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SUMMARY

Smartphones and tablets have been growing in popularity. These ultra mo-

bile devices bring in new challenges for efficient network operations because of their

mobility, resource constraints and richness of features. There is thus an increasing

need to adapt network protocols to these devices and the traffic demands on wireless

service providers. This dissertation focuses on identifying design limitations in exist-

ing network protocols when operating in ultra mobile environments and developing

algorithmic solutions for the same.

Our work comprises of three components. The first component identifies the

shortcomings of TCP flow control algorithm when operating on resource constrained

smartphones and tablets. We then propose an Adaptive Flow Control (AFC) al-

gorithm for TCP that relies not just on the available buffer space but also on the

application read-rate at the receiver.

The second component of this work looks at network deduplication for mobile

devices. With traditional network deduplication (dedup), the dedup source uses only

the portion of the cache at the dedup destination that it is aware of. We argue in this

work that in a mobile environment, the dedup destination (say the mobile)could have

accumulated a much larger cache than what the current dedup source is aware of.

In this context, we propose Asymmetric caching, a solution which allows the dedup

destination to selectively feedback appropriate portions of its cache to the dedup

source with the intent of improving the redundancy elimination efficiency.

The third and final component focuses on leveraging network heterogeneity for

prefetching on mobile devices. Our analysis of browser history of 24 iPhone users

show that URLs do not repeat exactly. Users do show a lot of repetition in the

xiii



domains they visit but not the particular URL. Additionally, mobile users access web

content over diverse network technologies: WiFi and cellular (3G/4G). While data

is unlimited over WiFi, users typically have monthly limits on data over the cellular

network. In this context, we propose Precog, an action-based prefetching solution to

reduce cellular data footprint on smartphones and tablets.
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CHAPTER I

INTRODUCTION

The adoption of mobile devices such as smartphones has reached a significant thresh-

old with the number of such devices shipped now surpassing the number of PCs

shipped [1]. Nearly 40% of Internet time is now attributed to mobile devices such

as smartphones and tablets [2]. Not only are consumers adopting mobile devices

at a blistering pace, but such adoption is being witnessed within the traditionally

conservative enterprise sector as well. 71% of enterprises are currently deploying or

planning the deployment of mobile applications [3]. Such adoption amongst enter-

prises is driven by a clear return-on-investment from mobility in the form of higher

employee productivity, reduced paper work, and increased revenue [4].

These trends have become possible because of multiple reasons: developed operat-

ing systems, web browsers with support for full websites, WiFi connectivity and rich

set of application programming interfaces (APIs). Smartphones today are much more

capable than their predecessors. Additionally, the applications have also adapted to

mainstream consumers, making them even more popular. The simplicity, portability

and always-on connectivity of smartphones and tablets makes them constant com-

panions of users. Advancements in mobile broadband technologies, from 2G to 3G to

4G, has further accelerated this trend. In this work, we argue that smartphones and

tablets have introduced a new paradigm in mobile computing, which we refer to as

ultra-mobile computing.

Specifically, ultra-mobile computing can be characterized by the following distin-

guishing features:

• Ubiquitous wireless networks: Past decade has seen a surge in development
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of cellular networks. With 3G/4G technologies, cellular networks can provide

broadband connectivity to users wherever they go. Cellular infrastructure has

grown at an exponential rate to create a congenial ecosystem for smartphones

and tablets. In addition to this, the prevalence of WiFi technology in indoor

environments has also boosted the demand for smartphones and tablets.

• Highly portable compute devices: While traditional mobile computing focused

on laptops, personal digital assistants(PDAs) and feature phones, smartphones

and tablets are ultra-mobile devices, which combine the rich features of laptops

with the mobility of PDAs and feature phones.

• Consumer adaptation: In addition to the above changes, smartphones and

tablets appeal to a wider consumer base than laptops. Users do not need as

much technical expertise to operate smartphones and tablets as for laptops. Ap-

plication developers are now making rich content available to end-users through

simple and intuitive mobile applications, increasing their mainstream accep-

tance.

Cisco Visual Networking Index(VNI)[5] report shows that by the end of 2012, the

number of mobile-connected devices will exceed the number of people on earth. The

report also shows that the average amount of traffic per smartphone in 2011 was

150 MB per month, up from 55 MB per month in 2010. It is predicted that due

to increased usage on smartphones, handsets will exceed 50 percent of mobile data

traffic in 2014. In addition to this, the number of mobile-connected tablets has tripled

to 34 million in 2011, and it is estimated that these tablets will generate almost as

much traffic in 2016 as the entire global mobile network in 2012.

These global trends force us to think whether network protocols and algorithms

need to evolve with ultra-mobile computing. As the applications on smartphones

2



and tablets keep getting richer, the hardware growth is still constrained to main-

tain their compactness and mobility. In addition to that, the heterogeneous wireless

networks to which these devices connect introduce a cost-performance trade-off in

efficient network operations. There is thus a need to examine how efficient current

network protocols perform with ubiquitous connectivity, highly portable yet resource

constrained devices, exploding consumer base and heterogeneity of wireless networks.

Identifying and resolving the impact of these conflicting characteristics of ultra-mobile

computing on existing network protocols and algorithms forms the core of this thesis.

Specifically, we look at three distinct problems:

• Rethinking transport layer protocols for ultra-mobile devices : Traditionally, trans-

port layer optimizations have focused on congestion control approaches as flow

control was never considered a dominating factor. However, as smartphones

and tablets gain popularity, the resource constraints on these devices increase

the significance of flow control. Our experiments on HTC G1 phone, Samsung

Galaxy S 4G phone and Samsung Galaxy Tablet show that TCP throughput

on these devices can degrade from 10% to 50% as workload increases. No such

degradation is observed if the same experiment is conducted on a laptop. During

each experiment, we ensure that network is not the bottleneck and congestion

control does not come into play. Thus flow control is a governing component of

transport layer operations on ultra-mobile devices.

The first component of this thesis identifies the limitations of flow control on

mobile devices. In particular, we observe that the existing TCP flow control[6]

does not react efficiently to fluctuating application read rates, is inefficient in

recovering from zero window events and cannot reap the benefits of buffer auto-

tuning. We then propose an adaptive flow control (AFC)[7] algorithm for TCP

that relies not just on the available buffer space but also on the application read-

rate at the receiver. We show, using NS2 simulations, that AFC can provide

3



considerable performance benefits over classical TCP flow control.

• Improving network deduplication for ultra-mobile devices : Network deduplica-

tion (dedup) is an attractive approach to improve network performance for

mobile devices. With traditional dedup[8, 9, 10, 11], the dedup source uses

only the portion of the cache at the dedup destination that it is aware of. We

argue in this work that in a mobile environment, the dedup destination (say

the mobile) could have accumulated a much larger cache than what the current

dedup source is aware of. This can occur because of several reasons ranging from

the mobile consuming content through heterogeneous wireless technologies, to

the mobile moving across different wireless networks.

In this context, we propose asymmetric caching[12], a solution that is overlaid

on baseline network deduplication, but which allows the dedup destination to

selectively feedback appropriate portions of its cache to the dedup source with

the intent of improving the redundancy elimination efficiency. We show us-

ing traffic traces collected from 30 mobile users, that with asymmetric caching,

over 89% of the achievable redundancy can be identified and eliminated even

when the dedup source has less than one hundredth of the cache size as the

dedup destination. Further, we show that the ratio of bytes saved from trans-

mission at the dedup source because of asymmetric caching is over 6× that of

the number of bytes sent as feedback. Finally, with a prototype implementation

of asymmetric caching on both a Linux laptop and an Android smartphone, we

demonstrate that the solution is deployable with reasonable CPU and memory

overheads.

• Smart prefetching solutions for ultra-mobile devices : Prefetching is predictive

fetching of content which is likely to be accessed by a user in the future. Tra-

ditional prefetching approaches[13, 14, 15] have focused on reducing the access

4



latency of webpages, identified through the uniform resource locators(URLs).

Prefetching solutions in prior works calculate the popularity of each URL by

counting the number of occurrences of each URL in user’s web history. Popular

URLs are prefetched if the URLs accessed right before them are accessed again

or if it is the hour of the day during which a URL is mostly accessed.

All existing prefetching solutions perform name based prefetching. They focus

on prefetching the exact URL which was requested before. However, our analy-

sis of network traces of five Android users and 24 iPhone users show that URLs

do not repeat exactly. Users do show a lot of repetition in the domains they

visit but not the particular URL. The main reason for this is that web content

is very dynamic. If a user reads the headline news on nytimes.com everyday,

the URL of the headline news page changes everyday, or every few hours. Prior

works on prefetching does not apply to these scenarios. Additionally, mobile

users access web content over diverse network technologies: WiFi and cellu-

lar (3G/4G). While data is unlimited over WiFi, users typically have monthly

limits on data they can download over the cellular network. This creates an

unbalanced cost problem and the question we try to answer here is ”How can

time-shifted cheaper network access (WiFi) be leveraged to offset costs on the

more expensive network (cellular)?”.

The third component of this dissertation,Precog, is a name-independent network-

aware prefetching solution for smartphones and tablets.

While these three problems do not exhaust the network performance issues on

smartphones and tablets, we consider these as three directions where we can reap

significant benefits by adapting existing network protocols. All the three approaches

mentioned above focus on improving the network performance with respect to mobile

devices. Adaptive flow control increases the capacity of the network, dedup reduces

the load on the network while network-aware prefetching time shifts the load from

5



overly congested cellular networks to high capacity WiFi networks.

The rest of this dissertation is organized as follows: we discuss prior related re-

search in chapter 2, chapter 3 gives detailed description of adaptive flow control,

chapter 4 presents asymmetric caching, chapter 5 discusses precog and chapter 6

describes integrated operations of the three solutions. Finally, chapter 7 discusses

directions of future research and chapter 8 concludes our findings.
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CHAPTER II

RELATED WORK

Several prior works have looked at transport layer optimizations, network dedupli-

cation and prefetching in isolation. However, these solutions were not driven by

ultra-mobile computing and hence do not apply directly to such environments. Here

we present the individual differences between related research and the components of

this thesis.

2.1 Transport layer optimizations

A number of TCP optimizations have been presented for mobile hosts. Mobile TCP

[16] does it through an asymmetric transport protocol which offloads IP processing

to the base station instead of the mobile device. AFC, on the other hand tries to

address the deficiencies of TCP flow control, which are magnified in mobile phone

platforms.

In [17] and [18], the authors try to address the impact of mobility and handoffs

on TCP congestion control. TCP Westwood [19] is another protocol optimization

which aims to reduce the impact of random losses on TCP congestion control. These

solutions optimize TCP congestion control. AFC is a complementary approach to

these solutions as it aims to fix issues with flow control.

Several variants of TCP flow control have also been proposed in related work.

Automatic Buffer Tuning [20] presents an algorithm to dynamically configure TCP

sender buffer by comparing the congestion window size and the sender buffer size.

They maintain the receiver buffer at the maximum allowed size. Dynamic Right Siz-

ing [21] and Auto-tuning in Linux [22] implement receiver side solutions to grow the
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window sizes to match the available bandwidth. The Wed100 [23] project has pre-

sented approaches to decouple the re-assembly queue and the receive buffer, to hide

out-of-order delays from the sender. All these approaches advocate a buffer-based

approach to resolve flow control incompetencies. But they all rely on perceived BDP

for their estimation, which, as we demonstrate, can be affected by flow control prob-

lems. AFC addresses these issues, without over-provisioning the buffer, by redefining

the very concept of flow control window.

2.2 Deduplication solutions

Deduplication of network traffic has been considered at multiple granularities. The

prior research in this direction can be categorized as:

• Network dedup approaches: The notion of network dedup was first pre-

sented in [11], where packets are decomposed into segments using the Rabin

fingerprinting algorithm so that partial-packet redundancy can be exploited.

This approach was developed further in value-based web caching [10], where

the data is cached on its value rather than its name. The idea of using packet

caches on routers was introduced in [24]. In [25], the authors perform an exper-

imental study of redundancy across 12 different enterprise networks. Both [24]

and [25] identify that significant bandwidth savings can be achieved by using

packet level dedup approaches, thereby motivating the current work. Similarly,

EndRE [8] is an end-to-end solution for network dedup, which presents a new

fingerprinting scheme called SampleByte. Recently, [9] proposed overhearing

content in wireless networks to dedup across wireless users. Celleration [26] is

another sender-driven dedup solution that leverages inter-user redundancy for

a single point of attachment. All the above works are designed for static sce-

narios, do not work across points of attachment and do not support IP address

changes due to mobility. Asymmetric caching is complementary to the above
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works and specifically optimizes wireless traffic, without requiring modification

to Internet servers.

• Application layer dedup: Application layer works include caching HTTP

objects on browsers [27] and on proxy servers [28], delta encoding, file differ-

encing (e.g., VCDIFF) [29], techniques for detecting duplicate transfers of the

same file [30] and techniques such as base-instant caching [31], template caching

[32] for enhanced cacheability of dynamic objects. More recent developments

include content-delivery networks [33] and peer-to-peer caching solutions [34].

All these solutions operate at the granularity of files or application-objects and

hence do not provide fine-grained redundancy elimination. Further, they are

application layer solutions and have to be realized independently for every sin-

gle application. Most importantly, using proxy or other intermediate caches

while reducing the load on servers does not reduce the traffic on the wireless

link. Asymmetric caching operates agnostic to different applications.

• Transport layer dedup: Recently, Zohar et al [35] propose an end-to-end re-

ceiver driven dedup solution that extends TCP options. The receiver matches

TCP stream chunks with its cache and sends predictions for future chunks in the

ongoing flow to the sender. The dedup solution in [35] is similar to asymmetric

caching in that both use receiver driven feedback to improve dedup performance.

However, there are fundamental differences. The solution in [35] is closely tied

to the TCP protocol and operates at a coarse data-granularity. Asymmetric

caching on the other hand is transport protocol agnostic and operates at sub-

packet level granularity. The solution in [35] is an end-to-end solution, whereas

asymmetric caching is a last hop solution. This is important as wireless service

providers who have the motivation to utilize their spectrum better can deploy

asymmetric caching without any dependencies on the content provider. Also,
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the solution in [35] does not partition old connections into flowlets and hence

maintains connections in their entirety. However, asymmetric caching parti-

tions content into flowlets depending on their stationarity and this helps when

the composition of connections changes in terms of a few objects or in terms

of the ordering of the objects. Finally, the solution in [35] does not address

how feedback might be chosen when chunks experience hits with multiple old

connections. The feedback selection algorithm in asymmetric caching explic-

itly tackles this problem by choosing from multiple flowlets. This capability is

especially important when operating at fine data granularities.

2.3 Prefetching approaches

Several prefetching solutions have been proposed for wired domains and wireless do-

mains. These approaches can be split into two prominent categories:

• Server-driven prefetching approaches [13, 14], and proxy-driven approaches [36]

determine content popularity by collecting inter-user statistics. A dependency

graph is constructed at the server, which predicts the URI B most likely to be

requested in the future, given URI A is requested. These solutions use content-

based triggers for prefetching. Given the diversity of smartphone and tablet

users[37], a server-driven approach is not desirable. Each user has its unique

web access profile which cannot be applied to other.

• Client-based prefetching solutions, such as [15], uses the web history of an indi-

vidual user to determine what URL is likely to be prefetched and when should it

be prefetched. The prefetching engine considers the web history of an individual

client and assigns a rank to each URI. Next, the prefetching engine considers

the last visit time of the high ranked URLs to decide when to prefetch each

URI. This approach uses time-based triggers for prefetching.
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The solution in [38] takes a hybrid approach for prefetching in mobile environ-

ments. The URLs to be prefetched can be decided on either the client or the server.

For a mobile client, a prefetching metric is calculated every time the mobile connects

to a new network. If the available bandwidth and congestion levels permit, the pop-

ular URLs are prefetched. All the above solutions consider that the exact URI a user

will access will be from the web history. This argument may not hold for dynamic

web content as we show later in Chapter 5.

Kroeger et al [39] and Marquez et al [40] evaluate different caching and prefetch-

ing approaches over different network environments to study their latency benefits.

They do not propose any new prefetching mechanism but give a comparative analysis

of prior works. Recently, “Informed mobile prefetching”[41] proposed a prefetching

solution for mobile devices where the overlying application predicts what content to

prefetch and the prefetching API decides whether to prefetch or not based on the

duration, energy usage and cellular data footprint of the download. Precog is differ-

ent from all the above solutions as it aims to predict the new URI a user is going to

access, by learning patterns from the web history.

Another aspect of precog is network awareness, i.e. preferring WiFi over 3G/4G

for prefetching. Recently, Breadcrumbs[42] studied network connectivity predictions,

where a Markov Model is built from user’s WiFi connectivity history and used to pre-

dict WiFi network bandwidth and latency based on location. Unlike Breadcrumbs,

smart prefetching considers heterogeneous networks and also tries to predict the con-

tent a user is going to access. Network unaware prefetching has also been studied

for data storage solutions. Wherestore[43] proposed a location-aware data replication

system for mobile devices. It provides a mechanism for application to specify which

data should be cached on mobile device based on user’s current and future location.

It does not consider network usage while making prefetching/caching decisions, unlike

smart prefetching.
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CHAPTER III

ADAPTIVE FLOW CONTROL FOR TCP ON

SMARTPHONES AND TABLETS

3.1 Introduction

The flow control mechanism in classical TCP is simple. The receiver piggybacks on

every ACK the available space in the receive buffer, and the sender never allows the

number of outstanding packets to grow beyond the available buffer space. While the

conservative strategy ensures that there is no overflow of data at the receive buffer, it

does not directly track the application behavior at the receiver. For most conventional

network scenarios - both wireline and wireless - this is not a serious concern as the

application read-rate is rarely the dominant bottleneck. The limitations of a simplistic

flow control strategy do not adversely impact a TCP connection’s performance if flow

control does not kick in very often. However, with the growing use of mobile platforms

(phones and tablets) for data application access, it is worthwhile studying TCP flow

control in more depth. The constrained processing resources on such platforms make

it more probable that flow control assumes a more significant role in the throughput

enjoyed by a connection.

Thus, the focus of this work is to study TCP’s flow control algorithm, identify

its limitations for mobile devices1, and propose a new flow control algorithm for such

platforms.. In this context, using a Samsung Galaxy S 4G phone on the T-mobile

data network and Samsung Galaxy Tab 10.1 as representative mobile devices, we first

show that the available processing power for a given TCP connection can fluctuate

1While a majority of our observations and proposed solutions would aid other environments that

are flow control dominated as well, we restrict the focus of this work to only mobile phones and

tablets.
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drastically even for simple user workloads, and such fluctuations invariably lead to

the flow control algorithm dominating transmission decisions at the sender.

We then explore how a TCP connection in a flow control dominated regime per-

forms using several example scenarios. We observe that the throughput performance

of such a connection can be as low as 20% of the expected throughput. We identify

a variety of reasons for the performance degradation that are directly attributable to

the flow control algorithm employed in classical TCP. To better ground our observa-

tions we also perform a control theoretic analysis of the TCP flow control algorithm

and show that it reduces to an integral controller, which in turn has a non decaying os-

cillation function with an amplitude that is proportional to both the peak application

read-rate and the fluctuation frequency of the read-rate.

We therein motivate a more sophisticated flow control algorithm that not only

relies on the available buffer space, but also explicitly accounts for the application

read-rate in its decisions. We propose such an algorithm called adaptive flow control

(AFC) for TCP. Besides explicitly tracking the application read-rate, AFC also has

a set of key design elements that are targeted toward optimizing performance for

connections operating in a flow control dominated regime. We propose AFC as a

TCP option so that network stacks with AFC enabled are still backward compatible

to communicate with non AFC-enabled stacks. We evaluate AFC using NS2 based

simulations, and show that AFC delivers considerable performance improvements over

classical TCP in flow control dominated regimes, exhibits TCP friendliness, and is

robust to a wide variety of network and application characteristics.

