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SUMMARY

The proliferation of mobile devices and advances in geo-positioning technologies

has fueled the growth of location-based applications, systems and services. Many

location-based applications have now gained high popularity and have permeated

the daily activities of mobile users. This has led to a huge amount of geo-location

data generated on a daily basis, which draws significant interests in analyzing and

mining ubiquitous location data, especially trajectories of mobile objects traveling in

road networks (MO trajectories). Mobile trajectories are complex spatio-temporal

sequences of location points with varying sample sizes and varying lengths. Min-

ing interesting patterns from large collections of complex MO trajectories presents

interesting challenges and opportunities which can reveal valuable insights into the

study of human mobility in many perspectives. This dissertation research contributes

original ideas and innovative techniques for mining complex trajectories from whole

trajectories, from subtrajectories of significant characteristics, and from semantic lo-

cation sequences within large-scale datasets of MO trajectories.

Concretely, the first unique contribution is the development of NEAT, a three-

phase road-network aware trajectory clustering framework to organize MO subtra-

jectories into spatial clusters representing highly dense and highly continuous traffic

flows in a road network. Compared with existing trajectory clustering approaches,

NEAT yields highly accurate clustering results and runs orders of magnitude faster

by smartly utilizing traffic locality with respect to physical constraints of the road

network, traffic flows among consecutive road segments and flow-based density of mo-

bile traffic as well as road network based distances. The second original contribution

xiii



of this dissertation is the design and development of TraceMob, a methodical and

high performance framework for clustering whole trajectories of mobile objects. To

our best knowledge, this is the first whole trajectory clustering system for MO trajec-

tories in road networks. The core idea of TraceMob is to develop a road-network

aware transformation algorithm that can map complex trajectories of varying lengths

from a road network space into a multidimensional data space while preserving the

relative distances between complex trajectories in the transformed metric space. The

third novel contribution is the design and implementation of a fast and effective tra-

jectory pattern mining algorithm TrajPod. TrajPod can extract the complete

set of frequent trajectory patterns from large-scale trajectory datasets by utilizing

space-efficient data structures and locality-aware spatial and temporal correlations for

computational efficiency. A comprehensive performance study shows that TrajPod

outperforms existing sequential pattern mining algorithms by an order of magnitude.

xiv



CHAPTER I

INTRODUCTION

The proliferation of mobile devices and advances in geo-positioning technologies have

fueled the growth of location-based applications, systems and services. With the

number of smartphones in use world wide reaching 1.4 billion units by the end of

2013 [1] and predictions of 2 billion units by 2015 [2], LBS revenue is forecasted

to reach an annual global total of $13.5 billion by 2015 [3], up from $4 billion in

2012 [1]. Many location-based applications have now gained high popularity and

have permeated the daily activities of mobile users, for example, Google Maps, Bing

Maps, Google Latitude, Apple’s FindMyFriends, FourSquare and FaceBook check-

ins, to name a few. This has led to a huge amount of geo-location data generated

on a daily basis, has drawn significant interest in analyzing and mining ubiquitous

location data. We broadly classify location-based mining research into two categories

based on the type of location data used as the processing unit for the analysis and

mining of spatial datasets.

• The first class analyzes location data as position points and offers algorithms to

query and mine point-based location data, for example, to find nearby points

of interests or to discover hot-spot locations where people like to gather during

weekends and holidays.

• The second class considers mobile object trajectories (MO trajectories) as units

of location data processing and analysis. Trajectories typically represent moving

paths of mobile objects in road networks or along walking paths. Trajectory

mining aims at deriving new value and deep insights by analyzing and mining

mobile object trajectories.

1



1.1 Motivation

This dissertation in particular focuses on the second class of location-based data min-

ing, where we address the challenges and develop technical solutions for MO trajectory

clustering and pattern mining. Given large-scale datasets of MO trajectories in road

networks, many important questions need to be addressed, such as ”Where are major

traffic flows in the road network?”, ”What is the spatial trend in motion or movement

behavior of mobile users?”, ”Where are the frequent places that many mobile trajec-

tories are passing through during weekdays and weekends?”, ”Are there interesting

trip patterns hidden from the large collection of mobile trajectories?”. On one hand,

these types of questions introduce exciting opportunities for mobile e-commerce and

the mobile LBS industry, because answers to the questions can reveal valuable insights

into the study of human mobility in many perspectives. Moreover, such knowledge

significantly aids a wide range of location-based applications and services including

traffic management, urban planning, geo-marketing and location-based recommenda-

tion systems. On the other hand, mining large-scale trajectories also poses interesting

technical challenges.

The key challenges of MO trajectory analysis lie in the domain specific character-

istics of MO trajectory data. First, MO trajectories are complex objects, consisting of

temporal sequences of spatial location points. These sequences have varying sample

sizes and represent moving paths of varying lengths. Second, trajectories of mobile

users are typically constrained by the road network in which they travel since mobile

objects can only move along road segments and make turns at road intersections.

Third, the number of distinct geometric locations in a trajectory dataset is usually

very large since there are hardly two identical geometric locations are recorded. In

addition, trajectory datasets may contain a lot of outliers due to errors in location

sensing and measurement collection. Thus, modeling trajectories and measuring their

distances and spatio-temporal correlations to facilitate trajectory-based analysis and

2



mining remain open challenges, although distances and spatio-temporal correlations

among point-based locations can be measured efficiently and accurately.

In this dissertation research, we aim at developing algorithms for efficient and

accurate trajectory data modeling and trajectory based computation to analyze and

mine MO trajectories by clustering whole trajectories, cluster subtrajectories of sig-

nificant features and by sequential trajectory pattern mining. We approach the dual

objectives for trajectory data modeling and trajectory-based computation with two

design principles: It should capture the complex spatio-temporal characteristics of

MO trajectories, and be simple enough to support efficient and high quality trajec-

tory mining on a large scale in both online and offline scenarios.

1.2 Technical Challenges

In this dissertation, we aim to address the technical challenges in processing, ana-

lyzing and mining large-scale MO trajectory datasets from three types of trajectory

data workloads: whole trajectories, subtrajectories of significant characteristics, and

semantic location sequences within MO trajectories.

1.2.1 Analyzing and Clustering Whole Trajectories

We argue that a good representation of trajectories and a good metric to measure

the distance between two trajectories are two critical components for efficient and

effective clustering of whole trajectories and for deriving interesting and deep insights

based on trip patterns of mobile users traveling on the roads.

Clustering is one of the most important data mining technique to discover the

grouping structure in datasets. Clustering algorithms for traditional multidimen-

sional data points have been studied extensively in the literature [13, 31, 38, 52, 53,

62, 67, 95, 98], including clustering location data points extracted from mobile object

trajectories. However, there has been limited work on clustering full mobile object

trajectories due to the domain specific characteristics of trajectory data. Unlike
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multidimensional data points, which can be represented by fixed-size vectors for ef-

fective Euclidean distance measurements, trajectories are complex objects consisting

of time-ordered sequences of spatial location points. These sequences have varying

sizes, i.e., the number of recorded locations, and form road network paths of vary-

ing lengths. In addition, some trajectory datasets may contain a lot of outliers due

to errors in data sensing and measurement collecting. MO trajectories may overlap

with one another partially with respect to the road segments. However, some par-

tially overlapped trajectories represent distinctly different trajectory clusters when

grouping whole trajectories. Also, non-overlapping trajectories may be close to one

another semantically or based on road network distance (e.g., mobile objects traveling

on parallel roads), and thus, should belong to the same trajectory cluster. Finally,

it is inefficient to perform clustering directly in the road network space where the

centroid of a set of trajectories is hard and costly to compute. Interestingly, all

these challenges reveal that the trajectory distance measure is a critical centerpiece

for developing a high quality and high performance trajectory clustering algorithm.

Although a number of distance functions have been proposed to measure trajectory

similarities/dissimilarities, none of them are fully specialized for road-network MO

trajectories. Existing distance measurements only consider Euclidean distance and

examine all the recorded positions in a trajectory, while they might give acceptable

performance for similarity trajectory querying (e.g., ”find k nearest neighbours/most

similar trajectories of a given trajectory”), they are not suitable for trajectory cluster-

ing where distance computations are performed within the scope of the whole dataset

at once to discover the clustering structure.

1.2.2 Analyzing and Clustering Sub-trajectories

Many mobile objects may not travel the same route but they may still share similar

parts of their whole trip. Clustering trajectories as a whole might miss interesting
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groups of similar portions from MO trajectories. Therefore, clustering sub-trajectories

is another important direction in trajectory clustering. In such component-based

trajectory clustering schemes, trajectories are split into sub-trajectories which are

then used as clustering units. As a result, a trajectory can have different por-

tions belonging to different sub-trajectory clusters. However, existing approaches

to sub-trajectory clustering are mainly based on density and Euclidean distance mea-

sures [11,36,56,58,59,74,91]. While previous approaches show reasonable performance

for clustering trajectories of objects moving freely (e.g., the movement of animals

through a forest or the movement of hurricanes across an ocean), they are inap-

propriate for clustering MO trajectories. We argue that when the utility of spatial

clustering of mobile object trajectories is targeted at road-network aware location-

based applications, density and Euclidean distance are no longer effective measures.

In the context of a road network, traffic flows in the road network, the flow-based

density characterization and the moving speeds of mobile objects become important

factors which are needed to be captured effectively to find clusters of interesting

sub-trajectories.

1.2.3 Mining Trajectory Patterns as Sequences of Semantic Locations

By clustering whole trajectories and sub-trajectories, we can reveal interesting motion

and movement patterns of mobile users as collective groups. We argue that it is also

interesting to analyze how trajectories share some subsequence of locations, or, what

are the sequences of locations within the trajectory dataset, which are visited by

many mobile users. Such trajectory sequence patterns for instance can reveal what

types of mobile users are sharing the same or similar mobility patterns during their

daily trips.

Sequential pattern mining has long been recognized as a primary mining task for

analyzing sequential data, including purchase history, web logs and biological data.
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The problem of sequential pattern mining has been studied extensively since it was

first introduced by R. Agrawal and R. Srikant [10] in 1995 for shopping basket data,

which are time-ordered list of shopping transaction event where each event is a set

of items. Intuitively, existing sequential pattern mining algorithms can be applied

to mine trajectory patterns since MO trajectories are temporal sequences of location

points representing moving paths of mobile objects in road networks. However, since

the granularity level of raw GPS locations is very low, an exact pattern of GPS

locations hardly occurs multiple times in a trajectory dataset. Thus, the traditional

notions of sequential patterns in transactional data cannot be applied directly to MO

trajectory sequential pattern mining. Here, each event in a trajectory has only one

item which is a road network location, as a user can only be at one location at a

time, instead of multiple items per event as in traditional sequence data. Moreover,

since MO trajectories are constrained by the road network as mobile objects can only

move within road segments, there is a high degree of overlap in their temporal orders

and spatial proximity. Therefore, general sequential pattern mining algorithms when

applying to MO trajectories, without considering and utilizing their spatio-temporal

characteristics, can suffer from exponential growths in space and computation.

The main challenges for efficient sequential pattern mining for MO trajectories

include (1) defining a set of meaningful trajectory patterns as the desired mining

output, (2) modeling MO trajectories with space-efficient data structures and (3)

devising computational-efficient operation for tracking trajectory pattern frequency.

The goal is to find the complete set of trajectory patterns, which helps discover

interesting association rules between locations in large-scale MO trajectory datasets

and can be applied in broad location-based applications such as trip recommendation,

location prediction, location-based advertisement.
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1.3 Dissertation Statement and Contributions

Before proceeding to the concrete contributions of this dissertation research, the

dissertation statement can be formulated as follows:

Dissertation Statement: This dissertation is the first one to provide methodical

frameworks and configurable suites of algorithms for processing, clustering and mining

mobile object trajectories in road networks, with high performance and high quality,

by innovative utilization of complex spatial-temporal characteristics of mobile object

trajectories, powered with novel data structures and computation models.

This dissertation makes three unique contributions.

The first unique contribution of this dissertation is to develop NEAT, a three-phase

road-network aware trajectory clustering framework for clustering mobile object sub-

trajectories. Our method takes into account a number of road-network aware and

motion aware metrics to organize MO sub-trajectories into interesting and meaning-

ful spatial clusters, such as the traffic locality characterized by the physical constraints

of the road network, the traffic flows among consecutive road segments, the flow-based

density of traffic and shortest path distance. First, for a given set of MO trajectories,

the road intersections can be viewed as the initial partitioning points where trajec-

tories can be split into atomic sub-trajectories, called trajectory fragments. Second,

the trajectory fragments corresponding to a road segment can be viewed as a locally

dense cluster of objects involved in the given set of trajectories. Third, trajectory

fragments should be clustered based on their continuity with regard to the traffic

flows on the consecutive road segments. In addition, the proximity measure in a

road network space uses shortest path distance instead of Euclidean distance. NEAT

efficiently discovers clusters of sub-trajectories which describe both highly dense and

highly continuous traffic flows of mobile objects in a road network.
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The second original contribution of this dissertation is the design and develop-

ment of the TraceMob framework for clustering full trajectories of mobile objects.

TraceMob has three unique features. First, we introduce a grid-based technique to

measure the distance between two mobile object trajectories of varying sizes. Second,

we develop a multidimensional scaling algorithm to transform complex MO trajecto-

ries in a road network space into multidimensional points in a Euclidean space while

preserving the relative distances of trajectories in the transformed metric space. This

transformation enables us to perform k-means clustering effectively on the mapped

multidimensional points of the trajectories. We introduce a grid-based cluster val-

idation metric as an integral part of the TraceMob framework for measuring the

quality of trajectory clusters. Extensive experiments show that TraceMob outper-

forms state of art approaches in terms of both robustness and effectiveness.

The third novel contribution of this dissertation is the TrajPod algorithm for

trajectory pattern mining. We define trajectory patterns as time-ordered sequences

of semantic spatial units and propose a fast locality-aware approach to extract the

complete set of frequent trajectory patterns from a given MO trajectory dataset.

We introduces a vertical layout of MO trajectories consisting of trajectory id-lists

associated with the semantic spatial units, which are partitioned into locality-aware

sublists. We also use a space-efficient representation for multiple occurrences of a se-

mantic spatial unit in a trajectory with respect to each sublist. These data structures

combined with locality-aware join operators allow our method to mine trajectory

patterns efficiently with early candidate pruning and fast support counting. A com-

prehensive performance study shows that TrajPod outperforms existing sequential

pattern mining algorithms by an order of magnitude.
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1.4 Organization of the Dissertation

The rest of this dissertation will be organized as a series of chapters, each one ded-

icated to a specific topic within the scope of mobile object trajectory mining. Each

chapter will be organized in the following format. The introduction section gives

the problem background, motivation, guidelines and overview of our approach. The

main section provides an in-depth presentation of our technical contributions. The

experimental evaluation section demonstrates the efficiency and effectiveness of our

approach. The related work section gives a review of relevant literature. The last sec-

tion concludes the chapter. More specifically, Chapter 2 and Chapter 3 are dedicated

to MO trajectory clustering. Chapter 2 presents NEAT, our three-phase road-network

aware clustering framework which integrates locality, flow and density measures to

discover spatial clusters of MO sub-trajectories representing higly dense and highly

continuous traffic flows. Chapter 3 presents TraceMob, a methodical approach to

clustering MO trajectories as a whole with a novel trajectory distance measure and

robust trajectory-to-multidimentional point transformation for effective partitioning

clustering. Chapter 4 is dedicated to trajectory pattern mining where we formu-

late our desired trajectory patterns and present TrajPod, a fast locality-aware MO

trajectory pattern mining algorithm which achieves both space efficiency and com-

putation efficiency. Chapter 5 presents the design of our TrajBox software toolkit

for MO trajectory processing and mining to support the development of trajectory-

based applications. Chapter 6 discusses future research directions and concludes the

dissertation.

1.5 Bibliographic Notes

Chapter 2 contains material from publications co-authored with Ling Liu and Edward

Omiecinski [40, 43]. Material in Chapter 3 appears in our paper [42]. Material

in Chapter 4 appears in our paper [41]. The implementations described in the
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dissertation are available at [4].

10



CHAPTER II

ROAD-NETWORK AWARE TRAJECTORY

CLUSTERING: INTEGRATING LOCALITY, FLOW AND

DENSITY

Mining trajectory data has been gaining significant interest in recent years. How-

ever, existing approaches to trajectory clustering are mainly based on density and

Euclidean distance measures. We argue that when the utility of spatial clustering

of mobile object trajectories is targeted at road-network aware location-based appli-

cations, density and Euclidean distance are no longer the effective measures. This

is because traffic flows in a road network and the flow-based density characteriza-

tion become important factors for finding interesting trajectory clusters. We propose

NEAT−a road-network aware approach for fast and effective clustering of trajectories

of mobile objects travelling in road networks. Our approach carefully considers the

traffic locality characterized by the physical constraints of the road network, the traffic

flow among consecutive road segments, and the flow-based density to organize tra-

jectories into spatial clusters in a comprehensive three-phase clustering framework.

NEAT discovers spatial clusters as groups of sub-trajectories which describe both

dense and highly continuous flows of mobile objects. We perform extensive exper-

iments with mobility traces generated using different scales of real road networks.

Experimental results demonstrate the flexibility of the NEAT system and show that

NEAT is highly accurate and runs orders of magnitude faster than existing density-

based trajectory clustering approaches.
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2.1 Introduction

Recent years have witnessed a rapidly growth in the field of location-based services

(LBSs) and applications due to the pervasive use of GPS receivers and WiFi or

location sensing technology embedded in mobile devices (e.g., cellular phones, auto-

mobiles). With the number of smartphones in use world wide reached 1.038 billion

units in 2012 and is predicted to reach 2 billion units by 2015 [2], LBS revenue is

forecasted to reach an annual global total of $13.5 billion by 2015 [3], up from $4

billion in 2012 [1]. Ubiquitous GPS/WiFi-enabled mobile devices generate a huge

amount of trajectory data, which are sequences of time-ordered locations of mobile

objects. There has been a lot of work on collecting, storing, indexing and querying

trajectories of mobile objects [47] [22] [18] [28] [11,46,71]. We refer to the trajectories

of mobile objects in a road network as MO trajectories. Clustering trajectories of

these objects provides the most value and has a wide range of LBS applications. For

example, the resulting clusters would help provide knowledge about traffic flows as

well as dense areas in a road network. Such knowledge is very useful for applications

in vehicular ad hoc network (VANET) [49] [72], traffic monitoring [63], transportation

planning [51] and location-based advertising [35,82,92]. We briefly present below two

interesting application scenarios which show the usefulness of trajectory clustering

and motivate us to study the problem of clustering trajectories of mobile objects

moving in a spatially constrained road network.

Public transit planning. The establishment of public transportation systems

always target the road network routes that can maximize the utilization of public

transportation vehicles. Since a bus runs along consecutive road segments, in order

to make the best use of the bus service regarding the number of passengers it can

serve and to improve public transport convenience, e.g., reduce the number of transit

stops for passengers, knowing which routes with not only high density but also high

continuity helps optimize rail/bus line and terminal arrangement.
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Location based advertising on mobile devices. Mobile advertisers are trying

to improve the matching of user locations and marketing information. It would be

beneficial for local stores to send advertisements, e.g., special offers or discounts, to

mobile devices taking path in major traffic flows passing by their stores. For example,

consider when a store wants to send out text messages with a discount coupon. If

the text message is sent to a group of people in a nearby dense road segment which

is also part of a route with significant traffic flow leading to the store, it will better

increase the chance that people receiving the coupon will actually come to the store

during their trips, compared to when the message is sent to a dense area but does

not belong to the traffic flow passing by their store.

A straight forward solution to address this clustering problem is to adapt the tra-

ditional density-based clustering algorithms (e.g., DBSCAN [31] or OPTICS [13] - a

variant of DBSCAN) to group similar MO trajectories. However, clustering trajecto-

ries as a whole does not take into account similar sub-trajectories since trajectories

have various lengths. This is addressed by partial trajectory clustering. The TraClus

algorithm [36] is the representative method for clustering portions of a trajectory

instead of the whole trajectory. Specifically, TraClus is a two phase clustering algo-

rithm. In the partitioning phase, each trajectory is first examined sample by sample

to identify a sequence of characteristic points at which the moving object makes a

sharp turn, called a rapid change in direction, and then the trajectory is partitioned

into line segments by these characteristic points. The grouping phase performs a

DBSCAN style clustering on those line segments to find similar sub-trajectories. A

drawback to this and most similar partial trajectory clustering approaches is that

they only consider distances in Euclidean space. While they show reasonable per-

formance for clustering trajectories of objects moving freely (e.g., the movement of

animals through a forest or the movement of hurricanes across an ocean), they are in-

appropriate for clustering MO trajectories. We argue that clustering MO trajectories
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should take into account the traffic locality characterized by the spatial constraints

of the underlying network, e.g., road segments and intersections, the movement be-

havior of mobile objects as well as the traffic flows on consecutive road segments, in

addition to mobile object density and the road network proximity. We illustrate our

positional statements with the following set of examples.

Example 1 We have a set of four objects moving along the same road segment and

produce four MO trajectories as shown in Figure 1(a). In the context of a road

network, those objects have similar movement behavior with respect to the road

segment. Therefore, their trajectories should be grouped together regardless of the

difference in their specific movement on the road segment. Hence, it is unnecessary

to further partition these trajectories, even though some rapid changes in direction

are found in those trajectories.

Example 2 Consider two trajectories TR1 and TR2 in Figure 1(b). TR1 describes

an object moving on road segment RS1, changing lanes, and then making a left turn

to road segment RS2. TR2 describes another object moving straight from RS1 to

RS3. If we use the TraClus algorithm, to cluster the MO trajectories, TR1 will be

partitioned into four line segments: A1A2, A2A3, A3A4, and A4A5, while TR2 consists

of only one line segment that is too long to be grouped with the segments of TR1 on

RS1 (A1A2, A2A3, and A3A4). We argue that although there is no significant turning

point found in TR2, we should still partition it into two line segments fragments

corresponding to the two distinct road segments RS1 and RS3.

Example 3 In Figure 1(c), road segments RS1 and RS3 share a larger number of

mobile objects than that of road segments RS1 and RS2. Thus, when consider traffic

continuity, traffic on road segment RS1 should be merged with traffic on RS3 rather

than RS2.
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(a) An example of the movement of four vehicles on a road segment
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(b) Parts of two trajectories on the same road segment that are
overlooked in TraClus
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(c) Traffic on road segment RS1 should be merged with traffic on
road segment RS3 rather than RS2
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(d) An example showing the difference between the Euclidean proximity
and the road network proximity

Figure 1: Illustrative examples

Example 4 We have three trajectories: TR1 and TR2 are on the same road segment,

and TR3 is on another road segment as shown in Figure 1(d). Using the Euclidean
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distance, TR3 is closer to TR2 than TR1, even though using the road network distance

(either segment length based or travel time based), TR1 is closer to TR2 than TR3.

In this chapter, we present NEAT−a road NEtwork Aware approach to Trajectory

clustering. To the best of our knowledge, NEAT is the first technique to address the

MO trajectory clustering problem by taking into account the continuity of movements

restricted by the underlying road network, the network proximity and the traffic flows

among consecutive road segments to organize MO trajectories into spatial clusters.

The clusters discovered by NEAT are groups of sub-trajectories, which describe both

dense and highly continuous traffic flows of mobile objects. A unique feature of the

NEAT framework is the formulation of the three phase trajectory partitioning, merg-

ing and clustering process. Specifically, based on the observations from the above

examples, we identify three important design guidelines. First, for a given set of MO

trajectories, the road intersections can be viewed as the initial partitioning points

where trajectories can be split into atomic sub-trajectories called trajectory frag-

ments. Second, the trajectory fragments corresponding to a road segment can be

viewed as a locally dense cluster of objects involved in the given set of trajectories.

Third, trajectory fragments should be clustered based on their continuity with regard

to the traffic flows on the consecutive road segments. In addition, the proximity mea-

sure in a road network space uses shortest path distance instead of Euclidean distance.

We perform extensive experiments with road network mobility traces generated using

different scales of road network maps. Our experimental results demonstrate that the

NEAT approach is highly efficient and accurate. It can run more than three orders

of magnitude faster than existing density-based trajectory clustering approaches.

The rest of this chapter is organized as follows. Section 2.2 presents the refer-

ence road network model and an overview of our NEAT computational model and

framework architecture. Section 2.3 describes the algorithms used in each of the three

phases of the NEAT framework. We report our experimental results in Section 2.4,
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discuss related work in Section 2.5 and conclude the chapter in Section 2.6.

2.2 NEAT model and framework

We first describe a reference model for road networks and present the basic concepts

and operations of the NEAT model. We end this section with a brief overview of the

NEAT three phase framework and an illustrative example.

2.2.1 Road-Network Model

A road network is represented by a single directed graph G = (V , E), composed of the

junction nodes V = {n0, n1, . . . , nN} and directed edges E = {(sid, ninj)|ni, nj ∈ V}.

An edge e = (sid, ninj) ∈ E representing a road segment connecting two junctions

ni and nj in the real road network. The listed order ninj indicates the direction from

ni to nj of the road segment. For road segments which have bidirectional lanes, we use

edge e = (sid, ninj) and e′ = (sid, njni) to denote the fact that the road segment is

bi-directional and we label each edge with the corresponding road segment identifier

sid. The length of a road segment e = (sid, ninj) is denoted by length(ninj) .

Let L(e) denote the set of adjacent edges of e = (sid, ninj) and Lni(e) denote

the set of adjacent edges of e, which connect to e at junction ni. Hence, we have

L(e) = Lni(e)∪Lnj(e). If ni is a dead-end node connected by edge e, then Lni(e) = φ.

If two edges ei and ej are adjacent, function I(ei, ej) will return the junction node

(intersection) of these two edges. A route in the road network G is a network path

e0e1...ek such that ei+1 ∈ L(ei) (0 ≤ i < k).

We define a road network location of a mobile object as a tuple of three elements:

sid − the identifier of the road segment on which this object resides, the geometric

coordinates (x, y) of the position of the object on the road segment sid, and the times-

tamp t when the position is recorded, denoted by l = (sid, x, y, t). A road network

location can also be represented by a tuple (sid, p, t) where p is the offset of the loca-

tion from the start junction of the road segment identified by sid. We use the (x, y)
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coordinates to represent location in this chapter due to the popularity of geometric

coordinates. We measure the network proximity between two network locations using

the network-based distance metric [95]. Let li and lj denote the network locations

that belong to the edge ei = (sidi, nanb) and the edge ej = (sidj, ncnd) respectively

and ei 6= ej. The network distance between li and lj is the length of the shortest path

between li and lj, denoted by distN(li, lj). We use the terms point and location inter-

changeably to refer to a road network location and the terms junction, intersection

and endpoint interchangeably to refer to a road junction. We use (sid, ninj) and ninj

interchangeably to denote a segment connecting two end nodes ni and nj when there

is no confusion.

2.2.2 NEAT model

In this section, we define the basic concepts and operations of our road network aware

trajectory model with illustrative examples.

