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SUMMARY 

 

Regional air quality models have been widely used in air quality management. 

The primary goal of an air quality model is to understand the relationship between trace 

contaminant levels and chemical and physical processes. Such relationship can be 

extracted from an air quality model by direct sensitivity analysis. This dissertation 

outlines the development and applications of an advanced sensitivity techniques, the 

decoupled direct method (DDM), in a regional air quality model. Given the complex 

chemical and physical processes involved in the formation of secondary particulate 

matter, this dissertation implemented high-order DDM (HDDM) sensitivity techniques 

for particulate matter in the Community Multiscale Air Quality (CMAQ) model and 

quantified spatially and temporally variable responses of particulate matter species to 

precursor emissions and the interaction of them. The implementation of the high-order 

sensitivity technique provides important insights in source apportionment of fine 

particulate matter and the trade-offs that may be involved in multi-species control 

strategies for secondary particulate matter. 

Based on the high-order DDM sensitivity techniques, this dissertation then 

established a reduced form model of CMAQ, which keeps the pollutant-emissions 

response. The reduced form model is computationally efficient and has a flexible 

formulation. This dissertation demonstrates the applications of the reduced form model in 

the following three aspects: 1) Uncertainty analysis of air quality model - The reduced 

form model is applied to quantify the uncertainty of simulated particulate matter in the 

presence of uncertain emissions rates. 2) Emission assessment - The reduced form model 

is applied to assess the emissions impact of flares at different operating modes. 3) 



 xix 

Optimization of control strategies - The reduced form model is integrated into an 

electricity generation planning model to find the optimized solution by taking into 

account air quality-related health costs. 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1.  Context and Motivation 

 Particulate matter (PM) control is perhaps the most challenging aspect of current 

air quality management. PM is a complex mixture of extremely small particles and liquid 

droplets that are varying in size, chemical composition, and origin. These suspended 

particles can be inhaled by people and have been linked to a wide range of serious health 

effects, including premature death, heart attacks, acute bronchitis, and aggravated asthma 

among children (Sarnat et al., 2006; Peel et al., 2005; Dockery et al., 1993). They are also 

known to have adverse effects on the environment by forming acid deposition (Baptista-

Neto et al., 2006) and impairing visibility (Latha and Badarinath, 2005). They can affect 

climate directly by absorbing and scattering of shortwave and longwave radiation and 

indirectly by acting as cloud condensation nuclei (CCN) to form droplets that are more 

effective in absorbing and scattering of radiation (IPCC, 2001). Due to its adverse impact 

on public health and public welfare, PM is regulated by the United States Environment 

Protection Agency (U.S. EPA) as one of the criteria pollutants under the National 

Ambient Air Quality Standards (NAAQS). PM regulation is usually based on its size 

because its potential to harm people's health depends on its ability to penetrate the lungs. 

PM pollution includes "inhalable coarse particles", those with aerodynamic diameters 

larger than 2.5 micrometers and smaller than 10 micrometers (PM10) and "fine particles", 

those with aerodynamic diameters smaller than 2.5 micrometers (PM2.5).The annual 

health (primary) standard for PM2.5 has recently been tightened from 15 µg m
-3 

to 12 µg 

m
-3

, the health benefits of which are estimated to range from $4 billion to over $9 billion 
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per year. While the revised standard is expected to bring significant health benefits, it 

adds challenges to the already-complex task of PM management. Based on monitoring 

data from 2008 to 2010, 18 additional counties that are not currently designated as 

nonattainment don't meet the revised annual PM2.5 standard (Figure 1.1). 

 

 

Figure 1.1. Counties not meeting the January 2013 revised primary annual PM2.5 NAAQS based 

on 2008-2009 monitoring data. (Source: U.S. EPA, http://www.epa.gov/pm/2012/mapb.pdf). 

 

 The complexity of PM formation has made the development of control strategies 

more difficult. PM can be directly emitted from primary sources such as elemental carbon 

(EC) from on-road mobile sources. PM can also be formed secondarily by the chemical 

transformation of reactive gaseous emissions such as SO2, NH3, NOx, and VOC. 

Secondary PM constitutes a significant fraction of the PM mass. For example, most of 

sulfate in the atmosphere is formed by oxidation of SO2 (Figure 1.2). In the daytime, SO2 

http://www.epa.gov/pm/2012/mapb.pdf
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can be oxidized by the hydroxyl radical, OH, in gas phase. It can also be oxidized in the 

aqueous phase by a variety of oxidants such as hydrogen peroxide and ozone. Likewise, 

the formation of nitrate usually occurs through the oxidation of NO and NO2 (NOx) either 

during the daytime with OH or during the night with ozone and water (Figure 1.2). NOx 

and SO2 tend to compete for oxidants, so the formation of sulfate and nitrate interact with 

each other. Another example is the formation of aerosol ammonium. The available 

ammonia in the atmosphere preferentially neutralizes H2SO4 and forms ammonium 

sulfate aerosol. Nitrate can also react with ammonia and form ammonium nitrate, 

depending on the availability of ammonia and favorable conditions of low temperature 

and high relative humidity. Because the interaction among secondary sulfate, nitrate , and 

ammonium aerosols, the increasing nitrate aerosol corresponding to the reduction in SO2 

emission is a significant issue for designing PM control strategies. Another issue in PM 

management is that PM shares precursors with other air pollutants such as ozone. VOC 

and NOx are precursors of both ozone and a fraction of PM (nitrate and secondary 

organic aerosol). Meng et al. (1997) found that in Riverside California, a 25 percent 

reduction in VOC emissions resulted in a 19 percent reduction in the peak ozone, but an 

18 percent increase of PM2.5 level. Organic compounds constitute about one-fifth to one-

half the average annual PM2.5 (NARSTO, 2004) and also interact with other PM2.5 

species through common precursors such as NOx and VOC. For instance, reduction in 

VOC may lead to an increase in PM2.5 concentrations in that the available NO2, instead of 

being converted to PAN, is converted to HNO3, which reacts with available ammonia to 

form ammonium nitrate. At the same time, ozone concentrations are predicted to decrease 

with decreasing VOC (Meng et al., 1997). 
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Figure 1.2. Schematic of the three pathways (reactions in gaseous phase, cloud, and condensed 

phase) for the formation of sulfate aerosol (NARSTO, 2004). 

 

 

 

Figure 1.3. Schematic of the formation of HNO3 and nitrate aerosol (NARSTO, 2004). 
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       The above examples illustrate the intricate coupling among the different species of 

PM2.5 and between PM2.5 and ozone. Designing a control strategy for both PM2.5 and 

ozone requires considering the coupling effects among the different species. One control 

strategy that is efficient at reducing a certain PM2.5 species may cause an increase in 

another species. The optimal strategy for ozone controls may increase PM2.5 levels. The 

multi-pollutant response to various emission control strategies is often investigated using 

chemical transport models (CTM). The Community Multiscale Air Quality (CMAQ) 

model (Byun et al., 2006) is one of the most widely used CTM in air quality 

management. It has the state-of-science representation of the formation of ozone, 

photochemical oxidants, acid deposition, and fine and coarse particulate matter and is 

suitable to be used as the base model for sensitivity analysis of pollutant response to 

emission changes.  

 

1.2. Sensitivity Analysis 

 For policy-oriented applications, it is important to consider the response of PM 

concentrations to changes in emission rates. However, emission source impacts are 

difficult to directly measure. Such pollutant-emission responses can be quantified using 

model-based sensitivity. 

 In a CTM, a straightforward way to conduct sensitivity analysis is to calculate the 

differences between model outputs that are due to a certain amount of perturbation in 

emission rates (Figure 1.2). The model is run once in its base state, then it is re-run with 

emissions from a source perturbed up or down (potentially totally removed). This method 

is called the brute force method. Since it is a numerical approximation, its accuracy may 
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be affected by the perturbation size (Hakami et al. 2004). It is also subject to noise at the 

discontinuous point of a response surface. Studies also indicate that the brute force 

method exhibits more noisy behavior with increased orders of sensitivity (Hakami et al., 

2003). Besides the accuracy issue, another issue is that brute force becomes 

computationally expensive when sensitivities to a large number of emission sources must 

be calculated.  

 The Decoupled Direct Method in Three Dimensions (DDM-3D) (Dunker, 1981; 

Yang et al., 1997) enables simultaneous calculation of sensitivities to multiple emission 

rates or other parameters within a single model simulation. The extension of DDM-3D to 

compute higher-order sensitivities of ozone (Hakami et al., 2003) has enabled the 

exploration of the nonlinearity of ozone response to precursors. One method that has been 

demonstrated for simulating ozone response to a wide range of perturbations has been to 

include first- and second-order sensitivity coefficients in Taylor expansions (Hakami et 

al., 2003). The use of higher-order DDM (HDDM) in scientific investigations of pollutant 

formation has been demonstrated in the analysis of ozone nonlinearity in Georgia and 

Texas (Cohan et al., 2005, and Xiao et al., 2010).  The use of higher-order DDM 

(HDDM) in informing policy development has been demonstrated by Simon et al., as an 

approach to evaluate the ozone NAAQS (2012).  

 HDDM can be used to construct a reduced form model of the underlying air 

quality model. The reduced form model has a simple formulation that directly relates 

pollutant response to the change in emissions. The information on transport and chemical 

reaction is retained in sensitivity coefficients in the formulation. The reduced form model 

has flexibility in selecting the sensitivity parameters. It has been applied to quantify the 
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uncertainties in modeled ozone concentrations that are caused by uncertainties in 

emission rates, reaction rates, and model structures (e.g., Cohan et al. 2010; Tian et al., 

2010; Pinder et al., 2011). Uncertainty analysis helps us understand the model's 

credibility and provides insight for model improvement. The reduced form model has 

also been incorporated into a cost optimization model to determine the least-cost 

approach to achieve attainment of the NAAQS. An example can be found in the study by 

Cohan et al. (2010), which investigated ways to optimize control measures to achieve 

attainment for ozone in Macon, Georgia.  

 DDM-3D for PM has been implemented in current chemical transport models 

(e.g., Napelenok et al., 2006; Koo et al., 2007). It enables assessment of source impact on 

different species of PM (Napelenok, 2006). It also has the advantage of capturing spatial 

and temporal variability of source impacts, which has been shown to be essential in 

health studies relating public health issues to emission source categories. Recent studies 

have combined DDM-3D for PM with a receptor model to generate an ensemble 

approach to conduct source apportionment studies for PM (Hu et al., 2013, Ivey et al., 

2013). The results are intended to be used in epidemiological studies to explore the 

impact of emission source categories on human health. DDM-3D for PM can also be used 

to construct reduced form models to quickly estimate the response in PM species due to 

the change in precursor emissions. The power of reduced form model in evaluating 

control strategies and informing policy development may be of increasing attractiveness 

as air quality managers need to deal with the more stringent NAAQS for PM2.5,. 

However, given the complex chemical and physical processes regarding the formation of 

PM as discussed in Section 1.1, it is of interest to investigate the nonlinearity in PM 
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formation and how a nonlinear response would affect how accurately PM response can be 

predicted by a reduced form model. It is also of value to investigate uncertainty in model 

simulations of PM2.5 concentration and response to better utilize and improve current 

CTM.  

1.3. Scope of This Work 

 Given the link between PM2.5 and human health, a clear understanding of source 

impacts on PM2.5 is important for developing effective control strategies. This 

dissertation demonstrates how the sources of PM can be determined using direct 

sensitivity analysis in a chemical transport model and explores the nonlinear response of 

PM2.5 to its precursors. This dissertation also demonstrates how sensitivity techniques can 

be used to assess uncertainty in model simulation and to inform the cost-optimization of 

pollutant control strategies.  

  Specifically, the chapters are organized as follows. 

●     Chapter 2, “Development of high-order direct sensitivity analysis of particulate 

matter in regional air quality models,” implements high-order DDM sensitivity 

techniques for particulate matter in CMAQ, enabling the investigation of nonlinear 

responses of particulate matter to precursor emissions. The results are then 

compared to results attained by using the traditional brute form method. While the 

two methods are generally in agreement, DDM provides more accurate and stable 

values at the locations where the brute force method is subject to noise. This chapter 

also describes a case study that was conducted in Southeastern Texas for a 

summertime episode and then quantifies the source contributions to PM2.5 from 

various precursor emissions through both linear and nonlinear responses are 
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quantified. This chapter also investigated how first-order sensitivity of PM 2.5 

changes with emissions rates of various precursor gases.  

●     Chapter 3, “Quantification of uncertainty in particulate matter simulation in 

the presence of uncertain emissions using CMAQ/HDDM-PM,” explains the 

construction of a reduced form model to estimate the emission-associated model 

uncertainty in PM2.5 simulation in an efficient manner. The reduced form model is 

based on the high-order DDM sensitivity analysis developed in Chapter 2. 

Uncertainty in a 24-hour average PM2.5 simulation is the focus due to its policy 

relevance. The uncertainty ranges have been applied to five monitoring sites in the 

Houston area and the bias between simulation and observation of 24-hour average 

PM2.5 is discussed. 

●     Chapter 4, “Assessing the impact of flare emissions on air quality at variable 

operating conditions,” explores the impact of flare VOC emissions on the 

formation of ozone in the Houston Ship Channel. Temporally variable flare VOC 

emissions are incorporated into the CTM simulation. This chapter estimates the 

difference between the ozone impact under a constant destruction and removal rate 

(DRE) (98%) and DRE that is estimated in a more realistic way. An important 

component of this chapter is applying DDM sensitivity analysis and reduced form 

model to efficiently assess flare impact assessment. 

●     Chapter 5, “Integrating air quality-related health effects in a multi-decade 

electricity capacity planning model,” demonstrates how an air quality model can 

be integrated into an electricity capacity planning model to account for the impact of 

the emissions from power plants on air quality and thus the associated health effects. 
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This chapter describes a case study that was conducted in Georgia and estimates the 

increase in the cost associated with the health impact of PM2.5 per kilowatt-hour 

(kWh) of electricity generated by power plants at various locations. The integrated 

model provides a cost-optimized planning on power generation with air quality-

related health costs taken into consider. 

●     Chapter 6 provides conclusions and recommendations for future studies. 
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CHAPTER 2 

DEVELOPMENT OF HIGH-ORDER DIRECT SENSITIVITY 

ANALYSIS OF PARTICULATE MATTER IN REGIONAL AIR 

QUALITY MODELS
*
 

 

2.1.  Introduction 

 Airborne particulate matter (PM), or aerosol, is a major pollutant in the 

atmosphere. Studies have shown that PM impairs visibility (Watson 2002), may cause 

harmful effects on ecosystems (Galloway et al., 2004), and affects human health (e.g., 

Zanobetti et al., 2000; Kaiser, 2005). In response, control strategies are designed to lower 

the concentrations of anthropogenic PM in the atmosphere (U.S. EPA, 2004). 

Historically, multiple air quality model simulations using different sets of emissions have 

been used to evaluate the expected benefit of different strategies (e.g., Bergin et al., 

2008). This approach is resource-intensive (Dunker, 1984), and the numerical precision 

of models limits the size of emissions changes that can be actually evaluated (Hakami et 

al., 2004). An alternative approach is to use sensitivity analysis tools integrated in the 

simulation.   

 Sensitivity analysis reveals the relationship of model outputs (e.g., pollutant 

concentrations) to model input parameters (e.g., emissions rates, initial or boundary 

________________________ 

* This Chapter is an extension of "Development of the high-order decoupled direct method in 

three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality 

models," published in Geoscientific Model Development in March 2012. Co-authors are Shannon 

Capps, Yongtao Hu, Athanasios Nenes, Sergey Napelenok, and Armistead Russell. 
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conditions, and chemical reaction rates). Several different sensitivity analysis methods 

quantitatively express partial derivatives as the “sensitivity coefficients”. One approach is 

the brute force (BF) approximation; using central finite difference approximation, first- 

and second-order sensitivities are expressed as: 

(1),
| |
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j j j ji p p i p pBF

ij

j

C C
S

p

 



                                                                                 (2.1) 
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                                                                  (2.2) 

where (1),BF

ijS  and (2),BF

ijjS  represent the brute force first-order and second-order 

sensitivities, respectively of species i with respect to parameter pj (e.g., emissions, initial 

or boundary conditions, or reaction rates). Ci represents the concentration of species i. 

jp , j jp p , and j jp p  represent the values of the input parameter at which the 

concentrations are evaluated. Computational requirements for BF sensitivity analysis 

scale with the number of parameters investigated. Obviously, BF becomes resource-

intensive with an increasing number of parameters of interest or with increasing order 

(e.g., second order or higher) of sensitivities. In addition to being computationally 

inefficient, the BF sensitivities are prone to considerable numerical noise. One reason for 

the numerical noise is the truncation errors, which are introduced by omitting the higher-

order terms when deriving Equations (2.1) and (2.2) from the Taylor series expansion. 

The truncation error is a function of both the perturbation size ( p ) and the magnitude of 

higher-order sensitivities. If the system is highly nonlinear, even a small perturbation can 

cause sizable truncation error (Hakami et al., 2004). Another reason for the numerical 

noise of BF is due to the modeling accuracy and precision. For example, incomplete 
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convergence in iterative solvers will cause such errors. Both types of errors for second-

order BF sensitivities are amplified compared to first-order BF sensitivities. Actually, as 

the order of sensitivities increase, BF approximations become significantly less accurate 

(Hakami et al., 2004).  

 An alternative approach to BF is the decoupled direct method in three dimensions 

(DDM-3D). This method operates integrally within a chemical transport model (CTM) 

and simultaneously computes local sensitivities of pollutant concentrations to 

perturbations in input parameters (Dunker, 1984; Yang et al., 1997; Cohan et al., 2005; 

Napelenok et al., 2006, Cohan et al., 2010). DDM-3D sensitivities are calculated by 

solving sensitivity equations that are the derivatives of the partial differential equations 

governing the CTM. DDM-3D is computationally efficient for three or more sensitivity 

parameters and is subject to considerably less numerical noise than BF. The difference in 

numerical cost has been studied by Napelenok et al. (2006). CPU time required by the 

two approaches to compute the same set of sensitivities is compared, with the number of 

sensitivity parameters ranging from 1 to 8. The CPU time needed by BF is almost twice 

that needed by DDM-3D if two or more  parameters are considered. For 8 sensitivity 

parameters, the CPU time for BF is 27 minutes and DDM-3D 15 minutes. DDM-3D has 

been implemented in CTMs (e.g., CMAQ (Byun and Schere, 2006), CAMx (ENVIRON, 

2005), URM (Boylan et al., 2002)) to conduct source impact analysis for ozone and PM 

(Yang et al., 1997; Mendoza-Dominguez and Russell, 2000; Odman et al., 2002; 

Napelenok et al., 2006; Koo et al., 2007). Initially, DDM-3D was applied to calculate 

first-order sensitivities, which are the locally linear responses of pollutant concentrations 
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to changes in model inputs and parameters (e.g., emissions, and initial and boundary 

conditions) at the conditions currently modeled.  

 DDM-3D has been extended to calculate high-order sensitivities of gaseous 

species by Hakami et al. (2003) within the Multiscale Air Quality Simulation Platform 

(MAQSIP) (Odman and Ingram, 1996). They calculated second- and third-order 

sensitivities using DDM-3D and showed that the approach could accurately capture the 

nonlinear response of ozone concentration to NOx and VOC emission changes. They also 

investigated the efficiency of DDM-3D in calculating high-order sensitivities. An 

important outcome of that work was that higher than second order sensitivities are not 

necessary for the majority of potential applications. More recently, the high-order 

approach for gaseous species has also been implemented in the Community Multiscale 

Air Quality (CMAQ) model (Cohan et al., 2005) and the Comprehensive Air Quality 

with extensions (CAMx) (Koo et al., 2010). High-order sensitivity calculations of 

gaseous species have been applied to source apportionment and air quality model 

uncertainty analysis (Cohan et al., 2005; Tian et al., 2010). Although nonlinear effects of 

aerosol precursors on aerosol concentrations have been of concern in the past decade 

(Ansari and Pandis, 1998; West and Pandis, 1999), developing HDDM for PM has not 

yet been undertaken due to the discontinuous, highly nonlinear solution surface of the 

inorganic aerosol thermodynamics.  Only now has the challenging task of extending 

high-order, direct sensitivity analysis to particulate matter species been accomplished. 

