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SUMMARY

Sparse approximation is a Bayesian inference program with a wide number of

signal processing applications, such as Compressed Sensing recovery used in medical

imaging. Previous sparse coding implementations relied on digital algorithms whose

power consumption and performance scale poorly with problem size, rendering them

unsuitable for portable applications, and a bottleneck in high speed applications.

A novel analog architecture, implementing the Locally Competitive Algorithm

(LCA), was designed and programmed onto a Field Programmable Analog Arrays

(FPAAs), using floating gate transistors to set the analog parameters. A network

of 6 coefficients was demonstrated to converge to similar values as a digital sparse

approximation algorithm, but with better power and performance scaling. A rate en-

coded spiking algorithm was then developed, which was shown to converge to similar

values as the LCA. A second novel architecture was designed and programmed on an

FPAA implementing the spiking version of the LCA with integrate and fire neurons.

A network of 18 neurons converged on similar values as a digital sparse approximation

algorithm, with even better performance and power efficiency than the non-spiking

network.

Novel algorithms were created to increase floating gate programming speed by

more than two orders of magnitude, and reduce programming error from device mis-

match. A new FPAA chip was designed and tested which allowed for rapid interfacing

and additional improvements in accuracy. Finally, a neuromorphic chip was designed,

containing 400 integrate and fire neurons, and capable of converging on a sparse ap-

proximation solution in 10 microseconds, over 1000 times faster than the best digital

solution.

xxi



CHAPTER I

OPTIMAL INFERENCE: GETTING TO THE

IMPORTANT FACTS

1.1 Introduction

The universe does not always send us information in the most useful format. As

an instructive example, consider the case where you are in a crowded lecture hall,

patiently watching the instructor and taking notes, when a wadded-up ball of paper

hits you in the back of the head. You have one key piece of information, the angle

with which the ball hit you. But what you really want to know is who threw the ball.

Fortunately, our brains have evolved over millions of years to solve problems very

similar to this one. Many recent studies suggest that the mammalian brain is highly

adept at performing Bayesian inference [19, 73]; that is, the brain is very good at

making sense of an observation by using Bayes’ theorem of conditional probability.

Our brains do this by constructing models of the world around us. Returning to

our example, you might immediately turn around and begin to construct a generative

model for the paper ball’s impact. You can look at each person in the room and

ask, ‘If he had thrown the ball, where would it have hit me?’ We can express the

generative model using this equation:

y = f(a) + � , (1)

where y is your measurement (the angle you think the ball hit you), a is the code

representing the possible suspects, and f(a) is the physical relationship between a

person’s position and the angle they would have hit you. To this we add the Gaussian

measurement noise term � because, let’s face it, your estimate of which angle the ball

came from is probably not very accurate. From our generative model we can derive
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a conditional probability distribution P (y∣a), the probability that y would occur for

a given value of a.

Fortunately, you also have a prior model of a to assist your inquiry: you have a

decent idea of who was more likely to have thrown the ball to begin with. Your friend

Justin, who has been trying to get your attention all morning, is a far more likely

suspect than the Dean of Engineering, who happens to be sitting in on the lecture.

We express the prior probability of a as P (a).

Bayes theorem shows us how to combine these two models with the evidence you

gathered to generate a posterior probability:

P (a∣y) ∝ P (y∣a)P (a) , (2)

and therefore

argmax
a

P (a∣y) = argmax
a

P (y∣a)P (a) . (3)

Bayes’ theorem tells us that the most likely suspect a given your measurement y is the

one that maximizes the product of the prior probability and the conditional probabil-

ity P (y∣a). We call this a the Maximum A Posteriori (MAP) estimate. Importantly,

Bayesian inference accounts for the measurement noise �. If, as in our example,

noise is high, then the prior probability will have more weight in determining the

posterior probability P (a∣y). But if your measurement had come from a low-noise

source—suppose you had actually seen most of the ball’s trajectory—then you would

weigh that more heavily. Using the available information, this is the mathematically

optimal way to identify the most likely cause.

1.1.1 Extracting Structure from High Dimensional Inputs

Bayesian inference can be extended to another problem our brain faces even more

often than incoming paper projectiles: vision. One popular theory [90] holds the

primary visual cortex (V1) attempts to find the underlying sparse structure in an
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Figure 1: (a) The LCA implemented on the FPAA is capable of performing the same
sparse encodings as a digital solver, but at a fraction of the power and speed. (b)
Sparse encodings assume a linear generative model, where a signal is the sum of a
sparse set of dictionary elements. For example, [90] showed that natural images can
be constructed with a sparse set of wavelets.

incoming image. This theory has substantial support from theoretical analysis [49],

simulations [91, 127], and experimental observations [59, 115].

In the theory of sparse representation, the incoming image y ∈ ℝ
M is modeled as:

y = Φa+ � . (4)

The image is generated using the overcomplete dictionary Φ = [�1, . . . , �N ] using

coefficients a ∈ ℝ
N , where �i is the visual representation of the ith structural compo-

nent (such as Gabor wavelets), and ai is the strength of that component in the image

(with ai = 0 meaning the component is absent). This linear model is illustrated in

Figure 1(b).

In our simplified model, the brain assumes a prior P (a) with high kurtosis. We

call this a sparse prior, as it assumes that most of the coefficients of a are 0. We call

the resulting solution of the optimization a sparse encoding, or sparse approximation,

of the image y. Sparse encoding serves two important neural functions. First, it maps

well to many natural signals, which do in fact have sparse structure. Second, if the

sparse encoding maps directly to neural activity, only a small subset of the neurons

need be active to represent the high dimensionl visual inputs, saving substantial
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energy. This accords with the idea that the brain attempts to make efficient use of

computational resources [7, 100].

Of course, we should not assume that sparse representation is universal principle

of cortical computation. If the important features cannot be linearly mapped to the

input, then (4) is not a useful model. In addition, sparse representation is in tension

with theories of distributed representation [47], wherein key features are mapped to

multiple neurons, multiple populations, or even multiple cortical areas. But, as we

will discuss in 1.3, sparse representation is a useful model for a number of important

real-life signals, including audio signals, and both two- and three-dimensional images.

1.2 Solutions for Regularized Least-Squares Optimizations

In modern signal processing, Bayesian inference is often accomplished using the regu-

larized least-squares method. For our linear generative model with Gaussian noise(4),

P (y∣a) ∝ e−�∥y−Φa∥22 . Likewise the prior probability can generally be expressed as an

exponential P (a) ∝ e−C(a). To find the most likely a, we take advantage of the fact

that the natural logarithm is a monotonic function, so:

argmax
a

P (a∣y) = argmax
a

e−�∥y−Φa∥22e−C(a)

= argmin
a

1

2
∥y − Φa∥22 + �C(a) , (5)

where � is a tunable parameter that accounts for the relative weight of the two terms.

We call (5) a regularized least-squares problem. For certain classes of problems, where

a has a Gaussian distribution, (5) has a well understood linear solution. But for the

far richer class of problems where a has some sparsity (having only S ≪ N non-

zeros), more sophisticated methods are required. We rely instead on a broader range

of convex optimization algorithms.

The degree of sparsity generated by (5) is determined by the cost function C(a).
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Perhaps the most obvious such cost function is the ℓ0-norm or counting norm, ex-

pressed ∥a∥0, where the cost is simply the number of nonzero coefficients in a. Unfor-

tunately, the ℓ0-norm renders (5) nonconvex, so convex optimization algorithms will

not reliably find the optimal solution.

One common alternative is Basis Pursuit De-Noising (BPDN) [37] where the ℓ0-

norm is replaced with an ℓ1-norm cost function, expressed ∥a∥1 =
∑N

i ∣ai∣. This

function has solutions very similar to the ℓ0-norm case, but produces a far more

tractable convex optimization problem.

BPDN, and regularized least-squares optimizations more generally, have emerged

as a fundamental component in modern state-of-the-art approaches for many applica-

tion areas, including signal restoration, denoising, deblurring, and inpainting [44], as

well as computer vision and machine learning[123].Consider, for example, the emerg-

ing literature on Compressed Sensing [27, 28]. In Compressed Sensing, the sparse

signal a of length N is deliberately compressed by a matrix Φ, allowing for highly

undersampled measurement y of length M , where M ≪ N . Compressed Sensing

guarantees that if the sensing matrix Φ obeys the Restricted Isometry Property (a

randomly generated matrix will work), S-sparse signals can be recovered (up to the

noise level) with BPDN as long as M ∼ O (S log(N/S)). In situations where mea-

surements are costly, a signal can be undersampled during acquisition in exchange for

using more computational resources to recover the signal at a later time.

1.2.1 Analog Hardware Solution for BPDN

The advances in Compressed Sensing have lead to the design of new coded sensing

systems that spend fewer resources to collect data at a specified resolution, relying

instead on computational post-processing to reconstruct the signal. A large variety

of digital algorithms for solving sparse coding problems already exist [70, 50, 60].

Unfortunately, these digital solvers are computationally expensive, due to the presence
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of the ℓ1-norm in the objective function which makes the program non-smooth. Their

high computation expense has prevented practical deployment of digital solutions for

portable, low-power applications.

Recent work in computational neuroscience has produced the Locally Competi-

tive Algorithm (LCA), a continuous-time dynamical system where the steady-state

response is the solution to a regularized least-squares optimization [102]. The architec-

ture of the LCA is designed to efficiently deal with sparsity-inducing non-smoothness

conditions. The Hopfield Neural-Network architecture [63] of this system makes it

amenable to analog circuit implementation, which promises several benefits.

As a comparison, even the most efficient current iterative digital algorithms re-

quires on the order of 1000 iterations, each one using O(N2) floating point operations

[20]. Meanwhile the solution time for the LCA in a parallel analog architecture is

fewer than ten RC time constant [10, 11]. The dominant on-chip capacitances scale

with the O(N) transistors that must be wired together, so the time constants (and

solution time) likewise scale O(N). When operating near threshold, the RC constant

for a single transistor is no slower than ten floating point operations. As N ≫ 1, this

represents a tremendous gain in computational performance.

Total energy consumption is also reduced by using analog vector matrix multipli-

ers (VMMs) that require only one transistor per multiplication, instead of the large,

power hungry multipliers required for digital processing. Whereas a multiply accu-

mulate operation (MAC) generally requires at least 100 pJ [85] on a digital processor,

an analog VMM can do the same operation with less than 1/1000th the energy [108].

Unfortunately, analog hardware solutions have traditionally suffered from several

flaws. Perhaps the most glaring is the extremely long design cycle of analog inte-

grated circuits (ICs). The most common approach for analog design is to draw up

the schematics, simulate the analog sub-systems, fabricate, and test the mixed-signal
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system, then repeat [126]. This process can take months or even years. In addi-

tion, manufacturing defects cause analog circuits to suffer from device mismatch [71].

Transistors must therefore be made quite large to avoid adding a significant source

of innaccuracy in analog computation, losing most of the benefit from Moore’s Law

improvements in transistor scaling.

1.2.2 Field Programmable Analog Arrays: a Floating Gate Solution

Field Programmable Analog Arrays (FPAAs) provide a solution to both traditional

problems of analog circuits. This is because today’s state-of-the-art FPAAs use float-

ing gate MOSFET transistors as programmabe routing and computational elements.

Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) are the current

standard in analog circuit fabrication. They are a very mature technology, and chip

designers have had several decades to characterize them and learn how to use them.

A MOSFET transistor can be easily modeled as a three terminal device, where the

potential on the ‘gate’ terminal determines the rate at which charge carriers can flow

across the channel from the ‘source’ to the ‘drain.’ In n-type or nFET transistors,

free electrons flow through the channel, and in pFET transistors, holes in the valence

band flow through the channel.

A floating gate MOSFET is a transistor where the gate is electrically isolated.

This node may be capacatively coupled to a ‘coupled’ gate terminal, which becomes

the effective gate terminal of the transistor, albeit with slightly weaker control over the

channel current. The charge stored on the floating gate cannot be changed without

considerable effort, and thus acts as both a memory and an offset to the potential

provided by the coupled gate.

The charge on the floating gate therefore allows us great flexibility in configuring

the conductance of the transistor’s channel. For the floating gate pFET used on the

FPAA, we can set the charge very high to prevent any current from passing at all.
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Figure 2: The signal flow for an embedded analog signal processor [106]. The incom-
ing analog signals can either be processed by a pure analog system or converted and
processed digitally. The RASP2.9v, one of the Field Programmable Analog Arrays
developed in this research, has enhanced digital compatibility which allows data to
be transferred between the two processors for the most efficient solution. The system
is compiled by and can be controlled by a Matlab interface.

To use the device as a routing element, we set the charge very low, and the transistor

becomes an almost invisible short circuit. We can also program the floating gate

in between to give it a precise conductance. This conductance can be exploited by

various circuit topologies to perform various linear and nonlinear computations.

This floating gate architecture solves both of the problems with analog circuits.

The programmable routing allows the implementation and testing of circuits without

the time-consuming process of industrial fabrication [61]. Instead of refabricating a

new circuit whenever design specifications change, the engineer can simply reprogram

the FPAA. At the same time, the programmable computation facilitates compensation

for the device mismatch, greatly improving the accuracy of the analog circuit.

In addition to simple prototyping, FPAAs are extremely powerful for embedded

computing applications, acting as mixed signal co-processors, as illustrated in Figure

2. These systems can easily utilize subthreshold transistor operation to perform ultra

low-power computation, especially in parallel computing systems [89].

FPAAs thus represent an ideal solution for implementing a BPDN solver such as
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the LCA. They produce the improved performance and power efficiency of analog

systems, while granting some of the flexibility and accuracy of digital processors.

The configurability granted by this technology is extremely important for Bayesian

inference problems where the linear model might change (requiring the coefficients

of Φ to be reprogrammed) or the sparsity constraint might change (requiring the

tradeoff parameter � to be reprogrammed).

The flexibility of the FPAA platform also means that a successful BPDN imple-

mentation could be extended to other similar regularized least-squares problems. For

example, we could use such a circuit to solve a large class of problems known as

Linear Programs (LPs), and Quadratic Programs (QPs), which can be configured via

the same architecture as the LCA.

An LCA implementation on the FPAA would even be useful in situations where

the dictionary � is unknown. There are multiple algorithms that allow dictionar-

ies to be learned by small weight changes over many iterations [51, 68, 90]. The

reprogrammability of the FPAA makes these algorithms easy to implement.

1.3 Applications of Analog Hardware BPDN Solver

Many modern signal processing applications either rely on or could greatly benefit

from regularized least-squares optimization programs. An analog implemention of a

BPDN solver would be especially beneficial for applications in medicine, communica-

tions, and finance where power efficiency or high speed computation are important.

Medical imaging is one application area that could particularly benefit from rapid

sparse computation. In many medical imaging system, the actual measurements are

extremely expensive, in terms of both how long they take and monetary cost. Since

medical images (like all natural images) have a sparse structure, Compressed Sensing

can be used to greatly reduce the number of measurements needed [80, 119]. The

shorter scan times would improve patient throughput and could allow more pediatric
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Figure 3: Reconstruction of 256×192 pixel MR images from simulated CS acquisition
[111, courtesy A. Charles]. The simulated LCA and the comparison digital algorithm
(YALL1) find solutions of approximately the same quality in terms of relative MSE
and image quality. YALL1 finds the solution in approximately 10 s, while the LCA
finds the solution in approximately 20 time constants (20µs for � = 1µs).

MRIs without general anesthesia.

While the reduced scan time is a large benefit, recovering the compressed signal

becomes the bottleneck. The analog LCA offers a solution to this problem. In

[111], we found that the LCA could reconstruct with diagnostic quality a compressed

256×192 pixel image in 20µs, assuming a time constant of 1µs (Figure 3). Compared

to a digital solver which took 10 s, this represents a performance increase of almost

6 orders of magnitude! If this system were to process a 3-D image with 1000 such

frames, it would be able to do so at 50 frames per second, fast enough for real time

imaging. Compressive MR imaging combined with rapid image reconstruction would

not only further improve patient throughput, but would allow new applications, like

real-time imaging during medical procedures.

Channel sensing represents another area that could greatly benefit from a BPDN

solver, due to the sparse nature of many communications channels [8]. If we send

a known signal �0 through a sparse channel a, then the received signal will be y =

�0 ∗ a + �, which can be rewritten as the linear generative model (4) where Φ is the

Toeplitz matrix of �0. Since the channel a is sparse, we can use BPDN to calculate

it quickly.
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This method has, however, seen very limited application in the portable market so

far because of the high power cost of the digital processing it requires. A low power

analog solution would get around this problem, allowing a portable phone to more

easily characterize its wireless communication channel without draining its batteries.

Such a solution could also be used in UAVs (Unmanned Arial Vehicles) for radar

applications, where a sparse structure in the radar channel could correspond to an

enemy aircraft.

Finance and risk management represent another potential application area, where

the high performance of an analog system would be useful. Many financial opti-

mization problems run a Quadratic Program where risk is minimized and expected

return is maximized. An FPAA capable of implementing the LCA can easily be

reprogrammed to solve such a QP. This would be especially useful in high speed

trading, where the increased performance of an analog solver would grant a distinct

competitive advantage.

1.4 Original Contributions of this Work

Research is in large part a highly collaborative enterprise. The Ph.D. research per-

formed in this work is no exception. The complicated hardware and software systems

we designed and the results they produced would have been completely impossible

without years of hard work by our predecessors, building up the critical infrastructure.

That said, this Ph.D. research has made significant advances in the field, and

has produced multiple articles in peer-reviewed conferences and journals. We made

significant developments in the software infrastructure for FPAAs, substantially in-

creasing the speed and accuracy of programming. We created new FPAA hardware,

the RASP2.9v, to further increase accuracy and to expedite testing of highly par-

allelized systems like the LCA. We implemented two systems on this hardware, an

analog version of the LCA, and a spiking version of the LCA. Both of these systems
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were functional, converging on solutions similar to the best digital systems using only

a fraction of the power. Finally, we designed a neuromorphic system to accurately

solve a 400 dimensional sparse coding problem in microseconds.

These achievements are discussed in detail in the rest of the dissertation:

Chapter 2 reviews the basics of floating gate FPAAs. We discuss the underlying

mechanisms by which they are programmed. We review the system architecture of a

typical FPAA and the software and hardware infrastructure that are used to support

it. We introduce several original software algorithms that achieved the fastest analog

floating gate programming speeds yet reported.

Chapter 3 analyzes the various sources of error in floating gate programming. We

discuss an algorithm, which we first introduced in [112], for automatically measuring

and compensating for these errors in various circuit topologies.

Chapter 4 introduces the RASP2.9v, a chip that we codesigned with Craig Schlottmann

and Stephen Nease. Borrowing from [106], we discuss the novel architecture of this

chip, including several innovative features that would greatly aid in programming

and testing high dimensional analog systems. We show several of the many signal

processing systems enabled by this architecture.

Chapter 5 describes the analog hardware implementation of the Locally Competi-

tive Algorithm. This chapter is largely adapted from [111]. We begin with a review of

the LCA, and then describe how this algorithm was translated into analog circuitry.

We discuss the results of this implementation, and show that they compare favorably

to the state of the art digital solutions.

Chapter 6 describes the spiking LCA network for solving sparse coding problems,

expanding upon our work in [110]. We prove that this algorithm is computationally

equivalent to the analog LCA, depending on the type of spiking neuron model used.

We show that simulations of this spiking algorithm converge on solutions comparable

to digital algorithms.

12



Chapter 7 illustrates the hardware implementation of the spiking LCA. This chap-

ter is adapted from [113], which is currently in review. We show the results of the

spiking implementation, which is even faster and more power efficient than the analog

implementation.

Finally, Chapter 9 concludes with a lengthy discussion of the future direction of

this work. We anticipate the results of the RAIN chip. We describe how the chip

could be incorporated into even larger sparse approximation systems and used for a

wider range of signal processing problems.
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CHAPTER II

BASICS OF RECONFIGURABLE ANALOG DEVICES

2.1 Introduction

While analog circuits have a distinct computational advantage in low power appli-

cations [103, 88], they suffer from two major problems. First, analog circuits have

a very slow design cycle, generally requiring a highly specialized engineer to design

and fabricate a custom integrated circuit, a process that can take months or even

years [126]. Second, device mismatch has created a large source of static errors for

submicron devices[4, 71], making accurate computation very difficult.

Field Programmable Analog Arrays (FPAAs) present a solution to both of these

problems. FPAAs are a highly versatile platform for prototyping analog circuits.

Their reprogrammability allows engineers to test and debug analog designs without

waiting for the lengthy chip fabrication cycle. They also allow us to compensate for

device mismatch by injecting charge onto floating gate transistors [16].

In this chapter we will address the methods required to make FPAAs configurable–

how they solve the first problem and shorten the design cycle. We first examine the

basics of floating gate CMOS transistors, the enabling technology for FPAAs. We

will briefly discuss the physics behind how they can be programmed and erased in

Section 2.2. We will then explore the architecture of a typical FPAA made in our lab,

the RASP2.9a, and the hardware and software infrastructure needed to program it

(Section 2.3). In Section 2.4 we will look at the original algorithms we implemented

to expedite the programming process, which improved the programming speed by

several orders of magnitude. Section 2.5 contains concluding remarks.
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2.2 Physics of Floating Gate Programming

Floating gate elements (FGEs) are the key enabling technology of the FPAAs dis-

cussed herein. By a floating gate element, we generally mean a pFET transistor

designed in CMOS (Complimentary Metal Oxide Semiconductor) technology, where

the gate terminal of the transistor is electrically isolated. The resulting ‘floating

gate’ is then coupled to one or more ‘coupled gate’ terminals via capacitors (see Fig-

ure 8(a)). Because the floating gate generally has no current paths to ground, the

charge it carries is constant, providing a nonvolatile memory for the device. This

nonvolatile memory acts as an effective fourth terminal for what would otherwise be

a three terminal transistor.

The fourth terminal allows us to tune the device (for analog computation and to

compensate for device mismatch) or to even disable the device entirely (for general

configurability). But in order to do so we must be able to change the charge on an

electrically isolated node. We have two methods for doing so.

2.2.1 Hot Electron Injection

Hot electron injection is the primary method we use for programming the floating

gate devices. It is initiated in a p-channel transistor when carrier holes flow through

a high electric field. This high electric field is maximized when the device is in weak

inversion, which causes a large voltage gradient in the drain depletion region. If the

carrier hole excites an electron-hole pair, then a higher electric field increases the

probability that the resulting hot electron will surmount the oxide energy barrier. If

the gate voltage is higher than the channel voltage, the hot electron will drift to the

gate. These extra electrons will lower the charge on the floating gate, Qfg. The rate

of electron injection is the product of the drain current and the electric field, so it

is maximized when current is close to the threshold [43]. But as Qfg decreases, the

drain current will exceed threshold, and injection will drop off. The decrease in Qfg
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Figure 4: Characterization of hot electron injection on a floating gate pMOS device
as a function of the source-drain potential (Vds) and the source-gate potential (Vsg =
Vs−Vfg) [22]. The injection rate is measured by the change in Vfg, the voltage on the
floating gate. The source-gate potential is a good proxy for the drain current. As we
can see, there is a monotonically increasing relationship between Vds and the injection
rate, but injection rate is maximized for a certain source-gate potential. One danger:
if Vsg starts out very low, then injection may be so low as to be unnoticeable.

can be offset by increasing the voltage on the coupled gate terminal, Vc. These trends

can be observed in the characterization of floating gate injection shown in Figure 4.

Several major problems should be noted with the injection procedure. First, it is

a one way process: hot electron injection can only add electrons to the floating gate

and thereby lower the charge and potential on that node. It cannot raise the charge.

Second, it is possible that the floating gate charge can start out so high (and thus

Vsg so small) that injection is made impossibly slow. We can use a proper tunneling

solution to solve both of these problems.

2.2.2 Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling is a common way of programming floating gate devices,

and is widely used in commercial flash memory. Normally, in order for an electron
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to get passed over the oxide barrier it must be imparted with sufficient energy to

do so (as in the injection process). If we make the barrier sufficiently thin, however,

quantum mechanics dictates that electrons have a nonzero chance of simply moving

from one side of the energy barrier to the other [79]. Putting a large electric field

across a MOS capacitor is one highly effective way to reduce the thickness of the

energy barrier. The electric field will induce a tunneling current, with an exponential

dependence on the potential across the MOS capacitor.

This procedure is actually bidirectional: the direction of the current flow is de-

pendent on the polarity of the potential. In this way charge can be added or removed

from a floating gate node. For our floating gate pFET devices, we call the opera-

tion where charge is added ‘forward tunneling’ (or just tunneling), and we call the

operation where charge is removed ‘reverse tunneling’.

Since charging or discharging the floating gate reduces the absolute potential dif-

ference across the oxide, both forward and reverse tunneling are self limiting processes.

2.3 Reconfigurable Analog Signal Processors

The Reconfigurable Analog Signal Processor (RASP) is a line of FPAA chips in

0.35µm technology. A successor to the RASP 2.8a [16], the RASP2.9a (Figure 5)

is the densest operational FPAA to date [117]. It includes a matrix of 133,744 pro-

grammable switching elements (SWEs), 112 analog IOs, and 84 programmable Com-

putational Analog Blocks (CABs), and a programmer that allows all of the floating

gate devices to be injected, tunneled, and measured.

2.3.1 The Computational Analog Block

To accommodate the widest possible application space, the largest chip real es-

tate was given to the general processing CAB. Each general CAB contains 4 op-

erational transconductance amplifiers (OTAs), 4 FETs (50/50 split of n/p-type), 1

transmission-gate switch (T-gate), and 4 500 fF capacitors.
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Figure 5: Layout and architecture of the RASP2.9a [112]. (a) Die Photo of the
RASP2.9a, showing CABs interspersed throughout the routing fabric. (b) Architec-
ture of the RASP2.9a, including SWE routing fabric, CABs, and a programmer. (c)
CAB and local routing of 45×36 SWEs. Each CAB includes 1 9-transistor OTA, 3
OTAs with floating gate inputs, 4 nFETs or 4 pFETs, 4 500 fF capacitors, a transmis-
sion gate, and 4 multi-input floating gate pFETs. There are global and local routing
lines running vertically and horizontally, and bridge SWEs allow the local vertical
lines to be connected.

Of the four OTAs, three are fully port accessible and one is hard-wired in a

negative feedback configuration. Two of the port-accessible OTAs have floating-

gate input stages with a capacitive divider attenuation of 1:9, which increases the

linear input range by a factor of 9 (see Figure 6). The floating-gate inputs can

be programmed to compensate or introduce a fixed offset. The floating gates are

programmed by modifying the charge on the gate with hot electron injection and

Fowler-Nordheim tunneling. On-chip circuitry can measure the floating gate’s state

and apply the necessary terminal voltages to modify the charge to the desired level.

The OTAs all utilize a wide-linear-range 9-transistor topology with pFET inputs.

A floating-gate pFET transistor sets the tail current of the OTAs, programmable from

100 pA to 10µA. We can accurately set the transconductance of each OTA, which is

proportional to the bias current. Control over the transconductance of the device is
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Figure 6: Operational Transconductance Amplifer Circuit (OTA) [106]. Both the
regular and FG-input OTAs use a 9-transistor structure. The bias current is set with
a FG pFET and can be programmed from 100nA to 30µA. The FG-input has an
attenuation factor of 1:9 on the input stage for wider input liner range (with lower
gain). The FG input elements can also be programmed to remove any input offset.

useful for programming systems such as analog filters or voltage-controlled current

sources.

2.3.2 Programmable Switch Elements

The SWEs (Figure 8(a)) are arranged around the CABs, at the intersections of row

lines (many of which are IOs for the CABs) and column lines (Figure 5(c)). They can

be programmed completely on or off, making them an effective and flexible routing

fabric. Through more careful injection, the SWEs can be programmed to act as

analog devices. Together with the CABs, this allows us to program a wide variety of

linear and nonlinear circuits.

On the RASP2.9a each SWE contains two 0.6µm x 1.8µm (LxW) p-channel

transistors with a shared floating gate (Figure 8(a)). Of these two transistors, one

(the program or direct transistor) is used for injection and on-chip measurement. A

local row selection (rsel) transistor and a global column selection allow only one of

these to be programmed or measured at a time. The row selection transistor adds too

much resistance for the device to act as a switch at low voltages. Only the second,

matched transistor with a shared floating gate (the output or indirect transistor) can

be used as a switch in the routing fabric. This configuration allows us to program
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both transistors at the same time, while only needing to measure the direct device.

