
MICROPHYSICAL PROCESSES OF VOLCANIC ASH 

AGGREGATION AND THEIR IMPLICATIONS FOR VOLCANIC 

ERUPTION DYNAMICS 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Jennifer Whitney Telling 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Earth and Atmospheric Sciences 

 

 

 

 

 

 

 

Georgia Institute of Technology 

December 2013 

 

 

COPYRIGHT 2013 BY JENNIFER WHITNEY TELLING



MICROPHYSICAL PROCESSES OF VOLCANIC ASH 

AGGREGATION AND THEIR IMPLICATIONS FOR VOLCANIC 

ERUPTION DYNAMICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Josef Dufek, Advisor 

School of Earth and Atmospheric 

Sciences 

Georgia Institute of Technology 

 Dr. James Wray 

School of Earth and Atmospheric 

Sciences 

Georgia Institute of Technology 

   

Dr. Andrew Newman 

School of Earth and Atmospheric 

Sciences 

Georgia Institute of Technology 

 Dr. Christian Huber 

School of Earth and Atmospheric 

Sciences 

Georgia Institute of Technology 

   

Dr. Athanasios Nenes 

School of Chemical and Biomolecular 

Engineering 

Georgia Institute of Technology 

  

   

  Date Approved:  August 8, 2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For my Grandma, Irma Allardt Telling 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor, Dr. Joe Dufek, for his continued support and 

encouragement. His input and advice have been invaluable and have helped me to 

become a better researcher. Thank you to the Dufek group: Mary, Ozge, Joe, Josh and 

Cindy, for their encouragement, support and willingness to act as a great sounding board. 

Thank you to Wim for the great advice that kick-started the writing of my thesis, and to 

Zach for all of the help with ArcGIS. I would also like to thank my committee for their 

involvement and aid. 

 I cannot thank my friends enough for all of their love and support these five years. 

I greatly appreciate everyone in the YJCF and at St. Thomas for understanding when 

work needed to come first and for distracting me when I needed a diversion. I would like 

to thank my graduate student friends who graduated before me and who have always 

been a great source of advice and support. Lastly, I would especially like to thank Cindy, 

John, Billy, Manny, Akshay and Erin for always being there to pick me up and make me 

laugh. 

 Lastly, I would like to thank God, my parents, my Aunt Mary and Shahin. Mom 

and Dad have been unwavering in their support and high expectations. I would like to 

thank my Aunt Mary for her advice and wisdom, which has always reminded me of the 

things that are most important in life. Lastly, I would like to thank Shahin for always 

being there to encourage, calm and support me ,and for always being ready with some ice 

cream when all else failed. 



 v 

 This work was supported by the Earth and Atmospheric Science Department at 

Georgia Tech and NSF grants EAR-0809321, 1144585, 1150794 and NASA Award 

Number NNX09AL20G, and I greatly appreciate the support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES viii 

LIST OF FIGURES ix 

NOMENCLATURE xi 

SUMMARY xiii 

CHAPTER 

1 Introduction 1 

2 Ash Aggregation Efficiency: The Effect of Collisional Energy 8 

2.1 Introduction 8 

2.2 Methods 12 

 2.2.1 Experimental Setup 12 

 2.2.2 Data Collection 14 

 2.2.3 Post Processing 15 

2.3 Results 20 

2.4 Collision and Aggregation Mechanisms 25 

 2.4.1 Wet Aggregation Processes 26 

 2.4.2 Dry Aggregation Processes 29 

2.5 Conclusions 30 

3 Ash Aggregation Efficiency: The Role of the Atmosphere 32 

3.1 Introduction 32 

3.2 Methods 34 

3.3 Results 38 



 vii 

3.4 Discussion 40 

 3.4.1 Determining Wet and Dry Flow Regimes 41 

 3.4.2 Stokes Number Analysis 42 

 3.4.3 The Inertial-Electrostatic Ratio 47 

 3.4.4 Implications for Volcanic Modeling 49 

3.5 Conclusions 53 

4 Modeling Ash Aggregation at Kilauea  55 

4.1 Introduction 55 

4.2 Methods 61 

4.2.1 Model Characterization 61 

4.2.2 Incorporating Aggregation 62 

4.2.3 Topographic and Atmospheric Characteristics 64 

4.2.4 Simulations 68 

4.3 Results 68 

4.4 Discussion 74 

4.5 Conclusions 76 

5 Conclusions 78 

6 Continuing Work 82 

6.1 Ash Dispersal and Aggregation Mechanisms 82 

6.2 Volcanic Modeling 87 

6.3 Planetary Applications 90 

APPENDIX A: Table of Experiment 1 Physical Run Parameters 91  

APPENDIX B: Table of Experiment 2 Physical Run Parameters 94 

APPENDIX C:  Range of Eruptive Conditions at Kilauea Volcano 97 

REFERENCES 98 



 viii 

LIST OF TABLES 

Page 

Table 2.1: Summary of previous coalescence efficiency studies 10 

Table 4.1: Model initial particle size distribution 62 

 



 ix 

LIST OF FIGURES 

Page 

Figure 2.1: Diagram of the full experimental setup 14 

Figure 2.2: Diagram of particle location algorithm 16 

Figure 2.3: Raw image of particles experiencing light scattering effect 18 

Figure 2.4: Particle size distribution for ash and SiO2 samples 22 

Figure 2.5: Aggregation efficiency as a function of relative humidity 23 

Figure 2.6: Aggregation efficiency as a function of CKE 25 

Figure 2.7: A comparison of aggregation efficiency- CKE studies 27 

Figure 3.1: Experimental chamber 35 

Figure 3.2: Aggregation efficiency as a function of collision kinetic energy  

 in four defined flow regimes 39 

Figure 3.3: Aggregation efficiency as a function of residence time 40 

Figure 3.4: Aggregation efficiency as a function of Stokes number 44 

Figure 3.5: Aggregation efficiency and restitution coefficient, theoretical  

 and experimental relationships 46 

Figure 3.6: Inertial-electrostatic ratio 48 

Figure 3.7: Probabilistic fits of aggregation efficiency to collision kinetic  

 for the dry and wet flow regimes 52 

Figure 3.8: Probabilistic fit of aggregation efficiency to collision kinetic 

 energy for the full range of energies in the wet case 53 

Figure 4.1: USGS map of Kilauea Volcano 56 

Figure 4.2: USGS photos of AL from the Footprints Ash, Kilauea 59 

Figure 4.3: Topographic map of Kilauea with AL distribution 59 



 x 

Figure 4.4: Description of the topographic profile used for modeling 65 

Figure 4.5: Wind speed and direction data for 2 months at PHTO 67 

Figure 4.6: Representative atmospheric soundings at Kilauea 67 

Figure 4.7: Mass of aggregates developing with time at Kilauea 70 

Figure 4.8: Relative humidity and aggregation rate for Ash-1 at 150 s 71 

Figure 4.9: Relative humidity and aggregation rate for Ash-2 at 150 s 71 

Figure 4.10: Relative humidity and aggregation rate for Ash-3 at 150 s 72 

Figure 4.11: Volume fraction for Ash-1, Ash-2, Ash-3 and Ash-4 at 150 s 72 

Figure 4.12: Relative humidity and aggregation rate for Ash-2 at 100 s 73 

Figure 4.13: Volume fraction for Ash-2 at 100 s 74 

 

 

 

 

 

 

 

 



 xi 

NOMENCLATURE 

 

1, 2  Particle identifier 

d  Particle diameter (m)  

dt  Image time step (s) 

E  Kinetic energy, CKE (J) 

Eelec, Ehyd  Dissipative energy in charged and hydrous collisions 

Eacc, Eb, Ediss, Evisc Dissipative energy terms 

e  Restitution coefficient 

Faggr  Fractional aggregation 

fE  Probability distribution for ash variability 

fcoll  Probability distribution for collisional velocity 

ffaggregate  Joint probability distribution for collision and aggregation 

i,j  x, y component 

k  Coulomb’s Constant (Nm
2
/C

2
) 

m  Particle mass (kg) 

m’, m
*
  Reduced mass (kg) 

n  Image index number 

q  Particle charge (C) 

r  Particle radius (m) 

r’,r
*
  Reduced radius (m) 

s  Particle location constant 

St  Particle Stokes number 

ti  Particle interaction time (s) 

u, v  Velocity component (m/s) 



 xii 

w  Approach velocity (m/s) 

x  Physical coordinate (m) 

ε  Aggregation efficiency 

θ  Granular temperature 

μ  Viscosity (Pa∙s) 

ρ, ρp  Particle density (kg/m
3
) 

σdiss  Dissipative energy variance 

τi  Interaction time (s) 

τr  Rebound time (s) 



 xiii 

SUMMARY 

 

Although numerous hazard models exist to assess possible ash fallout from 

explosive volcanic eruptions around the world, these models frequently neglect to 

consider ash aggregation or use a simple percent proxy to represent aggregation, without 

considering the varying processes at work throughout the volcanic flow. Eruption 

dynamics are sensitive to ash aggregation, and ash aggregates are commonly found in 

eruptive deposits, yet few experiments have been conducted on aggregation phenomena 

using natural materials. In this work, experiments were developed to produce both 

probabilistic and process-based relationships for the efficiency of ash aggregation with 

respect particle size, collision kinetic energy, atmospheric water vapor and residence 

time. A synthetic ash proxy, ballotini, and ash from the 2006 eruption of Tungurahua, 

Ecuador, and the 1980 eruption of Mount St. Helens, WA, were examined for their 

aggregation potential.  

