvement over the FPGA implementation.

4.2.6 Experiments with Non-uniform and Asymmetrical Edge Weights

The neuron structure allows one to develop sophisticated graphs with varied edge weights

between nodes of the grid. Two specific cases are presented. First, asymmetric edge costs

are assigned to describe cases which have a certain cost to travel a path in one direction, but

a different cost to travel the same path but in the opposite direction. The application of this

feature can translate to real world problems involving hills, traffic patterns, etc. Second,

cases are presented where the nodes near an obstacle are given higher costs to visit these

nodes. This is in an effort to keep the autonomous agent at a safe distance from obstacles.

This grid weighting can also be used to differentiate among terrains such as sand, ice,

gravel, or smooth pavement. These two features of the Neuronwavefront planner make

it special because the normal wavefront approach cannot handle varying terrain types or

uncertainty in the world’s state [151]. Figure62 shows how the hardware implementation

of an asymmetrical weighted node is implemented using multiple neurons in the Neuron

87

IC.

Figure63shows a situation where asymmetric edge costs are assigned to describe cases

which have a certain cost to travel a path in one direction, but a different cost to travel the

same path but in the opposite direction. Consider the Golden Gate Bridge in San Francisco.

Tolls are collected only in the southbound direction (the path into San Francisco). In this

simple, but illustrative example, the asymmetrical traveling paths are compared to paths

between two regions which have toll booths. A toll is collected only in one direction in

each path. Figure63a shows the two paths between nodes 1 and 100. There are two paths

that lead to and from Nodes 1 and 100. The architecture is designed so that it costs more to

travel from Node 1 to 100 using Path B instead of Path A. Similarly, it costs more to travel

from Node 100 to 1 using Path A instead of Path B. The node pointswith the stars in the

grid have two neurons each to create these nodes. This is highlighted by the dashed circles

surrounding the neuron representations. The grid implementing the cartoon in the Neuron

IC is shown in Figure63b. As described in Figure62, the nodes representing the toll booth

intersections are implemented with multiple neurons. In Path A, the toll booth intersection

nodes are formed using Neurons 28 and 37, and in Path B, the tollbooth intersection nodes

are formed using Neurons 64 and 73. In Path A, the directionalsequence of nodes [...38,

28, 27...] is a toll free wavefront sequence because each of these neurons has edge weights

of 1 between them. A raster plot of the Neuron IC wavefront experimental data confirms

this in the shaded section of Figure64a since the propagation time between Nodes 38 and

28 as well as the propagation time between Nodes 28 and 27 are both approximately 1ms.

In Path A, the directional sequence of nodes [...27, 37, 38,...] incurs a toll penalty. A raster

plot of the wavefront experimental data also confirms this inthe shaded section of Figure

65a since the propagation time between Nodes 37 and 38 is slightly over 4ms (there is some

non-ideality here because the toll booth neurons were programmed for a nominal delay of

5ms).

Figure66shows experimental hardware results demonstrating additional advantages of

88

Figure 63. This figure highlights how neurons can be paired to create an asymmetric edge weight
architecture. a) This cartoon illustrates the “cost” associated with the directionality of two paths. b)
This maze represents (a) and is implemented on the Neuron IC.

non-uniform edge weights in the planner. Wavefront methodsgenerate optimal paths with

regard to length, but they tend to “hug the sides of obstacles[151, 141].” One solution to

this problem is by “growing” the size of the obstacle [151]. Instead of growing the ob-

stacles, the paths near an obstacle are penalized in the Neuron IC. This is implemented

by programming the Neuron IC such that the nodes nearest the obstacles are assigned a

higher cost to visit. This extra cost decreases for nodes further away from obstacles. These

results demonstrate that weighting the edges between neurons differently can push the au-

tonomous agent away from obstacles and generate a path solution taking into consideration

not only path length, but also proximity to obstacles. The edge weights are set in the Neu-

ron IC by adjusting the gate waveforms which drive the synapse transistors (Figure58). A

higher weight cost correlates to a slower response of the synapse and therefore a slower

propagation delay time.

Two different weight experiments are shown in Figs66a and c. In these experiments

a ring of nodes around each of the obstacles is assigned a larger weight. The rings are

denoted by shaded regions in Figs66a and c. The non-shaded regions have neurons that are

89

2 4 6 8 10 12 14 16 18 20

1

2

3

4

14

24

25

26

27

28

38

48

58

68

69

70

80

90

100

Time (ms)

S
p
ik

in
g
 N

o
d
e

a) Path A

 Going from Node 1 to Node 100
(so wavefront propagates from 100 to 1)

b) Path B

2 4 6 8 10 12 14 16 18 20

1

11

21

31

32

33

43

53

63

64

74

75

76

77

87

97

98

99

100

S
p
ik

in
g
 N

o
d
e

Time (ms)

The wavefront along Path A
is wrapping around Path B and
exciting some of Path B's Nodes

Toll Booth
 Delay

Figure 64. This figure is measured Neuron IC data for the experimental setup in Figure 63. For this
experiment the autonomous agent is planning a path from Nodes 1 to 100. Path A was chosen by the
Neuron IC. a) Raster plot showing the sequence of nodes for Path A (in black). There is approximately
a 1ms delay between neuron firings. This shows that the toll booth was not crossed. b) Raster plot
showing the sequence of nodes for Path B (in black). Notice the approximate 4ms delay between Nodes
63 and 53. This shows that the toll boothwas crossed.

90

2 4 6 8 10 12 14 16 18 20

100

99

98

97

87

77

76

75

74

73

63

53

43

33

32

31

21

11

1

S
p
ik

in
g
 N

o
d
e

Time (ms)

b) Path B

 Going from Node 100 to Node 1
(so wavefront propagates from 1 to 100)

a) Path A

Time (ms)
2 4 6 8 10 12 14 16 18 20

100

90

80

70

69

68

58

48

38

37

27

26

25

24

14

4

3

2

1

Toll Booth
 Delay

S
p
ik

in
g
 N

o
d
e

The wavefront along Path B
is wrapping around Path A and
exciting some of Path A's Nodes

Figure 65. This figure is measured Neuron IC data for the experimental setup in Figure 63. For this
experiment the autonomous agent is planning a path from Nodes 100 to 1. Path B was chosen by the
Neuron IC. a) Raster plot showing the sequence of nodes for Path A (in black). Notice the approximate
4ms delay between Nodes 37 and 38. This shows that the toll booth was crossed. b) Raster plot showing
the sequence of nodes for Path B (in black). There is approximately a 1ms delay between neuron firings.
This shows that the toll booth was not crossed.

91

programmed to have a 1ms nominal propagation time between neurons. The shaded areas

have neurons that are programmed to have a 2 or 2.5ms nominal delay between neurons for

the experiments in Figs66a and c respectively. At the boundary between the shaded and

non-shaded regions, if a wave is propagatinginto the shaded area it will incur the larger

cost of the shaded region. However, if a wave is propagatingout of the shaded area it will

incur the lower time cost of the non-shaded area. The cost is thus dictated by the regioninto

which the wavefront is propagating. Figure66a and b give results where the shaded region

is programmed for a 2ms delay. The nominal time cost for a waveto propagate through

the shaded area between the start to the goal is 12ms. This is in contrast to the nominal

time of 13ms for the wavefront to propagate around the obstacle. The Neuron IC planner

chose the path shown by the arrows in Figure66a. The data points in Figure66b show

the measured delays incurred from propagating the wavefront on each of the chosen path’s

edges. The measurements show some non-ideality in the system. The first five data points

should ideally each be 2ms delays, and the last two data points should ideally each be 1ms

delays. Figs66c and d give results where the shaded region is programmed fora 2.5ms

delay. The nominal time cost for a wave to propagate through the shaded area between

the start and the goal is 14.5ms. This is in contrast to the nominal time of 13ms for the

wavefront to propagate around the obstacle. The Neuron IC planner chose the longer but

least time cost path shown by the arrows in Figure66c. The data points in Figure66d show

the measured delays incurred from propagating the wavefront on each of the path’s edges.

Again, there is some non-ideality in the system as shown in the measurements as all of the

data points should ideally each be 1ms delays. These two experiments demonstrate that the

neurons can be programmed to weights which create paths froma start to a goal that take

into account both proximity to obstacles and path length.

4.2.7 Scalability

“To construct a navigation function that may be useful in mobile robotics, a high-resolution

(e.g., 50 to 100 points per axis) grid is usually required [142].” Concerning grid scalability,

92

Figure 66. These experimental Neuron IC results demonstrate that weighting the edges between neu-
rons differently can push the autonomous agent away from obstacles and generate a path solution
taking into consideration not only path length, but also proximity to obstacles. a) A ring of nodes
around each obstacle is given a weight of 2 to enter each node.The best cost path is chosen to be the
shortest in length, but also the one that comes closest to theobstacles for the longest amount of time. b)
Propagation time between nodes for the edges selected for the best path in the experiment in (a). c) A
ring of nodes around each obstacle is given a weight of 2.5 to enter each node. The best cost path in this
experiment, in contrast to (a), is not the shortest path. This path, however, avoids getting close to the
obstacles. d) Propagation time between nodes for the edges selected for the best path in the experiment
in (c).

93

this neuron planner should be able to be expanded to this scaling or a much larger grid.

This is enabled largely because the repeater nature of the neurons enables the propagated

signal to continue without reducing. This is in contrast to resistive based path planning

methods where the signal at the nodes decreases as the grid gets larger [48]. The synaptic

array in the IC is approximately 3mm2 in area; therefore one can imagine in a single reticle

size chip in the same process to enable an array of one millionsynapses and thousands of

neurons on a single IC. These numbers could increase substantially as one moves from the

350nm process to a more modern IC processes [10]. These numbers of neuron elements

would allow one to achieve the 50 to 100 points per axis resolution required for fielding

a planning system. Figure67 shows how multiple neuron ICs can be connected together

in order to expand the grids size. In the current form, one could connect two neuron ICs

together and use the AER system to pass signals between the two. Also, it is possible to

design a new Neuron IC which would have more neurons for larger grids.

4.2.8 Power Costs

The power used by this system can be split into four categories: Neuron pre-programming,

Environment map programming, wavefront propagation and neuron read-out, and analysis.

We claim that the power used by the FPAA to arrive at the solution is much less than that

of a digital solution. We cannot make appropriate claims however of the pre-programming,

environment map programming and analysis power because we have not optimized our

embedded system for these problems. The embedded system which interfaces with Matlab

and the Neuron IC uses current on the order of 400mA.

4.3 Summary

In a comprehensive survey of autonomous rotorcraft unmanned aircraft systems, Kendoul

describes path planning methods and algorithms which represent the “most used and prac-

tical methods, with a particular focus on works with experimental results [139].” These

94

Figure 67.Two neuron ICs can be connected via the Tx/Rx pins in order to expand the grid size.

methods include Road Map and Potential Field approaches. Dijkstra’s algorithm is com-

monly used to plan a path in Road Map methods [139]. A specialized form of Dijkstra’s

algorithm is the wavefront method [142] , so it is reasonable to say we are using a state-of-

the-art method.

This chapter continues to build upon the idea that analog circuits, and specifically bi-

ologically inspired neuron circuits, can be used for path planning and are adding to the

existing research which combines analog VLSI and robotics [134]. This chapter has pre-

sented approximately 50 Monte Carlo path planning results for 10x10 grids. Although not

as large as the 50 to 100 points per axis grid as is usually required [142], this modest grid

demonstrates experimentally that a Neuron IC can be used to propagate a wavefront for

planning. This provides an advantage because the wavefrontis propagated in parallel. This

chapter also characterized the Space Complexity (memory requirement) of this Neuron IC

method and validated the model with experimental data. Thiswork is new for a couple of

reasons: First, it provides an extensive amount of measureddata representing different map

scenarios from a fabricated AVLSI neuron IC. Second, our analog circuit implementation is

unique because it is implemented on a floating-gate based reconfigurable neuron analog IC.

Finally, this work has started to quantify the performance gain for using an analog solution

instead of a digital one in terms of Time Complexity.

95

CHAPTER 5

CONTROL WITH FPAAS

5.1 The Mobile Manipulator and FPAA

A mobile manipulation robotic platform solving the Towers of Hanoi puzzle is described

in this chapter. This work is based on a collaboration with David Lenz, Sebastian Hilsen-

beck and Smriti Chopra, and they should be credited with the digital software design and

implementation which made this chapter possible [8]. This work is described with the pos-

sibility of leveraging this work in two domains. First, the mobile manipulator could be

developed into a system that could interact with children oradults in aturn takingscenario.

Second, this platform can be used to investigate feedback control systems implemented

with reconfigurable analog electronics. Robot control software calledPlayer is used as the

main software for this system, [127, 157]. Player, running on a laptop, is the brains of the

system. It receives sensor input from an overhead camera forlocalization and then com-

mands the robot as desired.Player is operated in two robot environment modes. The first

mode isPlayer interacting with a real robot in the real world. The second mode isPlayer

interacting with a simulated robot in a 3D simulated environment with dynamics. This 3D

environment is calledGazebo.

The Player software has the ability to interact with the FPAA reconfigurable analog

electronics system, Figure9. In this configuration, the FPAA could be characterized as a

Feedback Control Co-processorfor the robot’s navigation system. Path planning is another

demonstrated use of an FPAA in robotics [7].

The mobile manipulator system, using a Pioneer robot and arm[125], is demonstrated

solving the classic Tower of Hanoi problem, Figure68. In this puzzle, a tower of disks is

created by stacking disks on top of each other. One of the rules is that only smaller disks

may be placed on larger disks. This version assumes there arethree possible locations for

the tower’s location. The tower starts in one of these locations. The goal is to move the

96

Figure 68. This is the big picture of the system: a client software called Player interacts with either
the real world or a simulated world and solves the classic Towers of Hanoi puzzle. Additionally, the
software has the ability to interact with a reconfigurable analog co-processor [8].

tower from one location to another location.

This robotic manipulator has three main tasks: Sensing, Thinking, and Acting. The

Sensingtask involves an overhead camera as the primary sensor. Image processing tasks

for the Towers of Hanoi problem include segmenting the disksfrom the background and

identifying their size and position. TheThinkingtasks include creating a sequence of legal

actions for moving the disks so that the goal is achieved (path planning), as well as turning

these high level commands into low level control functions.TheActingtasks include com-

manding the Pioneer robot’s forward/reverse velocity and rotation, as well as commanding

an attached five degree of freedom (DOF) Pioneer manipulatorarm to move the pieces.

Section5.2 discusses related work, Section5.3 describes architecture for Sensing,

Thinking, and Acting, Section5.4compares differences between simulation and real world

operation, and Section5.5 is a closing summary.

97

5.2 Related Work
5.2.1 Playing with Robots

Robots have been used in the past for games such as chess [158], or as a therapy aid

[159]. Robots have also been used to help children with disabilities [160, 161].This mobile

manipulator could be extended for use in future work such asturn taking, [162]. A simple

non-mobile manipulator is described for solving the Towersof Hanoi problem in [163].

This was part of a Robotics Education Lab at CMU. Humans used a mobile web interface

to instruct a PR2 how to solve the towers of Hanoi problem in [164]. A video of a PR2 and

many other robots solving the Towers of Hanoi may be found on the internet.

5.2.2 Analog Control

A number of recent papers have been written regarding using reconfigurable analog cir-

cuits called Field Programmable Analog Arrays (FPAA) for low level control. This work

and [165] are based around custom FPAAs, but many are based on the switch-capacitor

Anadigm IC design [166, 167, 168]. General references concerning PID controllers are

[169, 170, 171, 172]. Background for using Operational Transconductance Amplifiers

(OTAs) for PID control is found in [173, 174]. Finally, although this robotic system is

accessible and easy upgraded and serviced, this is not always the case for all robotic plat-

forms. Other FPAAs are being explored to allow flexibility insensing and control circuits

of space systems [175, 176]. The FPAA in this chapter is typically different than other

reconfigurable analog circuits because it uses floating-gate transistors as the switch matrix.

5.3 Architecture for Sensing, Thinking, and Acting

One of the goals of the architecture is to give the robot a highlevel of autonomy. The

robot’s a priori knowledge consists of the following:

• A list of potential disk colors

• An initial estimate of pole positions

98

• The height of the disks

The system block diagram in Figure74 provides a high level view of the robot’s Nav-

igation system and also shows how it interfaces with the planner, vision sensor, and robot

hardware. The Sensing, Thinking, and Acting portions of this block diagram are individu-

ally addressed in the remainder of this section.

5.3.1 Sensing

Vision is the primary sensor in this system. It sends information to the Tracker sub-block.

It assumes that there is an overhead camera available to image the robot, poles, and disks at

all times. “OpenCV (Open Source Computer Vision) is a library of programming functions

for real time computer vision [177].” It has been integrated into the control program for

image processing tasks. Figure79a shows an example image from the overhead camera

modeled in Gazebo, and Figure79b shows a view from the real overhead camera. Working

with the Tracker, this image system is able to successfully segment images using color

features and is able to extract colored circles from images.

5.3.2 Thinking

The section of the robot’s system block diagram that describesthinking, Figure74, consists

of four main tasks: Navigation, Planning, Tracking, and maintaining the internal World

Model. A high level state machine description is found in Figure 69. The first state in

Figure69 is “Get Initial Configuration.” In this step, the system determines the number

and color of the disks and the initial positions. The a prioriinformation that helps this

process is that it is assumed that the disk colors come from a known set of colors in a color

list.

The Planner’s task is to identify a sequence of actions that will accomplish the goal of

moving the disks from their starting position to the goal position. A previously existing

Towers of Hanoi planner was integrated into this system, [178]. A plan has the following

form:

99

Figure 69.This figure shows a high level flowchart of the Thinking tasks [8].

1. Take the disk on pole 1 and place it on pole 3

2. Take the disk on pole 1 and place it on pole 2

3. Take the disk on pole 3 and place it on pole 2

4. ...

The Navigation block’s task is to convert high level plans tolow level commands.

Proportional-Derivative closed loop control systems are used to control the robot’s angle

and forward/reverse position. A block diagram of a Proportional-Integral-Derivative closed

loop control system is found in Figure70. The system was operated using the Digital Con-

troller, but this figure also shows a diagram of how the FPAA based analog PID controller

could be integrated into the loop. Ideally, the PID output signal would be sent directly to

the plant and not use the A/D and D/A functions.