Finally, we have an n-channel MOS capacitor attached to a global tunnel voltage,

which allows for the simultaneous tunneling or reverse tunneling of every SWE on

the chip.

2.3.3 General Procedure for Programming

Accurately programming multiple floating gates requires multiple steps. This pro-

cedure is illustrated in Figure 8(d). First, we must erase all of the FGEs, to return

them to the off state. The only way to do this is via forward tunneling, which globally

increases the charge of the all the floating gate pFETs, turning them off. This step

risks adding so much charge to the floating gates that injection will take indefinitely

long to begin, so we must add a reverse tunneling step. We use step to lower the

charge to a point where the device is still off, but the charge is low enough that

injection can occur.

Once global forward and reverse tunneling are complete, we can begin injecting

the devices that will play an active role in the circuit, one at a time. For devices that

we wish to program fully on, we simply ramp up the supply voltage to the maximum

possible value (maximizing Vsd and inject for several milliseconds. For devices that

we wish to program more precisely, an iterative process is required. Shorter injection

pulses are followed by current measurements, which continue until the target current

is reached.

2.3.4 Hardware and Software Infrastructure

The RASP chips use a two layer hardware control scheme. An AT91sam7s Micro-

controller is the primary controller for the chip. It controls a number of on-chip and

off-chip DACs along with on-chip routing, which together are sufficient to directly set

the source, drain, and coupled gate terminals of any individual FGE on the chip. It

also controls the supply and tunnel lines. Together these allow the microcontroller to

20



VMM1 

x

bias

AxVMM I to VI V

IV1 

V to IV I

VI1 

Vref

2

InVector1

1

Out1

1

(a)

DESIGN

F(x,y)

NETLIST PROGRAM

TEST

(b)

Figure 7: Tools for creating and testing a circuit on the RASP2.9a. (a) A Simulink
implementation of a VMM in the general CABs for linear transformation, with cur-
rent and voltage converters. Each block represents an ideal function (used in Simulink
simulations) and a circuit netlist [106]. (b) Algorithm for programming and test-
ing the Simulink circuit [112]. The block level architecture is designed in Matlab

Simulink, the design is compiled into a netlist via ‘sim2spice’, the netlist is routed
via GRASPER, and the resulting switchlist is programmed directly onto the RASP.
Multiple iterations of testing are ususally required to calibrate the design.

program and erase any FGE.

Once a circuit has been programmed, the microcontroller can switch the chip

from ‘program’ to ‘run’ mode, allowing the chip’s analog IO ports to be connected

to off chip DACs and ADCs. This allows the microcontroller to run arbitary testing

routines on the circuit that has been programmed.

While the microcontroller is programmable, it has severe limitations. It is coded in

C, has no floating point arithmetic, and the code is written to an EEPROM that can

only be altered over multiple power cycles. These limitation, and the limited memory

of the microcontroller, required us to use higher level of control, a USB connection

from a computer running Mathworks Matlab R⃝.

We wrote a number of Matlab functions that greatly ease circuit programming

and testing, many of which are listed in Table 1. These functions allow a user to

easily program or erase predefined circuits. Most of these functions require that the

user specify a switchlist. The switchlist is a list of every device to be programmed on

the RASP, including bias currents for included CAB elements, and SWEs that are to
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Table 1: A list of the key Matlab functions we developed for RASP programming.
Function Name Input Result
startBoard Initializes Board and Chip
resetBoard Resets Board and Chip
sim2spice Simulink File produces SPICE Netlist [107]
compileCircuit SPICE netlist uses GRASPER[14] to produce a file

containing a switchlist
programFile switchlist file programs the switchlist onto RASP,

can include mismatch calibration
programList switchlist programs the switchlist via injection
programListNoCAB switchlist programs only SWEs in the switchlist
programListVMM switchlist for programs the switchlist to make

analog VMM accurate VMM
adjustList switchlist with quickly programs the switchlist

small changes over a limited range
readList switchlist reads the current value of the switchlist
eraseSWE erases all the SWEs via tunneling
eraseCAB erases all the CABs via tunneling

be used either for analog computation or as digital routing.

While mapping a circuit to a switch list can be done by hand, it quickly becomes an

intractable problem for all but the smallest circuits. Fortunately, we have developed

a number of tools exist to expedite this procedure.

The highest level tool is a Mathworks Simulink design framework. Figure 13(b)

illustrates the design flow for using the Simulink tool. The user begins by creating

a block level diagram of the desired circuit in Simulink, using a library of linear

and nonlinear elements (see Figure 7). Each block has both a signal processing

function in Simulink and a corresponding SPICE subcircuit definition. After testing

the block diagram in Simulink, the program ‘sim2spice’ compiles the block diagram

into a SPICE netlist of RASP 2.9 components [107]. The SPICE netlist can be

viewed independently for debugging or immediately compiled into a switchlist via

GRASPER, a C-based place-and-route tool [15, 14]. Compiling the netlist and the

switchlist is typically accomplished with a single operation.

To aid in debugging, there also exists the FPAA Routing & Analysis Tool (RAT)
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[76], a graphical interface that illustrates the topology of the programmed switches

and CAB elements.

2.4 Procedures for Rapid and Accurate Programming

One of the major efforts in our research was to improve the accuracy and speed of

floating gate programming. Prior to our efforts, FPAA programming was often an

agonizingly slow process, taking tens of seconds or even minutes for every analog gate.

A circuit with more than a score of analog SWEs could easily take upwards of half an

hour to program. This was frustrating for two reasons: it slowed down research, and

a previous study had shown that programming could theoretically be done in under

a second [17].

In order to quickly program FGEs to an analog value, we implemented an iterative

algorithm that relied on characterized data of the injection process. A short injection

pulse was delivered to the transistor, followed by a measurement of the current it was

passing. This procedure was repeated until the device reached the target current.

We optimized the programming procedure for both accuracy and speed. Assuming

the iterative algorithm did not overshoot the target, the accuracy of the programming

algorithm was limited by the accuracy of the current measurements.

The conductance of the floating gate device was measured by reading its drain

current. To avoid constraint in either strong or weak inversion, we use the Enz-

Krummenacher-Vittoz (EKV) [46] equation to model the programmed drain current

IPROG as a function of the voltage on the floating gate VBG:

IPROG = IS ln
2
[
1 + exp

(
�(VBG−VT0)−VBS+�VBD

2UT

)]
, (6)

IS = 2�pCox
W
L

U2
T

�
(7)

where UT = kT
q

is a fundamental temperature dependent constant, � represents the

effects of both the Early voltage and Drain Induced Barrier Lowering (DIBL), and � is
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the coupling coefficient across the oxide. Since the gate is floating, VBG is dependent

on the floating gate charge Qfg:

VBG = −Qfg/Cfg + AVBS +BVBD + ΓVc (8)

where Cfg is the total capacitance of the floating gate. A = CGS/Cfg, B = CGD/Cfg

are the capacitative coupling from the source and drain to the floating gate, and ΓVc is

the change in voltage due to coupling from an independent tuning voltage. Inserting

this dependence into (6) gives:

IPROG = IS ln
2
[
1 + exp

(
�Vfg+(�−1)VBS+�VBD

2UT

)]
, (9)

with � = A�, � = B�+ �, and Vfg = −Qfg/Cfg − VT0 + ΓVc.

2.4.1 Measuring the Floating Gate Transistor

The RASP2.9a could connect the drain of the direct transistor to an on-chip diode

that converts current to voltage. We then used an onboard 10 bit ADC, with a least

significant bit corresponding to 2.5mV, to get a fast and less temperature sensitive

measurement of the actual charge on the floating gate. The diode established a

correspondence between the program voltage and the logarithm of the programmed

current. It consisted of two diode-connected n-channel transistors in series. Since

the diode operates in weak inversion for the current range of interest, we model each

transistor’s current to voltage relationship as

IPROG = IS,d exp
(

�d(VGS,d−VT0,d)+�dVDS,d

UT

)
, (10)

but for our diode VGS = VDS ≈ VPROG
�d

1+�d
, this reduces to

IPROG ≈ IS,d exp
(

�′
d
(VPROG−VT0,d)

UT

)
,

�′
d = (�d + �d)

�d

1+�d

(11)

UT

�′
d

ln IPROG

I0,d
≈ VPROG . (12)
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Figure 8(b) shows the actual current to voltage conversion of the diode, with VDD =

2.4V. As we would expect from the model, in the region between 0.1 nA (the noise

floor) and 1µA (threshold current) there is a logarithmic relationship between the

subthreshold diode current and the output voltage, with an increase in 174mV for

every decade of current.

By equating the subthreshold approximation for (9) and (11), we extracted the

exact relationship between the floating gate voltage Vfg and the output voltage VPROG,

(for VBS = 0, and VBD = 2.4− VPROG).

IS,d exp
(

�′
d
(VPROG−VT0,d)

UT

)
≈ IS exp

(
�Vfg+�VBD

UT

)
, (13)

�′
d(VPROG − VT0,d) ≈

ln
(

IS
IS,d

)
+ �(Vfg − VT0) + �(VDD − VPROG) .

(14)

Dropping the constant terms:

(�′
d + �)ΔVPROG ≈ �ΔVfg , (15)

ΔVPROG ≈ �
(�′

d
+�)

ΔVfg . (16)

Insofar as � remains constant, this relationship is linear and temperature independent

in the subthreshold region.

We also had the ability to read the currents directly by inserting a Keithley 6485

Picoammeter between the floating gate transistor and the diode. This method was

much slower; also, the current’s relationship to charge (9) had a significant degree of

temperature sensitivity.

2.4.2 Algorithm for Rapid Programming

In order to optimize the speed of the injection process, we had to understand and

characterize hot-electron injection, as well as understand the major sources of delay.

The total time to program a floating gate can be expressed as:

T = N(tRD + 2tRAMP + tINJ + tCOMP ) + tOH , (17)
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Figure 8: Programming a switch element (SWE). (a) Schematic of an indirect switch
element, with its read and injection circuitry [112]. The SWE includes a directly
programmed device, which is injected and read, and an indirectly programmed device,
which is actually in the circuit to be tested. Only the direct device connects to the
read and injection circuitry. Both Vc and Vd control the rate of injection, while Vtun

can be raised to tunnel the floating gate. The current of the direct device can be
read by connecting it to a diode, which produces a readable VPROG. (b) Current to
voltage characteristics of the output diode, fit to an EKV model. Current and voltage
correspond to IPROG and VPROG in Figure 8(a). (c) Charge on a floating gate as a
function of hot electron injection time, and charge rate as a function of charge, when
Vc = 0. Charge is represented by VPROG, the output of the floating gate measurement
diode. Between each measurement, VDD increases to 6V and the Vd is pulsed to 0V
for a fixed time, allowing a controlled injection of electrons into the floating gate.
(d) Illustration of the switch element programming procedure (not to scale), tracking
output log(IPROG) over time. Forward and reverse tunneling are used to reset all the
switch elements to a state beneath the noise floor but still injectable. A nonlinear
coarse injection algorithm and a fine linear injection algorithm then program the
individual switch elements to the desired level.
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Table 2: Performance improvements for precise FGE injection algorithm
Algorithm Legacy method Fast programming Fast adjustment

Avg. Number of Pulses 25 7.9 1.8
(Coarse) NA 5.3 0
(Precise) NA 2.5 1.8

Avg. Iteration length 45ms 0.86ms 1.1ms
(tCOMP ) 43ms 1µs 1µs
(tINJ) 20–100µs 20–100µs 20–100µs
(tRD) 1.6ms 0.4–1.6ms 0.4–1.6ms

(tRAMP ) 180µs 10µs 10µs
Overhead (tOH) 0ms 30ms 2.1ms
Total Time (T ) 1100ms 37ms 4.1ms

where N is the number of inject/read iterations, tRD is the time it takes the I2V

circuit and ADC to return a current measurement, tRAMP is the time it takes to

raise (or lower) the supply voltage from normal levels to those needed for injection,

tINJ is the duration of an injection pulse [17]. Typical values are shown in Table 2.

We also added tCOMP , the time needed by the controller to determine whether there

should be another injection pulse, and tOH the overhead time needed to initialize the

injection.

In practice, we found that tRD, tRAMP , and tINJ were generally relatively fixed, and

completely dominated by tCOMP . While we did manage to slightly reduce the smaller

delay components, most of our improvements would have to come from minimizing

tCOMP and N .

We found that tCOMP was largely based on the the time it took to send data

between the computer and microcontroller over the USB connection, taking about

40ms, compared to less than 2ms for every other step combined. Thus our most

important improvement was to transfer the logic that determined when and how to

continue pulsing from Matlab to the microcontroller. The transfer reduced tCOMP

to about 1µs, essentially eliminating it as a source of delay. Of course, this limited our

ability to analyze the returning data, since the microcontroller had limited memory
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and no floating point operations. We were forced to rely on a much simpler char-

acterization of the injection process (Figure 8(c)), using only the directly accessible

diode output voltage.

We were also able to reduce the measurement time tRD substantially. We found

that the measurement diode in Figure 8(a) had a convergence time inversely propor-

tional to the current IPROG. Once the current rose above the noise floor we could

dramatically reduce the measurement time, and still maintain measurement accuracy.

Read time was cut from 1.6ms to 400µs.

We reduced tRAMP from about 180µs to 10µs. The ramping time had been

deliberately slowed down to avoid any accidental injection, but we found that 180µs

was far more conservative than necessary. No adverse effects were found for tRAMP =

10µs.

In order to reduce the number of iterations N we designed a two step algorithm.

First, in Matlab, we calculated the time it would take to take a device from the

noise floor to the target (based on Figure 8(c)). This pulse length, the injection

target, and the injection parameters were then passed to the microcontroller. From

there, the microcontroller executes a very simple algorithm. After each pulse, the

increase in output voltage is compared to the distance remaining to the target. If the

previous pulse exceeded the distance remaining, the next pulse length was halved. If

it exceeded double the remaining distance, the next pulse was quartered, and so on.

This method was very conservative, since the injection rate tended to decrease over

time. The iterations continued until the voltage was within 15mV of the target. On

average, only 5.3 pulses were required in this step.

After the above coarse injection iterations, we launched a fine injection step. In

Matlab again, we examined the injection rate around the target (which was rel-

atively constant across the 15mV fine injection range), added a 30% fudge factor

to account for process variations, and calculated how long a pulse was needed to
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increase the diode voltage by one ADC bit (corresponding to 2.5mV). The micro-

controller then had the simple task of just multiplying the remaining distance to the

target (in bits) by the given pulse length. This simple procedure would be repeated

no more than two or three times before the target was reached.

Our early efforts at improving the programming speeds had reduced the average

program duration for a SWE to 1.1 seconds. By eliminating tCOMP and reducing the

average N to less than 10, we reduced the average programming time to 37ms. Of the

38ms, less than 20ms were from the iterations, the rest was tOH from communications

over the USB channel. We accomplished this reduction while being able to program

our output voltages to within 1.1mV (RMS) of the target, corresponding to a relative

RMS current error of less than 1%.

2.4.3 Algorithm for Rapid Adjustment

In many cases during testing, it is not necessary to entirely reprogram the FPAA.

Rather, we only wish to adjust the FGEs slightly, making them pass slightly more

or less current. We developed a new rapid adjustment algorithm to do so even more

quickly than the full programming algorithm above.

In this algorithm, we generally begin with an extremely short forward tunneling

pulse, corresponding to the maximum decrease in output voltage we wish to imple-

ment. As long as this maximum drop is reasonably small—no more than 25mV or

so, corresponding to a 20% drop in the programmed current—the fine adjustment

algorithm can then raise the gates up to their desired value in only two or three

pulses.

In order to further increase the speed in this situation, we eliminated most of the

overhead time by adjusting up to 100 devices at once. We simply fed a vector of all

100 devices’ parameters to the microcontroller at the beginning. This reduced the

overhead per device to the time needed to switch device addresses, typically less than
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1ms. The average time to adjust a device was reduced to 4ms, while maintaining

the same accuracy as the slower algorithm.

The variability of the tunneling process somewhat limited the range of negative

adjustment. We observed almost fourfold variability in how much two different devices

would be charged by the same tunneling pulse. This variation was most likely due to

mismatched device sizes across the chip from manufacturing defects [22]. In order to

make sure that no device has its output decreased by more than 50mV (so that fine

injection could still work), we could only guarantee that a device would decrease by

at least 12mV (a ≈10% decrease in programmed current). Dramatic adaptations in

the programmed weights therefore required multiple adjustment cycles.

2.5 Conclusion

In this chapter, we explored the basics of Field Programmable Analog Arrays (FPAAs).

We reviewed the functioning of the floating gate element (FGE), the basic transistor

that allowed us to program and route arbitrary analog circuits on a typical FPAA,

the RASP2.9a, as well as the basic infrastructure that allowed it to be programmed.

We introduced several original contributions in this chapter as well, including the

higher level Matlab code that expedited programming and testing of the RASP

chips. Most significantly, we developed a new rapid injection algorithm, which was

able to program to within 1% relative accuracy while reducing programming time

by several order of magnitude to 38ms. These tools provided us with the basic

infrastructure for creating programmable analog circuits.
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CHAPTER III

ACCURATE COMPUTATION WITH MISMATCH

COMPENSATION

3.1 Introduction

In the previous chapter, we introduced a practical procedure for accurately program-

ming the currents of floating gate elements. This was a necessary, but not sufficient

condition for properly programming computational elements in a complex circuit.

Due to multiple potential sources of mismatch, the programmed current may not

necessarily equal the current that is used in the circuit.

In order to accurately create the circuit, we had to measure and compensate for the

largest source of mismatch, the variability in size between different transistors, due to

imperfections in the manufacturing process. This was perhaps most noticeable in the

switch elements (SWEs), which use one transistor for programming, and a separate

one in the circuit to be tested. In addition, we had to control or offset the Early

effect, capacitive coupling between the drain and the floating gate, and temperature

dependence.

One method of mismatch compensation is to iteratively design the circuit and

adjust the floating gate charges to offset the errors, until the errors were sufficiently

small [58, 117]. In a large system, however, this is expensive, as iterative testing and

reprogramming takes time. More problematically, it is not always clear which charges

need to be adjusted, especially if the circuit is large or the user is not an experienced

analog designer.
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Figure 9: Design Flow with Characterization [112]. (a) Circuit design flow without
mismatch characterization. This design flow requires that the tester have sufficient
comprehension of the circuit to know which devices should be changed to correct
the errors. Typically, it will take multiple program/test cycles before the errors are
reduced to desired tolerances. (b) With mismatch characterization, the entire design
flow can be automated, and correct on the first pass, allowing the circuit to be created
by someone without extensive background in analog circuit design.

These errors can instead be anticipated by characterizing the floating gates indi-

vidually, allowing accurate circuits to be created on the first pass (Figure 9). In com-

bination with the software infrastructure that automated circuit design and placement

[107][14], we automated the entire design flow. Our approach was especially useful

for linear systems, which require a limited number of component circuit topologies:

adders, mirrors, and multipliers. We automated error compensation for each of these

topologies.

The rest of the chapter proceeds as follows: in Section 3.2 we explain the sources

of mismatch inherent in this programming procedure. We describe a method for

counteracting said mismatch, and show the improvement in accuracy that results.

Section 3.3 applies these methods to linear computations such as current mirrors and

multipliers. Section 3.4 includes a discussion of how the methods were automated,
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how the technology could and possible applications of the research. Section 3.5 con-

tains brief concluding remarks. Most of the material in this chapter is taken from

[112].

3.2 Mismatch Compensation

The most basic topology for a floating gate device is for it to contribute a fixed

current source. Several factors prevented our accurately programmed floating gate

device from acting like an accurately programmed current source. The first, and most

problematic, was that the transistor we measured was not the one acting as the current

source. Due to normal processing errors, the dimensions of the direct and indirect

devices differed, causing offsets between their conductance. Additionally, although

the gate and source are at the same voltages (ground and VDD respectively), the drain

voltage can differ.

3.2.1 Drain Coupling Compensation

The drain voltage VBD of the SWE affects the programmed current via two mech-

anisms, the Early effect (which lowers the effective channel length) and capacitive

coupling to the floating gate. Fortunately, both of these effects combine into � in our

model (9):

IPROG = IS ln
2
[
1 + exp

(
�Vfg+�VBD

2UT

)]
. (18)

The small signal transconductance of the drain voltage, gD, is the partial derivative

of IPROG with respect to VBD:

�IPROG

�VBD
= �

UT
IS ln

[
1 + exp

(
�Vfg+�VBD

2UT

)]
×

exp
(

�Vfg+�VBD

2UT

)

1+exp
(

�Vfg+�VBD

2UT

) .
(19)

If we normalize the output current iPROG = IPROG/IS, we can easily substitute this

term back into the equation:

�iPROG

�VBD
= �

UT

√
iPROG

(
1− e−

√
iPROG

)
. (20)
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Figure 10: Mismatch compensation for accurate programming [112]. (a) A SWE is
programmed at 13 various target IPROG, as read by the diode in Figure 8(a). The cur-
rent of the indirect devices, IOUT , is read directly with a picoammeter while sweeping
the drain voltage, VBD. The indirect device exhibits mismatch from the direct de-
vice and considerable dependence on VBD via capacitative coupling. (b) Normalized
transconductance of the drain (gD) and gate (gV c) as a function of current. Using �(I)
to model drain transconductance characterizes the drain dependence to within 1%.
We use a sweep of gV c to fit �(I). (c) The proportional drift in current per K of tem-
perature change. We programmed 35 devices at various current targets and measured
them at 298K, 302K, and 306K, and extrapolated change per K. The temperature
dependent current drift has a power law relation with current, consistent with theo-
retical prediction (30). (d) Mismatch of four SWEs across the FPAA, measured as
the current of the indirect device over the current of the direct device (IOUT/IPROG),
and compared with the mismatch predicted from characterization. The model loses
predictive accuracy above 3µA, where resistances start to decrease the output cur-
rent, and below 4 nA, where leakage currents start to affect us. (e) Error reduction
due to mismatch compensation. We show the cumulative effects of compensating for
various sources of error. Compensating for mismatch alone reduces the error to 3.6%
between 5.0 nA and 2.3µA. Adding temperature compensation reduces error to 2.2%.
Of this remaining error, all but 1.2% comes from programming error.
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We can approximate small signal changes in VBD using an exponential relationship

(see Figure 10(a) for empirical justification of this assumption):

iPROG(VBD0+ΔVBD)
iPROG(VBD0)

≈ exp
(

ΔVBD

iPROG

�iPROG

�VBD

)
, (21)

iPROG(VBD0+ΔVBD)
iPROG(VBD0)

≈ exp
(

�
UT

ΔVBD�(iPROG)
)

, (22)

�(iPROG) =

(

1−e−
√

iPROG

)

√
iPROG

∝ gD
iPROG

. (23)

In the above equations �(iPROG) is the normalized transconductance of the tran-

sistor, which varies as a function of the normalized drain current. This is a common

method of characterizing transistors.

Since all of the voltages in the drain equation have proportional transconduc-

tances, we swept Vc to find � for each SWE, and then solved for IS. As seen in

Figure 10(b), all of these approximations work across the range of IPROG, and tended

to fit the data well. Conveniently, (22) let us extract an average � = .036; then the

effect of drain coupling could be extrapolated as an explicit function of IPROG.

3.2.2 Mismatch Compensation

The current passed by the directly programmed transistor (IPROG) and the cur-

rent passed by the indirect transistor (IOUT ) showed considerable discrepancies, even

though the pair used the same drain voltage and share a floating gate. Figure 10(d)

illustrates typical discrepancies due to mismatch as a function of the programmed

current. Without any compensation, there was a mean square error of over 40% of

the target current. This mismatch was due to discrepancies in two major process-

dependant variables, IS and VT0 [71]. Discrepancies in � became an important source

of mismatch in deep subthreshold operation. The full EKV model of the mismatch

is:

IOUT

IPROG
=

IS,O ln2
[

1+exp
(

�OVfg,O+�OVBD

2UT

)]

IS,P ln2
[

1+exp
(

�P Vfg,P+�P VBD

2UT

)] . (24)
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If we short the drain of the indirect transistor to VPROG, we can use �P (IPROG) as in

(22) to approximate the effects of small constant voltage offsets:

IOUT

IPROG
=

IS,O
IS,P

exp
(

Δ(�Vfg,P )�P (IPROG)

UT

)
,

Δ(�Vfg,P ) ≈ (Δ�)(Vfg +BVBD) + �P (ΔVT0)
(25)

IOUT

IPROG
=

IS,O
IS,P

exp
(

�P (ΔVT0)�P (IPROG)
UT

)
i

(

Δ�
�P

�P (IPROG)
)

PROG . (26)

By measuring the current mismatch at three points, we extrapolated the three ma-

jor sources of mismatch. First, we found the IS mismatch under strong inver-

sion IPROG ≫ IS,P , where �P → 0, minimizing ΔVT0 as a source of mismatch.

As a second measurement, we extrapolated and measured at the threshold current

IPROG ≈ IS,P/2, which eliminated Δ� as a source of mismatch. We did a third mea-

surement at IPROG ≪ IS,P , and attributed unaccounted mismatch to Δ�. In practice,

we used a least squares curve fit to generate the three mismatch terms, and additional

measurements further improved the accuracy of the curve fit.

Proxies for IS,P , IS,O, ΔVT0, and Δ� were stored for each SWE that we wished

to characterize. Once we had these parameters, we reversed the IPROG and IOUT in

(26) and inverted the mismatch parameters to find an explicit function of IOUT that

output the necessary IPROG:

IPROG

IOUT
= M(IOUT , {IS,O, IS,P ,ΔVT0

�P

UT
,Δ�/�P})

=
IS,P
IS,O

exp
(

−�P (ΔVT0)�O(IOUT )
UT

)
i

(

−Δ�
�P

�O(IOUT )
)

OUT .
(27)

3.2.3 Temperature Compensation

Temperature variations caused errors at two points in the programming process. First,

the temperature during programming could be different from the temperature during

characterization. Second, the temperature could change after a device had been

programmed.

In the first case VPROG, the voltage of the output diode, was controlled while

the actual programmed current, IPROG, varied with temperature. We inserted the
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temperature dependency into (11), with room temperature T0 = 298K, and T =

T0 +ΔT :

IPROG(T ) = IS,d(T ) exp
(

�′
d
(VPROG/2−Vs,d)

UT

)
, (28)

IPROG(T )
IPROG(T0)

≈ �TT 2

�T0T
2
0
exp

(
�′
d
(VPROG/2−Vs,d)

UT0

−ΔT
T0

)
. (29)

This simplified to the power law relationship:

IPROG(T )
IPROG(T0)

≈ �TT 2

�T0T
2
0

(
IPROG(T0)
IS,d(T0)

)−ΔT
T0 . (30)

Figure 10(c) shows the effects of this temperature drift in practice. We pro-

grammed 35 transistors across their range, and measured their current in a controlled

temperature environment. We measured the current of each device at 298K, 302K,

and 306K, and found that the drift fit well to (30) with IS,d ≈ 100µA. We observed

that temperature drift of 1K could result in more than 7% change in the programmed

output current at 10 nA. This could be a substantial impediment to the accuracy of

a current-mode circuit.

Temperature drift was not necessarily a problem if all the devices exhibited the

same drift, as identical changes cancelled out. But if the devices were characterized

at different temperatures (which they would be unless in a temperature controlled

environment), then we had to have some way of compensating for the temperature

at characterization. We could measure the temperature during characterization time

by programming and measuring a reference SWE. In this way, every device could be

calibrated to the same temperature. If desired, the reference device could also be

used to modify the temperature compensation at programming time.

Outside of environmental control, the problem of temperature change after pro-

gramming can be mitigated by circuit design. In our case, the floating gate voltage

Vfg was fixed, so the temperature dependence was that of the indirect device’s drain

current. This device exhibited power-law dependence on temperature only for cur-

rents below IS ≈ 100 nA. If we kept the programmed currents in a narrow range, or
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in strong inversion, then all the temperature dependencies would be close enough to

cancel out.

3.2.4 Results of Current Source Compensation

We programmed 22 SWEs over a range of currents, using the various compensation

mechanisms to hit a target current. Figure 10(e) illustrates the accuracy of program-

ming with each compensation mechanism. Without any compensation, the relative

error for a SWE was over 12.5% for superthreshold currents due to IS mismatch alone.

The relative error degraded to almost 90% once ΔVT0 mismatch became a factor.

