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SUMMARY 

 This dissertation focuses on developing imaging informatics algorithms for clinical 

decision support systems (CDSSs) based on histopathological whole-slide images 

(WSIs). Currently, histopathological analysis is a common clinical procedure for 

diagnosing cancer presence, type, and progression. While diagnosing patients using 

biopsy slides, pathologists manually select the most progressed cancer regions and assess 

nuclear morphology. However, making decisions manually from a slide with millions of 

nuclei can be time-consuming and subjective. Researchers have proposed CDSSs that 

help in decision making by quantifying morphological properties in portions of biopsy 

slides selected by a pathologist. However, existing CDSSs have not been widely used in 

clinical practice because of the following limitations: (1) Human intervention is required 

for region-of-interest (ROI) selection and CDSS operation and (2) The performance of 

CDSSs is not robust and is sensitive to data variance [1, 2]. The development of robust 

CDSSs for WSIs, without ROI selection, faces several informatics challenges: (1) Lack 

of robust segmentation methods for histopathological images, (2) Semantic gap between 

quantitative information and pathologist’s knowledge, (3) Lack of batch-invariant 

imaging informatics methods, (4) Lack of knowledge models for capturing informative 

patterns in large WSIs, and (5) Lack of guidelines for optimizing and validating 

diagnostic models. 

 

 Recently, a large collection of WSIs with linked genomic and clinical data was 

provided by a public repository—The Cancer Genome Atlas (TCGA)—to facilitate in-

depth understanding and treatment of cancer [3]. TCGA enables data-driven research. I 



 xxii 

conducted advanced imaging informatics research to extract information from WSIs, to 

model knowledge embedded in these large datasets, and to assist decision making with 

biological and clinical validation. 

 

 Downstream knowledge modeling for cancer diagnosis requires that upstream 

information extraction methods are reproducible, invariant (to acquisition artifacts and 

batch effects), and comprehensive. I developed the following robust segmentation 

techniques: (1) A connectivity-based threshold model, which adapts with tissue variation, 

for tissue-fold segmentation; (2) A supervised stain segmentation system, which 

normalizes and segments test image using multiple reference images; and (3) An edge-

based nuclear cluster segmentation method, which segments nuclei using concavity 

detection and ellipse fitting. In addition, I developed a comprehensive image feature set 

that represents many aspects of histopathological images including color, shape, texture, 

and topology. Finally, I developed image-level and information-level normalization 

methods to address various forms of batch-effects. 

 

 Modeling knowledge in large WSIs is hindered by the biological variation within 

the images and the semantic gap between quantitative information and pathologists’ 

knowledge. I developed a tissue-level visualization tool, called TissueViz, which 

facilitates the study of spatial patterns and the identification of ROI in WSIs through 

three visualization modes: single feature variation, unsupervised multi-dimensional 

clustering, and supervised classification. Thereafter, I modeled the knowledge about the 
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spatial structure in WSIs using quantization methods, which quantize image feature space 

and quantify percent of WSIs in different quantization blocks.  

 

 The novel knowledge models generated by my imaging informatics algorithms 

enable decision making. I validated the knowledge models for two applications: (1) 

diagnosis of histopathology-based endpoints such as subtype and grade and (2) prediction 

of clinical endpoints such as metastasis, stage, lymphnode spread, and survival. The 

statistically emergent feature subsets in the models for histopathology-based endpoints 

complied with pathologists’ knowledge. For example, nuclear shape features were 

overrepresented in Fuhrman nuclear grade model for kidney carcinoma. Besides 

validating models based on histopathological features, I also validated models for 

prognosis prediction using histopathological and genomic features. Using these predictive 

models, I found genomic and imaging markers for patient stratification. I developed a 

patient-level visualization tool, called PatientViz, which empowers the discovery of 

separable, reproducible, and prognostically significant clusters among cancer patients 

using histopathological knowledge. 

 

 From this research, I have attempted to provide evidence that pathology imaging 

informatics algorithms assist and enhance clinical decision making in cancer. I have 

illustrated results for ovarian and kidney carcinoma but all methods can be easily 

extended to other types of cancer. Automatic, batch-invariant, and comprehensive 

imaging informatics algorithms validated by biological interpretation of cancer endpoints 

can provide a deeper understanding of cancer histopathology. 



 

  1 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 The primary goal of this dissertation is to develop imaging informatics methods for 

CDSSs based on histopathological WSIs. This chapter describes the field of pathology 

image informatics and discusses state-of-art methods for CDSSs. Most of the content and 

figures in this chapter is a part of a review article on pathology imaging informatics [4].  

 

 To establish the motivation of this dissertation, this chapter highlights the 

challenges posed by histopathology and discusses the importance of imaging informatics 

in pathology. Next, to establish the potential impact of this dissertation, this chapter 

discuss current challenges and state-of-art methods for the various blocks of a pathology 

imaging informatics pipeline including (1) quality control of histopathological images, 

(2) information extraction that captures image properties at the pixel-, object-, and 

semantic-levels, (3) data and information visualization that explores WSIs for de novo 

discovery, and (4) knowledge modeling that utilizes image features to model meaningful 

knowledge for decision making, and (4) decision making that develops prediction models 

for diagnostic or prognostic applications (Figure 1). Thereafter, the chapter discusses 

state-of-art commercial systems for whole-slide image analysis and their limitations. 

Finally, the chapter describes the specific aims and structure of this dissertation. 
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Figure 1: Translational pathology informatics pipeline for analysis of WSIs.  

This pipeline has the following key components:  quality control to insure only high-

quality data is processed, information extraction to covert WSIs into quantitative features, 

visualization to interpret the image feature space and find patterns, knowledge modeling 

to model knowledge in WSIs, and decision making to develop clinical diagnostic and 

prognostic models. 
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Histopathological Images 

 Histopathology is the study of microscopic anatomical changes in diseased tissue 

samples. Tissue samples are usually obtained during surgery, biopsy or autopsy. Then 

they are fixed using either paraffin embedding or cryostat freezing and sectioned into 

very thin slices. These slices are then placed on a glass slide and stained with one or more 

stains. The goal of staining is to highlight cellular structures for study using light 

microscopy. Hematoxylin and Eosin (H&E) staining protocol is the most commonly used 

protocol for morphological analysis of tissue samples. H&E staining enhances four colors 

in histopathological images: blue-purple, white, pink and red (Figure 2). These colors 

correspond to specific cellular structures. Basophilic structures containing nucleic 

acids—ribosome and nuclei—tend to stain blue-purple; eosinphilic intra- and 

extracellular proteins in cytoplasmic regions tend to stain bright pink; empty spaces—the 

lumen of glands—do not stain and tend to be white; and red blood cells stain intensely 

red.  

 

 

 

Figure 2: A sample histopathological image stained with H&E stains. 

(A)  WSI, and (B) 512x512-pixel rectangular section, where nuclei, cytoplasm, and 

glands appear blue-purple, pink, and white, respectively. 
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 Histopathological analysis of tissue samples has several clinical applications—1) 

confirmation of a disease, 2) exclusion of a disease, 3) assessment of subtype and extent 

of a disease. Specifically, while analyzing a tumor tissue sample, pathologists confirm the 

presence of cancer, its subtype, its grade, and other cancer-specific prognostic indicators 

such mitotic counts [5, 6]. 

 

Importance of Pathology Imaging Informatics 

 Pathology imaging informatics refers to the analytical and computational methods 

for handling, analyzing, and exploring histopathological images and their associated 

clinical data [5, 7-11]. Imaging informatics play the following two important roles in the 

field of pathology. Firstly, it facilitates the development of CDSSs for patient diagnosis. 

Secondly, it aids in discovery novel biomarkers for research applications. 

 

 CDSSs provide a fast, objective, and reproducible means for histopathological 

analysis. Most of the existing CDSSs focus on images that represent only portions of 

tissue slides rather than on whole-slide images (WSIs) [5]. In comparison to WSIs, 

typical histopathological images reflect portions of tissue slides that are pathologist-

selected portions with higher quality, and represent the most informative and disease-

relevant regions of tissue slides [12]. Therefore, CDSSs based on tissue slide portions 

face limited challenges in the areas of quality control, ROI selection, and computational 

complexity. However, images of slide portions do not capture the complete information 

available to the pathologist during initial microscopic analysis. Moreover, they are 

subject to biases related to the knowledge of the pathologist that selected the image 

portions [12].  Thus, this dissertation focuses on methods for analysis of WSIs. 



 5 

 Patient-level prediction modeling and exploratory analysis is important for a 

number of clinical applications including diagnostics and therapeutics [13]. The 

importance of accurate image-based disease diagnosis and the development of novel 

pathology informatics techniques have led to the establishment of databases such as the 

NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) [14], TCGA [3], and the 

Human Protein Atlas (HPA) [15]. Such databases provide a large number of high-quality 

histopathological images and associated clinical data, further stimulating the development 

of novel informatics methods. Some of these databases also provide matched genomic 

and proteomic data, enabling multi-modal studies that associate “–omic” data with 

histopathological image features. To use the full potential of these repositories, it is 

essential to develop robust pathology imaging informatics methods. 

 

Quality Control 

 The quality of histopathological images is usually affected by (1) artifacts acquired 

during image acquisition and (2) batch effects resulting from variations in experimental 

protocol. Both of these quality issues can affect the results of downstream clinical 

applications. Data quality is especially challenging in collaborative repositories, such as 

TCGA, where a large amount of high-throughput data is collected at multiple institutions 

[3]. To use the full potential of these repositories, it is essential that researchers develop 

robust quality correction methods for WSIs. This dissertation discusses the causes and 

effects of these quality issues and describe some existing methods for identifying, 

eliminating, and correcting them.  
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Image Artifacts 

 Errors in biopsy-slide preparation or microscope parameters may lead to anomalies, 

known as image artifacts, in WSIs. Common image artifacts include tissue folds, blurred 

regions, pen marks, shadows, and chromatic aberrations [11, 16]. Image artifacts have 

unpredictable effects on image segmentation and other quantitative image features. 

Therefore, it is essential to either eliminate or correct these artifacts. Tissue-fold artifacts, 

caused by layering of non-adherent tissue on the slide, can be eliminated using methods 

based on color-saturation and intensity [17, 18]. Figure 2 illustrates tissue folds and pen 

marks in WSIs. Blurred regions, caused by loss of microscope focus, can be eliminated 

using methods that detect sharpness or texture properties [19]. Chromatic aberrations 

occur when light dispersion through the microscopic lens varies with colors, leading to 

ghost colors along the edges of objects or discontinuities in an image. Wu et al. suggest a 

method that quantifies the amount of color dispersion at the object edges and realigns 

color components to correct chromatic aberration [20].  

 

 Although artifact correction/elimination is essential for robust downstream 

analysis, literature on the topic is relatively sparse. Moreover, most proposed methods 

have only been tested on a limited set of images as a proof-of-concept. Therefore, this 

dissertation presents a novel tissue-fold artifact detection method and validates it on a 

large set of WSIs. 
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Figure 3: Tissue fold and pen-mark artifacts in WSIs.  
 

 

 

Batch Effects 

 Differences in slide preparation, microscope, and digitizing device between two 

batches of data may lead to differences in image properties between the two batches. 

These differences, called batch effects, can bias the performance estimates of predictive 

models. Histopathological images often suffer from color and scale batch effects. Color 

batch effects can be addressed by normalizing the color of an image to a reference image 

[21, 22] or by converting the image to a color space that is not affected by color batch 

effects [23-25]. Unlike color batch effects, which affect only color properties of an 

image, scale batch effects can affect a variety of image features such as object size, 

topology, and texture. However, scale batch effects may be difficult to detect or to correct 

because apparent changes in scale may be induced by biological factors such as cancer 

grade or subtype.  
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 Studies suggest that batch effects, if left un-corrected, can severely reduce the 

performance of genomic prediction models [26, 27]. Even though preliminary 

investigations, discussed above, suggest that batch effects are present in histopathological 

images as well, most researchers validate their diagnostic models on a single image 

dataset collected during a single experimental set-up. This dissertation presents novel 

methods for batch-effect normalization and discusses cross-batch performance with and 

without normalization.  

 

Information Extraction 

 Pathological images are described using following three types of information: (1) 

image acquisition metadata including imaging modality parameters, (2) clinical data 

including patient history, their disease and treatment, and (3) content-based image 

features. Content-based features may be very informative for quantitative prediction 

modeling and for exploratory analysis. Content-based features are categorized into three 

levels—pixel-, object-, and semantic-level features—based on the amount of raw data 

captured by the features and the biological interpretability of the features (Figure 4) [28, 

29]. 
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Figure 4: Overview of pixel-, object-, and semantic-level description of a 

histopathological WSI. 

Representation of a WSI of a kidney renal clear cell carcinoma biopsy using various 

quantitative features extracted from a single image tile (B): pixel-level, including color 

histogram (C) and Gabor filter response (D); object-level, including segmented shapes 

(E) and graph-based topology (F); and semantic-level, including percentage of high-level 

clinical properties (G). 
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Pixel-Level Features 

 Pixel-level image features are in the lowest level of the information hierarchy 

because they are the least interpretable in terms of biology. Pixel-level image features do 

not focus on any specific set of pixels in a WSI. Rather, they consider all image pixels 

and capture properties such as color and texture. Color features quantify color spread, 

prominence and co-occurrence using statistics and frequencies of color histograms in 

different color spaces including RGB [30, 31], HSV [32], Luv [33], and Lab [24, 34] 

(Figure 4.C). As an example of the utility of color features, Celebi et al. used color 

features from eight color spaces to classify skin melanomas[35]. Texture features 

quantify image sharpness, contrast, changes in intensity, and discontinuities or edges by 

measuring properties derived from gray-level intensity profiles , Haralick Gray-level Co-

occurrence Matrix (GLCM) features [25, 36, 37], wavelet sub-matrices [36, 38], multi-

wavelet sub-matrices [37, 38], Gabor filter responses [25, 37] (Figure 4.D), and Fractals 

[37].Texture properties are generally extracted from grayscale images. However, Sertel et 

al. introduced the concept of color texture analysis by quantizing the colors in 

histopathological images using self-organizing maps (SOM) [39]. Numerous measures 

have been developed to capture image texture and each measure can include numerous 

parameters. This enables precise tuning of image features for various image processing 

applications. Unfortunately, most texture features are very difficult to interpret 

biologically. Thus, they are seldom used in knowledge-based models. Despite the lack of 

biological interpretability, pixel-level features are used extensively in data-driven models 

because they are simple to extract and are useful (at times sufficient) to describe the 

images. Figure 4 illustrates some pixel-level features of a kidney renal clear cell 
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carcinoma WSI, including RGB color histograms and Gabor filter textures at various 

scales. Pixel-level descriptors are computationally inexpensive to extract and are known 

to be diagnostically useful. Thus, researchers working on WSIs can easily adopt these 

features for image representation. 

 

Object-Level Features 

 Object-level features are in a higher level of the information hierarchy compared to 

pixel-level features because they describe properties of the cellular structures—e.g., 

nuclei, cytoplasm, leukocytes, red blood cells, and glands—in a WSI. To extract object-

based features, it is essential to first segment cellular structures. Since cellular structures 

appear in different colors in a stained histopathological sample, researchers have 

proposed color-based methods for segmentation. Literature supports both semi-automatic 

methods, with some user-interaction [36, 40], as well as completely automatic methods 

[41-43] for color segmentation of histopathological images. Most methods segment a 

pixel independent of its neighborhood. However, recently proposed methods consider 

pixel neighborhood properties using graph-cut [39], object-graph[44], and Markov 

models [45]. Color segmentation methods segment the nuclear stain in the image but 

nuclei often tend to overlap each other forming dense nuclear clusters. Therefore, another 

segmentation step is required to extract the nuclear objects. Previous work suggests edge-

based [23, 46], region-based [47], and gradient-based [48] methods for nuclear cluster 

segmentation. The accuracy of image segmentation methods greatly impacts the 

robustness of quantitative image descriptors and downstream analysis. Figure 4.E 
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illustrates a pseudo colored segmentation mask, where blue, pink, and white represent 

nuclear, cytoplasmic, and no-stain/gland regions, respectively.  

 

  Object-level features describe the shape, texture, and spatial distribution of cellular 

structures in a WSI. Shape-based features can be broadly categorized into contour- and 

region-based features(Figure 4.E) [49]. Contour-based features include the properties of 

shape boundary such as perimeter, boundary fractal dimension, and bending energy. They 

also include coefficients or parameters of parametric shape models such Fourier shape 

descriptors and elliptical models. Region-based features include area, solidity, convex 

hull, Euler number, and Zernike moments [50]. Among all shape features, properties of 

elliptical-shape models of a nuclear boundary are most prevalent in pathology informatics 

because they are simple to extract and interpret and they have proven to be informative 

for predicting various cancer properties [39, 50-52]. 

 

 Object-level texture features are similar to pixel-level texture features, except that 

they capture the texture of only a subset of image pixels associated with a tissue object. 

Nuclear texture is reported to be very informative for separating malignant regions [52], 

subtyping cancer [51], and grading cancer . 

 

 The spatial distribution of cellular structures, especially nuclei, in a tissue sample 

can be captured by topological or architectural features. A common technique for 

extracting topological properties involves development and characterization of spatial 

graphs, where graph nodes are centers of tissue objects. Researchers have found spatial 

graphs (e.g., Deluanay triangulations, Voronoi diagrams, minimum spanning trees, 
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Gabriel graphs, and Ulam trees) to be useful for extracting topological features in 

histopathological images (Figure 4.F). Common topological features include properties of 

spatial graphs (e.g., edge length, connectedness, and compactness). Besides graph-based 

properties, topological properties include object density, average distance between 

neighbors, and number of objects within a given neighborhood. Architectural features are 

useful for cancer endpoints such grading , classifying tumor vs. non-tumor regions [53, 

54], classifying low vs. high lymphocytic infiltration regions [55], and predicting patient 

prognosis [56, 57]. 

 

Semantic-Level Features 

 Pixel- and object-level features capture useful information about histopathological 

images. However, they may be difficult to interpret biologically and are susceptible to 

noise. In contrast, semantic-level features capture easily interpretable high-level concepts 

such as presence or absence of nucleoli, necrosis, red blood cells, and leukocytes (Figure 

4.G). Systems with semantic features can produce synoptic reports that detail high-level 

sample properties along with the final diagnosis. Therefore, if the final diagnosis appears 

questionable, it is easy to visually validate these properties on the image sample. A 

semantic feature is usually a classification or statistical rule based on a subset of low-

level features (e.g., low-level properties such as nuclear texture, color, and gray level 

distribution may capture the high-level concept of nucleolus presence in a nucleus). 

Using these low-level features and some annotated data (in this case, annotated nucleus), 

a system could derive a classification rule for predicting the presence or absence of the 

high-level concept. Because not all low-level features may be useful for capturing high-

level biological concepts, the system could use feature-preprocessing methods to select a 
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subset of the original or transformed features. Among these feature preprocessing 

methods, the bag-of-features method is the most commonly used for semantic features 

[58-60]. Bag-of-features analysis is especially common for SIFT (scale invariant feature 

transform) features and texton histograms. Development of an informatics system with 

semantic-level features requires a large amount of annotated training data. Thus, only a 

few image retrieval systems use semantic-level features [61-63].  

 

 Therefore, previous work suggests several useful image properties and descriptors 

for histopathological CDSSs However, there are certain limitations of the existing 

work—1) most automatic segmentation methods for segmenting cellular structures fail 

with the variations in tissue samples due to batch effects, 2) the semantic-level features 

are difficult to implement while most of the other existing features are difficult to 

interpret, and 3) most existing features are validated for only certain cancer endpoints and 

it is difficult to predict their performance for other endpoints. This dissertation presents a 

comprehensive set of image features including pixel- and object-level features. This set, 

which is composed of several high-level biologically interpretable subsets, is validated 

for several cancer endpoints. 

 

Visualization 

 Visualization is an effective visual representation of data that can aptly 

communicate the information and aid learning. In the field of pathology informatics, 

visualizations are usually used to verify and interpret informative image features. High-

dimensional data is very difficult and requires tools for interpreting the biological 

relevance of features and quantitative models. Large-scale studies such as TCGA aim to 
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reveal new insights about aggressive cancer endpoints and to discover new prognostically 

different subtypes.  

 

Spatial Patterns 

 Images being spatial data, a prominent form of visualization is to display 

information directly on different regions of the image. With the availability of large 

histopathological data repositories such as TCGA, “virtual microscope” software 

applications have emerged that enable spatial exploration of high resolution digital WSIs 

[7, 64-66]. Without such applications, it is a challenge to share or even to view these 

images in real time. In addition, researchers have developed compression methods 

specifically for WSIs [67, 68]. The popularity of the Google Maps interface for exploring 

satellite images at many different detail levels has inspired similar tools for exploring 

whole slide tissue images [69-71]. In addition to viewing a WSI, some systems can 

highlight the regions-of-interest (e.g., regions of high-grade cancer or regions with 

lymphocyte infiltration) [45, 57, 72-75]. Moreover, some visualizations tag 

histopathological images with semantic labels such as necrosis, glands, and lymphocytes 

[62, 63] or highlight the spatial distributions of proteins, image features, or biomarker 

expression across the histopathological image [76]. 

 

High-Dimensional Feature Patterns 

 Patterns in image features can be captured in simple 2D or 3D visualizations such 

as scatter plots, distribution curves, box plots, histograms, and surface plots[36, 39, 52, 

55, 57, 76].However, if the number of descriptors is very large (>50), such visualizations 
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may be difficult to implement or interpret. Thus, unsupervised clustering methods are 

often used to reduce feature space prior to visualization. Common clustering techniques 

in pathology imaging informatics include hierarchal clustering, SOMs, k-means, and 

expectation-maximization. Hierarchal clustering is useful for patient stratification and 

visualization [51, 65, 77-79]. SOMs, a neural network-based unsupervised learning 

method that reduces the high dimensional data to a low dimensional quantized form, is 

commonly used for feature interpretation [80], patient stratification [81] and 

segmentation [39, 82, 83] in pathology imaging informatics systems. The advantage of 

SOMs is that it provides a planar representation of its nodes, where the neighboring 

nodes are similar to each other. K-means, an optimization method that minimizes the sum 

of distances of samples to the center of the closest cluster, is mostly used for color 

segmentation [84] and bag-of-features representation of histopathological images. Bag-

of-features representation of image samples is useful for image classification and 

visualization [59, 85]. Expectation-maximization, an iterative method that finds the 

maximum likelihood parameters for a model (mostly a mixture of Gaussians), is useful 

for segmenting histopathological images [24].  

 

 Both spatial- and patient-level visualizations of WSIs is an open area of research 

that requires interdisciplinary collaborations among pathologists, biologists, and 

computer scientists. Such collaboration is necessary to tackle the difficult problem of 

discovering and interpreting novel patterns in histopathological data that may lead to 

improved patient care. Moreover, it is necessary to develop novel quantitative metrics for 
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assessing the stability and reproducibility of patterns related to both spatial- and patient-

level analysis to ensure that these patterns are biologically relevant.  

 

Knowledge Modeling 

 After quality control and information extraction, the next step in WSI analysis is 

knowledge modeling. Knowledge modeling transforms information into meaningful and 

useful knowledge for decision making.  

 Here, three important steps of WSI prediction modeling are discussed: (1) region-of-

interest selection and tile-based WSI representation, (2) informative feature selection and 

reduction, and (3) classification. 

 

Region-of-Interest Selection 

 A high-resolution scan of a tissue biopsy slide results in a very large WSI (e.g., up 

to 40,000x60,000 pixels). Such WSIs contain a large amount of biologically related 

spatial variation including regions of high-grade tumor, low-grade tumor, necrosis, 

stroma, and lymphocyte-infiltrated tumor. When pathologists examine a WSI, they 

identify regions that are most important or relevant for the final prognostic decision (e.g., 

the region with the highest cancer grade). Similarly, an informatics system aims to 

identify a ROI in the WSI before developing a predictive model. Several researchers have 

developed supervised models for identifying ROIs in WSIs, but these methods require 

prior annotation for training [72, 73, 86]. Recently, researchers have proposed 

unsupervised knowledge-based methods for identifying ROIs [75, 87].  
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 Because of limitations in computer memory and processing time, WSIs are often 

cropped into smaller tiles (e.g., 512x512-pixel tiles), and then features are extracted from 

each tile in parallel [24, 65, 73, 75, 88, 89]. After identifying tiles corresponding to ROIs, 

an informatics system can either combine the tiles to represent the WSI in a prediction 

model [51] or predict the label for individual tiles and then combine labels to represent 

the final prediction result of the WSI [24]. In the former method, outlier features might 

dominate WSI properties. In the latter method, annotation of individual tiles, instead of 

the WSI, might be necessary for training models. A related topic to piecewise analysis of 

WSIs is multi-resolution or multi-scale analysis, where a WSI is processed at various 

scales/resolutions to achieve different modeling objectives [24, 25, 74, 75]. The basic 

concept of multi-scale analysis is that a coarse level of prediction—such as tumor and 

non-tumor classification—can be achieved at a low resolution, where WSIs are smaller 

and processing time is shorter. In contrast, for more complex problems such as grade and 

subtype prediction, WSIs need to be processed at higher resolution. Representation of 

WSIs by combining data from multiple WSI tiles is an emerging area of research with 

limited published results, especially in the context of clinical prediction.  

 

 Most WSIs are millions of pixels in size and capture a large amount of biological 

heterogeneity. Thus, it is necessary to develop automatic methods for accurately selecting 

ROIs in WSIs. Without accurate ROI selection, prediction performance of CDSSs for 

WSIs may suffer compared to that for manually selected image portions. Besides ROI 

selection, innovative methods are needed for WSI representation that can capture the 

biological heterogeneity in patient samples. Such representation methods will not only 
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aid prediction modeling but also aid exploratory analysis for discovering factors that lead 

to differential clinical outcomes. Therefore, this dissertation presents novel quantization 

based WSI representation methods that capture biological variability in patient’s samples. 

 

Informative Feature Selection and Reduction 

 Identification of informative image features is necessary for WSI prediction 

modeling. Dimensionality reduction in WSI prediction modeling is beneficial for the 

following reasons: 1) prediction modeling after dimensionality reduction can result in 

simpler models with higher prediction performance and 2) dimensionality reduction can 

provide insights about the data by highlighting important features or dimensions [90].To 

identify informative and robust image features, one of two techniques is generally 

applied: (1) feature selection or (2) feature reduction. These techniques reduce the 

dimensionality of the feature space by removing irrelevant and redundant features to 

improve the performance of prediction modeling.  

 

 Feature selection methods can be broadly classified into three categories: filter, 

wrapper and embedded methods [91]. Filter methods include univariate methods that 

filter features based on statistical properties (e.g., t-test, Wilcoxon rank sum test, 

ANOVA, and chi-square) [92]as well as multivariate methods that consider the effects of 

multiple interacting features (e.g., minimum redundancy maximum relevance (mRMR) 

[93], and relief-F [94]). Because filter methods are fast and scalable to high-dimensional 

data, they are often used in pathology informatics [4, 52, 54, 58]. However, filter methods 

select features independent of the classifier; as such, they may not select optimal feature 
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sets for a particular classifier. In contrast, wrapper methods generate various subsets of 

features using a deterministic or randomized search method and directly evaluate them 

with a classifier. Common wrapper methods are often coupled with a search method and 

include sequential forward search (SFS) [95], sequential backward elimination 

(SBE),randomized hill climbing [96], genetic algorithm [97], and simulated annealing 

[98]. Sequential search methods are commonly used in pathology informatics systems 

[24, 37, 99]. The drawbacks of wrapper methods include over-fitting and computational 

cost. Thus, embedded methods identify important features as intrinsic properties of a 

classifier (e.g., the weight vector of a SVM classifier [100] and the nodes of a random 

forest or tree classifier [101]). DiFranco et al. used random forest feature selection in 

their system for detecting regions of prostate tumor in WSIs [73].  

 

 Feature reduction techniques transform high-dimensional data into meaningful low-

dimensional data. Ideally, reduced dimensionality should correspond to intrinsic 

dimensionality of data. In comparison to feature selection methods, feature reduction 

methods transform the original features instead of selecting an optimal feature subset. 

Moreover, they are unsupervised with the exception of linear discriminant analysis 

(LDA) methods. Feature reduction methods can be divided into two groups: (1) Linear 

feature reduction techniques (e.g., principal component analysis (PCA), independent 

component analysis (ICA), factor analysis, and LDA) and (2) nonlinear feature reduction 

techniques including multidimensional scaling (MDS), ISOMAP, kernel PCA, local 

linear embedding (LLE), Laplacian Eigenmaps, and graph embedding[66, 102]. Because 

of the intuitive interpretation of PCA transformed features, it is one of the most 
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commonly used feature reduction techniques in pathology informatics [32, 39, 99]. 

Besides PCA, researchers have also used graph embedding [55], ISOMAP [85], and 

MDS [103] for feature transformation in pathology informatics systems. 

 

Decision Making 

 Decision making is the final and an important step for pathology imaging 

informatics, which develops prediction models for a number of prognostic clinical 

variables such as cancer grade, cancer subtype, survival time, disease recurrence, and 

therapeutic response. Prediction models are developed by training a classifier using the 

knowledge from WSIs and clinical labels. Classification methods commonly used in 

pathology informatics include k-nearest neighbors (k-NN) [24, 30, 37-39, 71, 85], 

support vector machines (SVM) [24, 30, 33, 35, 37, 39, 50, 51, 54, 55, 58, 59, 61, 85, 

99], Bayesian methods [24, 25, 30, 36, 37, 39, 50, 52, 57, 85, 99], neural networks [63, 

104], decision trees[31, 85] and logistic regression[31].  Researchers often evaluate 

image features using multiple classifiers and report the best-performing classifiers [24, 

30, 37, 39, 85]. In addition to basic classifiers, researchers in pathology informatics use 

boosting algorithms (i.e., combining a weighted set of weak classifiers to produce a 

robust classifier [25, 71, 85]) and ensemble methods that combine the decisions of 

multiple classifiers [24]. It is important to note that feature selection/reduction and 

classification should be conducted within a cross-validation (CV) framework, especially 

when evaluating systems for clinical prediction [105].  
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 Since the predictive accuracy of supervised learning methods depends on the 

quality of the training data, researchers are investigating methods for collecting and 

combining training data for predictive modeling. Training data can be collected using the 

following methods: (1) one-time annotation by a single pathologist, (2) one-time 

annotation by multiple pathologists, and (3) run-time continuous annotation. Most 

informatics systems use the first method. However, the performance of these systems is 

subjective to the pathologist’s knowledge. The second method for annotation requires a 

method for combining annotations from multiple experts [9]. The third method of 

annotation falls in the field of active learning or relevant feedback, where one or more 

pathologists provide active feedback to the learning algorithm in order to iteratively 

improve its knowledge [9, 106-108]. Although active learning based algorithms may 

need a longer training phase, they have the potential to evolve into useful CDSSs for 

clinical applications.  

 

Commercial Systems 

 The importance of quantitative and objective analysis of biopsy WSIs has led to 

several commercial software tools for WSI analysis.  GENIE
TM

 (Aperio, Vista, CA, 

USA) separates and quantifies different biological regions and tissue structures in WSIs 

based on examples provided by pathologists. HALO
TM

 (Indica Labs, Corrales, NM, 

USA) features fast processing of WSIs, segmentation of tissue structures, and 

quantification of various properties. AQUAAnalysis
TM

 (HistoRx, Branford, CT, USA) 

localizes and quantifies protein biomarkers in cellular and sub-cellular regions. 

Visiopharm (Hoersholm, Denmark) provides three image-analysis tools targeted 



 23 

specifically for WSI analysis: VisiomorphDP
TM

, TissuemorphDP
TM

, and HER2-

CONNECT
TM

. VisiomorphDP
TM

 and TissuemorphDP
TM

 (1) quantify various image 

properties, (2) use these image properties and user-selected examples of tissue structures 

to develop a decision rule for classifying/segmenting tissue structures, and (3) measure 

and report properties of these tissue structures in a large batch of images. HER2-

CONNECT
TM

 is a diagnostic tool for scoring HER2-stained, breast-cancer biopsy 

sections. Aperio has designed an open-architecture solution, called PRECISION, which 

integrates various commercial tools. All of these tools provide limited image processing 

capabilities for a complete WSI or for a ROI in a WSI. In most cases, pathologists 

manually select the ROIs and make diagnoses based on feedback from these commercial 

tools. Usually, an expert user calibrates these systems for each laboratory-specific 

experimental setup.  To the best of our knowledge, none of these tools provides complete 

data analysis for clinical decision-making that includes the following steps: (1) automatic 

quality control of image artifacts and ROI selection in WSIs, (2) automatic adjustment for 

color and scale batch effects in images collected at multiple institutions, (3) 

comprehensive information extraction using different types of pixel-, object- and 

semantic-level image features, (4) knowledge modeling, and (4) predictive models for 

patient-level diagnosis such as grade, subtype, and prognosis. 
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Dissertation Structure 

 This dissertation is motivated by the need to find solutions for two limitations of 

existing CDSSs for histopathological images: (1) Human intervention is required for 

region-of-interest (ROI) selection and CDSSs operation and (2) The performance of 

CDSSs is not robust and is sensitive to data variance [1, 2]. The development of robust 

CDSSs for WSIs (without prior ROI selection) faces several informatics challenges: (1) 

Lack of robust segmentation methods for histopathological images, (2) Semantic gap 

between quantitative information and pathologist’s knowledge, (3) Lack of batch-

invariant imaging informatics methods, (4) Lack of knowledge models for capturing 

informative patterns in large WSIs, and (5) Lack of guidelines for optimizing and 

validating diagnostic models. With the goal of addressing these challenges, this 

dissertation has three specific aims: 

Specific Aim 1: To extract information from histopathological images using robust, 

batch-invariant, and comprehensive image feature extraction methods. 

Specific Aim 2: To model high-level knowledge in WSIs for biological interpretation and 

decision making. 

Specific Aim 3: To validate the power of imaging informatics algorithms for assisting in 

the diagnosis of histopathology-based endpoints and the prediction of clinical endpoints. 

 

 Figure 5 illustrates the structure of this dissertation linking the chapters to the three 

specific aims. The left to right flow diagram on the top illustrates the flow of information 

across three specific aims. The top to bottom flow diagrams illustrate specific areas 

investigated to achieve each specific aim. Quality control algorithms insures that CDSS 

only processes the artifact-free regions of WSIs. Information extraction algorithms 

extract quantitative information (image features) from the quality-controlled regions. 