3.2 Background and Motivation

3.2.1 Resource Constraints on Mobile Devices

Even though smartphones and tablets have been growing in performance since their

inception, the devices have not scaled up to the same performance as desktop and
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laptop computers. This is mainly because smartphones and tablets have to offer

portability as the primary feature. Excess compute power comes at the cost of size,

weight and battery life. To further motivate this gap in compute power on ultra-

mobile devices and computers, we run a JavaScript benchmark, Octane[44], on the

following devices:

• Laptop1: Lenovo Thinkpad X220 running Ubuntu 12.04 the 2.9 GHz Intel I7

processor and 4GB RAM

• Laptop2: Apple MacBook Air running OS 10 with 1.3 GHz Haswell I5 processor

and 8GB RAM

• Smartphone1: Samsung Galaxy S4 running Android 4.2.2 with 1.9 GHz quad-

core Krait processor and 2GB RAM

• Smartphone2: iPhone 5 running iOS 7 with dual-core 1.3 GHz Swift processor

and 1GB RAM

• Tablet: Samsung Galaxy Tab 10 with dual-core 1 GHz Cortex-A9 processor

and 1GB RAM

Octane is Google’s benchmark suite to measure the performance of browser’s JavaScript

engine over 13 tests. The tests create representative workloads for the browser, such as

regular expression matching, function calls, polymorphism, object creation/deletion,

pdf reading, floating point math, etc. The test suite computes a score for each of the

13 tests and a combined score. A high score means high performance. Table 1 shows

Octane results for the five devices. We observer that the performance on laptop is an

order of magnitude better than that on smartphones and tablets. It is particularly

interesting to note that Apple MacBook Air with 1.3 GHz processor performs better

3x better than iPhone 5 with a similar processor speed and 4x better than Samsung
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Table 1: Octane benchmark comparison
Device Id Device Octane Score
Laptop1 Thinkpad X220 19154
Laptop2 MacBook Air 8769

Smartphone1 Samsung Galaxy S4 2261
Smartphone2 iPhone 5 2941

Tablet Samsung Galaxy Tab 10 1942

Galaxy S4 which has a ’faster’ processor. These results show that even with signifi-

cant technical advances in compute power, smartphones and tablets do not perform

same as traditional desktops and laptops.

3.2.2 TCP Flow Control Basics

TCP’s flow control algorithm provides the receiver with the ability to control the rate

at which the sender transmits [6]. Thus, if the data consumption rate at the receiver is

lower than the rate at which the sender is transmitting, the receiver is able to influence

the sending rate down to an appropriate level. While we discuss some variants later

in the chapter, the basic strategy employed in TCP is for the receiver to advertise to

the sender, using the rwnd field in the TCP ACK, the available space in the buffer

in relation to the highest in-sequence sequence number received. The sender will

transmit new segments only if the highest unacknowledged sequence number it has

transmitted is smaller than the sum of the lowest unacknowledged sequence number

and the min(rwnd, cwnd), where cwnd is the congestion window maintained by the

sender.

Thus, if the available network rate is the bottleneck, cwnd is likely to be smaller

than the rwnd and flow control does not influence the data rate of the TCP con-

nection. On the other hand, if the rate at which data is consumed by the receiving

application is lower than the network rate, the receive buffer occupancy will increase

and this in turn will result in lower rwnd values advertised by the receiver. An ex-

treme scenario is when the receive buffer is full and the receiver advertises an rwnd
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of zero. Upon receipt of a such a zero window advertisement, the sender freezes its

transmission completely and awaits an explicit open window advertisement from the

receiver. Eventually, when oneMSS worth of space opens up in the receive buffer, the

receiver sends an open window by advertising a non-zero rwnd value. The sender also

independently sends periodic one-octet probes when it is in the frozen zero window

state hoping to elicit an open window from the receiver. This handles any reliability

issues associated with open window losses.

Thus, some of the highlights of the flow control algorithm are as follows:

• Buffer occupancy: TCP’s flow control is heavily buffer dependent. The sender

will never allow the number of unacknowledged packets to grow larger than

the receiver’s buffer size. This property holds independent of whether such

outstanding packets have in fact been drained out of the receive buffer as long

as the acknowledgements for those packets have not reached the sender.

• Application read rate: The buffer occupancy in turn is heavily influenced by

the application read rate at the receiver. The TCP receive buffer has no other

influencers other than the input rate and the drain rate, as we discuss later in

the section.

• Feedback latency: Since the sender explicitly relies on feedback from the receiver

to adjust its notion of the receive buffer occupancy, the feedback latency for

the flow control process is directly influenced by the round-trip time for the

connection.

3.2.3 Problems with TCP Flow Control on Mobile Devices

3.2.3.1 Flow control bottlenecks occur more often

Mobile devices such as smartphones and tablets, in spite of the advances made in their

hardware capabilities, continue to be resource limited compared to traditional PCs

and laptops. Such limitations span over the processing capabilities, the sizes of the
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Figure 1: Comparison of CPU occupancy of FTP connection on laptop and mobile
devices

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

In
s
ta

n
ta

n
e
o
u
s
 T

h
ro

u
g
h
p
u
t(

M
b
p
s
)

Time(s)

Web E-mail YouTube

(a) FTP throughput on laptop
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(b) FTP throughput on Sam-
sung Galaxy S 4G phone
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(c) FTP throughput on Sam-
sung Galaxy Tab 10.1

Figure 2: Comparison of instantaneous TCP throughput of FTP connection on
laptop and mobile devices

different tiers of storage, and other dimensions of computing. There are a wide variety

of reasons for such limitations ranging from the requirement for low power operations,

form factor constrains and cost. Figures 1(a), 1(b) and 1(c) present comparative

CPU allocation results for an FTP application running on a laptop (Dell Inspiron

1525 with Ubuntu 10.10), a mobile phone (Samsung Galaxy S 4G with Android OS)

and a tablet (Samsung Galaxy Tab 10.1 with Android OS) respectively. In all three

cases, a large file (∼2GB) is downloaded from an Internet server down to the client.

As the download progresses, three workloads; email, web browsing and progressive

video download - are introduced. The impact on the CPU allocation for the FTP

process is measured using the top utility.

We observe that on the laptop the FTP client is relatively unaffected by the
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background processes and remains at around 5% allocation. However, for the FTP

client on the mobile phone, the CPU occupancy fluctuates between 60% and 0%

during the download. The performance on tablet is closer to the mobile phone, the

CPU occupancy fluctuates between 20% and 5%. It is interesting to note that the

tablet has a dual core processor but still the FTP application and the background

workloads shared the same core leading to the observed fluctuations.

Investigating the individual FTP connections further, we observe that the instan-

taneous throughput degrades from 10% to 50% on both the mobile devices in the

presence of background workload while no such degradation is observed on the lap-

top. The individual results are shown in Figures 2(a), 2(b) and 2(c). In addition to

this, there are no zero window events on the laptop and tablet but 5 zero window

events are observed on the mobile. The above result highlights the vulnerability of

TCP connections on mobile platforms to fluctuations in processor allocations. These

fluctuations in turn impact the degree to which flow control influences the performance

of the connections. We study this impact next.

3.2.3.2 TCP Flow control is inefficient

As discussed earlier, fluctuations in processing power allocated to an application

directly impact the rate at which the application interacts with TCP, i.e. the rate

at which it reads from the receive buffer. While TCP flow control is expected to

converge to a throughput of min(network rate, application read rate), this turns out

to be true only when both the network and application rates are steady. Fluctuations

in the application read rate make it difficult for TCP to converge as expected.

To demonstrate this, we conduct simulations in NS2 with the following setup:

(a) sender and receiver connected over a direct link; (b) RTT of 530ms; (c) network

rate of 15 Mbps; (d) average application read rate of 4 Mbps, with a fluctuation

profile of < 0, 6, 6 > (period of 1 RTT); and (e) receive buffer size equal to the

18



perceived BDP (min(NW, AAR)*RTT = 256KB). While we pick these values as an

example (e.g., TCP connection over a WiFi last leg for an inter-continental ’USA/Aus’

communication), we generalize the values for the parameters in the setup to a broader

set both later in the section and in Section 3.5.

The observed throughput should ideally be equal to the minimum of the network

and application read rates, which for the above setup is equal to 4Mbps. However,

the aggregate throughput observed is only 1.45Mbps, a degradation of 63%(Figure 3).

Note that given the high network rate assumed, there are no congestion artefacts

influencing the performance, and hence this degradation is directly due to the flow

control behavior of TCP.
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Figure 3: Impact of application read rate fluctuations on TCP throughput

There are several microscopic reasons for why this degradation in performance is

attributable to the flow control behavior of TCP. We discuss these next.

3.2.4 Design Insights into TCP Flow Control Limitations

We use three different scenarios where TCP flow control leads to under-performance

and therein highlight some of the design issues. NS2 simulations are used to determine

TCP throughput for the different scenarios2. In the different scenarios, the round

2Basic flow control features such as finite-size receive buffer, dynamic advertised window and
zero window management were added to the NS2 TCP implementation as NS2 does not support
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trip time for each connection is 530ms. The read rate of the receiving application

fluctuates in a pattern of <AR1,AR2> or <0,AR,AR> with a time period of 1 RTT.

If the pattern is <AR1,AR2>, the application reads at AR1 for one RTT, then at

AR2 for another RTT and back to AR1. If its <0,AR,AR>, it does not read any data

for one RTT, then reads at the rate of AR for two RTTs and again goes back to not

reading, and so on. In some scenarios, the network rate is also made to fluctuate in a

pattern of <NW1, NW2, NW2> with a time-period of 1 RTT, i.e. the link bandwidth

stays at NW1 for one RTT, then at NW2 for two RTTs and back to NW1, and so

on. The scenarios we consider are the following:

3.2.4.1 Fluctuating application rate

The variations in application read rate affect the advertised window of a TCP con-

nection. As the window does not converge to a steady value, the throughput of the

receiving application also fluctuates, worse than expected. Let’s consider the setup:

(a) RTT = 1s; (b) Application profile: <2, 6> Mbps with the fluctuation interval =

1 RTT; (c) Average Application Rate(AAR) = 4 Mbps; NW = 4 Mbps, i.e. NW =

AAR; (d) B is set as min(NW, AAR)*RTT=500KB=4Mb (the ideal BDP).

The expected application throughput is min(NW,AAR)=4Mbps, but the through-

put observed in the experiment is only 2.9 Mbps(∼3Mbps), a 25% degradation from

the expected value. The performance degradation occurs because of TCP’s flow con-

trol behavior. In steady state the sender tries to send at 4Mbps. If the application is

reading at 2Mbps, every half RTT 1Mb of data would be read by the application and

1Mb stored in the buffer. At the end of the first half RTT, the advertised window

is 3Mb. At the end of 1RTT, the application would have read another 1Mb and

stored 1Mb in the buffer, the advertised window reduces to 2Mb. In the next half

RTT, the application reads at the rate of 6Mbps, it reads the 2Mb stored data in the

these currently. A configurable application read rate parameter was also added to simulate different
application patterns.
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buffer and also the 1Mb received from the sender, which is (3Mb(advertised window

an RTT back)-2Mb(outstanding data)). The latest advertised window is now 4Mb.

In the next half RTT, the receiver receives another 1Mb, which is 2Mb(the advertised

window an RTT back)-1Mb(traffic outstanding in the last RTT). The receiving ap-

plication reads the entire received 1Mb and advertises a window of 4Mb. The same

sequence repeats from there on.

Thus, if the buffer is sized at the prescribed value of the BDP (4Mb), the con-

nection rate is throttled down to 2Mbps when the application read rate is 2Mbps

(flow control due to application read rate limitation), but is capped at 4Mbps (flow

control due to buffer size) even when the application read rate grows to 6Mbps. The

application thus reads 2Mb in the first RTT and 4Mb in the second RTT, and the

observed throughput at the application is thus (2+4)/2 Mbps = 3Mbps, while the

ideal expected value is 4Mbps.

3.2.4.2 Zero windows

Extreme fluctuations in application read rate result in zero window advertisements.

In TCP’s flow control, every zero window advertisement carries with it a deterministic

throughput penalty due to the time taken for the window to be re-opened to pre-zero

window levels. At any zero window occurrence the sender waits for up to two round

trip times(RTTs) before it can send any substantial amount of new data even if the

application starts reading immediately after the zero window was advertised; an RTT

to wait before sending a zero window probe and another RTT to get a window larger

than one to send more data. Hence, a higher frequency of zero windows results in a

larger number of such under-utilizing periods. We use the following parameters for the

evaluation of this scenario: (a) RTT = 530ms; (b) Application profile of < 0, 6, 6 >

(AAR = 4Mbps); (c) NW = 15Mbps; and (d) B is set to 256 KB (perceived BDP).
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The expected application throughput is min(NW,AAR)=4Mbps, but the through-

put observed in NS2 is 1.45 Mbps (a 63% degradation), as shown in Figure 3. While

some of the performance degradation is attributed to the reasons outlined earlier, the

higher severity of the degradation is due to the zero window occurrences. When the

application stops reading, the receive-buffer fills up, resulting in zero windows being

sent and the sender being stalled. As soon as the application starts reading, an open

window is sent to the sender and the sender sends one segment. The ACK for this

packet, which arrives an RTT later, then allows the sender to send more packets. The

receiver thus ends up reading AAR*RTT bytes in 3 RTTs, whenever this happens.

In this particular example, 328 zero windows are observed in a connection of 600s,

thus 656 out of 1132 RTTs are spent idle. There are no congestion losses.

Thus, whenever the zero window occurrences in the lifetime of a TCP connection

increases, the performance degradation (difference between the expected throughput

and the observed throughput) increases.

3.2.4.3 Fluctuating network rate

Apart from the application read rate, the network rate can also fluctuate. This

introduces new complications. Ideally the TCP throughput can grow with increase

in bandwidth, but the limited buffer or zero window events may prevent the sender

from using higher congestion windows. The receiver may never learn of this available

bandwidth and be unable to resize its buffer based on techniques like dynamic right

sizing[21], auto-tuning[22], etc. We use the following parameters for this scenario: (a)

RTT = 530ms; (b) Application profile: <0, 6, 6> Mbps with the fluctuation interval

= 1 RTT, AAR=4 Mbps; (c) Network profile: <2, 4, 4> Mbps with the fluctuation

interval = 1 RTT; and (d) buffer B set to 128KB/213KB (perceived/ideal BDP).

In this scenario, the application is expected to enjoy a throughput of min(average

network rate, average application rate), i.e., min(3.3Mbps, 4Mbps). However, to
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Table 2: Network and application scenarios

# Application
profile (Mbps)

Network pro-
file (Mbps)

Fluctuation
time

Round
trip
time

Receive
buffer

Ideal
through-
put

1 < 0, 6, 6 > 2 per RTT 530ms 128KB 2Mbps

2 < 0, 6, 6 > 15 per RTT 530ms 256KB 4Mbps

3 < 0, 6, 6 > < 2, 4, 4 > per RTT 530ms 213KB 3.3Mbps

4 < 0, 6, 6 > < 3, 6, 6 > per RTT 530ms 256KB 4Mbps

5 < 0, 18, 18 > < 3, 15, 15 > per RTT 530ms 704KB 11Mbps

achieve that performance, the receiver needs to make sure that the receive buffer is

tuned to the network. Current buffer resizing solutions[21, 22, 20] depend on data rate

observed at the receiver to calculate the optimal advertised window and buffer size.

In this scenario, zero windows occur while the application is not reading, the sender

stalls and while the sender is stalled, the fact that the network rate has increased

does not influence the buffer calculation at the receiver. Thus the apparent network

rate Np ∼ 2Mbps is much lesser than the actual network rate Na = (2 + 4 + 4)/3 =

3.3Mbps. The observed throughput with a buffer size of 2Mbps*530ms=128KB, is

0.67Mbps, which is 20% of the expected ideal. Even when the buffer is scaled up to

213KB, i.e. 3.3Mbps*530ms, the observed throughput is still only 1.45Mbps.

Thus, when both the network rate and the application rate fluctuate, the lower

throughput rates experienced when the application read rate is low can also impact

the achievable network throughput even when the application read rate eventually

increases.

3.2.5 Trivial buffer-based approach

We now briefly argue for why a buffer provisioning based solution is not desirable to

tackle the problems discussed thus far. We consider three categories of scenarios, as

described in table 2, in increasing order of complexity, and discuss requirements in a

pure buffer provisioning solution. When necessary, we use NS2 based simulations to

verify our arguments.
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• No application read-rate or network rate fluctuations: This scenario is relatively

well explored and the recommended buffer allocation when the application read-

rate is greater than the network rate is as follows:

Breq = NR ∗RTT (1)

where, NR is the network rate andRTT is the round-trip time of the connection.

However, if the application read-rate AR is less than the network rate and hence

is the bottleneck, the buffer required is only proportional to the application

read-rate. Hence, the buffer requirement under steady rates is as follows:

Breq = min(NR,AR) ∗RTT (2)

• Only application read-rate fluctuations: When the application read-rate fluctu-

ates, the consequent zero-windows that occur will end up causing the connection

to under-utilize the achievable performance. Specifically, consider Scenario 2

from table 2. Assuming a buffer size based on Equation (2) of 256KB, the

expected throughput is 4Mbps (min(NR,AAR)), where AAR is the average

application rate. However, the observed performance in the simulation study

for the above parameters is only 1.45Mbps. This degradation is directly explain-

able by the fact that two out of every three RTTs the application stays idle.

Note that the performance observed is higher than the 1.33Mbps based on the

above argument as zero windows are not triggered precisely every third RTT.

A straightforward solution to the above problem is to provision the buffer such

that the application does not find the buffer to be empty during the two RTTs

recovering from a zero-window. Hence, the buffer requirement can be arrived

at as follows:

Breq = 3 ∗ AAR ∗RTT (3)

We do verify in simulations that the above buffer allocation increases the ob-

served throughput to 3.86Mbps. Now, the above scenario consisted of the AAR
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being less than the NR. If on the other hand the AAR is greater than the NR,

the two idle RTTs can be fully utilized as long as buffer provisioning sustains

the network rate. Hence, modifying Equation (3), we get the following:

Breq = 3 ∗min(AAR,NR) ∗RTT (4)

• Both application read-rate and network rate fluctuations: Finally, if both the

network rate and application read-rate fluctuate, the scenario differs even fur-

ther. Specifically, when both rates fluctuate, it is possible to create a patholog-

ical scenario wherein the connection does not realize the higher network rate

possible because it is idle due to recovery from zero-windows when the network

rate is high. For example, consider Scenario 5, where the application rate fluc-

tuates as (0, 18, 18) (period of one RTT ), and the network rate fluctuates as

(3, 15, 15) (same period). In this scenario, a zero window will be triggered in the

first RTT, and the connection will end up idling for the subsequent two round-

trip times and hence will not realize that a rate as high as 15Mbps was possible

during that period. In our simulation study of the above scenario, we observe a

throughput of 3Mbps in contrast to the expected throughput of 11Mbps. This

problem can be averted only if the connection is prevented from idling for all

round-trip times. While provisioning the buffer based on the average achievable

network rate would suffice, note that the connection has no way of determining

the achievable network rate as it will never encounter the high rate periods.

Instead, the only deterministic approach to averting the problem is to provision

the buffer based on the average application rate. Independent of whether the

average application rate is higher or lower than the average network rate, this

will suffice. Thus, in order to overcome the idle periods when recovering from

zero-windows, the buffer required when both application read-rate and network
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rate fluctuate is as follows:

Breq = 3 ∗ AAR ∗RTT (5)

Taking into account equations (2)- (5), the buffer required in a pure provisioning based

strategy to cover all scenarios is 3 ∗ AAR ∗ RTT . The problem with this strategy,

though, is that the AAR for a mobile platform can be arbitrarily high when compared

to the possible network rates. For example, on a basic android phone, we were able to

observe application read-rates as high as 100Mbps (under low CPU load conditions).

Hence, the buffer allocation required could be orders of magnitude higher than what

the connection throughput will necessitate (e.g., a 2Mbps network rate scenario will

ideally need only 125KB of buffer allocation, whereas the provisioning based strategy

will necessitate 18.75MB of buffer allocation). Also note that this allocation is on a

per connection basis. While requiring orders of magnitude more memory allocation is

bad in itself, the demands become onerous when considering the memory limitations

of typical mobile devices. Furthermore, even if such allocation can be achieved on the

mobile devices, the server (sender) side buffer will have to be of similar proportions

in order to support this strategy. Considering a typical web server serving tens and

thousands of connections, such onerous buffer allocation quickly becomes untenable.