Two aggregation regimes, wet and dry, were identified based on their potential for 

aggregation. The wet flow regime occurs when particles are circulated in high relative 

humidity environments long enough to develop a water layer with a thickness that 

exceeds the particle roughness scale. Hydrodynamic forces control aggregation in the wet 

flow regime. The dry flow regime includes particles in low relative humidity 

environments as well as those that circulate too briefly in high humidity environments to 

fully develop a water layer. Electrostatic forces control aggregation in the dry flow 

regime. Aggregation efficiency in both regimes was dominantly controlled by collision 

kinetic energy; however, this effect is significantly dampened in the wet flow regime. 



 xiv 

Equations governing the relationships between aggregation efficiency, collision kinetic 

energy and the related forcings in the wet or dry flow regimes have been developed for 

implementation into large-scale numerical volcanic models. 

The results of this experimental work have been developed into a probability 

distribution that has been integrated and incorporated into a multifluid numerical model. 

The numerical simulation was tested on a range of explosive depths and overpressure 

estimates from the 1790 eruption of Kilauea volcano, HI. The model output was 

compared to field data collected on the deposit thickness moving away from the source 

and the distribution, including both size and density, of aggregates. The mass fraction of 

ash removed from the eruption column in the form of aggregates was also calculated to 

examine how efficiently aggregation processes remove ash throughout the eruption. 

Cumulatively, the work presented here furthers our understanding of aggregation 

processes and the role they play in volcanic eruptions. 
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CHAPTER 1 

INTRODUCTION 

 

 Explosive volcanic eruptions inject gasses, ash and other volcanic material into 

the atmosphere. A buoyant eruption column, which forms when the bulk density of the 

plume is less than that of the surrounding atmosphere, can extend tens of kilometers into 

the atmosphere, reaching the stratosphere (Carslaw et al., 2009; Niemeier et al., 2009). 

Collapsing columns, which have a higher density than the surrounding atmosphere, can 

form pyroclastic density currents (PDC's), which can travel tens of kilometers away from 

the volcanic vent (Brown et al., 2010) at speeds on the order of 100 m/s (Bursik and 

Woods, 1996). These eruptions pose substantial hazards for local communities (Gislason 

et al., 2011; Hall et al., 1999), regional areas (Gislason et al., 2011; Schumann et al., 

2011) and aviation (Prata and Tupper, 2009; Schumann et al., 2011). 

 Depending on the type, buoyant or collapsing, size and duration of volcanic 

eruption, eruptive clouds can last on the order or days to years (Carslaw et al., 2009; 

Niemeier et al., 2009). Fine ash, which corresponds roughly in diameter to the coarse 

aerosol mode, typically has a lifetime on the order of days (Gislason et al., 2011; 

Niemeier et al., 2009). However, very fine ash, corresponding to the accumulation 

aerosol mode, can remain in the atmosphere for months to years if the eruption column 

reached the stratosphere (Niemeier et al., 2009). Carslaw et al. (2009) and Robock (2000) 

report a number of eruptions, including Grimsvötn in 1783, El Chichón in 1982 and Mt 

Pinatubo in 1991, that affected regional or global climate for years. 



 2 

 Increased volcanic monitoring over the last few decades has helped mitigate the 

risk posed to communities living around some volcanoes (Gislason et al., 2011). 

However, Folch (2012) and Taddeucci et al. (2011) both emphasize that significant 

improvements are needed in plume forecasting to be better able to predict and mitigate 

airborne volcanic hazards. In particular, the gap between volcanic and atmospheric 

aerosol transport models needs to be addressed (Folch, 2012). 

 The size and composition of volcanic ash depends on the source and type of 

eruption. Volcanic ash can refer to anything smaller than 2 mm in size (Rose and Durant, 

2009). Particles larger than 2 mm are called aggregates or lapilli, depending on their 

structure. Ash aggregates, or pellets, are formed when individual ash grains stick together 

and typically have no structure (Brown et al., 2010). More complex aggregates can 

include well defined layers of ash that have formed as the aggregate has traveled through 

different regions of a volcanic flow (Brown et al., 2010). Rose and Durant (2009) 

estimate that 5-10%, by mass, of ash in a typical volcanic eruption is very fine, with a 

diameter of less than 1 µm. Larger ash, between 10 µm and 1mm, with residence times 

on the order of days (Niemeier et al., 2009) to hours, can comprise between 50-90% of 

the total ash content by mass, depending on the eruption conditions.  

 Volcanic ash is the product of the fragmentation of magma in a volcanic conduit 

prior to eruption (Yamamoto et al., 2008). As a column of magma begins to depressurize, 

volatiles exsolve, which lowers the average density of the magma and causes further 

decompression as the mixture accelerates towards the surface (Yamamoto et al., 2008). 

Fragmentation is defined as the transition from a continuous melt with a dispersed gas 

phase to disconnected fragments of glassy, quenched melt. The energy of the system at 
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fragmentation directly effects the distribution of ash sizes and more energetic eruptions 

produce more fine ash than less energetic ones (Zimanowski et al., 2003). Eruptions with 

more volatiles produce more energetic eruptions so volatile rich eruptions are more 

energetic and, consequently, produce a larger amount of fine ash than would otherwise be 

expected (Mather and Harrison, 2006). 

Delmelle et al. (2005) and Lathem et al. (2011) both studied a range of ash 

chemical compositions and found that chemical composition has a minimal effect on 

water adsorption at the ash surface. The samples tested in both studies were found to be 

hygroscopic, or efficient at water uptake on the ash surface via adsorption. The ash 

samples were found to be relatively non-porous for diameters on the order of 100 μm or 

smaller and surface chemistry did not seem to differ significantly across a range of 

eruptive conditions (Delmelle et al., 2005). Based on ash surface properties, Delmelle et 

al. (2005) predicts that ash should be able to accumulate a monolayer of water on the 

particle surface under subsaturated conditions. 

 Individual ash grains can combine to form aggregates. Gilbert and Lane (1994) 

detail a number of different aggregate possibilities but the two broadest categorizations 

for aggregates are dry and wet. Dry aggregates are agglomerations of ash bound by 

particle charging (Gilbert and Lane, 1994; James et al., 2002). Particle charging can 

occur from triboelectric charging, which occurs when particles come into contact in the 

flow, or fractoemission, which occurs in the conduit during fragmentation (Gilbert et al., 

1991; James et al., 2002, 2003; Marshall et al., 2005). Charge to mass ratios for volcanic 

ash have been estimated experimentally to be between 10
-5

 C/kg (Gilbert et al., 1991) and 

10
-3

 C/kg (James et al., 2003). In this charge range, electrostatic attraction can lead to the 
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aggregation of smaller ash particles that would otherwise have been diverted around a 

larger forming aggregate by laminar flow (Gilbert and Lane, 1994). 

 Wet aggregation is driven by the presence of water in a volcanic flow (Gilbert and 

Lane, 1994) and these aggregates are more likely to remain cohesive after being 

scavenged from the plume (James et al., 2003). Wet aggregates can form when liquid 

coated particles collide and stick together or when dry aggregates are scavenged by a 

water droplet (Gilbert and Lane, 1994). Gilbert and Lane (1994) examined water droplet 

scavenging and ash adhesion to a fixed polystyrene sphere. They found that aggregation 

efficiency, the number of aggregating particles as a fraction of the total number of 

particle collisions, increased with decreasing particle size and, consequently, with 

decreasing collision kinetic energy (CKE). The introduction of salts and other 

hygroscopic compounds to the experiment promoted aggregate formation, increased the 

strength of the aggregates and, in particular, increased aggregation rates under 

subsaturated conditions (Gilbert and Lane, 1994).  