For each mobile object, each of his/her trips with a beginning location and a

destination location forms a trajectory. A trajectory, denoted by TR = (trid, l0l1...ln),

is a time-ordered sequence of locations l0, l1, ..., ln of an MO in the road network over

time and uniquely identified by a trajectory identifier trid. A subsequence of points in

a trajectory forms a sub-trajectory. Note that in our model, the temporal information

in a trajectory, i.e., the recorded timestamps, determines the order of locations in the

trajectory. Therefore, the direction of movement of an object is always preserved. For

presentation convenience, we do not explicitly mention the directions of movement

in the definitions and figures used in the subsequent sections of the chapter when no

confusion occurs.

Definition 1 (t-fragment) Let TR = {trid, l0l1...ln} denote a trajectory consisting

of n+1 points and trid denote the trajectory identifier. A t-fragment of TR, denoted

by tf = {trid, sid, lklk+m}, represents a sub-trajectory lklk+1...lk+m consisting of m+1

18



consecutive points extracted from TR which lie on the same road segment sid, i.e.,

li.sid = lj.sid (∀i, j : k ≤ i, j ≤ k +m, i 6= j).

There can be more than one t-fragment associated with a road segment for a given

trajectory (in case the mobile object travels on the road segment multiple times during

her trip).

Definition 2 (base cluster) Let T denote a set of trajectories and e denote a road

segment. A base cluster S with respect to e is a group of distinct t-fragments, each

of these t-fragments belongs to a trajectory in T and is associated with e. The base

cluster S is formally defined as follows:

S = {tfi|TR(tfi) ∈ T , tfi.sid = e.sid} where TR(tfi) denotes the trajectory

from which the t-fragment tfi ∈ S is extracted. The road segment e is called the

representative of the base cluster S, and is denoted by eS. The base cluster S is said

to be associated with the road segment eS.

We call a trajectory that has t-fragments in a base cluster the participating trajectory

of the base cluster.

Definition 3 (trajectory cardinality) The set of participating trajectories of a base

cluster S is defined as: PTr(S) = {TR(tfi)|∀tfi ∈ S}. The cardinality of PTr(S),

denoted by |PTr(S)|, is called the trajectory cardinality of S.

Definition 4 (cluster density) The density of a base cluster S, denoted by d(S), is

the number of t-fragments in S. Given B = {S0, S1, ..., SN} is a set of base clusters,

we call the base cluster with the highest density in B the dense-core of B, denoted

by densecore(B).

Definition 5 (netflow) The netflow between two base clusters Si and Sj, denoted

by f(Si, Sj), is the number of trajectories participating in both clusters: f(Si, Sj) =

|PTr(Si) ∩ PTr(Sj)|
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The function netflow between two base clusters computes the number of common

objects traveled on both representative road segments eSi and eSj .

Definition 6 (f -neighborhood) Let B denote a set of base clusters, Si denote a base

cluster and nu denote one endpoint of eSi . The f -neighborhood of Si with respect

to nu, denoted by Nf (Si, nu), is the set of base clusters that have at least one com-

mon participating trajectory, and is formally defined as: Nf (Si, nu) = {Sj| eSj ∈

Lnu(eSi) & f(Si, Sj) > 0}.

Let nv be the other endpoint of eSi . We define the f -neighborhood of Si with

respect to eSi as: Nf (Si) = Nf (Si, nu) ∪ Nf (Si, nv). Each Sj ∈ Nf (Si) is called the

f -neighbor of Si. Note that the f -neighbor is a symmetric relation.

Definition 7 (maxFlow-neighbor) Let Si denote a base cluster and nu denote one

endpoint of eSi . We call Sk themaxFlow-neighbor of Si at nu, denoted bymaxFlow(Si, nu),

if f(Si, Sk) = max{f(Si, Sj)| Sj ∈ Nf (Si, nu)}. f(Si, Sk) is called a maxFlow of Si.

Definition 8 (flow cluster) A flow cluster (or a flow for short) is an ordered list of

base clusters, denoted by F = {S0, S1, ..., SN}, where Si+1 ∈ Nf (Si)(0 ≤ i < N) and

eS0eS1 ...eSN forms a route in the road network. We call eS0eS1 ...eSN the representative

route of F , denoted by rF .

Since a base cluster is comprised of t-fragments and a flow cluster is comprised of

base clusters, we say that a flow cluster is comprised of t-fragments. Therefore the

definition of trajectory cardinality also applies to a flow cluster. We define the netflow

between a flow cluster F and a base cluster S as f(F, S) = |PTr(F ) ∩ PTr(S)|.

Figure 2(a) shows a trajectory that can be represented by a sequence of three

t-fragments A0A1, A1A4 and A4A6. In Figure 2(b), we have five trajectories located

on four road segments n1n2, n2n3, n2n4 and n2n5. There are three t-fragments which

lie on n1n2. Those three t-fragments are grouped together in base cluster S1 whose
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representative road segment is n1n2. In total, we have a set of base clusters B =

{S1, S2, S3, S4}. The density of S1 is d(S1) = 4. Similarly, we have d(S2) = 3,

d(S3) = 1 and d(S4) = 2. S1 is the dense-core of B since d(S1) = 4 is the highest

density. The netflows among these base clusters are: f(S1, S2) = 2, f(S1, S3) = 1,

f(S1, S4) = 1, f(S2, S3) = 0 and f(S2, S4) = 1. The f -neighborhood of S1 with

respect to n2 is Nf (S1, n2) = {S2, S3, S4}, in which S2 is the maxFlow-neighbor of

S1. The possible flow clusters include {S1, S2}, {S1, S3}, {S1, S4} and {S2, S4}.
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(a) A trajectory has three t-fragments
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(b) An example of base clusters and flow cluster

Figure 2: Examples of the elements in the NEAT model
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2.2.3 NEAT Framework Overview

Given a road network G = (V , E) and a set of N trajectories collected from mobile

objects travelling on G, denoted by T = {TR1, TR2, ..., TRN}, NEAT performs road

network aware trajectory clustering in three phases:

Phase 1 - Base cluster formation: We transform the given set of MO trajectories

into a set of trajectory fragments (t-fragments). Then we organize these t-fragments

into base clusters by grouping those t-fragments that correspond to the same road

segment into one base cluster.

Phase 2 - Flow cluster formation: We selectively merge base clusters into flow

clusters based on the major mobility flows and the flow continuity inherent in the

given set of trajectories.

Phase 3 - Flow cluster refinement : We optimize the clustering result using a

density-based refinement method. Our density-based optimization modifies the widely-

used Hausdorff distance [16] with the shortest path measurement and adapts the

DBSCAN clustering algorithm [31].

The final result produced by NEAT is a partitioning of the given MO trajectories

into a set of trajectory clustersO = {C1, C2, ..., CK} where each cluster Ci(0 ≤ i ≤ K)

contains a set of trajectory fragments satisfying two criteria:

• High density : the trajectory fragments in the same cluster are within the net-

work proximity of each other.

• High continuity : the trajectory fragments in the same cluster show a major

traffic flow in the given trajectory data.

The NEAT system uses 3-tier client/server architecture. Each client node acts as a

mobile device which records its locations, sends its trajectories to a NEAT server and

makes requests to the server to get trajectory clustering results for a particular road

network. NEAT server also distributes trajectory datasets across multiple nodes in a
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cluster. These data nodes can perform some data preprocessing tasks. In this chapter,

we focus on the trajectory clustering application running on the NEAT server.
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Figure 3: An example of three phase clustering in the NEAT framework.

Figure 3 illustrates the three phase NEAT framework. Consider a set of tra-

jectories located on 12 road segments in an example road network as shown in the

upper-left of Figure 3. In Phase 1, a set of base clusters are constructed from the

given set of trajectories (the upper-right of Figure 3). In Phase 2, we utilize road net-

work information and mobile object movement characteristics to group base clusters

into flow clusters. Important operations include computing the netflows, finding the

f -neighborhoods and compute the maxFlow-neighbors. For our example, the result

of this phase is a set of three flow clusters {F1, F2, F3} (the bottom-right of Figure 3).

In Phase 3, we refine the resulting flow clusters by merging those flow clusters that
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are close in terms of a network based distance measure and a distance threshold. In

Figure 3, F1 and F3 are merged in Phase 3 to form a larger trajectory cluster. The

two clusters C1 and C2 shown in the bottom-left of Figure 3 are the final result of

clustering for this specific example.

2.3 Three phase trajectory clustering

In this section, we present in details the algorithms used in the NEAT clustering

framework to produce base clusters in Phase 1, flow clusters in Phase 2 and the final

trajectory clusters in Phase 3.

2.3.1 Phase 1 - Base Cluster Formation

We perform the base cluster formation in two steps. First, we examine the input set

of MO trajectories and partition each MO trajectory into a sequence of t-fragments.

Second, we group those t-fragments that belong to the same road segments into one

base cluster.

2.3.1.1 Partitioning Trajectories into t-fragments

Since a mobile object moves along contiguous road segments, two consecutive loca-

tions recorded in a MO trajectory are either on the same road segment or on two

different road segments. In the latter case, the two different road segments are either

contiguous or lie on the route (travel path) of the mobile object such that they are

connected through a sequence of road junction nodes on the same path. For each tra-

jectory TRk = {tridk, l0l1...ln} in the given trajectory dataset, we start the t-fragment

extraction by examining TRk from the first location l0 to the last location ln in the

sequence of location samples {l0l1...ln} of the trajectory. Based on the fact that a

mobile object has to go through the road intersection when moving between two con-

tiguous road segments, we take every two consecutive points in the trajectory, say li

and li+1, and check if their road segment identifiers, denoted by sid(li) and sid(li+1)
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respectively, are different. If sid(li) 6= sid(li+1), we know that li and li+1 are on dif-

ferent road segments. If they are contiguous, we can obtain the road junction node

that intersects these two road segments. If the two road segments happen to be not

contiguous, we can obtain the sequence of road junction nodes connecting them on

the travel path of the object using the map-matching approach [89]. Next, we insert

the obtained junction node(s) as new points in between li and li+1 in the trajectory

being examined. The junction nodes added to a trajectory in this phase are marked

as different points than the original location samples. After examining every point in

a given trajectory TRk, the sequence of junction nodes added to TRk will serve as the

trajectory splitting points used to partition the trajectory into t-fragments. When a

set of trajectories are given as time series of geometric coordinates, NEAT will first

preprocess the set of trajectories using map-matching (MM) algorithms such that

each point in a trajectory is mapped to a road network location as defined in Section

2.2.1. We use the SLAMM map-matching algorithm [89] in this data prepocessing

step. MM algorithms for bulk location data are more effective as noted in [89] because

look-ahead and look-around algorithms can catch many known errors of earlier MM

algorithms, such as map-matching location samples between two nearby parallel road

segments.

By transforming a trajectory into a set of t-fragments, only the first point and

the last point in the original trajectory are kept, together with the newly inserted

road junction points. These points play critical roles in extracting t-fragments and

constructing base clusters in the next step of Phase 1 as well as in subsequent phases

of NEAT. Furthermore, the sequence of t-fragments extracted from a trajectory still

maintains the traveling route, the movement direction as well as the identifier of the

original trajectory.

25



2.3.1.2 Grouping t-fragments into Base Clusters

We examine the t-fragments extracted from the MO trajectories and group them

by their road segment identifiers. Each group of t-fragments corresponding to a

road segment forms one base cluster with the road segment as its representative

(Definition 2). As discussed in Section 2.1, the t-fragments on the same road segment

are considered close in terms of network proximity and they display similarity in the

movement of their mobile objects. We compute the density of the resulting base

clusters (Definition 4), then sort them by their densities in descending order. The

output of Phase 1 is a sorted list of base clusters with the first base cluster as the

dense-core of the set of base clusters. The base clusters are used as the building

blocks of our flow-based clustering in the next phase. We will use flow and density

controlled merging algorithms to construct the final trajectory clusters of a given

trajectory dataset T .

2.3.2 Phase 2 - Flow Cluster Formation

The flow-based clustering algorithm takes as an input the list of base clusters B

produced from Phase 1. It starts by selecting one base cluster in B as the first initial

flow cluster. It then expands this initial cluster by adding other base clusters one at

a time such that the representative road segments of the base clusters selected for

merging are concatenated to make a route. This expanding process will stop when

every base cluster in B has been examined for its potential to be merged with existing

flow clusters. We consider flow, density and road speed limit as three characteristics

of a traffic stream to define a set of merging criteria. We construct flow clusters by

grouping base clusters according to these criteria. We discuss below how to choose

the initial base cluster and determine which base clusters are the best candidates for

merging with the flow cluster under consideration.
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2.3.2.1 Density-based Flow Cluster Initialization

In the first prototype of NEAT, we take the dense-core of the density-ordered list of

base clusters B to begin the flow-based clustering process. There are at least two

reasons for choosing densecore(B) as the initial flow cluster to start Phase 2. Given

that a major traffic stream usually covers the road segment(s) with the highest traffic

density in the road network, if we randomly pick a base cluster in B to initialize a flow

cluster, it might lead to a flow cluster that describes a negligible traffic stream and

will eventually be filtered out. In addition, choosing densecore(B) also guarantees

that the set of base clusters are merged in a deterministic order. Hence, the resulting

flow clusters are always the same for the same input set of trajectories.

2.3.2.2 f -neighbor Merging for Flow Clusters

In this section, we describe how to merge a base cluster into an existing flow cluster.

Suppose we are in the process of expanding a flow cluster F , which is in the form of

an ordered list of base clusters, denoted by {SaSa+1 . . . Sb−1Sb}. We extend the list

by inserting a base cluster either at the front or at the end of the list. Inserting a base

cluster at the front of the list is performed similarly to inserting a base cluster at the

end of the list. Let nu denote the other end point of eSb other than the intersection

I(eSb−1 , eSb) of the two representative road segments of base clusters Sb−1 and Sb. The

base cluster Sb+1 to be added to the end of the list has to be an f -neighbor of Sb

with respect to nu, i.e., Sb+1 ∈ Nf (Sb, nu). As it is well known that flow, density and

velocity are the three variables of traditional theory for uninterrupted traffic flow [84],

we choose Sb+1 among the base clusters in Nf (Sb, nu) by considering the flow factor

q, density factor k and speed limit factor v.

Definition 9 Given a base cluster S and nu as one endpoint of road segment eS, the

flow factor q, density factor k and speed limit factor v of a base cluster Sj ∈ Nf (S, nu)
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with respect to S are defined respectively as follows:

q =
f(S, Sj)

|PTr(S)|
(1)

k =
d(Sj)

d(S) +
∑

Si∈Nf (S,nu) d (Si)
(2)

v =
speed(Sj)∑

Si∈Nf (S,nu) speed (Si)
(3)

where speed(Sj) is the speed limit of eSj .

Definition 10 Given a base cluster S and nu as one endpoint of eS, the merging

selectivity of a base cluster Sj ∈ Nf (S, nu) is defined as:

SF (S, Sj) = wq × q + wk × k + wv × v (4)

where the coefficients wq, wk and wv determine the weights of q, k, v respectively.

The weights wq ≥ 0, wk ≥ 0 and wv ≥ 0 satisfy wq + wk + wv = 1.

Here we assume that S is currently either the first element or the last element of a

flow cluster F . Thus, selecting a base cluster to merge with F implies selecting a base

cluster to merge with S. The three factors q, k, v are computed for each candidate base

cluster Sj and normalized between [0,1] to better represent their relative capability

of extending the flow cluster under examination to form a route with high continuity

and density as our clustering objectives. Specifically, the flow factor q measures

the relative netflow between S and Sj, thus, high q means that Sj maintains high

continuity of the traffic flow when merging with S. The density factor k measures the

relative density of Sj among neighboring base clusters at the road junction shared

with S, namely nu, which contributes to the density characteristic of the extended

flow. The speed limit factor v measures how fast mobile objects can move within

Sj compared to its neighbors at nu, which is also a capable metric to find popular

routes as mobile objects tend to travel following routes with either shortest distances
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or shortest travel times. In Definition 10, we combine all three factors q, k, v under a

weighing scheme to select the most relevant base cluster to merge with respect to our

clustering objectives. According to the above definitions, the base cluster in Nf (S, nu)

which has the highest merging selectivity, denoted by SFmax, will be chosen to merge

with S.

Each base cluster which has been merged into a flow cluster is removed from B.

We also use a threshold minCard for the trajectory cardinality of a flow cluster to

filter out those flow clusters whose trajectory cardinalities are smaller than minCard.

Finally, the condition to stop expanding the list {SaSa+1 . . . Sb−1Sb} at the end of the

list is when Sb has no f -neighbor with respect to its endpoint nu, i.e., Nf (Sb, nu) = ∅.

A similar condition is applied to stop expanding the list at the front. When both

conditions are reached, we add the resulting flow cluster to W , the output set of flow

clusters in Phase 2. Then, we begin the next iteration of flow-based clustering with

the remaining base clusters in the list B with the same process as described above,

until all the base clusters are assigned to flow clusters, i.e., B becomes empty.

2.3.2.3 Decisions on f -neighbor Merging

Suppose we are at a merging step and the highest merging selectivity at this step

is SFmax. We discuss the case when there are more than one base cluster which

have the merging selectivity values of SFmax at a merging step. Suppose a base clus-

ter S is at one end of an intermediate flow cluster F and S has m equally qualified

neighbors S1, S2, . . . , Sm to merge with respect to their merging selectivity values, i.e.,

SF (S, S1) = . . . SF (S, Sm) = SFmax. In our flow-based clustering algorithm described

above, we randomly pick one base cluster in {S1, S2, . . . , Sm}. We call it “random

SFmax” merging scheme. Here we propose two schemes in which instead of randomly

picking, we carefully consider the potential merging opportunity of each equally qual-

ified base cluster, called “look-back” and “look-ahead” schemes respectively. Both
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schemes focus on the flow property of the traffic stream.

 

Figure 4: An example of a merging iteration in which a base cluster S at the end of an
intermediate flow cluster F has two neighbors with SF (S, Si) = SF (S, Sj) = SFmax

Look-back Merging. We compare the netflows between the flow cluster un-

der examination and m base clusters f(F, Si), f(F, S2), ..., f(F, Sm) and choose one

Sj(1 ≤ j ≤ m) such that f(F, Sj) = max{f(F, S1), f(F, S2), ..., f(F, Sm)}. This

means we want to maintain the movement of as many objects which have already on

the representative route of the flow cluster F as possible. So that we “look-back” to

the flow cluster F which has been extended so far and pick among those m candidates

the one that share the largest number of participating trajectories with F .

Look-ahead Merging. Let nu be the intersection of eS and eS1 , eS2 ,..., eSm . We

consider the maxFlows of those m candidates at the other endpoints, which are not

nu, of their representative road segments. If the maxFlow of Sj has the biggest value

among them, we will select Sj to merge with S. In this scheme, we “look-ahead” to

the maxFlow at the other endpoint of each candidate’s representative road segment

and select the largest one. By using “look-ahead” scheme, we want to make sure that

we capture all the significant netflows while expanding a flow cluster.

An example of this case is illustrated in Figure 4 where a base cluster S at the

end of an intermediate flow cluster F with SF (S, Si) = SF (S, Sj) = SFmax. In

the “random SFmax” scheme, Si and Sj have equal merging opportunity, thus, we

randomly pick either Si or Sj to merge with S. In the “look-back” scheme, we pick
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the base cluster which gives max(f(F, Si), f(F, Si)). In the “look-ahead” scheme, let

Si+1 be a maxFlow−neighbor of Si and Sj+1 be a maxFlow−neighbor of Sj, we pick

the base cluster either Si or Sj based on which one gives max(f(Si, Si+1), f(Sj, Sj+1)).

2.3.2.4 Weight Assignment Criteria

The setting of the weights wq, wk and wv is usually determined by the specific location-

based applications. If an application favors the three factors equally when considering

a traffic stream, we can set wq = wk = wv = 1/3. If we set (wq, wk, wv) = (0, 1, 0),

we will merge a base cluster with its densest f -neighbor. The resulting flows in

this case will describe a route where traffic is highly concentrated. A combination

of (wq, wk, wv) = (0, 0, 1) will produce flow clusters that describe the routes where

objects can travel the fastest. For traffic monitoring applications, the flow factor and

the density factor can be considered the most important factors so that we can set

(wq, wk, wv) to (1/2, 1/2, 0). If the application emphasizes the flow property of a

traffic stream and considers the flow factor as the most important one, it can set

wq = 1 and wk = wv = 0. Therefore, the maxFlow-neighbor of S (Definition 7) will

be selected to merge with S.

Beside user supplied weights, NEAT also supports system generated weights to

make it run in an automated manner. For system supplied weights, we introduce an

adaptive weight assignment scheme which selects the most critical characteristics of

the traffic stream based on the values of the flow, density and speed limit factors at

each merging step. Suppose we are in the process of forming a flow cluster. At each

merging step, we compute the maximum values qmax, kmax, vmax of the flow factor q,

density factor k and speed limit factor v respectively. We the assign the weights wq,

wk and wv to be used at the corresponding merging step as follows:

wq = qmax/(qmax + kmax + vmax) (5)

wk = kmax/(qmax + kmax + vmax) (6)
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wv = vmax/(qmax + kmax + vmax) (7)

Note that all three factors q, k, v are normalized between 0 and 1. Thus, their maxi-

mum values at each merging step qmax, kmax, vmax can show the relative importance of

each property of the traffic stream passing the road intersection corresponding to the

base cluster under consideration in the merging step. By adaptively assigning weights

based on those maximum values as in Formula 5, 6, 7, NEAT puts more weight on

the critical factor at each merging step and therefore, automatically discovers flow

clusters which capture important traffic flow inherent from the given trajectory data.

The pseudo code of flow-based clustering is presented in Algorithm 1. It performs

on a set of base clusters B until all the base clusters are assigned to flow clusters, i.e.,

B is empty (lines 3-11). Each round of flow-based clustering starts with the dense

core of B (line 4). The procedure expandF low() (lines 19-32) performs f -neighbor

merging to extend a flow from both sides (lines 8-9) given the factor weights wq,

wk, wv. If the input weights (wq, wk, wv) are set to (0, 0, 0), the adaptive weight

assignment scheme is used to adaptively compute the weights at each merging step

(line 21). It computes the f -neighborhood of the base cluster at one end of the

flow (line 19) then select the f -neighbor with maximum merging selectivity to assign

to the current flow. The flow continues to be expanded (line 31) as long as there

are candidates to be merged (line 23). Otherwise, it stops. We also filter out the

flows with insufficient number of participating trajectories. We set minCard to equal

to the average trajectory cardinality of the flow clusters in the set W . Those flow

clusters whose trajectory cardinalities are smaller than minCard will be discarded

(lines 13-17).

2.3.3 Phase 3 - Flow Cluster Refinement

The third phase of NEAT is designed to exploit opportunities to further merge some

flow clusters produced from Phase 2. We describe in this section a density-based
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Algorithm 1 Flow-based clustering

Input: (1) A set of base clusters B = {S0, S1, ..., SM}
(2) A road network G
(3) Factor weights wq, wk, wv

Output: A set of flow clusters W = {F1, F2, ..., FQ}
1: flowId = 0;
2: W = ∅;
3: while B 6= ∅ do
4: Sc = densecore(B);
5: add Sc to FflowId;
6: remove Sc from B;
7: {nc1, nc2} =getEndPoints(eSc);
8: expandFlow(Sc, nc1, f lowId, wq, wk, wv);
9: expandFlow(Sc, nc2, f lowId, wq, wk, wv);

10: flowId++;
11: end while
12: minCard =averagePtr(W );
13: for each Fi ∈ W do
14: if Ptr(Fi) < minCard then
15: remove Fi from W
16: end if
17: end for
18: Procedure expandFlow(S, nu, f lowId, wq, wk, wv){
19: Nf =getfNeigborhood(S, nu);
20: if (wq, wk, wv) = (0, 0, 0) then
21: (wq, wk, wv) = getAdaptiveWeights(S,Nf );
22: end if
23: if Nf 6= ∅ then
24: for each Si ∈Nf do
25: SF (Si) = mergeSelectivity(Si, wq, wk, wv);
26: end for
27: SF (Sj) = maxSi∈NfSF (Si) ;
28: add Sj to FflowId;
29: remove Sj from B;
30: nv =getEndPoints(eSj) \ {nu};
31: expandFlow(Sj, nv, f lowId, wq, wk, wv);
32: end if
33: }

approach to group flow clusters. We modify the Hausdorff metric [16] to measure

the distance between two flow clusters and adapt DBSCAN algorithm [31] to merge

flow cluster merging process. This optimization is especially effective for real time
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trajectory clustering where online clustering can be executed in an incremental and

distributed manner. In particular, the first two phases of NEAT can be performed

on each newly arrived set of trajectories. The new flow clusters are then merged with

the available flow clusters to produce compact clustering results.

2.3.3.1 Distance Function for Flow Clusters

The Hausdorff distance is widely used in the area of computer vision (e.g., [48], [75])

to measure the resemblance of two sets of geometric points. Given two sets of points

{A = a1, a2, . . . , au} and B = {b1, b2, . . . , bv}, the Hausdorff distance between A and

B is defined as:

dist H (A,B) = max{maxa∈Aminb∈B||a− b||,

maxb∈Bmina∈A||b− a||} (8)

where ||a − b|| is the distance between two points a and b which is measured using

some distance metrics (e.g., the Euclidean distance, the Manhattan distance [17]).

We modify the popular Hausdorff distance function to measure the distance be-

tween two flow clusters Fi and Fj in terms of network proximity. The distance between

two flow clusters Fi and Fj can be determined by the distance between their repre-

sentative routes rFi and rFj . In the first prototype of NEAT, we measure the distance

between rFi and rFj by the network proximity of their ending locations. When the

ends of two flow clusters are within a predefined network distance, we merge them

into a larger cluster such that the resulting cluster will be able to show a group of

frequent routes between two hotspot areas as illustrated in Figure 3.

Definition 11 Given two flow clusters Fi ∈ W and Fj ∈ W , the distance between
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Fi and Fj is defined as:

distN (Fi, Fj) = distN
(
rFi , rFj

)
= max{maxa∈{a1,a2}minb∈{b1,b2}dN(a, b),

maxb∈{b1,b2}mina∈{a1,a2}dN (b, a)} (9)

where dN(a, b) is the shortest path from a to b, and {a1, a2}, {b1, b2} are the two

endpoints of rFi , rFj respectively.

2.3.3.2 Density-based Optimization

With the modified Hausdorff distance measure for flow clusters, we need an algorithm

to merge the flow clusters when their distance is within some user-defined or system-

supplied default threshold. We adapt the DBSCAN algorithm to group the set of flow

clusters when the density opportunity exists. The DBSCAN algorithm was originally

used to cluster a set of data points and requires two parameters: a distance threshold

ε between two points and a minimum number of points minPts in a cluster. An object

is a member of a cluster if it has at least MinPts neighboring objects within a given

radius ε. All the objects in its ε-neighborhood are also members of the same cluster.

Otherwise the object is classified as noise. We make the following modifications:

• The data unit to be clustered is a flow cluster. Thus the size of the dataset to

be clustered in this phase is much smaller compare to the number of geometric

points to be clustered in the base cluster formation phase or the number of

base clusters of the same trajectory dataset to be clustered in the flow-based

clustering phase.

• The distance function is our modified Hausdorff distance between two flow clus-

ters.

• No minimum cardinality is set for the resulting cluster. A cluster with one flow
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cluster is considered as good as others and should not be marked as noise and

removed.

• The density based clustering for merging flow clusters always starts each round

with the flow cluster whose representative route is the longest. This ensures

that the final clustering results are always the same with the same distance

threshold., which is different from the traditional DBSCAN in which data points

are not processed in a deterministic order.