Knowledge modeling algorithms uses the information to capture morphological patterns 
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in WSIs as quantized representations. Finally, decision making algorithms uses the 

knowledge models to develop prediction models for clinical diagnosis and prognosis.  

 

 

 

Figure 5: Structure of Dissertation. 

Left to right flow illustrates information flow along three specific aims, where quality-

controlled  regions in WSIs are converted into quantitative information (image features), 

then the information is used to model biological knowledge in WSIs, and then the 

knowledge models are used for decision making. Top to bottom flow summarizes 

specific topics covered for each specific aim. 
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 Chapter 2, 3, and 4 address the informatics challenge of developing robust image 

segmentation methods. Chapter 2 focuses on tissue-fold artifact detection in WSIs and 

develops an adaptive tissue-fold segmentation method, ConnSoftT. ConnSoftT calculates 

optimal segmentation thresholds by modeling the connectivity of tissue structures at 

various thresholds. Chapter 2 provides quantitative and visual comparison of ConnSoftT 

to existing methods and highlights pitfalls of existing methods. The adaptive estimation 

of optimal thresholds using image connectivity rather than intensity can be useful for 

other segmentation applications. Chapter 3 focuses on segmentation of the color 

enhanced cellular structures in a stained tissue image and develops a supervised 

segmentation method. The method (1) incorporates knowledge from pre-segmented 

reference images for training segmentation models and (2) normalizes new test images to 

the reference images for batch-invariant performance. Results on four batches of H&E-

stained histopathological images indicate that the performance of the supervised method 

is comparable to user-interactive segmentation. This supervised segmentation system can 

be easily trained and applied for the segmentation of microscopy images stained with 

other staining protocols. Chapter 4 focuses on segmentation of dense nuclear clusters in a 

binary nuclear-stain mask of a tissue image. The proposed method is an edge-based 

method including the following three steps: concavity detection, straight-line 

segmentation, and ellipse fitting. The chapter illustrates quantitative performance of the 

method on simulated data (randomly generated overlapping elliptical shapes) and visual 

examples on H&E-stained histopathological images. High performance on simulated data 

indicates that this method will be useful in segmenting elliptical shapes from complex 

structures of overlapping ellipses.  

 

 Chapter 5 and 6 address the informatics challenge of reducing semantic gap by 

developing interpretable image features. Chapter 5 focuses on the development of a 

comprehensive set of image features. This comprehensive set includes 12 high-level 
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feature subsets that represent different aspects of image such as nuclear texture, 

cytoplasmic shape, and color. The chapter illustrates the utility of the set in decision 

making for a variety of binary renal tumor subtyping and grading endpoints. For each 

endpoint, the chapter highlights emergent feature subsets, which can be interpreted 

biologically. This feature set (with high-level subsets) is a powerful tool for interpreting 

diagnostics models and discovering imaging markers for variety of cancer endpoints. 

Chapter 6 focuses on the development of biologically interpretable shape-based features. 

The proposed shape-based features quantify the distribution of shape patterns in an image 

using Fourier shape descriptors. Using a case-study on renal tumor subtyping, the chapter 

compares the prediction performance of novel shape-based features to traditional image 

features and discusses biological interpretability of differentially expressed shapes in 

binary subtyping models. Proposed shape-features can be used for describing images with 

multiple shapes rather than describing individual shapes.  

 

 Chapter 7 addresses the informatics challenge of developing batch-invariant 

informatics methods. It focuses on information-level batch-effects that affect the 

prediction performance of CDSSs based on images from multiple institutions or set-ups. 

The chapter develop two categories of batch-effect removal methods: (1) image-level, 

scales images using a nuclear-area model and (2) information-level, normalizes the 

distribution of features across batches using parametric or non-parametric feature models. 

Using four renal tumor histopathological datasets, acquired during different experimental 

setups, the chapter illustrates the impact of batch effects on image features and 

downstream cancer predictions. Results indicate that information-level normalization 

methods can drastically improve cross-batch performance.  

 

 Chapter 8 addresses the informatics challenge of finding region-of-interest in large 

WSIs. The chapter illustrates a visualization tool, called TissueViz, which facilitates the 
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study of spatial patterns in WSIs using a three-mode design framework: single feature 

variation, unsupervised multi-dimensional clustering, and supervised classification. Three 

case-studies on OvCa illustrate the usefulness of TissueViz in facilitating the discovery 

and biological interpretation of quantitative image features and the identification of ROIs 

in WSIs.   

 

 Chapter 9 addresses the informatics challenge of developing high-level 

representation for WSIs that can model pathologists’ knowledge. High-level 

representations are essential to tackle biological variation in WSIs while making 

diagnostic decisions. Instead of finding optimal ROIs for each cancer endpoint, the 

chapter proposes representing different biological regions in WSIs using quantized 

representations including univariate, multivariate, and multivariate subset quantization. 

Case studies on binary KiCa and OvCa endpoints illustrate the effect of different WSI-

representation strategies and ROI selection on prediction performance. The chapter 

validates these representation strategies for two applications: (1) diagnosis of 

histopathology-based endpoints such as subtype and grade and (2) prediction of clinical 

endpoints such as metastasis, stage, lymphnode spread, and survival. The quantized 

representation of WSIs allows data mining methods to extract informative biological 

regions while training models for different cancer endpoints. 

 

 Chapter 10 addresses the informatics challenge of optimizing and validating 

prognosis prediction models. It discusses the development of an interactive patient-level 

visualization tool, PatientViz, which allows user to study patient stratification in terms of 

prognostic significance, stability, and reproducibility simultaneously. The chapter also 

develops a method for genomic stratification using histopathological knowledge. A case-

study on prognostically significant KiCa patient stratification illustrates the usefulness of 

histopathological knowledge as compared to clinical five-year-survival labels.  
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 Chapter 11 concludes the dissertation with a discussion of contribution to the field 

of pathology imaging informatics. Also, the chapter provides an outlook about the future 

directions of research and open challenges. 
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CHAPTER 2 

ADAPTIVE SEGMENTATION OF TISSUE-FOLD ARTIFACTS IN 

WHOLE-SLIDE IMAGES 

Introduction 

 An important challenge in pathology imaging informatics is developing robust 

image segmentation methods that can overcome various biological and technical 

diversities. An image segmentation method may be designed to segment different objects 

in WSIs such as tissue regions, artifacts, stains, and nuclei. This chapter focuses on 

tissue-fold artifact segmentation while Chapter 3 and Chapter 4 will focus on 

histopathological stain and nuclear segmentation, respectively. The research presented in 

this chapter was conducted in collaboration with other researchers and most of the 

content is part of a published article on tissue-fold artifact detection [109]. 

 

 The presence of artifacts in histopathological images affect the downstream image 

features and decision models in CDSSs [11, 16]. Image artifacts such as tissue folds, out-

of-focus regions, and chromatic aberrations are often found in digital images of tissue-

biopsy slides. Among these artifacts, the occurrence of out-of-focus regions and 

chromatic aberrations can be prevented during the image acquisition stage using 

advanced microscopes. In contrast, the occurrence of tissue folds cannot be easily 

prevented during slide preparation, when a thin tissue slice folds on itself. Therefore, 

while studying a biopsy slide under a microscope, pathologists avoid tissue regions with 

folds. Similarly, CDSSs must also detect and avoid tissue-fold regions.  
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 In recent pathology imaging informatics studies involving WSIs, researchers avoid 

tissue folds by manually selecting images or ROIs [65, 110]. Even though manual 

selection ensures the quality of selected tissue regions, it limits the speed and objectivity 

of computer-aided analysis by introducing a user-interactive step and by adding user 

subjectivity. Moreover, manual selection is a tedious process for large datasets. For 

example, datasets from TCGA include cancer endpoints with more than a thousand WSIs, 

most of which have tissue folds [3].  

 

 Recent studies have proposed methods for detecting tissue folds. Palokangas et al. 

proposed an unsupervised method for tissue-fold detection using k-means clustering [17]. 

This method detects most of the prominent folds if a variety of folds are present on the 

slide. However, the method fails if no folds are present (i.e., the method assumes that 

folds are present, resulting in false positives).  To detect tissue folds, Bautista and Yagi 

proposed a color-based method with a fixed threshold [18, 111]. Unlike unsupervised 

clustering, this method does not fail for WSIs without folds. However, a fixed threshold 

is not effective for all WSIs, especially if there are data batch effects (e.g., images 

acquired with different microscopes). Although the two methods differ with regard to 

how they detect tissue folds, the studies agree about the utility of color saturation and 

intensity properties for tissue-fold detection in low-resolution WSIs.  

 

 This chapter proposes a novel method for detecting tissue folds and compare the 

method to other tissue-fold detection methods. The proposed method detects tissue folds 

in low-resolution WSIs using an adaptive soft-threshold technique in which two 
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thresholds—soft and hard—are determined using a model based on the connectivity of 

tissue structures at various thresholds. The threshold model is trained on a set of 

manually annotated tissue folds. The two thresholds are then used in conjunction with a 

neighborhood criterion to find tissue folds. We test the proposed method on a separate set 

of manually annotated test images. We also compare our method to two other methods: 

an unsupervised clustering-based method proposed by Palokangas et al. and a simplified 

form of our supervised method, which optimizes two thresholds directly from the train set 

instead of using a connectivity-based model.  

 

Materials and Methods 

 

Datasets 

 We use publicly available WSIs of H&E-stained tumor samples of OvCa and KiCa 

provided by TCGA [3]. TCGA provides the WSIs of tumor samples at four different 

resolutions. We use the lowest-resolution image for tissue-fold detection because images 

at the lowest resolution are much easier to load and faster to process. Moreover, tissue 

folds are distinctly visible at the lowest resolution.  

 

 We evaluate the performance of tissue-fold detection using a set of 105 manually 

annotated images for each cancer endpoint. We annotate all tissue-fold regions in a WSI 

by clicking points on the boundary of every fold and enclosing it within a polygon. 

Figure 6 illustrates examples of WSIs for tumor samples from OvCa and KiCa patients 

with manually annotated tissue folds.  
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Figure 6: Manual annotation of tissue folds in WSIs. 

Tissue folds marked in WSIs of two types of carcinomas:  (A) ovarian serous 

adenocarcinoma (OvCa) and (B) kidney renal clear cell carcinoma (KiCa). 
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Tissue-Region Identification 

 Before detecting tissue folds in a WSI, we identify the regions of tissue. A typical 

TCGA WSI contains large white regions representing blank, tissue-less portions of the 

slide and some bluish-green regions representing pen marks used by pathologists to 

annotate the slide. These blank and pen-marked regions are not informative for cancer 

diagnosis, so we remove these regions from further consideration. For convenience, we 

represent the tissue, blank, and pen-marked regions as logical matrices A, W, and P, 

respectively, with dimensions equal to the WSI dimensions. The value of A, W, and P at 

a pixel location (x,y) is given by a(x,y), w(x,y), and p(x,y), respectively. We use hue (h), 

saturation (s), and intensity (i) of the pixel (x,y) to determine w and p, given by  

     1.0,II,  yxsyxw   (1) 

          1.0,1.0,7.0,4.0II,  yxiyxsyxhyxp ,  (2) 

where II(c) is an identity function that returns logical 1 if c is true. We classify pixels 

with no color (i.e., saturation less than 0.1) as part of a blank region; and we classify 

pixels with either bluish-green (i.e., a hue between 0.4 and 0.7 and saturation greater than 

0.1) or black (i.e., intensity less than 0.1) as part of the pen-marked region. We 

empirically found that pen-marks in TCGA WSIs are either bluish-green or black. In 

addition to pen marks, noise occurs in the P mask. Thus, we remove all connected 

regions with an area of less than five pixels. Similarly, the W mask, in addition to blank 

regions, contains white, no-stain-tissue regions such as glands of tissue. We 

morphologically open the W mask to isolate these regions from the blank region and then 

remove them using an area threshold. Because the scaling factor between the thumbnail 

and the largest resolution varies in TCGA with the size of the WSI, we use an adaptive 
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area threshold equivalent to the area of a tile (512x512 pixels) in the highest resolution of 

the WSI. Finally, if a pixel is zero in both the W and P masks, then it is one in tissue 

mask A, given by 

        yxpyxwyxa ,,II,  .  (3) 

We use only tissue regions for fold detection. Figure 7 is an example result for the 

detection of tissue regions. In Figure 7.B, we have painted the pen-marked and blank 

regions as gray and black, respectively.  

 

 

 

Figure 7: Tissue-region detection in a WSI.  

(A) Original RGB thumbnail and (B) painted thumbnail, in which pen-mark and blank 

regions are painted gray and black, respectively 
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Tissue-Fold Detection 

Connectivity-based soft threshold (ConnSoftT) 

 We propose a novel method for detecting tissue folds in WSIs by exploring the 

color and connectivity properties of tissue structures.  A WSI of a tissue-biopsy slide 

stained with H&E has three primary regions:  tissue structures (nuclei and cytoplasm), 

blank slide, and tissue folds. These regions differ in their color saturation and intensity 

properties:  (1) Tissue folds are regions with multiple layers of stained tissue resulting in 

image regions with high saturation and low intensity [17], (2) nuclear regions are stained 

blue-purple and have low intensity, and (3) cytoplasmic regions are stained pink and have 

high intensity. Therefore, we apply color saturation and intensity values to classify a 

pixel  yx,  into the tissue-fold region. We subtract the color intensity  yxi ,  from color 

saturation  yxs ,  for each pixel, resulting in a difference value      yxiyxsyxd ,,,  , 

where    1,1, yxd .  Typically,  yxd ,  is high in tissue-fold regions, intermediate in 

nuclear regions, and low in cytoplasmic regions. If we threshold the difference image, D 

(including all pixels), with various thresholds in the range of negative one to one, 

 1,95.0,..,0,..,95.0,1t , then the following three patterns emerge: (1) At high 

thresholds, only a few connected objects (i.e., mostly tissue folds) are segmented; (2) at 

medium thresholds, a large number of connected objects (i.e., mostly tissue folds and 

nuclei) are segmented; and (3) at low thresholds, only a few large connected objects (i.e., 

tissue structures merged with cytoplasm) are segmented. Our goal is to find an optimal 

threshold that segments only tissue folds. However, we observed that this threshold varies 

because of variations in tissue samples, preparation sites, and acquisition systems. Thus, 
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we hypothesize that an approximate tissue-fold threshold can be predicted based on 

object connectivity in a WSI.  

 

 In Figure 8, we illustrate the following for a WSI:  (1) the difference image, (2) 

manually annotated folds, (3) segmented binary images  tB  at various thresholds, and (4) 

the distribution of connected-object count  tC  using 8-connectivity at various 

thresholds. The peak of the distribution corresponds to approximate threshold at which 

dark nuclear structures are segmented but not merged. We hypothesize that tissue folds 

can be detected by a threshold greater than the threshold corresponding to the peak, and 

this threshold is a function of connected-object count at the peak. Our hypothesis is based 

on an assumption that, for any dataset, tissue-fold objects are a small percentage of all 

connected objects at the peak. We can safely make this assumption because of the nature 

of tissue folds. Tissue-fold artifacts are caused by the folding of tissue slices when placed 

on a glass slide. Thus, folds are seldom randomly distributed over the whole-slide, which 

would lead to a large number of connected objects (greater than the number of nuclear 

objects). Even if a large portion of the image contains tissue folds, most tissue-fold pixels 

are likely to be connected within a small number of tissue-fold regions.  
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Figure 8: Estimation of soft and hard thresholds for detecting tissue folds using the 

connectivity-based soft threshold (ConnSoftT) method. 

We illustrate threshold estimation using an example OvCa WSI (A), which has multiple 

tissue folds, detected by manual annotation, and indicated in the binary mask (B). Using 

the saturation and intensity of an OvCa WSI (A), we calculate a difference image 

(saturation-intensity) (C) and then threshold the difference image to generate binary 

masks at various thresholds, including -0.45 (D), -0.3 (E), and -0.05 (F). The connected 

objects in the binary masks are randomly pseudo-colored to highlight separate objects. 

We count the number of connected objects in all binary masks to estimate a distribution 

(G); and then we use this distribution to calculate the optimal thresholds. For parameters 

α=0.64 and β=0.34, the optimal thresholds for this image are thard = -0.15, and tsoft = -0.2.   
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 The difference value,  yxd , , for tissue folds in a WSI varies within a range, 

especially in the area surrounding a strong tissue fold. Therefore, we propose using two 

thresholds—hard, hardt , and soft, softt —and a neighborhood criterion.  Both thresholds 

are a function of connected-object count  tC  given by 

   tCt
t

hard maxT    (4) 

   tCt
t

soft maxT   ,  (5) 

where T is a function of count defined by     ctCtcT    max . Based on these 

thresholds, we classify a pixel as a tissue fold if the following conditions are true: (1) It 

has a difference value,  yxd , , higher than the soft threshold and (2) it is in the 5x5 

neighborhood of a pixel with a difference value greater than the hard threshold. 

Mathematically, this is given by 

       
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where 

     tyxdyxtb  ,II,, . (7) 

 

 The soft threshold allows tissue-fold pixels in the neighborhood of strong tissue 

folds to have a lower difference value. The value of  yxf ,  for all pixels generates a 

tissue-fold image, F. However, F may still have some small, noisy connected objects.  

We discard these noisy objects in the tissue-fold image using an adaptive area threshold 

equivalent to five percent of the area of a high-resolution tile in a WSI (i.e., 512x512 

pixels).  
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 The hard and soft thresholds depend on parameters α and β.   Both tissue 

morphology and connectivity differ from one cancer endpoint to another cancer endpoint. 

Thus, we optimize α and β for each TCGA dataset.  We optimize these parameters on a 

set of training images and then evaluate the selected parameters on a set of testing 

images.  We split our annotated data (105 images for each cancer) into 50 pairs of 

training and testing sets using ten iterations of 5-fold CV. For each CV split, we select 

optimal parameters by maximizing the average adjusted Rand index (ARI) on the training 

set.  The Rand index is a statistical measure that quantifies the similarity between two 

sets of data clusters.  When applied to tissue-fold detection, the Rand index counts the 

number of agreements in pixel pairs between the detected tissue-fold pixels and the 

ground truth. For example, if both pixels in a pixel pair are part of the same class in the 

ground truth (i.e., either both pixels are tissue folds, or they are not), a pixel pair agrees 

with the ground truth if both pixels are detected as being in the same class (e.g., tissue 

folds).  Alternatively, if both pixels in a pair are in different classes in the ground truth 

(i.e., one pixel is a tissue fold, and the other is not), the pair is not in agreement if both 

pixels are detected as being in the same class. The Rand index is the ratio of the number 

of agreeing pairs to the total number of pairs. To account for different class prevalence 

(i.e., different numbers of pixels in tissue-fold vs. non-tissue-fold regions), the adjusted 

Rand index is a modification of the Rand index. For two classes, the adjusted Rand index 

is given by 
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where mg,p indicates the number of pixels designated as g in the ground truth and 

predicted to be p, where ),( pg {fold, tissue}f. For example, mfold,tissue indicates the 

number of pixels designated as part of the tissue-fold regions in the ground truth, but it is 

predicted to be part of non-tissue-fold regions.  M is the total number of pixels;

tissuegfoldgg mmm ,,,   is the total number of pixels designated as g in the ground truth; 

and ptissuepfoldp mmm ,,,   is the number of pixels predicted to be p.  Because a 

segmented image can be perceived as a clustering of pixels into groups, the Rand index 

and its various forms are often used for image-segmentation evaluation [112, 113]. We 

have chosen ARI for our evaluation because it is adjustable based on class prevalence. In 

most WSIs, tissue-fold regions are a small percent of the tissue region. Thus, errors in 

fold detection will not significantly affect a metric that is not adjustable for class 

prevalence. For example, accuracy calculates the number of pixels assigned to the correct 

class regardless of the class. Since we have more tissue pixels than tissue-fold pixels, it 

prefers methods that classify tissue pixels correctly even if the methods compromise the 

performance of fold detection. In other words, metrics that do not account for prevalence 

tend to severely down-weight the sensitivity of tissue-fold detection.   

 

 We optimize α and β in the range of 0 to 1 with two levels of quantization: coarse 

and fine. While optimizing, we allow only pairs in which α is greater than β so that hardt is 

greater than softt .  During the coarse optimization, we vary the parameters with steps of 

0.1 in the range of 0 to 1 and calculate the parameter pair, αc and βc, with the maximum 

ARI, averaged over all training samples.  During fine optimization, we vary the 
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parameters with steps of 0.01 in the range of αc-0.1 to αc+0.1 and βc-0.1 to βc+0.1.  The 

two-level optimization speeds up the optimization process.  

 

Clustering (Clust) 

 As a comparison, we implement a clustering-based method for tissue-fold detection 

suggested by Palokangas et al. [17].  This method has three steps:  preprocessing, 

segmentation, and the discarding of extra objects.  In our implementation, we first detect 

tissue regions in a WSI and then follow these three steps. First, we subtract smoothed and 

contrast-enhanced saturation Ŝ  and intensity Î images of a WSI and calculate difference 

image D̂ . Second, we cluster the pixels of the difference image using k-means clustering 

and assign the cluster of pixels with center at the maximum difference value as tissue 

folds.  Finally, we discard extra objects in the tissue-fold image using an adaptive area 

threshold equivalent to five percent of a tile area in the highest resolution of the WSI.  

For k-means clustering, we optimize the number of clusters, n, based on the change in the 

average sum of the difference (variance) over all clusters.  We start optimization with 

n=2 clusters and terminate at n=6 clusters; we select a value of n for which the change in 

variance compared to the variance with n-1 clusters is less than one percent.  

 

Soft threshold (SoftT) 

 Instead of clustering the difference image, we can also find tissue folds by applying 

a soft and hard threshold, as done in the proposed ConnSoftT method. However, in the 

ConnSoftT method, we apply adaptive thresholds based on tissue connectivity after 

optimizing α and β.  Alternatively, we can directly optimize the hard, HT, and soft, ST, 
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thresholds for a dataset. Therefore, for comparison, we implement the direct-optimization 

version for soft thresholding by repeating all the steps from the ConnSoftT method, 

excluding the connectivity-based analysis and optimization steps.  After obtaining the 

difference image, D, we optimize HT and ST in the range of   -1 to 1, with the condition 

that the hard threshold is greater than the soft threshold. Similar to the ConnSoftT 

method, we optimize the thresholds using two quantization levels (i.e., coarse with steps 

of 0.2 and fine with steps of 0.02), manually annotated training data, and the ARI 

performance metric. Finally, after thresholding the difference image, we discard noisy 

objects using an adaptive area threshold (the same threshold as in the ConnSoftT 

method). 

 

Results and Discussion 

Comparison of ConnSoftT, Clust, and SoftT Methods 

 In this section, we discuss the performance of the ConnSoftT method and compare 

it to two other methods: Clust and SoftT.  We test the methods on two datasets of 105 

images with manually-annotated folds of OvCa and KiCa samples. Using ten iterations of 

5-fold CV, we divide the datasets into 50 pairs of training and testing sets, in which each 

training set is used for optimizing models in the ConnSoftT and SoftT methods while the 

testing set is used to test all three methods. We assess the performance of detecting tissue 

folds using four metrics:  (1) ARI, which was also used for model optimization, (2) the 

true positive rate (TPR), or sensitivity, (3) the true negative rate (TNR), or specificity, 

and (4) the average true rate (ATR) (i.e., the average of TPR and TNR). The average and 

standard deviation of performance metrics over 50 iterations of CV on KiCa and OvCa 
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images are listed in Table 1 and Table 2, respectively. The best method should result in 

all metrics closer to one. A high TNR and a low TPR indicates that the method under-

segments tissue folds while a low TNR and a high TPR indicate that the method over-

segments. Therefore, the best method should have high ATR.  From these tables, we can 

make several observations. First, compared to the other methods, the ConnSoftT method 

detects tissue folds more effectively because it has the highest ARI (0.50 in KiCa and 

0.40 in OvCa) and ATR (0.77 in KiCa and 0.73 in OvCa).  Second, based on TNR, TPR 

and ATR, the Clust method under-segments tissue folds (TNR is highest at 0.99 in KiCa 

and 0.98 in OvCa) while the SoftT method over-segments tissue folds (TPR is highest at 

0.62 in KiCa and 0.57 in OvCa). The ConnSoftT method achieves a balance between the 

two methods (ATR is highest at 0.77 in KiCa and 0.73 in OvCa). Third, all three methods 

have lower TPR than TNR. TPR is more sensitive to faults in tissue-fold detection than 

TNR because the positive class (tissue-fold regions) has a lower prevalence than the 

negative class (non-tissue-fold regions). The difference in the prevalence is the main 

motivation for using ARI, which is adjusted for prevalence, for parameter optimization in 

the ConnSoftT and SoftT methods. 
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Table 1: Tissue-fold detection performance in KiCa WSIs. 

Metric Clust SoftT ConnSoftT 

ARI  0.43±0.03  0.39±0.05  0.50±0.03  

ATR  0.72±0.01  0.75±0.02 0.77±0.01  

TPR  0.45±0.04  0.62±0.05 0.55±0.04  

TNR  0.99±0.00  0.88±0.04  0.98±0.00  

 

 

 

Table 2: Tissue-fold detection performance in OvCa WSIs. 

Metric Clust SoftT ConnSoftT 

ARI  0.35±0.03  0.31±0.04 0.40±0.03  

ATR  0.70±0.01  0.73±0.02  0.73±0.02  

TPR  0.41±0.03  0.57±0.06  0.47±0.04  

TNR  0.98±0.01  0.88±0.03  0.98±0.00  

 

ARI: Adjusted Rand index 

ATR: Average true rate = (TPR+TNR)/2 

TPR: True positive rate, or sensitivity = TP/P 

TNR: True negative rate, or specificity = TN/N 
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 Figure 9 illustrates tissue-fold detection results for three WSIs using the three 

methods with the final model parameters. Since Clust is an unsupervised method, when it 

finds a cluster of pixels in a WSI with the highest difference value, it is not certain if this 

cluster represents tissue folds or if this cluster includes all of the tissue-fold pixels in the 

WSI.  Figure 9 presents the results of this uncertainty.  Figure 9.C and Figure 9.H show 

that the Clust method under segments, and Figure 9.M shows that the Clust method over 

segments. Although the SoftT method is supervised, because of the variations in the color 

properties of WSIs, fixed thresholds cannot successfully segment tissue folds in all WSIs. 

For example, Figure 9.A and Figure 9.K depict over-segmentation using the SoftT 

method when WSIs are darker than the remaining set of images. In contrast, ConnSoftT 

is supervised, and it adapts to a WSI based on its tissue connectivity, which results in 

more effective tissue-fold detection regardless of variations across images within a 

dataset.  
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Figure 9: Comparison of the performance of the three tissue-fold detection methods. 

Tissue folds detected by the three methods:  clustering (Clust) (C, H, and M), soft 

threshold (SoftT) (D, I, and N), and connectivity-based soft threshold (ConnSoftT) (E, J, 

and O) for an OvCa WSI (A) and two KiCa WSIs (F and K). If tissue folds in a WSI vary 

in color (A and F), Clust method under segments.  On the other hand, if a WSI has no 

tissue folds in (K), Clust over segments.  Because of the fixed thresholding of the SoftT 

method, it over segments WSIs (A and K) with darker tissue regions and under segments 

WSIs (F) with lighter tissue folds. 
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Parameter Optimization and Sensitivity Analysis 

 In this section, we discuss variation in parameters depending on training samples, 

adaptive nature of ConnSoftT method, and sensitivity of ConnSoftT method’s 

performance to parameters. 

 

 Both ConnSoftT and SoftT methods have two parameters, which are optimized 

using ground truth of train samples during 50 iterations of CV. In Figure 10, we illustrate 

the frequency of parameter-pair selection using color maps. For both methods, the 

optimal parameters are repetitively selected within a local area of the parameter space, 

which extends from -1 to 1 for HT and ST and from 0 to 1 for α and β. 
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Figure 10: Optimal parameter selection in soft threshold (SoftT) and connectivity-based 

soft threshold (ConnSoftT) tissue-fold detection methods. 

Heat map for the frequency of parameter-pair selection during 50 iterations (5-fold, 10 

iterations) of CV for KiCa (A-B) and OvCa (C-D) images. For the SoftT method, the 

hard and soft thresholds were optimized (A and C).  For the ConnSoftT method, α and β 

were optimized (B and D). Note: In all heatmaps, the parameter space with no selection 

(zero frequency) has been cropped. 
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 The average of selected parameter pairs during CV (Table 3) closely resembles the 

parameters of the final models (Table 4), which were optimized using the complete set of 

105 images. Low standard deviation in the selection of the parameter pairs during CV 

and the similarity of average parameters to the final model parameters indicate that the 

selection of parameters (in both methods) is robust to variation in training samples for a 

cancer endpoint. Moreover, the difference in the optimal parameters of the two cancer 

endpoints supports our hypothesis that the pair α and β should vary from one cancer 

endpoint to another because of differences in morphology between the endpoints.  

 

 

 

Table 3: Mean and sample deviation of selected parameters of SoftT and ConnSoftT 

tissue-fold detection methods during CV. 

 

Data SoftT ConnSoftT 

HT ST α β 

KiCa -0.01 ± 0.032 -0.44 ± 0.020 0.51 ± 0.015 0.13 ± 0.012 

OvCa 0.18 ± 0.026 -0.20 ± 0.023 0.65 ± 0.020 0.33 ± 0.039 

 

 

 

Table 4: Parameters in final models of SoftT and ConnSoftT tissue-fold detection 

methods estimated using the entire datasets. 

 

Data SoftT ConnSoftT 

HT ST α β 

KiCa 0 -0.44 0.5 0.13 

OvCa 0.18 -0.20 0.65 0.34 
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 For optimal segmentation of tissue folds, hard and soft thresholds should adapt for 

every image within a cancer endpoint. In the ConnSoftT method, thresholds depend on 

parameters (α and β) and the connected-object function. The function adapts for each 

image to give the optimal segmentation. For instance with the final α and β parameters 

(Table 4), soft and hard thresholds for 105 OvCa WSIs are within the ranges 

0.0995±0.2101 and -0.0162±0.1981, respectively. Similarly, soft and hard thresholds for 

105 KiCa WSIs are within the ranges -0.0724±0.2234 and -0.2586±0.2139, respectively. 

In contrast, the soft and hard thresholds are fixed in the SoftT method (Table 4). Hence, 

the connectivity-based method successfully adapts for each image compared to the SoftT 

method. 

 

 Figure 11 illustrates the sensitivity of the ConnSoftT method to α and β parameters 

using performance heatmaps. The heatmap illustrates average ARI for tissue-fold 

detection on the entire data set of 105 images using the allowable set of coarse 

parameters (α > β). The performance of the method is quite similar in the range of 

parameters selected during CV (marked by dashed rectangle). Thus, tissue-fold detection 

is not sensitive to small changes in α and β.  
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Figure 11: Sensitivity of the performance of connectivity-based soft threshold 

(ConnSoftT) method to parameter selection. 

Heatmap for the average performance (ARI) of tissue-fold detection using Connsoft 

Method with different parameters. The average was calculated using the entire data set of 

105 images for both KiCa (A) and OvCa (B). The performance of the method is quite 

similar in the range of parameters (marked by a dashed rectangle) selected during CV 

(Figure 10), indicating that tissue-fold detection is not sensitive to small parameter 

changes. 
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ConnSoftT Performance in WSIs with Multimodal Connected Component 

Distribution 

Certain WSIs may result in a multimodal connected-component distribution when 

thresholding the difference image. In our datasets, a WSI had a multimodal distribution in 

the following conditions: (1) if difference in stain intensities between tumor and non-

tumor regions of WSI (Figure 12.A and Figure 12.E), (2) if non-tissue regions of the WSI 

are not completely eliminated during the preprocessing step (Figure 12.I and Figure 

12.M), and (3) if multiple tissue sections are present on a slide with color variations 

(Figure 12.Q). Among these conditions, first two are more likely to occur while third 

condition is very rare. We found only one instance of third condition among all the WSIs 

considered in the study. In the first condition, a small peak is formed very close the main 

peak. ConnSoftT method finds all folds in tumor region but miss some folds in non-

tumor regions (Figure 12.H). In the second condition, a large peak is formed far left of 

the main peak and the performance of the method is mostly unaffected. The last condition 

essentially results in a combined distribution for two images and all tissue-folds in the 

darker image are detected but some in the lighter image are missed (Figure 12.T). 
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Figure 12: Tissue-fold artifact detection in WSIs with multimodal connected-component 

count distributions 

(A, E) Non-tumor regions have different stain intensities and form a separate peak 

slightly left of the main peak, (I, M) non-tissue regions (e.g., pen-marks and inadequately 

stained portions) are not eliminated in the pre-processing step and form a separate peak 

far left of the main peak, and (Q) Two separate tissue portions with large difference in 

stain colors form two separate peaks. From left to right, the columns represent original 

WSI, difference image (S-I), connected-component distribution, and WSI with marked 

tissue folds. For each WSI, the soft and hard thresholds estimated by the method are 

marked on the distribution. 
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Conclusion 

 Pathology imaging informatics methods strive to develop robust image 

segmentation methods that can overcome biological and technical challenges posed by 

histopathological WSIs. In this chapter, we developed a novel image segmentation 

method, which adaptively estimates soft and hard thresholds based on object connectivity 

in saturation and intensity color space of an image. We applied this method for detecting 

tissue-fold artifacts from low-resolution WSIs. Compared to two other methods, our 

method performed better based on the adjusted Rand index and the average true rate. 

Tissue-fold artifact detection is essential for insuring only high-quality tissue portions of 

a WSI are used for downstream diagnosis.   
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CHAPTER 3 
 

BATCH-INVARIANT SUPERVISED SEGMENTATION OF 

HISTOPATHOLGICAL STAINS  

Introduction 

 Similar to Chapter 2, this chapter also focuses on developing a robust image 

segmentation method for histopathological images. The objective of the segmentation 

method developed in this chapter is to segment stains in histopathological images. The 

research presented in this chapter was conducted in collaboration with other researchers 

and most of the content is part of a published article [114]. © 2011 IEEE. 

 

 Color-enhanced, or stained, cellular structures in histological images enable 

clinicians to identify morphological markers of a disease, and to proceed with therapy 

accordingly. However, because of variations in specimen preparation, staining, and 

imaging, resulting images may exhibit very different colors (Figure 13). Under such 

conditions, computer-aided diagnostic systems [30, 36, 55] that segment these structures 

based on their color often fail. 
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Figure 13: Color batch-effect between histopathological images in four datasets. 