HDDM-3D/PM is implemented in the Community Multidimensional Air Quality model, 

version 4.5 (CMAQ4.5). 
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2.2.  Model Description 

 CMAQ is an Eulerian air quality model (Byun and Schere, 2006) that simulates 

emissions, deposition, transport and chemical transformation of atmospheric species 

primarily by solving the advection-diffusion-reaction equations: 

( ) ( )i
i i i i

C
uC K C R E

t


     


                                                                          (2.3) 

where 
iC is the concentration of the i

th
 species, u the fluid velocity, K the turbulence 

diffusivity, iR  the net chemical reaction rate of all chemical reactions that affect the 

concentration of the i
th

 species, and iE  the emission rate for the i
th

  species (Seinfeld and 

Pandis, 2006). The chemicals species can be in gas phase or aerosol form. 

 In the modal treatment of aerosol in CMAQ, aerosol species are tracked based on 

their size using three modes: Aitken, accumulation, and coarse. The two smaller modes 

(noted as Aitken and accumulation modes, respectively) approximately represent PM2.5, 

aerosols smaller than 2.5μm in aerodynamic diameter. CMAQ includes modeled 

processes of secondary inorganic aerosol (i.e., sulfate, nitrate, ammonium), 

anthropogenic secondary organic aerosol (SOA), and biogenic SOA formation as well as 

primary emissions of elemental carbon and sea salt in the Aitken and accumulation 

modes. PM2.5 changes in response to new particle production from vapor phase 

precursors, coagulation of particles, growth by condensation from gaseous species, 

transport and deposition of particles, and emissions (Byun and Schere, 2006). The 

concentration of PM2.5 is highly dependent on gas phase species concentrations because 

of the significant fraction of secondary aerosol in this size range. CMAQ4.5 assumes the 

secondary inorganic aerosols are in thermodynamic equilibrium with surrounding gases, 
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and uses ISORROPIAv1.7 (Nenes et al., 1998a; Fountoukis et al., 2007) to simulate their 

condensation and evaporation. A dynamic equilibrium approach has also been used by 

CMAQ4.7  to simulate the chemical interactions between coarse particles and gas-phase 

pollutants (Kelly et al., 2010). CMAQ4.5 partitions SOA between gas and condensed 

phase based on the two-product model of Odum et al. (1997) using empirically derived 

coefficients from chamber experiments (Schell et al., 2001). The algorithm to compute 

SOA concentrations is similar to that of photochemical reactions. Studies show that the 

thermodynamic coupling between SOA and the inorganic species can impact the total 

aerosol water content and the aerosol nitrate concentrations (Ansari and Pandis, 2000). 

This would result in a greater sensitivity of aerosol water content and nitrate 

concentrations to SOA precursors (e.g., monoterpenes and xylene). However, such a 

coupling is not parameterized in CMAQ4.5, so DDM sensitivities do not reflect these 

effects. Thus, this work mainly focuses on the sensitivities of inorganic aerosol species to 

SO2, NOx, and NH3.  The SOA representations in CMAQ are being updated (Edney et al., 

2007 and Carlton et al., 2010), and further interactions between inorganic and organic 

aerosol fractions are likely to be included in future updates. The implementation of 

HDDM and DDM sensitivity analysis can be modified accordingly. 

 ISORROPIA assumes that equilibrium exists between gas phases and aerosol 

species and uses thermodynamics to calculate the composition of inorganic aerosols and 

concentrations of surrounding gases. Inputs to ISORROPIA include the total (gas and 

aerosol) concentrations of five inorganic precursor species (i.e., sulfate, nitrate, 

ammonium, sodium, and chloride), temperature, and relative humidity.  To determine the 

aerosol composition at equilibrium, ISORROPIA first identifies the solution regime of 
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the given system based on sulfate ratio (i.e., the ratio of total ammonium and sodium to 

total sulfate). Then, the appropriate set of equilibrium and mass and charge conservation 

relationships are solved to calculate the phase state and equilibrium concentrations (Table 

2. 1). Each of ten subcases has its own solution procedure and a distinct set of possible 

species at equilibrium.  

 

2.3.  Development of HDDM-3D/PM 

 HDDM-3D/PM directly computes the high-order DDM sensitivity coefficients of 

PM concentrations to input parameters, such as emissions rates, and initial or boundary 

conditions, by solving derivatives of the original equilibrium and conservation equations. 

First- and second-order sensitivity coefficients are defined as 

(1) i
ij

j
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                                                                                                               (2.4) 
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                                                                                                          (2.5) 

where (2)

ijks denotes second-order sensitivity of species i to parameters j and k; Ci denotes 

the ambient concentration of species i; and jp  and kp denote any two input parameters of 

interest.  

 HDDM-3D/PM calculates semi-normalized sensitivity coefficients, expressed in 

the same units as concentration and which allows for easier interpretation and 

application:  
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where j  and k  are relative perturbations in parameters jp  and kp , and they are related 

to the absolute perturbation of a parameter by 
p

p


  . 

 The fundamental steps to obtain high-order DDM-3D sensitivities for PM from 

CMAQ are similar to those for the gaseous species. Taking second-order derivatives of 

the governing equation results in a similar equation which can be solved for second-order 

sensitivity of PM: 

(2)
(2)(2) (2) (1) (1)( ) ( ) ( , , , , , , )

ijk
i jkijk ijk i ij ik i i

S
uS K S J S f C S S u K R E
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                  (2.8) 

(2)

ijkS is the second-order sensitivity of species i with respect to parameters jp  and kp ; 

(1)

ijS and (1)

ikS  are first-order sensitivities of species i to parameters jp  and kp , 

respectively; iJ  is the i
th

 row of Jacobian matrix defined as /ik ik kJ R C   . k is the k
th

 

species in the concentration vector. 
(2)

jkS  is the vector of second-order sensitivity 

coeffiients. f is a function primarily of iC , (1)

ijS , and (1)

ikS . It can also be related to u , K , 

iR , and iE , depending on the types of sensitivity parameters. Details of  f can be found in 

Equation (2.9) in Hakami et al. (2003). 

 Equation (2.8) can be directly propagated through most of the processes 

associated with the formation and transport of PM species, such as the oxidation of 

reactive organic gases and the gas/particle partitioning of organic compounds (Schell et 

al., 2001). However, the secondary inorganic aerosol species are strongly coupled as they 

are assumed to be in thermodynamic equilibrium with their precursors (i.e., NH3, HNO3, 
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and HCl). The equilibrium is assumed to be reached instantaneously, so the direct use of 

Equation (2.8) is not appropriate. Thus, a different treatment for inorganic aerosol species 

is necessary to implement HDDM-3D/PM when using ISORROPIA. 

 The implementation of HDDM in ISORROPIA involves differentiation of the 

equilibrium reactions that are involved in determining the concentrations of each species. 

For example, the equilibrium reaction for the balance between nitric acid gas ( 3,( )gHNO ) 

and nitrate ion ( 3NO ) is 

3,( ) 3gHNO H NO                                                                                             (2.9) 

 The corresponding equilibrium expression is 

3
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                                                                                             (2.10) 

where  K  is the equilibrium constant; [A] denotes the molar concentration of A; 
H

  and 

3NO
   are the activity coefficients of H  and 3NO ; 

3HNOP is the partial pressure of  3HNO  

gas; 
2H Ow  is the water content.  
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                                                                                              (2.11) 

where 
3HNO is the mean activity coefficient of H  and 

3NO ; R is the universal gas 

constant; and T is temperature. Taking the logarithmic derivative of Equation (2.11) with 

respect to the first parameter of interest (p1, where for brevity, T is assumed constant) 

leads to the expression of first-order sensitivity equation: 
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 Differentiating Equation (2.12) with respect to the second parameter of interest 

(p2) gives the equation for second-order sensitivity: 
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 Repeating the same process with the other equilibrium reactions involved in the 

system gives similar expressions to Equation (2.13). Combining them with mass and 

charge balance equations leads to a system of linear equations (Table 2.1) with which 

second-order sensitivities can be calculated. In this implementation, the available options 

for the two parameters jp  and kp  are emission rates, reaction rate constants, initial 

conditions, and boundary conditions. The approach can be extended to parameters in 

ISORROPIA such as equilibrium coefficients, which would require minor modification 

to the right hand side of Equations (2.12) and (2.13). 

 Calculating second-order DDM-3D sensitivities depends on the corresponding 

first-order sensitivities, so second-order sensitivities are computed sequentially following 

the first-order sensitivities in the same model run. Comparing Equations (2.12) and 

(2.13), identical coefficient terms multiplying the sensitivities are found on the left-hand 

sides, which reduces computational cost by allowing the two systems of linear equations 

to share the same coefficient matrix. Overall, the computational cost of second-order 

sensitivities is very close to that of first-order because the main computing processes 

(mainly transport) are the same for each sensitivity.  
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Table 2.1. Equilibrium Relations, Mass and Charge Balance of ISORROPIA 

Equilibrium Reactions 
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 In ISORROPIA, the mean activity coefficients are determined by Bromley’s 

formula (Bromley 1973). Sensitivities of the mean activity coefficients, 
3 1

(1)

,HNO p
S


 and 

3 1 2

(2)

, ,HNO p p
S


in Equations (2.12) and (2.13), are calculated by directly differentiating 

Bromley’s formulas. As the activity coefficients are functions of the ion concentrations, 

their sensitivities are finally expressed as the combinations of sensitivities of relevant ion 

concentrations.  

 The liquid water content of aerosols is computed by the Zdanovskii-Stokes-

Robinson (ZSR) relationship (Stokes and Robinson, 1966): 
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                                                                                                         (2.14) 

where iE is concentration of the i
th

 electrolyte in the multicomponent solution; 0im  is the 

molality of a solution with only the i
th

 electrolyte and the same water activity as the 

multicomponent solution. Sensitivities of the liquid water content are obtained by 

differentiating Equation (2.14). Because the concentrations of electrolytes are calculated 

from the equilibrium ion concentrations, both first- and second-order sensitivities of 

liquid water content can be ultimately expressed as a function of ion sensitivities: 
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where Aj represents the j
th

 ionic species in the system. 

 ISORROPIA uses different algorithms to treat neutralized and acidic aerosol, so 

this work applied a case-specific approach when implementing HDDM-3D sensitivity 
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analysis. Depending on the acidity of the aerosol, each subcase has its own solution 

routine and assumptions. For example, the neutralized aerosol algorithm assumes that 

bisulfate ions are minor species, and its concentration is adjusted after solving the 

equilibrium reactions of nitrate, nitric acid gas, ammonium, and ammonia gas. 

Alternately, the acidic algorithm assumes that either ammonia or nitric acid gas is a 

minor species and resolves its final concentration after determining aerosol 

concentrations of their counterparts. This feature was usually neglected in previous 

implementations of DDM in ISORROPIA, which caused discrepancies between BF and 

DDM sensitivites. The problem is now solved by the case-specific approach, which 

exactly follows the treatment of ISORROPIA for different aerosols during HDDM 

implementation. 

 

2.4.  Results and Discussion 

2.4.1 Evaluation of HDDM for ISORROPIA 

 The performance of HDDM-3D/PM is evaluated in both the stand-alone 

ISORROPIA and the CMAQ model for inorganic species. In the stand-alone 

ISORROPIA, the HDDM-3D/PM sensitivities were compared to brute-force sensitivities 

(first- and second- order) calculated by Equations (2.1) and (2.2), using a relative 

perturbation of 1%. The input concentrations of total sulfate, ammonium, and nitrate 

range from 0.1 to 10 -3μmol m  with an incremental of 0.1 -3μmol m . The input 

concentrations of total sodium and chloride are 0.5 and 1 -3μmol m , respectively (Table 

2.2). These inputs are consistent with the typical chemical composition of inorganic 
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aerosols (Nenes et al., 1998b) and are also over a wide range allowing each subcase in 

ISORROPIA to be tested. The inorganic aerosol species are assumed to be in metastable 

state in CMAQ4.5, so the aerosols with the same chemical composition but different 

relative humidities are treated using the same algorithm. Therefore, we used a fixed 

relative humidity of 95% for stand-alone testing. 

Table 2.2. Input cases for testing of HDDM-PM using stand-alone ISORROPIA  

 

Parameters Values ( μmol m
-3 

) 

Total Sulfate 0.1 ~ 10  

Total Ammonium 0.1 ~ 10  

Total Nitrate 0.1 ~ 10  

Total Sodium 0.5  

Total Chloride 1.0             

Relative Humidity 95% 

Temperature 298K 

 

 We first compared the first-order DDM-3D and BF sensitivities of the five major 

ions (i.e., H  , 4NH  , 2

4SO  , 4HSO , 3NO ) with respect to input total concentrations of 

sulfate, ammonium, and nitrate  (Figure 2.1). Good agreement is found between first-

order BF and DDM sensitivities for all species (slope = 1 and R
2
 = 0.99), which is 

essential for evaluating the second-order sensitivities due to the dependence of second-

order DDM-3D and BF sensitivities on the first-order counterparts. 
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Figure 2.1 Comparison of first-order DDM and BF sensitivity coefficients of the five major ions 

(i.e.,
H , 



4NH , 
2

4SO , 


4HSO , and 


3NO ) to the change of total sulfate (TS), total ammonia 

(TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot corresponds to the 

comparison of one sensitivity coefficient that is labeled on the up-left of the plot. For example, (a) 

shows the comparison of first-order sensitivity of hydrogen ion (
H ) to total sulfate predicted by 

DDM and BF. The dashed line is the one-to-one line. 

 

 The same comparison was conducted for second-order BF and DDM-3D 

sensitivities (Figure 2.2). Although most of the points fall on the one-to-one line (slope = 

1, R
2
 = 0.95), discrepancies were found for some second-order sensitivities (Figure 2.2). 

This is due to the noisy behavior of BF. As mentioned above, as the order of sensitivity 

coefficients increases, the two types of errors of BF approximations can become 

significantly larger. In other words, a lower degree of agreement between DDM-3D and 

BF are expected for second-order sensitivities. Our investigation into the noisy behavior 

of second-order BF sensitivities shows that second-order BF sensitivities vary 

dramatically with various sizes of perturbation ( p ) and the convergence criteria of the 
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ISORROPIA solution algorithm (  ) (Figure 2.3). This has also been demostrated by 

Capps et al. (2012). Further investigation into the charge balance for second-order BF 

and DDM-3D sensitivities revealed that the charge balance for BF sensitivities is not 

satisfied when they exhibit a noisy behavior. On the other hand, the charge balance is 

satisfied for DDM-3D sensitivities. These results strongly suggest that the HDDM-3D 

sensitivity coefficients are much more stable, while the BF second-order sensitivity 

coefficients are subject to significant numerical noise.  
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Figure 2.2.  Comparison of second-order DDM and BF sensitivity coefficients of the five 

major ions (i.e., H , 

4NH , 2

4SO , 

4HSO , and 

3NO ) to the change of total sulfate (TS), 

total ammonia (TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot 

corresponds to the comparison of one sensitivity coefficient that is labeled on the up-left 

the plot. For example, (a) shows the comparison of second-order sensitivity of hydrogen 

ion ( H ) to total sulfate predicted by DDM and BF. The dashed line is the one-to-one 

line. 
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Figure 2.3. Second-order sensitivity coefficients of aerosol nitrate to total sulfate in stand-

alone ISORROPIA calculated by (a) BF and (b) HDDM under three conditions: 1) base 

case, where the perturbation used by BF ( p ) = 1% and the convergence criteria of 

ISORROPIA (  ) = 101 10 ; 2) control case 1 (blue squares) with p = 1% and 

 = 31 10 ; and 3) control case 2 (red diamonds) with p =0.1% and  = 101 10 .  

Results from the two control cases are compared to those from the base case. The dashed 

line is the one-to-one line. 

 

2.4.2 Evaluation of HDDM for CMAQ 

 HDDM-3D/PM is applied to simulate a winter episode: Jan 1-7, 2004. Winter 

episodes have higher nitrate levels, which is a more stringent test of HDDM-3D/PM. The 

modeling domain covers the entire continental United States and portions of Canada and 

Mexico (Figure 2.4) using a 36-km horizontal grid-spacing and thirteen vertical layers 

extending about 16km above the ground. The meteorological fields were developed using 

the Fifth-Generation PSU/NCAR Mesoscale Model (MM5) (Grell, Dudhia et al. 1994). 

Emissions were prepared using the Sparse Matrix Operator Kernel Emissions (SMOKE) 

model (CEP 2003). SAPRC99_AE4_AQ was selected as the chemical mechanism 

(Carter, 2000; Binkowski and Roseelle, 2003). 
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Figure 2.4. Spatial distribution of 24-hr averages of a) simulated concentration of sulfate, 

b) first- and c) second-order sensitivities of sulfate to SO2 at surface layer on Jan 3, 2004.  
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 The sensitivities of aerosol sulfate, nitrate, and ammonium to domain-wide SO2, 

NOx, and NH3 emissions are studied in this simulation. During a single simulation, 

HDDM-3D/PM provides all the sensitivities of interest for each grid at each time step. 

The spatial patterns of first- and second-order DDM sensitivities of aerosol sulfate to SO2 

show that the most sensitive area is the Eastern US (Figure 2.4); since this region is the 

area with the highest SO2 emissions, these sensitivities were expected. Spatial 

distributions of first- and second-order sensitivities are found to be consistent. The 

magnitudes of the second-order sensitivities are smaller and usually opposite in sign, but 

still indicate a significant contribution to the total response. 

 Comparison of first- and second-order BF and HDDM-3D/PM sensitivities of 

sulfate, nitrate, ammonium, and PM2.5 to domain-wide SO2, NOx, and NH3 emissions find 

similar results to the stand-alone version (Figures. 2.5 and  2.6). First- and second-order 

BF sensitivities are calculated using Equations (2.1) and (2.2) with a 50% reduction of 

each emission of interest, respectively. A choice of 50% is made to minimize the impact 

of noise for BF sensitivities when taking a small difference between two relatively large 

concentrations though it is expected that nonlinearities may be of some importance over 

this range. Using a smaller reduction leads to considerably larger error, which has been 

identified when testing HDDM-3D/PM in the stand-alone ISORROPIA. Most of the 

DDM-3D and BF first-order sensitivities are in good agreement with an overall slope of 

0.9 and R
2
 of 0.91 (Figure 2.5). The degree of agreement between DDM-3D and BF 

sensitivities of PM2.5 to NOx and NH3 emissions is improved from R
2
 = 0.63 to R

2
 = 0.93 

by the case-specific DDM approach in ISORROPIA. Sensitivity of aerosol nitrate to SO2 

emissions is of concern to policy makers since the nitrate levels may be increased from 
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SO2 emission controls (West et al., 1999). A relatively low degree of agreement was 

found between DDM-3D and BF sensitivities of nitrate to SO2 (Figure 2.5c). However, 

nitrate concentrations are usually expected to increase with decreasing SO2 emissions, so 

the first-order sensitivity should be negative, as is shown by DDM-3D. The BF, however, 

is producing a significant amount of positive sensitivities, which is due to the nonlinear 

dependence of nitrate on SO2 emissions coupled with numerical noise. The comparison 

for sensitivity of sulfate to NOx has two branches that are slightly off the one-to-one line. 