2.3.3.3 Flow-Distance Computation Optimization

As shown in Formula 9, a distance computation for each pair of flow clusters consists

of four shortest path computations. Note that dN(a, b) and dN(b, a) are considered

the same without loss of generality. Let W = {F1, F2, . . . , FC} (C > 1) denote

the set of flow clusters generated from Phase 2 of NEAT. For each Fi, we need to

compare it with the rest C − 1 flow clusters, one at a time, to determine whether

there is a merging opportunity. When the number of flow clusters in W is large, the

cost of computing the network proximity of a pair of flow clusters can be expensive.

If we use the popular Dijkstra’s network expansion algorithm [29] to compute these

shortest paths, the computation cost can be high compared to the standard Euclidean

distance, especially when the representative routes of the flow clusters are long in

terms of segment counts. For a graph with n nodes and m edges, traditional network

expansion based algorithms (e.g., Dijkstra, Floyd-Warshall) compute shortest paths

for each node pair in O(nlogn + m) [81], while the Euclidean distance computation

for a node pair only takes O(1).

In phase 3 of NEAT, we use the Euclidean lower bound (ELB) [77] property to

reduce the number of shortest path computations while retrieving the ε-neighborhood

of a flow cluster Fi. By ELB, the Euclidean distance dE(li, lj) between two road

network locations li and lj is always the lower bound of the network distance dN(li, lj),
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Algorithm 2 ε-neighborhood retrieval using ELB

Input: (1) A set of flow clusters W = {F1, F2, ..., FQ},
(2) A flow cluster Fi ∈ W ,
(3) A road network G, (4) A distance threshold ε

Output: The ε-neighborhood Nε of Fi
1: Nε = ∅;
2: for each Fj ∈ W and Fj 6= Fi do
3: {a1, a2} = getEndPoints(Fi);
4: {b1, b2} = getEndPoints(Fj);
5: mindE = +∞;
6: for each a ∈ {a1, a2} do
7: for each b ∈ {a1, a2} do
8: if mindE < dE(a, b) then
9: mindE = dE(a, b);

10: end if
11: end for
12: end for
13: if mindE < ε then
14: compute dN(Fi, Fj);
15: if dN(Fi, Fj) < ε then
16: add Fj to Nε;
17: end if
18: end if
19: end for

i.e., the condition of dE(li, lj) ≤ dN(li, lj) is always hold. Hence, if dE(li, lj) > ε, we

also have dN(li, lj) > ε. In case of dN(Fi, Fj), instead of computing four shortest paths

dN(a1, b1), dN(a1, b2), dN(a2, b1) and dN(a2, b2), we compute four Euclidean between

those locations first. If the minimum Euclidean distance between them exceeds ε,

we can filter Fj from the search space for ε-neighborhood of Fi. Only when the

minimum Euclidean distance between those points does not exceed ε, we calculate

distN(Fi, Fj) using our modified Hausdorff distance to determine whether Fj is in the

ε-neighborhood of Fi or not. This is described in Algorithm 2. Algorithm 3 illustrates

our DBSCAN adaptation to cluster a set of flow clusters W , given the road network

G and a distance threshold ε. Function getEpsNeighborhood(Fi, ε) in this algorithm

implements Algorithm 2.
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Algorithm 3 Density-based Optimizing

Input: (1) A set of flow clusters W = {F1, F2, ..., FQ},
(2) A road network G, (3) A distance threshold ε

Output: A set of trajectory clusters O = {C1, C2, ..., CP}
1: clusterId = 1;
2: mark all Fi ∈ W as unvisited;
3: for each Fi ∈ W do
4: if Fi is unvisited then
5: assign Fi to cluster CclusterId;
6: mark Fi as visited;
7: Nε = getEpsNeighborhood(Fi, ε) ;
8: expandCluster(Nε, clusterId, ε);
9: clusterId++;

10: end if
11: end for
12: Procedure expandCluster(Nε, clusterId, ε){
13: while Nε 6= ∅ do
14: X = getF irst(Nε);
15: if X is unvisited then
16: assign X to CclusterId;
17: mark X as visited;
18: N ′ε = getEpsNeighborhood(X, ε) ;
19: if N ′ε 6= ∅ then
20: for each X ′ ∈ N ′ε do
21: if X ′ is unvisited then
22: add X ′ to Nε;
23: end if
24: end for
25: end if
26: end if
27: remove X from Nε;
28: end while
29: }

Table 1: Road networks used in our experiments
Regions Total length Segments Junctions Avg. seg. length Junction degree

NW Atlanta, GA 1384.4km 9187 6979 150.7m avg: 2.6, max: 6
W San Jose, CA 1821.2km 14600 10929 124.7m avg: 2.7, max: 6
Mia-dade, FL 26148.3km 154681 103377 169.0m avg: 3.0, max: 9

2.4 Experimental Evaluation

We perform five sets of experiments to evaluate the efficiency and effectiveness of our

NEAT framework. Real road networks of different sizes are used in our experiments.
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In order to analyze the performance of each phase, we refer to the trajectory clustering

using Phase 1 of NEAT as the base-NEAT, the trajectory clustering using the first

two phases as the flow-NEAT, and the trajectory clustering using all three phases as

opt-NEAT. NEAT allows users to perform trajectory clustering using any of these

three versions of NEAT. Base clusters, flow clusters and final trajectory clusters are

the outputs of base-NEAT, flow-NEAT and opt-NEAT respectively, and each may

have its own goal in terms of delivering interesting trajectory clustering results to

location-based applications.

2.4.1 Experimental Setup

We use three real road networks in our experiments (Table 1). The road networks

of North West Atlanta (ATL) and West San Jose (SJ) are obtained from [85]. The

Miami-Dade (MIA) road network is obtained from [83]. We adapt the public event-

based simulator GTMobiSIM [70] to generate thousands of mobility traces on those

road networks for a large-scale evaluation. Each mobility trace is a sequence of road

network location points. We use five trajectory datasets for each of the road networks

ATL, SJ and MIA. Table 6 gives the information of our synthetic datasets. To create

a trajectory dataset, for example SJ1000, we place 1000 mobile objects on West

San Jose road network to travel under speed limit constrained on road segments,

following shortest paths to a final destination chosen randomly from a predefined set

of locations. We implement our algorithms using Java and visualize the results using

GTMobiSIM GUI. All the experiments are conducted on the NEAT server machine

with Intel Core2 Duo CPU of 2.00GHz and 1GB of main memory allocated for the

Java heap size.
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Table 2: Datasets used in our experiments
Datasets Number of points

ATL SJ MIA

ATL/SJ/MIA500 114878 131982 276711

ATL/SJ/MIA1000 233793 255162 452224

ATL/SJ/MIA2000 468738 542598 893412

ATL/SJ/MIA3000 669924 794638 1302145

ATL/SJ/MIA5000 1277521 1296739 2262313

2.4.2 Visualization of NEAT clustering results

We visualize the clustering results obtained after processing trajectory datasets with

the two phase NEAT approach (flow-NEAT) and with the three-phase NEAT ap-

proach (opt-NEAT). Figure 6 and Figure 7 show the clustering results for ATL500

dataset. Figure 5 plots 500 trajectories (in green color) on North West Atlanta map.

After the first two phases, 31 flow clusters are discovered (Figure 6). These flow

clusters capture all the major traffic flows from the ATL500 dataset. Some traces

that we see in the original dataset disappear in Figure 6 since there are too few ob-

jects moving in them. The threshold to filter those flow clusters in this experiment is

minCard=5, which is the average number of participating trajectories in each of the

flow clusters. There are two dense regions that concentrates the short flows. They

are the two hotspots where we place the 500 mobile objects at the beginning of their

trips. After travelling on those short flows, they start merging into the long flows to

reach one of the three destinations marked with the red X-signs on the map. These

31 flow clusters are grouped into 2 clusters as shown in Figure 7 after performing the

density-based flow cluster refinement. We start the density-based optimization with

the longest representative route (the dark red polyline number 30 in Figure 6). This

route connects to one of the two hotspots and its endpoints are close to the endpoints

of the other long flows (the polylines 29, 28 and 27). As defined in the DBSCAN

algorithm, they are in a density-connected set. Therefore, when we perform density-

based clustering (with the distance threshold ε = 6500m) we have them grouped
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Figure 5: Input data: ATL500

together in one cluster (contains the red polylines in Figure 7). The rest of the flows

are grouped into another cluster (contains the gray polylines). The results for West

San Jose road network and Miami-Dade datatsets are shown in Figure 8 and Figure

9. For SJ5000, flow-NEAT produces 172 flows (Figure 8(a)) and opt-NEAT produces

13 clusters with ε = 1200m (Figure 8(b)). For MIA3000, flow-NEAT produces 300
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Figure 6: Result for ATL500: 31 flow clusters

flows and opt-NEAT produces 33 clusters with ε = 2000m. The visualization for

MIA3000 (Figure 9) is not as clear as the other two datasets because Miami-Dade

road network, which is an urban area, is more dense and complicated than the ATL

and SJ road networks (see Table 1 and 6).
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Figure 7: Result for ATL500: 2 clusters after optimizing phase (ε = 6500)

2.4.3 Efficiency and Effectiveness of NEAT

In this section we evaluate the efficiency and effectiveness of NEAT by comparing

it with the conventional density-based approach, represented by TraClus. Figure

10 shows 81 resulting clusters when applying the TraClus algorithm with ε = 10m

and MinLns = 30 to cluster ATL500 dataset. Each cluster has its representative
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(b) 13 clusters after optimizing phase (SJ5000, ε = 1200)

Figure 8: Results for West San Jose road network

trajectory plotted and numbered on the map. Another result of 460 clusters for

ATL500 is shown in Figure 11 when applying Traclus with ε = 1m and MinLns =
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Figure 9: Result for MIA3000: 2 clusters after optimizing phase (ε = 6500)

1. As we see, these clusters are discrete on the road network. Their representative

trajectories are short in lengths. These clusters only show short routes in the road

network where there is dense traffic. They do not provide information about the traffic

continuity implied in the original trajectory dataset. Recall the NEAT clustering

results shown in Figure 6 and Figure 7, we can see that most of the important routes

are missed when using TraClus. An interesting point to note is that our framework

with base-NEAT can also provide this knowledge if we filter out those base clusters

where the density is below a specific threshold. The remaining base clusters will

represent the road segments where traffic is highly concentrated.
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Figure 10: TraClus: 81 clusters for ATL500 (ε=10m, MinLns=30)

Figure 12(a) and Figure 12(b) shows the comparisons of the average and maximum

lengths of the representative routes discovered using flow-NEAT and TraClus. Com-

pared to TraClus, flow-NEAT produces clusters with longer representative routes,

which are favorable for location based applications such as bus line organizing or ride

sharing [51]. This results in a smaller number of clusters produced by flow-NEAT
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Figure 11: TraClus: 460 clusters for ATL500 (ε=1m, MinLns=1)

as shown in Fig 13. In comparison, NEAT produces more compact and meaningful

results through road network aware trajectory clustering.

By utilizing the road network information, NEAT not only produces meaningful

trajectory clusters but also runs very fast. Both traffic flow and traffic density can be

discovered using flow-NEAT without the need to compute any distance function. We
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Figure 12: Comparison of lengths of the representative routes discovered by flow-
NEAT and TraClus (ATL datasets)

only compute shortest path distances in Phase 3 for clustering refinement and opti-

mize this costly operation by using ELB filter to eliminate the unnecessary shortest

path computation. In constrast, TraClus depends heavily on the distance measure-

ments among every pairs of samples in the trajectory dataset. This makes TraClus

overall very slow as the number of samples in each trajectory and the number of tra-

jectories in each dataset are high. Figure 14 shows the efficiency comparison between

the three-phase NEAT framework and TraClus framework by varying the number of

points in ATL datasets. TraClus is very time-consuming and the time complexity
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grows as the number of points gets larger. TraClus runs in 2573.5 seconds to cluster

ATL500 (114878 points) and 334735.1 seconds (nearly 4 days) to cluster ATL5000

(1277521 points). While opt-NEAT only takes 1.29 seconds to cluster ATL500 and

59.7 seconds to cluster ATL5000. Compared to TraClus, the NEAT framework is

faster by more than three orders of magnitude.

One may ask what if TraClus is given the benefit of our map-matching preprocess-

ing step to partition a trajectory into trajectory fragments and uses a network distance

measure such as our modified Hausdorff function in its grouping phase? To address

this concern, we have run a variant of TraClus on our test datasets. In this variant

of TraClus, we even provide TraClus with the partitioning of trajectories into base

clusters instead of t-fragments, then the grouping phase merges the base clusters us-

ing our modified Hausdorff distance. Note that the number of base clusters is usually

much smaller than that of t-fragments. However, TraClus remains slow compared to

NEAT due to their grouping algorithm which heavily depends on distance computa-

tions and the resulting clusters only show discrete traffic density in the road network.

For instance, with the SJ2000 dataset (226151 t-fragments, 901 base clusters), this

variant of TraClus took 6396.79 seconds to finish with 117 resulting clusters. While

NEAT produced a more compact results of 42 flow clusters and 14 final clusters in

only 11.68 seconds.

2.4.4 Performance of NEAT Algorithms

We analyze the efficiency of NEAT by analyzing the performance of different versions

of NEAT during the three phases, focusing on the impact of the flow property of traffic

streams in NEAT design. The scaling of base-NEAT, flow-NEAT and opt-NEAT for

different MIA datasets are shown in Figure 15(a). The curves are almost linear with

the growth of dataset size. In all cases, the flow cluster refinement phase contributes

very little to the total running time, as shown in the graphs, due to the ELB based
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Figure 13: Numbers of resulting clusters using flow-NEAT and TraClus

Table 3: Number of flow clusters produced by opt-NEAT
Datasets SJ500 SJ1000 SJ2000 SJ3000 SJ5000

# flows 73 156 55 52 180

optimization. The opt-NEAT curves nearly overlap the flow-NEAT curves.

We further investigate the relative performance of Phase 1 (base cluster formation)

and Phase 2 (flow cluster formation). Phase 1 algorithm takes the road network

locations as its data units because it scans the sequence of points in all the trajectories

to extract t-fragments. Phase 2 algorithm takes the base cluster as its data unit.

Intuitively, the number of road network locations in the trajectory dataset is much

larger than the number of base clusters produced from Phase 1. Thus, it takes longer

to complete Phase 1. This is confirmed by our experiments shown in Fig 15(b).

Figure 16 unveils the effectiveness of using ELB to reduce the number of shortest path

computations (opt-NEAT-ELB) versus using Dijkstra’s network expansion algorithm

to compute all the shortest paths (opt-NEAT-Dijskstra) when performing density-

based optimization in the NEAT framework. In Figure 16(a), the opt-NEAT-Dijskstra
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Figure 14: Running time comparison

curve grows faster as the dataset size grows. However, the curve of opt-NEAT-Dijkstra

in Figure 16(b) shows that the cost at SJ1000 are much higher than at SJ2000 and

SJ3000. This is due to the cost of Phase 3, which computes shortest path distances,

actually depends on the number of flows produced by Phase 2 and not the data

size. Table 3 shows the number of resulting flows output from the second phase

where numbers of flows in SJ1000 and SJ5000 are much higher than that in other

datasets for SJ road network. Using ELB significantly speeds up the performance of

the density-based optimization algorithm (see some big gaps between the two curves

opt-NEAT-ELB and opt-NEAT-Dijkstra).

2.4.5 Effects of f-neighbor Merging Decisions on Flow-based Clustering

We study how using different merging schemes including “random SFmax” (“random”

for short), “look-back” and “look-ahead” schemes, as described in Section 2.3.2.3,
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Figure 15: Relative performance of our approaches

affects the results of flow-NEAT. We measure the cluster quality by computing the

total netflows of the resulting flow clusters. The results are reported for ATL and

SJ datasets in Figure 17 including the running time (Figures 17(a) and 17(b)) and

total netflows (Figures 17(c) and 17(d)) of each scheme. It is shown that in most

cases, look-head merging runs faster than look-back scheme and random merging is
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Figure 16: Effectiveness of using Euclidean lower bound

the fastest. Although the cost incurred by running look-ahead or look-back schemes

compared to random merging is not significant, the total netflows of the resulting

flow clusters in all three schemes are approximately the same. This results from the

low junction degree of road networks where the average junction degree is usually less

than 3. We conclude that in the context of a road network, “random SFmax” merging

is good enough to get good clustering result and thus, NEAT uses “random SFmax”
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merging in Phase 2.
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Figure 17: Effects of using random, look-back and look-ahead f -neighbor merging
schemes

2.4.6 Effectiveness of Adaptive Weight Assignment on Flow-based Clus-
tering

In this section, we evaluate the effectiveness of our adaptive weight assignment scheme

(Section 2.3.2.4) compared to some predefined combinations of the weights (wq, wk, wv)

for flow factor, density factor and speed limit factor respectively. The different assign-

ments of (wq, wk, wv) represent different merging criteria when we perform f -neighbor

merging. In the previous experiments, we want to focus on the flow property of a traf-

fic stream so we set the highest weight for the flow factor (wq = 1 and wk = wv = 0),

i.e., a base cluster will always be merged with its maxFlow-neighbor. Since the speed

limit is fixed for each type of road, the speed limit factor is the least favorable among
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Table 4: Total netflows
(1/2,1/2,0) adaptive (1,0,0)

ATL3000 225713 271782 271986
SJ3000 275665 326723 326870

MIA3000 812505 921476 921910

Table 5: Total cluster density
(1/2,1/2,0) adaptive (0,1,0)

ATL3000 225713 374234 374268
SJ3000 451783 475508 475536

MIA3000 1241101 1276109 1277511

three factors. In our experiment with the adaptive weight assignment, we skip the

speed limit factor by setting vmax value at each merging step to 0. We run flow-NEAT

with this “adaptive weights” scheme and three predefined weight settings of (1, 0, 0),

(0, 1, 0) and (1/2, 1/2, 0). The (1/2, 1/2, 0) weight assignment is used as a base set-

ting where both flow and density are weighed equally. We measure the total netflows

of the discovered flow clusters by running flow-NEAT using the “adaptive weights”

scheme, compared to using the “netflows only” (1, 0, 0) weight setting. The results

are reported in Table 4. For ATL3000 dataset, our adaptive weights scheme achieves

an increase of total netflows of 18.52% compared to the base settings (1/2, 1/2, 0),

while that of the (1, 0, 0) setting is 20.41%. Similarly for SJ3000 and MIA3000, the

percentage of total netflows increased using adaptive weights scheme is also so close

to that of (1, 0, 0) setting. With the same three datasets, Table 5 reports the total

cluster density of the discovered flow clusters by running flow-NEAT using the “adap-

tive weights” scheme, compared to using the “density only” (0, 1, 0) weight setting

and (1/2, 1/2, 0) setting. In all cases, the percentage of total cluster density increased

using our adaptive weights scheme compared to the base setting of (1/2, 1/2, 0) is

very close to that of the (1, 0, 0) setting (the difference is below 0.1%). Therefore,

our adaptive weight assignment scheme can automatically captures highly dense and

continuous traffic flow from trajectories in the road network.
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2.5 Related Work

The clustering problem has been extensively researched in mobile ad hoc networks

(MONET) and data streaming systems. In MONET, data unit to be clustered is

the mobility node where the characteristics of a node are taken into account for

cluster head choices in order to conserve energy and connectivity [23] [88] [90]. In

data streams, k-means and density-based clustering algorithms have been extended

to cluster large volume of multi-dimensional data points generated by sensor networks

[8] [26] [73].

Most existing work on MO trajectory clustering [36] [66] [91] [56] [74] [59] [58] [11]

has derived proximity measures for trajectories and adapted traditional k-means, hier-

archical, or density-based clustering algorithms to group similar trajectories. Trajectory-

OPTICS [66], which extends OPTICS algorithm [13], is a good example for grouping

similar trajectories as a whole. The distance between two trajectories is the average

Euclidean distance between two objects for every timestamp. Traclus [36] aims to

find similar sub-trajectories rather than the whole trajectories. It partitions each

trajectory into line segments using the Minimum Distance Length (MDL) principle

and then performs a DBSCAN-like [31] clustering on line segments. The similar-

ity measure is composed of three Euclidean based distance components between line

segments. As a result, discovered clusters are dense regions of line segments. [59]

adapts TraClus for online trajectory clustering. [58] extends TraClus for trajectory

classification. However, these density-based methods cluster free space trajectories,

i.e., without considering the constrained road network. Other works [91] [56] [74]

consider the network constraint to derive similarity measures but they only focus on

the density aspect of the given trajectories such as object density [56], common road

segments [91], shortest path distance [74]. Our approach can produce partial cluster-

ing but carefully considers the constrained road network focusing on both flow and

density characteristics and avoids the expensive shortest path computation in its first
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two phases. NEAT innovates TraClus framework in a creative manner with higher

efficiency (due to reduction of network distance computation) and higher accuracy

(due to incorporation of flow semantics). This chapter provides a full-fledged devel-

opment of the initial NEAT approach [40] with a thorough study on different merging

decisions and an adaptive parameter assignment scheme capturing the most critical

characteristics of a traffic stream in the core of NEAT, which allows it to discover

important flow clusters in an automated manner.

2.6 Conclusion

We have presented NEAT - a novel road-network aware approach to MO trajectory

clustering which clusters MO trajectories in a comprehensive three phase framework.

We introduce the concept of f -neighborhood to identify the most critical and most

interesting parts of the given MO trajectories with respect to clustering. Instead of

taking points or line segments as the clustering unit as in traditional approaches,

we introduce t-fragment, base cluster and flow cluster as the basic building blocks

for road-network aware trajectory clustering. NEAT carefully combines the traffic

locality, flow and density metrics in its three-phase trajectory clustering framework

that significantly reduces the data space in each subsequent phase and ensures trajec-

tory clustering quality. By carrying out extensive experiments, we show that NEAT

discovers clusters of MO trajectories which represent major traffic stream in a road

network and outperforms conventional density-based trajectory clustering algorithms

in terms of both time complexity and accuracy.
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CHAPTER III

TRACEMOB: A METHODICAL APPROACH TO

CLUSTERING WHOLE TRAJECTORIES OF MOBILE

OBJECTS IN ROAD NETWORKS

Most of mobile object trajectory clustering analysis to date has been focused on clus-

tering the locations or subtrajectories extracted from trajectory data. This chapter

presents TraceMob, a methodical approach to clustering analysis of whole trajecto-

ries of mobile objects traveling in road networks. TraceMob as a whole trajectory

clustering framework has three unique features. First, it designs a quality metric to

measure the distance between two whole trajectories. By quality we mean that the

distance measure between two whole trajectories should minimize the bias of long

or short trajectories, and should also capture the movement paths that are in close

vicinity such as traveling paths of close-by parallel road segments. Second, we develop

an algorithm that transforms whole trajectories in a road network space into multidi-

mensional data points in an Euclidean space while preserving their relative distances

in the transformed metric space. We achieve this objective by leveraging FastMap to

carefully select the initial reference points and iteratively define the dimensionality

d for the transformed metric space. Third, we develop a cluster validation method

for evaluating the clustering quality in both projected trajectory image space and the

road network space. Extensive experimental evaluation with trajectories generated

on real road network maps of different cities shows that TraceMob produces higher

quality clustering results and runs several orders of magnitude faster than the existing

approaches.

58



3.1 Introduction

With advances in positioning technologies and the proliferation of Wifi/GPS-enabled

smartphones, tablets and other handheld devices, we have witnessed an escalation of

web-based and mobile location-aware applications with a torrent of location data, such

as Google Maps, Bing Maps, Google Latitude, Apple’s FindMyFriends, FourSquare,

to name a few. We can classify mobile object trajectory-based research, applications

and services into three categories based on what information about trajectories is

utilized in trajectory analysis. The first category analyzes trajectory data as position

points rather than time series of locations and offers algorithms to query and mine

point-based location data [21,27,65,87,95,96,99], for example, to find nearby points

of interests or discover hot-spot locations where people like to gather during weekends

and holidays. The second category focuses on identifying interesting sub-trajectories

from the datasets of whole trajectories based on density or flow patterns of mobile

objects [36,40]. For example, with subtrajectory clustering, one can discover the con-

gestion patterns on the segment of W Peachtree Street NE between North Avenue

and 14th Street in Atlanta city. The third category of trajectory clustering analyzes

and mines the whole trajectories of mobile objects. It treats trajectories, the time

series of location points recorded along traveling paths of mobile objects on a road

network, as units of data analysis. The purpose of clustering whole trajectories is to

discover the grouping structure in a given trajectory dataset. Each trajectory cluster

represents a spatial trend in motion or movement behavior of mobile objects, reveal-

ing valuable information about potential social connections and common interests of

mobile users moving in a road network. For example, a trajectory cluster including

a user’s past trajectories can be used as the prospective search space for her location

based service requests. Whole trajectory clustering can provide better reference data

for transportation planning based on the trajectory patterns and the traffic density

in each of the trajectory clusters for more cost-effective road design.
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Most of existing research on trajectory analysis belong to the first category −

clustering location data points extracted from mobile object trajectories, and some

of recent projects fall into the second category, represented by discovering subtrajec-

tories of high density based on Euclidean distance [36] or clustering subtrajectories

with significant traffic flows in addition to road-network distance based density [40].

However, few research efforts have engaged in clustering whole trajectories to date

for a number of reasons. First, whole trajectories are time series of locations with

different lengths (i.e., the number of locations per trajectory) and thus, any distance

measure that relies on equal size trajectories may bias long trajectories over short

ones even with regression methods that stretch short trajectories to the same size as

the long ones. Second, trajectories are a special type of time series data that are con-

strained by the road network since mobile objects can only move along road segments

and turn at road intersections. Thus, they may overlap with one another partially

with respect to the road segments. However, some partially overlapped trajectories

represent distinctly different trajectory clusters when grouping full trajectories. Also,

non-overlapping trajectories may be close to one another semantically or based on

road network distance (e.g., mobile objects traveling on parallel roads), and thus,

should belong to the same cluster. Therefore, we need a high quality trajectory

distance measure that can correctly capture the complex characteristics of mobile

object trajectories. Moreover, a distance function for whole trajectories should also

be simple enough to support trajectory clustering on a large scale.

In this chapter, we present a methodical approach to clustering whole trajectories

of mobile objects traveling in a road network. We propose a three-phase framework,

called TraceMob, for clustering whole trajectories. In the first phase, we compute

the spatial proximity of whole trajectories by employing α×β grid abstraction over the

raw trajectory datasets. We customize TraceMob clustering algorithms by tuning

the size of the α × β grid cells to handle both metropolitan (dense) and suburban
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(sparse) road networks with consistent and high clustering quality at scale. This

development allows TraceMob to correctly cluster trajectories that are in parallel

within certain spatial vicinity most of the time regardless of whether they have any

overlapping road segments, and successfully separate trajectories that are far away

from one another most of the time into different clusters even though they may share

some road segments.

In the second phase of TraceMob, we develop TrajMap to transform trajectories

represented in a road network space into d-dimensional data points in an Euclidean

space. We tune the dimensionality d to ensure that trajectories that are within

certain spatial proximity in the road network will be mapped to data points that are

close in d dimensional Euclidean space and trajectories that represent very different

motion behaviors will be mapped to data points that are relatively far away from

one another in d-dimensional Euclidean space. One of the important features of our

TrajMap development is to provide consistent and fair treatment of trajectories of

varying sizes during clustering analysis.