A) ovarian (Ov), B) glioblastoma (Gbm), C) renal tumor (RCC1), and D) renal tumor 

(RCC2). Color palette illustrates cluster means of four H&E color classes. © 2011 IEEE. 
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 One way to account for the observed difference in colors among images, i.e. ‘batch 

effect’, is to develop an interactive system that allows users to lend their domain 

knowledge to guide the segmentation process [36, 115]. However, user-interaction lowers 

the overall objectivity, reproducibility and speed of such systems. Among automatic 

segmentation methods, supervised learning techniques have been reported to be more 

accurate than unsupervised learning methods [41-43]. We find that these previous 

techniques are vulnerable to batch effect, and that they tend to perform well only for data 

from the batch on which they are trained (Table 5). Therefore, we propose a system for 

automatic color segmentation of histological images which is designed to be resistant to 

batch effect (Figure 14). 

  

 Our system incorporates knowledge from pre-segmented reference images to 

normalize (Figure 14, Step 1) and segment (Figure 14, Step 2) new patient images. Also, 

in order to make our system robust to the choice of reference image (j), we segment new 

images (k) with multiple reference images and combine labels, 
k

j,0L , using a voting 

scheme. Voting produces preliminary segmentation labels,
 

k
1L , which we then use to 

reclassify (Figure 14, Step 3) test image pixels in their original color space and produce 

final segmentation labels, k
2L . The proposed system provides an automatic color 

segmentation of histopathological specimens that is resistant to batch effects. We achieve 

this by incorporating knowledge from domain experts into a novel color normalization 

scheme.   
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Figure 14: System flow diagram for batch-invariant, automatic stain segmentation. 

Three main steps: 1) normalize, 2) segment normalized image, and 3) re-classify pixels in 

the original color space. © 2011 IEEE. 

 

 

Materials and Methods 

Datasets  

 We analyze photomicrographs of H&E stained histological specimens. As we 

discussed in the chapter 1, H&E staining produces four distinguishable clusters of colors 

in the image—blue-purple (nuclear), white (no-stain or glands), pink (cytoplasm) and red 

(red blood cells). The color palettes in Figure 13 illustrate the mean color for each of the 

four color clusters in the ground truth segmentation. We consider four datasets in this 

chapter (Figure 13): two renal tumor (RCC1 and RCC2 with 55 and 47 images, 

respectively), one glioblastoma (Gbm, 52 images), and one ovarian (OvCa, 50 images). 

RCC1 and RCC2 were obtained at Emory University in separate experimental setups. 
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OvCa and Gbm images were obtained from TCGA repository [3]. To establish the 

ground truth labeling for each image, we developed an interface to help users label pixels 

semi-automatically. We use these labels to prepare reference images and to assess 

performance.  

 

Image Normalization 

 We begin segmenting sample images by first normalizing the sample image’s 

colors to the reference image’s colors. Many color normalization techniques have been 

proposed [21, 22], including histogram or quantile normalization in which the 

distributions of the three color channels are normalized separately. Here, we 

mathematically describe quantile normalization of all pixels in an image. An image k 

contains Nk pixels where each pixel n is represented as a triplet given by 

 ],,[ ,,,, nknknknk BGRI  , (9) 

where nkR , , nkG , , nkB ,  are color channel intensity values. We define a rank function 

kk NNk

C


f  that maps the color channel intensity,  BGRC ,, , from image k to a rank 

that ranges from 0 to Nk-1. Using the green channel as an example,
k

G

kk

G rG )(f , where 

kNk

G

k rG , are vectors of the green component intensity and rank for the k
th

 image, 

respectively. If ]255,0[, nkG  and ]1,0[,  k

nk

G Nr  are green component intensity and 

rank for the n
th

 pixel in the k
th

 image, then for any two pixels n1 and n2, 
21 ,, nk

G

nk

G rr   iff 

21 ,, nknk
GG  . The normalized green channel intensity of the n

th
 pixel of the k

th
 sample 

image to the j
th

 reference image can be computed using 
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









2

1
h

~
G j

k

k,n

Gjk,n

j N
N

r
G , (10) 

where   njnj

G

j

G Gr ,,h   is the inverse of the j
th

 image’s green rank function j

G

jj

G rG )(f .  

Figure 15 illustrates the quantile normalization process for two sample Gaussian 

distributions: test (distribution 1) and reference (distribution 2). Based on the number of 

points that have a value less than a definite value, we determine a rank and value 

relationship for both distributions. Thereafter, we normalize values in the test distribution 

by assigning values in reference distribution with the same rank as the test distribution.  

 

 

 

Figure 15: Quantile normalization of two sample Gaussian distributions. 
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 We propose an alternative to simple quantile normalization, where we use the color 

map of the image instead of all pixels in the image. The color map is obtained by 

extracting the unique colors in the image. Therefore, compared to all pixels, the color 

map does not include the frequency of any colors. Mathematically, quantile 

normalization of color map elements is similar to that of all pixels except that the image 

is represented by a list of unique color triplets given by  

 ],,[ ,,,, mkmkmkmk BGRU  ,  (11) 

where ]1,0[  kMm  and kM  is the number of unique colors in the image.  Because of 

variations in morphology from image to image, color and class frequencies vary. Figure 

16 illustrates the distribution of green component intensity for all pixels and for color 

map elements of the four images in Figure 13. While the distributions of all pixels 

contain peaks which vary with changes in morphology and class prevalence, the 

distributions of color map shows less change between images. Therefore, normalizing the 

all pixels distributions rather than the color map distributions tends to distort colors in the 

normalized image. Once colors have been normalized, pixels are then classified by color. 
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Figure 16: Distribution of green component intensities of (A) all pixels and (B) color map 

of the images in Figure 13.  

Compared to color map, all pixels contain peaks which vary with changes in morphology 

and class prevalence. © 2011 IEEE. 
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Normalized Image Segmentation 

 Pixel classification is performed in the color space of a reference image. Using a 

four-class LDA classifier, we train using colors and labels obtained from ground truth 

segmentation of the reference image and classify pixels from the sample images based on 

normalized color. Let jNj L  and 3
 jNj

I , where each element is 

],,[ ,,,, njnjnjnj BGRI  , be defined as the user-interactive segmentation labels and color 

values of pixels in image j, respectively. Let 
3~ 

 kNk

jI  be defined as image k 

normalized to image j where each element is given by  

 ]
~

,
~

,
~

[
~ ,,,, nk

j

nk

j

nk

j

nk

j BGRI  . (12) 

For convenience, we define the function  

  kjj
ILIL ,,LDA , (13) 

where Lcontains segmentation labels for image kI using an LDA classifier trained with 

pixel colors in jI and labels in jL . kI may also be a normalized image. Thus, to obtain 

the segmented image labels, L0 (Figure 14), we use  

  k

j

jjk

j0, I,L,IL
~

LDA .  (14) 

 

 The accuracy of segmentation depends on the choice of reference image. Therefore, 

in order to select optimal reference images, we perform CV within each dataset batch, 

where each image in the batch acts as a reference to normalize and segment all remaining 

images in the batch. We select the top 10 performing references from each batch. In order 

to avoid the choice of a single canonical reference image, in our system, a sample image 

is normalized and segmented 10 times, using a different reference image each time. For 
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each pixel in the sample image, we compute the final segmentation label by voting from 

multiple references. The label most frequently assigned to a pixel is chosen as its 

preliminary label (block 
k

1L  in Figure 14) before segmentation refinement.  

 

Segmentation Refinement  

 The preliminary labels obtained by voting (
k

1L , Figure 14) are good approximations 

of the ground truth labels, but we further refine this segmentation using the LDA 

classifier:  

  kkkk
ILIL ,,LDA 12  . (15) 

 This step trains the LDA classifier using colors from the original sample image k and 

using labels from voting. The trained classifier is then used to re-classify all pixels in 

image k. Intuitively, this step ensures that the color groupings are separable in the 

original sample's image color space, and that any color distortion introduced by 

normalization is removed.  

 

Results and Discussion 

Comparison of Normalization Methods 

 Figure 17 compares color map and all pixels normalization of a test image (Figure 

17.A) from RCC1 to a reference image (Figure 17.B) from RCC2. All pixel 

normalization forces the normalized image (Figure 17.G) to have more cytoplasm 

because the reference image is chromophobe subtype of RCC and has more cytoplasm 
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than test image, which has clear cell subtype. In contrary, color map normalized image 

(Figure 17.H) maintains test image morphology.  

 

 

 
 

Figure 17: Results of color map and all pixel normalization of two renal tumor images 

from different batches.  
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Segmentation Performance With and Without Normalization 

 Table 5 lists the segmentation results from our system using two types of 

normalization (all pixels or color map) and compares them to our system with no 

normalization, i.e.  

  kjjk

j ILIL ,,LDA,0  .  (16) 

The overall performance, at 85%accuracy, is best for a system that uses color map 

normalization and re-classification (color map L2).  

 

 

Table 5: Pixel-level, four-class segmentation accuracy for automatic stain segmentation 

system using color map, all pixels, or no normalization compared to ground truth. 

 

Train Test 
No norm. All pixels Color map 

L1 L2 L1 L2 L1 L2 

RCC1 

RCC2 0.17 0.08 0.83 0.82 0.79 0.82 

OvCa 0.32 0.43 0.79 0.83 0.77 0.81 

Gbm 0.22 0.54 0.82 0.85 0.80 0.82 

RCC2 

RCC1 0.37 0.56 0.85 0.88 0.79 0.87 

OvCa 0.32 0.40 0.82 0.85 0.86 0.87 

Gbm 0.23 0.46 0.80 0.84 0.81 0.84 

OvCa 

RCC1 0.13 0.13 0.73 0.78 0.82 0.87 

RCC2 0.16 0.16 0.72 0.74 0.85 0.84 

Gbm 0.77 0.82 0.76 0.80 0.85 0.85 

Gbm 

RCC1 0.13 0.13 0.82 0.84 0.85 0.87 

RCC2 0.16 0.16 0.78 0.80 0.84 0.83 

OvCa 0.84 0.84 0.78 0.83 0.87 0.87 

Overall 0.32 0.39 0.79 0.82 0.82 0.85 

 

* p-value for t-tests between: 1) L2 all pixels and L2 color map is—0.044, 2) L1 and L2 

color map is—0.010. © 2011 IEEE. 

 

 

 Figure 18 compares segmentation results with color map and all pixels 

normalization. Re-classification (Figure 18, + and x) significantly improves the 
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segmentation performance. Color map normalization performs better than all pixels 

normalization except for four cases involving the RCC1 batch, possibly due to chromatic 

aberration, resulting in color map histogram distortion. However, in all pixels 

normalization, due to the low frequency of chromatic aberration colors, distortion is less 

severe.  

 

 

 

Figure 18: Comparison of segmentation accuracy of all pixels L1, all pixels L2, color map 

L1, and color map L2.  

© 2011 IEEE. 

 

 

 Figure 19 illustrates pseudo colored segmentation results for images in Figure 13.A 

and Figure 13.C. Figure 13.A is an OvCa batch image and is segmented on a system 

trained by reference images from the RCC2 batch. Figure 13.C is an RCC1 batch image 

and is segmented on a system trained by reference images from the Gbm batch. Again, 
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the re-classification step enhances the segmentation results and color map normalization 

retains the morphology of the test image. For instance, in Figure 19.G and Figure 19.H, 

all pixels normalization alters the morphology of the test image, over-segments the pink 

mask, and under-segments the white mask. Similarly, in Figure 19.B and Figure 19.C, the 

pink mask is over-segmented while the other three masks are under-segmented. 

   



 70 

 

Figure 19: Segmentation of the images in Figure 13.A (top) and Figure 13.C (bottom).  

 A magnified lower left portion of the image is shown; however, accuracy is reported for 

the full image. (A) Ground truth, (B) all pixels L1, (C) all pixels L2, (D) color map L1, 

and (E) color map L2. © 2011 IEEE. 
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 Figure 20 illustrates an example segmentation scenario with three reference images, 

where re-classification resulted in a significant improvement in segmentation 

performance. First, a test image (Figure 20.D) was normalized and segmented using three 

references (Figure 20.A-C). As compared to ground truth (Figure 20.E), the classification 

accuracy for supervised segmentation using three references ranged between 0.72 to 0.86. 

After voting, the resulting L1 labels have 0.80 accuracy. Figure 20.I shows a 3-D scatter 

plot of original (un-normalized) RGB colors of the pixels, where each point is colored 

based on its L1 segmentation label. As marked by a green circle, the segmentation 

boundaries created by L1 labels are not smooth planes but are rather complex. This 

complexity is created because the voting method assigns the most frequent label to a 

pixel, irrespective of the label assigned to very similarly colored pixel. Thus, L1 labels 

are often incrorrect along the segmentation plane. The refine step re-classifies pixels 

using orginial colors and L1 labels as the training data. In this example, re-classification 

increased the segmentation accuracy to 0.89. Figure 20.J shows the 3-D scatter plot of 

original RGB colors of the pixels, where each point is colored based on its L2 

segmentation label. This scatter plot has smoother segmentation planes and it is similar to 

the scatter plot of ground truth (Figure 20.F). 
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Figure 20: Effect of re-classification in original color space on segmentation 

performance. 

 

  



 73 

 

 

Conclusion 

 In this chapter, we presented a novel supervised stain segmentation system for 

histopathological images that 1) incorporates domain knowledge to guide histological 

image segmentation and 2) normalizes images to reduce sensitivity to color batch effects. 

Results on four batches of H&E-stained histopathological images indicate that the 

performance of the supervised method is comparable to user-interactive expert 

segmentation. The high accuracy of stain segmentation masks will aid in increasing the 

overall performance and reproducibility of CDSSs. This supervised segmentation system 

can be easily trained and applied for the segmentation of microscopy images stained with 

other staining protocols. 
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CHAPTER 4 

 

EDGE-BASED NUCLEAR CLUSTER SEGMENTATION 

Introduction 

 Similar to Chapter 2 and 3, this chapter also focuses on developing a robust image 

segmentation method for histopathological images. The objective of the segmentation 

method developed in this chapter is to segment dense nuclear clusters in a binary nuclear-

stain mask of a histopathological image. The research presented in this chapter was 

conducted in collaboration with other researchers and most of the content is part of 

published articles on nuclear segmentation [115, 116]. © 2009 IEEE. 

 

 Pathologists often evaluate nuclear features such as nuclear count, nuclear shape 

and nuclear size to make important diagnostic decisions. In a healthy tissue sample, 

nuclei are mostly distinct and we can easily segment them using stain segmentation 

methods (such as the one discussed in Chapter 2). However, in a diseased sample, 

individual cells come close together and their nuclei form dense clusters. Therefore, it is 

necessary to segment these clusters before extracting nuclear features.  

 

 Researchers have proposed methods for the segmentation of simple-clusters and 

touching nuclei by extending and improving intensity- and morphological-segmentation 

methods [117, 118]. Few authors have developed algorithms that specifically address the 

challenge of nuclear cluster segmentation [46, 47, 119, 120]. Existing methods for 

nuclear segmentation have certain limitations: (1) some can only segment simple clusters 

[117, 118], (2) some make an assumption of circular nuclei, which is not always the case 
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especially in high-grade tumor images [46, 117, 118], (3) some result in nuclei with 

shapes that incorrectly depict naturally occurring nuclei [47, 119, 120], and (4) some are 

very complex and not easy to apply on large-scale datasets [46, 47, 119]. 

 

  This chapter presents an edge-based image-segmentation method, which is simple 

to implement and can segment complex clusters with reasonable accuracy. The proposed 

method has the following five steps: (1) preprocessing to eliminate noise from nuclear 

mask and extract nuclear edges, (2) estimation of approximate nuclear area using shape-

analysis on connected-objects in the cleaned nuclear mask, (3) detection of concavities on 

nuclear-cluster edges using the cross-product of adjacent tangents, (4) straight-line 

segmentation by connecting neighboring concavities, which result in regions larger than 

an area threshold, and (5) ellipse fitting on straight-line segmented regions. The elliptical 

model used is a good approximation to the original nuclear shape. Previously, Wang and 

Song [121] and Bai et al. [122] also developed methods for nuclear-cluster segmentation 

using concavity detection. Also, we perform a quantitative analysis of segmentation 

performance using simulated nuclear masks.  

 

Materials and Methods 

Preprocessing 

 Our approach is an edge-based method, so we preprocess the input RGB image of 

stained tissue sample to extract nuclear cluster edges. Figure 21 illustrates a renal tumor 

image after different preprocessing steps. First, we generate a binary nuclear mask from 

the RGB image using color segmentation (Chapter 3). The nuclear mask typically has 
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holes in the nuclear regions, noise at the edges and noise in the background (Figure 

21.B). Second, we clean the nuclear mask using morphological processing. We fill the 

holes using morphological reconstruction [10]. We then eliminate the noise in the 

background using morphological opening and by removing the regions with area less 

than 20 pixels (Figure 21.C). Third, we smooth the cluster edges using a moving average 

low-pass filter (Figure 21.D). Smoothing eliminates noisy minor directional changes in 

cluster edges and preserves only true concavities. After preprocessing, we treat every 

nuclear cluster in the image separately. 

 

 

 
 

Figure 21: Preprocessing steps for nuclear segmentation on a renal tumor tissue sample 

(A) Input RGB image, (B) nuclear mask after color segmentation, (C) nuclear mask after 

morphological cleaning, and (D) cluster edges after edge smoothing. © 2009 IEEE 
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Approximate Nuclear-Area Estimation 

 Before segmenting the clusters, we estimate an approximate nuclear area (A) from 

the nuclear mask. We assume that the edge of a single nucleus is almost elliptical in 

shape while the edge of a nuclear cluster is not elliptical because it has multiple 

overlapping nuclei. Figure 22 illustrates the process of nuclear area estimation using 

elliptic deviation. First, we open the nuclear mask to separate touching nuclei and remove 

small noisy regions.  Therefore, we select nuclear mask regions that have almost elliptical 

edges (elliptic deviation less than median value). We then estimate the median area of all 

the selected regions. Among the selected nuclear regions, we eliminate the regions with 

area less than the median value to avoid noise. We then set the value of A as the median 

area of all the remaining regions. 
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Figure 22: Estimation of nuclear area using elliptic deviation. 

A Nuclear mask (A) for a renal papillary tumor image is morphologically opened to 

remove noise. (B-D) illustrate the process of selecting individual non-clustered nucleus 

samples. (B)  Red curves show fitted ellipses for all regions in the opened mask. (C) Red 

curves show fitted ellipses for regions with elliptic deviation less than median value 

among all regions. (D) Red curves show fitted ellipses for regions with area more than 

median value among all regions in (C). 
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Concavity Detection 

 When two individual nuclei overlap, they form a notch or concavity at the points 

where the nuclear-cluster edges overlap. Therefore, we segment nuclear clusters at these 

points. We detect concavities using the cross product of adjacent tangential vectors while 

moving along a cluster edge in one direction. Figure 23 illustrates concavity detection for 

a cluster.  

 

 

 

Figure 23: Concavity detection in a renal papillary cluster.  

(A) A nuclear cluster with vectors a and b and the direction of sin(θ) marked at concave 

and convex edge points, (B) graph depicting variation in sin(θ) with segment number of 

the cluster edge, (C) concavities detected in the cluster. © 2009 IEEE 
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The following steps describe the algorithm for concavity detection in a cluster: 

(1) Divide a cluster edge into piecewise segments. The size of segment affects the 

performance of concavity detection. Too large segment often miss a concavity 

while too small segment (e.g. one pixel) often results is false positives and makes 

detection process computationally complex. Thus, we decide the size of segment 

based on the length of cluster edge  , a minimum segment-length threshold   and 

a minimum number of segment threshold  . If 
 

   
  , we divide the edge into 

200 equal length segments. Otherwise, if  
 

 
  , we divide the cluster edge into   

length segments. Otherwise, we segment cluster into one pixel segments. We have 

used      and      in our implementation.  

(2) Determine the tangential vectors for every segment using endpoints, given by  

                       , (17) 

                        (18) 

where a and b are two adjacent tangential vectors defined by three adjacent points 

on the cluster edge—p1, p2, and p3.  

(3) Determine the cross product between a and b vectors. Since the z-component is 

zero for the a and b vectors, the cross-product extends in the z-direction and 

sin(θ) can be given by  

 ][
||||

1
)sin( xyyx baba

ba
  (19) 
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Figure 23.B illustrates the variation of sin(θ) along the edge of the cluster in 

Figure 23.A. 

(4) Determine location of concavity using a list of sin(θ) values. The value of sin(θ) 

is in the positive and negative z-direction for concave and convex portions of the 

edge, respectively (Figure 23.A). To avoid multiple detections for a concavity, we 

select the local maximum peak among the peaks that are located within a squared 

distance of 0.01*A.  

 

Straight-Line Segmentation 

 Straight line segmentation is the first step in the segmentation of clusters. We 

calculate the distance between all concavities for a cluster and connect the concavities 

starting with the ones closest to each other. The concavities are connected only if the 

following conditions are met 

(1) Large portion of the connecting line segment lies inside the cluster 

(2) The sizes of resulting segmented regions are larger than an area threshold  

 Resulting nuclei area > threshold  A, (20) 

 where the threshold is decided depending on the nuclear size variation in a tissue image. 

We obtained good results for different types of images using a value of 0.5. Figure 24 

depicts the iterations of straight-line segmentation of a cluster in Figure 24.A  
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Figure 24: Iterations of a straight-line segmentation of a nuclear cluster using concavities.  

 

 

 

Ellipse Fitting 

 Straight-line segmentation results in an approximate segmentation of nuclei in 

nuclear clusters. However, the resulting nuclei have sharp corners and their shape does 

not adequately model naturally occurring nuclei. Moreover, straight-line segmentation 

does not account for the overlap between adjacent nuclei. In ellipse fitting step, we take 

the knowledge from the straight-line segmented regions in the form of original-cluster-

edge portion that belongs to an individual nucleus and model the nucleus using an 

elliptical model. 



 83 

 

 We apply the direct ellipse fitting method proposed by Fitzgibbon et al. due to its 

accuracy and simplicity of implementation [123]. The process of ellipse fitting includes 

the following steps: 

(1) Sort straight-line segmented regions in a decreasing order of precedence 

depending on the amount of the original cluster edge it includes.  

(2) Start ellipse fitting on the region with the highest precedence using the portion 

of straight-line-segmented region that is a part of the cluster edge. If the original 

cluster-edge length is less than 0.3 times of the complete edge of straight-line 

segmented region, original cluster-edge length lies on a straight line, or fitted 

ellipse is less than 0.5*A , use complete edge of the straight-line-segmented 

region. 

(3) Check the overlap between the present ellipse and previously fitted ellipses. If 

the overlap is less than 0.45 times the area of the fitted ellipse, fit the new 

ellipse, otherwise reject the ellipse.  

(4) Repeat steps (2) and (3) till all the straight-line segmented regions are 

processed. 

 Once the ellipse fitting is completed for all clusters, we check if there is any portion 

of the mask which was not considered as a nucleus but is of sufficient size to be one. We 

provide the edges of such regions to the ellipse fitting algorithm. This step helps in 

reducing the number of missed detections. Figure 25.D depicts the iterations of ellipse 

fitting on the straight-line segmented cluster in Figure 25.A. 



 84 

 

Figure 25: Iterations of ellipse fitting on a straight-line segmented cluster. 
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Simulated Data Generation 

 In this chapter, we use photomicrographs of H&E-stained biopsy tissue sections of 

renal, ovarian, and glioblastoma tumors. In addition to real tissue images, we also test the 

method on simulated nuclear mask images. In our simulations, we assume an elliptical 

model for nucleus given by following equations: 

                          (21) 

                           (22) 

Where, as θ varies from 0 to 2π, x and y define the edge of a nucleus. a and b are semi-

major and semi-minor axis lengths,   is the inclination of the major axis w.r.t x-axis, and 

(Cx , Cy) is the center of the nucleus. For simulation, we select semi-major and semi-

minor axis lengths using two bounded normal distributions. The means of the normal 

distribution for the semi-minor and the semi-major axis length are at 8 and 10 pixels, 

respectively. The standard deviation (σ) of both the distributions is equal and it is one of 

the parameters in the simulation. We bound both the distributions at mean ± σ. 

 

  We simulate a nuclear mask image, BW, using following algorithm. 1) Initialize 

BW to a blank 512x512 binary image. 2) Generate a nucleus i.e. a filled ellipse with 

following parameters— (Cx , Cy) at an uniformly random position in the range of BW,   

in the range 0 to 2π , and semi-axis lengths from the two bounded normal distributions. 3) 

Add some uniformly random noise to the generated nuclear edge, so that it is more 

similar to a real nucleus in histopathological data. 4) Add the nucleus to the BW image if 

the overlap in area with the existing nuclei in the BW image is less than or equal to 60% 

of its area. 5) Repeat last three steps till the nuclear count is N, another parameter in the 



 86 

simulation Figure 26 illustrates some examples of simulated nuclear masks with different 

values of N and σ. We can observe that the complexity of nuclear clusters increases with 

increasing N and σ. 

 

 

 
Figure 26: Examples of simulated nuclear mask with different parameters. 

 N: number of nuclei and σ: standard deviation in the axis lengths from their mean values. 

 

 

Segmentation Evaluation 

 We evaluate the performance of our segmentation method by matching the 

predicted  nuclear centers with the actual nuclear centers in the simulated data. While 

matching, we consider only mutually exclusive pairing of the centers. Let m and n are 
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centers in the list of predicted centers, M, and actual centers, N, respectively. Then m and 

n are a pair if they satisfy the follwing three conditions:  

                       (23) 

                       (24) 

             (25) 

 After the matching process, we calculate two performance metrics –TPR and FDR. 

TPR is the ratio of the number of matches to the total number of actual nuclei. FDR is the 

ratio of the number of unmatched predicted nuclei to the total number of predicted nuclei. 

High TPR and low FDR represent good performance of the method. 

 

Results and Discussion 

Performance of Nuclear Segmentation on Simulated Data 

 To visualize the performance of the method on the simulated data, we use a 

rectangular color-map visualization with various combinations of N and σ (Figure 27). 

We select N in the range of 100 to 450 with steps of 25, while we select σ in the range of 

0 to 3.5 with steps of 0.5.  Red color in the color map signifies high values while green 

color signifies low values. It can be observed that TPR > 0.8 (Figure 27.A) and FDR < 

0.006 (Figure 27.B) for the majority of the simulation. Thus, the method is performing 

reasonably well.  
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Figure 27: Performance of nuclear segmentation method on simulated data 

(A) True positive rate is the ratio of number of matched predicted nuclei and total number 

of actual nuclei. B) False positive rate is the ratio of number of unmatched predicted 

nuclei and total number of predicted nuclei.  

 

 

 

Performance of Nuclear Segmentation on Real Tissue Data 

 Figure 28 illustrates nuclear cluster segmentation results for tissue images of renal 

cell carcinoma (RCC), ovarian serous cystadenocarcinoma amd glioblastoma multiforme 

samples. It can be observed that segmentation method accurately segments nuclear 

clusters and single nuclei in the tissue images. It can also be observed that simulated 

nuclear clusters are similar to the clusters in the real tissue images. Therefore, the 

performance of the method on the simulated data is a good representative of its 

performance on real tissue images. Figure 28 illustrates concavity detection, straight-line 

segmentation, and ellipse fitting steps on some examples of real nuclear clusters.  
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Figure 28: Nuclear segmentation results for real tissue images 

(A) papillary RCC, (B) clear cell RCC, (C) ovarian serous cystadenocarcinoma, (D) 

glioblastoma multiforme. 
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Figure 29: Examples of concavity detection, straight-line segmentation, ellipse fitting on 

real nuclear-clusters. 
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Conclusion 

 In this chapter, we presented a novel nuclear cluster segmentation method, based on 

concavity detection and ellipse fitting, for further segmenting dense nuclear clusters in 

the nuclear stain mask. We quantitatively evaluated the performance of the method on 

simulated data and visually on H&E-stained histopathological images. High performance 

on simulated data indicates that this method will be useful in segmenting elliptical shapes 

from complex structures of overlapping ellipses. Nuclear cluster segmentation is essential 

for extracting accurate nuclear-based features, which have proved to be useful for various 

cancer endpoints. We will apply this method for extracting informative nuclear features 

from renal tumor images. 
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CHAPTER 5 

 

COMPREHENSIVE DESCRIPTION OF HISTOPATHOLOGICAL 

IMAGES 

Introduction 

 This chapter addresses the informatics challenge of reducing semantic gap by 

developing a comprehensive set of image features and illustrating biological 

interpretation of emergent features. The research presented in this chapter was conducted 

in collaboration with other researchers and most of the content is part of a published 

article [124]. © 2011 IEEE. 

 

 In the last few decades, many diagnostic models have been developed for cancer 

histological images to objectively and quickly predict disease endpoints (e.g., cancer 

grade or subtype) [5]. As a result, the literature is rich with image feature extraction 

methods for histological images. These features capture one or more of the following 

image properties: color [30], texture [37-39], topology [125], and shape [50]. Previous 

work suggests that some feature extraction methods may work better than others for a 

specific endpoint. For example, even though both fractal and multiwavelet methods all 

capture texture properties, Jafari-Khouzani and Soltanian-Zadeh [38] suggest that models 

based on multiwavelet features are superior for Gleason grading while Huang and Lee 

[37] suggest that fractal features perform better. Moreover, Doyle et al. [125] suggest that 

topological features perform better than textural features for breast cancer grading. 

Therefore, because of varying image properties and multiple feature extraction methods 

that capture the same image properties, it is unclear which set of features is optimal for 
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new cancer endpoints. The focus of research in the field of computer-aided diagnosis 

using histology has been on developing new innovative feature sets for a specific cancer 

endpoint. However, little work has been done in developing a general model with a 

comprehensive list of features that can be applied to multiple endpoints [30].  

 

 In this chapter, we develop a comprehensive feature set that consists of 12 feature 

subsets. Each feature subset is a combination of different image features capturing 

specific image properties. Our goal is to evaluate the diagnostic performance of this 

comprehensive feature set when applied to a variety of disease endpoints. Diagnostic 

models based on these feature subsets vary in classification accuracy. Moreover, for each 

disease endpoint, specific feature subsets tend to emerge as part of the best-performing 

predictive models. Although the association of feature subsets with disease endpoints is 

data-driven, many of the associations can be interpreted biologically. This suggests that 

such a comprehensive analysis can reveal biological clues for disease diagnosis. We 

perform this study using 12 binary disease endpoints including 6 renal tumor subtype 

endpoints and 6 renal cancer grade endpoints. 

 

Materials and Methods 

Datasets  

 We perform this study on micrographs of H&E stained renal tumor tissue samples. 

In this chapter, we use two separately acquired datasets (Figure 30). Dataset 1 includes 

subtype information and contains 48 images with 12 images of each subtype—

chromophobe (CH), clear cell (CC), papillary (PA), and oncocytoma (ON). Dataset 2 
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includes information for Fuhrman grade and subtype. Its 58 images include 20, 17, 16, 

and 5 images of CH, CC, PA, and ON subtypes respectively. Excluding benign ON 

samples, among the remaining 53 images, 13, 13, 13, and 14 images are of grade 1 to 4, 

respectively. For the subtyping study, we combine all samples from both of the datasets. 

For grading, we consider malignant tumor images from dataset 2. Each sample image is 

about 1200x1600 pixels.  

 

 

 

 
 

Figure 30: Sample histopathological tissue images for four renal tumor subtypes (A-D) 

from dataset 1 and four Fuhrman grades (E-F) from dataset 2.  

© 2011 IEEE 

 

 

 

Image Feature Extraction Methods 

 We crop 512x512 pixel non-overlapping, adjacent tiles from the central portion of 

each image sample. We extract features from each tile, and unless mentioned otherwise, 

we average features over all tiles to represent the sample. We extract a comprehensive set 
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of 2671 features from each sample. This set includes 12 feature subsets extracted from 

different processed forms of the original sample images. Table 6 lists the 12 feature 

subsets and their combination set (i.e., the All set).  

 

Table 6: The comprehensive feature set including 2671 features.  

Feature Subset Acronym Count 

Color  C 48 

Global Texture GT 565 

Global Color Texture GCT 493 

Stain Texture StT 503 

Cytoplasmic Stain Objects’ shape CStOS 249 

Cytoplasmic Stain Texture  CStT 77 

Glandular Objects’ Shape  GOS 249 

Nuclear Stain Objects’ Shape NStOS 249 

Nuclear Stain Texture NStT 77 

Nuclear Stain Topology NStTo 56 

Nuclear Shape NS 49 

Nuclear Topology NTo 56 

All A 2671 

 

 

 Figure 31 describes the flow of feature extraction, where green boxes represent 

different forms of the processed image while pink boxes represent feature subsets. We 

generate the “Normalized Sample Image” using a color map quantile normalization 

method (Section 3.1). For the “Color Quantized Image”, we quantize the color space 

using SOM [39, 126] with the following parameters: 64 levels, 1-by-64 grid size, linear 

initialization along the greatest Eigen vector, and ‘rectangular’ lattice type. The “Stain 

Segmented Image” is a four-level grayscale image, where gray-levels of 1, 2, 3 and 4 

correspond to nuclear, red-blood cells, cytoplasmic and glandular structures respectively. 

These structures correspond to distinct H&E color stains and we segment them using an 

automatic color segmentation method (Chapter 2). We then extract binary masks for 

“Nuclear”, “Cytoplasmic” and “Glandular” structures in the image based on 



 96 

segmentation labels. We further segment the nuclear clusters in the nuclear mask into 

individual nuclei to produce the “Segmented Nuclei” (Chapter 3).  

 

 

 

Figure 31: Flow diagram for image feature extraction. Green boxes: original or processed 

image. Pink boxes: feature subset.  

© 2011 IEEE 

 

 

 The Color feature set correspond to distributions of R, G and B channel intensities 

with 16 bins per histogram [30]. We average each histogram bin over all tiles of an image 

to produce the Color feature subset.  