 A number of experiments have examined pan aggregation of volcanic ash 

(Schumacher and Schmincke, 1995; Van Eaton et al., 2012). Pan aggregation refers to an 

experimental setup where an ash sample is dispersed in a circular metal pan and water is 

added by a sprayer above the pan (Schumacher and Schmincke, 1995; Van Eaton et al., 

2012). The pan is shaken, either manually (Schumacher and Schmincke, 1995) or with a 

sieve shaker (Van Eaton et al., 2012), to simulate collisions between ash particles. Both 

studies found that ash aggregates began to form between 10-15 wt% of water. Aggregates 

increased in strength with the addition of water until roughly 30 wt% was reached, at 

which point the mixture turned into a slurry or muddy flow (Schumacher and Schmincke, 
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1995; Van Eaton et al., 2012). These experiments are useful to estimate how much water 

is required to form complex, large scale (>300 µm) aggregates but cannot fully describe 

how ash may behave in more dilute flows. Rose and Durant (2011) note that fine ash 

(<30 µm) should be able to remain in the atmosphere for days or weeks but is typically 

removed from the atmosphere within one day. Aggregation processes have been shown to 

be affective at collecting particles and removing them from the atmosphere in a number 

of experimental studies but the mechanisms and removal rates for ash in the atmosphere 

are still not well constrained (Rose and Durant, 2011). 

 Models using aggregation parameterizations show that plumes are sensitive to the 

formulation of aggregation warranting further study of this phenomenon (Folch et al., 

2010; Textor et al., 2006b). Veitch and Woods (2001) used a numerical simulation to test 

the effect of aggregation on ash fallout from the 1980 Mt. St. Helens, WA eruption.  

When applied to the 1980 Mt. St. Helens eruption, the model predicted a bimodal ash 

distribution qualitatively similar to observational studies (Carey and Sigurdsson, 1982).  

However, the peak ash fallout location predicted in the model differed quantitatively 

from observations suggesting the need for an improved understanding of these processes. 

Textor et al. (2006a, 2006b) used the numerical plume model, ATHAM, to test the 

sensitivity of eruption dynamics to particle aggregation.  The microphysical 

parameterization showed that the maximum aggregation efficiency of ash occurred in 

dense ash flows and in regions where liquid water was present.  The amount of aerosol 

injected into the stratosphere was reduced substantially when aggregation processes were 

included in the model, reducing the transport distance of ash significantly.   
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 Costa et al. (2010) propose a model that ignores dry aggregation but treats wet 

aggregation as a function of Stokes number, where aggregation efficiency decreases with 

increasing Stokes number. Folch et al. (2010) incorporated this model into the FALL3D 

volcanic simulation. The model was able to reproduce the secondary thickening seen at 

Mount St. Helens, WA and Crater Peak, AK. Folch et al. (2010) also concluded that both 

water from the plume and atmospheric water vapor, which has often been ignored (Folch, 

2012), are important in the formation of wet aggregates.  

 Aggregation processes are widely known to alter volcanic plume dispersal 

patterns. More recently, the 2010 eruption of Eyjafallajökull, Iceland, demonstrated the 

importance of these processes (Stevenson et al., 2012; Taddeucci et al., 2011). The 

eruption produced an abundance of both fine ash, increasing concerns for long distance 

transport and widening the region concerned with the health impacts of the eruption, and 

coarse ash (Gislason et al., 2011; Ilyinskaya et al., 2011). However, aggregation 

processes, which were particularly active due to the wet nature of the eruption and local 

meteorological conditions, removed much of the fine ash close to the source, dampening 

the regional hazards (Taddeucci et al., 2011). Consequently, improving our understanding 

of aggregation processes and rates was identified as a key factor to improve hazard 

assessments for future eruptions (Folch et al., 2009, 2011; Taddeucci et al., 2011). 

 Volcanic flows pose a large hazard to neighboring communities and wider 

regional areas. Ash aggregation can significantly alter the life and behavior of an eruptive 

column or pyroclastic density current. However, aggregation behavior is still relatively 

poorly understood and more research is necessary to improve predictions of where and 

how efficiently it will occur. This work examines wet and dry aggregation processes 
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experimentally to determine what conditions each process dominates under. 

Relationships will be proposed to define how efficiently ash aggregates in each regime 

with respect to CKE, relative humidity, pressure and residence time. Finally, these 

relationships will be used to examine the historic eruption of Kilauea Volcano in 1790.  
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CHAPTER 2 

ASH AGGREGATION EFFICIENCY: THE EFFECT OF 

COLLISIONAL ENERGY 

 

2.1 Introduction 

 Explosive volcanic plumes can reach the stratosphere and are capable of moving 

volcanic ash hundreds of kilometers away from its source, creating a widespread hazard 

(Prata and Tupper, 2009; Robock, 2000; Niemeier et al., 2009). The horizontal 

distribution of the plume depends on the rate of ash fallout and the wind field in the 

ambient atmosphere (Textor et al., 2006a; Barsotti and Neri, 2008; Schumacher and 

Schmincke, 1995). As the plume evolves, collisions between ash particles can produce 

aggregates (Gilbert and Lane, 1994; Schumacher and Schmincke, 1995). Aggregation, 

the adhesion of ash, can significantly reduce the transport distances of ash and can 

modify the dynamics of the plume (Veitch and Woods, 2001; Textor et al., 2006b).  

Aggregation is not confined to volcanic plumes; it also occurs in several other domains of 

explosive volcanism, including near-vent volcanic columns and pyroclastic density 

currents (Brown et al., 2010). Marzano et al. (2010) modeled ash fall from the November 

2004 eruption of Grímsvötn, Iceland, and noted that the lack of information concerning 

aggregation mechanisms and efficiency is among the largest sources of uncertainty in 

tracking the ash plume. In order to improve our understanding of particle-laden eruptive 

flows and the hazard models used to predict the aftermath of volcanic eruptions, it is 

necessary to improve our understanding of the processes driving ash aggregation (Scollo 

et al., 2008; Veitch and Woods, 2001; Costa et al., 2010).  
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 Ash aggregates have been broadly defined as any conglomerate of ash particles 

(Gilbert and Lane, 1994). Aggregates can be formed through turbulent mixing or gravity-

driven differential acceleration, with or without the presence of moisture (Schumacher 

and Schmincke, 1995; Gilbert and Lane, 1994). Electrostatic aggregation of solid 

particles and droplet coalescence of fluid drops act as end-member proxies in the study of 

particle aggregation. Dry charged particles can aggregate through electrostatic attraction.  

This process does not necessarily require two particles to collide but only to pass within a 

small distance of one another; typically less than three particle diameters based on the 

charge density predicted for 100 μm particles (Gilbert and Lane, 1994). At the other end 

of the spectrum, droplet coalescence assumes that both colliding particles are fully wetted 

and the initially interacting surface is that of water, not the solid particles. This fully 

saturated behavior may be found at plume margins, where gasses have expanded and 

cooled, or in pyroclastic density currents, which have cooled through the entrainment of 

ambient air to reach saturation. Regardless of how an aggregate is formed, ash 

aggregates, being larger and heavier than individual pieces of ash, return to the surface 

more quickly than individual ash grains, diluting and decreasing the transport distance of 

a plume (Brazier et al., 1982; Veitch and Woods, 2001). 

 Aggregation efficiency is defined as the fraction of colliding particles that stick 

together, typically for timescales longer than one second (Brown et al., 2010). With this 

information and an estimate of collision rate the aggregation rate for a parcel of the 

volcanic region can be assigned. Typically only a small fraction of the colliding particles 

will also successfully aggregate. Aggregation efficiency, when applied to colliding water 
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droplets, is termed coalescence efficiency because the droplets are becoming a single, 

larger, droplet (Beard et al., 2002). 

 Experimental studies on droplet coalescence and particle-droplet collisions 

provide a framework for discussing particle-particle aggregation. Coalescence efficiency 

depends on numerous factors including droplet sizes, mass, velocity and collision kinetic 

energy as summarized in Table 2.1 (Beard et al., 1979; Beard et al., 2002; Brazier-Smith 

et al., 1972; Low and List, 1982).  

 

Table 2.1. Summary of previous coalescence efficiency studies.   