In the third phase of TraceMob, we employ a whole trajectory clustering valida-

tion model, consisting of an extensible set of clustering quality measures, to validate

the quality of clustering analysis in both road network space and transformed d-

dimensional Euclidean space. We allow users to iteratively execute the three phase

clustering analysis of TraceMob by adjusting the settings of α× β cell size, the di-

mensionality d and the number of preferred clusters K during the abstraction, trans-

formation and validation process. We conduct extensive evaluation on TraceMob

using mobile traces generated on real road network maps of different sizes and density

skewness. Experimental results show that TraceMob effectively discovers the clus-

ter structure of road-network trajectory datasets and runs several orders of magnitude

faster than the existing whole trajectory clustering algorithms.

The rest of the chapter proceeds as follows. Section 3.2 gives a brief overview of
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related work. Section 3.3 presents an overview of TraceMob three phase clustering

analysis framework. We provide an in-depth description for each of the three phases

in Section 3.4, Section 3.5 and Section 3.6 respectively. We report our experimental

results in Section 3.8 and conclude the chapter in Section 3.9.

3.2 Related Work

The TraceMob development is related to and inspired by the research in grid in-

dexing, traditional data clustering in general and trajectory clustering in particular.

Grid indexing. The notion of a grid partition of the search space was first introduced

with the grid file [68], where a grid structure is used to provide multikey access to files.

The grid file is designed to manage multiple attribute records, where each attribute

domain is partitioned into disjoint intervals to create the grid file structure. It was

shown to be well suited for record inserts/deletes/updates and efficient processing of

range queries.

For location-based services, existing work [27,65,87] also use the grid structure to

support range and k-NN queries in memory which were shown to be more efficient

than the traditional R-tree based solutions. These methods aim at managing individ-

ual positions of mobile objects, not their moving paths as a whole. To the best of our

knowledge, we are the first to use the grid structure of a road network to represent

and compute the trajectory dissimilarity with respect to clustering in trajectory-

based services. Compared to the widely used location point-based representation and

segment-based representation of trajectories, our grid-based representation offers bet-

ter performance at reducing the data space as well as capturing the spatial correlation

of trajectories.

Traditional Data clustering. Clustering is an important data mining technique

to organize data into group of similar objects. Many data clustering algorithms have
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been proposed in the literature. Different clustering paradigms use different defini-

tions and evaluation criteria. Basic data clustering techniques includes partitioning

and hierarchical approaches. Partitioning clustering partitions the data into a certain

number of groups and iteratively refines those groups to optimize a clustering crite-

rion (e.g., minimizing the sum of squared errors within each cluster as in k-means

algorithm [62]). The iterative process stops when the optimum cluster quality with

respect to that criterion has been reached. K-means and its derivation including

PAM [53], CLARA [52], CLARANS [67] are the representatives for this class of clus-

tering techniques. Hierarchical clustering algorithms can either start with one cluster

of the total objects (divisive) or with a set of clusters of each individual object (ag-

glomerative) to build a cluster hierarchy. A stop condition is required to terminate

the algorithm. The final level in the cluster hierarchy where it reaches the stop con-

dition will be the clustering results. BIRCH [98] and CURE [38] are the widely used

hierarchical agglomerative methods. Besides the two main clustering schemes, there

are other classes of clustering techniques which are density-based, grid-based, graph-

based and model-based approaches. In density-based methods such as DBSCAN [31]

and OPTICS [13], clusters are defined as region of high density. An object is a mem-

ber of a cluster if it has at least MinPts neighboring objects within a given radius ε.

All the objects in its ε-neighborhood are also members of the same cluster. Otherwise

the object is classified as noise.

Although various clustering techniques have been introduced over the years, there

is still no general technique that is the best to solve the clustering problem for all types

of datasets. One method may perform well for a specific dataset while it performs

poorly on other datasets because diverse types of data and different objectives of data

analysis applications need different clustering approaches.

Trajectory clustering. Research in trajectory clustering to date can be classified
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into three categories based on whether data points, subtrajectories or whole trajec-

tories are used as the units of clustering.

Point-based approaches use each position point in trajectories as the clustering

unit and cluster a trajectory dataset by transforming trajectories, the time series of

location points, into a large location position dataset, and then applying traditional

clustering algorithms to cluster position based location dataset instead of directly

clustering whole trajectories [21, 95, 99]. Clustering results in this category can help

identify hot spots but fail to discover subtrajectory or whole trajectory patterns.

Subtrajectory based approaches use subtrajectories as the unit of clustering and

aim at clustering sub-trajectories of the whole trajectories to discover interesting

subtrajectory clusters. In these clustering schemes, trajectories are first split into

trajectory fragments [36, 40, 56], which are used as the clustering units. The unique

movement of a mobile object is ignored since different subtrajectories of a whole

trajectory may belong to different sub-trajectory clusters.

In contrast with the first two categories, the third category treats whole trajec-

tories as the clustering units. Whole trajectory clustering presents a challenging

technical issue: how to measure the distance between two whole trajectories without

bias of long or short trajectories and taking into account approximately parallel tra-

jectories. The approaches [24, 25] using Minkowski and Edit Distance only work on

trajectories of equal size. To deal with trajectories of varying sizes, several approaches

are proposed. [55, 57, 94] use dynamic time warping distance to stretch trajectories

by repeating their coordinate values, then compute the Euclidean distance on the

stretched trajectories. These measures have high computational complexity due to

the costly Lp-norm computation and are very sensitive to noise. LCSS [86] and its

variants are based on subsequence matching instead of complete sequence matching

like aforementioned approaches. [33] uses a mixture model based clustering algorithm

with regression components as trajectory clusters. Expectation-Maximization (EM)
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is used to estimate which component each trajectory belongs to. However, this ap-

proach is only suitable for short trajectories, such as gene trajectories or trajectories

that can be expressed as a function of time in order to use regression based trans-

formation. Another approach [74] adapts the traditional hierarchical agglomerative

clustering algorithm. The trajectory distance is measured by computing the short-

est path distance between every pair of vertices from two trajectories, which takes

O(nlogn+m) for a network of n vertices and m edges. Clearly, this approach has very

high computational cost and fails to scale to clustering large trajectory datasets. The

work in [91] improves the computational complexity by using a simple distance mea-

sure based on the number of shared road segments between two whole trajectories and

then employs FastMap [32] to transform trajectory datasets to high-dimensional data

points. However, this approach fails to handle some common cases: (i) trajectories

that have no common road segments but are in parallel within certain spatial vicinity

most of time, (ii) trajectories that belong to distinct clusters though they have some

shared road segments, and (iii) segment based distance measure tends to bias long

trajectories over short trajectories. Also, there is no tuning of dimensionality to pre-

serve the trajectory distance in the transformed multidimensional Euclidean space.

Furthermore, existing distance measurements in whole trajectory clustering examine

all the recorded positions in a trajectory, which is inefficient and often unnecessary

for road network trajectories.

With these problems in mind, TraceMob by design aims at meeting the dual

objectives of whole trajectory clustering: the clustering distance measure should cap-

ture the complex spatial characteristics of trajectories in road networks and yet simple

enough to support trajectory clustering on a large scale.
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3.3 Overview

In this section, we first present the reference model of road networks and grid over-

lay of a road network. Then we give a brief overview of TraceMob three phase

framework and system architecture for whole trajectory clustering.

3.3.1 Road Network Trajectories

A road network is modeled by a single directed graph G = (V , E), where V =

{v0, v1, . . . , vN} is a set of road intersections and E = {(sid, vivj)|vi, vj ∈ V} is a

set of directed edges connecting the road intersections.

Each edge e = (sid, vivj) ∈ E is identified by the road segment id sid which

connects two road intersections vi and vj in the real road network. The length of a

road segment e = (sid, vivj) is denoted by len(e).

We define a road network location as a tuple of three elements l = (sid, (x, y), t),

where sid is the identifier of road segment where the object resides, (x, y) is the geo-

metric coordinates of the object’s location, and t is the timestamp when the location

is recorded.

A road network trajectory Tr, denoted by Tr=(trid, l1l2...lL), is a time-ordered se-

quence of road network locations of length L and is uniquely identified by a trajectory

identifier trid.

3.3.2 Grid Structure

Given a road network G, we refer to the minimum bounding rectangle (MBR) region

that covers the entire road network as the universe of discourse, defined by U(G) =

Rect(X, Y,W,H), where X is the x-coordinate and Y is the y-coordinate of the lower

left corner of the MBR corresponding to the universe of discourse. W is the width and

H is the height of the universe of discourse. X, Y,W and H are system parameters

to be set at the system initialization time.
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Grid and Grid cells. We define a grid overlay of the road network G by partitioning

U(G) into a grid of contiguous rectangular cells of size α×β. Formally, we define the

grid overlay of G as follows: AGrid(G)(U(G), α, β) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N ,

Ai,j = Rect(X+i∗α, Y +j∗β, α, β),M = dH/αe, N = dW/βe}. α and β are system

parameters that define the cell size of the grid. Ai,j is an α × β rectangle area

representing the grid cell that is located on the ith row and jth column of the grid

AGrid(G). Each cell entry Ai,j is uniquely identified by its cell identifier cid, which is

an integer in [1,M ∗N ].

Ai,j.cid = (i− 1) ∗N + j, i ∈ [1,M ], j ∈ [1, N ] (10)

Position to Grid Cell Mapping. Let l.pos denote the geometric coordinates (x, y)

of a road network location l = (sid, (x, y), t). Let Ai,j denote a cell in the grid

AGrid(G). Pmap(l.pos) is a road network location to grid cell mapping, defined as

Pmap(l.pos) = Ad pos.x−X
α

e,d pos.y−Y
β

e.

Adjacent cells. Given a grid cell Ai,j in a grid AGrid(G), we use adjacent cells(Ai,j)

to denote the set of grid cells which share one edge with Ai,j.

Thus, each cell Ai,j has four adjacent cells when 1 < i < M, 1 < j < N , and

adjacent cells(Ai,j) = {Ai−1,j, Ai+1,j, Ai,j−1, Ai,j+1} (1 < i < M, 1 < j < N). When

i = 1 or i = M and 1 < j < N , or 1 < i < M , j = 1 or j = N , Ai,j has three adjacent

cells. When i = j = 1 or i = M, j = N , Ai,j has two adjacent cells.

Cell to subtrajectory mapping. Let Ai,j denote a grid cell, Tr = (trid, l1l2...lL)

denote a trajectory and li1 . . . lim be a subsequence of l1l2...lL, i1, . . . , im ∈ [1, L].

CTmap(Ai,j, T r) is a grid cell to trajectory mapping which returns the subtrajectory

contained by the grid cell, defined by CTmap(Ai,j, T r) = li1 . . . lim such that Ai,j.cid =

Pmap(li1 .pos).cid = · · · = Pmap(lim .pos).cid.

For presentation convenience, all the definitions in the rest of the chapter are

assumed to be given in the context of a road network G = (V , E) and its grid overlay
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AGrid(G).

3.3.3 Design Consideration and Clustering Framework

In this section, we give a brief overview of TraceMob with respect to its design

consideration and its framework for whole trajectory clustering.

Trajectories collected via GPS sensing are often quite long in terms of the number

of the recorded locations, especially with frequent periodic sensing interval. Let Tr =

(trid, l1l2...lL) (1 ≤ L) denote a trajectory and each trajectory location li consists of

the road segment sid and coordinate of (x, y). Long trajectories are those consisting

of large number of location points and thus large L value. By utilizing road network

characteristics, we can abstract road network trajectories using road segments without

loss of data quality. Thus, a trajectory Tr = (trid, l1l2...lL) can be alternatively

represented by its road segment sequence, denoted by TrE = (trid, e1e2...eR) (ei ∈

E , 1 ≤ i ≤ R,R ≤ min(L, |E|)). Similarly, the length of a trajectory Tr can be

represented by either the number of location samples (L) or the actual length of the

trajectory in miles or kilometers by summation of the lengths of all the road segments

associated to the trajectory, namely len(Tr) = len(e1) + len(e2) + ...+ len(eR).

An intuitive but näıve approach to compute the distance between two trajectories

is to measure the level of overlapping between the two trajectories by the length of

their common road segments. We refer to such a road segment based distance metric

as SegSD. Let len(Tri ∩E Trj) denote the length of common road segments of two

trajectories Tri, Trj, the distance between Tri and Trj can be computed as follows:

SegSD = 1− len(Tri ∩E Trj)
len(Tri) + len(Trj)− len(Tri ∩E Trj)

(11)

Instead of using the number of common road segments, this distance function (using

normalized distance) is less sensitive to the number of road segments and is effective

in capturing overlapping level between any pair of trajectories. By design, the more

common road segments and the longer the two trajectories are, the smaller the SegSD
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distance value will be.

However, the SegSD metric has several inherent drawbacks. First, when the two

trajectories do not have any road segment in common, SegSD will return the highest

distance value of 1. Thus by SegSD, trajectories that have no common road segments

even though are close to one another most of time in terms of spatial vicinity, such

as two trajectories representing two traveling paths on nearby parallel roads, will be

mistakenly treated as the most far away and most dissimilar. For example, in Figure

18(c), trajectories Tr1 and Tr2 are located on the same road segments. Trajectory

Tr3 is very close to both Tr1 and Tr2 but is located on different road segments. Using

the segment-based distance function Tr1 and Tr2 are clustered together but Tr3 will

be incorrectly clustered into a separate cluster.

Second, if two trajectories representing two completely different trajectory clusters

(such as one represents traveling path from east to west of Atlanta and another

represents traveling path from south to north of Atlanta), but they have one road

segment in common, then these two trajectories will have smaller SegSD value than

the highest SegSD distance value of 1. Thus, they are treated as closer than the two

trajectories that are in parallel within close spatial vicinity most of time and both

from south to north with destination in Alpharetta, though they have no common

road segment (e.g., one traveling on I-85 north and the other traveling to Alpharetta

on local roads).

Third but not the least, by SegSD, there is no distinction between two trajec-

tories that share a subsequence of road segments and two trajectories that share

disconnected common road segments if the total actual distance of the shared seg-

ments is the same. However, in reality, the former should be considered closer in

terms of spatial distance than the latter.

To address these common problems inherent in the simple segment based distance

metric, we introduce a grid based distance metric in TraceMob to measure the
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spatial distance between two whole trajectories. In the next section we will describe

how TraceMob capitalizes on grid structure [68] to provide simple and customizable

abstraction of spatial closeness of trajectories.

Given that users may have personalized criteria on clustering quality, in TraceMob

we support both distance metrics and suggest the grid based distance metric over the

segment based distance metric if the users are more sensitive to the above problems

and their impact on clustering quality.

In addition to the grid based trajectory distance metric, TraceMob employs

a three-phase framework for whole trajectory clustering. Prior to the three-phase

clustering analysis, TraceMob initializes the system through a number of system-

supplied configuration parameters (such as α×β cell size) and user-defined parameters

(such as the preferred distance measure, the number of clusters). In Phase I, the raw

trajectory dataset is processed according to the selected distance metric for computing

distances between each pair of whole trajectories. In Phase II, T rajMap is employed

to transform each trajectory into a d-dimensional point in an Euclidean metric space.

d is determined to ensure that the distance between any pair of trajectories in a road

network is best preserved by the distance between the corresponding pair of points

in the d dimensional metric space. In Phase III, we employ k-means clustering

with user-defined K and the optimal initial centroids [14], followed by clustering

quality validation. Our three phase clustering process for trajectory abstraction,

transformation and clustering with validation can be executed iteratively and users

can adjust the setting of some parameters, such as the dimensionality d, the number

of preferred clusters K, to obtain customized clustering result. In the subsequent

three sections, we will describe the technical details for each of the three phases.

We will use the grid cells as the building blocks for the TraceMob clustering

framework. Though in this chapter we use a grid topology with cells of equal size for

simplicity, our methods can be easily extended to grids with cells of different shapes
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and/or sizes, such as an adaptive grid represented by a quadtree structure.

3.4 Trajectory Distance Measures

We have briefly introduced segment based distance metric and the three-phase framework

for whole trajectory clustering in the previous section. This section is dedicated to

describe the technical development of Phase I. We first describe the grid-based repre-

sentation of road network trajectories and define the concept of trajectory overlapping

and introduce the Simple Grid-Based Distance metric (SGBD) as an intuitive baseline

distance function. Then we analyze the weaknesses inherent in SGBD and introduce a

number of key concepts, such as overlapping cell sequences, mergeable cells, proximity

based trajectory intersection and union, to capture the complex spatial correlations

between trajectories. We introduce the Grid Cell Sequence Distance (GridCSD) func-

tion as the recommended grid-based distance metric to measure the pairwise spatial

proximity of trajectories.

3.4.1 Simple Grid-Based Distance Function (SGBD)

In TraceMob, each trajectory and its road network locations are indexed by the grid

matrix AGrid(G). Thus, a trajectory Tr = (trid, l1l2...lL) can be represented by a time

ordered sequence of grid cells covering its locations, denoted by TrA = (trid, c1c2...cn),

where each ck(1 ≤ k ≤ n) is a grid cell covering a subsequence of l1l2...lL, denoted

by li1 . . . lim . Figures 18(a) and 18(b) illustrate the grid-based representation of a

trajectory. Given a uniform grid of size 4× 4, we have 16 grid cells, each with a cell

identifier. A trajectory depicted as a polyline in Figure 18(a) will be represented by

a sequence of highlighted cells {13, 14, 10, 11, 12, 8, 4, 3} covering the trajectory path

as shown in Figure 18(b).

Let subA(ck, T r) denote the function that extracts the subsequence li1 . . . lim re-

siding in grid cell ck from Tr, |TrA| denote the grid cell cardinality of Tr, i.e., the

number of grid cells in the grid cell sequence TrA, and Tcells(Tr) denotes the set
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Figure 18: Examples of grid-based representation and overlapping cells
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Figure 19: Overlapping cell sequences and mergeable cells

of grid cells that the trajectory Tr is passing through. We can define the concept of

trajectory overlapping as follows.

Definition 12 (Trajectory Overlapping) Trajectory overlapping is defined over two

road network trajectories Tri and Trj, denoted by share(Tri, T rj), which consists

of the set of common grid cells shared by their grid-based representation TriA and

TrjA. Formally, share(Tri, T rj) = Tcells(Tri) ∩ Tcells(Trj).

Let |share(Tri, T rj)| denote the cardinality of share(Tri, T rj), the number of com-

mon cells shared by the two trajectories. Using trajectory overlapping share(Tri, T rj),

we devise a distance function, called Simple Grid-Based Distance Function
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(SGBD), which computes the distance of two trajectories, Tri and Trj, as follows:

SGBD = 1− |share(Tri, T rj)|
|TriA|+ |TrjA| − |share(Tri, T rj)|

(12)

The SGBD distance function improves the segment based distance metric SegSD

in terms of exploiting grouping opportunities for non-overlapping trajectories. For

example, when trajectories do not share any common road segments but are very

close to each other, the grid-based distance measure can more accurately capture the

spatial distance of such trajectories than the road-segment based distance metric.

Consider the example in Figure 18(c) all three trajectories are represented using the

same sequence of grid cells. Thus, the grid-based abstraction and distance function

can better reflect the spatial proximity of all three trajectories compared to the road-

segment based distance function.

However, SGBD treats common cells shared between two trajectories as indepen-

dent cells. Thus it fails to take into account the continuity of the overlapping cells in

the trajectory distance measure. It also does not consider the trajectories that are in

adjacent cells but are within close vicinity. Consider Figure 19(b), although covered

by separate sequences of cells, trajectories Tr3 and Tr4 are close to each other.

To address these problems, we introduce the second grid based trajectory distance

metric as the recommended trajectory distance metric in TraceMob.

3.4.2 Grid Cell Sequence Distance Function (GridCSD)

We first introduce the concept of overlapping cell sequences and the concept of merge-

able cells and then define the GridCSD trajectory distance function.

Definition 13 (Overlapping Cell Sequences)

Let Tri and Trj denote two road network trajectories having |share(Tri, T rj)| > 0,

TriA denote the sequence of grid cells covering Tri, and ∈sub denote the subsequence

relation. We say that ocs(Tri, T rj) = {ocs1, ocs2, ...ocsm} is an ordered list of over-

lapping cell sequences extracted from share(Tri, T rj) if and only if ocs(Tri, T rj)
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satisfies the following conditions: (i) For each cell sequence ocsk ∈ ocs(Tri, T rj):

ocsk ∈sub TriA and ocsk ∈sub TrjA. We use cells(ocsk) to denote the set of grid

cells of ocsk. (ii) Two consecutive cell sequences ocsk, ocsk+1 ∈ ocs(Tri, T rj) are not

continuous in TriA and in TrjA. (iii) share(Tri, T rj) = ∪mk=1cells(ocsk).

We use |ocs(Tri, T rj)| to denote the number of cell sequences in ocs(Tri, T rj).

Clearly, two trajectories are closer in distance not only when they share more com-

mon grid cells, but they may also have less number of overlapping sequences. This

is especially true when two pairs of trajectories have the same number of common

cells but one has less overlapping sequence than the other showing that their two

mobile objects are more similar in their movement. For example, in Figure 19(a),

we have |share(Tr1, T r2)| = |share(Tr2, T r3)| = 4 and |ocs(Tr1, T r2)| = 1 <

|ocs(Tr2, T r3)| = 2. Intuitively, Tr2 is closer to Tr1 than to Tr3.

Definition 14 (Mergeable Cells) Given two trajectories Tri, Trj and a distance

threshold δ, two grid cells ci and cj are mergeable with respect to Tri and Trj if (i)

ci ∈ Tcells(TriA)\share(Tri, T rj) and cj ∈ Tcells(TrjA)\share(Tri, T rj); (ii) ci and

cj are adjacent cells, namely ci ∈ adjacent cells(cj) and cj ∈ adjacent cells(ci); (iii)

two subsequences si = li1li2 ...lim = subA(ci, T ri) and sj = lj1lj2 ...ljn = subA(cj, T rj)

are satisfying:

L(si, sj) =

∑m
k=0 d

2
ik∑m

k=0 dik
+

∑n
q=0 d

2
jq∑n

q=0 djq
< δ (13)

Where dik and djq are the perpendicular distances from locations in subsequences si

and sj to the common edge of ci and cj respectively, as illustrated in Figure 19(c)

The left side of the inequality in Formula 13 measures the sum of the Lehmer mean

Lp (p = 2) of these perpendicular distances.

We use merge(Tri, T rj) as a function to compute the set of meargeable cell pairs from

two trajectories Tri and Trj, which is described in Algorithm 4. After computing

the set of common grid cells share(Tri, T rj) (line 2), the remaining cells in each
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Algorithm 4 merge(Tri, T rj)

Input: Trajectories Tri, T rj and distance threshold δ
Output: a set M of mergeable cells

1: M = ∅
2: compute share(Tri, T rj)
3: listi ← Tmap(TriA)\share(Tri, T rj)
4: listj ← Tmap(TrjA)\share(Tri, T rj)
5: for ci ∈ li do
6: for cj ∈ lj do
7: if ci and cj are adjacent then
8: si ← subA(ci, T ri); sj ← subA(cj, T rj)
9: if L(si, sj) < δ then

10: add the cell pair (ci, cj) to M
11: remove ci from listi and cj from listj
12: end if
13: end if
14: end for
15: end for
16: return M

trajectory (lines 3-4) are scanned to detect pairs of mergable cells (lines 5-15). After

computing the set of common grid cells share(Tri, T rj), the remaining cells in each

trajectory are scanned to detect pairs of mergable cells. We denote merge(Tri, T rj)

as a function to compute the set of meargeable cell pairs from two trajectories Tri and

Trj. The number of cell pairs in merge(Tri, T rj) is denoted by |merge(Tri, T rj)|.

The purpose of mergeable cells is to capture the proximity of parts of trajectories

residing in adjacent cells but are still close to each other with respect to a distance

threshold δ. Note that we can set δ to min(α, β,
√
α× β) since each cell area defines

a measure of the spatial proximity in the road network space. When we compute the

intersection of two trajectories, we consider both their common cells and mergeable

cells.

Definition 15 (Proximity-Based Intersection)

The proximity based intersection of two road network trajectories Tri and Trj, de-

noted by Tri∩ATrj, consists of the grid cells in share(Tri, T rj) or in merge(Tri, T rj).
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Its cell cardinality is computed as follows:

|Tri ∩A Trj| = |share(Tri, T rj)|+ |merge(Tri, T rj)| (14)

Definition 16 (Proximity-Based Union)

The proximity based union of two road network trajectories Tri and Trj, denoted by

Tri ∪A Trj, consists of the grid cells in TriA or TrjA but not in Tri ∩A Trj. Its cell

cardinality is computed as follows:

|Tri ∪A Trj| = |TriA|+ |TrjA| − |Tri ∩A Trj| (15)

Based on the proximity-based intersection and union of two trajectories, we formally

define the Grid Cell Sequence Distance function - GridCSD, to measure the

pairwise distance of trajectories in the road network.

Definition 17 (GridCSD) The distance of two road network trajectories Tri and

Trj is measured by the distance of their grid cell sequences, denoted byGridCSD(Tri, T rj),

which is computed from their proximity-based intersection and union as follows:

GridCSD(Tri, T rj) = 1− w × |Tri ∩A Trj|
|Tri ∪A Trj|

(16)

Where w = 1/|ocs(Tri, T rj)| if |ocs(Tri, T rj)| > 0, otherwise w = 1.

GridCSD in Formula 16 by design takes into account both the overlapping grid cells

and mergeable grid cells from two trajectories and are in favor of longer common cell

sequences. By GridCSD, two trajectories have smaller distance value if they share

more common cells or mergeable cells or have a smaller number of overlapping cell

sequences. The weight w = 1/|ocs(Tri, T rj)| in Formula 16 is to ensure that if two

pairs of trajectories share the same set of cells, then the pair of trajectories that share

longer overlapping cell sequences (i.e., less number of overlapping cell sequences) will

have smaller GridCSD distance.
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Compared to SegSD and SGBD, GridCSD is more advanced and it works for

both trajectories that share common portions and trajectories that have no overlap-

ping segments or no overlapping cells but are still close to one another in terms of

spatial trajectory proximity. Therefore, GridCSD captures the spatial proximity of

trajectories more accurately than segSD (segment based distance metric) and SGBD

(simple grid cell based distance metric).

Choice of Cell Size. The grid cell size defined by α and β is tunable in

TraceMob. For example, for suburban area, the road network is sparse and thus

the grid cell size can be relatively larger compared to the grid cell size for road net-

works of metropolitan cities. in the first prototype of TraceMob, we let system

administrator or end user to set the lower and upper bounds of the segment count

per grid cell, denoted by nl and nu. Given that segments are not uniformly distributed

across a road network, the average number of road segments per cell should be within

an appropriate range defined by [nl, nu]. Thus α and β should satisfy the following

condition: nl ≤ b |E|×α×βH×W c ≤ nu, where |E| is the total number of road segments in the

road network G = (V , E) with H and W as the height and width of the MBR of G.

Complexity Analysis. All three distance functions GridCSD, SGBD and SegSD

are based on Jaccard coefficient formula over sets, which takes the size of the intersec-

tion of two sets divided by the size of their union, and are normalized between 0 and

1. They need to scan the two cell sequences (for GridCSD and SGBD) or two seg-

ment sequences (for SegSD) to compute the overlapping grid cells or road segments.