 

 The Texture1 feature set is a combination of Haralick, Gabor, wavelet packet and 

multiwavelet features. We extract a 64-level GLCM matrix for each tile and then we sum 

the GLCM matrices over all tiles. Thereafter, we extract 13 Haralick features from the 

summed GLCM matrix [127]. A 2-D Gabor filter is a Gaussian (with variances σx and σy 
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along x and y axes respectively) modulated by a sinusoid (with frequency f and 

orientation θ) [128, 129]. We consider σx =0.56/f and σy =2 σx. We obtain unique filters 

for different values of f and θ. We consider  43,2,4,0    radians and 

 4/2,8/2,16/2,32/2,64/2,128/2,256/2f  cycles per pixel, therefore we have 28 

distinct filters. For implementation, we consider a rectangular filter with range up to two 

standard deviations in both directions. We calculate energy (E) and entropy (H) [38] of 

each Gabor filter response image giving 56 features per tile. We average these features 

over all tiles to produce Gabor image features. We perform wavelet packet 

decomposition of the grayscale image using ‘db6’ and ‘db20’ wavelets [130]. We extract 

level-3 sub-matrices (total 64 sub-matrices per wavelet type) for each tile and then extract 

energy and entropy [38] of these sub-matrices. This results in 256 features per tile and we 

average over all tiles to produce wavelet packet image features. We also perform a two-

level multiwavelet transform of the grayscale image with multiwavelets—GHM, SL and 

SA4 [38, 131]. We obtain 28 sub-matrices per multiwavelet type and calculate their 

energy and entropy resulting in 168 features per tile. The final multiwavelet features are 

an average of these 168 features over all tiles.  

 

 The Texture2 feature set is a combination of Texture1 features, gray-level 

distribution, and fractal features. Gray-level distribution captures the distribution of gray-

levels in grayscale image using 64 bins in the histogram. Similar to color distribution, we 

average histogram bins over all tiles to produce 64 gray-level distribution features. We 

extract eight fractal dimensions for the grayscale image using the method described by 

Huang and Lee [37]. We calculate Nr and Er for each tile and sum them to produce Nr and 
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Er for the sample image. Thereafter, we calculate fractal dimensions from Nr and Er using 

 256,128.64,32,16,8,4s , where s
2
 is the grid size.  

 

 The Texture3 feature set is a combination of Texture1 features and stain co-

occurrence features. Stain co-occurrence captures the frequency of  adjacent stains in a 

histological image [36]. We extract a 4x4 stain co-occurrence matrix similar to a GLCM 

matrix. This matrix is symmetric, so we extract 10 stain co-occurrence features from the 

lower triangular matrix. The final stain co-occurrence features for the image is the 

average of these features over all tiles.  

 

 The Texture4 feature set is a combination of gray-level distribution and Haralick 

features applied to specific stains. In the Texture1 feature set, we capture the grayscale 

texture of the image as a whole. In Texture4, we capture the grayscale texture of the 

cytoplasmic or nuclear stain areas in the grayscale image bounded by their respective 

masks. 

 

 The Shape feature set captures shape properties of the structures in three 

segmentation masks. Among the structures identified by segmentation, we eliminate the 

noise using a 20-pixel area threshold. The description for pixel area, convex hull area, 

solidity, perimeter, elliptical properties (area, major-minor axes lengths, eccentricity and 

orientation) and bending energy is available in [5, 50]. For ellipse fitting, we use the 

method described by Fitzgibbon et al. [123]. We extract boundary fractal dimension, 

using box counting on a binary object image. We extract Fourier shape descriptor error 
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(i.e., RMS error) in reproducing the shape using 1, 2, …, 20 harmonics [132]. We 

estimate the distribution of each of the 31 measures over the objects in all the tiles. We 

then represent this distribution using eight statistics: mean, median, minimum, maximum, 

standard deviation, inter-quartile range, skewness and kurtosis. In addition to these 

features, we also use object count as a feature. Therefore, the Shape feature set consists of 

249 features (31*8+1).  

 

 The Topology feature set captures the spatial distribution pattern of objects in the 

histological image. We extract topology features using elliptical centers from 

unsegmented nuclear stain objects and segmented individual nuclei. We extract topology 

features by measuring properties of spatial graphs such Deluanay triangulation (areas and 

side lengths), Voronoi diagram (area, side length and perimeter) and minimum spanning 

tree side lengths [125].  We also measure object closeness, which is the average distance 

of an object to its five closest neighbors. We represent the distribution of these seven 

topology measures for a single image using the same eight statistics used for Shape 

features, resulting in 56 features.  

 

 The Nuclear Shape feature set is a combination of nucleus count, elliptical 

properties (the same as those of Shape features) and cluster size. Cluster size measures 

the number of nuclei in a cluster. Because it is a distribution, we estimate the same eight 

statistics, as object shape features.  
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Feature Selection and Classification 

 In this chapter, we consider all binary endpoints comparing pairs of classes. Both 

grading and subtyping datasets have 4 classes and 6 endpoints. We develop classification 

models for all combinations of binary endpoint (total of 12) and feature subset (total of 

13, Table 6). We consider four classification methods (Bayesian, Logistic Regression 

(LR), k-Nearest Neighbors (k-NN) and Linear Support Vector Machine (SVM)) over a 

fixed set of parameters for each classifier. For Bayesian, we consider both pooled and un-

pooled variance with spherical and diagonal variance matrices resulting in four Bayesian 

models. For k-NN, we consider ten k values from 1 to 10, resulting in 10 k-NN models. 

For SVM, we consider 28 cost values (0.1:0.1:0.9, 1:1:9, and 10:10:100 (start value : step 

: end value)), resulting in 28 SVM models. Logistic regression has no additional 

parameters. For each classifier model, we consider five feature selection techniques 

including t-test, Wilcoxon rank sum test, Significance Analysis of Microarrays (SAM) 

[133], and two types of mRMR: mRMR-d (difference) and mRMR-q (quotient) [134]. 

We consider 45 feature sizes ranging from 1 to 45. Thus, for each combination of 

endpoint and feature subset, we use cross validation to find optimal classification models 

from among 9,675 models. 

 

 We identify optimal classification models for each endpoint using stratified nested 

CV with 10 iterations and 5 folds in both the outer and inner CV. The inner CV is used 

for identifying optimal model parameters (i.e., feature selection method, feature size, 

classifier, and classifier parameters). The performance of each optimal model is then 

assessed using the testing set from outer CV. We select the simplest classification models 
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that are within one standard deviation of the best performing model. The simplest models 

are defined as those with the smallest feature size, highest k for k-NN models, and 

smallest cost for SVM models. For Bayesian models, we prefer pooled over un-pooled 

covariance and spherical over diagonal covariance. We have not assigned any preference 

to any particular classification method or feature selection method. Therefore, for each 

combination of endpoint and feature set, it is possible to obtain multiple optimal models. 

In such cases, we report the average performance of all models.  

 

Results and Discussion 

Classification Results 

 We optimize and validate models for every combination of feature subset and 

binary endpoints (both subtyping and grading endpoints). Figure 32 illustrates the scatter 

plots between optimizing CV accuracy and CV accuracy with the All feature subset. Each 

point in the scatter plot corresponds to average performance over 5-folds of one iteration 

in the outer CV loop and average performance over 250 iterations (5 outer folds*5 inner 

folds*10 inner iterations) in the inner optimizing loop. Most points are close to the 

diagonal line, suggesting that the performance of the inner optimizing CV predicts the 

performance of the outer CV. In the subtyping scatter plot, it can be observed that all but 

CH vs. CC and CH vs. ON perform with average accuracy > 90%. Low performance of 

these two endpoints is supported by the literature, as histologically and genetically, CH is 

similar to CC and ON. In the grading scatter plots, binary comparisons of grades differing 

by two or more levels tend to perform better (e.g., G1 vs. G4). Intuitively, this makes 

sense because with greater difference in grades, there are more visually apparent changes.  
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 Table 7 and Table 8 list outer CV accuracy and standard deviation for subtyping 

and grading models using all feature subsets. The best performing subset for each 

endpoint is highlighted in red. It is interesting that the All subset is never the best 

performing subset. The gap between the best performing feature set and the All set is 

larger for grading endpoints. This is probably because, with the large feature list and 

fewer samples in the grading dataset, it is more likely that a model over fits. Hence, it is 

important to identify statistically important feature sets for an endpoint. Based on 

predictive performance, we can conclude that color, gray texture, nuclear stain object 

shape, nuclear shape, and topology are useful feature subsets for renal endpoints.  
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Figure 32: Scatter plot between optimizing CV accuracy and CV accuracy for binary 

renal subtyping and grading endpoints. 

Each point in the plot represents an individual iteration of CV averaged over 5 folds. 
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Table 7: CV accuracy of binary renal subtyping models using different feature subsets in 

the comprehensive set. 

 

Feature Subset 

 

CH vs. CC CH vs. ON CH vs. PA CC vs. ON CC vs. PA ON vs. PA 

A 0.77±0.04 0.79±0.05 0.92±0.03 0.94±0.03 0.91±0.03 0.96±0.02 

C 0.81±0.04 0.69±0.06 0.92±0.02 0.84±0.03 0.96±0.02 0.79±0.05 

GT 0.84±0.03 0.62±0.03 0.89±0.02 0.92±0.02 0.91±0.03 0.77±0.03 

GCT 0.65±0.04 0.65±0.02 0.84±0.02 0.65±0.06 0.86±0.05 0.84±0.04 

StT 0.68±0.05 0.60±0.06 0.89±0.04 0.73±0.07 0.91±0.04 0.75±0.04 

CStOS 0.77±0.04 0.63±0.02 0.48±0.04 0.60±0.07 0.66±0.02 0.58±0.03 

CStT 0.73±0.05 0.64±0.04 0.86±0.04 0.70±0.05 0.80±0.03 0.81±0.06 

GOS 0.69±0.03 0.72±0.06 0.70±0.04 0.92±0.04 0.88±0.04 0.74±0.05 

NStOS 0.68±0.05 0.71±0.06 0.94±0.04 0.93±0.02 0.75±0.04 0.93±0.03 

NStT 0.58±0.07 0.70±0.04 0.82±0.03 0.55±0.04 0.87±0.03 0.85±0.02 

NStTo 0.73±0.03 0.76±0.05 0.60±0.06 0.58±0.05 0.56±0.05 0.74±0.07 

NS 0.71±0.05 0.67±0.04 0.88±0.02 0.97±0.02 0.82±0.04 0.98±0.01 

NTo 0.78±0.04 0.82±0.02 0.89±0.03 0.58±0.05 0.71±0.05 0.71±0.04 

Note: Values in red best performing feature subset for any binary model. 

 

 

Table 8: CV accuracy of binary renal grading models using different feature subsets in 

the comprehensive set. 

 

Feature Subset 

 

G1 vs. G2  G1 vs. G3 G1 vs. G4 G2 vs. G3 G2 vs. G4 G3 vs. G4 

A 0.51±0.09 0.81±0.06 0.79±0.08 0.62±0.06 0.62±0.07 0.59±0.05 

C 0.70±0.08 0.58±0.05 0.62±0.05 0.46±0.10 0.56±0.09 0.62±0.07 

GT 0.47±0.04 0.51±0.09 0.74±0.08 0.43±0.08 0.63±0.07 0.66±0.13 

GCT 0.52±0.06 0.54±0.10 0.65±0.07 0.49±0.04 0.55±0.10 0.51±0.08 

StT 0.62±0.10 0.56±0.05 0.63±0.05 0.42±0.07 0.67±0.07 0.55±0.08 

CStOS 0.44±0.06 0.48±0.06 0.59±0.09 0.52±0.09 0.68±0.09 0.63±0.06 

CStT 0.48±0.10 0.43±0.08 0.62±0.06 0.50±0.07 0.54±0.04 0.59±0.06 

GOS 0.44±0.08 0.55±0.06 0.49±0.08 0.44±0.07 0.44±0.08 0.44±0.06 

NStOS 0.41±0.08 0.84±0.08 0.59±0.07 0.73±0.09 0.48±0.09 0.45±0.05 

NStT 0.48±0.09 0.65±0.07 0.61±0.07 0.45±0.08 0.65±0.06 0.51±0.06 

NStTo 0.37±0.09 0.45±0.10 0.49±0.08 0.45±0.07 0.47±0.07 0.47±0.08 

NS 0.61±0.07 0.81±0.06 0.84±0.05 0.68±0.06 0.82±0.08 0.59±0.08 

NTo 0.48±0.07 0.59±0.07 0.61±0.09 0.46±0.07 0.59±0.07 0.48±0.09 

Note: Values in red best performing feature subset for any binary model. 
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Feature Ranking 

 In this section we will illustrate the important subsets that emerge for individual 

endpoints. First, for each endpoint, we consider all of the models that use the All feature 

set and calculate the percentage contribution of individual feature subsets. Figure 33 

illustrates the average percentage contribution of feature subsets for both subtyping and 

grading endpoints. Among subtyping endpoints, all but CH vs. ON have a dominant 

contribution from one subset over the others (> 50%). These subsets are GT, NStOS, NS, 

C, and NStOS for CH vs. CC, CH vs. PA, CC vs. ON, CC vs. PA, and ON vs. PA, 

respectively. The same feature subsets are the best performing subsets in Table 7 for 

these endpoints. Among grading endpoints, only four have dominant contributing 

subsets. These subsets are NStOS, NS, NStOS and CStOS for G1 vs. G3, G1 vs. G4, G2 

vs. G3, and G3 vs. G4, respectively. All but the G3 vs. G4 subset are the best performing 

subsets in Table 8.  
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Figure 33: Contribution of feature subsets in the comprehensive set in renal tumor 

diagnostic models.  

All subtyping endpoints have a distinct contribution (probability > 0.5) from a single 

feature subset with the exception of CH vs. ON. Similarly all grading endpoints have a 

distinct contribution from a single subset with the exception of G1 vs. G2 and G2vs. G4. 
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 We further investigate the importance of feature subsets using a method normally 

used to identify over- represented Gene Ontology terms in a list of genes [135]. For each 

endpoint, we consider all optimal classification models that select features from the entire 

set of 2671 image features. We count the number of features drawn from each of the 12 

feature subsets and use a one-sided Fisher’s exact test to determine if any of the feature 

subsets are statistically over-represented at a p-value threshold of 0.01 (adjusted for 

multiplicity using the Bonferroni method). A small p-value for a subset indicates that the 

number of features selected from that subset is higher than what is expected by random 

chance. In Table 9, for each endpoint, we mark feature subsets that are statistically over-

represented with X’s. The results in Table 9 roughly correspond to those in Figure 33. 

 

 

Table 9: Statistically over-represented feature subsets in diagnostic models for renal 

tumor subtyping and grading endpoints. 

 

Feature 

Subset 

 

CH 

vs. 

CC  

CH 

vs. 

ON 

CH 

vs. 

PA 

CC 

vs. 

ON 

CC 

vs. 

PA 

ON 

vs. 

PA 

G1 

vs. 

G2  

G1 

vs. 

G3 

G1 

vs. 

G4 

G2 

vs. 

G3 

G2 

vs. 

G4 

G3 

vs. 

G4 

C X    X        

GT X            

GCT             

StT       X      

CStOS           X X 

CStT           X X 

GOS  X   X        

NStOS  X X   X  X  X   

NstT  X    X  X     

NStTo  X           

NS X X  X  X X X X X X  

NTo X                     
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Biological Interpretation 

 Eble et al. provide guidelines for subtyping renal tumors [136]. CC has clear 

cytoplasm with distinct cell membranes and round nuclei. CH has granular cytoplasm 

with prominent cell membranes and wrinkled nuclei. Perinuclear halos (i.e., white stain 

surrounding nuclei) are common in chromophobe images. PA has finger-like nuclear 

clusters. ON has granular cytoplasm with round nuclei arranged in compact nests or 

microcysts [136]. We can relate these biological properties to the feature subsets as 

follows. CH, with its wrinkled nuclei, granular cytoplasm and perinuclear halos, differs 

from other subtypes in nuclear, texture, and glandular object features. This may explain 

why the NS, NStOS, GT and GOS feature subsets are selected as statistically important 

subsets for endpoints with CH. Due to clear cytoplasm, CC differs from other subtypes in 

terms of color, glandular objects and texture. Thus, the C, GT and GOS feature subsets 

tend to emerge for endpoints with CC. Due to nuclear clusters, PA differs from other 

subtypes in terms of nuclear properties represented by the NS, NStT, and NStOS feature 

subsets. Finally, due to its compact nuclear nests, ON differs from CH in terms of 

topology, represented by the NStTo.  

 

 Renal cancer is graded using the Fuhrman nuclear grading system. G1 cells have 

small intensely stained nuclei with no visible nucleoli. G2 cells have finely granular 

chromatin, which leads to slightly textured nuclei. They may have inconspicuous 

nucleoli. In G3, the nucleoli must be easily unequivocally recognizable. G4 is 

characterized by nuclear pleomorphism (varying size of nuclei), hyperchromasia (leading 

large nuclear size) and single to multiple macronucleoli [136]. Therefore, nuclear shape 
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features should be the most important feature set for renal cancer grading. Thus, it is not 

surprising that the NS, NStOS and NstT subsets are statistically important for most 

grading endpoints. Literature [136] supports occasional cytoplasmic changes (becomes 

eosinphilic) in clear cell with higher grade, this is possibly the reason for selection of 

CStO and CStT subsets for G2 vs. G4 and G3 vs. G4.  

 

Conclusion 

 In this chapter, we developed a CDSS with a comprehensive set of existing image 

features that can be applied to a wide variety of histological diagnosis applications. We 

assessed the predictive performance of the system by applying it to several renal tumor 

endpoints. We also evaluated the contribution of feature subsets to each disease endpoint 

in order to reveal emergent properties in the histological images that may relate to 

biological properties. Results indicate that the feature sets that emerge from the system 

are biologically interpretable.  
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CHAPTER 6 

 

BIOLOGICALLY INTERPRETABLE DESCRIPTION OF 

HISTOPATHOLOGICAL IMAGES  

Introduction 

 Chapter 5 illustrated a comprehensive feature set for histopathological images, 

evaluated the set on a variety of renal tumor endpoints, and discussed and biologically 

interpreted emergent feature subsets. As shape-based features were prominent among the 

emergent subsets, this chapter focuses on the development of novel shape-based features.  

The proposed shape-based features quantify the distribution of shape patterns in an image 

using Fourier shape descriptors. The research presented in this chapter was conducted in 

collaboration with other researchers and most of the content is part of a published article 

[137].  

 

 Over the last decade, several CDSSs have been developed to aid histological cancer 

diagnosis and to reduce subjectivity. All of these systems attempt to mimic pathologists 

by extracting features from histological images. Some important features include color, 

nuclear shape, fractal, textural gray-level co-occurrence matrices (GLCM), wavelets, and 

topological, among others [5, 138]. Several diagnostic systems for renal cell carcinoma 

(RCC) are good examples of the utility of these features. For example, Chaudry et al. 

proposed a system using textural and morphological features with automated region-of-

interest selection for RCC subtype classification [36, 139]. Waheed et al. performed a 

similar analysis but included fractal as well as textural and morphological features [140]. 

Choi et al. extended the morphological analysis to three-dimensional nuclei and applied 
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their system to RCC grading [141]. In addition to morphological features, Francois et al. 

used cell kinetic features in their RCC grading system [142]. Finally, Raza et al. used a 

scale invariant feature transform (SIFT) method to classify RCC subtypes [143]. Despite 

the success of these methods in terms of diagnostic accuracy, widespread use of these 

systems is limited by a lack of feature interpretability. Some researchers have provided 

visual interpretation of features. For example, some topological features have been 

related to the amount of differentiation in varying cancer grades [125]. On the other hand, 

pathologists may not be receptive to, or confident in, features such as wavelet or fractal 

representations of images because they are not easy to interpret biologically. Moreover, 

most existing systems exploit morphological properties of nuclear shapes and ignore 

cytoplasmic and glandular structures despite evidence of their utility [39]. Thus, methods 

based on a holistic view of shapes and colors may more accurately reflect the process by 

which a pathologist interprets a renal tumor image [136].  

 

 Fourier shape descriptors, described by Kuhl and Giardina [132] have been 

reported to be very useful as shape descriptors. They are highly robust to high frequency 

noise because of their ability to reject higher harmonic shape descriptors. Researchers 

have used Fourier shape descriptors for various medical imaging applications, including 

shape-based vertebral image retrieval [144], and classification of breast tumors [145]. 

The medical images involved in these studies typically have definite shapes with 

consistent landmarks. In addition, researchers have used Fourier shape descriptors for 

analyzing the shape of a nuclear structure [33, 146, 147]. Histological images, however, 

lack such landmarks and they tend to exhibit multiple highly variable shapes. As such, it 
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is difficult to compare histological images using common techniques such as template 

matching with an image atlas [148] or using shape-based similarity measures after 

registration of the shapes in a histological image [149]. Therefore, in order to characterize 

and compare histological images in terms of shapes, we quantify the distribution of shape 

patterns in an image using Fourier shape descriptors.  

 

 We use three steps to build a diagnostic model from a set of histological images: 

(1) shape-based feature extraction, (2) feature selection, and (3) classifier model 

selection. We then evaluate this model-building process by examining the biological 

relevance of shapes (i.e., examining the subtype-specific tissue shapes and cellular 

structures that correspond to the best features of the classification model) and testing the 

classifier prediction performance using independent images. Finally, we compare the 

shape-based diagnostic model to diagnostic models based on traditional histological 

image features. We show that Fourier shape-based features (1) are capable of classifying 

H&E-stained renal tumor histological images, (2) out-perform or complement traditional 

histological image features used in existing automated systems, and (3) are biologically 

interpretable. 

 

Materials and Methods 

Datasets  

 We perform this study on photomicrographs of H&E stained renal tumor samples. 

We use two separately acquired datasets: D1 and D2 (Figure 34). D1 contains 48 images 
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with 12 images of each subtype while D2 has 55 images including 20 CH, 17 CC, 13 PA, 

and 5 ON subtypes. D2 has samples with nuclear grade varying from 1 to 4.  

 

 

 

 

Figure 34: Example images of four H&E stained histological renal tumor subtypes in 

datasets D1 (A-D) and D2 (E-H).  

Among four subtypes, three are renal cell carcinoma (RCC) subtypes: (A and E) clear 

cell, (B and F) chromophobe, and (C and G) papillary. The fourth subtype is a benign 

renal (D and H) oncocytoma tumor. 

 

Shape Descriptors 

 We segment the nuclear, cytoplasmic and no-stain/glandular regions of the original 

histological image using the automatic color segmentation method described in Chapter 

2. Figure 35 illustrates some color segmentation results. First row: original histological 

renal tumor subtype images; second row: pseudo colored segmentation masks, where 

blue, white and pink colors correspond to nuclear, cytoplasmic and no-stain/glandular 

masks respectively; third row: segmented shape contours in nuclear (blue), no-

stain/glandular (black) and cytoplasmic (pink) masks. 
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Figure 35: Color segmentation results and shape contours in three masks for four renal 

tumor subtypes  

 

 We represent shape contours using Fourier shape descriptors. Let (x(t), y(t)) be 

parametric representation for each shape contour, then the Fourier series expansion for 

the one-dimensional periodic function x(t) and y(t) is given by 
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where n is the number of harmonics. We estimate the Fourier coefficients A0, C0, an, bn , 

cn, and dn by the formulas illustrated in [132]. A0 and C0 correspond to the location of a 

shape, so we do not consider them as shape descriptors. an, bn , cn, dn are the shape 



 115 

descriptors that have commonly been used for shape discrimination [145, 150] and shape 

retrieval [144, 151] applications in 4*N dimensional space, where N is the number of 

harmonics. However, we are classifying images based on the distribution of multiple 

shapes within the images and not based on individual shapes. Therefore, we quantify the 

distributions of an individual descriptor over all the shapes in an image mask and use 

these distributions as shape-based features for classification (described in next section). 

The distribution of four coefficients, an, bn, cn, dn for harmonic n, cannot be used 

separately because they jointly describe an ellipse:  

    sincos nnn bax   (28) 

    sincos nnn dcy  , (29) 

where
T

tn


2
 . 

 However, using both the semi-major and semi-minor axis lengths of ellipses, we 

can capture the shape patterns.  We quantify semi-major and semi-minor axis lengths as 

follows. The magnitude of the ellipse phasor is given by  
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We can locate the extrema of this phasor magnitude by differentiating the equation and 

solving for its root. The resulting solution for   is  
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Now, as )(r describes an ellipse, n  gives the location of either major or minor axis while 

the other axis is given by
2

 n
. Therefore, semi-major and semi-minor axes are given 

by 
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1

nr  and 
2

nr  capture the magnitude of a shape’s variation in the n
th

 harmonic. For n=1, 
1

nr  

and 
2

nr  encode the size of the shape. For n>1, 
1

nr  and 
2

nr  encodes the complexity of the 

shape. For simpler shapes, i.e. closer to an ellipse,
 

1

nr  and 
2

nr  quickly reduce to zero with 

increasing n, while for more complex shapes, they reduce slowly. Figure 36 illustrates 

shape axes descriptors for synthetically generated clusters of nuclei. In Figure 36.B, for 

the 1
st
 harmonic, axes features describe size and eccentricity of a shape. For higher 

harmonics, axis lengths encode detail about the shape. Therefore, in Figure 36.C and 

Figure 36.D, for 2
nd

 and 3
rd

 harmonics, simple (closer to an ellipse) shapes (such as the 

green shapes) have axis lengths close to zero, while all other shapes have larger axis 

lengths.  
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Figure 36: Axis lengths of shape descriptors capture the complexity of shapes  

A) We use several synthetic shapes to illustrate the utility of Fourier shape descriptors in 

capturing shape complexity. The green and light green shapes are the simplest elliptical 

shapes. B-D) Major and minor axis lengths (in pixels) of the Fourier descriptor ellipses in 

(A), for harmonics n=1, 2 and 3. Marker colors in (B-D) correspond to shape colors in 

(A). 

 

 

  

  



 118 

 Figure 37 illustrates the ability of the axis length distribution to capture the shape 

profile of an image. In this figure, we are considering nuclear (blue) mask shapes for two 

RCC subtypes—CH and PA. Figure 37.A and Figure 37.D are histograms of major axis 

length at harmonic two. The y-axis of the histogram is the frequency of shapes with a 

particular range of coefficient value. The second harmonic captures the complexity of the 

shape approximation. Thus, for complex shapes like PA’s nuclear clusters, the major axis 

length of the second harmonic tends to have higher values compared to that of simpler 

shapes like individual circular nuclei. In Figure 37.C and Figure 37.F—corresponding to 

the histograms in Figure 37.A and Figure 37.D, respectively—we have outlined, in cyan, 

shapes with values of major axis length that fall the in lower seven bins. Shapes with 

values of major axis length falling in the upper eight bins are outlined in blue. We can 

observe that the CH image (Figure 37.A-C) has a dominant pattern of simple shapes as 

compared to the PA image (Figure 37.D-F). As described in the next section, 

discretization of axis lengths of all the shapes in an image is the basis for representing a 

histopathological image as a multi-feature observation.  
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Figure 37: Fourier shape features discriminate simple and complex shapes in histological 

images. 

 The bar graphs illustrate the distribution of the second harmonic’s major axis length of 

all the shapes in the nuclear mask for (A) a chromophobe and (D) a papillary image. (B-

C) and (E-F) are original image and nuclear mask shapes of chromophobe and papillary, 

respectively.   
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Discretization of Shape Descriptors 

 

 In order to develop a classification system, we represent each image as a single 

observation with a fixed number of features. Due to the variable number of shapes in 

each image, we quantify the distribution of shape descriptors (axis lengths) to create a 

“shape profile”, represented as a histogram. We determine the dynamic range of each 

histogram by computing interquartile distances of shape descriptor distributions from the 

training set. Interquartile distance is the distance between the 25th and 75th percentiles of 

a distribution [152]. Mathematically, 
,c m

nR  is the distribution of axis lengths over all 

shapes in all images in the training dataset for a particular combination of harmonic (n), 

axis type (c) and mask (m). Let function fP (R) return the p
th

 percentile of distribution R, 

then the interquartile distance (IQD) is given by 

 0.75 0.25( ) ( ) ( )IQD R f R f R   (34) 

Using equation (5), we 
,c m

nR : 
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where L, U are the lower and upper bounds of the range, respectively. Outliers bin into 

the edges of the histogram and may be informative features. Axis lengths are always 

positive, therefore the lower bound of the range is forced to be greater than or equal to 

zero. Figure 38 illustrates the data flow from a histological RGB image to a list of 900 

features. The procedure is as follows: 
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Figure 38:  The data flow for extraction of 900 shape-based features from a RGB 

histological image.  

 

 

 For each mask, we obtain the contour for all shapes after noise filtering using 

connected component analysis. Nm is number of shapes in m mask, where m   {b, w, p}. 

We then extract shape axes descriptors (2 axes*10 harmonics) for each shape contour and 

bin them to produce 2*10 histograms for each mask (3 masks*10*2 histograms in an 

image). Due to the variation in dynamic range of the two axes and harmonics, we use 

data-dependent histogram ranges with 15 bins per histogram. We use the histogram 

frequencies as features for our image classification. 
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1. Generate a binary mask for each color in the histological image. We use three colors 

for H&E stained RCC images: blue (nuclear), white (no-stain/glandular), and pink 

(cytoplasmic). 

2. Extract contours for all shapes in a mask after connected component analysis. 

3. Extract axis lengths for Fourier ellipses (
1

nr  and 
2

nr ) for the first 10 harmonics (n). 

This will give us 2*10 variables for each shape. 

4. For each harmonic (n), axis type (c), and mask (m), perform a binning procedure 

(Figure 38). We generate 20 histograms for each mask. We use 15 bins and a range 

determined by 
,c m

nL  and 
,c m

nU  as previously described. 

5. Combine histogram frequency from the three masks to generate a list of 900 shape-

based features 

 

 There are a number of advantages in using discretization rather than Euclidian 

distance to compare images. First, the axes of shapes that are similar, but perhaps not 

identical, fall into the same histogram bin. Similar histogram frequencies can be 

interpreted as a similarity of shapes between images. Second, bins sensitive to noise or 

outlier shapes in any sample will be rejected during feature selection. Finally, 

discriminating features can be components corresponding to multiple types of shapes 

rather than components corresponding to the most prominent characteristic shape. 
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Traditional Features 

 Traditional features in computer-aided diagnosis include texture, morphological, 

topological, and nuclear. In order to compare shape-based features to these traditional 

features, we extract additional features from histological renal tumor images. 

For texture, we have two sets of features: GLCM and wavelet. For GLCM features, we 

extract a 16 × 16 GLCM matrix for each gray-scale tissue image with 16 quantization 

levels [127]. Using this matrix, we extract 13 texture properties including contrast, 

correlation, energy (angular second moment), entropy, homogeneity (inverse difference 

moment), variance, sum average, sum variance, sum entropy, difference variance, 

difference entropy, and two information measures for correlation. These features are 

reported to successfully capture texture properties of the image and are very useful in 

automated cancer grading [125, 127, 153]. 

 

 For wavelet features, we perform three-level wavelet (db6) packet decomposition 

[130] of the gray-level tissue image and extract energy and entropy [38] of 84 coefficient 

matrices (level 1, 2 and 3), producing 168 features. Wavelet features capture texture 

properties of an image. 

 

 For morphological features, we use color-GLCM, a method proposed by Chaudry 

et al. to classify renal tumor subtypes. This method generates a four-level gray-scale 

image from four color stains in H&E-stained images [36]. The four colors resulting from 

H&E-stained images (blue, white, pink, and red) correspond to segmented regions of 

nuclei, lumen, cytoplasm, and red blood cells. We then extract a 4 × 4 GLCM matrix for 



 124 

the gray-scale image. We extract 21 features from this matrix including 16 elements of 

the 4 × 4 GLCM matrix, contrast, correlation, energy (angular second moment), entropy, 

and homogeneity (inverse difference moment). These features capture morphological 

features of the image such as stain area and stain co-occurrence properties. 

 

 For topological features, we use a graph-based method. Several researchers have 

proposed graph-based features to capture the distribution of patterns in an image. 

Biologically, these features capture the amount of differentiation (related to cancer grade) 

in a histological image. We morphologically erode our nuclear mask to separate nuclear 

clusters and use their centroids (nuclear centers) for this analysis. First, we create a 

Voronoi diagram from these centers and then calculate area and perimeter of each region 

and all side-lengths. We then calculate mean, minimum, maximum, and disorder of the 

distribution to produce 12 features [125]. The disorder, D, of a distribution, r, is given by  
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where σr and μr are standard deviation and mean of r, respectively  [56]. Second, we 

calculate the area and side lengths of the Delaunay triangles and extract statistics similar 

to those of the Voronoi diagram to produce eight more features. Last, we calculate side 

lengths of the minimum spanning tree and extract the same statistics to produce four 

more features. In total, we extract 24 topological features. 

 

 For nuclear features, we extract nuclear count and elliptical-shape properties, which 

have proven to be useful for renal carcinoma subtyping and grading. For segmenting 

nuclear clusters, we use an edge-based method with three steps: concavity detection, 
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straight-line segmentation, and ellipse fitting. We describe each elliptical nucleus using 

area, major-axis length, minor-axis length, and eccentricity. We then calculate mean, 

minimum, maximum and disorder of the distribution of these descriptors to produce 16 

features. In total, including nuclear count, we extract 17 nuclear features. 

 

 We combine the GLCM (13 features), color-GLCM (21), wavelet (168), 

topological (24), and nuclear (17) features to produce a set of 243 “Combined 

Traditional” features. Finally, we combine the “Combined Traditional” (243) and 

“Shape” (900) features to a produce a set of 1143 “All” features. 

 

Feature Selection and Classification 

 For validation, we combine D1 and D2, then randomly split them into two new 

training and testing datasets with balanced sampling from both datasets. We perform a 

three-fold split, in which two folds form the training set while one fold forms the testing 

set. Each fold acts as a testing set once, resulting in three training–testing sets. We 

perform 10 iterations of this split to estimate the variance in performance. Thus, there are 

30 training–testing sets in the external CV that produces the final classification accuracy. 

For each of the 30 training sets, we perform an additional three-fold, 10 iterations of CV 

to choose an optimal set of classifier and feature selection parameters. This forms the 

internal CV of a nested CV (Appendix). 

 

 We construct a multi-class classification system consisting of a hierarchy of binary 

classifiers CC vs. PA, CC vs. CH, CC vs. ON, CH vs. PA, CH vs. ON, and ON vs. PA 
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also called a directed acyclic graph (DAG) classifier [154]. According to Platt et al., the 

order of binary comparisons has little effect on the overall classification accuracy. Thus, 

we use the hierarchy illustrated in Figure 39.  