Even assuming that memory is not an issue, the AAR still has to be accurately

tracked at the receiver in order to achieve the provisioning. Hence, the question

we ask ourselves in the rest of this chapter is that if the application read-rate is

already being monitored, could a better solution be derived to achieve the expected

performance?

3.3 Theoretical Analysis

3.3.1 Control theoretic analysis of TCP flow control

TCP is a closed loop system. The sender sends data to the receiver, then waits for

feedback from the receiver to determine how much data to send next. We model this
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control system in the following analysis. For purposes of this analysis we assume that

the connection is purely flow control restricted, and the connection rate is TCP , W

is the advertised window, AR is the rate at which the data is read at the receiver, B0

is the receive buffer size and B is the buffer occupancy at any given time. From this

we can represent W as follows:

W =B0 − B (6)

The buffer is filled in at the rate of TCP and drained by the application at AR. Thus,

dB/dt = TCP − AR (7)

Differentiating (6) and using (7), we get

W ′ = dW/dt = AR− TCP (8)

Note that 0 ≤ B ≤ B0 and 0 ≤ W ≤ B0. Thus,

W = min(B0,

∫

W ′dt) (9)

If we consider TCP as a system variable, the target value of TCP is AR and the

error err in this variable is the deviation in throughput:(AR − TCP ), which is the

rate at which W grows:

W ′ =(AR− TCP ) = err (10)

As network is not the bottleneck, TCP is proportional to the receive window W .

Assuming that round trip time RTT remains constant for a connection.

TCP =α W , where α = 1/RTT (11)

using (9), TCP =α min(B0,

∫

W ′ dt) (12)

using (10), TCP =α min(B0,

∫

err dt) (13)
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For now, let’s assume B0 to be unbounded. Then TCP is entirely dependent on

the integral of the deviation from AR. In control theory, such systems are termed

Integral(I) systems [45]. In the following analysis, we look at some characteristics

of this system and its implication on TCP’s performance.

Eliminating TCP from the equations (10) and (11):

W ′ = AR− αW (14)

on reorganizing, W ′ + αW = AR (15)

This is a linear first-order differential equation, where W and AR are functions of

time. Solving it by the method of integrating factor, we have:

Integrating factor : eαt

multiplying (15) with integrating factor

eαtW ′ + αeαtW = eαtAR (16)

on simplifying,
d

dt
(eαtW ) = eαtAR (17)

on integrating,

∫ t

t=0

d

dt
(eαtW ) =

∫ t

t=0

(eαtAR)dt (18)

Now let us assume that the application fluctuates from 0 to 2 A0 as a sinusoid function

of time with a time-period of T .3

AR = A0(1 + sinωt),where ω = 2π/T (19)

using (19) in (18) and simplifying ,

eαtW − B0 = A0

∫ t

t=0

eαtdt+ A0

∫ t

t=0

eαt sinωtdt (20)

on solving, W = e−αt

[

B0 −
A0

α
+

A0 sin θ√
α2 + ω2

]

+
A0

α
+

A0

sin(ωt− θ)√
α2 + ω2

,where θ = tan−1

(ω

α

)

3Note that any other periodic application profile can be represented as a sum of sine/cosine
functions[46].
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(21)

The error err in TCP can thus be computed from (10) as:

err = W ′ (22)

differentiating (21) and using in (22)

err = −αe−αt

[

B0 −
A0

α
+

A0 sin θ√
α2 + ω2

]

+

A0ω√
α2 + ω2

cos(ωt− θ) (23)

In steady state: e−αt → 0, thus (23) becomes

err =
A0ω√
α2 + ω2

(cos(ωt− θ)) (24)

further, err = A0 sin θ(cos(ωt− θ)) (25)

Thus, for fluctuating applications, the difference between TCP rate and application

read rate exhibits non-decaying oscillations. The amplitude of these oscillations in-

creases with the peak application read rate and cycles with the fluctuation time-period.

From (11) and (21), TCP is:

TCP = αe−αt

[

B0 −
A0

α
+

A0 sin θ√
α2 + ω2

]

+A0

[

1 +
α sin(ωt− θ)√

α2 + ω2

]

(26)

which in steady state becomes:

TCP = A0

[

1 +
α√

α2 + ω2
sin(ωt− θ)

]

(27)

This has a marked deviation fromAR, both in frequency pattern and in the amplitude.

As the frequency of oscillations increases, the phase difference in TCP and AR also

increases. This lag translates into increased settling time, i.e., time taken to converge

to AR, for TCP . Equation (27) presents a control system model for TCP’s flow

control. In practice, the receive buffer B0 imposes an upper bound on TCP data rate.
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Following from (13), the actual TCP data rate is given by:

TCP =min

(

αB0, A0

[

1 +
α√

α2 + ω2
sin(ωt− θ)

])

(28)

Depending on the relation between the two terms in (28), TCP throughput can

saturate at the rate of αB0, i.e., B0/RTT or grow as much as the application demands.

Saturations cause TCP to under-perform. Thus, we conclude that TCP throughput

is dependent on the receive buffer size, the application fluctuation frequency and the

amplitude of fluctuations in the application read rate.

3.3.2 Basis for an Adaptive Flow Control Algorithm

We observe in the previous section that:

1. Current TCP flow control is an Integral(I) − only control system. As is well

known in control theory, Integral systems are used as corrective components

in Proportional(P ) control systems. An I − only system can increase settling

time(θ in equation (27)), making it respond slower to disturbances/fluctuations.

2. If B0 is not large enough to accommodate the application read rate and its

fluctuations, TCP send rate is capped by B0/RTT (as shown in equation (28)).

A corrective term needs to be added in equation (11) to compensate for the impact

of integral action and bound of B0. We propose that this term be AR, i.e. the
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application read rate. Equation (11) thus takes the form of:

TCP =αW + AR (29)

working out equation (10)

W ′ =AR− TCP (30)

using (29), W ′ =AR− αW − AR (31)

i.e., W ′ =− αW (32)

on solving, W =B0e
−αt (33)

differentiating (33) and using in (22),

err =− αB0e
−αt (34)

Note that (34) presents a decaying error in TCP send rate. From equations (29)

and (33), TCP takes the form:

TCP =αB0e
−αt + AR (35)

which converges to AR at steady state, shows no lag and is not bound by the B0/RTT

limit. Thus, if TCP starts reacting to the application rate, it would be able to scale

up to its target value, even in the face of fluctuations. In the next section, we discuss

how to translate this theory into a practical implementation.

3.4 Design elements and algorithm

In this section we present an adaptive flow control (AFC) algorithm for TCP that

will help achieve expected throughput performance even in a flow control dominated

regime. A key goal of the proposed solution is to deliver such performance without

requiring a large buffer allocation. We first present an overview of the key design

elements in AFC, and then describe the detailed algorithm.
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3.4.1 Key Design Elements

3.4.1.1 Using Application Read Rate

The first design element in AFC follows directly from the theoretical analysis pre-

sented in Section 3.3. While classical TCP flow control uses the advertised buffer

space from the receiver as the flow control window, AFC relies on both the advertised

available buffer space in the receive buffer and the application read-rate in determining

the flow control window:

Wfc = B + AR ∗RTT (36)

Just like the advertised buffer space, the application read rate AR is also fed back

to the sender from the receiver. We defer details on how the application read rate is

monitored and tracked till later in the section. Once the flow control window Wfc is

determined, AFC uses the window in exactly the same fashion as in classical TCP. In

other words, the number of outstanding packets is controlled to be the minimum of the

congestion control window and the flow control window. The use of the application

read rate in determining the flow control window thus allows AFC to better react to

application read rate changes instead of relying only on buffer over provisioning.

3.4.1.2 Handling Overflows

Classical TCP flow control is conservative to an extent where the flow control algo-

rithm will never result in buffer overflows at the receiver. The TCP sender will at

no point send more data than what the receiver buffer can accommodate. Hence, all

losses experienced by the connection are directly attributable to congestion.

However, in AFC the flow control window is computed to be a sum of two factors:

the available buffer space and the application read rate per RTT. If the application

read rate is over estimated or suddenly decreases, overflows at the receive buffer will

occur. Such losses however should not be attributed to congestion as the flow control

algorithm causes them. Thus, AFC is specifically designed to keep such flow control
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induced losses from impacting the congestion control algorithm. In classical TCP,

when a zero window is received by the sender with an ACK sequence number of Szw,

the sender explicitly freezes all congestion control decisions and ignores loss indicators

(both triple duplicate ACKs and timeouts) for any sequence numbers greater than

Szw till an explicit open window is received from the receiver. In AFC, duplicate

ACKs or timeouts may still be triggered by packet drops at the receiver for packets

with sequence number Soe, where Soe > Szw+Receive buffer. These duplicate ACKs

can arrive even after the open window event. AFC hides this by recording the time

ts recover of the arrival of the open window and further suppressing all congestion

indicators till an ACK is received for data sent after ts recover. Furthermore, in

order to fast track the successful transmission of such overflow data, the next sequence

number to transmit(snd nxt) at the sender side is reset to Szw
4 upon the receipt of

an open window. Such fast-tracking of the transmissions beyond Szw prevents those

packets from being handled by the (slower) retransmission mechanism in TCP.

The combination of the ignoring of losses after a zero window and the reset-

ting of the snd nxt averts both congestion control and reliability problems due to

the overflow. In an alternate approach, the receiver can explicitly notify the sender

of the specific sequence numbers that have been dropped at the buffer. However,

conveying explicit information about buffer losses would require going from one se-

quence number to two sequence numbers (one for congestion control and one for

reliability/flow-control) similar to strategies adopted by WTCP[47], pTCP[48]. How-

ever, such a strategy would help only in the specific scenario of overlapping flow-

control and congestion-control dominated periods for the connection. The downside

of our simpler approach is that we will not react to congestion if it occurs during a

flow control recovery period. However, if the congestion is persistent, the TCP sender

will recognize it as soon as it comes out of flow control. As part of future work, we

4Note that the TCP ACK sequence number reflects the next expected sequence number.
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are planning to explore whether a more sophisticated scheme is warranted.

3.4.1.3 Proactive feedback

The receiver in classical TCP sends an ACK only on the receipt of a segment. Thus,

any feedback from the receiver to the sender is dependent on the arrival of new data.

When recovering from a zero window state, this property is clearly undesirable. Even

if the application read rate climbs rapidly, the receiver will send the first open window

to the sender as soon as one MSS worth of space opens up in the buffer. Thus, for

an entire round-trip time after that open window transmission, the receiver cannot

send any further feedback to the sender even if the buffer is completely drained.

Consequently, the sender will send only one segment for that round-trip time, and

wait for the next ACK to arrive before it will expand its flow control window fully.

In AFC, this limitation is averted by requiring the receiver to send feedback not just

upon receipt of data but also when there is a drastic change in the buffer state and

application read-rate. Thus, when recovering from a zero window state, the receiver

will send not merely the first open window when one MSS worth of buffer is available,

but also follow it up with more reports about the AR and B if the application drains

the buffer quickly. This allows the sender to take more accurate flow control decisions.

Note that such a design element can also be modulated by a mechanism similar

to the delayed ACK timer. Essentially, whenever a proactive ACK has to be sent by

the receiver, the ACK is delayed for a constant amount of time. If a reactive ACK

(an ACK in response to data arrival) is triggered within the aforementioned constant

amount of time, the proactive ACK can be discarded. This allows for curtailing the

number of such proactive ACKs sent when there are reactive ACKs sent naturally.

3.4.1.4 Burst control

Classical TCP is self-clocked. Hence, whether or not new segments are transmitted

and how many new segments are transmitted are both determined by the receipt of
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ACKs at the sender and the consequent adjustment to the windows. In a congestion

control dominated regime, such self-clocking works very well. However, in a flow

control dominated regime, large transmission bursts can occur. Consider a scenario

where the application read rate is low and hence the buffer begins to fill up. Let the

connection reach a state where the sender has only one outstanding segment left in

the network because its flow control window is reduced, but its congestion control

window is much larger. Now, if the application read rate rapidly increases and drains

the receive buffer before the outstanding segment reaches the receiver, the ACK sent

on receipt of the new segment will advertise a full buffer. When the sender receives

this ACK it is no longer flow control limited, and will transmit an entire congestion

control window of segments5 instantaneously as a single burst. Such bursty behavior

is not desirable as the bursts will increase the likelihood of overflows of buffers along

the path of the connection. The overflows will be interpreted as congestion losses and

hence impact the throughput performance of the connection adversely.

Thus, one of the design elements in AFC is to explicitly control any bursts in

transmissions at the sender. The occurrence of a burst is detected by the difference

in the allowed range of outstanding packets, which is oldest unacknowledged packet

snd una plus min(cwnd, rwnd), and the next packet to be sent(snd nxt). If this

difference is above a threshold, every packet is delayed by RTT/sender′s window.

3.4.2 AFC Solution Details

3.4.2.1 Protocol headers

AFC introduces new feedback from the data receiver to sender. At the same time,

an AFC enabled network stack must be able to communicate with a default stack.

Thus, we propose AFC specific information to be exchanged using a new TCP header

option. At the time of connection set-up, an AFC enabled receiver will advertise an

5Assuming the congestion control window is smaller than the receive buffer size. Otherwise, the
sender will transmit an entire flow control window of segments.
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Algorithm 1 Data packet delivered at TCP receiver
Input: data = Data packet received by TCP

data.seqno = Sequence number of the first octet in the data

Variables: max seen = Maximum sequence number seen by the receiver, even out-of-order

1: procedure ((r)eceive data)
2: bytes read← 0
3: if data.seqno > read nxt+ bufsize then
4: Drop packet
5: else if data.seqno < read nxt then
6: is dup← True

7: else if data.seqno > max seen then
8: mark all buffer spaces from max seen to data.seqno as null
9: buffer[data.seqno mod bufsize]← data

10: buffer[(data.seqno+ 1) mod bufsize]← null
11: just marked← True

12: max seen← data.seqno
13: end if
14: if read nxt ≤ data.seqno ≤ max seen then
15: if not just marked and buffer[data.seqno mod bufsize] 6= null then
16: is dup← True

17: end if
18: buffer[data.seqno mod bufsize]← data
19: while (Application needs the read nxt byte and buffer[read nxt mod

bufsize] 6= null ) do
20: Pass buffer[read nxt mod bufsize] to application
21: read nxt← read nxt+ 1
22: bytes read← bytes read+ 1
23: end while
24: rcv nxt← read nxt
25: while (buffer[rcv nxt mod bufsize] 6= null and rcv nxt ≤ max seen) do
26: rcv nxt← rcv nxt+ 1
27: end while
28: end if
29: if bytes read 6= 0 or rcv nxt− read nxt > 0 then
30: ar update(bytes read, now())
31: end if
32: window ← bufsize− (rcv nxt− read nxt)
33: if is dup 6= True then
34: Generate ACK for packet: ack
35: ack.win← window
36: ack.rx← smooth rx
37: Send ACK
38: end if

39: end procedure
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Table 3: List of state variables at the TCP receiver
bytes read Count of bytes read by application in this instance
read nxt Next in-sequence byte to be read from buffer
bufsize Total size of the TCP receive buffer
buffer Receiver buffer
rcv nxt Next in-sequence byte expected from the network by the TCP re-

ceiver
window Number of bytes, starting from rcv nxt, the receive buffer can ac-

commodate
smooth rx Exponential average of application read rate
last rx Last value of smooth rx

AFC-permitted flag in a 2 byte option field6. If both ends of the connection agree

to use AFC as the flow control mechanism, another variable length option field is

used to convey the application read rate to the sender. The first two octets convey

the type and length of the option, the later octets carry the application read rate in

Kbps.

3.4.2.2 AFC Receiver (Data) Processing

A data packet delivered by the network at the receiver can encounter three actions;

enqueued in the receive buffer for the application, dropped by the receiver, or delivered

instantly to a waiting application. Algorithm (1) captures this logic. For a newly

arrived data packet with sequence number seqno, the receiver checks if it falls within

bufsize of admissible sequence numbers beyond the oldest buffered packet read nxt.

If not, it is dropped (line 3 and 4). For a packet lying within the window, the receiver

checks if it is the next expected in-order packet rcv nxt and advances rcv nxt if it

is. In case the sequence number is greater than rcv nxt, the max seen count is

manipulated, depending on where seqno lies. If any of this data is being waited upon

by the application, it is passed on to the application, and read nxt is advanced. The

remaining data, both in-order and out-of-order, is queued at the receive buffer.

As this is an interface between the TCP receiver and the application, AFC takes a

6One byte for the type of option and one for the value.
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sample of the application read rate by invoking the ar update module(algorithm (2)).

The ar update module computes the instantaneous application read rate from the

bytes read in this instance and time elapsed since last sample. It then computes an

exponential moving average smooth rx of samples seen so far.

Algorithm 2 Computing application read rate
Input: num bytes = Bytes read by application since last sample

read time = Time when function was called

Variables: history factorǫ[0, 1] is the weight given to the old application rate estimate

while computing the new one.

last read = Time when this procedure was last called

1: procedure ((a)r update)
2: t elapsed← read time− last read
3: if t elapsed then
4: last rx← smooth rx
5: smooth rx ← history factor ∗ smooth rx + (1 − history factor) ∗

num bytes/t elapsed
6: end if
7: last read← read time

8: end procedure

Algorithm 3 Data packet read from buffer by application
1: procedure ((r)ead buffer)
2: bytes read← 0
3: while Application can read buffer[read nxt mod bufsize] do
4: Pass buffer[read nxt mod bufsize] to application
5: read nxt← read nxt+ 1
6: bytes read← bytes read+ 1
7: end while
8: ar update(bytes read, now())
9: window ← bufsize− (rcv nxt− read nxt)

10: if smooth rx > factor ∗ last rx || smooth rx < factor ∗ last rx then
11: Generate an ACK for application update: ack
12: ack.win← window
13: ack.rx← smooth rx
14: Send ACK
15: end if

16: end procedure

The TCP receiver is also responsible for sending ACKs for every segment delivered

to it, even if it is dropped. It computes the receiver window, i.e., the number of octets
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beyond rcv nxt that the receive buffer can accept. This value of the receive window,

rcv nxt, SACK[49] information and smooth rx is fed back to the sender through the

ACK packet.

Furthermore, a sample of the application read rate is also taken whenever the

application tries to independently read data from the buffer, as illustrated in algo-

rithm (3). The read nxt is updated as application reads bytes from the buffer.

Once it is done reading, the window size is updated and ar update is invoked to com-

pute a new value of smooth rx. A proactive acknowledgement is triggered if the new

smooth rx is greater/lesser than a factor times the last value last rx.

3.4.2.3 AFC Sender (ACK) Processing

To enable AFC at a TCP sender, new logic is introduced in processing the acknowl-

edgement. Algorithm (4) captures this logic. The TCP sender determines the adap-

tive flow window from the advertised window win and application reading rate rx.

It further distinguishes buffer losses from congestion losses, by tracking zero window

event through a flag zw flag.