100

Figure 70. This figure illustrates an example of how an analog co-processor PID controller could be
merged with the digital controller for initial testing. The control system implemented for this project
uses a Digital Proportional-Derivative closed loop control system to control the robot’s position and
orientation [8].

The Tracker has three main image processing tasks: to determine the 1) Disk poses, 2)

Robot poses, and 3) Pole poses. The tracker uses colors to identify objects. To track the

disks, first they are segmented from the background with thresholding in the HSV color

space. A “blobfinder” is then applied to the segmented image [126]. The blobs are then

filtered based on size to determine if they are too large or toosmall. Finally, the blob’s

features such as position, area, and standard deviation arecalculated, and this information

is returned to the Navigation routine. This is illustrated in Figure71. The same process is

used to track the poles (boxes) on which the disks sit, exceptthat before the blobfinder is

applied the segmented image undergoes erosion and dilationto remove the eyes and mouth

of the smiley on the boxes in the simulation. (This process was not used with the real

hardware because uniform colored black boxes were used for the poles.) Finally, Robot

pose is determined by using a triangle formed by three white dots added to the back of the

Pioneer robot. These dots are segmented by the tracker and the robot’s pose is calculated.

101

Figure 71. This figure illustrates that the Tracker first segments the image based on color (in this
example it was asked to track the red disk). It then calculates the radius of the disks [8].

All calculations are in camera coordinates. An internal World Model is also maintained by

the robot. This World Model contains three items:

• List of disks (with each disk’s color, position, and radius)

• List of positions of the poles

• Color list

The overall strategy for executing a high level command is shown by the state machine

in Figure73. The robot uses the closed loop controller when rotating to the disk or goal

and when moving to the disk or goal.

This software/hardware platform offers a unique capability to integrate our FPAA sys-

tem into this robot for control. Figure74shows how the FPAA might be integrated into the

system block diagram. The FPAA contains many OTAs. Figure72a shows how OTAs can

be used to implement a PID controller [14]. Figure72a builds upon the OTA PID model in

[14] by adding parasitic capacitances that are inherent when routing circuits on an FPAA.

The current out of an OTA is a function of its transconductance gain,Gm, and the differ-

ence between the positive and negative terminals, (26) [122]. Ideally, the current into the

102

Figure 72.Design Flow for an OTA based PID controller. a) OTA based PID controller based on [14].
Unlike [28], this model includes parasitic capacitances that are a part of an actual implementation and
affect performance. b) Simulink Block Diagram of controller. c) SPICE list generated bySim2Spice
tool. d) FPAA switch list generated by GRASPER tool. e) RAT Figure showing switch list routing on
RASP 2.8a IC [8].

Figure 73.This figure illustrates the overall guidance and control strategy. The robot will perform this
loop for each high level command in the planning sequence [8].

103

Figure 74.High level control System Block Diagram: this figure shows how the sensing, thinking, and
acting systems are combined and where the analog co-processor fits into the larger robot system [8].

positive and negative terminals of an OTA is zero. In subthreshold operation, the output

current of an OTA is shown in (25) [122].

Iout = Ibias tanh

(

κ

2Ut

(

Vp − Vn

)
)

(25)

For small values, tanh(x) ≈ x, andGm, the so calledtransconductnaceof the amplifier,

is the slope of thetanhcurve at the origin.

Iout = Gm

(

Vp − Vn

)

(26)

WhereGm is calculated to be:

Gm =
∂Iout

∂Vin
= Ibias

κ

2Ut
(27)

Therefore, one may adjust an OTA’stransconductnaceby adjusting the bias current,

Ibias. Using the notation from Figure72a, the PID gainsKP, KI , andKD in Figure70 for an

OTA based controller are as follows. The intermediateProportionalvoltage term is:

104

Vp1 (s) = Vin (s) (28)

The intermediateIntegral voltage term, taking into account integral circuit parasitic

capacitance,Cip, is:

Vi1 (s) =
Gi1

Ci +Cip

1
s
Vin (s) (29)

The intermediateDerivativevoltage term, taking into account derivative circuit para-

sitic capacitance,Cdp, is:

Vd1 (s) =
Gd1

Cdps+
Gd2Gd3

Cds

Vin (s) (30)

The individual PID currents are added using four OTAs. Taking into account summation

circuit parasitic capacitance,Csp, the equation is:

Gs1Vp1 +Gs2Vi1 +Gs3Vd1 + Iout = Csp
dVout

dt
(31)

Iout = −Gs4Vout (32)

Substituting (32) in to (31), taking the Laplace transform, and simplifying yields a

transfer function for the analog PID controller with parasitic capacitances:

Vout (s)
Vin (s)

=
1

(

Csps+Gs4

)

Gs1

+
Gs2Gi1
Ci+Cip

· 1
s

+
Gs3Gd1

Cdps+
Gd2Gd3

Cds

(33)

Table 7 compares the PID gain terms with and without parasitic capacitances. The

terms with parasitics reduce to the ideal under DC conditions. As described in (27) The

PID gains can be tuned by adjusting the OTA bias currents. Thebias currents are tuned on

the FPAA by adjusting the charge on the floating-gate of an OTA’s “tail-current” transistor.

105

Table 7.Analog Proportional Integral Derivative Controller design with and without parasitic capaci-
tances

Gain Term Ideal Realistic with parasitic capacitance
Proportional (KP) Gs1

Gs4

Gs1

(Csps+Gs4)
Integral (KI)

Gs2Gi1
Gs4Ci

Gs2Gi1

(Csps+Gs4)(Ci+Cip)
Derivative (KD) Gd1Gs3Cd

Gd2Gd3Gs4

Gs3Gd1

(Csps+Gs4)
(

Cdps2+
Gd2Gd3

Cd

)

Figure 75. Characterizing selected OTAs in Figure 72a. a) Tanh curve asin (25). b) This figure illus-
trates that changing theIbias changes theGm. Note that there is not much variability among OTAs when
Ibias increases.

Figure75 shows the results of measuring and characterizing selectedOTAs on the FPAA

which affect the Proportional and Integral gains. The OTAs correspond to Gs1, Gs2, Gs4

andGi1 in Figure72a. Figure75a shows that the measured data follows thetanh curve

described in (25). Figure75b illustrates the how changing theIbias of the OTA changes the

Gm. Note that in this experimental data there is not much variability among OTAs when

Ibias increases.

Experimental data was gathered from the FPAA to characterize the parasitic capaci-

tances affecting the Proportional and Integral gains (seeCip andCsp in Table7). Bode plots

of the Proportional and Integral gain terms are found in Figs76and77respectively. To gen-

erate these plots,Vout was measured when a 100mV (peak-to-peak)Vin was applied with

varying frequency. The magnitude and phase responses of theexperimental data is plotted

with blue circles. The transfer function for the Proportional and Integral gains in Table7

106

10
2

10
3

10
4

10
5

−60

−55

−50

−45

−40

frequency (rad/s)

M
ag

ni
tu

de
 (

db
)

10
2

10
3

10
4

10
5

−120

−100

−80

−60

−40

−20

0

frequency (rad/s)

P
ha

se
 (

de
gr

ee
s)

Measured
Estimated: Gs1=4e−010; Gs4=5e−008; Csp= 5e−012
Experimental Noise Floor

Measured
Estimated (with −7 deg offset)

Figure 76. Bode Plot of the Analog Proportional Controller. The gainsGs1, Gs4, and the parasitic
capacitanceCsp is estimated and used to plot a curve over the experimental data. An Ibias = 0.05e-07
Amps was programmed for bothGs1 and Gs4 OTAs.

were plotted over the experimental data. AnIbias= 0.05e-07 Amps was programmed for all

OTAs for this experiment. Estimates ofGs1, Gs4, and parasitic capacitanceCsp were made

using the experimental data in Figure76. Estimates ofGs2, Gi1, and parasitic capacitance

(Ci + Cip) were made using the experimental data in Figure77 and the estimates from the

experimental data in Figure76. Estimates ofGd1, Gd2, Gd3, Gs3, and parasitic capacitances

Cd andCdp were made using the experimental data in Figure78.

5.3.3 Acting

Action takes place in the robot frame. The system has controlof the Pioneer robot’s for-

ward/reverse velocity and also its angular velocity. Regarding the robot arm, the arm joint

angles are commanded from the control program. Existing lowlevel arm control routines

were used. Images of the robot Acting (grasping) a disk are found in Figure68. Inverse

107

10
2

10
3

10
4

10
5

−80

−75

−70

−65

frequency (rad/s)

M
ag

ni
tu

de
 (

db
)

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

frequency (rad/s)

P
ha

se
 (

de
gr

ee
s)

Measured
Estimated: Gs4= 5e−008; Csp = 5e−012; Gs2*Gi1= 4.3445e−022; Ci+Cip= 1.5e−011

Measured
Estimated (with 0 deg offset)

Figure 77.Bode Plot of the Analog Integral Controller. The gainsGs2*Gi1 and the parasitic capacitance
(Ci+Cip) are estimated and used to plot a curve over the experimentaldata. An Ibias = 0.05e-07 Amps
was programmed forGi1, Gs2, and Gs4 OTAs. The curve being fit here is actually the transfer function
for the Integral only controller multiplied by s.

108

10
2

10
3

10
4

10
5

−90

−80

−70

−60

−50

−40

−30

frequency (rad/s)

M
ag

ni
tu

de
 (

db
)

10
2

10
3

10
4

10
5

−100

−50

0

50

100

150

frequency (rad/s)

P
ha

se
 (

de
gr

ee
s)

Measured
Estimated: Cd= 6e−012; Cdp = 2.5e−011; Gd1= 5e−009; Gd2= 5e−009; Gd3=5e−009; Gs3=5e−010

Measured
Estimated (with 50 deg offset)

Figure 78.Bode Plot of the Analog Derivative Controller. The gainsGd1, Gd2, Gd3, Gs3 and the parasitic
capacitancesCd and Cdp are estimated and used to plot a curve over the experimental data. An Ibias=

0.05e-07 Amps was programmed for the OTAs. The curve being fithere is actually the transfer function
for the Derivative only controller multiplied by s.

109

Figure 79.This figure compares the tracker images from the overhead camera in the simulation to real
life overhead camera hardware.

kinematics are used for two joints so that the end effector has a desired height, and the grip-

per is parallel to the ground. The height of the disk is problem specific and is hardcoded in

this routine.

5.4 Hardware Implementation

The next step, after successfully completing the problem inthe Player/Gazebo simulation,

was to try the algorithms on a real robot, Figure68. The robot successfully completed a

two disk Towers of Hanoi problem. A Logitec model V-UBV49 Webcam was used for the

camera. It was mounted to a pole on the ceiling of the lab. Figure 79 shows a compari-

son between the Gazebo simulation camera image and the actual image from the Logitec

webcam.

There were some notable differences between the simulation and real world environ-

ments. Regarding sensing, in the simulation environment onecan specify perfect illumi-

nation and ideal color values. This is not the case in a real world lab environment. In the

lab one has to contend with shadows and broader color range values. The coded range for

color values had to be changed for the real world control code. The hardware also behaves

differently in the simulation vs. real world. The Proportional and Derivative gains (KP, KD)

for the closed loop control system in the real hardware needed to be modified from their

110

simulation values.

Figure72 shows the hardware/software design flow concept for implementing an OTA

based PID controller on an FPAA. Figure72a shows the desired circuit. Figure72b shows

the equivalent Matlab Simulink model. Figure72c Shows the Spice level model automat-

ically generated from the Simulink model, Figure72d shows the low level switch list for

programming the FPAA, and finally, Figure72e shows a picture of the utilization of the

FPAA IC by plotting the switch list.

5.5 Summary

This chapter presented a mobile manipulator that solves theclassic Towers of Hanoi prob-

lem. The effectiveness of the Player/Gazebo simulation to real hardware design cycle was

demonstrated. The process of identifying what needed to be changed to make the simula-

tion control software work on real hardware was educational. This may lead the authors

to consider during the simulation phase of a project how certain aspects of the design can

be parameterized to best facilitate the transition from simulation to real hardware. Future

work may consider using a camera mounted near the end effector to aid in grasping. Turn

taking can be explored where the robot moves a disk and then the human moves a disk

for interactive game play. Finally, the FPAA can be fully integrated into the platform for

low-level control.

111

CHAPTER 6

IMAGE PROCESSING

This chapter describes an image processing system being designed for an off-the-shelf

quadrotor. A mixed signal approach to the embedded image processing is presented. Con-

straints on image processing computation include: power efficiency, short term storage (i.e.

part of an image), and movement of data. This algorithm performs a type of convolution

on the image and also subsamples it. “The computational approach is similar to some com-

putational attention mechanisms [179]. Computing pre-attention fields are typically large

convolution and subsample filters corresponding to agregated (sic) cortical receiptive (sic)

fields [180].” This processing has been referred to as “center-surround” processing and

results in feature maps [181].

6.1 FPAA Based Image Processing Algorithm

The analog computation uses a data flow architecture that merges memory and computation

[180]. A mixed signal processing algorithm has been developed that uses analog elements

to process and subsample an image. A non-overlappingn by n kernel is used in the sub-

sampling process. To illustrate the output of the system, consider Figure80, where a 24

by 24 pixel image is reduced to a3 by 3 matrix through the image processing algorithm

and an8 by 8 kernel. Two key innovations of this architecture are: first,the vector-matrix

multiply computation is performed by analog elements (floating-gate transistors), and sec-

ondly partially processed data is stored on analog elements. The reason for doing this is to

reduce the time needed to process data because fewer time intensive digital memory access

steps are needed.

6.1.1 Subsampling Algorithm

The subsampling operation transforms ann by n block of the image into a single scalar

value,x. Although not a strict requirement, the system is presentedwhere each of these

112

24 Pixels{

{24 Pixels
{3 Numbers

{3 Numbe
rs

spatial filter

&

Subsample

with 3x3 kernel

x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 80.Big picture of the subsampling operation of the mixed signalimage processing algorithm.

blocks are non-overlapping.

Let a block of image data be represented by (34),

A =

a1,1 · · · a1,n

...
. . .

...

an,1 · · · an,n

(34)

and the image processing kernel is represented by (35).

B =

b1,1 · · · b1,n

...
. . .

...

bn,1 · · · bn,n

(35)

Let C be a vector which represents intermediate processing, (36), where the individual

terms are computed as in (37).

C = [c1, · · · , cn] (36)

ci =

n∑

j=1

ai, jbi, j (37)

The final subsampling scalar value, (38), is produced by summing the terms of (36).

x =
n∑

q=1

cq (38)

This subsampling and convolution process is illustrated inFigure 81. A motivating

113

m Pixels{

{k Pixels Anxn

{m/n Numbers

{k/n Numb
e

rs x1 ... xm/n

xkm/n2

...

...

..
.

...

..
.

Kernel:

Bnxn
x
1C1xn

Effects of Processing

Figure 81.The equations showing the effects of the image processing and subsampling.

reason for this image processing process is to be able to track objects with a camera. To

this end, it is important to identify an appropriate kernel and understand the conditions

under which this convolution process and kernel can performthis task. Digital simulations

show that a Laplacian of Gaussian (LoG) kernel can identify an object with sufficient high

frequency (edge) components. Figure82 shows Matlab results of using the algorithm with

a 15x15 LoG kernel function (39). The Laplacian, (3), in addition to being useful for path

planning, is also useful for finding the edges of an image. Convolving a Laplacian kernel

with an image finds regions of rapid intensity change, and edges represent regions of rapid

intensity change [182, 183]. A problem with Laplacian kernels is that their performance is

reduced by noise. To combat this, one may smooth the image first (low pass filter) and then

apply the Laplacian kernel. It is possible to combine the smoothing and Laplacian kernel

into a single kernel, the LoG kernel (39). Figure81a shows a 120x160 image which was

first re-sized to 480x640. Figure81b shows the image sub-sampled into a grid of 32x42

blocks. Figure81c shows the LoG kernel. To create this kernel, first (39) was used with

x = −7 : 7, y = −7 : 7, σ = 1.4. Next the kernel was normalized by the minimum value.

Finally, this was multiplied by 40 to arrive at the figure [182, 183]. Figure81d is the result

of applying the LoG kernel to the image in Figure81a. This identified edges. Figure83

shows additional Matlab results of using the algorithm witha 15x15 LoG kernel function

(39). This illustrates that the LoG kernel can be used to identify objects of interest if the

objects contain enough edge (or high frequency components).

114

0

5

10

15

0

5

10

15

−40

−30

−20

−10

0

10

5 10 15 20 25 30 35 40

5

10

15

20

25

30

a) b)

c) d)

4
8
0

640

3
2

42

15 15

Figure 82.Matlab simulation of image processing: a) 480x640 Image, b) Non-overlapping blocks to be
processed, c) 15x15 Laplacian of Gaussian (LoG) kernel withσ = 1.4 used for processing, and d) 32x42
processed and subsampled image output.

LoG(x, y) = − 1
πσ4

[

1− x2 + y2

2σ2

]

e−
x2+y2

2σ2 (39)

6.1.2 Circuit Architecture for the Subsampling Algorithm

The section above shows the equations and effects of the subsampling algorithm, but the

mechanics of this process are that each block is not computedone at a time. Instead,

parts ofm/n blocks are processed sequentially until all of them are finished. One of the

innovations of this algorithm is that the intermediate values for thesem/n blocks are saved

with an analog memory (a capacitor). Once all of the processing for them/n blocks is

115

5 10 15 20 25 30 35 40

5

10

15

20

25

30 −1.5

−1

−0.5

0

0.5

1

x 10
4

0

5

10

15

0

5

10

15

−40

−30

−20

−10

0

10

a) b)

c) d)

4
8
0

640

3
2

42

15 15

Figure 83.Matlab simulation of image processing: a) 480x640 Image, b) Non-overlapping blocks to be
processed, c) 15x15 Laplacian of Gaussian (LoG) kernel withσ = 1.4 used for processing, and d) 32x42
processed and subsampled image output.

