RECONFIGURABLE ANALOG CIRCUITS FOR

AUTONOMOUS VEHICLES

A Dissertation
Presented to
The Academic Faculty

By

Scott Michael Koziol

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
in
Robotics

U

School of Electrical and Computer Engineering
Georgia Institute of Technology
December 2013

Copyright© 2013 by Scott Michael Koziol



RECONFIGURABLE ANALOG CIRCUITS FOR

AUTONOMOUS VEHICLES

Approved by:

Dr. Jennifer Hasler, Advisor Dr. Henrik Christensen
Professor, School of ECE Distinguished Professor, School of Interactive
Georgia Institute of Technology Computing

Georgia Institute of Technology

Dr. Magnus Egerstedt

Professor, School of ECE Dr. Mike Stilman
Georgia Institute of Technology Assistant Professor, School of Interactive Com-
puting

Georgia Institute of Technology
Dr. Fumin Zhang
Associate Professor, School of ECE
Georgia Institute of Technology

Date Approved: August 20, 2013



ACKNOWLEDGMENTS

| owe a big thank you to my advisor, my commimttee, lab matesnds, family, and my

God. Proverbs 3:5-6.



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . s e e e il
LISTOF TABLES . . . . . . e e e e e Vii
LISTOFFIGURES . . . . . . . e e viii
SUMMARY . . e XXi
CHAPTER 1 RECONFIGURABLE ANALOG CIRCUITS FOR PATH PLAN-
NING AND IMAGE PROCESSING . . . .. ... ... ..... 1
1.1 The ProblemBeing Addressed . . . . . .. ... ... ......... 3
1.2 Why This ProblemIsIimportant. . . . . ... ... ... ........ 3
1.3 Dissertation Contributions. . . . . . .. ... .. ... ... 4
1.3.1 Design Principals Used in this Dissertation. . . . . . .. ... 6
1.3.2 PrincipalsinPractice . . . . ... ... ... ... ....... 7
1.4 RelatedWork . . . . . . . . . . . e 8
1.5 Other ApplicationDomains . . . . . . . . . .. ... . ... ... ... 9
1.6 DissertationSummary . . . . . . . . . ... 10
1.7 ChapterSummaries . . . . . . . . . . . 12
CHAPTER 2 FPAAS FOR EMBEDDED SIGNAL PROCESSING . . . . . .. 15
2.1 FPAA Background and Foundational Material. . . . . . .. ... ... 15
2.2 FPAA Hardware Infrastructure . . . . . .. .. ... ... ... ... . 16
221 ResearchBoard. . .. .. .. ... ... ... .. .. ..... 18
2.2.2 Class-orientedBoard . . . . . .. ... ... .. ........ 21
2.2.3 Stand-aloneBoard. . . . .. ... ... ... ... L. 21
2.3 FPAA Software Infrastructure . . . . . . . .. ... ... ... ... .. 22
2.4 Design Flow Using a Demonstration Test Circuit . . . . . .. .. ... 25
2.5 Floating-Gate Transistors . . . . . . . . . .. . ... .. ... ... 25
2.6 SUMMANY. . . . . .. e e e 27
CHAPTER 3 RESISTIVE GRID PATH PLANNING . . . . ... ... .... 28
3.1 Mathematical Analysis of Analog Planner. . . . . .. ... ... ... 30
3.2 Constraint Based Path Findingin AVLSI. . . .. ... ... ...... 32
3.3 PathFindingonthe RASP2.8FPAA. . . . . . .. ... .. ... ... 34
3.3.1 Experiment 1. Solving a simple grid problem. . . . . . .. .. 34
3.3.2 Experiment 2: Integration of FFAAand Robot . . . . . . . .. 43
3.4 Path Findingonthe RASP2.9vFPAA . . . . . . . . ... ... .... 51
3.41 Software . . ... ... ... 55
3.4.2 FPAA Hardware Resultsand Analysis. . . . . ... ... ... 56
343 Summary. . . ... e 65



CHAPTER 4 NEURON PATH PLANNING . ... ... ... .. ....... 66
4.1 Wavefront Neuron Analog PlannerSetup . . . . . . .. .. ... ... 72
4.2 Neuron IC Hardware Results and Analysis . . . . . . ... ... ... 76

421 TimeComplexity. . . . . . . . . . .. 76
422 SpaceComplexity . . . . . . . .. ... ... . 79
423 Completeness . . . . . . . .. . .o 83
424 Optimality. . . . .. ... . . 85
4.2.5 Neuron IC Implementation vs. Digital . . . . . ... ... ... 85
4.2.6 Experiments with Non-uniform and Asymmetrical Edgeigkits. 87
4.2.7 Scalability. . . . ... ... .. 92
428 PowerCosts . . . ... . . . . . e e 94
4.3 SUMMANY. . . . . o e e e e e e 94

CHAPTERS5 CONTROLWITHFPAAS . .. .. .. . ... .. . ... .... 96
5.1 The Mobile Manipulatorand FPAA . . . . . . . . . . . ... ... ... 96
5.2 RelatedWork . . . . . . . . . ... 98

5.2.1 PlayingwithRobots . . . . . . ... .. ... .. ... ..... 98
5.2.2 AnalogControl. . . .. ... ... . ... .. ... .. ... 98
5.3 Architecture for Sensing, Thinking, and Acting . . . . . . . ... ... 98
531 Sensing. . . . . ... 99
532 Thinking. . . . . . . . 99
533 Acting. . . . . ... 107
5.4 Hardware Implementation. . . . . . .. ... ... .. ... ...... 110
55 Summary . . ... 111

CHAPTER 6 IMAGEPROCESSING . . .. .. .. ... .. ... ....... 112

6.1 FPAA Based Image Processing Algorithm. . . . . . . ... ... ... 112
6.1.1 Subsampling Algorithm . . . . . .. .. ... ... ....... 112
6.1.2 Circuit Architecture for the Subsampling Algorithm . . . . . . 115

6.2 Robotic Testbed Development . . . . . . ... ... ... ....... 132
6.2.1 RASP 2.9V Modular Board System . . . . ... ... ... .. 133
6.2.2 RASP3.0System. ... .. ... ... ... ... .. ..... 133

CHAPTER 7 CONCLUSIONS . . . . . . .. . . 138
7.1 ChapterReviews . . . . . . . . . . . e 138
7.2 Extending Analog Reconfigurable Circuits to Additionatédnpomous Sys-

temProblems. . . . ... 140

7.3 HMMs, Dendrites, Otusors, Analog ICs and Robotics . . . . . . . .. 142

7.4 Converting Discrete HMMs to Continuous HMMs. . . . . . . . .. .. 143
7.4.1 Discrete Hidden MarkovModels . . . . . .. ... .. .. ... 143
7.4.2 Continuous Hidden MarkovModels . . . . . .. ... ... .. 146

7.5 Diffusors Implementing HMM Computation . . . . . . . ... ... .. 150
7.5.1 RCDelayLineDOtusor. . . . ... ... ... .. ........ 150

7.6 HMMs and Analog Systems for Robot Navigation . . . . ... .. .. 154



REFERENCES

Vi



Table 1
Table 2
Table 3
Table 4
Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

LIST OF TABLES

Sampling of Matlab commands used to interface with®&P . . . . . . 25
Grid Programming Times according to pathtype . . . . . . . .. .. 48
Rasp 2.8: Comparing FPAAtoBFS. . . . . . . .. ... ... .. .. 49
Grid Programming Times according to pathtype . . . . . . . .. .. 59

RASP29V: Comparing FPAA to BFS (whdyés the branching factor,
b=4 for Figure 46), andl is the depth of the goalnode [1].. . . . . . . 62

Comparing Neuron IC planner to digital methods, wilesethe depth
of the solution in the searchtree.. . . . . . . .. .. ... ... .... 84

Analog Proportional Integral Derivative Controtiessign with and with-
out parasiticcapacitances . . . . . . . . .. .. 0o 106

Estimated Performance Parameters for VMM with legtioming in
Serially; with Bufered Input stage usingC = 1.6pF, Vygq = 24V,
Ur=0026. . ... . . . @ . e 132

Estimated Performance Parameters for VMM with Ispgioming in
Serially; with Log-amp Input stage usin@€ = 1.6pF, Vgq = 24V,

Ur=0026,A=165. . . . . . . . . . . . . e 132
Comparing HMM PDE and RC Delay Line Terms. . . . . .. .. .. 152
Comparing HMM PDE and RC Delay Line Term#&asumptions. . . . 154

Vil



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

LIST OF FIGURES

This shows a goal of this research: To use reconfigieanalog circuits
called Field Programmable Analog Array Integrated Circ(FHRAA I1C)

to plan a path for small robot through an environment in fioreto
conserve limited battery resources and extend operatioest(2]. . . . . 2

Reproduced from [3], this figure illustrates the iletinat the rate of
improvement in computations per unit energy in processees the last
30 years is decreasing, and if the trend illustrated in thisr& continues
itisapproachinga“wall.” . . . . . .. .. ... ... oL 5

This cartoon depicts the idea of weight vs. compartat capability and
also shows how we plan to add more computdtcem using a hybrid
analog-digital approach. . . . . .. ... .. ... ... .. ... 5

Using the physics of transistors to perform muttggion: Digital multi-
plication requires hundreds or more transistors to perfammultiplica-
tion [4]. Analog can perform a multiplication using abouttténsistors. 7

In analog, when the signal is a current, the additjperation of vector
matrix multiplicationis “free.”. . . . . . . .. ... L oL 8

a) Guidance: Thagh levelprocess of planning a path from the Start to
the Goal. b) Navigation: Agent uses sensor input to detezntgstate
(Position, Velocity, Acceleration). c) Control: Thew levelprocess of
tracking guidance commands while maintaining stability.. . . . . . . 11

Roadmap of the current and estimated future GT FPAdeM&lopment
[5]. .« . 16

Research in this dissertation was based on the follplRPAA ICs: a)
RASP 2.8a used for path planning and control, b) RASP 2.9v used f
path planning, and c) Neuron IC used for path planning. . . . . . .. 17

FPAA Programming and Control Board (25.76 squaresisiciNote the
USB connection on the top left; 40 pin DIP microcontrollerdnte to
the right of the serial connector; the 100 pin ZIF socket fizerting the
FPAA ICs; many 2x4 pin headers connected to FPA2, DAC outpults,
ADC inputs, FPAA control pins, and powground; 4 SMA for FPAA
I/O interface; and the audio jacks (on the lower right).. . . . . . . .. 18

Adaptor Board (4.16 square inches). This custom Pg3Balquad flat

pack (QFP) packaged FPAA IC on one side and pins on the ottier si

The pins plug into the 100 pin ZIF socket on the programming @n-
trolboard.. . . . . . ... 19
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Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19
Figure 20

Block Diagram of the FPAA programming and contrato The board

has been designed to be self-contained and portable, ocatingea lap-
top. The user chooses between USB or serial communicatidre T
power is supplied by the USB port. The microcontrolleC} is a 40

pin DIP plug-in module which uses an ATMEL 32 Bit ARM processor.
The FPAA JO can be reconfigurably connected to the discrete ADC and
DACs using headers and jumpers. MP3 players can easily beassed
inputs to the FPAA by using the audio input port and audio #eps. . 20

Class-oriented Board (8.74 square inches). Not& 8t connection

on the left for direct connection with the user's computeie FPAA is

the large square IC in the center above the two SMA jacks. Tea
interface jacks areontheright.. . . . . . . ... ... ... ... ... 20

Stand-alone Board on the left (6.2 square incheg)e the removable
ribbon cable plugged into the stand-alone board’s header.other end
of the ribbon cable plugs into a Research Board’s ZIF socketnasans

of programming the stand-alone board.. . . . . . .. .. ... .. .. 22
This illustrates the basic idea of how circuitsasated on the FPAA. . 23
Header Map used as a legend to identify pins on thgr@mming and

control FPAA board. U5, D *, L *, R *are FPAAOpins.. . . . . .. 24
Software flow for designing systems on the FPAA. [&wpl designs are

done in Simulink. Sim2Spiceconverts it to a Spice netlist, which can
then be compiled into an FPAA switch list[6]. . . . . .. .. .. ... 24

Design Flow for a low pass filter. (a) Simulink BlockaBram. (b)
SPICE list generated b§im2Spicéool. (c) FPAA switch list generated

by GRASPER tool. (d) RAT Figure showing switch list routing on &A

2.9 IC. (e) Measured Results from RASP IC: blue is the input sjgnal
black is the lowpass filtered output. . . . . . . .. ... .. ... ... 26

Floating-gate transistor. . . . . . . .. .. ... .. ... ....... 27
This shows the system view of path planning in amawnk environment.29

Converting theffice grid world into an AVLSI representation [2]. a)
Office with walls as obstacles. b) Simplified grid representatiwmffice.
c) floating-gate transistors used to implement the obstacle. . . . . . 30
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a) Toy problem two dimensiondtioe environment where the goal is to
plan a path for a MAV from the window to a specific desk. The envi
ronment that has been discretized into a grid with labeletkeao Two

path solutions are identified. b) This figure shows the locatiof the
Start, Goal, and Obstacles in the Cadence simulations. Tdreeshpath

to the goal is through the red line: Stafl,1)-(2,1)-(3,1)-(3,2)-(4,2)-
(4,3=Goal. The alternate path to the goal is by the blue line. c) The
solution tree to the toy problem has two solutions (red ane phaths) [7]. 35

a) This experiment was for a 4x4 grid structure withobstacles. The
robot is at node (1,1), and the goal is at node (4,4). The figagate
pFETs were each programmed to 1e-006 A and the measuremerds w
performed with the current source pFET’s gate voltage at.hpNode
voltage measurements were made directly at the node andotidglse
the fgOTA bufers. Coordinate (1,1) is top left, and coordinate (4,4) is
bottom right. c) Surface plot of the datainb [7]. . . . . ... ... .. 36

This experiment compares the results of usingg®dA bufers when
measuring the node voltages [7] a) This experiment was fodagdid
structure with 8 obstacles. The robot is at node (1,1), aadytial is at

node (4,3). The floating-gate pFETS for the paths were eagrammed

to 1e-006 A and the obstacles were set to 0 A. The measuremengs
performed with the current source pFET’s gate voltage af 105b and
1.5421V for c. b) Node voltage measurements were made iggdhe

node and did not use the fgOTA fbers. c) Node voltage measurements
were made using fgOTA lfiers. The measurements were calibrated us-
ing fgOTA characterization curves, Figure28. . . . . . . .. ... .. 37

The data in Figure 22 is from a vertical slice of ttata when the x-axis
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levels of inputcurrent.. . . . . . ... ... ... L 38

The data in Figure 23b is from a vertical slice o$ tthata when the x-
axisis 1.5421 V. This shows each node’s steady state resporarying

levels of input current. The sink node is about 0.44 V, bubisdisplayed

[7]. . e 39

The data in Figure 23cdegrivedfrom a vertical slice of this data when
the x-axis is 1.5421 V. These are the raw measurements maaietiiie
fgOTA buffers at the nodes. Becausffsets exist in the kters, this
data needs to be calibrated to the correct value. The measute were
calibrated using fgOTA characterization curves shown guFe 28.. . . 40

The data in Figure 23c is from a vertical slice of thata. These are the
calibrated measurements derived from the fgOTAdiumeasurements
atthenodes.. . . . . . . . . .. 41
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This figure shows how the input, output, anfidns are implemented in
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Measured results from FPAA compared to BFS. Red tige®represent
obstacles. It is acceptable in this graph to péssughtwo parallel
connected edges, but it is not acceptable to nadeegthe red connected
edges: S= Start and G= Goal. a) Optimal FPAA solution. b) Sub-
optimal FPAA solution. c) Incorrect FPAA solution. . . . . . . . . .. 63

The goal of this research: to use a reconfigurabi@nerray IC to plan

a path for small robot from point A to point Z through an enwinzent.
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SUMMARY

Path planning and image processing are critical signalgssing tasks for robots, au-
tonomous vehicles, animated characters, etc. The ultigakof the path planning prob-
lem being addressed in this dissertation is how to use a figcoable Analog Very Large
Scale Integration (AVLSI) circuit to plan a path for a Micr@Aal Vehicle (MAV) (or simi-
lar power constrained ground or sea robot) through an emviemt in an &ort to conserve
its limited battery resources. Path planning can be sunzednvith the following three
tasks given that states, actions, an initial state, and hggate are provided. The robot
should: 1) Find a sequence of actions that take the robot fi®initial state to its Goal
state. 2) Find actions that take the robot from any stateead3bal state, and 3) Decide
the best action for the robot to take now in order to improsedds of reaching the Goal.
Image processing techniques can be used to visually tradbjaet. Segmenting the ob-
ject from the background is one subtask in this problem. tBigmage processing can be
very computationally expensive in terms of memory and daaipulation. Path planning
and image processing computations are typically executetigital microprocessors. This
dissertation explores an evolution of analog signal preiogsusing Field Programmable
Analog Arrays (FPAAS); it describes techniques for mapif€erent solutions onto the
hardware, and it describes the benefits and limitations. mbgvation is lower power,
more capable solutions that also provide better algoriterfopmance metrics such as time
and space complexity. This may be a significant advantag#f\'s, ocean gliders or

other robot applications where the power budget for ondbsamnal processing is limited.
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CHAPTER 1

RECONFIGURABLE ANALOG CIRCUITS FOR PATH PLANNING
AND IMAGE PROCESSING

Path planning and image processing are critical signalgeing tasks for robots, au-
tonomous vehicles, animated characters, etc. Figusea cartoon showing the ultimate
goal of the path planning problem being addressed in thgediation, namely how to use
a reconfigurable Analog Very Large Scale Integration (AVLSicuit to plan a path for a

Micro Aerial Veehicle (MAV) (or similar power constrained gund or sea robot) through
an environment in anféort to conserve its limited battery resources. Path planoan be

summarized with the following three tasks given that stadesons, an initial state, and a

goal state are provided. The robot should:
1. Find a sequence of actions that take the robot from itmlrstate to its Goal state
2. Find actions that take the robot fraanystate to the Goal state

3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

Image processing techniques can be used to visually trackj@ct. Segmenting the
object from the background is one subtask in this problergit@limage processing can be
very computationally expensive in terms of memory and daaipulation. Path planning
and image processing computations are typically executetigital microprocessors. This
dissertation explores an evolution of analog signal preiogsusing Field Programmable
Analog Arrays (FPAAS); it describes techniques for mapgiiféerent solutions onto the
hardware, and it describes the benefits and limitations. nibevation is lower power,
more capable solutions that also provide better algoritiplenfiormance metrics such as
time and space complexity[2]. This may be a significant advantage for MAVsS, ocean

gliders or other robot applications where the power budgeGuidance, Navigation, and



Navigate This
[ Environment!

Figure 1. This shows a goal of this research: To use reconfigurable arag circuits called Field Pro-
grammable Analog Array Integrated Circuits (FPAA IC) to pla n a path for small robot through an
environment in an efort to conserve limited battery resources and extend operadn times [2].

Control is limited R9, 30Q].

A custom Application Specific Integrated Circuit (ASIC) coble developed to imple-
ment analog path planning, however custom ASIC designsxae $io any revisions would
incur a long design cycl&abrication time. FPAAs, however, allow the designer ordhne
tonomous agent itself to reconfigure the analog connectigtiisn the Integrated Circuit
(IC) using software and hardware infrastructure. This adlowick design changes and re-
use of a single IC31, 7]. Chapter2 describes the FPAA embedded system infrastructure
used in this path planning research.

In summary, analog path planning is explored because iesepits a potential decrease
in time and space complexity, a potential reduction in pomesgded for computation, and
potential decrease of computation time. An FPAA analog jpéhning implementation
is useful because reconfigurable AVLSI systems provideittitane-ability and flexibility

that custom ASICs do not providé,[2].



1.1 The Problem Being Addressed

This dissertation answers the questions:

Can robot path planning and image processing problems besdalging new analog
signal processing systems and techniques which are baseokbind-gate based reconfig-
urable analog hardware? If so, what is the performance congmariof these systems and
technigues to other computational approaches? How gfferéint solutions mapped onto
the hardware, and what are the limitations?

A major part of the “new” aspect of this solution is that it aslating-gate transistors.
Techniques will be described for mapping the algorithmstos fioating-gate hardware.
Performance comparisons will include complexity analydithe algorithms which mea-
sure solution computation time and memory requirementso Adlomputations per energy

will be another metric used to assess performance.

1.2 Why This Problem Is Important

There is an energyfieciency wall trend, Figure, that has been identified with digital
computation. This trend shows that the number of computatymer unit of energy has
been increasing over time however this trend is slowing dewd approaching a line
or “Efficiency Wall”. If this trend continues it will negatively inagt the growth of the
computational capability of an all-digital approach to@tb computation 3]. Given this
efficiency wall, the significance of this work is twofold:ow powerand more capable
hybrid analog-digital solutions will provide longer opgoa times and more computing
capability than currently available for power budget camsed autonomous agents us-
ing an all-digital approach. This claim is founded on presiaesearch which shows
that reconfigurable analog systems called Field Prograremahalog Arrays (FPAA)s
are providing a low-power hardware technology enablinganeomputational giciency

of 1000 over digital solutions3p, 15]. This may be a significant advantage for Micro



Aerial Vehicles (MAVs) or other robot applications such ag@nomous Underwater Vehi-
cles (AUVs) where the computational capability and powetdai for signal processingis
limited [33, 34, 35, 36, 29, 30, 37, 38]. The general goal is illustrated in Figuge In this
figure, the lower left quadrant represents small, light aatoous systems which are limited
in computational capability39]. The upper right quadrant represents heavy autonomous
systems which have the capability to carry a significant amhofl computational equip-
ment 0. The goal is to be able to impact the left side of this graptl give smaller
systems more capability.

Computation for robotics often takes on two forms: on-boahguting, and cloud
computing. There is a heavy movement of robotics computatito thecloud (instead
of being resident on the robot#]]. Leveraging computation from the cloud helps, for
example, computationally expensive tasks such as imagegsmg42]. Cloud robotics is
also important from a networked robotics point of view adldvas robots to communicate
with one another and, among other things, coordinate monenaad activities. However,
if we want billions and billions of robots then putting a m@fp of computation in the
cloud could be a problem. This is one reason why continuirigdmease the capability of

on-board computing and enable systems to push pastiibieecy wall trend is important.

1.3 Dissertation Contributions

Contributions of this dissertation include the followingeh areas:

e Floating-gate basetksistive grid structuregan be used for path planning. This
method is diferent from previous resistive grid research which use ticadl tran-
sistors and active elements to make variable or fixed resistaft3, 44]. Instead,
floating-gate transistors provide the ability to weighteliently the edges in the map.
Floating-gate weighting provides a simple circuit methodnplement the weights.
Floating-gate based weights also have the feature thaémmgaitation is non-volatile

(it will hold it's weight even when the power is removed). €ardimensional grids
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are also possible with the hardware described in this thesis

¢ Floating-gate base@configurable neuron structuresn be used for path planning.
Analysis is shown that the parallel computation nature efstystem provides a lower
Time Complexity metric in certain conditions than typicalwefront planners. One
of the items that distinguishes this research from otheral@etwork planners4p,
46, is that this work shows results and analysis from an a@nalog hardware that

uses neurons which have realistic dynamics.

e New computational hardware is described which is desigaetbtsubsampled im-
age convolution. Analysis on the analog image convolutemhmhique is provided.
Analysis is shown that image processing using analog vecadrix multiplication
in this system has an expected capability of approximat@ly@iga to 132000 Giga
Computations per Joule. This is a significant improvement theeenergy wall trend

of approximately 10 Giga Computations per Jo#E [

1.3.1 Design Principals Used in this Dissertation

This thesis applies a couple of computation principals wlesd by Carver Mead4/].
Mead stated that there is a “Factor of 1 million unaccountedetween what it costs to
make a transistor work and what is required to do an oper#timway we do it in a digital
computer #7].” This is largely because in digital systems, energy isx@harging wires
and not the gate, and these systems use far more than onsttvattssdo an operation. A

couple of solutions Mead proposes for increasing thieiency of computation are:
1. Make Algorithms LOCAL (don’t ship data all over the place)

2. Use the physics of a device to do the operation insteadind @sbunch of AND and

OR gates

He further points out that the above approaches requiretimdapchniques to correct for

differences between nominally identical components.
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Figure 4. Using the physics of transistors to perform multiplication: Digital multiplication requires
hundreds or more transistors to perform a multiplication [4]. Analog can perform a multiplication
using about 10 transistors.

1.3.2 Principals in Practice

This dissertation applies the above two principles in thiewong ways:

1. Principal: Make Algorithms LOCAL;ImplementationUse analog memory to hold

intermediate algorithm computations

2. Principal: Use the physics of a devicenplementation Analog vector matrix mul-

tiplication and Parallel Processing

Figure4 and Figure5 illustrate how the physics of transistors are used to implem
vector matrix multiplication with fewer transistors thamdligital. Further, floating-gate
transistors provide an adaptive technique to correct féeidinces between nominally iden-

tical components in analog processing.
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Figure 5. In analog, when the signal is a current, the addition operatbn of vector matrix multiplication
is “free.”

1.4 Related Work

Previous works have used custom Application Specific lategr Circuits (ASICS) or pro-
posed to use circuits to implement path planning and in gnaRvevious analog work in
analog path planning includes the following8[ 49, 50, 44, 51, 52, 53, 54, 55, 56, 57, 45].