While zero windows are being received at the sender, all congestion indicators are

suppressed and zero window probes are sent with increasing time-periods. Once an

open window advertisement is received the time is recorded in ts recover to ignore

congestion indications for out-of-window packets that were dropped. Moreover, to

recover from the losses after an open window is received for sequence number open seq,

the snd nxt is set to open seq. The retransmit timeout is also reset. If permitted by

the sending window and AFC burst control, the sender can now send more data to

the receiver.
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Algorithm 4 ACK processing at the TCP sender
Input: ack = Acknowledgement from receiver

Relevant fields:

seqno = the next in-sequence byte expected at the receiver

win = number of bytes, starting from seqno, that receive buffer can accommodate

rx = application read rate as computed by the receiver

ts echo = timestamp of the packet which triggered this ACK

Variables:

rtt = Round trip time

flow window = Flow window

ts recover = Timestamp to ignore ACKs for packets sent during zero window event

highest ack = Highest sequence number acknowledged

snd nxt = Sequence number of the next byte to transmit

zw flag = Flag to monitor start/stop of zero window event

1: procedure ((r)eceive ack)
2: awnd← ack.win
3: app rate← ack.rx
4: if rtt > 0 then
5: flow window ← awnd+ app rate ∗ rtt
6: end if
7: if awnd = 0 and zw flag = 0 then
8: zw flag ← 1
9: else if awnd > 0 and zw flag = 1 then

10: zw flag ← 0
11: if not fast recovery phase then
12: ts recover ← now() ⊲ Store the current time
13: if ack.seqno > highest ack then
14: highest ack ← ack.seqno
15: end if
16: snd nxt← highest ack + 1
17: Process SACK information
18: Reset the retransmit timer
19: end if
20: end if
21: if flow window then
22: if not fast recovery phase then
23: if ack.seqno > highest ack then
24: Process the packet like a new ACK
25: else if ack.seqno = highest ack then
26: Process SACK information
27: if ack.ts echo > ts recover then
28: Process duplicate ACK
29: end if
30: end if
31: end if
32: else
33: Send zero window probes to learn about open windows
34: end if
35: Send data, if allowed by min(cwnd, rwnd) and burst control

36: end procedure
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Figure 4: Topology for fairness evaluation

Table 4: Network and application scenarios

# Application profile Network profile Receive buffer Ideal throughput
1 < 0, 6, 6 >Mbps 2 Mbps 128KB 2Mbps
2 < 0, 6, 6 >Mbps 15 Mbps 256KB 4Mbps
3 < 0, 6, 6 >Mbps < 2, 4, 4 >Mbps 213KB 3.3Mbps
4 < 0, 6, 6 >Mbps < 3, 6, 6 >Mbps 256KB 4Mbps
5 < 0, 18, 18 >Mbps < 3, 15, 15 >Mbps 704KB 11Mbps

3.5 Performance

3.5.1 Evaluation methodology

We evaluate our solution in NS2 (version 2.34). We use the NS2 TCP implementation,

with classic flow control7, as the default TCP in all experiments. Further, we added

the design principles described in section 3.4 in NS2 TCP implementation. This

Adaptive Flow Control(AFC) enabled TCP is referred to as AFC in future. We

assume SACK [49] to be enabled in all scenarios. The history factor for exponential

moving average in AFC is taken as 0.5, i.e. equal weight is accorded to the history

and the current sample. In the following sections, we evaluate AFC with respect to

default TCP. We compare the throughput gains of each; fairness of both approaches

in concurrent connections and sensitivity of our solutions to different parameters. In

all experiments, the throughput is measured at the application level.

For the throughput and sensitivity analysis the network topology has a single

7Basic flow control features such as a finite-size receive buffer, dynamic advertised window and
zero window management were added to the NS2 TCP implementation as NS2 does not support
these currently. A configurable application read rate parameter was also added to simulate different
application patterns
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Figure 5: Throughput gains and Fairness analysis of AFC

sender node and receiver node connected by a link. The link characteristics are based

on typical bandwidths and delays observed on mobile phones and tablets connecting

over 3G or WiFi. The link delay we use is 265ms. For fairness analysis, we consider

a dumbbell shaped topology defined later in section 3.5.3

3.5.2 Throughput Gain

For throughput analysis, we consider the scenarios mentioned in Table 4, for RTT

= 530ms. Present auto-tuning techniques [22] configure the receive buffer based

on the perceived bandwidth-delay product, which is minimum(average network rate,

average application rate)*RTT. We use this estimate in configuring the receive buffer

size. The ideal TCP throughput in all scenarios is min(average network rate, average

application rate). Each simulation runs for 600 seconds.

Figure 5(a) shows the ideal, default and optimized throughput in all scenarios.

We observe that AFC shows an improvement ranging from 50%, in Scenario 5, to

100% and more in the remaining scenarios. In addition to this, it scales up to 85%

of the ideal throughput, while the default flow control can only achieve up to 60% of

the ideal performance.

3.5.3 Fairness Properties

To evaluate fairness between concurrent optimized and unoptimized connections we

use a dumbbell topology with 10 TCP connections, as shown in Figure 4. Senders
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S1....S10 are connected to router Rt1 through individual links of 10Mbps rate and 5ms

delay. Router Rt1 is connected to another router Rt2 with a network link of delay

255ms. The bandwidth of this link fluctuates in the pattern of< 2Mbps, 4Mbps, 4Mbps >

with a time-period of 1 RTT, i.e. 530ms. All the receivers R1....R10 are connected to

router Rt2 through individual links of 10Mbps rate and 5ms delay. Each receiver has

an application running on it whose read rate fluctuates as < 0, 6, 6 > Mbps with a

time period of 1RTT. Considering fair distribution of link bandwidth, each connec-

tion gets an average network rate of 0.33Mbps. The receive buffers are thus set to

0.33Mbps*530ms = 22KB. Each connection in the simulation runs for 600 seconds.

3.5.3.1 Fairness between AFC and Default Flows

We evaluate fairness of AFC towards classic flow control by increasing the number of

optimized connections from 0 to 10, i.e., all connections using default flow control to

all connections using AFC. In each case, we calculate the average throughput achieved

by connections running default TCP and that achieved by connections using AFC.

The results are shown in Figure 5(b). We observe that the average throughput of

default TCP connections stays unchanged in the presence of Adaptive Flow Control.

The average throughput of the AFC enabled flows shows a peak when there is one

optimized connection and converges to the expected 0.33Mbps as the flows increase.

This happens because an optimized flow tries to scale up to the available bandwidth,

left unused by the default TCP flows. In the case of one optimized flow, all this

bandwidth gets utilized by a single connection and is fairly shared, later on, by the

increasing number of optimized connections. Thus,AFC remains fair with classical

flow control.
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3.5.3.2 Fairness among AFC Flows

To demonstrate fairness amongst AFC flows we use the same dumbbell topology as

above. However, this time we present results for increasing number of TCP connec-

tions. All the TCP connections use AFC as the flow control mechanism. The receive

buffer size is adjusted down based on the number of connections (from 213KB for

one connection to 22KB for ten connections). The average throughput enjoyed by

connections is shown in Figure 5(c). For each data point we also show the individ-

ual connection throughputs. It can be observed that the individual throughputs are

heavily clustered around the average establishing the fairness amongst AFC flows.

Thus, AFC is fair with itself.

3.5.4 Sensitivity Analysis

In this section we discuss how Adaptive Flow Control reacts to variations in the RTT,

the time period of fluctuation, application read rate, network rate and the application

fluctuation profile. We also present the performance of default TCP flow control for

each case.

3.5.4.1 Sensitivity to Round Trip Time

The NS2 simulation in Section 3.2 and the macroscopic results above consider a round

trip time(RTT) of 530 ms. While we use this number as a representative of delays

seen over 3G networks, the impact of flow control is equally significant in low delay

scenarios as well. With the advent of 4G cellular technologies, round trip times have

become smaller. In this section, we evaluate the performance of AFC over varying

RTT. We consider the simulation scenario 2 from Table 4 for this analysis and vary the

RTT from 10ms to 1s. The receive buffer size is also changed in each case to comply

with min(AvgNW,AvgAR)∗RTT . Figure 6(a) shows the ideal TCP throughput and

the throughput observed with default flow control and AFC. The RTT is shown with

a log scale for ease of presentation. We observe that AFC shows more than 100%
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Figure 6: Scenario description and sensitivity analysis of AFC

improvement over default TCP for all RTT values. Additionally, AFC throughput

stays between 83% to 96% of ideal throughput. The drop in throughput at 500ms

just reflects the impact of RTT on TCP performance as larger delay means slower

rate of growth of congestion window.

3.5.4.2 Sensitivity to Fluctuation Period

Note that in all the scenarios discussed above we have considered that the application

and the network always fluctuate with a period of 1 RTT. However, the adverse

affect of flow control is not tied to this unique case. We run further simulations

where the fluctuation period is increased from 1 RTT to 40 RTTs for Scenario 4.

As this scenario is application rate dominated we also consider a modified version
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of Scenario 4 with peak application reading rate of 8Mbps to simulate a network

limited scenario. The throughput of default flow control and adaptive flow control

are compared in Figure 6(b).

The throughput achieved by default flow control increases with fluctuation time-

period as TCP gets more time to settle after every disturbance, making the connection

more steady. The throughput observed by AFC shows an immediate dip when fluctu-

ation time period increases from 1 RTT to 2 RTTs. This is because, while in former

case AFC can avoid the sender from stalling completely, in the later cases, sender

stalls are inevitable. Even then, AFC constantly performs better than default flow

control.

AFC provides a gain of 100% over default flow control in highly fluctuating network

and application environments and 20% in steady environments. Mobile phone and

tablet environments, as we have observed in previous sections, belong to the former

set.

3.5.4.3 Sensitivity to Peak Application Read-rate

In this evaluation, we vary the peak application read rate in the <0,AR,AR> profile

in the setup of Scenario 3. The network is the bottleneck in this scenario, hence

the ideal throughput remains 3.3Mbps. Results are presented in Figure 6(c). The

receive buffer of 213KB is more than sufficient when the read rate is less than 2Mbps.

Hence, the default throughput is optimal. However, as the application read rate grows

current flow control grows linearly with the application read rate reaching 65% of the

ideal even at reading rates of 20Mbps. Adaptive flow control, on the other hand,

grows up to 86% and more of the expected throughput in all cases. We observe that

AFC can scale with application read rate faster than classic flow control.
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3.5.4.4 Sensitivity to Network Rate

For Scenario 4, we modified the network profiles to study the change in throughput.

Given the network profile of < NW1, NW2, NW2 >, we first keep NW1 constant

and modify NW2, then keep NW2 constant and modify NW1. In all cases, the

average application rate stays lesser than the network rate, hence the ideal throughput

expected is 4 Mbps. Figure 6(d) shows the variation in throughput when the peak

network rate is altered for the same minimum network rate. Figure 6(e) shows the

variation in throughput when the minimum network rate is altered for the same peak

network rate. While default flow control shows a degradation of up to 50% over a

bandwidth variation of 2.5Mbps, the maximum degradation of AFC is only 25% over

a bandwidth span of 4Mbps.

3.5.4.5 Sensitivity to Fluctuation-pattern

We now evaluate the performance of default flow control and AFC for other fluctuation

patterns of application read rate. We consider repeated fluctuations throughout the

connection. Each period of 1RTT is considered as a slot and we vary the number of

consecutive slots for which the application is reading at AR and 0. The network rate

is constant and greater than the average application read rate, for simplicity.

From the application profile of < 0, 6, 6 > Mbps that we have considered so far, we

create two sets of scenarios: application idle for 1 slot per fluctuation and application

idle for 2 slots per fluctuation. In each of these sets, we further vary the number of

reading slots of application from 1 to 4. All in all, there are 8 scenarios. The network

rate is 15Mbps and the RTT is 530ms. The results are shown in figure 6(f).

The aggregate throughput intuitively decreases with increase in idle slots and

increases with increase in reading slots. A pathological scenario arises when the

application reads for exactly one slot before becoming idle. This is because TCP has

an inherent delay of half RTT. Even with AFC, the sender learns about the increased
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receiving rate half an RTT late. By the time new data reaches the receiver, it has

gone idle. Thus, in every 2 slots, the receiver can successfully accommodate exactly

one buffer size of data. The throughput is thus buffer limited and same for both

default and optimized cases. In other scenarios, AFC is able to improve throughput

by at least 63% in all scenarios up to a maximum of 150%. We also observe that with

increase in number of reading slots per fluctuation, the difference in the throughput of

classic flow control and AFC starts to reduce. This is expected behavior, as increasing

number of reading slots indicate a steadier network/application environment. Thus,

for a variety of application fluctuation patterns, AFC provides significant gain(more

than 60%) over classic flow control.

3.6 Issues

• Computational Overhead: Adaptive flow control requires the receiver to

monitor the rate at which the buffer is getting drained at the receiver. A

sample of application read rate is computed whenever the receiver gets any new

data or the application reads from the buffer. Both these computations can be

piggy-backed on TCP receive module and the receive call from an application

on a TCP socket, respectively. In order to avoid overshoots in calculation when

a bunch of packets are read together, a single sample of application read rate is

computed when the receive/read module is invoked. Two new state variables;

smooth rx and last rx, are maintained to monitor application read rate at the

receiver. If the application read rate changes beyond a factor of the last rate

and no ACK is scheduled for a while, a proactive feedback is sent to the sender.

The computation at the sender is done whenever an acknowledgement is re-

ceived; the flow window is computed by adding the advertised window and

RTT times application read rate. The window size and read rate are read from

the TCP header and round trip time is precomputed at the sender. The sender
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also records a timestamp; ts recover, at every open window event to manage

reliability at the sender.

All in all, AFC introduces one state variable at the data sender, two state

variables on the data receiver and one TCP header options field into the existing

TCP protocol. Constant time computations are added on data/ACK receive

at receiver/sender, respectively. Thus, AFC introduces a constant magnitude

overhead over classical TCP flow control.

• Application in PC environment: We have motivated adaptive flow con-

trol in mobile platforms, as resource limitations make TCP flow control more

vulnerable. We believe that adaptive flow control can also be applied to other

flow control dominant computing environments, like servers and data centers.

Though powerful processors, more memory and flow control solutions such as

Linux auto-tuning prevent TCP flow control from becoming a bottleneck for

application performance, adaptive flow control can reduce the buffer overheads

per TCP connections.
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CHAPTER IV

IMPROVED NETWORK DEDUPLICATION FOR

MOBILE DEVICES

4.1 Introduction

Several recent efforts have established that there are considerable redundancies in

network traffic [10, 25, 8] that are not fully leveraged by application layer approaches

[30, 31, 32]. Network deduplication (dedup1) is a class of solutions that exploits

such redundancies to improve network performance [10, 8, 11, 50]. Briefly, a dedup

source (dd-src) intercepts traffic coming from the sender; segments the traffic into

chunks of byte-sequences; and sends across only the hash of a byte-sequence if it is

a repeating sequence. The dedup destination (dd-dst) then inflates any hashes back

to the original byte-sequences and forwards the traffic to the eventual receiver. The

reduction in the number of bytes sent between the dd-src and dd-dst results in

improved network performance by allowing the network to sustain a greater traffic

load and by reducing congestion levels for a given volume of traffic.

The application of dedup to wireless environments is an attractive proposition

due to the ever-prevalent pressures on wireless capacities. Wireless service providers

continually attempt to support more users and higher traffic loads without having

to use additional spectrum, and dedup is a viable low-cost solution to do so. A

straightforward deployment of dedup in a wireless environment would involve the

dd-src residing in the wireless service provider’s network (e.g., the SGSN in 3G) and

the dd-dst residing on the mobile.

We argue in this work that dedup faces a unique challenge when used in mobile

1For brevity we refer to network deduplication as dedup in rest of this description.
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environments. In static wireline environments, the dd-src is typically aware of the

complete cache at the dd-dst by virtue of being on the data path to the destination.

However, there exist several mobile scenarios where the dd-src is likely to have

knowledge of only a small subset of the cache at the mobile. We elaborate on such

scenarios in [12]. However, if such an asymmetry exists between the caches at the

dd-src and at the dd-dst, the efficiency of traditional dedup techniques is a restricted

function of the smaller cache.

In this context, we consider the following question: How can all of the past cached

information at the mobile be successfully leveraged for dedup by any given dd-src?

In answering the question we categorize traditional dedup techniques as symmetric

caching techniques where the dd-src and dd-dst maintain identical caches. We

then introduce a new approach for dedup in mobile environments called asymmetric

caching.

Fundamentally, asymmetric caching allows for the cache at the dd-dst to be larger

than that at the dd-src. However, it enables the dd-dst to send feedback about por-

tions of its cache to the dd-src. The feedback, sent in real-time, is selected to be

pertinent to the ongoing traffic flow. The dd-src thus performs its operations not

just based on its regular cache, but also based on the feedback received. The feedback

selection problem is non-trivial because not only is the goal to increase redundancy

elimination, but also to achieve a high feedback efficiency (ratio of bytes saved from

transmission to bytes sent as feedback). Thus, the core of the asymmetric caching

solution consists of an application agnostic mechanism that can partition past and cur-

rent traffic into contiguous byte sequences called flowlets based on stationarity when

the underlying byte stream is considered as a time series. Subsequently, feedback se-

lection occurs by matching an arriving flowlet with a past flowlet, and then choosing

content appropriately from the past flowlet to send as feedback. We elaborate on

these mechanisms in Section 4.3.
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Asymmetric caching achieves considerably better redundancy elimination by virtue

of exploiting a much larger cache at the dd-dst. We show later with trace driven

evaluations that asymmetric caching can increase redundancy elimination by over

100%, and provides such improvement even when the cache size at the dd-src is a

fraction of that on the dd-dst. Furthermore, asymmetric caching achieves a feed-

back efficiency (ratio of bytes saved from transmission using feedback to bytes sent

as feedback) of over 6X. In other words, for every byte of feedback sent upstream,

6 bytes of downstream data are saved. In terms of adoption, asymmetric caching can

be incrementally and independently deployed. A wireless service provider can thus

deploy asymmetric caching to gain from all the past cached content accumulated on

the mobile without requiring any cooperation from other service providers the mobile

might utilize. Also, using prototype implementations of asymmetric caching on a lap-

top (Linux) and a smartphone (Android), we demonstrate that the CPU and memory

overhead are quite reasonable.

In the rest of this chapter we introduce the concept of asymmetric caching for

dedup in mobile environments. We also answer several questions that arise including

the following: How is the feedback chosen to make dedup perform better? Are the

dedup benefits with asymmetric caching significant enough to justify the cost of the

feedback? How much does asymmetric caching improve performance over a symmetric

caching solution in a mobile environment? What are the overheads of implementing

asymmetric caching on standard mobile platforms?

4.2 Scope and Motivation

4.2.1 Scope

The focus of this work is to enable better wireless network performance through the

use of improved network deduplication for mobile devices. The technical contributions

of the work broadly apply to a variety of mobile devices and networks. Nevertheless,
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we restrict the scope of the proposed work as follows:

• We specifically focus on laptops and smartphones as the mobile devices of

interest, and 3G and WiFi as the wireless technologies used at such devices.

• With regard to the wireless environment, since spectrum is inarguably more

expensive in 3G environments, we primarily focus on 3G networks as the tar-

get environment for the proposed solution, but consider devices that consume

content through both 3G and WiFi. However, our proposed solutions can be

deployed in WiFi environments as well if required.

• While dedup can be deployed in an end-to-end fashion, we focus on a last-

hop layer 2.5 deployment model for this work. In such a model, the dedup

functionality is realized at entities on either side of the wireless link. While

the mobile device is the only candidate deployment location for the dedup-dst,

the dedup-src deployment location is likely to be a node such as the Serving

GPRS Support Node (SGSN).2 In the rest of this dissertation, for brevity, we

generically refer to the upstream dedup node as the dd-src, and the downstream

dedup node as dd-dst. Where the deployment location is relevant, we assume

the SGSN as the deployment location for the dedup-src. However, the solution

may be deployed in possibly other nodes (e.g., a dedicated dedup server) inside

the wireless service provider’s network.

• Finally, we restrict our focus in this work to dedup on the downstream and

on only unencrypted traffic. Wireless traffic remains dominantly downstream

and a significant portion of the traffic is not end-to-end encrypted. Hence, we

believe that the contributions of this work will have significant impact in spite

2We consider the SGSN as the point of upstream deployment as opposed to the Gateway GPRS
Support Node (GGSN) since it already performs per-user functions such as encryption. The
dedup-src can be Packet Data Service Node (PDSN) in CDMA networks, or the Access Point
for WiFi networks.
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of these restrictions. We leave for future work the extensions of the proposed

strategies for upstream and end-to-end encrypted traffic.

4.2.2 Motivational Scenarios

Traditional network deduplication solutions require the dd-src to rely only upon

portions of the dd-dst’s cache that it is aware of. Such knowledge at the dd-src is

implicitly accumulated when the corresponding data traffic flows through the dd-src

en-route to the dd-dst. For static wireline hosts, such an arrangement is quite suffi-

cient as the dd-src is always likely to be along the data-path to the dd-dst.

The basic premise of this work, however, is that for mobile devices using wireless

connections, the dd-src is likely to be aware of only a fraction of the cache at the

dd-dst. Thus, the dd-src is unable to perform deduplication to the fullest extent

possible.