 

 

Figure 39: A multi-class hierarchy of binary renal tumor subtype classifiers, also known 

as a directed acyclic graph (DAG) classifier.  

 

 

 Each node in the hierarchy is independently optimized such that, for each binary 

comparison, we choose a set of model parameters (i.e., classifier as well as feature 

selection parameters). We consider 224 SVM classifier models including 14 kernel types 

(linear or radial with the gamma parameter ranging from 2
2
, 2

1
, 2

0
to 2

-10
) and 16 cost 

values (2
-5

, 2
-4

, 2
-3

 to 2
10

) [155, 156]. We considered the following feature sizes for 

different features (e.g., starting feature size : feature step size : ending feature size): 

1. GLCM (1:1:13) 

2. Color-GLCM (1:1:21) 

3. Wavelet (1:5:166) 
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4. Topological (1:1:24) 

5. Nuclear (1:1:17) 

6. Combined Traditional (1:6:243) 

7. Shape and All (5:5:180) 

 

 We choose the feature size step such that the total number of feature sizes is 

approximately 40. For Shape and All features we also consider number of harmonics 

(n=2 to 10) as a feature selection parameter. We choose the simplest model with a CV 

accuracy within one standard deviation of the best performing model [157]. In choosing 

the simplest model, we give preference to the linear SVM kernel over the radial SVM 

kernel and lower values of gamma for the radial SVM kernel, SVM cost, number of 

harmonics, and feature size. 

 

 We select features using mRMR, which selects a set of features that maximizes 

mutual information between class labels and each feature in the set; and minimizes 

mutual information between all pairs of features in the set) [93]. Our features are 

continuous and, as suggested by Ding et al., we use Mutual Information Quotient 

(mRMR-q) optimization after discretization using the following transform: 
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 (38) 

where k’ is the transformed feature k, μk and σk are the mean and standard deviation of 

feature k over all samples in the training dataset, respectively. 
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Results and Discussion 

Prediction Performance in Renal Subtyping 

 Fourier shape-based features are capable of classifying histological renal tumor 

subtype images with high accuracy and simple classification models. Table 10 lists the 

shape-based prediction performance of the multi-class renal tumor classifier (using a 

Directed Acyclic Graph, DAG, classifier) as well as that of each binary comparison 

(discrimination of every pair of subtypes). The shape-based multi-class classifier predicts 

the subtypes of renal tumor images with an average accuracy of 77%. The average 

prediction accuracy for each binary comparison ranges between 83%-96%.  

 

 

Table 10: Predictive performance of Fourier shape-based features. 

 

Endpoint Inner CV Accuracy External CV Accuracy 

DAG N/A 0.77±0.03 

CH vs. CC 0.83±0.03 0.83±0.05 

CH vs. ON 0.83±0.02 0.84±0.04 

CH vs. PA 0.97±0.01 0.96±0.02 

CC vs. ON 0.90±0.02 0.90±0.07 

CC vs. PA 0.96±0.01 0.95±0.04 

ON vs. PA 0.94±0.01 0.93±0.04 

 

 

 Figure 40 shows that the optimal classifier parameters correspond to fairly simple 

models. The parameters are optimized by selecting the simplest model with predictive 

performance within one standard deviation of the highest performing model. We define a 

simple model as one that has small feature size, low SVM cost, low SVM gamma (or is a 

linear SVM), and that prefers features from smaller Fourier shape descriptor harmonics. 
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Although we consider ten harmonics of shape-based features, parameter selection usually 

only selects the first few (< 4) harmonics (Figure 40.A). In Figure 40.A, even though the 

best choice for number of harmonics varies for different binary classifiers, all binary 

classifiers have a decreasing trend of selecting a high number of harmonics. Figure 40.B 

illustrates the distribution of feature sizes selected for binary classifier models. We can 

observe that there is a decreasing trend of selecting large feature sizes and, in most cases, 

less than 20 features were selected. Figure 40.C and Figure 40.D show that optimal SVM 

cost and SVM gamma selections are also low, with preference given to linear SVMs over 

non-linear radial basis SVMs. Table 11 lists the most frequently selected parameters for 

each of the six binary classifiers. 
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Figure 40. Parameter space investigation for shape-based classification models. 

Distribution of a) maximum number of harmonics considered, b) number of features 

selected, c) SVM cost selected, and d) SVM gamma selected over 10 iterations times 

three folds of parameter estimation for various binary endpoints. The total length of each 

bar is a summation of counts over all binary endpoints while each color indicates count 

for a specific binary comparison.  
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Table 11: Frequently selected parameters for binary, shape-based renal-tumor subtyping 

models. 

 

Binary Endpoint Harmonic Feature Size SVM Cost* SVM Gamma 

CH vs. CC 2 15 -1 Linear 

CH vs. ON 2 10 1 Linear 

CH vs. PA 2 5 -1 Linear 

CC vs. ON 2 10 0 Linear 

CC vs. PA 2 10 -3 Linear 

ON vs. PA 4 5 -1 Linear 
* Log2values 

 

 

 

  We use nested CV to select prediction model parameters and to evaluate these 

prediction models on independent data. The nested CV procedure includes 10 iterations 

of three-fold external CV with 10 iterations of three-fold internal CV. Although there is 

some variance across the iterations of CV, Figure 41 shows that mean internal CV is a 

good estimate of mean external CV for each of the binary comparisons. Each point in 

Figure 41 corresponds to an iteration of external CV for each binary comparison. The 

horizontal position of each point is internal CV accuracy averaged over 10 iterations and 

three folds. The vertical position of each point is external CV accuracy averaged over 

three folds. Classifier model parameters for each point are selected from among 72,576 

models consisting of 36 feature sizes, 14 types of SVM classifiers (linear SVM and radial 

basis SVM classifiers over 13 different gammas), 16 SVM cost values, and 9 values for 

the number of harmonics. The optimal parameter set for each classifier model 

corresponds to the simplest model (i.e., smallest feature size, smallest cost, smallest 

gamma, and smallest number of harmonics) within one standard deviation of the best 

performing model. This high concordance of internal CV and external CV performance 

indicates that internal CV performance is predictive of external CV performance and 
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classifier models generated from shape features are robust and will perform similarly for 

future samples. Moreover, the binary comparisons discriminating CH vs. PA, CC vs. ON, 

CC vs. PA, and ON vs. PA tend to result in high performance (> 90%) while the binary 

comparisons discriminating CH vs. CC and CH vs. ON result in moderate performance 

(~83-84%). We describe the reasons for these observations below. 

 

 

 

Figure 41: Scatter plot of inner CV vs. external CV average validation accuracy values, 

during 10 external CV iterations, for six pair-wise renal tumor subtype comparisons. 

 

 

 

 CC and PA are the most prevalent subtypes of RCC and are generally the easiest 

for pathologists to visually identify. Consequently, discriminating shape-based features 

for these classes are easy to identify, resulting in high classification performance. One 

exception, however, is the CH vs. CC comparison. CH is known to exhibit some CC 
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properties such as clear cytoplasm. As a result, the prominent feature for the CC subtype 

is sometimes not sufficient for accurate classification of CC and CH. Moreover, the ON 

renal tumor subtype is histologically and genetically very similar to the CH RCC subtype, 

despite the fact that ON is a benign tumor whereas CH is a carcinoma [158]. This 

similarity explains the moderate performance of the CH and ON binary classifier. 

 

Comparison with Traditional Histopathological Features 

 Table 12 shows that, in comparison to five traditional feature sets, classification of 

renal tumor subtypes based on shape-based features performs well. In fact, the 

performance of shape features is similar to the combined traditional features, which 

includes texture, topological and nuclear properties. In some cases, combining shape-

based features with traditional features (i.e., ‘All’ features) improves prediction 

performance, indicating that shape-based features can complement traditional features. 

Table 12 lists the means and standard deviations over 10 iterations of external CV for 

each binary comparison as well as for the multi-class DAG classifier.  
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Table 12: External CV accuracy of renal binary subtyping models using Fourier shape vs. 

traditional features.  

 

Endpoint GLCM 
Color  

GLCM 
Wavelet Topological Nuclear 

Combined 

Traditional 

Shape  

(Proposed) 
All 

DAG 0.57±0.04 0.67±0.02 0.52±0.06 0.50±0.03 0.66±0.03 0.79±0.04
a
 0.77±0.03

b
 0.78±0.03

c
 

CH vs. CC 0.75±0.05 0.77±0.05 0.74±0.05 0.74±0.05 0.76±0.06 0.81±0.03 0.83±0.05 0.82±0.05 

CH vs. ON 0.76±0.05 0.68±0.06 0.67±0.05 0.72±0.05 0.79±0.05 0.86±0.05 0.84±0.04 0.88±0.04 

CH vs. PA 0.85±0.04 0.95±0.02 0.86±0.05 0.80±0.04 0.91±0.04 0.94±0.02 0.96±0.02 0.96±0.03 

CC vs. ON 0.74±0.06 0.78±0.06 0.63±0.03 0.77±0.07 0.93±0.04 0.93±0.04 0.90±0.07 0.91±0.05 

CC vs. PA 0.78±0.06 0.97±0.04 0.69±0.09 0.59±0.07 0.76±0.07 0.95±0.05 0.95±0.04 0.97±0.03 

ON vs. PA 0.74±0.07 0.86±0.06 0.74±0.07 0.65±0.04 0.96±0.03 0.97±0.03 0.93±0.04 0.92±0.04 

 

Note: The difference between a, b, and c is not statistically significant; p-values of the 

null hypothesis between a & b; a & c; and b & c using a t-test are 0.16, 0.70, and 0.23, 

respectively. 

 

 

 Figure 42 shows the contribution of each feature type to the classification model 

when considering ‘All’ features. The box plots in Figure 42 represent the distribution of 

percent contribution of each feature type to a binary classifier over 10 iterations of 

external CV. We can make the following observations from Figure 42: 1) Shape features 

have a high (>55%) contribution for all binary endpoints, which indicates that the feature 

selection method ranks shape features higher than other features. The contribution is 

comparatively lower for CH vs. CC, CH vs. ON, and CC vs. ON endpoints because other 

traditional features were also useful for these endpoints. 2) Nuclear features, which 

capture nuclear-shape properties, highly contribute to all six endpoints 2) In addition to 

shape features for the CH vs. ON endpoint, topological, nuclear and wavelet features also 

contribute to the prediction models, resulting in a 4% increase in accuracy compared to 

shape features alone. This indicates that, in addition to shape (Fourier and nuclear) 

properties, CH and ON differ in topological and wavelet properties. 3) Color GLCM 
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performs very well for CC vs. PA classification. Thus, color GLCM is a major 

contributor for CC vs. PA classification, resulting in a 2% increase in accuracy. 

 

 

 

 

Figure 42: Renal tumor binary classification models use a variety of features to quantify 

important biological properties. 

 Percentage contribution of different features for each binary comparison in ‘All’ features 

model. The contribution of shape features tends to be greater than 55% for all endpoints 

(median value, marked by horizontal line). 
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Biologically Interpretation 

 Figure 43 illustrates the biological interpretability of shape-based features for each 

renal tumor subtype. In order to visualize the biological significance of the features 

identified by our feature selection method, we overlay the top discriminating shapes on 

the images of renal tumor subtypes for each binary comparison. Feature selection 

identifies individual shape axes and not entire shapes. Thus, discriminating shapes are 

shapes with axes values that have been discretized into a bin corresponding to a highly 

ranked feature. 
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Figure 43: The top discriminating shapes for six binary endpoints correspond to 

pathologically significant shapes in histological renal tumor images. 

Green shapes: occur more frequently in clear cell; yellow shapes: occur more frequently 

in papillary; blue shapes: occur more frequently in chromophobe; and black shapes: 

occur more frequently in oncocytoma. 
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  For each binary comparison, we identify all shapes in an image that have Fourier 

axes values corresponding to the top 25 features. We selectively color the shapes based 

on “over expression”, or increased relative frequency for particular subtypes. Shapes 

highlighted in green occur more frequently in clear cell; yellow shapes occur more 

frequently in papillary; blue shapes occur more frequently in chromophobe; and black 

shapes occur more frequently in oncocytoma. Here, we interpret the biological 

significance of highlighted shapes for each binary comparison.  

 

 Histopathological features of the clear cell subtype include clear cytoplasm, 

compact alveolar, tubular, and cystic architecture leading to distinct cell membranes. 

Comparing clear cell to papillary and oncocytoma, we see that clear cytoplasm (no-

stain/glandular (white) mask region, outlined with green) is the primary distinguishing 

characteristic that is noticeably less frequent in papillary and oncocytoma. On the other 

hand, because chromophobe images tend to also exhibit halos resembling clear 

cytoplasm, the distinguishing features between CC and CH are distinct cell membranes 

(small cytoplasmic (pink) mask areas outlined with green between larger no-

stain/glandular (white) mask areas) that are more frequent in CC compared to CH. 

Similarity in halos and clear cytoplasm shapes is possibly the reason for low accuracy in 

the CH vs. CC binary classification.  Features of the papillary subtype include scanty 

eosinphilic cytoplasm and a papillary (i.e., finger-like) pattern of growth resulting in 

long, complex clusters of nuclei. In all comparisons with the papillary subtype, complex 

clusters of nuclei are the dominant distinguishing feature and are generally more 

prominent in papillary (nuclear (blue) mask areas outlined with yellow). The frequency 
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of nuclear shapes in oncocytoma appears to be similar to that of papillary. However, the 

nuclear clusters in papillary are generally larger and more irregular due to the clustering, 

resulting in different Fourier shape axes values. Histopathological features of the 

chromophobe subtype include wrinkled nuclei with perinuclear halos. When comparing 

chromophobe to papillary or oncocytoma, our feature extraction and selection method 

identifies these halos (no-stain/glandular (white) mask areas, outlined with blue). In 

addition, single nuclei become dominant when comparing with papillary. 

 

 Histopathological features of the chromophobe subtype include granular cytoplasm 

with round nuclei, usually arranged in compact nests or microcysts. These round nuclei 

appear to be dominant in ON, when comparing to other subtypes. It can be observed that 

dominant features for both CH and ON are present in the opposite subtype as well. 

Hence, the difficulty in distinguishing the two subtypes.  

 

Limitations and Computational Complexity 

 Some limitations of shape-based features for histological image classification 

depend on the specific biological application. Shape-based features may not be suitable 

for cases in which the primary discriminating features are not based on shapes. For 

example, in cancer grading applications, topological and texture properties may be more 

useful than shape-based features. Moreover, as we have seen the results of Table 12 and 

Figure 43, shape-based features may not capture all of the important distinguishing 

information. For example, in the case of the CH vs. ON endpoint, the addition of texture 

and wavelet features to shape-based features increases prediction performance by 4%. In 
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addition, for the CC vs. PA endpoint, inclusion of the GLCM texture features increases 

prediction performance by 2%. Thus, shape-based features are limited to clinical 

prediction applications that are inherently shape-based, but, in such cases, may be used to 

complement other non-shape-based features. 

 

 The computational complexity of shape-based features is higher than those of 

traditional histological feature extraction and analysis methods, but should not prevent 

implementation in a clinical setting. To convert a RGB histological image (1600x1200 

pixel portions) into 900 shape-based features (Figure 38), a desktop computer (Intel Xeon 

E5405 quad-core processor, 20 GB RAM) requires an average of 74.96 seconds. 

Compared to some histological image features, this processing time is high. However, the 

processing time depends on the number of harmonics used for representation and the 

number of shapes in an image. We have reported the processing time for extracting 

features from the first ten harmonics. However, in practice, we have observed that all 

optimized models use less than five harmonics. Optimization of these parameters to 

identify a predictive model can be time consuming depending on the size of the training 

set. However, in a clinical setting, such a model would only need to be optimized once, 

and then periodically updated with new patient data. In a clinical scenario, a pathologist 

that requires a histological diagnosis for a patient would submit a few image samples 

from a tissue biopsy to a pre-optimized prediction system. Computational time for 

processing and predicting based on these image samples would be negligible compared to 

time required for biopsy, image acquisition, and consultation with a pathologist. 
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Conclusion 

 In this chapter, we presented a novel methodology for automatic clinical prediction 

of renal tumor subtypes using shape-based features. These shape-based features describe 

the distribution of shapes extracted from three dominant H&E stain colors in renal tumor 

histopathological images. We evaluated the four-class prediction performance of shape-

based classification models using 10 iterations of three-fold nested CV. The overall 

classification accuracy of 77% (average external CV accuracy) is favorable compared to 

previous methods that use traditional textural, morphological, and wavelet-based features. 

Moreover, results indicate that combining shape-based features with traditional 

histological image features can improve prediction performance. The biological 

significance of the characteristic shapes identified by our algorithm suggests that this 

automatic diagnostic system mimics the diagnostic criteria of pathologists. We applied 

this methodology to renal tumor subtype prediction. However, the methodology may be 

extended to any histological image classification problem that traditionally depends on 

visual shape analysis by a pathologist. Moreover, these shape-based features may be 

coupled with other image features to achieve higher diagnostic accuracy. 
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CHAPTER 7 

NORMALIZATION METHODS FOR BATCH-INVARIANT 

DECISION MAKING 

Introduction 

 This chapter provides validation of information extraction methods on sub-sections 

of WSIs and addresses the informatics challenge of developing batch-invariant 

informatics methods. It focuses on information-level batch-effects that affect the 

prediction performance of CDSSs based on images from multiple institutions or set-ups. 

The research presented in this chapter was conducted in collaboration with other 

researchers and most of the content is part of research articles on batch-invariant decision 

making [159, 160]. © 2012 IEEE, 2013 IEEE 

 

 CDSSs can guide pathologists in diagnosing cancer by extracting and modeling 

quantitative properties of histopathological images [5]. However, when histopathological 

images are acquired in different experimental setups and tested on pre-trained diagnostic 

models, the prediction performance can suffer due to batch effects, i.e., non-biological 

experimental variations such as age of sample, method of slide preparation, specifications 

of the microscope, and type of post-processing software [161]. Batch effects may lead to 

large differences in quantitative image features. Thus, it is difficult to accurately diagnose 

patients using prediction models trained with a separate batch. Because of batch effects, a 

pathology lab that uses multiple imaging devices (e.g., microscopes with mounted digital 

cameras or whole-slide scanners) may need to maintain multiple diagnostic models. 



 143 

Moreover, data acquired using older devices or experimental setups cannot be used in 

training models for future data acquired with newer devices/setups. This poses a huge 

challenge for cross-laboratory adoption and standardization of CDSSs for pathology. 

 

 Batch effects are also a major challenge for other biomedical data modalities. 

Although the causes of batch effects are different for each data modality, methods 

developed to remove batch effects may be applicable to multiple data modalities. For 

example, the sources of batch effects in microarray gene expression data include 

platform, laboratory, sample preparation protocol and reagents, technician and 

atmospheric ozone level [26, 27]. Batch effects generally affect the mean (location) and 

variance (scale/spread) of the data [162]. Therefore, batch effect removal methods focus 

on normalization of location and scale, e.g., ratio-based methods and ComBat [27, 162]. 

Luo et al. compared several batch effect removal methods for microarray data and found 

that ratio-based methods performed the best [27]. In a separate study, Chen et al. 

compared six batch effect removal methods and found that ComBat performs the best 

[26].  

 

 Removal of batch effects in histopathological images is a relatively new area of 

research [161]. However, with the emergence of large image data repositories such as 

TCGA, batch effects have become an increasingly important area of research. 

Histopathological image analysis studies have primarily focused on single-batch data [37-

39, 55]. Some studies have highlighted color batch effects in histopathological images 

and suggested color normalization methods [21, 22]. Color batch effects, which lead to 
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variation in stain colors across batches, affect the performance of color segmentation 

methods and color features. Kothari et al. studied scale batch effects in histopathological 

images and suggested a scale normalization method based on nuclear area. To the best of 

our knowledge, no published work quantifies histopathological image batch effects or 

compares batch effect removal methods for histopathological images. 

 

 We compare six normalization methods including one image (scale) normalization 

method and five feature normalization methods: mean, rank, ratio, ComBatP, and 

ComBatN. Using four renal tumor histopathological datasets acquired using different 

experimental setups, we assess the impact of each batch effect removal method on image-

based features and downstream prediction of renal tumor subtype and grade. Results 

indicate that data batch can be a larger source of variance in image features compared to 

biological factors such as grade and subtype. Most batch effect removal methods can 

reduce this variance to nearly zero. Moreover, batch effect removal methods can increase 

cross-batch and combined-batch prediction performance, with ComBatN performing the 

best. 

 

Materials and Methods 

Data 

 We use digital micrographs of renal tumor biopsy samples acquired in four 

experimental setups. Tissues samples in all four batches RCC1, RCC2, RCC3 and RCC4 

were biopsied and fixed at Emory University. The micrographs for the first three batches 

were acquired at Emory University while the fourth batch was acquired at the Georgia 
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Institute of Technology. Table 13 lists image acquisition details for four batches. Each 

image is a rectangular section manually selected from a WSI by a pathologist. Batches 

RCC1, RCC3, and RCC4 are annotated with both grade and subtype while batch RCC2 is 

annotated with only subtype.  

 

 

Table 13: Image-acquisition devices and parameters for four renal batches.  

© 2013 IEEE 

 

Factors RCC1 RCC2 RCC3 RCC4 

Microscope Nikon 

Eclipse 80i 

Nikon 

Eclipse 80i 

Olympus 

BX51 

Zeiss Axio 

Imager z2  

Magnification 20x 20x 40x 40x 

Camera Nikon DS-

2MV 

Nikon DS-

2MV 

Olympus 

DP71 

Zeiss AxioCam 

MRm 

CCD pixel size (μm) 4.40 x 4.40  4.40 x 4.40  4.40 x 4.40  6.45 x 6.45  

Year 2008 2006 2011 2012 

Subjects 15 12 12 18 

Images 53 36 72 160 

Image Format JPEG JPEG PNG PNG 

Image size (Pixels) 1600x1200 1600x1200 2040x1536 2040x1536 

 

 

 

 Images in these datasets represent one of three prominent renal tumor subtypes—

CH, CC, and PA—and Fuhrman grade of one to four. Table 14 lists the number of 

samples per dataset for each subtype and grade.  
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Table 14: Distribution of subtypes and grades in four renal carcinoma batches. 

© 2013 IEEE 

 
  RCC1 RCC2 RCC3 RCC4 

Subtype CH 20 12 26 30 

CC 17 12 24 82 

PA 16 12 22 48 

Grade G1 13 N/A 18 20 

G2 13 N/A 18 63 

G3 13 N/A 18 50 

G4 14 N/A 18 27 

 

 

 Figure 44 illustrates 512x512-pixel subsections of three subtype samples in each of 

the four batches. These subtypes are histopathological subtypes and can be visually 

predicted based on morphology [136]. CC has clear cytoplasm with distinct cell 

membranes and round nuclei. CH has granular cytoplasm with prominent cell 

membranes, wrinkled nuclei, and perinuclear halos (i.e., white stain surrounding nuclei). 

PA has finger-like complex nuclear clusters. These properties are visually apparent in 

each of the four batches. However, images of each subtype appear very different between 

batches. In particular, RCC1 and RCC2 images appear to have different texture and scale 

compared to RCC3 and RCC4 images. 
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Figure 44: Image samples of three subtypes in four batches of renal cell carcinoma. 

Each image is a 512x512-pixel subsection of the original WSI.  

© 2013 IEEE 
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 Figure 45 illustrates 512x512-pixel subsections of four Fuhrman grade samples in 

three batches. G1 cells have small, intensely stained, nuclei with no visible nucleoli. G2 

cells have finely granular chromatin, slightly textured nuclei, and inconspicuous nucleoli. 

G3 cells have unequivocally recognizable nucleoli. G4 have nuclear pleomorphism 

(varying size of nuclei), hyperchromasia (abundance of DNA, leading to darker staining) 

and single to multiple macronucleoli. Similar to subtypes, grades are easy to distinguish 

within batches based on nuclear size, shape and texture. However, grades across batches 

appear to be very different. 

 

 

 

 

Figure 45: Image samples of four renal cell carcinoma grades in three batches. 

Each image is a 512x512-pixel subsection of the original WSI.  

© 2013 IEEE 
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Image Feature Extraction Methods 

 We represent each image using the comprehensive image feature set (Table 6) 

except fractal features. We have excluded fractal features because of the following 

reasons: (1) Unlike chapter 6, we do not crop images into 512x512 subsections and 

fractal features can only be extracted from 512x512 subsection, and (2) In one of the 

normalization methods, we scale image themselves and cropped portions from scaled 

images would have different tissue regions. In total, we represent each image using 2663 

images features and apply data mining approaches (discussed in Section II.D) to select 

optimal features and classification parameters. Since images in different batches are of 

different sizes (Table 13), we normalize the features that are affected by image size such 

as color or intensity histograms and nuclear count. Before extracting color features, we 

normalize image colors using colormap normalization (Chapter 3). 

 

 Automatic feature extraction from histopathological images is complicated because 

of various levels of image segmentation. In our system, we use two levels of 

segmentation: color segmentation to separate different stains in the image and nuclear 

segmentation to segment individual nuclei. We segment the stains using the methods 

described in Chapter 2 using OvCa images as the reference. The middle row of Figure 46 

includes examples of segmented stains from different batches. After color segmentation, 

we obtain a binary mask for nuclear stain. However, it is still difficult to isolate 

individual nuclei because: (1) texture in a high-grade nucleus can break it into segments 

(Figure 46.G), and (2) adjacent nuclei can overlap, forming nuclear clusters (Figure 46.E 

and Figure 46.F). The first challenge can be addressed by merging neighboring nuclear 
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stain structures. However, this may lead to even more complex clusters in images with 

large clusters, such as the papillary subtype. Thus, we only perform a merging treatment 

in images with a large percent of small isolated nuclear regions, i.e., images whose 

nuclear mask has greater than 10% percent of regions with area less than 20 pixels. For 

merging, we selectively grow the regions based on their area such that larger regions are 

grown more than smaller regions (which may represent noise). We grow regions 

morphologically using radial structural element with radius,          pixels, where A 

is the area of a region. We limit the value of r to be 3 pixels. Based on empirical analysis, 

we found that this treatment works better than using a morphological closing operation 

on all regions. Next, we segment nuclear clusters using concavity detection and ellipse 

fitting (Chapter 3). The bottom row of Figure 46 includes example images of segmented 

nuclei from different batches. 
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Figure 46: Segmentation results for sample renal cell carcinoma histopathological images 

from four data batches illustrate scale batch effects.  

A, B, C, and D are 512 x512 subsections of images from RCC1, RCC2, RCC3, and 

RCC4, respectively. (E-F) Pseudo-colored color segmentation results, where blue, pink, 

white, and red represent pixels in nuclei, cytoplasm, glands, and red blood cells. (I-L) 

Nuclear segmentation results, where nuclei are marked using green ellipses on the 

original images (A-D). Note the difference in scale and nuclear size among four batches. 

© 2013 IEEE 

 

 

 

Normalization Methods 

Scale Normalization 

 Upon visual inspection, we found that, besides color batch effects, which are 

handled using color normalization, these images differ in scale, i.e., images in batches 

RCC3 and RCC4 are at a higher scale compared to batches RCC1 and RCC2. Scale 
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differences can be calculated using the physical size of a pixel. In digital micrographs, the 

physical pixel size varies with factors such as microscope magnification, CCD-pixel size, 

and digitizing software settings. The physical pixel size is not available for RCC1, RCC2, 

and RCC3 datasets. Therefore, we use a model based on nuclear area to estimate scale 

differences and normalize all batches. Although nuclear area varies with subtype and 

grade in a batch, when we studied the distribution of all nuclei in a batch, we found that 

the distribution peaks at a specific nuclear area. Moreover, as we upscale or downscale 

the images, the distribution shifts right or left. Figure 47.A shows the distributions for 

nuclear area as RCC1 is scaled using the Lanczos (3-lobe) filter. These distributions 

represent all nuclei in all images in RCC1. The scaling factor, s, affects both the x and y-

dimension and scales the nuclear area by a factor of s
2
. Therefore, the relationship 

between scaling factor, s, nuclear area in a scaled batch, As, and nuclear area with no 

scaling, A1, is given by 

    
  

  
. (39) 

 We use median area of all nuclei in the batch at scale s to quantify As. In Figure 

47.B, we compare the empirical median nuclear area As of the RCC1 batch (red circles) 

when images are scaled for s=0.5 to 2, to the values predicted by the model using A1 

(cyan line). We can observe that values predicted by the model closely correspond to the 

empirical values. In Figure 47.C, we have plotted the nuclear area distribution for four 

batches with no scaling. These plots suggest that the four batches are at different scales 

and RCC1 is at the lowest scale. Therefore, we scale down RCC2, RCC3, and RCC4 with 

scaling factors of 0.88, 0.53, and 0.46 (calculated using (1)), respectively. In Figure 47.D, 

we have plotted nuclear area distribution for four batches after scale normalization. After 



 153 

scale normalization, the nuclear area distributions of the four batches are more similar. 

We then use scaled versions of images to extract image features for prediction.  

 

 

 

 

Figure 47: Scale normalization of images based on median nuclear area model.  

(A) Nuclear area distributions of RCC1 at different scales, (B) comparison between 

empirical and model-based nuclear area values for RCC1, (C) nuclear area distributions 

for four batches without scaling, and (D) nuclear area distributions for four batches after 

scale normalization. Scaling factors of other three batches with respect to RCC1 are 

marked in B. © 2013 IEEE 
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Mean Normalization 

 Scale normalization normalizes images to remove batch effects while all other 

removal methods (in this chapter), including mean, normalize features to overcome batch 

effects. After feature extraction, each image   in batch   is represented as a 2663-

dimensional vector     . The most prominent type of batch effect in microarray gene 

expression data results in differences in location (mean) and scale (spread) of gene 

expression values within batches. To overcome this challenge, researchers standardize the 

microarray data gene-wise, where for every batch, expression of a gene over all samples 

is adjusted such that the mean is zero and the standard deviation is one. Similarly, in 

mean normalization, we normalize every feature   in batch   to be within a range       

using the following transformation [163]: 

    
    

 

 
 
   

      
  

   
    ,  (40) 

where   
  and   

  are the sample mean and standard deviation of feature   over samples 

in batch  , given by 
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   , (42) 

where    is the number of images in batch  . 

 

Rank Normalization 

 Unlike mean normalization, the rank normalization method does not assume an 

intrinsic normal distribution of features. Rank normalization also normalizes every 

feature   of a batch   to a range of       [163]. We develop a rank function   
 , which 



 155 

orders the feature values   
      

        
    

  such that    
    

       
    

      implies 

  
       

    . Using this rank function, we normalize the features as follows: 

    
    

   
    

        

    
. (43) 

To ensure that features are uniformly distributed in the range       after rank 

normalization, we assign an average rank to images with the same feature value. For 

example, if there are   images with the same feature value, which is greater than the 

feature values of   images in a batch, we assign rank       to all   images. 

 

Ratio Normalization 

 Researchers have illustrated the usefulness of ratio-based methods for normalizing 

microarray expression data [27], where features are divided by the mean expression of a 

reference set of control samples (corresponding to each batch). In the absence of a 

reference set for a batch, researchers have used the mean expression of a batch in place of 

the control samples. However, this leads to information leakage because part of the 

labeled test samples is used for normalization as well. In our study, we have no reference 

set. Therefore, we normalize a feature   for a batch   using the median feature value for 

the batch   
  , given by  

    
    

  
   

  
 . (44) 
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ComBat Normalization 

 Mean normalization adjusts location and scale for each feature independently. 

However, we can assume that batch effects are similar for most features and model batch 

effect-induced variance using accumulated knowledge across multiple features. Johnson 

et al. developed a Bayesian framework for modeling additive,   
 , and multiplicative,   

 , 

batch effects in microarray gene expression datasets [162]. They modeled batch effects 

using parametric (ComBatP) and non-parametric (ComBatN) priors. Similarly, we 

assume that   
   

, for feature   and image   in batch  , can be represented using a location 

and scale (L/S) model, given by  

    
             

    
   

   
,  (45) 

where    is the overall feature,   is a design matrix for sample conditions,     are 

regression coefficients corresponding to  , and   is normally distributed error with mean 

zero and variance   
  [162]. Johnson et al. illustrate that if the L/S model parameters are 

estimated using a Bayesian framework (which pools the information across features), 

parameters are more robust in removing batch effects. Therefore, we estimate    ,    ,    
 , 

and    
  using the suggested three-step Bayes framework: (1) Calculate standardized data 

  
   

, which has similar overall mean and variance for all features, (2) Estimate   
  and 

  
  using parametric (ComBatP) or non-parametric (ComBatN) priors, and (3) Adjust the 

data for batch effects using the following equation: 

    
    

   

   
    

       
           . (46) 

We normalize datasets using the R language implementation of ComBat provided by 

Johnson et al [162].  
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Figure 3 illustrates difference in various feature normalization methods using 

median-nuclear-area feature. We can observe that mean and rank normalization force 

different batches to have exactly same distribution of batch prevalence while ratio, 

combat, and combat make distributions similar but retain some original peaks. 

 

 

 
 

Figure 48: Normalized median nuclear (elliptical) area using different feature 

normalization methods. 

In each subplot, curves represent feature value for all images in the study segregated by 

batches. Subplots capture features in different conditions: (A) without normalization and 

with five types of feature normalizations: (B) mean, which subtracts mean and divides by 

standard deviation in feature; (C) Rank, which converts feature to a rank in range of [0, 

1], (D) Ratio, which divides by median value of feature; (D) CombatP, which adjust 

mean and scale using parametric Bayes framework; and (E) CombatN, which adjust 

mean and scale using non-parametric Bayes framework. 

 

 

 

Feature Selection and Classification 

 We develop image-based prediction models for diagnosing renal tumor subtype and 

grade using data mining methods: feature selection and classification. Using the above 

described methods, we represent images as a large set of normalized or un-normalized 
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quantitative image features. However, only a few features among these features are 

informative for cancer prediction. Therefore, we select features using mRMR-d. mRMR 

is an iterative feature selection method that maximizes mutual information between 

features and labels while minimizing mutual information between features in the selected 

feature set [93]. We experiment with feature sizes in a range of 1 to 45. For classification, 

we develop prediction models using multiclass support vector machines (SVM) with the 

LIBSVM library, which returns the maximum voted label based on binary models [156]. 

We choose parameters for the SVM linear and radial basis kernels from the following list 

of cost values:                                            . Also, for the radial 

basis kernel, we select gamma from:                  . We optimize all parameters—

feature size, SVM cost, and SVM kernel—using 10 iterations of 3-fold CV on the train 

set.  