116

finished, thesem/n scalar values can either be converted to digital values and stored in

digital memory or transferred to another analog memory. Figure84shows a diagram of the

image processing architecture.

Figures85 and86 describes the signal flow for processing the first row of Figure 80.

The pixel data from the imager is streamed in serially. Once it streams in all of the first

row it moves to the second row, etc. The firstn pixels of the first row are multiplied with

an analog multiplier and summed as charge on a capacitor. Then the nextn pixels are

multiplied and stored on another capacitor. This continuesuntil the first row is processed

(Figure 85). The second row of data is processed in a similar way, Figure86. At the

end of this process each of the three capacitors in this example contains a voltage which

represents a convolved and subsampled pixel. These values would then be converted to a

digital value using an Analog to Digital Converter (ADC) and sent to digital memory or to

a microprocessor. The capacitors would be cleared and the process would repeat for the

second row of blocks.

The architecture uses floating-gate transistors (see Section 2.5) for the weights. Sub-

threshold operation of the transistors is also part of the design. Equations describing this

region of transistor operation are described in the following section.

6.1.2.1 Subthreshold Transistors

Most of the transistors used to create the image processing circuits are operating in the

subthreshold region of operation. One of the advantages of this region of operation is

that the transistors are conducting less current (and hence, using less power) than in above

threshold operation.

When the channel (i.e. area under the gate of a transistor) is in weak inversion then one

can say that it is operating insubthreshold[122]. Weak inversion happens when a positive

voltage is applied to the gate, and “This charge repels the holes in the substrate and leaves

behind negatively-charged ions, that balance out the gate charge. The MOSFET operates

in the subthreshold regime when the positive charge on the gate is almost balanced by the

117

G
N

D
G

N
D

G
N

D

R
o
u
ti

n
g
 F

ab
ri

c

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D

shift register #1 (horizontal)

sh
if

t
re

g
is

te
r

#
3
 (

v
er

ti
ca

l)

sh
if

t
re

g
is

te
r

#
2
 (

v
er

ti
ca

l?
)

n x n array

out1

outs

s =

out2

DAC

Im
ag

er

D
ig

it
al

 I
n

Vref

Vclear

Vbias

GND

DAC

Im
ag

er

D
ig

it
al

 I
n

G
N

D

G
N

D

G
N

D

G
N

D

Input: Am ... A0

R
o
u
ti

n
g
 F

ab
ri

c

in
cl

u
d
in

g
 I

/O
 p

in
s Am A0Am-1

A1

G
N

D

GND

outdac

(a)

(b)

of Pixels in a row/n

Im
ag

e

n
n

s = 24/n s x 1

vectors

t

Ck (#1)

Ck (#2)

Ck (#3)

Scan through entire row (n x s pixels)

(n = 3, s = 8, 24 x image)

Vector flow

6, 8 length words

Scan one row of a block

18

(c)

Figure 84.FPAA image processing signal flow architecture. a) This shows the entire architecture. The
vector matrix multiplication is performed by the n by n array of weighted floating-gates. The shift
registers, when clocked as in c, route the signals through the proper kernel matrix weight and then to
the proper analog memory element. b) This is the Digital to Analog Converter (DAC) schematic which
converts m+1 bit digital voltages to log compressed values. c) This shows the registers’ clock timing for
an example 24x18 image and a 3x3 kernel.

118

out
1

out
3

out
2

V
clear

Kernel:Bnxn

Kernel:Bnxn

Kernel:Bnxn

A1nxn A2nxn A3nxn

out
1

out
3

out
2

V
clear

out
1

out
3

out
2

V
clear

Figure 85.The input data is streamed in from the imager one row at a time.Parts of each subblock are
processed in series. This shows processing row ONE of blocks(1,1) (1,2) and (1,3).

119

out
1

out
3

out
2

V
clear

Kernel:Bnxn

Kernel:Bnxn

Kernel:Bnxn

A1nxn A2nxn A3nxn

out
1

out
3

out
2

V
clear

out
1

out
3

out
2

V
clear

Figure 86. This illustrates the next step after Figure 85. This shows processing row TWO of blocks
(1,1) (1,2) and (1,3).

120

negatively-charged depletion region underneath the gate.There is also a very thin layer

of electrons beneath the gate (theinversion layer). In subthreshold, we ignore the charge

from the inversion layer because it is almost negligible compared with the depletion charge

[122].” Assuming drift current is zero (because one assumes the potential in the channel,

surface potential, is zero): “The electron concentrationsat the two ends of the channel

depend on the energy barrier that the electrons encounter. This barrier is determined by the

voltage difference between the surface potential and the applied voltagesVs andVd...[122].”

The current in a pFET transistor in subthreshold operation may be described as a sum

of the forward and reverse current in the transistor:

I = I f − Ir (40)

Expanding (40):

I = I0

[

e
κ(Vw−Vg)−(Vw−Vs)

UT − e
κ(Vw−Vg)−(Vw−Vd)

UT

]

(41)

Where in (41), I0 is a constant representingpreexponential factors[121, 122], andVw

is the bulk voltage (n-well), usually Vdd [122]:

I0 = q
W
L

tDnN1e
ψ0
Ut (42)

And κ is a constant representing the “capacitive coupling ratio from gate to channel

[122]”:

κ =
Cox

Cox +Cd
(43)

And Ut is thethermal voltage[122]:

UT =
kT
q

(44)

If Vg, Vd, andVs are referenced to the bulk voltage [122]:

121

Vg ≡ Vg − Vw (45)

Vd ≡ Vd − Vw (46)

Vs ≡ Vs− Vw (47)

then (41) can be re-expressed as:

I = I0

(

e
−κVg+Vs

UT − e
−κVg+Vd

UT

)

(48)

and further re-expressed as:

I = Ioe
−κVg+Vs

UT

[

1− e
Vds
UT

]

(49)

SubstitutingVds

UT
=
−Vsd

UT
into (49) gives a compact form of the current in a subthreshold-

operating pFET.

I = Ioe
−κVg+Vs

UT

[

1− e
−Vsd
UT

]

(50)

If the drain to source voltage is larger than a certain value (51), then we say the transistor

is operating insaturationand can simplify (7) to (52).

Vsd > 4UT (51)

I = I0e(−κVg+Vs)/UT (52)

An nFET transistor in subthreshold operation may be described as (53) or (54).

I = Io

[

e
κVg−Vs

UT − e
κVg−Vd

UT

]

(53)

122

I = Ioe
κVg−Vs

UT

[

1− e
−Vds
UT

]

(54)

6.1.2.2 Power Analysis

The power analysis for the analog system can be broken down into different sections of

the algorithm such as: Digital to Analog Conversion (DAC), matrix multiplication and ad-

dition analog computation, Analog to Digital Conversion (ADC), memory read-write, and

digital computation. The analog numbers can then be compared to ones from an all digital

approach. Before continuing with the analog power analysis,an all digital computation

can be addressed as follows [180]. First, assume a 640x480 VGA image (i.e. 307,200

pixels) operating at 60 Frames Per Second (FPS). This results in 18,432,000 pixels per

second. Second, assume that the system requires approximately one Multiply and ACcu-

mulate (MAC) per pixel. Based on the number of pixels and the fps, this system would

require approximately 20 Million MAC/s, with sufficient digital resolution for summation

of large number of values. If one assumes the digital system requires approximately 4

memory read/write’s per operation then this results in approximately 80M MIPS (Million

Instructions Per Second) of computation. If using an Atmel ARM9 SC9 processor (TSMC

130nm) with 262 DMIPS (Dhrystone MIPS) [184], then one may estimate that this image

computation is possible with 1/3 of the full speed ARM9 processor.

Now the power analysis of the analog system is addressed. Figure84a shows the circuit

architecture. An integral part of this is the timing diagramin Figure84c which controls the

switching of the three registers. This switching routes thesignals from the DAC through the

matrix weight and onto the correct integrating capacitor. Figure87 simplifies this diagram

to show the signal routing for a single pixel value. Them bits of digital data go through

a source follower circuit and buffer. This signal is weighted by a floating-gate transistor

and then integrated onto a capacitor. To help explain the signal flow, thea, b, andc labels

correspond to the same letters used to describe the algorithm in (34) through (38).

Figure88 shows the main DAC, MAC, and temporary storage circuits of the analog

123

m-bits of Voltage

data representing

 a single pixel

voltage to current

conversion:

using m binary weighted

transistors

current mode

multiplication:

using floating-gate

transistor

current to voltage

conversion:

integrate

current

on capacitor

Imager

G
N

D

G
N

D

G
N

D

G
N

D

Dm D0Dm-1
D1

G
N

D

1/1281/641/41/2

Current Out
G

N
D

bi,j

Vclear

~ ai,j

Digital Voltage In (D)

~(ci-1 + ci)
 ci

Vbias

v
ref

Figure 87.Signal Flow for processing a single pixel.

124

Vbias

i
Integrator Bias

Digital Voltage In (D)

G
N

D

G
N

D

G
N

D

G
N

D

Dm D0Dm-1
D1

1/1281/641/41/2

v
DAC

a)

b)

vx

vo

v
ref

Current

Sensing

C
1

Iin

W
i,j

Iin

c)

W
i,j

Iin

Current

Sensing

Broadcast

v
DAC

C2

C3

i1
i2

Iin

Figure 88.The main circuit components which perform the analog image processing are: a) Source fol-
lower circuit which performs Digital to Analog Conversion current sensing, b) Source-coupled topology
for a weighted current mirror [15], and c) Storage circuit fo r weighted current. The integrator circuit
which holds the intermediate processed values.C2 and C3 are parasitic capacitances.

image processing system. Each of these can be analyzed separately to obtain equations for

current and power (assuming an operating frequency). Figure88a shows a source follower

circuit, operating in the subthreshold domain [122], which convertsm digital bits into an

analog voltage [15]. Source followers are typically used as impedance converters which

convert a weak voltage signal into a stronger driven signal [122]. In typical source follow-

ers, the bias (i.e. sensing) transistor is operated in saturation (52). The standard equation

for a two transistor source follower is (55), whereVg is the input.

Vout = UT log

(

Ib

I0

)

+ κVg (55)

125

When more than one bits are feeding into the source follower, one can express the

equation as (56).

I01e
(−κVg1+Vs)

UT + I02e
(−κVg2+Vs)

UT = Ib (56)

For two bits, the equation for the DAC output is (57).

VDAC = UT log

(

Ib

I0x

)

+ UT log

[(

e
−κ1Vg1

UT + e
−κ2Vg2

UT

)−1]

(57)

The power used by the source follower is based on the current setting of the bias, or

“sensing” transistor.

Figure88b shows a floating-gate source-coupled current mirror [15]. Schlottmann and

Hasler describe two implementations of floating-gate source-coupled current mirrors in

[15]. The type used in Figure88b is what they refer to as a “Buffered input state” as opposed

to their “Log-amp input stage.” “Source coupling involves forcing the input current into

the source of the sensing FET, then buffering the source voltage to the output stages [15].”

The bandwidth of the buffered input state source coupled current mirror is (58) [15].

ω =
gm

C
; where gm =

Ib

UT
(58)

The weight for the multiplication in the analog circuit is determined by the floating-gate

voltages on the sensing pFET and the mirrored pFET. The equation for the weight is (59)

[185, 15].

W ≡
Iout

I in
= e

κ(Vf g,out−Vf g,in)
UT (59)

The OTA in Figure88b is configured in a Unity-Gain Follower, or “buffer” configura-

tion. It is used to buffer the DAC voltage. In this feedback configuration, the OTA isused

to supply the necessary current in order to maintainVDAC at the output of the OTA. An OTA

has a high input impedance (ideally infinite) so it is also used to isolate the source follower

126

vout

Ib

v
in Z

L

i
-
=0

i
L

= Iout

Figure 89.The unity gain follower configuration of an Operational Transconductance Amplifier (OTA).

circuit from the multiply and accumulate circuit which follows. “In contrast to the source

follower...which is also used as an impedance converter, the unity-gain follower does not

introduce a large voltage offset [122].” The OTA’s current output can be modeled with a

tanhcurve (60) [121], and the input-output transfer function can be calculatedas follows.

Given the buffer in Figure89 and a load,ZL, the following equations can be stated. The

static output current of an OTA is found in (60) [186]. This equation is amacromodelof

the amplifier because it is based on the output terminal’s characteristics [17]. In a five tran-

sistor implementation of an OTA, this assumes: 1) all MOSFETs are in saturation, and 2)

the differential pair is operated below threshold [122].

Iout = IB tanh

(

κ

2UT
(Vin − Vout)

)

(60)

Iout =
Vout

ZL
(61)

Linearizing the OTA current output with the constraints in (68) and combining (61) and

(60):

1
ZL

Vout =
IBκ

2UT
(Vin − Vout) (62)

Vout

Vin
=

IBκ

2UT

1
ZL
+

IBκ

2UT

(63)

If the load,ZL, is a purely resistive load, and one lets it approach infinity, one arrives at

the unity gain transfer function, (64).

127

lim
RL→∞

IBκ

2UT

1
RL
+

IBκ

2UT

= 1 (64)

Figure 88c shows the temporary storage circuit. The memory storage element is a

key feature in this image processing architecture. An integrating amplifier [187] is used

to hold and sum the intermediate values for each block’s processing. Using Kirchhoff’s

Current Law (KCL), three equations can be written to describe the currents at the output

of the amplifier, and at the inverting terminal, (65),(66),(67). C2 andC3 represent parasitic

capacitances.

Io = IB tanh

(

κ

2UT

(

Vx − Vre f

)
)

(65)

Io = C3
dVo

dt
+C1

d (Vo − Vx)
dt

(66)

I in = C2
dVx

dt
+C1

d (Vx − Vo)
dt

(67)

One may linearize (65) to (69) if (68) holds, and the other three equations may be

re-arranged too (70) (71) .

∣
∣
∣Vx − Vre f

∣
∣
∣ <

2UT

κ
(68)

Io =
IBκ

2UT

(

Vx − Vre f

)

(69)

Io = (C3 +C1)
dVo

dt
−C1

dVx

dt
(70)

I in = (C2 +C1)
dVx

dt
−C1

dVo

dt
(71)

128

Substituting (69) into (70) leaves one with two equations and two unknowns,Vo and

Vx:

I in = (C2 +C1)
dVx

dt
−C1

dVo

dt
(72)

IBκ

2UT

(

Vx − Vre f

)

= (C3 +C1)
dVo

dt
−C1

dVx

dt
(73)

Further simplifying yields the following two equations:

C1
dVx

dt
+

IBκ

2UT
Vx −

IBκ

2UT
Vre f = (C3 +C1)

dVo

dt
(74)

dVo

dt
=

I in

−C1
+

(C2 +C1)
C1

dVx

dt
(75)

Equation (75) can be substituted into (74) to give the equation representing the inter-

mediate processed value which is stored on the capacitor:

(

C1 −
(C3 +C1) (C2 +C1)

C1

)

dVx

dt
+

IBκ

2UT
Vx −

(

IBκ

2UT
Vre f −

(C3 +C1) I in

C1

)

= 0 (76)

Eq (76) is a first-order linear differential equation of the form (77), which has a solution

of the form (78):

a
dx
dt
+ bx− c = 0 (77)

x (t) = k1e
− bt

a +
c
b

(78)

Four-quadrant multiplication is desired in this circuit. One way to accomplish this

with analog vector matrix multiplication (VMM) is to use differential signals and adopt

a convention where the signed signal is the difference between two positive currents [15].

The architecture in this chapter does not use differential signals but instead uses a bias nFET

(Figure88c) to help allow the system to produce negative weights. The nFET is biased to

129

be in saturation. The idea is that it can be set such that for positive weights the currents

integrate onto the summing capacitor, and for negative weights charge is pulled off of the

capacitor. The key is, similar to [15], to establish signals which are small changes around

a bias current. Similarly, the positive and negative weights will need to be represented by

deltas around a bias weight.

Now that the DAC, MAC, and intermediate storage circuits have been described one

may analyze the system power of these elements. (For now, letus ignore the ADC and

further digital processing stages.) The power-delay product, (79), is used as a power per-

formance metric, where speed comes at the expense of power [17, 15].

Pτ = IVτ (79)

In digital circuits,τ represents the propagation delay. In this analog circuit, it represents

the delay caused by resistors and capacitors in the circuit and is inversely related to the

maximum operating frequency of the architecture. In findingthe maximum operating fre-

quency, one analyzes the bandwidth of the circuit to find the -3dB point. The “standard

recipe” for computing the bandwidth is (from [16]):

1. Derive the input-output transfer function in terms ofs (use node equations)

2. Sets= jω

3. Find the magnitude of the result of step 3

4. Set the magnitude= 1
/√

2 of the “midband” value

5. solve forω

As an approximation to the above steps, one may also estimatethe bandwidth using

The Method of Open-Circuit Time Constants[16, 17]. A high frequency MOSFET model

is shown in Figure90 [16, 17]. If the input stage of Figure87 (i.e. the buffered input

stage) is the dominant factor in the frequency response, then one can use it to estimate the

130

gate drain

Cgs

Csb

Cdb

Cgd

bulk source

gmvg gsVs Vd/ro

Figure 90.High frequency MOSFET model [16, 17].

operating power [15, 188]. Following the analysis in [15, 188], one may find the -3 dB

frequency of the OTA from (58).

τ =
UTC

Ib
(80)

f−3dB =
1

2πτ
=

1
2π

Ib

UTC
(81)

The currents cancel out in the power-delay product calculation (82) and show that one

can reduce the power in this system by reducing the capacitance and/or reducing the capac-

itance seen by the buffer. “The inverse of this product can also roughly be considered the

computation per unit power [15].”

Pτ = VddUTC (82)

If one includes a factor of two to account for the power used bythe output stage (the

current integrator), the power is estimated to be (83).