We now provide three scenarios in which the above disconnect between the contents

of the dd-dst cache and the dd-src cache manifests itself.

• Multi-homed Devices: Most mobile devices today consume content through het-

erogeneous interfaces. WiFi is the preferred access technology when available

due to its low cost and high data rate properties. However, 3G is the access tech-

nology used when users are not at locations with WiFi access. Recent studies

of wireless data usage have profiled how both technologies are heavily used by

mobile devices [51]. Moreover, cellular data offloading to WiFi is observed uni-

formly across both laptops and smartphones, and across different smartphone

platforms [52].

With traditional dedup, such data access offloaded to WiFi cannot be leveraged

for redundancy elimination when the 3G interface is used, because the dd-src

is different.

• Resource Pooling: Cellular providers have increasingly started to perform IP
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core resource pooling that is part of the 3GPP standard. SGSN pooling is an

example of this trend. In traditional GPRS networks, each SGSN, for example,

is wholly responsible for its own service area. However, with SGSN pooling in

3G networks, all the SGSNs in the network work together, and the capacity load

between them is distributed by the base station controllers (BSCs) and radio

network controllers (RNCs). All BSCs and RNCs are connected to all SGSNs.

Any mobile attached to the network is dynamically routed to the SGSN as per

the current load distribution [53].

Thus, the specific SGSN that serves a mobile at a certain point in time does

not need to be the same SGSN that serves the mobile at a different time. If

traditional dedup were to be used, the dd-src at a subsequent SGSN will be

unable to use the entire data cache at the mobile because it has no knowledge

of the cache entries accumulated through a different SGSN.3

• Memory Scalability: With traditional dedup, the dd-src dynamically creates a

complete date cache for each associated dd-dst. A single SGSN typically serves

100,000-1,000,000 simultaneously attached users [54]. Even if SGSN pooling

were not to be performed, requiring the SGSN to maintain persistent state

across the different attachment sessions for a mobile is thus quite prohibitive.

Thus, if the cache state per user is maintained only during the lifetime of that

attachment session, then all data accumulated through past sessions will go

unused.

All of the above scenarios point to the need for an approach that allows the

dd-src to leverage the full extent of the cache at the mobile device, even if it might

not have prior knowledge of the entire cache. In the rest of this section, we outline

any additional goals we want such a solution to satisfy.

3SGSN pooling does not involve state transfer between SGSNs.
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4.2.3 Goals

One approach to address the above-discussed problem is to enable the dd-src to fully

leverage the cache at the mobile device, and therein increase the dedup efficiency for

the downstream communication. However, the following additional goals are critical

for the design of such a solution:

• Overall efficiency: While increasing dedup efficiency has the implicit result of

helping in spectrum conservation by decreasing network load downstream, any

solution has to be explicitly successful in using the overall spectrum (including

both upstream and downstream) more efficiently.

• Application agnostic: Network deduplication is a generic technology that is

application agnostic. Therefore, any solution to improve dedup has to remain

application unaware, and hence applicable to any application used on the mobile

device.

• Limited overheads: Both ends of the dedup solution (the SGSN or WiFi access

point upstream, and the mobile device downstream) are resource constrained

environments. Hence, any solution to improve dedup performance has to have

deployable computational and memory complexities.

4.2.4 Background: Baseline Dedup

Network deduplication has been widely studied in related work, and in this work

we use the well known byte-sequence caching as the baseline dedup technique. [10]

and [11] first introduced the concept of network deduplication, while [25] and [24]

studied characteristics of real network traffic to establish that there indeed exists

considerable amounts of redundancy that can be eliminated. More recently, [8] and

[9] have proposed techniques to leverage redundancies for traffic reduction in an end-

to-end fashion and by overhearing content in wireless networks, respectively. The
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byte-sequence based dedup is commonly used in both commercial WAN and storage

optimization products (e.g., [50, 55]) and related research (e.g., [10, 25, 8, 11, 24, 9]).

Figure 7(a) depicts the operations of the byte-sequence caching. As shown in the

figure, the byte-sequence caching algorithm essentially optimizes downlink traffic by

replacing previously transmitted byte-sequences or segments of a packet with shorter

hashes. Once the base-station receives a downstream packet destined to a mobile, it

decomposes the packet into segments using Rabin Fingerprinting [56]. For each of

the k segments of a packet, the hashes [H1, H2, ...Hk] are computed using a known

hashing algorithm such as Jenkins. If any of the hashes Hi is found in the cache, the

corresponding segment in the packet is replaced by its hash. The resulting packet

that includes both hashes and previously unsent data segments is then transmitted

to the mobile. By virtue of the hashes being shorter, the load on the wireless link is

reduced. At the mobile, the hashes for the data segments are computed and added to

the hash table. Hashed segments are replaced with the corresponding original data

before the packet is passed on to higher layers at the mobile.

(a) Baseline dedup (byte-sequence caching)

(b) Asymmetric caching

Figure 7: Baseline dedup vs. Asymmetric caching: Asymmetric caching is an overlay
on baseline dedup.
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4.3 Asymmetric Caching

In the rest of this chapter, we present asymmetric caching, a solution that satisfies

the goals identified earlier. Asymmetric caching performs dedup on the unencrypted

downlink network traffic from the dd-src (at the SGSN) to the dd-dst (at the mobile)

as shown in Figure 7(b). It is built atop a baseline dedup algorithm such as the one

described in Section 4.2.4. At a high level, asymmetric caching enables the dd-dst to

send timely feedback to the dd-src about selected portions of its cache. The feedback

should be such that the redundancy elimination efficiency, when the dd-src uses both

its regular cache and the feedback, approaches that of a scenario where the dd-src

has complete knowledge of the dd-dst’s cache. While we present the details of the

approach in [12], we describe the key design elements in the rest of this section.

4.3.1 When is the feedback sent?

Asymmetric caching uses a reactive strategy for sending feedback. Feedback is sent

upstream only when data traffic is flowing to the destination. The matching of arriving

content with past data in the cache is explicitly used for the selection of feedback that

is likely to be most useful. Such a reactive strategy for sending feedback improves the

redundancy elimination efficiency in the downstream while maximizing the feedback

efficiency. An alternative proactive strategy that sends feedback even during idle

downstream periods might have a better redundancy elimination performance by

virtue of being able to send a larger volume of feedback. However, such an approach

will not fare well in terms of feedback efficiency.

4.3.2 Where from is the feedback chosen?

The dd-dst cache, in asymmetric caching, is partitioned into flowlets. Each flowlet

is a contiguous subset of a byte stream. The currently arriving traffic is partitioned

into flowlets, and any arriving flowlet, say flowletarr is matched with one of the past

flowlets in cache. The feedback is then selected from that past flowlet.
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The concept of flowlets is motivated by the fact that most content arriving at

the destination is a composition of a collection of objects. For example, an HTTP

connection carries different objects such as JPEG images, HTML files, CSS scripts,

etc.; an SMB connection carries independent blocks of data as per the scope and se-

quence of requests; and a peer-to-peer application connection carries different chunks

of data, not necessarily contiguous, as requested by the receiver. Thus, a desirable

approach for matching arriving traffic to past content would be to match the cur-

rently arriving object to an object in the past, and then select feedback from that

past object. This would enable the selection of relevant feedback and hence will be

favorable to feedback efficiency. While objects may be identified easily if application

knowledge is used, such an approach would violate the goal to remain application

agnostic. Instead, in asymmetric caching, flowlets are considered as approximations

of underlying objects in the data traffic, but are extracted using purely application

unaware techniques. We elaborate on the approach next.

4.3.3 How are flowlets extracted?

In keeping with the application agnostic goal of the design, asymmetric caching em-

ploys statistical segmentation to break each downstream flow4 into flowlets without

any knowledge of the application. Asymmetric caching relies on the stationarity of

the content of individual objects when considered as a time series to perform the seg-

mentation. Thus, changes in the statistical distribution of the underlying byte stream

is used to identify flowlet boundaries. Each flowlet is then stored as a sequence of

hashes at the dd-dst cache. For any flowletarr, the dd-dst selects hashes from the

past flowlet that matches the most.

The flowlet segmentation used in asymmetric caching is a variant of the strategy

originally introduced in [57]. The segmentation strategy in [57] segments a piecewise

4A flow consists of contiguous bytes/packets with same (source IP, destination IP, source port,
destination port) tuple. A connection consists of an upstream and downstream flow.
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stationary time series {X1, X2, ...., XN} into several separate time series {Xi, ..., Xj},

which are individually stationary. In asymmetric caching, the sequence of bytes in

a flow is considered to be a time series, but the algorithm is simplified to grossly

approximate position of the boundaries between the time series in return for a low-

ered computational complexity that is better suited for a resource-constrained mobile

environment.

The approach takes a parameter l that is the minimum number of observations

required to estimate reliable statistics of a series. At any given location s(> l) in the

series, three segments of the series are considered: segment from X0 to Xs, segment

from Xs to Xs+l and the aggregated segment from X0 to Xs+l. An autoregressive

(AR) model of order p is attempted to be fit on each segment, i.e.

Xi =

j=p
∑

j=1

aiXi−j + σǫ (37)

on each segment, where ǫ is a white noise (error term).

The gain (σ2
a:b) of the white noise for the best fitting model on segment {Xa, ...Xb}

is computed from the sample covariance matrix of that segment. Next, a distance

value d0:s:s+l is computed as:

d0:s:s+l = (s+ l) log σ2

0:s+l − s log σ2

0:s − l log σ2

s:s+l (38)

This is intuitively the extra power of the white noise (error) if the two segments

are considered in one model as opposed to being in separate AR models. If this

distance is more than a given threshold dthresh, a boundary is said to exist between s

and s+ l. If a boundary is not detected, the next considered boundary is after l bytes.

An empirical evaluation of the above solution, discussed later in Section 4.4.3, shows

that when presented with a mixed-source traffic consisting of different object types

such as JPEG, TXT, XML, etc., the object byte boundaries are indeed approximately

identified.
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Finally, the flowlet in cache that has maximum number of matching hashes with

the arriving traffic is identified to be flowletmatch, the flowlet from where feedback is

selected.

4.3.4 How is the feedback selected?

Once flowletmatch is identified, the specific feedback to be sent is selected based on

two parameters: the location of the last matching hash between the flowletarr and

flowletmatch and the latency for feedback on the upstream. Specifically, the location

of the last matching hash in flowletmatch offset by δ hashes, where δ is the number of

segments that the dd-src is likely to have transmitted before the feedback reaches,

is used as the start point for the feedback. δ depends on the average segment size,

upstream data rate, and downstream data rate; all parameters computable at the

dd-dst. γ hashes are selected from the start point, aggregated into a single packet

and transmitted. Note that to ensure that the feedback is always new, the mobile

keeps track of all the hashes that have occurred in past downstream packets from this

dd-src or have been sent upstream in the past. Such hashes are explicitly removed

from any feedback.

4.3.5 How is the feedback used?

Finally, the dd-src maintains a feedback cache in addition to its regular cache. Struc-

turally, the feedback cache is identical to the regular cache and consists of a list of

hashes available at the dd-dst. However, the feedback cache is populated only with

hashes received through explicit feedback from the dd-dst. When data arrives at the

dd-src, each of its hashes is first looked up in the regular cache, and if there is no hit,

the hash is added to the regular cache, but the same hash is then looked up in the

feedback cache. If either of the cache lookups results in a hit, the hash is sent to the

dd-dst. Otherwise, the original data segment is sent as-is. When a hash encounters

a hit in the feedback cache, the hash is deleted after its first use since a corresponding
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entry would have been made into the regular cache.

4.4 Solution Details

This section presents the details of the asymmetric caching solution. We first describe

its operations at the dd-src and the dd-dst respectively, and then discuss system

details for the solution including packet formats and software architecture.

Algorithm 5 Operations at the dd-src
Input: in packet = Packet received
Variables:
regular cache = Regular cache at dd-src
feedback cache = Feedback cache at dd-src
out packet = Packet to be sent
pkt chunks = List of chunks
pkt hashes = List of hashes
seg hash = Hash of a single chunk
on flow = Flow to which in packet belongs
shim hdr = 16-bit header: first bit tells if the following sequence is a hash or original text,
next 15 bits are used to specify the length of the sequence
Functions:
hash(chunk) = Compute hash of chunk
rabinF ingerprints(string) = Return value based chunks of string
dd-srcDedup(in packet)

1: if in packet is going to dd-dst then
2: pkt chunks← rabinF ingerprints(packet)
3: for each chunk in pkt chunks do
4: if hash(chunk) in regular cache or hash(chunk) in feedback cache then
5: out packet← out packet+ shim hdr + hash(chunk)
6: else
7: out packet← out packet+ shim hdr + chunk
8: add hash(chunk) to regular cache
9: end if

10: end for
11: send out packet to dd-dst

12: else[packet is coming from dd-dst]
13: pkt hashes← hashes in in packet
14: for each seg hash in pkt hashes do
15: add seg hash to feedback cache
16: end for
17: out packet← IP and TCP headers of in packet
18: send out packet to upstream node
19: end if
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4.4.1 Operations at the dd-src (SGSN)

The operations of the asymmetric caching at the dd-src can be explained in two

parts: downstream and upstream (see Algorithm 5). For every downstream packet,

asymmetric caching first divides the packet into value based chunks using Rabin

Fingerprinting (line 2). These chunks are then deduplicated using the regular cache

and feedback cache (lines 3 to 10). Specifically, if a matching hash is found in either

of the caches, the original chunk is replaced with a shim header and hash of the chunk.

Otherwise, it is replaced with a shim header and the original chunk. For every new

chunk, its hash is added to the regular cache for future use. The new packet is then

sent to the dd-dst.

Next, for an upstream packet, if it carries feedback from the dd-dst, asymmetric

caching extracts all the hashes and inserts them into the feedback cache (line 14 to

16). If the upstream packet was a piggybacked packet, the packet stripped of the

feedback is forwarded upstream.

4.4.2 Operations at the dd-dst (mobile)

The asymmetric caching algorithm at the dd-dst can be explained in terms of three

functions: cache maintenance, cache organization, and feedback selection.

First, for cache maintenance, asymmetric caching at the dd-dst (dd-dstDedup)

maintains a local cache, called dd-dst cache, that keeps chunks indexed by their

hashes and all the flowlets seen thus far. When a packet is received from the dd-src,

the dd-dst first reconstructs the original packet (line 7 to 14). The incoming packet

is parsed into hashes and clear content by looking at the shim headers. The hashes

are replaced by their corresponding chunks found in the dd-dst cache, while clear

content is copied as it is, without any shim headers. The reconstructed packet is sent

up the network stack. The dd-dst then hashes all the Rabin chunks of the packet to

create a list seg hashes (lines 16 and 17).

63



Algorithm 6 Operations at the dd-dst
Input: in packet = Packet received
Variables:
d thresh = Distance threshold to determine start of new flowlet
p = Order of AR() model to fit on the series
ar = Estimated coefficients of the p order AR model
win factor = Region to be searched in the past flowlet
dd-dst cache = Extensive cache at dd-dst
out packet = Packet to be sent
on flow = Flow to which in packet belongs
id count = Number of flowlets seen so far, used as flowlet id
current flowlet[on flow] = Latest flowlet being created from on flow
hit count[flowlet][past flowlet] = Redundant bytes between current flowlet and an old
flowlet in dd-dst cache
parsed pkt = Mixed list of chunks and hashes in dedup packet
seg hashes = List of hashes of chunks
adv hashes = List of hashes to advertise
last match[flowlet][past flowlet] = Pointer to last matching hash in past flowlet for
flowlet
last adv[flowlet][past flowlet] = Pointer to last hash advertised from past flowlet for
flowlet
δ = Temporal offset to account for network delays
Functions:
hash(chunk): Compute hash of chunk
unhash(element): Fetch chunk (from cache) whose hash is element
rabinF ingerprints(string) = Return value based chunks of string
gain(bseries)

1: N ← len(bseries)
2: covariance matrix C ← [Ci,j ], for 0 ≤ i, j ≤ p, where Ci,j ← 1

N−p

∑N
k=p bseries[k − i] ∗

bseries[k − j]
3: matrix D ← [Di,j ], for 0 ≤ i, j ≤ p− 1, where Di,j ← Ci+1,j+1

4: column vector b← [bi,0], for 0 ≤ i ≤ p− 1, where bi,0 ← Ci+1,0

5: α← D−1 ∗ b ⊲ estimate AR coefficients
6: vector ar ← [1, α0, ..., αp−1]
7: return N ∗ log(ar ∗ C ∗ arT )
updateFlowlets(on flow,packet)

1: if series[on flow] is null then
2: series[on flow]← packet ⊲ First packet in the flow
3: current flowlet[on flow]← (++id count)
4: return
5: end if
6: dpacket ← gain(series[on flow] + packet)− gain(packet)− gain(series[on flow])
7: if dpacket > dthresh then
8: last flowlet← current flowlet[on flow]
9: current flowlet[on flow]← (++id count)

10: link last flowlet to current flowlet[on flow]
11: end if
12: series[on flow]← packet
13: return
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Algorithm 7 Operations at the dd-dst(continued)

subsequenceMatch(seg hashes, flowlet, past flowlet)

14: num hashes← len(seg hashes)
15: if last match[flowlet][past flowlet] is null then
16: last match[flowlet][past flowlet]← first hash in past flowlet
17: end if
18: max seq ← hashes in seg hashes found among win factor ∗ num hashes hashes after

last match[flowlet][past flowlet]
19: last match[flowlet][past flowlet]← last hash in max seq
20: return length of max seq

bestMatchedFlowlet(flowlet,seg hashes,old flowlet list)

1: for each past flowlet in old flowlet list do
2: Add subsequenceMatch(seg hashes, flowlet, past flowlet) to

hit count[flowlet][past flowlet]
3: end for
4: best past← past flowlet with maximum hit count[flowlet][past flowlet]
5: if best past is flowlet then ⊲ Ongoing flowlet matches most
6: top2← past flowlet with 2nd most hits
7: if hit count[flowlet][top2] ≥ K% of hit count[flowlet][best past] then
8: best past← top2
9: end if

10: end if
11: return best past

selectAdvertisement(flowlet,matched flowlet)

1: anchor ← later of last match[flowlet][matched flowlet] and
last adv[flowlet][matched flowlet]

2: anchor ← δ + 1 hash after anchor
3: adv hashes←MTU/(2 ∗ hash length) hashes after anchor in matched flowlet
4: Remove all hashes from adv hashes which have been seen downstream or sent upstream

before return adv hashes

Next, for cache organization, asymmetric caching uses the list of hashes, created

and maintained by the above mechanism, to select relevant feedback for the ongoing

flow. Specifically, the dd-dst first checks if a new flowlet has started in the current

flow. This is done by the updateF lowlets module, which uses the segmentation

approach presented in Section 4.3.3. It checks if a statistical boundary has occurred

right before the current packet (line 6 and 7). If yes, a new flowlet is added in the

current flow and the last flowlet of the flow is linked to it (line 8 to 11). The gain

method is used to compute the power of white noise error term of any given series

(i.e., sequence of bytes). The flow byte series is modified to remember the content of
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Algorithm 8 Operations at the dd-dst(continued)

dd-dstDedup(in packet)

5: if in packet is coming from dd-src then
6: on flow ← (src ip, dest ip, src port, dest port) of packet
7: parsed pkt← Parse in packet into chunks and hashes
8: for each element in parsed pkt do
9: if element is a hash then

10: out packet← out packet+ unhash(element)
11: else
12: out packet← out packet+ element
13: end if
14: end for
15: send out packet to the application above
16: pkt chunks← rabinF ingerprints(out packet)
17: seg hashes← list of hashes of pkt chunks
18: updateF lowlets(on flow, out packet)
19: flowlet← current flowlet[on flow]
20: old flowlet list← all the past flowlet in dd-dst cache in which any of seg hashes

have appeared
21: Insert seg hashes with flowlet in dd-dst cache
22: if old flowlet list is null then
23: adv hashes← null
24: else
25: best flowlet← bestMatchedF lowlet(flowlet, seg hashes, old flowlet list)
26: adv hashes← selectAdvertisement(flowlet, best flowlet)
27: end if
28: else ⊲ packet is going to dd-src

29: if adv hashes is not null then
30: out packet← in packet+ adv hashes
31: end if
32: send out packet to the dd-src
33: end if

this packet (line 12). In case this is the first packet, a new flowlet is created for the

ongoing flow and the flow byte series is set to be the packet’s content (line 1 to 5)

Once the dd-dst has updated the current flowlet in the flow, the dd-dst can

select and advertise feedback (feedback selection) using seg hashes. To reduce the

complexity of searching in the cache, the dd-dst cache maintains a mapping from

each hash to a list of past flowlets in which it had appeared. Only the past flowlets

that have seen any of the hashes in the current flowlet are considered for feedback.