These disagreements are caused by cloud processes as additional testing shows that the 

discrepancies disappear when the cloud module is turned off. The disagreement for the 

sensitivity of sulfate to NH3 also comes from the cloud module where SO2 is oxidized to 

sulfate. The oxidation process is highly affected by the pH value, and the response of 

sulfate to NH3 is quite nonlinear. BF sensitivities of sulfate to NH3 are strongly affected 

by this nonlinearity. Further investigation showed that they change dramatically with the 

perturbation sizes as well as the BF approaches (i.e., forward and central finite 

difference). Overall, first-order BF and DDM-3D sensitivities compared well. BF 

sensitivities become less accurate when the system is quite nonlinear. This also implies 

the significance of the monlinear response and the necessarity of performing high-order 

sensitivity analysis. 
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Figure 2.5. Comparison of first-order sensitivities of sulfate, ammonium, nitrate, and 

PM2.5 to SO2, NOx, and NH3 calculated by HDDM-3D/PM and BF at surface layer on Jan 

2, 2004. Each plot represents one sensitivity coefficient that is labeled on the up-left of 

the plot. The dashed line is the one-to-one line. 

 

 Second-order DDM-3D sensitivities are also evaluated using BF. Good agreement 

is found for 
4 2 2

(2)

, ,SO SO SO
S  , 

4

(2)

, ,x xSO NO NO
S  , 

4

(2)

, ,x xNH NO NO
S  , and 

3

(2)

, ,x xNO NO NO
S   (Figures. 6a, 6e, 6f, and 

6g) while the correlations are relatively low for some sensitivities, such as 
3 2 2

(2)

, ,NO SO SO
S   and 

4 3 3

(2)

, ,SO NH NH
S   (Figures. 2.6c and 2.6i). As mentioned above, second-order BF sensitivities 

for stand-alone ISORROPIA are strongly affected by the size of the perturbation. Here, 

we also investigated the impact of perturbation size to second-order BF sensitivities. For 

each second-order sensitivity of interest, we compared the BF results with 10% and 50% 

emission reduction. The noisy behavior of second-order BF sensitivities is evident 
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(Figure 2.7). The two BF scenarios in particular show little consistency for second-order 

sensitivity of sulfate to NH3, which suggests that BF sensitivities directly computed from 

Equations (2.1) and (2.2) may not be reliable (Figure 2.7g). The plot for second-order 

sensitivity of nitrate to SO2 also shows that the BF results vary significantly (Figure 

2.7c). Thus, BF is not able to accurately approximate second-order local sensitivities of 

PM in CMAQ. Given the good performance of HDDM in the stand-alone ISORROPIA,  

and the great scatter between implementing BF with different perturbations, the direct 

approach is expected to provide more reliable results. 

The average computational cost of calculating one second-order sensitivity of PM is 

found to be very close to that of one first-order sensitivity. For one day simulation, the 

average model time needed by the aerosol module for one first-order and one second-

order sensitivites are 9 and 11 minutes, respectively, given that the second-order 

sensitivity calculation uses the same solution algorithm as first-order sensitivity. 

Therefore, the time required by matrix factorization and transport-related computations is 

almost the same for first- and second-order sensitivities. An indirect cost associated with 

the second-order sensitivity calculation is that all relevant first-order sensitivities should 

also be calculated, which is generally of interest anyway in any application involving 

high-order sensitivity (Hakami, Odman et al. 2003). On the other hand, BF needs more 

than one simulation, and its computational cost increases directly with the order and the 

number of sensitivity parameters. HDDM-3D/PM provides an efficient approach to 

conduct high-order sensitivity analysis as it computes high-order sensitivities at a similar 

computational effort as first-order sensitivities. 
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Figure 2.6. Comparison of second-order sensitivities of sulfate, ammonium, nitrate, and 

PM2.5 to SO2, NOx, and NH3 calculated by HDDM-3D/PM and BF at surface layer on Jan 

2, 2004. Each plot represents one sensitivity coefficient that is labeled on the up-left of 

the plot. The dashed line is the one-to-one line.  
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Figure 2.7. Comparison of second-order BF sensitivities calcualted with 10% and 50% 

perturbation in emissions using CMAQ simulation on Jan 2, 2004 at surface layer. 

 

2.4.3 Evaluation of the reduced form model of CMAQ 

 HDDM-3D/PM has many practical applications, most of which are based on 

Taylor series expansion (Hakami, Odman et al. 2003): 

2
(1) (2)( ) (0) (0) (0) higher order terms

2
C C S S


 


                                   (2.17) 

where (0)C  stands for the pollutant concentration at base case emissions and ( )C   

with a perturbation of   in emissions. With Equation (2.17), one can quickly compute 

the impact of emission perturbations on the ambient concentrations of pollutants. 
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Including the second-order term (i.e., the third term on the right hand side of Equation 

(2.17)) is expected to reduce the error between the approximations using Taylor series 

expansion and the model simulation. For example, assuming 50% of domain-wide NOx 

emissions are reduced in the simulation above, we predicted the concentration of nitrate 

using first- and second-order Taylor series expansion (Equation (2.17)) and compared 

them with model simulation (Figure 2.8a). Predictions using second-order Taylor series 

expansions are closer to the model simulation than those using first-order Taylor series 

expansions (Figure 2.8a). A similar result is also found for nitrate concentration with a 

50% reduction in SO2 emissions (Figure 2.8b). Thus, including the second-order term in 

Taylor series approximation improves the accuracy of prediction. 

 

 
Figure 2.8. Comparisons of model simulation and predictions using Taylor Series 

Expansions for concentrations of nitrate at 16:00 EDT on Jan 2, 2004, with a 50% 

reduction in NOx  and a 50% reduction in SO2. The solid lines reflect the linear regression 

of the Taylor series predictions against the CMAQ simulation results; the dotted lines 

represent the area of perfect agreement. 
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 Taylor series expansions derived using HDDM sensitivity coefficients enable 

efficient evaluation of emission control strategies. One CMAQ-HDDM simulation would 

be sufficient to estimate the changes in pollutant concentrations with respect to emission 

reductions. Predictions of nitrate concentrations with 20% and 100% reductions in total 

SO2 emission using HDDM sensitivities compare well with the CMAQ model simulation. 

The slope from linear regression analysis is close to 1 (Figures. 2.9a and 2.9b). 

Predictions driven by BF sensitivities are close to the CMAQ simulation at 20% 

reductions and are a little off the one-to-one line for 100% reductions (Figure 2.9b). The 

BF sensitivities used here are results of a 50% perturbation. BF sensitivities prepared 

using a 10% perturbation were also tested (not shown here), but suffered from more 

numerical noise. Simulated sulfate concentrations with 20% and 100% reductions in total 

NH3 emissions also exhibit good agreement with model simulation (Figures. 2.9c and 

2.9d). 

 The reduction in concentrations that would occur if the sources of interest did not 

exist is called the zero-out source contribution (ZOC) (Cohan et al., 2005). The advantage 

of using Equation (2.17) to calculate ZOC is that it is based on an air quality model with 

relevent physical and chemical processes included. Indirect effects, such as source 

contributions of SO2 emissions to nitrate and NH3 emissions to sulfate (Figures. 2.9b and 

2.9d), can be reasonablely evaluated. The ZOC can also be applied to a combination of 

source emissions. Consider two emission sources ( jp  and kp ) that are perturbed 

simultaneously. The expression of ZOC of species i  ( iZOC ) can be obtained from 

Equation (2.17) with multiple sensitivity parameters: 

(1) (2) (1) (2) (2)

, , , , , , , ,( , ) ( 0.5 ) ( 0.5 )i j k i j i j j i k i k k i j kZOC p p S S S S S                                             (2.18) 
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The cross sensivitity, the last term on the right-hand-side of Equation (2.18), is able to 

quantify the interactions between the two emissions.  

 
 

Figure 2.9. Comparisons of model simulation and predictions using Taylor series 

expansions with HDDM and BF sensitivities for concentrations of nitrate with 20% and 

100% domain-wide reductions in SO2 emissions rates and concentrations of sulfate with 

20% and 100% domain-wide reductions in NH3 emissions rates at 16:00 EDT on Jan 2, 

2004. BF sensitivities are from a 50% perturbation. The solid lines reflect the linear 

regression of the Taylor series predictions against the CMAQ simulation results; the 

dotted lines represent the area of perfect agreement. 
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2.4.4. Source contributions to PM2.5 in the Houston region 

 The newly implemented HDDM-3D for particulate matter was applied to the 

Houston region to investigate the source contributions from various emissions and the 

interaction of them. The modeling domain covers the southeastern Texas and a small 

fraction of the western Louisianan. The eight counties in Houston-Galveston-Brazoria 

area (the red area in Figure 2.10), is designated as nonattainment area of NAAQS for 8-

hour ozone.  A high ozone episode from August 10 to September 14 in 2006 was selected 

for study. This episode is one of the State Implementation Plan (SIP) modeling episodes 

of this area, and the nonlinear behavior of ozone was found to be significant by Xiao et 

al. (2010). As ozone and particulate matter interact with each other through complex 

chemical reactions, this episode is appropriate for conducting analysis for the nonlinear 

responses of particulate matter to emissions and the relationship to ozone changes.  

 

Figure 2.10. Modeling domain and the HGB area including the following eight counties: 

Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller. 
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 First of all, we examined the source contributions to daily average PM2.5 in the 

HGB area from five major pollutant emissions including NOx, VOC, SO2, NH3, and 

primary PM, as well as their interactions which are represented as cross sensitivities. The 

sums of source contributions compared well with the daily average PM2.5 concentrations. 

Over the entire episode, the percentages of source contributions through linear responses 

ranged from 66.3% to 96.5%. Correspondingly, the percentages of source contributions 

that arise through nonlinear responses (either second order responses to the source, or 

interactions between sources) range from 3.5% to 33.7%. For 6 days of the month-long 

episode, source contributions through nonlinear responses constitute over 15% of the 

daily average PM2.5. These results suggest that the response of PM2.5 to emissions in the 

HGB area in summer time is mostly linear much of the time. Days with large fractions of 

nonlinear responses were concentrated in the beginning of September. During these days, 

light synoptic-scale winds were in the opposite direction of the sea breeze, and the 

interaction between them resulted in stagnant conditions (Banta et al., 2005). Such 

conditions allow the primary emissions to accumulate and react to form pollutants such 

as PM and ozone. NOx emissions became more reactive during the days with high 

nonlinearity than the other days. The contributions of NOx to daily PM2.5 can reach 12% 

on days with high nonlinearity while they are typically below 5% for the other days. 

Besides the stagnation, there are two other reasons for the active role of NOx on these 

days: 1) These were the days with the highest ozone buildup in this episode 

(Rappengluck et al., 2009), so more NO2 reacted with ozone to form NO3 and then 

HNO3, 2) The daily average temperature is lower on these days, which favored the 
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formation of NH4NO3. The contributions of SO2 emissions were higher on these days as 

well because more ozone could oxidize SO2 to form sulfate via aqueous-phase reactions.  Daily average source contributions to PM2.5
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Figure 2.11. Source contributions to daily average PM2.5 in the HGB area. The notations 

in the legend indicate different types of responses. For example, NOX denotes the 

contribution of NOx to PM2.5 through first-order sensitivity (i.e., 
xNO

PM



 5.2 ), NOX2 

denotes the contribution of NOx to PM2.5 through second-order self sensitivity (i.e., 

2

5.2

2

5.0
xNO

PM




 ), NOX_SO2 denotes the contribution of the interaction between NOx 

and SO2 through the cross sensitivity (i.e., 
2

5.2

2

SONO

PM

x


 ). The orange line denotes 

simulated daily average PM2.5 concentrations.  

 

 

 For nonlinear responses, contributions from cross sensitivities were higher than 

those from second-order self sensitivities, which indicates that the interactions between 

various emissions can be more important for the formation of PM2.5 in this region. This 

feature is different from that of ozone, which has a large portion of contributions from 

second-order self sensitivities of NOx and VOC. Adding more NOx may push the 
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chemical regime for ozone formation from NOx-limited to VOC-limited, so the second-

order self sensitivities are significant. However, PM precursors tend to react with each 

other to form more PM, so most of the source contributions from cross sensitivities are 

positive. For example, VOC can cause more ozone formation, and ozone can oxidize SO2 

in the aqueous phase to form more sulfate and can increase HO in the gas phase. Thus, 

the source contribution from the interaction between VOC and SO2 is positive. The 

interaction between VOC and NH3 is also positive in that ozone formed from VOC can 

increase both sulfate and nitrate concentrations, which can bring more NH3 into the 

particle phase. Despite the small magnitude, negative contributions occur for the 

interaction between NOx and other precursors such SO2, NH3, and VOC. This can be 

illustrated by looking at the diurnal pattern of the source contributions to both PM2.5 and 

ozone (Figure 2.12). PM2.5 formed from midnight to early morning when the temperature 

was low and relative humidity was high and when a large amount of ozone had 

accumulated and reacted with NOx. Then, adding NOx will reduce ozone, so less SO2 will 

be oxidized by ozone to form sulfate, and thus less NH4SO4 will formed. The interaction 

between VOC and NOx is also through ozone. The opposite effects on ozone 

concentration lead to a negative cross-sensitivity contribution. The close interaction of 

ozone and PM sheds light on the importance of designing multi-species control strategies.  
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Figure 2.12. Diurnal patterns of source contributions to a) PM2.5 and b) ozone over the 

HGB area. Results have been averaged for 1-5 September 2006. The notions in the 

legend indicate different types of responses. For example, NOX denotes the contribution 

of NOx to PM2.5 through first-order sensitivity (i.e., 
xNO

PM



 5.2 ), NOX2 denotes the 

contribution of NOx to PM2.5 through second-order self sensitivity (i.e., 

2

5.2

2

5.0
xNO

PM




 ), NOX_SO2 denotes the contribution of the interaction between NOx 

a) 

b) 
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and SO2 through cross sensitivity(i.e., 
2

5.2

2

SONO

PM

x


 ). The orange line denotes simulated 

daily average PM2.5 concentrations. 

2.5.  Conclusions 

 The high-order decoupled direct method in three dimensions for particulate matter 

(HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality 

(CMAQ) model. The implementation of HDDM-3D/PM into ISORROPIA applied a 

case-specific approach and explicitly computes the sensitivity of activity coefficients. 

Comparisons of the results with the traditional BF approach generally give good 

agreement. The BF sensitivities are found to be dependent on the perturbation sizes and 

the model accuracy, which leads to noisy behavior, especially for high-order sensitivities 

(Figures. 2.3 and 2.7). The direct assessment of second-order sensitivities with HDDM-

3D/PM avoids the apparent pitfalls of the BF approach that cause this noise. 

 HDDM-3D/PM has similar computational cost to the previous DDM-3D/PM. The 

CPU time required by the aerosol module to conduct a one-day simulation with one first-

order and one second-order sensitivity parameter are 9 and 11 minutes, respectively. This 

is another advantage over the BF approach, for which computational time increases more 

with the order of the sensitivities computed. 

 The case study in the HGB area demonstrated the application of HDDM-3D for 

assessing source contributions to PM2.5. The nonlinear responses occurred when NOx 

became active in chemical reactions. Stagnant meteorological conditions, abundance of 

ozone during the night, low temperature, and high relativity humidity are the factors that 

lead to highly reactive role of NOx. The abundance of ozone also brings more SO2 and 

NH3 into the aerosol phase.  Diurnal patterns of PM and ozone exhibit opposite trends. 
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PM formed rapidly from midnight to early morning while ozone built up rapidly in the 

afternoon.  This implies the importance of designing multi-species control strategies to 

consider the interaction between different emissions as well as already formed pollutants.   

 The implementation of HDDM-3D/PM provides a powerful extension to the 

CMAQ model, as allowing efficient assessment of control strategy effectiveness, source 

contribution quantification, and model uncertainty analysis. Initial studies show that 

Taylor series expansions with the second-order term predict the model response to 

various emission levels very well. HDDM-3D/PM can be easily implemented into other 

versions of CMAQ, as well as other chemical transport models that already include 

DDM. 
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CHAPTER 3 

QUANTIFICATION OF UNCERTAINTY OF PARTICULATE 

MATTER SIMULATION IN THE PRESENCE OF UNCERTAIN 

EMISSION INVENTORIES USING CMAQ/HDDM-PM 

 

3.1.  Introduction 

In the past few decades, effort has been expanded to improve air quality due to its 

influence on human health and the environment. The United States Environmental 

Protection Agency (U.S. EPA) sets National Ambient Air Quality Standards (NAQQS) to 

protect public health and the environment. Fine particles (PM2.5) 2.5 micrometers in 

diameter and smaller, are currently regulated as one of the criteria pollutants by the 

NAQQS. Their contribution to acid deposition and visibility reduction has also been 

identified (e.g., Latha and Badarinath, 2005; Galloway et al., 2004; Watson 2002). The 

harmful effects of PM on human health have been a focus as fine particles can contain 

toxic substances which are associated with asthma and chronic obstructive pulmonary 

disease (Zanobetti et al., 2000; Ramachandran and Vincent, 1999; Brauer and Brook, 

1997; Schwartz, 1994, Dockery et al., 1993). A recent study (Kaiser, 2005) found that 

fine particles are potentially of more concern than larger particles in causing respiratory 

diseases and premature death due to their ability to penetrate deep into the lung. In order 

to more effectively protect the public from adverse health effects due to exposure to fine 

particles, in December 2012, U.S. EPA strengthened the annual health NAAQS for fine 

particles from 15 µg m
-3

 to 12 µg m
-3

. 
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  PM control is perhaps the most complex aspect of current air quality 

management. The complexity comes from the composition of PM and formation routes. 

Regional air quality models are frequently used in air quality management to evaluate the 

effectiveness of emissions control strategies that are designed to reduce the exposure of 

people to particulate matter (U.S. EPA, 2004). The accuracy of these models is limited by 

the simplified representation of the complex chemical and physical processes as well as 

the lack of accuracy in model parameters (e.g., chemical reaction rates) and inputs (e.g., 

emissions rates, meteorological conditions, and initial and boundary conditions). Previous 

studies have investigated model uncertainties on ozone, focusing on uncertainties due to 

emission estimates, model structure, initial and boundary conditions, grid sizes, and 

chemical reactions (e.g., Hanna. et al., 2001, 1998; Cohan et al., 2010; Pinder et al., 

2009). Uncertainties in emission inventories remain a leading factor for discrepancies 

between models and observations (Xiao et al., 2010). Therefore, quantification of the 

influence of uncertain emission inventories on model output is useful for air quality 

management processes as well as to guide model improvement. 

 A framework to estimate the uncertainty of air quality models due to the 

uncertainties in input parameters has been established by previous research work. Most of 

the research work has used Monte Carlo simulations with randomly sampled model 

inputs according to their probability distributions and then quantified the uncertainties of 

model outputs (e.g. pollutant concentrations and sensitivities) by using the ensemble 

outputs obtained from the Monte Carlo simulations. Initially, studies conducted the 

Monte Carlo simulations by running the underlying air quality model multiple times (e.g., 

Deguillaume et al., 2008; Hanna et al., 2001; Bergin et al., 1999; Hanna et al., 1998). 
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However, this approach becomes very computationally intensive for three-dimensional 

time-dependent models applied over large domains. More recently, studies have 

employed a reduced from model (RFM) approach, which substantially reduces the 

computational cost (e.g. Napenelok et al., 2011; Tian et al., 2010; Digar and Cohan, 

2010; Pinder et al., 2009). This approach constructs a reduced form model of the 

underlying air quality model by capturing pollutant-parameter responses of the original 

model. High order direct sensitivity analysis is efficient at extracting the pollutant-

parameter response by simultaneously providing first- and second-order sensitivity 

coefficients along with concentration simulation.  This advanced sensitivity technique has 

been implemented in air quality models [e.g., CMAQ (Hakami et al., 2003), CAMx 

(Cohan et al., 2010)] for gas species. It has also been applied in order to characterize the 

uncertainty of modeled ozone production (Napenelok et al., 2011; Tian et al., 2010; Digar 

and Cohan, 2010; Pinder et al., 2009) and to investigate the influence parameter 

uncertainties on ozone sensitivities (Xiao et al., 2010; Cohan et al., 2010). Similar 

systematic studies can also be carried out to evaluate the uncertainties of modeled PM2.5 

species by implementing high order decoupled direct sensitivity analysis in the CMAQ 

model (Zhang et al., 2012). 