A potential fields type path-planning method that can be @m@nted using parallel AVLSI
circuits is found in #8]. Obstacles are represented as non-conducting elemeatsan-
ducting medium. The start point is a current source, and ta ig a current sink. The
robot’s workspace, conducting, and non-conducting elésnare implemented with a re-
sistive grid. Obstacles have a high resistance and nomdbsthave a lower resistance.
The path from start to goal is found by 1) placing a constamtecu source at the start
node, 2) waiting until the resistive grid settles into a diestate, 3) reading the node volt-
ages, and 4) finding the path from start to goal using voltagasurements from successive
nodes. The authors propose hardware, but only show sironlegsults. Other AVLSI re-
sistive grid networks used for robot path-planning are tbim[44, 58]. The authors use
three parallel structures to accomplish the planning. Triselfiyer, theMemorylayer, con-

tains information about obstacles, the source, and the balsecond layer, tHeesistive



Net layer, uses PMOS or NMOS transistors to model resistors.sd hansistors (and a
current source) establish a gradient in the resistive grtte third layer, theComparison
Circuit layer, computes the path by using comparatorswiraer-take-allcircuit to com-
pare node voltages on the resistive grid layer. The authessribe fabricated hardware,
but only show simulation results. A couple of United Statagept applications have also
been identified which deal with analog processing. Firsg oses an analog processing
integrated circuit which receives obstacle data from amntielemeasurement unit (IMU)
and an obstacle detection sensor. Analog resistive grelshan used to map obstacles.
An electronic device that solves the Laplace’s equatiorescdbed $9]. Another patent
application presents a Laplacian path planner. The systelesigned to help autonomous
vehicles avoid obstacles while navigating through a sesfesaypoints p0]. A system

is described in 1] that attempts to use the AVLSI planner developed &4.[ Finally,
[62] gives an analog robotic motion control scheme developedlistacle avoidance and
target-seeking. According to their paper, “a possible iappbn is in the control of ex-
tremely lightweight autonomous machines in the style of rdderg Vehicles or Tilden
BEAM robots.”

A spike based neuron path planner and simulation resultprasented in45]. That
work inspired the neuron planning algorithm described is thissertation. Unlike neural
networks which are often trained for classification andgrattecognition task[3, 64,
the path planner neuron circuitry uses a propagating wanefo perform the planning

operation.

1.5 Other Application Domains

In addition to path planning, analog networks have beengseg for other signal process-
ing tasks such as early vision (which is the problem of canwgdight into three dimen-
sional shaped5]), surface interpolationd6], edge detection, shape from shading, velocity

field estimation, color, and structure from motion (séé] [for this list with additional



citations) §3).

1.6 Dissertation Summary

There are two main drawbacks to using custom ASICs for anadhgigns: 1) circuit
designs are fixed to some extent (not changeable) and 2) lesigrd cyclé¢fabrication
time (order of months). Reconfigurable analog circuits sielffAAs have been used
to implement a variety of AVLSI circuits in a short time (ordef minutes). This allows
quick design changes and re-use of a single3g.[This work is therefore set apart from
previous research in two major ways: 1) the implementasamia reconfigurable floating-
gate based analog platform, and 2) new hybrid analog-tligiteutions that exploit the
capability of this reconfigurable FPAA IC are developed.

The focus of this dissertation is integrating a reconfigl&#@mnalog processor capable
of implementing hybrid analog-digital algorithms with @uwd for path planning and image
processing. Control with reconfigurable analog circuitdss &xplored. Path planning is
often calledGuidance which is the process of determining a path for the robot achehe
goal;Navigationis determining the robot’s state such as position, velanity attitude; and
Control is tracking guidance commands while maintaining stabiligure6 is a cartoon
showing Guidance, Navigation, and Control tasks. Tdblsts each of these functions
and some associated standard methods. The ultimate longytal of this research is to
develop an autonomous micro robot that is capable of autonemavigation, guidance
and control using, in part, analog signal processing system

The complete Analog-Digital Hardwaf@oftwargRobot co-design problem is consid-
ered. Multiple analog-digital embedded systems have beeslaped in our lab at Georgia
Tech, and these are the initial computation platforms orclvitihe hybrid analog-digital
algorithms are developed and executé8]| These embedded systems are also the founda-

tion upon which more specific hardware is developed. At tlzetiod the embedded systems
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Function Answers these Standard Method
Agent’s Questions
Guidance Path Planning What roads A* (A-star)
should | take?
Navigation Determining a Where am | now? Kalman Filter
robot’s state
Control Tracks guidance | How do | adjust theg Proportional, Integral
commands while | acceleration and Derivative (PID)
maintaining stability| steering? controller

Start

Goal

a)

Figure 6. a) Guidance: Thehigh level process of planning a path from the Start to the Goal. b) Navig-
tion: Agent uses sensor input to determine its state (Pos@n, Velocity, Acceleration). ¢) Control: The
low level process of tracking guidance commands while maintaining sbility.

is a reconfigurable analog integrated circuit (IC) calledeld~Programmable Analog Ar-
ray (FPAA) [31]. This custom IC, developed by the Integrated ComputatiofedtEonics
(ICE) Lab at Georgia Tech, allows a user to configure circusisgibasic analog compo-
nent primitives (such as transistors, amplifiers, and aggag. Much like digital’'s Field
Programmable Gate Array (FPGAS), these FPAAs can be easgre-programmed using
a software interface. More detailed information about FBAAd the embedded system is
found in Chapte. A major thrust of this research is the design of hybrid agalmital
circuits that are equivalent (in function, not necessdnolyn) to their all digital counter-
parts.

Algorithm development has focused on performing path ptamand image process-
ing for a mobile robot. Previous work in combining digitaldaanalog solutions are found
in [69, 70, 71]. The overall goal for path planning is found in Figu8a. In this cartoon

a power constrained mobile robot uses an FPAA or other reguanafiole IC, programmed
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with a model of the environment, to navigate a maze orféineenvironment. This disser-
tation demonstrates two hybrid analog-digital solutiamsdath planning. First, Chapt8r

shows that FPAAs can be used for Guidance (Path Planningg asresistive grid based
potential fields type approacR,[7, 72]. Second, Chaptet, shows hardware results for
a wavefront path planning algorithm using a neuron arraggrated circuit. These two
approaches are described in the following sections. Figarghows the overall goal of
controlis for the robot to track the guidance commands while maimgistability. This is

considered a low level control task.

1.7 Chapter Summaries

Chapter2 presents three hardware and software infrastructuresnitied family of floating-
gate based FPAAs being developed at Georgia Tech. Theseacoanpl portable systems
provide the user with a comprehensive set of tools for custoatog circuit design and im-
plementation. The infrastructure includes the FPAA IC, mgontrollers for interfacing the
FPAA with the user’'s computer, and Matlab and targetingveafé. The FPAA hardware
can communicate with Matlab over a USB connection. When attedeto a computer,
the USB connection also provides the FPAA hardware’s poe@me of the software tools
include three major systems: a Matlab Simulink FPAA prograr8PICE to FPAA com-
piler called GRASPER, and a visualization tool called RAT. Te¢hapter also presents a
description of a floating-gate transistor because thiseskety enabling technology that
allows the FPAA to program arbitrary circuits (and also ierpknt resistive elements).
Chapter3 presents path planning using resistive grids implementetivo different

FPAA ICs: the RASP 2.8a and the RASP 2.8B4[73]. The resistive grids elements are
implemented with floating-gate transistors. The generd ig similar to the well-known
potential field approach to path planning] in that the robot’s location is the high point of
an energy surface and the goal is at the low point and the pabal follows the gradient.

This chapter presents hardware results using reconfigurlLSI circuits developed at
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Georgia Tech to implement a path planning algorithm. Expental results are presented
for a large number of environment scenarios. Also, an erpartal result of interfacing
the FPAA with a Pioneer robot is described.

Chapterd presents hardware results for a neuromorphic approachhoppenning us-
ing a neuron array IC. The algorithm is explained and expertaieesults are presented
showing 100% correct and optimal performance for a largebermof randomized maze
environment scenarios. Based on neuron signal propagg@ausneuron IC path planning
may dfer a computational advantage over state-of-the-art wanefilanners implemented
on FPGAs. Analytical Time and Space complexity metrics aeetbped in this chapter
for a Neuron IC planner, and these are verified against axeaital data. Optimality and
Completeness are also addressed. The neuron structurs alh@to develop sophisticated
graphs with varied edge weights between nodes of the grid.ifiteresting cases are pre-
sented. First, asymmetric edge costs are assigned to loesases which have a certain
cost to travel a path in one direction, but dfelient cost to travel the same path but in
the opposite direction. The application of this feature wanslate to real world problems
involving hills, trafic patterns, etc. Second, cases are presented where theneanlem
obstacle are given higher costs to visit these nodes. Thisas dfort to keep the au-
tonomous agent at a safe distance from obstacles. This gighting can also be used to
differentiate among terrains such as sand, ice, gravel, or brpagement. Experimental
results are presented for both cases.

Chapter5 presents results of a mobile manipulator robot tasked tg fhla classic
Towers of Hanoi game. First, the control algorithms neagssaenable necessary game-
playing behavior are discussed and results are providedméementing the methodology
in a high fidelity 3D environment. After attaining successhe simulation environment,
results are shown on implementation of the same controlaoé using physical robot

hardware. Additionally, analysis for implementing anaRrgportional-Integral-Derivative
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(PID) control on this platform using a floating-gate basezbrdigurable analog IC is ex-
plored. Using this concept of floating-gate analog arraysémtrol enablesfd-loading of
the processing, which could be helpful for real-time impdertation of robot behavior.

Chapter6 first describes an analog image processing algorithm whses filoating-
gate transistors to implement multiplication weights. tRar, analog storage elements are
described as holding places for intermediate values in timepatation. Two hardware
systems being developed on which to implement this hybralagndigital approach to
image processing are also described. One of these systémsad on the RASP 2.9v IC,
and the second is based on the RASP 3.0 IC. Each has its own PCRBldsabgystem
which is also described.

Chapter7 provides chapter summaries and current and future possbéarch using

Hidden Markov Models and dendrite classifiers.
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CHAPTER 2
FPAAS FOR EMBEDDED SIGNAL PROCESSING

The two main electronic hardware components used in theakgocessing systems in
this dissertation are the FPAA ICs and the embedded systenwinith the FPAAs are in-
tegrated. FPAA technology, while continuing to developsusficiently advanced at this
time to allow one to perform algorithm development and destration. This chapter
will describe the FPAA ICs, embedded system, and will also/igioinformation about
floating-gate transistors because these unique devicemcaother things, are a key en-

abling technology for FPAAS to be able to reconfigure thetetinal wiring.

2.1 FPAA Background and Foundational Material

Field Programmable Analog Arrays (FPAAs) are useful forhbasearch and teaching
[75]. Previous Georgia Tech FPAA ICs have been programmed usse¢fj-aontained de-
velopment platform that included a commercial FPGA develept board, a custom FPAA
board, and a AC-DC power module. This previous hardware@iat{76] fit into an en-
closure about the size of a shoe box and communicated witboim@uter using Ethernet.
The new platforms described in this chapter are signifigamtialler and communicate over
USB. The power supply systems have also been changed and/engvon the portability.
The infrastructure is a proven system as it has seen use irRPBAroject workshop at the
University of Southern California, two workshops in Telbleg CO, and two more work-
shops at Georgia Tech. The boards have also been the priat@gatory infrastructure
for two semesters of a graduate course in Neuromorphic AniélcsI Circuits at Georgia
Tech.

FPAAs are the main enabling technology for this Analog-faigrobotic signal pro-
cessing. They provide a low-power, low-cost, reconfigueabhd reusable hardware tech-

nology, while still enabling analog computation&lieiency of 1000 over digital solutions
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Figure 7. Roadmap of the current and estimated future GT FPAA IC develgment [5].

[15]. Figure7 shows the timeline of many FPAA devices].[ The FPAAs, developed at
Georgia Tech, are based on the Reconfigurable Analog Signaée&sor (RASP) family
of ICs. Each generation of ICs enabled a higher level of contipmtand a wider range
of applications. The ICs include the RASP 14|, RASP 2.5 [F8], RASP 2.8 |9, 80,
RASP 2.9, the recent digitally enhanced ICs RASP 2.9v: Dynamafeurable 73],
FPAAD [81], and combination FPAAnicroprocessor RASP 3.0. Further FPAA results
can be found in§2, 83, 84, 85, 86, 87, 88, 89|.

Section2.2discusses the basics of FPAAs as well as the embedded harthienface,
Section2.3discusses software tools, Sect@d shows the design flow using a demonstra-

tion test circuit, and Sectio®.6is a closing summary.

2.2 FPAA Hardware Infrastructure

This work uses four instances of the RASP family of ICs: RASP,FR3€5P 2.9v, Neuron
IC, and RASP 3.0. Figurg shows three of these FPAA ICs. The RASP 2.8a IC is 3x3 mm
in size and arranged in a 4x8 array of computational analockisl(CAB)s B1] The RASP
2.9v IC is 5x5 mm in size and arranged in a 6x13 array of CA®EY 73].The Neuron IC

is 5x5 mm in size and arranged with 100 neurons and 30,00(psgsd.q].
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Figure 8. Research in this dissertation was based on the following FPRAICs: a) RASP 2.8a used for
path planning and control, b) RASP 2.9v used for path plannim, and c¢) Neuron IC used for path
planning.

These reconfigurable analog platforms utilize a switch mafprogrammable floating-
gate transistors as switch elements. These switch elerhamésa dual role as computa-
tional elements91]. This specific feature is exploited in this work. The recguofable
nature of the platforms allow rapid building and testing offetent circuit configura-
tions [31, 79].The arrays have a mixture of analog granularity, so tha&t lo&s access to
transistor-level functions, as well as some higher sigrnat@ssing features. Programmable
floating-gate circuit technology enables the FPAASs to ptedrea-fficient, accurately pro-
grammable analog circuitry that can be easily integratemlaniarger digitainixed-signal
system 90, 76]. A closed loop control system is used to program the floagjate elements
[92]. Some floating-gate switches may fudly on whereas others may be programmed to
specific currents. In our present implementation, Matlééxfaces with the control board’s
ARM Core microprocessor to implement the control algorithmthe future, this control
algorithm can be moved entirely to the ARM core microprocestbe FPAA ICs contain
on-chip programming structures which measure the leveltichwvthe floating-gates are
programmed.

The main embedded hardware developed consists of a faniiled?CB designs which

include the following:
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Figure 9. FPAA Programming and Control Board (25.76 square inches). Mte the USB connection on
the top left; 40 pin DIP microcontroller module to the right of the serial connector; the 100 pin ZIF
socket for inserting the FPAA ICs; many 2x4 pin headers conneted to FPAA I/O, DAC outputs, ADC

inputs, FPAA control pins, and power/ground; 4 SMA for FPAA | /O interface; and the audio jacks (on
the lower right).

1. Research-oriented FPAA board which allows maximum adoeasd control of the

FPAA pins
2. Class-oriented board which is a scaled down version ofabearch board
3. Stand-alone board for integrating the FPAA into robots atiner systems

4. Modular board for integrating the FPAA into robots andentbystems

ol

. FPAA/Microcontroller interface board to support the new RASPE&S |

The first three embedded systems are described in the foldjpgéactions, and the last

two are described in Chaptér

2.2.1 Research Board

The Research Board, Fj was for many years the workhorse of our FPAA infrastructure
family. It has header pins which allow easy access to mo$isFPAA pins. This is helpful
for many things including power measurements, circuit dgeing, etc. The research board

has a 100 pin zero insertion force (ZIF) socket into which HRAA IC is placed. This
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Figure 10.Adaptor Board (4.16 square inches). This custom PCB has a qddlat pack (QFP) packaged
FPAA IC on one side and pins on the other side. The pins plug it the 100 pin ZIF socket on the
programming and control board.

socket makes the Research Board a good general platform forgtesany families of
FPAAs such as our General, Sensor, Bio, Mite, and Adaptiveimes. The FPAAS are
typically packaged in plastic surface mount packages. We daveloped adaptor board
PCBs which convert the surface mount packages to pins1Bigihese pins then plug into
the ZIF socket on the programming and control board.

The programming and control board has the following featutdSB or Serial commu-
nication capabilities, USB power or external DC power, SM¥ectors for connecting
to FPAA /O pins, a discrete 14-Bit DAC IC which has forty channels (nadsthich can
be used as inputs to FPAAD pins), a discrete 8-bit ADC that can also be used to connect
to FPAA /O pins, amplifiers to be used g®lbufers, and finally an audio amplifier and
audio jacks which can be used for audio input and output adiore to the FPAA. The
board also has 3.3V, 5V, and 12V supplies. The board usesrarlAXT91SAM7S ARM
based microcontroller to communicate via USB to a desktdppiop computer. The soft-
ware emulates a serial communications device class (CDC)ection, and most modern
operating systems have drivers for this software out-etlbx. The ARM Core micropro-
cessor on the board was purchased as a 40 pin DIP plug-in smolblock diagram of the

system is found in Figur#&l.
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Figure 11.Block Diagram of the FPAA programming and control board. The board has been designed
to be self-contained and portable, only needing a laptop. Tén user chooses between USB or serial
communication. The power is supplied by the USB port. The mimcontroller (uC) is a 40 pin DIP
plug-in module which uses an ATMEL 32 Bit ARM processor. The FRRAA | /O can be reconfigurably
connected to the discrete ADC and DACs using headers and jungps. MP3 players can easily be used
as inputs to the FPAA by using the audio input port and audio anplifiers.

Figure 12. Class-oriented Board (8.74 square inches). Note the USB awmection on the left for direct
connection with the user’'s computer. The FPAA is the large sgare IC in the center above the two SMA

jacks. The audio interface jacks are on the right.
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2.2.2 Class-oriented Board

The small Class-oriented board, Fig, is basically a subset of the Research Board. It
was developed with three main goals in mind: 1) easy to leathuse, 2) inexpensive,
and 3) small. The easy-to-learn-and-use goal was accdmeplisy removing as many of
the “intimidating header pins” as possible. To make thissgade, many of the FPAA/O
pins that are connected to headers on the Research Board ateandwired to ADC or
DAC pins. Only a small number of® are pinned out to headers. There are thirty-two
header pins on the Research Board that are considered “fesettiitygs” and are normally
jumpered to certain pins. These pins were hardwired to tiespective signals. The goal
of reducing the cost was accomplished by reducing part candtchanging some parts.
For example, the discrete ADC IC was removed in favor of usimgARM Core micro-
processor’s onboard ADC, and the forty channel DAC was repladth a less expensive
eight channel DAC. The ARM Core microprocessor on the ResearctdBass purchased
as a 40 pin DIP plug-in module. To save cost, the class-@iehbard has the micropro-
cessor IC and associated circuitry integrated directlyp oimé FPAA board. The cost goal
was accomplished. The parts alone for the class-orientadit@ye more than fifty percent
cheaper than the Research Board ($100 vs. $230). The size geaosomplished too as

it is sixty-six percent smaller than the Research Board.

2.2.3 Stand-alone Board

The stand-alone board, Fi8, was developed as a way to separate the FPAA from the
programming infrastructure so that an FPAA can easily begiratted into robotic and other
systems. The stand-alone board consists of a surface ntbRABP 2.8 FPAA IC, power
circuitry, a header used for programming, and connectiorfsPAA /O pins. The board

also has an IC footprint for a motor driver circuit.
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Figure 13. Stand-alone Board on the left (6.2 square inches). Note themovable ribbon cable plugged
into the stand-alone board’s header. The other end of the ribon cable plugs into a Research Board’s
ZIF socket as a means of programming the stand-alone board.

2.3 FPAA Software Infrastructure

The pre-existing FPAA software tools include a Matlab SimkiFPAA program, a SPICE
to FPAA compiler called GRASPER (Generic Reconfigurable ABagcification & Pro-
gramming Environment), and a visualization tool calledR#A& (Routing Analysis Tool).
Two new software tools were developed to support this woHesE are 1) a tool to convert
the obstacle map into a transistor map on the FPAA and 2) dabsiacle visualization
and modification program called the Path RAT.

Regarding the existing tools, the Matlab Simulink Tool is amoaation tool which
converts Simulink models to a SPICE netlist, which can thealiematically compiled to
FPAA targeting code and implemented on an FPR8]] The GRASPER tool converts a
circuit's SPICE file into a list of FPAA switches that implemehe circuit on the FPAA
[94, 95, 96, 97]. The RAT is a Matlab GUI which graphically shows the topolagfyhow
a circuit is routed on the FPAA switches, Figuréd. Using the RAT, new designs can be
created or existing designs can be modified by pointing aicllich with the mouseg8].

Figure14 (a-b) illustrates the basic idea of how circuits are createthe FPAA. As-

sume that Figuré4a represents a circuit schematic that one would like to jamgonto an
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Figure 14. This illustrates the basic idea of how circuits are created p the FPAA.

FPAA. It consists of three components: an OTA, a floatinge@&ET, and an nFET. Figure
14b represents a simplified, small portion of what's inside 8A/. The colored dots in
(a) and (b) correspond to each other. In this case, six coateliparameters specify the
topology of the circuit: (1,1), (2,2), (3,3), (4,4), (5,3nd (6,4). The floating-gate pFET
is shown at an angle in Figufelb. It is programmed to have a certain conductance value.
Actually, although not shown explicitly in the illustratipthere is a floating-gate pFET at
every row-column intersection of the switch matrix. Thearet dots in the switch matrix
that represent connections are actually fully turned ortifigegate pFET transistors that
are used to make the connections.

Once an FPAA is targeted, the user can interface with the ARBAn a couple of ways.
First the user can jumper FPAAQ to the discrete DAC aridr ADC ICs. These ICs are
controlled through the Matlab interface. Talilksts a few sample Matlab commands. The
user can also interface with the FPAA by using the audio drapports. Fig.15shows the
legend used to identify the various headers. There argtwa header pins on the board

that are considered “factory settings” and are normallygarad to specific control pins.
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Figure 16. Software flow for designing systems on the FPAA. Top level diggs are done in Simulink.
Sim2Spice converts it to a Spice netlist, which can then be compiled it an FPAA switch list [6].
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Table 1. Sampling of Matlab commands used to interface with FPAA
Matlab Function Description
SET.DAC_USB sets one of the 40 channels on the DAC IC
READ_ADC_USB | reads into Matlab a value from the ADC IC.
PROGRAMaa | used to program a list of elements on the FPAA

2.4 Design Flow Using a Demonstration Test Circuit

Figure 17 shows the design flow for implementing a lowpass filter on aAARFirst a
Simulink block diagram of the system was generated, Figidee Although not shown in
this picture, this system can be digitally simulated in Mhbtl Next, theSim2spiceool,
Figure16, is used to generate a SPICE file from the Simulink block diagféigurel7b.
Figure 17c shows the text file which is the output of the GRASPER compildre first
two numbers in each line are the row and column locations daréiqular floating-gate
transistor on the FPAA, and the last number on the line repitsshe desired current in
the transistor. Figur&7(d) shows the topology of the GRASPER routing on a RASP 2.9
IC. The switch list was targeted onto a RASP IC and a step inpué)bvas applied to the

input pin. The result was measured and shown in black in Eityd(e).

2.5 Floating-Gate Transistors

Floating-gate transistors are well known for their use asibnvolatile memory element in
flash memoriesq8]. They are also theecret saucef the FPAA. This is largely because,
among other things, floating-gate transistors are used ke miecuit connections within the
FPAA. This process is illustrated in Figuid. floating-gate transistors are unique because
they can be programmed to conduct current by adjusting thegehon the gate terminal
of the transistor. Unlike a conventional transistor, flogtgate transistors have an isolated
gate terminal which, like a capacitor, can hold charge. Thadvantageous because one
does not need to actively maintain a voltage on the transggate terminal in order to
maintain its state (on,ffy or resistive). Once programmed, the gate is set and theitcirc

has memory so it will maintain its map even if the power is reatbfrom the IC. This is

25



*spice file generated by sim2spice.
frsteord .INCLUDE fpaa_ tech.sp
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Figure 17. Design Flow for a low pass filter. (a) Simulink Block Diagram. (b) SPICE list generated
by Sim2Spice tool. (c) FPAA switch list generated by GRASPER tool. (d) RATFigure showing switch
list routing on RASP 2.9 IC. (e) Measured Results from RASP ICblue is the input signal, black is the
lowpass filtered output.
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Figure 18. Floating-gate transistor

called nonvolatile.

Floating-gate transistors are programmed using Hot-Eladhjection and Tunneling
processesd9, 98, 100, 101]. Hot-Electron Injection reduces the amount of charge @n th
gate (adds electrons), and Tunneling increases the ambahame on the gate (removes
electrons). There are four parameters that can be used wbgrapnming a floating-gate

transistor: Drain voltage, Source voltage, Gate voltagd,Tainneling voltage, Fidl8.

2.6 Summary

This chapter has described a comprehensive set of softward@ardware tools that lets
users quickly and easily create custom AVLSI circuits. Toiéveare tools allow users with
varying levels of circuit design experience to be succésdfgynthesizing circuits. The
hardware infrastructure platform allows users extremelikty to monitor and control the

FPAA pins. The adaptor board allows users to quickly inteange FPAAs on the main

programming and control board.
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CHAPTER 3
RESISTIVE GRID PATH PLANNING

Path planning is a critical task for robots, autonomousalelj animated characters, etc.
Figurel is a cartoon showing the ultimate goal of the problem beindresked in this
chapter, namely how to use a reconfigurable Analog Very L&agde Integration (AVLSI)
circuit to plan a path for a Micro Aerial Vehicle (MAV) (or sitar power constrained
ground or sea robot) through an environment in #oreto conserve its limited battery
resources. Path planning can be summarized with the fallpuhiree tasks given that

states, actions, an initial state, and a goal state areqedvil he robot should:
1. Find a sequence of actions that take the robot from it&lrstate to its Goal state
2. Find actions that take the robot fraany state to the Goal state

3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

Figure 19 shows the system view of path planning in the context of amank en-
vironment. Path planning computations are typically exedwn digital microprocessors.
This chapter presents results of using twibatent floating-gate based Field Programmable
Analog Arrays (FPAA) for the path planning computation, RSP 2.8a and the RASP
2.9V. A motivating reason for using AVLSI for path planning the potential for better
time and space complexity and lower power processing chipediwhen compared to a
microprocessorf, 2]. This may be a significant advantage for MAVsS, ocean gliders
other robot applications where the power budget for GuidaiNavigation, and Control
is limited [29, 30]. Path planning for UAVs is further addressed in many otleirees
[102 103 104, 105 106,107,108 109,110 111, 112. MAVs “have been defined to have
no length dimension greater than 6 in. with gross t&keeights of approximately 200 g or

less L113.” The electronics are estimated to be between 10% and 25%#ed#AVs mass,
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Figure 19. This shows the system view of path planning in an unknown enk@nment.

and the battery mass is estimated between 25% and 402 104, 105. Because the
battery is such a significant portion of a MAV’s mass, powefirsgs could be significant
in this application. Woods estimates a preliminary powetdai of 50 mW for a 2220 mg
MAV glider [103. Although not a MAV, the microcontroller and embedded canep for
a common research robot (Pioneer 3DX) has been calculatesktapproximately 48% of
the power 114]. Existing FPGA planners include an implementation of atirerGenetic
Algorithm-based path planner entirely on FPGA hardwdrEy] and FPGA implementa-
tions of planners based on wavefront or stencil based gradaculations 116, 12]. In
[12] the authors describe processing 33 maps with a resolufid@24x1024 per second
on a midsize Virtex-5 FPGA. They also point out that a mairilboeck in applications like
path planning on FPGAs is often the external memory bandhwitit the FPAA planner,
the nodes themselves contain the important path informa@omemory bandwidth does
not seem to be an issue with this system.