Therefore, SGBD takes O(|TriA| + |TrjA|). GridCSD takes O(3 ∗ (|TriA| + |TrjA|))

since it needs to scan for meargable cells and continuous common grid cells. Let

Tseg(Tr) denotes the set of road segments covered by trajectory Tr. SegSD takes

O(|Tseg(Tri)|+ |Tseg(Trj)|).
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3.5 Trajectory Mapping

In this section we present the technical development of Phase II of our whole tra-

jectory clustering − Mapping each trajectory into a d-dimensional data point. This

transformation enables TraceMob to better optimize the whole trajectory cluster-

ing process. If we utilize the pairwise distance values obtained in Phase I to perform

k-means algorithm directly over the road network trajectories, we will face two tech-

nical challenges. First, we need to choose the k trajectories to serve as the k initial

centroids, and the existing statistics based algorithms for selecting the best initial

centroids are all developed for Euclidean space [14]. Second, we need to address the

problem of clustering validation since most of cluster validation metrics developed

to date are designed for evaluating the quality of clustering datasets in Euclidean

space. This motivates us to develop TrajMap to transform each trajectory into a

d-dimensional point in a Euclidean metric space. d is determined to ensure that the

distance between any pair of trajectories in a road network is best preserved by the

distance between the corresponding pair of points in the d dimensional metric space.

In terms of trajectory mapping, we need to address two key issues: how to select

the best initial projection axis and how to determine the best dimensionality d for

a given trajectory dataset. In the rest of this section, we first give an overview

of the TrajMap algorithm and then give an in-depth discussion on these two key

challenges in Section 3.5.2 and Section 3.5.3 respectively. After mapping trajectories

to d-dimensional image points, we use the partition based approach to clustering,

i.e., given an integer k, we want to partition a set of N trajectories into k clusters.

We choose to use the traditional k-means algorithm because of its efficiency and

simplicity. In addition, in many trajectory-based application scenarios, the values of

k are usually determined a priori.
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3.5.1 Transforming Trajectories using TrajMap

TrajMap takes three input parameters, a set of N trajectories, the pairwise trajectory

distance function D, the desired dimensionality d, and transform them into N points

in a d-dimensional space such that the original distances are preserved.

Concretely, TrajMap performs the trajectory mapping task in an iterative manner

for d iterations. Each of its d iterations includes three components as displayed in

Algorithm 5: (1) finds two pivot trajectories to form a projection axis (line 8-7) given

a distance function, in the first iteration, 5 calls chooseInitialPivots(T ,D(), rep) func-

tion to select the most accurate pivot trajectories with respect to the road network

space (2) projects the trajectories on the projection axis to compute their coordi-

nates (line 8-11), (3) utilizes the new coordinate xiter(Pi) and xiter(Pj) to obtain

a new distance function D(Tri, T rj) on a hyperplane perpendicular to the projec-

tion axis (line 12), which will be used in the next iteration. We also develop a cost

function, called Ipreserve, for determining the best d at each iteration, which allows

TrajMap((T ,D(), du)) to take the system supplied upper bound du and iteratively

tune the d parameter such that the best d∗ may be smaller than du and has the low-

est cost in terms of Ipreserve. The final result of TrajMap is a set of N d-dimensional

points, which will be the input for Phase III of our clustering framework.

TrajMap is implemented by extending FastMap [32], which is linear on data size N

since it requires O(dN) distance computations to complete the transformation. The

main extensions include the grid based trajectory distance function, the selection

of the initial pivot trajectories considering both trajectory distance and trajectory

maximum coverage and the cost function for determining the best d∗ at each iteration.
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Algorithm 5 TrajMap(T ,D(), d)

Input: (1) A set of N objects T = {Tr1, T r2, ..., T rN}
(2) Trajectory distance function D(Tri, T rj)
(3) Number of dimensions d

Output: A set of N points P = {P1, P2, ..., PN}
in a d-dimensional space

1: for iter = 1 to d do
2: choose Tra and Trb which maximizes D(Tra, T rb)
3: if iter = 1 then
4: (Tra, T rb)← chooseInitialPivots(T ,D(), rep)
5: end if
6: dmax← D(Tra, T rb)
7: record the ids of the pivot objects Tra and Trb
8: for each Tri ∈ O do
9: project the objects on the ’line’ (Tra, T rb)

10: compute coordinate xiter of Pi (based on the cosine law for the ’triangle’
TraTriTrb ) as follows:

xiter(Pi) = D(Tra,T ri)2+dmax2−D(Trb,T ri)2
2dmax

11: end for
12: define a new distance function D′(Tri, T rj) to use in the next iteration:

D′ij =

√√√√D(Tri, T rj)2 −
iter∑
t=1

(xt(Pi)− xt(Pj))2

13: if input dataset is a sample then
14: compute Ipreserve
15: if Ipreserve(iter) ≥ Ipreserve(iter − 1) then
16: d∗ = iter − 1
17: end if
18: end if
19: end for

3.5.2 Algorithm to select initial projection axis

It is important to choose appropriate pivot trajectories in the first iteration such

that the pivot trajectories are the farthest apart trajectories in the given dataset,

since TrajMap computes the d-dimensional coordinates of the trajectories’ images

through projections. A critical decision is whether using the grid-based trajectory

distance function alone is sufficent for selecting the pivot trajectories. We observe

that by definition of GridCSD, trajectories that have no overlapping cells and no
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mergeable cells will have the same maximum GridCSD value of 1. Thus, two trajec-

tories have the maximum GridSCD value does not imply that the two trajectories

are the farthest apart in a road network. Figure 20 illustrates this observation. We

have three trajectories Tr1, Tr2 and Tr3 as displayed in Figure 20(a). Each pair in

{Tr1, T r2, T r3} does not have overlapping cells and mergeable cells so their pairwise

distances GridCSD(Tr1, T r2) = GridCSD(Tr2, T r3) = GridCSD(Tr3, T r1) = 1.

SGBD and SegSD also give three pairwise distance values of 1. However, the bound-

ing box (Figure 20(d)) of Tr1 and Tr3 is larger than that of (Tr1, Tr2) (Figure 20(b))

and (Tr2, Tr3) (Figure 20(c)), which makes Tr1 and Tr3 more separate than the other

pairs. This motivates us to introduce the Cell Bounding Coverage of two trajectories

and add the maximum cell bounding coverage condition in choosing the initial pivot

trajectories for TrajMap.

Definition 18 (Cell Bounding Coverage) Given a pair of trajectories Tr1, T r2, their

Cell Bounding Coverage (CBC), denoted by CBC(Tr1, T r2), measures the num-

ber of cells in the rectangular region that minimally covers the grid cell sequences

representing the given trajectories and is formally computed as follows:

CBC = (maxRow −minRow + 1) ∗ (maxCol −minCol + 1) (17)

Where minRow, maxRow, minCol and maxCol are the minimum and maximum val-

ues of row index and column index of all the cells in the grid cell sequences Tr1A, T r2A.

(minRow,minCol) and (maxRow,maxCol) respectively determine the bottom left

cell and the top right cell of the rectangular region that forms CBC.

The algorithm for choosing the pivot trajectories first computes the pairwise tra-

jectory distance using GridCSD (or SGBD or SegSD). Then for those pairs of trajec-

tories that have the highest GridCSD value, we compute their CBC values and choose

the pair of trajectories with the maximum CBC as the two pivot trajectories in the

first TrajMap iteration as described in Algorithm 6. Instead of using the number
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Figure 20: Example of Cell Bounding Coverage

of repetition (rep) as done in Algorithm 6, we can alternatively use a convergence

condition such that if the CBC value of the two pivot trajectories computed in the

current iteration is similar to the CBC value of the two pivot trajectories computed

in the previous iteration by a given threshold γ, then the algorithm terminates.
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Algorithm 6 chooseInitialPivots(T ,D(), rep)

Input: (1) A set of N trajectories T = {Tr1, T r2, ..., T rN}
(2) Distance function D(Tri, T rj)
(3) Number of repetition rep

Output: trajectories Tra and Trb
1: Randomly pick a trajectory Trb
2: for i = 1 to rep do
3: get the set TA of trajectories which have the maximum trajectory distance to

Trb, D(Tri, T rb) ≥ D(Tri, T rj), Tri ∈ TA, Trj ∈ TA
4: choose Tra ∈ TA which has the maximum CBC(Tra, T rb)
5: get the set TB of trajectories which have the maximum trajectory distance from

Tra, D(Tra, T rj) ≥ D(Tri, T rj), Trj ∈ TB, Tri ∈ TB
6: choose Trb ∈ TB which has the maximum CBC(Tra, T rb)
7: end for
8: return Tra and Trb as the desired pivot trajectories

3.5.3 Cost Function for Determining d

Intuitively, the larger the number of dimensions d is for the projected trajectory

image space, the better TrajMap preserves the distances of original trajectories in

the d-dimensional trajectory image space. A small d may lead TrajMap to have less

satisfactory distance preserving quality. But large d may lead to high computational

cost due to over-mapping. Therefore, we limit the dimensionality for TrajMap to

an upper bound du supplied by the system. The actual d will be an integer in [1, du]

which minimizes the following cost function:

Ipreserve = (Istress + Iordering)/2 (18)

The cost function Ipreserve evaluates the distance preservation of TrajMap transfor-

mation, which is the average of the stress index Istress and the Kendall tau metric

Iordering.

The stress index measures the relative difference of the pairwise distances in the
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d-dimensional space from the pairwise distances in the original space:

Istress =

∑
1≤i,j≤N

(D′ij −Dij)2∑
1≤i,j≤N

D2
ij

(19)

where Dij is the distance between trajectories Tri and Trj in the road network space

and D′ij is the distance between their images Pi and Pj in the d-dimensional space.

The Kendall tau metric [54] measures the ordering dissimilarity of the ordered lists

of pairwise distances LT and LI in the original space and the image space respectively.

We have N(N − 1)/2 pairwise distances in each list. For each pair of distances

(Dij,Duv), if the order of them in LT is different from the order of (D′ij,D′uv) in LI

then K(ij, uv) = 1, otherwise K(ij, uv) = 0. The normalized Kendall tau metric is

computed as follows:

Iordering =

∑
1≤i,j,u,v≤N

K(ij, uv)

N(N − 1)/2
(20)

3.6 Clustering and Cluster Validation

In Phase III of TraceMob, we employ k-means clustering over the projected tra-

jectory images in the d-dimensional Euclidean space with user-defined K and the

optimal initial centroids [14] followed by clustering quality validation.

To measure the clustering quality, we perform the cluster validation in both the

trajectory image space where k-means clustering is performed, and the original road

network space where clusters of d-dimensional points are mapped back to clusters of

trajectories.

In the d-dimensional space, we evaluate the clustering ofN image points P1, P2, ..., PN

into a set of k clusters, denoted by CP = (C1, C2, ..., Ck) using the well known within

cluster sum of squares (WCSS) of the Euclidean norm ||.|| which measures the WCSS
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distance from a trajectory image point Pj to its assigned cluster center µi:

wcss =
∑
Ci∈CP

∑
Pj∈Ci

||Pj − µi||2 (21)

The smaller WCSS value implies the better clustering quality.

After obtaining the clustering result CP = (C1, C2, ..., Ck), we replace each point

Pj in a cluster Ci with its corresponding trajectory Trj and output the final trajectory

clusters CG = (C1, C2, ..., Ck). We adapt the Silhouette Index [76], a popular method

for cluster validation, to measure cluster quality in the road network space.

Definition 19 (Spatial Silhouette Index) Given a cluster assignment CG = (C1, C2, ..., Ck)

of a dataset of N trajectories, the spatial Silhouette Index of CG, denoted by SSI, is

measured as follows:

SSI =
1

k

∑
Cu∈CG

1

|Cu|
∑

Tri∈Cu

bi − ai
max(ai, bi)

(22)

Where ai = 1
|Cu|−1

∑
Trj∈Cu,j 6=i

tf(Tri, T rj),

bi = min
Cv∈CG ,Cv 6=Cu

1

|Cv|
∑

Trj∈Cv

tf(Tri, T rj)

and tf(Tri, T rj) = CBC(Tri, T rj)/(|TriA|+ |TrjA|).

The intuition behind SSI is that for trajectories Tri and Trj which are grouped

together in a cluster, Tri and Trj are considered tightly grouped if their cell bound-

ing coverage tightly wraps around them. We measure this tightness, denoted by

tf(Tri, T rj), using their CBC divided by the sum of their grid cell cardinalities,

which is
CBC(Tri,T rj)

|TriA|+|TrjA|
. The smaller value of tf(Tri, T rj), the tighter Tri and Trj are.

The SSI function computes the local silhouette width ( bi−ai
max(ai,bi)

) for each trajectory,

the average silhouette width for each cluster and the global silhouette width for the

total trajectory dataset. Similar to the Silhouette Index, SSI is limited to the interval

[-1, 1] and should be maximized.
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3.7 TraceMob System Architecture

The first prototype of TraceMob implements the whole trajectory clustering framework

with GridSCD, SGBD and SegSD as the distance metrics. Figure 21 shows the

sketch of the system architecture. In the trajectory distance computation phase,

TraceMob takes as its input a trajectory dataset and a road network G = (V , E)

where the trajectories are recorded or map-matched [89], and uses a grid overlay to

abstract a trajectory to a time ordered sequence of grid cells. The output will be a

set T of N trajectories in their grid-based representation and the pairwise distance

between each pair of trajectories.
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Figure 21: The TraceMob framework.
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To determine the grid structure and its matrix representation, a grid cell size needs

to be supplied to the trajectory distance computation module. A user can provide

their desirable cell size or use the suggested cell size generated by the system. In the

former case, the grid size (in number of cells) will be dW
α
e× dH

β
e given the user input

cell size of α×β and U(G) = Rect(X, Y,W,H) - the MBR of the road network G. In

the latter case, we use a quad grid of size 2m× 2m. Given that a cell area defines the

spatial proximity in the road network G = (V , E), to select the best grid cell size for

trajectory clustering purpose, we suggest that a grid cell should cover the portions

from an appropriate number road segments. For example, if we choose a grid cell to

cover an average of 1 to 3 road segments, then m can be determined to satisfy the

condition of 1 ≤ b |E|
2m×2m c ≤ 3. Given U(G) = Rect(X, Y,W,H), the grid cell size will

be dW
2m
e × d H

2m
e.

In the transformation phase, the TrajMap is invoked to map trajectories from

their grid-based representation in the road network space to points in a d-dimensional

space. To choose the number of dimensions for mapping, TraceMob uses simple

random sample Ts of 10% of the dataset to compute Ipreserve for each value of d from 1

to du = 50 by running TrajMap(Ts, GridCSD, du). The value of d∗ which minimizes

Ipreserve will be selected. Then TraceMob will execute TrajMap(T , GridCSD, d∗)

to produce a set P of N d∗-dimensional points.

In the clustering and validation phase, TraceMob performs k-means clustering

on P with one or many values of k supplied by users. The clustering results will

then be evaluated in the evaluation phase using our SSI method to output the best

clustering result.

In addition to implement the first prototype of TraceMob with the GridCSD

distance metric, we also implement TraceMob with SBDS and SegSD for the pur-

pose of performance comparison.
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Table 6: The optimal d used in our experiments
Frameworks ATL datasets SJ datasets

d∗ I∗preserve d∗ I∗preserve
GridCSD-TraceMob 40 0.025 50 0.030

SegSD-TraceMob 41 0.108 40 0.113

SGBD-TraceMob 47 0.071 50 0.078

3.8 Experiments

We perform four sets of experiments to analyze the effectiveness of the TraceMob

trajectory clustering framework. We show the effectiveness of using TraceMob with

the GridCSD function for preserving the spatial structure of trajectories as well as

for producing highly accurate clustering results compared to SGBS-TraceMob and

SegSD-TraceMob. Furthermore, we show that the grid based approach runs sev-

eral orders of magnitude faster than the segment based approach (SegSD-TraceMob)

and the direct trajectory clustering without transformation. We implement a k-

means clustering with GridCSD using the PAM (Partitioning Around Medoids) algo-

rithm [53] which performs clustering directly on the road network trajectory dataset.

We call this implementation GridCSD-PAM.

We implement our algorithms using Java and all the experiments are conducted

on a PC with Intel Core2 Duo CPU of 2.00GHz and 2GB of main memory.

3.8.1 Datasets and Parameter Settings

The real user trajectory data are considered highly sensitive regarding location privacy

of users. Companies providing LBSs such as Google, Microsoft, Skyhook keep their

trajectory data unpublished. Other sources [6, 7] provide sample GPS trajectories

but the underlying road networks are unknown and the amount of trajectory data

is too small for scalability evaluation. To evaluate the TraceMob with both urban

and rural/suburban road networks at different scale of trajectory datasets, we modify

the event-based simulator GTMobiSim [70] to generate mobility traces on real road
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networks. We use maps of the real road networks of North West Atlanta (ATL) and

West San Jose (SJ) which are obtained from U.S. Geological Survey data [85]. ATL

map is a rural/suburban road network with low density of network topology. SJ map

is an urban road network with a higher density of network topology, which means

higher density of road segments and junctions. Concretely, we use the random trip

model. The start and end locations in each trip of a mobile object are randomly chosen

from a predefined set of hot spots on the map. Each object moves independently of

others, under the speed limit and speed distribution defined for the road segments.

The speed limits are set for each type of road at 30mph for residential, 55mph for

highway, 70mph for freeway and 30mph for freeway interchange. Object speeds are

chosen from a Gaussian distribution with a standard deviation of 0.2 times the mean,

which is the road segment speed limit. The objects are simulated to travel following

the shortest routes to reach their destinations as in real life traveling. The trajectory

locations of an object are recorded every 5 seconds during its trip. Thus, the trajectory

datasets generated reflect user movement along the real world road networks.

Figure 22(a) and Figure 22(a) show the 1000 mobility traces generated on the

road networks of ATL and SJ, called ATL1 and SJ1 datasets, plotted as light green

polylines on ATL map and on SJ map respectively. We sample ATL1 and SJ1 datasets

with duplicates to produce datasets of size from 1000 to 10000 trajectories for each

road network in our experiments. ATL1 and SJ1 are also used as sample datasets to

select the optimal dimensionality for the TrajMap trajectory transformation. The

value of the best d to use in different implementations of TraceMob is reported in

Table 6. The cell size is by default set to [186m× 220m] and [176m× 218m], which

are equivalent to the same grid size of [26 × 26], for ATL and SJ maps respectively,

so that the average number of road segments residing in a grid cell is in the range of

[1, 3]. In Section 3.8.5 we will evaluate the effectiveness of TraceMob by varying

grid cell sizes.
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(a) ATL1 mobility traces

(b) SJ1 mobility traces

Figure 22: Sample synthetic datasets
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3.8.2 Spatial Structure Preservation
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(a) sample data of ATL1
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Figure 23: Computing Ipreserve to choose d∗

Figure 23 shows the Ipreserve computed for each d from 1 to 50 to find the best d

for all three TraceMob implementations, GridCSD-TraceMob, SGBD-TraceMob and

SegSD-TraceMob. We list the optimal d for both ATL1 and SJ1 in Table 6. For ex-

ample, in GridCSD-TraceMob which uses the GridCSD distance function performing

91



on Atlanta datasets, the best d is 40, which minimizes Ipreserve. We can see from Fig-

ure 23 that as d increases, Ipreserve decreases, indicating that all the transformations

preserve the spatial structure of the original trajectory better with increasing d until

d reaches the optimal point in the given range. The values of Ipreserve for GridCSD

decrease faster and are smaller than those of SegSD and SGBD, which shows that

using GridCSD for the transformation helps better preserve the spatial structure of

the trajectories than using SGBD and SegSD. The reason is that SegSD produces dis-

tances of 1 (recall that all three distance functions are normalized between 0 and 1) for

all pairs of trajectories that do not contain overlapping road segments no matter how

close they are in the road network space. SGBD performs slightly better than SegSD

because it uses the grid-based representation and considers the common grid cells in

two trajectories, which can correct the problem of two trajectories which are close

but do not share common road segments. However, it still produces inaccuracy where

trajectories do not have overlapping cells or their mergeable cells dominate. This is

corrected by the GridCSD function, which considers both the common and mergeable

grid cells, as well as adding weights to favor longer common cell sequences. Therefore,

GridCSD describes accurately the spatial structure of the original trajectory dataset

and also well preserves the spatial structure of data in the image space.

3.8.3 Cluster Validation

We show the evaluation of clustering results by analyzing both the WCSS (within

cluster sum of square) and the SSI (spatial Silhouette index). The value of k supplied

for k-means clustering varies from 1 to 15. Figure 24 displays the results for the ATL1

dataset. Recall that SSI is proportional to cluster quality, while WCSS is reversely

proportional to cluster quality. Figure 25(a) shows that the clustering result produced

by SGBD-TraceMob has slightly better quality than that of SegSD-TraceMob for all
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values of k. While there is a big gap in all values of WCSS produced by GridCSD-

TraceMob compared to the other two approaches. Thus, GridCSD-TraceMob pro-

duces a better clustering structure than SGBD-TraceMob and SegSD-TraceMob. This

results from the capability of the GridCSD function to better describe and preserve

the spatial structure of trajectory data, as demonstrated above.

In Figure 24(b), for most values of k, GridCSD-TraceMob produces results with

the highest quality in terms of SSI (Spatial Silhouette Index). SGBD-TraceMob

stays close to GridCSD-TraceMob for most of k values. However, segSD-TraceMob

starts to show decreasing SSI values when k reaches 9. However, there is no big gap

appearing in the SSI curves of the clustering results in the road network space. This

interesting fact is also displayed in Figure 25 for the SJ1 dataset. It can be explained

by the difference between trajectories and multidimensional points. While a point in

a multidimensional space is literally isolated and does not interfere with other points,

a trajectory occupies a specific amount of space in the road network that can overlap

with many other trajectories. That is why the clustering structure in the road network

space is less pronouced than in a multidimensional space. Also, GridCSD-PAM yields

the lowest values of SSI in all cases showing that performing clustering directly in

the road network space introduces inaccuracy in discovering trajectory clusters, in

which it is hard to compute cluster centers accurately. Therefore, it is better to

map trajectories to d-dimensional points in an Euclidean space before performing

clustering. GridCSD-TraceMob remains to be the highest quality in terms of SSI

for all k values, whereas GridCSD-PAM shows the lowest SSI values, demonstrating

the effectiveness of TraceMob trajectory clustering framework compared to directly

clustering whole trajectories using GridCSD-PAM.
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Figure 24: Cluster validation for ATL1 dataset

3.8.4 Performance Evaluation

This set of experiments is to evaluate the efficiency of GridCSD-TraceMob in terms

of time complexity. For a fair comparison, we use the same values of d = 50 to run

GridCSD-TraceMob, SegSD-TraceMob, SGBD-TraceMob instead of using the best d

used in the previous experiments. We also use the same value of k = 10. We compare

the running time of the three implementations on ten datasets of varying sizes from
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Figure 25: Cluster validation for SJ1 dataset

1000 to 10000 trajectories. Figure 26 shows that GridCSD-TraceMob and SGBD-

TraceMob are scalable and run up to two orders of magnitude faster than SegSD-

TraceMob and GridCSD-PAM as the data size increases for both ATL1 (suburban)

and SJ1 (urban). This shows the inefficiency of perform clustering directly in the

road network space where the centroid of a set of trajectories is costly to compute,

given that partition based clustering requires iterative computation until it converges.
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Figure 27 displays the statistics about the number of cells in each grid-based

representation and the number of road segments in each segment-based representation

of a trajectory in ATL and SJ datasets. It shows that the road segment cardinality

of a trajectory approximately doubles its cell cardinality. Also, the road segment

cardinality of a trajectory approximately doubles its cell cardinality since one grid

cell covers a number of segments in the road network. Moreover, SegSD needs to

access the geometric points of a road segment in the map to compute its length,

which ranges from 2 to 34 points in ATL map, and 2 to 26 points in SJ maps.

Thus, each GridCSD or SGBD computation requires much less time than SegSD

computation (recall the complexity analysis in Section 3.4). Since the performance of

the transformation phase heavily depends on the input distance function, that makes

GridCSD-TraceMob and SGBD-TraceMob achieve big savings in time compared to

SegSD-TraceMob.

Figure 28(a) compares the average running time in seconds of k-means clustering

by varying the sizes of trajectory data for all three distance based schemes. The

measurement reported for each scheme is the average running time for the trajec-

tory image datasets of both ATL and SJ maps with d = 50. It shows that the time

complexity of the k-means clustering is increasing as the size of trajectory dataset

increases for all three approaches but for each given dataset, the running time for

k-means clustering is quite similar for all three distance metrics. Furthermore, com-

paring with the running time of the transformation phase in Figure 26, we see that

the running time of k-means clustering in all three cases is negligible (ranging from

0.5s to 14s) compared to that of TrajMap mapping (SGBD-TraceMob takes from 64s

to 3918s for mapping). Thus, the transformation phase mainly contributes to the

cost to run each TraceMob scheme, which combines the running time of transforma-

tion phase and clustering phase. Figure 28(b) plots the total running time of three

TraceMob schemes along with that of the GridCSD-PAM scheme on ATL datasets.
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We can see that the relative performances of four schemes are similar to the results

shown in Figure 26. Combining Figure 26 with Figure 25, we show that the grid-

based trajectory clustering approach consumes less trajectory distance computations

while yielding better clustering quality.

This results from the linearity of k-means clustering in an Euclidean space, where

only Euclidean distance computation is required and its ability to quickly converge

when we use careful seeding, e.g., we use k-means++ algorithm [14] to select initial

centroids in our implementation. Therefore, in the case when there are several desir-

able values of k, we can quickly obtain the clustering results since we only need to

perform k-means clustering on the set of multidimensional points instead of repeat-

edly performing the clustering for different k directly on the complex trajectory data.

3.8.5 Varying cell sizes

Finally, we measure the performance of GridCSD-TraceMob by varying the settings of

grid cell size for both suburban map (ATL) and urban map (SJ). We run GridCSD-

TraceMob over the dataset of 5000 trajectories for each map. Figure 29(a) shows

the measurement results for different settings of grid size. At the grid size of 32 ×

32 (i.e., 25 × 25), each cell covers an average of 8 road segments in ATL map and

13 road segments in SJ maps. At the grid size of 512 × 512 (i.e., 28 × 28), each

cell covers an average from 0 to 1 road segments for both maps. The results show

that the running time increases as the size of the grid cell decrease, which means

that the number of cells in the grid increases. The increased running time can be

attributed to the increased number of cells representing each trajectory as the cell

size decreases, and thus trajectory distance computation takes longer time during

TrajMap transformation.

We can also see that TraceMob runs faster on ATL map, which is a suburban
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Figure 26: Running time of the transformation phase with Y-axis logarithmic.

road network with low density of network topology, than on SJ map, which is an

urban road network with high density of network topology. In addition, the running

time increases less for ATL map than for SJ map when the grid cell size decreases.

Recall the statistics reported in Figure 27, we can see the length in terms of the

number of cells per trajectory on average in ATL datasets is shorter than that in SJ

datasets. Also, the number of road segments intersects with a grid cell of the same

size on ATL map is smaller than that on SJ map. Thus, GridCSD computation is
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Figure 27: Average number of cells/segments per trajectory

faster for trajectories in ATL map than in SJ map, which is further confirmed by the

results shown in Figure 29.