 This chapter discusses application of the reduced form model based on CMAQ to 

efficiently quantify the uncertainties of the simulated PM2.5 sensitivities for an air 

pollution episode in the Houston region. Concentrated petrochemical plants in this 

region, as well as the unique geographic and meteorological conditions, lead to complex 

pollutant-emissions responses that need further understanding. Highly nonlinear ozone 

formation has been found in this region, and the accuracy of emission inventories can 
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strongly influence prediction of ozone response to emission controls (Xiao et al., 2010). It 

was reported that the ethene and propene emissions from the point sources in the Houston 

Ship Channel had been underestimated by a factor of 10 or more in the original emission 

inventories (Ryerson et al., 2003; Wert et al., 2003). It was also found that mobile 

emissions of NOx had been underestimated (Cowling and Parrish, 2007). Given the large 

uncertainty in emission inventories of this region, this dissertation present an approach to 

evaluate the impact of uncertain emission inventories on particulate concentrations using 

high-order DDM sensitivity analysis.       

 

3.2.  Method 

3.2.1 Modeling system 

Air quality modeling is conducted using CMAQ version 4.7.1 (CMAQ v4.7.1) 

with the SAPRC 99 (Carter, 2000) chemical mechanism and the AE5 aerosol module. 

The AE5 aerosol module reflects state-of-the-art aerosol sciences (Foley et al., 2010; 

Carlton et al., 2010; Kelly et al., 2009; Davis et al., 2008), which is suitable for studying 

the emission-associated uncertainty of PM2.5 in the sense that it helps decrease the 

uncertainties of model representation. CMAQ v4.7.1 has been equipped with the 

Decoupled Direct Method in Three Dimensions (DDM-3D) (Napelenok et al., 2008), 

which has been extended to high-order DDM-3D for particulate matter (HDDM-3D/PM) 

to account for any nonlinear response of pollutants to model inputs (Zhang et al., 2012) 

The CMAQ model application here uses three one-way nested modeling domains. 

The outer-most domain covers the entire continental United States and portions of 

Canada and Mexico with 36- by 36-km horizontal grids; The middle domain covers the 
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East of Texas and the surrounding states of Oklahoma, Arkansas, and Louisiana with 12 

by 12 kilometer grids; The inner-most domain covers Southeastern Texas which contains 

the Houston-Galveston-Brazoria region where intense emissions from petrochemical 

industries occur. The three domains have 13 vertical layers extending approximately 16 

km above ground, with seven layers below 1 km.  

The Weather Research and Forecasting (WRF) model is the state-of-the-art 

meteorological model that is widely used in atmospheric research and weather 

forecasting. This application used the WRF model to prepare the meteorological fields 

and is run with 35 levels using four-dimensional data assimilation (FDDA) techniques 

and the Noah land-surface model with MODIS landuse data. The Sparse Matrix Operator 

Kernel for Emissions (SMOKE) is used to process emissions to provide gridded, CMAQ-

ready emissions. The inventory used is the U.S. National Emissions Inventory (NEI) of 

2005 (ftp://ftp.epa.gov/EmisInventory/2005v4/). Figure 3.2 shows the emissions of six 

major air pollutants categorized by different emission sources from the 2005 NEI. 

 

Figure 3.1: Emission rates of six major pollutants categorized by emission sources. The 

emission rates are the daily averages of the domain-wide emissions.  

ftp://ftp.epa.gov/EmisInventory/2005v4/


 51 

3.2.2  Reduced-form model of CMAQ 

The uncertainty analysis of this work is based on a reduced-form model of 

CMAQ. The reduced-form model represents the relationship between pollutant 

concentrations and the model inputs in a straightforward way and can be used as an 

efficient method to propagate uncertainties from model inputs to outputs. Constructing 

the reduced-form model involves Taylor series expansion of the pollutant concentration 

at a given time and location, C(x, t), for fractional perturbations in sensitivity parameters 

of interest (Equation 3.1). The sensitivity parameters could be emissions rates, chemical 

reaction rates, or initial and boundary conditions. Only emissions rates are considered in 

this work for the purpose of studying emission-associated model uncertainties. 

 * (1) 2 (2) (2)
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            (3.1) 

In Equation 3.1, *

iC  and ,0iC  denote the concentration of pollutant i with and without 

perturbations in sensitivity parameters, respectively. )1(

, jiS , )2(

,, jjiS , and )2(

,, kjiS  are semi-

normalized sensitivity coefficients (Equation 2.7). i denotes the i
th

 species, j and k 

denotes the j
th

 and k
th

 emissions rates. H.O.T. stands for higher order terms. 

CMAQ-HDDM-3D is used to calculate local first- and second-order semi-

normalized sensitivity coefficients. This approach is efficient in that it simultaneously 

computes sensitivity coefficients with respect to all chosen parameters along with 

concentrations in one model run. The controlling equations for sensitivity coefficients are 

derived by differentiating governing equations for the concentrations with respect to the 

sensitivity parameters. Thus equations involving sensitivities and concentrations have a 

similar structure and are calculated using the same numerical algorithms. First- and 
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second-order sensitivity coefficients calculated by CMAQ-HDDM-3D have been 

evaluated by comparing them with traditional finite differences and good agreement has 

been observed for both gas-phase species and particulate matter (Zhang et al., 2012; 

Hakami et al., 2003).  

 

3.2.3 Quantification of emission-associated uncertainties 

Monte Carlo simulations using the reduced-form CMAQ are applied to quantify 

the emission-associated uncertainties of modeled PM2.5. Three steps are involved in the 

Monte Carlo simulations. The first step is to sample the emissions rates of interest, given 

their uncertainties and the associated probability distributions. The second step is to 

propagate uncertainties through the reduced-form model and then construct an ensemble 

of model outputs. The third step is to quantify model uncertainties from the output 

ensemble. 

Emissions rates are assumed to be log-normal probability distributions, as is 

approximately found for many environmental geographical variables that are constrained 

to be positive (Hanna et al., 1998). The uncertainties for lognormal distributions are 

usually expressed as an uncertainty factor which would include 95% of the possible 

values. If X is log-normally distributed with an uncertainty factor of Y, the standard 

deviation of ln(X) (i.e., the σ for the lognormal distribution) equals to 0.5ln(Y) (Hanna et 

al., 2001). For example, if the daily average PM2.5 concentration, 
5.2PMC , is assumed to 

have an uncertainty factor of 3, the standard deviation of )ln(
5.2PMC  is 0.5ln(3) = 0.55. 

This study focuses on the emissions of five major pollutants that can raise atmospheric 

PM levels: SO2, NOx, VOC, NH3, and primary PM. The uncertainty factors of these 
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emissions are obtained by reviewing previous studies. Hanna et al. (2001) summarized 

the estimates of uncertainty factors for NOx and VOC emissions from major point, 

mobile, biogenic, and area sources. The NARSTO PM assessment (2004) provides the 

confidence levels of national emission inventory for SO2, NOx, VOC, NH3, and primary 

PM from various source categories. Combining the confidence levels in the NARSTO 

assessment with the uncertainty factors in Hanna et al., the uncertainty factors of the 

emissions rates of the five pollutants of interest can be estimated. Table 3.1 summarizes 

the uncertainty factors developed for the five pollutant emissions. 

Table 3.1. Uncertainty factors and associated σ (standard deviations of log-transformed 

data) of emission rates of five major pollutants. 

Emissions Uncertainty Factor σ 

SO2 1.62 0.243 

NOx 1.67 0.258 

VOC 2.11 0.373 

NH3 2.74 0.505 

Primary PM 2.71 0.500 

 

Simple random sampling is applied to produce multiple sets of possible input 

emissions rates given their probability distributions and uncertainties. This study selected 

a sampling size of 1000, which has been demonstrated to achieve sufficient convergence 

in the uncertainty analysis on ozone simulation conducted by Pinder et al. (2009). The 

results of the sampling are shown in Figure 3.2 in the form of relative uncertainty.  
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Figure 3.2 Ratios of sampling results to baseline emissions. The red line in the center of 

the box indicates the median of samples. The top and bottom of the box indicate the 75% 

and 25% percentiles, respectively. The whiskers indicate the maximum and minimum 

values in the corresponding bins. 

  

 The samples are used to drive the reduced-form model and obtain an ensemble of 

Monte Carlo simulation results. For every grid cell and time step, ensembles with 1000 

values of PM concentrations are generated. The inferred coefficient of variance (ICOV) 

defined by Tian et al. is used to quantify the uncertainty of the simulated PM 

concentrations (2010). It is defined as a half of the 68.3% confidence interval divided by 

the median of the corresponding ensemble (Equation 3.2). This definition is based on the 

confidence interval and using it is a more robust method than directly using the 

coefficient of variance since applying the inferred coefficient can exclude outliers due to 

the bad performance of the reduced form model with extremely large emission changes.  
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3.3.  Results and Discussion 

3.3.1 Model evaluation 

 Surface meteorological fields simulated by WRF are evaluated by using hourly 

surface observations in the U. S. and Canada. The bias and root mean square errors 

(RMSE) for the three domains are within the range considered to be acceptable for air 

quality modeling (Table 3.1) (Emery et al., 2001; Hanna and Yang, 2001). Good 

agreement between the WRF simulation and observations helps minimize uncertainty due 

to input meteorological fields. However, although the episode average performance is 

good, the WRF simulation had a higher RMSE for temperature, wind direction, and 

relative humidity in the last week of the episode. This may lead to higher uncertainty in 

PM2.5 simulation in that period. As described in Chapter 2, the formation of PM2.5 in this 

region is favored by low temperature, high relative humidity, and weak northerly winds, 

so all those three meteorological variables can strongly impact the formation of PM2.5.  

 CMAQ performance is evaluated using the Air Quality System (AQS) 

observational data. Simulated daily averaged PM2.5 concentrations are compared with the 

Air Quality System (AQS) monitoring data inside the 4 km domain. PM2.5 simulation is 

commonly evaluated by using mean fractional bias (MFB) and mean fractional error 

(MFE) which are  -30% and 54% for this simulation, within the acceptable range 

according to the guidance provided by EPA (2007). Daily averages of sulfate, nitrate, 

ammonium, and organic carbon (OC) are underestimated by 64.7%, 122%, 59.3%, and 

25%, respectively (Table 3.3). EC is slightly overestimated, with a MFB of 46.8%.  
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Table 3.2. Evaluation of WRF-generated meteorological fields from Aug 10 to Sep 14, 

2006 with the Techniques Development Laboratory (TDL) surface observations. 

 

 Surface Wind 

Speed 

Surface Wind 

Direction 

Surface Air 

Temperature 

Surface Humidity 

Model 

Domain 

Resolution 

Bias 

(m s
-1

) 

RMSE* 

(m s
-1

) 

Bias 

(deg.) 

Gross 

Error 

(deg.) 

Bias 

(K) 

RMSE 

(K) 

Bias 

(g kg
-1

) 

Gross 

Error 

(g kg
-1

) 

36km 0.23 1.76 2.49 32.78 -0.43 1.96 0.44 0.92 

12km 0.53 2.27 14.90 52.08 -0.92 3.34 -0.13 1.18 

4km 0.47 1.91 10.50 53.17 0.63 2.29 0.29 1.46 

*RMSE: root mean square error   

 

Table 3.3. Evaluation of CMAQ-simulated concentrations of PM2.5 species by 

comparison with the AQS observational data from August 10 to September 14 in 2006. 

 
PM Species Number of 

comparison 

pairs 

Mean of 

concentration 

(μg m
-3

) 

Mean Bias 

(μg m
-3

) 

Normalized  

Mean  

Bias (%) 

Mean Error  

(μg m
-3

) 

Normalized 

Mean  

Error (%) 

Mean  

Fractional  

Bias (%) 

Mean  

Fractional  

Error (%) 

PM25_daily 106 15 -2.5 -16.93 6.9858 46.55 -30 54.37 

SO4_daily 15 5.5 -2.5 -46.3 2.6367 48.03 -64.68 66.08 

NO3_daily 11 0.5 -0.4 -68.27 0.4269 79.21 -121.98 131.64 

NH4_daily 15 2.4 -1.2 -52.59 1.2742 52.89 -59.35 60.16 

EC_daily 16 0.5 0.3 62.5 0.3294 66.33 46.84 50.59 

OC_daily 16 3.2 -1.1 -34.95 1.6129 50.48 -25.08 53.85 

PM25_hourly 10710 14.2 -3.6 -25.28 8.0929 56.91 -39.52 69.06 

 

 

3.3.2 Uncertainty of modeled concentrations 

 Using the sampling results in Figure 3.2 to drive reduced-form CMAQ gives an 

ensemble of pollutant concentrations for each grid cell at every time step. In this study, 

daily average of PM2.5 concentrations is assessed because that is the metric used for air 

quality standards and policy making. Since the response of PM2.5 to precursor emissions 

varies spatially and temporally, the median and uncertainty (i.e., ICOV) are calculated for 

171864 ensembles ranging across the entire modeling domain over 30 days in the 

episode. The ratios of the medians and the corresponding simulated PM2.5 concentrations 

are close to one, indicating that the simulations of PM2.5 by the deterministic model (i.e., 
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CMAQ) agree well with the most probable values given uncertainty in emissions rates. 

The average of all the uncertainties is 36%, which is to say, that with the current estimate 

of uncertainties in the emissions inventory, on average, there is a 36% uncertainty in 

PM2.5 simulations due to uncertain emission rates. The medians of uncertainties for 

different levels of PM2.5 fall into a narrow range from 42% to 52%, with a slight increase 

in PM2.5 levels (Figure 3.3). Bins with lower PM2.5 concentrations have more variability 

since there are more data points and the chance that they have high sensitivities is higher. 

Higher sensitivity leads to a larger standard deviation and thus the uncertainty becomes 

high after the standard deviation is divided by a low concentration value. This has been 

confirmed by comparing the spatial distribution of uncertainty and concentration. 

Although the gradient in PM2.5 concentrations can be clearly seen, most areas have 

uncertainties around 40% (Figure 3.4). Hot spots in the concentration simulation do not 

correspond to high uncertainty. Instead, uncertainty distributes more evenly over the 

entire domain, indicating that CMAQ has similar accuracy over a wide range of PM2.5 

concentrations.    
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Figure 3.3. Uncertainty (i.e., ICOV) in simulated PM2.5 concentrations for the entire 

modeling domain. The box shows median, 25% and 75% percentiles. The line between 

the green and orange boxes represents the median. The whiskers indicate a 95% 

confidence interval. 
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Figure 3.4. Spatial distribution of a) daily average PM2.5 concentrations and b) 

uncertainty (ICOV) on August 15, 2006.  

 

 The individual impacts of the five major emissions rates on simulated PM2.5 

concentration are calculated by propagating the uncertainty of only one emission rate and 

a) 

b) 
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keeping the others unchanged. The dominant contributor is the uncertainty associated 

with primary PM, with an ICOV of 38%, which means the estimated uncertainties in 

emissions of primary PM alone can lead to a 38% uncertainty in simulated PM2.5 

averaged over the domain. The other emission rates have relatively less impact, with 

ICOVs of 3%, 2%, 2%, and 2% for NH3, SO2, NOx, and VOC emissions, respectively. 

One reason for the high impact from primary PM emissions is their high uncertainty 

factor, which is the second largest of the five emissions rates. Another reason is the high 

sensitivity of PM2.5 to primary PM emissions. The domain-wide contribution of primary 

PM to 24-hr average PM2.5 concentrations is 50%. Primary PM emissions in Southeast 

Texas come from various sources, such as mobile, industrial, biomass burning, and 

residential sources. Their significant contribution to PM2.5 mass in this region has been 

summarized by Allen and Fraser (2006). Reducing the uncertainty in primary PM 

emissions would be an effective way to bring down the uncertainty in modeled PM2.5 

concentrations. For example, assuming the uncertainty factor of primary PM emissions 

drops from 2.71 to 2, the mean of episode and domain-wide uncertainty in daily PM2.5 

simulation drops from 36% to 24%.  

 

3.3.3 Comparison with observations  

       The uncertainty associated with uncertain emission rates is used to investigate the 

bias between model simulation and ground measurement of PM2.5 concentrations. Five 

observation sites were selected in the Houston Ship Channel region (Figure 3.5). The five 

sites have continuous PM2.5 monitoring and a diversity of land use types, including urban, 

suburban residential, agricultural, and industrial. They are located to the south, north, and 
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west of the Ship Channel, so they are able to represent various impacts from the areas 

with intense industrial emissions. 

 

Figure 3.5.  Five AQS monitoring sites selected for comparison with PM2.5 simulation. 

 

 Daily averages of modeled and observed PM2.5 concentrations at the five sites are 

compared for 34 days. The time series of the comparisons are shown in Figure 3.6. The 

error bars represent the emission associated uncertainties, expressed as the standard 

deviation obtained in Section 3.3.2. The dashed lines correspond to the 95% confidence 

interval (CI), which are obtained by calculating the 2.5th and 97.5th percentiles of the 

ensemble results. For all five sites, the percentage of observations that fall in the range of 

the standard deviations is 60%, and the percentage of observations that fall in the 95% CI 

is 85% (Table 3.4). Both Houston East (AQS#482011034) and Channelview 
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(AQS#482010026) have over 90 percent of the observed concentrations falling in the 

95% CI, implying that uncertainties in the emission rates can explain much, but not all, of 

the difference between the simulated and observed PM2.5 concentrations at the two sites 

(Figure 3.6 a and b). The two sites which are south of the Houston Ship Channel (Figure 

3.6 c and d) have about 70% of the observations in the 95% CI. Modeled PM2.5 

concentrations are consistently biased high during the last ten days of the episode. During 

the same period, meteorological fields experience higher errors and bias than on the other 

days: Temperature and humidity are biased high, and wind direction shows larger 

deviation from observations compared to the first half of the episode. The correlations 

between the root mean square error of the meteorological fields and that of PM2.5 

concentrations indicate that the error in PM2.5 simulation is related more to errors in wind 

direction (R
2
 = 0.2) and temperature (R

2
 = 0.03) than to errors in wind speed and relative 

humidity. In addition, the low bias in the PM2.5 simulation for August 28-30 at all the five 

sites is due, in part, to errors associated with meteorological fields. The system simulated 

a precipitation event occurred from August 28 to 30, which came from north and swept 

the Houston Ship Channel and the heavy rainfall decreased the simulated PM2.5 

concentration. However, the same reduction is not found in the observed PM2.5 

concentrations at the five monitoring sites, so the biased-low PM2.5 may be attributable to 

the error in the simulated precipitation and estimated scavenging. The Kingwood site 

(Figure 3.6 e) exhibits a low bias for PM2.5 simulation. The reason may be due to its 

location, which, unlike the other four sites near the Houston Ship Channel, is 23.7 miles 

northeast of Houston's downtown and is located in an area with substantial biogenic VOC 

emissions. Studies have shown that the current air quality model tends to underestimate 
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secondary organic aerosols at monitoring sites. Here, the comparison between model 

simulated and observed concentrations also indicates a low bias in simulation. 19 out of 

31 days of the observed daily average PM2.5 are higher than the upper bound of the 

standard deviation of the model simulation. This is probably due to model representation 

of the chemical reactions and thermodynamic partitioning related to the formation of 

secondary organic aerosols.     