A custom Application Specific Integrated Circuit (ASIC) coblel developed to imple-
ment analog path planning, however custom ASIC designsxae $o any revisions would
incur a long design cycl&abrication time. FPAAs, however, allow the designer ordhe
tonomous agent itself to reconfigure the analog connectiotinsn the Integrated Circuit
(IC) using software and hardware infrastructure. This allamick design changes and
re-use of a single IC31, 7]. Chapter2 describes the FPAA embedded system infrastruc-
ture used in this path planning research. This chapter isdoagon work presented at two

conferences{, 2] and upon a journal paper to be review@@]|
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Figure 20. Converting the office grid world into an AVLSI representation [2]. a) Office with walls as
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In summary, analog path planning is explored because iesepits a potential decrease
in time and space complexity, a potential reduction in pomesxded for computation, and
potential decrease of computation time. An FPAA analog jpéihning implementation
is useful because reconfigurable AVLSI systems provideittitane-ability and flexibility
that custom ASICs do not providé&,[2]. A mathematical analysis of an analog planner is
presented in SectioB.1 A reconfigurable analog implementation of analog pathmatam
is described in Section3.2 Experimental results using the RASP 2.8 FPAA hardware
along with analysis are shown in Secti8r8. Experimental results using the RASP 2.9v

FPAA hardware along with analysis are shown in Sec8@h

3.1 Mathematical Analysis of Analog Planner

Assume that there exists a two dimensional resistive gridrevthe edges between nodes
are resistive elements, FiguP€c. Further assume that there is a single source of current
input into one node of the grid (of dimension X by Y), and thisra single current sink on

a node of the grid. At some timg,the node voltages will settle to a steady state voltage.

One can represent this by the scalar functiorilin (

V=1(xy) (1)
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The gradient in this problem is a vector field which can bewat&d at each node in the
grid. The gradient (or vector) at each node points in thectiva of the node where the
voltage increases most. The magnitude of the vector telisfast the voltage rises in that

direction. Expressed using unit vecto® [2]:

Vf:(af 6f) af. ot .

56_y :6x|+6_yJ (2)

The Laplacian, ), is a dtferential operator thatfkectively provides the partial deriva-
tives of the gradient (which in this problem is the secondiglkderivative of the voltage
function) [117]. Some of the first implementations of using Laplace’s eiquator path
planning are118 119 7, 2].

_0rf 0%

Af ﬁ+(9_y2

3)
One can approximate the Laplacian for our problem by usiegdikcrete Laplacian

and specifically, the Five Point Stencil finitefférence method 4§, whereh is the grid

size. One can derivel) using the Taylor series and assuming that higher orderstane

negligible 120, 118 7].

AT (Xy) =~

f(x=h,y)+ f(x+h,y)+ f (x,y—h)+ f (xy+h)—-4f (xy)
h2

(4)

TheLaplace’s equation(5), uses the Laplace operator on a function and sets it to zero

[117):

Af=0 (5)

Substituting 4) into the Laplace equations) gives ©). This shows that if the function
describing the grid’s voltage is the solution to the Laplageation, then the voltage at each

node is the average of its four neighbors:
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f(x-=hy)+ f(x+h,y) )
+f(xy—h)+ f(xy+h)=-4f(xy)

3.2 Constraint Based Path Finding in AVLSI

Figure 20 shows how an fiice environment is modeled using a transistor based resis-
tive grid. The transistors in the free path regions are wiriudly on by programming
the floating-gates to conduct current, and the transisepsesenting obstacles (in red)
are turned & by programming the floating-gate transistors such that #ayld not con-
duct current. This resistive grid is then used to solve a édinning problem. Low
conductance transistors represent blocked paths, andcbigfuctance transistors repre-
sent clear paths. The transistors used for planning in theAFRRe a special type of
transistor calledloating-gatetransistors. This sets this work apart from earlier works in
VLSI path planning which used either resistors or non-flagijate transistors for the grid
[49, 48,50, 44, 51, 52, 53, 54, 55, 56, 57].

The key part of the floating-gate devices is that each of thembe used in an analog
way, as well as in a configurable approach. Other approaahastdllow all of those op-
tions. A transistor can be operated in above threshold otls@shold regimes. Subthresh-
old operation results in much lower power use because lesstis being conducted. The

current in a pFET transistor in subthreshold operation neagidscribed inq) [121].

Vdd(k-1)  —«Vg+Vs —Vsd
| = lpe b e o [1—eUT] 7)

In (7), o is a constant representing pre-exponential fackoisa constant representing
the capacitive coupling ratio from gate to channel, Brds the thermal voltagelp2 121].
Taylor expanding {) with respect toVsq about zero and dropping all higher order terms

gives an expression for the pFET’s resistance wigns small.
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R= =1 ®)

Wherely, (9), can be programmed from fA to uA23. Programming accuracy can be

achieved at 9 bits of floating-gate voltagdl].

Vgd(k-1)  —«Vg+Vs

ly=lpe Ut e Ur 9)

Floating-gate transistors are unique because they candgegonmed to conduct cur-
rent by adjusting the charge on the gate terminal of the istms Unlike a conventional
transistor, floating-gate transistors have an isolated gaminal which, like a capacitor,
can hold charge. This is advantageous because one doeseabtonactively maintain a
voltage on each gate terminal of the grid. Once programnhedjate is set and the circuit
has memory so it will maintain its map even if the power is reatbfrom the IC.

There are two novelties to FPAA implementations. Firstytaee novel because this
path planner is being implemented on a generic reconfigeiratélog platform. Second,
the transistors used to represent the paths and obstathesresistive grid are not, as used
in previous papers, conventional transistors. The rasisie implemented using floating-
gate transistors.

A family of floating-gate based large-scale FPAASs is beingetigoed at Georgia Tech.
As described in Chapt&;, these reconfigurable analog platforms utilize a switchrimat
programmable floating-gate transistors as switch elemdifisse switch elements have a
dual role as computational elemen®d]l This specific feature is exploited in this chapter.
The reconfigurable nature of the platforms allows rapidding and testing of dierent
circuit configurations 31]. In the next two sections, two FPAA ICs are used for path

planning.
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3.3 Path Finding on the RASP 2.8 FPAA

The RASP 2.8 IC was used to demonstrate FPAA based AVLSI patinpig [7]. A die

photo of the RASP 2.8 IC is found in Figu8a. Two experiments are described.

3.3.1 Experiment 1: Solving a simple grid problem

A toy problem was first developed to illustrate how an FPAA bamsed for path planning.
Consider an indoorftice environment as in Figula [7] and the problem of planning a
path for a MAV from the window to a specific desk. The space henldiscretized into
grids and the nodes labeled by their row and column numbehg. rdbot starts at node
(1,1) and the goal is node (4,3). It is assumed that all olesfaee edges have the same
cost value. There are two solutions to this problem. If weiassthat traversing each edge
has a cost of 1, the best solution has a cost of five, and thexdemution has a cost of
nine. The toy problem can be re-drawn generically as in Ei@db. Two solution paths
are shown, and decision points are labeled. The solutienferethis problem is found in
21c. Two solutions are distinguished by red or blue. Traddibtm this grid world can be
evaluated for a solution using methods such as the Breadih-$@arch (BFS) or Depth-
First-Search (DFS) algorithmi].

A resistive grid similar to the one in FiguBfc was implemented on the hardware plat-
form of Figure9 and using a RASP 2.8 FPAA IC. Each node in this grid also h&&bu
circuitry in the actual hardware version for proper readafighe grid voltages. The grid
voltages can be read with either an an Analog-to-Digital @otier (ADC) on the FPAA
control board or an external multimeter or oscilloscopee Btffer circuit is a floating-gate
input Operational Transconductance Amplifier (fgOTA) inraty gain buter configura-
tion.

Finally, the method used to insert current into the systera Wwwause a conventional
pFET (a component in the FPAA CAB) connected to thr&® pins. The source is con-
nected to Vdd, the drain is connected to the start grid nodeleN1,1), and the gate was

connected to a DAC channel on the FPAA programming and coiodard. Similarly, the
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Figure 21. a) Toy problem two dimensional dfice environment where the goal is to plan a path for
a MAV from the window to a specific desk. The environment that ha been discretized into a grid
with labeled nodes. Two path solutions are identified. b) Th figure shows the locations of the Start,
Goal, and Obstacles in the Cadence simulations. The shortgzath to the goal is through the red line:
Start=(1,1)-(2,1)-(3,1)-(3,2)-(4,2)-(4,3Goal. The alternate path to the goal is by the blue line. c) The
solution tree to the toy problem has two solutions (red and hle paths) [7].

goal Node (4,3) was connected to the drain of a pinned-ouwtedeamnnected nFET in the

FPAA CAB, and its source was connected to ground.

3.3.1.1 Results

Figure22 through Figure29 show measured results from the RASP 2.8 FPAA. Fidiire
shows a grid with no obstacles. Figu28 shows the data for the problem proposed in
Figure21. There are four decision points of interest in this map. Twoision points for
the optimum red path are at Nodes (2,1) and (3,1), and twaidecpoints for the non-
optimum blue path are at Nodes (1,3) and (3,4). When intengré¢te data in Figur@3b
and c, one is looking for the path of largest current. Sinegethis not a current meter on
each path, one may use node voltage measurements. When asiardaode, the best
route to take is the route with the lowest voltage on the neail@ble node (so that there
is the greatest voltage drop). The data corresponding taéhesion points for the blue
and red routes guide the robot. Fig@4through Figure27 show a broader range of the
grid’s response to varying input currents. Also, experite@rere performed to characterize
the performance of the floating-gate OTAs, Fig@& Finally, Figure29 shows that, as

expected, the current into the grid is equal to the currehbbthe grid. In order to show
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Figure 22.a) This experiment was for a 4x4 grid structure with no obstaées. The robot is at node (1,1),
and the goal is at node (4,4). The floating-gate pFETs were daprogrammed to 1e-006 A and the
measurements were performed with the current source pFET gate voltage at 1.5V. b) Node voltage
measurements were made directly at the node and did not use éifgOTA buffers. Coordinate (1,1) is

23904 | 23509 | 23269 | 23119
23574 | 23370 | 23128 | 2.2910
23344 | 23147 | 22847 | 22235
23222 | 23067 | 22539 | 0.4903

Col Nodes

top left, and coordinate (4,4) is bottom right. ¢) Surface pbt of the data in b [7].
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2.3358 | 2.3192 | 23186
2.3500 | 2.3033 | 2.2813
22987 | 2.1905 | 2.2534
22450 | 0.4433 | 2.2534

Measured Node voltages

2.3425 | 2.3249 | 2.3276
2.3650 | 2.3700 | 2.3184 | 2.2796
2.3366 | 2.3066 | 2.1758 | 2.2505
2.3464 | 2.2489 | 0.8811 | 2.2280

Corrected Node voltages

Figure 23. This experiment compares the results of using the fgOTA bffers when measuring the node
voltages [7] a) This experiment was for a 4x4 grid structure \ith 8 obstacles. The robot is at node (1,1),
and the goal is at node (4,3). The floating-gate pFETSs for thegihs were each programmed to 1e-006 A
and the obstacles were set to 0 A. The measurements were perfeed with the current source pFET's
gate voltage at 1.5V for b and 1.5421V for c. b) Node voltage msurements were made directly at
the node and did not use the fgOTA bdifers. c) Node voltage measurements were made using fgOTA
buffers. The measurements were calibrated using fgOTA charactization curves, Figure 28.
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Figure 24. The data in Figure 22 is from a vertical slice of this data wherthe x-axis is 1.5 V [7]. This
shows each node’s steady state response to varying levelsrgfut current.
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Figure 25. The data in Figure 23b is from a vertical slice of this data wha the x-axis is 1.5421 V. This
shows each node’s steady state response to varying levelsrgfut current. The sink node is about 0.44
V, but is not displayed [7].
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Figure 26. The data in Figure 23c isderived from a vertical slice of this data when the x-axis is 1.5421
V. These are the raw measurements made from the fgOTA Hiers at the nodes. Becauseffsets exist
in the buffers, this data needs to be calibrated to the correct value. Tdimeasurements were calibrated
using fgOTA characterization curves shown in Figure 28.

this, current measurements were taken at the input node grithto characterize the input
current. The output current was correlated to the inputeriitoy measuring the sink node’s
voltage response for various input currents and then agrithe output current from the

diode’s characterized curr¢nbltage curve.

3.3.1.2 Experiment 1 Summary

In the toy problem discussed in this chapter, it is feasiblagply the input at the start
node, and measure all of the outputs to establish the erlrefpom start to goal. In

a real system, however, with a much larger grid, the nodeagek become too small to
definitively measure all nodes because the current has éagdmver a much larger grid
[44]. In this case, it is common to re-apply the input to the ré&bourrent grid square

when the robot reaches a new node, and then measure therglingnode voltages. The

drawback to this system is more computation time and powed.u®\ second issue is
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Figure 27.The data in Figure 23c is from a vertical slice of this data. Tkese are the calibrated measure-
ments derived from the fgOTA buffer measurements at the nodes.

Voltage at fgOTA output terminal (V)

!

. . . . . .
15 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
Voltage at Node (i.e. fgOTA input) (V)

Figure 28. These curves show the fgOTA characterization results [7]. dMtages between 1.5 and 2.4 V
were applied to the input to the buffer and the output was measured. Ideally, the output should eggpl
the input, but that is not the case as the curves are shifted uand down from the ideal. Curves are
fit to these data points and are used to calibrate the fgOTA mesurements. The red lines show the
calculation of the calibrated values used to produce the sdiace plot in Figure 23c.
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Figure 29. Verifying Input Current = Output current: Input current pFET is connected to Node (1,1)
of a 4x4 grid. Node 15 is grounded through a diode connected iH.

42



(a) Mobile Robots (b) Experimental setup (c) Measured Results
AmigoBot [125

Figure 30. Our experimental environment showing a) the robot with coodinate axes and b-c) the im-
plementation of an FPAA generated plan.

reading the node voltages. In this toy problem, we can eeessiigt out each individual node

voltage, but larger grids would likely need to use anothsteay.

3.3.2 Experiment 2: Integration of FPAA and Robot

We are using an AmigoBot robot to demonstrate the analog pigraystem, Figur&Qa.
The FPAA and AmigoBot robot are integrated such that the FP&4 as a “planning co-
processor” for the robot. A block diagram showing how thel@gaesistive grid’s planner
fits into the larger robot system is found in Figud@éa. The Executor’'s function is to
act as an interface between the FPAA and the low-level digaatroller. An example
software flow is found in Figur&1b. This simple, proof-of-concept flow assumes four
things: a known map, a static environment, the robot’sis@ibcation is known, and the
goal location is known. More complex flows could move the entrsource to follow the
robot in the grid 8] and can also incorporate re-planning. The task of the Nsiag
block in Figure31a is to convert high level plans such as “Move from the windowhie
desk at grid (4,3)” in Figur0a to low level commands. A position-stabilizing controller
adjusts the robot’s forward and angular velocity and is ueattive the robot to points in
the grid [L24]. The control equations are based on feedback linearizalibie kinematic

equations of motion are shown ifh@).
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Figure 31.a) High level control system block diagram and b) software flav of the Executer designed to
integrate the analog planner and the robot.
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This uses a coordinate transformation wherg effset is chosen from the center of

rotation (see axis overlaid over Figuda. An overhead camera is used for localization.

Image processing routines segment three dots on the babk obbot and these are used

to locate the robot in (x,¥4) image spacel2§.

For this proof-of-concept system, two programming envinents were integrated: the

4
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Matlab of the FPAA and the €+ code forPlayer. An extensive body of Matlab code has
been developed by the Integrated Computational Electr@l@gs) Lab at Georgia Tech to
program and communicate with the FPAA board. Open soBlager software, 127), is
used for interfacing with the FPAA (via Matlab) and for caniling the AmigoBot robot.
The FPAA Matlab code is called §layerusing Matlab engine function§].

3.3.2.1 Experimental Results

This section presents our initial results of integratinglaot with an AVLSI co-processor.
The experimental setup is shown in Figl8@. The robot is shown in the background,
the FPAA is shown on the left corner of the desk, and the owatltamera is above (not
shown). All are tethered to the laptop runniRtayervia USB cables. Figur80c shows
our initial experimental results from a robot in a four by fouid world. The AVLSI FPAA
hardware has been integrated iflayer as a co-planner for the AmigoBot robot. This is
an image taken from the overhead camera used for localizaflhe results are for an
experiment in a 4x4ftice grid world. The cubicle partitions are marked in blacketap
the floor. The overlaid red dots are the recorded trajectbtig@robot moving from node
(1,1) to node (4,3) The overlaid blue circles mark the grides At each node traversed
by the robot, the FPAA was consulted for the next node.

Although this is a trivial planning problem, it demonstsate/o major goals. First, our
system can make complete plans using floating-gate resigtids (based on our limited
experiments). Second, the supporting FPAA hardware amdaid are at a level of sophis-
tication where they can be reliably integrated into robatfokms. This system has three
modes of operation. These three methods provide usefudrgpwhen debugging various
parts of the system. A brief discussion of each of the modeewspresented.

Real Robot, Real FPAA Results:The FPAA and an AmigoBot robot were integrated
together and localization was performed using an overhaaska (640x480 pixel resolu-

tion). The robot successfully navigated its path on the ffsdirected by the FPAA. Figure
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30c shows in red the path the robot made from its start to its.gAtkach node (repre-
sented by a blue circleRlayer queried the FPAA co-processor to help decide whether to
go straight, or turn left or right at each node in order to hethe goal.

Real FPAA, Simulated Robot Results:This is a Hardware in the Loop (HWIL) envi-
ronment where the actual FPAA hardware is being calleBlayerand is interacting with
a virtual robot in a three dimensional robot simulator wismamics. This environment is
calledGazebaand interacts witiPlayer using the same control code. Ideally, one can take
the samePlayer control code to control a virtual robot or the real thing. #g33 shows
an image from &azebosimulation. Virtually identical software is used for thisAHL
simulation as in the section regardiRgal Robot, Real FPAA Results

Simulated FPAA, Simulated Results: Finally, it is possible to simulate the FPAA
results by using Matlab to solve for node voltage valuesgydior example, Kirchhfi’s

laws.

3.3.2.2 Analysis
This path planning problem can be formulated as a tree sgaotilem. These problems
are typically evaluated with four metrics: Completenesgji@glity, Time Complexity, and
Space Complexityl]. Time and Space Complexity are addressed further in theviatig
sections. Time complexity is typically measured by the namdf nodes generated]|
Space complexity is measured in terms of the maximum nunflyerdes stored in memory
[1].

3.3.2.2.1 Time Complexity Time complexity is not as simple as number of nodes
generated with the FPAA. There are three items to considenwhlculating the total time
cost of the FPAA planner: FPAA grid programming time, sauatcomputation time, and
time to read the solution from the grid. Each of these areesddd below.

3.3.2.2.1.1 FPAA Programming Time MeasuremerRsogramming a grid map onto
the FPAA is done in two main phases. First, the FPAA is erasdgeepared for program-

ming. Second, the new map is programmed onto the FPAA. Withcotrent software,
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23954 | 2.3358 | 2.3192 | 2.3186
23635 | 2.3500 | 2.3033 | 2.2813
23401 | 2.2987 | 2.1905 | 2.2534
2.3400 | 2.2450 | 0.4433 | 2.2534

a) b) c)
Figure 32.a) Measured FPAA hardware results for a 4x4 grid like the configiration of the robot start,
goal, and obstacles in Figure 20c. b) A table of the measureditages with path identified by the pink

squares. ¢) Measured node voltage settling times of the exatepffice 4x4 resistor grid as a function of
grid location.

it takes approximately 35 seconds to erase and prepare & folP programming. This
amount of time is independent of the size of map that will lmgpsmmed. The time needed
to program the map is a function of two parameters: size of amaptype of paths which
connect the nodes on the map. There are three types of pathsdlwill consider. Type 1:
impassable paths, Type 2: completely passable paths, ged3a path which is passable,
but with some degree of fiiculty. This may be due to terrain such as sand, an incline, etc
The programming times for each of these paths is summane&dhle2. As the state of
the art in floating-gate programming advances, these timesxgected to decrease.

In the 4x4 grid example, 38 floating-gate switches were usdte circuit. Of these,
22 switches wereverhead That is, they were needed to program the grid, but were not
pathelements. This overhead number changes according to ged She switches were
generated automatically usitgRASPERsoftware B1]. In this example, this overhead
represents about 58% of the total number of switches. Dubgtaoles, the number of free
paths was only about 67% of the total paths possible in a 4k d¢frwe consider N as
the number of nodes on the side of an NxN square grid, the nuofl@ssible paths is
O(2N?).

3.3.2.2.1.2 Solution computation tim&he computation time for the FPAA is based
on the time it takes for all of the grid’s node voltages toledth steady state in response

to a current step input. For the 4x4 grid example, the contfmmtdme of this grid based
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Figure 33. This is an image of a simulated flice environment used in a FPAA Hardware in the Loop
(HWIL) test.

Table 2. Grid Programming Times according to path type

Type 1| Type 2| Type 3

Measured Erase and Initialize grid (sec) 35 35 35

Measured Program time per path (sec) 0 0.0486| 4.4332
Expected Program times (se&)] 0 0.001 | .050

FPAA planner is approximately 4.5ms. Figu8®shows the transient response of each of
the sixteen nodes in the grid. The limiting factor in thiseegsNode 15 which took about
4.5ms to settle. Figurgd2a-b shows node voltage measurements from a 4x4 grid woild, (c
shows the node settling times for each of the nodes. A stej igitage was placed on the
pFETSs gate at node (1) and this implemented a step input current to represembthe’s
location at this node. A current sink was implemented at r{dg®) to represent the goal.
The last node to reach steady state took 4.5ms.

3.3.2.2.1.3 Solution access timén the FPAA, once the nodes have settled, the so-
lution is found by readingl nodes, wherel is the depth of the shallowest goal node. We
could say then, that the FPAA has Time complexityQgfl). For comparison, Breadth-
First-Search (BFS) has Time Complexity @1(bd+1), where the branching factdr = 4,
andd is the depth of the shallowest solution. Fig@4a compares Analog-to-Digital Time
Complexity as a function of shallowest solution.

3.3.2.2.2 Space Complexity To calculate a final path solution the FPAA planning

system needs to maintain an adjacency list. This lists,doh@ode, all nodes that are one
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Figure 34.a) Comparing the Time complexity of the FPAA to BFS. b) Compaing worst case Space
complexities of the FPAA to BFS. ¢) Comparing Computation Tine of the FPAA to an estimate for
BFS.

Table 3.Rasp 2.8: Comparing FPAA to BFS

Criterion FPAA Breadth First|

Complete? Yes (based on limited experiment)  Yes
Time O(d) O(b™?)
Space O(4N (N —1) + 1) O(b*?)

step away through Type 2 or Type 3 paths. This list can havéotine [source node , list
of adjacent nodes]For example, in the 4x4 grid of Figu9, the robot can reach nodes
(1,1), (2,2), and (3,1) from node (2,1). The corresponditig@ncy list would be [(2,1),
(1,1) (2,2) (3,1)]. This information is contained in MATLA&1d combined with the node
voltages read from the FPAA to choose a path. Assuming n@olestfor maximum space
complexity, the worst case space complexity of the FPA®{@N (N — 1) + 1), whereN

is the number of nodes on a side of a square map, i.e. NxN map.isTéalculated using
(11) whereN, terms are numbers i.&yiggle-nodesiS the number of middle nodes, aAdre
numbers of adjacencies. BFS worst case Space Compleﬁ(/d‘é*l), where b=4and d
is the depth of the DEEPEST solution.

S pacecomplexitypaa = (Neomers* Acorner)

Nnon—corner—nodesron—grid—edgeside

+ (11)
>’<Anon—corner—nodesron—grid—edg(—.Lside x4
+ (Nmiddienodes* Amiddienodes + 1

Table3 summarizes the Time and Space Complexity comparisons betiveed=PAA
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Figure 35. Measured transient responses for node voltages.

and Breadth-First-Search (BFJ) [

3.3.2.2.3 Calculation Time Estimate Ideally, one would like to compare the ac-
tual solution times of the digital and analog solutions antjast operation numbers like
Time Complexity. As an estimate, assume that the BFS algoiighiming executed on an
a processor such as the ATMEL ARM7TDMI RISC processor opegaain55MHz max
clock speed. Further assume that the solution is at the despkition of the grid. If one
multiplies the BFS Time Complexity number by the inverse of AM7 clock then we
can have a crude estimate of the digital computation timeeskonate the computation
time of the FPAA, we extract a curve from the diagonal delayes of Figure32c. Since
BFS is in terms ob andd, and the FPAA settling time estimate is in terma\bfwe use

N = (d/2) + 1 as the transformation. A comparison plot is shown in Figiee Estimate of

BFS Computation Time for 55 MHz process@{b%*?) « (gz4r) where b= 4. Estimated
FPAA Computation Time is based on extrapolation of the diatpaf the 4x4 delay mea-
surement data in Figui@2c. Based on this graph, the prediction is that an FPAA solution
may be faster than digital for solution depths greater thaitds plot estimates that the
FPAA will be quicker at solving plans where the solution dejs greater than 8. This

corresponds to the deepest solution of a 5x5 grid.
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Figure 36.This figure compares the “rat’s nest” of wires and multiplexer ICs used to measure the data
with the RASP 2.8a IC path planning system vs. the simplifiedystem for the RASP 2.9v IC.