Figure 29(b) and Figure 29(c) show the clustering quality measurement in terms

of WCSS and SSI respectively by varying cell sizes. We can see that choosing too

large cell size or too small cell size will result in poor clustering quality. The most
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Figure 28: (a) Average running time of k-means clustering phase, (b) Total running
time with Y-axis logarithmic. (Atlanta datasets)

suitable grid size (26 × 26) for these experiments gives better clustering structure for

the trajectory dataset with the lowest value of WCSS and the highest value of SSI.

3.9 Conclusion

We have presented TraceMob, a methodical approach to clustering whole trajecto-

ries of mobile objects traveling in road networks. This chapter makes three original
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Figure 29: Varying size of grid cells

contributions. First, we introduce GridCSD to measure the distance between two

trajectories of varying lengths. It fully captures the spatial proximity of trajectories

in a road network and works effectively for both trajectories that share common road

segments and trajectories which are non-overlapping but still close to each other.

Second, we develop TrajMap by extending FastMap, which transforms mobile ob-

ject trajectories in a road network space into d-dimensional points in an Euclidean

space while preserving the original pairwise distances of road network trajectories.
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We achieve this objective by carefully selecting the initial pivot trajectories and it-

eratively refining the dimensionality d during the transformation. Third but not the

least, we evaluate the clustering quality in both projected trajectory image space and

the road network trajectory space. Extensive experiments demonstrate the utility of

our three phase framework for whole trajectory clustering and show that GridCSD-

TraceMob outperforms the simple grid based approach (SGBD-TraceMob), segment

based approach (SegSD-TraceMob) and direct clustering over road network trajecto-

ries (GridCSD-PAM) in terms of both clustering quality and time complexity.
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CHAPTER IV

TRAJPOD: FAST LOCALITY-AWARE TRAJECTORY

PATTERN MINING

In recent years, trajectory data of mobile objects in road networks (MO trajectories)

has become ubiquitous, which presents exciting mining challenges for studying the

dynamics of human mobility. In this chapter, we investigate the problem of finding

the spatial-temporal correlation in the movement of mobile objects through mining

trajectory sequential patterns. Since MO trajectories are temporal sequences of lo-

cation points of mobile objects moving in constrained road networks, there is a high

degree of overlap in their temporal orders and spatial proximity, in addition to the

large number of location points per trajectory. Therefore, applying existing sequential

pattern mining algorithms for MO trajectories can suffer from exponential growths

in space and computation. We define trajectory patterns as time-ordered sequences

of semantic spatial units and propose a novel algorithm, called TrajPod, to ex-

tract the complete set of frequent trajectory patterns from MO trajectory data. To

handle the complex spatial-temporal characteristics of MO trajectories, TrajPod

uses a vertical format of the trajectory database, i.e., trajectory id-lists, which are

partitioned into locality-aware sublists. In addition, TrajPod uses a space-efficient

representation for multiple occurrences of a semantic spatial unit in a trajectory with

respect to each sublist. These techniques allows TrajPod to perform trajectory

pattern mining efficiently with early candidate pruning and fast support counting.

Extensive experiments with varying size datasets of mobility traces generated from

real road networks demonstrate that TrajPod is efficient and outperforms existing

sequential pattern mining approaches up to an order of magnitude.
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4.1 Background and Introduction

We first give an overview on the background of the traditional sequential pattern

mining research. We then address the problem of mining mobile object trajectory

patterns and present our approach to the problem.

4.1.1 Sequential Pattern Mining

Sequential pattern mining has long been recognized as a primary mining task to an-

alyze sequential data including purchase history, web logs and biological data. The

problem of sequential pattern mining has been studied extensively since it was first

introduced by R. Agrawal and R. Srikant [10] in 1995 for shopping basket data. The

input data is a set of data sequences. Each data sequence Seq is a time-ordered list

of events where each event consists of a set of items and identified by a sequence

identifier SeqId, formally represented by Seq = {SeqId,OrderedList < Event >}.

An example of a sequence in the shopping basket data is {Sid,< (cheese, diaper)→

(milk, bread) → (beer, coke) → (salt) >}, in which an event is a transaction con-

sisting of grocery items. A result from sequential pattern mining can be “70% of

the customers buy diapers and cheese, then also buy beer”, which means 70% of the

input sequences contains the subsequence < (cheese, diaper) → (beer) >. The sub-

sequence < (cheese, diaper)→ (beer) > is called a frequent sequence given a support

threshold α < 70%. Such discovered knowledge presents the associations between

items in the sequence data, which is extremely helpful for applications in recommen-

dation systems, business prediction and planning, store reorganization and marketing

strategy.

The downward-closure property, Apriori, that an itemset is frequent only if all of

its subsets are frequent, which was observed in [9], has been the basis for existing se-

quential pattern mining algorithms. Approaches in sequential pattern mining mainly

fall into two categories, namely, Apriori-based and projection-based pattern growth.
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Apriori-based algorithms [10,15,80,97] mainly exploit Apriori property to compute

frequent patterns in a generate-and-test fashion, in which all frequent k-patterns are

mined from the set of frequent (k − 1)-patterns starting from frequent 1-patterns.

Early Apriori-based algorithms, e.g., AprioriAll [10], GSP [80], make multiple passes

through the database to count the support of the current candidates, which yield

undesirable performance due to expensive I/O cost. SPADE [97] and SPAM [15]

employ a vertical format of the database, which is the occurrence lists of the items in

the database, and compute the supports based on the corresponding operators over

these lists, reducing the number of database scans to one or two. SPADE has to

perform whole id-list joins to test large sets of candidate patterns. SPAM speedups

support counting by using bitwise operators. However, its bitmap data structure is

very space-inefficient because every candidate is represented by bit vectors whose size

is the same as the number of the data sequences.

Projection-based algorithms, such as FreeSpan [45] and PrefixSpan [69], recur-

sively project sequence databases into smaller projected databases based on the

current frequent patterns and examine frequent patterns locally in the projected

databases to grow patterns. This pattern growth process also implies the Apriori

principle that any sequence whose projected itemset is a super-pattern of a triv-

ial itemset is also a trivial pattern. Although FreeSpan searches smaller projected

databases than the original database, it still has to keep the whole sequence and

check the growth of a pattern at any split point in a candidate pattern, which is

costly. PrefixSpan improves over FreeSpan by checking only the prefixes of patterns

and projects their corresponding suffixes into prefix-projected databases where it can

explore the frequent patterns locally. The projected databases in PrefixSpan shrink

faster than those of FreeSpan. Although there is no candidate patterns generated,

Prefix has to generate and explore the entire projected databases recursively which

can consume a lot of space and processing time.
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SPADE, SPAM as the Apriori-based representatives and PrefixSpan as the projection-

based representative are the most efficient algorithm benchmarks to date.

4.1.2 Mobile Object Trajectory Pattern Mining

In recent years, trajectory data of mobile objects in road networks (MO trajectories)

has become ubiquitous due to advances in positioning technologies, the dramatic

growth in the number of active mobile devices and advances in the field of location

based services and applications. The huge source of MO trajectory data presents

exciting mining challenges in order to study the dynamics of human mobility. In

this chapter, we investigate the problem of finding the spatial-temporal correlation

in the movement of mobile objects through mining trajectory sequential patterns.

Our goal is to find the complete set of trajectory patterns, which helps discover

interesting association rules between locations in the given trajectory dataset. The

discovered trajectory sequential patterns can be used in broad applications such as

trip recommendation, location prediction, location-based advertisement.

Intuitively, existing sequential pattern mining algorithms, represented by SPADE

[97], SPAM [15] or PrefixSpan [69], can be applied to mine trajectory patterns since

MO trajectories are temporal sequences of location points representing moving paths

of mobile objects in road networks. Here, each event in a trajectory has only one

item, which is a road network location, as a user can only be at one location at a

time, instead of multiple items per event as in traditional sequence data. Moreover,

since MO trajectories are constrained by the road network as mobile objects can only

move within road segments, there is a high degree of overlap in their temporal orders

and spatial proximity. Therefore, applying general sequential pattern mining algo-

rithms to MO trajectories, without considering and utilizing their spatial-temporal

characteristics, can suffer from exponential growths in space and computation. We

carefully study the spatial-temporal characteristics of trajectory data to define the

106



following key design guidelines for an efficient trajectory pattern mining algorithm.

First of all, we define a trajectory pattern as a sequence of semantic spatial units.

Due to the high location tracking rate, the number of location points recorded per

trajectory can be very large. Consecutive points in a trajectory can be dense and

belong to the same semantic spatial unit on a road segment, e.g., a region passing

a shopping mall. Hence, we aim to mine a set of meaningful trajectory patterns as

sequences of semantic locations instead of raw GPS locations. We define trajectory

pattern as a time-ordered sequence of semantic spatial units, given a set of spatial

semantic units associated with a road network. Each semantic spatial unit can be a

road segment or a grid cell in a grid overlay of the road network. It covers a portion

of the road network locations in a given trajectory dataset. An example of a MO

trajectory pattern which we aim to mine can be “70% of the mobile objects go to

A, then to B, then also go to C during their trips” where A, B, C are the semantic

spatial units in the road network.

Second, we use a vertical layout of the trajectory dataset for space efficiency.

Beside the aforementioned property of one-item event, we observe that mobile objects

usually travel following shortest paths. Thus, there can be a lot of overlapping parts

among MO trajectories within the same road network. A location can have a large

number of occurrences across different trajectories. This makes the vertical layout of

a trajectory dataset, i.e., the occurrence id-list associated with the semantic spatial

units, a space-efficient way to manipulate trajectory data.

Last but not least, we take a locality-aware approach in support counting for compu-

tational efficiency. We observe that many MO trajectories within a road network can

share the same ending semantic locations, for instance, trajectories of people living

in the same neighborhood or working in the same company. Thus, we organize each

occurrence id-list into locality-aware sublists. In addition, we use a space-efficient

representation for multiple occurrences of a semantic spatial unit in a trajectory with
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respect to each sublist. These techniques help reduce the algorithm’s search space and

greatly improve the performance by incorporating early candidate pattern pruning

and efficient support counting.

Based on these design guidelines, we construct TrajPod, an algorithm for TRAJectory

pattern discovery using locality-aware Partitioning of the Occurrence iD-lists. TrajPod

efficiently discovers the complete set of trajectory patterns by utilizing the spatial

characteristics of MO trajectories for early and deep pruning candidate patterns

along with depth-first traversal of its search space. While SPADE scans the whole

occurrence id-lists and PrefixScan scans the entire projected data recursively for each

frequent prefix, TrajPod only performs on the partitioned occurrence id-lists which

greatly reduces the search space and support counting computation cost. A compre-

hensive experimental evaluation demonstrates the space and computational efficiency

of TrajPod as it has better memory utilization and runs up to an order of magnitude

faster than state-of-the-art approaches in traditional sequential pattern mining.

The rest of this chapter is organized as follows. Section 4.2 presents the reference

road network model and MO trajectories in the form of sequences of semantic spatial

units. The problem statement and basic concepts of mining MO trajectory pattern are

introduced in Section 4.3. Section 4.4 gives an in-depth presentation of our approach

to the trajectory mining problem. We report our experimental results in section 4.5,

discuss related work in Section 4.6 and conclude the chapter in section 4.7.

4.2 Road network and MO trajectories

In this section, we present the basic model of a road network and the definition of MO

trajectories. We then describe the use of a semantic spatial coverage to represent a

MO trajectory as a sequence of semantic spatial units for our pattern mining purpose.
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4.2.1 Road Network Model

A road network is modeled by a single directed graph G = (V , E), where V =

{v0, v1, . . . , vN} is a set of road intersections and E = {(sid, vivj)|vi, vj ∈ V} is a

set of directed edges connecting the road intersections.

Each edge e = (sid, vivj) ∈ E is identified by the road segment id sid which

connects two road intersections vi and vj in the real road network.

We define a road network location as a tuple of three elements l = (sid, (x, y), t),

where sid is the identifier of road segment where the object resides, (x, y) is the geo-

metric coordinates of the object’s location, and t is the timestamp when the location

is recorded.

When a mobile object, e.g., a person equipped with a GPS/Wifi-enabled mobile

device (such as a car or a smartphone), moves in a road network G, the locations

recorded during its trip form a trajectory and formally defined as follows.

Definition 20 (Road Network Trajectory) A road network trajectory Tr, denoted

by Tr = (trid, l1l2...lL), is a time-ordered sequence of L road network locations li

(1 ≤ i ≤ L) and is uniquely identified by a trajectory identifier trid.

4.2.2 Semantic Spatial Coverage

We define a semantic spatial coverage associated with a road network G, denoted

as SSC(G), as a set of semantic spatial units which covers all the road network

locations in G. Each semantic spatial unit, called s-unit, is a spatial area representing

a semantic network proximity where a group of road network locations reside. By

distance measure, two road network locations within the same s-unit are closer to each

other than the distance between two locations in two different s-units. For instance,

a grid cell, a road segment, a hotspot or point of interest in the road network can be

considered a semantic spatial unit.
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We argue that trajectory pattern mining should consider frequent sequences of se-

mantic spatial units as more meaningful than frequent sequences of raw road network

locations. Thus, transforming MO trajectories into sequences of s-units is a necessary

preprocessing step for trajectory pattern mining.

In general, given an SSC(G), a MO trajectory can be formatted as a time-ordered

list Tr = (trid, u1u2...un) in which each ui is an s-unit in SSC(G). We present in

the followings two SSC schemes to represent MO trajectories as sequences of s-units:

segment-based and grid-based.

4.2.2.1 MO trajectories as sequences of road segments

Trajectories collected via GPS sensing are often quite long in terms of the number

of the recorded locations, especially with frequent periodic sensing. Long trajectories

are those consisting of a large number of location points. By utilizing road network

characteristics, we can abstract road network trajectories using road segments with-

out loss of data quality. Since a mobile object can only move along consecutive road

segments, a trajectory Tr = (trid, l1l2...lL) in a road network G = (V , E) can be alter-

natively represented by its road segment sequence, denoted by Tr = (trid, e1e2...eR)

(ei ∈ E , 1 ≤ i ≤ R,R ≤ min(L, |E|)).

4.2.2.2 MO trajectories as sequences of grid cells

Given a road network G, we refer to the minimum bounding rectangle (MBR) region

that covers the entire road network as the universe of discourse, which is defined by

U(G) = Rect(X, Y,W,H), where X is the x-coordinate and Y is the y-coordinate of

the lower left corner of the MBR corresponding to the universe of discourse. W is the

width and H is the height of the universe of discourse. X, Y,W and H are system

level parameters to be set at the system initialization time.

Grid Overlay : We partition U(G) into a grid of contiguous cells to form a grid

topology of the road network G. We consider a uniform grid topology with identical

110



Figure 30: A grid overlay of a sample road network Gs as its SSC

rectangular cells of size α × β. Formally, a grid corresponding to the universe of

discourse U(G) can be defined as AGrid(G)(U(G), α, β) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤

N , Ai,j = Rect(X+ i∗α, Y + j ∗β, α, β),M = dH/αe, N = dW/βe}. α and β are

system parameters that define the cell size of the grid. Ai,j is an α × β rectangular

area representing the grid cell that is located on the ith row and jth column of the

grid AGrid(G). Each cell entry Ai,j is uniquely identified by a cell identifier cid, which

is an integer in [1,M ∗N ].

Ai,j.cid = (i− 1) ∗N + j, i ∈ [1,M ], j ∈ [1, N ] (23)

Position to Grid Cell Mapping : Let l.pos denote the geometric coordinates

(x, y) of a road network location l = (sid, (x, y), t). Let Ai,j denote a cell in the grid

AGrid(G). Pmap(l.pos) is a road network location to grid cell mapping, defined as

Pmap(l.pos) = Ad pos.x−X
α

e,d pos.y−Y
β

e.

Each trajectory and its road network locations are indexed by the grid matrix

AGrid(G). Thus, a trajectory Tr = (trid, l1l2...lL) can be represented by a time ordered

sequence of grid cells covering its locations, denoted by Tr = (trid, c1c2...cn), where

each ck(1 ≤ k ≤ n) is a grid cell covering a subsequence of l1l2...lL, denoted by

li1 . . . lim . For example, given a uniform grid of size 2 × 4 covering a sample road

network Gs shown in Figure 30, we have 8 grid cells A,B,C,D,E, F,G,H as 8 s-

units. The trajectory of a mobile object that moves consecutively through A,B, F,G
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and H will be represented by the sequence ABFGH covering the trajectory path.

For presentation convenience, all the definitions in the rest of the chapter are

assumed to be given in the context of a road network G = (V , E) and its semantic

spatial coverage SSC(G). Without loss of generality, we illustrative our approach

using examples given a sample grid-based SSC. We also use the alphabetical symbols

to denote the identifiers of s-units when no confusion occurs.

4.3 Problem Description

In this section, we begin with defining the necessary terminology and scope of the

trajectory pattern mining problem we are solving.

4.3.1 Trajectory Pattern Mining

Given a MO trajectory data set T = {TR1, TR2, . . . , TRN} consisting of N tra-

jectories in a road network G = (V , E), along with its semantic spatial coverage

SSC(G). We will use the s-unit based representation for the given MO trajectories

where each trajectory TRi ∈ T is a sequence of s-units from SSC(G), denoted by

Tri = (trid, u1u2...un).

We use traj(trid) and trid interchangeably to refer to the trajectory with identifier

trid in the trajectory dataset. Throughout the chapter, we use the symbol || to denote

the unit cardinality of an object. For instance, |Tri| is used to denote the s-unit

cardinality of trajectory Tri.

Definition 21 (Trajectory Pattern) A trajectory pattern α is an ordered list of s-

units, denoted by u1u2 . . . uk, where ui (1 ≤ i ≤ k) is an s-unit in SSC(G).

For ui ∈ α and uj ∈ α, we denote ui < uj if ui occurs before uj in pattern α. The

number of s-units in a pattern is the length of the sequence. A pattern of length k is

called k-pattern. By definition, a trajectory is also a trajectory pattern itself.
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A pattern β is said to contain pattern α and is called a super-pattern of α, denoted

as α � β, if ui ∈ α then ui ∈ β and the order of s-units in α is preserved in β, i.e., if

ui < uj in α then we also have ui < uj in β. α is said to occur in β and is called a

sub-pattern of β. For example, u1u2u3u4 is a supper-pattern of u2u4.

Definition 22 (Pattern Occurrence) An occurrence of a trajectory pattern α with

respect to a trajectory Ti is presented by a pair (trid, pid) where trid is the identifier

of Ti and pid is where α ends in Ti, i.e., the position of the last s-unit of pattern α in

the ordered s-unit list of trajectory Ti.

We use fpos(α, Ti) to denote the function that returns all the pid values in the

occurrences of pattern α in trajectory Ti. The occurrence cardinality |fpos(α, Ti)| is

0 if Ti does not contain α, otherwise |fpos(ui, Ti)| ≥ 1. For example, given trajectory

Ti = BABCBE, we have fpos(AB, Ti) = {3, 5} and |fpos(AB, Ti)| = 2 since pattern

AB occurs twice in Ti including one ends at the third position (BABCBE) and

another one (BABCBE) end at the fifth position in the s-unit sequence BABCBE.

Given a k-pattern α = u1u2 . . . uk−1uk, the prefix of α, denoted by pref(α), is the

(k − 1)-subpattern consisting of the first k − 1 s-units in α: pref(α) = u1u2 . . . uk−1.

Let last(α) denote the function extracted the last s-unit in α, i.e., last(α) = uk.

For each pair of (k − 1)-patterns having the same prefix α1 and α2, let say α1 =

u1u2..uk−2a and α2 = u1u2..uk−2b, let α1 → α2 denote the merge operator that

generates the k-pattern u1u2..uk−2ab, i.e., α1 → α2 = u1u2..uk−2ab. We call α1 and α2

the base patterns of α where α1 is the left base and α2 is the right base corresponding

to their positions in the merge operator.

We call the number of trajectories in T which contain α the absolute support of

α, denoted by abs sup(α). The support of a trajectory pattern α is the fraction of

trajectories in T which contains α, denoted as sup(α) and is computed as:

sup(α) = abs sup(α)/|T | (24)
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Table 7: Example trajectory dataset Ts
Trajectory ID Grid Cell Sequence

T1 ABF
T2 AFGH
T3 EFGCH
T4 ABEF
T5 EBF
T6 CD
T7 D
T8 ABFCBGH

Given a minimum support min sup, the absolute minimum support is denoted as

abs minsup and is computed as: abs minsup = dmin sup× |T |e.

Problem Statement. The problem of trajectory pattern mining is that given a

MO trajectory data set T and a minimum support min sup, the goal is to extract

the complete set of trajectory patterns from T that have support above min sup.

These trajectory patterns are called frequent patterns. All other patterns, which are

not frequent, are said to be trivial.

Example 5 Consider the same grid structure in Figure 30. Let 8 grid-based trajec-

tories as listed in Table 7 be the trajectory database Ts used as a running example

of this chapter. Let the minimum support min sup be 0.25, which means that a

frequent pattern α must occur in at least 2 trajectories, i.e., abs sup(α) ≥ 2. Then

a set of frequent patterns are generated as listed along with their absolute supports

(in brackets) in Table 8 including 1-patterns, 2-patterns, 3-patterns and 4-patterns.

4.3.2 The Generate-and-Test Framework

We recall the popular generate-and-test framework for sequential pattern mining with

SPADE as its best representative. We will give a brief summary of the framework

and SPADE in the context of trajectory pattern mining, in which, sequences are MO

trajectories in road network G and items are the s-units associated with road network

G. As described by its name, this framework finds frequent patterns in two basic steps:
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Table 8: Frequent patterns from Ts
1-pattern 2-pattern 3-pattern 4-pattern

A(4) AB(3) ABF (3) AFGH(2)
B(4) AF (4) AFG(2)
C(3) AG(2) AFH(2)
D(2) AH(2) AGH(2)
E(3) BF (4) FCH(2)
F (6) CH(2) FGH(3)
G(4) EF (3)
H(3) FC(2)

FG(3)
FH(3)
GH(3)

candidate pattern generation and support counting for testing the candidates against

the input data. Initially, 1-pattern candidates include all the s-units from the SSC

of the road network. The database is scanned once to compute the support for these

1-patterns to output the set of frequent 1-patterns (with support above the given

min sup). Let denote the set of frequent k-patterns as Sk. In general, Sk is formed

by: (1) Joining Sk−1 with itself to generate all k-pattern candidates, (2) Support for

the k-pattern candidates is computed by making a complete scan of the database.

This process is repeated until no more frequent patterns can be found. All existing

algorithms use the Apriori principle as a popular pruning technique to reduce the

combinatorial search space in step 1. According to Apriori principle, all sub-patterns

of a frequent pattern are also frequent. Thus, if a k-pattern is trivial, there is no need

to extend it further, which applies in step 1 as we only need to build Sk from the

frequent patterns in Sk−1. Also, a candidate k-pattern is pruned out before support

counting if there exists one (k − 1)-subpattern of it which is not in Sk−1.

However, scanning the database multiple times for support counting is too costly

for large datasets. SPADE improves step 2 of the framework by performing simple

joins over the vertical id-lists, called id-lists for short, of the database for support

counting of the candidates instead of scanning the dataset in each iteration.
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Table 9: Vertical id-lists of the dataset Ts
A B C D E F G H

T1, 1 T1, 2 T3, 4 T6, 2 T3, 1 T1, 3 T2, 3 T2, 4
T2, 1 T4, 2 T6, 1 T7, 1 T4, 3 T2, 2 T3, 3 T3, 5
T4, 1 T5, 2 T8, 4 T5, 1 T3, 2 T8, 6 T8, 7
T8, 1 T8, 2 T4, 4

T8, 5 T5, 3
T8, 3

An id-list of a pattern α, denoted by L(α), is a list of occurrences of pattern α in

the given trajectories and is formally defined as L(α) = {(trid, pid)|α � traj(trid), pid ∈

fpos(α, trid)}.

There can be multiple occurrences of a pattern α in a trajectory, resulting in

multiple (trid, pid) pairs with the same trid corresponding to that trajectory.

The id-list of a s-unit ui, denoted by L(ui), is essentially the id-list of the 1-pattern

consisting of only ui.

Let |L(α)| be the number of distinct trid in the id-list L(α), which equals abs sup(α).

To obtain the set of frequent 1-patterns, the support of each s-unit ui is computed

from |L(ui)| to determine whether it is frequent or not.

For example, the vertical id-list for the grid cells of the dataset Ts given in Example

5 is shown in Table 9. Each column is a list of occurrences of a cell from the grid

AGrid(Gs) in the given dataset Ts. Consider the grid cell C, C is the fourth s-unit in

T3, the first s-unit in T6 and the fourth s-unit in T8, forming the id-list of C. Thus,

we have L(C) = {(T3, 4), (T6, 1), (T8, 4)} and |L(C)| = 3 so C is a frequent 1-pattern

given minsup = 0.2.

Let join(L1 → L2) denote the function that joins id-list L1 to L2 on the value of

Trid and returns an id-list L12. This join function L12 = join(L1 → L2) performs

as follows: For (trid1, pid1) ∈ L1 and (trid2, pid2) ∈ L2 such that trid1 = trid2, if

pid1 < pid2 then add the pair (trid2, pid2) to L12.

SPADE applies the lattice theory to structure the search space and traverses
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the lattice to enumerate and examine pattern candidates. It generates and tests

candidates in the k-iteration as follows:

1. For each pair of (k − 1)-patterns having the same prefix in Sk−1, let say α1

and α2, two k-pattern candidates are generated which are α12 = α1 → α2 and

α21 = α2 → α1.

2. Compute L(α12) = join(L(α1) → L(α2)) and L(α21) = join(L(α2) → L(α1))

and test whether α12 and α21 are frequent by computing the supports from their

id-lists L(α12), L(α21).

3. Add a generated pattern to Sk if it is frequent.

We can see that support counting contributes the most to the computation cost of

the pattern mining process. Although using id-lists joins is faster than passing over

the dataset for support counting, SPADE still suffers an overhead when computing

the frequent 2-patterns which either requires N2 id-list joins for all pair of frequent

s-units (N is the cardinality of S1) or performing a vertical-to-horizontal transforma-

tion to perform support counting for 2-pattern candidates in one more scan of the

dataset. Also, without considering the MO trajectory characteristics, there can be a

lot of unnecessary id-list joins performed by SPADE. This is clearly inefficient when

the size of trajectory dataset gets very large. We will address this problem in the

next section where we describe an efficient locality-aware approach in our trajectory

pattern mining algorithm called TrajPod.

4.4 TrajPod algorithm

The key idea of TrajPod is that an id-list of a trajectory pattern can be parti-

tioned into three locality-aware sublists depending on whether its last s-unit occurs

in the beginning, the middle or the end of a trajectory. This allows the id-list join

involve only the sublists instead of the the whole id-lists. Moreover, by utilizing these
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locality-aware sublists, early pruning can be performed effectively which further elim-

inates trivial patterns to be generated and tested, in addition to using the Apriori

pruning principle. This section will describe how TrajPod works in detail. We first

introduce the locality-aware partitioned occurrence id-list, called pod-list, to track the

occurrences of a trajectory pattern. Second, we explain how TrajPod performs id-

list joining for support counting. Next, we show how TrajPod enumerates candidate

patterns along with its early pruning technique. Finally, we discuss the advantage of

using pod-list compared to the simple id-list as used in SPADE.