Pτ = 2VddUTC (83)

A summary of estimated performance metrics is shown in Table8. If the input stage

is changed from a Buffered input stage to a Log-amp input stage then we would expectto

131

Table 8.Estimated Performance Parameters for VMM with Inputs Coming in Serially; with Bu ffered
Input stage using:C = 1.6pF, Vdd = 2.4 V, UT = 0.026

Property Expression I=100pA I=1nA I=10nA
Bandwidth (f) I

2πUTC 383Hz 3.83kHz 38.3kHz
Power (P) 2IVdd 0.48nW 4.8nW 48nW

MMAC /µW 10−12

9.6πUTC 0.80 0.80 0.80

Table 9.Estimated Performance Parameters for VMM with Inputs Coming in Serially; with Log-amp
Input stage using:C = 1.6pF, Vdd = 2.4 V, UT = 0.026, A = 165

Property Expression I=100pA I=1nA I=10nA
Bandwidth (f) IA

2πUTC 63KHz 631kHz 6313kHz
Power (P) 2IVdd 0.48nW 4.8nW 48nW

MMAC /µW 10−12A
9.6πUTC 132 132 132

see increased performance. According to [15], the gain stage of the Log-amp input stage

configuration increases the bandwidth and therefore lowersthe power-delay product, which

increases computation per unit power. Estimated performance metrics for this system are

shown in Table9.

The power numbers for this analog system can be compared to the power numbers in

Figure2. If 1 MAC in 100pJ (10MMAC/mW) then one may make the following predic-

tions for the computations per Joule for the buffered input stage and Log-amp input stage

systems, (84), (85), respectively.

.8MMAC
µW

106µW
1W

1GMAC

103MMAC
=

800GMAC
W

W
J/S
≈ 800GComputations

J
(84)

132MMAC
µW

106µW
1W

1GMAC

103MMAC
=

132000GMAC
W

W
J/S
≈

132000GComputations
J

(85)

6.2 Robotic Testbed Development

This section addresses the embedded systems developed for the visual processing robotic

application. Two FPAA embedded systems are described. First, a modular board system

built around the RASP 2.9V is described. Second, the latest RASP IC, the RASP 3.0 IC,

132

and its embedded system are described.

6.2.1 RASP 2.9V Modular Board System

A flying robot platform is a combination of three main items: the robot hardware, avionics,

and sensors. This work’s analog-digital hardware development is tied to the avionics and

sensors packages. I developed a modular avionics system, Figure91, in which different

printed circuit board (PCB) modules have been made for specifictasks. These modules

are integrated together as needed. Module (1) is a small FPAAboard with a camera and

motor driver IC, Module (2) is a microprocessor and power board for programming and

powering the FPAA, and Module (3), designed by UC Berkeley [18], is a sensor and wire-

less transceiver module. This modular board system was developed for use with the RASP

2.9V FPAA IC. Further work on this system has been suspended infavor of a more power-

ful RASP 3.0 FPAA IC system.

6.2.2 RASP 3.0 System

The latest FPAA developed by the CADSP Lab at Georgia Tech is the RASP 3.0. It is con-

structed in the 350nm CMOS process. The die measures 7mm by 12mm, Figure93. When

compared with previous iterations of the RASP IC, two distinguishing features of this IC

are as follows. First, a Texas Instruments MSP430 compatible microprocessor has been

Figure 91. a) Block diagram of Electronic Module stackup for avionics system. b) Side view of fab-
ricated boards: stand alone FPAA programmer board (bottom), FPAA/camera board (middle), and
UC Berkeley sensor board (top) [18]. c) Measured data from theFPAA programmer /Rasp 2.9V FPAA
board stackup. Successful results from characterizing a source follower setup similar to Figure 88a for
converting digital bits to current.

133

Figure 92. a) RASP 3.0 Control Board (about 4 square inches). Note the USB connection on the top
left; 40 pin header on the right to plug into the RASP 3.0 IC board. b) RASP 3.0a IC Board (about 7.5
square inches) contains the RASP 3.0a IC which is a smaller version of the RASP 3.0a.

integrated into the same die as the FPAA. Second, an analog memory has also been inte-

grated into the die. These two features help allow the FPAA toprocess images efficiently.

Having the microprocessor on the die means that the capacitive load associated with trans-

mitting signals between the FPAA and microprocessor is reduced. The makes for a faster

system. Having an analog memory on the die also allows the image processing system to

save image information without the time cost of transferring data to the microprocessor’s

memory.

The RASP 3.0 Control Board, Figure92a, is USB powered. An FTDI brand IC is used

for serial communication. A high level system block diagramfor this board and how it

interacts with the RASP 3.0 is found in Figure94.

6.2.2.1 Hardware Results

Some ititial results from characterizing a source followersetup used for the DAC in the

RASP 2.9 system are found in Figure91c. Each of these curves represents current contri-

butions from each of eight transistors. The transistors have their gate voltages programmed

134

Figure 93.A picture of the RASP 3.0 IC layout.

Figure 94.System block diagram for the interface between the RASP 3.0 control board and the RASP
3.0 IC.

135

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2..5

3
measured

IO_W_22

IO_W_23

Voltage

Measured

Voltage

Applied

= Floating Gate programmed as a digital switchKey:

ideal

M
e

a
s
u

re
d

 a
t
IO

_
W

_
2

2
 (

V
o

lt
s
)

Input at IO_W_23 (Volts)
[x,y] = Coordinates of Floating Gate switch in FPAA

Figure 95.Measured Data from RASP 3.0. Loopback Switch test: connecting [I /O W 22] to [I /O W 23]
using 8 digitally programed floating-gate switches. Input was applied at one I/O pin, passed through
the FPAA, and measured on another I/O pin.

to binary weighted values. The full RASP 3.0 system will include routing software that

allows one to design a system in Scicos and Xcos (two open-source Matlab and Simulink

type programs, respectively.) The testing of the embedded system and RASP 3.0 IC is

currently being done. We have been able to demonstrate a loop-back-switch test which

involves applying an input on one I/O pin, passing the signal through the FPAA, and then

back out on another I/O pin. The internal routing used 8 floating-gate switches to make the

internal connection between I/O pins. We performed this experiment and the results are

found in Figure95. Figure95a shows the measured results from hardware. The red line

represents the ideal curve. If one applies a voltage A at the input, one ideally should mea-

sure voltage A at the output. The blue circles represent the measured data and show that our

system is performing well. Figure95b shows the coordinates of the floating-gate switches

that were used to perform this test. The bow-tie looking blocks represent transmission-gate

switches that are controlled by floating-gates. This simpletest demonstrates basic function-

ality of the microprocessor and also our ability to program digital (i.e. fully conducting)

floating-gate transistors.

6.2.2.2 Robot Integration

Future work involves integrating the FPAA board into a real robot. The ICE lab at Geor-

gia Tech has recently purchased a Parrot AR.Drone quadrotor helicopter for this purpose,

136

Figure 96. a) RC Controlled AR.Drone [19]. b) Ardudrone interface board which enables access into
the AR.Drone control system [20].

USB Service Port

on AR.Drone

USB to Serial

Converter

Arduino

Microprocessor
Remote Control

RF Receiver

Remote Control

RF Transmitter

FPAA

Embedded System

Figure 97. The FPAA could piggy-back onto the Ardudrone interface system to enable access into
the AR.Drone control system [20]. The original Radio Control system of the Ardudrone could be
maintained to use as a safety override system during testing.

Figure96a. An open source embedded system calledArdudrone[20] has been identified as

a possible resource for integrating the FPAA into the drone.The Ardudrone system inter-

faces to the AR.Drone through the drone’s USB port. The Ardudrone system is designed

to allow an RC controller (as used in RC model airplanes) to control the AR.Drone. An

RF receiver on the drone receives the RF control signals, passes them to an Arduino for

processing, and then these are passed to the drone via its USBport. Figure97 shows how

the FPAA Image processing system can be integrated into thisexisting control architecture.

The RC control link could be maintained to use as a safety override during testing phases.

137

CHAPTER 7

CONCLUSIONS

This dissertation showed how to map path planning and image processing algorithms onto

new analog signal processing systems based on floating-gatebased reconfigurable analog

hardware. Hardware results were shown, and benefits and limitations were described. Ana-

log path planning with floating-gates and neurons was demonstrated in two chapters, and

an analog computation based image processor was also described. One of the computa-

tional capability benefits of the path planning system is theTime Complexity win of the

neuron based path planner,d
v , compared toO

(

d2
)

for a digital wavefront planner (whered

is the depth of the solution andv is the propagation velocity of the wavefront in the neuron

IC). One of the major benefits of the image processing system isthe estimated performance

of 800 to 132000 Giga Computations/Joule, which is significantly higher than the approxi-

mately 10 Giga Computations/Joule efficiency wall trend in Figure2. One of the limitations

shown is that the resistive grid solution is not always optimal.

7.1 Chapter Reviews

Chapter2 presented three hardware and software infrastructures used with a family of

floating-gate based FPAAs being developed at Georgia Tech. These compact and portable

systems provide the user with a comprehensive set of tools for custom analog circuit de-

sign and implementation. The infrastructure includes the FPAA IC, microcontrollers for

interfacing the FPAA with the user’s computer, and Matlab and targeting software. The

FPAA hardware can communicate with Matlab over a USB connection. When connected

to a computer, the USB connection also provides the FPAA hardware’s power. Some of the

software tools include three major systems: a Matlab Simulink FPAA program, a SPICE to

FPAA compiler called GRASPER, and a visualization tool calledRAT. This chapter also

138

presented a description of a floating-gate transistor because this is the key enabling tech-

nology that allows the FPAA to program arbitrary circuits (and also implement resistive

elements).

Chapter3 presented path planning using resistive grids implementedon two different

FPAA ICs: the RASP 2.8a and the RASP 2.9V [31, 73]. The resistive grids elements were

implemented with floating-gate transistors. The general idea is similar to the well known

potential field approach to path planning [74] in that the robot’s location is the high point

of an energy surface, the goal is at the low point, and the pathto goal follows the gradient.

This chapter presented hardware results using reconfigurable AVLSI circuits developed at

Georgia Tech to implement a path planning algorithm. Experimental results were presented

for a large number of environment scenarios. Also, an experimental result of interfacing

the FPAA with a Pioneer robot was described.

Chapter4 presented hardware results for a neuromorphic approach to path planning

using a neuron array IC. The algorithm was explained, and experimental results were pre-

sented showing 100% correct and optimal performance for a large number of randomized

maze environment scenarios. Based on neuron signal propagation speed, neuron IC path

planning may offer a computational advantage over state-of-the-art wavefront planners im-

plemented on FPGAs. Analytical Time and Space Complexity metrics were developed in

this section for a Neuron IC planner, and these were verified against experimental data.

Optimality and Completeness were also addressed. The neuronstructure allows one to

develop sophisticated graphs with varied edge weights between nodes of the grid. Two

interesting cases were presented. First, asymmetric edge costs were assigned to describe

cases which have a certain cost to travel a path in one direction, but a different cost to travel

the same path but in the opposite direction. The applicationof this feature can translate

to real world problems involving hills, traffic patterns, etc. Second, cases were presented

where the nodes near an obstacle were given higher costs to visit those nodes. This is in

139

an effort to keep the autonomous agent at a safe distance from obstacles. This grid weight-

ing can also be used to differentiate among terrains such as sand, ice, gravel, or smooth

pavement. Experimental results were presented for both cases.

Chapter5 presented results of a mobile manipulator robot tasked to play the classic

Towers of Hanoi game. First, the control algorithms necessary to enable necessary game-

playing behavior were discussed, and results were providedof implementing the method-

ology in a high fidelity 3D environment. After attaining success in the simulation envi-

ronment, results were shown on implementation of the same control software using physi-

cal robot hardware. Additionally, analysis for implementing analog Proportional-Integral-

Derivative (PID) control on this platform using a floating-gate based reconfigurable analog

IC was explored. Using this concept of floating-gate analog arrays for control enables off-

loading of the processing, which could be helpful for real-time implementation of robot

behavior.

Chapter6 described a mixed signal image processing algorithm designed to filter and

subsample an image. Two systems being developed for a hybridanalog-digital approach

to image processing were also described. One of these systems is based on the RASP 2.9v

IC and the second is based on the RASP 3.0 IC. Each has its own PCB embedded system

which was also described.

7.2 Extending Analog Reconfigurable Circuits to Additional Autonomous
System Problems

One extension of the planning research is to apply this work to 3-Dimensional (3D) grids.

In theory, the bipartite grid algorithm is amenable to this added dimension. Figure98

shows how a simple 3D grid is mapped onto the RASP 2.9V IC. The 3D planner may also

be useful for cases such as a non-holonomic robot [129].

Autonomous Underwater Vehicles (AUVs) [189] are a power constrained robot plat-

form, navigate with a 3D environment map (two space dimensions, one time dimension),

140

Figure 98. a) Three dimensional grid space. b) Mapping of Nodes 1-12 of the 3D grid in (a) onto a
RASP 2.9V FPAA using a bipartite grid.

and have map updates on the order of minutes. These three qualities make AUV an excel-

lent platform on which to apply the FPAA planner. One AUV application could be to use

realistic 3D ocean data with the existing FPAA planner to solve a path planning task. An-

other 3D planning problem of interest is planning a path for an Unmanned Aerial Vehicle

(UAV) in a three dimensional spacial environment. Regardingthis 3D task, we may be able

to draw upon work by Grupen, et al, in which 3D nonholonomic grids are explored [56],

or work based on Fast Marching (FM) wavefronts [190, 191]. FM methods are especially

applicable to aerial or under water environments because they allow one to take wind or

current influences into account [190].

Another extension of the planning work is to choose a different environment represen-

tation. For instance, the neuron path planners might be usedin a search space that has been

decomposed into a road map method called avisibility graph, Figure99. Visibility graphs

are based on obstacle geometry [21]. If the resolution is high enough, these graphs will

allow one to find a complete solution that will move the robot in the configuration space.

A drawback to this representation is that the path will take the robot as close as possible to

the objects.

141

Start

a) b)

Figure 99.Representing the office environment as a Visibility graph. a) Office environment. b) Nodes of
visibility graph are the start and end nodes and the corners of the obstacles, walls, and along boundaries
[21].

7.3 HMMs, Dendrites, Diffusors, Analog ICs and Robotics

Finally, this dissertation concludes with some of my preliminary work which links mul-

tiple areas covered in my research: Hidden Markov Models (HMMs), Dendrites, Analog

diffusors, and Robotics [192, 193]. An initial robotics application is to use HMMs to allow

robots to recognize doors. Another application is to apply HMMs to robot state estima-

tion. The link to my research is that I and present and past members of the Georgia Tech

ICE Lab have been forging a link between the neural componentscalled dendritesand

HMMs and also working to implement these dendrite-diffusor-HMMs on FPAA platforms,

[194, 195, 196, 197, 198, 192, 199, 193, 200]. Others have made the connection between

analog integrated circuits and HMMs [201, 202]. Ideally, we will one day be able to use

FPAA based dendrite-diffusor-HMMs to perform robotic object classification such as door

finding or robot state estimation. In some preliminary work,a laser ranging sensor was

mounted on a robot and used to detect the presence or absence of doorways. In this system,

the sensor makes a single 180 degree row scan in front of the robot. This row scan data

is the input to the HMM classifier. The HMM classifier under development is currently a

digital Matlab solution [203], but the desire is to use this as a basis for implementing it on

142

the FPAA as an analog HMM-dendrite classifier.

The Hidden Markov Model (HMM) door finder is inspired by previous work using

HMMs to characterize numbers [128]. Another paper using HMMs for door finding is

[204]. In Bishop’s example, numbers are characterized on-line asa pencil traces out a

number though time. The number 2, for example, can be made in many ways. An individual

may start at the top left and finish at the bottom right, or theymay start at the bottom right

and finish at the top left. In this type of situation the starting point and direction of pencil

travel matters. This work uses HMMs to “trace along” the laser data and identify sections

of the curve that are consistent with a trained “door model.”Since doors are typically

symmetrical one may assume that the starting point and direction of trace along the data is

not as important as it is in number or character recognition problems.

7.4 Converting Discrete HMMs to Continuous HMMs

This section describes a method of converting an HMM classifier that has discrete states

and discrete times into one that has a continuum of states in continuous time. This process

is important because analog circuit systems are inherentlycontinuous time systems. This

discrete to continuous conversion is accomplished by usingvariable substitutions and Tay-

lor series approximations. First, discrete HMMs are reviewed, and this is followed by a

discussion on the continuous time version.

7.4.1 Discrete Hidden Markov Models

HMMs are used as pattern classifiers, i.e. discriminators, and have been applied to a wide

range of problems such as speech recognition, hand and face recognition, gesture recogni-

tion, and robot guidance [205, 206, 207]. An HMM is a state machine. A unique HMM

state machine is created (or better “learned”) for each itemto be discriminated. The input to

an HMM system is a time series of observations. These observations can take many forms.

For isolated word recognition or sentence recognition these may be phonemes. For ges-

ture recognition, the observations may be the temporal component of the hand as it moves

143

[206]. The output of an HMM is a number: the likelihood that a sequence of observations

came from a certain HMM model. The output of an HMM classifier is to discriminate the

observation among various models.

Each HMM model is composed of three parameters: the probability of each state being

the starting state, the probability of each state producingcertain observations, and the prob-

ability of transitions among states. Nominally, for a discrete time HMM Model, each state

can produce an observed output with some probability at eachtime step. The sequence

of transitions between states is not known a priori, but is characterized by a set of proba-

bilities. The reason this is called a “Hidden” Markov model is because an observer to the

system only sees outputs but does not know a priori which states produced the observations

and when each state was visited.

Rabiner does a great job of describing three basic problems that must be solved in an

HMM classifier [25, 208]. The wave propagating PDE (described later and in [198]) was

posed as a solution to Rabiner’s “Problem 1” statement:

Given an observation sequenceO = [o1,o2, · · · ,oT] and an HMM modelλY = (AY,bY, πY)

how does one compute the probability of the observation sequence given the model: P[O|λ]?

Whereo(n) are continuous observations (inputs to the HMM classifier), AY is the state

transition matrix,bY are continuous symbol observation densities, andπY is the initial state

probability vector. The subscriptsY indicate that these matrices are for a specific HMM

model.