3.3.2.3 Summary

Figure34a and b have shown that the Time Complexity and Space Comptehiitg FPAA
are orders of magnitude lower than that of BFS. Figd4e also describes the solution
depth at which FPAAs may find a solution quicker than BFS. Rmn#ie FPAA embedded
planning system was successfully integrated with a reabdtro®ne of the diicult parts
of using the RASP 2.8a for path planning was accessing andumieg®&ach of the nodes.
Figure 36a shows the “rat’s nest” of wires and multiplexer ICs used t@snee the data.
In the next section, the RASP 2.9v IC is used, and features®f@hgreatly simplify the

readout of the node voltages.

3.4 Path Finding on the RASP 2.9v FPAA

This section presents the results of path planning usinB &P 2.9v FPAA IC. The RASP
2.9V has a special feature that can be used to access anyirpthetrouting fabric. This
is accomplished using horizontal and vertical registeas #re connected to the FPAAs
routing fabric. These registers are addressed and cadrbif the ARM core micropro-
cessor and a Matlab interface. The Matlab interface couletiv®ved for a FPAA system

connected to an autonomous agent. This special featuresatine to avoid such a “rat's
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Figure 37. This figure illustrates how a 4x4 grid is implemented as a bipgite graph in the FPAA's
routing fabric.

nest” of wires as depicted in the RASP 2.8 IC system in Fi@&eein favor of Figure36b.

The grid structure for a path planning problem such as Fi@dres implemented on
the 2.9v FPAA using a bipartite graph configuration. With tiierent routing algorithm,
if there areN total nodes, one need§g2 horizontal rows andN/22 vertical columns to im-
plement this structure in the FPAA's routing fabric. Fig@® illustrates how a 4x4 graph
(N=16) is implemented on the FPAA routing fabric. The floatiregtransistors, when
programmed to conduct, will make a connection between thiedidal and vertical lines.
If a transistor is turnedf then this represents an obstacle.

A non-floating-gate pFET transistor is used to input curietd the grid. This nomi-
nally represents where the robot is located. A diode cordimFET transistor is used as
a current sink in the grid. This is placed at the goal node.tNbr algorithm commences
with measuring the voltages of the neighbors of the inputenirlocation. The neighbor
with the lowest voltage is the place where the robot shouldnbged. A flow chart of
the algorithm is found in Figurd8. Performance was increased when the input pFET was
actually moved only every five iterations on the path plani48}. To calculate a final path

solution the FPAA planning system needs to maintain an ad@clist to define neighbor
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Figure 38. The basics of the FPAA Path planner algorithm flow.
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Figure 39. This figure shows how the input, output, and bdfers are implemented in the RASP 2.9V
FPAA IC. a) The input current to the grid is supplied by a pFET transistor. b) The current sink
(representing the goal) is implemented by a diode connectenFET transistor. ¢) A buffer connected
Operational Transconductance Amplifier (OTA) is used as part of the node voltage sensing circuitry.
Multiplexers are used to place the pFET, diode connected nFE&nd OTA buffer on any of the nodes.

nodes. This lists, for each node, all nodes that are one stap through passable paths.
This list can have the forrfsource node, list of adjacent nodedfor example, in the 4x4
grid of Figure20, the robot can reach nodes (1,1), (2,2), and (3,1) from n2dg.(The
corresponding adjacency list would be [(2,1), (1,1) (221)]. This information is com-
bined with the node voltages read from the FPAA to choose la. pBlte present system
implementation uses Matlab for this operation, but the afp@n can be moved to the mi-
croprocessor in the future. A fiier configured Operational Transconductance Amplifier
(OTA) is used in the voltage sensing circuitry. Thefbu helps one to measure the node
voltage with the Analog-to-Digital Converter (ADC) withoutecting the grid circuit. Fig-
ure39illustrates how the registers on the RASP 2.9v IC allow ondaogthe input pFET,
output nFET, and OTA at specific locations in the grid. An i@ad how these electronic
components are routed onto a RASP 2.9 IC is shown in FigQre

Concerning grid scalability, in this bipartite implemeindatof the grid on the FPAA,
the grid size is limited by the number of global and horizbfites in the FPAA routing
fabric. The RASP 2.9v has the capability for 100 global rowd &B0 global columns.
Therefore, with the RASP 2.9v and this particular bipartigoeathm, one is limited to a

grid with two hundred nodes. The limiting factor is the 100kl rows. The maximum
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Figure 40. This shows how the input current pFET, output current (sink) nFET, path switches, and

OTA buffer are routed onto a RASP 2.9V IC for a completely connected 244 grid. This illustration
can be compared to the IC die photo in Figure 8b.

square grid is then 14x1M.E196). Future IC designs could increase the number of global
horizontal and vertical lines to allow for larger grids arsloainclude microprocessors in-
tegrated with floating-gate routing fabric. With this intaged microcontroller many other
control functions could be expected to be integrated tagedis an important co-design

problem.

3.4.1 Software

Two new software tools were developed to support this woHesE are 1) a tool to convert
the obstacle map into a transistor map on the FPAA and 2) Zabsiacle visualization and

modification program called the Path RAT. The tool which cots/gthe obstacle map into a
transistor map on the RASP 2.9v FPAA uses an algorithm to gerire map and obstacles
into a bipartite graph. Aipartite graph“consists of two distinct kinds of nodes, and all

links go between nodes of opposite tyd2§.” Figure 37a shows one type of node as red
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Figure 41.a) Three dimensional grid space. b) Mapping of Nodes 1-12 of anto a RASP 2.9V FPAA
using a bipartite grid.
circles and the second type of node as blue squares. The filgisteates that all links in
this two dimensional grid configuration go between nodesiefapposite type. Figui&/b
illustrates how the routing algorithm uses global horizb®PAA rows for nodes of one
type and global vertical FPAA rows for nodes of the secon@tyip theory, the bipartite
grid algorithm is amenable to three dimensions. Figiteshows how a simple 3D grid
is mapped onto the RASP 2.9v IC. The 3D planner may also be usefchses such as a
non-holonomic robot]29.

The second new tool developed for FPAA path planning is thile Rauting Analysis
Tool or, Path RAT in Figure42. This was developed to allow the user to visually construct

a map scenario of obstacles and free paths [

3.4.2 FPAA Hardware Results and Analysis

The FPAA hardware was used to evaluate twenty-fofiecent experimental cases and was
95.8% correct. The cases are generated randomly as follBwesnumber of obstacles in
each case is a pseudorandom integer value drawn from ateisordorm distribution in
the range from 1 to 90. The location of the obstacles in east isaandomly placed using

a pseudorandom integer value drawn from a discrete unifastrilzlition in the range from
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on lines. Each red line represents a floating-gate connecticbetween nodes (regobstacle; clicking
between nodes makes a red line appear OR disappear) [7].
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Figure 43. Statistics of the Monte Carlo scenarios used in the experimeés. a) Performance as a function
of the total number of obstacles. b) Distribution of obstaats in the scenarios. c) Distribution of optimal
solution path length.
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1 to the maximum number of edges in the gf{@R-1)*nC)+ ((nC-1)*nR) wherenRis the
number of rows in the grid amiC is the number of columns in the grid. The node locations
of the starting node and goal nodes are each drawn from atkseniform distribution in
the range from 1 to the maximum number of nodes in the grid {@®6& 14x14 grid). The
statistics of the path and obstacle scenarios are foundjur&43. We compare the FPAA
hardware results to a common search strategy called BréadthSearch (BFS), where
the BFS algorithm is implemented on a computer processor. BBSninformed search
method. This type of strategy can only generate successiasrand evaluate if a node is
the goal. This is in contrast to amformedstrategy such as A* (pronounced A-star), where
heuristics are used to generate successor nodes that a@raorising than others. BFS is
complete (assuming a finite depth of the solution) and iswgtfor the specific case when
all paths have the same co#dj.|

This path planning problem can be formulated as a tree spanblem. These problems
are typically evaluated with four metrics: Time ComplexBpace Complexity, Complete-
ness, and Optimalityl]. Time Complexity is typically measured by the number of rode
generated]]. Space Complexity is measured in terms of the maximum nurmmbeodes
stored in memoryJ]. Completeness ensures that a solution is found if it existsaso
must ensure that that if a solution does not exist then tharigthgn terminates and says so.

Optimality ensures that tHeestsolution is found if it exists.

3.4.2.1 Time Complexity

Time Complexity is typically measured by the number of nodasegated]. Time Com-
plexity is not as simple as number of nodes generated witREAe\. There are three items
to consider when calculating the total time cost of the FPAskper: FPAA grid program-
ming time, solution computation time, and time to read tHatgmn from the grid. Each of

these are addressed below.
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Table 4. Grid Programming Times according to path type

Type 1| Type 2| Type 3

Measured Erase and Initialize grid (sec)5.52 | 5.52 | 5.52

Measured Program time per path (sec) 0 0.059 | 3.96
Expected Program times (se@1] 0 0.001 | .050

3.4.2.1.1 FPAAProgramming Time Measurements Programming a grid map onto
the FPAA is done in two main phases: First, the FPAA is erasédeepared for program-
ming. Second, the new map is programmed onto the FPAA. Witlcouent software, it
takes approximately 5.52 seconds to erase and prepare A#efBPprogramming. This
amount of time is independent of the size of map that will lmgpgmmed. The time needed
to program the map is a function of two parameters: size of amptype of paths which
connect the nodes on the map. There are three types of pathedhwill consider. Type 1:
completely impassable paths, Type 2: completely passaiies pand Type 3. a path which
is passable, but with some degree dfidulty. This may be due to terrain such as sand, an
incline, etc. The programming times for each of these patissimmarized in Tablé. As
an example, if one has a 3x3 map with all completely passattiespthe total programming
time = 5.52+ (12*0.059) seconds. The first number is the erasing and pagpa phase (a
constant), and the second number represents 12 total eeltyesam nodes which each take
0.059 seconds to program. As the state of the art in floatatg-grogramming advances,
these times are expected to decrease.

In addition to the path switches, some extra routing swi@re also needed when using
the routing algorithm and RASP 2.9v IC. Most of these extradveis are used to create
global lines out of local lines. In theory, this overhead f@mcould change according
to grid size. For simplicity, however, the current routigaithm activates all overhead
switches in the global columns that are used.

3.4.2.1.2 Solution computation time The computation time for the FPAA is based
on the time it takes for all of the grid’s node voltages toledti steady state in response to

a current step input. Figus shows measured data showing the voltage gradients for two
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Figure 44. a) Measured Steady State FPAA hardware results for a 14x14 giiwith no obstacles. b)
Measured FPAA hardware results for a 14x14 grid with obstacls. Input current at 141, Sink node at
126.

14x14 grids.

The computation time for the grid based FPAA planner is apprately 0.245ms. Fig-
ure45b shows the transient response for four nodes along themgba fully connected
14x14 grid. As shown in Figuréd5a, a step input voltage was placed on the pFETs gate
at node (11) and this implemented a step input current to represenpthat’s location at
this node. A current sink was implemented at node {#4 to represent the goal. On grids
of this size, the sensing capacitance is the limiting factothe transient convergence. The
transient settling time as a function of grid size was charaed in Figuredsc. The trend

is that smaller grids exhibited a slower settling time.
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Figure 45. Measured transient responses for node voltages. a) Experimesetup: a step input voltage
was asserted on the gate terminal of the input current pFET anode A (1,1). This implemented a step
input current to represent the robot’s location at this node A current sink was implemented at node
D (14,14) to represent the goal. b) Settling time as a functioof position on the 14x14 grid. c) Settling
time for the input node as a function of grid size.
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Figure 46.a) Comparing the Time Complexity of the FPAA to BFS. b) Compaing space complexities
of the FPAA to BFS. ¢) Comparing Computation Time of the FPAA b an estimate for BFS.

3.4.2.1.3 Solution access timeln the FPAA, once the nodes have settled, the so-
lution is found by readindp*d nodes, whereal is the depth of the goal node, abds the
branching factor. The branching factor is 4 for a two dimenal grid where an agent can
move up, down, left and right. Sindeis a constant, the asymptotic complexity of finding
a solution isO(d) [130]. For comparison, BFS has Time Complexity @{(b®*), where
the branching factob = 4, andd is the depth of the solutiorl]. Figure46a compares

Analog-to-Digital Time Complexity as a function of solutidepth.

3.4.2.2 Space Complexity
Space Complexity is measured in terms of the maximum numbeoads stored in mem-

ory [1]. Unlike BFS which must hold in memory every node that is gatest, the FPAA
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Table 5.RASP29V: Comparing FPAA to BFS (whereb is the branching factor, b=4 for Figure 46), and
d is the depth of the goal node [1].
Criterion | FPAA | Breadth First

Complete? No Yes
Time | O@) | O(b™?)
Space | O(d) | O(b™?)

algorithm only needs to hold the path in memory. Therefdre Space Complexity of the
FPAA is O(d). BFS worst case Space ComplexityGgh®t), where b= 4 and d is the
depth of the solution]]]. Figure46b compares Analog-to-Digital Space Complexity as a
function of solution depth. Tabl® summarizes the Time and Space Complexity compar-

isons between the FPAA and BFH .|

3.4.2.3 Completeness

In 1985, Khatib 4] was one of the first to combine the ideas of real time pathrptapand
potential fields. One of the drawbacks to this method is thatiot completdecause local
minima in the search space may lead to solutions which dombtrethe goal. One of the
earliest references to using Laplace’s equation for pathrphg is Connolly’s work11§.
This method eliminates the local minima problem of potétitds. Harmonic functions
are solutions to Laplace’s equations. Harmonic potentddi$i are explored to eliminate
local minima of potential fields,1831, 132 119. Tarassenko, et. al. build upon Con-
nolly’s work, [118, 48]. First they propose using Neumann boundary conditiorstéad of
Dirichlet) in an dfort to overcome problems associated with the measuremeaotsrbng
too small to distinguish the best path (bad dynamic range&ndér certain assumptions
regarding the boundary conditions, a path planning schesirgytharmonic functions is
complete up to the approximation of the environmettd.” The FPAA based grid pro-
grammer is statistically complete to the extent that ourieog) data demonstrates it will
find a solution if one exists approximately 95.8% of the tirAkso, the FPAA will indicate
that a solution is not possible if one does not exist. If asmhudoes not exist, then there

should be very little current draw out of the input pFET. Téfere, one can set a current
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Figure 47.This figure illustrates that using a node’s neighbor node vdhges to choose the path does not
always result in an optimal solution.
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Figure 48. Measured results from FPAA compared to BFS. Red line edges repsent obstacles. It is
acceptable in this graph to pasghrough two parallel connected edges, but it is not acceptable to mev
along the red connected edges: S Start and G = Goal. a) Optimal FPAA solution. b) Sub-optimal
FPAA solution. c) Incorrect FPAA solution.

threshold, and if this is not exceeded then a solution doeexist.

3.4.2.4 Optimality

The analog planner is not guaranteed to find the optimumisaluEundamentally, alter-
nate parallel paths can lead the planner to a non-optimatisnl Figure47 describes a
situation where the planner will result in a sub-optimabsioin. In this example, there are
two branching paths at the start. If one assumes that eatie @dges between nodes has
the same resistance (say 1 ohm), then one may calculate twaknt resistances between

the start and the goal. The upper path’s equivalent resista® ohms. The lower path’s
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equivalent resistance is 13 ohms. Ohms law dictates thém tiglarger thar,. If this is

the case theN; is lower thanVs. Since the algorithm follows the path of greatest current
(i.e. largest voltage drop), the selected path would prbedeng the upper path to the goal.
This is a sub-optimal solution because the shortest path 8tart to Goal along the upper
path is 15 edges. This is a longer path when compared with3teelde length path along
the lower path. In the experiments run, however, the FPAAtB was optimal in 20 of

the 24 cases (83.3%). Figu48b shows one of the sub-optimal cases. Finite measurement

capability of the measurement circuitry may also lead tosptimal solutions.

3.4.2.5 Calculation Time Estimate

Ideally, one would like to compare the actual solution tiroéthe digital and analog so-
lutions and not just operation numbers like Time Complexty.an estimate, assume that
the BFS algorithm is being executed on an a processor sucle 88 MEL ARM7TDMI
RISC processor operating at 55MHz max clock speed. Furtlsemnass that the solution is
at the deepest solution of the grid. If one multiplies the BlH8ETComplexity number by

the inverse of the ARM7 clock then we can have a crude estinfighe digital computation

time: O(bd+1) * (55,\1/th) where b= 4. To estimate the computation time of the FPAA, we
use the worst case transient settling time from Figlb® A comparison plot is shown in
Figuredéc. This plot estimates that the FPAA will be quicker at salyplans where the

solution depth is greater than 6. This corresponds to thpedtesolution of a 4x4 grid.

3.4.2.6 Power Costs

The power used by this system can be split into three categjagrid (map) programming
power, solution finding power, and solution extraction ppWee claim that the power used
by the FPAA to arrive at the solution is much less that thatdify@tal solution. We can not
make appropriate claims however of the grid programminggramd solution extraction
power, because we have not optimized our system for theddepns. The embedded

system which interfaces with Matlab uses current on theratié00mA.
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These FPAA planning results can be compared and contrastedaw FPGA imple-
mentation of the Breadth-First-Search algorithmiB3. According to their experiments,
mostly all of the measured solution times for the hardwareva¢ least two orders of mag-
nitude faster than their software solutions. (The proaesgeed for the software solutions
is not clear, however). A 10x10 grid solution in FPGA hardevéwmok about 2.35us. A
30x30 grid in FPGA hardware took 28.2us. This is comparedhédr tLOms software so-
lution. There was a tradéo however, with respect to grid size. For smaller grids on the
order of 30x30, the software implementation was preferéleleause the time (although
still longer than the hardware implementation) is smaltl tre implementation is easier in

software than in hardware.

3.4.3 Summary

In this chapter, we continued to build upon the idea that hegik equation and analog cir-
cuits can be used for path planning and are adding to therexigisearch which combines
analog VLSI and roboticslf34]. This work is new for a few of reasons: First, it provides
an extensive amount of measured data representifgyeit map scenarios from a fabri-
cated AVLSI IC. Second, our analog circuit implementatiodifferent from the existing
literature because it is implemented on a reconfigurabléogri€ that uses floating-gate
transistors which provide, among other things, a non-ilelatay to store the environment
map. Finally, this work has started to quantify the perfano®gagain for using an analog

solution instead of a digital one in terms of Time and Space (@exity.
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CHAPTER 4
NEURON PATH PLANNING

Neuromorphic engineering is an interdisciplinary field grhicombines concepts from
fields such as biology, neuroscience, computer scienceragidezring 135 [136 [137]
[121] [138. The goal of this field is to design systems that are basederptinciples
of biological nervous systems. Path planning is a critiagktfor robots, autonomous ve-
hicles, animated characters, etc. Figdfeis a cartoon showing the ultimate goal of the
problem being addressed in this chapter, namely how to usemmorphic approach and
neuron array integrated circuit (IC)1(] to plan a path for a Micro Aerial Vehicle (MAV)
(or similar power constrained ground or sea robot) througkravironment in anféort to
conserve its limited battery resources. The IC used forébkalts in this work, Figur&c,
uses biologically realistic transistor based models wiigérate as neurons operate, how-
ever not necessarily how the brain does path planning. Th@a#100 Neurons and 30,000
synapses. It was constructed in a 0.35 micron process amliEtBeze is 5x5 mm. Floating-
gate transistors are used as the synapse elements. Thegigate synapse transistors are
used to create the programmable routing. A synaptic wemglstored by an adjustable
charge on the gate of the floating-gate synapse transistdtiph synapses are connected
to a dendrite by adjusting the weights on the synapse ttansig/hich are connected in
parallel to the dendrite wires. Unused synapses are notecteah internally to the path
planning circuit. The floating-gates for these transiséwesnot set to conduct. The system
uses Address Event Representation (AER) to record spike aatathe neurons. Neuron
Elements include: soma, dendrite, synapses, and axortspRaning can be summarized
with the following three tasks given that states, actiondpéial state, and a goal state are

provided. The robot should:

1. Find a sequence of actions that take the robot from itmlrstate to its Goal state

2. Find actions that take the robot fraanystate to the Goal state
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Figure 49. The goal of this research: to use a reconfigurable neuron Arrg IC to plan a path for small
robot from point A to point Z through an environment. a) Maze environment which is discretized into
grid points (shown here as A,B,C,D,...). b) A simplified gridrepresentation of the maze in a. Note that
some edge connections are not active between nodes (markegtivo hash marks). This represents
a wall. ¢) This work uses bidirectional connected neurons tdmplement the edges between nodes.
As in b, some axon-dendrite connections are not made (markebly two hash marks) for the neurons

representing nodes separated by a wall.
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3. Decide thebestaction for the robot to take now in order to improve its odds of

reaching the Goal

In a comprehensive survey of autonomous rotorcraft unnchameraft systems, Kendoul
describes path planning methods and algorithms which septehe “most used and prac-
tical methods, with a particular focus on works with expesntal results139.” Accord-
ing to this survey, Navigation strategies used in Rotorddafinanned Aircraft Systems
(RUAS) include, among others, Road Maps (RM) and Potentiddi&i@F) [L39.

In RM methods, graphs are constructed using nodes to repned®ot positions and
edges are used to represent paths between positions. A sdgocithm is then often used
to plan a path among the nodeks3fl. Among other groupings, search algorithms used
in path planning can be grouped intminformedstrategies anthformedstrategies. In-
formed strategies tfer from Uninformed strategies in that they have a method idegiine
search to make it mordiecient. Breadth-First-Search (BFS) and Dijkstra’s algoritura
examples of Uninformed search strategies. BFS is optimahvgla¢h costs are equal, Di-
jkstra’s is optimal with non-equal path cosi4.[BFS has also been calldéaushfire[140
, or grassfire[21] , since it resembles the way fire progresses in a dry gras$it( .
Technically expressed, the grassfire transform “is simpbdatth-first search implemented
in the constrained space of an adjacency arfdy’[ An early grassfire algorithm is called
NF1 [141]. NF1 is described as a wavefront expansion algorithm whatbulates a navi-
gation function for each point in the workspadé]]. Although this results in a path which
is shortest from the robot to the goal, a problem with the Nigbrithm is that it creates
paths that come close to obstacl&4]]. Further, the wavefront propagation algorithm can
also be considered a specialized version of Dijkstras dhgorthat optimizes the number
of stages to reach the godl42. Informed strategies include best-first search strategie
like Greedy best-first search and A* (pronounced A-stdf) These methods use a heuris-
tic to guide the search. A* is an extension of Dijkstras alipon which tries to reduce the

number of explored states by using a heuristi4. An example of a heuristic in a two
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dimensional grid map representation is the straight lirstagice between a point and the
goal.

In PF methods, the geometry of the workspace and obstactéters first discretized
into grids in what is called a\pproximate cell decompositionThe obstacle grids are
programmed to produce a repulsive force and the goal grictsepts an attractive force.
A force vector is calculated for each free space point in thekapace. This force vector is
a sum of the attractive and repulsive forces acting on it. @ag follow the force vectors
at each point to find the path from each point in the grid to thal.gA problem with this
method is local minima. In practice, one RUAS planning systeses Laplace’s equation
with binary occupancy grid for a potential field approacheifimumerical solution is found
using a 1.8GHz Pentium M with 2MB L2 cache. A C implementatidnheir procedure
had a constant runtime of 0.07s for a three dimensional ¢dag4x32) and 0.6s for a
(128x128x64) grid 143 144.

In some sense, wavefront or grassfire planners have chasticeeof both RM and
PM methods. FPGAs have been used to implement planners basealvefront or stencil
based gradient calculation$l6, 12]. The authors describe processing 33 maps with a
resolution of 1024x1024 per second on a midsize Virtex-5 AP&2]. Analog VLSI has
previously been used for path planning, however much ofltgk involves Laplacian
based potential field approaches and not analog \ieGfonbased approaches like in this
chapter 44,53, 7, 2, 72].