 

Results and Discussion 

Variance in Data Contributed by Batch Effects  

 Batch effects often influence quantitative image features to such an extent that they 

are a major source of variation in the data. Thus, they often overwhelm the natural 

segregation of images due to biological classes. To illustrate the batch effect in the data 

under study, we clustered image features without any normalization from all samples in 

four batches [162]. Figure 49 shows hierarchal clusters in the data, where the heat map 

highlights the feature (rows) variation across samples   (columns). It can be observed that 

the four dominant clusters correspond to four batches.  
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Figure 49: Unsupervised hierarchal clustering of renal cell carcinoma histopathological 

image features in four datasets illustrates batch effects.   

Columns in the heatmap correspond to samples while rows correspond to individual 

features. Heatmap is normalized to show variation of a feature across different samples, 

where values above, at, and below the mean are represented as red, black, and greens 

colors. The dendrogram and horizontal colored bars above the heatmap illustrate clusters 

in the data. It can be observed that samples are primarily clustered based on their batch. 

Note: clusters without color bars contains samples from multiple batches. © 2013 IEEE 

 

 

 We use principal variation component analysis (PVCA) to measure the variation in 

data contributed by the following factors: batch, grade, subtype, interaction between 

batch and subtype, interaction between batch and grade, and interaction between subtype 

and grade [26, 164]. PVCA is a useful method for calculating the proportion of variance 

attributable to different factors in high dimensional data. It is a combination of two 
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popular data analysis methods: principal component analysis (PCA) and variance 

component analysis (VCA). Before applying PVCA, we standardize the combined data 

(including three batches: RCC1, RCC3, and RCC4) using the same formula as mean 

normalization. We have excluded RCC2 in this chapter because it was not annotated with 

grades. The first step of PVCA involves reducing the dimensionality of data from 2663 

features to the top few principal components (PCs) capturing a fixed portion (here 90%) 

of the variation (information) in the data. The second step involves applying VCA to 

calculate the variation in each PC contributed by each factor. For calculating the 

variance, VCA assumes each factor as a random effect in a linear mixed model. 

Variances for each PC are weighted by Eigen values of the component and averaged. 

Figure 50 illustrates weighted variances contributed by each factor in features with and 

without normalization. Variance contributed by batch is 0.365 in features without 

normalization, which is much higher than biological factors: grade and subtype. Variance 

contributed by batch is considerably reduced by all feature normalization methods: mean, 

rank, ratio, ComBatP, and ComBatN.  

  



 161 

 

Figure 50: Principal variation component analysis on a combined dataset, including 

RCC1, RCC3, and RCC4, with and without normalization. 

Bars indicate weighted variance contributed by various factors to the overall variation. 

Variance contributed by batch is significantly reduced by feature normalization methods. 

© 2013 IEEE 

 

 

 

 We visualize the distribution of samples in the image feature space using scatter 

plots of component scores for the first and second principal components [27]. Figure 51 

illustrates the scatter plots with and without normalization. The scatter plots show clear 

separation of samples from different batches (represented by four colors) in the data 

without normalization and scale normalization. In contrast, samples are randomly 

distributed in the plots for all other normalization methods.  
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Figure 51: Scatter plots representing scores of samples for first and second principal 

components.  

The percentage in the bracket represents percent of total variation (energy) along that 

component. With no normalization, batches (represented by four colors) are clearly 

separated. With all normalization methods except scale, separation between batches is 

reduced and samples seem to be randomly distributed. © 2013 IEEE 
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 To further investigate the impact of batch effects on image features in scale-

normalized data, we ranked image features that are predictive of batch using mRMR 

feature selection. Comparing the ranked list for scale normalized data to un-normalized 

data, we found the following: (1) texture properties, which are highly predictive of 

batches, are ranked high in both datasets and (2) shape-based properties such as median 

boundary fractal and Fourier error are informative for batch prediction in un-normalized 

data but not in scale normalized data. Therefore, besides scale, batches can differ in 

texture, which is not corrected by scale normalization. Differences in image formats 

associated with different compression methods, camera CCD, and magnification are 

possible causes for texture differences in the batches.  

 

Within-Batch Prediction Performance 

 To verify the utility of the proposed image feature set for classifying renal grades 

and subtypes, we perform within-batch CV of prediction models for all batches.  We 

observe that during CV within a batch, prediction models perform very well with 

classification accuracy greater than 88% for all cases except RCC1 grading (Table 15). A 

possible cause for the low accuracy of the grading model for RCC1 could be the small 

sample size, i.e., only 53 total samples are available in four classes.  
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Table 15: Within batch CV accuracy of multi-class renal subtyping and grading models. 

© 2013 IEEE 

 
 Subtype  Grade  

RCC1 0.88 0.44 

RCC2 0.88 NA 

RCC3 0.93 0.99 

RCC4 0.91 0.88 

 

 

Cross-Batch Prediction Performance 

 We perform a cross-batch validation of grading and subtyping models with and 

without normalization. In total, with all combinations of train set, test set, and endpoint, 

we have 18 comparisons. Figure 52 illustrates performance accuracies for all 

comparisons and normalization methods. Entries in the figure are highlighted in pink or 

blue if the performance has increased or decreased compared to no normalization. In 

general, performance of prediction models are much lower compared to CV within a 

batch. Possible reasons for this decrease are as follows: (1) biological variance in grade 

or subtype is not sufficiently captured by a train batch, or (2) normalization methods are 

not able to completely eliminate the batch effects. However, normalization methods do 

improve the prediction performance of several models. When compared to prediction 

accuracy of features with no normalization, we observed that the ComBatN, ComBatP, 

mean, and rank normalization methods resulted in average performance increases of 

16%, 14%, 14%, and 12%, respectively. Moreover, ComBatN resulted in the largest 

number of cases with prediction improvement, with 83%.  
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Figure 52: Cross-batch validation accuracy of renal prediction models.  

The performance of normalized models is highlighted based on change in prediction 

accuracy compared to no normalization. Feature normalization methods, especially 

ComBatN, increase prediction performance for most of the models. © 2013 IEEE 

 

 

 

Combined-Batch Prediction Performance  

 In a clinical setting, a CDSS is often trained with a set of images collected in 

batches over time. In such a scenario, batch removal methods are essential before 

combining the batches. We compare the prediction performance of renal endpoints with 

and without normalization while combining two or more batches for training (Figure 53). 

Similar to cross-batch validation, all normalization methods except scale normalization 

significantly improve performance compared to no normalization. We observed that the 

mean, ComBatN, rank, ComBatP, and ratio normalization resulted in  average 

performance increases of 15%, 14%, 14%, 13%, and 11%, respectively. Moreover, 

ComBatN resulted in the largest number of cases with prediction improvement, with 
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90%. With these results, we can conclude that, even with the presence of data from 

multiple batches in the train set, feature selection cannot filter out features that are 

significantly affected by batch effects. As such, it is essential that the features are 

normalized before batch combination. Two prediction models in Figure 53 combine all 

batches. Thus, we report CV performance in these cases. The CV performances are very 

high and comparable to within-batch prediction performances. Thus, representation of 

test set samples by including similar samples (i.e., same batch) in the train set can 

significantly improve the performance. 

 

 

 

Figure 53: Accuracy of renal prediction models after batch combination. 

Performance of normalized models is highlighted based on change in prediction accuracy 

compared to no normalization. Feature normalization methods, especially ComBatN, 

increase prediction performance for most models. The performance significantly 

increases with representation of multiple batches in the train set. © 2013 IEEE 
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Effect of Normalization Methods on Image Integrity 

 Normalization methods can introduce another level of image processing in the 

decision making system. This processing can affect image properties and features. For 

instance, we use the Lanczos filter for down-sampling images in scale normalization, 

which may cause aliasing artifacts in the scaled images and affect texture features. Figure 

54 shows down-sampling results for a benchmark Moire pattern using different scaling 

filters. In comparison to other filters, Laczos filter obtains a good balance between 

aliasing and blurring but still introduces some aliasing. Unlike scale normalization, 

feature normalization is performed after feature extraction and does not affect image 

integrity. This may be one reason for the poor performance of the scale normalization 

method.   

 

 

 

Figure 54: Down-sampling Moire’s pattern image using various filters. 

Gaussian, bilinear, bicubic, and Lanczos (2-lobe) filters result blurs scaled down images 

while nearest neighbor filter causes aliasing. Lanczos (3-lobe) achieves a balance with 

limited bluring and aliasing. 
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Conclusion 

 This chapter evaluated information extraction methods on subsection of 

histopathological WSIs, illustrated information-level batch effects, and compared 

multiple batch effect removal methods. Although the presence of batch effects is an 

important challenge for translational medicine and CDSSs that use big data, only a few 

researchers have investigated the impact of batch effect removal methods on 

histopathological image classification. Using four renal tumor image batches that have 

been annotated with cancer grade and subtype, we found that, compared to no 

normalization, ComBatN, ComBatP, mean, rank, and ratio normalization methods 

improve the performance of predicting renal tumor grade and subtype. In particular, 

ComBatN performs the best in terms of average increase in performance and total 

number of prediction cases with an increase in performance. Investigation of batch 

effects in histopathological images may become increasingly important as data 

repositories expand to contain valuable clinical knowledge from multiple institutions.  
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CHAPTER 8 

TISSUEVIZ: VISUALIZATION TOOL FOR REGION-OF-

INTEREST DETECTION IN WSIS 

Introduction 

 Chapter 3 to Chapter 7 focused on the development of information extraction 

methods and their validation on sub-sections of histopathological WSIs. In the following 

chapters, we will apply these information extraction methods, including color 

segmentation, nuclear segmentation, and a pruned of comprehensive feature set, on WSIs 

and address some WSI-related informatics challenges. This chapter addresses the 

informatics challenge of finding region-of-interest in large WSIs. The chapter illustrates a 

visualization tool, called TissueViz, which facilitates the study of spatial patterns and the 

identification of ROIs in WSIs. The research presented in this chapter was conducted in 

collaboration with other researchers and most of the content is part of a published article 

[88]. © 2012 ACM 

 

 CDSSs convert image samples into lists of quantitative image features and use pre-

trained mathematical models to predict various clinical diagnoses. However, in the last 

decade, only a few computer-aided cancer diagnostic systems were accepted in clinical 

practice [2, 7, 165]. The main challenges for the translation of these systems to clinical 

practice include (1) the semantic gap between image descriptors and histopathology 

domain knowledge and (2) the noise in histopathological image samples and in 

subsequent extracted features. With the emergence of whole-slide digital pathology, 

algorithms for automating the identification of ROIs in large, heterogeneous WSIs are 

essential for reducing noise and improving diagnostic accuracy. We present a 
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visualization tool that addresses two questions pertaining to WSI analysis: (1) Do 

common quantitative image features form spatial patterns on WSIs? (2) Do these spatial 

patterns correspond to biologically relevant WSI properties such tissue necrosis or cancer 

grade? Visualization techniques have previously been applied to clinical 

histopathological images, but have only recently expanded to include WSIs.  

 

 Most existing visualization tools focus on linking image features to clinical patient 

information such as cancer grade, subtype and prognosis. Cruz-Roa et al. applied 

biclustering to simultaneously cluster image samples and code-words used in a bag-of-

features description of the samples. Dendrograms from the biclustering allow users to 

observe the combination of code-words that represent any concept class [58]. Liu et al. 

used heat maps with dendrograms (TreeView software) to discover clusters among tissue 

microarray (TMA) samples  [77]. Lessman et al. used SOMs  to interpret wavelet-based 

features [80]. Iglesias-Rozas and Hopf used SOMs to cluster human glioblastoma 

samples [81]. They discovered four prominent clusters and associated these clusters with 

the presence of semantic histological features. Lobenhofer et al. used hierarchal 

clustering to visualize biologically related histopathological samples generated as part of 

a toxigenomics compendium study [79]. Researchers have proposed interactive 

information visualization tools to link multivariate bio-image features to clinical factors 

[76]. Besides visualizing relationships between samples and their diagnoses, some 

researchers have illustrated the utility of spatial pattern visualization for multivariate bio-

images [166, 167]. Researchers have also developed histological image retrieval systems 

that annotate image blocks with semantic labels such as necrosis, glands, and 
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lymphocytes [62, 63]. These systems were used for analysis of rectangular histological 

image portions rather than WSIs.  

 

 The emergence of large data repositories such as TCGA has shifted the focus of 

morphological cancer analysis and digital pathology to WSIs. TCGA is a joint project by 

the National Cancer Institute (NCI) and the National Human Genome Research Institute 

(NHGRI) that aims to accelerate the understanding of cancer in order to more effectively 

diagnose, cure and prevent cancer [3]. TCGA provides open access to high-quality 

genomic, proteomic and imaging data. The imaging data includes whole-slide tissue 

biopsy samples for several types of cancers. Recently, several researchers have used 

TCGA data for discovering relevant morphological properties associated with clinical 

diagnoses. Using ovarian serous carcinoma, Liu et al. studied the relationship between 

gene expression profiles, morphological properties of histological images, and 

chemotherapy response [168]. Soslow et al. established morphological properties 

associated with the BRCA1 and BRCA2 genotypes in ovarian serous carcinoma [169]. 

Cooper et al. discovered patient clusters in glioblastoma samples based on morphological 

features that have different prognoses [110]. Kong et al. associated morphological 

features to genomic subtypes in glioblastoma samples [170]. Chang et al. also established 

new subtypes in glioblastoma based on morphological features and associated them to 

differentially expressed genes [65]. They also developed BioSig, a system that allows the 

user the zoom and pan TCGAs WSIs similar to Google maps [65]. However, these 

systems do not have provisions for exploring quantitative image features across WSIs. 
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 We design a visualization tool, called TissueViz, for studying visual morphological 

patterns across WSIs in order to address challenges related to biological interpretation of 

image features and to noise in heterogeneous WSIs that affects diagnostic accuracy. 

Using this tool, we demonstrate that (1) common histopathological image features are 

qualitatively associated with biologically interesting regions of WSIs, (2) sets of multiple 

image features can cluster sections of WSIs into biologically relevant regions, and (3) 

histopathology domain knowledge pertaining to ROIs can be translated to image features 

using supervised analysis. Our results indicate that TissueViz is useful for discovering 

informative image features, understanding their biological relevance, and guiding 

identification of ROIs in WSIs (e.g., regions with cancer cells or regions of necrosis). In 

the following section, we describe the TCGA image data, image processing and feature 

extraction, and three visualization-based analysis methods. In the results section, we 

show how these three visualization-based analysis methods can identify useful biological 

information or provide useful clinical functionality.  

 

Materials and Methods 

Datasets 

 We use 1301 H&E-stained WSI samples of ovarian serous carcinoma (OvCa) from 

571 patients provided by TCGA [3]. For each patient, cancer grade, cancer stage and 

prognosis data is provided by TCGA. For each WSI, information about percent of 

necrosis, stromal cells, tumor cells and normal cells is also provided by TCGA. All 

morphological patterns discussed in this chapter and their biological interpretation was 

validated by a pathologist. WSIs from TCGA are available at 4 different resolutions. We 
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use highest and lowest (thumbnail) resolution data for our analysis. We perform quality 

control on the low-resolution image (Chapter 2). We crop an HxW-dimensional WSI into 

an MxN-dimensional matrix of 512x512-pixel non-overlapping tiles, where   

        and          .  Then, we select tiles with greater than 50% tissue and less 

than 10% tissue folds. Figure 55 shows tissue tiles, without artifacts or blank regions, 

selected for the OvCa WSI. We extract nine image-feature subsets, including 461 

features, from each tile in the ROI of a WSI (Table 16). This feature list is a pruned form 

of comprehensive list used for rectangular sections (Table 6). 

 

 

Figure 55: ROI selection in an OvCa WSI.  

Squares (any color) indicate image regions with significant tissue. Red squares indicate 

tissue fold artifacts and green squares indicate ROI tiles. © 2012 ACM 
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Table 16: Pruned image feature list (461 features) used in WSI analysis. 

© 2012 ACM 

Feature Subset # of 

Features 

Description 

Color  73 RGB histograms, histogram statistics, and stain co-occurrence 

Global texture  138 Haralick, gray-level histogram statistics, fractal, GHM 

multiwavelet, and Gabor 

Eosinphilic-object 

shape  

51 Pixel area, elliptical area, major-minor axes lengths, 

eccentricity, boundary fractal, bending energy, convex hull 

area, solidity, perimeter, and count 

Eosinphilic-

region texture  

18 Haralick and gray-level histogram statistics 

No-stain-object 

shape  

51 Pixel area, elliptical area, major-minor axes lengths, 

eccentricity, boundary fractal, bending energy, convex hull 

area, solidity, perimeter, and count 

Basophilic-object 

shape  

51 Pixel area, elliptical area, major-minor axes lengths, 

eccentricity, boundary fractal, bending energy, convex hull 

area, solidity, perimeter, and count 

Basophilic-region 

texture  

18 Haralick and gray-level histogram statistics 

Nuclear shape  26 Count, elliptical area, major-minor axes lengths, eccentricity, 

and cluster size 

Nuclear topology  35 Delaunay triangle, Voronoi diagram, minimum spanning tree, 

and closeness 

 

 

Visualizing Single Feature Variations 

 We visualize spatial patterns in WSIs formed by single image features in order to 

determine their biological relevance. By overlaying a heat map on a WSI thumbnail such 

that the heat map colors correspond to feature values, we can visually associate the 

feature values with morphological patterns. We map image feature values to heat map 

colors by discretizing the feature space into 20 equal-sized bins and use two methods for 

selecting the range of feature values: image-specific and dataset-specific. The image-

specific feature range is calculated based on the distribution of feature values across all 

tiles of the WSI. Let m
nR  be the distribution of a feature, m, across all of the tiles in a WSI 
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sample, n. Then the dynamic range of m
nR  is given by a lower limit, m

nL , and an upper 

limit, m
nU , which are defined as follows: 

       m

n

m

n

m

n

m

n RIQDRfRL *5.1,minmax 25.0   (47) 

       m

n

m

n

m

n

m

n RIQDRfRU *5.1,maxmin 75.0   (48) 

Where function )(Rf p  is the p
th

 percentile of distribution R, and the interquartile distance, 

IQD, is given by (34). 

 

 Similarly, for the dataset-specific range mL and mU  for each feature, m, are the 

lower and upper limits of the feature across all tiles in all WSI samples. Both methods for 

determining heat map range are useful. The image-specific range is useful for studying 

spatial patterns within individual image samples while the dataset-specific range is useful 

for studying spatial patterns in images with respect to the entire dataset. Figure 56 

illustrates the variation of a single image feature (median Delaunay triangle area) across a 

WSI using the image-specific range (Figure 56.A) and dataset-specific range (Figure 

56.E). This feature captures the topology/architecture of histopathology images. As such, 

it is lower in the region of the WSI with cohesive lymphocytes (Figure 56.A). In Figure 

56, the image-specific range of the median-Delaunay-area feature is 146-567, which is 

the upper part of the dataset-specific range (40-454) of this feature. Therefore, the 

visualization in Figure 56.E is mostly red. Biologically, we observe that this WSI sample 

has Cribriform/pseudoendometrioid architecture (Figure 56.D). Thus, nuclei in this WSI 

are farther apart compared to nuclei across the whole OvCa dataset, which tends to 

exhibit other cohesive architectures such as papillary [169]. 



 176 

 
Figure 56: Visualization of variations in a single image feature (median Delaunay area, 

i.e. nuclear-topology feature) across the tiles of a WSI.  

(A) Variations in the feature across the WSI using the image-specific range (146-577). 

(B) Colormap for the visualization in (A). (C) High resolution tile from the green region 

of the visualization in (A), indicating a low value for the feature that corresponds to more 

cohesive nuclear structures due to partial necrosis and lymphocytes. (D) High resolution 

tile from the red region of the visualization in (A). (E) Variations in the feature across the 

WSI using the dataset-specific range (40-454). © 2012 ACM 
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Unsupervised Multi-Dimensional Clustering  

 We study spatial patterns formed by clustering tiles in a multi-dimensional space 

defined by combinations of feature subsets (listed in Table 16). We use agglomerative 

hierarchical clustering with Ward’s linkage to cluster both image features and tiles in 

WSIs [171]. Ward’s linkage minimizes the increase of the within-cluster sum of squares 

as a result of merging two clusters. The increase in sum of squares by merging clusters k 

and l is measured by the following distance metric:  

  
2

2
, lk

lk

lk

nn

nn
lkd aa 


 , (49) 

where kn is the number of tiles in cluster k, ka is the centroid of cluster k, and 
2

. is the 

Euclidian distance.  

 

 We visualize clustering by highlighting similar tiles with the same color and 

generating a heat map to show the grouping of both image features (rows) and tiles 

(columns). By studying both the WSI with highlighted tiles and the hierarchical 

clustering heat map, we can associate ROIs in the WSI to image feature groups. The 

number of clusters for visualization is a variable parameter and we observed that up to six 

clusters were sufficient for discovering meaningful ROIs. 

 

Supervised Classification 

 Studying the variations of single image features and the clusters formed by multi-

dimensional image features is useful for interpreting the biological relevance of these 

features. However, it is also important to link histopathology domain knowledge to image 
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features. In order to do this, we start by selecting two biologically different regions in the 

WSI, and develop a mathematical model using supervised machine learning methods to 

distinguish these two regions. We then use the predictive model to classify the remaining 

WSI tiles and visualize the result by highlighting tiles according to the probability of 

belonging to a selected region (Figure 57). 

 

 

 
Figure 57: Visualization of Supervised Classification.  

(A) Supervised selection of non-tumor (red) and tumor (green) regions from a WSI 

sample.  (B) Based on a prediction model derived from the supervised tile selection, 

remaining tiles are highlighted with the probability of being in the non-tumor class. (C) 

Color map for the visualization in (B). © 2012 ACM 

 

 

 This visualization is useful for (1) identifying image features associated with 

biologically distinct WSI regions and, based on these features, for (2) identifying image 

tiles that are similar to these regions. We use the mRMR-q feature selection method for 

ranking features [93]. We then use the top features to develop a classification model 

using the linear-SVM classifier (LibSVM) [156]. We optimize the number of features 

used in the classification model using 5-fold, 10-iterations of CV accuracy. The model 
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may be incrementally trained by iteratively adding training samples (from different 

WSIs) to provide the classifier with more challenging training samples [172]. In Figure 

57, we illustrate the selection of tumor (green) and non-tumor (red) regions of a WSI and 

show the result of classifying the remaining image tiles by visualizing the probability of 

each tile belonging to the non-tumor region (Figure 57.B, red indicates higher 

probability). 

 

Graphical Tool Design 

 

 

Results and Discussion 

 We studied OvCa WSIs using three visualization methods and found several 

biologically interpretable morphological patterns. In this section, we discuss an example 

pattern for each visualization method.  

 

Pattern based on Average Basophilic-Object Eccentricity in Grade-3 OvCa WSIs 

 We studied spatial patterns captured using average basophilic-object (i.e., nuclear 

object) eccentricity (ec), a morphological shape property. Using the dataset-specific range 

of values for the visualization heat map, we observed that image tiles in the 

stroma/necrosis region have high ec while tiles with lymphocytes have low ec. This is 

due to the spindle-like nuclei of stroma/necrosis regions and the circular disc-like 

structures of lymphocytes [173]. Nuclei in tumor cells have intermediate eccentricity. 

Figure 58 is an illustration of spatial patterns formed by ec for two WSI samples. Both 
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samples are from patients with grade-3 OvCa but have different morphology. The first 

sample (Figure 58.A-E) is reported to have 3% lymphocytes, 15% necrosis, 0% stroma, 

and 95% tumor, while the second sample (Figure 58.G-K) is reported to have 60% 

lymphocytes, 0% necrosis, 5% stroma, and 95% tumor.  

 

 
Figure 58: Variations in average nuclear eccentricity (ec) across two grade-3 OvCa WSI 

samples. 

 High ec (red) corresponds to stroma or necrotic regions with elongated nuclei, low ec 

(green) corresponds to lymphocyte-infiltrated tumor regions with circular lymphocytes, 

and medium ec (yellow) corresponds to tumor regions. (A) WSI sample with 3% 

lymphocytes, 15% necrosis, 0% stroma and 95% tumor. (B) WSI sample with 60% 

lymphocytes, 0% necrosis, 5% stroma and 95% tumor. (F) Colormap corresponding to ec 

values.  (C-I) High-resolution image tiles from sample A (C-E) and sample B (G-I). 

Numbers above the high resolution tiles indicate the feature value. These tiles are also 

outlined with a color corresponding to the highlighted tile in (B) and (K). © 2012 ACM 
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 We observed that: (1) due to the higher percentage of lymphocytic infiltration, the 

visualization of the second sample contains more green tiles (Figure 58.K), (2) tiles in 

stroma/necrosis regions are highlighted with shades of red, (3) high resolution images 

confirm that tiles with low, medium and high ec are from stroma/necrosis, tumor and 

lymphocytic-infiltrated tumor regions, respectively. Lymphocytic infiltration is 

considered useful for predicting patient prognosis [173] and has been correlated to the 

BRCA1 genotype in OvCa [169]. 

 

Pattern based on Color and Basophilic-Object Shape Features in Grade-3 OvCa 

WSI 

 We studied spatial patterns formed by the morphological color and basophilic-

object shape feature subsets that include 124 features. Using Ward’s linkage with 

agglomerative clustering (as described in section 2.3.2), we illustrate the spatial patterns 

formed by three clusters of tiles in a grade-3 sample reported to have 15% necrosis, 15% 

stroma, and 70% tumor (Figure 59.A and Figure 59.B). Figure 59.D-F are high resolution 

tiles from each of the three clusters, capturing tumor (yellow), necrosis (magenta), and 

stroma (cyan) regions, respectively. Out of 1174 tiles in the sample, 603, 316, and 255 

tiles were clustered into each of these clusters (C1, C2, and C3), respectively. The 

heatmap (Figure 59.C) shows that there are several correlated features in these subsets 

that separate these clusters. We use the mRMR-q feature selection method to find the top 

five most informative, uncorrelated features in these subsets that will separate C1, C2 and 

C3.  
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Figure 59: Three distinct tile clusters (B) in a grade-3 ovarian serous cystadenocarcinoma 

WSI sample (A) with 15% necrosis, 15% stroma and 70% tumor.  

Clusters were found in the feature space defined by color and nuclear-object-shape 

features (a total of 124 features). (C) The heatmap illustrates the variations in features 

(row) across various image tiles (column).  Red and green values in the heatmap 

correspond to values above and below the mean feature value. Out of 1174 tiles in the 

sample, 603, 316, and 255 tiles were distributed into clusters C1, C2, and C3, 

respectively. (D-F) High-resolution image tiles belonging to the three clusters. Clusters 

C1, C2 and C3 correspond to regions of tumor, necrosis and stroma, respectively. © 2012 

ACM 
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 In Table 17, we report these features (in the order of preference) with their average 

value and standard deviation for each cluster. These features can be easily visually 

associated with morphological properties of tumor, necrosis, and stroma.  Due to the red 

appearance of stroma/necrosis regions compared to tumor regions, color features are 

important. Moreover, as discussed in the previous section, stroma/necrosis regions have 

spindle-like nuclei. Therefore, C2 and C3 have larger standard deviation in major-axis 

length and larger maximum eccentricity of basophilic structures. Due to the more 

elliptical nuclei in tumor regions, the mean boundary-fractal dimension is higher than that 

of stroma and necrosis. Therefore, using this visualization we can discover morphological 

patterns in WSI based on multiple features. 

 

 

Table 17: Top five differentially expressed features in three hierarchal clusters 

corresponding to necrosis, stroma, and tumor regions in OvCa.  

© 2012 ACM 

 

Feature Name  C1 C2 C3 

Percent of pixels in R histogram bin (80-96)  0.025 ± 

0.004 

0.017 ± 

0.004 

0.015 ± 

0.004 

Percent of pixels in G histogram bin (127-143) 0.052 ± 

0.006 

0.040 ± 

0.006 

0.058 ± 

0.007 

Std in major-axis length of basophilic structures 6.669 ± 

2.049 

8.048± 

2.402 

9.174± 

2.505 

Maximum eccentricity of basophilic structures 0.975 ± 

0.009 

0.971 ± 

0.011 

0.987 ± 

0.007 

Mean boundary-fractal dimension of basophilic  

structures 

1.505 ± 

0.010 

1.486 ± 

0.020 

1.458 ± 

0.019 
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Identification of Tumor and Non-Tumor ROIs in OvCa WSIs  

 We developed a classification model that separates tumor and non-tumor (including 

stroma and necrosis) in OvCa WSIs. We selected this model because pathologists 

generally focus on tumor regions, excluding necrotic and stroma regions, while making 

histological diagnoses. Therefore, pathologists can use this model to facilitate selection of 

ROIs in WSIs. For this model, we performed training using tumor and non-tumor regions 

from 15 WSIs. On each WSI, a pathologist marked tiles in both non-tumor and tumor 

regions (Figure 57.A). We use these annotated tiles as ground truth. In total, 2098 tiles 

were used for training, among which 638 and 1460 tiles were from non-tumor and tumor 

regions, respectively. We performed 5-fold, 10-iterations of CV to select an appropriate 

feature size (from 1 to 20 top features out of 461 features). Based on average 

classification accuracy, we selected 17 as the optimal feature size. Table 18 lists the top 5 

features. 

 

 

Table 18: Top five informative features for tumor/non-tumor classification in OvCa.  

© 2012 ACM 

Feature Name Tumor Non-tumor 

Adjacency of basophilic stained pixels per unit area 0.400 ±  0.080 0.277 ±  0.091 

Energy of Gabor filter response with frequency, 64/2f  

cycles per pixel, and orientation,  2   radians.   
57.103 ±  

7.564 

51.662 ±  

10.845 

Percent of pixels in B histogram bin (191-207) 0.059 ±  0.013 0.053 ±  0.023 

Eosin stained pixels’ mean intensity 0.523 ± 0.016 0.536 ± 0.021 

Mean boundary fractal of basophilic  structures 1.491 ± 0.014 1.472 ± 0.018 

 

 

 Similar to Table 17, there are some color and basophilic-object shape properties 

that were useful for classifying tumor and non-tumor regions. In addition, energy of 
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Gabor filter response is higher for tumor regions than non-tumor regions. Gabor filter 

response is high if there are edges in the image in the θ + π/2 direction. Higher Gabor 

filter response in the tumor region is mostly due to stronger edges formed in the grayscale 

image by basophilic-structures compared to eosinphilic-structures. Also, mean intensity 

of eosin stained pixels is slightly higher (brighter/whiter) in non-tumor compared to 

tumor. We validate this classification model on a separate test set of 100 OvCa WSIs. 

Again, tiles in the tumor and non-tumor regions of these images were marked by a 

pathologist. In total, there were 29424 tiles in the testing dataset with 17181 tumor and 

12243 non-tumor tiles. Overall classification accuracy on the testing dataset was 90%. In 

Table 19, we have provided a confusion matrix for the classification model performance 

on the test set.  

 

 

Table 19: Confusion matrix for tumor/non-tumor model for OvCa.  

© 2012 ACM 

  Predicted label 

A
ct

u
a
l 

L
a
b

el
 

 Tumor Non-tumor 

Tumor 87% 13% 

Non-tumor 6% 94% 

 

Accuracy= 90%, Number of tumor tiles=17181, Number of non-tumor tiles=12243 

 

 Most of the error is due to false negatives, i.e., our system classifies borderline 

cases as non-tumor rather than tumor. From the point of view of highlighting useful 

regions for diagnosis, false negatives are more favorable than false positives.  
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We also apply this model to all tumor samples in the OvCa TCGA dataset (including the 

training samples) that have reported percentage of tumor cells (in total 1094 WSIs). Then 

we calculated the approximate percentage of tumor cells in the WSI using percent of tiles 

in the tumor region. We included tiles in the tissue fold regions of WSIs on the 

assumption that reported percentages of tumor cells are with respect to the entire samples. 

We found that the predicted percentage of tumor cells was correlated with TCGA-

reported tumor cell percentage (Pearson’s correlation coefficient = 0.4293, p-value = 

2.8134e-50). Figure 60 is a scatter plot of reported percentage of tumor cells vs. predicted 

percentage of tiles in the tumor region. Data points are colored based on the density of 

points in the region. A large number of points are on the diagonal (high correlation). The 

points that are not correlated are mostly below the diagonal, indicating that our system 

tends to classify more tiles into the non-tumor region compared to what is reported by 

TCGA.  
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Figure 60: Correlation between reported percentage of tumor cells and predicted 

percentage of tiles in tumor region using a tumor vs. non-tumor classification model for 

OvCa.  

This plot includes all WSI TCGA samples that have percentage of tumor cell information 

available (1094 images). Tissue fold artifacts were included when calculating the 

percentage of tumor regions. Pearson’s correlation coefficient = 0.4293 (p-value = 

2.8134e-50). The color represents the density of data points per unit of area. © 2012 

ACM 
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Identification of Grade-4 ROIs in KiCa WSIs 

Similar to the tumor vs. non-tumor classification model for OvCa, we also 

developed a tumor vs. non-tumor classification model for KiCa and selected tumor ROIs 

in WSIs of KiCa patients. Thereafter, we developed a classification model for predicting 

grade-4 regions among tumor regions. For training the grade-4 classification model, we 

selected 2815 tumor tiles from five grade-1 patient samples and 1266 tiles from five 

grade-4 patient samples. We use the mRMR-q (minimum-redundancy maximum-

relevance) feature selection method for ranking features [93]. We then use the top 

features to develop a classification model using the linear-SVM classifier (LibSVM) 

[156]. Using 5-fold, 10-iterations of cross-validation accuracy, we found 17 as optimal 

feature size in range of 1 to 20.  

 

Figure 61 illustrates prediction of the optimized model in WSIs from grade 1, grade 

2, grade 3, and grade 4 patients. The color maps in Figure 61.B, E, H, and K illustrate the 

probability of each tile belonging to grade-4 class (red indicates higher probability). We 

can observe that WSIs from patients with higher grade have larger number of red tiles, 

i.e. more tiles are likely to be in grade 4 class.  
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Figure 61: Prediction of Grade-4 regions in WSIs of KiCa patients. 