The italicized “Problem 1” statement above represents thea posterioriprobability that

an observed sequence came from a certain modelY. This is very computationally expensive

to calculate directly as it requires 2T NT − 1 operations where N is the number of states and

T is the length of the observations [208]. It can, however, be calculated more efficiently

using (86) [25]. The discrete observations (such as phonemes) from time step n=1 to time

step n=T are[o1,o2, . . . ,oT] [25]:

144

P [[o1,o2, . . . ,oT] |λY] =
N∑

i=1

ϕi (T) (86)

Where variableϕ is the recursion variable, (87). (ϕ is calledα in theforward-backward

procedure in previous publications [25, 209, 205]) Variablei is the current state and variable

j is the next state.

ϕ j(n+ 1) =

N∑

i=1

ϕi(n)ai j

 bj(on+1) (87)

Where the range of the time step is:

1 < n ≤ T − 1 (88)

And the index over states is:

1 ≤ j ≤ N (89)

Assuming a left-right state model, it is possible to estimate (86) by (90) whereN is the

number of states:

P [(o1,o2, . . . ,oT) |λY] ≈ ϕN (T) (90)

For n > 1, and assuming a left-right model where a state can only transition either to

the next state or back to itself (Figure104c), the recursion variable,ϕ, in (87) simplifies to

(93).

ϕ j (n) = bj (on)
[

ϕ j (n− 1) aj j + ϕ j−1 (n− 1) aj−1, j

]

(91)

Redefine the state transition variable:

aj−1 ≡ aj−1, j (92)

and substituting (92) into (91) gives the equation that is stated in previous papers [201,

202, 198]:

145

Figure 100.Visualizing the recursion for the discrete HMM using a trellis diagram. The observation
sequence in this example is[o1,o2,o3,o4], wherea12 represents state transition probability from state 1
to state 2, andb1(o3) represents the probability of getting observationo3 at n = 3 while in state 1.

ϕ j (n) = bj (on)
[

ϕ j (n− 1)
(

1− aj

)

+ ϕ j−1 (n− 1) aj−1

]

(93)

whereaj andbj are elements of the state transition matrixAY and the symbol probability

matrix BY respectively. Equation94 initializes the recursion:

ϕ j (1) = π jbj (o1) (94)

And the index over states is:

1 ≤ j ≤ N (95)

The recursive process of calculating thea posterioriprobability (93) can be visualized

as a trellis, Figure100.

7.4.2 Continuous Hidden Markov Models

The HMM is typically thought of as a discrete time model, but it can be expressed as a

function of continuous time and states [210]. One may restate the recursion variable in

146

Figure 101.A three dimensional surface representing the recursion variable ϕ in the continuous HMM
as a function of continuous time and state.

(93) as a function of time by replacing the discrete variablen with a continuous variablet

and discrete variablen− 1 with a continuous variablet − τ:

ϕ j (t) = bj (ot)
[(

1− aj

)

ϕ j (t − τ) + aj−1ϕ j−1 (t − τ)
]

(96)

The time for a specific state is now continuous in (96), but the states and probabilities

are still discrete. One may restate the discrete statesj in (96) as a continuous function of

positionx as in (97) and (98).

ϕ j (t) ≡ ϕ (x, t) (97)

ϕ j−1 (t) ≡ ϕ (x− ∆, t) (98)

The value ofϕ in (97) can be seen as a point on a three dimensional surface (Figure101).

The symbol and state transition probabilities,b anda respectively in (96), are currently

expressed as a function of a discrete state but can be expressed in terms of the continuous

state. The continuous representation of the state transition probabilities,a, is shown in (99).

147

aj ≡ a (x)

aj−1 ≡ a (x− ∆)
(99)

The continuous representation of the symbol observation probability, b, is shown in

(100).

bi (ot) ≡ b (x,ot) (100)

Thea posterioriprobability in (86) may now be expressed as a continuous function of

time and state, (101).

P

[

ot
0<t≤T
|λY

]

=

N∗∆∫

x=0

ϕ (x,T)dx (101)

The approximation of (90) can also be restated as a continuous function of time and

state:

P

[

ot
0<t≤T
|λY

]

≈ ϕ (N ∗ ∆,T) (102)

The recursive expression for calculatingϕ in the discrete HMM can now be expressed

as a function of continuous time and state by substituting (99) and (100) into (96). This is

shown in (103):

ϕ (x, t) = b (x,ot)

(1− a (x))ϕ (x, t − τ)

+a (x− ∆)ϕ (x− ∆, t − τ)

(103)

A state’sϕ value at a previous time can be related to the state’s currenttime using the

Taylor series approximation [198]:

ϕ (x, t − τ) ≈ ϕ (x, t) − τ∂ϕ
(x, t)
∂t

(104)

One state’sϕ value at timet may be related to another state’s value at timet using the

Taylor series approximation [198]:

ϕ (x− ∆, t) ≈ ϕ (x, t) − ∆∂ϕ
(x, t)
∂x

(105)

148

Since the shape ofϕ is a surface as in Figure101, one can combine the ideas of (104)

and (105) and relate a state at one time to a previous state at a different time by:

ϕ (x− ∆, t − τ) ≈ ϕ (x, t) − ∆
∂ϕ (x, t)
∂x

− τ
∂ϕ (x, t)
∂t

(106)

Substituting (104) and (106) into (103) and simplifying yields the general differential

equation for a left to right model continuous time and state HMM, (107).

[
1

b(x,t) − 1− a (x− ∆) + a (x)
]

ϕ (x, t)

+ [1+ a (x− ∆) − a (x)] τ∂ϕ(x,t)
∂t

+a (x− ∆)∆∂ϕ(x,t)
∂x

= 0 (107)

Re-arranging terms:

τ
∂ϕ(x,t)
∂t

+
1

b(x,t)−1−a(x−∆)+a(x)

1+a(x−∆)−a(x) ϕ (x, t)

+
a(x−∆)

1+a(x−∆)−a(x)∆
∂ϕ(x,t)
∂x

= 0 (108)

Further re-arranging terms:

τ
∂ϕ(x,t)
∂t

+

(1
b(x,t)

1+a(x−∆)−a(x) − 1
)

ϕ (x, t)

+
a(x−∆)

1+a(x−∆)−a(x)∆
∂ϕ(x,t)
∂x

= 0 (109)

If one assumes that the state transition probabilities are equal, (110), then the differential

equation in (108) simplifies to (111) [198].

a (x− ∆) ≡ a (x) (110)

The final expression for the continuous HMM can be seen as a wave propagating PDE

[198].

τ
∂ϕ (x, t)
∂t

︸ ︷︷ ︸

state
element

+

(

1
b (x, t)

− 1

)

ϕ (x, t)
︸ ︷︷ ︸

decay
term

+a (x)∆
∂ϕ (x, t)
∂x

︸ ︷︷ ︸

wave
propagation

= 0 (111)

149

Figure 102.RC Delay line model.

7.5 Diffusors Implementing HMM Computation

It can be shown that the wave propagating PDE from Section7.4.2 is similar to the dif-

ferential equation used to describe diffusor circuits. Two types of diffusors include an RC

delay line and also a delay line with transistors in place of resistors [194].

7.5.1 RC Delay Line Diffusor

The classical RC delay line is reviewed in Mead’s text [186]. Figure102shows the topol-

ogy. Kirchhoff’s Current Law (KCL) can be used to derive a differential equation for this

circuit, (112) whereG is conductance.

I i (t) = Ci
dVi (t)

dt + Vi (t) Gi +
[Vi (t)−Vi+1(t)]

Ri−1

+
[Vi (t)−Vi−1(t)]

Ri

(112)

Assuming the horizontal resistances are equal as in (113) allows one to simplify (112)

to (114):

Ri = Ri−1 = Rx (113)

I i (t) = Ci
dVi (t)

dt + Vi (t) Gi

+ 1
Rx

[2Vi (t) − Vi+1 (t) − Vi−1 (t)]
(114)

150

Figure 103.Voltages for a 7 tap RC Delay Line (R= .9 , G= .9, C= .01).

Assuming there are many nodes allows one to perform the following change of notation

from discrete nodes to continuous nodes:

Vi(t) = V(x, t) (115)

Vi+1 (t) = V (x+ ∆x, t) (116)

Vi−1 (t) = V (x− ∆x, t) (117)

The value ofV in (115) can be seen as a point on a three dimensional surface, Figure

103. Assuming that∆x represents something like a “position delta” one may use theTaylor

series to describe the continuous nodes in terms of∆x, (118), (119).

V (x+ ∆x, t) = V (x, t) + ∆x
dV (x, t)

dx
+

1
2

(∆x)
2 d2V (x, t)

dx2
+ · · · (118)

V (x− ∆x, t) = V (x, t) − ∆x
dV (x, t)

dx
+

1
2

(∆x)
2 d2V (x, t)

dx2
+ · · · (119)

151

The bracketed term in (114) can be re-written in continuous node terms:

2Vi (t) − Vi+1 (t) − Vi−1 (t) =

2V (x, t) − [V (x+ ∆x, t) + V (x− ∆x, t)]
(120)

Substitute (118) and (119) into (120) and simplify:

2Vi (t) − Vi+1 (t) − Vi−1 (t) ≈ − (∆x)
2 d2V (x, t)

dx2
(121)

Substituting (121) into (114) and simplifying yields (122), the generalized PDE de-

scribing the RC delay line diffusor.

I i (t) Rx = RxCi
dVi (t)

dt
+ RxGiVi (t) − (∆x)

2 d2V (x, t)
dx2

(122)

If one assumes no input current at the top of each nodeI i = 0, then one can put the

diffusor circuit into a form similar to the continuous time HMM equation, (123).

RxCi
dV (x, t)

dt
︸ ︷︷ ︸

state
element

+RxGiV (x, t)
︸ ︷︷ ︸

decay
term

− (∆x)
2 d2V (x, t)

dx2
︸ ︷︷ ︸

di f f usion
term

= 0 (123)

7.5.1.1 Comparing the HMM PDE to the RC Delay Line PDE

Table10compares terms from the HMM PDE and the RC delay line differential equation.

Table 10.Comparing HMM PDE and RC Delay Line Terms
Element Description HMM PDE RC Delay Line
Recursion Variable ϕ (x, t) V (x, t)

State Element Coefficient τ RxCi

Decay Term Coefficient 1
b(x,t) − 1 RxGi

Wave Propagation/Diffusion Term a (x)∆∂ϕ(x,t)
∂x − (∆x)

2 d2V(x,t)
dx2

If one assumes that the resistances are NOT equal and that theconductance of the line

increases towards the right:

Ri−1 ≫ Ri (124)

152

One can re-write (112) as:

I i (t) = Ci
dVi (t)

dt
+ Vi (t)

[

Gi +
1

Ri−1
+

1
Ri

]

−
[

Vi+1 (t)
Ri−1

+
Vi−1 (t)

Ri

]

(125)

Which, using the resistance assumption, simplifies to:

I i (t) = Ci
dVi (t)

dt
+ Vi (t)

[

Gi +
1
Ri

]

− Vi−1 (t)
Ri

(126)

Substituting the Taylor series expansions of (115) and (117) into the above:

I i (t) = Ci
dV (x, t)

dt
+ V (x, t)

[

Gi +
1
Ri

]

− 1
Ri

V (x− ∆x, t) (127)

I i (t) = Ci
dV (x, t)

dt
+ V (x, t)

[

Gi +
1
Ri

]

−
1
Ri

V (x, t)

−∆x
dV(x,t)

dx

+1
2(∆x)

2 d2V(x,t)
dx2

(128)

Assuming that:

∆x≪ 1 (129)

Then one can neglect higher order terms of the Taylor series:

(∆x)
2 ≈ 0 (130)

I i (t) = Ci
dV (x, t)

dt
+ V (x, t)

[

Gi +
1
Ri

]

− 1
Ri

[

V (x, t) − ∆x
dV (x, t)

dx

]

(131)

Re-arranging terms:

I i (t) = Ci
dV(x,t)

dt + V (x, t)
[

Gi +
1
Ri
− 1

Ri

]

+ 1
Ri
∆x

dV(x,t)
dx

(132)

I i (t) Ri = RiCi
dV (x, t)

dt
+ V (x, t) GiRi + ∆x

dV (x, t)
dx

(133)

153

0 = RiCi
dV (x, t)

dt
︸ ︷︷ ︸

state
element

+V (x, t) GiRi − I i (t) Ri
︸ ︷︷ ︸

decay
term

+∆x
dV (x, t)

dx
︸ ︷︷ ︸

wave
propagation

(134)

0 = RiCi
dV (x, t)

dt
︸ ︷︷ ︸

state
element

+V (x, t) [GiRi − 1]
︸ ︷︷ ︸

decay
term

+∆x
dV (x, t)

dx
︸ ︷︷ ︸

wave
propagation

(135)

Assuming that HMM will always propagate to the next state andthere is no probability

that it will remain in its current state leads to the assumption in (136):

a (x) = 1 (136)

Further assuming that the delta’s are the same in both the HMMand RC-delay line,

∆ = ∆x = K, and updating Table10yields Table11.

Table 11.Comparing HMM PDE and RC Delay Line Terms w/Assumptions
Element Description HMM PDE RC Delay Line
Recursion Variable ϕ (x, t) V (x, t)

State Element Coefficient τ RiCi

Decay Term Coefficient 1
b(x,t) − 1 GiRi − 1

Wave Propagation/Diffusion Term K ∂ϕ(x,t)
∂x K dV(x,t)

dx

7.6 HMMs and Analog Systems for Robot Navigation

Previous works have made connections among HMMs and dendrites, and transistor models

of dendrites [192, 198, 197, 196, 195, 194, 193]. This section first describes navigation sys-

tems and an important estimation tool used for navigation called the Kalman filter. A close

relationship is also described between the equations for HMMs and Kalman filters. It is

natural then to consider that there may also be a connection between dendrite computation

and state estimation computation in Kalman filters, Figure104a. It has also been shown that

Kalman filters can be represented using electrical networks, [211], and electrical networks

in Factor Graph format, [212, 213].

154

Figure 104.a) Future research seeks to make a connection among HMMs, Kalman filters, Dendrites
and CMOS transistors. There are two main recursive steps in the Kalman filter [22] b) Time update
step which estimates first the covariance and expected state. After calculating the expected state, one
may predict the expected measurement. c) Measurement updatestep first calculates the Kalman gain
matrix using, among other things, the expected covariance from step (b). This gain matrix is then used
to compute an update to the Covariance matrix and also and update to the state. d) A Temporal Model
is useful for modeling Navigation. The HMM and Kalman Filter are two such types of Temporal Mod-
els. The inputs to these temporal models are transition models and sensor models [1]. e) Probabilistic
Independence Network for HMM (grey circles are observed) [23, 22, 24]. f) Left-Right HMM model
[25].

155

The goal of a navigation system, is to give the robot or autonomous agent an estimate of

its position in the world and often its orientation, velocity, and acceleration. This is often

called estimating thestateof the agent. Navigation can be accomplished in many ways

such as using celestial bodies, radio waves, radar, satellites, or dead reckoning (DR) [214].

Inertial navigation is a type of DR and is the focus of this work. An inertial reference frame

has its origin at the center of the Earth and axes which are non-rotating with respect to the

fixed stars [26].

One of the problems in navigation systems is that the robot can not measure all of the

elements of its state. Instead, in inertial navigation the robot’s position and velocity are

assumed to be a linear function of quantities that the robotcanmeasure, like acceleration

and angular velocity. Inertial Measurement Units (IMUs) are devices that typically contain

three orthogonal rate-gyroscopes and three orthogonal accelerometers to measure angular

velocities and acceleration [215]. This sensor data is then integrated to yield velocity and

position information. Integrating the measured acceleration gives velocity, and a second

integration yields position, Figure105a. “To integrate in the correct direction, attitude is

needed. This is obtained by integrating the sensed angular velocity... Equations integrating

the gyro and accelerometer measurements into velocity, position and orientation are called

navigation equations [216].” [26] An Inertial Navigation System (INS) combines an IMU

with a computer, Figure105b. The computer performs the navigation equation calculations

and produces the state information [216, 27].

To further complicate the navigation problem, the measurements are assumed to be

noisy. The estimated state will therefore be a random variable with some degree of confi-

dence that is often expressed in a covariance matrix. Kalmanfiltering is a common digital

based method for dealing with the state estimation task of mobile robots in the presence of

Gaussian noise. This filtering algorithm is also commonly used for guided missiles [217],

radar tracking systems [218], etc. The Kalman filter is optimal in the sense that the “ex-

pected value of the square of the error magnitude is minimized [219].” In our robot context,

156

Figure 105.INS figures a) from [26]. b) Aided Inertial Navigation System(AIS) from [27]. c) Using a
Kalman filter to combine the sensor data from an INS and GPS [28].

the Kalman filter is a method of combining noisy sensor measurements from sensors such

as gyroscopes, accelerometers, magnetometers, GPS (or a surrogate system), airspeed sen-

sors, etc. to determine the state of the robot [220]. For instance, “Integrating GPS with

an inertial navigation system (INS) and a Kalman filter provides improved overall navi-

gation performance. Essentially, the INS supplies virtually noiseless outputs that slowly

drift off with time. GPS has minimal drift but much more noise. The Kalman filter, using

statistical models of both systems, can take advantage of their different error characteristics

to optimally minimize their deleterious traits [28].” [221] In another, more self contained

non-GSP dependent solution, it is possible to use a Kalman filter to combine gyroscope data

with accelerometer and magnetometer data for an improved navigation solution [222, 223].

In this system, the accelerometer and magnetometer data areused to compensate for the

drift of Micro Electro-Mechanical (MEMs) based rate gyroscopes [222, 224, 225]. In these

types of systems the Kalman filter often operates on signals which represent the attitude

errors, [226].

This process occurs over time and seeks to reduce the estimation error by combining

the measurements. “In Kalman filtering we wish to estimate samples of an unobserved

processx, given samples of some observed processy and a (statespace) dynamic stochastic

model for processesx andy [227].” In our case, the unobserved processx could be the robot

157

position and velocity, and the observed processy is the sensor data. “The Kalman filter not

only works well in practice, but it is theoretically attractive because it can be shown that of

all possible filters, it is the one that minimizes the variance of the estimation error [228].”