Study Droplet Size 

(μm) 

Material Coalescence 

Efficiency 

Beard et al., 1979 81,20- pairs water 0.370 

Beard et al., 2002 55-105 water 0.950 

Brazier-Smith et 

al., 1972 

150-750 water 0.100 – 0.600 

Low and List, 

1982 

> 200 water 0.500 

 

 All four of the studies in Table 2.1 agree that droplet energies at the onset of a 

collision event are an important factor in determining whether or not coalescence will 

occur. However, only Low and List (1982) calculates the energy of collision for 

coalescing water droplets. The collision kinetic energy (CKE), a widely used 

characterization of the collisional energy of two particles, of the 200 μm drops is, at most, 

5 x 10
-7

 J. CKE is calculated using the reduced radius and approach velocity of the 

colliding particles. Beard et al. (2001) conducted studies of droplet–droplet collisions and 

found that coalescence tends to happen more frequently at lower particle energies 

whereas, at higher energies, droplets are more likely to fully rebound or to coalesce 

briefly and then break up.   
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 The aggregation of wet particles is physically different from droplet coalescence, 

especially in the case of porous and irregularly shaped ash which can accumulate water 

without developing a full surface coating, and experiments, beyond those conducted on 

droplet pairs, need to be conducted to better model their behavior. Volcanic flows contain 

large amounts of salts, particularly chloride and sulfide salts, which allow volcanic 

aerosols to condense before super-saturation is reached (Gilbert and Lane, 1994).  

However, recently Lathem et al. (2011) tested the hygroscopicity of seven ash samples 

and found six of them to correspond more closely to pure SiO2 than to sulfate salts. The 

exact role that salt deposition plays in ash hygroscopicity is still not well known. Though 

less hygroscopic than salts, Lathem et al. (2011) showed that ash is hygroscopic and 

highly reactive at its surface, making it a strong candidate for water adsorption. However, 

none of these studies provide a direct relationship between surface processes and 

aggregation efficiency.  

 Volcanic hazard models to date have either neglected to consider ash aggregation 

or used a generalized proxy, often based on droplet coalescence research (Textor et al., 

2006a; Barsotti et al., 2008), which does not accurately reflect the microphysics of ash 

aggregation and is often inaccurate (Telling and Dufek, 2012). However, the unique 

composition and origin of ash, as well as the setting in which it is found, motivate the 

modeling of ash as a unique species. Our research explores the relationship between 

aggregation, sub-saturated water vapor and collisional energy specifically for volcanic 

ash in an experimental setting. Experiments were designed to collect data on thousands of 

particle collisions and their outcomes in order to produce a measure of aggregation 

efficiency that can be implemented into large-scale numerical models. The experiments 



 12 

presented here provide new probabilistic relationships for ash aggregation at varying 

particle collisional energy. 

2.2 Methods 

 Lab experiments were designed to test the relationship between atmospheric 

humidity, collisional energy and the efficiency of ash aggregation. An enclosed tank, in 

which relative humidity could be adjusted and monitored, was built to house the 

experiments. Experimental samples were accelerated into the tank through a vertical 

nozzle and particle positions (and velocities) were determined with a Phantom MIRO-4 

high-speed camera. Data analysis was completed using a particle image velocimetry 

method, which has been modified for the analysis of inertial and collisional particles. 

2.2.1 Experimental Setup 

 The tank was constructed out of 6.4 mm thick plexiglass and is 0.61 m  0.15 m  

0.61 m. The particle jet assembly was constructed to inject ash samples upwards into the 

contained tank using a pressurized gas line connected to the bottom of the assembly. A 

plastic planar nozzle was affixed to the top to control the direction of particle flow out of 

the assembly and to increase the number of collisions in the plane probed by laser 

illumination. A stainless steel wire mesh, number 325, was inserted into the lower piece 

of copper piping, forming a stage that allowed pressurized air to move upwards, 

accelerating the sample loaded onto the top of the mesh, but was fine enough to not allow 

the sample to fall downwards into the gas line. A humidifier, with a variable output 

control, was connected to the tank via a sealed connection, allowing for careful regulation 

of the humidity in the tank. An Omega OM-73 temperature and humidity gauge was 

attached to the inside wall of the tank so that conditions could be monitored and recorded 
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during trials. The temperature and humidity in the tank were measured immediately 

before each trial and checked at the end of every trial to verify that neither had changed 

during the duration of the experiment. 

 An Nd:YAG laser, wavelength 532 nm, output 20 mW, was situated above the 

tank oriented parallel to the nozzle opening at the top of the particle jet assembly. The 

light illuminated the ~100 μm size ash so that discrete particles could be resolved during 

the lab trials. The beam was approximately 200 μm wide, approximately twice the width 

of two particles placed side to side. 

 A Phantom MIRO 4 high speed camera was arranged in front of the tank to 

capture the motion of the particles. The lens was focused on the plane of the laser light 

aligned with the top of the jet nozzle. The average field of view was 0.045m x 0.044m, 

with a pixel resolution of 256 x 256 pixels, and trials were conducted at speeds ranging 

from 1800 to 3000 frames per second. This corresponds to a spatial resolution of 

approximately 176 x 172 μm. The bottom of the field of view was oriented 0.4 m above 

the top of the particle jet in order to allow the sample to slow down and disperse. The 

camera recording was triggered directly prior to the triggering of the gas line into the tank 

so that the full motion of the particles could be captured as they moved through the field 

of view. Figure 2.1 illustrates the full experimental setup. 
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Figure 2.1. Diagram of the full tank setup. The camera position is not shown on this 2D 

rendering but would be situated directly in front of the particle jet assembly, 0.41m above 

the top of the nozzle. Not to scale. 

2.2.2 Data Collection 

 Two different particle samples were used in the trials. The first sample was mono-

disperse spherical silica with a diameter between 90 – 150 μm. The second sample was 

an ash sample collected in the field from Tungurahua, Ecuador in 2006. Ash grains in the 

second sample were primarily glass fragments with some fragmented crystals. The 

sample was sieved to three size ranges: 106 – 125 μm, 125 – 212 μm and 212 – 250 μm.  

The ash sample was dried on a hot plate prior to being used in the experiment to ensure 

that water on the sample was a product of the humidity in the tank alone. 

Laser Source 

Humidifier 

Gas Inlet 

Valve 

Particle Jet 
Assembly 

T,RH 
sensor 

Initial Ash 
Dispersal 

0.61m 

0.61m 0.41m 
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 Once a sample was loaded into the particle jet assembly and the assembly was 

mounted onto the stage, the tank was closed. Low humidity cases relied on the ambient 

relative humidity at the time of the experiment, typically 20-30%. Higher humidity trials 

were run by sealing the tank and running the humidifier until the desired humidity was 

reached. The humidifier was then used to maintain the humidity in the tank within +/- 

0.5% from the value recorded at the beginning of each trial. The temperature, relative 

humidity and camera recording parameters were recorded for each trial. Each trial lasted 

between 30-60 seconds. Once completed, the digital files from each trial were reviewed 

and extracted into individual frames for analysis. 

2.2.3 Post Processing 

 The images were first analyzed using an adapted form of particle image 

velocimetry technique (PIV), a commonly used technique in analyzing fluid flows 

(Santiago et al., 1998; Prasad, 2000; Aanen, 2002). The algorithm was developed in 

Matlab specifically for use in these experiments because standard PIV assumes that 

particles follow the fluid flow field and do not interact with each other, which is not 

appropriate for these experiments. The algorithm tagged all of the particles in a series of 

images discreetly and tracked their movement by assuming that the particle in a 

successive image (n+1) would be closest to itself in the previous image (n). This 

assumption was checked by predicting each particle position out to one additional time 

step (n+2) and then determining whether a particle was physically present at the expected 

location within a tolerance factor (Figure 2.2). The center coordinates for each particle 

were determined by averaging the left and right and upper and lower bounds of each 

particle, for the x and y positions respectively. Matlab image analysis tools also 
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interpolated the particle boundaries based on pixel brightness. Due to this interpolation 

particle positions and sizes are recorded in terms of partial or fractional pixels. This 

modified PIV algorithm was used to tag and track particles that remained in the field of 

view over the course of four or more high-speed video frames in order to measure the 

energy and result of individual particle collisions. This algorithm can only measure 

motion and collisions occurring in the nearly 2D plane of the laser illumination. As we 

are only concerned with measuring the aggregation probability from numerous collisions 

it is not necessary to detect every collision in the 3D flow field. 

 

Figure 2.2.  A computer rendering of the particle distribution in one frame of a trial with 

SiO2 particles. The identified particles in the current frame are shown as red dots and the 

particle positions predicted from the previous frame (Eq. 1 and 2) are drawn with open 

blue circles. This procedure removes particles that are not moving in the plane of the 

laser. 

 

 Particle collisions and aggregation were analyzed based on the initial flow field 

data. Collisions were predicted using the velocity vectors found through PIV. Particles 
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that were collocated in space and time were found by predicting particle locations one 

time step after particle velocity was determined (Eq. 2.1).  