A binary classification model was developed selection tiles from grade 1 and grade 5 

samples in supervised classification mode. (A, D, G, and J) Thumbnails of WSIs from 

grade 1, grade 2, grade 3, and grade 4 patients, respectively. (B, E, H, and K) Thumbnails 

highlighted with the probability of being in the grade 4 class. Among all tumor tiles, 26% 

tiles were predicted as grade 4 in grade 1 sample; 20% in grade 2 sample; 85% in grade 3 

sample; and 75% in grade 4 sample. (M) Color map for the visualization. (C, F, I, and L) 

high-resolution tiles from four samples in (A, D, G, and J). 
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 To further validate the performance of this model, we applied the model on a larger 

dataset including 893 WSIs of tumor samples from 443 KiCa patients (including the 

training samples). We found that the predicted percentage of tumor tiles that was 

classified as grade 4 is correlated with patient grade reported by TCGA (Pearson’s 

correlation coefficient = 0.4138, p-value = 0.3501e-20). Figure 62 illustrates the percent 

of tiles predicted as grade 4 in tumor samples of grade 1 to grade 4 KiCa patients. For 

each grade, a boxplot illustrates median value (red bar), interquartile range (thick blue 

bar), extreme range (thin blue whiskers), and outliers (red “+”). We found that the 

percent of tiles predicted as grade 4 is statistically different in samples of different grade 

patients (Table 20). Although median value for percent of tiles predicted as grade 4 

increases with increasing grade, it is not zero for lower grade. Therefore, unlike 

pathologists, who diagnose patient based on the highest grade regions present in a tissue 

sample, automated systems have to allow for some high-grade predictions even in low 

grade samples. 
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Figure 62: Percent of tumor tiles predicted as grade 4 in WSIs from patients with 

different grade KiCa. 

 

 

 

 

 

Table 20: P-values for pair-wise two-sided Ranksum test between percent grade 4 

prediction in samples from patients with different grade KiCa 

 

 Grade 1 Grade 2 Grade 3 Grade 4 

Grade 1 1 0.0104 0.0003 7.2e-05 

Grade 2 0.0104 1 1.8e-07 3.9e-14 

Grade 3 0.0003 1.8e-07 1 1.5e-06 

Grade 4 7.2e-05 3.9e-14 1.5e-06 1 
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Pattern based on Nuclear Shape and Topology Features in Grade-4 KiCa WSI 

 We studied spatial patterns formed by the morphological nuclear shape and 

topology feature subsets that include 61 features. Using Ward’s linkage with 

agglomerative clustering, we illustrate the spatial patterns formed by four clusters of 

tumor tiles (non-tumor tiles were eliminated using tumor vs. non-tumor classification 

model) in a grade-4 sample (Figure 63.A and Figure 63.C). Figure 63.B illustrates 

probability of tile being a grade-4 tile using a grade 1 versus grade 4 model. Among the 

four clusters, one cluster (brown) is an outlier with only one tile. Figure 63.E-G are high 

resolution tiles from remaining three clusters, capturing low (cyan), medium (magenta) 

and high (yellow) grade. The heatmap (Figure 63.D) shows image features for tiles in 

yellow cluster are very different compared to image features of tiles in other clusters.  
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Figure 63: Clustering of tumor tiles in a WSI of a patient with grade-4 KiCa. 

(A) Thumbnail of original WSI. (B) WSI painted with probability of being in the grade 4 

class. (C) WSI painted based on tile’s cluster, where among four clusters brown is an 

outlier with one tile, yellow corresponds to high grade, cyan corresponds to low grade, 

and magenta corresponds to intermediate grade. (D) The heatmap illustrates the 

variations in features (row) across various image tiles (column).  Red and green values in 

the heatmap correspond to values above and below the mean feature value. Most features 

in yellow cluster appear very different than other clusters. (E, F, and G) high-resolution 

tiles in three clusters. 
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Conclusion 

 We have designed a visualization tool, called TissuViz, for studying morphological 

patterns across histopathological WSIs. This visualization tool highlights variations 

across regions in WSIs based on one or more quantitative image features. The 

visualization can be used to study patterns formed by features (single feature variations 

and unsupervised multi-dimensional clustering) or it can be used to identify region-of-

interest (ROIs) in large WSIs (supervised classification). Although we have used ovarian 

serous cystadenocarcinoma (OvCa) WSIs provided by TCGA, our methods can be 

applied to any WSI dataset. 
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CHAPTER 9 

QUANTIZED REPRESENTATION OF WSIS FOR ENHANCED 

DECISION MAKING 

Introduction 

 This chapter addresses the informatics challenge of developing high-level 

representations for WSIs that can model pathologists’ knowledge. High-level 

representations are essential to tackle biological variation in WSIs while making 

diagnostic decisions. The chapter also validates these representations for two 

applications: (1) diagnosis of histopathology-based endpoints such as subtype and grade 

and (2) prediction of clinical endpoints such as metastasis, stage, lymphnode spread, and 

survival.  

 CDSSs provide an objective and efficient means for diagnosing cancer using 

histopathological images [5]. Although many current systems use manually selected 

rectangular sections of biopsy slide images, the advent of whole-slide images (WSIs) and 

their availability in public data repositories such as TCGA has shifted the focus of 

research [3, 24, 65, 73, 110]. WSIs provide a holistic histopathological snapshot of a 

patient. Because of their size, WSIs are more likely to capture all relevant 

histopathological characteristics of a disease. Moreover, effective systems that use WSIs 

would be less likely to be biased by subjective ROI selection [174]. Thus, it is important 

to develop effective systems that can objectively and automatically diagnose disease 

using WSIs.  

 Image processing methods developed for analyzing only limited rectangular 

portions of histopathological images can be used for analyzing WSIs. However, WSIs 
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pose unique challenges: (1) the images are large, hindering the computational feasibility 

of image processing, and (2) the magnitude of biological and non-biological variations 

adversely affects image descriptors. To handle large images, researchers have proposed 

parallel, piece-wise processing of WSIs by cropping them into equal-sized, non-

overlapping tiles [24, 65, 73, 110]. Features from individual tiles of a WSI are then 

combined to represent the patient [65, 110]. Alternatively, each tile is independently 

classified and all classification decisions are combined to obtain the final patient 

diagnosis [24, 73]. To handle experimental variations, researchers have suggested quality 

control methods that remove artifacts such as tissue folds [17]. Finally, to handle 

biological variation, researchers have suggested methods for automated ROI selection, 

which can be dependent on the disease, or decision endpoint. For instance, pathologists 

focus on high-grade tumor regions of WSIs when the endpoint is cancer grade [45]. 

Therefore, researchers have proposed cancer-dependent ROIs for grading such as regions 

with high Gleason score for prostate cancer [73] and regions with high mitotic activity for 

breast cancer [75]. Unlike cancer grading, prediction endpoints such as patient survival 

and disease stage are not associated with ROIs because histopathological images are not 

normally used to predict these endpoints. However, there is evidence that 

histopathological image features are predictive of these endpoints [57, 110, 175]. Thus, 

automated analysis of WSIs may also reveal novel insights into the biology of disease. 

 

 We propose a novel strategy to handle biological variation in WSIs. Instead of 

finding optimal ROIs for each cancer endpoint, we propose to represent WSIs using a 

profile of different types of biological regions. To implement this strategy, we propose 
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quantization methods for image representation, which quantizes the image feature space 

and quantifies the percentage of tiles in each quantized space. Tiles are selected from 

quality-controlled, tumor regions of WSIs (Figure 64). We propose three quantization 

methods: (1) Univariate quantization, which quantizes each feature into equal-sized bins, 

(2) Multivariate quantization, which quantizes the complete image feature space into 

unsupervised clusters, (3) Multivariate subset quantization, which quantizes subsets of 

similar features into unsupervised clusters. We use WSIs of patients with kidney and 

ovarian carcinoma obtained from TCGA [3]. We examine the effect of different 

quantization methods on the prediction of eight clinical endpoints. We also compare the 

effect of inclusion or exclusion of non-tumor tissue regions on prediction performance.  
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Figure 64: Flow diagram for decision making using whole-slide images.  

We select regions in WSIs without tissue folds and pen marks using low resolution 

images. We then extract 461 image features from high resolution tiles and select tiles 

from tumor regions based on a supervised model. Thereafter, we represent patients by 

combining features from tumor tiles using different tile combination methods. Finally, we 

develop predict models using feature selection and classification. 
  

 

Materials and Methods 

Data 

 We perform this study using publicly available WSIs of H&E-stained tumor 

samples of ovarian serous adenocarcinoma (OvCa) and kidney renal clear cell carcinoma 

(KiCa) from TCGA [3]. TCGA database contains multiple tissue samples for each 

patient. We use WSIs of 1,092 tumor samples from 563 OvCa patients and 906 tumor 

samples from 451 KiCa patients. TCGA database also includes several clinical factors 

(diagnoses) for each patient. Among the reported clinical factors, we use histological 

grade, metastasis, stage, and survival for KiCa patients and histological grade, survival, 

stage, and, lymphnode spread for OvCa patients. Based on these clinical factors, we focus 

on four binary prediction endpoints for both KiCa and OvCa (Table 21). Since clinical 
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factors are not available for all patients, we use a different number of patients for each 

clinical endpoint. Out of four different WSI resolutions provided by TCGA, we use the 

lowest and the highest resolution WSIs for quality control and decision making, 

respectively. 

 

 

Table 21: List of clinical binary endpoints of OvCa and KiCa. 

 

Cancer Endpoint Class 1 Class 2 

Description Patients Description Patients 

KiCa 

Grade Grade 1 or 2 204 Grade 3 or 4 239 

Metastasis 
No spread to other 

organs 
381 

Spread to other 

organs 
68 

Stage Stage I or II 267 Stage III or IV 182 

Survival < 5 years 126 >=5 years 101 

OvCa 

Grade Grade 1 or 2 71 Grade 3 or 4 478 

Stage Stage I or II 42 Stage III or IV 515 

Survival < 5 years 252 >=5 years 80 

Lymphnode  

No spread to 

nearby lymph 

nodes 

77 
Spread to nearby 

lymph nodes 
134 

 

 

Quality Control 

 Using quality control methods described in Chapter 2, we identify blank, pen-mark, 

and tissue-fold regions in low-resolution WSIs (Figure 65.A). We represent the patient   

using a collection of   
   high-resolution tissue tiles from quality-controlled regions. We 

crop an HxW-dimensional WSI into an MxN-dimensional matrix of 512x512-pixel non-

overlapping tiles, where           and          . Then, we select tiles with 

greater than 50% tissue and less than 10% tissue folds. Figure 65.B shows tissue tiles, 

without artifacts or blank regions, selected for the OvCa WSI in Figure 65.A.  
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Figure 65: Quality control and tumor selection in a sample OvCa WSI.  
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Image Feature Extraction 

 We describe each tissue tile using a comprehensive set of 461 quantitative image 

features (Table 16) from nine high-level feature subsets: color (C), global texture (GT), 

basophilic-stained object shape (BOS), eosinphilic-object shape (EOS), no-stain-object 

shape (NOS), eosinphilic-region texture (ET), basophilic-region texture (BT), nuclear 

shape (NS), and nuclear topology (NTo). After the feature extraction step, each tile k for 

patient   using a set of 461 quantitative features is represented by   
  . 

 

Tumor Region Selection 

 We classify tissue tiles into tumor and non-tumor tiles using a supervised model   , 

which is trained on a set of manually annotated tiles. The model maps image features for 

a tile   
  to an annotation label   

 ,   
       

  , where   
    for tumor and   

    for 

non-tumor tiles. We select the top features using the mRMR-q feature selection method 

[93] and  develop a classification model using the linear-SVM classifier [156]. We 

incrementally train the model using a framework in which we iteratively added more 

training tiles (from different WSIs) to provide the classifier with more challenging 

training samples. We separately optimize     for KiCa and OvCa dataset because the 

morphology of cancer and non-cancer regions differ in the two cancer types. We use 15 

and 17 WSIs while training    for OvCa and KiCa, respectively. The optimal feature size 

selected for both models is 17. After tumor region selection, we represent patient   using 

a collection of   
  tumor tiles, where   

    
 . Figure 65 shows tumor tiles selected for an 

OvCa sample. We develop prediction models using both tissue and tumor tiles to 
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understand the effect of tumor-region selection on the performance of various cancer 

prediction models. 

 

Tile Feature Combination 

 In order to classify patients, we need to systematically combine tile features 

  
            to represent each patient, where    is equal to   

  or   
 , indicating 

inclusion or exclusion of non-tumor regions, respectively. The main objective for a tile 

combination method is to output patient features    that adequately capture knowledge in 

the WSI. We compare four tile combination methods: Simple, Univariate Quantization, 

Multivariate Quantization, and Multivariate Subset Quantization.  

 

Simple Combination (Simple) 

 For the simple combination (Simple) method, we combine tile features   
  to best 

approximate the patient features that would have resulted by processing the WSI as a 

whole (rather than by tiles). Specifically, we consider the collection of tiles as a subset of 

the WSI and features extracted from tiles are combined using group statistics. The 

combination method is dependent on the feature type as listed in Table 22. For most 

features, we directly combine features while for some features (such as fractal), we 

combine semi-processed data (such as histogram frequencies). 
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Table 22: Feature-dependent simple combination. 
 

Feature     
  Type of combination 

Count, probability, energy, 

entropy, and pixel-level-

averages for tiles 

Average of tiles: 

   
  

     
 

 

     
 

Object-level maximum Maximum among tiles:   
       

      
      

         

Object-level minimum Minimum among tiles:   
       

         
      

         

Object-level average  Group average: 

  
  

     
   

 
 

    
   

, where   
  is number of objects in tile k of 

patient   

Object-level standard 

deviation 

Standard deviation of a collection of tile objects (group 

statistics):  

  
   

  
    

 

    
   

, where error sum of squares   
  

     
     

    
       

and group sum of squares 

   
     

      
    

  
 

 , 

where     
 ,   

  are tile- and patient-level mean of the object-

level image feature, whose standard deviation is being 

calculated. 

Haralick and Fractal 

features  

Combine frequency matrices from each tile k and then 

calculate features 

 

 

 After simple combination, a patient-level feature may have a numeric value in a 

range different from other patient-level features. For instance, median nuclear area of all 

patients in KiCa approximately lies between 200 and 1000 pixels while nuclear 

eccentricity lies between 0 and 1. This difference in feature range affects feature selection 

and classification. Therefore, we normalize all features to be in the range        using 

rank normalization [163]. We develop a rank function   , which orders the feature values 

  
    

      
   such that      

        
   implies   

     
  . Using this rank function, 

we normalize the features as follows: 
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,  (50) 

where   is the number of patients. 

Univariate Quantization (UniQ) 

 For the univariate quantization (UniQ) method, instead of estimating a single value 

for a feature of a patient, we represent a feature of patient as a histogram with a fixed 

number of bins (Figure 66). In other words, we first quantize each feature into   bins. For 

each WSI, we then estimate the percent of its tiles that fall into each bin. Finally, all B 

percentages for all features represent a single patient profile. Quantization values for a 

feature are estimated using the number of bins  , which is a parameter, and a feature-

dependent dynamic range: lower limit    and upper limit    . The limits are calculated 

based on the distribution    of the feature   across all tiles of all patients in the training 

set using quantiles as discussed in equations (47) and (48). In Figure 66, we show the 

variation in a feature, median nuclear eccentricity, across the tiles of a sample. The color 

map in the spatial visualization of Figure 66.A corresponds to the quantization bins of the 

histogram in Figure 66.B.  
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Figure 66: Flow diagram for univariate quantization of an image feature  . 
Input parameters for univariate quantization include number of bins and feature limits. 

The number of bins is pre-selected parameter while feature ranges are calculated using 

training set. (A) Variation in median nuclear eccentricity across the tiles of KiCa sample. 

Color of a tile corresponds to its quantization bin. (B) Quantization histogram illustrating 

percent of tiles in various bins.  
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Multivariate Quantization (MultiQ) 

 For the multivariate quantization (MultiQ) method, we quantize a multi-

dimensional feature space (instead of a single feature) based on the natural separation 

between training-set tiles in the feature space. This quantization is non-linear in nature 

and allows more or less quantization blocks in a subspace of the feature space depending 

on the feature variation in the subspace. Therefore, unlike UniQ, it can capture 

knowledge in fewer quantization blocks. MultiQ is very similar to the bag-of-words 

(BOW) paradigm in computer vision  [176], except that, in tile combination, “feature” is 

a combination of morphological properties of tiles instead of a local key-point descriptor. 

Moreover, we adopt dense sampling, wherein we combine all tiles, instead of the more 

commonly used sparse sampling in BOW methods [177]. 

 

 MultiQ is a four-step procedure. First, we normalize and convert each tile feature 

into unsigned integers in the range        . For this conversion, we calculate the upper 

and lower limits (     ) for each feature in the training-set tiles in a manner similar to 

that of univariate quantization and divide the feature range into 256 bins. Thereafter, for 

each tile, we map the feature value to its bin number. This normalization forces all 

features to have a similar range [178]. Second, we cluster the training-set tiles into   

clusters. These clusters are often referred to as the codebook in the BOW paradigm. A 

training set can include up to a half-million tiles described by 461 image features. 

Because of the size of the data, it is not feasible to use simple k-means clustering and we 

adopt the approximate k-means method for clustering [179]. Approximate k-means  uses 

k-d trees for calculating distances between tiles (nodes) and reduces the computational 

complexity from       to         , where   is number of tiles. We use approximate 



 207 

k-means with eight randomized k-d trees and five k-means iterations [178]. Third, we 

map tiles for each patient to the closest cluster among   clusters. Again, we calculate 

distance using k-d trees [178].  Finally, we calculate the percent of tiles mapped to each 

cluster. Figure 67 illustrates the multivariate quantization method, where tiles in Figure 

67.A are mapped to different clusters as shown in Figure 67.B. We have highlighted bars 

for two clusters (359 and 455) in the histogram and in corresponding tiles in the WSI. All 

magenta and cyan tiles are in non-tumor and tumor regions of the WSI, respectively, and 

correspond to high and low median nuclear eccentricity in Figure 67.A. 

 

 

 

Figure 67: Flow diagram for multivariate quantization of tiles features. 

Input parameters for multivariate quantization include feature limits for normalization 

and pre-computed cluster centers for mapping. Tiles painted magenta and cyan in KiCa 

sample (A) corresponds to two clusters in the histogram (B). All the tiles in magenta and 

cyan cluster belong to non-tumor and tumor regions of the sample. 
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Multivariate Subset Quantization (MultiSubQ) 

 Since the UniQ method quantizes every feature, it ensures that final patient features 

include all morphological properties. However, it results in a large number of patient 

features. On the other hand, MultiQ reduces the number of features but does not ensure 

that final patient features include all morphological properties. Moreover, it is difficult to 

biologically interpret patient features resulting from MultiQ because it is difficult to map 

cluster centers to the original image features.  Multivariate subset quantization 

(MultiSubQ) is a compromise between the two methods. In MultiSubQ, we quantize each 

of the nine feature subsets into    clusters following the first and second steps of the 

MultiQ method. Thereafter, we map tile features for each patient to   clusters 

corresponding to each subset resulting in     patient features. We found that the 

required parameter   for MultiSubQ is much smaller than that of MultiQ. Thus, the total 

number of patient features is much smaller than that of UniQ. Moreover, since we can 

easily map cluster centers to a high-level feature subset, MultiSubQ is easier to interpret 

biologically.  

 

Feature Selection and Classification 

 For each cancer endpoint, we select the most informative patient features and 

develop prediction models. After tile combination many patient features may be 

correlated (especially after the UniQ method). Thus, we select features using mRMR 

feature selection [93]. We develop binary prediction models using classifiers based on 

discriminant analysis—linear, quadratic, spherical, and diagonal. We optimize feature 
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size (between 1 to 100) and classifier parameters using 5-fold, 10 iterations of nested CV 

[180]. 

 

Results and Discussion 

Impact of Quantization on Prediction Performance 

 Figure 68.A and Figure 68.B illustrate the performance of prediction models for 

KiCa and OvCa endpoints. Because of the large difference in prevalence of each class for 

some endpoints, we use area under the curve (AUC) to measure the prediction 

performance. Reported AUC is an average performance of predicting testing set samples 

in 50 external loops of nested CV. The cells in Figure 68.A and Figure 68.B are painted 

based on their AUC values. Cells with high AUC values are painted red followed by 

yellow, green, cyan, and blue. The bars on the right and bottom of the figures correspond 

to average performances for different methods and endpoints, respectively. We report 

results using three values for each parameter (bin or cluster size) and each quantization 

method.  

 

 For KiCa endpoints, models based on MultiSubQ perform the best, followed by the 

models based on MultiQ, then UniQ, and then Simple. Models for grade and metastasis 

prediction perform the best with 0.70 AUC. Models for 5-year survival perform the 

lowest but the performance improves with quantization. Based on the bars in the bottom 

of the figure, average performance improves slightly with tumor region selection. The 

parameters do not have a significant effect on the prediction performance except for 

MultiSubQ, whose performance improves with increasing number of clusters. For OvCa 
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endpoints, models based on MultiSubQ features perform best for the grade and survival 

endpoints while models based on UniQ perform best for the lymphnode and stage 

endpoints. It is possible that MultiSubQ performance may improve with a larger number 

of clusters. 

 

 Among different OvCa models, the model for the stage endpoint performs best with 

0.76 AUC while the model for the grade endpoint performs second best with 0.70 AUC. 

The performance of models for the survival endpoint is low (close to 0.5, which indicates 

random prediction) but the performance improves when using MultiSubQ. The 

performance of MultiQ models slightly decreases with increasing   while the 

performance of models based on other quantization methods is not considerably affected 

by parameter values. 
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Figure 68: Prediction performance of models based on various types of patient features. 

For each endpoint, we compare patient features based on tumor and tissue tiles and four 

tile combination methods. Cells are painted based on AUC values. Bars on the right and 

bottom of each colormap represent average performance for tile combination methods 

and endpoints, respectively. 
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Necessity of Tumor-Region Selection for Diagnosis 

 In this section, we elaborate on the need for tumor-region selection for WSI-based 

cancer prediction. Figure 69 shows the change in model performance after tumor-region 

selection compared to the performance of the model (with the same parameters) without 

selection. Positive and negative change indicates an increase and decrease in performance 

after tumor-region selection. Bars in Figure 69 indicate mean change and 99% confidence 

intervals (CI) of the sample mean, measured across all parameters for 50 iterations of 

external CV. If the CI of a model does not intersect with the dashed line at zero mean, 

then the model’s performance with and without tumor-region selection is statistically 

different (p<0.01). We can make the following observations: (1) Tumor-region selection 

improves or maintains performance in most cases with three exceptions:  KiCa stage with 

UniQ, KiCa stage with MultiSubQ, and OvCa grade with Simple; and (2) In most cases, 

tumor-region selection affects Simple combination more than it does for quantization 

methods. The decrease in the performance of models with tumor-region selection for the 

KiCa stage endpoint suggests that non-tumor regions can be informative for KiCa 

staging. This is interesting because previous work establishes a statistically significant 

association between tumor necrosis and high stage in kidney renal carcinomas [181]. A 

large increase in performance for models, especially for KiCa endpoints, based on Simple 

features compared to quantization methods indicates that quantization methods are more 

robust in accounting for biological variation in samples by assigning biologically 

different tiles to different quantization blocks. 
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Figure 69: Box plots illustrating change in performance after tumor selection. 

Positive and negative change indicates increase and decrease after selection, respectively.  
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Informative Feature Subsets 

 Patient features include descriptors from nine high-level subsets (Table 23), among 

which some subsets are more useful than others for certain endpoints. In this section, we 

discuss which feature subsets are most informative for various endpoints based on 50 

prediction models optimized in nested CV. Optimal models may have different numbers 

of features (up to 100 features), so we calculate the average percent contribution of each 

subset across all models. Thereafter, we establish the importance of a feature subset by 

calculating the p-value for a one-sided Fisher’s exact test. Low p-value rejects the null 

hypothesis that the number of features selected from a subset is equal to random chance. 

Fisher’s exact test is often used to identify over-represented Gene Ontology terms in a list 

of genes [135]. Table 23 reports p-values for all feature subsets in the best performing 

models for each endpoint. We have highlighted statistically over-represented feature 

subsets for each endpoint (p<0.05, adjusted for multiplicity using the Bonferroni 

method).  

 

 

Table 23: Statistically over-represented image features subsets in OvCa and KiCa clinical 

diagnosis models using WSIs. 

 

Subset Grade Stage Survival Metastasis Lymphnode 

KiCa OvCa KiCa OvCa KiCa OvCa KiCa OvCa 

C 0.074 0.023 0.000 0.415 0.000 0.052 0.000 0.399 

GT 0.550 0.565 0.942 0.985 0.691 0.007 0.202 0.195 

EOS 0.990 0.691 0.942 0.309 0.991 0.341 0.973 0.970 

ET 0.550 0.135 0.565 0.555 0.691 0.716 0.202 0.545 

NOS 0.938 0.002 0.314 0.011 0.885 0.820 0.678 0.668 

BOS 0.879 0.801 0.942 0.309 0.997 0.979 0.997 0.298 

BT 0.021 0.942 0.135 0.760 0.000 0.092 0.301 0.344 

NS 0.001 0.991 0.565 0.828 0.975 0.979 0.791 0.924 

NTo 1.000 0.997 0.975 0.785 0.997 0.992 0.990 0.634 
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 Since pathologists grade KiCa based on the Fuhrman nuclear grading system, over-

representation of nuclear shape features confirms that our models are based on image 

properties that are also used by pathologists for manual analysis [182]. Similarly for 

OvCa, with progression in cancer grade, cells become less differentiated and tissues lose 

their serous property (i.e., a property in which cavities fill with serous fluid). Thus, our 

prediction models include no-stain object shape features, which capture serous structures. 

Traditionally, pathologists diagnose metastasis, stage, and lymphnode spread based on 

gross analysis of tumors instead of by histopathological analysis. In our study, we found 

that metastasis and stage can be predicted with reasonable accuracy based on 

histopathological properties. Color properties were most informative for KiCa metastasis 

and stage while basophilic-object shape properties were most informative for OvCa stage. 

For KiCa survival, we found that color and basophilic texture were statistically over-

represented. 

  

Effect of Tissue-Fold Artifact on Cancer Grading 

 Previous studies have discussed the need for eliminating tissue-fold image artifacts 

before extracting image features and building diagnostic models. However, to the best of 

our knowledge, no published work investigates the effect of tissue folds on quantitative 

image features and cancer diagnosis. We identify image features changed by the presence 

of tissue folds using a rank-sum test of two lists of feature values in WSIs with and 

without tissue folds. If the p-value for the test is less than 2.1692e-005 (i.e., a p-value 

threshold of 0.01, adjusted for multiplicity by the Bonferroni method, 0.01/461), then this 

indicates that a feature changes (with statistical significance) in the presence of tissue 
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folds. Figure 70 shows several image features changed by tissue folds. We found that 30 

and 53 features changed by tissue folds in OvCa and KiCa, respectively. Out of these 

features, most capture an extreme value or variation in a property such as the minimum 

averaged distance of a nucleus to its five neighbors and the standard deviation in a 

nuclear area. Moreover, the presence of tissue folds increases the spread of most features. 

Hence, tissue-fold artifacts create outlier regions in a WSI.  

 

 

 

Figure 70: Effect of tissue-fold elimination on quantitative image features. 

Variation in quantitative image features in the WSIs of KiCa (A-E) and OvCa (F-K) 

samples with the presence of tissue folds. The p-value of the rank-sum test of lists of 

feature values with and without folds (A & F). With the presence of tissue folds, 30 and 

53 image features statistically changed in KiCa and OvCa, respectively. Using box-plots, 

we illustrate the distribution of certain features (highlighted in red) changed by tissue 

folds. 
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 To investigate the effect of tissue folds on predictive grading models, we develop 

KiCa and OvCa predictive grading models for WSIs using the features changed by tissue 

folds. We found that, without folds, these models have higher AUC, as assessed with the 

ten iterations of 5-fold of CV (Table 24).  

 

 

 

Table 24: AUC of predictive grading models with and without tissue folds. 

Cancer Without Fold  With Fold 

OvCa 0.59±0.01 0.54±0.03 

KiCa 0.66±0.01  0.65±0.01  

 

 

 

 The improvement in AUC is more prominent for the OvCa data set, which includes 

WSIs with a higher percent of tissue folds (Figure 71). Therefore, we can conclude that 

the presence of tissue folds changes several quantitative image features. Consequently, 

after eliminating the tissue-fold regions in WSIs, prediction models based on these image 

features can more accurately classify WSIs into groups of high and low grade. 

 

 

 

 

Figure 71: The percentage of tissue folds in WSIs provided by TCGA. 

The value on the y-axis represents the percentage of tissue tiles eliminated because of 

tissue folds in samples per patient. Samples for patients with OvCa have more tissue 

folds than patients with KiCa. 
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Conclusion 

 An important challenge for pathology imaging informatics is to capture the 

knowledge in large histopathological whole-slide images (WSIs) which can aid in 

decision making. A simple method for WSI representation averages image features across 

a complete image. In this chapter, we proposed and tested three novel WSI representation 

methods that quantify the percent of different biological regions in a WSI using feature 

space quantization. We compared these methods using four kidney and four ovarian 

carcinoma endpoints from publicly available datasets. Our results indicate that 

quantization-based features improve decision making by up to 7% AUC. We also 

compared the performance of different methods when features were extracted from only 

the tumor regions of a WSI. We found that quantization methods are less sensitive to 

tumor-region selection compared to the simple method. Moreover, tumor-region selection 

reduces the performance of kidney cancer staging. We found that statistically over-

represented feature subsets for grading endpoints correspond to image properties that a 

pathologist would normally identify in a traditional diagnosis. We found that presence of 

tissue-fold artifacts change simple image features and decrease OvCa and KiCa grading 

performance. Our methods can be easily extended to other cancer endpoints and represent 

an important step towards effective and automated WSI-based clinical decision-making.  
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CHAPTER 10 

PATIENTVIZ: VISUALIZATION TOOL FOR PATIENT 

STRATIFICATION 

Introduction 

 This chapter addresses the informatics challenge of optimizing and validating 

prognosis prediction models. It discusses the development of an interactive patient-level 

visualization tool, PatientViz, which allows user to study patient stratification in terms of 

prognostic significance, stability, and reproducibility simultaneously. The chapter also 

develops a method for genomic stratification using histopathological knowledge.  

 

 Cancer is one of the leading causes of death in United States. Because of early 

detection and targeted treatment, cancer mortality rate has decreased 20% from 1991 to 

2009 [183]. To further decrease the mortality rate, it is essential to identify novel 

biomarkers for sub-classification of the disease and develop drugs for targeted treatment 

of different disease sub-groups. Researchers have suggested machine learning methods 

for discovering biomarkers using high-throughput genomic data [184-187].  These 

methods can be broadly classified into supervised and unsupervised methods. A 

supervised method segregates patients into groups based on their diagnosis and selects a 

subset of most informative genes. In contrast, an unsupervised method segregates patients 

into groups based on the dissimilarity in patient’s genomic profile and selects a subset of 

most informative genes.  Supervised techniques are useful for clinical prediction 

modeling while unsupervised techniques are more appropriate for exploratory analysis 

[188]. Unlike supervised methods, unsupervised methods may result into a grouping that 
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is not biologically useful [189]. Moreover, unsupervised patterns are often unstable and 

overfitted to the data [190]. Therefore, genomic clusters are often unstable with limited 

number of samples [189].  

 

 Recently, development of computational methods for biomarker discovery has 

become an active area of research because of the high-throughput genomic, proteomic, 

and imaging data acquisition technologies. Several large-scale datasets are publicly 

available for research at repositories such as Gene Expression Omnibus (GEO) and The 

Cancer Genome Atlas (TCGA). TCGA, a joint project by the National Cancer Institute 

(NCI) and the National Human Genome Research Institute (NHGRI), provides high-

quality genomic, proteomic, and imaging data for same patients [3]. TCGA includes data 

for hundreds of patients from 20 different cancer types. Using TCGA data, researchers 

discovered genomic and imaging biomarkers for different cancer types. Researchers 

discovered prognostically significant stratification of glioblastoma patients using 

genomic [184, 185, 187] and imaging datasets [65, 110]. Liu et al. associated gene 

expression and nuclear image profiles with chemotherapy response in OvCa [168]. 

Fackler et al identified biomarkers specific to breast cancer hormone receptor status and 

recurrence risk using genome-wide methylation analysis [186].  

 

 A patient stratification should be stable and reproducible for it to be clinically 

useful. The task of assessing the quality of clustering is non-trivial because even random 

data can result in a stable (but irreproducible) clustering [190]. Researchers have 

proposed several heuristic and mathematical metrics for measuring the quality of 
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clustering [190, 191]. However, none of these metrics is widely accepted and researchers 

often study multiple metrics in combination to find optimal clustering [192].  

 

  We propose a novel algorithm for genomic stratification which is a combination of 

supervised and unsupervised methods. Using unsupervised clustering of histopathological 

features, we segregate patients into groups. Thereafter, we use the group labels and 

genomic data to train a supervised stratification model. Our proposed method assumes 

that in a stable patient stratification, patients should differ on both histopathology and 

genomic levels. Using genomic and imaging data provided by TCGA, we develop patient 

stratification models for ovarian and renal carcinoma. We also develop a graphical 

interface, called PatientViz, to study various global-stability and cluster-reproducibility 

metrics simultaneously. 

Methods and Materials 

Datasets 

 We use genomic RNA-Seq and whole-slide imaging data of OvCa and KiCa 

patients provided by TCGA. For stratification and model optimization, we only use 

patients that have both imaging and genomic data. We use remaining genomic and 

imaging samples as references during normalization and feature extraction. Table 

25summarizes number patients used in main study and normalization for both cancers. 

We represent WSIs using univariate quantization frequency features with 10 quantization 

bins and tumor selection, as described in Chapter 9. We normalize RNA-Seq data using 

trimmed mean of M values (TMM) normalization [193]. To avoid any batch effects, we 
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divide main-study samples into train and test sets using stratified sampling based on 

acquisition site.  

 

 

 

Table 25: Number of patients in different datasets. 

 

Dataset KiCa OvCa 

Histopathological Reference 27 307 

Genomic Reference 45 6 

Histopathological/ Genomic Train 282 171 

Histopathological/ Genomic Test  140 85 

 

 

 

Unsupervised Histopathological Clustering 

 We cluster patients in train set using histopathological features. We use a two-step 

clustering procedure: (1) feature selection and (2) clustering. 