The Kalman filter is a statistical estimation tool. Previousresearch has established that

there is a connection between Kalman filters and HMMs [229]. “Now, it is well known

(see e.g. [230, 231]) that the statespace model which underlies the Kalman filter is indeed

an HMM (with continuous state process) [227],” or, put another way, “The Kalman-filter

model is an HMM with linear Gaussian model densities [232].” In [232], the authors

provide “a comprehensive framework in which linear Kalman-filter models are subsumed

by HMMs.”

A temporal probability model, Figure104d can be used to describe the navigation prob-

lem. These types of models have two sub-models: Atransition modeland asensor model

[1]. Hidden Markov Models (HMM) and Kalman Filters are specialcases of a temporal

model called aDynamic Bayesian Network(DBN) [1]. Figure104e shows a Probabilistic

Independence Network (PIN) representation of an HMM, and Figure104e shows a left-

right representation of an HMM.

Future work is to continue to make the link between dendriticprocessing and au-

tonomous vehicle navigation with the goal of implementing the algorithm on a reconfig-

urable platform such as an FPAA.

158

REFERENCES

[1] S. Russell and P. Norvig,Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[2] S. Koziol, P. Hasler, and M. Stilman, “Robot Path PlanningUsing Field Pro-
grammable Analog Arrays,” inRobotics and Automation (ICRA), 2012 IEEE In-
ternational Conference on, 2012, pp. 1747–1752.

[3] B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling Energy Per Operation
via an Asynchronous Pipeline,”Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 21, no. 1, pp. 147–151, 2013.

[4] J. P. Uyemura,Introduction to VLSI Circuits and Systems. J. Wiley, 2002.

[5] P. Hasler, “NSF Proposal,”Georgia Institute of Technology-NSF, 2011.

[6] C. Petre, C. Schlottmann, and P. Hasler, “Automated Conversion of Simulink De-
signs to Analog Hardware on an FPAA,” inCircuits and Systems. IEEE International
Symposium on, May 2008, pp. 500–503.

[7] S. Koziol and P. Hasler, “Reconfigurable Analog VLSI Circuits for Robot Path Plan-
ning,” in Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference on,
June 2011, pp. 36 –43.

[8] S. Koziol, D. Lenz, S. Hilsenbeck, S. Chopra, P. Hasler, and A. Howard, “Us-
ing Floating-Gate Based Programmable Analog Arrays for Real-Time Control of
a Game-Playing Robot,” inSystems, Man, and Cybernetics (SMC), 2011 IEEE In-
ternational Conference on, 2011, pp. 3566–3571.

[9] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess,
M. Suppa, and D. Burschka, “Toward a Fully Autonomous UAV: Research Platform
for Indoor and Outdoor Urban Search and Rescue,”Robotics Automation Magazine,
IEEE, vol. 19, no. 3, pp. 46 –56, Sept. 2012.

[10] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. Wunderlich, A. Basu, and B. Deg-
nan, “A Learning-Enabled Neuron Array IC Based Upon Transistor Channel Models
of Biological Phenomena,”Biomedical Circuits and Systems, IEEE Transactions on,
vol. 7, no. 1, pp. 71–81, 2013.

[11] E. Farquhar and P. Hasler, “A Bio-Physically Inspired Silicon Neuron,”Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 3, pp. 477 – 488,
March 2005.

159

[12] M. Schmidt and D. Fey, “Akers’s Wavefront Planner: One of the Fastest Stencil-
Based Path Planners on FPGAs,” inReconfigurable Computing and FPGAs (Re-
ConFig), 2012 International Conference on, 2012, pp. 1–6.

[13] J. Barraquand and J.-C. Latombe,Robot Motion Planning: A Distributed Represen-
tation Approach. Stanford Univ CA Dept of Computer Science, 1989.

[14] C. Erdal, A. Toker, and C. Acar, “Ota-C Based Proportional-Integral-Derivative
(PID) Controller And Calculating Optimum Parameter Tolerances,”Turkish Journal
of Electrical Engineering& Computer Sciences, vol. 9, no. 2, pp. 189–198, 2001.

[15] C. Schlottmann and P. Hasler, “A Highly Dense, Low Power,Programmable Ana-
log Vector-Matrix Multiplier: The FPAA Implementation,”Emerging and Selected
Topics in Circuits and Systems, IEEE Journal on, vol. 1, no. 3, pp. 403 –411, Sept.
2011.

[16] T. H. Lee,The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge
University Press, 2004.

[17] A. S. Sedra and K. C. Smith,Microelectronic Circuits Fifth Edition. Oxford Uni-
versity Press, Inc., 2004.

[18] A. Mehta and K. Pister, “WARPWING: A Complete Open Source Control Platform
for Miniature Robots,” inIntelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 5169–5174.

[19] R. Groups.com. (2013, August) RC Controlled AR.Drone. . [Online]. Available:
http://www.rcgroups.com/forums/showthread.php?t=1335257

[20] open source project. (2013, August) Ardudrone. . [Online]. Available:
http://code.google.com/p/ardudrone/

[21] R. Siegwart and I. Nourbakhsh,Introduction to Autonomous Mobile Robots. The
MIT Press, 2004.

[22] N. Funk, “A Study of the Kalman Filter Applied to Visual Tracking,” Rap. tech,
University of Alberta, Project for CMPUT 652, 2003.

[23] P. Smyth, D. Heckerman, and M. Jordan, “Probabilistic Independence Networks for
Hidden Markov Probability Models,”Neural computation, vol. 9, no. 2, pp. 227–
269, 1997.

[24] K. Murphy, “An Introduction to Graphical Models,”Rap. tech, 2001.

[25] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition,”Proceedings of the IEEE, vol. 77, no. 2, pp. 257 –286, Feb.
1989.

[26] D. Titterton and J. Weston,Strapdown Inertial Navigation Technology. Peter Pere-
grinus Ltd, 2004, vol. 17.

160

http://www.rcgroups.com/forums/showthread.php?t=1335257
http://code.google.com/p/ardudrone/

[27] K. Gade, “Introduction to Inertial Navigation and Kalman Filtering.”

[28] L. Levy, “The Kalman filter: Navigation’s Integration Workhorse,” GPS World,
vol. 8, no. 9, pp. 65–71, 1997.

[29] H. Woithe, I. Chigirev, D. Aragon, M. Iqbal, Y. Shames, S.Glenn, O. Schofield,
I. Seskar, and U. Kremer, “Slocum Glider Energy Measurementand Simulation In-
frastructure,” inOCEANS 2010 IEEE - Sydney, May 2010, pp. 1 –8.

[30] M. Eichhorn, “Solutions for Practice-Oriented Requirements for Optimal Path Plan-
ning for the AUV SLOCUM Glider,” inOCEANS 2010, Sept. 2010, pp. 1 –10.

[31] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre,S. Koziol,
F. Baskaya, C. Twigg, and P. Hasler, “A Floating-Gate-Based Field-Programmable
Analog Array,”Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1781 –1794,
Sept. 2010.

[32] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler,“A 531 nW/MHz, 128
Times;32 Current-Mode Programmable Analog Vector-Matrix Multiplier with Over
Two Decades of Linearity,” inCustom Integrated Circuits Conference, 2004. Pro-
ceedings of the IEEE 2004, Oct. 2004, pp. 651 – 654.

[33] B. Morgan and S. Bedair, “Power for Microsystems Strategic Technology Initia-
tive Report on MAST Mission Power Requirements,” DTIC Document, Tech. Rep.,
2009.

[34] S. Bouabdallah, M. Becker, and R. Siegwart, “Autonomous Miniature Flying
Robots: Coming Soon! - Research, Development, and Results,”Robotics Automa-
tion Magazine, IEEE, vol. 14, no. 3, pp. 88 –98, Sept. 2007.

[35] N. Tsourveloudis, D. Gracanin, and K. Valavanis, “Design and Testing of Navigation
Algorithm for Shallow Water Autonomous Underwater Vehicle,” in OCEANS ’98
Conference Proceedings, vol. 1, Sep-1 Oct 1998, pp. 342 –346 vol.1.

[36] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane, “Path Planning for
Autonomous Underwater Vehicles,”Robotics, IEEE Transactions on, vol. 23, no. 2,
pp. 331 –341, April 2007.

[37] J. Ratti, J.-H. Moon, and G. Vachtsevanos, “Towards Low-Power, Low-Profile
Avionics Architecture and Control for Micro Aerial Vehicles,” in Aerospace Con-
ference, 2011 IEEE, March 2011, pp. 1 –8.

[38] J. Ratti and G. Vachtsevanos, “High Endurance, Micro Aerial Surveillance and Re-
connaisance Robot,” inTechnologies for Practical Robot Applications (TePRA),
2011 IEEE Conference on, April 2011, pp. 1 –6.

[39] L. Wowwee Group. (2013, August) Robosapien Website. [Online]. Available:
www.wowwee.com/robosapien-x/

161

www.wowwee.com/robosapien-x/

[40] G. I. of Technology. (2013, August) Georgia DARPA Urban Grand Challenge.
[Online]. Available:www.gtresearchnews.gatech.edu/images/sting1md.jpg

[41] G. Hu, W.-P. Tay, and Y. Wen, “Cloud Robotics: Architecture, Challenges and Ap-
plications,”Network, IEEE, vol. 26, no. 3, pp. 21–28, 2012.

[42] E. Guizzo, “Robots with their Heads in the Clouds,”Spectrum, IEEE, vol. 48, no. 3,
pp. 16–18, 2011.

[43] J. Hutchinson, C. Koch, J.Luo, and C. Mead, “Computing Motion using Analog and
Binary Resistive Networks,”Computer, vol. 21, no. 3, pp. 52–63, 1988.

[44] M. Stan, W. Burleson, C. Connolly, and R. Grupen, “Analog VLSI for Robot Path
Planning,”The Journal of VLSI Signal Processing, vol. 8, no. 1, pp. 61–73, 1994.

[45] U. Roth, M. Walker, A. Hilmann, and H. Klar, “Dynamic PathPlanning with Spiking
Neural Networks,”Biological and Artificial Computation: From Neuroscience to
Technology, pp. 1355–1363, 1997.

[46] R. Glasius, A. Komoda, and S. C. Gielen, “Neural Network Dynamics for Path Plan-
ning and Obstacle Avoidance,”Neural Networks, vol. 8, no. 1, pp. 125–133, 1995.

[47] C. Mead, “Neuromorphic Electronic Systems,”Proceedings of the IEEE, vol. 78,
no. 10, pp. 1629 –1636, Oct. 1990.

[48] L. Tarassenko and A. Blake, “Analogue Computation of Collision-free Paths,” in
Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference
on, Apr. 1991, pp. 540–545 vol.1.

[49] L. Tarassenko, G. Marshall, F. Gomez-Castaneda, and A. Murray, “Parallel Ana-
logue Computation for Real-Time Path Planning,” inProceedings of 2nd Workshop
on VLSI for Artificial Intelligence and Neural Networks, vol. 3, 1990.

[50] M. Stan and W. Burleson, “Analog VLSI for Robot Path Planning,” in Signals, Sys-
tems and Computers, 1992. 1992 Conference Record of The Twenty-Sixth Asilomar
Conference on, Oct. 1992, pp. 915 –919 vol.2.

[51] G. Marshall and L. Tarassenko, “Robot Path Planning Using VLSI Resistive Grids,”
in Artificial Neural Networks, 1993., Third International Conference on, May 1993,
pp. 163 –167.

[52] ——, “Robot Path Planning Using Resistive Grids,” inArtificial Neural Networks,
1991., Second International Conference on, Nov. 1991, pp. 149 –152.

[53] ——, “Robot Path Planning Using VLSI Resistive Grids,”Vision, Image and Signal
Processing, IEE Proceedings -, vol. 141, no. 4, pp. 267 –272, Aug. 1994.

[54] K. Althofer, D. Fraser, and G. Bugmann, “Rapid Path Planning for Robotic Manip-
ulators Using an Emulated Resistive Grid,”Electronics Letters, vol. 31, no. 22, pp.
1960 –1961, Oct. 1995.

162

www.gtresearchnews.gatech.edu/images/sting1_md.jpg

[55] M. Kanaya, G.-X. Cheng, K. Watanabe, and M. Tanaka, “Shortest Path Searching
for Robot Walking Using an Analog Resistive Network,” inCircuits and Systems,
1994. ISCAS ’94., 1994 IEEE International Symposium on, vol. 6, May-2 Jun 1994,
pp. 311 –314 vol.6.

[56] R. Grupen, C. Connolly, K. Souccar, and W. Burleson, “Towarda Path Co-Processor
for Automated Vehicle Control,” inIntelligent Vehicles ’95 Symposium., Proceed-
ings of the, Sept. 1995, pp. 164 –169.

[57] L.-J. Yun, Z.-J. Liu, H.-X. Sun, and J. Yuan, “A Path Planner of Mobile Robot
Based on Multi-Grid Circuit Map,” inMachine Learning and Cybernetics, 2005.
Proceedings of 2005 International Conference on, vol. 2, Aug. 2005, pp. 1279 –
1284 Vol. 2.

[58] M. Stan, W. Burleson, C. Connolly, and R. Grupen. (1994,
May) Analog VLSI for Robot Path Planning. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6921&rep=rep1&type=pdf

[59] K. B. Ariyur, E. Lautenschlager, and M. R. Elgersma, “Method and Device for
Three-Dimensional Path Planning to Avoid Obstacles Using Multiple Planes,” U.S.
Patent Application 0 090 228 205, Mar. 10, 2008.

[60] M. R. Elgersma, S. Dajani-Brown, S. G. Pratt, K. Fregene, and K. Ariyur, “Method
and System for Automatic Path Planning and Obstacle/Collision Avoidance of Au-
tonomous Vehicles,” U.S. Patent Application 0 088 916A1, June 4, 2008.

[61] S. Ravela, R. Weiss, B. Draper, B. Pinette, A. Hanson, and E. Riseman, “Stealth
Navigation: Planning and Behaviors,” inProceedings of ARPA Image Understand-
ing Workshop, 1994, pp. 1093–1100.

[62] T. Zourntos and N. Mathai, “A BEAM-Inspired Lyapunov-Based Strategy for Ob-
stacle Avoidance and Target-Seeking,” inAmerican Control Conference, 2007. ACC
’07, July 2007, pp. 5302 –5309.

[63] M. Minsky and P. Seymour,Perceptrons. MIT Press, 1969.

[64] B. Widrow and M. Lehr, “30 Years of Adaptive Neural Networks: Perceptron, Mada-
line, and Backpropagation,”Proceedings of the IEEE, vol. 78, no. 9, pp. 1415–1442,
1990.

[65] T. Poggio and C. Koch, “Ill-Posed Problems in Early Vision: From Computational
Theory to Analogue Networks,”Proceedings of the Royal society of London. Series
B. Biological sciences, vol. 226, no. 1244, pp. 303–323, 1985.

[66] J. G. Harris, C. Koch, and J. Luo, “A Two-Dimensional Analog VLSI Circuit for
Detecting Discontinuities in Early Vision,”Science, vol. 248, no. 4960, pp. 1209–
1211, 1990.

163

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6921&rep=rep1&type=pdf

[67] C. Koch, J. Marroquin, and A. Yuille, “Analog “neuronal”Networks in Early Vi-
sion,” Proceedings of the National Academy of Sciences, vol. 83, no. 12, pp. 4263–
4267, 1986.

[68] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, B. Degnan, S. Ramakrishnan,
P. Hasler, and A. Balavoine, “Hardware and Software Infrastructure for a family
of Floating-Gate Based FPAAs,” IEEE International Symposium on Circuits and
Systems (ISCAS) 2010, May 2010.

[69] S. Ganesan and R. Vemuri, “Analog-Digital Partitioningfor Field-Programmable
Mixed Signal Systems,” inAdvanced Research in VLSI, 2001. ARVLSI 2001. Pro-
ceedings. 2001 Conference on, 2001, pp. 172 –185.

[70] M. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The Accelerator Store Frame-
work for High-Performance, Low-Power Accelerator-Based Systems,” Computer
Architecture Letters, vol. 9, no. 2, pp. 53 –56, Feb. 2010.

[71] C. Winstead, J. Dai, W. J. Kim, and S. Little, “Analog MAP Decoder for (8, 4) Ham-
ming Code in Subthreshold CMOS,” inAdvanced Research in VLSI, 2001. ARVLSI
2001. Proceedings. 2001 Conference on, 2001, pp. 132 –147.

[72] S. Koziol, R. Wunderlich, P. Hasler, and M. Stilman, “Path Planning Using Recon-
figurable Analog VLSI,”to be submitted:, 2013.

[73] C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A Digitally Enhanced Dynam-
ically Reconfigurable Analog Platform for Low-Power Signal Processing,”Solid-
State Circuits, IEEE Journal of, vol. 47, no. 9, pp. 2174–2184, 2012.

[74] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,”
in Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
vol. 2, Mar. 1985, pp. 500 – 505.

[75] C. Twigg and P. Hasler, “Incorporating Large-Scale FPAAs Into Analog Design and
Test Courses,”Education, IEEE Transactions on, vol. 51, no. 3, pp. 319–324, Aug.
2008.

[76] C. Twigg, P. Hasler, and F. Baskaya, “A Self-Contained Large-Scale FPAA Devel-
opment Platform,” inCircuits and Systems, 2007. IEEE International Symposium
on, May 2007, pp. 1187–1191.

[77] T. Hall, C. Twigg, P. Hasler, and D. Anderson, “Application Performance of Ele-
ments in a Floating-Gate FPAA,” inCircuits and Systems, 2004. ISCAS ’04. Pro-
ceedings of the 2004 International Symposium on, vol. 2, May 2004, pp. II – 589–92
Vol.2.

[78] C. Twigg and P. Hasler, “A Large-Scale Reconfigurable Analog Signal Processor
(RASP) IC,” inCustom Integrated Circuits Conference, 2006. CICC ’06. IEEE, Sept.
2006, pp. 5 –8.

164

[79] A. Basu, C. Twigg, S. Brink, P. Hasler, C. Petre, S. Ramakrishnan, S. Koziol, and
C. Schlottmann, “RASP 2.8: A New Generation of Floating-Gate Based Field Pro-
grammable Analog Array,” inCustom Integrated Circuits Conference, 2008. CICC
2008. IEEE, 2008, pp. 213–216.