A motivating reason for using the neuron array IC for patmplag is for better Time
Complexity (one of four main performance metrics used to canapath planners) and the
potentialfor lower power processing capabilities when compared gataliimplementa-
tions. The Time Complexity advantage is driven by the Neuf®s tapability to propa-
gate signals in parallel. This may be a significant advantag®AVs, ocean gliders or

other robot applications where the power budget for GuidaiNavigation, and Control
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Figure 50. The path planning block is one subsystem needed for an autonmus vehicle operating in
an unknown environment. There are three broad categories ofubsystems on the vehicle: Sensing,
Thinking, and Acting. The neuron IC and planning block fits into the Thinking category [8, 9].

is limited [102 29]. A key feature of the neuron processor is that it perforneswlave-
front expansion in parallel. Early discussions for patilieg the wavefront computation
involved having a virtual processor for each point in theldfi3]. Although this “brute
force” parallelism could waste power, it was suggestedttiiatwas one of the only ways
for parallelism [L3]. In our neuron implementation, the entire numerical pb&trield
does not need to be calculated in order to find the solutiome@me wavefront reaches the
start, the computation is done. One may use best-firstisdardinding the path through
the wavefront produced gradient. In best-first search, tueriselected for expansion is
based on an evaluation function, f(n). Traditionally, tloel@ with the lowest evaluation is
selected for expansion, because the evaluation measstasak to the goall].” In our
case, the evaluation function is extremely accurate ardslea to expand the best node.
The heuristic function in our case is the time it took for thevefront to travel to each of a

nodes neighbors.
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Figure 51.This figure illustrates the basics of the wavefront plannera) Scene where the robot is trying
to reach the goal while avoiding obstacles and traveling intte shortest path. b) The grid is discretized
and a wavefront is propagated away from the goal. The numberepresents a time stamp of when the
wavefront reached the square. ¢) The shortest wavefront rezhes the goal in 9 moves.
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Figure 52. This figure shows how the neurons of a fully connected grid passpikes. a) A signal is
originated in neuron 1 and this causes neuron 2 to fire at a latetime. Dots in the raster plot show
when the spikes occur. b) The outer large circle representdie map grid location and is implemented
using a neuron with soma, dendrite, axon, and synapse compents. The dendrites in these neurons are
- represented by wires. The synapse strengths are set with flthag-gate transistors. c¢) This represents
a fully connected grid. The number in the neurons show how thevavefront of a signal initiated in the
upper left of the grid propagates. The numbers represent inreasing time stamps of the propagating
wavefront. The 1 represents time 1, the 2 in the neurons showhich neurons fire at time 2, etc.
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The path planning block is one of many subsystems needed fautanomous vehicle
operating in an unknown environmerit4p, 146, 9]. There are three broad categories of
subsystems on the vehicle: Sensing, Thinking, and Actirfge ieuron IC and planning
block fits into theThinking category, Figurés0 [8, 9]. Information on implementing the
other subsystems is beyond the scope of this chapter. This agsumes that the other
subsystems are able to sense and map the environment aadamfpthe map in an NxM
grid (internal world model). The map representation is progmed onto the neuron array
IC using an embedded system described in Chapter

In summary, analog path planning is explored because iesepits a potential decrease
in Time Complexity and a potential power savings. This newaoay path planning IC
is useful because this reconfigurable AVLSI IC providesugtriuine-ability and flexibility
that custom ASICs often do not provide. The general idea af planner is a grassfire
[141, 21, 147] or wavefront planner]48 149. A spike based neuron inspired wavefront
planner and simulation results were presented4b).[ This work in this chapter is new
because it provides successful path planning results aalgsas of a wavefront planner
implemented on biologically inspired AVLSI hardware.

The wavefront based setup of the neuron analog planner sempied in Sectiod.1
Hardware results and analysis are presented in Sedtrand conclusions are made in

Sectiond.3.

4.1 Wavefront Neuron Analog Planner Setup

Our neuron IC implements a standard wavefront planner usimiggically realistic neu-
rons [L1]. An early paper presenting a wavefront plannefl&J. In the standard wavefront
planner algorithm, the goal node is given a valud adnd its neighbors which are not ob-
stacles are given the value &fand all the non-obstacle neighbors2dre given the value
of 3, etc. This is continued until the start point is reached. id the path, the algorithm

starts at the start point, and takes steps in the directiageofeasing node value, until the
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goal is reachedls1, 141]. This process is illustrated in FiguBd.

Neurons which are connected together in the IC pass spikbsitieighbors. Like the
standard wavefront planner, this neuron IC initiates a vav@e goal neuron and this in
turn excites its non-obstacle neighbors. Time stamps amded at the point when each
neuron is excited. The time stamps when each neuron firefdofirst time are used to
back out a solution.

Figure52 shows how the neurons of a fully connected grid pass spikeBigure52a
a signal is originated in neuron 1 and this causes neuron Petaffia latter time. Dots in
the raster plot show when the spikes occur. A more detailed of each of the neurons in
our model is shown in Figurg2b. The dendrites in these neurons are represented by wires.
Figure52c shows a fully connected grid. The number in each of the msusbow how
the wavefront of a signal initiated in the upper left of thedgosropagates. The numbers
represent the time stamps indices of when each of the neuesn fi

This technique is similar to the radar path planner presisate simulated in45]. Our
research furthers this technique by implementing the wawéplanner using analog neu-
ron circuits implemented in actual silicon hardware. Usamglog neurons to pass signals
can be compared to other signal propagation methods in@satth as Resistor-Capacitor
integrator delay line circuits and delay lines formed byragienal transconductance am-
plifier (OTA) based follower-integrator circuits, Figus&[121] [122.

Figure55 shows how a maze environment is modeled using the neuron ¢Qré55a
shows the example maze problem. The robot is located at Ndde@the goal is at Node
77. Figure55b shows the bidirectional connections between neuronsrépaesent free
paths in the maze. Figusbc shows how the connections are made in the neuron IC. A
system called Address Event Representation (AER) is usedctodehe time at which
spikes occur in each neurohd2. The 100 waveforms represent the 100 neuron outputs,
and the grey dots represent synaptic connections. Thisfghows how the outputs of the

neurons are connected to the dendritic inputs of neurb@ls Figure 56 shows details of
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the solution for Figur®5. A wavefront was initiated at the goal (Node 77) and propadat
throughout the neuron grid. Figub$b shows a raster plot of the solution nodes. Neuron
77 causes neuron 76 to fire, which causes neuron 75 to firdsigtae56¢ shows a zoomed
raster plot of the solution nodes. A linear fit shows that tlaefront propagation has a
nearly constant velocity of 1.091 neurgms.

A flow chart of the algorithm solution for Figs5 and56 is found in Figure57. The
robot is located at Node 22. The circles connected to Nodeeesent its non-obstacle
neighbors. The numbers inside the circle are the timingxnuenmbers from the AER
circuitry. Specifically, these numbers capture the time mwihe neighbors experienced
their first spike. The neighbor that fired first before Node 22 fired is N&8e The robot
should therefore move to Node 23 next. This represents tkiem@/e on the optimal path
to the goal. Node 23 has three non-obstacle neighbors. itiblmar node that fired first is
Node 33. Node 33 is then the next path on the way to the goat droicedure continues
until the full path is found.

One of the features of this algorithm is that the entire pathten can be found by
only a single excitation at the goal. Figus@ shows a couple of ways that the planner can
be incorporated into a robot system. In method 1, the enditie o the goal is planned each
time the robot moves. In method 2, only thextlocation is found. If the robot’s environ-
ment is not static this second method may reduce the AERposessing computations
after each move.

Regarding the software tools for this IC, we used PyNI§J to specify the neuron
structure of the maze. PyNN is a Python-based network gegoriof the maze environ-
ment.

Three specifications of the neurons’ settings include: thean’s refractory period, the
velocity of the propagated signal from neuron to neuron,tedgsynaptic strengths. These

three items can be adjusted tbext performance.
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Figure 53. This figure shows how signal propagation velocity can be modied using various methods:
a) neuron, b) diffusive, and c) hyperbolic
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Figure 54. Statistics of the Monte Carlo scenarios used in the experimés. a) Distribution of the Robot

start states, b) Distribution of the Robot goal states, and)Distribution of number of obstacles used in
the experiments.
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4.2 Neuron IC Hardware Results and Analysis

The neuron IC was used to evaluate SBatent experimental maze cases and was 100%
correct. The cases were generated randomly as follows. Uimbder of obstacles in each
case was a pseudo random integer value drawn from a diserébern distribution in the
range from 1 to 90. The location of the obstacles in each caseandomly placed using a
pseudo random integer value drawn from a discrete unifoatmiblution in the range from
1 to the maximum number of edges in the gf@R— 1) - nC) + ((nC — 1) - nR), wherenR

is the number of rows in the grid amtC is the number of columns in the grichR and
nC were both 10 for our scenarios. The node locations of thérsgianode and goal nodes
are each drawn from a discrete uniform distribution in thegeafrom 1 to the maximum
number of nodes in the grid (100 for our cases). The statistiche path and obstacle
scenarios are found in Figubd.

Path planning problems are typically evaluated with foutriog: Time Complexity,
Space Complexity, Completeness, and Optimalliy [Time Complexity is a measure of
the time needed to find a solutiofi]] Space Complexity is a measure of the amount of
memory needed for the seardj.[Completeness ensures that a solution is found if it exists
and also must ensure that that if a solution does not existttieealgorithm terminates and
says so. Optimality ensures that thestsolution is found if it exists. Each of these criteria

are discussed in the following sections.

4.2.1 Time Complexity

Qualitatively, Time Complexity is a measure of how long itdako find a solution]]. It

is often measured by the number of nodes generated whergibritlains are implemented
in digital computersq]. This is a reasonable measurement for a system that séajlyent
evaluates the nodes of a grid. For systems that can seartiplengrid nodes in parallel,
such as the Neuron IC planner, one may usefi@m@int measurement. In the Neuron IC,
if we assume that all edges between nodes have the same ywib&ghthe propagation of

the signal is uniform in the grid andtectively all of the nodes on the leading edge of the
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Figure 55. This figure shows how the neurons of a specific maze case are fignred to represent free
paths and obstacles. a) The maze which will be represented thineurons. The goal is at Node 77, the
robot is at Node 22. The IC will plan an optimal path between tlese two nodes. b) This is how the
neurons are configured for the maze case in (a). There are bigictional paths between neurons where
free paths exist and no connections where obstacles exis}. This shows how the neurons are connected
within the IC. Address Event Representation (AER) circuitry enables the circuit to time stamp when
each of the neurons fires [10].

wavefront are evaluated at approximately the same times dlkows one to say that the
solution time is a linear function of the depth of the solatid. As shown in Figur&6b and
Figure61b, each time the wavefront expands it reaches all of the beighat this depth in
a time that is a function of the depth and the velocity of pgagen. Eq 12) is the Time
Complexity estimate for the Neuron IC planner. The estimsieritten for an arbitrary
solution depttd, and arbitrary neuron propagation velocity,

TC= (12)

d
%

The essence of Time Complexity is not as simple as number @geherated with the
Neuron Array IC. There are also four items to consider whecutaling the total time cost
of the Neuron IC planner: Neuron pre-programming time, Emvinent map programming

time, Time to read the solution from the neurons, and Satutmmputation time. Each of

these are addressed below.

4.2.1.1 Neuron Pre-programming Time
Before being used for planning, the neurons need to be progesinThe neuron structures

can be pre-programmed onto the IC before the autonomous@eagates its environment.
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Figure 56. Results from one case that was solved on the Neuron IC. a) This a grid environment
example that the neuron IC solved. The robot is located at No&l 22 and the goal is at Node 77. A
wavefront is initiated at the goal (Node 77) and propagatedhroughout the Neuron grid. b) Raster
plot of the solution nodes. Neuron 77 causes neuron 76 to firgghich caused neuron 75 to fire, etc.
¢) Zoomed raster plot of the solution nodes. A linear fit showshat the wavefront propagation has a
nearly constant velocity of 1.091 neuronsns.

This involves programming the biases among other settigggramming the neurons for
a 10x10 grid currently takes on the order of 5-10 minutes. s in Figures8, a current
starved inverter]Q] circuit is used to produce a gate waveform in the synapseicirThis
gate waveform circuit and some operational transcondaetamplifiers (OTAs) used for
detecting spikes in the neurons also need to be programntezicudrrent starved inverter
circuit has two floating-gate voltage settinys, andVp,. Changing these alters the gate
waveform driving the synapse transistor. Details of hovs¢hare changed (programmed)
can be found in previous paper$l] 10]. The velocity at which the neurons fire is a
function of this gate waveform. If the velocities are chathgieis means modifying the
gate waveform programming. Changing one gate waveform mesjtinat all gate wave
waveform circuits be erased and re-programmed. This repnoging process takes on the
order of 5-10 minutes. The cap at the gate of the transisEngamy C embranelS @ coupling
capacitor between the processed output of a neuron and Himfleyate transistor device
operating as a synapse. The floating-gate of the transiatobe programmed and “can be

used to store a weight in a nonvolatile manner, compute adiicdl EPSP, and demonstrate
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biological learning rules]0].” Programming accuracy can be achieved at 9 bits of floating

gate voltage31].

4.2.1.2 Environment Map Programming Time
In addition to setting up the neurons, the IC also needs tarbgrammed with the envi-
ronment map. The environment is mapped onto the array byngelte strengths of the
synapses. Programming time for a 10x10 map (i.e. synapdks array) is about 10 min-
utes. This assumes that the velocities (i.e. gate wavefowouits) are not changed. This
programming time can theoretically be reduced in three way®y using a digital injec-
tion instead of precise injection programming, 2) by doiog parallel injection, or 3) by
using precise programming but implementing it on the miawotwller.

The velocity is set to about lpmeuron, but this can be adjusted to a point. Predicted
jitter on the velocity programming capability is estimatede+-1us. This is conservative

estimate based on a scale factor of gate delay jitter.

4.2.1.3 Time to Read the Solution From the Neurons

The AER system records the neuron spike events. The systeopesate at about 1 event
per micro second. This is the limitation of the AER system.thAdur current neuron
velocity of 1mgspike, the AER system could therefore keep up with approtaipd 000

neurons firing before it starts to lose events.

4.2.1.4 Solution Computation Time

As in [148, the search of the raster plot runs in linear time with respepath length, and
the computation time is proportional to the number of freksaa the environment. The
solution time for the next move (pathLength-vms, wherevis about 1 ms in this system.

If one is finding the entire path, then the time is slightly mor

4.2.2 Space Complexity
Space Complexity is measured in terms of the maximum numbeoads stored in mem-

ory [1]. As was said in Sectiod.1, the neuron IC can operate in two modes as it plans the
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optimal path to the goal. The first method plans the entirb pmathe goal, and in Method
2, only the next move to the goal is planned. These two opgyatrategies have fikerent
Space Complexity requirements. Furthermore, there dfereint memory estimates de-
pending on the refractory period programmed into the neurSectiort.1 mentioned that
the refractory period of the neurons is adjustable in thigesy. The refractory period is
the time delay during which the neuron will not fire. There @iféerent Space Complexity
estimates depending on the refractory period programmntedhe neurons. The following
section will address the details of a long and short refrggberiod where a long refrac-
tory period is defined to be a time much greater than the toted for the wavefront to
propagate from the goal to the start.

First, Method 1 is addressed. Method 1 finds the full solufrmm the start to the
goal. This requires that the entire wavefront fanout be na in order to find the full
solution. If one assumes that there is a long refractoryogethen one can estimate an
upper bound on the number of spikes generated as followshé&srsin Figure6la, each
time the wavefront expands it reachekew neighbors. This is whetkis the depth of the
solution. Assuming that each grid has a branching factor (@&4 the autonomous agent
can, in the absence of an obstacle, move up, down, left, bt)rigne may calculate the

total number of nodes enclosed by the wavefront as follows.

SCongrefractoy=4-1+4-2+4-3+---+4-d (13)
=4(1+2+3+---+0d) (14)
d?+d
It -
= 2(d” + d) (16)
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Figure 57.This shows how the solution for the maze in Figure 56 is backedut of the AER spike timing
information. The rows of circles represent non-obstacle nighbors. The numbers represent the time
that each node first spiked. The solution is found as followdNode 22 has three non-obstacle neighbors
(as represented by the three circles). The neighbor which f&d first is Node 23 (It fired at 10.2 ms which
is earlier than the other two node firings.). Thus, one may coclude that Node 23 caused Node 22 to
fire, and it is selected as a node on the optimum path (in gray).
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Figure 58. This figure shows the dominant capacitance which limits the @locity (and dficiency) of the
neuron propagation. The capacitance is on the output of thewrrent starved inverter. The velocity of
the neuron firing is related to the time it takes to charge and dscharge this capacitance. Therefore,
the velocity of the system is proportional to the power and fliciency of the system.Vy, and Vy, are
floating-gate transistors used to set the gate waveform drimg the synapse transistor. Details of how
these are changed (programmed) can be found in previous pape[11, 10].

81



= O(d?) (17)

Equation (7) is the upper bound for the number of nodes generated forransystem
with a long refractory period. For the other extreme casenthere is little or no refractory
period for the neurons then one may make a very conservatimae by assuming that
all of the neurons enclosed by the wavefront fire each timeménefront expands. This
upper bound may be estimated as follows. At the first wavéggpansion one may apply

(16) and record the number of nodeis8J:
2(2%+ 1) (18)

When the second wavefront propagates, one may add all thegprfeuronsand as-
sume that all of the first wavefront’s neurons fired again sonew total number of nodes
generated is19).

2(12+1)+2(2°+2) (19)

The number of nodes generated can be written for an arbisalgtion depthd as

follows:

S Cshortrefractory =

(20)
2[(12+1)+(22+2)+---+(d2+d)]
Rearranging terms:

2(12+22+---+d2)+2(1+2+---+d) (21)

Using Faulhaber’s formula to further simplif@1):

d®+3d?+d d?+d

o) (¢ 2
= %d?’ +2d% + gd (23)
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Figure 59. This shows the system view of path planning in an unknown enkdnment with this neuron
IC.

= O(d) (24)

One may therefore claim that4) is the upper bound for the number of nodes generated
for a system with neurons with a short refractory period.

If one assumes that there is a long refractory period (i.eefractory period>> the
solution time), and also assumes that each grid has a brantgtor of 4 (i.e. the au-
tonomous agent can, in the absence of an obstacle, movewp, dt, or right), one may
use (7) as an estimate for the Space Complexity. Likewise, if sgihg Method 1, but
assuming a short refractory time, one may express the Spauopl€xty as @4).

There is a maximum number of nodes required in memory in dodiénd the solution.
The memory system could hold two items for each node: 1) a staep for when that
node first fired and 2) a list of accessible neighbors. IiMaiN grid map with no obstacles,
this would require approximatelylxN memory locations for the timing information and
4 - (MxN) memory locations for the neighbor information.

In Method 2, if one assumes a branching factor of 4, then thmamg requirement is
O(4). That is, when planning the next optimal move to the gtbed,Neuron IC algorithm
only needs to store data for when the four neighbor grid eeésreached. This number is

the same for a long or short refractory period.

4.2.3 Completeness
A completeplanner will either always find a solution or inform the useattthere is no

solution. This neuron IC planner is complete if the goal is@ne finite depthd. If there
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Table 6. Comparing Neuron IC planner to digital methods, whered is the depth of the solution in the
search tree.

Criterion Neuron IC wavefront
[142 154 140, 155
Time Complexity d O(dz)
Space Complexity | Method Jw long refractory:O (dz)
(# of nodes < O(MxN) O(dz)

stored in memory) | Method Jw short refractoryO(d3)
Method 2: O(4)

Resolution Complete?

(assuming Yes Yes
finite depthd)
Resolution Optimal?
(assuming equal Yes Yes

path length)

------ Neuron:1091 neurons/s
107 + Neuron:109100 neurons/s|
~———— FPGA:34603008 nodes/s

grxs“r:z:iis ’/ g F e o Based on Experimental Velocity Data
g 4 = [ ] o
> s |ong refractory: O(d%) ; S hmidt 2012]
: §
§ g rmmm——od e 3 1w/ pased on FPGA Data Senmidt 225
; ] T eeesssssseseransssansasessssse]
: B ....................................... | ¥
....... : =
g £ e Assuming 100x faster Neuron Velocity
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Figure 60. Space and Time Complexity for the Neuron IC. a) Space Complety: This shows experi-
mental Neuron IC data and how it compares to the Space Compléty models in Table 6. Based on this
curve, one may assume that the refractory period in the expeémental data is closer to being a long time
than short. b) Time Complexity: This curve compares our Neupn IC performance to a state of the
art FPGA implementation of Aker’s wavefront algorithm [12] . The top line represents the Time Com-
plexity for the Neuron IC with a signal propagation time of 1091 neurongsecond. If this is increased
by a factor of 100, then it is estimated that the Time Complexy of the Neuron IC will outperform the
FPGA implementation when the solution depth is greater tharapproximately 315.
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Figure 61. Wavefront propagation in the Neuron IC and the Space Compleity. a) This depicts the
wavefront emanating from the goal. Each wave is representedt a depth d in the raster plot in b. This
represents a numerical potential field with a local minimum 4 the goal [13]. b) Raster plot showing
all the events captured by AER (up until the solution) for the maze case in a.c) This chart shows the
number of spikes for our set of experiments. This directly carelates to the time and Space Complexity
for our Neuron IC. Since the refractory period of the neuronsis less than the solution time, neurons
have a chance to fire more than once. This shows that for the pgyammed refractory period in these
47 experimental cases, the number adxtra spikes was approximately twice that of the number of initial
spikes. (Note: 55 Monte Carlo cases were randomly generateBased on the start, goal, and obstacle
conditions, only 47 of these have a possible solution.)

is a solution, then one can calculate the maximum tigs, for finding it. If no solution is
found by this time, then the planner can retutd@Solutionflag. Assuming a 1njseuron
velocity and a 10x10 grid space of 100 nodes, the system woun&lout at 100 ms (max

path length) as a bound on the case of no solution.

4.2.4 Optimality

A detailed optimality proof developed by Dr. Stephen Brinknde found in156.

4.2.5 Neuron IC Implementation vs. Digital

The Time Complexity of the Neuron IC planner can be comparatigital implementa-
tions of the wavefront algorithm. For digital implementais, the worst case Time Com-
plexity is calculated as a function of the number of cachadtpar grid cells 154]. For

a solution of depthd the number of cached points can be estimated using the teniva
for (17). Similarly, the Space Complexity can be calculated as atiomof the number of
cached points or grid celld454]. For a solution of deptl the number of cached points for

the Space Complexity can be estimated using the derivatiofl® also. A side by side
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b)

Figure 62. This figure shows how the actual implementation of an asymmaetal weighted node is im-
plemented using multiple neurons in the Neuron IC. a) This ighe desired weighting configuration for
the node. The gray center node has flierent cost weights associated with propagating a wave to dac
of its four neighbors. b) The gray node in the center of (a) ismplemented in the Neuron IC using four
neurons. Each incoming edge must excite all four of the neurss which compose the center node.
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comparison of the Neuron implementation to a digital impdetation is shown in Table
6. There are potential tradffe for the two implementations. The Time Complexity of the
Neuron planner may be a win if the signal propagation vejasismall. However the Space
Complexity may not be as good with the Neuron planner if theoesiare programmed
with a short refractory time. A state-of-the-art FPGA impkntation of a wavefront based
planner is found in12]. Based on their performance numbers, one may calculatethat
1024x1024 grid is processed if3B seconds. This allows one to estimate that the FPGA
can process 34603008 noggaxond. Using this processing speed dhds the estimated
number of cached node cells for a given solution depth, oneesamate the Time Com-
plexity of the FPGA implementation as a function of solutaepth. Figureé60 compares
the Time Complexity of our Neuron IC using the experimentdbeity information to the
estimated Time Complexity of the FPGA implementation. It barseen that if the neuron
velocity is increased by a factor of 100, then the Neuron IQuihexhibit a performance

improvement over the FPGA implementation.

4.2.6 Experiments with Non-uniform and Asymmetrical Edge Weghts

The neuron structure allows one to develop sophisticatedhgr with varied edge weights
between nodes of the grid. Two specific cases are presentst.aSymmetric edge costs
are assigned to describe cases which have a certain casteébdrpath in one direction, but
a different cost to travel the same path but in the opposite direclihe application of this
feature can translate to real world problems involvingshitrefic patterns, etc. Second,
cases are presented where the nodes near an obstacle ardigiver costs to visit these
nodes. This is in anfiort to keep the autonomous agent at a safe distance fromctéssta
This grid weighting can also be used tdfdrentiate among terrains such as sand, ice,
gravel, or smooth pavement. These two features of the Nenawefront planner make
it special because the normal wavefront approach cannatléaarying terrain types or
uncertainty in the world’s statd b1]. Figure62 shows how the hardware implementation

of an asymmetrical weighted node is implemented using pialtieurons in the Neuron
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IC.

Figure63 shows a situation where asymmetric edge costs are assigdeddribe cases
which have a certain cost to travel a path in one directiohahiifferent cost to travel the
same path but in the opposite direction. Consider the Goldga Bridge in San Francisco.
Tolls are collected only in the southbound direction (ththpato San Francisco). In this
simple, but illustrative example, the asymmetrical trangelpaths are compared to paths
between two regions which have toll booths. A toll is colkztbnly in one direction in
each path. Figur63a shows the two paths between nodes 1 and 100. There are twg pat
that lead to and from Nodes 1 and 100. The architecture iguegiso that it costs more to
travel from Node 1 to 100 using Path B instead of Path A. Siiyilé& costs more to travel
from Node 100 to 1 using Path A instead of Path B. The node puiitksthe stars in the
grid have two neurons each to create these nodes. This ikghtgd by the dashed circles
surrounding the neuron representations. The grid impléngethe cartoon in the Neuron
IC is shown in Figuré3b. As described in Figuré2, the nodes representing the toll booth
intersections are implemented with multiple neurons. lth2a the toll booth intersection
nodes are formed using Neurons 28 and 37, and in Path B, tHmotuth intersection nodes
are formed using Neurons 64 and 73. In Path A, the directisealience of nodes [...38,
28, 27...] is a toll free wavefront sequence because eadtesétneurons has edge weights
of 1 between them. A raster plot of the Neuron IC wavefrontegixpental data confirms
this in the shaded section of Figusda since the propagation time between Nodes 38 and
28 as well as the propagation time between Nodes 28 and 2bdr@pproximately 1ms.
In Path A, the directional sequence of nodes [...27, 37,.BBicurs a toll penalty. A raster
plot of the wavefront experimental data also confirms thigh@gnshaded section of Figure
65a since the propagation time between Nodes 37 and 38 islglmidr 4ms (there is some
non-ideality here because the toll booth neurons were progred for a nominal delay of
5ms).

Figure66 shows experimental hardware results demonstrating additadvantages of
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a) Path A is toll free from 1 to 100
Path B is toll free from 100 to 1

Figure 63. This figure highlights how neurons can be paired to create an symmetric edge weight

architecture. a) This cartoon illustrates the “cost” assotated with the directionality of two paths. b)
This maze represents (a) and is implemented on the Neuron IC.

non-uniform edge weights in the planner. Wavefront methgatserate optimal paths with
regard to length, but they tend to “hug the sides of obstddlgg 141].” One solution to
this problem is by “growing” the size of the obstaclbll]. Instead of growing the ob-
stacles, the paths near an obstacle are penalized in th@MN&Dr This is implemented
by programming the Neuron IC such that the nodes nearestittaaes are assigned a
higher cost to visit. This extra cost decreases for nodeksduaway from obstacles. These
results demonstrate that weighting the edges betweenmediterently can push the au-
tonomous agent away from obstacles and generate a patloadaking into consideration
not only path length, but also proximity to obstacles. Thgesdeights are set in the Neu-
ron IC by adjusting the gate waveforms which drive the syaapmsistors (Figurg8). A
higher weight cost correlates to a slower response of thapsgand therefore a slower
propagation delay time.