)(1 dtuxx n

i

n

i

n

i    Eq. 2.1 

where x denoted the physical coordinate of the particle in the i dimension, u is the 

particle velocity and dt is the lapse time between images. The superscripts refer to the 

time step in a four image series. All mathematical notation used, along with the 

appropriate units, are listed in Nomenclature. In this formulation we neglect drag over the 

time step, dt. The impact of drag on the particles is accounted for in the tolerance used to 

verify particle positions after aggregation and is discussed in more detail below. While 

particles were being tracked by the location of their center, each particle did have a 

physical size so particles did not have to be perfectly collocated in either space or time 

for a collision to occur. Beard et al. (2001) employed a method to solve for the period of 

time, ti, in which two particles would interact (Eq. 2.2). The difference between the 

interaction time in the x and y directions had to be less than the time step between images 

(Eq. 2.3). 
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where r1 and r2 are the two particle radii, ui describes the velocity in the i dimension and 

the subscripts (1 and 2) denote which particle the velocity is attributed to. The factor of s 

in the numerator is a dimensionless tolerance on particle proximity. Beard et al. (2001) 

set s equal to 2.  In this analysis a tighter tolerance was used and s was set equal to 1 to 

counteract the effect of light scattering around particles and the disparity in particle and 
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pixel sizes. With this formalism, particles that have a time threshold, ti, that is less that dt 

will collide. Light scattering could make particles appear larger than they actually were. 

Additionally, SiO2 particles and, to a lesser extent, some ash particles had diameters that 

were smaller than the physical width of a pixel, further increasing their apparent 

computed size. We calculated that together these effects can increase the apparent 

particle size by two to three times the actual particle size (Figure 2.3). 

 

Figure 2.3. A raw image zoomed in to show a region 0.0042x0.0042m from a SiO2 trial. 

Several particles have been overlaid with their actual particle size, roughly 100 μm in 

diameter. The light gray pixels directly around the highlighted particles are the effect of 

light scattering. 

 

One hundred separate identified events were hand checked for anomalous 

collision identifications. The time threshold value of Equation 2.3 was varied, but always 

less than the time between frames, during the analysis to verify that the number of 

detected collisions decreased as the time constraint was tightened. Less than 8% of the 

events tested were anomalous once this value was reduced to 1/10,000. Further reduction 
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of the time threshold did not improve accuracy. This adjusted PIV algorithm, which 

solved for the 2D particle equation of motion (including drag and gravitational forces), 

was also tested on a set of computer-generated images of particles moving through space 

over a series of time steps. Particles in the images interacted with one another, bouncing 

or aggregating, similar to the behavior expected from physical particles. Less than 5% of 

the identified events from the computer generated images were false. Once a collision 

was detected, the involved particles were analyzed in the aggregation algorithm. Data 

concerning the particle sizes, velocity vectors and the result of the interaction were saved 

to an output file for every collision event. 

 To determine whether a collision resulted in an aggregation event, a simplified 

momentum equation (Eq. 2.4) for the colliding particles was solved to predict the final 

velocity of a possible aggregate, 
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In this equation, m1 and m2 are the masses of the two particles. The final position of the 

aggregate was predicted, based on these velocities, for the frame following the collision 

event. As the momentum equation is not exact and there was some variation in the mass 

of the ash particles a region around the projected position was examined. A maximum 

value of +/- 2 pixels, in the x and y directions, was determined for the aggregation 

tolerance to account for the effect of gravity and drag on particle location (Raju and 

Meiburg, 1995; Burgisser et al., 2005). Conservatively, the algorithm required that the 

predicted particle position must coincide with an actual particle within +/- 1 pixel in both 

the x and y directions in order for the event to be considered a successful aggregation 

event. The solutions to over 100 positive aggregation identifications were checked 
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manually and, of these, only 2-3% of detected events were found to be incorrect 

solutions. This number did not decrease significantly as the tolerance was further 

reduced. 

 Trials, at varying humidity, were run for both the silica (ballotini) and ash 

samples. Fifty three trials were run using the silica particulate and twenty two trials were 

run with the ash samples from Tungurahua, for a total of seventy five trials. The ballotini 

sample was primarily composed of SiO2 (Potters Industries Inc.) The major oxide 

composition for the Tungurahua ash samples is from the same eruptive unit sampled by 

Samaniego et al. (2011). The physical parameters for these trials have been reported in 

Appendix A. 

 A bulk output file summarizes the run once it was complete, complementing the 

individual data recorded for each collision event. The file included the total number of 

particles in the run, the number of collision and aggregation events and the frequency of 

collisions (per second) averaged over the run. This bulk data, as well as the event specific 

data on collision and aggregation events, was used for data analysis. 

2.3 Results 

 The effective particle size distribution for the ash and SiO2 samples that was 

measured during image analysis has been reported in Figure 2.4. The distribution 

includes both aggregate and individual particles and records all frames analyzed and 

includes 4.2 x 10
5
 SiO2 particles and 1.8 x 10

5
 ash particles. The physical size of an 

individual SiO2 particle ranged from 90-150 μm. A few factors may impact the slight 

increase in particle size between the known distribution of sizes and the sizes measured in 

post-processing. Light scattering around the particles can increase the imaged size of 
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particles, likely by no more than a factor of 1.5 to 2. Particles also might be captured by 

more than one pixel, enhancing their size in the high-speed images. The ash sample had a 

wider initial size distribution, ranging from 100 – 250 μm, though more trials were run 

with the larger ash size samples. Light scattering is less prominent for the ash sample 

because it is dark in color and scatters light less effectively than the white SiO2 sample. 

Ash particles may overlap adjacent pixels, increasing their recorded size. No more than 

35% of a particle sample, with a size distribution between 90 – 150 μm, was artificially 

enlarged enough to fall outside of its anticipated size range. Affected particles were 

enlarged by two to three times their actual size. Particle diameters were used to estimate 

mass and momentum of particles but particle size alone was not used to estimate the 

efficiency of particle aggregation because it is not necessarily possible to tell if a particle 

has aggregated or is scattering light based on its size alone. 
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Figure 2.4. Particle size distribution for ash and SiO2 samples. Effective particle 

diameters were measured along the longest axis of each particle for every particle 

identified and counted in 50 μm wide bins. Particle diameters were not altered to adjust 

for light scattering since the effect is not uniform across all particles. Light scattering 

around SiO2 particles could increase the apparent particle diameter by approximately a 

factor of two times its actual size, though light scattering was not observed around every 

SiO2 particle. Light scattering was less effective around ash particles due to the darker 

color of the volcanic ash and increased the size of these particles by a factor of less than 

two. 

 

 Aggregation efficiency was determined in the same way that coalescence 

efficiency is determined for water droplets (Glickman, 2000), as a function of the number 

of collisions in a given series of images, and reported as a percentage. The bulk data was 

averaged over ranges of 5% relative humidity. The reported error is the standard 

deviation for the averaged results in each bin (Figure 2.5). The total number of bounce 

and aggregations events in each bin has been reported next to the corresponding data 

point. Due to the darker color of ash particulate and the blurring effect that was 

sometimes observed in very high humidity, RH > 70%, SiO2 trials; no ash trials were 
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conducted at relative humidity greater than 65%. The data exhibits little to no trend for 

increased aggregation with increasing relative humidity in this humidity range. 

 

Figure 2.5. Aggregation efficiency as a function of relative humidity. Bins with a width 

of 5% relative humidity were used to average the data and calculate error. The number of 

bounce and aggregation events for each bin was recorded and used to produce the 

aggregation efficiency for that bin and the reported error is the standard deviation for 

each set of data points. The bin for which standard deviation could not be calculated, due 

to dearth of data, has a 3% error attached to it, the maximum error on the number of 

aggregation events calculated by hand checking bounce and aggregation solutions from 

the PIV algorithm. The number of data points in each bin is reported next to the bin 

average. Little to no correlation between relative humidity and aggregation efficiency 

was observed. 

 

 Aggregation efficiency was also calculated for a range of CKE values (Figure 

2.6). The technique of averaging data points within a bin was used again to handle the 

large quantity of data collected over fifty seven trials. CKE bins were created to 

maximize the number of data points per bin, minimizing the error. Each bin has a 
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minimum of 200 SiO2 events or 50 ash events, respectively. The maximum CKE of a 

SiO2 bounce event was 8.52 x 10
-4

 mJ and the maximum CKE of aggregation was 3.64 x 

10
-4

 mJ. The difference between the maximum CKE of ash bounce, 2.80 x 10
-4

 mJ, and 

ash aggregation, 3.60 x 10
-6

 mJ, was much larger than that recorded for SiO2. 