Adding mismatch compensation improved the situation considerably. With tem-

perature drift of 1.04 ± 0.41K between characterization and programming, relative

error improved to 3.6% for currents between 5.0 nA and 2.3µA, over 2.5 decades.

Higher error outside this range is due to measurement errors, not problems with the

model. Above the range, resistances in the measurement circuitry was a source of

error, and below the range, current leakages of about 100 pA became a significant

source of error.

Compensating for temperature decreased the relative error to 2.2% (5.5 bits signal

to error ratio) over the 2.5 decades of interest. About half of the remaining error

was due to programming error, not mismatch. Reducing the programming error (by

injecting current in arbitrarily finer steps) left us with a relative error of 1.2% (6.4

bits) over 2.5 decades. This remaining error could be attributed to various sources,

such as flicker noise during characterization and during programming.

3.3 Linear Computation

Once we had characterized the SWEs, we used them as basic components in linear

processing. We focused on three simple operations, addition/subtraction, mirroring,

and multiplication. When using currents as signals, addition was as simple as shorting

two currents together; Kirchoff’s Current Law guarantees that the output current
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would equal the sum of the two input currents. Subtraction worked similarly, but we

first had to reverse the direction of the current flow using a current mirror.

3.3.1 Current Mirrors

Our floating gate current mirror combined an OTA (from the CAB) and a SWE to act

as a transconductance amplifier, and used a matched SWE to convert the projected

voltage back into a current. Figure 11(a) illustrates this configuration, which was

described in [108]. We programmed M1 to have a current of IO1 (after compensation)

when VBD = 1.2V and VBS = 0V. When we wished to use the circuit as an actual

current mirror, a smaller current I1 was injected into the drain of M1. Since the

feedback configuration forced the drain to stay at 1.2V, the SWE source potential

was forced to adapt. We projected this voltage to the source of M2, thereby altering

its drain current I2.

We wished to find programming targets for both devices (IO1 and IO2) such that,

when their drain potentials were equal, their drain currents were also equal (I1 = I2).

We used the drain equation (9) to extract the term e
(�−1)VBS

2UT , where VBS is the bulk-

to-source potential when the current I1 is injected into the drain of M1:

I1 = IS ln
2
[
1 + exp

(
�Vfg+(�−1)VBS+�VBD

2UT

)]
,

IO1 = IS ln
2
[
1 + exp

(
�Vfg+�VBD

2UT

)] (31)

e

√

I1
IS1 − 1 = exp

(
�Vfg+(�−1)VBS+�VBD

2UT

)
,

e

√

IO1
IS1 − 1 = exp

(
�Vfg+�VBD

2UT

) (32)

e

√

IO1
IS1 −1

e

√

I1
IS1 −1

= e
− (�−1)VBS

2UT . (33)

Since e
− (�−1)VBS

2UT was identical for both the input and output SWEs, we set it to a

constant N (typically N > e2, so that VS stayed in the output range of the OTA).

We then derived an explicit value for the required programming target IO for each
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device Mk:

IO,k = IS,k ln
2
[
1 +N

(
e
√

Ik/IS,k − 1
)]

. (34)

3.3.2 Multipliers

For a current mirror accurate to zeroth order, we set I2, the output current, equal to

I1, the input current, and derived the current targets IO1 and IO2 using (34). But for

accurate multiplication, we must control the slope �I2
�I1

[117]. The ratio is expressed

as:

S = �I2
�I1

= �I2
�VBS

�VBS

�I1

= IS2
√
i2(1−e−

√
i2 )

IS1
√
i1(1−e−

√
i1 )

= I2�(i2)
I1�(i1)

.
(35)

We solved for I2 with a fixed S to generate a current multiplier. Since I2�(i2) is

monotonically increasing, there is always a unique solution. For deep-subthreshold

signals, I2 ≈ SI1, so our current mirror was accurate to zeroth order and to first

order. As I1 increases beyond IS1, I2 → SI1
IS1

IS2
. We offset the resulting bias with a

current source ICS = SI1 − I2 [117].

Figure 11 shows the results of implementing several multipliers of various gains

on the FPAA. The multipliers were programmed to have a designated weight when

the input was 40 nA. Input currents were swept from 30 nA to 50 nA, and a slope was

calculated by linear fit of the output. The relative error of the slope was 5.0%, while

the standard deviation of the bias was 5.8%.

Temperature sensitivity concerns restricted the values of S that allow accurate

multiplication. From (30), we see that temperature dependent error during program-

ming is increased for deep sub-threshold currents. Of course, if two devices were

programmed to the same value, there dependencies cancelled out. A temperature

sensative design would therefore either require that the multiplier operate in the

moderate-to-strong inversion range, or with a multiplier close to 1.
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Figure 11: Mismatch compensation for multipliers[112]. (a) Schematic of a current
mirror, built out of two SWEs and an OTA. The current multiplication is a function
of the charge on the SWEs. (b) Results of current multiplication by 1.6 and 0.5, on
two adjacent SWEs, using the same input SWE. While the 0.5 multiplier is correct to
zeroth and first order, the larger multiplier has an offset, necessitated because of its
significant threshold mismatch with the input SWE. (c) Performance of multipliers
as a function of input current. Ten multipliers were measured, with unity gain, and
an intended bias of 40 nA. Error decreased above this point, most likely due to lower
temperature dependence.

3.3.3 Vector Matrix Multipliers

Several multipliers were added together by shorting their outputs together. This

allowed us to create vector matrix multipliers (VMMs). The architecture of the

FPAA allowed easy programming of dense VMMs, with one input SWE and multiple

output SWEs on the same row.

Differential multipliers were a type of VMM that allowed multiplication by nega-

tive weights and by small weights without excessive temperature sensitivity. Instead

of being represented as a current, our signal was now represented as the difference

between two currents, Ibias+Ix/2 and Ibias−Ix/2. After performing the vector matrix

multiplication
⎡
⎢⎣
2Ibias +

W
2
Ix

2Ibias − W
2
Ix

⎤
⎥⎦ =

⎡
⎢⎣
1 + W

2
1− W

2

1− W
2

1 + W
2

⎤
⎥⎦

⎡
⎢⎣
Ibias +

Ix
2

Ibias − Ix
2

⎤
⎥⎦ , (36)

our differential output was WIx. For ∣W ∣ < 1, all our multipliers were close to unity,

allowing temperature sensitivity less than 0.45%/K.

41



- +

Vref

M1 M11

Ibias
+Ix/2

M12

- +

Vref

M2 M21

Ibias 
-Ix/2

M22

1+W/2

1+W/2

1-W/2

1-W/2

2 Ibias 
+WIx/2

2 Ibias 
-WIx/2

(a) Differential VMM

W=1.0 W=0.6

W=0.4 W=-0.8

Iin1

Iin2

Iout1 Iout2

(b) Diagram of 2x2
VMM

−20 −10 0 10 20

−20

−10

0

10

20

Iin2 (nA)

W = −0.8

−20 −10 0 10 20

−20

−10

0

10

20

Iin (nA)

Io
ut

1 
(n

A
)

W = 1.0

 

 

−20 −10 0 10 20

−20

−10

0

10

20

Iin1(nA)

Io
ut

2 
(n

A
)

W = 0.6

−20 −10 0 10 20

−20

−10

0

10

20
W = 0.4

Data
Ideal

(c) Outputs of 2x2 VMM

Figure 12: Results of VMM after compensation [112]. (a) Schematic of a 1x1 differ-
ential VMM. (b) Block diagram of a 2x2 differential VMM. Both outputs are a linear
combination of both inputs. (c) Output of a 2x2 differential current-mode VMM, as
each input is swept. Differences in the bias currents were removed. The VMM is
programmed using a dense array of floating gate transistors, without any iteration.
With 50 nA bias currents, our maximum error was 2.2 nA.

Of course, the temperature independent error was significantly increased for small

W using a differential method. For a relative multiplication error of �, a differen-

tial VMM will introduce a multiplication error of ≈ 2Ibias�, while the single-sided

multiplier has an error of only W Ix�.

We implemented a 2x2 differential VMM on the FPAA, using CAB OTAs to

provide current sources, and measuring the outputs with a picoammeter. Figure 12

shows the results of independently sweeping both differential inputs. For the four

input/output relations, the error in slope had standard deviation 6% of Ibias.

3.4 Discussion

3.4.1 Automation of Design Synthesis

The characterization and calibration methods for current sources, mirrors, and mul-

tipliers presented in the previous sections were all easily automated. This allowed for

much faster implementation of analog current-mode circuits than previous iterative
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approaches (Table. 3). For example, in Suh et al. [117], a 16x16 VMM was created

on the RASP2.9. Accurately programming a scalar multiplier included a series of it-

erative program and test cycles, and required the user to create a calibration routine

that could only be used for that specific implementation.

We have created a far more general method. Instead of relying on the user to gen-

erate a calibration routine for each circuit, calibration is automated. When accurately

programming a SWE, we first check a Matlab database file for its characterization

data (threshold current, etc.). If the device has already been characterized, then a

Matlab script quickly calibrates the SWE based on whether it is being used as a

current source, or multiplier (additional calibration algorithms can easily be added

for other uses). The SWE is then programmed to the calibrated target, which has

the same average programming speed as an uncalibrated target. The calibration al-

gorithm is so fast that for pre-characterized devices, calibrated programming takes

no longer than uncalibrated programming.

A SWE that has not yet been characterized must undergo the routine presented in

Sec. 3.2, which requires four programming and measurement cycles, one per parameter

to be calibrated. Since the parameter characterization is identical for every device,

we have completely automated the process, using MATLAB R⃝ scripts to write the

parameters to the appropriate database.

The Matlab automation scripts allowed the mismatch calibration routine to be

easily incorporated into the design flow for synthesizing, placing, and routing analog

circuits on the FPAA. Blocks representing VMMs and various CAB elements and

circuits can be assembled in the Simulink environment and simulated. Using the

software SIM2SPICE [107], the simulink block diagrams can be converted to SPICE

netlists, and using the specialized optimizer GRASPER [15, 14], the devices in the

netlist will be placed and routed on the FPAA. We can easily modify SIM2SPICE

and GRASPER to tag the devices that require calibration, meaning that translating
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a system level block diagram to accurately programmed SWEs is fully automated.

3.4.2 Accuracy and Scaling

Traditional analog circuits suffer from device mismatch, noise, and temperature de-

pendencies, which sharply reduce their maximum achievable resolution. Good design

practices can minimize the effects of noise and temperature dependency, but device

mismatch, especially IS mismatch, is an unavoidable byproduct of Moore’s Law driven

device scaling. Previous current mode analog multipliers have accepted these limita-

tions in a number of ways: keeping the multiplying devices large [6], averaging many

outputs together [4], or using serial bitwise multiplication [54].

Programmable analog circuits give designers an extra degree of freedom to coun-

teract device mismatch, allowing the designer to avoid the density and performance

compromises of previous approaches. Mauna et al. [87], for example, use a mixed

signal method for calibration. They switch on smaller current mirrors to compensate

for errors in their primary current mirror circuit. This method has the drawback of

requiring many extra transistors, sacrificing density. Since the switches are volatile,

they also have to be reprogrammed for every power cycle, which requires access to

the calibration data in the field.

Using the EKV model to characterize floating gates at 0.35µm, we demonstrated

the ability to reduce relative error due to device mismatch to 1.2%, allowing linear

computations to be computed in a dense structure. By encompassing both weak and

strong inversion operation in our characterizations, we give the circuit designer more

flexibility to trade gain, bandwidth, and power. Our characterization method can

scale, even for short-channel devices where the classic square law for drain current no

longer holds. If we modify (9) to

IPROG = IS ln
�
[
1 + exp

(
�Vfg+(�−1)VBS+�VBD

�UT

)]
, (37)
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Table 3: Iteration vs. Characterization for Error Compensation
Compensation Method Iteration[58, 117] Characterization
Characterization Cycles 0 4–6
/device (One Time only)

Program/Test Cycles 2+ 1
/device

Automated? No Yes

we can still derive an explicit �:

�(iPROG) =

(
1− e−

�
√
iPROG

)

�
√
iPROG

. (38)

We can even abandon a circuit model altogether and simply characterize � = gC/I

over the range of currents.

When less than 12 bit accuracy is needed, analog circuits have the potential to

provide a more power efficient solution than digital circuits [103]. While the 1.2%

(6 bit) accuracy afforded by our calibration methods does not allow us to make a

fully optimal tradeoff, it is significantly better than the 18% mismatch that would be

expected from a non-floating gate transistor at the same process and size (according to

Kinget [71] for 0.35µm process and LxW of 0.6µm x 3.0µm). The gains from floating

gate mismatch compensation should only improve for smaller technology nodes.

3.5 Conclusions and Applications

In this chapter, we used the EKV transistor model to demonstrate a method for char-

acterizing and compensating device mismatch on FPAAs. We also compensated for

capacitive coupling and some temperature dependencies of floating gate transistors.

By using our compensation method in concert with tools previously created for the

FPAA, we fully automated the design, synthesis, and programming of linear systems

on FPAA structures such as the RASP2.9a. The calibration routines we demon-

strated expressly allowed the synthesis of systems with dense linear current-mode

computation.
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Linear analog computation is most valuable for computationally expensive appli-

cations with significant power constraints. The architecture proposed here is espe-

cially adept at processing the outputs of imagers, which are already in the form of

currents. Linear computation can be used for compression, image transforms, and for

compressed sensing recovery.

Our calibration method can also be applied to a wide range of nonlinear circuits,

such as the OTAs and floating gate OTAs on the FPAA (which have programmable

bias currents). These components can be then used to create a number of components

like Gm-C filters, current-to-voltage or voltage-to-current converters.

We can combine the linear and nonlinear circuits to create large neural networks

that can be used as classifiers. Portable devices and prosthetics are an emerging

sector in this application space. Speech recognition, facial recognition, and glass

break detection [57] all rely on classification methods that combine nonlinearities

with large linear components. These circuits cans be used either to replace the digital

computation logic wholesale, or as front-end devices to wake up power hungry ADCs

and digital logic when more accurate calculations are needed [9, 57].

Ultimately, we were able to reduce these sources of error to 2.2% for current sources

and 5.0% for current multipliers. While a vast improvement over the uncompensated

errors, this was a bit high for the neural network applications we wanted to implement.

It was only when we combined these methods with the improved hardware introduced

in the next chapter that we were able to approach the desired accuracy.
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CHAPTER IV

IMPROVED HARDWARE FOR EMBEDDED ANALOG

SIGNAL PROCESSING

4.1 Introduction

In this chapter we introduce the RASP 2.9v (Figure 13(a)), a field-programmable ana-

log array (FPAA) with a novel architecture that we codesigned with Craig Schlottmann

and Stephen Nease. The RASP2.9v (Table 5) includes over 76,000 programmable

analog switching elements (SWEs) and a varied toolbox of components (OTAs, FETs,

caps, multipliers, T-gates) to synthesize almost any analog system.

The RASP2.9v solves several design problems that were not addressed in earlier

FPAAs. The RASP 2.9a and older chips utilized an indirect programming scheme,

which achieves very low switch resistances. Unfortunately, as discussed in the previous

chapter, the device mismatch in the indirectly-programmed SWEs introduced a major

component of error in current sources and multipliers.

We introduce here a novel hybrid switch matrix, which is comprised of both

directly- and indirectly-programmed switches. At the cost of increased minimum

resistance, the direct SWEs avoid much of the device mismatch problem by using the

same transistor for programming and testing. The introduction of the hybrid switch

matrix reduces the burden of characterizing and storing the offset of each switch for

every chip.

The chip also contains a novel volatile switching architecture. This switching

architecture allows digital control and dynamic reconfigurability that are important

in embedded systems, especially if they are working in conjunction with a digital

system. Debugging prototyped systems is quite easy with this architecture, as the
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switch registers can be used to multiplex internal circuit nodes out to measurement

equipment.

While preexisting FPAAs, such as the analog math co-processor [39], have sub-

stantial digital interfacing capabilities, they tend to have far more limited application

space. The co-processor is designed for ODE computation, while the hexagonal FPAA

[18] is designed to operate as a single high-dimension Gm-C filter. The higher density

and greater variety of components on the RASP2.9v permit it to reach a much wider

application space.

The embedded digital control structures combine with the high-density analog ar-

rays to produce the first dynamically reconfigurable FPAA. The digital enhancements

were carefully designed to maximize their usefulness as control and storage devices,

while minimizing their footprint on the overall chip. This architecture extends the

high computational density of previous RASP chips, while the digital enhancements

enable higher chip utilization, effectively increasing the size of realizable systems. The

digital control also provides the ability to compile banks of on-chip data converters

which increases the device’s usefulness in embedded systems.

The remainder of this chapter proceeds as follows: Section 4.2 describes the pro-

cessing elements of the system and Section 4.3 describes the routing architecture.

Section 4.4 provides results from several example systems that are newly realizable

with this platform. These example systems include a dynamically reconfigurable im-

age transformer, an arbitrary waveform generator, and an analog implementation of

a distributed arithmetic FIR filter. Finally, Section 4.5 contains concluding remarks.

Most of the material in this chapter is taken from [106].

4.2 Processing Elements

Figure 13(b) illustrates the FPAA system-level architecture, with the analog processor

at its core. This processor contains thousands of analog components that can be
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Figure 13: Layout and interfacing for the RASP2.9v FPAA [106]. (a) The RASP2.9v
IC was fabricated in 350nm CMOS and consumes 25mm2 of area. (b) The system-
level diagram shows the analog core and surrounding digital control and interfacing.
The analog processor communicates directly with the microcontroller via a serial
port interface (SPI). A complete software tool chain is available for analog synthesis
in Simulink and connects to the hardware platform with USB.

configured and routed to implement many analog signal processing systems. The

RASP2.9v features a novel volatile switching scheme that allows the user to scan

thousands of outputs, assert a signal onto any internal node via 20 dedicated I/O

pins, and store and retrieve digital values.

The analog processing core is composed of analog primitives which are arranged

in computational analog blocks (CABs). The various CABs are shown in Figure

14. The integrated circuit (IC) contains 78 CABs: 36 for general purpose compu-

tation (the same used on the RASP2.9a), 18 designed for compiling current-mode

digital-to-analog converters (DACs), and 24 optimized for performing vector-matrix

multiplication (VMM) operations.

4.2.1 The DAC CAB

One improvement of the RASP2.9v over previous FPAAs is the incorporation of

dedicated current DAC sections. The DAC CAB is composed of digitally-controlled

switches connecting to the switch matrix, allowing users to compile binary-weighted
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Figure 14: Structure of the CABs on the RASP2.9v. (a) The General CAB consists
of common analog elements: OTAs, MOSFETs, capacitors, and transmission-gates.
(b) The DAC CAB contains an 8-bit register, allowing for multiple DAC topologies
to be compiled. (c) The VMM CAB contains both regular and floating-gate-input
OTAs, which are commonly used as the frontend to the VMM: the FGOTA for V2I
conversion, and the OTA for the active feedback of the sense transistor.

current-mode DACs.

Each DAC CAB contains one 8-bit register, with three CABs down a column

connected in series. Thus, the DAC section could also be configured as six 24-bit

registers. These switch registers can be configured to accept input serial data from

the switch matrix, or to output serial data to the switch matrix. This capability

allows the digital registers to double as storage for system data.

4.2.2 The VMM CAB

Vector-matrix multiplication is an extremely efficient operation when performed in

the analog domain [33, 12]. These computations are one of the main drivers for

modern analog computation, so we designed special CABs to enable their large scale

implementation on the RASP2.9v.

Each of the 24 VMM CABs contains four pairs of OTAs. In each pair, one OTA
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is for the current-scaling active current mirror, and the other is a floating-gate input

OTA for current-to-voltage (I2V) or voltage-to-current (V2I) conversion. Between

each pair of devices is a short vertical line to allow repeated connections to the same

column address, drastically increasing routing efficiency. These particular floor plan

choices increase the dimension of synthesizable matrix multipliers, while all of the

OTAs can still be used for any purpose, resulting in no loss of flexibility.

4.3 Routing & Analog Switches

The RASP 2.9v FPAA is arranged in 13 rows and 6 columns of CABs. To interconnect

the CAB elements to each other, we have incorporated a full cross-bar switch matrix

(SM). Nonvolatile switches are located at the intersection of each row and column

line.

4.3.1 Routing

Figure 15 shows the routing architecture. The cross-bar matrix contains a mixture

of global, local, and power routing. Each local section of SM is composed of 3 global

power lines, 11 vertical global lines, and 14 vertical local lines. The global lines span

all of the CAB rows, where the local lines can be connected to each top or bottom

neighbor with the bridge switch. The locals can be reconfigured into global lines, at

the cost of higher parasitic resistance and capacitance. The combination of two types

allows for greater versatility.

Analysis from a similar (but smaller) FPAA structure extracted a parasitic capac-

itance of 1.6 pF for global vertical lines, 1.5 pF for global horizontal lines, and 220 fF

for vertical local lines [16]. While the local lines have approximately the same length

in the RASP2.9v, the global vertical and global horizontal lines are 63% and 50%

longer respectively. We can use these to extrapolate respective capacitances of 2.6 pF

and 2.3 pF. Good estimates of these capacitances allow designers to take routing into

account when designing circuits.
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Figure 15: Architecture of the RASP2.9v. The CABs are arranged in 6 columns
with 13 rows. There are 36 regular CABs, 24 VMM CABs, and 18 DAC CABs. The
routing is a full cross-bar switch matrix with floating-gate switches intersecting each
row and column. This topology allows for great functional density, as each floating
gate stores its own memory and acts as either a switch or an analog computation
device. The volatile switch is controlled by a digital shift register that spans all of
the columns (156-bit each) and rows (400-bit each).

The power lines support a chip-wide global VDD, Gnd, and Vref . The inclusion of

a global Vref is novel to this chip and was the direct result of previous FPAA design

experience. Many analog signal processing systems use a common mid-rail voltage

that feeds multiple elements. Including a global Vref drastically reduces routing com-

plexity. The Vref line is pinned out where it can be driven off-chip to any voltage, or

it can be left open at the pin and driven by an on-chip source.

4.3.2 Non-volatile switches

The cross-bar SM is composed of programmable floating-gate elements (FGE), a total

of 76,000 on-chip. Each element can be programmed using hot electron injection or
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Fowler-Nordheim tunneling. The FGEs double as reconfigurable switches and non-

volatile memory that store their conductance. Since they are analog, the FGEs can be

programmed to intermediate states, allowing their use for dense analog computation.

For general routing situations, we use the legacy indirect switch programming

scheme shown in Figure 16(a), introduced in Chapter 2. This structure allows us

to measure the programmed current in the indirect device (M2)—which shares a

gate with the in-circuit device (M1)—while removing selection circuitry (M3) from

the signal path, minimizing parasitic resistances. However, the cost of this indirect

system is the inherent mismatch between the device that is actually measured (M2)

and the device that is used in the circuit (M1). This effect is not a problem for fully

programmed switches, but can cause a loss in precision when the FGs are used for

computation. This issue can be compensated by characterizing and storing the offset

coefficients of each device.

In addition to the indirect switch, we have added direct switches—shown in Fig-

ure 16(b)—to create a novel hybrid switch matrix. This programming method uses

one FG as both the programmed device and the in-circuit device, so the mismatch

between the program-time and run-time devices for a particular SM address has been

eliminated (see Figure 16(d)). This method is an important improvement to the

analog processor which relies heavily on the use of floating-gate switch elements for

precise computation. The direct device frees us from the cumbersome task of hav-

ing to map all of the coefficients of the chip. To keep the same form factor of the

switch cell, a single pFET (M5) is inserted above the floating gate device (M4) for

programming isolation. Because the pFET has low conductance at low voltages, the

direct scheme makes a poor all-purpose switch. A comparison of the two switches’

resistance is shown in Figure 16(e).

An on-chip programmer, based on the design in [17], is used to program all of the

non-volatile switches and other programmable elements. For the direct-programmed
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Figure 16: Direct vs. indirect programming of floating gates elements (FGEs). The
routing structure contains two variations of floating-gate switches: indirect and direct.
(a) The indirect-programmed floating-gate switch provides a very good pass element
since there are no other transistors in the signal path. (b) The direct-programmed
floating-gate switch was included for improved precision. However, it is not an optimal
all-purpose switch because selection circuitry had to be added to the signal path for
programming isolation. (c) The volatile switches can be leveraged to dynamically
select which FGE to read from in a measurement test. (d) Comparison of the two
types of floating-gate switches shows that the direct switch has a much lower first-pass
programming error. (e) Each switch shows an on resistance of about 10 kΩ, however,
the direct switch’s resistance rises sharply at low voltages because of the pFET in the
signal path.

switch, the routing column measures drain current in program mode. This approach

means that all of the switches down a column must be of the same type: direct or

indirect. The global verticals are therefore subdivided into 3 indirect lines and 8

direct lines, and the local verticals are subdivided into 6 indirect and 8 direct. The

switches are skewed towards the direct configuration because it is very valuable for
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precise current sources and multiplier weights.

4.3.3 Volatile switches

The incorporation of volatile switches on the RASP 2.9v marks a vast improvement in

digital interfacing compared to earlier FPAAs. The volatile switches are composed of

shift registers that control the selection of T-gate switches, referred to here as switch

registers. The T-gates can connect routing lines to a common I/O bus. We have

inserted switch registers across every CAB row and down every CAB column, for a

total of 20 registers. This new tool allows us to probe any given circuit node in run

mode.

The registers are loaded serially with the SDI line (serial data in), can be read

on a common SDO line (serial data out), and clocked with a dedicated SCLK (serial

clock). This serial port interface (SPI) protocol lets the FPAA interface with most

modern microcontrollers. The shift registers are buffered with a data latch that

loads on a global chip select (CS). This data buffer allows us to shift configurations

while maintaining the previous switch control. Communication with each register is

multiplexed using a 5-bit address. All of the registers can be cleared with the same

wire.

Some of the registers (the ones in the DAC CAB) can be configured to take SDI

signals from on-chip sources, as illustrated in Figure 17. When the select line is dis-

abled, the register is filled from the default external source (e.g. the microcontroller).

When the select line is enabled, the register is connected to a line in the SM so that it

can be loaded with on-chip data. This option is useful when we want to store a digital

pulse train that is generated on-chip, for instance when synthesizing a sigma-delta

converter.

The switch registers come at the cost of pin count and nonvolatile switch density.

The switch registers require 29 dedicated pins (4 SPI, 5 address, 20 I/O), reducing
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Figure 17: Serial data for the registers can be loaded from either an off-chip source
or the on-chip switch matrix. (a) The test setup for loading the register highlights
the switch that selects between on- and off-chip sources. The top graph shows a
timing diagram with trains of zeros and ones coming from each of the input sources.
The schematic diagram on the bottom shows each register bit controlling an equally-
weighted current source for easy read out. (b) The output measurement shows iden-
tical current readings from both the on- and off-chip register data.

the general analog I/O to 79 pins (based on our 200 pin QFP). This cost is acceptable

because the 20 register I/O greatly expand the effective I/O to serially reach every

circuit net when operated as a scanner multiplexer. The other cost is in density; each

bit of the switch register consumes the area of 8 FGEs. This approach reduces the

available analog routing lines, as well as 8 local horizontal outputs per CAB. The

great improvement in overall routing versatility by the run-mode volatile switches

makes this an acceptable cost as well.

The unit capacitance of the register is simulated to be 50 fF. We use this value

when calculating the dynamic power of systems that use the registers.

4.4 Applications

4.4.1 Expedited Testing

The switch registers on the RASP2.9v were designed to rapidly expedite testing. The

current DACs, shift registers, and off-chip DACs allow the user to insert a desired

current or voltage to any circuit node, and to probe every other node. We wrote a
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Table 4: A list of some Matlab written to take advantage of the RASP2.9v ar-
chitecture. Special functions were written to take advantage of the DAC and VMM
blocks, as well as the volatile switches.
Function Name Input Result
makeIDAC LSB current, compiles switchlist for a current DAC

address on chip placing it in a specified DAC CAB
makeVMM Matrix coefficients, compiles switchlist for an analog VMM

address on chip placing it in a specified VMM CAB
loadIDAC current value, sets specified DAC to current value

DAC address
shiftOneShort row or col address connects row or column to IO port
shiftMultipleShorts 2+ row/col addr. connects rows or columns internally
shiftPattern bit pattern opens or shorts volatile switches

according to pattern

number of new functions to enable these processes from the Matlab environment,

shown in Table 4. These functions took advantage of the shift registers, and allowed

us to test each block individually and to quickly debug and calibrate any programmed

device on the chip. They could be placed intoMatlab scripts that automatically per-

formed calibrations by comparing outputs to desired results, modifying the switchlist,

and reprogramming the circuit for another test cycle.