Two different weight experiments are shown in F&@a and c. In these experiments
a ring of nodes around each of the obstacles is assignedex lmght. The rings are

denoted by shaded regions in F&a and c. The non-shaded regions have neurons that are
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Figure 64. This figure is measured Neuron IC data for the experimental skip in Figure 63. For this
experiment the autonomous agent is planning a path from Nodgel to 100 Path A was chosen by the
Neuron IC. a) Raster plot showing the sequence of nodes for BaA (in black). There is approximately

a 1ms delay between neuron firings. This shows that the toll mth was not crossed. b) Raster plot
showing the sequence of nodes for Path B (in black). Notice ¢happroximate 4ms delay between Nodes
63 and 53. This shows that the toll bootlwas crossed.
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Figure 65. This figure is measured Neuron IC data for the experimental stip in Figure 63. For this
experiment the autonomous agent is planning a path from Node100 to 1 Path B was chosen by the
Neuron IC. a) Raster plot showing the sequence of nodes for BaA (in black). Notice the approximate
4ms delay between Nodes 37 and 38. This shows that the toll ibavas crossed. b) Raster plot showing
the sequence of nodes for Path B (in black). There is approxiately a 1ms delay between neuron firings.
This shows that the toll booth was not crossed.
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programmed to have a 1ms nominal propagation time betwesome The shaded areas
have neurons that are programmed to have a 2 or 2.5ms noreiaglltetween neurons for
the experiments in Fige6a and c respectively. At the boundary between the shaded and
non-shaded regions, if a wave is propagaiimg the shaded area it will incur the larger
cost of the shaded region. However, if a wave is propagatingf the shaded area it will
incur the lower time cost of the non-shaded area. The cdstigsdictated by the regianto
which the wavefront is propagating. Figu8éa and b give results where the shaded region
is programmed for a 2ms delay. The nominal time cost for a viay@opagate through
the shaded area between the start to the goal is 12ms. Tmanirast to the nominal
time of 13ms for the wavefront to propagate around the olestathe Neuron IC planner
chose the path shown by the arrows in FigG6a. The data points in Figur@éb show
the measured delays incurred from propagating the waviedrorach of the chosen path’s
edges. The measurements show some non-ideality in thersy$tee first five data points
should ideally each be 2ms delays, and the last two datagesatuld ideally each be 1ms
delays. Fig66c and d give results where the shaded region is programmeal Zdsms
delay. The nominal time cost for a wave to propagate throbghshaded area between
the start and the goal is 14.5ms. This is in contrast to theimainime of 13ms for the
wavefront to propagate around the obstacle. The Neurond@ngir chose the longer but
least time cost path shown by the arrows in Figie. The data points in Figu@cd show
the measured delays incurred from propagating the wavietroeach of the path’s edges.
Again, there is some non-ideality in the system as showndmtbhasurements as all of the
data points should ideally each be 1ms delays. These twoimgrgs demonstrate that the
neurons can be programmed to weights which create pathsdrstart to a goal that take

into account both proximity to obstacles and path length.

4.2.7 Scalability
“To construct a navigation function that may be useful in rfekobotics, a high-resolution

(e.g., 50 to 100 points per axis) grid is usually requirk4t].” Concerning grid scalability,
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Figure 66. These experimental Neuron IC results demonstrate that welgting the edges between neu-
rons differently can push the autonomous agent away from obstacles drgenerate a path solution

taking into consideration not only path length, but also praimity to obstacles. a) A ring of nodes

around each obstacle is given a weight of 2 to enter each nod&he best cost path is chosen to be the
shortest in length, but also the one that comes closest to tlobstacles for the longest amount of time. b)
Propagation time between nodes for the edges selected foretbest path in the experiment in (a). c) A

ring of nodes around each obstacle is given a weight of 2.5 toiter each node. The best cost path in this
experiment, in contrast to (a), is not the shortest path. Ths path, however, avoids getting close to the
obstacles. d) Propagation time between nodes for the edgedexted for the best path in the experiment

in (c).
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this neuron planner should be able to be expanded to thimmgaal a much larger grid.
This is enabled largely because the repeater nature of tiremeenables the propagated
signal to continue without reducing. This is in contrastésistive based path planning
methods where the signal at the nodes decreases as the wgridrger 48]. The synaptic
array in the IC is approximately®n? in area; therefore one can imagine in a single reticle
size chip in the same process to enable an array of one m#ljinapses and thousands of
neurons on a single IC. These numbers could increase sub#jeas one moves from the
350nm process to a more modern IC proces$6p [These numbers of neuron elements
would allow one to achieve the 50 to 100 points per axis résoluequired for fielding

a planning system. Figum@7 shows how multiple neuron ICs can be connected together
in order to expand the grids size. In the current form, ondccoannect two neuron ICs
together and use the AER system to pass signals betweendaheitso, it is possible to

design a new Neuron IC which would have more neurons for taygds.

4.2.8 Power Costs

The power used by this system can be split into four categoNeuron pre-programming,
Environment map programming, wavefront propagation angoreread-out, and analysis.
We claim that the power used by the FPAA to arrive at the smhuis much less than that
of a digital solution. We cannot make appropriate claimsénav of the pre-programming,
environment map programming and analysis power becauseawe riot optimized our

embedded system for these problems. The embedded systeminterfaces with Matlab

and the Neuron IC uses current on the order of 400mA.

4.3 Summary

In a comprehensive survey of autonomous rotorcraft unntamneraft systems, Kendoul
describes path planning methods and algorithms which septehe “most used and prac-

tical methods, with a particular focus on works with expemntal results 139.” These
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Figure 67.Two neuron ICs can be connected via the T/Rx pins in order to expand the grid size.

methods include Road Map and Potential Field approachegstiajs algorithm is com-
monly used to plan a path in Road Map methoti3q. A specialized form of Dijkstra’s
algorithm is the wavefront method42 , so it is reasonable to say we are using a state-of-
the-art method.

This chapter continues to build upon the idea that analagiits, and specifically bi-
ologically inspired neuron circuits, can be used for patmping and are adding to the
existing research which combines analog VLSI and robofi@4[ This chapter has pre-
sented approximately 50 Monte Carlo path planning resutt$@&10 grids. Although not
as large as the 50 to 100 points per axis grid as is usuallyreztj[142), this modest grid
demonstrates experimentally that a Neuron IC can be usetbpmagate a wavefront for
planning. This provides an advantage because the wavefrprdpagated in parallel. This
chapter also characterized the Space Complexity (memouyrezgent) of this Neuron IC
method and validated the model with experimental data. Wbik is new for a couple of
reasons: First, it provides an extensive amount of measlatdrepresenting fierent map
scenarios from a fabricated AVLSI neuron IC. Second, ouraneircuit implementation is
unique because itis implemented on a floating-gate basedfigarable neuron analog IC.
Finally, this work has started to quantify the performanamdor using an analog solution

instead of a digital one in terms of Time Complexity.
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CHAPTER 5
CONTROL WITH FPAAS

5.1 The Mobile Manipulator and FPAA

A mobile manipulation robotic platform solving the TowersHanoi puzzle is described
in this chapter. This work is based on a collaboration witlviDé.enz, Sebastian Hilsen-
beck and Smriti Chopra, and they should be credited with theadlisoftware design and
implementation which made this chapter possiBle This work is described with the pos-
sibility of leveraging this work in two domains. First, theofsile manipulator could be
developed into a system that could interact with childreadarits in aurn takingscenario.
Second, this platform can be used to investigate feedbackalsystems implemented
with reconfigurable analog electronics. Robot control safercalledPlayeris used as the
main software for this systeml27, 157]. Player, running on a laptop, is the brains of the
system. It receives sensor input from an overhead cametadalization and then com-
mands the robot as desiredlayeris operated in two robot environment modes. The first
mode isPlayerinteracting with a real robot in the real world. The secondimsPlayer
interacting with a simulated robot in a 3D simulated envnemt with dynamics. This 3D
environment is calleGazebo

The Player software has the ability to interact with the FPAA reconfajle analog
electronics system, Figu@ In this configuration, the FPAA could be characterized as a
Feedback Control Co-processfar the robot’s navigation system. Path planning is another
demonstrated use of an FPAA in roboti@$ [

The mobile manipulator system, using a Pioneer robot and 2%, is demonstrated
solving the classic Tower of Hanoi problem, Fig@& In this puzzle, a tower of disks is
created by stacking disks on top of each other. One of the islthat only smaller disks
may be placed on larger disks. This version assumes thethragepossible locations for

the tower’s location. The tower starts in one of these loceti The goal is to move the
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Real World

PLAYER
Software

Figure 68. This is the big picture of the system: a client software callg Player interacts with either
the real world or a simulated world and solves the classic Toers of Hanoi puzzle. Additionally, the
software has the ability to interact with a reconfigurable aralog co-processor [8].

tower from one location to another location.

This robotic manipulator has three main tasks: SensingpKiig, and Acting. The
Sensingask involves an overhead camera as the primary sensor.elpragessing tasks
for the Towers of Hanoi problem include segmenting the distis the background and
identifying their size and position. Thehinkingtasks include creating a sequence of legal
actions for moving the disks so that the goal is achieved(pktnning), as well as turning
these high level commands into low level control functiofise Actingtasks include com-
manding the Pioneer robot’s forwdreverse velocity and rotation, as well as commanding
an attached five degree of freedom (DOF) Pioneer manipuatoito move the pieces.

Section5.2 discusses related work, Secti®i3 describes architecture for Sensing,
Thinking, and Acting, SectioB.4compares dferences between simulation and real world

operation, and Sectidn5is a closing summary.
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5.2 Related Work
5.2.1 Playing with Robots

Robots have been used in the past for games such as d&&$sdr as a therapy aid
[159. Robots have also been used to help children with disadsl{ti60, 161]. This mobile
manipulator could be extended for use in future work suctuastaking [162. A simple
non-mobile manipulator is described for solving the Towefr$lanoi problem in 163.
This was part of a Robotics Education Lab at CMU. Humans usedkaleneeb interface
to instruct a PR2 how to solve the towers of Hanoi problemiB¥]. A video of a PR2 and

many other robots solving the Towers of Hanoi may be foundcherirternet.

5.2.2 Analog Control

A number of recent papers have been written regarding ugiognfigurable analog cir-
cuits called Field Programmable Analog Arrays (FPAA) farvlivel control. This work
and [165 are based around custom FPAAs, but many are based on thehswaipacitor
Anadigm IC design 166, 167, 168. General references concerning PID controllers are
[169 170 171, 177. Background for using Operational Transconductance Afpd
(OTAs) for PID control is found in173 174. Finally, although this robotic system is
accessible and easy upgraded and serviced, this is notativayase for all robotic plat-
forms. Other FPAAs are being explored to allow flexibilitysansing and control circuits
of space systemdlf5 176. The FPAA in this chapter is typically fferent than other

reconfigurable analog circuits because it uses floating4{gansistors as the switch matrix.

5.3 Architecture for Sensing, Thinking, and Acting

One of the goals of the architecture is to give the robot a legkl of autonomy. The

robot’s a priori knowledge consists of the following:
e Alist of potential disk colors

e An initial estimate of pole positions
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e The height of the disks

The system block diagram in Figuvd provides a high level view of the robot’'s Nav-
igation system and also shows how it interfaces with then@gnvision sensor, and robot
hardware. The Sensing, Thinking, and Acting portions of tiock diagram are individu-

ally addressed in the remainder of this section.

5.3.1 Sensing

Vision is the primary sensor in this system. It sends infaromato the Tracker sub-block.

It assumes that there is an overhead camera available te ithagobot, poles, and disks at
all times. “OpenCV (Open Source Computer Vision) is a libradrgregramming functions

for real time computer visionl[/7.” It has been integrated into the control program for
image processing tasks. Figur6a shows an example image from the overhead camera
modeled in Gazebo, and Figuréb shows a view from the real overhead camera. Working
with the Tracker, this image system is able to successfdynrent images using color

features and is able to extract colored circles from images.

5.3.2 Thinking
The section of the robot’s system block diagram that desstitinking Figure74, consists
of four main tasks: Navigation, Planning, Tracking, and mening the internal World
Model. A high level state machine description is found inUfeg69. The first state in
Figure69 is “Get Initial Configuration.” In this step, the system detéres the number
and color of the disks and the initial positions. The a prioformation that helps this
process is that it is assumed that the disk colors come fronoak set of colors in a color
list.

The Planner’s task is to identify a sequence of actions tiiaaecomplish the goal of
moving the disks from their starting position to the goalipos. A previously existing
Towers of Hanoi planner was integrated into this systeid@[ A plan has the following

form:
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Get initial config

Calculate plan

n moves

mmmmd Vove in plan

Find disc
Proceed to

next move

success

Find pole
No. of
moves < n

Place disc DONE!!I

Figure 69. This figure shows a high level flowchart of the Thinking tasks §].
1. Take the disk on pole 1 and place it on pole 3
2. Take the disk on pole 1 and place it on pole 2
3. Take the disk on pole 3 and place it on pole 2
4. ..

The Navigation block’s task is to convert high level planslaw level commands.
Proportional-Derivative closed loop control systems aseduto control the robot’s angle
and forwardreverse position. A block diagram of a Proportional-Ingggderivative closed
loop control system is found in Figui. The system was operated using the Digital Con-
troller, but this figure also shows a diagram of how the FPASdubanalog PID controller
could be integrated into the loop. Ideally, the PID outpghsl would be sent directly to

the plant and not use the/BB and DA functions.
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E Navigation

Digital + e(n) [ p ital Robot
Planner/ 4’0 *| controller —' (Plant)

Vision

Sensor [{————

Figure 70. This figure illustrates an example of how an analog co-procesr PID controller could be
merged with the digital controller for initial testing. The control system implemented for this project
uses a Digital Proportional-Derivative closed loop contrbsystem to control the robot’s position and
orientation [8].

The Tracker has three main image processing tasks: to detethe 1) Disk poses, 2)
Robot poses, and 3) Pole poses. The tracker uses colors tdyidshjects. To track the
disks, first they are segmented from the background witrstiuleling in the HSV color
space. A “blobfinder” is then applied to the segmented ima@€|[ The blobs are then
filtered based on size to determine if they are too large oistoall. Finally, the blob’s
features such as position, area, and standard deviatiarakndated, and this information
is returned to the Navigation routine. This is illustratad-igure71. The same process is
used to track the poles (boxes) on which the disks sit, extaptoefore the blobfinder is
applied the segmented image undergoes erosion and ditatremove the eyes and mouth
of the smiley on the boxes in the simulation. (This process nat used with the real
hardware because uniform colored black boxes were usedhéopdles.) Finally, Robot
pose is determined by using a triangle formed by three wiute ddded to the back of the

Pioneer robot. These dots are segmented by the tracker amdltbt’s pose is calculated.
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Tracker

_Input

Segmentation

Output

Figure 71. This figure illustrates that the Tracker first segments the inage based on color (in this
example it was asked to track the red disk). It then calculate the radius of the disks [8].

All calculations are in camera coordinates. An internal M/dModel is also maintained by

the robot. This World Model contains three items:

e List of disks (with each disk’s color, position, and radius)
e List of positions of the poles

e Color list

The overall strategy for executing a high level command eswshby the state machine
in Figure73. The robot uses the closed loop controller when rotatindgnéodisk or goal
and when moving to the disk or goal.

This softwarghardware platform fiers a unique capability to integrate our FPAA sys-
tem into this robot for control. Figuré4 shows how the FPAA might be integrated into the
system block diagram. The FPAA contains many OTAs. Figieshows how OTAs can
be used to implement a PID controlldd]. Figure72a builds upon the OTA PID model in
[14] by adding parasitic capacitances that are inherent whetingpcircuits on an FPAA.
The current out of an OTA is a function of its transconduceéagain,G,,, and the dier-

ence between the positive and negative terminaB), [L22. Ideally, the current into the
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Figure 72. Design Flow for an OTA based PID controller. a) OTA based PID ontroller based on [14].
Unlike [28], this model includes parasitic capacitances tht are a part of an actual implementation and
affect performance. b) Simulink Block Diagram of controller. ¢) SPICE list generated bySim2Spice
tool. d) FPAA switch list generated by GRASPER tool. e€) RAT Fyure showing switch list routing on
RASP 2.8a IC [8].

Plan Step = Move Disk from Pole i to Pole j

Int | World Model:
Therefore Pole j => Goal Rery el Wior oge

Which Disk is on Pole i?

Go back to Center of Rotation
(COR)

Rotate to Disk

Place Disk
Center

. Feof
h Rotation

Move to Goal Move to Disk

Rotate to Goal

Go back to Center of Rotation
(COR)

Figure 73. This figure illustrates the overall guidance and control stategy. The robot will perform this
loop for each high level command in the planning sequence [8]
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; Overhead
Sensing Camera
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Tracker Navigation Analog
-Disk Pose > -High Level: Move disk k from Pole i to Pole j  [«—» FPAA
-Robot Pose -Low Level: PD controller for forward and rotation Controll
-Pole Pose -arm commands ontrolier
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Thinking
\ 4
Internal
World > Executor < Planner
Model
[ 7'y %
Acting Robot Robot
Base > Arm

Figure 74.High level control System Block Diagram: this figure shows hw the sensing, thinking, and
acting systems are combined and where the analog co-procesdits into the larger robot system [8].

positive and negative terminals of an OTA is zero. In sulshodd operation, the output

current of an OTA is shown ir26) [122.

K
lout = |biastanh(2—Ut (Vp - Vn)) (25)
For small values, tantx) ~ X, andG,,, the so calledransconductnacef the amplifier,

is the slope of théanhcurve at the origin.

Iout = Gm (Vp - Vn) (26)

WhereG,, is calculated to be:

Olout K
(9Vi b|a52Ut ( )

Gm

Therefore, one may adjust an OTAlnsconductnacéy adjusting the bias current,
Ihias: Using the notation from Figuré2a, the PID gainKp, K, andKp in Figure70for an

OTA based controller are as follows. The intermedRiteportionalvoltage term is:
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Vi () = Vin (9) (28)

The intermediatdntegral voltage term, taking into account integral circuit parasit

capacitanceCip, is:

Ga_Ly (9 (29)

Vit (9) =
Il(S) Ci + Cip S

The intermediatderivative voltage term, taking into account derivative circuit para-

sitic capacitanceCyy, is:

Gu1
C 4 Gg2Gdz Vin (S) (30)

dp Cgs
The individual PID currents are added using four OTAs. Tgkirto account summation

Va () =

circuit parasitic capacitanc€g, the equation is:

dVOUt

Ga1Vp1 + GoVit + GgVar + lout = Csp dt

(31)

| out = _Gs4Vout (32)

Substituting 82) in to (31), taking the Laplace transform, and simplifying yields a

transfer function for the analog PID controller with pati@stapacitances:

Ga
Vout () 1 GeGii 1
= e Tl (33)
Vin (S) (CSpS+Gs4) C|+Ci:|pG S

Table 7 compares the PID gain terms with and without parasitic déaces. The
terms with parasitics reduce to the ideal under DC condstioss described in7) The
PID gains can be tuned by adjusting the OTA bias currents.bidgecurrents are tuned on

the FPAA by adjusting the charge on the floating-gate of an'©Tail-current” transistor.
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Table 7. Analog Proportional Integral Derivative Controller design with and without parasitic capaci-

tances
Gain Term Ideal | Realistic with parasitic capacitance
: G G
Proportional =L =
p KP) Ga (CspS+Gs4)
GG GG
In r | 2001 2901
tegral (i) GuCi (Cop5+Gs1)(Ci+Cip)
ot Ga1G=C GG
Derivative Kp) | gioass R
d2Gd3Csa (CspS+Gs4)(Cdp32+ déddS)
-6
X0 ; ; ; ; ; 10" _—_—
50 Tbias=0.05e-07 A| - Gsl o~ vttt : —o st
Gs2 IEEE R G2y
450 | Ibias=0.05e-06 A Gsd MBI SRS —k—Gs4
] > . . —8— Git
4k | * Ibias=0.05¢-05 A Gil o | 107k
350 |7 Ibias=0.05e-04 A ST i s
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Figure 75. Characterizing selected OTAs in Figure 72a. a) Tanh curve am (25). b) This figure illus-

trates that changing thelyi,s changes theGy,. Note that there is not much variability among OTAs when
lhias INCreases.

Figure75 shows the results of measuring and characterizing sel€rtég on the FPAA
which dfect the Proportional and Integral gains. The OTAs corredforGg, Gg, Gy
andG;; in Figure72a. Figure75a shows that the measured data follows téueh curve
described inZ5). Figure75b illustrates the how changing tlg,s of the OTA changes the
Gn. Note that in this experimental data there is not much vditialamong OTAs when
Ihias INCreases.

Experimental data was gathered from the FPAA to charaeteéhie parasitic capaci-
tances ffecting the Proportional and Integral gains (€geandCs,in Table7). Bode plots
of the Proportional and Integral gain terms are found in F@and77 respectively. To gen-
erate these plotd/,,: was measured when a 100mV (peak-to-pegk)was applied with
varying frequency. The magnitude and phase responses ekpiggimental data is plotted

with blue circles. The transfer function for the Proporaiband Integral gains in Table
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Figure 76. Bode Plot of the Analog Proportional Controller. The gainsGg, Gy, and the parasitic
capacitanceCs, is estimated and used to plot a curve over the experimental da. An l,ias = 0.05e-07
Amps was programmed for bothGg and Gg¢ OTAs.

were plotted over the experimental data. Wgs = 0.05e-07 Amps was programmed for all
OTAs for this experiment. Estimates Gf;, Gs, and parasitic capacitan€g, were made

using the experimental data in Figufé. Estimates of5y, Gj;, and parasitic capacitance
(Ci + Cip) were made using the experimental data in Figtifend the estimates from the
experimental data in Figurés. Estimates 0Gy;, Gg,, Ggz, G, and parasitic capacitances

Cq andCy, were made using the experimental data in Figi8e

5.3.3 Acting

Action takes place in the robot frame. The system has coafrtile Pioneer robot’s for-
wardreverse velocity and also its angular velocity. Regardimgréibot arm, the arm joint
angles are commanded from the control program. Existingiée® arm control routines

were used. Images of the robot Acting (grasping) a disk anadan Figure68. Inverse
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Figure 77.Bode Plot of the Analog Integral Controller. The gainsGg*Gj; and the parasitic capacitance
(Ci+Cip) are estimated and used to plot a curve over the experimentalata. An lyias = 0.05e-07 Amps
was programmed forGj;, G, and Gy OTAs. The curve being fit here is actually the transfer functon
for the Integral only controller multiplied by s.
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Tracker

Pose: x= 251.20, y= 68.41, t= 1.52

Figure 79.This figure compares the tracker images from the overhead casra in the simulation to real
life overhead camera hardware.

kinematics are used for two joints so that the efidaor has a desired height, and the grip-
per is parallel to the ground. The height of the disk is probépecific and is hardcoded in

this routine.

5.4 Hardware Implementation

The next step, after successfully completing the probletherPlayetGazebo simulation,
was to try the algorithms on a real robot, Figé® The robot successfully completed a
two disk Towers of Hanoi problem. A Logitec model V-UBV49 Walpec was used for the
camera. It was mounted to a pole on the ceiling of the lab. r€igQ shows a compari-
son between the Gazebo simulation camera image and thd meage from the Logitec
webcam.

There were some notablefidirences between the simulation and real world environ-
ments. Regarding sensing, in the simulation environmentcanespecify perfect illumi-
nation and ideal color values. This is not the case in a reddwWab environment. In the
lab one has to contend with shadows and broader color ramgesval he coded range for
color values had to be changed for the real world control cdtle hardware also behaves
differently in the simulation vs. real world. The Proportionadi®erivative gainskp, Kp)

for the closed loop control system in the real hardware nééalde modified from their
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simulation values.

Figure72 shows the hardwafsoftware design flow concept for implementing an OTA
based PID controller on an FPAA. Figur@a shows the desired circuit. Figuréb shows
the equivalent Matlab Simulink model. Figuréc Shows the Spice level model automat-
ically generated from the Simulink model, Figufgd shows the low level switch list for
programming the FPAA, and finally, Figui2e shows a picture of the utilization of the

FPAA IC by plotting the switch list.

5.5 Summary

This chapter presented a mobile manipulator that solvesl#issic Towers of Hanoi prob-
lem. The €fectiveness of the Play&@azebo simulation to real hardware design cycle was
demonstrated. The process of identifying what needed tdnbeged to make the simula-
tion control software work on real hardware was educatioitélis may lead the authors
to consider during the simulation phase of a project howatedspects of the design can
be parameterized to best facilitate the transition fromugation to real hardware. Future
work may consider using a camera mounted near the fadter to aid in grasping. Turn
taking can be explored where the robot moves a disk and theehuiman moves a disk
for interactive game play. Finally, the FPAA can be fullyagtated into the platform for

low-level control.
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CHAPTER 6
IMAGE PROCESSING

This chapter describes an image processing system beimgnddsfor an &-the-shelf
guadrotor. A mixed signal approach to the embedded imageepsing is presented. Con-
straints on image processing computation include: pofgiency, short term storage (i.e.
part of an image), and movement of data. This algorithm per$ca type of convolution
on the image and also subsamples it. “The computationabappris similar to some com-
putational attention mechanisnis/l. Computing pre-attention fields are typically large
convolution and subsample filters corresponding to agee@ic) cortical receiptive (sic)
fields [180.” This processing has been referred to as “center-sudbprocessing and

results in feature map4d81].