 

 

   

 

Figure 3.6. Time series of daily average PM2.5 concentrations for the five AQS sites: a) 

Houston East (AQS#: 482011034), b) Channelview (AQS#: 482010026, c) Deer Park 

(AQS#: 482011039), d) Park Place (AQS#: 482010416), e) Kingwood (AQS#: 

482011042). 

 

 

a) b) 

c) d) 

e) 
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Table 3.4 Summary of the comparison between simulated and observed daily average 

PM2.5 concentrations. 

Site name Site 

number 

Number of 

days within 

one standard 

deviation 

Fraction of 

days within 

one standard 

deviation 

Number 

of days 

within 

95% CI 

Fraction 

of days 

within 

95% CI 

Houston East* 482011034 25 83% 28 93% 

Channel View 482010026 22 69% 31 97% 

Deer Park 482011039 19 59% 27 84% 

Park Place 482010416 16 50% 24 75% 

Kingwood 482011042 12 38% 24 75% 

All Sites  94 60% 134 85% 
* This site has 30 days of observations available. 

3.4.  Conclusions 

 This study quantified the emission-associated uncertainty in an air quality model 

simulation for PM2.5. A reduced form model of CMAQ is constructed based on high-

order DDM sensitivity analysis. One thousand possible combinations of emissions rates 

of five major pollutants are sampled based on log-normal distribution and uncertainty 

factors estimated from a literature search. The ensemble output from the reduced form 

model is used to quantify the model uncertainty associated with emission rates. The 

uncertainty (i.e., ICOV) of modeled 24-hour average of PM2.5 concentration is 36% 

averaged over the modeling domain and episode. The medians of uncertainties for 

different levels of PM2.5 concentrations are around 50%, and have a fairly uniform spatial 

distribution over the modeling domain. 

        The emission-associated uncertainty in PM2.5 simulation has been used to 

interpret the comparison between ground measurement and model simulation of daily 

average PM2.5. The simulation captures the trend of the observation. 85% of the 

observations at five monitoring sites fall into the 95% CI of the corresponding simulation 
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due to the uncertainty in emission rates. This suggests that much of the difference 

between the observed and simulated concentrations can be attributed to the uncertainty in 

emission rates. Besides the uncertain emission rates, meteorological conditions play an 

important role in air quality modeling in this region due to the frequently changing wind 

direction near the coast. The biased-low PM2.5 simulation north of Houston suggests that 

there is either uncertainty in the model representation of the formation of secondary 

organic aerosol or bias in biogenic VOC emission in the inventory.  
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CHAPTER 4 

ASSESSING THE IMPACT OF FLARE EMISSIONS ON REGIONAL 

AIR QUALITY AT LOW OPERATING RATES 

 

4.1.  Introduction 

 Flare emissions have recently been of concern to air quality management in the 

Houston region. Air quality studies in this region have indicated that highly reactive 

volatile organic compounds (HRVOCs) are associated with rapid ozone formation in the 

Houston-Galveston-Brazoria (HGB) area (e.g., Ryerson et al., 2003; Murphy and Allen, 

2005; Webster, et al., 2007; Pavlovic et al., 2012). HRVOCs include ethylene, propylene, 

butenes, and 1,3-butadiene. The primary sources of the HRVOCs are petrochemical 

refineries and chemical manufacturing plants, which produce flare emissions. It is 

estimated that 60% of the HRVOCs come from flares (Chen et al., 2012). HRVOC 

emissions from flares are currently calculated using a simple mass reduction method, 

which converts the vent gas flow ratio to emissions rates by using the destruction and 

removal efficiency (DRE). In most cases, 98% is used as the DRE for flares operating at 

their designed conditions and complying with 40 CFR § 60.18 (TCEQ 2009b). However, 

the DRE may drop below 98% when the flare operation is under 40 CFR § 60.18 (Allen, 

2011). 

 The DRE is dependent on the operating conditions of a flare. Processes such as 

start-up, turndown, steaming, and aeration have the potential to reduce the DRE to below 

98%. Recent evaluation of flare operations by the Texas Commission on Environmental 

Quality indicated that the DRE for steam-assisted flares drops dramatically when 
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combustion zone heating values fall below 250 BTU/scf  (equivalent to 9315 KJ/m
3
; scf:  

standard cubic foot) and that the DRE for air-assisted flares drops linearly with the air 

flow rate (Torres et al., 2012). As the HRVOC emissions from a flare are sensitive to the 

DRE, understanding the relationship between the operating processes of a flare and the 

local air quality are important for designing efficient emissions control strategies. 

 To assess the emissions impact of flares on local air quality conditions, this study 

conducted three-dimensional chemical transport modeling in the Houston region using 

the Texas 2006 special inventory (SI). Selecting the SI ensures that the temporal 

variability of flares is well captured. The SI includes hourly monitoring data of NOx and 

VOC emissions collected from over 140 industrial point sources in Texas during the 

second Texas Air Quality Study (TexAQS II) (Parrish et al., 2009) from August 15 

through September 15, 2006. Currently, most of the chemical transport models assign a 

uniformly-distributed temporal profile to industrial point sources, so using the SI better 

serves the goal of quantifying the impact of flare operating processes on air quality. The 

chemical transport modeling (CTM) applies the Community Multiscale Air Quality 

(CMAQ) model, which is one of the most widely used three-dimensional CTM for air 

quality management. The CMAQ model has embedded a direct sensitivity technique (i.e., 

the Decoupled Direct Method in Three Dimensions (DDM-3D)), which enables efficient 

assessment of pollutant response to emissions change. This dissertation uses CMAQ-

DDM3D to investigate the impact of combustion efficiency on the flare VOC impact on 

ozone under different flare operating modes and then constructs a reduced form model of 

CMAQ by using the results from CMAQ-DDM3D simulations. The reduced form 

CMAQ was evaluated in previous studies to be consistent with the original CMAQ 
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model. The reduced form model has the advantage of substantially reducing the 

computational cost and selecting sensitivity parameters in a flexible manner. In order to 

reflect the impact of the temporally variable DRE on flare VOC emissions as well as 

ambient ozone concentrations, the reduced form model includes sensitivities of ozone 

concentrations to flare VOC emissions at intervals of every two hours of a day.  

4.2.  Method 

4.2.1 Modeling system 

Air quality modeling is conducted using CMAQ version 4.7.1 (CMAQ v4.7.1) 

with an SAPRC 99 (Carter, 2000) chemical mechanism and the AE5 aerosol module. The 

AE5 aerosol module reflects state-of-the-art aerosol sciences (Foley et al., 2010; Carlton 

et al., 2010; Kelly et al., 2009; Davis et al., 2008). CMAQ v4.7.1 can operate with the 

Decoupled Direct Method in Three Dimensions (DDM-3D) (Napelenok et al., 2008) 

which has been extended to account for the nonlinear response of pollutants to model 

inputs (Zhang et al., 2012). 

Three one-way nested modeling domains are used. The outer-most domain covers 

the entire continental United States and portions of Canada and Mexico with 36- by 36-

km horizontal grids; The middle domain covers eastern Texas and the surrounding states 

with 12- by 12-km grids. The inner-most domain covers southeastern Texas which 

includes the Houston-Galveston-Brazoria (HGB) area where intense emissions from 

petrochemical plants are located (Figure 4.1). The three domains have 13 vertical layers 

extending approximately 16 km above ground with seven of the layers below 1 km.  

The Weather Research and Forecasting (WRF) model is used to prepare the 

meteorological fields and is run with 35 levels using four-dimensional data assimilation 
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(FDDA) techniques and the Noah land-surface model, which uses the MODIS landuse 

data. The Sparse Matrix Operator Kernel for Emissions (SMOKE) is used to process the 

emissions to provide gridded, CMAQ-ready emissions. The inventory used is the U.S. 

National Emissions Inventory (NEI) of 2005 (ftp://ftp.epa.gov/EmisInventory/2005v4/). 

The hourly VOC and NOx emissions from the Texas 2006 SI are used to replace the NEI 

emissions for petrochemical plants and chemical plants.  

 

4.2.2  Texas 3006 Special inventory 

 Hourly emissions of industrial sources from the Texas 2006 special inventory 

provide an improved database for assessing the impact of flare emissions. The SI was 

based on the TexAQS II measurements and analyses for a high-ozone episode from 

August 15 to September 15, 2006. The assembled inventory provides hourly emissions 

rates of VOC and NOx from 141 industrial sites, with 49 sites in the HGB area. The 

reported industrial sources include flares, stacks, cooling towers, and fugitive sources. 

The episode average of the SI is 37 tons per day, which is comparable to 33 tons per day 

in the 2005 ozone season day (OSD) point source emission inventory from the NEI. 

Comparison of the two inventories in other aspects, such as composition and industrial 

sectors, suggests reasonable agreement between the two (Pavlovic et al., 2009). 

 

ftp://ftp.epa.gov/EmisInventory/2005v4/
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Figure 4.1. Locations of recorded flares in the 2006 Texas special inventory. 

 

 In 2006 SI, HRVOC emissions originated primarily from flares. The contributions 

of flares, stacks and cooling towers, and fugitive sources which make up the total 

HRVOC emissions are 77%, 18%, and 5%, respectively. Note that the 2006 SI represents 

only a segment of industrial emissions in the HGB area and does not include some 

significant sources for HRVOC such as fugitives from tanks and valves. Most of the 

flares were located around the Houston Ship Channel. Flare emissions are primarily 

associated with three industrial sectors: chemical manufacturing (55%), plastic materials 

and resins (26%), and petroleum refining (16%). Those three sectors were responsible for 

97% of the HRVOC emissions for the SI and 82% of those for the 2005 OSD.  
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   The emission species and temporal patterns of flares depend on specific 

industrial sectors and the associated processes. Based on the industrial sectors, flares can 

be categorized into two major groups: refinery flares and chemical manufacturing flares. 

The three primary categories for refinery flares are 1) fuel fired equipment, process and 

natural gas flares, which have emissions of light gases (propane) and gasoline range 

volatiles (isobutane and n-butane) ; 2) fluid catalytic cracking unit (FCCU) flares, which 

typically have emissions of propylene, ethylene, propane, isobutene, and isopentane; and 

3) unclassified flares, those with no distinct identification with a particular industrial 

process, which have emissions of propane, pentane, n-butane, isobutene, propylene, and 

unclassified VOC. Table 4.1 summarizes the classifications of flares and how they are 

further grouped into sub-categories based on their temporal variability. As will be 

discussed in Section 4.2.4, the reduced-form air quality model will be used to assess the 

emission impact and its formulation depends on the model input parameters of interest 

(here, the VOC emissions rates from flares). Since flares operate at different time 

schedules, using the domain-wide flare emissions as one parameter does not fulfill the 

goal of modifying DRE only at low-flow rate conditions. Including every flare as a 

parameter in the reduced-form model will substantially complicate the formulation as 

well as increase the computational cost. The parameters in the reduced-form model are on 

a two-hour basis, so adding one flare corresponds to an extra 24 parameters in the 

formulation (See further discussion in Section 4.2.4). Thus, here, the focus is on one 

presenting flare with significant amount of VOC emissions and appropriate location and 

temporal variability.   
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 The Deer Park refinery and chemical plant is the 11th largest refinery in the 

United States. Located in the center of the Houston Ship Channel, it is about 20 miles 

east of downtown Houston and its emission impact on air quality in the urban area is 

expected to be large. One of the flares located in this refinery 

(RN100211879_OP3GRFLA) has the highest hourly average VOC emissions (79 lbs/hr) 

among all the flares located in the Houston Ship Channel. The VOC emission time series 

of this flare indicate that the time it operates above and below the average mass flow is 

about half and half (Figure 4.1) and that the hourly mass flow rate can reach over ten 

times the average. This flare is steam assisted and has been reported to be improperly 

operated so that excess VOCs are emitted (http://ens-newswire.com/2013/07/10/shell-oil-

agrees-to-spend-100-million-on-flare-gas-recovery/). Therefore, this flare serves as a 

good sample to include in a case study on the impact of flare operating conditions on 

VOC emissions and thus the regional air quality.  

 

Figure 4.2 Time series of  normalized hourly VOC emission rates for flare 

RN100211879_OP3GRFLA  at the Deer Park plant. The labels on the x-axis represent hours 

starting from 0:00 CST on August 15, 2006. The blue line indicates the normalized VOC 

emissions. The red line indicates where the normalized hourly emissions equal one. 
 

  

http://ens-newswire.com/2013/07/10/shell-oil-agrees-to-spend-100-million-on-flare-gas-recovery/
http://ens-newswire.com/2013/07/10/shell-oil-agrees-to-spend-100-million-on-flare-gas-recovery/
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Table 4.1. Summary of flare categories 

Industrial 

Sectors 

Industrial 

Process 

Temporal 

Variability 

% of the 
time 

above the 
average 

Sub 

Category 

Refinery 

flares 

Fuel fired 

equipment, 

process and 

natural gas 

flares 

Below 95% 43-61 Sub-category I 

Between 95% 

and 160% 
25-44 Sub-category II 

Above 160% 19-28 Sub-category III 

Fluid 

catalytic 

cracking unit 

(FCCU) 

flares 

 

Below 95% 

 

32-56 

 

Unclassified 

flares 

Below 150% 31 - 65 Sub-category I 

Above 150% 3 - 33 Sub-category II 

Chemical 

manufacturing 

Thermal 

cracking 

Below 95% 36-60 Sub-category I 

Between 95% 

and 160% 

16-41 Sub-category II 

Above 160% 8-15 Sub-category III 

 

 

4.2.3 Flare VOC emissions and operating conditions 

Flare VOC emissions and Destruction and removal efficiency 

      Destruction and removal efficiency (DRE) is defined by Texas Commission on 

Environmental Quality (TCEQ) to calculate the VOC emissions from a flare (Fortner et 

al., 2012). The flare VOC emissions are calculated using the DRE defined by the TCEQ 

as 
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DRE

VG

 
   
 

,                                                       (4.1) 

where 
VOCE  is the mass flow rate of the VOC species found in the flare plume, that is, the 

emissions rate of VOC species from the flares; VG  is the mass flow rate of the vent gas. 

Equation 4.1 can be used to convert flare VOC emissions into the mass flow rate of the 

vent gas with the assumed 98% or 99% DRE. This equation will also be used to adjust 

the flare VOC emissions according to the changes in DRE for different flare operating 

conditions (Equation 4.2). 

            (1 )
100

VOC

DRE
E VG   ,                                                               (4.2) 

      Another value used to calculate flare VOC emissions is combustion efficiency which 

is defined as the percentage of the total hydrocarbon stream entering the flare that burns 

completely to form only carbon dioxide and water. Combustion efficiency is assumed to 

be lower than DRE since DRE is simply the destruction of the starting hydrocarbon mass. 

Both combustion efficiency and DRE will be used in this study. 

  

DRE of steam- and air-assisted flares at low flow conditions 

 Recent studies have indicated that the DRE of a flare is affected by steaming and 

air injection. Torres et al. (2012) carried out measurement and modeling work to 

characterize the VOC emissions for steam-assisted and air-assisted flares. A series of 

tests with full-scale industrial flares indicated that the DRE for steam-assisted flares 

drops dramatically when combustion zone net heating values (CZNHV) fall below 250 

BTU/scf. The CZNHV is a function of the vent gas mass flow rate (VG): 
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(4.3)  

where VGLHV is the vent gas lower heating value; VGMW  is the vent gas molecular 

weight; PG  is the pilot gas mass flow rate, which is assumed to be constant as 10 lb/hr; 

PGLHV  is the pilot gas lower heating value; VGMW  is the pilot gas molecular weight; S  

is the total steam mass flow rate.  

      The CZNHV is the key value to determine the DRE. In a presentation to Southeast 

Texas Photochemical Modeling Technical Committee, Smith (2012) proposed the 

following fitted model of the relationship between DRE and CZNHV: 

 

0.0417 1(1 288.8 )CZNHVDRE e      for steam flare with center steam                (4.4) 

0.0229 1(1 5.0181 )CZNHVDRE e    for steam flare without center steam            (4.5) 

 

 Unlike with the steam-assisted flares, the DRE of air-assisted flares drops linearly 

with the stoichiometric ratio, which is the ratio of the actual amount of air assist to the 

amount of stoichiometric air required for combustion of the vent gas. The relationship 

between DRE and the stoichiometric can be expressed as the following linear model: 

 

LHVairEx

airExairExDRE





_000001447.0

_0000947.0_003485.000842.1 2

                      (4.6) 

 

where airEx _  is the stoichiometric ratio and LHV  is the lower heating value of the vent 

gas.  
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4.2.4 Emission scenarios for different flare operating conditions 

 The purpose of designing emissions scenarios is to simulate the impact of 

DRE/combustion efficiency on regional air quality. As summarized in Table 4.1, the 

mass flow of vent gas to a flare is subject to temporal variability. A flare can achieve the 

assumed DREs (i.e., 98% for C4 HRVOC and 99% for C2 and C3 HRVOC) if the flares 

operate at certain designed values. However, depending on the associated industrial 

processes, flares may have routinely or episodic time periods operating with low mass 

flow rates. For those periods of time, the DREs should be adjusted to be consistent with 

the low operating rates.  

 In order to assess the impact combustion on regional air quality, we first assume 

that the combustion efficiency of a flare is more dependent on its operating conditions 

(i.e., the amount of steam and inert gas added) under high turndown ratio than under low 

turndown ratio. We then design three hypothetical flares to represent three typical 

operating modes of flares. A single combustion efficiency curve is applied to the three 

hypothetical flares. Flare 1 represents the type of flares that are in continuous use without 

gas recovery (Figure 4.3a). The flare gas recovery system can minimize flaring by 

recovering and recycling waste gases and limit flare operation to emergency releases and 

scheduled maintenance. Flare 2 represent the type of flares are in continuous use but with 

partial gas recovery or other project that limits the flow to flare (Figure 4.3b). Flare 3 

represents the type of flares that are in intermittent use with full gas recovery and flaring 

5-10% of the time when the capacity of flare gas recovery unit is exceeded due to start-

up, shut-down, or a malfunction (Figure 4.3c).   
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Figure 4.3. Vent gas mass flow rate (blue line) and combustion efficiency (red line) for a) 

flare 1, b) flare 2, and c) flare 3.  
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 For each of the three hypothetical flares, the base case is designed with the flare 

VOC emissions calculated using the constant 98% combustion efficiency whereas the 

control case is designed with flare VOC emissions calculated using the presumed 

combustion efficiency as shown in Figure 4.3. For each hour, the flare VOC emissions 

are modified if the combustion efficiency for that hour falls below 98%. Next, the flare 

VOC emissions of the base and control cases are applied to the air quality modeling to 

examine the difference in ozone concentration due to the difference in combustion 

efficiency. In order to minimize numerical noise, we adapt a DDM approach by directly 

computing the source contribution of the difference in flare VOC emissions to ozone 

concentration (Figure 4.4). 

 

Figure 4.4. Emission scenarios and steps to use CMAQ-DDM3D to assess the impact of 

combustion efficiency on ozone concentration. 
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Beside the hypothetical flares, another set of emissions scenarios is designed 

based on the operation data of a real flare. As discussed in Section 4.2.2, the flare located 

in the Deer Park plant (Special inventory flare ID: RN100211879_OP3GRFLA) is 

selected due to its location and the amount of VOC emitted during the modeling episode. 

Two emission scenarios are designed for this flare. The base case uses the original flare 

VOC emissions from the 2006 Texas special inventory, which assumes that the DRE is 

constant at 98%. The control case estimates the DRE using the flow rate of assist steam 

obtained from a recently developed emission inventory by TCEQ for flare study (Figure 

4.5), and the flare VOC emissions at every hour are modified if the re-estimated DRE 

falls below 98%. The response of ozone concentration to the change in DRE at each hour 

is estimated by a reduced form model of CMAQ which accounts for the contribution of 

flare VOC emissions to ozone sensitivities at every two hours. The detailed steps of 

designing emission scenarios for this part are shown in Figure 4.6.  
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Figure 4.5. Time series of flow rates of waste gas (red) and assist steam (blue) to flare 

RN100211879_OP3GRFLA in TCEQ special inventory 2006. 