4.4.2 Programmable DAC Core

One important use of the chip’s digital infrastructure is to compile current-mode

DACs onto the chip. This new capability allows users to easily apply inputs to

current-mode circuits, using the chip’s SPI protocol. In each column of CABs, SPI

controls three 8-bit DAC CABs connected serially. Taking advantage of the FPAA’s

reconfigurable nature, we provide the resources to compile DACs rather than include

fixed DACs. This flexibility allows us to try various topologies, alter the least signif-

icant bit, or use that area for something else if DACs are not needed.

The RASP 2.9v architecture makes it easy to implement binary-weighted current

DACs. Figure 18 shows the schematic and FPAA implementation of two types of

current-mode DACs: one based on individual current sources (Figure 18(a)) and one
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Figure 18: The on-chip reconfigurable DAC. (a) The schematic and (b) FPAA im-
plementation of the floating-gate current-source DAC. (c) The measured results from
a compiled 8-bit current DAC shows a least significant bit (LSB) of 1 nA. (d) The
integrated nonlinearity (INL) and (e) differential nonlinearity (DNL) plots from the
8-bit current DAC. (f) The schematic and (g) FPAA implementation of the diffuser
current-source DAC.

based on a diffuser tree (Figure 18(f)). The current source implementation has the

benefit of ease and flexibility of design; even a nonlinear mapping can be programmed.

The diffuser tree implementation has a more constrained design, but the use of small
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Figure 19: VMM implementation on the RASP2.9v. (a) The schematic and (b)
FPAA implementation of a 2 × 2 VMM. (c) Data from a 1 × 1 VMM. The directly
programmable devices in the VMM cab allow accurate multiplication (to 4.5 bits) on
the first programming pass, eliminating the calibration needed in earlier RASP designs
for linear processing. Calibration can be used, however, to increase the accuracy to
6 bits.

conductance ratios dramatically reduces temperature dependence.

Figure 18(c) shows the response of an 8-bit floating-gate current source DAC with

a least significant bit (LSB) of 1 nA. Currently, the setting time of the DAC is limited

by the SPI clock speed of the microcontroller. The system is clocked at 1.39Mbit/s.

This architecture is most efficient when all three DACs in a column are being utilized.

Three DACs in a column can be clocked in 17.3µs, yielding an effective SPI setting

time of 5.77 µs/sample. At this speed, we calculate the power consumption to be

5µW. The max integrated nonlinearity (INL) and differential nonlinearity (DNL) are

measured to be 2.13 and 1.16 LSB, respectively (shown in Figs. 18(d) and 18(e)).

This compares reasonably well to the floating-gate DAC in [93], given that the DAC

was fabricated in 0.5µm custom silicon, and ours is compiled into a reconfigurable

chip. The DAC in [93] used 1.25mW at 170Ksamples/s, with INL and DNL of 0.35

and 0.43 LSB respectively.
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4.4.3 VMM Applications

Figure 19(b) illustrates the implementation of a current-mode VMM based on the

design in [108]. The VMM is a modified current mirror, which uses the weights of

directly programmed switch elements to multiply the input currents and sums the

output currents via Kirchhoff’s Current Law (KCL). Negative multiplications can

be implemented with a differential configuration. Using a constant bias current for

inputs allows for consistent speed and power. The VMM blocks in the RASP 2.9v were

created to efficiently place and route this architecture, utilizing a large proportion of

the routing fabric for computational purposes, as shown in Figure 19(a).

Figure 19(c) illustrates the performance of scalar multiplication using the directly

programmable devices compared to using the indirect devices. The advantage of the

direct FG is clearly shown with one programming pass. The direct FG VMM shows

accurate 4-quadrant multiplication of 4.5 bits, whereas the indirect FG system shows

significant gain error as well as large offset error. These errors are traditionally com-

pensated for with multiple programming passes using an adaptive process. However,

such an adaptive programming step is not always practical or even possible. By

restricting the range around a bias current and calibrating each multiplication, the

accuracy of the direct VMM can be increased to 6 bits.

While VMMs are useful in a wide variety of applications, one of the simplest is in

image convolution. Figure 20 shows image transforms performed on the RASP2.9v.

4.4.4 Arbitrary Waveform Generator

The RASP 2.9v is particularly well suited for arbitrary waveform generation (AWG).

Figure 21(a) illustrates the architecture of an AWG we programmed on the FPAA, as

well as several waveforms we generated. The AWG makes optimal use of the switch

fabric, as every transistor acts as a memory element, holding the value of the current

it will pass to the channel. As the shift register scans the rows sequentially, the
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Figure 20: The application of the VMM in an image processing system. The image
processor performs separable transforms, by first scanning in the image and then
convolving with a part of the kernel in each dimension. The kernels chosen for this
test were a 3×3 Sobel edge detector and a 9×9 smoothing filter. The system schematic
of the image processor front end shows the on-chip DAC components providing the
signals to the VMM.

stored currents of the elements in that row flow down to the appropriate channels.

We calibrated the scan to the number of devices in the signal, so that the first row

of devices switched on just as the last row switched off. We were able to control

the waveform frequency by changing the scan speed. This structure allows multiple

columns to be selected by the row register at the bottom, to select among many stored

waveforms. Additionally, since the waveforms are in current mode, the register can

be set to select more than one column at a time, resulting in a waveform that is the

sum of the two source waveforms.

We used a wide range amplifier in diode configuration as an I2V converter in order

to generate easily readable voltage outputs, shown in Figure 21(b). We controlled the

amplitude and offset of the output waveform with the amplifier bias and reference

voltage respectively. Although direct switches are used on the input-current side of

the I2V, the output voltage signal must be routed on the indirect-switch lines, so that

the output swing is not limited by the high resistance of the direct switches.

The time response (Figure 21(c)) and frequency response (Figure 21(d)) are shown

for two waveform speeds. As with the on-chip DAC, the clock speed is limited by
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the SPI line from the microcontroller. Each wave is programmed with 40 elements,

with one clocked at 17.5 kHz and the other at 310 kHz. These clock speeds result

in waveforms that are 437Hz (17.5 kHz/40) and 7.7 kHz (310kHz/40). The number

of elements in a waveform can be expanded up to the full length of the vertical

register: 400 bits. This AWG structure is similar to that reported in [36], with our

system being compiled in the reconfigurable hardware and the other being fabricated

in custom 0.5µm silicon. Ours achieves similar speeds, with the previous design

reporting maximum clock of 250 kHz, where we have run the SPI clock up to 1.92MHz.

At this maximum speed, we calculate the power dissipation to be 1.15µW.

4.4.5 Distributed Arithmetic

The ability of the RASP 2.9v to shift through control bits opens opportunities for bit-

wise arithmetic. A distributed arithmetic (DA) finite impulse response (FIR) filter

is a common and powerful bit-wise operation. FIR filters have certain advantages

over analog filters, such as linear phase, which motivates their inclusion in our analog

toolbox. A DA FIR filter operates with a filter of size M on an input vector of K bit

elements. The convolution can be reorganized (distributed) as:

y[n] =
M−1∑

m=0

x[n−m]w[m] (39)

= −
M−1∑

i=0

wibi0 +
K−1∑

j=1

2−j

M−1∑

i=0

wibij. (40)

The RASP 2.9v is particularly well-suited to a current-mode implementation of

this operation. The multiplication of bits by weights is implemented by current

sources that can be left open or shorted to VDD; the addition is implemented simply

by KCL.

With our shift register controlling the bitwise activation of the current sources,

the full system can be implemented in multiple ways. A classical architecture for a
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Figure 21: Arbitrary Waveform Generator (AWG) on the RASP2.9v (a) Architecture
for a 4-Channel AWG. The volatile switches short each row to VDD serially, so each
column passes the current supplied by the floating gate element at the intersection
with the active row (shown here as empty circles). (b) Schematic of the current-
to-voltage converter (I2V) used with the AWG. The volatile switch lines can short
one of the channels to the I2V. The I2V is an wide range OTA with a floating gate
OTA (FGOTA) in feedback to provide a tunable transimpedance. Increasing the
bias current of the FGOTA decreases its transimpedance. The input floating gates
of the FGOTA can be used to program an arbitrary voltage offset for the output. (c)
Two sine waves generated by the AWG, using 40 devices scanned at 17.5 kHz and
310 kHz. Note that the FGOTA has been programmed to allow different gain and
offsets. (d) FFT of the two sine waves. Total harmonic distortion is -29.5 dB and
-25.5 dB respectively. Note the small spike at the scan frequencies.

mixed-signal DA FIR filter is shown in Figure 22(a), which involves a straight-forward

mapping of the blocks used in [92]. The core switch register must be of length KM,

where the Ktℎ bit of each element controls the switch. This allows the input data to
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Figure 22: Classical architecture for mixed signal distributed FIR arithmetic as
implemented on RASP2.9v. Digital input is filtered one bit at a time, then combined
as an analog signal. (b) Proposed alternative architecture for mixed-signal distributed
FIR arithmetic. This system has the advantage of being able to process analog signals
with the front end continuous-time sigma-delta converter. (c) The integrate-and-fire
spike generator produces digital pulses with a frequency based on the input current.
(d) The integrating capacitor size can easily be reconfigured to tune the spiking
frequency range. (e) The output of the mixed-signal system. The initial results show
the output current correctly reconstructing a slow-moving input analog signal.

be serially cycled through the whole filter. We convert the output current to a voltage

and store it. During the next operation, this result is read out by a V/I converter

and is run through a weighted mirror that halves the current, which is then added to

the new result. At the end of each word length, the final value is stored and a reset

signal clears the running sum.

Figure 22 shows an alternative architecture for the mixed-signal DA FIR filter.

The filter will maintain its linear phase, while having an analog input and output

signal. The input stage is a integrate-and-fire sigma-delta converter [122]. The output
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of this stage is a digital pulse train, shown in Figure 22(c). The spike rate is linear

with input voltage, and can easily be modified by the size of the capacitor when

compiled, as shown in Figure 22(d).

The spike train is sampled by the switch register and filtered by the weighted

current sources. The pulse width of the sigma-delta converter can be tuned with Vbias

to ensure that it matches the sampling rate of the register. Any filter coefficients

can be programmed into the current sources, where a differential convention can be

used to implement four-quadrant coefficients. Initial results from the low-pass filter

are shown in Figure 22(e). The output current is accurately reconstructing a filtered

version of the input signal. The power consumption is calculated to be 60µW at

1MHz clock for the register capture.

4.5 Conclusion

The RASP 2.9v is designed for mixed-signal computation, with compilable DACs

for signal conversion, VMMs for efficient linear operations, generic analog CABs for

many nonlinear operations, and digital registers for digital storage and dynamic re-

configurability. We have demonstrated a current-mode DAC, a VMM, an embedded

image processor, an AWG, and a bit-wise FIR filter. These key building blocks allow

implementation of high impact systems like analog/software-defined radio [72] and

low-power FFT processors [121, 117]. A summary of key parameters is provided in

Table 5, with a summary of system performance in Table 6.

Because of it novel design, the RASP2.9v is an excellent system for prototyping

neural networks sufficiently large to solve interesting optimization problems. The

on-chip DACs and volatile switches enable the rapid generation and probing of high

dimensional signals, while the directly-programmable SWEs allow accurate high di-

mensional linear computation. Combined with the tools introduced in Chapters 2 and

3, we now have the tools necessary to build high dimensional optimization circuits.
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Table 5: RASP2.9v Summary of Parameters
Process 350nm CMOS

VDD 2.4V
Die Size 5mm × 5mm

Number of CABs 18 DAC, 36 Regular,
24 VMM (x4 input structures)

Programmable > 76,000
parameters
Number of 4728: 6 × 400-bit (vertical),

Volatile Switches 14 × 156-bit (horizontal),
6 × 24-bit (DAC)

Chip I/O 79 Analog, 20 Dynamic output lines
18 compilable DAC

Regular 132 OTA, 168 FgOTA, 36 T-gate,
CAB Elements 72 nFET, 72 pFET, 36 OTA buffer,

144 500fF Cap
Programming Volatile Switch: 719ns

Speed FG Switch: 31 ±2ms
Analog Indirect FG: 38 ±10ms
Analog Direct FG: 36 ±8ms
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Table 6: RASP2.9v Applications Summary

This DAC DAC in [93]
Resolution 8 bits 10 bits

INL 2.13 LSB 0.35 LSB
DNL 1.16 LSB 0.43 LSB
LSB 0.980nA 3mV

Setting time 5.77 µs/sample (effective, SPI) 5.88 µs/sample
Power 5µW 1.25mW

Number of channels 18 1

This AWG AWG in [36]
Wave 100nA DC 300nA DC

100nApp 100nApp

Clock 1.92MHz 250kHz
Elements 40 64

Power 1.39µW not reported
THD -25.5dB @ 310kHz not reported

-29.5dB @ 17.5kHz not reported

This FIR Filter FIR Filter in [92]
Size 24 bit 16 tap

Sample speed 40 kHz 50 kHz
Power 60µW 16mW
Filters LPF LPF, BPF, comb
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CHAPTER V

AN ANALOG HARDWARE SOLUTION FOR SPARSE

APPROXIMATION PROBLEMS

5.1 Introduction

Sparse approximation is an optimization program that seeks to represent a vector (i.e.,

signal) by using just a few elements of a prescribed dictionary (as in Figure 1(a)).

Modern signal processing has seen increasing movement toward using tools based on

nonlinear optimizations rather than linear filtering because these approaches corre-

spond to inference in statistically rich (i.e., non-Gaussian) signal models. In particu-

lar, sparse approximation is a fundamental component in state-of-the-art approaches

for many application areas, including inverse problems (e.g., denoising, restoration,

and data recovery from undersampled measurements [44]), computer vision and ma-

chine learning [123].

This chapter demonstrates an analog system implementation for solving a widely

used sparse approximation problem, Basis Pursuit De-Noising (BPDN), via sub-

threshold current mode circuits on a Field Programmable Analog Array (FPAA).

The design proposed here compares favorably with the state-of-the-art digital imple-

mentations [3, 20], operating at a small fraction of their power at comparable scales.

Despite the long history of optimization in the field of signal processing (see Mat-

tingley & Boyd [86] for a detailed discussion), the recent advent of applications that

utilize optimization directly to perform compressed sensing (CS) highlights a specific

need for solvers that can operate in real time or under power constraints. For example,

CS techniques have been proposed for both medical imaging [119] and channel esti-

mation for wireless communications [8], that may respectively benefit from real-time
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or low-power systems for sparse approximation.

Given the importance of solving sparse approximation problems in state-of-the-art

algorithms, recent research has focused on dramatically reducing their solution times.

These optimization programs are particularly challenging due to the presence of the

ℓ1-norm in the objective function, making the program non-smooth. Despite much

recent progress in developing both general and special purpose convex optimization

solvers, this non-smoothness provides particular challenges for obtaining real-time

results for moderate-sized problems.

The recently developed Locally Competitive Algorithm (LCA) offers one way

around this problem [102]. It uses a Hopfield Neural-Network topology [63], which can

be implemented using analog circuits. As discussed in Chapter 1, this offers several

benefits. In particular, the solution time in the LCA is proportional to the RC time

constant (which scales O(N)) [10], compared to the O(N2) floating point operations

per iteration required by state-of-the-art digital solutions [20]. Total energy con-

sumption is also reduced by using the vector matrix multipliers (VMMs) introduced

in Chapter 3. These use only one transistor per multiply accumulate operation, com-

pared to the hundreds needed for digital processing, resulting in considerable energy

savings.

In total, a successful analog approach may provide solutions with lower power,

greater speed, and better scaling properties than is possible in digital solutions. The

implementation of such a system significantly impacts many practical applications

that will simply be out of reach even with substantial future improvements in digital

algorithms due to either time or power constraints. An analog system could be

especially powerful when coupled with the CS techniques mentioned above, allowing

signals to be acquired (with coded apertures) and recovered at very fast time scales,

potentially eliminating the post-processing that has become the accepted bottleneck

with CS systems.
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Figure 23: The hardware implementation of the Locally Competitive Algorithm
(LCA) [111]. (a) Diagram of the small LCA system, with ammeters indicating the
currents represented in plots (b)-(d). Inputs are produced by an on-chip current
DAC, while outputs are converted to voltages which are then projected offchip. (b)
The output of the feedforward VMMs, when the two inputs are swept along the unit
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strong lateral inhibition. Note that the competition sharpens the response curves.
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The rest of the chapter proceeds as follows: In Section 5.2, we describe the archi-

tecture of the analog hardware system we created, and we explain how it developed

from a sparse approximation solver, the Locally Competitive Algorithm (LCA). We

will refer to our system as the Hardware LCA. Section 5.3 describes how we imple-

mented and tested the Hardware LCA on the RASP 2.9v. The results of these tests,

including the speed, accuracy, and power consumption of the system, are described

in Section 5.4. Finally, in Section 5.5 we conclude with some remarks on how the

technology can be scaled, and compare it to existing digital solutions. Most of the

material in this chapter is taken from [111].

5.2 Description of the Hardware LCA Architecture

Development of an analog architecture for solving sparse approximation required three

important steps. First, we formulated the sparse approximation problem as a solvable

optimization problem. Second, we found some algorithm or system of equations that

converged on the solution to the optimization. Finally, we developed a complete

hardware system that included an accurate translation of each component of the

algorithm into a continuous time, easily parallelized analog circuit.

5.2.1 Bayesian Optimization Problem

Sparse approximation methods achieve efficient signal representations using only a

small subset of dictionary elements by taking advantage of the known statistical

structure of the signal [91]. As a review, these methods assume a linear generative

model (Figure 1(b)) for signal representation:

y = Φa+ � (41)

where a vector input y ∈ ℝ
M is represented with an overcomplete dictionary Φ =

[�1, . . . , �N ] using coefficients a ∈ ℝ
N , with additive Gaussian white noise �. Using

our generative model, we can express the probability that y is generated, given a, as
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P (y∣a) = e−∥y−Φa∥.

For sparse approximation problems, the coefficients a have a prior probability that

induces sparsity - i.e. the most likely value for a coefficient aj is 0. We express this

probability as P (a) ∝
∏

j e
∥a∥1 , where ∥a∥1 is the ℓ1-norm,

∑N
i ∣a∣.

As we discussed in Chapter 1, the most likely a is the Maximum A Posteriori (3),

which is equivalent to Basis Pursuit De-Noising (BPDN) [37]:

argmin
a

(
1

2
∥y − Φa∥22 + � ∥a∥1

)
. (42)

We refer to the terms to be minimized, 1
2
∥y − Φa∥22+� ∥a∥1, as the objective function.

The first term in the objective function represents the mean squared reconstruction

error (MSRE) of the sparse approximation: how well a can be used to reconstruct

the input y. The second term represents the sparsity of the solution via the ℓ1-norm,

with � as a tradeoff parameter balancing data fidelity with the solution sparsity.

5.2.2 The Locally Competitive Algorithm

Hopfield Neural Networks [63, 64] are a long established method for solving con-

vex optimization problems. The Locally Competitive Algorithm (LCA) is one such

Hopfield Network, designed specifically to solve sparse coding problems [102].

The LCA is a continuous time algorithm which acts on a set of internal state

variables, um(t) for m = 1, . . . ,M . These internal states are guaranteed to exponen-

tially converge to the equilibrium state, which is the solution to the objective function

(42) [102, 10]. Restricting a(t) > 0, the dynamics of the nodes are described by the

following set of nonlinear ordinary differential equations (ODEs):

� u̇(t) + u(t) = b− (ΦtΦ− I) a(t),

a(t) = T�(u(t))
. (43)

In (43), � is the time constant of the system, and b ∈ ℝ
M = Φty is the vector of

driving inputs. The feedback between the nodes is computed by H = ΦtΦ− I. The
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sparsity constraint and the nonlinearity are introduced by the threshold operator

T�(⋅), which decreases the absolute value of u(t) by �:

T� (u(t)) =

⎧
⎨
⎩

u(t)− � , if u(t) > �

0 , else
(44)

Once the state variables u(t) have reached equilibrium, the output vector a(t) is the

solution to the objective function.

While the LCA system shown here solves for an optimal cost function C(a) equiv-

alent to the ℓ1-norm, it can be easily modified to solve for other cost functions. The

nonlinear operator, T� has the following explicit relationship with the cost function:

T−1
� (a) = a+

dC(a)

da
(45)

5.2.3 System Architecture for Hardware

As in most neural networks, the internal state variables in (43) evolve in a parallel

fashion. The architecture of the LCA implemented as an Analog Hardware System

is presented in Figure 23(a). The system is composed of current mode VMMs and

current mirrors (including a double current mirror that implements the soft-threshold

operation).

The first VMM is the feedforward multiplier. It accepts the input vector y from

the current DACS (after they are mirrored) and performs the operation b = Φty to

compute the driving inputs. The second block, the recurrent VMM, performs the

operation ℎ(t) = Ha(t) and computes the recurrent feedback. The feedback is that

of a stable, convergent Hopfield Network: nodes do no inhibit themselves (Hm,m = 0)

and the inhibitions between nodes are symmetric (Hm,n = Hn,m).

Both of these VMMs are implemented as the current mode devices characterized

in the previous chapter (Figure 19), which have a small area, low power, and an easily

scalable design while operating in the sub-threshold region [108]. The VMMs perform
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the linear operation IOUT = WIIN . The charge on each floating gate element (FGE)

in the VMM determines the weight of each scalar multiplication.

Scalar multiplication accuracy requires the input and output devices to have

matching drain voltages. The input drain voltage is regulated with an OTA that

provides a power source to both the input and output currents; the OTA must there-

fore scale in power with the number and strength of the outputs.

The last system component is a double nFET current mirror (Figure 24), which

finds the difference of the linear terms b − (ℎ + �), and applies a capacitive load

to induce a low pass filter with time constant. The active current mirrors, based

on [109], each accept a current into an nFET. The circuit forces another nFET to

have the same gate and source voltages, thus assuring that it will produce the same

current. Since the input nFET also acts a rectifying diode, the current mirror can

only pass positive currents. Introducing the negative offset � makes the device an

effective soft-thresholder (Figure 24(b)).

Accuracy of the current mirror requires the nFETs to be well matched, and to

have identical drain voltages. Mismatch is minimized simply by enlarging the devices;

this enlargement is not a major impediment to system density, since there are O(N)

mirrors, while the VMM area scales O(N2). As with the VMMs, OTAs are used

to regulate the input drain voltage. Since the mirror outputs are the VMM inputs

(which also have a regulated voltage), this allows matching of both drain voltages.

The current mirror OTAs likewise allow matching of the drain voltages in the VMM.

The transfer function of the double current mirror is then:

� u̇(t) + u(t) = b− ℎ(t)

a(t) = T�(u(t))
. (46)

From the VMMs, we get b = ΦTy and ℎ = (ΦTΦ− I)a(t). Combining these relation-

ships yields our original ODE (43).
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Figure 24: Analog thresholder circuit [111]. (a) Implementation of the Soft-
Threshold with a single sided output. The floating gate generates the threshold
current Itℎ , while current mirrors invert and rectify their inputs. The full operation
performed is thus Iout = max (0, I+ − (I− + I�)). Additional output branches of the
current mirrors allow the current to be read. A large loading capacitor CL adds a
large, dominating time constant. The OTAs eliminate drain voltage mismatch by
pinning the input voltages to Vref . Vref = 1.2V, Vdd = 2.4V. (b) Response of the
Soft-Thresholder. With Itℎ = 0, the thresholding function is a rectifier, but when Itℎ
is increased to 10 nA, it effectively creates a soft threshold at Itℎ.

5.3 Implementing the LCA circuit on Reconfigurable Ana-

log Hardware

The experimental results presented in this chapter were obtained on the Recon-

figurable Analog Signal Processor (RASP) 2.9v, the chip introduced in the previ-

ous chapter. As a review, this chip includes several Computational Analog Blocks

(CABs), a large matrix of programmable floating gate elements (FGEs) that can be

used for routing, and 26 chip spanning volatile switch lines that allow rapid scanning

of every internal node in the chip. Most of the CABs contain a variety of analog

elements, including the operational transconductance amplifiers (OTAs) and nFETs

used in the LCA. There are also 18 CABs dedicated for current-mode Digital to

Analog Conversion (DACs), which allow system inputs to be quickly reprogrammed.

We implemented multiple LCA systems on the RASP2.9v. The smaller of these
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was a single-ended 2x3 system (two inputs, three outputs), built for illustrative pur-

poses; since the input vector had to lie on the unit circle, the input in practice had

only one degree of freedom, making the results easier to display. Its dictionary was:

Φ =

⎡
⎢⎣
1 .6 0

0 .8 1

⎤
⎥⎦ .

We also implemented a larger single-ended 4x6 system in order to demonstrate

the scalability of the system architecture:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 .47 .59

0 1 0 0 .59 .47

0 0 1 0 .65 .1

0 0 0 1 .1 .65

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The six dictionary elements were chosen to fully span the input domain and to

observe the Restricted Isometry Property (RIP), where the eigenvalues of the matrix

are restricted to a certain range. While a matrix of random Gaussian variables is

typically used to satisfy the RIP [27], the dimensions were small enough here that a

set matrix could do so more easily.

In addition to the necessary VMMs and current mirrors, on-chip 8-bit current

DACs were programmed to allow control of the input currents. These inputs were

normalized to a ratio of 60 nA:1. The threshold current I� was programmed to 6 nA,

for a tradeoff parameter of � = 0.1.

Each soft threshold node was implemented with multiple output transistors. One

of these was used to drive the rest of the circuit. A second device was used as a

system output. The output currents were scanned out by a volatile switch line, and

then sent to either an on-chip current-to-voltage (I2V) converter (Figure 27(b)) for

rapid measurement, or a picoammeter (used for debugging the circuit and calibrating

the I2V).
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5.4 Results of the Fully Implemented System

. Using the dynamical switches, we were able to quickly test individual components

and the system as a whole. We used the on-chip current DACs to inject currents with

a constant ℓ2-norm into the circuit. For the 2x3 network, we swept the input on the

unit circle, while we randomly generated 100 inputs for the 4x6 network. For both

systems, we separately measured the input currents, the outputs of the feedforward

VMMs (with and without thresholding), the outputs of the recurrent VMMs, and the

system outputs. Figure 23 illustrates the progression of these results for the smaller

network.

5.4.1 Accuracy of Results

In order to test the accuracy of the analog LCA, we also ran the inputs through

ℓ1-Least Squares Minimization Program (L1-LS) [70], a digital sparse approximation

algorithm. For both the 2x3 and 4x6 systems, the solution produced by the hardware

network was very similar to that produced by the digital solver. For the smaller

network (Figure 25), the root-mean-square (RMS) difference of the analog and digital

solutions was at maximum 5.1 nA, and averaged less than 1 nA, or less than 2% of

the magnitude of the input. The larger network showed higher divergence, with a

max RMS difference of 9.2 nA, or 15.3%, and an average RMS 2.9 nA, or 4.8%.

Despite some deviation from the digital solution, the large network converged on a

moderately optimized sparse code. The final value of the objective function averaged

only 1.3% higher for the 4x6 network than for the L1-LS solution, and in the worst

case was only 3.2% higher. Most of the increase in the objective function in the

analog solution came from the MSRE term, which averaged 4.6% higher than in the

digital case. The average ℓ1-norm was virtually identical for both analog and digital

solutions.

The support vector of the analog system (the list of active nodes) was identical
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Figure 25: Metrics of the 2x3 hardware LCA over the input domain Iin1 = cos(�) ⋅
50 nA, Iin2 = sin(�) ⋅ 50 nA, where � = [0, �/2] [111]. (Top) RMS difference in
the outputs between the hardware LCA and the digital solver L1-LS. Scaling for
the analog to digital comparison is 50 nA:1. (Bottom) Comparison of the optimized
objective function (42) from the analog and digital solvers. Even at the point where
the analog and digital solutions diverge by almost 10% of the signal output, the analog
objective value is less than 1% higher than the digital.

to that of the digital solution in 63 of 100 trials, and never differed by more than one

node. Matching the support set is an important achievement, since the optimal sparse

approximation solution can be fully recovered if the correct support set is identified.