6.1 FPAA Based Image Processing Algorithm

The analog computation uses a data flow architecture thglasenemory and computation
[180. A mixed signal processing algorithm has been developatiibes analog elements
to process and subsample an image. A non-overlappingn kernel is used in the sub-
sampling process. To illustrate the output of the systemsider FigureB0, where a 24
by 24 pixel image is reduced to3aby 3 matrix through the image processing algorithm
and an8 by 8 kernel. Two key innovations of this architecture are: fitlsg vector-matrix
multiply computation is performed by analog elements (ft@ppate transistors), and sec-
ondly partially processed data is stored on analog elem&htsreason for doing this is to
reduce the time needed to process data because fewer tensiirg digital memory access

steps are needed.

6.1.1 Subsampling Algorithm
The subsampling operation transformsrahy n block of the image into a single scalar

value,x. Although not a strict requirement, the system is presenteere each of these
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Figure 80.Big picture of the subsampling operation of the mixed signalmage processing algorithm.

blocks are non-overlapping.

Let a block of image data be represented 34) (

Q1 Qun
A = : T : (34)
an1 ' @nn

and the image processing kernel is represente@by (

bl,l te b1,n
B=( ¢ . (35)
bn,l e bn,n

Let C be a vector which represents intermediate processa®y, \here the individual

terms are computed as i87%).

C=[c,-- .G (36)

n
C = Z a;,jbi,j (37)
=1

The final subsampling scalar valu88j, is produced by summing the terms 8.

X = an Cq (38)
g=1

This subsampling and convolution process is illustrate&igure 81. A motivating
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Figure 81. The equations showing the ffects of the image processing and subsampling.

reason for this image processing process is to be able to dtgects with a camera. To
this end, it is important to identify an appropriate kernetlainderstand the conditions
under which this convolution process and kernel can pertbrgtask. Digital simulations
show that a Laplacian of Gaussian (LoG) kernel can identifglgject with seficient high
frequency (edge) components. Fig8&shows Matlab results of using the algorithm with
a 15x15 LoG kernel functior839). The Laplacian,J), in addition to being useful for path
planning, is also useful for finding the edges of an image. Glvinvg a Laplacian kernel
with an image finds regions of rapid intensity change, aneéedgpresent regions of rapid
intensity changel82 183. A problem with Laplacian kernels is that their performans
reduced by noise. To combat this, one may smooth the imag@dinspass filter) and then
apply the Laplacian kernel. It is possible to combine theatmag and Laplacian kernel
into a single kernel, the LoG kerne89). Figure8la shows a 120x160 image which was
first re-sized to 480x640. Figu&lb shows the image sub-sampled into a grid of 32x42
blocks. FigureBlc shows the LoG kernel. To create this kernel, fiBf) (was used with
X=-7:7Yy=-7:70 = 14. Next the kernel was normalized by the minimum value.
Finally, this was multiplied by 40 to arrive at the figu8R, 183. Figure81d is the result

of applying the LoG kernel to the image in Figu&a. This identified edges. FiguB3
shows additional Matlab results of using the algorithm veith5x15 LoG kernel function
(39). This illustrates that the LoG kernel can be used to idgmifjects of interest if the

objects contain enough edge (or high frequency components)
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Figure 82. Matlab simulation of image processing: a) 480x640 Image, b) dh-overlapping blocks to be
processed, ¢) 15x15 Laplacian of Gaussian (LoG) kernel wittr = 1.4 used for processing, and d) 32x42
processed and subsampled image output.

X2+ y?

_ 2
52 € 22 (39)

1
LoG(x,y) = 3 [1—

6.1.2 Circuit Architecture for the Subsampling Algorithm

The section above shows the equations dfieces of the subsampling algorithm, but the
mechanics of this process are that each block is not compmirtedat a time. Instead,
parts ofnyn blocks are processed sequentially until all of them areleds One of the
innovations of this algorithm is that the intermediate ealfior thesern blocks are saved

with an analog memory (a capacitor). Once all of the proogs&ir themyn blocks is
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Figure 83. Matlab simulation of image processing: a) 480x640 Image, b) dh-overlapping blocks to be
processed, ¢) 15x15 Laplacian of Gaussian (LoG) kernel witlr = 1.4 used for processing, and d) 32x42
processed and subsampled image output.
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finished, thesenn scalar values can either be converted to digital values &medsin
digital memory or transferred to another analog memoryuifé§4 shows a diagram of the
image processing architecture.

Figures85 and 86 describes the signal flow for processing the first row of FegR0.
The pixel data from the imager is streamed in serially. Ohatréams in all of the first
row it moves to the second row, etc. The fingbixels of the first row are multiplied with
an analog multiplier and summed as charge on a capacitorn eenextn pixels are
multiplied and stored on another capacitor. This continugg the first row is processed
(Figure 85). The second row of data is processed in a similar way, FigéreAt the
end of this process each of the three capacitors in this eleaogpmtains a voltage which
represents a convolved and subsampled pixel. These valudd then be converted to a
digital value using an Analog to Digital Converter (ADC) anats® digital memory or to
a microprocessor. The capacitors would be cleared and teegs would repeat for the
second row of blocks.

The architecture uses floating-gate transistors (seeddet) for the weights. Sub-
threshold operation of the transistors is also part of thexgthe Equations describing this

region of transistor operation are described in the follm\section.

6.1.2.1 Subthreshold Transistors

Most of the transistors used to create the image processicjts are operating in the

subthreshold region of operation. One of the advantagekisfrégion of operation is

that the transistors are conducting less current (and heso® less power) than in above
threshold operation.

When the channel (i.e. area under the gate of a transistoriusak inversion then one
can say that it is operating subthreshold122. Weak inversion happens when a positive
voltage is applied to the gate, and “This charge repels thesho the substrate and leaves
behind negatively-charged ions, that balance out the detege. The MOSFET operates

in the subthreshold regime when the positive charge on tteeigalmost balanced by the
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negatively-charged depletion region underneath the ghllbere is also a very thin layer
of electrons beneath the gate (iheersion layej. In subthreshold, we ignore the charge
from the inversion layer because it is almost negligible pared with the depletion charge
[122.” Assuming drift current is zero (because one assumesdkenfial in the channel,
surface potential, is zero): “The electron concentratianghe two ends of the channel
depend on the energy barrier that the electrons encourterba@rrier is determined by the
voltage diference between the surface potential and the applied eshagndVj...[122.”
The current in a pFET transistor in subthreshold operatiag be described as a sum

of the forward and reverse current in the transistor:

l=1i -1, (40)

Expanding 40):

«(Vw-Vg)—(Vw-Vs) «(Vw-Vg)-(Vw-Vy)

I =lg|e Ut -e Ut 41

Where in @41), |y is a constant representipgeexponential factorfl21, 122, andV,,

is the bulk voltage (n-well), usually Vdd.p2:

W
lo = qrtDane"fT? (42)

And « is a constant representing the “capacitive coupling ratonfgate to channel

(122"

COX
= 4
“ 7 Cox+ Cq (43)
And U, is thethermal voltagd 127:
Ur =g (44)

If Vg, V4, andVs are referenced to the bulk voltage2):
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Vo= Vg -V (45)

Vd = Vd - VW (46)

Vs = VS - VW (47)

then @1) can be re-expressed as:

-«Vg+Vs -kVg+Vy
| =lo(e™ —eT) (48)
and further re-expressed as:
—Vg+Vs Vs
| = l,e o [1 - eUT] (49)
Substituting;® = 2 into (49) gives a compact form of the current in a subthreshold-
T T

operating pFET.

-kVg+Vs -Vgq
| = l,e o [1—eUT] (50)

If the drain to source voltage is larger than a certain vabidg (hen we say the transistor

is operating insaturationand can simplify 7) to (52).

Vgq > AU (51)

| = |Oe(—KVg+VS)/UT (52)

An nFET transistor in subthreshold operation may be desdrés $3) or (54).

kVg-Vs kKVg-Vy

[ =l,|e T —eUr (53)
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WVg-Vs Vs
| = l,e o [1—eUT] (54)

6.1.2.2 Power Analysis

The power analysis for the analog system can be broken dawrdifierent sections of
the algorithm such as: Digital to Analog Conversion (DAC), mxatnultiplication and ad-
dition analog computation, Analog to Digital Conversion (B memory read-write, and
digital computation. The analog numbers can then be cordgarenes from an all digital
approach. Before continuing with the analog power analysisall digital computation
can be addressed as followk3[). First, assume a 640x480 VGA image (i.e. 307,200
pixels) operating at 60 Frames Per Second (FPS). This seisult8,432,000 pixels per
second. Second, assume that the system requires apprelyiraaé Multiply and ACcu-
mulate (MAC) per pixel. Based on the number of pixels and the thus system would
require approximately 20 Million MAZ, with suficient digital resolution for summation
of large number of values. If one assumes the digital systmires approximately 4
memory reagvrite’s per operation then this results in approximateM8dIPS (Million
Instructions Per Second) of computation. If using an AtmeM9 SC9 processor (TSMC
130nm) with 262 DMIPS (Dhrystone MIPS} 84, then one may estimate that this image
computation is possible witly3 of the full speed ARM9 processor.

Now the power analysis of the analog system is addressedref8da shows the circuit
architecture. An integral part of this is the timing diagranfrigure84c which controls the
switching of the three registers. This switching routessigaals from the DAC through the
matrix weight and onto the correct integrating capacitggufe 87 simplifies this diagram
to show the signal routing for a single pixel value. Thdits of digital data go through
a source follower circuit and Ifier. This signal is weighted by a floating-gate transistor
and then integrated onto a capacitor. To help explain theasitpw, thea, b, andc labels
correspond to the same letters used to describe the alganitf84) through @38).

Figure 88 shows the main DAC, MAC, and temporary storage circuits of thaay
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Figure 88.The main circuit components which perform the analog image pocessing are: a) Source fol-
lower circuit which performs Digital to Analog Conversion current sensing, b) Source-coupled topology

for a weighted current mirror [15], and c) Storage circuit for weighted current. The integrator circuit
which holds the intermediate processed value€£, and C3 are parasitic capacitances.

image processing system. Each of these can be analyzedsdp&r obtain equations for
current and power (assuming an operating frequency). EBRa shows a source follower
circuit, operating in the subthreshold domai2f, which convertam digital bits into an
analog voltage15]. Source followers are typically used as impedance coex&mhich
convert a weak voltage signal into a stronger driven sigh2®[ In typical source follow-
ers, the bias (i.e. sensing) transistor is operated ina&ar62). The standard equation

for a two transistor source follower i8%), whereVy is the input.
I
0
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When more than one bits are feeding into the source followss, @an express the
equation asgb).

7/<Vgl+V5 ' 7KVg2 +Vs )

lgie Y7 + e U =lp (56)

For two bits, the equation for the DAC output &7§.

Vpac = Ut Iog(l%b) + Ut log [(e% + e%)_l] (57)
X

The power used by the source follower is based on the curettmg of the bias, or
“sensing” transistor.

Figure88b shows a floating-gate source-coupled current mit8}. [Schlottmann and
Hasler describe two implementations of floating-gate ssw@upled current mirrors in
[15]. The type used in Figur@8b is what they refer to as a “Biered input state” as opposed
to their “Log-amp input stage.” “Source coupling involvesding the input current into
the source of the sensing FET, therffbung the source voltage to the output stadés.|

The bandwidth of the Hiered input state source coupled current mirrobg (15].

I
c where gy = LA (58)

w = U,
The weight for the multiplication in the analog circuit igeiamined by the floating-gate
voltages on the sensing pFET and the mirrored pFET. The iequiair the weight is $9)
[185, 15].
_ o _ gy ton) (59)

Iin
The OTA in Figure88b is configured in a Unity-Gain Follower, or “fier” configura-
tion. It is used to bffer the DAC voltage. In this feedback configuration, the OTAsed
to supply the necessary current in order to maintgg: at the output of the OTA. An OTA

has a high input impedance (ideally infinite) so it is alsoduseisolate the source follower
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Figure 89.The unity gain follower configuration of an Operational Transconductance Amplifier (OTA).

circuit from the multiply and accumulate circuit which folvs. “In contrast to the source
follower...which is also used as an impedance converterutiity-gain follower does not
introduce a large voltagefiset [L122.” The OTAs current output can be modeled with a
tanhcurve @0) [121], and the input-output transfer function can be calcula@gdollows.
Given the bitfer in Figure89 and a loadZ_, the following equations can be stated. The
static output current of an OTA is found i6@) [186. This equation is anacromodebf
the amplifier because it is based on the output terminal’sacieristics 17]. In a five tran-
sistor implementation of an OTA, this assumes: 1) all MOS§&&ffe in saturation, and 2)

the diferential pair is operated below threshol@].

K
Iout = IB tanh(ﬂ (Vin - Vout)) (60)
V,
Iout = Zoft (61)

Linearizing the OTA current output with the constraintsé@)(and combining§1) and

(60):
1 | gk
7 Vou = 57 (Vin = Vou) (62)
v lex
Vout _ - 2UT|BK (63)
in 7 + 207

If the load,Z,, is a purely resistive load, and one lets it approach infioite arrives at

the unity gain transfer function64).
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gk
lim —20 =1 (64)

Ri—co L 4 I
- R + 2UTt

Figure 88c shows the temporary storage circuit. The memory storagmesit is a

key feature in this image processing architecture. An natiagg amplifier L87] is used
to hold and sum the intermediate values for each block’'sgmsiag. Using Kirchhid's
Current Law (KCL), three equations can be written to desctiigecurrents at the output

of the amplifier, and at the inverting terminab5j,(66),(67). C, andC; represent parasitic

capacitances.
ly = IBtanh(ﬁ (Vi - v,ef)) (65)
o= e 4., A Y (66)
lin = czdo\lf + Clw (67)

One may linearize@b) to (69) if (68) holds, and the other three equations may be
re-arranged too/Q) (71) .

2Ur

|VX - Vref < T (68)
|
Io = %(Vx_vref) (69)
av, dv.
lo =(C3+Cy) d_to - Cld_tx (70)
dv, dv,
lin = (C2+ Cy) dtx -C dto (71)
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Substituting 69) into (70) leaves one with two equations and two unknowvsand

Vs

dVy dV,
I|n - (CZ + Cl) Cld_to (72)

| gk dVy

dV,
20, (Vx Vref) =(C3+Cy) o C1 It (73)
Further simplifying yields the following two equations:
dV, gk |BK
Cl dt + 2UTVX 2UT ref (74)
dVo _ (Cz + C]_) dV (75)

dt —Cl C: dt
Equation {5) can be substituted inta’4) to give the equation representing the inter-

mediate processed value which is stored on the capacitor:

(Cl_ (C3+Cy) (C2+C1)) dVi N Y% v _( Igx (C3+Cy) lin

Viet — —=—— | = 7
C dt = 2ur ¢ \2up C ) 0 ()

Eq (76) is a first-order linear dierential equation of the fornY¥), which has a solution

of the form (78):

a%(+bx—c:0 (77)
Mo:h€%+g (78)

Four-quadrant multiplication is desired in this circuit.n®©way to accomplish this
with analog vector matrix multiplication (VMM) is to useftkrential signals and adopt
a convention where the signed signal is thedence between two positive currents||
The architecture in this chapter does not uskedential signals but instead uses a bias nNFET

(Figure88c) to help allow the system to produce negative weights. Hi€lnis biased to
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be in saturation. The idea is that it can be set such that fsitipe weights the currents
integrate onto the summing capacitor, and for negative htgigharge is pulledfbof the
capacitor. The key is, similar td.§], to establish signals which are small changes around
a bias current. Similarly, the positive and negative wedghill need to be represented by
deltas around a bias weight.

Now that the DAC, MAC, and intermediate storage circuits hagenbdescribed one
may analyze the system power of these elements. (For nowsl&gnore the ADC and
further digital processing stages.) The power-delay pcadid9), is used as a power per-

formance metric, where speed comes at the expense of pdwdr.
P, =IVr (79)

In digital circuits,t represents the propagation delay. In this analog cirduiepresents
the delay caused by resistors and capacitors in the cirnditiinversely related to the
maximum operating frequency of the architecture. In findimgmaximum operating fre-
guency, one analyzes the bandwidth of the circuit to find 8uB-point. The “standard

recipe” for computing the bandwidth is (frort]):
1. Derive the input-output transfer function in termssgfise node equations)
2. Sets= jw
3. Find the magnitude of the result of step 3
4. Set the magnitude 1/\@ of the “midband” value

5. solve forw

As an approximation to the above steps, one may also estimateandwidth using
The Method of Open-Circuit Time Constafit$, 17]. A high frequency MOSFET model
is shown in Figure90 [16, 17]. If the input stage of Figurd&7 (i.e. the bdfered input

stage) is the dominant factor in the frequency responsa,dhe can use it to estimate the
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Figure 90. High frequency MOSFET model [16, 17].

operating power15, 18§. Following the analysis in15, 188, one may find the -3 dB
frequency of the OTA fromg8).

(80)

oL _ 1
=BT o 27ULC

(81)

The currents cancel out in the power-delay product calicuig82) and show that one
can reduce the power in this system by reducing the capaeitamgdor reducing the capac-
itance seen by the lifier. “The inverse of this product can also roughly be considé¢he

computation per unit poweflp].”

P, = VgU:C (82)

If one includes a factor of two to account for the power usedhgyoutput stage (the

current integrator), the power is estimated to 88 (

P, = 2Vg4qU+C (83)

A summary of estimated performance metrics is shown in Tablé the input stage

is changed from a Biered input stage to a Log-amp input stage then we would expect
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Table 8. Estimated Performance Parameters for VMM with Inputs Coming in Serially; with Bu ffered
Input stage using: C = 1.6pF, Vgq = 24V, Ut = 0.026

Property | Expression 1=100pA| I=1nA | I=10nA
Bandwidth (f) #TC 383Hz | 3.83kHz| 38.3kHz
Power (P) 21V g 0.48nW | 4.8nW | 48nW

MMAC /uW % 0.80 0.80 0.80

Table 9. Estimated Performance Parameters for VMM with Inputs Coming in Serially; with Log-amp
Input stage using:C = 1.6pF, Vgq = 2.4V, Ut = 0.026, A = 165

Property Expression 1=100pA | I=1nA | I=10nA
Bandwidth (f) znluATc 63KHz | 631kHz| 6313kHz
Power (P) 21V yq 0.48nW | 4.8nW | 48nW
MMAC/uW | JZA 132 132 132

see increased performance. According1§][the gain stage of the Log-amp input stage
configuration increases the bandwidth and therefore lotherpower-delay product, which
increases computation per unit power. Estimated perfocamametrics for this system are
shown in Table9.

The power numbers for this analog system can be comparee footer numbers in
Figure2. If 1 MAC in 100pJ (10OMMAQmW) then one may make the following predic-
tions for the computations per Joule for theffeued input stage and Log-amp input stage

systems, §4), (85), respectively.

BMMAC 10°PuW 1GMAC  800GMAC W _ 800GComputations
W o IW 10°MMAC W /S J

(84)

132MMAC 10°uW 1GMAC ~13200@5 MACﬂ _ 13200@Computations
uW 1IW 10°MMAC W JS = J

(85)

6.2 Robotic Testbed Development

This section addresses the embedded systems developée fastial processing robotic
application. Two FPAA embedded systems are describedt, Birsodular board system

built around the RASP 2.9V is described. Second, the latestFRIES the RASP 3.0 IC,
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and its embedded system are described.

6.2.1 RASP 2.9V Modular Board System

A flying robot platform is a combination of three main itemise tobot hardware, avionics,
and sensors. This work’s analog-digital hardware devetayrs tied to the avionics and
sensors packages. | developed a modular avionics systgureR1, in which diferent
printed circuit board (PCB) modules have been made for spdasis. These modules
are integrated together as needed. Module (1) is a small Hizfetd with a camera and
motor driver IC, Module (2) is a microprocessor and power ddar programming and
powering the FPAA, and Module (3), designed by UC Berkele],[is a sensor and wire-
less transceiver module. This modular board system wadagmakfor use with the RASP
2.9V FPAA IC. Further work on this system has been suspendidan of a more power-

ful RASP 3.0 FPAA IC system.

6.2.2 RASP 3.0 System

The latest FPAA developed by the CADSP Lab at Georgia Teclei®&SP 3.0. Itis con-
structed in the 350nm CMOS process. The die measures 7mm oy 1Rigure93. When
compared with previous iterations of the RASP IC, two distiegung features of this IC

are as follows. First, a Texas Instruments MSP430 comgatibtroprocessor has been

Q
Slra.h
e,
a) Board Stackup b) Side ¢) Measurements from System

Figure 91. a) Block diagram of Electronic Module stackup for avionics sgtem. b) Side view of fab-
ricated boards: stand alone FPAA programmer board (bottom) FPAA/camera board (middle), and
UC Berkeley sensor board (top) [18]. ¢) Measured data from th&PAA programmer/Rasp 2.9V FPAA
board stackup. Successful results from characterizing a soce follower setup similar to Figure 88a for
converting digital bits to current.
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Figure 92.a) RASP 3.0 Control Board (about 4 square inches). Note the UBSconnection on the top

left; 40 pin header on the right to plug into the RASP 3.0 IC boad. b) RASP 3.0a IC Board (about 7.5
square inches) contains the RASP 3.0a IC which is a smaller k&on of the RASP 3.0a.

integrated into the same die as the FPAA. Second, an analowrgehas also been inte-
grated into the die. These two features help allow the FPAgrt@ess imagedigciently.
Having the microprocessor on the die means that the capatotd associated with trans-
mitting signals between the FPAA and microprocessor isceduThe makes for a faster
system. Having an analog memory on the die also allows thgerpaocessing system to
save image information without the time cost of transfeyritata to the microprocessor’s
memory.

The RASP 3.0 Control Board, Figug2a, is USB powered. An FTDI brand IC is used
for serial communication. A high level system block diagraomthis board and how it

interacts with the RASP 3.0 is found in FigLg4.

6.2.2.1 Hardware Results
Some ftitial results from characterizing a source followetup used for the DAC in the
RASP 2.9 system are found in Figudé&c. Each of these curves represents current contri-

butions from each of eight transistors. The transistorg llair gate voltages programmed
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Figure 93. A picture of the RASP 3.0 IC layout.
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Figure 94. System block diagram for the interface between the RASP 3.0ontrol board and the RASP
3.0IC.
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Figure 95.Measured Data from RASP 3.0. Loopback Switch test: connectip[l/O W 22] to [I /O W 23]
using 8 digitally programed floating-gate switches. Input vas applied at one JO pin, passed through
the FPAA, and measured on another O pin.

to binary weighted values. The full RASP 3.0 system will iigdurouting software that
allows one to design a system in Scicos and Xcos (two operesddatiab and Simulink
type programs, respectively.) The testing of the embedgsté and RASP 3.0 IC is
currently being done. We have been able to demonstrate ablackswitch test which
involves applying an input on ongQ pin, passing the signal through the FPAA, and then
back out on anothef® pin. The internal routing used 8 floating-gate switches ai@rthe
internal connection betweeyd pins. We performed this experiment and the results are
found in Figure95. Figure95a shows the measured results from hardware. The red line
represents the ideal curve. If one applies a voltage A atietj one ideally should mea-
sure voltage A at the output. The blue circles represent tressnred data and show that our
system is performing well. Figur@b shows the coordinates of the floating-gate switches
that were used to perform this test. The bow-tie looking kdaepresent transmission-gate
switches that are controlled by floating-gates. This singgedemonstrates basic function-
ality of the microprocessor and also our ability to prograigitel (i.e. fully conducting)

floating-gate transistors.

6.2.2.2 Robot Integration
Future work involves integrating the FPAA board into a reddat. The ICE lab at Geor-

gia Tech has recently purchased a Parrot AR.Drone quadrelicopter for this purpose,
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Figure 96.a) RC Controlled AR.Drone [19]. b) Ardudrone interface board which enables access into
the AR.Drone control system [20].

== T Y

USB Service Port USB to Serial Arduino Remote Control Remote Control
on AR.Drone Converter Microprocessor RF Receiver RF Transmitter
FPAA

Embedded System

Figure 97. The FPAA could piggy-back onto the Ardudrone interface sysem to enable access into
the AR.Drone control system [20]. The original Radio Contrd system of the Ardudrone could be
maintained to use as a safety override system during testing

Figure96a. An open source embedded system caletldrone[20] has been identified as
a possible resource for integrating the FPAA into the drdre Ardudrone system inter-
faces to the AR.Drone through the drone’s USB port. The Ardnérsystem is designed
to allow an RC controller (as used in RC model airplanes) torobtie AR.Drone. An
RF receiver on the drone receives the RF control signals, pdlsese to an Arduino for
processing, and then these are passed to the drone via itptEB-igure97 shows how
the FPAA Image processing system can be integrated intexising control architecture.

The RC control link could be maintained to use as a safety meduring testing phases.
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CHAPTER 7
CONCLUSIONS

This dissertation showed how to map path planning and imeggepsing algorithms onto
new analog signal processing systems based on floatingagaézl reconfigurable analog
hardware. Hardware results were shown, and benefits artdtioms were described. Ana-
log path planning with floating-gates and neurons was detraied in two chapters, and
an analog computation based image processor was alsolskci®One of the computa-
tional capability benefits of the path planning system isTmee Complexity win of the
neuron based path planner,compared t® (dz) for a digital wavefront planner (whek

is the depth of the solution ands the propagation velocity of the wavefront in the neuron
IC). One of the major benefits of the image processing systéme isstimated performance
of 800 to 132000 Giga Computatigdsule, which is significantly higher than the approxi-
mately 10 Giga Computatiofoule d€ficiency wall trend in Figur@. One of the limitations

shown is that the resistive grid solution is not always optim

7.1 Chapter Reviews

Chapter2 presented three hardware and software infrastructures$ wik a family of
floating-gate based FPAAs being developed at Georgia Tdobselcompact and portable
systems provide the user with a comprehensive set of toolsustom analog circuit de-
sign and implementation. The infrastructure includes tRAA IC, microcontrollers for
interfacing the FPAA with the user's computer, and Matlabl gargeting software. The
FPAA hardware can communicate with Matlab over a USB conmectWWhen connected
to a computer, the USB connection also provides the FPAAwanmels power. Some of the
software tools include three major systems: a Matlab SmkUFPAA program, a SPICE to

FPAA compiler called GRASPER, and a visualization tool calRAT. This chapter also
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presented a description of a floating-gate transistor lsectus is the key enabling tech-
nology that allows the FPAA to program arbitrary circuiteidaalso implement resistive
elements).