After extracting these, seg hashes are inserted in the dd-dst cache along with the
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current flowlet ID (line 21). Next, the bestMatchedF lowlet module takes the hashes

of the packet and determines the number of hits seen in any past flowlet in the

cache. The hit count for each past flowlet with the current flowlet is updated using

the subsequenceMatch method. This method searches for the seg hashes among

(win factor×num hashes) hashes in the past flowlet after the last matched hash in

that past flowlet (line 18). The algorithm remembers where the current flowlet has last

matched with the old flowlet. After these updates, the bestMatchedF lowlet selects

the old flowlet with overall maximum hits for feedback. In case the best matching

flowlet is the current flowlet itself, the module selects the second best matching flowlet

that has K% of the maximum hits (line 5 to 9). Feedback is then selected from this

old flowlet by the method selectAdvertisement.

The selectAdvertisement method keeps track of the last hash that matched be-

tween current flowlet and any old flowlet and also the last advertised hash for the

pair. For the best matching flowlet, it first determines the later of these two point-

ers and then jumps δ hashes after that. This δ is the temporal offset to account

for the feedback delay incurred by the underlying network. The larger the feed-

back delay, the more the offset must be for the feedback to be relevant when it

reaches the dd-src. In our implementation we derive δ from the uplink and down-

link data rates seen at the dd-dst. After including the temporal offset, the dd-dst

selects MTU/(2 ∗ hash length) hashes to advertise to the dd-src. We choose these

many hashes as the minimum chunk size created by our rabinF ingerprints method

is 2 ∗ hash length, so MTU/(2 ∗ hash length) is the maximum number of chunks

expected in a downstream packet.

This feedback is further optimized by removing from it all hashes that have oc-

curred in the downstream or have been advertised upstream by the dd-dst. Note that

if there are no hits in this packet, no feedback is generated (line 22 of dd-dstDedup).
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The feedback to the dd-src is opportunistically piggybacked on upstream data pack-

ets, e.g., TCP ACKs. If the dd-dst has some feedback to send in the form of hashes, it

inserts these hashes into the payloads of upstream packets (line 30 in dd-dstDedup)

and sends the packet upstream. If upstream data packets are not pending to be

transmitted, a custom packet is constructed and transmitted.

4.4.3 Related Issues

Although the detailed algorithms presented above have established key insights for

asymmetric caching, there are several issues associated with the design choices of the

algorithms.

• Flowlet segmentation: We evaluate the performance of the flowlet segmenta-

tion algorithm in isolation. We take a set of 25 HTTP connections from one

user, each containing one or more objects. The absolute object boundaries are

identified through manual analysis of each connection in Wireshark by looking

at HTTP GET requests and responses. This gives the actual number of ob-

jects; a total of 62 objects across 25 connections. Next we run the segmentation

algorithm on each connection and record (i) number of flowlet boundaries de-

tected and (ii) number of flowlet boundaries matching real object boundaries.

For the 62 objects, our flowlet segmentation detected 56 objects. Out of these,

36 flowlet boundaries were found at the same location as the object boundary.

Thus 60% of the flowlets were accurately detected. The algorithm does over-

segment in some connections, here 56 > 36. But over-segmentation does not

affect the performance of asymmetric caching as when the best matched flowlet

is not long enough to fill a packet of feedback, more feedback is selected from

the following flowlet, which is the same object in the case of over-segmentation.

Additionally, the algorithm is unable to detect a flowlet boundary in two cases.

The first case is when there is exactly one object in a flow, which does not
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Table 5: Performance of hash algorithms in collision handling

Hash Digest Data set Collisions TCP checksum
algorithm size size detection

SHA1 20B 5GB 0 N/A
MD5 16B 5GB 0 N/A
Jenkins-8B 8B 5GB 0 N/A
Jenkins-4B 4B 5GB 0.02% 100%

impact performance. The second case occurs when all the objects in the flow

belong to the same statistical source, e.g., all text files or all GIF images. Among

the 62 objects being evaluated here, 15 object boundaries were missed due to

this case. However, our macroscopic results show that this does not impact the

overall results. Improving the segmentation further is part of our future work.

• Hash function selection: We use Bob Jenkins hash algorithm to create 8B hashes

of the packet chunks on the dd-src and dd-dst [58]. The choice of hash is

based on two conflicting goals: desire for more bandwidth savings by reducing

the number of bytes sent on the network and minimum collision rate so that

packets are not corrupted during dedup. Popular hash functions such as SHA1

and MD5 are typically computationally heavy and the digest size is large. We

compare the aforementioned hash algorithms and the two versions of Jenkins

hash (a 4B digest size and an 8B digest size) to hash the Rabin fingerprints

generated over 5GB of traces. As shown in table 5, we observe no collisions

with SHA-1, MD5 and Jenkins 8B hash, but 0.02% collision rate with Jenkins

4B hashing. Jenkins 8B provides a good trade-off between bandwidth savings

and collisions, making it our choice for the implementation. Jenkins hash has

also been used in prior works on network dedup [8, 9]

• Handling hash collisions: We use TCP checksum to detect hash collisions. A

TCP checksum is computed on the header and the payload of a packet. As we do
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not mangle TCP headers, the checksum is sent unchanged. After reconstructing

the original packet from a deduped packet the dd-dst device checks to see if the

checksum matches. If not, it sends a control message upstream to the dd-src,

requesting it to delete all the hashes that it had sent in the corresponding

packet. The dd-dst also includes the hashes in the upstream packet. In our

hash algorithm evaluation, we also apply this detection test to all cases. While

the test was not invoked with SHA1, MD5 or Jenkins 8B, it was invoked by the

Jenkins 4B hash. Table 5 shows that TCP checksum was able to detect 100%

of the collision events.

• Cache management: Both the dd-src and dd-dst have finite cache space. Thus,

asymmetric caching uses an LRU cache eviction policy. At the dd-src, LRU

runs independently on the regular cache and the feedback cache, and evicts the

least recently used hashes in each cache. As the dd-dst cache is organized in

flowlets, the LRU on the dd-dst evicts least recently used flowlets at every run.

All the state maintained for that flowlet is removed. The hashes (and chunks)

seen in that flowlet are also removed unless they have also appeared in some

other flowlet, which is still in the cache. A hash (and the original chunk) is

evicted once the last flowlet referencing it is removed from the cache.

4.4.4 System Architecture

In the rest of this section we present a system architecture for asymmetric caching

that is detailed in Figure 8. As shown in the figure, asymmetric caching (AC) works

at layer 2.5 on the dd-src and dd-dst.

• Dedup source: This module (shown in the dotted-line box in Figure 8 (a))

captures the downstream packets at the base-station. The captured packet is

then broken into chunks using Rabin Fingerprinting and hashes of each chunk
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Figure 8: Software prototype of asymmetric caching: It consists of dd-src at 2.5
layer of the base station and dd-dst at 2.5 layer of the mobile.

are searched in the regular and feedback cache. If a matching hash is found,

that chunk is replaced with its hash in the packet. If any packet is modified from

its original, the IP options value is changed to reflect the same. We consider

transport layer payload for dedup. Inside the transport layer payload, 2B5

shim headers are inserted before every individual chunk and hash to demarcate

original content from hashed content. Shim headers are not added if the entire

packet is to be sent as original. This modified packet is then inserted back in

the stack to be routed out.

• Dedup receiver: At the mobile, the dedup packet is received by the receiver

module (the dotted-line box in Figure 8 (b)). This module takes care of inflating

the packet into its original form, updates flowlets in the caches, and selects the

hashes to be advertised. It then passes the reconstructed packet to the higher

layer (i.e., network layer).

• Feedback source: This module on the mobile device (the thick solid line box in

Figure 8 (b)) is responsible for getting the hashes chosen by the dedup receiver

5The first bit is set if it is a hash value and the rest of the bits indicate the length of the following
chunk/hash
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and piggybacking the hashes on the next upstream packet. This module cap-

tures an outgoing packet, using Netfilter[59], modifies the IP options field and

adds feedback to the packet. This packet is then inserted into the stack to be

routed out.

• Feedback receiver: At the base-station, the feedback receiver (the thick solid

line box in Figure 8 (a)) captures upstream IP packets with header options set.

It then strips off the feedback from the payload, restores the original header

and forwards the new packet to upstream nodes. The extracted hashes are

inserted into the feedback cache at the base-station and used for further network

deduplication.

4.5 Performance Evaluation

We evaluate asymmetric caching via trace-based analysis of real network traces. We

first explain the trace collection environment, and then describe the trace analysis

methodology. Finally, we present trace-based evaluation results as well as prototype-

based experimental results.

4.5.1 Collecting Network Traffic

We use real network traffic collected from 30 different mobile users (volunteers), 5 of

whom are smartphone users and the rest are laptop users. We use these traces for

performing the trace-based evaluation. Below are the details of the trace collection

process.

• Connectivity: The laptop users relied only on WiFi connectivity for their net-

work access. The smartphone users relied on both WiFi and 3G connectivity.

The data collection spanned a period of 3 months and yielded over 26 Gigabytes

of unsecured downlink data. Since we do not require any change in the user
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access pattern for the trace collection, users accessed the Internet as per their

normal behavior.

• Devices and tools: The laptop users ran Windows 7 and Linux operating systems

and used Wireshark to collect their traces. The smartphone users used the

Samsung Vibrant Galaxy phone and the HTC G2 phone, both running the

Android 2.1 operating system on the T-Mobile network and relied on Tcpdump

for trace collection. Users were able to parse trace files and remove any sensitive

information before submitting them for analysis. Only unencrypted traffic was

used in the analysis.

• User demographics: The volunteers included full-time employees at an industry

research lab and an enterprise, as well as graduate students at a large university

campus. The users span the age group of 21 to 50 and were spread over two

different geographic regions.

4.5.2 Analysis Methodology

We use a custom trace analyzer to operate on the above traces. The analyzer models

components of asymmetric caching presented in Section 4.3 and is configured and

used for analysis, as follows:

Caches: The analyzer maintains three caches in the form of hash tables (i) dd-src

regular cache (ii) dd-src feedback cache and (iii) dd-dst cache. It also maintains ad-

ditional data structures required by the asymmetric caching algorithm at the dd-dst.

We set the default dd-src cache size (i.e., regular + feedback) to 1MB and the default

dd-dst cache size to 250MB. We explicitly study the sensitivity of the solution to

cache sizes later in the section.

Past and Present Trace: To emulate the temporal history of the traces, the packet

trace for each user is split equally into a past trace and a present trace (e.g., a 40MB

trace was split into a 20MB past and a 20MB present. Then, the past trace is used

73



 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

R
e

d
u

n
d

a
n

c
y
 i
n

 n
e

tw
o

rk
 (

%
)

User Number

Total Redundancy
Average

(a) Total network redundancy

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

R
e

d
u

n
d

a
n

c
y
 I

d
e

n
ti
fi
e

d
 (

%
)

User Number

Redundancy Identified
Average

(b) Redundancy identified

Figure 9: Identifying network redundancy: (a) shows there exist network redundancy
(avg., 19.6%) and (b) shows asymmetric caching finds most of network redundancy
(avg., 89.7%).

as an input to the analyzer to populate the initial cache at the dd-dst. This is the

memory collected at the dd-dst without the knowledge of the current dd-src. Next,

in the present trace, a set of 30 connections is randomly selected and used for the

second set of inputs to the analyzer.6 We use a minimum threshold of 5KB for the

size of connections under consideration to avoid very small (redundant) connections

and to filter out insignificant connections from the analysis.

Metrics: Given the above set-up, we monitor three values for each user: (1) redun-

dant bytes found in the dd-src’s regular cache, (2) redundant bytes found in the

dd-src’s feedback cache and (3) total number of unique hashes sent as feedback from

dd-dst to the dd-src.

Comparison: We also implement and run the byte-sequence caching algorithm (with

average segment size of 128B) on a merged trace of the past and the 30 connections

from the present for each user. This represents the scenario where the dd-src has

all the hashes that the dd-dst has ever seen and thus gives a measure of ‘ideally’

achievable dedup.

6We have observed that the trend of redundancy is similar even when considering the entire
present trace for each user.
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4.5.3 Evaluation Results

4.5.3.1 Identifying Network Redundancy

We first show how much network redundancy exists in the collected traces and how

much of that redundancy can be identified by asymmetric caching. Figure 9(a) plots

total network redundancy that exists in the 30 user traces. Here, the total network

redundancy is defined as the number of total cache hits at dd-dst for each chunk of

a received packet, if the chunk exists in local cache (cache hit), we count the chunk

as redundant bytes. As shown in the figure, there is indeed network redundancy of

19.6% on average.

Next, Figure 9(b) shows the percentage of the redundant bytes identified by asym-

metric caching (found in Figure 9(a)). Specifically, we measure the number of cache

hits at a dd-src based on both regular and feedback caches and use it for the re-

dundant bytes identified. As shown in the figure, the asymmetric caching is able to

identify on average 89.7% of the total redundancy, a considerable fraction of which

is attributable to the feedback (see next subsection). Also note that its variance is

small across 30 different users, owing to our fine-grained and adaptive advertisement

scheme.

4.5.3.2 Feedback Efficiency

In this section, we present the feedback efficiency of asymmetric caching. Figure

10(a) plots the ratio (λ) of the redundant bytes identified to every feedback byte. If

λ is greater than 1, asymmetric caching’s feedback is effective in finding redundancy,

and vice versa. As shown in the figure, the average λ value over 30 users is 6.74.

One interesting observation is that the higher a user shows mobility (i.e., smartphone

users including user 10, 28, 30), the higher λ is.

Next, we further study how much of the redundancy elimination is attributable

to the feedback cache versus the regular cache. Recall that the redundant bytes are
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Figure 10: Feedback Efficiency: (a) shows the ratio of the total redundancy identified
to the feedback bytes (λ), and (b) shows how much each cache (feedback and regular)
contributes to the redundancy detection.

identified by searching its regular cache and then, if not found there, the feedback

cache. For this, we analyze the redundancy found using only the feedback cache (F )

and the redundancy found using only the regular cache (R). Figure 10(b) shows

relative contribution from both R and F for each user. As shown in the figure,

feedback cache largely contributes to 50.35% of the redundancy elimination, whereas

the regular cache contributes to 39.3% of the redundancy elimination. Note that the

hits in the regular cache can be considered as an indication of the performance of

conventional dedup that relies only on symmetric caching. Hence, this result shows

that asymmetric caching can improve the performance of dedup significantly.

4.5.3.3 Sensitivity to Cache (Memory) Size

In this section we measure the sensitivity of asymmetric caching to cache size. In this

experiment, we first fix the cache size of the dd-src to 2MB. Then, while we increase

the cache size of the dd-dst (from 5MB to >250MB), we analyze the percentage

of redundancy identified by the asymmetric caching. We also analyze the opposite

setting to study the sensitivity of dd-src’s cache size on its performance (250MB of

dd-dst cache and from 0.4MB to >2MB of dd-src cache).
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Figure 11: Sensitivity to cache size: (a) shows that asymmetric caching can identify
89% of redundancy by using 150MB on the mobile device. (b) shows that the asym-
metric caching requires only a small cache size at the dd-src (e.g., ∼1MB) to achieve
85% of the redundancy detection.

Figure 11 shows the results of the both experiments. First, as shown in Figure

11(a), given the constant size of cache at the dd-src, the redundancy identified by

asymmetric caching increases with the increase in dd-dst cache size. This trend is

a result of fewer cache evictions when using larger caches. In addition, with only

150MB of cache size at dd-dst, asymmetric caching is able to identify 89% of the

redundancy.

Next, as shown in Figure 11(b), even with a small cache (e.g., ∼1MB) at dd-src,

asymmetric caching is able to identify more than 85% of redundancy. Finally, looking

at the both figures in Figure 11, we can observe that for a 1:100 ratio in the cache

sizes (e.g., ∼1MB at the dd-src and 100MB at the dd-dst), asymmetric caching

effectively detects and leverages redundancy. Furthermore, this ratio supports the

design goal of asymmetric caching—the use of large cache at the dd-dst with a small

cache requirement at the dd-src.

4.5.3.4 Performance under varying data-rates

So far we have assumed that the uplink and downlink data-rates are same, i.e. for

every byte downstream, the mobile sends a byte of feedback upstream. In this section,

we analyze the performance of asymmetric caching when the downlink and uplink
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Figure 12: Performance with varying data-rates: (a) shows the % redundancy iden-
tified for increasing downlink to uplink data-rate ratio, and (b) shows the feedback
efficiency in each case.

data-rates are asymmetric. We vary the ratio of downlink to uplink data-rates from 1

through 5 and monitor the percentage of redundancy leveraged and feedback efficiency

in each case. The results are shown in Figure 12.

We observe in Figure 12(a) that as downlink rate grows to 5× the uplink rate, the

redundancy identified by asymmetric caching goes down to 68%. Interestingly, for

the same ratio, the feedback efficiency grows to 8×, as shown in Figure 12(b). This

shows that when asymmetric caching is restricted to send less upstream feedback,

the redundancy elimination performance drops modestly and the feedback is more

efficient.

4.5.3.5 Application-agnostic dedup

Finally, we measure how effectively asymmetric caching works for different types of

application traffic. Recall that one of the design principles of asymmetric caching is

to remain application agnostic— not require application information— but provide

dedup performance regardless of application types. To this end, we analyze the trace

of 30 users to calculate the percentage of redundancy identified by asymmetric caching

over total network redundancy for each application. We classify the applications based
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on the port numbers used for the connections.

Table 6: Application-agnostic redundancy identification
Applications Port Numbers Redundancy Identified (%)

HTTP 80 98.76

ICSLAP 2869 80.48

Android Market 5228 53.10

McAfee, HP, SAP 5555 82.13

P2P and others Ephemeral 97.70

Table 6 shows the performance results of asymmetric caching under different types

of applications. As shown in the table, the asymmetric caching is able to identify

53% to 97.76% of the network redundancy and it does not have radical performance

penalty for specific types of application. This clearly supports our design goal of

application-agnostic feature.
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CHAPTER V

PRECOG: SMART PREFETCHING FOR MOBILE

DEVICES

5.1 Introduction

The adoption of mobile devices such as smartphones has reached a significant thresh-

old with the number of such devices shipped now surpassing the number of PCs

shipped [1]. Nearly 40% of Internet time is now attributed to mobile devices such as

smartphones and tablets [2]. Not only are consumers adopting mobile devices at a blis-

tering pace, but such adoption is being witnessed within the traditionally conservative

enterprise sector as well. 71% of enterprises are currently deploying or planning the

deployment of mobile applications [3]. Such adoption amongst enterprises is driven

by a clear return-on-investment from mobility in the form of higher employee produc-

tivity, reduced paper work, and increased revenue [4]. An ever-increasing pressure

on wireless network performance and scalability, however, accompanies such exciting

trends.

Cellular technologies such as 3G and 4G 1, in tandem with WiFi, serve as the

fundamental access mechanisms for mobile users. Recent studies show that the

availability-cost trade-offs of the aforementioned technologies results in users rely-

ing heavily on both for data-access [52]. While WiFi operates in the ISM band, and

hence is free to deploy, cellular providers purchase cellular wireless spectrum at FCC

auctions and pay billions of dollars for licenses. The recent FCC auctions for spec-

trum in the 700MHz band resulted in approximately 50MHz of spectrum purchased

1All our discussions apply to both 3G and 4G networks. For brevity we refer to both these
technologies as cellular in the rest of this chapter.

80



for close to $20 Billion [60]. Thus, wireless service providers are heavily motivated to

continually improve efficiencies of how such spectrum is used.