5.4.2 Analysis of Sources of Error

To diagnose the sources of the discrepancies between the analog and digital solutions,

each point in the circuit was compared against a digital ideal. We individually tested

each scalar multiplication in the VMMs by serially inputing the vectors of the identity

matrix into each VMM. This was easily accomplished for the feedforward VMM,

since its inputs are directly controlled by the current. We sent a set of input vectors

Y = y1, ..., yM = I through the feedforward VMM and measured the output B = ΦT I.

In order to verify the scalar weights in the recurrent VMM, we had to force the

output to be a vector of the identity matrix. We used the input vectors Y = Φ,
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which results in A = I(1− �). We then measured the output of the recurrent VMM

Z = HI(1− �) to calculate the coefficients of the recurrent multiplication H.

We compared the achieved multiplications with the target weights for both ma-

trices, and found that the RMS error of multiplication was 1.9% of the target, cor-

responding with the values we achieved in Chapter 4. This error can be reduced by

using a programming algorithm with finer precision, at the cost of longer program-

ming times.

We then analyzed the network in order to calculate the expected effect of the

multiplication errors on the final output. In steady state u̇(t) = 0, and for active

nodes a > 0 (active coefficients are in the active set Γ), the LCA reduces to:

u = ΦT
Γy −Ha

a = u− �
, (47)

where H = ΦT
ΓΦΓ− I, and all vector and matrix terms with subscript Γ are restricted

to the subset or subspace corresponding to the active nodes.

We can solve this system for equations for a, yielding:

a = (ΦT
ΓΦΓ)

−1(ΦT
Γy − �) . (48)

Introducing feedforward gain error �Φ and recurrent gain error �H terms into the

LCA modifies the solution to ã = (ΦT
ΓΦΓ + �H)

−1
(
(ΦT

Γ + �Φ)y − �
)
. For small error,

the term (ΦT
ΓΦΓ + �H)

−1 can be approximated as the more tractable (ΦTΦ)−1 −

(ΦTΦ)−1�H(Φ
TΦ)−1. Using the identity from (48), we can approximate the output of

the LCA with error to be:

ã ≈ a− (ΦT
ΓΦΓ)

−1�Ha+ (ΦT
ΓΦΓ)

−1�Φy . (49)

Both major error terms will be multiplied by (ΦT
ΓΦΓ)

−1. Given eigenvalue de-

composition ΦT
ΓΦΓ = V ΛV T , if all the eigenvalues are nonzero, then (ΦT

ΓΦΓ)
−1 =

V Λ−1V T .
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The eigenvalues of the inverse matrix bound the amplification of any multiplication

errors; the inverse of the smallest eigenvalue of (ΦT
ΓΦΓ)

−1 is the upper bound of error

amplification. This amplification is clearly seen in the small 2x3 network. In the

narrow region where the two dictionary elements [0, 1] and [.6, .8] are both active,

ΦT
ΓΦΓ =

⎡
⎢⎣
1 .8

.8 1

⎤
⎥⎦ ,

which has eigenvalues of 1.8 and 0.2. In this region, therefore, certain errors are

multiplied by 5, which causes a noticeable deviation from the digital solution (seen

in Figure 23).

The larger network has a much larger set of possible subspaces of active dictionary

elements, which gives a much larger range of amplification. When, for example, the

first, second, third and fifth nodes are active, the upper bound for amplification is

200. In 100 random trials, however, this state was never observed; the typical upper

bound on amplification was closer to 6.

Dictionaries that limit the range of their eigenvalues are considered to observe

the Restricted Isometry Property (RIP). Enforcing the RIP proved difficult for a 4x6

matrix (especially with the other constraints placed upon it), but is easier for larger

matrices. Candés et al. discuss a number of ways in which these matrices may be

generated [27]. In CS applications, randomly populating the dictionary creates a

matrix Φ that observes the RIP with high probability. For instance random Gaussian

matrices will satisfy the RIP condition when M > KS log(N/S), and randomly

sampled discrete Fourier matrices will satisfy the RIP when M > KS log4(N) for

some constant K. In these cases, we note that M is significantly larger than S, which

when the elements of a matrix are random can readily ensure that the eigenvalues

of ΦT
ΓΦΓ will be sufficiently large for any subset of columns Γ. This indicates that

the errors amplified in the small scale implementations will not occur for large CS

matrices. For example, in the simulations in [111] (when M/S = 0.05), we never
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observed an eigenvalue less than 0.6, corresponding to error amplification of 1.66. We

would therefore expect an analog implementation at that scale to have errors 3 times

smaller than those in the 4x6 system.

The RIP will not necessarily be observed in other applications, but the average

eigenvalues should not change with the size of the system. We can therefore predict

that the average error should not increase with matrix size.

5.4.3 Power and Scaling

The power used by the RASP2.9v implementation of the LCA is dominated by two

terms. First is overhead: 703µA used by the FPAA even when nothing is pro-

grammed, and an additional 20µA for the high speed current-to-voltage converter.

The rest of the current flow can be accounted for with the OTAs, since every

source-to-sink path in the LCA passes through at least one OTA. The OTAs are

differential pairs with a double current mirror, so they naturally use twice their bias

current, before accounting for currents they source or sink externally. Since every

signal in the LCA chip sinks into an OTA, we can simply sum all the active currents

in the chip to find the total additional power use.

Each VMM input requires an OTA. The current mirrors for the inputs also require

an OTA, and they sink twice the input current. The soft thresholder requires two

OTAs, and sinks twice the lateral inhibition Ha, twice the threshold current �, and

twice the output a. The total current used by the system is therefore:

ITOT = (M +N)(2IV ) + (M + 2N)(2IM) (50)

+2∣∣y∣∣1 + 2∣∣Ha∣∣1 + 2N�+ 2∣∣a∣∣1 ,

where IV is the bias current of the VMM OTAs, and IM is the bias current of the

mirror OTAs.

In both of the networks we built, IM was set to 500 nA, sufficient to sink three

60 nA currents (the third being used only when the node is directly measured) while
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Figure 26: Small signal model of the current mirror and VMM used to determine
OTA biasing. [111]

maintaining a high OTA transconductance. IV was set to 500 nA in the 2x3 network,

and to 800 nA in the 4x6 network.

Excluding overhead, the active circuits of the 2x3 LCA had a total current of

11.8µA, with small variations from the signals being passed. This is actually less

than the 13µA that would be expected from (50)). The total power use of the 4x6

system was only 31.1µA, again somewhat less than the 32µ predicted by (50). These

discrepancies are most likely due small innacuracies of the bias current programming.

The OTAs must have a bias current large enough to sink or source all of the

appropriate currents while maintaining a high transconductance, as indicated in the

following analysis.

The bias currents of the OTAs (and thus the power budget of the chip) are set

so as to maintain signal independent gain across the nFET current mirrors. A small

signal model of the current mirror and its interface with the VMMs are illustrated in

Figure 26. There are two sources of non unity gain: a conductive divider at the input,

which prevents all of the source current iSRC from entering the mirror as iIN ; and
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a conductive divider at the output of the mirror, which prevents the output current

iOUT from fully entering the VMM as iVMM .

The first conductive divider is split between the output conductance of the VMM,

g0 = 1/r0, and the effective input conductance of the mirror gIN . Since the OTA

creates an amplifier on the other side of the input resistance, we can use the Miller

Effect to calculate the effective conductance:

gIN =
1 +GAR0,A

1/g1 + 2R0,A

,

where g1 is the transconductance of the input nFET, and GA and R0,A are the

transconductance and the output resistance of the OTA. The total conductive di-

vider for the input is therefore:

iIN
iSRC

≈ GAR0,A

(g0/g1 + 2g0R0,A) + (GAR0,A)
. (51)

From [112], the output conductance of the floating gates used in the VMM is domi-

nated by transconductance generated by the capacitive coupling from the drain to the

floating gate. In subthreshold operation, we can therefore model g0 = � ISRC

UT
where

� ≈ .04 is the coupling coefficient, ISRC is the drain current of the floating gate, and

UT ≈ 26mV is a constant. Since g1 = ISRC

UT
, we can substitute g0/g1 = �. We can

rewrite (51) as a function of currents:

iIN
iSRC

=
R0,AIA/UT

(� + 2�R0,AISRC/UT ) + (R0,AIA/UT )

≈ IA
2�ISRC + IA

, (52)

where IA is the bias current of the amplifier. To maintain unity gain with an error

less than 1% we must maintain IA > 8ISRC . Note that the required bias current is

independent of the number of nodes.

A similar analysis can be done at the VMM input:

iVMM

iOUT

≈ GB

(1 + �)1/r0,2 +GB
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≈ IB
(1 + �)�IOUT + IB

, (53)

where IB is the bias current of the VMM OTA, � is the sum of all the weights being

generated by the OTA, and � = �UT/VA ≈ .0125, is a constant for these devices. In

order to maintain error less than 1%, we must maintain IB > 1.25(1 + �)IOUT .

The bias current of the VMM OTAs scale with �, the total weight being generated

by that row of the VMM. As the number of nodes N grows, the VMM will have to

source that many currents. The average weight of the multipliers will tend to decrease

as the dictionary elements spread out through the M dimensional input space. �

should therefore approximately scale as N/
√
M . For very large N , the M +N VMM

OTAs will dominate the total power use of the system:

ITOT ∝ (M +N)(2
N√
M

). (54)

For a fixed M/N , this yields total power scaling of O(N
√
N).

5.4.4 Temporal Evolution of the System

Figure 27 shows the evolution of the 4x6 LCA for a typical input. The temporal

evolution of the analog LCA was measured by sending the current-mode outputs

through a fast current-to-voltage converter, which was then sent to a high speed

oscilloscope. Each relevant node was measured in this way, and their time courses

following the setting of the current DACs are superimposed in . The outputs settled

to within 1 nA RMS of their final values in 240µs.

The convergence curves varied considerably from predicted LCA dynamics. The-

oretical analysis[10, 11] and simulations [111] of the LCA’s temporal evolution show

exponential convergence for active nodes, in less than 10� , where � is the RC time

constant. The theoretical upper bound on convergence time was proportional to �/
,

where 
 is the smallest eigenvalue of the active subspace of the matrix Φ (the same

term that determines error amplification in Sec. 5.4.2).
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Figure 27: Measuring the analog LCA output[111]. (a) Evolution of the output
nodes on the 4x6 LCA for a typical input case, converging to within 1 nA RMS of the
final value in under 240µs. The output of the I2V is sent to an oscilloscope, which
begins measuring at time 0 when the current DACs are fully loaded. Nodes have
slow dynamics at 0 nA, accounting for long ramp up time. Dashed lines represent
equivalent digital solution for each of the three active nodes. (b) The current to
voltage converter (I2V), as implemented on the LCA the RASP2.9v. Currents from
the nodes are input serially. A wide range amplifier (a component of the RASP2.9v
CAB) is used in feedback, providing an effective transimpedance. The currents can
be independently measured by a picoammeter, allowing characterization of the I2V
and accurate estimation of the output currents.

We do not observe this purely exponential convergence in Figure 27. Instead we

see a delayed start and decaying oscillations that eventually converge on a solution.

The slow ramp time results from the dynamics of the current mirror circuit used in

the thresholder, which is not a simple RC filter when the current is low.

The input resistance R can be derived from the small signal model (Figure 26) as:

R = r0∣∣
1/g1 + 2R0,A

1 +GAR0,A

≈ �
UT

�IIN
+ 2

UT

�IA
(55)

For small IIN , the first term dominates, and the system dynamics approach:

CLUT�

�

⋅IIN
IIN

+ IIN = ISRC . (56)

These dynamics can be observed in Figure 28. By initializing system inputs to zero,

we guarantee that all nodes will also start there. This initialization prevents the slow
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Figure 28: Dynamics of the thresholder circuit [111]. (Left) If initialized to a near
zero current, the nodes have a slow ramp time. Time is measured in terms of the
time constant � , which characterizes the dynamics for currents above 3 nA. Initializing
the nodes at 100 pA would require adding switching circuitry to the thresholder, but
would reduce the long ramp up. (Right) Nodes should not be initialized too far above
zero, as signals take a long time to decay.

decay that would be required if a signal changed from 50 nA to 0 nA. The dynamics

still impose a long startup latency while the input node voltage is charged. This

latency could be mitigated by initializing the nodes to a higher value (100 pA in

Figure 28).

For IIN > IA�/2 ≈ 3 nA, the second term in (55) dominates, and the system acts

as a low pass filter with RC time constant � = 2CLUT/(�IA). In order to make this

the dominant pole in the LCA system, the load capacitance CL was made extremely

large—over 50 pF—by shorting it to a chip pad. The capacitance could be reduced to

2-3 pF, the capacitance of a vertical routing wire, at the cost of deviating somewhat

from the LCA dynamics. This could speed up convergence times by a factor of 10 or

more.

In addition to the approximately 240µs required for convergence, each 8-bit input

DACs takes 5.8µs to load, and reading an output node requires 520 ns, adding about

26µs for interfacing. These costs are imposed by the microcontroller, and are not

inherent to the RASP2.9v.

As the system scales, we would expect the convergence time to scale with the time

constant � = 2CLUT/(�IA). Of these constants, only the load capacitance CL will
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Table 7: Hardware LCA vs. digital solutions
System LCA LCA LCA (Hyp.) CPU [20]

Size 2×3 4×6 666×1k 1k
Power (Active) 28.3µW 74.6µW 149mW ≈3.8W

(Total) 1.76mW 1.81mW 151mW ≈100W
Time (Cvg.) 240µs < 240µs 46ms
Time (Total) 266µs 4.62ms 46ms
Error (RMS) 2% 5% ≈ 5% -
Extra Cost 0.2% 1% ≈ 1% -

scale roughly O(N). But since CL is already much larger than necessary, a custom

built large N implementation would actually be expected to converge faster.

5.5 Comparisons and Conclusions

The LCA analog circuit has been presented as the solution to the class of sparse

approximations defined in (42). A pair of example circuits were implemented on

the RASP2.9v, and successfully converged on results that were similar to a digital

solver. This analog solution is particularly targeted for low powered applications,

such as channel sensing [8] for portable devices. While we have demonstrated the

successful operation of the system at small sizes (N=6), viable applications required

considerable scaling.

The RASP2.9v only allowed moderate scaling of the analog LCA. The chip con-

tains 18 8-bit DACs and enough stand-alone nFETs for 36 current mirrors. Since the

thresholder nodes require two current mirrors, the number of inputs M and outputs

N was limited by M + 2N ≤ 36. This suggests a practical maximum size of about

8x14. Scaling to this size would not significantly impact total power output (which

would still be dominated by overhead costs), and would only meaningfully impact the

interface time to load and retrieve data (since convergence time would be relatively

fixed).

Scaling to much larger sizes (N ≈ 1000) would have required a more application

specific chip than the RASP2.9v. However before we spent a year designing such a
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chip, we wished to analyze the scaling capabilities of the analog LCA.

At (N ≈ 1000), the total time for the LCA would be dominated by the mea-

surement time, which would scale linearly to 4.4ms (see Table 7). At the same time

the power consumption would be dominated by the O(N
√
N) scaling of the VMM

OTAs, to about 149mW. Together these mean that the total computation energy

scales O(N2
√
N). Accuracy would remain relatively constant, since the average error

and average eigenvalue do not scale with problem size.

These hypothetical results compare extremely well with state-of-the-art digital

BPDN implementations [3, 20]. Borghi et al. report solving BPDN for N = 1024

in 46ms using an Intel i7 CPU (Table 2 in [20]). Estimating that this calculation

required 1.2GMACs over 46ms, and that the i7 CPU calculates 7GMAC/J, we can

estimate the active power requirements for the calculation at 3.8W, more than 25

times as much power as the LCA.

While favorable relative to the digital system, the O(N
√
N) scaling for computa-

tion energy seemed larger than necessary. We believed that a spiking implementation

might provide superior scaling properties than the purely analog system shown here.

We explore the spiking system in the next two chapters.
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CHAPTER VI

SPIKING SOLUTIONS FOR SPARSE CODING

6.1 Introduction

Analog networks such as the nervous system are well designed to efficiently process

high dimensional inputs. Since the information is distributed among many channels,

each individual channel can tolerate a large amount of noise, a regime where analog

processing has clear advantages in terms of computational efficiency [103]. Spiking

analog networks are particularly well suited for power efficient sparse approximation

since the power is proportional to the signal and the output signal is intentionally

sparse.

Another major benefit of a spiking neural network is its rapid convergence time

[74]. The Locally Competitive Algorithm (LCA) has already been shown to expo-

nentially converge on a solution in five to six time constants[10] even when scaled

to large sizes, compared to the hundreds of iterations required for state-of-the-art

implementations of digital solutions [20]. In the spiking network we have developed,

the system time constant is that of the synapses, which can be tuned to be almost

arbitarily small.

In this chapter, we introduce the Spiking LCA—a network of leaky integrate and

fire neurons—as a biologically plausible system for calculating sparse approximations

(Figure 29). We demonstrate that the dynamics of the LCA can be fully ported

to a rate encoded spiking neuron model, and show a formal relationship between

the frequency-to-current (f-I) characterization curve (or activation function) of the

neuron and the sparsity inducing behavior of the network. Because the LCA works

with a wide range of activation functions, we can vary the parameters and tuning of
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Figure 29: Increasingly neuromorphic solutions for sparse coding. Simulations and
experimental evidence support the idea that V1 may be performing sparse encodings
of visual inputs. Various solutions to the sparse coding problem already, exist, includ-
ing digital solutions [70, 50], and the analog LCA [102]. The Spiking LCA presented
in this paper is the most biophysically realistic solution to the sparse coding problem
that is guaranteed to converge on the optimal solution in finite time.

the neurons to handle different sparsity constraints.

The rest of the chapter proceeds as follows: In Section 6.2 we describe the Spiking

LCA using ideal integrate and fire neurons, and demonstrate its equivalence to the

LCA. In order to allow the system to be ported to some targeted hardware systems, we

show how to expand the model using leaky neurons with conductance based synapses.

Section 6.3 introduces the software platform that we used to simulate the Spiking

LCA, and these results are shown and analyzed in Section 6.4. Some of the material

in this section is adapted from [110]. Finally, in Section 6.5 we discuss some of the

benefits of the nonideal neurons and conclude with possible refinements to the neuron

models.

6.2 Converting to a Spiking Network

While the original LCA model used analog outputs that converged to an attractor

to encode the optimization variables, it is not immediately clear how to map these

optimization variables to a meaningful quantity in a spiking network. The stochastic

rate model [56, Ch. 5.9.2] of spiking neurons provides one possibility.

In the stochastic rate model the spiking of the input spike trains and the individual

neurons are defined as point processes, which describe unique points in time. A point
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process can be characterized by its intensity �(t), such that the probability of one

event happening in the window [t, t + Δt) is �(t)Δt [69]. The information in the

system is encoded by the analog intensities of the various neurons, with individual

spikes representing a noisy observation of the information.

In order to eventually map the system to hardware, however, we must adapt the

stochastic rate model to use deterministic neurons. We will show here that a network

of integrate and fire neurons can be designed to exhibit stochastic behavior, whose

expected intensity can be mapped to the optimization variables of the LCA. In this

system, stochasticity is introduced by randomizing the initial state of the neurons.

We will further show that individual spikes can be summed over time to create an

unbiased estimate of the expected intensity �̄(t). (The expectation here is calculated

over the random initial conditions of the network).

Before describing our proposed network structure, we first describe the model

and quantities of interest for a generic single neuron in this system. All neurons in

the model will be (possibly leaky) integrate and fire (IF) cells. The state of each

neuron will be characterized by a variable vi(t) ∈ [0, 1], representing the normalized

membrane potential of the cell. This normalized potential can be thought of as an

internal phase variable representing how close the neuron is to producing a spike.

Specifically, a spike event occurs at time t if vi(t
−) = 1, and the phase is immediately

reset to vi(t
+) = 0.

The model IF neuron described above can be completely characterized by spec-

ifying an initial state vi(0) ∈ (0, 1] and an equation for the dynamics on the state

variable

v̇i(t) = f(xi(t), vi(t)) = xi(t)−
vi(t)

�
− � , (57)

where � is the neuronal time constant, xi(t) is the stochastic normalized input to the

neuron, and � is an offset term [65]. In our most basic model, the neuron is an ideal

integrator with � → ∞, so v̇i is purely a function of the input xi(t). We will model
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each neuron’s initial state vi(0) as being drawn from a uniform distribution on the

interval [0, 1]. Given this network model, each state variable will be a random process

with an amplitude distribution at a fixed time given by pvi(t)(v). If the neural input

xi(t) is wide-sense stationary, with a small or zero variance, and a mean x̄i > � then

we can easily solve the drain diffusion equation [56, Section 5.89] to show a constant

amplitude distribution in steady state: pvi(t)∣x̄i>�(v) = 1. If x̄i < �, the neuron will

not spike, and its statistics can be ignored. Adding a diffusion term from variance on

the input xi(t) makes the distribution non-uniform about the reset potential v = 0,

but the distribution close to v = 1 remains close to unity.

With knowledge of the amplitude distribution and independent neuronal input

xi(t) at a given time, we can calculate the probability of observing a spike (and thus

the intensity) at that time. Let us define ni(t) as the number of spikes that have been

observed before time t, and T� (xi(t)) as the instantaneous probability of observing a

spike, defined as:

T� (xi(t)) =
d

dt
Evi(0)∣vj ∕=i(0)[ni(t)] ,

given neural input xi(t) and leakage �. At the limit of Δt → 0, we can rewrite this

as

T�(xi(t)) = 1
Δt
Pr (ni(t+Δt)− ni(t) = 1∣xi(t))

= 1
Δt
Pr (vi(t) + v̇i(t)Δt > 1∣xi(t))

= 1
Δt
Pr (vi(t) > 1− (xi(t)− �)Δt∣xi(t))

= 1
Δt

∫ 1

1−(xi(t)−�)Δt
pvi(t)(v)dv

= 1
Δt

∫ 1

1−(xi(t)−�)Δt
dv

T�(xi(t)) = (xi(t)− �). (58)

If xi(t) < �, then the neuron will not spike, and T�(⋅) is precisely equivalent to the

positive half of the soft-threshold nonlinearity needed by the LCA.

For a stochastic input xi(t), we denote the expected instantaneous rate �̄i(t) =

Evj ∕=i(0)[T� (xi(t))], where vj ∕=i(0) is the stochastic initial state of every neuron except
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i. We assume that the initial conditions of vj ∕=i are responsible for almost all the

variance in xi(t), allowing xi(t) to be practically independent of vi(t) (we will revisit

the preconditions necessary for this assumption to hold in Sec. 6.2.2).

T�(xi(t)) is linear except around the point xi(t) = �. If the variance of xi(t) is

small relative to ∣x̄i(t) − �∣, then xi(t) will never cross that point and we can treat

T�(xi(t)) as a linear function, so:

Evj ∕=i(0)[T�(xi(t))] = T�(x̄i) . (59)

If the relative variance is not small, a positive error term is introduced, and (59)

becomes only an approximation.

In our neural network, the input to each neuron xi(t) is a linear function of the

output spikes of the other neurons:

xi(t) =
∑

j

wi,j

∑

k

�(t− tj,k) , (60)

where tj,k is the kth spike of neuron j, and �(t) is the strictly causal kernel of the

response to a spike at t = 0. The expected value of the input is then:

x̄i(t) =
∑

j wi,jE[�(t− tj,k)]

=
∑

j wi,j

∫ t

−∞ �(t− s)�̄j(s)ds

x̄i(t) =
∑

j

wi,j(� ∗ �̄j)(t) (61)

By combining (59) and (61), we create a system of ordinary differential equations

that represents the behavior of our neural network. Unfortunately, there is no way

to directly observe �̄(t). If, however, �̄i(t) converges to a fixed point, with a constant

mean and variance on the input xi(t) (i.e. xi(t) becomes wide-sense stationary),

then we can show (in Sec. 6.2.2) that the normalized spike count ai(t) = (ni(t +

tW ) − ni(t))/tW becomes an unbiased estimate of the converged expected intensity.

Accordingly, our estimate ai(t) is a measure of the output of the neural network.
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Figure 30: Converting to the spiking LCA. (a) Block diagram of the Locally Com-
petitive Algorithm, as described in (43). The matrix multiplications and low pass
filters (LPF) are linear, and can thus easily be moved around. (b) Block diagram of
the spiking LCA, with synapses and the leaky integrate and fire neurons broken down
into computational equivalents. The synapses are weighted to implement the proper
matrix multiplication, and have postsynaptic currents equivalent to a low pass filter.
The neuron is analyzed as a nonlinear element preceding a firing element that gener-
ates a point process. If we randomize the initial state of the neurons, the expectation
of the intensity of the point process �̄a(t) will be equivalent to the output of the LCA.

6.2.1 The Spiking LCA

Using (59) and (61) as a general form, we can easily construct a neural network that

maps directly onto the LCA (see Figure 30(b)). We begin by creating two populations

of neurons: an input population M ideal I&F neurons and an output population of

N neurons with a soft-threshold of �. The input to the first population is a constant

vector y ∈ ℝ
M . With a constant input, these neurons are completely periodic, with

a period of 1/y. Since � = 0 for these neurons, their intensity can be expressed as:

�̄y+
i (t) = T0(y) = y , y > 0. (62)

In order to acommodate negative inputs, we create a matching population that

takes as input −y. If we define the effective intensity �̄y(t) = �̄y+(t)− �̄y−(t), we find
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a linear relationship between it and the input y:

�̄y = y . (63)

Similarly, we create a matching population for the output neurons. If we define

ui as the input to the ith neuron in the first population, then ith neuron in the

matching population has input −ui(t), and the effective intensity of the pair is �̄a(t) =

�̄a+(t)− �̄a−(t) is:

�̄a(t) ≈ T�(ū(t)) . (64)

Finally, we implement our synapses to map to the linear portion of the LCA.

Using the general model of (61) to create the neural input vector u(t), we set the

linear filter �(t) =H(t)e−t/��/��, where H(t) is the Heavyside step function and �� is

the time constant of the synapses. We then weight the synapses such that:

ūi(t) =
∑

j

�i,j�(t) ∗ �̄y
j (t)−

∑

k ∕=i

< �i, �k > �(t) ∗ �̄a
k(t) .

We take the Laplace transform of both sides and divide by transform of the kernel

ℒ(�(t)) = 1/(1 + s��):

ℒ(ūi(t))(1 + s��) =
∑

j

�i,jℒ(�̄y
j (t))−

∑

k ∕=i

< �i, �k > ℒ(�̄a
k(t)) .

Taking the inverse Laplace transform then yields:

��
d

dt
ūi(t) + ūi(t) =

∑

j

�i,j�̄
y
j (t)−

∑

k ∕=i

< �i, �k > �̄a
k(t) . (65)

Converting this to matrix form finally yields:

��
d

dt
ū(t) + ū(t) = ΦT �̄y(t)− (ΦtΦ− I)�̄a(t) . (66)

Together (63), (64), and (66) characterize the expected dynamics of the spiking

LCA. This is identical to the nonspiking LCA (43), with a few major caveats. First,

the major nonlinear component (63) is only approximately true, and depends upon
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Table 8: Key variable names for the spiking LCA
Generic Input Output Description
Variable Population Population
vi(t) vyi (t) vai (t) Neural potential
xi(t) yi(t) ui(t) Normalized input current
� � Threshold current
x̄i(t) ūi(t) Expected input current Evj ∕=i

(0)[xi(t)]
x̄∗
i ū∗

i Steady-state expected input current
ni(t) ny

i (t) na
i (t) Spike count

�i(t) �y
i (t) �a

i (t) Neuron firing intensity
�̄i(t) �̄y

i (t) �̄a
i (t) Expected intensity Evj ∕=i

(0)[�i(t)]
�̄∗
i �̄a∗

i Steady-state expected intensity
ai(t) ai(t) Normalized spike count

the variance of u(t). Second, there is no direct way of measuring the output intensity

�̄a(t); we must instead rely on the spikes, which are a noisy measure of that intensity.

Neither of these problems, however, will prevent the system from converging to a

steady state, with �̄a(t) → �̄a∗ and ū(t) → ū∗.

6.2.2 Variance and Estimation of the Spiking LCA

In order to show that the spiking LCA yields a measurable result similar to the

nonspiking LCA, we must demonstrate that that the spike timings can provide an

unbiased estimate of the intensity. We will then provide an estimate of the variance

of this estimate. In our analysis, we will make several restrictions on our input and

dictionary. The dictionary elements have little overlap, such that the inner product

of any two elements < �i, �j > that are coactive has un upper bound of Q ≪ 1. The

individual elements of the input vector yi have a gaussian distribution with mean

0, but y is normalized s.t. ∣∣y∣∣22 = 1. Finally, we will assume that the system is

successful in imposing sparsity on the steady state of the outputs, s.t. ∣∣�̄a∗∣∣0 <= K.