 

Feature Selection 

 Feature selection methods for unsupervised learning maximize information in a 

subset of features irrespective of their relevance to the biological problem and then look 

for inherent patterns [194]. We use a method based on SVD-entropy to select the most 

informative subset among 4610 univariate-quantization features [194]. We adopt the 

following two leave-on-out feature selection methods: (1) Simple, and (2) Forward [194].   

During simple selection, we calculate contribution of each feature   to the entropy using 

                         
  , (51) 

                 
 
   , (52) 
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where   is a matrix of all features for   samples,    is a matrix of all features except 

feature   and      
    

 
  ,   

  are the eigenvalues of the NxN matrix    .  Thereafter, 

we rank features based on decreasing     . High values of     signifies that the presence 

of feature   adds useful dimension to the data and distributes information over multiple 

Eigen vectors [194].  During forward selection, we follow following steps: (1) select a 

feature   in   with maximum     (2) remove feature   from   matrix, and (3) follow 

steps (1) and (2) till required number of features is selected. 

 

Clustering  

 We use agglomerative hierarchical clustering to cluster patients in a 

multidimensional image-feature space. Based on feature ranks, we select top 400 image 

features and cluster patients using 16 different feature sizes including 25, 50, …, and 400. 

We cluster similar patients using two criteria: (1) Ward linkage with Euclidian distance 

and (2) Average linkage with correlation distance. Ward’s linkage minimizes the increase 

of the within-cluster sum of squares as a result of merging two clusters [171]. The 

increase in sum of squares by merging clusters k and l is measured by the following 

distance metric: 

          
     

     
       , (53) 

    
 

  
    

  
   , (54) 

where kn is the number of patients in cluster k,   is the centroid of cluster k,     is  -

dimensional representation of patient   in cluster   and 
2

. is the Euclidian distance. 

Average linkage measures distance between two clusters k and l using average pairwise 

distance between all objects in the clusters given by 
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where we measure distance between two  - dimensional objects     and     using 

correlation. We cluster patients using nine cluster sizes including 2, 3, …, 10. We 

generate clusters with all possible combinations of following factors (1) 

Histopathological features with and without tumor selection, (2) simple and forward 

feature selection methods, (3) 16 feature sizes, (4) nine cluster sizes, and (5) Ward and 

average clustering linkages. Thereafter, we select optimal clustering using cluster-

assessment metrics. 

 

Patient Cluster Assessment 

Cluster Quality 

 We measure cluster quality by assessing clustering patterns irrespective of 

biological knowledge. Researchers have proposed several metrics to assess cluster 

quality, which measure correspondence between clustering and true structure in the data 

[191]. In our study, we measure two types of cluster-quality metrics: validity and 

reproducibility. Validity measures intra-cluster cohesion and inter-cluster separation 

while reproducibility measures predictive strength of the clustering pattern.  

 

We use the following measures of cluster validity: 

(1) Global silhouette width (GS): It measures how well a patient lies within its 

clusters. To measure GS, we first measure silhouette width     for each patient   in 
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cluster    and silhouette width    for each cluster    [191]. For a given cluster    

(k=1,2,…,C):  

 GS=
 

 
   

 
   , (58) 

    
 

  
    

  
   , (59) 

     
       

             
, (60) 

     
 

    
                       , (61) 

                              , (62) 

where     is representation of patient   in cluster  ; and      is Euclidean and 

correlation distance with Ward and Average linkages, respectively. Larger global 

silhouette width (GS) value indicates the better clustering. 

 

(2) Dunn’s index (D): It is a function of inter-cluster distances and intra-cluster 

distances given by 

                             
        

           
 

  
          

  
    

  , (63) 

where   is the centroid of cluster k with     patients. Larger D value indicates the 

better clustering [191]. 

 

(3) Davies-Bouldin index (DB): It measures dispersion of patients within a 

cluster relative to inter-cluster distances [191].  Lowest DB value indicates the best 

clustering. Davies-Bouldin index is given by 

    
 

 
                

 

  
          

  
    

 

  
          

  
   

        
  

   . (64) 
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 We measure the reproducibility of a clustering by comparing similarity of 

clusterings generated using a subset of samples in train set. To calculate reproducibility 

indices, we follow the following steps: (1) Randomly divide patients in train set into two 

equal size groups, (2) Cluster both groups into   clusters, (3) map patients in first group 

to the cluster centers of second group and vice versa, (4) Compare the similarity of 

original clustering labels of first (second) group to the labels assigned using second (first) 

group’s cluster centers, and (5) repeat steps (1) to (4) 50 times and average similarity 

indices. We measure the similarity of clusterings using the following indices: 

 

(1) Rand index (RI): It counts the number of agreements in patient pairs between 

two clusterings. For example, a patient pair in which both patients are clustered as 

being in the same group in one clustering agrees with the other clustering if both the 

patients are closest to same cluster in other clustering (clusters determined using 

remaining half of patients). Alternatively, if patients in the pair are closest to 

different clusters in the other clustering, the pair is in disagreement. The Rand index 

is the ratio of the number of agreeing pairs to the total number of pairs given by 

[195]: 
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    , (66) 

where     is number of patients that are in cluster   of first clustering and cluster   of 

second clustering;     and     is number of patients in cluster   in first clustering 
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and cluster   in second clustering, respectively;   is the total number of patients. 

Higher value of Rand index indicates better clustering. 

(2) Mirkin’s index (MI): It counts the number of disagreements in patient pairs 

between two clusterings.  It is the ratio of the number of disagreeing pairs to the total 

number of pairs  [195] given by 

      
 
 
   and (67) 

     
   

 
  

      
   

 
  

        
   

 
  

   
 
    (68) 

 Lower value of Mirkin’s index indicates better clustering. 

 

(3) Hubert’s index (HI): It calculates the difference between the number of 

agreements and disagreements in patient pairs between two clusterings.  It is a 

combination of Rand and Mirkin’s index  [195]. 

           
 
 
   (69) 

 

(4) Adjusted rand index (ARI): Adjusted Rand index is a modification of the  

Rand index to account for expected value of index depending on group prevalence 

[195].  
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Prognostic Significance 

 A high-quality clustering pattern may not be biologically useful. We measure the 

biological (prognostic) significance of a clustering using two-sided log-rank test on pairs 

of survival functions for patient groups (clusters). Let         be unique time points 

when a death occurs in either good- or bad-survival groups;      and      be number of 

deaths in good- and bad-survival groups, respectively;       and      be the number of 

patients alive (non-censored) in the two groups; and               and         

     be total number of patients dead and alive, respectively. The expected number of 

deaths for bad survival group      and variance    under the null hypothesis that both 

groups have similar survival functions is given by hypergeometric distribution as follows:  

      
    

  
   (74) 

    
                 

          
 (75) 

The log-rank statistic for bad survival    compares      to its expected value      under 

the null hypothesis, mathematically given by 

    
                 

     
. (76) 

The factor of 0.5 is for Yate’s correction for continuity. We calculate the statistical 

significance for    using normalized cumulative probability density of a standard normal 

distribution  , given by             Since bad and good survival patients groups are 
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not known based on clustering, we use two-tailed test to calculate statistical significance 

as follows: 

           , (77) 

   
                 

     
, (78) 

where either of the two groups is selected as the bad-survival group.  

 

Genomic Prediction Modeling 

 We develop genomic prediction models based on train patients using RNA-Seq 

genomic as data and clustering groups as label. We develop the prediction models for 

prognostically significant (two-sided logrank test p-value >0.05) histopathological 

clusterings with only two clusters: good and bad survival patients. Figure 72 illustrates a 

block diagram for our genomic modeling method using histopathological clustering.  We 

use mRMR feature selection method [93]. We develop binary prediction models using 

classifiers based on discriminant analysis—linear, quadratic, spherical, and diagonal. We 

optimize feature size (range: 1 to 100) and classifier parameters using 5-fold, 10 

iterations of nested CV. We also develop a genomic survival-prediction model using five-

year survival labels instead of clustering labels. The performance of five-year survival 

model serves as a baseline for result interpretation. 
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Figure 72: Block diagram for genomic prediction modeling using histopathological 

knowledge.  

Patients in train set are clustered into two groups using histopathological features. 

Thereafter, a genomic prediction model is trained and optimized using genomic data and 

clustering group labels. The genomic prediction model is finally tested on a test set using 

one-sided log rank test on survival functions.  

 

 

 

Graphical Tool Design 

 We develop an interactive visualization tool PatientViz to study patient clustering 

patterns using histopathological features (Figure 73). PatientViz allows users to 

simultaneously study three type metrics of clusterings: prognostic significance (Figure 

73.A), validity (Figure 73.B), and reproducibility (Figure 73.C). In each heatmap (Figure 

73.A-C), feature size and cluster size varies along x-axis and y-axis, respectively. These 

heatmaps are color coded such that dark red is the best clustering while dark blue is the 

worst clustering   User can select feature and cluster sizes by simply clicking on a box on 

either of the three heatmaps.  For a selected clustering (highlighted in magenta), we can 

study Kaplan Meier curves (Figure 73.D), similarity of clustering labels to clinical factors 

(Figure 73.F), and clustering heatmap (Figure 73.G). The clustering heatmap (Figure 

73.G) have patients and features along x-axis and y-axis, respectively. Each feature (row) 
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in the heatmap is standardized such that mean feature value is zero and standard deviation 

is one. Cells in the heatmap are colored such that value above and below the mean are red 

and green respectively.   

 

 

 

 
 

Figure 73: PatientViz- an interactive tool to investigate cancer patient stratification using 

histopathological features. 

(A) prognostic significance, (B) validity, (C) reproducibility, (D) Kaplan Meier curves, 

(E) feature selection and clustering methods, (F) similarity (adjusted rand index) to 

clinical factors, and (G) clustering heatmap. 
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Results and Discussion 

 We discuss patient stratification results for KiCa and OvCa. 

   

Kidney Cancer Patient Stratification 

Survival Prediction Modeling using Five-year Survival Information 

 In this section, we discuss the performance of the genomic survival-prediction 

model for KiCa patients trained using RNA-Seq data and clinical five-year survival 

information. Among train patients (Table 25), 79 and 66 patients have less than and more 

than (or equal to) five-year survival, respectively. We found that genomic data was 

informative for survival prediction and model performed with average 0.66 AUC during 

CV on train set (Figure 72). When we applied the optimized model to stratify patients in 

the test set, we found that the survival functions for good and bad survival groups are not 

statistically significant i.e. p-value for one-sided logrank test is greater than 0.05 (Figure 

74).  

 

 

 

 
 

Figure 74: Survival functions of KiCa (test) patients based on a genomic prediction 

model trained using five-year survival information of train patients. 

Survival functions are separated to some extent but not statistical significant (one-sided 

p-value of logrank test > 0.05). 
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Association between Cluster Assessment Metrics and External-Validation Performance 

 Using grouping labels of all prognostically significant histopathological clusterings, 

we train genomic prediction models. We test these models and calculate one-sided 

logrank p-value of survival functions. Table 26 lists the correlation of the p-value of test 

survival functions to all cluster-assessment metrics as well as CV AUC for genomic 

prediction models. Metrics should be positively or negatively correlated to the p-value 

given that lowest or highest value of the metric is linked with the best clustering. 

 

 We found that most metrics do not measure biological usefulness of a clustering 

and they are correlated in opposite direction than expected.  As expected, genomic CV 

AUC is negatively correlated to the test p-value and logrank p-value of histopathological 

clustering is positively correlated to the test p-value. Figure 75 illustrates the relationship 

of these two metrics with the test p-value. These scatter plots have 21 points with logrank 

p-value of histopathological clustering less than 0.1 and genomic CV AUC in range 0.69 

to 0.80. We select clustering with prognostically significant grouping (i.e. logrank p-

value of histopathological clustering <0.05) and maximum genomic CV AUC as the 

optimal choice for validation.  The optimal clustering has following parameters: 

histopathological features with tumor selection, forward feature selection, 250 feature 

size, and ward linkage. 
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Table 26:  Correlation between cluster assessment metrics and testing performance. 

 

Metrics based on Train 

Set 

Expected 

Direction 

of  

Correlation 

Logrank p-value of survival 

functions based on Genomic 

Prediction of test patients 

Genomic CV AUC Negative -0.248 (p=0.278) 

Logrank p-value of 

Histopathology 

Clustering  

Positive 0.486 (p=0.025) 

Adjusted Rand Index Negative 0.338  (p=0.134) 

Rand Index Negative 0.331 (p=0.142) 

Hubert Index Negative 0.331 (p=0.142)  

Mirkin Index Positive -0.331 (p=0.142) 

Global Silhouette Width Negative 0.203  (p=0.378) 

Davies-Bouldin Index Positive -0.175  (p=0.448) 

Dunn's Index Negative 0.062  (p=0.789) 

 

 

 

 
 

Figure 75: Relationship between cluster assessment metrics and genomic model 

prediction performance. 

(A) Scatter plot of two-sided logrank p-value for survival functions based on 

histopathological clustering of train patients (x-axis) and one-sided logrank p-value for 

survival functions based on genomic prediction of test patients (y-axis). (B)  Scatter plot 

of CV AUC of genomic prediction of train patients (x-axis) and one-sided logrank p-

value for survival functions based on genomic prediction of test patients (y-axis). 

  



 235 

Validation of Optimal Patient Stratification and Informative Biomarkers 

 We validate optimal histopathological clustering using a genomic prediction model 

and report informative genomic and histopathological characteristics of this stratification. 

Figure 76 illustrates Kaplan Meier survival functions of patients in (A) train set based on 

histopathological clustering, (B) test set based on histopathological prediction, and (C) 

test set based on genomic prediction. Separation between survival functions based on 

histopathological clustering and genomic prediction are statistically significant (p<0.05). 

However, separation between survival functions based on histopathological prediction 

was not statistically significant. Possible reasons for the low performance of 

histopathological prediction are model overfitting and batch effects. 
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Figure 76: Kaplan Meier curves for KiCa patients stratified using histopathological and 

genomic properties. 

(A) Survival functions for train-set patients stratified into good and bad survival groups 

using histopathological clustering. (B) Survival functions for test-set patients stratified 

into good and bad survival groups using histopathological prediction model based on 

clustering labels. (C) Survival functions for test-set patients stratified into good and bad 

survival groups using genomic prediction model based on clustering labels. Patient 

stratifications in train set using histopathological clustering and test set using genomic 

prediction are statistically significant. 
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 Pathologists often predict survival using clinical factors such as grade, stage, 

metastasis, and lymphnode spread. A multivariate model depending on these clinical 

factors have been previously used to predict survival of renal clear cell carcinoma 

patients [196]. We calculate the correlation between survival groups and clinical factors 

(Table 27). We found that survival groups are positively correlated to grade, stage, and 

metastasis, i.e. patients with higher grade, stage, metastasis, and lymphnode spread tend 

to have bad survival. However, correlation is not very high for any existing clinical 

factors. Hence, our genomic model provides a novel, reproducible, and objective means 

for predicting survival. 

 

 

 

Table 27: Relationship of good and bad survival groups to other clinical factors. 

 

Clinical Factor Pearson Correlation 

Grade (High vs. Low) 0.34 (p=0.000) 

Stage (High vs. Low) 0.15 (p=0.012) 

Metastasis 0.18 (p=0.002) 

Lymphnode Spread 0.16 (p=0.065) 

 

 

 

 While training the prediction models, we perform 10 iterations of five-fold CV and 

select informative features based on a subset of training samples. In Table 28 and Table 

29, we report histopathological properties and genes, respectively, which were selected in 

at least half of the CV models. Informative histopathological properties are similar to the 

ones observed in cancer grading such as nuclear shape and nuclear texture. Some of the 

genes in Table 29 have been linked to cancer. GEO profiles report differential (high) 

expression of C11orf75 in ER+ breast cancer as compared to ER- breast cancer 
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(GDS4056) [197]. MYLIP has been linked to progression in gastric cancer [198] and 

disease-free survival in renal clear cell carcinoma [199]. SLC17A4 is differentially 

expressed in low vs. high grade clear cell carcinoma [200]. Other genes reported in Table 

29 can be useful biomarkers for kidney-cancer survival prediction, subject to further 

validation. 

 

 

 

Table 28: Informative histopathological features associated with good and bad survival 

groups among KiCa patients. 

 

Histopathological Feature Frequency of 

Selection 

Standard deviation in global graylevel intensity (bin 4) 0.88 

Maximum nuclear minor axis length (bin 3) 0.84 

Minimum no-stain shape elliptical area (bin 4) 0.78 

GLCM information measure 2 of nuclear regions (bin 3) 0.78 

Standard deviation in nuclear minor axis length (bin 3) 0.64 

Standard deviation is green color distribution (bin 8) 0.56 
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Table 29: Informative genes associated with good and bad survival groups among KiCa 

patients. 

 

Gene Description Frequency 

of Selection 

C11orf75 Chromosome 11 open reading frame 75 0.9 

WFDC3 WAP four-disulfide core domain 3 0.7 

SLC10A7 Solute carrier family 10 (sodium/bile acid 

cotransporter family), member 7 

0.68 

LOC100133669 Uncharacterized 0.64 

VWC2 Von Willebrand factor C domain containing 2 0.62 

NLRP14 NLR family, pyrin domain containing 14 0.6 

SUGT1P1 Suppressor of G2 allele of SKP1 (S. cerevisiae) 

pseudogene 1 

0.58 

TSKU Tsukushi, small leucine rich proteoglycan 0.56 

CARS Cysteinyl-tRNA synthetase 0.52 

NUDT19 Nudix (nucleoside diphosphate linked moiety X)-

type motif 19 

0.52 

C3orf59 Mab-21 domain containing 2 0.5 

MYLIP Myosin regulatory light chain interacting protein 0.5 

SLC17A4 Solute carrier family 17 (sodium phosphate), 

member 4 

0.5 

 

 

 

Ovarian Cancer Patient Stratification 

Patient Stratification using Five-year Survival 

 In this section, we discuss the performance of the genomic survival-prediction 

model for OvCa patients trained using RNA-Seq data and clinical five-year survival 

information. Among train patients (Table 25), 82 and 24 patients have less than and more 

than five-year survival, respectively. We found that genomic data was not informative for 

survival prediction and model performed poorly with average 0.44 AUC for 10 iterations 

of five-fold CV on train set. When we applied the optimized model to stratify patients in 

the test set, we found that the survival functions for good and bad survival groups are not 

statistically significant. The p-value for one-sided logrank test on survival functions was 

0.892 (Figure 77). One possible reason for this low performance could be that in this 
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chapter most OvCa samples (provided by TCGA) are grade-3 and stage III. Therefore, 

samples are histologically and genetically similar. 

 

 

 

 
Figure 77: Survival functions of OvCa (test) patients based on a genomic prediction 

model trained using five-year survival information of train patients. 

Survival functions are not separated and half of the time good survival function performs 

worse than bad survival function.  

 

 

 

Correlation between Cluster Assessment Metrics and External-Validation Performance 

 Similar to kidney cancer, we train and test all genomic prediction models, calculate 

one-sided logrank p-value of survival functions, and calculate correlation of the p-value 

of test survival functions to all cluster-assessment metrics (Table 30).  Unlike kidney 

cancer, histopathological clusters for ovarian cancer do not differ on genomic level and 

CV AUC was close to random performance in range 0.44 to 0.57. We found that none of 

metrics was able to measure biological usefulness of a clustering or correlate significantly 

in the expected direction.  
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Table 30: Correlation between cluster assessment metrics and testing performance. 

 

Metrics based on Train Set 

Expected 

Direction of  

Correlation 

Logrank p-value of survival 

functions based on Genomic 

Prediction of test patients 

Genomic CV AUC Negative 0.522  (p=0.230) 

Logrank p-value of 

Histopathology Clustering 
Positive -0.114  (p=0.808) 

Adjusted Rand Index Negative -0.206  (p=0.657) 

Rand Index Negative 0.275  (p=0.550) 

Hubert Index Negative 0.275  (p=0.550) 

Mirkin Index Positive -0.275  (p=0.550) 

Global Silhouette Width Negative -0.184   (p=0.693) 

Davies-Bouldin Index Positive 0.100   (p=0.831) 

Dunn's Index Negative -0.009   (p=0.985) 

 

 

 

Limitations and Future Improvements 

 This study provides evidence that histopathological clustering can be informative 

for genomic patient stratification. However, current study has certain limitations 

including simple hierarchal clustering, genomic modeling for only two-cluster 

clusterings, and batch effects. 

 

 Hierarchal clustering often over-fits to the train data and the features are not 

reproducible in a separate dataset. Researchers have proposed consensus clustering 

methods, which cluster data multiple times on a subset of training samples and decide 

final clusters based on consensus to avoid over-fitting [201, 202].  

 

 Moreover, we have only trained and tested binary genomic models in this study. 

However, using PatientViz, we found several prognostically significant three- and four-

cluster clusterings. In future work, we will like to study multi-class patient stratification 
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models. In addition, TCGA data were collected at multiple acquisition sources and suffer 

from batch effects. In this chapter, we have created train and test sets such that they are 

stratified by acquisition batches. However, in future we would remove batch effects using 

some normalization methods. 

 

Conclusion 

 We developed and validated a novel method for generating prognostically 

significant patient stratification using genomic data. Proposed method first clustered 

patients based on their histopathological properties and then use the clustering labels for 

training genomic models. For KiCa, we select optimal clustering using two-sided logrank 

p-value of histopathological clustering and CV AUC of genomic model, which were 

found correlated with the model performance on the test set. We found genomic patient 

stratification model based on histopathological knowledge performs better than the model 

based on five-year survival information. Most selected genes for the genomic model 

include C11orf75, WFDC3, SLC10A7, LOC100133669, VWC2, NLRP14, SUGT1P1, 

TSKU, CARS, NUDT19, C3orf59, MYLIP, and SLC17A4. Some of these genes have 

been related to cancer while others could be potential biomarkers subject to validation. 

We have also designed a graphical user interface PatientViz that allows user to study 

cluster validity, reproducibility, and prognostic significance of different histopathological 

clustering generated using various parameter settings.  
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CHAPTER 11 

CONCLUSIONS 

 

 This dissertation focused on developing imaging informatics algorithms for CDSSs 

based on histopathological WSIs. To achieve the three proposed specific aims, I 

developed the novel methods and the tools discussed in this dissertation. This chapter 

concludes the dissertation by summarizing the contributions to the field of pathology 

imaging informatics, followed by an outlook about the future directions of research and 

open challenges. 

 

Contributions to Pathology Imaging Informatics 

 

Connectivity-Based Threshold Estimation for Image Segmentation  

 In Chapter 2, I developed a robust segmentation method, ConnSoftT, which 

adaptively selects optimal segmentation thresholds for an image using a tissue 

connectivity model rather than color/intensity ranges. The selection of optimal 

segmentation thresholds is often challenging in applications with large variations in 

images.  Quality control methods for tissue-fold artifact segmentation face similar 

challenge because of the differences in tissue morphology, tissue-fold thickness, and 

amount of stain among various WSIs. The proposed segmentation method adapts with the 

variations in tissue properties and in comparison to two other methods, ConnSoftT is 

more effective in detecting tissue-fold artifacts in 105 images each of OvCa and KiCa.  
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Batch-Invariant Color Segmentation 

 In Chapter 3, I developed a robust, supervised system for color segmentation of 

images. Supervised learning methods are often used for color segmentation applications, 

where the desired output is pre-defined color classes, such as histopathological stains. 

However, because of the differences in color properties of train (reference) and test 

(target) images, supervised methods often fail. I developed a supervised system that trains 

on multiple reference images (instead of a canonical reference) and normalizes colors in 

test images using a novel color map normalization. Color map normalization extracts 

color map of an image using unique colors and normalizes the distributions of individual 

color channels using non-parametric quantile normalization. Using semi-supervised color 

segmentation as ground truth, the proposed segmentation system performs with average 

pixel-level classification accuracy of 85% on 200 images from four batches. 

 

Edge-based Nuclear Cluster Segmentation 

 In Chapter 4, I developed an edge-based method for segmenting complex structures 

(clusters) created by overlapping nuclei. In a diseased tissue, nuclei vary in size, shape, 

and texture properties. Therefore, modeling a single nucleus and then segmenting 

individual nuclei using region-based matching is very complex. Despite the shape and 

size differences, when two nuclei overlap a concavity is formed at the point of 

intersection of outer edges. The proposed edge-based method segments nuclear cluster 

into regions using neighboring concavities on a cluster edge. Thereafter, it fits ellipses on 

segmented regions and extracts nuclei. I found that the nuclear-shape features, extracted 

using segmented nuclei, were informative for KiCa grading. 
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Biologically Interpretable Shape-based Description 

 In chapter 6, I developed novel shape-based features for information extraction 

from images. Existing shape-based features are limited because they usually assume 

either non-parametric or over-simplified (e.g. elliptical) shape models and approximate 

an average shape for an image (rather than capturing the variation). The proposed shape-

based features (1) model shapes using Fourier shape descriptors, which can model 

complex shape contours, and (2) represent the variation in shapes across the image rather 

than calculating an average shape. Moreover, the design of the features facilitate easy 

biological interpretation by highlighting shapes in the images that lead to informative 

shape features for an endpoint. In a multi-class renal subtype classification, the proposed 

features outperform or complement traditional image features. Also, informative shapes 

mimics the diagnostic criteria of pathologists. 

 

Quantization-based Knowledge Modeling Methods for Images  

 In Chapter 9, I developed quantization methods for modeling knowledge in large 

images. Large images, such as WSIs, often have different ROIs with different high-level 

human interpretation. While making decisions manually, humans focus on a relevant ROI 

and assess that region to make decisions. In contrast, the proposed quantization methods 

extract information from all different regions, exploit the information to group regions 

into data-dependent groups, quantify the percent of different regions to represent images. 

In case-studies on kidney and ovarian carcinoma clinical diagnosis, when compared to 

naïve information combination, quantized representations improved decision making by 

up to 7% AUC. In addition, quantized methods were less sensitive to prior ROI selection 

as compared to the naïve method.  
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Statistically Over-Represented Feature Subsets for various endpoints  

 Existing CDSSs based on histopathological images use a tailored image feature set 

specific to a cancer endpoint. This dissertation developed a comprehensive image feature 

set (Table 6 and Table 16) that can model different cancer endpoints using data mining 

approaches. Results in Chapters 5, 7, and 9 indicated that the comprehensive set has high 

prediction performance on a variety of binary and multi-class cancer endpoints. 

Moreover, while optimizing decision models using the comprehensive set, some feature 

subsets were statistically over-represented. For endpoints—such as cancer grade and 

subtype—that are diagnosed using histopathology, emergent features were biologically 

interpretable. For instance, nuclear shape features are significantly over-represented in 

renal Fuhrman grading, which is based on nuclear morphology. On the other hand, for 

endpoints—such as stage, metastasis, lymphnode spread, and survival—that are not 

diagnosed using histopathology, I discovered novel imaging markers. For instance, color 

and nuclear texture features are statistically overrepresented in renal patient 5-year 

survival. 

 

Normalization Methods for Batch-Invariant Decision Making 

 One of the main limitations of existing CDSSs is the unstable performance in 

clinical setting. This limitation mainly arises from the difference in data properties of 

train and test images caused by batch effects. Batch effects and their detrimental effects 

on CDSS performance has been overlooked by pathology imaging informatics 

researchers. Most CDSSs are validated on a dataset collected using one experimental 

setup.  In chapter 7, a study on four separately acquired datasets indicates that data batch 

can be a larger source of variance in image features compared to biological factors such 

as grade and subtype. Among data-level and information-level normalization methods, I 
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found that information-level methods, especially ComBatN, was most effective in 

removing batch effects and enhancing prediction performance. When compared to 

prediction models with no normalization, ComBatN improves performance in 87% cases. 

    

Genomic Patient Stratification Using Histopathology 

 The discovery of a prognostically significant stratification among cancer patients is 

useful for therapeutic decisions. Such stratification is often done on genomic-level using 

unsupervised genomic clustering. However, because of a large number of genes and 

limited patient samples, such clusters are often not reproducible. I developed a patient 

stratification method that clusters patients using histopathological features and then 

develops a supervised model for classifying the clustered patient groups using genomic 

features. I discovered that the prognostic significance of histopathological clustering and 

the cross-validation performance of genomic model on train patients are good metrics for 

selecting optimal genomic stratification model. The optimized genomic model using 

histopathological knowledge was able to separate good and bad survival groups in test 

dataset with p-value less than 0.05. 

 

Future Directions 

Deployment of CDSSs in a Clinical Setting 

 In this dissertation, I have developed and validated several methods required in a 

robust CDSS based on WSIs. In the future, research could be conducted to develop a 

device-independent CDSS with fast parallel processors for a pathology laboratory. The 

CDSS would be trained, optimized, and tested on the biopsy slides collected on daily 

basis. Based on results in Chapter 7, completely eliminating detrimental effects of batch 
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effects on the prediction models will be a significant challenge for the clinical 

deployment. 

 

Patient Stratification 

 Most of this dissertation focused on supervised learning methods for clinical 

diagnosis. I only presented a proof-of-concept case-study on the genomic stratification of 

KiCa patients using histopathological clustering. Unsupervised patient clustering is a 

large subfield of machine learning with a lot of potential for novel discoveries. In the 

future, the current work would be extended by including different clustering techniques 

such as consensus clustering and self-organizing maps. Moreover, researchers need to 

develop novel metrics for evaluating clustering quality. 

 

Integration of Imaging, Genomic, and Proteomic Data 
 Imaging informatics methods developed in this dissertation has allowed 

comprehensive and robust representation of WSIs. In addition to imaging, patients can 

also be represented using genomic and proteomic profiles. Integration of these sources 

can lead to a holistic cancer diagnosis platform. Researchers at Bio-MIBLAB are 

investigating both information- and decision-level integration of these resources. 

Preliminary results indicate that decision-level integration performs better for cancer 

grade and survival diagnosis. In the future, researchers could develop novel data 

integration techniques at information-, knowledge-, and decision-levels.  

  

Closing Remarks 

 Despite of biological and technical variations, whole-slide images of cancer 

biopsies contain a large source of knowledge. Researchers working in the field of 

pathology informatics have to develop robust quality control, information extraction, 
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knowledge modeling, and prediction methods to make clinical decision support systems a 

reality. Automatic, batch-invariant, and comprehensive nature of my imaging informatics 

algorithms validated by biological interpretation of cancer endpoints have provided a 

deeper understanding of ovarian and renal carcinomas. 
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APPENDIX A: SELECTED PUBLICATIONS  

 The work discussed in this thesis is a compilation of several years of research that 

resulted in the following peer-reviewed journal publications, book chapter, and 

conference proceedings.  

 

Journal Publications 

 

1. S. Kothari, J. H. Phan, A. N. Young, and M. D. Wang, "Histological image 

classification using biologically interpretable shape-based features," BMC Med Imag, 

vol. 13, p. 9, 2013. 

2. S. Kothari, J. H. Phan, T. H. Stokes, and M. D. Wang, "Pathology Imaging 

Informatics for Quantitative Analysis of Whole-Slide Images," J Am Med Inform 

Assoc, doi:10.1136/amiajnl-2012-001540, 2013. 

3. S. Kothari, J. H. Phan, and M. D. Wang, "Eliminating tissue-fold artifacts in 

histopathological whole-slide images to improve cancer-grade prediction," J Pathol 

Inform, vol. 4, p. 22, 2013. 

4. S. Kothari, J. H. Phan, T. H. Stokes, A. O. Osunkoya, A. N. Young, and M. D. Wang, 

“Removing batch effects from histopathological images for enhanced cancer 

diagnosis," IEEE Journal of Biomedical and Health Informatics, vol. PP, p. 1, 2013. 

 

Book Chapter 

 

1. T. H. Stokes, S. Kothari, C. W. Cheng, M. D. Wang “Review of quality control and 

analysis algorithms for tissue microarrays as biomarker validation tools,” Microarray 

Image and Data Analysis: Theory and Practice, CRC Press, 2013, in press. 
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Conference Proceedings 

 

1. S. Kothari, J. H. Phan, R. A. Moffitt, T. H. Stokes, S. E. Hassberger, Q. Chaudry, A. 

N. Young, and M. D. Wang, "Automatic batch-invariant color segmentation of 

histological cancer images," in Proc IEEE Int Symp on Biomedical Imaging: From 

Nano to Macro, 2011, pp. 657-660. 

2. S. Kothari, Q. Chaudry, and M. D. Wang, "Automated cell counting and cluster 

segmentation using concavity detection and ellipse fitting techniques," in Proc. IEEE 

Int Symp on Biomedical Imaging: From Nano to Macro, 2009, pp. 795-798. 

3. S. Kothari, Q. Chaudry, and M. D. Wang, "Extraction of informative cell features by 

segmentation of densely clustered tissue images," in Proc IEEE Eng Med Biol Soc., 

2009, pp. 6706-6709. 

4. S. Kothari, J. H. Phan, A. N. Young, and M. D. Wang, "Histological image feature 

mining reveals emergent diagnostic properties for renal cancer," in Proc IEEE Int 

Conf on Bioinformatics and Biomedicine, 2011, pp. 422-425. 

5. S. Kothari, J. H. Phan, A. O. Osunkoya, and M. D. Wang, “Biological interpretation 

of morphological patterns in histopathological whole-slide images,”  in proc. ACM 

Conf on Bioinformatics, Computational Biology and Biomedicine, 2012, pp. 218-

225. 

6. S. Kothari, J. H. Phan, and M. D. Wang, "Scale normalization of histopathological 

images for batch invariant cancer diagnostic models," in Proc IEEE Eng Med Biol 

Soc., 2012, pp. 4406 - 4409. 

7. J. H. Phan, A. Poruthoor, S. Kothari, and M. D. Wang, “Exploration of genomic, 

proteomic, and histopathological; image data integration for clinical prediction,” in 

proc. Proc IEEE China Summit and Int Conf on Signal and Information Processing, 

2013, in press.  

8. R. A. Hoffman, S. Kothari, J. H. Phan, and M. D. Wang, “A high-resolution tile-

based approach for classifying biological regions in whole-slide histopathological 

images,” in proc. IFMBE Int. Conf. on Health Informatics, 2013, in press. 

 

In Preparation 

 

1. S. Kothari, J. H. Phan, and M. D. Wang, “Towards optimal representation of large 

whole-slide histopathological images for decision making," in preparation. 

2. J. H. Phan, S. Kothari, P. Wu, and M. D. Wang, “Multi-Modal Predictive Modeling 

of Cancer Endpoints Using Genomic and Imaging Data,” in preparation. 
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