One approach to achieve this is to shift the load from expensive cellular network

to much cheaper WiFi networks. Mobile devices today are almost always equipped

with heterogeneous interfaces with each interface having distinct cost-bandwidth-

connectivity trade-offs. WiFi is low-cost and high bandwidth, but is not always

available for use; whereas cellular is high-cost and low bandwidth, but is almost

always available. Mobile users have access to unlimited data over WiFi but monthly

limits are imposed on data over cellular network. Over WiFi, every gigabyte of data

costs around twelve cents[61], while over cellular it can be over ten dollars[62]. The

costs have an order of two difference. We call this the unbalanced cost problem.

Previous works have considered WiFi offloading to shift ongoing cellular traffic on

to WiFi[63, 64]. But these solutions rely on concurrent availability of both cellular

and WiFi networks. The more prevalent scenario is when user connects to WiFi

in some locations, e.g., home, office, coffee shops and cellular in other places, e.g.,

transit, client offices, stores. In this context, we try to answer the question: How can

time-shifted access over the cheaper (WiFi) network be leveraged more effectively to

reduce cost of the more expensive (cellular) network access?

We answer this question through Precog, a name-independent network-aware prefetch-

ing solution for smartphones and tablets. Prior prefetching solutions proposed for

wired scenarios [13, 14, 15] are (i)network agnostic, i.e. prefetching is done irrespec-

tive of the network in use, (ii)name-based, i.e., they remember the exact webpage,

identified through its uniform resource locator(URL), accessed in the path and only

prefetch a subset of those. However, with the advent of multi-homed devices and

the web becoming increasingly more dynamic, such solutions severely under perform.

Precog addresses these deficiencies through action-based prefetching. Briefly, Precog

remembers not the exact URL accessed in the past, but the actions performed on a
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particular website. We argue that even though web content keeps changing frequently,

there is consistency in the layout of websites and the actions of any given user on

these websites. We leverage this consistency in designing Precog. Additionally, Precog

enables the mobile device to cache over WiFi the content user is most likely to access

over cellular network in the future. We evaluate Precog over real web content fetched

through synthetic user and network traces and show that Precog can give 47% byte

savings over cellular network while using 26% of the bytes prefetched over WiFi.

5.2 Motivation

5.2.1 Limitations in Existing Prefetching Solutions

Prefetching is predictive fetching of content that a user is likely to access in the future.

Traditionally, prefetching has focused on reducing the latency of web access. However,

with the unbalanced cost of network access on mobile devices, prefetching can be used

to offload traffic from cellular to WiFi network. Specifically, a prefetching module can

predict what the user will access over cellular network and fetch it in advance while

the user is on WiFi.

Prior works on prefetching[13, 14, 15] propose name-based prefetching, which relies

on the names, in the form of Universal Resource Locators(URLs), of web content

to decide what to prefetch. Specifically, name-based prefetching remembers users’

browser history in the form of URLs visited in the past. It then selects the URLs

most likely to be accessed again, based on: (i) content triggered prefetching [13, 14],

where the URL fetched most, subsequent to the current URL, in the past, is fetched

again, or (ii) time triggered prefetching [15], where most accessed URL at given time

of day is prefetched every day. All these solutions are based on the assumption that

users access the exact same URL repeatedly and content on Internet does not change

very often. We argue that name-based prefetching, as proposed in prior works, cannot

be applied as-is to offload data from cellular network to WiFi. In this section we list
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the limitations in name-based prefetching:

• Network unawareness : The first and foremost limitation in name-based prefetch-

ing is its network unawareness. Prefetching is triggered by content [13, 14] or

time [15], but not by change in network, as these solutions were focused on wired

environments where network heterogeneity does not exist. With the advent of

ultra-mobile devices, network heterogeneity has become more pronounced. Ad-

ditionally, name-based prefetching is not time-shifted. Content is prefetched for

short-term consumption and not for an hour later.

• Dynamic Web: The web is becoming increasingly more dynamic. Websites

keep updating content to incorporate latest trends and preferences. Content

management systems[65, 66, 67, 68] for the web provide a scalable approach for

web management, but entail dynamic naming strategies. Simple name-based

prefetching will be ineffective on dynamic web as it relies solely on object names

for prefetching.

End users also access similar but not the exactly same content, e.g., a user

might read headline on www.nytimes.com everyday. While the headline is the

main news everyday, the exact URL for the headline may change. A traditional

prefetching solution will try to fetch the same URL everyday but the headline

page keeps changing everyday, or even every hour. In such scenarios, the name

(URL) based prefetching solutions are ineffective.

To support our observation we analyzed the number of URLs changing over time

for nine popular mobile websites[69], for a week. Using wget we downloaded all

the HTML files on each website, up to second level of reference, every six hours,

giving four snapshots per website per day. The twenty-eight snapshots are

labeled S0, S1, ....., S27. The user − agent parameter of wget was set so that

only mobile versions of the websites are fetched and a cookie file is also supplied
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for accessing websites which require logging in, such as Facebook, Twitter,

LinkedIn and Pandora. All the downloaded HTML files are parsed to extract

the URLs referred within href tags. We then compute the number of new

URLs added in a snapshot as a percentage of URLs in the previous snapshot.

The results for twenty-eight snapshots for all the nine websites are shown in

Figure 14(a). We observe that there is high variance in the changes per snapshot.

On an average 8% to 88% of the URLs referred to on a webpage changed every

six hours over the week.

While the previous analysis showed that websites undergo changes, we also did

an analysis of user accesses across different websites. We consider the LiveLab

dataset [70], which is collected from 24 volunteers in Rice University using

iPhone 3GS from Feb 2010 to Feb 2011. The LiveLab software records several

components of a user’s mobile activity such as phone state, list of running

applications, web browser history, etc. We only consider the web browsing data

set from this collection. This data set contains web browser history collected

from Safari browser every night. Each record is a timestamp and a hashed URL.

The URLs are hashed piecewise so that the domain names can be separated from

the file paths on the servers. For example, a URL given as:

http://username:password@www.example.com:80/over/there/index.dtb;

parameters?type=animal&name=narwhal#nose

is hashed to:

http://hash(username):hash(password)@www.hash(example).com:80/

hash(over)/hash(there)/hash(index.dtb);hash(parameters)?hash(type=

animal&name=narwhal)#hash(nose)

For each user, we compute the percentage of URLs which occur more than once

in the trace. Additionally, we also compute the percentage of domain names,
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Figure 13: Domains vs URLs repeatedly accessed by LiveLab users.
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Figure 14: (a) Dynamism observed on nine popular mobile websites. (b) URLs
including parameters on popular mobile websites.

i.e. www.hash(example).com, that occur more than once in the entire trace.

Figure 13 shows the results for all 24 users. We observe that, on an average,

81% of domain names are repetitive, while only 21% of the URLs repeat in

the year long trace. This further strengthens our claim that users access similar

but not exactly the same content and a pure name-based prefetching will not be

efficient in such scenarios. Hence the need for a name−independent prefetching

approach.

• Client-side logic: Over the past decade, applications have evolved such that

logic is driven not just by server, but also by client-side technologies such as

AJAX[71], Flash[72], JavaScript[73], etc. Web has become more interactive

and response time is significant in defining performance. Thus technologies like
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AJAX, which allow for asynchronous updates of webpages, have been adopted

in web applications. Additionally, richer applications need non-standard tech-

nology to perform complex tasks, e.g., Flash, Java-applet[74], ActiveX[75] which

have become popular in the past decade. Today’s collaborative web uses com-

plex user data objects which are sent to servers, further necessitating sophisti-

cated client-side logic. A prefetching solution which runs a simple HTTP GET

request for a single URL cannot incorporate newer client-side logic governed by

new technologies.

To further motivate this, we further analyze the website snapshots discussed

in Figure 14(a). Among all the URLs referenced in each snapshot we identify

the URLs which contain some parameters by looking at the occurrence of the

delimiter ’?’. We compute the number of such URLs as a percentage of the

total URLs seen in that snapshot. Figure 14(b) shows the results for all the

snapshots. It is interesting to note that on an average 11% to 80% of URLs on a

page contained some parameters. This serves as one example of how client-side

parameters are used to generate content in today’s web.

• Personalized access : In addition to web dynamics and newer technologies, con-

tent is becoming increasingly personalized on the web. One form of personal-

ization is authentication. Several websites, such as Facebook, YouTube, etc,

require username and password information to provide per user customized

content. Name-based prefetching is inefficient in such cases. The prefetching

algorithm needs to remember the state in which the user accessed a URL and

recreate that state on the web server to get access to the new URL. This can

be through (i) form based authentication, where user explicitly enters the user-

name and password into a form on a login page or (ii) complex authentication,

where the user automatically logs into a website given she is already logged into

another website, e.g., opening Google calendar in a new tab while being logged
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Figure 15: (a) Heat map of user eye movement on BBC homepage (b) Number of
page areas clicked by users over a week (b) Number of clicks on each page area

into Gmail in another tab or visiting LivingSocial while logged into Facebook.

A stateless prefetching approach cannot prefetch such content.

Traditional prefetching approaches fail to perform in the above four setups as they

try to leverage consistency in URLs accessed across users. While this consistency

does not exist in the web today, consistency still exists on other fronts. We next look

at which other consistencies can be leveraged for efficient prefetching in the above

mentioned scenarios.

5.2.2 Case for an Action-Based Prefetching Solution

The above results show that there is very little consistency in URLs. Thus, Precog

proposes to leverage consistency on a different front to perform prefetching. Precog

builds on the fact that despite the change in URLs, website layouts stay consistent. By

the usability principle of consistency[77], web site layouts should follow same design

templates, despite changes in the content, to ensure high usability of the website.

Figure 15(a) shows a heat map generated by tracking users’ eye motion over BBC

home page[76]. It shows that users focus more on certain areas (red patches) than

other areas (green patches) of the page. Website designers follow these guidelines to

organize their content. This shows that even when the exact content of a web domain
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changes, it is presented in a consistent fashion.

In addition to consistency in web layout, users are also consistent in their actions.

They visit same domains looking for similar content repeatedly. To motivate this,

we study click patterns on www.microsoft.com for 38000 users over a span of one

week. The data set has been provided for public use by Microsoft[78]. This data

set monitors the area of the webpage where each user clicks during the week. Each

area is identified by the name of the section on the website, e.g., ’Free Downloads’,

etc. Figure 15(b) presents a cumulative density function (cdf) for the total number

of areas clicked per week by each user. The graph shows that over 80% users clicked

on less than five areas on the webpage and 98% users viewed less than ten areas of

the page. Another dimension we analyze on this dataset is the popularity of different

areas of the page. From all the unique clicks in the dataset, we compute the cdf of

the number of clicks per page area, which are shown in Figure 15(c). We notice that

among 294 page areas on the website, less than 50 page areas get 80% of the clicks.

Thus 17% of the website components get 80% of the clicks.

This shows that users are consistent in their activity on a website. At the same

time, the LiveLab results shown in Figure 13 show these actions do not always lead to

same URLs. This shows that while there is limited consistency in URL names, there

is consistency in the user activity. Thus, consistent user actions can be learned from

the past and applied to consistent content layouts to predict dynamic future content.

This forms the core idea of Precog.

5.3 Precog

In this section we propose Precog, an action-based approach to prefetching. At a high

level, precog records user actions on web domains and replays them to identify what

content to prefetch. Precog motivates from the fact that users access dynamic content

and hence name based prefetching is not effective. Further, given the consistency in
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Figure 16: Forest of session trees to organize user action history

content layouts and user actions, consistency can be leveraged at the granularity of

actions. It thus tries to learn user actions on a web domain, while naturally accessing

it both over cellular. It then uses this knowledge, while the user is on WiFi, to predict

and prefetch what the user will access in future over cellular. The key components of

precog are best described as answers to the following questions:

5.3.1 When to record user actions?

Due to the unbalanced cost problem, user access pattern over WiFi and cellular net-

works are different. As Precog records user actions to improve prediction of future

content access over cellular, it only records user actions while the device is connected

to cellular network.

5.3.2 How to record user actions?

In order to record user actions, Precog leverages the HTML Document Object Model(DOM)[79].

The layout of a webpage is structured using a DOM tree of HTML tag nodes, with

the < html > tag node as the root. Even when content on the webpage changes, the

consistency in layout of content is maintained through the DOM tree.

Each user action UAi on the webpage can thus be identified as a (DOM locator, Event)

tuple, where DOM locator is used to locate a node in the DOM tree and the Event
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is any interaction with the element, such as click, checkbox selection or form sub-

mission. Precog only considers user actions that trigger HTTP GET requests and

stops recording actions if a HTTP POST is triggered. Handling POST messages is

discussed further in the future work section.

The DOM locator is described using DOM attributes. While some nodes can be

easily identified through an id attribute associated to them, not all nodes have an

id attribute. Such nodes are identified using a (start id, path, target) tuple, where

start id is the nearest DOM parent node which has an id attribute, path is the relative

tree path from start id to the target node and target is the attribute of the node on

which action was performed. Thus, each user action UAi is defined as:

UAi = (DOM locator, Event) (39)

5.3.3 How to group action sequences?

While the (DOM locator, Event) tuple identifies an individual action of a user, the

user may perform a sequence of such actions, separated by non-DOM actions. Non-

DOM actions are actions which do not involve interaction with the web page DOM

tree, e.g., opening a browser, opening a tab, typing a URL in the address bar, clicking

on a bookmark, etc. In such sequence of actions, result of one action depends on the

result of previous actions. Thus, individual DOM actions need to be grouped into

sessions of user access, delimited by non-DOM actions.

Precog records action sequences in the form of session trees, as shown in Figure 16.

The static URL which is accessed at the start of the session becomes the root of the

tree (Root URL1 and Root URL2). This can be the first URL user typed when

the browsing session started or when the user clicked a bookmark. These URLs are

recorded as is in the precog tree. Any actions performed on the root URL becomes

a child of the root node. Performing any action UAi at time tj can trigger HTTP

requests for webpage Wij. For example, in Figure 16, performing user action UA1
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on Root URL1 at time ta, tb and tc results in an HTTP request for URL W1a, W1b

or W1c, respectively. Any DOM actions performed on webpage Wij adds children

nodes to action UAi. In Figure 16, action UA2 was performed on W1j , adding a child

node to user action UA1. Thus, each node in the tree represents the URL reached by

visiting the root URL and following all the actions in the path from the root to the

node. A separate session tree is maintained for each static URL visited by the user.

Thus precog maintains a forest of session trees to remember all action sessions for a

user.

5.3.4 How to rank?

Given the structure of session tree described above, precog needs to determine which

nodes on the tree should be prefetched. In order to do that, each node in the session

tree also maintains a counter for the number of times a user has accessed it(hiti and

uhiti). Every time user repeats a set of actions, i.e., traverses a preexisting path in

the session tree, while on cellular network, the counter on each node on that path

is incremented. When the prefetch decision is to be made, all nodes in the tree are

ranked according to their hit counter and top k nodes in the tree are prefetched. Note

that the hit counter of a parent node is always higher than its child. During every

prefetch session over WiFi the top ranked nodes are prefetched periodically.

5.3.5 How to prefetch?

Based on the ranking determined in the previous steps, the precog module fetches the

highest ranked content when the mobile device is connected to WiFi. However, precog

does not intrude on user’s WiFi experience. The precog module runs using a headless

browser such as PhantomJS[80]. A headless browser is a computationally light-weight

web browser which does not include a fully featured graphical user interface like

regular browsers, but has full capabilities to perform HTTP and DOM processing.

The headless browser runs in the background allowing the user to continue using the

91



mobile device.

Additionally, precog also checks if the available disk space, CPU and battery life

are above a certain threshold before it triggers the prefetching activity. As long as

the system resources permit prefetching is performed periodically while the device is

connected to the WiFi network. This ensures that the latest content is cached on the

device when the user moves from WiFi to cellular network.

If all above constraints are met, the selected top nodes in each session tree are

prefetched as per the action sequence in each tree. Only the root node of each session

tree has a fixed URL which can be directly requested through a browser. For all

interior nodes, the user actions are replayed to request the content created as a result

of those actions. Thus, to prefetch the child node of Root URL1, first Root URL1 is

opened in the browser and then action UA1 is performed. The resulting HTTP GET

request, say for URL W ′

1, fetches the latest content corresponding to that node in the

tree. Further, if the child node of UA1 is also marked to be prefetched, the action

UA2 is performed on the newly fetched W ′

1.

Each UAi is preplayed using DOM methods and attributes. For example, if the

DOM locator of UA1 is (sid1, index1, attr1) then the target element of the action is

located as document.getElementById(sid1).childNodes[index1].attr1, where:

• Method getElementById(sid1) finds the node in the document tree with id

sid1

• Attribute childNodes[i] selects the ith child of the node found above

• Attribute attr1, which can be href , text, etc., selects the attribute of the child

node which was acted upon

Once the target node has been determined, the recorded action is preplayed on it.

The result of each preplay is used to perform further related actions.
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Figure 17: System architecture of Precog

5.3.6 How to use the prefetched content?

The prefetched content populates the browser cache on the mobile device. For any

future access, if the content being fetched can be found in the browser cache, it is

rendered from the cache. If it is not in the cache, it is fetched from the end server.

Precog also adds the prefetched content to the dedup cache so that bytes trans-

ferred on cellular network can be reduced even for content not found in the browser

cache and requested from the end server. Thus, even when content keeps changing

at the object level, the sub-object level redundancy can be leveraged to reduce cost

of cellular access.

5.4 System Architecture

In this section we discuss the system architecture of precog. The solution consists of a

network sensing service, which detects when the mobile device switches from cellular

to WiFi, and vice versa. Android Java API exports a Connectivity Service[81] to
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detect the active network interface. If the device is on cellular network, the Cellular

Network Module is triggered which enables a JavaScript extension inside the browser

to record user actions and header information of HTTP requests. The actions are

stored on the local disk for later use.

When the device moves to WiFi network, the WiFi network module, reads the

recorded actions from the local disk. It then ranks the actions, according to precog

algorithm and starts a new browser instance in the background, using PhantomJS[80]

to preplay the best ranked user actions. All content accessed during this browser

session is stored in the browser cache. The next time mobile device uses the browser

while on cellular network, the browser first checks this populated cache to address

HTTP requests locally. If the requested object is already cache, no bytes need to be

downloaded over the expensive cellular network, reducing both cost and latency.

While we discuss a simplistic system architecture for precog here, a more realistic

extension of this solution can be a proxy based solution where the WiFi module of

precog is offloaded to a proxy server. The task of ranking user actions and replaying

them is performed on the proxy, which then pushes the prefetched content on the mo-

bile device, while it is connected to WiFi. We discuss more details of this deployment

strategy later in Chapter 6.

5.5 Evaluation

5.5.1 Methodology

We evaluate precog using synthetic user and network traces. Each user trace lists

the different action paths followed by a user per hour of the day. Each action path

is defined as (Root URLi, UAa, UAb, UAc, .....). The trace creation has the following

components:

• Creating the universal set of action paths: We first create a large set of possible

paths that a user may traverse by crawling fourteen popular sites listed in
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cbsinteractive.com nbcuni.com walmart.com
vevo.com apple.com nytimes.com
about.com weather.com epsn.go.com
google.com disney.com bbcnews.com
yelp.com amazon.com

Table 7: List of websites crawled

Table 7. The websites are selected from a list of top 50 digital properties

published by ComScore[69]. The digital properties are ranked based on number

of unique adult visitors/viewers across US, using iOS or Android platforms.

From these top 50 digital properties we select a mix of video, news, sports,

kids, health and shopping sites for our study.

We useWebDriver, a component of Selenium[82] browser automation tool. Web-

Driver provides a Python API to automate actions on different web browsers,

in our case Firefox. Using WebDriver, our Python module clicks on all possible

elements on each website, traversing links up to a reference depth of ten. We do

not use any authentication based websites in this evaluation and the only event

performed is clicks on < href > tags on each page. This exercise generates a

set of over 470,000 paths of length ten.