Our key measurement tool will be to count the number of spikes in a time window

tW . Since we are using ideal integrate and fire neurons, the total change in potential

is equal to the integral of the current, less the leakage current, and less the finite
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voltage that is removed whenever the neuron spikes:

vai (tW )− vai (0) =

∫ tW

0

ui(t)dt−
∫ tW

0

�dt− na
i (tW ) .

Moving our measured variable to the left side, this becomes:

na
i (tW ) =

∫ tW

0

(ui(t)− �)dt+ vi(0)− vi(tW ) .

For ui > �, vai (0), v
a
i (tW ) ∈ [0, 1), where vai (0) is the random initial state of the

neuron, and vai (tW ) = mod(vi(0)+
∫ tW
0

(ui(t)−�)dt, 1) is the final state of the neuron.

We can further analyze:

vi(tW ) =

⎧
⎨
⎩

vai (0) + �i, if vai (0) + �i < 1 (Prob = 1− �i)

vai (0) + �i − 1, else (Prob = �i)
(67)

with �i = mod(
∫ tW
0

(ui(t)− �)dt, 1).

From this we can easily calculate the expectation (over the random initial condi-

tions) of the number of spikes, assuming ū∗
i > �:

E[na
i (tW )] = E[

∫ tW
0

(ui(t)− �)dt] + E[vai (0)− vai (tW )]

=
∫ tW
0

(ūi(t)− �)dt+ �i(1− �i) + (�i − 1)�i

= T�(ū
∗
i )tW = �̄a∗

i .

(68)

Our expected measured spike rate is then E[ai(t)] = E[na
i (tW )]/tW = �̄a∗

i , indicating

that our measurement is unbiased.

To calculate the variance of the spike count, it is useful to break down ui(t)

into its component parts, since the spike trains from the feedforward and feedback

connections have fundamentally different statistics. Let us define uy
i,j = �i,j�(t)�

y
j (t)

and ua
i,k =< �i, �k > �(t)�a

k(t), for which
∑

j u
y
i,j(t) +

∑
k u

a
i,k(t) = ui(t). Assuming

the various components have converged (ūi(t) = ū∗) and are nearly independent

(Sec. 6.2.2.1), the variance of the spike count can be calculated as:

V ar(na
i (tW )) = V ar

(∫ tW

0

ui(t)− �dt+ vi(0)− vi(tW )

)
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V ar(na
i (tW )) =

∑

j

V ar

(∫ tW

0

uy
i,jdt

)
+
∑

k

V ar

(∫ tW

0

ua
i,kdt

)
+V ar(vai (0)−vai (tW )) .

(69)

If the filter time constant �� ≪ tW , then we can say
∫ tW
0

uy
i,jdt ≈ �i,jn

y
j (tW ), and

likewise
∫ tW
0

ua
i,kdt ≈< �i, �k > na

k(tW ), where

ny
j (tW ) = yjtW + vyj (0)− vyj (tW ) ,

V ar(ny
j (tW )) = V ar(vyj (0)− vyj (tW )) .

The voltages vyj (0) and vyj (tW ) have similar properties to those of an output neuron,

but with �yk = mod(ytW , 1). Substituting the above approximation and identities into

(69) yields:

V ar(na
i (tW )) =

∑

j

�2
i,jV ar(vyj (0)− vyj (tW ))

+
∑

k

< �i, �k >
2 V ar(na

k(tW )) + V ar(vai (0)− vai (tW )) . (70)

From (67), we can easily calculate V ar(vi(0) − vi(tW )) = �i − �2i < 1
4
, and likewise

V ar(vyj (0) − vyj (tW )) < 1
4
. Substituting these bounds into (70), and recalling that

∣∣�i,j∣∣22 = 1, and that < �i, �k >< P , yields the inequality:

V ar(na
i (tW )) ≤ 1

4
+ P 2

∑

k

V ar(na
k(tW )) +

1

4
. (71)

Let us define the maximum variance, MV ar(na
i (tW )), as the right side of the in-

equality in (71). Of the N neurons in �a, K will have these bounds on their

variance, while the rest will be inactive, and have a variance of zero. Therefore,

∑
k V ar(na

k(tW )) <= KMV ar(na
i (tW ). Substituting this inequality into (71) yields:

MV ar(na
i (tW )) ≤ 1

2
+KP 2

∑

k

MV ar(na
i (tW )

MV ar(na
i (tW )) ≤ 1

2

1

1−KP 2
.
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Since �̂a
i (tW ) = na

i /tW , the maximum possible variance for the normalized spike rate

is

1

2(1−KP 2)t2W
. (72)

A few meaningful conclusions can be derived from this bound. First, if the Restricted

Isometry Property is observed, such that P 2 ≪ 1/K, where P is the largest inner

product of coactive neurons, then the maximum variance is effectively limited to 1
2t2

W

.

Second, doubling the time window will reduce the variance by a factor of four, which

is better than repeating the simulation with a different set of initial conditions. If

we wish to have an upper bound on the possible error of our estimate, but compu-

tational resources are at a premium, we should increase the computation time until

our maximum variance (72) reaches the desired tolerance.

6.2.2.1 Independence of Noise Sources

In order for (69) to hold, the various noise sources that contribute to the variance in

the spike count must be approximately uncorrelated. It is clear that the noise from

the feedforward projections
∑

j V ar(ny
j ), and the noise from the change in voltage

V ar(vai (0)− vai (tW )) must be independent, since they are completely determined by

independent random variables, namely the initial states vy(0) and vai (0).

The feedback noise from the other output neurons is nearly uncorrelated with any

of the other components. Consider two output neurons, �a
i and �a

k , corresponding

to dictionary elements �i and �k, and the input noise source vy(0) − vy(tW ). The

feedforward noise in the two neurons is < �i ⋅ �y > and < �j ⋅ �y >, whose cross-

correlation is < �i ⋅ �j > Var(vy(0) − vy(tW )) ≈ 1
4M

. For large M , this component

quickly becomes negligible.

Similar analyses can be performed on the other possible sources of correlation.

In no case does the correlation of two sources of noise that make up ui(t) ever scale

worse than 1
M
.
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6.2.3 Alternate Circuit Topologies

The leaky integrate and fire network shown here takes the analog LCA [102] and

transfers it to a spiking, stochastic model. The spiking model attempts to bridge

the gap between sparse optimization and neuronal computation, by translating the

soft-threshold operator T� of the LCA into the current-to-frequency conversion (FI)

curve of the neuron.

In order to show that a spiking neural network accomplishes the same compu-

tational goal as a rate coding model, we had to formally establish the relationship

between the spikes and the continuous state variable of the rate coding model. One

common approach, which we have adopted, is to design the spiking network so that

the instantaneous mean spike rate of a spiking neuron reflects the value of a state vari-

able of the rate coding model. In [2] a spiking network modeling approach is applied

specifically to study integrate-and-fire networks for the task of associative memory

retrieval at low spike rate. [55] is another example that analytically established equiv-

alence between a spiking network that retrieves random binary memory patterns and

a Hopfield-like rate coding model. These studies applied a current-based approach to

model synaptic inputs and did not look at the effect of synaptic conductances. [116]

addressed this issue by expressing the spike rate of a spiking Hodgkin-Huxley type

network in terms of synaptic conductances. The analytical description, however, is

not time-varying, and the approach was not tested in an attractor network. In [129],

an IF spiking description was converted to a rate description for a sparse coding

network by counting spikes in a time window. The study did not demonstrate any

formal equivalence to the LCA or any other sparsity approximation algorithms.

There are also several models of associative memory that are biologically more

detailed than integrate-and-fire (reviewed in [78]). As with our results here, these

simulated attractor networks can converge very fast [77]. These detailed models,

however, are more opaque in terms of their computational properties.
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Another approach is to map the continuous state variable to the exact timing

of the spikes. Maass [82] introduced such a temporal coding scheme that can be

implemented with leaky IF neurons and can emulate rate-coding Hopfield networks

with graded response. The response in this type of network is encoded in the relative

timing with respect to the rhythmic population synchrony, an effective neural ‘clock’.

Since every neuron fires once per neural clock cycle, however, it obviously does not

fit our requirements for a sparse system. Perrinet [94] used a feedforward structure

and rank order coding that implements matching pursuit to achieve sparse coding.

This implementation relies on a global look up table that assigns a fixed value to a

neuron’s output based on how many neurons spiked before it. It is unclear how this

look up table could be implemented in a biologically plausible way.

6.2.4 Refined Neural Model for Simulation

We used slightly different neuron and synapse models in our simulation, to show that

we could import the network to several extant neuromophic hardware platforms. Our

major targets were Spikey, an analog hardware system that instantiates 512 integrate

and fire neurons, and computes solutions at 10,000 times biological speed [24, 105],

and HICANN, a more advanced version of Spikey with wafer-scale integration [104].

These chips use leaky integrate and fire neurons, and more biophysically realistic

synapses. Biological synapses use ion channels that inject charge into the neuron.

In conductive channel models these are implemented as tunable conductances and

reversal potentials [118], with the following dynamics applied to the output population

of neurons:

v̇ai (t) =
g+i (t)

1/2− vE
(vai (t)− vE)−

g−i (t)

1/2− vL
(vai (t)− vL)−

1

�
(vai (t)− vL) , (73)

where g+i (t) represents the conductance driven by excitatory synapses, g−i (t) repre-

sents a conductance caused by inhibitory synapses, � is the tunable leakage time
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constant, vE is the normalized reversal potential for excitation, and vL is the tun-

able normalized leakage potential and reversal potential for inhibition. We modeled

vE ≫ 1, simplifying the dynamics to:

v̇ai (t) = u+
i (t)−

g−i (t)

1− vL
(vai (t)− vL)−

1

�
(vai (t)− eL) , (74)

where u+
i (t) ≈ g+i (t) is the positive current generated by the excitatory conductances.

If we tuned vL ≪ −1 (and increased � proportionally) then (74) simplified back to

the ideal case of (57).

While deriving an instantaneous spike rate from (74) proved intractable, we were

able to derive an average spike rate assuming constant u+
i (t) and g−i (t). We initialized

vi(0) = 0 and solved (74) for the time it took the neuron to reach the threshold,

vi(tTH) = 1, yielding

tTH = −� ′ ln

(
1− 1

� ′x+
i + vL

)
,

where � ′ = � ∣∣(1 − vL)/g
−
i . Inverting tTH gave us our average spike rate �̂a

i , and

yielded the nonlinear operator T�,�(u
+
i , g

−
i ) corresponding to the following leaky neu-

ron operation:

�̂a
i = T�,�(u

+
i , g

−
i ) =

⎧
⎨
⎩

1

−� ′ ln

(

1− 1

� ′u
+
i

+vL

) , if u+
i − g−i > �

0 , else

, (75)

where � = (1/�)(1−vL) describes the minimum input required for the neuron to fire,

and � = 1/(2(1− vL)) represents the relative ‘hardness’ of the threshold operator, as

shown in Figure 31(a). A � of 0 corresponded to the soft threshold function required

for BPDN, and generated by the ideal I&F neurons in (58). As we increased �, the

operator increasingly deviated from the soft threshold.

Using (45), we found the sparsity inducing cost function C(⋅) that corresponded to

our new threshold operator T�,�(⋅). As we see in Figure 31(b), as � increased, the cost

function no longer resembled the ℓ1-Norm of �∣�̂a
i ∣. For large firing rates ai was better
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(d) Thresholder � = 0.5

Figure 31: Effective threshold operator of the conductive synapse leaky I&F neuron.
(a) For low � = 0.1, the conductive synapses act similarly to the current-based
synapses, and inhibitory signals just have a linear subtractive effect on the output
firing rate. (b) As � increases, the inhibition has more of a shunting effect. For
� = 0.5, inhibitory signals have stronger effects for low net inputs; they effectively
move the threshold.
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modeled as a weighted sum of the ℓ1-Norm and the ℓ0-Norm: C(ai) ≈ �((1−�)∣ai∣+�).

In other words, large outputs were less ‘costly’ than they were in the ideal case, and

were more likely to be produced by the algorithm.

As � increased we also observed that the nature of inhibition changed, as il-

lustrated in Figure 31(c) and Figure 31(d). For small �, inhibition was essentially

subtractive, creating a negative offset of u−
i = g−i

1
1−�

. As � increased to 0.5, we devel-

oped a shunting inhibition, acting as a negative offset of u−
i only when the excitation

u+
i was large.

6.3 Experimental Simulations Setup

Figure 32 shows the experimental setup used for our simulations. We programmed

a network of leaky I&F neurons to perform the LCA using the rate coding scheme

described in the previous section. We described a network of 256 paired neurons; a

neuron in each pair was used to represent the positive and negative range for each of

128 network outputs. The network had 128 paired input spike trains, which likewise

represented the positive and negative range for each of 64 network inputs. Our inputs

were 200 8x8 whitened and normalized image patches taken from the Olshausen image

library [90]. All inputs were encoded at a rate of 500Hz : 1, and outputs were decoded

at the same rate. For a given rate encoding, each input channel had a constant inter-

spike interval (ISI), with the first spike at a random time.

Spike
Coding
1:500Hz IFΤ

IFΤ Spike
Window

and
Decode
500Hz:1

Output

Figure 32: System for testing the leaky integrate and fire neural network. 8x8
whitened image clips are converted to spike trains and fed into the network of 256
neurons, with full, symmetric, lateral inhibitory connections. Neural outputs are
windowed and rate decoded.
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The network was otherwise implemented exactly using the conductive synapse net-

work from the previous section, but with un-normalized voltages and conductances.

The reversal potentials were set to VE = 0mV, and VL = −80mV, while the threshold

and reset potentials VTH , and V0, along with the leakage time constant � were varied

to tune the key parameters � and �. The relative strengths of the synapses were

tuned such that, in the absence of any leakage, one presynaptic spike on a synapse of

weight w = 1 would cause exactly one postsynaptic spike. The synaptic time constant

�� was set to 5ms.

The dictionary Φ was learned using the Olshausen and Field gradient descent

method [90]. The ℓ1-Least Squares Minimization Program (L1-LS) [70] was used

to calculate the sparse approximation during the learning process (due to its fast

computation time).

All integrate and fire network simulations were coded in the Python module PyNN

[24]. Network simulations were run with NEURON [31]. Network results were com-

pared to the same sparse approximation problem computed with L1-LS, which was

written in Mathworks Matlab c⃝. Data analysis was likewise performed in Matlab.

6.4 Simulation Results

6.4.1 Accuracy and Performance

We compared the network output to the digital optimization computed by the L1-

LS algorithm, and found that it converged to a similar, but not identical solution.

Figure 33 illustrates the estimate a(tW , t) as a function of sampling window tW once

the network has converged (t = 1000ms). We can see that the RMS error is roughly

inversely proportional to tW . This corresponds perfectly with our analysis in Section

6.2.2, where we predicted that the variance of the estimate was proprtional to 1/t2W .

From the normalized spike counts a, we calculated several relevant metrics:

∙ the mean-squared reconstruction error (MSRE) ∣∣y − Φa∣∣22,
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∙ the ℓ1-norm of the output ∣∣a∣∣1, equivalent to the average spike rate across the

entire neural population,

∙ the ℓ0-norm, or support size of the output ∣∣a∣∣0, equivalent to the number of

neurons active in the window,

∙ the Objective Function of the output, from (42).

From Figure 33 we observed that of the two components of the cost, the ℓ1-

norm was independent of the time window. This makes sense, since a is an unbiased

estimate, we would expect that the relative error of
∑N

i ∣ai∣ would tend towards 0
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Figure 33: Integrate and fire network outputs as a function of window averaging
time, for � = 0.1, � = 0.01. (Top) The normalized root mean squared (RMS) error
of the network outputs is compared to the output of the digital solver L1-LS, and to
the outputs given for 300ms windows. The time dependent portion of the error varies
inversely with window duration, but a large portion of the error is independent of the
time window. This matches our analysis of the maximum variance in Section 6.2.2.
(Bottom) Cost metrics of the output as a function of time window. The ℓ1-norm cost
is time window independent (indicating a constant rate of firing), while the MSRE
cost decreases with time. Despite converging on a different solution than the digital
solver, the final cost is less than 0.1% higher.
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for large N , due to the law of large numbers. The MSRE had a time-dependent term

that scaled with the variance of the output error, which itself scaled 1/t2W .

Since the threshold parameter � determines the relative cost of the ℓ1-norm rel-

ative to the MSRE, for low values of � a longer window is necessary to reduce the

error relative to the minimum total cost. A 50ms window, corresponding to a cost

1.2% higher than that produced by the digital algorithm was used for convergence

simulations.

We tested the network using a low � = 0.01, sweeping the threshold � ∈ [0.01...0.1].

The results are averaged across 200 8x8 image clips. As can be seen in Figure 34(a),

the neural network converges on a result comparable to the digital algorithm, across

the entire range of threshold values.

As the threshold parameter � decreases, the average number of active neurons

rises to 25.5, but the average spikes per neuron rose only slightly to 3.1. In addition,

the output begins to diverge significantly from that of the L1-LS algorithm, without

elicting significant changes in the cost. This result makes sense: for the low � system,

the MSRE dominates the cost function, and since the matrix Φ is overcomplete, it

has a large null space, and many widely differing values of a will successfully minimize

the MSRE.

Figure 35 illustrates the distribution of spike rates in detail. In general, the

distribution of the spike counts matches the prior distribution that is implied by the

sparsity inducing cost: P (a) = e∣C(a)∣. For the highest threshold settings, an average

of 40 spikes are recorded in the 50ms window, from an average of 13.8 active neurons,

or about 2.9 spikes per neuron. The most active neuron in each image averages 8

spikes in the window, corresponding to a firing rate of 161Hz.

Figure 36(a) illustrates the convergence of the network. The output metrics, the

MSRE especially, actually converged faster than the system could be measured; the

dynamics were dominated by the low pass filter effects of the time window averaging.
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Figure 34: Output metrics of the spiking network [110]. For each value of the
hardness parameter �, we swept the threshold �, and averaged together the metrics
across 200 trials. (a) MSRE vs. ℓ1-norm of the network. Low values of � give an
output that is very comparable to the digital solver L1-LS for these metrics. As
� increases, the signal strength decreases so much that the MSRE costs make the
solution sub-optimal. (b) MSRE vs. ℓ0-norm. The network actually outperforms
the digital solver, especially as � increases. For moderate values of �, the number
of active neurons is greatly reduced at the same MSRE. Increasing � past 0.25 sees
diminishing returns.

Given that the time window average was completely stable by 70ms, this indicates

that the hidden state variables had converged by 20ms, or only 4 time constants

�� = 5ms. These results are consistent with the theoretical convergence time expected

for the non-spiking LCA [10].
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Figure 35: Distribution of spike frequencies, averaged across 200 trials. The input
spike frequency shows a gaussian distribution around zero (Top Left). The neural
outputs, however, show a much more kertotic distribution. A best fit to the e−∣a∣

probability distribution of the BPDN generative model is added for comparison. Note
that the kertosis increases with �, due to the different cost function (and thus different
implied generative model). The average spike rate and the number of active neurons
also decreases.

6.4.2 Effects of Non-ideal Neurons

In order to simulate more biologically realistic conditions, we reran the network at

successively higher values of the hardness parameter � ∈ [0.01...0.5]. Figure 34(a)

illustrates the effects of varying �. As � increases, the MSRE becomes much larger

for an identical ℓ1-norm, but the number of active neurons needed for the same MSRE

decreases dramatically (Figure 34(b)). This is expected, since, from Figure 31(b), the

high � network is constrained by a cost function with a large ℓ0-norm component.

As � increased from 0.25 to 0.5, we observed no additional reductions in ℓ0-norm at
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the same MSRE. The ℓ1-norm continued to rise, suggesting that the � = 0.5 network

is being trapped in local minima with costs significantly higher than the optimum, as

the outputs of the � = 0.25 network would actually result in a lower cost solution.

The network convergence time was highly dependent on the threshold hardness.

Only for � = 0.01 did the network not converge by 50ms. This may be related to

the overshoot seen in the support size for large �. Figure 36(b) shows that � has

relatively little effect on the convergence time.

6.5 Conclusion

Our goal in this chapter was to design and simulate a spiking network that would

calculate the LCA, a gradient descent method of solving sparse approximations. We

proved analytically that the expected spike rate of a network of leaky integrate and

fire neurons could exactly replicate the dynamics of the LCA, both with current-based

synapses, and conductive synapses. Our simulations confirmed that the conductive

network converged on a solution similar to the digital BPDN solver L1-LS.

In order to increase the realism of the system, we also tuned the network parame-

ters to deviate from a purely convex optimization problem. Despite these deviations,

however, our simulations demonstrated that the conductive-synapse network with

moderate-to-high values of � could still find a sparse approximation to the input.

While we cannot prove that these outputs represent the globally optimum solution

(as finding that solution is an NP-Hard problem), we observed that the network found

solutions with comparable cost metrics to the L1-LS outputs, and in fact outperformed

the digital algorithm for an ℓ0 measure of sparsity.

There are many applications where ℓ0 minimization is the true goal, since it is a

stronger measure of sparsity. Such hard sparse solutions use synaptic memory more

efficiently [52], can minimize metabolic energy use [100], and when combined with a

receptive field learning model, better reproduces the diversity of receptive fields in
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Figure 36: Convergence of the neural network, in biological time. (a) The evolution
of the MSRE and number of active neurons is largely dominated by the low-pass
filter effect of the time window tW = 50ms. Except for the case where � = 0.01, the
system has converged by the end of the first time window. Unlike the ℓ1-norm, the
ℓ0-norm exhibits some overshoot in the number of active neurons. (b) Evolution of
� = 0.01 systems, for different values of �. The rate of convergence appears largely
independent of �.
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V1 than a convex optimization method [100, 129].

The observation that the network shows diminishing returns for � above 0.25

is at odds with biological neurons, where an action potential resets the membrane

potential lower than the leakage potential, i.e. � > 0.5. However, more biological

implementations can actually ameliorate the situation. First of all, the hardness of

the threshold is partially dependent on the stochasticity of the neural inputs—the

larger the variance in the input, the smoother T� becomes. We could thus lower

the effective hardness by adding noise to the input. Adding a significant refractory

period would also alter the nonlinear operator. Adding a horizontal asymptote to the

firing rate would effectively bend the sparsity inducing cost curve upwards, making

the local minima effectively shallower.

As an additional improvement, it might be worthwhile to redefine the cost function

to explicitly include the effects of inhibition. Candès et al. [29] recently proposed

that increasing the thresholds for weak signals, and decreasing it for strong signals can

allow the system to reach global minima even in a concave optimization problem. If

inhibitory synapses were limited to the lateral connections, then for a high � system,

the threshold �+ uI
�

1−�
of a given neuron would effectively scale with the activity of

the other neurons, or inversely with the relative strength of its own activity. Such a

network would have the additional benefit of obeying Dale’s law, which limits each

neuron to either excitatory or inhibitory efferents.

Of course, the integrate and fire model can be further embellished by incorporating

experimentally measured FI curve [74]. Alternatively, we could directly add the dy-

namics of the action potential, dendrites, and the effects of a more diverse assortment

of ion channels. As long as the resulting function can still be approximated by an

invertible FI curve, however, a sparsity inducing cost function can be derived. If that

cost function is reasonably close to being convex, then the results of our simulations

suggest that the network can converge on a sparse approximation to the input.
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CHAPTER VII

A SPIKING HARDWARE SOLUTION FOR SPARSE

APPROXIMATION PROBLEM

7.1 Benefits of Spiking Network in Hardware

In the previous chapter, we demonstrated that simulations of a spiking neural network

built with dynamics described by (76) could successfully converge on the solutions

to the objective function [110]. We showed that the spiking LCA could find solu-

tions comparable to a digital BPDN solver, the ℓ1-Regularized Least Squares (L1-LS)

algorithm [70].

Inspired by recent advances in implementing neurons in silicon [67], this chapter

demonstrates a hardware implementation of the spiking LCA. A spiking approach has

several benefits relative to both digital and non-spiking analog methods, especially

when implemented in hardware.

In general, sparse approximation problems use a non-linear definition of sparsity

(such as the ℓ1-Norm), which renders the desired optimization program non-smooth.

Despite significant progress on improving convex optimization algorithms (both gen-

eral purpose solvers [86] and solvers tailored to sparse approximation problems [70])

efficient iterative digital algorithms require O(N2) floating point operations per iter-

ation.

Analog implementations can provide a beneficial alternative, both by reducing

the number of calculations needed (thereby improving performance) and by increased

computational efficiency (reducing power), generally at the cost of limiting the accu-

racy of the solution. The Locally Competitive Algorithm (LCA) is a recent sparse cod-

ing algorithm [102], whose Hopfield-Network-like [63] architecture is highly amenable
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Figure 37: Spiking hardware LCA system [113]. (a) The spiking LCA system was
programmed on the RASP2.9v, the FPAA chip pictured here. The location of differ-
ent system components has been superimposed on the die photo. This system used
1467 programmable components, the most used on a FPAA to date. The RASP2.9v
is 5mm x 5mm and fabricated in 350 nm process. (b) Conceptual diagram of the
recurrent neural network that comprises the spiking LCA. Integrate and fire neurons
accept excitatory inputs from current DACs, while inhibitory currents are summed
on their vertical dendritic lines. The neural circuit is composed of an integrate and
fire soma (Figure 39), and a synaptic driving circuit (Figure 41). The synapse driver
sources a current that travels down the horizontal axonal wire, flowing out through the
synapses. Each synapse is implemented via a single floating gate transistor, allowing
its weight to be easily programmed.

to analog circuit implementation. Its convergence time is proportional to the RC time

constant of the analog implementation (which tends to scale O(N)) [10].

An analog system offers considerable power savings relative to digital solutions

for the portions of the optimization that rely on linear computation. Analog vector-

matrix multipliers (VMMs) are several orders of magnitude more computationally

efficient than comparable digital multipliers [108]. Unfortunately, power in these

systems must be proportional to the maximum possible signal; in a system where the

output is expected to be sparse this is wasteful, since few signals will be nonzero.

A rate-based spiking system instead leverages the sparsity of the signals. By

following the lead of the sparse neural coding activity, and mapping the sparsity of
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the input to neural activity, we minimize both the number of spiking neurons, and

their spike rates. We therefore minimize total power consumption, since synapses

only consume power when they spike.

A spiking system would be especially beneficial for several compressed sensing ap-

plications. Compressed sensing has led to the design of new coded aperture sensing

systems that require many fewer measurements to collect data at a specified resolu-

tion. A spiking system could recover the compressed signal at very fast time scales,

virtually eliminating the post-processing that has become the accepted bottleneck

(e.g. in medical imaging [119]). Alternatively, the spiking system could be optimized

for low power, allowing compressed sensing techniques to be used for channel sensing

in portable devices [8].

The rest of the chapter proceeds as follows: In Section 7.2, we describe the ar-

chitecture and circuit implementation of the spiking hardware system we created,

including some small deviations from the simulated system in Chapter 6. Section 7.3

describes the results of the spiking system, including its speed, accuracy, and power

consumption. Finally, in Section 5.5 we conclude with some remarks on how the tech-

nology can be scaled, and compare it to both the analog LCA of Chapter refch:lca

and existing digital solutions. Most of the material in this chapter is adapted from

[113].

7.2 Adapting the Spiking LCA for Hardware

We decided to implement the Spiking LCA on the RASP2.9v for several reasons.

First, as an FPAA, the RASP2.9V was a highly configurable device, giving us more

flexibility than almost any other analog platform. This flexibility allowed us, for

example, to create the negative offset of the threshold operator � with a negative

current source rather than a leaky conductance; we used this to create a neuron
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Figure 38: Adapting the spiking LCA to the RASP2.9v. (a) Block diagram of the
spiking LCA, as introduced in Section 6.2. (b) Block diagram of the slightly simplified
spiking LCA implemented on the RASP2.9v. Rather than implementing a series of
spike train generators, the signal y was multiplied directly and the product ΦTy was
input to the neurons as analog currents. This change dramatically simplified the
circuit implementation.

with a current-to-frequency (f-I) characteristic that closely matched the ideal soft-

threshold. Second, as discussed in Chapter 4, the RASP2.9v contained directly pro-

grammable floating gates, which allowed us to arbitrarily program our synapses with

an accuracy unmatched by other FPAAs. Third, the volatile switching architecture

and programmable DACs greatly expedite testing relative to older FPAAs like the

RASP2.9a.