The least squares method was used to fit the SiO2 and ash data series (Eq. 2.5 and 

2.6) and the maximum asymptotic standard error was 22%. Increasing CKE leads to a 

decrease in aggregation efficiency. Aggregation efficiency becomes very low above a 

threshold CKE value. 

73.222))ln(02.16(
2

 ESiO  for CKE ≤ 9.0 x 10
-7

 mJ    Eq. 2.5 

43.194))ln(57.13(  Eash  for CKE ≤ 6.0 x 10
-7

 mJ    Eq. 2.6 

In this set of equations (Eqs. 5 and 6), ε is the aggregation efficiency and E is the CKE of 

a collision event.   

The relationship between CKE and aggregation efficiency was also examined at 

specific humidity ranges. The aggregation efficiency, as a function of CKE, was 

determined for the SiO2 and ash events with relative humidity values between 20-50% 

and 50-80%. Additionally, the relationship was also determined for SiO2 particles 

between 80-100% relative humidity. However, no further correlation between relative 

humidity, CKE and aggregation efficiency was determined. 
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Figure 2.6. Aggregation efficiency as a function of CKE. Data binning along the x-axis 

was also utilized here however bins were created to maximize the number of events in 

each bin, reducing error, and are not evenly sized. Bins have at least 200 SiO2 events or 

50 ash events. The trend lines applied to the data describe the relationship between CKE 

and aggregation efficiency for energies below a threshold, 6 x 10
-7

 mJ for ash and 9 x 10
-7

 

mJ for SiO2. Above these values it can be assumed that the aggregation efficiency is very 

low but not equal to zero. 

 

2.4 Collision and Aggregation Mechanisms 

 Electrostatic attraction and capillary forces are the two end-member cases driving 

aggregation events (Schumacher and Schmincke, 1995) but it is probable that both forces 

work to drive particle aggregation in a volcanic setting. Individual particle charges are 

typically small though they can affect particle collisions over distances of three particle 

diameters or less (Gilbert and Lane, 1994). Conversely, capillary forces rely on direct 
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collisions between wetted particles but are orders of magnitude greater than electrostatic 

forces when acting to bond particles together (Schumacher and Schmincke, 1995). 

2.4.1 Wet Aggregation Processes 

 Gilbert and Lane (1994) and Beard et al. (1979, 2002) both conducted laboratory 

experiments on droplet aggregation. A comparison of the results of these papers to the 

current work has been provided in Figure 2.7. Gilbert and Lane (1994) use fully wetted 

SiO2 and volcanic ash samples and observed a similar trend for increasing aggregation 

efficiency with decreasing CKE.  The CKE values in the Gilbert and Lane (1994) study 

range from 10
-6

 to 10
-5

 mJ and correspond to aggregation efficiencies of 5-11%. 

Compared to the results presented here, Gilbert and Lane (1994) provide an insight into 

the behavior of fully wetted ash collisions, which are able to produce aggregates at higher 

energies. The trend seen in the Gilbert and Lane (1994) data shows an asymptotic 

approach toward zero aggregation efficiency at high CKE that is not seen in the current 

data, highlighting the difference between the behaviors of ash in sub- and super-saturated 

flows. 

 In Figure 2.7 we compare three distinct cases in the study of wet aggregation; 

droplet-droplet coalescence, particle aggregation in supersaturated flows and particle 

aggregation in sub-saturated flows, illustrating the importance of treating each regime 

separately in order to accurately model aggregation in complex multiphase flows. The 

Beard et al. studies used water droplets to model aggregation. Beard et al. (1979) used 20 

and 81 μm drops, while the Beard et al. (2002) study used larger drops, 55 to 105 μm, 

with a smaller difference in size, ranging up to only 25 μm between the largest and 

smallest drops. 
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Figure 2.7. A comparison of previous work to the current results. Gilbert and Lane (1994) 

use SiO2 traveling through a high humidity chamber while Beard et al. (1979, 2002) use 

water droplets only. Error data for Gilbert and Lane (1994) was unavailable. 

 

Schmeeckle et al. (2001) considered the outward force that a thin layer of air or 

water will exert on two colliding particles, although at much larger particle scale than the 

ash particles considered here. Bounce interactions were most commonly found to be the 

result of high particle velocities, which produce rebound, but can also result from low 

particle velocities, which are unable to move particles through the layer of air or water 

separating them. Montgomery (1971) studied this behavior for the case of gravity driven 

collision and coalescence, estimating that collisions were most likely to result in full 

coalescence when droplet velocities did not exceed 50% of the terminal velocity. Orme 

(1997), however, also suggests that there is a lower bound on the CKE that will produce 

droplet coalescence. As two droplets move to collide, a layer of air between them must be 

moved out of the way before coalescence can take place. Low and List (1982) calculated 
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the CKE typical to coalescence events in their experiments and found it to typically be on 

the order of 10
-8

 - 10
-6

 J. The CKE of aggregation events in this study was much lower, 

ranging from 10
-11

 - 10
-9

 J. Particles in a sub-saturated flow, like those in this study, 

rebound at the higher energies expected to produce coalescence for similarly sized water 

droplets. 

 Mikhailov et al. (2009) investigated the hygroscopicity of aerosols and found that 

water uptake on particles was typically accelerated above 80% relative humidity. Lathem 

et al. (2011) found that monolayer coverage of ash occurs between 70-80% but that ash 

activation, the point at which ash is fully coated with liquid and begins to behave like a 

droplet, is unlikely below 100% saturation. Trials conducted in this study, above 80% 

relative humidity, did not show a clear increase in aggregation efficiency. Since it is 

possible for monolayer coverage of ash to develop in this high humidity range, the 

sample may not have circulated long enough for full coverage to be reached. It is also 

possible that monolayer coverage of particles is insufficient to drive aggregation. 

 The surface chemistry of ash particles is permanently altered through interaction 

with hygroscopic compounds in volcanic flows (Rose, 1977; Delmelle et al., 2007) so the 

ash used in the experiments already contained hygroscopic compounds on its surface 

whereas the synthetic SiO2 particles did not. However, little difference was seen between 

the behavior of SiO2 and ash when the aggregation efficiencies were plotted against 

relative humidity (Fig. 2.5). The lack of distinction between particle species and the lack 

of increased aggregation efficiency at high values of relative humidity both suggest that, 

in sub-saturated conditions, aggregation is more likely to be driven by electrostatic 

forcing than condensed water vapor. 
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2.4.2 Dry Aggregation Processes 

 Mechanisms for particle charging in plumes are incompletely understood. 

However, Gilbert et al. (1991) proposed two plausible mechanisms- triboelectric 

charging, charge exchange between particles with different work function, and fracto-

emission, charged particles generated during fragmentation, in the plume. James et al. 

(2002, 2003) have both shown that fragmentation in a laboratory setting is sufficient to 

produce aggregates that are many times larger than their component particles. 

Fragmentation of particles is unlikely to occur in the experiments presented here because 

the initial sample is already micrometer scale particulate. However, triboelectric charging 

may occur during particle–particle collisions, resulting in charge exchange and particle 

charging. Gilbert and Lane (1994) compare wet and dry aggregation processes and offer a 

method for calculating the possible effect of charging on the system. 

 Assuming triboelectric charging is driving aggregation in these experiments, a 

minimum particle charge density can be determined by considering the CKE of particle 

collisions. In order for an electrostatic aggregate to form, the electrostatic force attracting 

two particles must be stronger than the inertial force of the particles rebounding after a 

collision event. Equation 2.7 utilizes the CKE to determine the minimum particle charge, 

qi, necessary for two colliding particles to aggregate assuming equal (and opposite) 

charge density on each particle: 

 qi 
E  r1  r2 

k











1/2

  Eq. 2.7 

where k is Coulomb’s constant.  E is the average CKE of the ash and ballotini 

aggregation events, 2.7x10
-7

 mJ.  This corresponds to an aggregation efficiency of 19.6%, 
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when calculated using Eqn. 2.5. Using a radius of 100μm, and density, ρ = 2700 kgm
-3

, 

we can calculate the average charge density on the particulate. The average charge 

density necessary for particle aggregation was found to be 3.8x10
-5

 Cm
-2

, or 2.2x10
-4

 

Ckg
-1

. The first value is the charge per surface area assuming a sphere, and the second 

value is the mass charge density. These values are on the same order of magnitude as 

those reported by Gilbert et al. (1991) and Gilbert and Lane (1994). James et al. (2003) 

found that the maximum charge produced by fracto-emission in a laboratory setting was 

on the order of 10
-3

 Ckg
-1

, slightly higher than the charges produced by triboelectric 

charging in the current research and the work of Gilbert et al. (1991) and Gilbert and 

Lane (1994). Additional experiments will be necessary to more fully understand the role 

and magnitude of particle charging in these experiments but, in a sub-saturated regime, 

electrostatic forcing is the most likely mechanism for particle aggregation. 