4.4.1 Locality-aware Partitioned Occurrence id-lists (pod-lists)

MO trajectories tend to overlap a lot due to the fact that mobile objects usually

travel following shortest paths. Also, the hotspots in the road network, such as

schools, shopping malls, etc. are often endpoints shared by many MO trajectories.

We propose a pod-list structure for the occurrences of the semantic units in MO

trajectories in a road network to capture those facts, which will greatly help speedup

the process of forming frequent trajectory patterns.

Definition 23 (pod-list) A locality-aware partitioned occurrence id-list (pod-list) of

a trajectory pattern α, denoted by Lpod(α), is an id-list of α which is partitioned

into three disjoint locality-aware sublists: a start list Ls(α), an intermediate list

Lm(α) and an end list Le(α), such that: (i) Lpod(α) = Ls(α) ∪ Lm(α) ∪ Le(α), (ii)

Ls(α)∩Lm(α) = ∅,Lm(α)∩Le(α) = ∅,Le(α)∩Ls(α) = ∅, (iii) each pair (trid, pid) ∈

Lpod(α) is organized into only one of the sublists following these rules in order:

1. (trid, pid) ∈ Ls(α) if pid = 1

2. (trid, pid) ∈ Le(α) if pid = |traj(trid)|

3. (trid, pid) ∈ Lm(α) otherwise.
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Table 10: Pod-lists of the dataset Ts
Pod-list Lpod Start list Ls Intermediate list Lm End list Le

A (T1, 1), (T2, 1), (T4, 1), (T8, 1) ∅ ∅
B ∅ (T1, 2), (T4, 2), (T5, 2), (T8, {2, 5}) ∅
C (T6, 1) (T3, 4), (T8, 4) ∅
D (T7, 1) ∅ (T6, 2)
E (T3, 1), (T5, 1) (T4, 3) ∅
F ∅ (T2, 2), (T3, 2), (T8, 3) (T1, 3), (T4, 4), (T5, 3)
G ∅ (T2, 3), (T3, 3), (T8, 6) ∅
H ∅ ∅ (T2, 4), (T3, 5), (T8, 7)

The cardinality |Lpod(α)| equals the number of distinct trajectory identifiers in

Ls(α)∪Lm(α)∪Le(α), which is the absolute support of pattern α, i.e., abs sup(α) =

|Lpod(α)|

By definition, Ls(α) consists of occurrences which are in the form of (trid, 1).

Occurrences in Le(α) are in the form of (trid, |traj(trid)|) where trajectory traj(trid)

has more than one s-unit. Each occurrence (trid, pid) ∈ Lm(α) has the value of pid

satisfying 1 < pid < |traj(trid)|.

The first step of TrajPod is to generate the set of pod-lists for all the s-units

that occur in the given MO trajectory dataset T . Initially, a pod-list of a s-unit

consists of three empty start list, intermediate list and end list. Each trajectory

Ti = {tridi, u1u2...uk} of length k is scanned from its first s-unit u1 to its last s-unit

uk. When scanning an s-unit ui at the ith position in Ti, we put the pair (trid, i) to

one of the sublists in ui’s pod-list Lpod(ui) based on the rules in the definition of pod-

list. For example, while scanning trajectory T1 = ABF , we put (T1, 1), (T1, 2), (T1, 3)

into Ls(A), Lm(B), Le(F ) respectively. The pod-lists of the s-units in Example 5 is

shown in Table 10.

Definition 24 (Composite Occurrence) When there is more than one occurrence of

a pattern α with respect to a trajectory Ti in its intermediate list Lm(α), instead of

storing all (Ti, pidi) pairs representing those occurrences in Lm(α), we use a compact

format of (Ti, [m,M ]) to represent those occurrences, where m and M are the first

and last occurrences of last(α) respectively with respect to Ti in Lm(α). We call

such representation a composite occurrence, denoted by co(Ti,Lm(α)) = (Ti, [m,M ]).

119



In case α is a 1-pattern, i.e., α = uk where uk is an s-unit, a composite occurrence

in its intermediate list is represented by (Ti, {m, . . . ,M}), where {m, . . . ,M} is an

ordered list of all the temporal positions of uk within trajectory Ti, i.e., {m, . . . ,M} =

fpos(uk, Ti).

[m,M ] or {m, . . . ,M} is called the temporal range of the composite occurrence

co(Ti,Lm(α)).

For example, given trajectory Ti = ABCDCACB, we have co(Ti,Lm(AC)) =

(Ti, [3, 7]) and co(Ti,Lm(C)) = (Ti, {3, 5, 7}).

Theorem 1 Given two trajectory pattern α and α′ such that α′ � α and last(α′) =

last(α), if α has a composite occurrence with respect to a trajectory Ti in Lm(α), let

say co(Ti,Lm(α)) = (Ti, [m,M ]), then α′ also has a composite occurrence with respect

to a trajectory Ti in Lm(α′) such that co(Ti,Lm(α′)) = (Ti, [m
′,M ]) where m′ ≤ m.

Proof. Since α is a super-pattern of α′, any occurrence of α in Ti also contains an

occurrence of α′. Given that they share the same last s-unit, any pair (Ti, pid) rep-

resenting an occurrence of α also represents an occurrence of α′, i.e., fpos(α, Ti) ⊆

fpos(α′, Ti). Thus, given co(Ti,Lm(α)) = (Ti, [m,M ]), α′ also has a composite oc-

currence with respect to a trajectory Ti in Lm(α′), i.e., co(Ti,Lm(α′)) = (Ti, [m
′,M ′])

where m′ ≤< m < M ≤ M ′. Suppose last(α′) = last(α) = A, given co(Ti,Lm(α)) =

(Ti, [m,M ]), by definition of composite occurrence, trajectory Ti must be a sequence

of n s-units u1 . . . um . . . uM . . . un (1 < m < M < n) where um = uM = A and ui 6= A

(∀ui ∈ uM+1 . . . un−1). However, we also have uM ′ = A where M ≤ M ′ < n, which

enforces M ′ = M . Therefore, we have co(Ti,Lm(α′)) = (Ti, [m
′,M ]) where m′ ≤ m.

Definition 25 (min pos) Given a list of integers {m, . . . ,M} in ascending order and

an integer pid, we denote min pos(pid, {m, . . . ,M}) the function that returns the

minimum element in {m, . . . ,M} which is equal or greater than pid.
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We call an occurrence represented by (Trid, pid) a single occurrence to differentiate

it with a composite occurrence. In the rest of the chapter, when we say that an

occurrence in a pod-list, i.e., (Trid, pid) ∈ Lpod or (Trid, [m,M ]) ∈ Lpod, we mean

that the occurrence belongs to one of the sublists in the pod-list.

4.4.2 Locality-aware Pod-list Join

Suppose we have two (k−1)-patterns having the same prefix which are α1 = u1u2..uk−2a

and α2 = u1u2..uk−2b. The merge operation α1 → α2 forms a k-pattern α =

u1u2..uk−2ab. We will describe how we generate the pod-list of α by joining the

pod-lists of α1 and α2.

4.4.2.1 Sublist Join

Let Lpod(α1) on Lpod(α2) denote the function that joins the pod-lists Lpod(α1) to

Lpod(α2) on the value of Trid and returns a pod-list Lpod(α). This join function is

performed on the sublists Ls, Lm, Le of Lpod(α1) to those of Lpod(α2). Joining two sub-

lists is the same as joining two id-lists as used in SPADE, i.e., if there is an occurrence

(trid1, pid1) in one of a sublist from the left base pattern α1 and (trid2, pid2) in one

of a sublist from the right base pattern α2 such that trid1 = trid2, if pid1 < pid2 then

the pair (trid2, pid2) will be added to the corresponding sublist in Lpod(α). Here,

when performing an equal join on the value of trid, we only check the inequality

pid1 < pid2 within a trajectory because a trajectory is a sequence of one-item events,

in which a has to temporally precede b if there exists pattern α = u1u2..uk−2ab in

that trajectory. Since we perform the merge α1 → α2 to generate α, depending on

the locality property of the sublists on each side of the merge operator, we note the

following observations when joining the sublists:

• Since there is only one s-unit at the beginning of each trajectory, i.e., an oc-

currence in a start list has to be in the form of (trid, 1), there can not exist
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Figure 31: Locality-aware Pod-list Join

an inequality of pid assuming the same trid from Ls(α1) and Ls(α2). In an-

other words, an occurrence of an s-unit at the beginning of a trajectory can not

be preceded by any other occurrence. Therefore, the start list of the left base

pattern α1 can not be joined to start list of the right base pattern α2.

• An occurrence of an s-unit at the end of a trajectory can not be followed by

any other occurrence. Thus, the end list of the left base pattern α1 can not be

joined to any of the three sublists of the right base pattern α2.

Based on those observations, instead of performing 9 sublist joins from Ls(α1) to

Ls(α2), there are only four possible sublist joins to produce Lpod12 as depicted in

Figure. 31 including:

• Ls(α1) on Lm(α2), called (s on m) join, produces the occurrences of pattern α

to be added to its intermediate list Lm(α).

• Ls(α1) on Le(α2), called (s on e) join, produces the occurrences of pattern α to

be added to its end list Le(α).

• Lm(α1) on Lm(α2), called (m on m) join, produces the occurrences of pattern α

to be added to its intermediate list Lm(α).

• Lm(α1) on Le(α2), called (m on e) join, produces the occurrences of pattern α

to be added to its end list Le(α).
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From these joining rules, we can see that a generated pattern always has an empty

start list. This can also be seen from the definition of pod-list such that in a k-pattern

where k > 1, its last s-unit is always be preceded by at least one s-unit. Thus the

value of pid corresponding to the occurrence of that pattern in a trajectory can not

be 1, making its start list empty. Therefore, when generating candidates from base

patterns with lengths that are greater than 1, we only use their intermediate lists and

end lists, which means we only have to perform two sublist joins (m on m join and

m on e join) to create the pod-list for each pattern generated. The s-m join and s-e

join are only performed for joining pod-lists of frequent s-units, which are frequent

1-patterns, as base patterns.

4.4.2.2 Join on composite occurrences

We show how to perform a temporal comparison on the value of pid when there is a

composite occurrence involved in a pod-list join. The purpose of using a composite

occurrence is to reduce data space as well as to reduce the number of temporal

comparisons on pid in case of a matching trid compared to using single occurrences

only. Composite occurrences can involve a pod-list join in these following three cases:

• In an m on m join or m on e join, there can be (trid1, [m1,M1]) ∈ Lm(α1) and

(trid2, pid2) ∈ Lm|e(α2) such that trid1 = trid2 = Ti. We only need to make

a temporal comparison for m1 and pid2, if m1 < pid2 which means pattern

α = α1 → α2 occurs in trajectory traj(Ti), thus, we add the single occurrence

(trid2, pid2) to Lm(α) or Le(α) accordingly.

• In an m on m join, there can be (trid1, pid1) ∈ Lm(α1) and (trid2, [m2,M2]) ∈

Lm(α2) such that trid1 = trid2 = Ti. We only need to make a temporal

comparison for trid1 and M2, if pid1 < M2 which means pattern α = α1 → α2

occurs in trajectory traj(Ti).

- If pid1 ≤ m2, we add (Ti, [m2,M2]) to Lm(α).
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- If pid1 > m2, according to Theorem 1, the intermediate list of last(α2) has

a composite occurrence (Ti, {m, . . . ,M2}) where m ≤ m2. We compute m′2 =

min pos(pid1, {m, . . . ,M2}) and add the composite occurrence (Ti, [m
′
2,M2]) to

Lm(α).

• In anm on m join, there can be (trid1, [m1,M1]) ∈ Lm(α1) and (trid2, [m2,M2]) ∈

Lm(α2) such that trid1 = trid2 = Ti. Pattern α = α1 → α2 only occurs in tra-

jectory traj(Ti) when m1 < M2. In this case, similar to the above case, we only

need to check whether m1 falls in or out of the range [m2,M2] to compute the

occurrences of α in Ti.

- If m1 < m2 < M2, we add (Ti, [m2,M2]) to Lm(α).

- If m2 < m1 < M2, given (Ti, {m, . . . ,M2}) as the composite occurrence of

last(α2) in its intermediate list, we compute m′2 = min pos(m1, {m, . . . ,M2})

and add the composite occurrence (Ti, [m
′
2,M2]) to Lm(α).

Theorem 2 Given two k-patterns α1 and α2, which are the left base pattern and

right base pattern of a pattern α respectively. Let |Ls(α1) ∪ Lm(α1)| and |Lm(α1)|

denote the number of distinct trid in Ls(α1) ∪ Lm(α1) and Lm(α1) respectively. Let

|Lm(α2) ∪ Le(α2)| denote the number of distinct trid in Lm(α2) ∪ Le(α2). We have

|Lpod(α)| ≤ |Ls(α1) ∪ Lm(α1)| if k = 1, and |Lpod(α)| ≤ |Lm(α1)| if k > 1. We also

have |Lpod(α)| ≤ |Lm(α2) ∪ Le(α2)|.

Proof. According to the pod-list joining rules, if k = 1, only the start list and the

intermediate list of the left base pattern α1 take part in the join to produce Lpod(α).

If k > 1, only the intermediate list of α1 takes part in the join to produce Lpod(α).

Also, only the intermediate list and the end list of the right base pattern α2 take part

in the join to produce Lpod(α). In a pod-list join, the number of distinct trid, i.e.,

the cardinality of the resulting pod-list can not exceed the participating cardinality

from either side of the on operator. Therefore, we have the theorem.
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4.4.3 Candidate Pattern Generation and Test

In this section, we present the pattern tree structure that covers the complete search

space of the trajectory pattern mining problem and how TrajPod traverses the

pattern tree and computes the supports using the pod-list join operation to output

frequent patterns.

Definition 26 (Trajectory Pattern Tree) Given a set U of s-units associated with a

MO trajectory dataset T , a trajectory pattern tree, denoted by treeU(T ), is a finite

tree structure having these following properties:

• Each node is a trajectory pattern comprised of the s-units in U

• Trajectory patterns of the same length are arranged in the same level in the

tree

• A trajectory pattern at a parent node is the prefix of all its child nodes

• The maximum height of the tree equals the maximum length of the trajectories

in T

A trajectory pattern tree treeU(T ) starts with an empty set ∅ at its root, i.e.,

level 0. All the s-units in U can be at level 1 as 1-patterns. At level k (k > 1), the

children of a node p can be generated given all siblings of p. Let sib(p) denote the set

consisting of all siblings of node p and p itself. All patterns in sib(p) share the same

prefix. Node p will act as the left base pattern to merge with a pattern in p′ ∈ sib(p).

The merge operation p→ p′ will return a child of node p.

Obviously, a pattern tree treeU(T ) completely covers the search space of the tra-

jectory pattern mining problem given a trajectory dataset T . However, it is not

necessary and too costly to generate and test all the patterns in a tree. Since the

Apriori property holds, if a pattern is trivial, then all of its children are also trivial.
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Thus, when the support of a pattern at a node is less than min sup, we do not need

to store it in the tree and stop the expansion from that node on.

4.4.3.1 Early Pruning

Even when a pattern at a node is frequent, there might also be no need to generate and

test its children, thanks to the use of pod-list in TrajPod. Specifically, TrajPod

tags each pattern at a node with its pod-list, where we can check the inextensibility

of a node p from the cardinality of Lpod(p)’s sublists.

Definition 27 (Inextensible pattern) Given a k-pattern α, let |Ls(α) ∪ Lm(α)| and

|Lm(α)| denote the number of distinct trid in Ls(α)∪Lm(α) and Lm(α). We say that α

is inextensible if |Ls(α)∪Lm(α)| < abs minsup with k = 1 or |Lm(α)| < abs minsup

with k > 1.

Because a k-pattern α at a node will act as the left base pattern when generating

a child β, if α is inextensible, according to Theorem 2, we have |Lpod(β)| < |Ls(α) ∪

Lm(α)| < abs minsup for k = 1 or |Lpod(β)| < Lm(α)| < abs minsup for k > 1. This

shows that if a node is inextensible, its children must be trivial. Therefore, we do not

need to expand the trajectory pattern tree from an inextensible node.

We denote ip check(α) as a function that checks if a pattern α is inextensible or

not. ip check(α) returns true if α is inextensible and returns false otherwise.

In addition, let u1 and u2 be two 1-patterns at level 1 of the pattern tree. When we

perform the merge u1 → u2 to produce the 2-pattern u1u2 which is a child of u1, only

the intermediate list Lm(u2) and the end list Le(cu) participate in the right side of the

join Lpod(u1) on Lpod(u2) to produce Lpod(u1u2). If the cardinality of |Lm(u2)∪Le(u2)|

is less than abs minsup then according to Theorem 2, |Lpod(u1u2)| < abs minsup,

which makes u1u2 trivial. Such an s-unit is called an unmergeable pattern and is

formally defined in the following definition.
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Definition 28 (Unmergeable pattern ) Given an s-unit u, we denote r check(u) as

a function that returns true if |Lm(u) ∪ Le(u)| < abs minsup and returns false oth-

erwise. If r check(u) is true, u is called an unmergeable pattern and it should not be

chosen to be a right base pattern in a merge when producing a 2-pattern at level 2

of the pattern tree.

The sublist cardinality check techniques, ip check and r check, allows early pruning

in TrajPod where unnecessary candidate generations and tests are eliminated.

4.4.3.2 Depth First Traversal

TrajPod first computes the support for each s-unit based on its pod-list to produce

the set of frequent 1-patterns S1, which is then added to level 1 of treeU(T ). TrajPod

spans the trajectory pattern tree in a depth-first fashion. When visiting a node

p, TrajPod will check the inextensibility of p using ip check. If the node is not

subjected to early pruning, TrajPod will generate all the child patterns of p along

with their pod-lists and compute their supports based on the post-list cardinalities.

A node at level 1 is also checked if it is unmergebale using r check before being

considered as a right base pattern. Only when the support of a child pattern is equal

or greater than min sup, it is kept in the tree and recursively depth-first expanded.

The traversal finishes when TrajPod completes visiting all the nodes at the tree’s

maximum level or it reaches all the nodes with trivial patterns. Algorithm 7 shows the

pseudo-code for TrajPod’s depth-first visit to a node p in the pattern tree treeU(T ).

A sample trajectory pattern tree for the dataset Ts in our running example is

shown in Figure 32. All trivial nodes, which are marked with an overline in the figure,

are pruned out according to the Apriori policy. By performing id-sublist cardinality

checks, we can detect the inextensible patterns, marked with a circle cover, where

we can stop expanding the tree. We can also detect the unmergebale 1-patterns,
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Figure 32: The trajectory pattern tree treeU(Ts)

marked with a rectangle cover, which are incapable of being merged into 2-patterns.

The dotted-line edges describe the unnecessary expansions which are pruned early

by using the id-sublist cardinality checks in TrajPod. For example, there are 8

frequent s-units at level 1. Given min sup = 0.25, i.e., abs minsup = 2, we have D is

inextensible since |Ls(D) ∪ Lm(D)| = 1 < abs minsup. D is also unmergeable since

|Lm(D) ∪ Le(D)| = 1 < abs minsup. Similarly, we can determine that only A, B,

C, E, F , G can be left base 1-patterns and only B, C, F , G, H can be right base

1-patterns. Thus, instead of performing 8 × 8 = 64 SPADE-like id-list joins among

S1, TrajPod only needs to perform 6× 5 = 30 pod-list joins.
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Algorithm 7 DFS(treeU(T ), node p, min sup)

1: k = level(p)
2: r check = false
3: for p′ ∈ sib(p) do
4: if k = 1 then
5: r check = r check(p′)
6: end if
7: if (r check = false) then
8: pi = p→ p′

9: Lpod(pi) = Lpod(p) on Lpod(p′)
10: if sup(pi) ≥ min sup then
11: insert pi into children(p)
12: add pi to Sk+1

13: end if
14: end if
15: end for
16: for pi ∈ children(p) do
17: if (ip check(pi) = false) then
18: DFS(treeU(T ), node pi, min sup)
19: end if
20: end for

4.4.4 Pod-list vs. id-list

We can see the advantages of using pod-list to represent MO trajectories compared

to the näıve id-list as used to represent traditional sequence data in SPADE. The

cardinalities of both pod-lists and id-lists shrink and thus, making the joins run

faster as the patterns extend their lengths. However, since the id-list cardinalities

of k-patterns with small k, e.g., k = 1, 2, are the largest during the mining process,

computing the corresponding set Sk+1 becomes a bottleneck for SPADE. For example,

computing the set of frequent 2-patterns S2 from S1 using the id-lists requires N2

joins (N = |S1|) of large id-lists, which is very inefficient. That is why SPADE has

to either make an additional scan of the database to perform a vertical-to-horizontal

transformation for the frequent items and has to count the support of the 2-pattern

candidates, or use a preprocessing step that computes the counts of all 2-patterns.

In contrast, TraPod effectively uses pod-list throughout its mining process. To
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compute S2, TraPod only needs to perform m × n pod-list joins where m is the

number of s-units passing ip check and n is the number of s-units passing r check.

TraPod is fast because (i) the pod-list join is sublist joining instead of joining the

whole id-lists, (ii) it is able to perform early pruning using the id-sublist cardinality

check techniques which are ip check and r check, and (iii) it implements the generate

and test framework in a depth first search fashion which is memory-efficient.

4.5 Experimental Evaluation

We present three sets of experimental results to demonstrate the efficiency and robust-

ness of TrajPod. First, we show the performance comparison in terms of running

times and memory usage of TrajPod with state-of-the-art sequential pattern min-

ing algorithms SPADE, SPAM and PrefixSpan. Second, we analyze the performance

of TrajPod on grid-based trajectory datasets of varying grid cell sizes in different

road networks. Third, we test the scalability of TrajPod for varying size trajectory

datasets of both grid-based and segment-based s-units.

4.5.1 Experimental Setup

Road Networks. We use three real road networks of different scales of the road

network topologies in terms of geometry and spatial density in our experiments (Table

11). The road networks of North West Atlanta (ATL) of rural/suburban style and

West San Jose (SJ) of urban style are obtained from [85]. The Miami-Dade (MIA)

road network of urban style is obtained from [83]. MIA map is an high-density urban

road network with a dense, regular grid structure, short streets, and most intersections

with four connecting streets. SJ map has similar structure but less dense. ATL map

has the least density in terms of network topology. We modify the public event-based

simulator GTMobiSIM [70] to generate thousands of mobility traces on those road

networks for a large-scale evaluation.
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Table 11: Real road networks used in our experiments
Style Regions Total length # Segments # Junctions Avg. segment length Junction degree

suburban North West Atlanta, GA 1384.4km 9187 6979 150.7m avg: 2.6, max: 6
suburban West San Jose, CA 1821.2km 14600 10929 124.7m avg: 2.7, max: 6
urban Miami-Dade, FL 26148.3km 154681 103377 169.0m avg: 3.0, max: 9

Datasets. To generate trajectories in a given road network as in real life travel-

ing, we place mobile objects in the road networks with speed limit constraints on road

segments, following the shortest paths from their beginning location to their destina-

tion. The start and end locations in each trip of a mobile object are randomly chosen

from a predefined set of hot spots on the map. Each object moves independently of

others, under the speed limit and speed distribution defined for the road segments.

The speed limits are set for each type of road at 30mph for residential, 55mph for

highway, 70mph for freeway and 30mph for freeway interchange. Object speeds are

chosen from a Gaussian distribution with a standard deviation of 0.2 times the mean,

which is the road segment speed limit. The road network locations of an object are

recorded every 5 seconds during its trip. The simulated road network trajectories

are then transformed into sequences of semantic spatial units, which are either grid

cells or road segments, to be the input sequences for our trajectory pattern mining

algorithm.

The naming of a dataset is in the form of $(MAP).$(UNIT).T$NK in which

$(MAP) is the name code of the road network (ATL, SJ or MIA), $(UNIT) is the

mode of s-unit for MO trajectories which is either GRID of SEG (GRID for grid cell

or SEG for road segment) and $NK is the number of trajectories which is a multiple

of thousands. For example, SJ.GRID.T10K is a trajectory dataset consisting of 10000

trajectories as grid cell sequences in West San Jose road networks.

Choice of Cell Sizes. The cell size α × β determines the granularity of the

spatial proximity of road network locations in a road network G = (V , E). When

using the grid cells as the semantic spatial units, a user can provide their desirable

cell size or use the suggested cell size generated by the system to determine the grid
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structure of a road network. In the first prototype of TrajPod, we determine the

cell size based on the average number of road segments, computed by |E|
M×N , where |E|

is the total road segments of the road network G = (V , E). Given that segments are

not uniformly distributed across a road network, the number of road segments per cell

should be within an appropriate range [nl, nu] such that nl ≤ b |E|M×N c ≤ nu, nl and

nu are system supplied parameters. We use a quad grid of size 2m× 2n. Given that a

cell area defines the spatial proximity in the road network, we suggest that a grid cell

should cover the portions from an appropriate number of road segments. For example,

if we choose a grid cell to cover an average of 1 to 3 road segments, then m can be

determined to satisfy the condition of 1 ≤ b |E|
2m×2n c ≤ 3. In our experiments, the cell

size is by default set to [186m × 220m] and [176m × 218m], which are equivalent to

the same grid size of [26× 26], for ATL and SJ maps respectively, so that the average

number of road segments residing in a grid cell is in the range of [1, 3]. The grid size

for MIA road network is set to [29× 29] due to the larger scale of MIA map, which is

approximately equivalent to the use of cell size of [180m× 184m].

All algorithms are written in Java and take as input trajectory data sequence

format. The SPADE and SPAM implementations are conversions of C++ code ob-

tained from M. J. Zaki [78] and J. Ayres [79] to Java programs respectively. When

running the experiments, the frequent trajectory patterns produced by the algorithms

are not saved to ensure only their execution times are recorded. All the experiments

are conducted on a computer with Intel Core i7 CPU of 2.40GHz and 8GB of main

memory.

4.5.2 Performance Comparison

In this set of experiments, we study the relative performance of four algorithms

TrajPod, SPADE, SPAM and PrefixSpan on trajectory sequences of both grid-

based s-units and segment-based s-units for three different-scale maps with varying
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minimum support thresholds. Both running times and memory usage of each al-

gorithm are reported in each test to better evaluate its efficiency. Memory usage is

measured by the maximum memory utilization at a point of time during the algorithm

execution.

Results for ATL map, a rural/suburban road network. The performance

comparison for ATL.SEG.T10K dataset is reported in Figure 33. When min sup ∈

{0.0175, 0.015, 0.0125}, the number of frequent patterns in the dataset is small. SPADE

is marginally faster than other algorithms since the id-list creation and the näıve id-

list joining cause the least overhead compared to other approaches. TrajPod runs

faster than SPAM and Prefix and runs a bit slower than SPADE. As min sup drops,

SPADE becomes the least efficient. It is because when the number of frequent patterns

increases, SPADE’s simplicity is no longer an advantage. SPADE has to perform a lot

more id-list joins and starts having a surge in memory usage when min sup = 0.0075

as shown in Figure 33(b). When min sup drops to 0.005, SPADE could not finish.