However, our choice also provided several limitations. The most serious constraint

was size. The RASP2.9v only contains 36 general CABs, which created a hard upper

limit on the number of neurons we could place on it. In addition, unlike in our

simulations, there was no good way to input many parallel spike trains onto the

neural network.

This prompted a slight modification to the system architecture (Figure 38(b)).
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Instead of converting the input vector y to a series of rate coded spike trains, we

performed a vector-matrix multiplication, and applied the resulting b = ΦTy directly

to the neurons as positive analog currents. This multiplication was implemented

either digitally or as the analog current-mode VMM described previously in Figure 19.

The system of equations defining the system became:

� dū(t)
dt

+ ū(t) = b− (ΦtΦ− I)�̄a(t),

�̄a(t) ≈ T�(ū(t))
. (76)

As in the previous chapter, ū(t) is the expected neural input, and �̄a(t) is the

expected firing intensity of the output neurons. Our measure of the output is a(t),

the normalized spike count over some time window tW . As we showed previously

in Sec. 6.2, a(t) provides an unbiased estimate of �̄a(t), with an RMS error that is

inversely proportional to tW .

7.2.1 System Components

In order to implement a dense spiking LCA on the RASP2.9v, we had to design the

components using the available CAB elements of the chip.

The most complex system component is the integrate and fire (I&F) neuron,

based on the Axon-Hillock circuit [89], shown in Figure 39(a). The neuron begins

with a drain matched current mirror, which accepts inhibitory currents from synapses

I− and threshold current I� and subtracts it from the excitatory currents I+ from

the VMM. The resulting net current IIN charges up the potential on the implicit

capacitance CIN V̇IN = IIN until the comparator senses that VIN has exceeded the

threshold potential VTH . As the output of the comparator VOUT increases, it raises

VIN via feedback capacitor Cf , providing hysteresis to the comparator. The reset

current will also be triggered, pulling down VIN until it reaches VTH . The feedback

then pulls VIN down.

The feedback produces a change of roughly VDD
Cf

CIN+Cf
on VIN . Therefore, in
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Figure 39: Integrate and fire neuron on the RASP2.9v [113]. (a) Ideal implementa-
tion of the integrate and fire (I&F) neuron, accepting positive and negative current
inputs. The floating gate generates the threshold current I�, while a current mirrors
inverts the negative currents so they can be subtracted from the positive inputs, pro-
ducing IIN = I+ − I− − I�. IIN is then integrated on the capacitor CIN until the
voltage reaches a threshold VTH . This produces an output spike and resets the poten-
tial to V0. (b) Realized implementation on the RASP2.9v, forgoing the input cutoff
transmission gate, and replacing the digital inverter with an analog inverter. Both
of these compromises were made to increase on-chip density, at the cost of linearity
of the frequency response and power consumption. (c) Internal potential VIN while
the neuron is firing. The potential ramps up to VTH , and is then rapidly pulled down
by the resetting nFET. (d) Output potential VOUT while the neuron is firing at its
maximum frequency, about 55 kHz.
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Figure 40: Current to frequency (FI) characteristic of the neuron [113]. (a) Response
of the neuron to a positive input current I+. With I� = 0, the spike rate is a
rectifier, but when I� is increased to 5 nA, it effectively creates a soft threshold at
I�. The response varied slightly from neuron to neuron; the dashed lines indicate the
first standard deviation of the response. (b) The FI curve deviates from the ideal
soft-threshold minimally below about 30 kHz, largely due to variations between the
neurons. Above 30 kHz, the nonlinearity of the frequency response becomes the major
source of non-ideal behavior.

order to ramp back up to VTH and produce a spike, IIN needs to produce a charge

of QRAMP = VDD
C1Cf

C1+Cf
≈ VDDCf . On the RASP2.9v, the smallest explicit capac-

itors are 500 fF, and VDD = 2.4V. This means that our ramp time is: tRAMP =

QRAMP/IIN = 1.2 pC/IIN .

Ideally, the neurons would have a fixed refractory period while the voltage was

reset. Unfortunately, the RASP2.9v has insufficient transmission gates to cut off

the incoming current during reset at the desired density, so we implemented the

circuit shown in Figure 39(b). This circuit produces a reset time of tRESET =

1.2 pC/(IRESET − IIN). Combining these times and the latency of the comparator

tLAT produces a period of:

TIF = tRAMP + tRESET + 2tLAT =
1.2 pC

IIN(1− IIN/IRESET )
+ 2tLAT . (77)

Figure 40(a) shows the results of the circuit as implemented on the RASP2.9v. The

current-to-frequency (FI) curve corresponds to IRESET ≈ 400 nA and tLAT ≈ 4�s.

Since the spiking LCA requires that the FI filter operate as an ideal soft-threshold,
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this in practice limits our input range to 40 nA or so, a region where the response of

the neuron is roughly linear (Figure 40(b)).

The I&F Neuron requires the use of four explicit nFETs; there are 18 CABs that

contain at least that many, which limits the density of the system to 18 neurons.

The synaptic grids performs the operation � ℎ̇(t) + ℎ(t) = Hâ(t) to compute the

recurrent inhibition. The feedback mechanism is that of a Hopfield Network [63];

there is no feedback from one node to itself (Hi,i = 0) and the feedback between

nodes are symmetric (Hi,j = Hj,i).

The synapses can be thought of as two circuits: a wave shaping circuit, and

a matrix of synaptic weights (Figure 41). There is one wave shaping circuit per

neuron. After each spike a current starved inverter produces a sawtooth wave, whose

slope determines the synaptic time constant � . Ideally, this sawtooth wave would

be attached to the gates of the synapses (Figure 41(a)) to produce a current that

would decay exponentially from the programmed current of the floating gate elements

(FGEs). Each individual synapse requires only a single floating gate transistor, whose

floating gate charge represents the weight of that synapse. The outputs of the synapses

with the same postsynaptic neuron are then shorted together to produce the inhibitory

current I− for that neuron.

Unfortunately, the gates of the FGEs are not locally accessible, so we resorted to

the topology shown in Figure 41(b). This topology creates a non exponential decay

that is dependent on the drain current passed by the supply pFET and capacitive

coupling from the source to floating gate of the synapses, both of which are subject to

mismatch. This mismatch requires all the synapses to undergo a calibration routine

to accurately program their weights.

A VMM acts as the feedforward multiplier, performing the linear operation b =

ΦTy. We decided to perform this multiplication digitally, and directly projected the

current I+ from the 18 8-bit current DACs to the positive input terminals of the
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neurons.

There are, however, several circuits that could be used to perform the multiplica-

tion on-chip. One option is the current mode VMM structure presented in Chapter 4.

It has a small area, low power, and an easily scalable design while operating in the

sub-threshold region. The circuit also fits easily on the RASP2.9v. The charge on

each FGE can be programmed to set the weight of each scalar multiplication. A

current mode VMM would accept the input vector y from the current DACS and

perform the operation b = Φty to compute the driving inputs to the neurons. This

architecture does have one major drawback: as was mentioned in Chapter 5, power

consumption scales O(N
√
N) with the number of output nodes.

The VMM component could alternatively be implemented as a synaptic matrix,

just like the recurrent multiplier. The spikes to drive the synapses would have to be

generated on-chip, either by another bank of neurons or by spike generation circuits,

as implemented in [105] or [23].

7.2.2 Implementation Details

We implemented a network of 18 neurons, with 12 driving inputs on the RASP2.9v.

This network allowed us to solve BPDN for arbitrary 12x18 dictionaries of non-

negative elements.

In addition to the necessary components, we used on-chip 8-bit current DACs to

inject vectors of currents onto the chip. The input vectors were created via the as-

sumed generative model for sparse signals (Figure 1(b)): a basis set of fixed sparsity

(k = 1–4) was multiplied by the dictionary Φ. We opted out of using the feed-

forward VMM to generate these results, performing the feedforward multiplication

digitally and directly applying them to the neurons via the current DACs. We also

implemented the threshold current I� at multiple values 2.5 nA and 5 nA, allowing

us to view the tradeoff between accurate reconstruction (low I�) and better enforced
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Figure 41: Synapse and wave shaping circuits on the RASP2.9v [113]. (a) Schematic
of the wave shaping circuit and synapses. A current starved inverter drives the wave
shaping potential VWS, which spikes low, and then ramps higher. The linear ramp
provides an exponential decay of the post synaptic currents, which is distributed
among the various synaptic floating gate transistors. The charge on these transistors
determines how much current flows during each spike. (b) Waveform of the wave
shaping potential VWS. The ramp time is slower than during normal operation, due
to the probe capacitance added to this node during measurement.

sparsity (high I�).

Many of the nodes in the neurons required calibration; we used the volatile switch

lines (described in Chapter 4) to easily pass outputs to onboard analog-to-digital

converters (ADCs) and a picoammeter to measure voltages and currents respectively.

We also used the volatile switch lines to process the system output—the spikes were

passed to a rapid ADC, which allowed us to easily count the number of spikes in a

1ms window to calculate a spike rate for each neuron. The solution to the sparse

approximation problem was proportional to these spike rates (43 kHz:50 nA).

7.3 Results of the Fully Implemented System

We ran varying numbers of trials for each sparsity. For k = 1 and k = 2, 18 and

135 respective trials were sufficient to exhaust the possible basis sets and vary the

122



1 2 3 4
0

2

4

6

8

10

12

14

16

18

Sparsity of Input

R
M

S
 E

rr
or

 (
%

)

 

 

SpikeLCA
L1−LS

(a) Sparse Values

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Sparsity of Input

P
er

ce
nt

ag
e 

of
 T

ria
ls

 

 

SpikeLCA
L1−LS

(b) Basis Found (I� = 2.5nA)
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(c) Basis Found (I� = 5nA)

Figure 42: For compressed sensing applications, we wish to find the sparse vector
that generated the input. For these tests, we set I� = 2.5 nA with the components of
the basis set having an RMS value of 25 nA [113]. (a) The RMS error of the spiking
and digital solutions relative to the sparse generating vector: ∣∣a−aTRUE∣∣2/∣∣aTRUE∣∣2.
(b) Percentage of trials whose nonzero outputs exactly matched the basis set used to
generate the input. Note that at k = 1 both algorithms perfectly identify the sparse
component used to generate the input. (c) Increasing I� to 5 nA doubles the error of
the solutions, but increases the identification of the proper basis set. For k = 2, the
basis set was reliably identified every time.

relative magnitudes of the components. For k = 3 and k = 4, we randomly picked

200 basis vectors with random values for each component. To assess the accuracy of

the spiking solutions, we compared them to a digital solution derived via the L1-LS

algorithm[70].

7.3.1 Analysis of Results

There are several ways of quantifying the performance of a sparse approximation

system. For compressed sensing systems, we wish to recapture the sparse vector

that was used to generate the input. Comparison with the L1-LS algorithm are

shown in Figure 42. There are two questions here: first, how well can we identify

the basis set (the set of nonzero components) in the sparse vector; second, how well

can we recapture the actual values (i.e. minimize ∣∣aSPIKE − aDIG∣∣2/∣∣aDIG∣∣2). For

k = 1, 2 and I� = 5nA, the spiking LCA was able to successfully find the basis
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set that had generated the input in every trial, as was the digital algorithm. For

k = 3, the LCA found the basis set in 180 out of 200 trials, actually outperforming

the digital algorithm, which only identified the basis set in 147 trials (Figure 42(c)).

Switching to I� = 2.5 nA reduced the identification rate for k = 2, 3 (Figure 42(b)),

but had the benefit of halving the RMS (root mean square) error (Figure 42(a)). For

k ≤ 2, the spiking and digital solutions had comparable reconstruction of the sparse

components. Decreasing I� would further reduce the RMS error of both the digital

and spiking solutions, until the noise floor is reached, either from external sources, or

from errors in the spiking implementation.

In terms of the actual objective function (42), the digital solution managed to

universally find a lower cost solution than the spiking LCA (Figure 43(b)). This makes

sense, as the hardware implementation includes a number of errors and deviations

from an ideal LCA that caused it to depart from the optimal solution. When I� =

5nA these differences were generally small; for k ≤ 3, the spiking LCA found a

solution with an RMS difference of less than 2 spikes (2 kHz) from the digital solution

(Figure 43(a)). For k = 3, this difference is 4.8% of the ℓ2-Norm of the digital solution.

At k = 4, the spiking solution started to diverge significantly from the L1-LS solution,

but it should be noted that by this point even the digital algorithm was identifying

the correct basis set in less than 60% of the trials. With a 12-dimensional input being

generated from 4 dictionary elements, it is questionable whether the input could still

be considered sparse.

7.3.2 Sources of Error

The difference between the digital and spiking solutions comes from several sources.

Quantization of the output is the first source of error; some information is necessarily

lost in the conversion from analog frequency to a digital spike count. Furthermore,

there is some randomness inherent in the spike count depending on how the first
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(c) Input Reconstruction Err.

Figure 43: For more general purposes, however, we wish to know how well the spiking
input is minimizing the objective cost (42) [113]. (a) RMS Difference between the
digital and spiking outputs: ∣∣aSPIKE−aDIG∣∣2/∣∣aDIG∣∣2. If we assume that the digital
solution is finding the optimal solution, then this measures the total deviation of
our spiking solution from the ideal. (b) The resulting increase in the objective cost
function from nonidealities in the spiking solution. This cost has two components,
the ℓ1-Norm, which was almost identical between the spiking and digital solutions,
and (c) The MSRE (∣∣y − Φa∣∣22) measures how well the input can be reconstructed
from the output.

spike time aligns with the measurement window. These two effects combine to create

an RMS error of 1/
√
6 spikes for each active neuron. With a 1ms window, this

corresponds to an error of 408Hz, slightly less than the observed difference of 420Hz

between the digital and spiking solutions when k = 1 .

The gain error of the synapses is another major source of error when more than one

neuron is active (k > 1). The FGEs that make up the synapses can be programmed

to 1% accuracy. However, the synapse topology used here (Figure 41(b)) adds sev-

eral sources of mismatch that are not compensated by our programming methods.

Compounding the problem, our analysis in Chapter 5 revealed that these errors are

amplified by the recurrent structure of the LCA system:
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Δa ≈ −(ΦT
ΓΦΓ)

−1�a , (78)

where � is the gain error of the synapses, ΦΓ is the dictionary of the active neurons,

a is the ideal neural output, and Δa is the resultant error of the neural outputs. The

upper limit on the amplification is the largest eigenvalue of (ΦT
ΓΦΓ)

−1, which increase

as the active set gets larger. Since both the magnitude of a and the active set go

up with increased k, we expect the supralinear increase in the error caused from the

synapses, as seen in Figure 43(a).

The nonideality of the neurons constitutes a third source of error, and explains

the aberration at k = 2. As discussed earlier, the FI curve of the neurons depart from

the ideal soft-threshold (Figure 40(b)). This problem is easily managed, however,

simply by staying in the frequency range of high linearity (less than 30 kHz). A

more significant problem is that of synchronization between neurons. Neurons that

normally exhibit inhibition can become synchronized when their firing frequencies

become similar. As shown in Figure 44, this results in non-monotonic, highly nonideal

inhibition. The exact cause of this phenomenon is uncertain, but most likely due

to some feedback between the state of the post-synaptic neuron and the current it

receives from the synapses. This synchronization is exacerbated when each neuron is

only being inhibited by one other, and explains the large jump in RMS error when

k = 2.

Each of these sources of error can be addressed, and their solutions were incor-

porated into the design for the next iteration of the system (Chapter 8). Using the

improved synapse topology in Figure 41(a) would eliminates several sources of mis-

match in the synapses, reducing their gain error to 1%. Synaptic gain error would be

further improved simply by increasing the density of the chip. A denser chip allow

a larger dictionary, which would more easily obey the restricted isometry property

(RIP)—i.e. the dictionary elements would have smaller inner products. With the
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Figure 44: Inhibition and Synchronization[113]. A presynaptic neuron inhibits a
postsynaptic neuron. For the most part, as the presynaptic neuron spikes more
frequently, the postsynaptic neuron spikes less frequently, at a roughly 1:1 ratio.
However, when the frequencies are very similar, the two neurons tend to synchronize,
and an increase in the presynaptic frequency will increase. This also occurs when the
presynaptic frequency is a multiple of the postsynaptic frequency.

RIP observed, the eigenvalues of (ΦT
ΓΦΓ)

−1 would be reduced, thereby reducing the

amplification of the gain errors. As the dictionary gets larger, the number of active

neurons could increase, concomittantly reducing errors from synchronization.

The quantization error is a byproduct of the rate coding scheme used here, and

is strictly a function of the length of the measurement window. Decreasing this error

would require increasing the length of the time window, and would thus come at the

sacrifice of performance.

7.3.3 System Dynamics and Performance

Only one neuron can be recorded at a time, so we had to run the same trial multiple

times in order to measure the dynamics of the entire system. The results of one

such trial are shown in Figure 45. At the beginning of the experiment, we have an

input with sparsity k = 2. At t = 0, the input is modified to have an additional
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component, which excites the an additional neuron sufficiently to cause it to spike.

Soon, the spikes from the newly excited neuron have sufficiently inhibited the other

active neurons to slow their rate of spiking. Within 25µs the system has evolved to

its final state. We can observe this in two ways: the ISIs are regular from this point

forward, and any spike count measurement window that begins after this point will

show no error from the transition.

The rapid convergence means that the actual speed of computation is dominated

by the measurement time. From both simulations (Figure 33) and experimental data,

the RMS quantization error is inversely proportional to the length of the measurement

window tW , at 1/(tW
√
6) for each active neuron. For a rate encoded system, this

trade-off cannot be reduced. By increasing the maximum possible spike rate, however,

the relative quantization error can be decreased.

The spike rate could be measurably improved by moving to a more custom ar-

chitecture, as the significant capacitances from the RASP2.9v interconnects (about

1 pF) would be eliminated. For example, the custom 180 nm chip Spikey includes

an array of over 300 neurons capable of firing at over 5MHz [105]. Leveraging these

firing rates, we would expect that a measurement window of 10µs would give us the

same relative quantization error seen here.

7.3.4 Power

The spiking LCA uses approximately 3mW of power, or 1.26mA at 2.4V. Up to

an additional 10µA of current draw was observed depending on the output. The

majority of this power comes from chip overhead, as the RASP2.9v used for testing

drains approximately 703�A of current even when nothing is programmed. When

none of the neurons spike, the rest of the power budget is consumed by the OTAs in

the neurons. Of this 559�A, the vast majority, 502�A is consumed by the second

OTA in the comparator of the IF neurons (Figure 39(b)). Replacing these 18 elements
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Figure 45: Measuring the spiking LCA output [113]. (a) Temporal response of the
Spiking LCA. At t = 0, the input changes, and the spiking pattern of the neurons
quickly adapt to the new input. The lower neuron goes from zero to a constant spiking
rate, and the upper has its spiking rate slowed by inhibition of the lower neuron. By
the first spike time of the lower neuron at 50µs, the entire system has converged to a
new steady state. (b) System diagram for measurement. Neuron output voltages are
passed through a volatile switch line to an ADC, where the spikes can be counted.

with digital inverters (as shown in the ideal circuit Figure 39(a)), and a digital buffer

to take the signal offchip would eliminate this current component entirely, at the cost

of less than 1�A of active power when firing at 80 kHz.

The remaining 57�A, or 3.2�A per neuron, is divided evenly between the other

OTAs. The first OTA is part of the active current mirror in Figure 39(b). If additional

nFETs were available, the current mirror circuit in Figure 39(a) would dramatically

reduce its power budget, since the OTA would no longer need to sink I−. The

comparator OTA, however, cannot be eliminated, and its power is a function of how

fast we wish to drive the second stage of the comparator.

7.4 Comparisons and Conclusions

We have presented a network of 18 integrate and fire neurons and reconfigurable

synapses, programmed on the RASP2.9v, an analog hardware platform. This spiking

network has been configured to be computationally equivalent to the LCA, We have
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Table 9: Spiking hardware LCA vs. analog LCA and digital solutions
System 12×18 666×1k 666×1k 1k CPU [20]

Spiking LCA Spiking LCA Analog LCA
(Hypothetical) (Hypothetical)

Power (Active) 1.34mW 7.68mW 149mW ≈3.8W
(Total) 3.02mW 9.79mW 151mW ≈100W

Time (Converge) 25µs ≈25µs ≈240µs 46ms
Time (Total) 1.03ms 1.03ms 4.62ms 46ms
Error (RMS) 4.8% (@ K=3) ≈ 4.8% ≈ 5% -

Extra Cost (Avg) 1.7% (@ K=3) ≈ 1.7% ≈ 1% -

demonstrated the successful implementation of this system, which can successfully

converge on the solution to the LCA, an algorithm for solving sparse coding problems.

With 18 neurons, the spiking LCA was scaled to the maximum possible extent on

the RASP2.9v. The chip has 36 regular CABs, and each neuron requires 2; indeed,

the system as implemented here used over 1400 of the floating gates of the RASP2.9v,

representing the largest system synthesized on a RASP chip to date.

At this size, the spiking network did not display performance and power metrics

much better than the analog LCA presented in Chapter 5. Indeed, we found an active

power draw of 74µW per neuron, compared to the 12µW per neuron for the analog

LCA. Similarly, the total time (including both convergence and measurement time)

increased slightly from 44.3µW per neuron in the analog LCA to 52.7µW in the

spiking LCA.

The scaling properties of the spiking LCA, however, were far superior. Without

any modifications, increasing the number of neurons would increase both the power

consumption and the measurement time linearly. The total energy per computation

would therefore scale O(N2), better than the O(N2
√
N) of the analog LCA.

As mentioned in Chapter 5, scaling the system to (N ≈ 1000) was required in order

to meet even the most basic requirements for sparse coding applications, for which

a more customized chip would be needed. Such a chip, however, could implement

several improvements that would further improve the power and performance scaling
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of the spiking LCA. Implementing the ideal neuron circuit of Figure 39(a) would

immediately reduce the power by a factor of 10; the resulting 7.7µW per neuron

would then compare favorably with the analog LCA. The real improvement, however,

could come from implementing an addressed event response (AER) system (as used

in [105] and [23]). The AER would allow all spikes to be measured in parallel, rather

than serially; so instead of O(N), the measurement time scales O(1).

We compare this hypothetical 1000-node spiking LCA to the scaled version of

the non-spiking LCA in Table 9. The hypothetical 1000-node spiking LCA also

compares extremely favorably with state-of-the-art digital BPDN implementations[3,

20]. Calculating that this calculation required 1.2GMACs over 46ms, and that the i7

CPU performs 7GMAC/J, we estimated the active power requirements for the entire

calculation at 3.8W, almost 500 times the active power used by our hypothetical

1000-node spiking LCA.

With these scaling properties in mind, our next big challenge was to turn our

hypothetical large spiking network into reality. In the next chapter we will introduce

our design for such a scaled spiking system on a custom integrated circuit. This design

included not only an AER block and an ideal neuron (to achieve the predictions of

Table 9, but several additional improvements that boosted performance and power

efficiency even further.
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CHAPTER VIII

A RECONFIGURABLE ARRAY OF INTEGRATE AND

FIRE NEURONS (RAIN)

8.1 Neuromorphic Computation

Despite the rapid advances of modern computing capability over the last half century,

the mammalian brain retains some key advantages over the best non-organic com-

puters. On a budget of only 20W, the cortex can simultaneously perform a number

of complex tasks such as object and speech recognition, fine motor control, locomo-

tion and path planning. While decades of research have produced solutions to these

tasks, they tend to be far less robust to noise and require large banks of computer

processors.

In large this can be ascribed to the different hardware used by biological and

engineered systems, and their vastly different histories. Mammalian brains evolved

for millions of years in an environment where energy (i.e. food) was extremely scarce,

and inputs were noisy and often incomplete. Whereas it is only recently, with the rise

of ubiquitous portable electronics and massive data centers, that energy consumption

has become a major constraint for processors.

In the face of these new constraints on energy use, many engineers are looking to

the cortex for more efficient solutions. Unfortunately, while modern Turing-complete

processors are extremely powerful and flexible systems, they do not map well to neural

architectures. For example, IBM recently produced a simulation of 1 billion neurons,

slightly more than can be found in a cat’s brain [97]. While an impressive engineering

feat, this simulation operated at 1% the speed and required a massive supercomputer

that used a million times as much energy as a cat brain. Obviously, this is not a
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less than 1.2% relative error [106]. These synapses combine with easily characterized
integrate and fire neurons to allow very precise analog calculations, at high speeds,
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suitable path forward for practical computation.

8.1.1 An Analog Floating Gate Hardware Solution

We present here the Reconfigurable Array of Integrate and Fire Neurons (RAIN) chip

as a low power, high speed solution for solving large classes of signal processing and

classification problems. This 7mm×9mm chip is being manufactured in a 350 nm

process, as of this writing. We have designed this chip to meet three important

design goals, which differ a bit from traditional neural modeling. First, we wanted

the ability to accurately map the relevant signal processing algorithm to hardware.
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Second, we wished to maximize performance. Neural computations often take tens

to hundreds of milliseconds, whereas many signal processing applications (such as

communication) require processing thousands or even millions of times faster. Third,

we desired a system that could be implemented precisely.

Recent efforts have already produced a number of neuromorphic hardware systems

that seek to capitalize on the highly parallelized spiking architecture found in the

brain, both to increase performance speed and to reduce system power [5, 23, 104, 99].

These systems are generally designed to produce real-time simulations of neuronal

circuitry with varying levels of fidelity. Unfortunately, these systems generally failed

to meet the design requirements in one way or another.

For example, we showed in [113] that a network of simple integrate and fire neurons

mapped almost perfectly to a nonlinear solver for compressed sensing recovery. The

algorithm could not easily have been mapped to a more complex neural model, like

the leaky neurons used in [105] or the Farquhar neuron used in [23].

Digital Neuromorphic systems like SpiNNaker[99] and the Digital Neurosynaptic

Core [5] are a little easier to map to than [23]; SpiNNaker, because its neuron model

is highly programmable, and the Neurosynaptic Core, because its model is extremely

simple. Their digital programming also grants them a high degree of precision.

Both of these digital systems rely on digital logic for the most common operation

in a neuromorphic system, calculating and summing postsynaptic currents. This

expensive digital operation must be repeated many times every time step, which

slows down the chip (to a 1ms time step in [5]), and makes it vastly more power

hungry.

While a 1ms time step is still fast enough for neural modeling, an analog system

can operate much more quickly. The HICANN system [104], for example, is able to

run at 10,000 times faster than biological neurons. Analog addition of postsynaptic

currents is quickly achieved with zero energy expenditure using Kirchoff’s Current
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Law (KCL).

Unfortunately, HICANN runs afoul of a third requirement for computational neu-

romorphic hardware: precision. Like many traditional analog circuits, the synapses

and neurons used in HICANN suffer from significant device mismatch. This mismatch

severely degrades the precision of the most important computational elements in the

system.

The RAIN chip combines elements from all these systems to solve each of the

design goals. We included integrate and fire (I&F) neurons, which—as we showed in

the previous two chapters—are sufficient to perform the linear optimization program

necessary for compressed sensing recovery. Like HICANN, the RAIN chip uses analog

processing for highly accelerated neural activity, capable of spike rates exceeding

10Mz, with refractory periods under 20 ns. To avoid the mismatch problems, however,

we implemented floating gate synapses with a relative precision of 1%, as previously

used in [23]. Additionally, the design uses an addressed event response (AER) system

to record up to 25 million spikes every second.

8.2 Architecture of the RAIN chip

The RAIN integrated circuit (IC) is a complete system on chip (SOC), composed

of several major blocks, as illustrated in Figure 47. These include the RAIN neural

core, where the synapses and somas are located 8.2.1, an event based digital interface

8.2.2, and an OpenCores R⃝ openMSP430 processor, for floating gate programming,

debugging, and general signal processing 8.2.3. The processor has access to a 16 kB

on chip EEPROM for program memory, a 32 kB SRAM for data memory. There is

an additional 16 kB of SRAM for buffering spike data entering and exiting the analog

core.