[80] A. Basu, S. Ramakrishnan, and P. Hasler, “Neural Dynamicsin Reconfigurable Sil-
icon,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on, 30 2010-June 2 2010, pp. 1943 –1946.

[81] R. Wunderlich, F. Adil, and P. Hasler, “Floating Gate-Based Field Programmable
Mixed-Signal Array,”Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, vol. 21, no. 8, pp. 1496–1505, 2013.

[82] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A Field Pro-
grammable Analog Array for CMOS Continuous-Time OTA-C FilterApplications,”
Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 125 –136, Feb. 2002.

[83] E. Lee and P. Gulak, “Field Programmable Analogue ArrayBased on MOSFET
Transconductors,”Electronics Letters, vol. 28, no. 1, pp. 28 –29, Jan. 1992.

[84] C. Looby and C. Lyden, “A CMOS Continuous-Time Field Programmable Analog
Array,” in Proceedings of the 1997 ACM fifth international symposium on Field-
programmable gate arrays. ACM, 1997, pp. 137–141.

[85] V. Gaudet and G. Gulak, “10 MHz Field Programmable Analog Array Prototype
Based on CMOS Current Conveyors,” inMicronet Annual Workshop, Ottawa, On-
tario, 1999.

[86] J. Becker and Y. Manoli, “A Continuous-Time Field Programmable Analog Array
(FPAA) Consisting of Digitally Reconfigurable GM-Eells,” inCircuits and Systems,
2004. ISCAS ’04. Proceedings of the 2004 International Symposium on, vol. 1, May
2004, pp. I – 1092–5 Vol.1.

[87] G. Cowan, R. Melville, and Y. Tsividis, “A VLSI Analog Computer/Math Co-
Processor for a Digital Computer,” inSolid-State Circuits Conference, 2005. Digest
of Technical Papers. ISSCC. 2005 IEEE International, Feb. 2005, pp. 82 –586 Vol.
1.

[88] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli, “A Field-
Programmable Analog Array of 55 Digitally Tunable OTAs in a Hexagonal Lattice,”
Solid-State Circuits, IEEE Journal of, vol. 43, no. 12, pp. 2759 –2768, Dec. 2008.

[89] C. S. Corporation. (2013, August) Psoc5 webpage. [Online]. Available:
www.cypress.com/psoc/

[90] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-Scale Field-
Programmable Analog Arrays for Analog Signal Processing,”Circuits and Systems
I: Regular Papers, IEEE Transactions on, vol. 52, no. 11, pp. 2298–2307, Nov. 2005.

165

www.cypress.com/psoc/

[91] C. Twigg, J. Gray, and P. Hasler, “Programmable FloatingGate FPAA Switches Are
Not Dead Weight,” inCircuits and Systems, 2007. IEEE International Symposium
on, May 2007, pp. 169–172.

[92] A. Basu and P. Hasler, “A Fully Integrated Architecture for Fast Programming of
Floating Gates,” inCircuits and Systems, 2007. IEEE International Symposium on,
May 2007, pp. 957–960.

[93] C. Schlottmann, C. Petre, and P. Hasler, “A High-Level Simulink-Based Tool for
FPAA Configuration,”Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, vol. 20, no. 1, pp. 10 –18, Jan. 2012.

[94] I. Baskaya, “Physical Design Automation for Large ScaleField Programmable
Analog Arrays,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, Aug.
2009. [Online]. Available:http://hdl.handle.net/1853/31810

[95] F. Baskaya, D. Anderson, P. Hasler, and S. K. Lim, “A Generic Reconfigurable Array
Specification and Programming Environment (GRASPER),” inCircuit Theory and
Design, 2009. European Conference on, Aug. 2009, pp. 619–622.

[96] F. Baskaya, B. Gestner, C. Twigg, S. K. Lim, D. Anderson, andP. Hasler, “Rapid
Prototyping of Large-scale Analog Circuits With Field Programmable Analog Ar-
ray,” in Field-Programmable Custom Computing Machines. 15th Annual IEEE Sym-
posium on, April 2007, pp. 319–320.

[97] F. Baskaya, D. Anderson, and S. K. Lim, “Net-Sensitivity-Based Optimization of
Large-Scale Field-Programmable Analog Array (FPAA) Placement and Routing,”
Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 56, no. 7, pp.
565–569, July 2009.

[98] L. Geppert, “The new Indelible Memories,”Spectrum, IEEE, vol. 40, no. 3, pp.
48–54, 2003.

[99] P. E. Hasler, “Foundations of Learning in Analog VLSI,”Ph.D. dissertation, Cali-
fornia Institute of Technology, 1997.

[100] R. Robucci, “Development of a Computational Image SensorWith Applications in
Integrated Sensing and Processing,” Ph.D. dissertation, Georgia Institute of Tech-
nology, Atlanta, May 2009. [Online]. Available:http://hdl.handle.net/1853/33943

[101] A. Basu, “Neural Dynamics in Reconfigurable Silicon,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, march 2010. [Online]. Available:
http://hdl.handle.net/1853/39542

[102] R. Wood, “The First Takeoff of a Biologically Inspired At-Scale Robotic Insect,”
IEEE Transactions on Robotics, vol. 24, no. 2, pp. 341–347, 2008.

166

http://hdl.handle.net/1853/31810
http://hdl.handle.net/1853/33943
http://hdl.handle.net/1853/39542

[103] R. Wood, S. Avadhanula, E. Steltz, M. Seeman, J. Entwistle, A. Bachrach, G. Bar-
rows, and S. Sanders, “An Autonomous Palm-Sized Gliding Micro Air Vehicle,”
IEEE Robotics& Automation Magazine, vol. 14, no. 2, pp. 82–91, 2007.

[104] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson,
T. McLain, and M. Goodrich, “Autonomous Vehicle Technologies for Small Fixed
Wing UAVs,” AIAA Journal of Aerospace Computing, Information, and Communi-
cation, vol. 2, no. 1, pp. 92–108, 2005.

[105] G. Torres and T. Mueller, “Micro Aerial Vehicle Development: Design, Compo-
nents, Fabrication, and Flight-Testing,” inAssociation for Unmanned Vehicle Sys-
tems International (AUVSI) Unmanned Systems 2000 Symposium and Exhibition,
Orlando, FL, July 2000, pp. 123–456.

[106] S. Mittal and K. Deb, “Three-Dimensional Offline Path Planning for UAVs Using
Multiobjective Evolutionary Algorithms,” inEvolutionary Computation, 2007. CEC
2007. IEEE Congress on, Sept. 2007, pp. 3195 –3202.

[107] Z. Qi, Z. Shao, Y. S. Ping, L. M. Hiot, and Y. K. Leong, “AnImproved Heuristic Al-
gorithm for UAV Path Planning in 3D Environment,” inIntelligent Human-Machine
Systems and Cybernetics (IHMSC), 2010 2nd International Conference on, vol. 2,
Aug. 2010, pp. 258 –261.

[108] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient Two-phase 3D Motion Planning
for Small Fixed-Wing UAVs,” inRobotics and Automation, 2007 IEEE International
Conference on, April 2007, pp. 1035 –1041.

[109] J. Yang, Z. Qu, J. Wang, and R. Hull, “A Real-Time Optimized Path Planning for a
Fixed Wing Vehicle Flying in a Dynamic and Uncertain Environment,” inAdvanced
Robotics, 2005. ICAR ’05. Proceedings., 12th InternationalConference on, July
2005, pp. 96 –102.

[110] B. Weiss, M. Naderhirn, and L. del Re, “Global Real-Time Path Planning for UAVs
in Uncertain Environment,” inComputer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEEInternational Sympo-
sium on Intelligent Control, 2006 IEEE, Oct. 2006, pp. 2725 –2730.

[111] S. Bortoff, “Path Planning for UAVs,” inAmerican Control Conference, 2000. Pro-
ceedings of the 2000, vol. 1, no. 6, 2000, pp. 364–368 vol.1.

[112] E. Frazzoli, M. Dahleh, and E. Feron, “Real-Time MotionPlanning for Agile Au-
tonomous Vehicles,”Journal of Guidance Control and Dynamics, vol. 25, no. 1, pp.
116–129, 2002.

[113] D. Pines and F. Bohorquez, “Challenges Facing Future Micro-Air-Vehicle Develop-
ment,”Journal of aircraft, vol. 43, no. 2, pp. 290–305, 2006.

167

[114] Y. Mei, Y.-H. Lu, Y. Hu, and C. S. G. Lee, “A Case Study of Mobile Robot’s Energy
Consumption and Conservation Techniques,” inAdvanced Robotics, 2005. ICAR
’05. Proceedings., 12th International Conference on, 2005, pp. 492–497.

[115] J. Kok, L. Gonzalez, and N. Kelson, “FPGA Implementation of an Evolutionary
Algorithm for Autonomous Unmanned Aerial Vehicle On-Board Path Planning,”
Evolutionary Computation, IEEE Transactions on, vol. 17, no. 2, pp. 272–281, 2013.

[116] M. Schmidt, M. Reichenbach, and D. Fey, “A Generic VHDL Template for 2D
Stencil Code Applications on FPGAs,” inObject/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW), 2012 15th IEEE International
Symposium on, 2012, pp. 180–187.

[117] D. Powers,Boundary Value Problems: and Partial Differential Equations. Aca-
demic Press, 2010.

[118] C. Connolly, J. Burns, and R. Weiss, “Path Planning Using Laplace’s Equation,” in
Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference
on, May 1990, pp. 2102 –2106 vol.3.

[119] C. Connolly and R. Grupen, “The Applications of Harmonic Functions to Robotics,”
Journal of Robotic Systems, vol. 10, no. 7, pp. 931 –946, June 1993.

[120] A. K. Mitra. (2013, August) Finite Difference Method for
the Solution of Laplace Equation. Laplace.pdf. [Online]. Available:
www.public.iastate.edu/∼akmitra/aero361/design(underscore)web/Laplace.pdf

[121] C. Mead,Analog VLSI and Neural Systems. Addison Wesley Publishing Company.
USA, 1989.

[122] S. Liu,Analog VLSI: Circuits and Principles. The MIT press, 2002.

[123] P. Smith and P. Hasler, “A Kappa Projection Algorithm (KPA) for Programming to
Femtoampere Currents in Standard CMOS Floating-Gate Elements,” in Circuits and
Systems, 2005. 48th Midwest Symposium on, August 2005, pp. 75 –78 Vol. 1.

[124] R. Olfati-Saber, “Near-Identity Diffeomorphisms and Exponential ε-
Tracking and ε-Stabilization of First-Order Nonholonomic SE (2) Vehi-
cles,” inProceedings of the American Control Conference. Citeseer, 2002.

[125] M. Robots. (2013, August) Mobile Robots Website. [Online]. Available:
www.mobilerobots.com

[126] R. Borras. (2010, April) Blob Detection. . [Online]. Available:
www.ros.org/doc/api/cvblobslib/html/classCBlob.html

[127] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and M. Mataric, “Most
Valuable Player: A Robot Device Server for Distributed Control,” in Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference
on, vol. 3, 2001, pp. 1226–1231 vol.3.

168

www.public.iastate.edu/~akmitra/aero361/design(underscore)web/Laplace.pdf
www.mobilerobots.com
www.ros.org/doc/api/cvblobslib/html/classCBlob.html

[128] C. Bishop,Pattern Recognition and Machine Learning. Springer, 2006.

[129] C. Connolly and R. Grupen,Nonholonomic Path Planning Using Harmonic Func-
tions. Citeseer, 1994.

[130] M. Sipser,Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[131] J.-O. Kim and P. Khosla, “Real-Time Obstacle AvoidanceUsing Harmonic Potential
Functions,” inRobotics and Automation, 1991. Proceedings., 1991 IEEE Interna-
tional Conference on, Apr. 1991, pp. 790 –796 vol.1.

[132] ——, “Real-Time Obstacle Avoidance Using Harmonic Potential Functions,”
Robotics and Automation, IEEE Transactions on, vol. 8, no. 3, pp. 338 –349, Jun.
1992.

[133] L. Vacariu, F. Roman, M. Timar, T. Stanciu, R. Banabic, andO. Cret, “Mobile Robot
Path-Planning Implementation in Software and Hardware,” in Proceedings of the 6th
WSEAS International Conference on Signal Processing, Robotics and Automation.
World Scientific and Engineering Academy and Society (WSEAS), 2007, pp. 140–
145.

[134] K. Sridharan, S. Lam, and T. Srikanthan, “VLSI Architectures for Autonomous
Robots-A Review,”Autonomous Robots Research Advances, p. 105, 2008.

[135] G. Indiveri, E. Chicca, and R. Douglas, “Artificial Cognitive Systems: From VLSI
Networks of Spiking Neurons to Neuromorphic Cognition,”Cognitive Computation,
vol. 1, no. 2, pp. 119–127, 2009.

[136] R. Douglas, M. Mahowald, and C. Mead, “Neuromorphic Analogue VLSI,”Annual
review of neuroscience, vol. 18, pp. 255–281, 1995.

[137] T. Lande, Neuromorphic Systems Engineering: Neural Networks in Silicon.
Springer, 1998, vol. 447.

[138] L. Smith and A. Hamilton,Neuromorphic Systems: Engineering Silicon from Neu-
robiology. World Scientific Publishing Company Incorporated, 1998, vol. 10.

[139] F. Kendoul, “Survey of Advances in Guidance, Navigation, and Control of Un-
manned Rotorcraft Systems,”Journal of Field Robotics, 2012.

[140] Y. K. Hwang and N. Ahuja, “Gross Motion PlanningA Survey,” ACM Computing
Surveys (CSUR), vol. 24, no. 3, pp. 219–291, 1992.

[141] J. Barraquand and J. Latombe, “Robot Motion Planning: A Distributed Representa-
tion Approach,”The International Journal of Robotics Research, vol. 10, no. 6, pp.
628–649, 1991.

[142] S. M. LaValle,Planning Algorithms. Cambridge university press, 2006.

169

[143] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying Fast and Low
Among Obstacles: Methodology and Experiments,”The International Journal of
Robotics Research, vol. 27, no. 5, p. 549, 2008.

[144] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli,“Flying Fast and Low Among
Obstacles,” inRobotics and Automation, 2007 IEEE International Conference on.
IEEE, 2007, pp. 2023–2029.

[145] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Modeling, Esti-
mation, and Control of Quadrotor,”Robotics Automation Magazine, IEEE, vol. 19,
no. 3, pp. 20 –32, Sept. 2012.

[146] H. Lim, J. Park, D. Lee, and H. Kim, “Build Your Own Quadrotor: Open-Source
Projects on Unmanned Aerial Vehicles,”Robotics Automation Magazine, IEEE,
vol. 19, no. 3, pp. 33 –45, Sept. 2012.

[147] J.-C. Latombe,Robot Motion Planning. Springer, 1991.

[148] J. Lengyel, M. Reichert, B. Donald, and D. Greenberg, “Real-Time Robot Motion
Planning Using Rasterizing Computer Graphics Hardware,” inACM SIGGRAPH
Computer Graphics, vol. 24, no. 4. ACM, 1990, pp. 327–335.

[149] L. Dorst and K. Trovato, “Optimal Path Planning by Cost Wave Propagation in Met-
ric Configuration Space,” inSociety of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, vol. 1007, 1988, p. 186.

[150] J. Mitchell and C. Papadimitriou, “The Weighted Region Problem: Finding Shortest
Paths Through a Weighted Planar Subdivision,”Journal of the ACM (JACM), vol. 38,
no. 1, pp. 18–73, 1991.

[151] P. Batavia and I. Nourbakhsh, “Path Planning for the Cye Personal Robot,” inIntel-
ligent Robots and Systems, 2000. (IROS 2000). Proceedings.2000 IEEE/RSJ Inter-
national Conference on, vol. 1, 2000, pp. 15 –20 vol.1.

[152] J. Lin, P. Merolla, J. Arthur, and K. Boahen, “Programmable Connections in Neuro-
morphic Grids,” inCircuits and Systems, 2006. MWSCAS ’06. 49th IEEE Interna-
tional Midwest Symposium on, vol. 1, Aug. 2006, pp. 80 –84.

[153] A. Davison, D. Br̈uderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet,
and P. Yger, “Pynn: a common interface for neuronal network simulators,”Frontiers
in neuroinformatics, vol. 2, 2008.

[154] N. C. Rowe and R. S. Alexander, “Finding Optimal-Path Mapsfor Path Planning
Across Weighted Regions,”The International Journal of Robotics Research, vol. 19,
no. 2, pp. 83–95, 2000.

[155] C. Goerzen, Z. Kong, and B. Mettler, “A Survey of Motion Planning Algorithms
From the Perspective of Autonomous UAV Guidance,”Journal of Intelligent and
Robotic Systems, vol. 57, no. 1-4, pp. 65–100, 2010.

170

[156] S. Koziol, S. Brink, and P. Hasler, “A neuromorphic approach to path planning using
a reconfigurable neuron array ic,” inUnder review:, 2013.

[157] K. Stoy. (2011, March) The Player Project. . [Online].Available:
http://playerstage.sourceforge.net

[158] S. Zhao, C. Chen, C. Liu, and M. Liu, “Algorithm of Locationof Chess-Robot
System Based on Computer Vision,” inControl and Decision Conference, 2008.
CCDC 2008. Chinese, July 2008, pp. 5215 –5218.

[159] A. Curtis, J. Shim, E. Gargas, A. Srinivasan, and A. Howard, “Dance Dance Pleo:
Developing a Low-Cost Learning Robotic Dance Therapy Aid,” inProceedings of
the 10th International Conference on Interaction Design andChildren. ACM, 2011,
pp. 149–152.

[160] A. Trevor, H. W. Park, A. Howard, and C. Kemp, “Playing With Toys: Towards Au-
tonomous Robot Manipulation for Therapeutic Play,” inRobotics and Automation,
2009. ICRA ’09. IEEE International Conference on, May 2009, pp. 2139 –2145.