 

 

Figure 4.6. Emissions scenarios and steps to assess the impact of DRE on ambient ozone 

concentrations using the flare VOC emissions from 2006 Texas special inventory and 

reported flow rate of assist steam for the flare located at Deer Park plant (SI ID: 

RN100211879_OP3GRFLA). 
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4.2.5 Formulation of reduced-form CMAQ 

       The reduced form CMAQ is based on the sensitivity parameters that are obtained 

from DDM sensitivity analysis. Sensitivity parameters represent the response of model 

output (i.e., pollutant concentrations) to changes in input parameters, such as emissions 

rates, initial and boundary conditions, and chemical reaction rates. DDM sensitivity 

analysis is an advanced technique which is able to simultaneously calculate the local 

sensitivity coefficients with respect to every input parameter of interest, along with the 

simulation of pollutant concentrations.  Conveniently used in air quality modeling, the 

semi-normalized sensitivity coefficients are defined as  

 ,
( )

i i i
i j j j

j j j j

C C C
S P P

p P 

  
  

  
,                                                                     (4.7)                      

where ,i jS  denotes first-order semi-normalized sensitivity coefficients of pollutant i  to 

input parameter jp , jP  denotes the unperturbed base value of jp , iC  denotes 

concentration of pollutant i , and j is a unitless scaling factor. The advantage of using 

this definition is that sensitivity parameters have the same unit as concentrations, which 

better supports the application of sensitivity coefficients in emission assessment. With the 

semi-normalized sensitivity coefficients, the reduced form model can be written as 

  
2

* (1) (2)

,0 , ,

1 1

0.5
J J

i i j i j j i j

j j

C C S S 
 

      ,                                                      (4.8)  

where *

iC  and ,0iC  denote the concentrations of pollutant i with and without perturbations 

in all interested sensitivity parameters , respectively. j  is the fractional perturbation in  

jp .  
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 In this study, the reduced form model is formulated by using sensitivities of ozone 

concentrations to VOC emissions from the Deer Park flare at every two hours. As shown 

in Figures 4.3 and 4.5, the flare operation does not follow a periodic pattern. Attempting 

to keep the reduced-form model in a flexible formulation, since changing the formulation 

of the reduced-form model requires substantial computational cost, leads to including 

sensitivities of pollutant concentrations to flare VOC emissions every two hours in a day. 

This formulation allows flexible modification of emissions during any short period of 

time. Changes in the emission rates are applied to the corresponding time periods. The 

formulation also allows attribution of pollutant concentrations back to flare emissions at 

any past time. We can identify, for example, which time period during a day the flare 

emissions have the largest contribution to the daily maximum 8-hour average ozone 

concentration. Cutting the day into 2-hour short periods fulfills the goal of capturing the 

temporal variability and is more computational efficient, saving half of the simulation 

time required by computing sensitivities for every hour. Thus, there are 24 sensitivity 

parameters in Equation 4.8 and j represents the fractional change of the flare VOC 

emissions during the corresponding two-hour period. j is prepared in the emission 

scenarios discussed in Section 4.2.4. 

   

4.3.  Results and Discussion 

4.3.1 Air quality impact of variable combustion efficiency on three flare operating modes 

 Three hypothetical flares are studied here to represent the three primary flare 

operating modes: 1) Continuous use with routine fluctuation, 2) Continuous use with 

some flare gas recovery, and 3) Intermittent use with full flare gas recovery and flares 5-
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10% due to start-up/shut-down/maintenance. A single combustion efficiency curve is 

applied to the three hypothetical flares, presuming that the CZNHV is affected more by 

the way the flare is operated (i.e. the amount of the gas or steam that is added) than by the 

flow rate of the vent gas under high turndown (low mass flow) conditions. The emissions 

rates of flare VOC is calculated using Equation 4.2. The base case flare VOC emissions 

are calculated using the constant 98 % combustion efficiency. The control case modified 

flare VOC emissions at the hours with lower than 98 % combustion efficiency according 

to the presumed curve. Figure 4.7 shows the time series of flare VOC emission rates of 

the base and control cases and the differences between the two for the three hypothetical 

flares. The chance that lowered combustion efficiency has impact on the intermittent use 

flare is lower than that change that it has an impact on the two continuous use flares. 
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Figure 4.7. Flare VOC emissions before (blue) and after (red) adjustment of the 

combustion efficiency for three hypothetical flares. 
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The impact of the variable combustion efficiency is investigated using CMAQ-

DDM3D. For each of the three hypothetical flares, its base VOC emissions are used to 

substitute for the real flare at the Deer Park plant in the special inventory. DDM 

sensitivities of 8-hour ozone concentrations to the change in flare VOC emissions are 

computed for each of the three hypothetical flares. The largest differences in 8-hour 

average ozone concentration for the base and control cases of hypothetical flares 1, 2, and 

3 are 0.88 ppb, 0.55 ppb, and 0.01 ppb, respectively (Figure 4.8). The corresponding base 

8-hour average ozone concentrations at the locations with the maximum differences are 

63.1 ppb, 69.4 ppb, and 60.5 ppb. For the two continuous use flares, the increase in ozone 

concentration due to the variability of combustion efficiency occurs more frequently 

compared to that during the intermittent use flare. The intermittent use flare has zero 

mass flow for 90-95% of the time, so the impact of combustion efficiency is limited to 

the time with non-zero mass flow. If the operating conditions of this type of flare are 

controlled to achieve higher combustion efficiency during the non-zero mass flow time, 

the impact on air quality can be minimized.  

   The deviated combustion efficiency is able to increase ozone concentration in 

various areas around the flare. The meteorological condition is the key factor in 

determining the areas which are impacted by the flare VOC emissions. For instance, the 

maximum add-on 8-hour average ozone concentrations for flares 1 and 2 both occurred 

when strong westerly winds brought the flare plume down to the southeast and a 

significant amount of ozone formed near the coast (Figures 4.8a and 4.8c). The second 

largest add-on 8-hour average ozone for flare 1 occurred when easterly winds brought the 
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flare plume to the areas in the west, including the southern part of Houston’s downtown 

(Figure 4.9a).  The second largest add-on 8-hour average ozone for flare 2 occurred when 

the flare plume was brought southwest, which raised the ozone levels in the northern part 

of Brazoria County (Figure 4.9b). Throughout the episode, the areas that were under 

frequent impact of the flare VOC emissions were the four counties of Harris, Galveston, 

Brazoria, and Ford Bend. This is due to the frequent sea breeze along the shore of 

Galveston Bay. The frequency with which the flare plume hits the eastern counties is 

lower, but strong westerly winds can lead to stagnation along the shore of Galveston Bay 

and form a significant amount of extra ozone. 
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Figure 4.8. Spatial distribution of the differences in 8-hour average ozone concentration 

at the hours when the maximum difference in 8-hour average ozone occurred for a) 

hypothetical flare 1, c) flare 2, and e) flare3. b), d), and f) are the spatial distribution of 

the 8-hour average ozone concentrations at the time when the maximum differences 

occurred for flares 1, 2, and 3, respectively. Note the change of scale in e). 

 

 

a) b) 

c) d) 

e) f) 
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Figure 4.9. Source impact of flare VOC emissions in surrounding counties for a) flare 1 

and b) flare 2. 

 

       While the maximum increase in ozone concentration reflects the potential impact of 

flare combustion efficiency on ozone formation, the difference in daily maximum 8-hour 

average ozone provides more insight for designing emission control strategies. Here we 

studied the difference in daily maximum 8-hour ozone concentrations at 30 observation 

sites in the modeling domain. For hypothetical flares 1 and 2, the change in combustion 

efficiency leads to an increase in 8-hour average ozone concentration at monitoring sites 

mostly in the three counties: Harris, Jefferson, and Brazoria. For both flares, the 

maximum differences in flares 1 and 2 are 0.26 ppb and 0.09 ppb, respectively (Figure 

4.10). Both of the maximum differences occurred south of downtown Houston and west 

of the flare. The magnitudes of the differences in daily maximum 8-hour ozone 

concentrations for flare 1 are larger than those for flare 2 because the episode average 

hourly VOC emissions for flare 1 are about twice those for flare 2. With the single 

combustion efficiency curve assumption, the hours with higher base VOC emissions will 

emit more extra VOC than those with low base VOC emissions. The magnitude of the 

source impact from the intermittent use flare increases less than 0.01 ppb, which is much 

a) b) 
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lower than the impact from the two continuous use flares. Furthermore, fewer monitoring 

sites in the modeling domain are under impact of the intermittent use flare than are the 

cases under continuous use flares, in that the VOC emissions are limited to a short time 

period for the intermittent use flare and the chance to cause wide geographic impact is 

lower. Therefore, among the three types of flare operating modes, the DRE of the two 

continuous use flares has more significant impact on regional ozone concentrations than 

that of the intermittent use flare. The DRE of the continuous flare without gas recovery 

has the largest impact on daily maximum 8-hour average ozone concentrations due to its 

higher episode average VOC emissions and larger fluctuations in the mass flow of the 

vent gas.  
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Figure 4.10. Maximum differences in 8-hour average ozone at 30 observations sites. Bar 

colors represent different counties. The differences are between the base and control 

a) 

b) 

c) 
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cases for hypothetical flares 1, 2, and 3, which corresponds to a), b), and c), respectively. 

Note the scale change in y axis. 

4.3.2 Impact of flare operating conditions on flare VOC emissions 

        The flare operating conditions are taken into account in the calculation of VOC 

emissions from the Deer Park flare. As discussed in Section 4.2.2, this flare was selected 

because it is located in the Houston Ship Channel and is close to the downtown Houston 

and also has a significant amount of VOC emissions with the highest hourly average 

VOC emissions among the flares in the Houston Ship Channel. This flare is steam 

assisted, and the flow rate of the assist steam and the LHV of the vent gas are available 

from the recent flare study data from TCEQUATION The mass flow rate of the vent gas 

is obtained from the 2006 Texas special inventory. Figure 4.5 shows the time series of the 

mass flow rates of the vent gas and the assist steam. The corresponding CZNHV and 

DRE for each hour is calculated using Equations 4.2 and 4.3, respectively, assuming 

there is center steam. The relationship of the steam to vent gas ratios, CZNHV, and DRE 

is shown in Figure 4.11. CZNHV decreases as the steam to vent gas ratios increase, and 

DRE drops significantly once CZNHV falls below 250 BTU/scf. DRE decreases as 

increasing steam to vent gas ratios increase. 
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Figure 4.11. The relationship between a) CZNHV and steam to vent gas ratio, b) DRE 

and CZNHV, c) DRE and steam to vent gas ratio. 

 

a) 

b) 

c) 
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      The adjusted DRE's are used to calculate flare VOC emissions with Equation 4.8. For 

a given hour, if the adjusted DRE is below 98%, the VOC emission for the corresponding 

hour is elevated according to the adjusted DRE. Figure 4.12 shows the time series of 

VOC emissions from the Deer Park plant before and after adjusting the DRE. A 

logarithm scale is used here to amplify the details at low mass flow time periods. As 

expected, the flare VOC emissions at time periods with high steam to gas ratios increase. 

Some time periods show a significant increase in VOC emissions (an increase of more 

than 40 times) such as during hours around 200, hours 390-520, and hours 670-768.  

            

 

Figure 4.12. Time series of baseline (blue) and controlled (red) VOC emission from Deer 

Park plant. The y-axis represents the number of hours starting on August 15, 0:00 Central 

Standard Time (CST). 
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4.3.3 Impact of flare VOC emissions on ozone concentrations 

       The impact of flare VOC emissions is assessed using the difference in 8-hour 

average ozone concentrations. The difference in 8-hour average ozone concentrations is 

estimated using the reduced form model of CMAQ, which is based on the sensitivity of 

8-hour average ozone concentration with respect to the flare VOC emissions of every two 

hours. The fractional change in flare VOC emissions at every two hours due to the DRE 

change is used as input for the reduced form model (Equation 4.8). The add-on 8-hour 

average ozone at each grid and each time step is estimated by subtracting the base 

concentration from the re-estimation. The maximum add-on 8-hour average ozone during 

the episode is found on August 23, 2006 at 20:00 CST at grid (37, 30) (Figure 4.13). It is 

located in the same grid as the flare. Although the magnitude of the add-on 8-hour 

average ozone can reach as high as 10.5 ppb, this high value occurs at the location with a 

low base concentration of ozone, which is 29ppb. The two grids east of the one with the 

maximum add-on 8-hour average ozone, grids (38, 30) and (39, 30), also have a 

significant increase in 8-hour average ozone concentration, with 6.5 ppb and 2.2 ppb, 

respectively. Besides the local impact, the increased flare VOC emissions lead to a sub-

ppb increase in the 8-hour average ozone of the downwind area. The episode peak 8-hour 

average ozone of the base case is 99.4 ppb, which occurred on September 6, 2006 at 

13:00 CST in grid (34, 9). The episode peak 8-hour average ozone in the control case 

remains the same as that in the base case when the effect of the DRE is taken into 

account. 
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Figure 4.13. Maximum add-on 8-hour average ozone concentration during the episode. It 

occurred at grid (37, 30) on August 23, 2006 at 20:00 CST. 

 

       We investigate further the impact of flare DRE in the downwind area. For 30 

monitoring sites in six counties around the Houston Ship Channel, the differences in daily 

maximum 8-hour average ozone are calculated for each day during the modeling episode. 

The difference for each site and day is positive. The maximum increase in daily 

maximum 8-hour average ozone concentration for each site is plotted in Figure 4.14. The 

adjustment in flare DRE has more than a 1 ppb impact on most of the sites in the three 

surrounding counties of Harris, Galveston, and Brazoria. The change in DRE can also 

impact the daily maximum 8-hour average ozone in counties further east, such as 

Jefferson, Orange, and Montgomery. Although most of the increases in daily maximum 

8-hour average ozone in these counties were less than 0.5 ppb, the increase can reach as 

high as 2.9 ppb when strong westerly winds bring the plume from the flare to the east. 

The five sites that had an increase in 8-hour average ozone around 2.5 ppb are all located 

in the southwest of downtown Houston. Therefore, the variation of DRE is estimated to 
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increase the daily maximum 8-hour average ozone concentrations in both the urban and 

residential areas and is likely to increase ozone exposure due to the high density of the 

population in these areas.  

        Also investigated are the time series of the add-on daily maximum 8-hour average 

ozone concentration averaged over the 30 monitoring sites (Figure 4.15). Since the 30 

monitoring sites are located in the six counties of interest in southeast Texas, each point 

in Figure 4.15 can represent the spatial averaged increase in daily maximum 8-hour 

average ozone concentration in southeastern Texas due to the variable DRE of the Deer 

Park flare. The highest increase is estimated to be 0.6 ppb on the 30
th

 day (September 12, 

2006). The days with increase in daily maximum 8-hour average ozone are consistent 

with the hours that exhibit increased flare VOC emissions due to the lowered DRE, so the 

increased flare VOC emissions had an impact on the daily maximum 8-hour average 

ozone within the same day. The impact did not last for several days due to the transport 

and chemical destruction of ozone. 
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Figure 4.14. Maximum increase in daily maximum 8-hour average ozone concentrations 

at 30 observation sites in six Texas counties around the Houston Ship Channel.  

 

 

Figure 4.15. Average increase in daily maximum 8-hour average ozone concentration 

over all the observation sites in Harris, Galveston, Brazoria, and Jefferson counties for 

each day during the modeling episode. 
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 Since the impact of the flare VOC emissions is a same day effect (i.e., the impact 

on ozone is due to emissions from the same day), we explore further the hourly response 

of ozone concentration to the change in flare VOC emissions due to the lowered DRE. 

Two observation sites are studied here: AQS#482010051 and AQS#482450011. One 

reason that these two sites are selected is that they both had significant increase in daily 

maximum 8-hour ozone concentration as shown in Figure 4.14. Another reason is that 

their locations are in different downwind directions of the flare so the different pattern of 

flare impact can be investigated. One observation site, AQS#482010051, is located 

southwest of downtown Houston, which is about 20 miles west of the Deer Park flare. 

The other site, AQS#482450011, is located in a remote area about 50 miles east of the 

Deer Park flare. Time series of the sum of sensitivities of every two hours at the two 

observation sites are compared in Figure 4.10. More frequent impact is found at the 

observation site near downtown Houston because the meteorological conditions 

frequently carry the flare plume to this region (Figure 4.16a). The highest impact of this 

episode is estimated to be 0.16 ppb, which means the 8-hour average ozone concentration 

at this observation site would drop by 0.16 ppb if the VOC emissions from the flare were 

completely removed. Although less frequent impact is found at the remote observation 

site, the maximum impact on 8-hour average ozone at this site reaches 0.11 ppb, which is 

comparable to that of the other site which is closer to the flare (Figure 4.16b).  However, 

the contributions of the flare VOC emissions at different periods of a day to the ozone 

concentration at the two observation sites do not have the same pattern. For the 

observation site closer to the flare (AQS#482010051), the time period with a significant 

impact from the flare VOC emissions on 8-hour average ozone is from 6am to 10am local 
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time. The impact lasts for several hours during the day typically from 6am to 12pm. The 

impact can also be continuous for several days (e.g., impact around the 600
th

 and 700
th

 

hours), depending on the meteorological fields and the operating mode of the flare. For 

the observation site in Jefferson County, the contribution of the flare VOC emissions to 

8-hour average ozone concentration is mainly from those emitted during night hours. The 

contributions from flare VOC emissions between 20:00 and 2:00 were about 0.06 ppb. 

Thus, while the flare VOC emission during night hours has only a trivial impact on ozone 

concentration at observation sites near the flare, it is possible that ozone concentrations 

increase at the remote sites under favorable meteorological conditions. Similar to the 

findings in the hypothetical flares, a larger impact is found in the counties including or 

near the flare.  
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Figure 4.16. Time series of source impact of flare VOC emissions on 8-hour average 

ozone concentrations at two observation sites: a) 482010051 and b) 482450011. 

 

 

4.4.  Conclusions 

       The impact of combustion efficiency/DRE on ambient ozone concentration has been 

investigated using CMAQ-DDM3D. Among the three flare operating modes, i.e., the 

continuous use without gas recovery, the continuous use with partial gas recovery, and 

the intermittent use with full gas recovery, the two continuous use flares have a more 

significant impact on regional ozone concentrations than does the intermittent use flare in 
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terms of the magnitude of source impact and the area of the regions impacted. The 

maximum add-on concentration to the 8-hour average ozone was 0.88 ppb in the first 

flare operating mode. It occurred on the shore of the Galveston Bay when strong westerly 

winds carried the flare plume to the southeast. The difference in daily maximum 8-hour 

average ozone due to variable combustion efficiency has been studied at 30 observation 

sites. The sites in Harris, Brazoria, and Jefferson counties experienced a larger impact of 

the variable DRE than more remote sites. The largest impact on daily maximum 8-hour 

ozone at any monitoring site was 0.26 ppb, which was found in the first operating mode 

at the site southwest of downtown Houston and west of the flare. 