• Creating individual user traces: Next, we extract user traces from this universal

set of action paths. To generate a week long user trace, we consider that user

accesses network for sixteen hours per day and seven days a week. So each

user trace contains 112 hours of network access. For each hour long session, we

consider a parameter MAX ACCESS, which describes the maximum number

of action paths in any session. Every hour, the Python module selects a random

number between one and MAX ACCESS and selects that many paths from

the universal set for that session. For each of the path selected for a session,

the module further selects a random depth from one to ten and truncates each

path up to that depth. This is done to create diversity in the length of action
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paths. These truncated paths are then tagged with the hour value and added

to the user trace. The parameter MAX ACCESS controls the redundancy in

user actions per trace as users with more paths per hour have a wider variety

of paths and lower redundancy. We vary MAX ACCESS count as 100, 1000

and 5000, and refer to them as High, Medium and Low action redundancy.

For each MAX ACCESS value we generate ten user traces.

• Creating network traces: In order to evaluate each user over multiple network

profiles, we also create ten network profiles. Again, we assume that network is

accessed sixteen hours a day for seven days a week. We also assume that network

stays same for at least an hour. For each of the 112 hours, we randomly select

either WiFi or cellular connectivity with equal probability. One exception to

this random selection is that the start of the day, i.e. hour 1, 17, 33, 49, 65, 81

and 97 are all on WiFi, which means the user starts the day at home, where

there is WiFi connectivity.

We next run the Precog algorithm on each combination of user and network traces.

In each run, the first six days, i.e. first 96 hours, of the traces are used to build the

forest of session trees. Every hour the algorithm checks the network connectivity and

if it is cellular, all the paths in that hour are used to grow the forest of session trees.

Accesses over WiFi connectivity are ignored. No network traffic is downloaded for

the first 96 hours. From the 97th hour, prefetching is done for every hour when the

user is on WiFi. At the beginning of the prefetch session, the top 25% nodes in the

forest, based on the hit count, are prefetched. Again, WebDriver is used to replay the

actions on Firefox and the real network traffic is recorded using Tcpdump. When

the user switches to cellular network, all the actions for that hour are also replayed

using WebDriver and the session trees are also populated. The real network traffic

generated from these actions is also recorded using Tcpdump. These traces are then

used to evaluate the performance of precog.
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5.5.2 Performance Results

5.5.2.1 Macroscopic Results

The metrics we consider for macroscopic analysis are (i) byte savings and (ii) prefetch

efficiency. We compare the bytes downloaded in the prefetch session and the cellular

session after a training period of 96 hours. We restrict the trace collection to one

prefetch session and one cellular session on the seventh day. From the Tcpdump

traces we count the following:

• Total cellular bytes: Number of bytes downloaded during cellular session.

• Total WiFi bytes: Number of bytes prefetched during WiFi session.

• Inter redundant object bytes: Total bytes in all the objects accessed over cellular

network on day 7 which were prefetched in the latest WiFi session.

• Inter redundant bytes: Total bytes accessed over cellular network on day 7 which

were prefetched in the latest WiFi session.

Byte Savings

Here we measure the number of bytes saved over cellular network as a result of

prefetching over WiFi. We compute byte savings with prefetched browser cache as:

Byte savingsbrowser cache =
Inter redundant object bytes

Total cellular bytes
∗ 100 (40)
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(b) Prefetched dedup cache

Figure 18: Cellular bytes saved using bytes prefetched over WiFi
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We also compute a byte level redundancy in the prefetched bytes, i.e. byte savings

with prefetched dedup cache as:

Byte savingsdedup cache =
Inter redundant bytes

Total cellular bytes
∗ 100 (41)

Figure 18 shows the average byte savings observed across multiple users for each

network trace. We observe that just using the prefetched browser cache saves 23%

bytes over cellular. This metric more than doubles if dedup is also used, leading to

47% byte savings.

Prefetch Efficiency

In addition to the bytes saved over cellular network, we also measure the efficiency

of prefetching, i.e. how many bytes downloaded over WiFi are actually used over

cellular. We compute prefetch efficiency with browser cache as:

Prefetch efficiencybrowser cache =
Inter redundant object bytes

Total WiF i bytes
∗ 100 (42)
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Figure 19: Prefetch efficiency of Precog

We also compute prefetch efficiency with dedup cache as:

Prefetch efficiencydedup cache =
Inter redundant bytes

Total WiF i bytes
∗ 100 (43)

Figure 19 shows the average prefetch efficiency observed across multiple users for

each network trace. We observe that the prefetched browser cache gives a 9% prefetch

efficiency. The prefetched dedup cache gives much better prefetch efficiency of 26%.

This means that for every 100 bytes downloaded over WiFi, 26 bytes are saved over
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cellular network using prefetched dedup cache. Note that the cost of data access over

cellular is around 83 times of WiFi access. Even a 26% prefetched efficiency, gives a

95% cost reduction over cellular.

5.5.2.2 Microscopic results

Note that the performance of precog is governed by the frequency with which content

changes on the server and the accuracy of precog’s ranking logic. Here we evaluate

the performance of precog’s ranking logic. Specifically, we compute the action-level

redundancy in user traces for different network traces. Based on the user activity

learned from the first 96 hours in each user-network trace combination, we enable

precog in the last sixteen hours of the trace. For these last sixteen hours of each run,

as precog algorithm runs on the traces, we count the following:

• Total actions: Number of actions performed while on cellular network on day

7.

• Intra redundant actions: Number of actions on cellular network on day 7 which

were performed in any previous cellular session.

• Inter redundant actions: Number of actions on cellular network on day 7 which

were prefetched in the latest WiFi session.

Given these three numbers, we compute Ideal action redundancy as:

Ideal action redundancy =
Intra redundant actions

Total actions
∗ 100 (44)

and we compute Observed action redundancy as:

Observed action redundancy =
Inter redundant actions

Total actions
∗ 100 (45)

We also compute Relative redundancy as:

Relative redundancy =
Observed action redundancy

Ideal action redundancy
∗ 100 (46)
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Figure 20: (a)Ideal redundancy for varying network traces (b) Redundancy achieved
by precog in different network scenarios (c) Redundancy achieved by precog as a
percentage of ideal redundancy for different network setups

Figure 20 presents the trends in action redundancy with change in network traces.

Each point on the graph is an average over ten users. We observe in Figure 20(a) that

the ideal or best achievable redundancy varies from average 23% with 5000 paths per

session, to average 54% with only 100 paths per session. Across these different levels

of redundancy, precog can leverage an action level redundancy of average 22.5% for

5000 MAX ACCESS, up to average 39% with 100 MAX ACCESS. The relative

redundancy of precog with respect to ideal redundancy averages from 72% for 5000

MAX ACCESS to over 96% for 100 MAX ACCESS. This shows that user’s ac-

tions can be learned from their past and efficiently used for predicting future accesses.

5.6 Related Issues

• Robust replay : Precog is based on the observation that content layout stays

consistent. However, it could happen that the layout of a page changes, though

not quite often. In such a scenario, an action learned from the past layout

cannot be preplayed on the latest layout. If precog finds a scenario where no

node can be found for the recorded DOM locator, e.g., child index is out of

range, then the preplay is aborted. No further actions in the current action

sequence are executed.
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• Impact on battery : While the main focus of precog is to reduce the cost of cellu-

lar access, it can also serve to reduce the energy consumption of cellular network

access. Prior analysis in MAUI[83] showed that WiFi gives 102 KB/Joule effi-

ciency while 3G networks give only 36 KB/Joule. Thus prefetching over WiFi

can reduce the overall energy consumption on mobile devices. The trace analy-

sis in Section 5.5 shows that precog gives 26% efficiency, thus around 4× bytes

needs to be prefetched over WiFi to save a given number of bytes over cellular.

While this results in more energy consumption than in accessing all the bytes

over cellular, precog prediction can be improved further to increase the prefetch

efficiency and perform overall energy savings.

• Handling video traffic: Video traffic is a dominant part of Internet traffic. It is

thus relevant to study the impact of precog on video traffic. There are multiple

granularities at which prefetching can offset the cost of cellular video access:

(i) The entire video can be prefetched to serve future requests from the user,

(ii) some popular sections of the video can be prefetched based on a popularity

metric or (iii) the video advertisements, which appear during a video, can be

prefetched. In this work we have evaluated the performance of precog with first

case and plan to explore alternate strategies as part of future work.

• Privacy concerns : While precog adds to name-based prefetching by handling

authentication, it also creates privacy concerns with prefetching. Accessing

authentication protected content can be intrusive to users. Precog addresses

this by exposing to the user whether precog is enabled for that a domain or not.

Additionally, precog does not preplay any actions, except sign-in, which trigger

an HTTP POST request as POST requests are non-idempotent. They can lead

to change of state at the server which is irreversible.
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CHAPTER VI

INTEGRATED OPERATIONS

We have discussed thus far three complementary approaches of adapting network pro-

tocols and algorithms to ultra-mobile computing: Adaptive Flow Control, Asymmetric

Caching and Precog. AFC, Asymmetric caching and Precog are fully complementary

as they work on different layers of the network stack; while Asymmetric caching op-

erates at layer 3.5 right above IP layer, AFC functions on transport layer and Precog

interacts with the applications on layer 5. We now discuss how these three approaches

can work synergistically.

Figure 21: System architecture for integrated operations of AFC, Asymmetric
caching and Precog

We propose a two-ended cloud proxy based solution, as shown in Figure 21, to
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integrate all the three approaches. One end of the solution, which we call the umc-

server, is a Linux server, which acts as an HTTP/TCP proxy, deployed between the

core cellular network and the Internet. The other end is a software module running

on the mobile device, which we call the umc-client. Similar proxy based solutions,

which integrate TCP optimization, caching and application acceleration have been

deployed in real networks [84], establishing precedence.

The individual components of umc-server are:

• At the IP layer, umc-server incorporates the dd-src component of Asymmetric

caching which breaks every downstream packet into value based chunks, using

Rabin Fingerprinting, stores the hashes of the chunks and replaces any repeating

chunk in the packet with its corresponding hash.

• At the TCP layer, umc-server breaks the end-to-end TCP connection between

the content server and mobile client, into two connections. It acts as a receiver

for the connection with the content server and uses default TCP flow control for

this connection. As application read rate does not fluctuate on the resource rich

server, default TCP flow control does not under-perform here. The umc-server

also maintains a downstream TCP connection with the mobile client, which

is AFC enabled. The TCP sender on this connection listens to application

read rate advertisement from the mobile device and computes the flow control

window from these values. It also handles zero window advertisements on the

downstream TCP connection as per AFC algorithm.

• At the application layer, umc-server also runs an HTTP proxy which performs

out-of-band prefetching using precog algorithm. While the device is connected

over WiFi the proxy establishes an out-of-band connection with it over the

Internet. It then receives the recorded actions from the precog module running

on the mobile, ranks them and replays the top actions using a headless browser,
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such as PhantomJS[80]. The prefetched content is then pushed on the mobile

device to be used later when the mobile device uses cellular network access.

This two-ended deployment relieves the computational cost of precog on mobile

device.

The umc-client, located on the mobile device, contains the following modules:

• At the IP layer, dd-dst component of umc-client runs the flowlet extraction,

feedback selection and feedback advertisement module of asymmetric caching.

It also inflates any deduplicated packets received downstream by using the hash

to chunk map stored in the local cache. This inflated packet is sent to the upper

layer, in this case the adaptive flow control receiver module.

• The adaptive flow control receiver module forms the transport layer compo-

nent of umc-client. It monitors the TCP receive buffer to estimate the current

application read rate and advertises it in any outgoing packet.

• The precog module runs on the application layer in the umc-client. This module

interacts with the browser on the mobile device to capture user actions during

web browsing sessions over cellular network. These actions are stored and later

uploaded to the umc-server while the user is on WiFi network. While on WiFi

network, the precog module also downloads prefetched content from the umc-

server and populates both the browser cache as well as the dd-dst cache. During

any subsequent cellular access, if the content being requested can be found in

the browser cache, it is rendered from the browser cache. If it is not in the cache,

it is fetched from the end server. During the download of the new content, the

cached information in dd-dst is leveraged to perform dedup.

We have described a proxy based deployment to integrate the operations of AFC,

Asymmetric caching and Precog to improve cellular network access for smartphones
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and tablets. Alternate approaches to integrate these solutions can be a cloud based

service for users which can leverage redundancy in content and user actions across

WiFi and cellular access, and accelerate TCP performance. Another possible de-

ployment can be a dedicated proxy within an enterprise network, e.g., Georgia Tech,

where Georgia Tech deploys an HTTP/TCP proxy at the edge of the network. This

proxy can improve TCP performance for smartphones and tablets connecting to the

Internet from within the campus network, reduce congestion in the campus WiFi

network through dedup and reduce the traffic load on WiFi by prefetching content

when users are connected to less loaded WiFi access points.
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CHAPTER VII

FUTURE WORK

7.1 Rethinking transport layer protocols for ultra-mobile

devices

As part of this dissertation, we have developed an adaptive flow control(AFC) for TCP

on mobile devices. We have investigated and addressed some of the key deficiencies

in classical flow control. And as we undertook this research, we realized some avenues

for future work:

• Control theoretic model of AFC: While we established in Chapter 3 that classical

TCP flow control models an Integral controller, AFC does not fit into any

classical system template. Modelling AFC as a control theoretic model thus

remains an open issue.

• Impact of network losses on AFC: AFC includes loss detection and recovery

mechanisms to take care of buffer losses. Further research can be done in study-

ing the interactions of network losses and AFC and how should loss recovery

happen when congestion and buffer losses occur simultaneously.

• Including delay in control theory model of TCP: TCP has an inherent delay

of half an RTT. An ACK packet received at the sender was sent half an RTT

before by the receiver. Hence, the state information, such as receive window,

application read rate, etc, is a snapshot of the receiver half an RTT back. An

open research area is to include this into the control model and study the impact

of this delay on TCP performance.
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• Impact of base buffer size on AFC: Another area of further study is: how does

AFC compare with classical flow control in sensitivity to base buffer size. While

in some scenarios just doubling the buffer would improve the performance of

classical flow control, in others it may not. An open issue remains to determine

the buffer growth pattern of Auto-Tuning and compare AFC with it.

7.2 Improving network deduplication for ultra-mobile de-

vices

Asymmetric caching proposes an improved network deduplication for ultra-mobile

devices. The promising results seen with asymmetric caching motivates further di-

rections of research such as:

• Performance: One of the critical factors that will influence viability of the asym-

metric caching solution will be the performance at both the server and client

ends. At the server side, whether the server platform can scale to 10Gbps speeds

will be of importance. The primary constraint that will have to be overcome

will be the disk access that asymmetric caching will rely on for its caches. Disk

accesses in general are expensive operations, especially when they occur in the

data-path. Intelligent prefetching techniques will have to be developed so that

any data-path cache lookups happen only in main memory, and the transfer

from secondary storage to main memory happens in the background. At the

client side, the limited CPU and memory resources available could dampen the

performance of the asymmetric caching client. Code optimization and intel-

ligent short-circuiting of operations will have to be explored to overcome the

aforementioned constraints.

• Encrypted traffic: While the concept of feedback can apply to both encrypted

and unencrypted traffic, the current system architecture of asymmetric caching

does not allow deduplication of encrypted packets as the dd-src has no way
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of learning the actual content in an encrypted packet. As more and more au-

thentication based applications gain popularity over smartphones and tablets,

asymmetric caching needs to be adapted to an end-to-end solution which can

leverage redundancy within encrypted traffic also.

• Upstream traffic: Smartphones and tablets are not only content consumption

devices but also content creation tools. Users use their smartphones and tablets

to create documents, click pictures, shoot videos, create video mash-ups or

photo effects. All this content is further uploaded on the Internet for cloud

storage or publishing on the web. It will be interesting to study the scope of

dedup on such upstream traffic.

• Evaluating the energy impact of asymmetric caching: Battery life is an impor-

tant factor contributing to the success of any solution for ultra-mobile devices.

To leverage all past information on ultra-mobile devices, asymmetric caching

performs several complex tasks such as Rabin fingerprinting and flowlet extrac-

tion. While our preliminary prototype showed that asymmetric caching has

deployable CPU and memory overheads, a more rigorous analysis of battery

consumption by asymmetric caching can be a future study.

7.3 Smart prefetching solutions for ultra-mobile devices

Precog proposes a novel action-based approach to prefetching on smartphones and

tablets. While precog addresses the major limitation in existing prefetching solutions,

i.e. name-dependence, we identify the following directions of future work:

• Incorporate usefulness and opportunity: Precog uses the hit count of each user

action over past cellular sessions to determine which actions are most likely to

repeat in the future. To ensure that user always gets the latest content for a

particular action, prefetching is performed repeatedly over WiFi access. The
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algorithm can be further tuned to incorporate a usefulness and opportunity

parameter. The usefulness of any content is a measure of the freshness of

prefetched content. If the content on a server changes every hour, irrespective

of user actions, the content prefetched right before the user accesses it is more

useful than content fetched hours ago. Similarly, while precog does an aggres-

sive prefetch over each WiFi session, the opportunity factor will try to estimate

which WiFi session is best suited to prefetch content.

• Extend to authenticated accesses and single sign-on services: Precog considers

only HTTP GET requests to build user action session trees and preplays HTTP

POST messages only for authentication such as logging into a site. Another

future area of research can be to record and replay more complex HTTP POST

messages for prefetching. This introduces new challenges as POST messages

are non-idempotent, i.e. they can result in state change at the server and client

which will destroy the transparency of precog.

• Workloads: Caching solutions in general are heavily influenced by the nature

of the workload that they are applied to. Hence, synthetic workloads are risky

to use because of the possibility of them being not representative of real-life

workloads. Hence, part of future work will involve the collection of real-life

workloads from different sources (users and content-servers) that can then be

used for testing the prototypes.

• Prototype: Yet another area of future research is to verify the viability of precog

through a real prototype with the user action recording module implemented

as an extension in the mobile browser and another headless browser implemen-

tation to select best user actions and prefetch content without significant CPU,

memory, battery and graphical overhead.
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CHAPTER VIII

CONCLUSIONS

The adoption of mobile devices such as smartphones has reached a significant thresh-

old with the number of such devices shipped now surpassing the number of PCs

shipped [1]. Nearly 40% of Internet time is now attributed to mobile devices such

as smartphones and tablets [2]. An ever-increasing pressure on wireless network per-

formance and scalability, however, accompanies such exciting trends. While these

ultra-mobile devices try to catch up to the performance of traditional personal com-

puters, they are bound by the promise of portability and compactness. They have

introduced a new paradigm in mobile computing, which we refer to as ultra-mobile

computing.

The focus of this work is identifying and resolving the impact of the conflict-

ing characteristics of ultra-mobile computing on existing network protocols and algo-

rithms. While there are a number of problems to address in this direction, we have

examined three directions where significant improvement can be observed by adapting

existing solutions for smartphones and tablets.

In Adaptive Flow Control, we discuss the deficiencies in classical TCP flow control.

These deficiencies are magnified on mobile platforms, due to the resource constraints.

We demonstrate, both empirically and theoretically, that to address this problem, we

need an Adaptive Flow Control(AFC) which makes a shift from an entirely buffer

dependent flow control mechanism, to one that reacts to the application read rate.

Through NS2 simulations we show that AFC performs better than classical TCP flow

control and exhibits fairness.
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In Asymmetric caching, we proposed an improvement to baseline network dedupli-

cation that allows the dedup destination to selectively feedback appropriate portions

of its cache to the dedup source with the intent of improving the redundancy elim-

ination efficiency. We show using traffic traces collected from 30 mobile users, that

with asymmetric caching, over 89% of the achievable redundancy can be identified

and eliminated even when the dedup source has less than one hundredth of the cache

size as the dedup destination[12]. Further, we show that the number of bytes saved

from transmission at the dedup source because of asymmetric caching is over 6× that

of the number of bytes sent as feedback.

In Precog, we motivate the need to rethink prefetching approaches for smartphones

and tablets, given the dynamism in current web content and the heterogeneity in

network access on these devices. We then propose a name-independent network-

aware prefetching solution for these devices. Through a synthetic trace analysis with

real web content we show that for different levels of user level redundancy, precog

achieves 47% byte savings on average, with a prefetch efficiency of 26%.

Finally in Chapter 6, we also show that Adaptive Flow Control, Asymmetric

caching and Precog are complementary solutions which can come together in a proxy

based deployment to provide significant improvement in network performance and

reduction in network load for smartphones and tablets. Future directions of research

are discussed in Chapter 7
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