2.5 Conclusions 

 Aggregation is a dynamically important process in volcanic columns and we have 

conducted experiments to constrain the aggregation efficiency for ash particles. The 

behavior of hundreds of thousands of particles, resulting in over 10,000 recordable 

particle interactions, was analyzed under varying relative humidity conditions to improve 

our understanding of particle aggregation driving mechanisms. When collision kinetic 

energy (CKE) and relative humidity are considered separately, CKE provides a much 

more distinct picture of aggregation behavior in subsaturated conditions. Aggregation 

efficiency drops rapidly as the CKE of a specific event increases. Relative humidity was 

shown to have little influence on aggregation efficiency below saturation over the time 

scales studied here. Consequently, electrostatic forces were found to be the driving 
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mechanism for particle aggregation. Using information about the energy of particle 

collisions, a minimum charge density on aggregates was determined in order for the 

particles to stick together after colliding. 

 Previously, many volcanic plume models have relied on the aggregation 

characteristics of water droplets to model ash aggregation. A comparison of the droplet 

coalescence studies in Table 2.1 and the results of Gilbert and Lane (1994), Costa et al. 

(2010) and the current research shows that water is a poor proxy for the behavior of ash 

in under-saturated conditions. Aggregation efficiency is significantly reduced in studies 

of ash or ash proxies and shows a strong correlation with CKE. Further study of particle 

charging and activation are needed to better understand and model aggregation processes. 
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CHAPTER 3 

ASH AGGREGATION EFFICIENCY: THE ROLE OF THE 

ATMOSPHERE 

3.1 Introduction 

 The residence time of volcanic ash emitted into the atmosphere during explosive 

volcanic eruptions ultimately determines the extent and duration of airborne-ash hazards 

[e.g. Ilyinskaya et al., 2011; Folch et al., 2010; Taddeucci et al., 2011]. One of the largest 

sources for uncertainty in determining ash residence time is our limited understanding of 

the mechanisms and rates of ash aggregation, the process by which ash particles adhere to 

each other in the atmosphere. While aggregation rates remain poorly understood, their 

presence is documented in many recent eruptions and they are prominent in the 

depositional record [Brand and White, 2007; Branney and Brown, 2011; Brown et al., 

2010; Scollo et al., 2007; Stevenson et al., 2012; Veitch and Woods, 2001]. Recent 

volcanic eruptions, including the eruption of Eyjafjallajökull in 2010, highlighted current 

gaps in our understanding and quantification of the aggregation mechanisms [Folch et al., 

2009; Taddeucci et al., 2011; Folch, 2012]. Integrating new information on ash 

aggregation mechanisms into numerical models has been suggested as a critical factor 

needed to improve their accuracy [Scott and McGimsey, 1994; Veitch and Woods, 2001; 

Scollo et al., 2007; Folch et al., 2010; Textor et al., 2006b]. 

 Few experiments have been designed to study ash aggregation directly and, until 

recently [Van Eaton et al., 2012], it has either not been considered in models or water 

droplet coalescence has been used as a proxy for this behavior [Gilbert and Lane, 1994; 

James et al., 2002, 2003; Barsotti et al., 2008]. Models assuming liquid coated ash cite 
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the need for constraints on the efficiency of the process [Textor et al., 2006a; Costa et al., 

2010]. In the limited parameter space that has been tested experimentally, droplet 

coalescence has been found to be an inaccurate proxy [Gilbert and Lane, 1994; Telling 

and Dufek, 2012]. Decreasing collision kinetic energy (CKE) has been found to increase 

efficiency of both aggregation [Gilbert and Lane, 1994; Telling and Dufek, 2012] and 

droplet coalescence [Low and List, 1982]. However, droplet coalescence occurs at 

energies nearly four orders of magnitude below those found in particle aggregation 

[Beard et al., 2002; Telling and Dufek, 2012]. Gilbert et al. [1991], James et al. [2002, 

2003] and Telling and Dufek [2012] have described particle aggregation behavior in a 

number of regimes. However, little work has been done to examine how atmospheric 

residence times might alter the efficiency of ash interactions despite the fact that Lautze 

et al. [2012] and others have shown that ash is chemically and physically altered during 

transport in volcanic plumes. For accurate aggregation prediction more information is 

needed about aggregation behavior in high residence time ash, water vapor rich flows and 

a wider array of particle energies, all of which are expected to be encountered during 

explosive volcanic eruptions. 

 Here we present experiments designed to investigate ash aggregation efficiency, 

the ratio of aggregating particles to the total number of particle collisions, across a range 

of conditions. In a controlled atmosphere we examined the role of residence time, 

atmospheric pressure, and humidity on aggregation. Data was collected from two samples 

of ash and an ash proxy to further allow us to compare how composition might alter 

aggregation behavior. In the present work we focus on processes occurring above the 

freezing point of water. The relationships derived from our results can be applied to 
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volcanic plumes and pyroclastic density currents alike, and fill a gap in our current 

understanding of aggregation processes. 

3.2 Methods 

 A controlled atmospheric chamber (Figure 3.1) was designed to be evacuated 

from ambient conditions, at sea level, to 13 kPa, which corresponds to an altitude of 

roughly 16 km, and a range of relative humidity values, 11-95%, likely encountered in 

volcanic plumes. Particles, which were released from the top of the tank at varying 

speeds, collided with a fixed sample to examine variable impact energies. Particle fall 

velocities were not controlled directly by the experiment but varied naturally between 

0.08 m/s and 1.26 m/s depending on when in the experiment the particle was released and 

the differential pressure between the chamber and the sample holder, which was not 

depressurized. In order to create a uniform, stationary bed of particles, each target particle 

sample was adhered to a glass slide using thermal epoxy and we ensured that a mono-

layer of ash particles was exposed at the surface to both treat the roughness effects of 

natural ash and to also expose the surface for adsorption of water over time. A Phantom 

MIRO-4 high-speed camera was positioned directly in front of the tank and used to 

capture particle interactions at the bed at a rate of 2500 fps. 
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Figure 3.1. Diagram of the experimental setup. The dimensions of the closed chamber 

were 0.15 m x 0.18 m x 0.15 m. The sample slide was fully coated with particles such 

that every particle colliding with the plate interacted with another particle and not the 

glass slide. The camera was placed directly in front of the tank. 

 

 Three particle samples were used in the experiments. A sample of ballotini 

(spherical silica) with a diameter between 90 and 150 μm was used a proxy for ash. 

Samples from the Mt. St. Helens, WA, 1980 eruption (dacite composition) and the 

Tungurahua, Ecuador, 2006 eruption (andesite composition) were also used to examine 

the potential effect of composition. These ash samples were both sieved to between 90 

and 106 μm in diameter. The high humidity experiments required a minimum humidity of 
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71%, the point at which Lathem et al. [2011] predicts monolayer water coverage to begin 

to form. Most high humidity trials, however, occurred at greater than 90% humidity. Low 

pressures ranged from 13 kPa to 88 kPa and multiple trials were conducted at roughly 17 

kPa intervals. Variable ash residence time was examined by maintaining conditions in the 

tank between 1 to 150 minutes. Only the fixed sample in the chamber interacted with the 

environment. The falling particle sample was dry and the sample holder maintained 

ambient pressure until the valve to the chamber was opened. Thirty to 36 trials were 

conducted on each of the samples (Appendix B). 

 A random sample of 20 particles was chosen from every trial, which may include 

up to 100 particles, and the particles were analyzed manually. We analyzed larger 

samples (30, 40 and 50 particles) and confirmed that aggregation efficiency was not 

affected by the sample size of randomly chosen particles. Twenty trials were analyzed by 

two separate people in order to ensure consistency and minimize aggregation efficiency 

error to 2.5%. 