Chapter3 presented path planning using resistive grids implemeaietivo diterent
FPAA ICs: the RASP 2.8a and the RASP 2.84,[73]. The resistive grids elements were
implemented with floating-gate transistors. The gener# ig similar to the well known
potential field approach to path planningd] in that the robot’s location is the high point
of an energy surface, the goal is at the low point, and the foagloal follows the gradient.
This chapter presented hardware results using reconfigufsth.SI circuits developed at
Georgia Tech to implement a path planning algorithm. Expenital results were presented
for a large number of environment scenarios. Also, an erpantal result of interfacing
the FPAA with a Pioneer robot was described.

Chapter4 presented hardware results for a neuromorphic approachttogdanning
using a neuron array IC. The algorithm was explained, andrarpatal results were pre-
sented showing 100% correct and optimal performance forga laumber of randomized
maze environment scenarios. Based on neuron signal prapagaeed, neuron IC path
planning may €fer a computational advantage over state-of-the-art wanefanners im-
plemented on FPGAs. Analytical Time and Space Complexityiosetvere developed in
this section for a Neuron IC planner, and these were verifgainat experimental data.
Optimality and Completeness were also addressed. The nstmgiure allows one to
develop sophisticated graphs with varied edge weights detwodes of the grid. Two
interesting cases were presented. First, asymmetric emkie were assigned to describe
cases which have a certain cost to travel a path in one dirediut a diferent cost to travel
the same path but in the opposite direction. The applicaifathis feature can translate
to real world problems involving hills, tfAc patterns, etc. Second, cases were presented

where the nodes near an obstacle were given higher costsitahase nodes. This is in
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an dfort to keep the autonomous agent at a safe distance fromctésstd his grid weight-
ing can also be used tofterentiate among terrains such as sand, ice, gravel, or Bmoot
pavement. Experimental results were presented for bottscas

Chapter5 presented results of a mobile manipulator robot taskeddg hle classic
Towers of Hanoi game. First, the control algorithms neagstsaenable necessary game-
playing behavior were discussed, and results were prowéi@dplementing the method-
ology in a high fidelity 3D environment. After attaining sess in the simulation envi-
ronment, results were shown on implementation of the samialsoftware using physi-
cal robot hardware. Additionally, analysis for implemeugtianalog Proportional-Integral-
Derivative (PID) control on this platform using a floatingtg based reconfigurable analog
IC was explored. Using this concept of floating-gate analogya for control enablesfi
loading of the processing, which could be helpful for reade implementation of robot
behavior.

Chapter6 described a mixed signal image processing algorithm dedig¢m filter and
subsample an image. Two systems being developed for a hgbalbg-digital approach
to image processing were also described. One of these sysdrased on the RASP 2.9v
IC and the second is based on the RASP 3.0 IC. Each has its own Po&ldad system

which was also described.

7.2 Extending Analog Reconfigurable Circuits to Additional Autonomous
System Problems

One extension of the planning research is to apply this woB<Dimensional (3D) grids.
In theory, the bipartite grid algorithm is amenable to thikled dimension. Figuré8
shows how a simple 3D grid is mapped onto the RASP 2.9V IC. Thel@bner may also
be useful for cases such as a non-holonomic rob2d|[

Autonomous Underwater Vehicles (AUV<)89 are a power constrained robot plat-

form, navigate with a 3D environment map (two space dimerssione time dimension),
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Figure 98. a) Three dimensional grid space. b) Mapping of Nodes 1-12 of €h3D grid in (a) onto a
RASP 2.9V FPAA using a bipartite grid.

and have map updates on the order of minutes. These thragegualake AUV an excel-
lent platform on which to apply the FPAA planner. One AUV agalion could be to use
realistic 3D ocean data with the existing FPAA planner tos@ path planning task. An-
other 3D planning problem of interest is planning a path fotJmamanned Aerial Vehicle
(UAV) in a three dimensional spacial environment. Regardnig3D task, we may be able
to draw upon work by Grupen, et al, in which 3D nonholonomicigiare exploredd6],
or work based on Fast Marching (FM) wavefront9(Q 191]. FM methods are especially
applicable to aerial or under water environments becausedhow one to take wind or
current influences into accourit9Q.

Another extension of the planning work is to chooseféedént environment represen-
tation. For instance, the neuron path planners might beinsedearch space that has been
decomposed into a road map method callets#ility graph, Figure99. Visibility graphs
are based on obstacle geometl][ If the resolution is high enough, these graphs will
allow one to find a complete solution that will move the robothe configuration space.
A drawback to this representation is that the path will tddeerbbot as close as possible to

the objects.
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a) b)
Figure 99.Representing the dfice environment as a Visibility graph. a) Ofice environment. b) Nodes of

visibility graph are the start and end nodes and the corners tthe obstacles, walls, and along boundaries
[21].

7.3 HMMs, Dendrites, Diffusors, Analog ICs and Robotics

Finally, this dissertation concludes with some of my pratiany work which links mul-
tiple areas covered in my research: Hidden Markov Models iyl Dendrites, Analog
diffusors, and Roboticd 92 193. An initial robotics application is to use HMMs to allow
robots to recognize doors. Another application is to appWM#t to robot state estima-
tion. The link to my research is that | and present and pastimeesof the Georgia Tech
ICE Lab have been forging a link between the neural comporeited dendritesand
HMMs and also working to implement these dendritétdior-HMMs on FPAA platforms,
[194, 195 196, 197, 198 192 199 193 200. Others have made the connection between
analog integrated circuits and HMM2Q1, 202. Ideally, we will one day be able to use
FPAA based dendrite-flusor-HMMs to perform robotic object classification such asrd
finding or robot state estimation. In some preliminary wakaser ranging sensor was
mounted on a robot and used to detect the presence or abselomerways. In this system,
the sensor makes a single 180 degree row scan in front of bee.r@his row scan data
is the input to the HMM classifier. The HMM classifier under d@pment is currently a

digital Matlab solution 203, but the desire is to use this as a basis for implementing it o
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the FPAA as an analog HMM-dendrite classifier.

The Hidden Markov Model (HMM) door finder is inspired by preus work using
HMMs to characterize numberd28. Another paper using HMMs for door finding is
[204). In Bishop’s example, numbers are characterized on-lina pencil traces out a
number though time. The number 2, for example, can be madary mays. An individual
may start at the top left and finish at the bottom right, or timay start at the bottom right
and finish at the top left. In this type of situation the stagtpoint and direction of pencil
travel matters. This work uses HMMs to “trace along” the fadata and identify sections
of the curve that are consistent with a trained “door modd&ihce doors are typically
symmetrical one may assume that the starting point andtatirecf trace along the data is

not as important as it is in number or character recognitroblems.

7.4 Converting Discrete HMMs to Continuous HMMs

This section describes a method of converting an HMM clasdifiat has discrete states
and discrete times into one that has a continuum of statemitincious time. This process
is important because analog circuit systems are inherentijinuous time systems. This
discrete to continuous conversion is accomplished by usngble substitutions and Tay-
lor series approximations. First, discrete HMMs are reeiéwand this is followed by a

discussion on the continuous time version.

7.4.1 Discrete Hidden Markov Models

HMMs are used as pattern classifiers, i.e. discriminatorg,heve been applied to a wide
range of problems such as speech recognition, hand anddeagnition, gesture recogni-
tion, and robot guidance2p5 206, 207. An HMM is a state machine. A unique HMM
state machine is created (or better “learned”) for each itelbe discriminated. The input to
an HMM system is a time series of observations. These olis@ngacan take many forms.
For isolated word recognition or sentence recognitionghaay be phonemes. For ges-

ture recognition, the observations may be the temporal oot of the hand as it moves
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[206. The output of an HMM is a number: the likelihood that a setpeeof observations
came from a certain HMM model. The output of an HMM classifgeta discriminate the
observation among various models.

Each HMM model is composed of three parameters: the pratyabileach state being
the starting state, the probability of each state producartain observations, and the prob-
ability of transitions among states. Nominally, for a detertime HMM Model, each state
can produce an observed output with some probability at éaehstep. The sequence
of transitions between states is not known a priori, but erabterized by a set of proba-
bilities. The reason this is called a “Hidden” Markov modebecause an observer to the
system only sees outputs but does not know a priori whickstabduced the observations
and when each state was visited.

Rabiner does a great job of describing three basic probleatsibst be solved in an
HMM classifier 5, 20§. The wave propagating PDE (described later andLPg]) was
posed as a solution to Rabiner’s “Problem 1” statement:

Given an observation sequen©e= [04, 0, - - - , 0r] and an HMM modelky = (Ay, by, 7y)
how does one compute the probability of the observationesempigiven the model: [®|1]?

Whereo(n) are continuous observations (inputs to the HMM classifigy)is the state
transition matrixpy are continuous symbol observation densities,7and the initial state
probability vector. The subscripd indicate that these matrices are for a specific HMM
model.

The italicized “Problem 1” statement above representatpesterioriprobability that
an observed sequence came from a certain madehis is very computationally expensive
to calculate directly as it requireI N — 1 operations where N is the number of states and
T is the length of the observation2(g. It can, however, be calculated morgieently
using @6) [25]. The discrete observations (such as phonemes) from tieperstl to time

step =T are[04, 0, ..., 07] [25)]:
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N
P01, 0s,..., 0] I4v] = > i (T) (86)

i=1
Where variable is the recursion variable87). (¢ is calleda in theforward-backward

procedure in previous publicatior2d, 209, 205]) Variablei is the current state and variable

| is the next state.

N
¢j(n+1) = Z Qoi(n)aij] bj(On.1) (87)
i=1
Where the range of the time step is:
1<n<T-1 (88)
And the index over states is:
1<j<N (89)

Assuming a left-right state model, it is possible to estan@6) by (90) whereN is the

number of states:

P[(01,02,...,07) |dv] = ¢n (T) (90)

For n > 1, and assuming a left-right model where a state can onlgitran either to

the next state or back to itself (Figut@4c), the recursion variable, in (87) simplifies to

(93).

¢ (N) = bj (0n) [ (N— Dy +¢j1 (N— 1) &y, (91)

Redefine the state transition variable:

aj-1 = j-1,] (92)

and substituting9?2) into (91) gives the equation that is stated in previous pa@20§, [
202 198:
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Figure 100. Visualizing the recursion for the discrete HMM using a trellis diagram. The observation
sequence in this example ifoy, 0, 03, 04], Where a;, represents state transition probability from state 1
to state 2, andb;(03) represents the probability of getting observationos at n = 3 while in state 1.

@) (N) = bj (0n) [¢; (N— 1) (1-a)) + g1 (N - 1) a4 (93)

wherea; andb; are elements of the state transition ma&ixand the symbol probability

matrix By respectively. Equatiof4 initializes the recursion:

¢j (1) = mjb; (01) (94)

And the index over states is:

1<j<N (95)

The recursive process of calculating th@osterioriprobability ©3) can be visualized

as atrellis, Figurd.00.

7.4.2 Continuous Hidden Markov Models
The HMM is typically thought of as a discrete time model, dutan be expressed as a

function of continuous time and state&l[J. One may restate the recursion variable in
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45 5 State ()

Figure 101.A three dimensional surface representing the recursion vadable ¢ in the continuous HMM
as a function of continuous time and state.

(93) as a function of time by replacing the discrete variabigith a continuous variable

and discrete variable — 1 with a continuous variable— t:

@ (1) = by (o) [(1-a)) ¢ (t—7) + @1y (t - 7)) (96)

The time for a specific state is now continuous98)( but the states and probabilities
are still discrete. One may restate the discrete sfate$96) as a continuous function of

positionx as in @7) and ©8).

e () = ¢ (x1) (97)

pi-1(t) = p(X- A1) (98)

The value ofp in (97) can be seen as a point on a three dimensional surface (RiQlje
The symbol and state transition probabiliti&sand a respectively in 96), are currently
expressed as a function of a discrete state but can be eggresterms of the continuous

state. The continuous representation of the state trangtiobabilitiesa, is shown in 99).
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aj = a(x) (99)
aj_1 = a(x—A)

The continuous representation of the symbol observatiobaility, b, is shown in

(100).

bi (o) = b(x, 01) (100)

Thea posterioriprobability in 86) may now be expressed as a continuous function of

time and state,101).

NxA

o uy]: [ exax (101)

O<t<T
x=0

The approximation of40) can also be restated as a continuous function of time and

P

state:

P[ O |Ay|~ @ (N=*A,T) (102)

O<t<T

The recursive expression for calculatigagn the discrete HMM can now be expressed
as a function of continuous time and state by substitu@®)y &nd (00) into (96). This is
shown in L03):

Pt = (x| Dbt (103)
+a(x—A)p(x-A,t—1)

A state’sg value at a previous time can be related to the state’s cutireatusing the

Taylor series approximatiori98:

Ay (X, 1)
ot

One state’s value at timet may be related to another state’s value at ttrasing the

e(Xt-1)=p(Xt) -1 (104)

Taylor series approximatiori9g:

dp (X, 1)
0X

o(X= A0~ o (1) = A (105)
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Since the shape @f is a surface as in FigurE01, one can combine the ideas d0d)

and (L05 and relate a state at one time to a previous state dfexet time by:

dp(xt) e (x1)
0X ot

Substituting 104 and @06) into (103 and simplifying yields the general fégrential

e(X=At-1)=p(Xt)-A

(106)

equation for a left to right model continuous time and stalté\H (107).

[y — L-a(x=2) +a(|e (x1)

Ip(x.t)
+[1+a(x-A) —a(x)] 725

C

=0 (107)

+a(x— A) A%k

X
Re-arranging terms:

dp(x,t)
T
1 _1-a(x-A)+a(x)
B(xD —
+ e ¢ (%0 [=0 (108)
a(x—A) dp(x,t)
+1+a(x—A)—a(x)A X

Further re-arranging terms:

dp(x.t)
T %

+ (—Ha(x@_a(x) - 1)90 (xt) |=0 (109)

a(x-A) Ap(x.1)
+ 1+a(x—A)-a(x) A ox

If one assumes that the state transition probabilitiesgueale(L 10), then the diterential

equation in 108 simplifies to 111) [198.

a(x—A) =a(x (110)

The final expression for the continuous HMM can be seen as a mapagating PDE

[199.

dp (X,1) 1 dp (X, 1)
-1 x,)+a(x) A——=0 111
20 +(b(x,t) )90( )+a()a2e™ (111)
gtlgtrﬁent decay \[/)Vr%\i)eagation

term
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Figure 102.RC Delay line model.

7.5 Diffusors Implementing HMM Computation

It can be shown that the wave propagating PDE from SedtidiRis similar to the dif-
ferential equation used to describéfdsor circuits. Two types of ffusors include an RC

delay line and also a delay line with transistors in placessfstors 194].

7.5.1 RC Delay Line Dffusor

The classical RC delay line is reviewed in Mead’s teb8€|. Figure 102shows the topol-
ogy. Kirchhdt’s Current Law (KCL) can be used to derive dfdrential equation for this
circuit, (112 whereG is conductance.

li (t) = C,% +Vi(t)Gi + MOV (0) (t)I;i\,/i;l(t)]

(112)
+ Vi®)-Vi-1 ()]
R

Assuming the horizontal resistances are equal a$16) @llows one to simplify {12)
to (114):

R =R_1=R (113)

i (1) =M + v () Gy

+ & [2Vi (1) = Viss (O - Via ()]

(114)
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Figure 103.Voltages for a 7 tap RC Delay Line (R=.9, G=.9, C=.01).

Assuming there are many nodes allows one to perform thesoiipchange of notation

from discrete nodes to continuous nodes:

Vi(t) = V(x, 1) (115)
Vi (1) = V(X + Ay 1) (116)
Viee () =V (X= A1) (117)

The value ofV in (115 can be seen as a point on a three dimensional surface, Figure
103 Assuming thai\, represents something like a “position delta” one may usddéytor

series to describe the continuous nodes in ternas,pf118), (119).

dv(x,t) 1 d?V (x, t)

V (X+ A t) = V(X 1) + Ay ™ +§(AX)2T+--- (118)
dv(xt) 1 d?V (x, 1)

V(X=Agt) = V(X 1) = Ay Ix +§(AX)2T+--- (119)

151



The bracketed term irl(4) can be re-written in continuous node terms:

2V, (t) - Vi (t) - Vi1 (t) =

(120)
2V (%, t) = [V (X + Ay, 1) + V (X = Ay, 1)]
Substitute {18 and (19) into (120 and simplify:
2V, (1) ~ Vion () Vioa () ~ — (a2 T Y (121)

dx»?
Substituting 121) into (114 and simplifying yields 122), the generalized PDE de-

scribing the RC delay line dusor.

i ()R = RxCidVdi—t(t) +RGV; (1) - (A _(;(’ )

d?v
2
122
) (122)
If one assumes no input current at the top of each Hpded, then one can put the

diffusor circuit into a form similar to the continuous time HMMuzgjion, 123).

dV (x,t d?V (x, t
RCIVY L gV xt - (a2 IV XY _ g (123)
dt — dx2
decay —
state term dif fusion
element term

7.5.1.1 Comparing the HMM PDE to the RC Delay Line PDE

Table10 compares terms from the HMM PDE and the RC delay lifedential equation.

Table 10.Comparing HMM PDE and RC Delay Line Terms

Element Description HMM PDE | RC Delay Line
Recursion Variable ¢ (%) V (X, t)
State Element Cdicient T R.Ci
Decay Term Cofficient ﬁ -1 RGi
Wave PropagatigBiffusion Term| a(x) A% | _ (A,)? £V

If one assumes that the resistances are NOT equal and thairtdactance of the line

increases towards the right:

Rai>R (124)

152



One can re-writel12) as:

o~ dVi() oL 1] [ Via® | Vi)
ll(t)_CI—dt +V|(t)[GI+Ri—1+Ri [ R, + R ]

Which, using the resistance assumption, simplifies to:

dVi (t)

li (t) = CiT

+Vi () [Gi + é] - V“é(t)

Substituting the Taylor series expansionsif) and (L17) into the above:

dVv(xt 1 1
li () = Ci ét )+V(x,t) G+g —ﬁv(x—Ax,t)
V(% 1)
dV(x1) 11 1 )
i (t) = Ci . +V(x,t)[Gi+§]—ﬁ A, 2V
+1(A2EA0

Assuming that:

AX < 1

Then one can neglect higher order terms of the Taylor series:

(Ax)2 ~0
T~ V(X 1] 1 dV (x, 1)
li (t) = G at +V(x1) G,+Ri R[V(X’t) Ay i
Re-arranging terms:
() =G +V (1) [Gi+ 5 - 7]
av(x,
AR
dV (x 1) dV (x, t)

iR =RC

+ V(X)) GR + Ay

dt dx
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dV (xt) dV(x1)

0=RCG; a0 +V (% t)GR - Ii (1) R + A4 I (134)
decay
g}g}ﬁent term \;Ijv%lgagation
V V
0=Rc VY Ly yGR - 17+ 4, T (135)
dt - dx
ecay
gltgrtﬁent term \gﬁavgagation

Assuming that HMM will always propagate to the next state trede is no probability

that it will remain in its current state leads to the assuopin (136):

a(x) =1 (136)

Further assuming that the delta’s are the same in both the HIMMRC-delay line,
A = Ay = K, and updating Tabl&Oyields Tablell.

Table 11.Comparing HMM PDE and RC Delay Line Terms w/Assumptions

Element Description HMM PDE | RC Delay Line
Recursion Variable ¢ (X 1) V (X, 1)
State Element Cdicient T RC
Decay Term Cofficient ﬁ -1 GR -1
Wave Propagatigliffusion Term| K%Y K D

7.6 HMMs and Analog Systems for Robot Navigation

Previous works have made connections among HMMs and desgdaind transistor models
of dendrites 192 198 197,196 195 194, 193. This section first describes navigation sys-
tems and an important estimation tool used for navigatidle@¢the Kalman filter. A close
relationship is also described between the equations foMdMnd Kalman filters. It is
natural then to consider that there may also be a conneatiovelen dendrite computation
and state estimation computation in Kalman filters, Fidi4a. It has also been shown that
Kalman filters can be represented using electrical netw$2id], and electrical networks

in Factor Graph format2[12 213.
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Figure 104.a) Future research seeks to make a connection among HMMs, Kalmfilters, Dendrites
and CMOS transistors. There are two main recursive steps in th Kalman filter [22] b) Time update
step which estimates first the covariance and expected statéfter calculating the expected state, one
may predict the expected measurement. ¢) Measurement updagtep first calculates the Kalman gain
matrix using, among other things, the expected covariancedm step (b). This gain matrix is then used
to compute an update to the Covariance matrix and also and upale to the state. d) A Temporal Model
is useful for modeling Navigation. The HMM and Kalman Filter are two such types of Temporal Mod-
els. The inputs to these temporal models are transition mode and sensor models [1]. e) Probabilistic
Independence Network for HMM (grey circles are observed) [2322, 24]. f) Left-Right HMM model

[25].
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The goal of a navigation system, is to give the robot or automgs agent an estimate of
its position in the world and often its orientation, velgcénd acceleration. This is often
called estimating thetateof the agent. Navigation can be accomplished in many ways
such as using celestial bodies, radio waves, radar, seselir dead reckoning (DR214].
Inertial navigation is a type of DR and is the focus of this kvokn inertial reference frame
has its origin at the center of the Earth and axes which areoiating with respect to the
fixed stars 26).

One of the problems in navigation systems is that the roboincéd measure all of the
elements of its state. Instead, in inertial navigation wigot's position and velocity are
assumed to be a linear function of quantities that the roBnimeasure, like acceleration
and angular velocity. Inertial Measurement Units (IMUS) devices that typically contain
three orthogonal rate-gyroscopes and three orthogonaleaometers to measure angular
velocities and acceleratio?]5. This sensor data is then integrated to yield velocity and
position information. Integrating the measured accel@nagives velocity, and a second
integration yields position, Figurg05a. “To integrate in the correct direction, attitude is
needed. This is obtained by integrating the sensed angalacity... Equations integrating
the gyro and accelerometer measurements into velocitjtigmoand orientation are called
navigation equations416” [26] An Inertial Navigation System (INS) combines an IMU
with a computer, Figur@05b. The computer performs the navigation equation calanati
and produces the state informati@1ip, 27).

To further complicate the navigation problem, the measergmare assumed to be
noisy. The estimated state will therefore be a random vieriaiih some degree of confi-
dence that is often expressed in a covariance matrix. Kafittaring is a common digital
based method for dealing with the state estimation task difileoobots in the presence of
Gaussian noise. This filtering algorithm is also commonlkydufor guided missiles2[17],
radar tracking system21§, etc. The Kalman filter is optimal in the sense that the “ex-

pected value of the square of the error magnitude is minid{i2&9.” In our robot context,
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Figure 105.INS figures a) from [26]. b) Aided Inertial Navigation System(AIS) from [27]. ¢) Using a
Kalman filter to combine the sensor data from an INS and GPS [2B

the Kalman filter is a method of combining noisy sensor meaments from sensors such
as gyroscopes, accelerometers, magnetometers, GPS foogade system), airspeed sen-
sors, etc. to determine the state of the rol&#(. For instance, “Integrating GPS with
an inertial navigation system (INS) and a Kalman filter pdea improved overall navi-
gation performance. Essentially, the INS supplies vityuabiseless outputs that slowly
drift off with time. GPS has minimal drift but much more noise. The Kairilter, using
statistical models of both systems, can take advantagewfdifferent error characteristics
to optimally minimize their deleterious trait&§].” [ 221] In another, more self contained
non-GSP dependent solution, it is possible to use a Kalnmantid combine gyroscope data
with accelerometer and magnetometer data for an improwadat#on solution 22 223.
In this system, the accelerometer and magnetometer datssadeto compensate for the
drift of Micro Electro-Mechanical (MEMs) based rate gyropes P22 224, 225. In these
types of systems the Kalman filter often operates on signhlsharepresent the attitude
errors, R26.

This process occurs over time and seeks to reduce the dstingator by combining
the measurements. “In Kalman filtering we wish to estimategas of an unobserved
process, given samples of some observed progeasd a (statespace) dynamic stochastic

model for processesandy [227].” In our case, the unobserved procasould be the robot
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position and velocity, and the observed processthe sensor data. “The Kalman filter not
only works well in practice, but it is theoretically attravet because it can be shown that of
all possible filters, it is the one that minimizes the varen€the estimation erro2pg.’

The Kalman filter is a statistical estimation tool. Previoesearch has established that
there is a connection between Kalman filters and HMRRJ. “Now, it is well known
(see e.g. 230, 231)) that the statespace model which underlies the Kalmam fdtendeed
an HMM (with continuous state proces£2[/],” or, put another way, “The Kalman-filter
model is an HMM with linear Gaussian model densitie87.” In [232, the authors
provide “a comprehensive framework in which linear Kalnféter models are subsumed
by HMMs.”

A temporal probability model, Figur04d can be used to describe the navigation prob-
lem. These types of models have two sub-model$rafAsition modebnd asensor model
[1]. Hidden Markov Models (HMM) and Kalman Filters are speaakes of a temporal
model called @ynamic Bayesian Netwoi(oBN) [1]. Figure 104e shows a Probabilistic
Independence Network (PIN) representation of an HMM, arglifeé 104e shows a left-
right representation of an HMM.

Future work is to continue to make the link between dendpticcessing and au-
tonomous vehicle navigation with the goal of implementihg algorithm on a reconfig-

urable platform such as an FPAA.
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