While we designed the bulk of the RAIN chip, including the neural core, many

of the peripheral blocks were designed in collaboration with other engineers in our

135



S Driver

I&F
Neuron

I&F
Neuron

AER Out
x400

S Driver

S Driver

S Driver

Neural Core

SRAM

SRAM

Open
MSP430

SRAMEEPROM

SPI 
COMM

AER
In

x300

PROGRAM

DEBUG

(a) RAIN Architecture

FEEDFORWARD SYNAPSES

RECURRENT SYNAPSES

INTEGRATE & FIRE NEURONS

AER OUTPUT BLOCK

A
E

R
 IN

AER SRAM

SRAM

EEPROM

A
D

C
s

MSP
430

D
A

C
s

(b) RAIN Die Photo

Figure 47: Layout and architecture of the RAIN IC. (a) Block diagram of the RAIN
chip. Besides the neural core and the associated AER interface, the RAIN chip
includes a onchip processor, compiled from the OpenCores openMSP430, an open
source synthesizable core coded in verilog. In order to support the processor, we also
have SRAM and EEPROM blocks for data and program memory. Additional SRAM
blocks allow onchip buffering of the spike data entering and exiting the neural core.
The processor uses a 16 channel DAC and a 2 channel ADC to progam the floating
gate parameters of the neural core, and to debug the various component circuits. (b)
Layout of the RAIN chip, with major blocks from Figure 47(a) highlighted. The
RAIN chip is a 7mm x 9mm IC fabricated in 350 nm CMOS technology.

lab. Special thanks go to Suma George, who designed the data and program memory

controllers, Stephen Nease, who designed much of the programming interface, and

Richie Wunderlich, who synthesized the openMSP430 processor and assisted more

generally. External IP was also used for the SRAM, EEPROM, and a pair of ADCs.

8.2.1 Neural Core

The RAIN core includes 400 I&F soma circuits, a 700×400 array of floating gate

synapses, and 700 synapse waveform shaping circuits. Of the 700 synapse waveform

shapers, 400 are driven recurrently by the soma spike outputs, allowing all-to-all

connectivity. The remaining 300 are driven by the AER input block, allowing flexible

136



neurons

Event
Latch

Priority
Enc.

9

401

9

address 
confirm

address
out

req

R
401

S

counter
timestampoverflow 7

9

Figure 48: Architecture of the AER Output block with priority encoder. It receives
asynchronous voltage pulses from the 400 soma circuits in the neural core. These set
event latches, which are encoded into a 9-bit address. This 9-bit address is sampled
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event address and timestamp is then transmitted along with a transmit request signal.
The event corresponding to the address is then reset.

feedforward connectivity. This diagram is illustrated in Figure 46. The component

circuits of the neural analog core are described in Sec. 8.3.

8.2.2 Addressed Event Representation Interface

The neural core uses an addressed event representation (AER) scheme (similar to that

used in [23]) to communicate both on and off chip. An AER input block converts

incoming 9-bit addressed events into a voltage spike to drive 300 rows of synapses.

Incoming events can be retrieved from an off chip bus or an 8k SRAM. If read from

the SRAM, each event includes a 7-bit signal indicating how many clock cycles should

occur before the next event is retrieved.

At the same time, an AER output block produces a 9-bit address and 7-bit time

stamp whenever a neuron fires (Figure 8.2.1). Each of the 400 neurons controls a

set/reset latch, whose outputs are fed into a priority encoder, which outputs the

highest address of a neuron that has fired. This address is latched and verified to

137



guard against any glitches (since the neuron firings are asynchronous). After an

additional clock cycle, the address and time stamp is transmitted, and the set/reset

latch of the corresponding neuron is cleared. The AER output is thus capable of

recording a spike event every two clock cycles. The block was synthesized to run at

a clock speed of over 300MHz, corresponding to a bandwidth of 150 million events

per second. Events can be transmitted off chip, or written to SRAM with a direct

memory access block.

8.2.3 Digital Processor and Programming

The RAIN IC also includes an openMSP430 processor, which adds a tremendous

amount of versatiliy to the entire chip. The openMSP430 plays multiple roles. First,

it controls the programming and calibration of the floating gate elements used in the

RAIN core.

Programming of the floating gate devices is performed by hot electron injection.

By exposing the transistor channel to a large source-drain voltage, and a current near

the threshold, hot electrons can be induced to jump over the oxide barrier between the

channel and the floating gate. This procedure decreases the charge of the floating gate

of the pFET transistor, allowing more current to flow during normal operation. By

interspersing the programming procedure with measurements of the current flowing

through the transistor, this current can be precisely set. In order to recharge the

floating gate (to turn off the transistor) we put large potential across the oxide,

allowing electrons to tunnel out of it.

The processor has access to memory mapped peripherals including DACs, ADCs,

and row and column selection logic. These peripherals allow the processor to fix the

source, drain, and gate of any individual floating gate device on the chip, including

the 280,000 synapses and multiple programmable parameters for each I&F soma. In

combination with our previously developed software tools, we can precisely program
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any gate (from an off state) in under 50ms [16, 106]. Minor positive and negative

adjustments can be performed much faster, in around 5ms.

Second, the openMSP430 controls the debugging infrastructure of the core. Many

of the voltages and currents in the core can be set and measured, allowing detailed

testing and calibration of individual circuits. For example, we can simultaneously

measure the input current and spike rate of an individual neuron, allowing us to

easily characterize current-to-frequency (FI) curves.

Finally, we can use the openMSP430 for signal processing, allowing significant

coprocessing between it and the neural core. The processor can be used to generate

input spike patterns and then to analyze the spike patterns produced by the neural

core. As an example, we could combine an analysis of the spike rates with a learning

rule (as in [51] or [90]) and the rapid floating gate adjustment method introduced in

Chapter 2 to learn the weights for sparse dictionaries.

8.3 Analog Circuits for Neural Computation

The neural core can be divided into three major sections, the 700×400 floating gate

synapses, with their driver circuits, the current buffer and mirror circuits, and the 400

adjustable soma circuits. These circuits have been designed to maximize bandwidth

and minimize power consumption.

8.3.1 Floating gate synapses

The floating gate synapses and their driving circuits produce tunable analog currents

in response to spiking events from either the AER input or the neurons. Their

circuitry is illustrated in Figure 49(a). While the synapses are similar to those used

on the Neuron chip [23], the synapse drivers are substantially different. When a spike

occurs, the gate voltage of the synapses VG is rapidly pulled down to ground. After the

spike pulse is completed, the synapse gate line is slowly charged by a programmable

floating gate pFET (Figure 49(b)) with current I� . Assuming a particular synapse
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Figure 49: Floating gate synapses on the RAIN IC. (a)A row of floating gate synapses
and their synapse driver. The synapse driver is simply an inverter with a current
starved floating gate pFET; it ramps down quickly, but the ramp up rate is pro-
grammable, seen in (b). When this signal is sent to the gate of the synapses, it
creates a decaying exponential current (c), whose maximum is set by the synapses’
floating gate charge, and whose time constant is set by the driver circuit.

was programmed to have a (subthreshold) current of IW when VG = 0, the synapse

will have a current of

I(t) = IW e−�VG(t)/UT ,

where � ≈ 0.6 is the capacitive coupling from the gate line to the transistor channel,

and UT ≈ 26mV is the thermal voltage. Since VG is ramping at a rate of I�/C (where

C is the gate lin capacitance), we can expect the synapse to produce a decaying
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exponential waveform, as in Figure 49(c):

I(t) = IW e−(t/�) , � =
CUT

�I�
. (79)

The waveform of course deviates from the ideal decaying exponential due to the non-

instaneous pulldown and spike duration, but these are on the order of 10 ns. For

� ≫ 10 ns, the waveform is very close to ideal. The currents produced by synapses on

the same column are then summed via Kirchoff’s Current Law by shorting together

their outputs.

8.3.2 Current Mirroring and Buffering

The currents produced by summing the synapse outputs are not immediately suitable

for the integrate and fire neurons, some of the signals must be mirrored to provide

negative inputs. The RAIN chip includes two schemes for mirroring. In the Hopfield

scheme, all of the feedforward synapses provide positive currents, while the output of

the recurrent synapses is mirrored to provide a negative current. The schematic for

the mirror is shown in Figure 50(a).

The circuit can easily be changed to operate in a fully differential scheme (shown

in Figure 50(b)), allowing four quadrant behavior. In this scheme, the integrate and

fire neurons are paired, with the second neuron receiving the additive inverse of the

first. Spikes on the first neuron in the pair corresponds to a positive output, while

spikes on the second neuron correspond to a negative output.

8.3.2.1 Active Cascode Circuit

Both mirror configurations include active cascode devices to buffer the incoming cur-

rents, dramatically improving their performance. Without a cascode device, the speed

of the mirror would be limited by the RC constant at the input. The capacitance

at the input is quite large, since it includes the drain contacts of all the synapses in

the column (≈ 3 pF). Even worse, the resistance is signal dependent, being inversely
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Figure 50: Two current mirror schemes on the RAIN chip. (a) The current mirror
circuit used when the RAIN chip is in Hopfield mode. Currents from the feedforward
synapses IFF are positive, while currents from the feedback (or recurrent) synapses
IFB are mirrored to subtracct them from the feedforward currents. The mirrored
current also goes to IPROBE which can be sent to an onchip current-to-voltage circuit
for calibration. (b) The current mirror used in differential mode. Neurons are paired,
and the feedforward synapses from column A are added to the feedback connections
from column B. The summed current is added to neuron A and subtracted from
neuron B. Likewise IFF,B + IFB,A is added to neuron B and subtracted from neuron
A. (c) The paired neurons in differential mode allow full four quadrant behavior.
Spiking on neuron a represents a positive signal, while spiking on neuron B represents
a negative signal. A feedforward synapse is excitatory if programmed on column A,
and inhibitory if programmed on column B.

proportional to the input current.

Active cascodes [125] are typically a good way to decrease the effective input

resistance of the mirror, but they introduce a risk of instability. We introduce an in-

novation on the traditional active cascode, a small leakage diode attached to the gate

of the cascode device (Figure 51). This diode M2 is matched to the cascode device
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Figure 51: Schematic of the active cascode circuit used by the current mirrors. The
circuit greatly increases the bandwidth of the current mirror, and isolates the output
from the large input capacitance. Adding the leakage diode M2 that is matched to
the cascode device M1 serves two purposes: it makes the phase margin of both the
feedback loop and the bandwidth signal independent.

M1, so its leakage conductance is proportional to the conductance of the cascode:

gM2 = KgM1. As the input current increases, the gain of the amplifier decreases

proportionally: A = GA

gM2
. The reduced loop gain has two benefits. First, it precisely

offsets the increased conductance of the cascode to maintain a constant input conduc-

tance: gIN = AgM1 = GA/K. Second, it maintains the gain margin of the feedback

loop:

GM =
p1
p2A

=
GA

C1

CL

gM1

gM2

GA

=
KCL

C1

.

The conductance ratio K can be tuned by controlling the source voltage of M2, and

should be set to the smallest value possible that maintains required stability. The

bandwidth of the mirror is thereby increased to GA

KCL
.

8.3.3 Integrate and Fire Neuron

The integrate and fire (I&F) neuron used in the RAIN core is illustrated in Figure 52.

The incoming current is integrated on a capacitor to create a membrane voltage

VMEM . An analog preamplifier and a digital comparator detect when VMEM current

has crossed the firing threshold. This signal is used to reset VMEM and is projected

to the recurrent synapses and the AER output block.
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Figure 52: Integrate and fire neurons on the RAIN IC. (a) Schematic of the integrate
and fire soma. (b) Specialized preaplifier increases the spiking speed while minimizing
static power consumption. (c) Simulated response of the soma to an constant input
of 1µA. When VMEM exceeds the threshold VTH (marked by the dashed line), VOUT

spikes for about 18 ns, resetting VMEM . (d) The current to frequency (FI) character-
istic of the neuron, with I� = 0 and ISM = 200 nA. Adding ILG not only increases the
firing rate, but gives it a much more linear relationship to the input current (ideal
linear relationship signified with dashed line). While the neuron is capable of spiking
at up to 15MHz, the FI curve has an approximately linear relationship only for firing
rates below 2.5MHz.

In order to maximize its bandwidth during spiking, the preamplifier includes an

extra current source that is gated by the output of the preamplifier V2 (Figure 52(b)).

Normally, the preamplifier has a small current source (ISM = 200 nA) to minimize

static power loss. When VMEM exceeds the threshold, V2 begins to drop. The larger

current source (ILG = 10µA) is added as a current source to the preamplifier, reducing

the slew rate proportionally. The ramp down and ramp up times of the preamplifier

can thereby be minimized, reducing the refractory period of the neuron to 18 ns or
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less, and permitting spike rates above 15MHz.

The behavior of an I&F neuron is characterized by the relationship between its

input current and its spiking frequency, called the FI curve (Figure 52(d)). Our

neuron has a range of linear response, bounded by two tunable nonlinearities.

The lower bound of the linear response region occurs at an input current of zero.

Only a positive current results in spiking behavior, zero or negative current will

produce no observable spikes. We can tune the onset of this nonlinearity by adding

a negative offset current I� to the input. This will make the FI curve an effective

soft-threshold function, with zero spikes when IIN < I�, and a spiking frequency

proportional to IIN − I�. This behavior will be extremely useful in implementing the

LCA.

The other major nonlinearity is caused by the nonzero refractory period of the

neuron. The total period from one spike to the next (the Inter-Spike-Interval, or ISI)

can be characterized as

TISI = CMEM
ΔV

IIN
+ tR , (80)

where ΔV is (roughly) VTH − V0 and tR is the refractory period.

For small input currents, TISI is dominated by the first term, the time it takes

the current to integrate on the capacitor VMEM . As current increases, the integration

time decreases, and the refractory period slowly begins to dominate the total spike

period. Since spiking frequency is the inverse of TISI , we observe a linear FI curve

when IIN is small, with frequency asymptotically approaching 1/tR.

We can use ISM and ILG to tune the refractory behavior of the neuron. A low

ISM results in a long latency between the point when the threshold is crossed and the

onset of spiking (when the V2 output of the preamplifier goes low enough to enable

ILG). ILG, meanwhile, determines the length of the refractory period, and the width

of the spikes sent forward to the AER output block and recurrently to the synapse

drivers.
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8.4 Software Tools for Programming and Testing

In order to use the RAIN chip, we will implement a multi-layer set of tools for pro-

gramming the tunable neurons and floating gate synapses. The top level will be a

PyNN (Python for Neural Networks) decoder, implemented in Matlab on a com-

puter. PyNN [24] is an object oriented language commonly used in the neuromorphic

community for describing neural networks. This framework allows a user to easily de-

scribe a population of neurons with arbitrary parameter values, and then to connect

the populations with arbitrary synaptic weights. Inputs to the system can be created

via populations of input spike train, where the user can specify the exact spike times

on each spike train.

We will design a decoder, modelled after the one in [23], to take the population and

connection objects and translate them into a switchlist: a list of all the floating gate

elements on the chip that need to be programmed. It will send this switchlist, along

with the spike times for each spike train, to the onchip openMSP430 microcontroller

over a USB interface. The microcontroller will first write the spike time data to the

on chip SRAM connected to the AER input block. Then, using the rapid injection

procedure demonstrated in Chapter 2, the microcontroller will program the floating

gate synapses and neurons according to the switchlist.

Once this is completed, the system can be tested. An onchip register can instruct

the SRAM to start sending information to the AER input block. The spikes generated

by the AER input block will propagate to the neuron and excite some of them. The

resulting spikes produced by the neurons will be measured by the AER output block

and stored in SRAM.

The experiment will end either at a user specified time, when the AER input block

has executed all the available input spikes, or when the AER output block has filled

up the memory allocated to it. The output spike data will then be sent back to the

computer, where the system user can examine the results of the experiment.
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Figure 53: Proposed simple experiments for the RAIN chip. (a) A dot-matrix test,
where each neuron is excited by one input synapse channel. This experiment tests
the AER Input, feedforward synapses and drivers, the I&F neurons, and the AER
Output. (b) A synfire chain, where each neuron excites the next one in the train.
This experiment allows us to verify the neuron-to-neuron spike latency, and to test
the recurrent synapses.

8.5 Proposed Experiments and Applications

We envision a number of easy initial experiments to prove the basic functionality of

the RAIN chip. A dot-matrix test, where each neuron receives one external excitatory

input from the AER, would be a very simple network (Figure 53(a)), but it would be

enough to verify the functionality of both AER blocks and the feedforward synapses.

A synfire chain would be another simple network experiment (Figure 53(b)). Only

the first neuron receives an external input. It then excites the second neuron, which

excites the third, and so on. This test is sufficient to verify the functionality of the

recurrent synaptic connections.

The true utility of the RAIN chip, however, requires us to implement a nontrivial

computational task. As a network of nonlinear devices with arbitrary linear connec-

tivity, the neural core should be able to implement arbitrary attractor networks. For

example, Maass et al. [83] showed that a network of I&F neurons was sufficient to

compute arbitrary classification of both static and dynamic signals, and even act as

a short term memory. That said, we specifically designed the chip with one task in

mind: a large scale, spiking LCA for sparse approximation.

147



Table 10: RAIN LCA vs. RASP2.9v LCA and digital solutions.
System RAIN LCA Spiking LCA Analog LCA CPU [20]

Size 300×400 12×18 4×6 64×512
Power (Active) 657µW 1.34mW 74.6µW ≈2.5W

(per neuron) 1.6µW 74.4µW 12.4µW ≈4.9mW
Time (Cvg.) 200ns 25µs 240µs 17ms

(Total) 10.2µs 1.03ms 266µs 17ms
(per neuron) 25.5ns 57.2µs 44.3µs 33µs

Energy/neuron 16.8pJ 77nJ 3.3nJ 83µJ

8.5.1 Sparse Approximation

As a reminder, the Locally Competitive Algorithm (43) is a system of ordinary differ-

ential equations that converges on a sparse approximation of the input vector, defined

by the BPDN objective function:

argmin
a

1

2
∥y − Φa∥22 + � ∥a∥1

As we discussed in Chapter 1, this is useful for a number of important signal processing

applications, such as channel sensing and medical imaging. We showed in Chapters 6

and 7 that a network of integrate and fire neurons could implement a spiking version

of the LCA (81) and converge on similar solutions:

��
d
dt
ū(t) + ū(t) = ΦT �̄y − (ΦTΦ− I)�̄a(t)

�̄a(t) = T�(ū(t))
, (81)

where �̄y is the intensity of the input spike trains, ū(t) is the expected normalized

current input to the neurons, and �̄a(t) is the firing intensity of the output neurons.

We set the firing intensity of the input spike trains �̄y equal to the input vector y,

by assigning the ith spike train to have a constant inter-spike-interval (ISI) of 1/yi.

The output a is observed by counting the average spike rate of the neurons once they

have converged.

The RAIN chip provides a perfect platform for the spiking LCA on a larger scale.

If the input y and the dictionary Φ contains only non-negative elements, then we
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can operate the chip in Hopfield mode, allowing a 300-dimensional input, and a 400-

dimensional output. Otherwise, we must operate the chip in differential mode, which

reduces it to a 150 × 200-dimensional system. We can also implement population

coding on the RAIN chip, by having multiple neurons represent each output coefficient

and averaging their firing rates. At the cost of reducing the dimensionality of the

output we can reduce the measurement window or decrease the quantization error.

The AER system will make the accuracy and the convergence speed of the system

much easier to measure. Unlike the implementation on the RASP2.9v, we will be

able to measure the spiking from each neuron simultaneously, reducing measurement

time by O(N). We also expect the spiking LCA to converge much faster than the

RASP2.9v implementation. The reduced refractory period gives the neurons an FI

curve that resembles an ideal soft-threshold for firing rates of up to 2.5MHz, almost

100 times faster than the neurons shown in Chapter 7. We can therefore run the

network that much faster. Instead of averaging our spike rate over 1ms, we could

expect good results in 10µs. This would represent more than a 1000 fold improvement

in speed relative to the fastest digital implementation of a similarly sized system (see

Table 10).

Despite this increase in speed, static power draw per neuron (and overall!) actually

decreases relative to the RASP2.9v. The integrate and fire neuron used here requires

only 400 nA of static current, divided between the preamplifier and the OTAs in the

two active cascode circuits. With a 2.5V analog supply voltage, the total static power

loss for the chip is 400µW.

A significant amount of the power is consumed by spiking activity. Both input and

recurrent spikes must charge and discharge a row of synaptic gates (approximately

3 pF), using about 3 pF⋅0.6V⋅2.5V= 4.5 pJ per spike. Output spikes also trigger a

20 ns burst of 10µA in the preamplifier (from ILG), using another 0.5 pJ. The spikes

also drive some onchip digital circuitry, driving about 1 pF at 3.3V with an activity
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rate of 0.5, for an additional 2.7 pJ. Total spike power is therefore about 7.2 pJ per

input spike and 7.7 pJ per output spike. Conservatively assuming 25 million input

spikes per second (our maximum AER bandwidth) and 10 million output spikes (since

the outputs should be sparse), this translates to 257µW for all spikes.

The computational portions of the 400 neuron RAIN chip should therefore use

under 700µW of power, only half that used by the similar portions of the 18 neuron

implementation on the RASP2.9v.

We would not expect accuracy to worsen relative to the smaller implementation.

Of the major sources of error, relative quantization error is independent of size, syn-

chronization errors should lessen as the number of active neurons increases, and gain

error should marginally decrease as a larger dictionary better respects the restricted

isometry property. Additionally, synaptic programming should be more accurate on

the RAIN chip, since it uses an ideal, gate-driven synapse, rather than the source-

driven synapses used in Chapter 7.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

The research presented in this dissertation represents significant advances in neu-

romorphic hardware engineering. In Chapter 5 we demonstrated an unprecedented

working analog solution for nonlinear Bayesian inference problems with sparse statis-

tics, such as Basis Pursuit Denoising (BPDN). We developed a version of the Locally

Competitive Algorithm, using currents as signal carriers, that converged on a solu-

tion similar to digital implementations, with substantial improvements in speed and

power efficiency.

We then showed in Chapter 6 that a spiking implementation of the LCA would

converge to the same solutions as the analog version, and in Chapter 7 showed that

this version saw further improvements in speed and power efficiency.

Our efforts then culminated in Chapter 8, with the RAIN chip, a 400 neuron,

highly accelerated neuromorphic chip. We estimated that this chip could converge

on solutions to BPDN problems in under 10µs, more than 1000 times faster than a

comparable state-of-the-art multicore digital implementation [20].

In order to implement these novel systems, we also made substantial improvements

to the hardware and software infrastructure of FPAAs. In Chapter 2 we introduced

a novel software algorithm which reduced programming time by several orders of

magnitude. Chapter 3 included a novel method for characterizing and compensating

for device mismatch, which added several bits of accuracy to floating gate program-

ming. Finally, in Chapter 4 we showed off the RASP2.9v. This included directly

programmable devices for improved accuracy and volatile switching for expedited

interfacing.
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We developed most of these advanced methods in response to the difficulties we

ran into when we first tried to implement the LCA on an FPAA. Our initial efforts

were plagued with inconsistent, slow, and inaccurate programming, compounded by

the annoyance of having to manually rewire the device whenever we wanted to debug

a single node of a VMM. The methods and hardware we developed took us from a

collection of poorly tuned circuits to the functioning systems of Chapters 5 and 7.

9.1 Steps to Viable Medical Imaging

Back in Chapter 1, we introduced the idea that the LCA could be used for medical

imaging. Specifically, we showed an image from [111], where the LCA was used to

recover a compressed 192×256 pixel image, taken from an actual MRI. We said that if

the recovery could be completed in 20µs, we would be able to process 1000 similarly

sized layers 50 times per second, fast enough for real time 3-D imaging. What would

it take to implement this in hardware?

Obviously, the first step in approaching a real-time 3-D imager would be to test

the RAIN chip. Assuming it performs similarly to our simulations in Chapter 8, then

we would have no problem reducing our time constant � to 100 ns, and expecting

convergence in 2µs. The remaining 18µs should be sufficient time to measure the

converged average spike rates.

The real problem from there will be one of scale. The RAIN chip contains only

200 neurons in differential mode, whereas the MRI image we showed requires 50,000

coefficients for recovery. How do we implement a system with 250 times as many

neurons?

One answer is with improved transistor technology. The RAIN chip was designed

in 350 nm technology, which was state-if-the-art in the mid 1990s. This results in float-

ing gate synapses (which consume the bulk of the chip area on the RAIN IC) that take

up 13.65µm×5.8µm each. Moving to a more modern technology like 45 nm (which
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our lab has already begun preparing for) might allow synapses of 1.71µm× 0.73µm.

This would allow 64 times as many synapses in the same unit area, and 8 times as

many neurons.

Additional scaling could come from increasing the size of the chip. Right now the

synaptic grid has a width of 5400µm, because the chip itself is only 7mm wide. But

a chip scaled up to a full reticle (25mm×25mm) could easily handle a 13,000×26,000

grid of synapses connecting to 10,000 neurons. This would be enough to represent

6500 differential coefficients, or a 100×65 pixel image.

At this point, our hypothetical system is approaching diagnostic quality images,

only eight of which would be needed to reconstruct the image from [111]. If we wish

to further increase the number of coefficients, we will have to examine multi chip

implementations.

This poses a particular challenge for hardware implementations of the LCA. Our

current implementation assumes all-to-all connectivity, where each neuron can send

a spike to all the others. This means that to expand the number of neurons by 8,

we need to increase the number of synapses (and chips!) by 64. Besides the obvious

engineering challenge of facilitating communication between all these chips, this will

inevitably represent a performance hit from the latency of sending spike data from

one chip to another.

If we can relax the requirements for all-to-all connectivity, our problem becomes

a little easier. In the simplest case, the sensing matrix Φ becomes block diagonalized,

and each chip can run independently, requiring no extra wiring and no extra latency.

Another possible implementation is one where certain chips (such as those that

represent adjacent parts of an image) need some lateral inhibition, but spike commu-

nication to others is rare or nonexistant. This would still be a significant engineering

challenge, but spike latency to adjacent chips would be much lower than in the all-

to-all case.
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An implementation of a partially connected network would also benefit from exam-

ining several multichip neuromorphic systems that have already been implemented

[99, 104]. The HICANN system is a particularly good model: it uses hundreds of

chips, manufactured and integrated on the same silicon wafer, while operating at the

same accelerated speed as the RAIN chip. Incorporating the best features of these

systems with future RAIN chips will be vital for large scale neuromorphic solutions.

9.2 Final Words

This thesis was in part an attempt to answer the question: ‘can we use analog and

mixed signal circuits to perform useful computations?’

The answer is a resounding ‘yes.’ We took sparse approximation, an important

signal processing problem, identified a system of differential equations that converged

on its solution, and converted it into a spiking neuron architecture. While significant

work remains to scale and test the systems created here, we are confident that they

can herald significant improvements in compressed sensing applications.

But spiking computation need not be limited to this one problem. A large number

of optimization problems can be mapped to dynamical systems similar to the LCA,

and there is no reason that they could not similarly be transformed into spiking

systems and implemented on the RAIN chip. The high speed and low power of the

resulting system could no doubt benefit many applications we did not mention here.

It is our hope that this work inspires future researchers and engineers to look to

neuromorphic solutions for their signal processing applications; it is our further hope

that the methods and hardware systems we created make that process a little easier.
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Sparse approximation is a Bayesian inference program with a wide number

of signal processing applications, such as Compressed Sensing recovery used in medical

imaging. Previous sparse coding implementations relied on digital algorithms whose

power consumption and performance scale poorly with problem size, rendering them

unsuitable for portable applications, and a bottleneck in high speed applications.

A novel analog architecture, implementing the Locally Competitive Algorithm

(LCA), was designed and programmed onto a Field Programmable Analog Arrays

(FPAAs), using floating gate transistors to set the analog parameters. A network

of 6 coefficients was demonstrated to converge to similar values as a digital sparse

approximation algorithm, but with better power and performance scaling. A rate en-

coded spiking algorithm was then developed, which was shown to converge to similar

values as the LCA. A second novel architecture was designed and programmed on an

FPAA implementing the spiking version of the LCA with integrate and fire neurons.

A network of 18 neurons converged on similar values as a digital sparse approximation

algorithm, with even better performance and power efficiency than the non-spiking

network.

Novel algorithms were created to increase floating gate programming speed by

more than two orders of magnitude, and reduce programming error from device mis-

match. A new FPAA chip was designed and tested which allowed for rapid interfacing

and additional improvements in accuracy. Finally, a neuromorphic chip was designed,

containing 400 integrate and fire neurons, and capable of converging on a sparse ap-

proximation solution in 10µs, over 1000 times faster than the best digital solution.