       Sensitivity analysis has also been applied to the real flare at the Deer Park plant. The 

hourly VOC emissions of the flare are obtained from the 2006 Texas special inventory 

and the flow rates of the assist steam are obtained from a more recent inventory. The 

sensitivities of 8-hour average ozone concentration to flare VOC emissions at every two 

hours during a day are calculated using CMAQ-DDM3D and a reduced form model of 

CMAQ is established using those sensitivities. The changes in VOC emissions at two 

hours are first estimated by using the flow rate of assist steam and then used to drive the 

reduced form model to reconstruct the 8-hour average ozone concentrations at each grid 

in the modeling domain. The differences in 8-hour average ozone concentrations at the 30 

observation sites are investigated. The largest increase at any monitoring site is 2.9 ppb, 

which is found at a monitoring site in Jefferson County to the east of the flare. The time 

series of average increase in 8-hour average ozone concentration at the 30 monitoring 

sites indicate consistence between the increase in ozone concentration and the decrease in 

DRE. The impact from flare VOC emissions typically lasts 6 to 12 hours. Further 
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investigations in the hourly contributions of flare VOC emissions indicate that flare VOC 

emissions during the morning hours contribute significantly to 8-hour average ozone 

concentration at locations close to the flare and that night hour flare VOC emissions 

contribute more to the 8-hour average ozone concentration at remote locations than those 

emitted during the daytime. 
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CHAPTER 5 

INTEGRATING AIR QUALITY-RELATED HEALTH EFFECTS IN 

ELECTRICITY CAPACITY PLANNING MODEL 

 

5.1.  Introduction 

 This chapter, on human health impacts of a transition to natural gas, is part of a 

broader strategic study of natural gas, and is also contributing to the development of 

advanced energy modeling capability. Production of electricity from fossil fuels released 

pollutants that can form PM2.5 (fine particulate matter <= 2.5 µm in diameter) and O3 

(ozone); their negative health effects include premature mortality and increases in 

emergency room visits and hospitalization rates (Krewski et al. 2009). Due to temporal 

and spatial dynamics of pollutant transport, changes in emissions likely have varying 

effects on pollutant concentrations in different locations. Moreover, a kWh of electricity 

generation produces different emissions at different electricity generating units (EGUs) 

depending on fuel type and pollutant controls installed at the EGU. In addition, mortality 

rates and population density can vary greatly county-to-county (CDC NCHS, 2012). 

From a given EGU, certain downwind areas may have high pollutant concentrations, 

while others may be virtually unaffected. Given this, a variety of important questions 

emerge. How can we model the health costs of electricity production more effectively, 

particularly given geospatial varying effects and affected populations? How can we 

identify which EGUs emissions are most worth reducing? Where will emissions 

reductions have the greatest impacts? 
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To address these questions, we first estimate both pollutant concentrations and 

health impacts geospatially and then measure the value of pollutant concentration 

changes due to emissions reductions of fossil fuel EGUs in the state of Georgia. In order 

to do this, we utilize a three-dimensional chemical transport model to simulate the spatial 

distribution of pollutant concentrations as well as their sensitivities to emission rates. The 

embedded direct sensitivity technique in the chemical transport model is able to assess 

the emissions impact of one or a selected set of power plants in the mean time of 

simulating the pollutant concentration. The sensitivities are then used to construct a 

reduced form model to efficiently estimate the response of pollutant concentrations to 

changes in the emissions of power plants.  The reduced form model has been applied to 

control strategy optimization and evaluation for compliance with the National Ambient 

Air Quality Standards (NAAQS) for ozone (Cohan et al., 2006; Simon et al., 2013). Here 

we extend the reduced form model to account for the response of PM2.5 to change in 

precursor emissions. 

Next, we use emissions reductions and associated health impact estimates in an 

electricity capacity planning model, which examines decisions from the present through 

the year 2050. Using this model we can measure the air-quality related health impacts on 

a plant-by-plant basis, and demonstrate its ability to resolve health impacts and implied 

costs with unprecedented spatiotemporal resolution. 

Previous studies have quantified health impacts using a $/ton metric across a wide 

region for specific pollutants, such as SO2 (sulfur dioxide). However, damage can vary by 

source location owing to variability in atmospheric conditions and population density 

downwind of emissions. For this, the $/ton metric may either undervalue or overvalue 
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emissions depending on location. To address these challenges, we instead compare health 

costs with a $/kWh metric in order to compare the impact of a single unit of power 

production. 

In this study we measure the costs from the health impact of emissions for two 

months, January and July of 2007. These results can help not only in making more 

informed EGU dispatching decisions, but also in planning future capacity decisions. 

Increases and decreases in EGU usage dependent on EGU location and emissions 

characteristics of that EGU could help alleviate health effects, as well as assist in 

achieving current and future NAAQS (National Ambient Air Quality Standards) 

compliance (EPA, 2013a). In addition, future policy decisions may be influenced by 

modeled spatial health impacts due to emission locations, downwind population and 

population demographics. This research could inform the pricing of emissions, as well as 

more informed placement of future EGUs. The work involves a collaboration, and work 

conducted as part of this thesis project involve air quality modeling. Air quality modeling 

results are then used in an electricity generation planning model being applied by another 

Ph.D. student. The formulation of the electricity generation planning model is presented 

here for completeness and to provide context of how the air quality modeling results are 

being used. 

 

5.2.  Methods 

5.2.1 Electricity generation planning model 

 This study develops a deterministic mixed-integer linear programming (MILP) 

model that incorporates the features of individual power plants and downwind emission 
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impact. The indices, variables, and parameters used in the model are summarized in 

Table 5.1.  

 The objective function can be written as 

 
, , , , , ,min ( ) health effectst i i t i i t i t i s h t

t T i I s S h H

R c y f x v z
   

                                (5.1). 

 Several constraints are used in the electricity generation planning model. The first 

is the change in capacity constraint from year to year (Equation 5.2). The next is the 

demand capacity constraint (the demand that must be met) which includes a reserve 

margin  (Equation 5.3). To ensure enough capacity is available during peak capacity 

hours, we have a constraint ensuring that capacity is above peak demand for each season 

(Equation 5.4). The capacity for each of the various power generation types is ensured 

through the last three constraints for solar (Equation 5.5), wind (Equation 5.6), and 

remaining power generation technologies (Equation 5.7). Finally, we have a renewable 

electricity standard constraint ensuring that the generated electricity within the regulated 

specific percentage of renewable electricity to be used (Equation 5.8). To estimate the 

cost of EGU emissions, we simulated representative months of January and July of 2007 

(winter and summer respectively). When combined with other population and mortality 

estimates, the data are then used to estimate the health impacts of other years with 

varying electricity production and emissions. 
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, , 1 , , , ,i t i t i t i tx x y q i I t T                                                       (5.2) 
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                                        (5.3) 
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                                                                    (5.4) 
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Table 5.1. Indices, parameters, and variables in the model 

Sets and indices 

{1,..., }i I I   All power generating plants 

j J I   Renewable energy generating plants 

k K I   Hydro, solar and wind generating plants 

l L I   Solar generating plants 

m M I   Wind generating plants 

{1,...,3}s S   Seasons, s = 1 (summer), 2 (winter), 3 (intermediate) 

{0,..., }t T T   Years (T year time horizon) 

{1,...,24}h H   Hours (24 hours per day) 

Parameters 
r  Risk adjusted discount rate 

tR  Discount factor for year t 

, ,s h td  Electricity demand (MW) in season s, hour h, year t 

,
ˆ

s td  Maximum hourly demand (MW) in season s, year t 

s  Number of days in season s 

i  Maximum capacity factor of plant i (%) 

, ,solar s h  Maximum capacity factor of solar in season s, hour h (%) 

, ,wind s h  Maximum capacity factor of wind in season s, hour h (%) 

iu  Upper bound on plant i generation (MW) in one hour 

s  Peak demand multiplicative factor in season s 

  Reserve margin (MWh) 

tRES  Renewable electricity standard (%) in year t 

,0ix  Starting capacity (MW) of plant i in year 0 

Costs 

ic  Capital investment costs (upgrades in capacity) for plant i ($/MW) 

if  Annual fixed costs (per year capacity costs) of plant i ($/MW) 

,i tv  Variable fuel costs of plant i in year t ($/MWh) 

Decision variables 

,i tx  Capacity (MW) of plant i in year t 

,i ty  Increased capacity (MW) of plant i in year t 

,i tq  Decreased capacity (MW) of plant i in year t 

, , ,i s h tz  Electricity generated (MWh) from plant i, in season s, hour h year t 
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5.2.2 Air quality model 

       Geospatial pollutant concentration estimates are simulated by the Community 

Multiscale Air Quality (CMAQ) model, which is one of the most widely used chemical 

transport models in current air quality management (Byun et al., 2006). The modeling 

domain covers the southeast U.S., and a 12 km by 12 km grid resolution in this 

simulation. The meteorological fields are simulated by the Weather Research and 

Forecasting (WRF) model with four-dimensional data assimilation techniques. The 

gridded emissions rates are prepared by the Sparse Matrix Operator Kernel for Emissions 

(SMOKE) model using the 2008 National Emissions Inventory (NEI) and 2007 

continuous emissions monitoring (CEM) system for nitrogen oxides (NOx) and sulfur 

dioxide (SO2) emissions from EGUs. The model performance is evaluated using the air 

quality system (AQS) observational data. The performance metrics for 8-hour average 

ozone and 24-hour average PM2.5 concentrations for the modeling domain, which are 

summarized in Table 5.2, are within the acceptable range according to the guidance by 

EPA (2007). 

 

Table 5.2: Performance metrics for 8-hour average ozone concentrations and 24-hour 

average PM2.5 concentrations 

Pollutants Months Mean Bias 
Mean 

Error 

Normalized 

Mean Bias 

(%) 

Normalized 

Mean Error 

(%) 

Ozone 
January -1.04 ppb 6.88 ppb -5.39 35.7 

July 6.49 ppb 12.58 ppb 20.29 39.36 

PM2.5 
January 3.30 μg m

-3
 4.94 μg m

-3
 32.63 48.88 

July  -1.67 μg m
-3

 5.09 μg m
-3

 -11.61 35.37 
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       A reduced form model of CMAQ is developed using the sensitivities calculated by a 

direct sensitivity technique, CMAQ-DDM3D (Yang et al. 1997; Hakami et al., 2003; 

Napenelok et al., 2006; Zhang et al., 2012) integrated in to CMAQ. Sensitivities quantify 

the pollutant-emission response. 

               
j

i
ji

C
S




, ,                                                                                   (5.9)  

where jiS ,  is the sensitivity of pollutant i to emission rate j, iC  is the concentration of 

pollutant I, and j  represents the fractional change in emission rate j. Both jiS ,  and iC  

vary with time and location (but are not noted in the notion for simplicity). CMAQ-

DDM3D simultaneously calculates the sensitivities to all the emissions rates of interest 

along with the simulation of the pollutant concentrations. The reduced form model can be 

formulated as 





N

j

jjiii SCC
1

,

0*  ,                                                                    (5.10) 

where 0

iC  is the baseline concentration of pollutant I, *

iC  is the concentration of pollutant 

i with perturbation in emission rates of interested, and j  is the fractional change in 

emission rate j. The number of sensitivity parameters, N, depends on how many emission 

sources are of interest. The estimation of the resulting reduced form model has been 

evaluated using the original CMAQ model and the reduced form model has been shown 

to well capture the pollutant-emission response (Hakami et al., 2003, Zhang et al., 2012). 

In this study, in the attempt to capture the geospatial difference in source impact of power 

plants at various locations, we selected seven emission sources including individual and 

aggregated EGU point sources to represent the power generation system in Georgia. 
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Their SO2 and NOx emissions are treated as the sensitivity coefficients in the reduced 

form model (Equation 5.10). Table 5.3 summarizes the emissions of the seven EGU point 

sources on an annual basis for year 2007, and Figure 5.1 shows their locations. Since 

2007, emissions at plants have changed. Notably, Plant McDonough has modernized the 

plant and switched from coal to natural gas. The July SO2 emissions of Plant McDonough 

dropped from 2432.18 tons in 2007 to 2.25 tons in 2012, and the July NOx emissions of 

Plant McDonough dropped from 372.65 tons in 2007 to 12.79 tons in 2012. 

 

 
Figure 5.1. Locations of power plants in Georgia, including the seven EGU point sources 

selected for the reduced form model. Different symbols represent fuel types. 
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Table 5.3. Summary of annual net generation of power and emissions of SO2 and NOx for 

the seven point sources in Georgia in 2007. 

 

Point 

Sources 

Annual Net 

Generation (MWh) 

Annual SO2 

Emissions (tons) 

Annual NOx 

Emissions (tons) 

Bowen 22,972,903.0 196,841.24 18,478.95 

Scherer 25,053,667.0 76,456.25 18,840.75 

McDonough 3,772,754.0 28,538.81 4,604.71 

Harllee 10,373,819.0 98,362.71 20,928.80 

Wansley
a
 21,970,857.0 171,067.10 6,614.40 

GA North
b
 31,708,430.2 49,713.38 9,454.73 

GA South
b
 29,097,886.0 35,570.08 13,223.90 

       
a 

Combo source including Wansley, Yates, and Chattahoochee Energy Facility 
           b 

Dose not include the five sources listed above 

 

 

Table 5.4. Summary of net generation of power and emissions of SO2 and NOx for five 

EUG point sources in Georgia in July 2007 and July 2012. 

 

Point 

Sources 

July 2007 July 2012 

Net Generation 

(MWh) 

SO2 Emissions 

(tons) 

NOx Emissions 

(tons) 

Net Generation 

(MWh) 

SO2 Emissions 

(tons) 

NOx Emissions 

(tons) 

Bowen 2,262,944.0 17,277.58 592.44 1,259,879.0 246.3 371.3 

Scherer 2,311,025.0 6,682.90 1,536.77 2,263,990.0 4,002.24 1,218.49 

McDonough 348,640.3 2,432.18 372.65 1,090,280.0 2.25 12.79 

Harllee 1,043,051.0  9,389.52 1,960.72 636,177.8 6,029.22 1,287.50 

Wansley
a
 981,255.5 7,706.82 1,018.43 594,732.0 2,609.62 322.48 

a 
Combo source including Wansley, Yates, and Chattahoochee Energy Facility 

 

 

5.2.2 Air-quality related health effects 

       We use the EPA BenMAP CE (EPA, 2013b) tool to combine health impacts and cost 

estimates for both January and July of 2007, given a change in 1kWh of generation at the 

observed plants in the state of Georgia. The health-related cost is estimated by 

multiplying the value of statistical life (VSL) and the health response calculated using the 
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linear approximation of the concentration-response (CR) function. The linear 

approximation of the PM2.5 related CR function can be written as 

 
2.5 2.5,d d PM d PMu u C P   ,                                                                             (5.11) 

where du  is the change in mortality rate on day d; 
du is the baseline mortality rate, 

2.5PM is the log-relative mortality rate associated with a unit increase in PM2.5 and takes 

the unit of -3 -1(μg m ) , 
2.5,d PMC is the change in PM2.5 concentrations, and P  is 

population. The cost of an increase in one microgram per cubic meter change in PM2.5 at 

grid x can be defined as 

 
2.5

( )PM dc x VSL u  ,                                                                                (5.12) 

We use $7.4 million for the VSL according to EPA (2006).Observed mortality rates are 

obtained from the CDC-WONDER database (CDC NCHS, 2012), which has a strong 

geospatial dependence (All cause mortality in Georgia ranges from 300 to 1500 per 

100,000). The population is estimated from demographic data and block level resolution 

data from the 2010 Census (U.S. Census Bureau, 2010). 

       The air quality related health cost is estimated by combining the reduced form model 

(Equation 5.10) and the cost associated with unit increase in PM2.5 concentrations 

(Equation 5.12): 
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where C is the air quality-related health cost over a certain region and time period and 

,t kz is the megawatt hours (MWh) generated in hour t at plant k. 
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5.3.  Results and discussion 

5.3.1 Emission impact of EGUs 

       Seven EGU point sources are selected to represent the power generation system in 

Georgia. Their emissions impact on regional air quality is estimated using CMAQ-

DDM3D. Sensitivities of PM2.5 to SO2 emissions of these power plants are highly 

dependent on their locations (Figure 5.3). North Georgia is more strongly impacted by 

plant emissions than is in South Georgia since most of the power plants are concentrated 

in the northern part of Georgia. Plant Bowen has an impact of 2 -3μg m  on PM2.5 

concentration due to its SO2 emissions, which is the highest among the seven EGU 

sources. The second largest impact is 0.9 -3μg m , from Plant Harllee. The highest impact 

found in the aggregation of all the other power plants in North Georgia is 0.9 -3μg m , 

which is even lower than the individual contribution from Plant Bowen. NOx emissions 

from power plants also contribute significantly to PM formation. Sensitivities of PM2.5 to 

NOx emissions from six of the selected EGU sources are shown in Figure 5.3. Plant 

McDonough is not shown here since the magnitude of its sensitivity is too small to 

distinguish it from numerical noise. The contributions of NOx to PM2.5 are smaller than 

the contributions of SO2 to PM2.5. This is due to the relatively smaller magnitude of NOx 

emissions. The geospatial distribution of the emissions impact of each EGU source is 

similar to that of the SO2 emissions. Similarly, the emissions impact is concentrated in 

North Georgia in downwind areas of the power plants.  
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Figure 5.2. Sensitivities of PM2.5 to SO2 emissions from Plants a) Bowen, b) Scherer, c) 

Harllee, d) Wansley, Yates, and Chattahoochee, g) McDonough, and the other power 

plants in e) North and f) South Georgia. Note the change in scale for Figure 5.2g. The 

sensitivities are averaged over July. 
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Figure 5.3. Sensitivities of PM2.5 to NOx emissions from Plants a) Bowen, b) Scherer, c) 

Harllee, d) Wansley, Yates, and Chattahoochee, and the other power plants in e) North 

and f) South Georgia. The sensitivities are averaged over July. 

 

5.3.2 Estimation of health cost 

       We first explored the health cost per MWh in July of 2007 due to secondary sulfate-

based PM2.5 generated from EGU SO2 emissions. The sum of PM2.5-associated health 

costs over Georgia due to SO2 emissions from Plant Bowen, McDonough, and Scherer 

are $89.9/MWh, $123.3/MWh, and $3.0/MWh, respectively. Although the SO2 emissions 

of Plant McDonough are lower than those of Plants Bowen and Scherer, Plant 

McDonough was estimated to have the largest health cost because it is located in Atlanta 

which has a high population density. The costs in Table 5.5 are comparable to those of 

previous expert estimates (Committee on Health, Environmental & National Research 

Council, 2010; Siler-Evans et al., 2013), but also capture useful geospatial variability that 

can be utilized to make informed decisions about plant locations and operations. The 
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geospatial dependence of the health cost for Plants Bowen, McDonough, and Scherer is 

displayed in the maps in Figure 5.4.  

        

Table 5.5: Total PM2.5 associated health cost due to SO2 emissions for Georgia in July 

2007 

Plant Name July 2007 SO2 based PM2.5 health cost ($/MWh) 

Scherer 3.0 

Bowen 89.9 

McDonough 123.3 

 

 

Figure 5.4. Monthly averaged geospatial costs in dollars per MWh for three power plants 

in July 2007. 

 

5.4. Summary and future work 

      The reduced form air quality model has been implemented in the electricity 

generation model to represent geospatial dependent emissions impacts and air quality-

related health costs of power plants at different locations. The reduced form model is 

established using sensitivities obtained from CMAQ-DDM3D. SO2 and NOx emissions 

from seven EUG point sources in Georgia are used as sensitivity parameters in the 
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reduced form model. The sensitivities well capture the geospatial difference in emissions 

impacts and show distinct spatial patterns for power plants at various locations. The 

emissions impact of SO2 and NOx emissions are mainly to the east of the corresponding 

point sources. The EGU emissions have a larger impact on North Georgia due to the 

abundance of EGUs in the northern part of the state.  

      Health costs based on PM2.5 concentrations are estimated using the CR function. For 

the three power plants studied, McDonough has the largest health cost per MWh 

generated ($123.3/MWh in July). This is because Plant McDonough is located in Atlanta 

which has a high population density (Note: the calculations conducted were for 2007 

when Plant McDonough was using coal. Plant McDonough recently switched to natural 

gas, and has much lower emissions on a MWh basis). The geospatial dependency of 

health cost is well captured, enabling further applications for optimization and policy 

evaluation. 