[161] M. Jones, T. Trapp, N. Jones, D. Brooks, and A. Howard. (2010) Engaging Childern
with Severe Physical Disabilities via Teleoperated Controlof a Robot Piano Player.
[Online]. Available:http://vip.gatech.edu/wiki /images/6/65/Robotpianoplayer.pdf

[162] H. W. Park and A. Howard, “Case-Based Reasoning for Planning Turn-Taking Strat-
egy With a Therapeutic Robot Playmate,” inBiomedical Robotics and Biomecha-
tronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, Sept.
2010, pp. 40 –45.

[163] E. Krotkov, “Robotics Laboratory Exercises,”IEEE Transactions on Education,
vol. 39, no. 1, pp. 94–97, 1996.

[164] I. J. Goodfellow, N. Koenig, M. Muja, C. Pantofaru, A. Sorokin, and L. Takayama,
“Help Me Help You: Interfaces for Personal Robots,” inHuman-Robot Interaction
(HRI), 2010 5th ACM/IEEE International Conference on, 2-5 2010, pp. 187 –188.

[165] W.-H. Fu, J. Jiang, X. Qin, T. Yi, and Z.-L. Hong, “A Reconfigurable Analog Pro-
cessor Based on FPAA with Coarse-Grained, Heterogeneous Configurable Analog
Blocks,” in Field Programmable Logic and Applications (FPL), 2010 International
Conference on, 31 2010-Sept. 2 2010, pp. 211 –216.

[166] P. Dong, G. Bilbro, and M.-Y. Chow, “Controlling A Path-Tracking Unmanned
Ground Vehicle With a Field-Programmable Analog Array,” inAdvanced Intelligent
Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, 2005,
pp. 1263–1268.

[167] V. Aggarwal, M. Mao, and U.-M. O’Reilly, “A Self-TuningAnalog Proportional-
Integral-Derivative (PID) Controller,” inAdaptive Hardware and Systems, 2006.
AHS 2006. First NASA/ESA Conference on, June 2006, pp. 12 –19.

171

http://playerstage.sourceforge.net
http://vip.gatech.edu/wiki/images/6/65/Robotpianoplayer.pdf

[168] M. A. Terry, “Evolving Circuits on a Field ProgrammableAnalog Array Using Ge-
netic Programming,” Boston, May 2005.

[169] J. Dorsey,Continuous and Discrete Control Systems. McGraw Hill, 2002.

[170] K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Tech-
nology,” Control Systems Technology, IEEE Transactions on, vol. 13, no. 4, pp. 559
– 576, July 2005.

[171] Y. Li, K. H. Ang, and G. Chong, “PID Control System Analysis and Design,”Control
Systems Magazine, IEEE, vol. 26, no. 1, pp. 32 – 41, Feb. 2006.

[172] ——, “Patents, Software, and Hardware for PID Control: An Overview and Analysis
of the Current Art,”Control Systems, IEEE, vol. 26, no. 1, pp. 42 – 54, feb. 2006.

[173] V. Michal, C. Premont, G. Pillonet, and N. Abouchi, “Single active element PID
controllers,” inRadioelektronika, 2010 20th International Conference, April 2010,
pp. 1 –4.

[174] C. Erdal, “A New Current-Feedback Amplifiers (CFA) Based Proportional-Integral-
Derivative (PID) Controller Realization And Calculating Optimum Parameter Toler-
ances,”Pakistan Journal Of Applied Sciences, vol. 2, no. 1, pp. 56–59, 2002.

[175] A. Stoica, D. Keymeulen, M. Mojarradi, R. Zebulum, and T. Daud, “Progress in
the Development of Field Programmable Analog Arrays for Space Applications,” in
Aerospace Conference, 2008 IEEE, March 2008, pp. 1 –9.

[176] D. Keymeulen, A. Stoica, R. Zebulum, S. Katkoori, P. Fernando, H. Sankaran,
M. Mojarradi, and T. Daud, “Self-Reconfigurable Analog ArrayIntegrated Circuit
Architecture for Space Applications,” inAdaptive Hardware and Systems, 2008.
AHS ’08. NASA/ESA Conference on, June 2008, pp. 83 –90.

[177] S. by Willow Garage. (2010, May) OpenCV. Webpage. [Online]. Available:
http://opencv.willowgarage.com/wiki /

[178] A. Singh. (2013, August) Hanoimania! Webpage.

[179] L. Itti and C. Koch, “Computational Modelling of Visual Attention,”Nature reviews
neuroscience, vol. 2, no. 3, pp. 194–203, 2001.

[180] J. Hasler, “Ultra Low-power Sensor Hardware for Autonomous Copter Tracking,”
Work in progress, July 2012.

[181] L. Itti and C. Koch, “Feature Combination Strategies forSaliency-Based Visual At-
tention Systems,”Journal of Electronic Imaging, vol. 10, no. 1, pp. 161–169, 2001.

[182] D. Matthys. (2001, march) Log filter. [Online]. Available:
http://academic.mu.edu/phys/matthysd/web226/Lab02.htm

172

http://opencv.willowgarage.com/wiki/
http://academic.mu.edu/phys/matthysd/web226/Lab02.htm

[183] K. Fisher, S. Perkins, A. Walker, and E. Wolfart.
(2003) Hypermedia image processing refernece. [Online]. Available:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

[184] Atmel. (2013, August) Arm926 processor performance specifications. [Online].
Available: http://www.arm.com/products/processors/classic/arm9/arm926.php

[185] C. Schlottmann, C. Petre, and P. Hasler, “Vector Matrix Multiplier on Field Pro-
grammable Analog Array,” inAcoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, 2010, pp. 1522–1525.

[186] C. Mead and M. Ismail,Analog VLSI Implementation of Neural Systems. Springer,
1989.

[187] J. Nilsson and S. Riedel,Electric Circuits. Addison-Wesley Pub. Co., 1996.

[188] P. Hasler and J. Dugger, “An Analog Floating-Gate Nodefor Supervised Learning,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 5, pp.
834–845, 2005.

[189] N. Tsourveloudis, D. Gracanin, and K. Valavanis, “Design and Testing of Navigation
Algorithm for Shallow Water Autonomous Underwater Vehicle,” in OCEANS ’98
Conference Proceedings, vol. 1, 1998, pp. 342–346 vol.1.

[190] C. Petres, Y. Pailhas, Y. Petillot, and D. Lane, “Underwater Path Planing Using Fast
Marching Algorithms,” inOceans 2005 - Europe, vol. 2, 2005, pp. 814–819 Vol. 2.

[191] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans,and D. Lane, “Path Planning for
Autonomous Underwater Vehicles,”Robotics, IEEE Transactions on, vol. 23, no. 2,
pp. 331–341, 2007.

[192] P. Hasler, S. Kozoil(sic), E. Farquhar, and A. Basu, “Transistor Channel Dendrites
Implementing HMM Classifiers,” inCircuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on, May 2007, pp. 3359 –3362.

[193] S. George, J. Hasler, S. Koziol, S. Nease, and S. Ramakrishnan, “Low Power Den-
dritic Computation for Wordspotting,”Journal of Low Power Electronics and Appli-
cations, vol. 3, no. 2, pp. 73–98, 2013.

[194] S. Nease, S. George, P. Hasler, S. Koziol, and S. Brink, “Modeling and Implemen-
tation of Voltage-Mode CMOS Dendrites on a Reconfigurable Analog Platform,”
Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 1, pp. 76–84,
2012.

[195] S. George and P. Hasler, “HMM Classifier Using Biophysically Based CMOS Den-
drites for Wordspotting,” inBiomedical Circuits and Systems Conference (BioCAS),
2011 IEEE, Nov. 2011, pp. 281 –284.

173

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
http://www.arm.com/products/processors/classic/arm9/arm926.php

[196] P. Smith and P. Hasler, “A Programmable Diffuser Circuit Based on Floating-Gate
Devices,” inCircuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest
Symposium on, vol. 1, Aug. 2002, pp. I – 291–4 vol.1.

[197] P. D. Smith and P. Hasler, “Analog Speech Recognition Project,” in Acoustics,
Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on,
vol. 4, May 2002, pp. IV–3988 –IV–3991.

[198] P. Hasler, P. Smith, E. Farquhar, and D. Anderson, “A Neuromorphic IC Connection
Between Cortical Dendritic Processing and HMM Classification,” in Digital Signal
Processing Workshop, 2004 and the 3rd IEEE Signal Processing Education Work-
shop. 2004 IEEE 11th, Aug. 2004, pp. 334 – 337.

[199] P. Smith, “An Analog Architecture for Auditory Feature Extraction and
Recognition,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, Nov.
2004. [Online]. Available:http://hdl.handle.net/1853/4839

[200] S. George and P. Hasler, “HMM Classifier Using Biophysically Based CMOS Den-
drites for Wordspotting,” inBiomedical Circuits and Systems Conference (BioCAS),
2011 IEEE, 2011, pp. 281–284.

[201] J. Lazzaro, J. Wawrzynek, and R. Lippmann, “A Micropower Analog VLSI HMM
State Decoder for Wordspotting,” inNIPS. Citeseer, 1996, pp. 727–733.

[202] ——, “A Micropower Analog Circuit Implementation of Hidden Markov Model
State Decoding,”Solid-State Circuits, IEEE Journal of, vol. 32, no. 8, pp. 1200–
1209, 1997.

[203] S. Koziol, J. Wang, and H. Wu, “Feature Integration forRobust Detection: Fusing
Laser and Vision to Detect Doorways,”CS8803, Georgia Institute of Technology,
Dec. 2009.

[204] D. Schr̈oter, T. Weber, M. Beetz, and B. Radig, “Detection and Classification of
Gateways for the Acquisition of Structured Robot Maps,” inProc. of 26th Pattern
Recognition Symposium (DAGM), Tübingen/Germany, 2004.

[205] B.-H. Juang and S. Furui, “Automatic Recognition and Understanding of Spoken
Language - A First Step Toward Natural Human-Machine Communication,” Pro-
ceedings of the IEEE, vol. 88, no. 8, pp. 1142 –1165, Aug. 2000.

[206] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37, no. 3,
pp. 311 –324, May 2007.

[207] Q. Zhu, “Hidden Markov Model for Dynamic Obstacle Avoidance of Mobile Robot
Navigation,”Robotics and Automation, IEEE Transactions on, vol. 7, no. 3, pp. 390
–397, Jun. 1991.

174

http://hdl.handle.net/1853/4839

[208] L. Rabiner and B. Juang, “An Introduction to Hidden Markov Models,”ASSP Mag-
azine, IEEE, vol. 3, no. 1, pp. 4 – 16, Jan. 1986.

[209] ——, Fundamentals of speech recognition. Prentice hall Englewood Cliffs, New
Jersey, 1993, vol. 103.

[210] W. Wei, B. Wang, and D. Towsley, “Continuous-Time hiddenMarkov models for
network performance evaluation,”Performance Evaluation, vol. 49, no. 1-4, pp.
129–146, 2002.

[211] D. Carter, “A Circuit Theory of the Kalman Filter,” inDecision and Control, 1993.,
Proceedings of the 32nd IEEE Conference on, Dec. 1993, pp. 1224 –1226 vol.2.

[212] P. Vontobel and H.-A. Loeliger, “Factor Graphs and Dynamical Electrical Net-
works,” in Information Theory Workshop, 2003. Proceedings. 2003 IEEE, March-4
April 2003, pp. 218 – 221.

[213] P. Vontobel, D. Lippuner, and H. Loeliger, “Kalman Filters, Factor Graphs, and
Electrical Networks,” inProc. Fifteenth Intern. Symp. on Math. Theory of Networks
and Systems. Citeseer, 2002, pp. 12–16.

[214] Wikipedia. Navigation. . [Online]. Available:
http://en.wikipedia.org/wiki /Navigation

[215] O. Woodman, “An Introduction to Inertial Navigation,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAMCL-TR-696, 2007.

[216] K. Gade, “Introduction to Inertial Navigation.”

[217] P. Zarchan, “Tactical and Strategic Missile Guidance, ser,”Progress in Astronautics
and Aeronautics. Reston, VA: American Institute of Aeronautics and Astronautics,
Inc, vol. 176, 1997.

[218] Y. Bar-Shalom and X. Li, “Estimation and Tracking- Principles, Techniques, and
Software,”Norwood, MA: Artech House, Inc, 1993., 1993.

[219] H. Sorenson and A. Stubberud, “Linear Estimation Theory (Mathematical Models
for Unbiased Minimum Variance Linear Estimation Problem),” Theory and applica-
tions of Kalman filtering, editor Leondes, C.T., pp. 1–42, 1970.

[220] A. Kelly, “A 3D State Space Formulation of a NavigationKalman Filter for Au-
tonomous Vehicles,” DTIC Document, Tech. Rep., 1994.

[221] A. Brown, “GPS/INS Uses Low-Cost MEMS IMU,”Aerospace and Electronic Sys-
tems Magazine, IEEE, vol. 20, no. 9, pp. 3–10, 2005.

[222] L. Xue, W. Yuan, H. Chang, and C. Jiang, “MEMS-based Multi-Sensor Integrated
Attitude Estimation Technology for MAV Applications,” inNano/Micro Engineered
and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on,
Jan. 2009, pp. 1031 –1035.

175

http://en.wikipedia.org/wiki/Navigation

[223] C. Brigante, N. Abbate, A. Basile, A. Faulisi, and S. Sessa, “Towards Miniaturiza-
tion of a MEMS-Based Wearable Motion Capture System,”Industrial Electronics,
IEEE Transactions on, vol. 58, no. 8, pp. 3234 –3241, Aug. 2011.

[224] H. B. Christophersen, R. W. Pickell, J. C. Neidhoefer, A. A.Koller, S. K. Kan-
nan, and E. N. Johnson, “A Compact Guidance, Navigation, and Control System
for Unmanned Aerial Vehicles,”Journal of aerospace computing, information, and
communication, vol. 3, no. 5, pp. 187–213, 2006.

[225] F. Kendoul, Y. Zhenyu, and K. Nonami, “Embedded Autopilot for Accurate Way-
point Navigation and Trajectory Tracking: Application to Miniature Rotorcraft
UAVs,” in Robotics and Automation, 2009. ICRA ’09. IEEE InternationalConfer-
ence on, May 2009, pp. 2884 –2890.

[226] Y. Bar-Shalom, X. Li, T. Kirubarajan, and J. Wiley,Estimation with Applications to
Tracking and Navigation. Wiley Online Library, 2001.

[227] W. Pieczynski and F. Desbouvries, “Kalman Filtering Using Pairwise Gaussian
Models,” inAcoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP
’03). 2003 IEEE International Conference on, vol. 6, April 2003, pp. VI – 57–60
vol.6.

[228] D. Simon, “Kalman Filtering,”Embedded Systems Programming, vol. 14, no. 6, pp.
72–79, 2001.

[229] S. Roweis and Z. Ghahramani, “A Unifying Review of LinearGaussian Models,”
Neural computation, vol. 11, no. 2, pp. 305–345, 1999.

[230] R. Elliott, L. Aggoun, and J. Moore,Hidden Markov Models: Estimation and Con-
trol. Springer, 1995, vol. 29.

[231] P. Caines,Linear Stochastic Systems. John Wiley & Sons, Inc., 1987.

[232] P. Ainsleigh, N. Kehtarnavaz, and R. Streit, “Hidden Gauss-Markov Models for Sig-
nal Classification,”Signal Processing, IEEE Transactions on, vol. 50, no. 6, pp. 1355
–1367, Jun. 2002.

176

	Titlepage
	Signatures
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Reconfigurable Analog Circuits for Path Planning and Image Processing
	The Problem Being Addressed
	Why This Problem Is Important
	Dissertation Contributions
	Design Principals Used in this Dissertation
	Principals in Practice

	Related Work
	Other Application Domains
	Dissertation Summary
	Chapter Summaries

	Chapter 2 — FPAAs for Embedded Signal Processing
	FPAA Background and Foundational Material
	FPAA Hardware Infrastructure
	Research Board
	Class-oriented Board
	Stand-alone Board

	FPAA Software Infrastructure
	Design Flow Using a Demonstration Test Circuit
	Floating-Gate Transistors
	Summary

	Chapter 3 — Resistive Grid Path Planning
	Mathematical Analysis of Analog Planner
	Constraint Based Path Finding in AVLSI
	Path Finding on the RASP 2.8 FPAA
	Experiment 1: Solving a simple grid problem
	Results
	Experiment 1 Summary

	Experiment 2: Integration of FPAA and Robot
	Experimental Results
	Analysis
	Summary

	Path Finding on the RASP 2.9v FPAA
	Software
	FPAA Hardware Results and Analysis
	Time Complexity
	Space Complexity
	Completeness
	Optimality
	Calculation Time Estimate
	Power Costs

	Summary

	Chapter 4 — Neuron Path Planning
	Wavefront Neuron Analog Planner Setup
	Neuron IC Hardware Results and Analysis
	Time Complexity
	Neuron Pre-programming Time
	Environment Map Programming Time
	Time to Read the Solution From the Neurons
	Solution Computation Time

	Space Complexity
	Completeness
	Optimality
	Neuron IC Implementation vs. Digital
	Experiments with Non-uniform and Asymmetrical Edge Weights
	Scalability
	Power Costs

	Summary

	Chapter 5 — Control with FPAAs
	The Mobile Manipulator and FPAA
	Related Work
	Playing with Robots
	Analog Control

	Architecture for Sensing, Thinking, and Acting
	Sensing
	Thinking
	Acting

	Hardware Implementation
	Summary

	Chapter 6 — Image Processing
	FPAA Based Image Processing Algorithm
	Subsampling Algorithm
	Circuit Architecture for the Subsampling Algorithm
	Subthreshold Transistors
	Power Analysis

	Robotic Testbed Development
	RASP 2.9V Modular Board System
	RASP 3.0 System
	Hardware Results
	Robot Integration

	Chapter 7 — Conclusions
	Chapter Reviews
	Extending Analog Reconfigurable Circuits to Additional Autonomous System Problems
	HMMs, Dendrites, Diffusors, Analog ICs and Robotics
	Converting Discrete HMMs to Continuous HMMs
	Discrete Hidden Markov Models
	Continuous Hidden Markov Models

	Diffusors Implementing HMM Computation
	RC Delay Line Diffusor
	Comparing the HMM PDE to the RC Delay Line PDE

	HMMs and Analog Systems for Robot Navigation

	References