SPAM consumes a lot of memory due to the space-inefficient bitmap representations

and runs slower than PrefixSpan. The overhead of the bitmap manipulation in SPAM

and projected database generation in PrefixSpan increase as min sup decreases, while

TrajPod consumes much less memory and remains relatively small running times.

TrajPod runs about 7 times faster than Prefix and SPAM at min sup = 0.005.

The result for ATL.GRID.T10K dataset is shown in Figure 34. SPADE is the

slowest and fails to run when min sup drops below 0.015. The running time of

SPAM is a bit less than TrajPod when min sup ≥ 0.02 but it grows significantly as

min sup drops below 0.002. Overall, PrefixSpan is slower than SPAM and TrajPod

is the most efficient. It is because TrajPod smartly utilizes trajectory locality to

perform early and deep candidate pruning and locality-aware sublist joins, which

significantly reduces the search space and speedups the candidate testing process.

Results for SJ map, an urban road network. The performance reports for
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Figure 33: Performance comparison for ATL.SEG.T10K

datasets of West San Jose road network plotted in Figure 35 and Figure 36 con-

firm the efficiency in mining MO trajectory patterns of TrajPod. The result for

SJ.GRID.T10K dataset is similar to ATL.GRID.10K dataset. In the resulting graph

for SJ.SEG.T10K dataset, the overall order in running times is TrajPod < SPAM
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Figure 34: Performance comparison for ATL.GRID.T10K

< SPADE < PrefixSpan. Table 12 reports the number of frequent trajectory patterns

at varying minimum supports in our test trajectory datasets of ATL and SJ road net-

works. Although the number of frequent patterns in SJ.SEG.T10K dataset increases

much faster as min sup drops and is significantly larger than that of other datasets

at the low min sup value of 0.005, TrajPod still runs very smoothly. TrajPod is
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Table 12: Total number of frequent trajectory patterns
Datasets min sup

0.005 0.01 0.015

ATL.SEG.T10K 814837 74507 18329

SJ.GRID.T10K 2948493 245971 57237

ATL.GRID.T10K 15883775 1505980 348812

SJ.SEG.T10K 40739992 294694 20207

Table 13: Segment-based Trajectory Datasets
Datasets trajectory lengths # s-units

min max mean

ATL.SEG.T10K 31 374 111 7998

SJ.SEG.T10K 49 341 116 13170

MIA.SEG.T10K 34 970 420 60480

an order of magnitude faster than SPAM at min sup = 0.005, while both PrefixSpan

and SPADE never terminate when min sup drops to 0.02 and 0.015 respectively. We

also see the correlation between memory usage and running time in each test. When

the memory is utilized efficiently, as in the execution of TrajPod, the running time

is relatively stable. In the execution of other algorithms, when the memory is nearly

exhausted, the algorithm runs very slow and eventually fails to finish.

Results for MIA map, a high-density urban road network. The perfor-

mance measurement for MIA.SEG.T10K dataset displayed in Figure 37(a) clearly

shows that TrajPod is a winner over SPAM, SPADE and PrefixSpan. Since MIA

map is a high density road network, trajectories in the form of sequence of road

segments are longer in terms of s-unit cardinality. Also, the number of s-units,

i.e., road segments, across a MIA.SEG dataset is larger than that of a ATL.SEG

dataset and a SJ.SEG dataset. We can see these differences from Table 13 show-

ing the statistics of three segment-based trajectory datasets of ATL, SJ and MIA

maps that we use in our experiments. SPAM could not run and throws an error
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Figure 35: Performance comparison for SJ.SEG.T10K

“java.lang.OutOfMemoryError” for all values of min sup. SPADE is relatively com-

petitive to TrajPod but could not terminate when min sup drops to 0.04. Pre-

fixSpan consumes the most memory, which can be due to the large prefix-projected

databases it has to create and examine recursively, and runs the slowest.

Regarding efficiency, SPAM is extremely space-inefficient since the bitmap vertical
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Figure 36: Performance comparison for SJ.GRID.T10K

layout of a dataset consumes much larger space than the original size of the dataset.

For each s-unit, its bitmap requires one bit for every position in each trajectory. Given

D trajectories with an average s-unit cardinality of C and U is the number of distinct

s-units across all the trajectories, SPAM requires (D×C×U)/8 bytes to store all the

data. While in the vertical layout of the dataset in SPADE uses D × C × 2 bytes to
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Figure 37: Performance comparison for MIA.SEG.T10K

record D×C s-unit occurrences (assuming it costs 2 bytes to store each occurrence).

Usually, C � U (as C = 420 compared to U = 60480 in MIA.SEG.T10K dataset

shown in Table 13). TrajPod saves more space than SPADE by using the com-

pact representation of composite occurrence. The additional space that TrajPod
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needs to mark three sublists within a pod-list is negligible. SPADE, although is more

space-efficient in the beginning, suffers from the level-wise generation of many candi-

dates and näıve id-list joining without any pruning and computational optimization.

Especially during the first several iterations, when the number of frequent (k − 1)-

patterns is large, SPADE can experience a bottleneck dealing with joining the large

number of big-size id-lists of (k− 1)-patterns to find frequent k-patterns. The distri-

bution of frequent trajectory patterns of MIA.SEG.T10K dataset is shown in Figure

38. We can see that at min sup = 0.04, the number of 2-patterns significantly in-

creases, causing bottleneck for SPADE. PrefixSpan has major cost in generating and

testing projected databases recursively which can cause bottleneck when the number

of projected databases does not shrink well. In contrast, TrajPod is specifically

designed for trajectory data with effective mechanisms for deep pruning and fast sup-

port counting. Although other existing approaches in some cases are marginally faster

than TrajPod when the values of min sup are high, TrajPod overall outperforms

them in terms of running time and memory usage with different scales of maps and

varying minimum support thresholds.

4.5.3 Varying Grid Cell Sizes

We measure the performance of TrajPod by varying the settings of grid cell size

for all three road networks ATL, SJ and MIA. We run TrajPod on the datasets

of 10K grid-based trajectories on each road network. Figure 39 reports the running

times of TrajPod for different settings of cell sizes, from [372m × 440m] down to

[93m × 110m]. The value of min sup is set to 0.008 in this experiment. When

the cell size gets smaller, a MO trajectory will be presented by a sequence of larger

number of grid cells. The increased s-unit cardinality of a MO trajectory results

in the increased number of s-units in a grid-based trajectory dataset as well as the

increased number of trajectory patterns. Therefore, it takes more time for TrajPod
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Figure 38: The distribution of frequent trajectory patterns of MIA.SEG.T10K
dataset.
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Figure 39: Running times of TrajPod vs. varying grid cell sizes

to finish running as the cell size associated with a map decreases. This is confirmed

by the results shown in Figure 39 that the running time increases as the cell size

decreases for each map. We can also see that with the same cell size, it takes the
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Table 14: Grid-based Trajectory Datasets, cell size = [186m× 220m]
Datasets trajectory lengths # s-units # patterns

min max mean

ATL.GRID.T10K 9 59 32 2457 3274546

SJ.GRID.T10K 4 64 34 3167 547343

MIA.GRID.T10K 9 162 81 14181 537308

longest for TrajPod to finish on MIA map compared to ATL and SJ maps. This can

be attributed to the larger scale of MIA map compared to the other maps. As shown

in Table 14, with the same cell size of [186m× 220m], the mean length of trajectories

in terms of number of grid cells of MIA.GRID.T10K dataset is about 2.4 times longer

than that of SJ.GRID.T10K dataset and ATL.GRID.T10K dataset. The number

of distinct s-units in MIA.GRID.T10K dataset is also much larger, which is 4.47

times larger than that of SJ.GRID.T10K dataset and is 5.77 times larger than that of

ATL.GRID.T10K dataset. The mean trajectory length and number of distinct s-units

in ATL.GRID.T10K dataset are slightly smaller than those of SJ.GRID.T10K dataset.

However, the number of trajectory patterns in ATL.GRID.T10K dataset is about 6

times larger than that of the other two datasets, given cell size = [186m× 220m] and

min sup = 0.008. It results in TrajPod runs longer for ATL.GRID.T10K dataset

than for SJ.GRID.T10K dataset.

4.5.4 Varying Data Sizes

In this set of experiments, we test the scalability and stability of TrajPod by varying

the sizes of the input trajectory dataset with both grid-based and segment-based s-

units. The value of min sup is set to 0.006 and 0.008. The number of MO trajectories

is ranging from 20K to 100K generated on SJ road network. The scalablity testing

results are shown in Figure 40. The name of a data series displays the s-unit type of

the dataset and the min sup value set for the experiment. For example, grid− 0.006

data series shows the running times of TrajPod for grid-based trajectory datasets

with min sup = 0.006. All resulting data series in Figure 40 show that TrajPod
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Figure 40: Running times of TrajPod vs. varying database sizes

is scalable to the varying dataset sizes. The running time is increased relatively

smoothly as the dataset size grows. With the cell size of [176m × 218m] on SJ

map, each grid cell contains an average of 3.56 road segments. Therefore, the s-unit

cardinality of a dataset, the lengths of trajectories in terms of number of s-unit and

the number of trajectory patterns in a dataset are smaller for GRID mode than for

those of SEG mode. We can see the differences of the trajectory pattern distributions

for grid-based datasets compared to segment-based datasets in Figure 41. Thus, for

the same value of min sup, TrajPod runs faster for grid-based trajectory datasets

than segment-based trajectory datasets. Also, changes in the running time differences

for different types of s-units, shown by the gaps between the data series of both s-unit

types, are relatively similar.

In summary, our extensive experimental results have demonstrated the efficiency

and effectiveness of the TrajPod algorithm. Overall, TrajPod outperforms other

approaches and is very robust to different scales of maps and varying distribution
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Figure 41: The distribution of frequent trajectory patterns of SJ.SEG datasets vs
SJ.GRID datasets.
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of frequent patterns within a trajectory dataset when varying the minimum support

thresholds as well as different settings of grid cell sizes. TrajPod is very memory-

stable and scalable to varying sizes of trajectory datasets.

4.6 Related Work

Many studies on finding interesting movement patterns in trajectory data have been

proposed, for example, finding major traffic flow patterns [40], moving cluster patterns

[50], maximal periodic patterns [19], periodic behaviors [60], longest duration flocks

[37], leadership patterns [12], to name a few.

To the best of our knowledge, only a few related methods for sequential pattern

mining of mobile object trajectories have been proposed. Since the granularity level

of raw GPS locations is very low, an exact pattern of GPS locations hardly occurs

multiple times in a trajectory dataset. Thus, the traditional notions of sequential pat-

terns in transactional data cannot be applied directly for MO trajectory sequential

pattern mining. Certain previous work [64] defines trajectory patterns as sequences

of grid-based notations and mines them using the PrefixSpan algorithm. The work

in [34] also adopts the PrefixSpan algorithm to mine trajectory patterns as sequences

of regions of interests (ROIs) incorporate with the time interval between the ROIs.

Approaches in [20] and [93] only mine patterns as sequences of consecutive elements

within trajectories. Note that the standard sequential pattern is a sequence of ele-

ments which do not need to be consecutive. The work in [20] considers patterns as

consecutive line segments and aims to find closed patterns. Other work [93] mines

patterns as sequences of consecutive locations and searches for normalized matching

(NM) between trajectories and patterns. In their approach, the Apriori property

no longer holds for the resulting frequent patterns and a new min-max property of

their defined NM measure is used instead. Our TrajPod approach generalizes the
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trajectory pattern abstraction with any semantic spatial cover scheme for MO tra-

jectories, such as grid-based and road segment-based abstraction and proposes novel

technical solutions for the pattern mining process. TrajPod is the first work targeting

trajectory pattern mining which aligns with the traditional sequential pattern min-

ing research. We improve Apriori-based mining framework with space-efficient data

structures and their corresponding locality-aware operators. Therefore, TrajPod is

able to incorporate early and deep candidate pruning and fast support testing into

the generation-and-test process specialized for mining MO trajectory patterns.

4.7 Conclusion

We have presented TrajPod, a fast and effective sequential pattern mining algo-

rithm specialized for mobile object trajectories. TrajPod discovers the complete set

of frequent trajectory patterns as sequences of semantic spatial units, such as grid

cells or road segments. We introduce new data structures for representing MO tra-

jectories, i.e., the locality-aware partitioned occurrence id-lists (pod-lists), which are

the building blocks of the TrajPod algorithm. The use of pod-lists enables early

and deep candidate pruning and fast support counting. Thus, TrajPod achieves

both space efficiency and computational efficiency. A comprehensive performance

study shows that TrajPod outperforms state-of-the-art sequential pattern mining

algorithms by an order of magnitude. TrajPod is robust under different settings of

road networks, minimum support thresholds, types of semantic spatial units and is

scalable to increasing size of MO trajectory datasets.
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CHAPTER V

TRAJBOX: TRAJECTORY PROCESSING AND MINING

SOFTWARE FRAMEWORK

5.1 Overview

We design TrajBox, a framework that enables trajectory modeling and computa-

tion for querying and mining large collections of MO trajectories. TrajBox provides

a programming interface to enable the development of MO trajectory-based applica-

tions. The API currently supports basic MO trajectory modeling and manipulating

operations and supplies the MO trajectory clustering and pattern mining algorithms

presented in this dissertation. In addition, TrajBox provides some related tradi-

tional clustering and sequential mining algorithms which are implemented particularly

for both road network trajectories and free-space trajectories.

5.2 Design of TrajBox System and API

The TrajBox system design uses a 3-tier client/server architecture. Each client

node acts as a mobile device which records its locations, sends its trajectories to a

TrajBox server and makes requests to the server to get trajectory mining results

for a particular road network. TrajBox server also distributes trajectory datasets

across multiple nodes in a cluster. TrajBox is equipped with a suite of utility

functions for trajectory data including preprocessing, indexing, querying, clustering

and sequential pattern mining.

5.2.1 Trajectory Modeling

Road network-aware preprocessing. Input trajectory data is in the form of

sequences of raw GPS points, i.e., geometric coordinates. When raw trajectories are

147



sent to the TrajBox server, they are map-matched [89] to the corresponding road

network to form MO trajectories as sequences of road network locations. Figure 42

shows a sample of trajectory points consisting of Trajectory Id Trid, (x, y) coordinates

ordered by timestamp and the corresponding map-matched segment Id segid of the

road segment where the point resides.

Figure 42: Sample trajectory data

Trajectory Abstraction. We provide several abstraction functions for trajectories

in order to transform each original trajectory as a sequence of location points into

a sequence of desired spatial units with respect to specific mining tasks including:
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trajectory fragments (t-fragment), semantic spatial units (s-unit) and line segments.

We denote a transformed trajectory T -trajectory.

• t-fragment operator: This function splits a MO trajectory into a set of t-

fragment, which is the subsequence of road network locations in the trajectory

which share the same segid.

• s-unit operator: This function currently supports grid-based s-units and segment-

based s-units. It takes as input an s-unit setting and a MO trajectory and its

associated road network to transform the trajectory into a sequence of s-units.

• Line segment operator: This function performs polyline simplification to reduce

the number of points of a trajectory while maintaining its basic geometric shape.

It implements the popular Douglas-Peucker algorithm [30] which takes as input

a trajectory and a tolerance distance threshold to transform the trajectory into

sequence of line segments. Users can apply this function to abstract trajectories

when not given a reference road network or free-space trajectories, such as

the trajectories recording the movement of animals in a forest or hurricane

trajectories.

5.2.2 Trajectory Manipulating

We provide a number of simple manipulating operations for MO trajectories and

T -trajectories including unit counting, extraction, intersection, k-subpattern.

• Unit counting: This operation returns the cardinality, i.e., the number of t-

fragment, s-unit or line segments of a T -trajectory.

• Spatio-extracting: This operation takes as input a trajectory and a segment ID

segid or a grid cell ID cellid to return a t-fragment associated with segid or a

subtrajectory covered by cellid.
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• Temporal-extracting: Given a time window [startT ime, endT ime] and a trajec-

tory Tr, this function extracts the subtrajectory consisting of locations recorded

in Tr during the given time window. This is very useful when users only want to

analyze a subset of a trajectory dataset which records the movement in certain

time intervals, such as during rush hours or in weekends.

• Intersection: This function computes the common parts in the form of a se-

quence of s-units from two trajectories.

• k-subpattern: Given a positive integer k, this function scans a T -trajectory and

outputs its complete set of k-subpatterns. It returns null when k is larger than

the s-unit cardinality of the trajectory.

5.2.3 Trajectory Distance and Querying Functions

Distance functions. A distance function, which measures the distance/dissimilarity

of two trajectories, is the centerpiece in trajectory clustering. We provide implemen-

tations of segment-based distance SegSD and grid-based distance functions SGBD,

GridCSD which are presented in our TraceMob clustering framework (Chapter 3).

Euclidean-based distances [16, 36] are also provided for free-space trajectories.

Trajectory querying. Given one of the distance functions above, a trajectory

Tr and a distance threshold ε, a ε-querying function returns all trajectories in the

dataset within the ε radius to Tr. A kNN -querying function compute the nearest k

trajectories to Tr.

5.2.4 Operations for Trajectory-based Collections

By trajectory-based collections, we refer to the core concepts used in our NEAT algo-

rithms (chapter 2) including base clusters (groups of t-fragment), flow clusters (groups

of base clusters) and f -neigborhoods (groups of base clusters sharing one common

road junction). TrajBox supplies the netflow functions for two base clusters, two
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flow clusters and the merging selectivity function to compute the relative traffic fac-

tor value of a base cluster with respect to its f -neigborhood as used in NEAT. These

functions are very helpful when users want to analyze the traffic statistics in some

particular road segments and junctions in a road network.

5.2.5 Trajectory Mining Algorithms

TrajBox provides the implementations of our trajectory mining algorithms for MO

trajectories in road networks, including the road-network aware clustering algorithm

NEAT, the road-network aware trajectory transformation algorithm TrajMap used

in our TraceMob framework and the frequent trajectory pattern mining TrajPod.

In addition, it also includes a number of traditional mining algorithms such as Tra-

clus [36], DBSCAN [31], PAM [53] for clustering, and SPADE [97], SPAM [15] and

PrefixSpan [69] for sequential pattern mining specialized for trajectory data.

5.3 Sample Clustering Application using TrajBox Framework

By providing a programming interface, TrajBox is able to support the development

of many trajectory-based applications. We built the NEAT clustering prototype sys-

tem as a sample trajectory-based application system using TrajBox API to illustrate

the usability of TrajBox framework.

The input for the NEAT system includes a trajectory dataset, a road network

map corresponding to the trajectory dataset and a set of parameters. The trajectory

dataset is provided by a trajectory database. The road network is supplied by a road

network database. The set of parameters is either system-supplied or user-supplied.

Figure 43 shows the architecture of our NEAT clustering system which is composed of

an input preprocessor, a clustering engine and an output postprocessor. In addition,

the NEAT GUI provides a user interface for users to interact with the system. Some

screenshots of the NEAT GUI are shown in Figure 44, Figure 45 and Figure 46.

First, the trajectory dataset is preprocessed by the input preprocessor if necessary.
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Figure 43: Neat system architecture

When a given set of trajectories are expressed in terms of a time series of geometric

coordinates, NEAT will first preprocess the set of trajectories using the SLAMM

map-matching algorithm [89] such that each point in a trajectory is mapped to a

road network location which belongs to a specific road segment in the road network

map. The input preprocessor produces a set of MO trajectories as sequences of road

network locations. Next, the clustering engine runs the NEAT clustering algorithms

on the given set of MO trajectories. Finally, the clustering result is visualized by the

output postprocessor and returned to users. Figure 47 shows a screenshot visualizing

three-phase clustering (opt-NEAT) results for a San Jose dataset.
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Figure 44: Neat GUI with a selected Atlanta dataset to run base-NEAT
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Figure 45: Neat GUI with a selected Miami-Dade dataset to run flow-NEAT

5.4 Conclusion

We have presented the design of TrajBox, a software programming framework for

trajectory processing and mining with a sample MO trajectory clustering application
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developed on top of TrajBox. The TrajBox system and APIs provide building

blocks for trajectory analysis including a set of operations implementing the technical

components presented in the previous chapters of this dissertation. Several software

systems for traditional data mining [39] and free-space trajectories [11,61] have been

introduced. However, a software system for constrained MO trajectories is still in

need. Our ultimate goal is to fully develop TrajBox as a software system that

provides a rich API and a user-friendly interface specialized for analyzing and mining

mobile object trajectories in road networks. We hope this software framework is

a helpful toolkit to further studies in the growing field of trajectory mining and

analysis.

155



Figure 46: Neat GUI with a selected West San Jose dataset to run opt-NEAT
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Figure 47: Neat output visualization
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CHAPTER VI

CONCLUSION AND FUTURE WORK

This dissertation centers around processing, clustering and mining trajectories of mo-

bile objects traveling in road networks, an emerging class of ubiquitous location-based

data analysis. Through our studies, we have demonstrated that traditional mining

algorithms, when applied directly to analyze MO trajectory data, suffer from poor

performance and fail to deliver accurate and meaningful mining results. We carefully

study the complex spatio-temporal characteristics of MO trajectories in the context

of constrained road networks to design efficient and effective data representations

and computational models for trajectory data to facilitate large-scale trajectory clus-

tering and trajectory sequential pattern mining. In this chapter, we conclude our

contributions and discuss future research directions.

6.1 Concluding Remarks

This dissertation covers the problem of trajectory clustering for both subtrajectories

and whole trajectories. We have presented NEAT, a comprehensive road-network

aware subtrajectory clustering framework that quickly discovers spatial clusters of

MO subtrajectories representing major traffic flows in a road network. A salient

feature of NEAT is its design of a configurable three-phase clustering framework

in which each phase has its own goal in terms of delivering interesting trajectory

clustering results to location-based applications. We have proposed TraceMob,

a methodical framework for clustering whole trajectories. TraceMob provides an

accurate and efficient distance measure between whole trajectories and a road-network

aware trajectory transformation algorithm to effectively shift the clustering task for

whole MO trajectories from the complex road network space into multidimensional
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data clustering in an Euclidean space.

The dissertation also addresses the challenging sequential pattern mining problem

for MO trajectory data, in which the conventional notions of frequent sequential

patterns are usually not applicable. We have presented TrajPod, a fast locality-

aware trajectory pattern mining algorithm which utilizes innovative data structures

and computation schemes to discover the complete set of frequent semantic location

sequences from large-scale MO trajectory datasets.

Finally, we introduce the design of the TrajBox software toolkit that provides ba-

sic MO trajectory modeling and manipulating operations and supplies a suite of novel

MO trajectory clustering and pattern mining algorithms presented in this dissertation.

6.2 Future Directions

We have contributed technical solutions for critical problems in mining mobile object

trajectories. Our trajectory mining frameworks and algorithms are designed in a

configurable and extensible fashion, which enables a number of interesting extensions

and future research directions.

6.2.1 MO Trajectory Clustering

The purpose of clustering whole trajectories is to discover the grouping structure in

a given trajectory dataset. One may raise a question whether the grouping struc-

ture of MO trajectories in a specific road network is stable or dynamically changing

over time. One observation is that the daily/weekly commutes of a person usually

remain unchanged. In addition, today people mostly use GPS-based devices or map

applications for navigating and often follow shortest routes to travel within a road

network, resulting in a high level of overlapping in MO trajectories. Because of that,

do we really need to store every single trajectory and cluster all historical trajectory

data which we have to deal with unnecessary big data workloads? Or can we execute

some trajectory profiling and updating strategies that can store MO trajectories in a
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compact and representative data model without the loss of interesting changes that

may happen in space and time with regard to user movement behaviors? These are

interesting open issues which need to be addressed to facilitate trajectory clustering

in both batch processing and real-time processing scenarios. The study of MO trajec-

tory clustering structure dynamics in which we need to detect and analyze significant

changes in the clustering structure of MO trajectories, for example in the presence of

extraordinary events like disasters or wars, associated with a road network over time

is also a promising mining problem.

Another critical problem in MO trajectory clustering is that we need a set of

standard metrics for trajectory cluster quality, which greatly helps in evaluating the

correctness of trajectory clustering algorithms. So far, no good cluster validation mea-

surement for MO trajectory clusters has been proposed. In TraceMob, we validate

clustering results in two spaces: the multidimentional space where kmeans clustering

is performed, and the original road network space where clusters of multidimensional

points are mapped back to clusters of trajectories. In the former space, we use a

traditional cluster validation measure. In the latter space, we adapt another popular

cluster validation measure for the trajectory clusters. Although our proposed cluster

validation measurement can reflect the comparable qualities of different clustering

results in the road network space, the quality differences are not as clear as measured

in a metric space for clusters of multidimentional data points.

6.2.2 Mining interesting movement patterns in MO trajectories

Our NEAT approach provides a clustering-based perspective to find interesting move-

ment and traffic patterns hidden in MO trajectory data. In the development of NEAT,

we consider road segment-based subtrajectory, i.e., a t-fragment, as the default unit

for clustering. We can integrate a user-defined fragment into our framework to let

users define the granularity of fragments. For examples, a user can define the grid cells
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covering a road network as the building blocks in the base cluster formation phase.

Then the same merging and refinement process can be applied to the resulting cell-

based or any user-defined fragment clusters. In addition, in the last clustering phase,

beside our modified Hausdorff distance, other distance functions that introduce inter-

esting optimization results can also be included in this phase. The endpoints of the

flow clusters can be considered as places of interest. Thus, we can extend our modified

DBSCAN-like optimization phase to group the set of endpoints of the resulting flow

clusters to discover regions of interest inherent in the given trajectory data. Further-

more, consider that each road network location is recorded with a specific timestamp,

another interesting extension to NEAT is to consider the temporal information con-

tained in the MO trajectories. We can apply NEAT to an extracted sub-trajectory

set from the given trajectories, e.g., recorded mobility traces in rush hours or during

weekends, to discover the traffic patterns during different time windows (in terms of

hour, day, week, month or year).

Parallelizing the NEAT algorithms is in our future development plan. Specifically,

in the first phase, the same method of splitting trajectories and putting trajectory

fragments into their associated base clusters can run for each trajectory in parallel. In

the second phase, we would divide the map into partitions and perform MapReduce-

like jobs to retrieve the flow clusters. The last phase is essentially traditional clus-

tering which can adapt many available parallelized versions of traditional clustering

algorithms such as ones in [5].

6.2.3 Mobile Object Trajectory Pattern Mining

Much research is needed in distributed trajectory pattern mining to achieve high

performance and high scalability in mining very large trajectory datasets. TrajPod,

in particular, can be parallelized by locality-aware partitioning the vertical layout of

the datasets, i.e., using a one-to-one mapping from partitions of the road network to
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partitions of is associated semantic spatial coverage. First, TrajPod will execute in

parallel on each partition. Next, there needs to have a hierarchical level-wise merging

process for the immediate frequent trajectory pattern trees to retrieve the final set

of frequent trajectory patterns. In general, we need to consider both vertical and

horizontal partitioning of the trajectory dataset depending on what data structure

we use in the pattern mining process. In addition, a fault tolerance scheme specialized

for distributed trajectory pattern mining is beneficial in the presence of system failure.

Integrating partial materialization and support counting operator tracking, similar to

the approach in [44] is one possibility for fault tolerance, so that we do not have to

restart the mining process from scratch. Moreover, we also need a new set of domain

specific criteria to rank the discovered frequent trajectory patterns to achieve the

most desired MO trajectory patterns.
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