Our next steps are to include several scenarios within an electricity capacity 

planning model which seeks the optimal solution to minimize the sum of operating costs 

and health costs due to a change in emissions. Combined with the above cost estimates, 

we have developed an innovative view of the power future of Georgia, and potentially 

other regions, with predictions of changing spatial health impacts across the state of 

Georgia. Our objectives and corresponding scenarios are outlined below: 

 Evaluate the health impacts from increased use of natural gas for power 

generation in Georgia, and of shutting down (planned and suggested) coal plants 

owned by Georgia Power. 
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 Inform decisions on new construction of EGUs, including type and location 

decisions, by balancing geospatial health impacts and transmission losses with 

increasing demand for power. 

 Validate emissions sensitivities by using observed changes in PM2.5 

concentrations and changes in mortality from 2007 through 2012. 
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CHAPTER 6 

CONCLUSTION 

 

 This dissertation explored the applications of the direct sensitivity technique in 

both scientific investigation and policy guidance, and demonstrated that the direct 

sensitivity approach yields important insights into the formation of pollutants such as 

particulate matter and ozone. It also demonstrated that the direct sensitivity technique can 

be linked with uncertainty analysis and economic analysis to inform the development of 

control strategies. In detail, below are given the major findings of this dissertation along 

with directions for further study. 

6.1.  Major findings 

6.1.1 High-order sensitivity analysis of particulate matter 

        Chapter 2 of this dissertation described the implementation of the high-order 

Decoupled Direct Method in Three Dimensions (HDDM-3D) for particulate matter in the 

Community Multiscale Air Quality (CMAQ) model. The key step of the implementation 

was accurately capturing both first- and second-order sensitivities of ISORROPIA, the 

embedded thermodynamic equilibrium model in CMAQ. This dissertation improved the 

accuracy of the sensitivity calculation for ISORROPIA by using a case-specific approach 

to avoid the discontinuity when the chemical regime changes from one case to another, 

and an explicit representation of the sensitivities of activity coefficients and water 

content, which have been proved to have a significant impact on the sensitivities of 

particulate matter. The new implementation significantly improved the accuracy of first-

order DDM sensitivities of ammonium and nitrate to ammonia and NOx emissions, 
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compared to the initial implementation of DDM for particulate matter in CMAQ. 

Comparisons of both first- and second-order sensitivities with the traditional brute force 

method generally showed good agreement. The brute force sensitivities are found to be 

dependent on the perturbation sizes and the model configuration of computing accuracy, 

which leads to noisy behavior, especially for second-order sensitivities. For example, 

different size perturbations and convergence criteria of ISORROPIA lead to dramatic 

discrepancies in second-order brute force sensitivities of nitrate to total sulfate, different 

size perturbations also lead to large discrepancies in second-order brute force sensitivities 

of both nitrate to SO2 emissions and sulfate to NH3 emissions. In contrast to the noisy 

behavior of the brute force method, the direct assessment of second-order sensitivities 

with HDDM-3D is more consistent and avoids the apparent pitfalls of the brute force 

method that causes the noise. Furthermore, the direct sensitivities are more reasonable in 

some cases and can be explained by real physical and chemical processes while the brute 

force results are dramatically influenced by numerical noise that accumulates during 

model simulation. For example, it is expected that SO2 emissions control would slightly 

increase nitrate concentrations, which is confirmed by negative sensitivities of nitrate to 

SO2 emissions throughout the modeling domain and episode. However, the brute force 

results have a significant number of sensitivities of nitrate to SO2 that are positive, which 

would not logically follow from the real chemical reactions. An additional important 

benefit of using HDDM-3D to compute sensitivities is computational efficiency. The 

computational time required by one additional second-order sensitivity parameter is 

comparable to the time required by one additional first-order sensitivity parameter, and 

both first- and second-order sensitivities to all parameters are calculated in a single 
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simulation. On the other hand, one additional second-order sensitivity parameter requires 

three simulations of the base CMAQ, and even more simulations are needed when 

calculating cross sensitivities. 

 The implementation of HDDM-3D for particulate matter enhances the ability of 

the CMAQ model to assess source contribution and control strategy effectiveness. These 

applications are based on a reduced form model that directly relates changes in emissions 

rates and the responses of pollutant concentrations by using Taylor Series Expansions. 

Including second-order sensitivities of particulate matter in the reduced form model 

improves the accuracy of the estimation of pollutant response to emissions controls. For 

example, after the second-order sensitivities of nitrate to NOx emissions are included in 

the reduced form model, the estimations of nitrate aerosol concentrations with a 50% 

reduction in NOx emissions are closer to the results simulated by the original CMAQ 

model compared to the estimations achieved by using a reduced form model that includes 

only first-order sensitivities of nitrate to NOx emissions. This reflects the nonlinearity in 

the formation of nitrate aerosols from NOx. This dissertation also tested the ability of the 

reduced form model to estimate pollutant responses to a wide range of emissions control 

strength. The reduced form model based on first- and second-order DDM sensitivities 

provides results that are in good agreement with those simulated by the original model 

when precursor emissions are reduced by 20%, 50%, and 100%. 

 This dissertation explores the application of HDDM-3D for estimating source 

contributions by conducting a case study in the Houston area. Source contributions to 

daily average of PM2.5 concentrations from five major pollutant emissions through first- 

and second-order relationships indicate that the dominant contributor to PM2.5 formation 
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in this region was the primary PM emissions, which were responsible for about 27% to 

85% of daily average PM2.5 concentrations throughout the episode. The second largest 

contributor to PM2.5 formation in this region throughout this episode was SO2 emissions, 

which contributed 5% to 15% to the daily PM2.5 concentrations. The contributions of NOx 

emissions to daily PM2.5 concentrations varied in a larger range than those of SO2 

emissions. The contribution of NOx emissions can vary between slightly negative to 

about 12%. The contributions from the interaction of various emissions sources were 

smaller than those from a single source, but some of them had noticeable magnitudes, 

such as the interactions between VOC and SO2, VOC and NH3, VOC and primary PM, 

SO2 and NH3. The variation of the magnitudes of those cross sensitivities reflects the 

change in the nonlinearity of the chemical and physical system, which was shown to 

relate to the meteorological conditions in this region. Investigations in the diurnal pattern 

of the source contributions of various emissions found high contributions to PM2.5 

concentrations during night hours (i.e., between 1 am to 8 am local time). Source 

contributions during the night hours from NOx, SO2, VOC, NH3, and source interactions 

increased dramatically compared to those during the day time. Comparison with the 

diurnal pattern of source contributions to ozone reflects that the accumulated ozone 

during the day time led to rapid formation of particulate matter during the night by 

reacting with NOx and SO2. These reactions enhanced the interactions between various 

pollutant emissions such as VOC and SO2, VOC and NH3, and SO2 and NH3.  

 In summary, the implementation of HDDM-3D for particulate matter in CMAQ is 

a powerful extension to the model, as it allows efficient estimations of both first- and 

second-order sensitivities of various species of particulate matter to different emission 
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sources, as well as the interactions between them. The results of HDDM-3D were 

evaluated by brute force sensitivities, and the estimations of the reduced form model 

which is constructed by using HDDM-3D sensitivities were evaluated by the results of 

the original CMAQ model. Good agreement is found in both evaluations. The case study 

in the Houston region demonstrated the ability of HDDM-3D to investigate the formation 

of particulate matter from various emissions sources and the interactions between 

different emissions sources. 

6.1.2 Emissions-associated model uncertainty of particulate matter 

        Chapter 3 of this dissertation explored the emissions-associated uncertainties in 

model simulation of particulate matter. This chapter applied a reduced form model of 

CMAQ to conduct Monte Carlo simulations to assess the uncertainties in model 

simulation of PM2.5 associated with uncertainties in emissions rates of NOx, SO2, VOC, 

NH3, and primary PM in the Houston area. The medians of the uncertainties of simulated 

daily average of PM2.5 concentrations at different levels ranged from 42% to 52%. The 

dominant contributor of emissions uncertainties to the uncertainties in simulated PM2.5 

was primary PM, which alone was estimated to cause 38% uncertainty in PM2.5 

simulations. One reason is that primary PM was the dominant contributor to the 

formation of PM2.5 in the area, with a contribution over 80% to daily average PM2.5 under 

certain meteorological conditions. The other reason is that primary PM was estimated to 

have relatively larger uncertainty among the five major pollutant emissions. This implies 

that reducing the uncertainty in the estimation of primary PM emissions may be an 

efficient method to improve the model simulation of PM2.5 concentrations in the Houston 

region.  



 125 

 Chapter 3 also incorporated the ground measurement of PM2.5 concentrations to 

investigate how much of the bias between model simulation and ground measurement of 

PM2.5 is attributable to the uncertainties in emissions rates. At five observation sites in 

urban and suburban in the Houston area, 85% of the measured daily PM2.5 concentrations 

fell into the 95% confidence interval associated with the uncertainties in emissions rates, 

which implies that the uncertainties in emissions rates can explain most of the bias 

between observations and simulations of PM2.5 concentrations. Besides the uncertainties 

in estimated emissions rates, the uncertainties in meteorological fields were also 

responsible for the bias in PM2.5 simulations. The model simulations were biased high on 

the days with poorer performance of the meteorological model. The errors in simulated 

PM2.5 concentrations were more associated with the errors in simulated wind directions 

and temperature than with those in relative humidity and wind speed. Furthermore, the 

estimations of emissions rates were also dependent on meteorological conditions, so it is 

essential to conduct further research to explore more aspects of the impact of 

meteorological conditions on air quality model simulations. The comparison between 

observed and simulated PM2.5 concentrations at the monitoring site that was close to high 

biogenic emissions shows a constant low bias in model simulation, which indicates that 

either the current emissions inventory underestimates the biogenic VOC emissions or the 

representations of the formation of PM2.5 in the model underestimate the production of 

PM2.5 from the biogenic emissions. 

 In summary, Chapter 3 demonstrated how DDM sensitivities can be applied to 

uncertainty analysis of model simulations. The reduced form model that is based on 

DDM sensitivities can efficiently estimate the model uncertainties caused by the 
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uncertainties in emissions rates. This chapter also shed light on the impact of the model 

uncertainties caused by the uncertainties in meteorological conditions and the 

uncertainties in model representations. 

6.1.3 Assessment of emissions impact of flare VOC 

        Chapter 4 of this dissertation explored the application of DDM sensitivity to 

assess the emissions impact of a single point source. This chapter focused on the flare 

VOC emissions from the Deer Park plant located in the Houston Ship Channel and 

applied DDM sensitivities to address the impact of the variable destruction and removal 

efficiency (DRE) on ozone concentrations. This chapter designed two independent 

studies and conducted DDM sensitivity analysis with different types of sensitivity 

parameters. The first study focused more on the impact of three flare operating modes 

(i.e., continuous use without gas recovery, continuous use with partial gas recovery, and 

intermittent use with full gas recovery) on ozone concentrations and compared the 

difference in ozone concentrations caused by considering the decrease in the DREs of 

different operating modes. The differences in daily maximum 8-hour average ozone 

concentrations at 30 monitoring sites in the Houston area indicate that the first mode has 

the largest impact on ozone concentration. Among the 30 monitoring sites, the largest 

impact of DRE on daily maximum 8-hour average ozone concentrations, 0.26 ppb, 

occurred at the site located southwest of downtown Houston. The largest impact of 

decreased DREs on ozone concentrations at monitoring sites for the second mode 

(continuous use with partial gas recovery) was 0.09 ppb and that for the third mode 

(intermittent use with full gas recovery) was 0.01 ppb. Unlike the first and second modes, 

the third mode had an impact on only a few monitors because it flares only 5%-10% of 
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the time during start-up, shut-down, or maintenance. The comparison of the three flare 

operating modes indicates that the DREs of the intermittent use flare with full gas 

recovery have the least impact on ozone concentrations and implies the effectiveness of 

the flare gas recovery system in reducing the impact of flare VOC emissions on ozone 

formation. 

 The second study simulated the impact of a real flare of the Deer Park plant on 

ozone formation by using VOC emissions from the 2006 Texas special inventory and 

steam flow rates from a more recent inventory that was especially prepared for flare 

studies. This study constructed a reduced form model based on first- and second-order 

sensitivities of ozone to flare VOC emissions at intervals of every two hours of a day. 

The reduced form model has flexibility in modifying the flare VOC emissions at desired 

hours. The flare VOC emissions increased when the flare was improperly steamed, and 

the impact of the extra emissions of flare VOC on ozone was assessed by using the 

reduced form model. Increases of daily maximum 8-hour average ozone at 30 monitoring 

sites in the modeling domain indicated that decreased DREs had an impact on most of the 

monitoring sites in the three counties of Harris, Galveston, and Brazoria, as well as on 

some of the monitoring sites in Jefferson County. The largest increase in daily maximum 

8-hour ozone concentrations at the monitoring sites, 2.9 ppb, occurred at a monitoring 

site in Jefferson County when strong westerly wind carried the flare plume to the east. 

This chapter also compared the source contributions of flare VOC emissions at different 

hours at two monitoring sites, one about 20 miles west of the flare and the other about 50 

miles east of the flare. At the site closer to the flare, flare VOC emissions at morning 

hours (6:00 – 10:00) contributed more to ozone concentration than the other hours. At the 
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site in the more remote area, flare VOC emissions at night hours (22:00 – 2:00) 

contributed more to ozone concentration at this site than did flare VOC emissions at the 

other hours. 

 In summary, Chapter 4 assessed the impact of flare DRE’s on ozone formation in 

the Houston area by using HDDM-3D sensitivity analysis. The differences between daily 

maximum 8-hour average ozone concentrations at constant and temporally variable DREs 

indicate significant impact of DRE on ozone concentrations in this region. The most 

significant impact was found when a flare was operated continuously without gas 

recovery. The impact of assist steam on flare VOC emissions and ozone concentrations 

can be large when both the vent gas flow rates and the steam to gas ratios are high. 

6.1.4 Integration of an air quality model with an electricity generation planning model 

        Chapter 5 of this dissertation explored the application of the DDM sensitivity 

technique to integrate air-quality related health effects into an optimization model for 

electricity generation planning. The objective function of the optimization model is the 

total cost of electricity generation, including the air quality-related health costs. 

Incorporating the reduced form air quality model into the electricity generation planning 

model enables estimation of geospatial dependent health costs for different power plants 

and consideration of air quality-related policies in decision making. This chapter 

introduced the construction of a combined model of air quality and electricity planning 

and conducted a case study in Georgia to demonstrate the ability of the combined model 

to account for geospatial dependent air quality-related health costs.  

 The reduced form model of CMAQ was constructed based on sensitivities of 

PM2.5 concentrations to SO2 and NOx emissions from seven EGU point sources, 
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including five major power plants and aggregated sources in the northern and southern 

parts of the state. The different spatial patterns of the sensitivities reflect the dependency 

of the emissions source impact of power plants on locations. SO2 emissions from Plant 

Bowen have the largest impact on PM2.5 concentrations, which is 2 -3μg m , followed by 

Plant Harllee with the second largest impact of 0.9 -3μg m . The source impact of EGU 

NOx emissions is smaller in magnitude compared to that of EGU SO2 emissions.  

 The air-quality related health costs were calculated by using the concentration-

response (CR) function. Both the population density and mortality rates in this function 

were considered to vary with different geographic areas. The air-quality related costs for 

Plant McDonough due to its SO2 emissions were estimated to be $123.3/MWh in July of 

2007, which was the highest among the five EUG point sources. The reason is that Plant 

McDonough is located in Atlanta which has a high population density.   

 In summary, Chapter 5 of this dissertation established a framework for integrating 

the air quality model with the electricity generation planning model. The geospatial 

dependence of the air-quality related health costs were well represented by the integrated 

model. This integration provided an innovative view of the future of power generation 

and public health for the state of Georgia, and potentially other regions, and may make 

possible further research work on air quality-related health costs, air quality policies, and 

electricity generation planning. 

6.2. Recommendations for future research 

 This dissertation has developed an efficient tool that provides important insights 

regarding source apportionment of particulate matter. The reduced form model 

established by this dissertation should have great potential in scientific investigation and 
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policy guidance. The following recommendations suggest the directions for future 

research.   

6.2.1 Application of HDDM-3D of PM to other regions and episode 

 The high-order sensitivity technique for particulate matter developed in this 

dissertation is readily applicable to other locations and seasons. Given different emissions 

characterizations and meteorological conditions, the composition and concentrations of 

particulate matter may vary dramatically. West et al. (1999) indicated that in winter, a 

large area in the eastern U.S. is in the nonlinear regime for formation of particulate 

matter. A more recent study by Goldstein et al. (2009) suggested that the observed high 

aerosol optical thickness in summer time over the southeastern U.S. could be explained 

by secondary aerosol formed by the interaction between biogenic emissions and 

anthropogenic emissions such as NOx and SO2. Assessments of cross-sensitivity 

interactions analogous to those conducted in Chapter 2 could be applied to the 

southeastern U.S. in both summer and winter time to shed light on the source 

contributions to secondary aerosol formation in this region.  

6.2.2 Understanding the influence of uncertainty in meteorological conditions 

 As discussed in Chapter 3, meteorological inputs in an air quality model can 

strongly influence the simulated pollutant concentrations. The case study in Houston 

showed that the bias in simulations of fine particle concentrations was more associated 

with wind speed and temperature. It could be worthwhile to extend the DDM sensitivity 

technique to include sensitivity parameters from meteorological variables such as 

temperature and relative humidity. Even in the absence of DDM sensitivities to these 

meteorological inputs, analysis could be conducted using an ensemble of brute force 
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simulations. For example, we could perturb relative humidity by 5%, 10%, and 15% and 

compare the model simulations of particulate matter concentrations to quantify the extent 

to which different meteorological variables influence the simulated pollutant 

concentrations.  

6.2.3 Assessing the emissions impact from multiple flares 

 The case study in Houston described in Chapter 4 demonstrated that the decrease 

in combustion efficiency of a single flare has the potential to cause over a 1 ppb increase 

in daily maximum 8-hr ozone at monitoring sites. Given the abundance of flares in this 

region, it could be valuable to extend the analysis to other flares located at different 

counties or all the flares in the modeling domain. Analogous analysis could be readily 

applied to several other flares. However, it would be difficult to analyze all the flares 

using the methods introduced in Chapter 4 because the flow rates of vent gas, assist 

steam, and assist gas are different from one flare to another. Moreover, detailed 

information of operating conditions of every flare is not available because some is 

confidential (B. Exum at TCEQ, personal communication). Profiles of operating 

conditions could be assigned to different types of flares, which can be determined by the 

Source Classification Codes from the emission inventory. DDM sensitivity analysis could 

then be conducted to assess the emissions impact of all the flares in this region. 

6.2.4 The impact of air quality regulations on electricity generation planning 

        The integrated model developed in Chapter 5 is able to account for geospatial 

dependency of air quality-related health costs. The case study for power generation 

planning in Georgia serves as a good starting point to explore the potential of the 

integrated model to inform decision making. Future work has been planned to use this 
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model to evaluate the health effects of different fuel types (e.g., coal and natural gas) and 

provide advice on locations and types of EUGs that are planned to be constructed or shut 

down. Constraints could be added to address the impact of air quality regulations on 

electricity generation planning. For example, one constraint could be to bring an 

ensemble of monitors into attainment with the NAAQS. 

6.3. Closing Remarks 

 While much work remains, important insights have been provided by this 

dissertation regarding the formation and interaction of particulate matter and ozone in 

southeastern Texas, the uncertainty in simulated particulate matter, and the applications 

of DDM sensitivities in cost optimization models. Efficient tools such as high-order 

DDM sensitivity analysis for PM and reduced form models of CMAQ have been 

developed and are readily applicable to other conditions. The methods developed by this 

dissertation have great potential in informing policy and scientific investigation and the 

findings of this dissertation provide a valuable reference for future research.  
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