 The position of each particle was tracked from the time it entered the tank until it 

was no longer visible. Particle positions were recorded in pixels from the raw image 

frames and converted to meters based on the precise resolution of each trial (Appendix 

B). Particle positions during the particle fall and, if present, particle bounce were used to 

calculate velocity and CKE (Eq. 3.1).  
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 Eq. 3.1 

where ρ is the particle density, v is the differential velocity between the two particles and 

d is the particle diameter. 
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 Fall velocities for each particle were measured within 0.01 m/s and used to 

calculate an approximate CKE and restitution coefficient, the velocity ratio of incoming 

and outgoing particles, in the case of a bounce event. Particle motion was captured in two 

dimensional images. Consequently, movement toward or away from the camera could not 

be accounted for in the measurement of velocity and restitution coefficient. The falling 

particle sample was designed to fall directly downward and very little forward or 

backward motion was observed. However, particle bounces could not be similarly 

controlled so the restitution coefficient values reported are minimum values, since they 

do not account for possible motion in a third dimension. 

 Data recorded for each particle included the trial conditions, particle velocity and 

CKE and the outcome of each interaction, aggregation or bounce. In the event of a 

bounce, particle velocity was also measured after the collision and used to calculate 

restitution coefficient.  

 Aggregation efficiency is the ratio of particles that aggregate to the total number 

of colliding particles (bounce and aggregation events). The result of every particle 

interaction, bounce or aggregation, was recorded. Aggregation efficiency was then 

calculated for all the particles within a given energy range to produce an average 

aggregation efficiency at specific CKE values (Figure 3.2). In order to clearly represent 

the distribution of aggregation efficiency values, aggregation efficiency was calculated 

for random sets of 20 events, aggregation and bounce, in each sample and energy range. 

This calculation resulted in the spread of values seen in Figure 3.2 (a-d). In Figure 3.7 (e-

f), the aggregation efficiency is reported as an average of all the particles in that CKE 

range and the error oval represents the spread in the data (Figure 3.2 a-d). 
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 Overall, these experiments provided a robust data set considering ash aggregation 

efficiency as a function of residence time, atmospheric pressure, relative humidity and 

CKE. 

3.3 Results 

 The aggregation efficiencies of all three samples, SiO2, Mt. St. Helens (MSH) and 

Tungurahua (Tu), were found to be sensitive to a range of pressure, relative humidity, 

residence time and CKE conditions. While CKE is the dominant factor controlling 

aggregation efficiency [Telling and Dufek, 2012], we also found that high (>71%) 

relative humidity becomes important when particles interact for long periods of time with 

the atmosphere (Figure 3.2). The scatter in the data reflects that natural materials were 

used, each with variable shape and different contact angles during impact, which affect 

the SiO2 sample as well. We found a critical residence time by which aggregation 

efficiency increased by more than 60% over initial conditions for particles with identical 

CKE between approximately 50 min (MSH) and 110 min (Tu), when a film of water had 

developed on the fixed sample (Figure 3.3). In the low relative humidity condition, there 

is little difference between the long and short interaction time aggregation efficiencies 

(Figure 3.2 a-c). Decreasing atmospheric pressure enhanced CKE (and decreased 

collision efficiency) due to drag reduction on the particles, but otherwise played no 

discernible role in the collision dynamics. In general, aggregation behavior for the 

different compositions showed no systematic variation. 
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Figure 3.2. Aggregation efficiency of ash particles in (a) low relative humidity (<71%) 

and low residence time (<50 min), (b) low relative humidity (<71%) and high residence 

time (>50 min), (c) high relative humidity (>71%) and low residence time (<50 min), and 

(d) high relative humidity (>71%) and high residence time (>50 min). (a-d) Aggregation 

efficiency was calculated for random sets of 20 events, aggregation and bounce, in each 

sample and energy range to represent the spread of values in each data range. The error in 

aggregation efficiency is ~2.5%. The error in CKE is based on the individual error of 

each variable used in the calculation of CKE.  

 



 40 

 

Figure 3.3. Aggregation efficiency as a function of residence time for all particles with 

CKE between 2 x 10
-7

 mJ and 6 x 10
-7

 mJ. A clear increase in aggregation efficiency is 

seen at 50 min for MSH, 70 min for SiO2 and 110 min for Tu.  

 

 A single ash particle in these experiments, traveling at terminal velocity, that 

collided with a stationary grain of ash would have a CKE of approximately 2 x 10
-6 

mJ. 

In the wet case, these two particles would have roughly a 30% chance of aggregating. In 

the dry case, the two particles would not aggregate. Alternatively, if the largest particle 

and smallest particle in our experiments were both traveling at terminal velocity and 

collided mid-fall, the resultant CKE would be approximately 6 x 10
-8

 mJ. In the wet case, 

the particles would have a 90% chance of aggregating. In the dry case, they would have a 

50% chance of aggregating. 

3.4 Discussion 

 Electrostatic and wet aggregation processes both play a role in volcanic flows. 

The results of these experiments permit quantification of the flow regimes and conditions 
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in which each is expected to dominate [Gilbert and Lane, 1994; Telling and Dufek, 

2012]. In either regime, a balance of the inertial force of two colliding particles with the 

force required to arrest the collision, can be used to predict whether a collision will 

produce an aggregation or bounce event [Schmeeckle et al., 2001]. In the case of particles 

coated by a viscous fluid, the particles can be arrested by hydrodynamic forces [Davis et 

al., 1986; Schmeeckle et al., 2001; Matar et al., 2006]. However, such fluid forces are 

much weaker in the case of dry particle collisions where the working fluid is air and, in 

this case, electrostatic stopping forces need to be considered for the formation of particle 

aggregates.   

3.4.1 Determining Wet and Dry Flow Regimes 

 A film of water was observed at RH > 71% and interaction times longer than 50 

minutes. In order to confirm the presence of a water layer, the sample slides were each 

dried and weighed before being placed in the experiment at high relative humidity 

(>71%). Each slide was weighed at ten minute intervals and a consistent weight increase 

of 0.1-0.2 g per slide was observed by 50 minutes. The increase in weight, distributed 

over the surface of the slide, corresponds to a water layer with a depth on the scale of tens 

of micrometers. Since only the fixed sample developed a water layer, the interaction time 

required for two wetted particles to see a substantial increase in aggregation efficiency 

should be less than 50 minutes. We also noted a distinct change in the restitution 

coefficient behavior of the particles for these conditions (Figure 3.5). The data was split 

up into two categories- wet, which met these conditions, and dry, which did not. The 

abrupt change in aggregation (Figure 3.2) and restitution coefficient (Figure 3.5) behavior 

after a delay period is consistent with the interpretation of water layer growth over this 
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time period exceeding the roughness scale of the ash particles, which typically ranges 

from nanometers up to a few micrometers [Delmelle et al., 2007; Carter et al., 2009; 

Ersoy, 2010].  

3.4.2 Stokes Number Analysis 

 As an indicator of the importance of interstitial fluid during impact, we examined 

the ratio of the relative inertial timescale of a particle to the viscous fluid timescale (i.e. 

the Stokes number). The Stokes number is defined in Eq. 3.2 where m* is the reduced 

mass, u is the particle velocity, μ is the viscosity of the interstitial fluid at the point of 

collision and r* is the reduced radius. 
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   Eq. 3.2 

 Below a given Stokes number, Stcr-a, all collisions are likely to produce aggregates 

and above Stcr-b all collisions are likely to result in a bounce. This range of critical Stokes 

numbers is dependent on the detailed geometry of the collision and the elastic properties 

of the material [Davis et al., 1986; Schmeeckle et al., 2001]. 

 In order to consider how particle Stokes number affects aggregation efficiency, 

we calculated the number of aggregation and bounce events within a certain bin of Stokes 

numbers, ΔSt = 5 for the wet case and ΔSt = 10 for the dry case, and determined what 

percentage of events in that range produced an aggregate (Figure 3.4a). In order to reduce 

error, bins with only one or two events were combined with neighboring bins. The critical 

Stokes range for wet SiO2, MSH and Tu, respectively, was found to be 13-61, 13-64 and 

20-64. These values are on the same order as those in Davis et al. [1986], a theoretical 

examination of critical Stokes number, and Schmeeckle et al. [2001], which combined 
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theoretical and experimental methods for larger particles immersed in fluid. Schmeeckle 

et al. [2001] reported Stokes values between 39-105 for round spheres and 82-105 for 

much larger natural sediment completely immersed in water. It is important to note that 

particles in the Schmeeckle et al. [2001] experiments were moving through water prior to 

collision with a glass slide instead of moving through air and colliding with a bed of ash 

particles, as in the work presented here. It is clear that, in the case of high relative 

humidity, high residence time particle interaction, the Stokes number balance of inertial 

and hydrodynamic stopping forces is a useful way to predict collision outcomes. 

 However, in the dry sample, Stokes numbers ranged from 120-4200 (Figure 3.4b) 

much beyond the range that permits explanation of aggregation due to hydrodynamic 

forces. As hydrodynamic theory is a poor indicator of particle aggregation for the dry 

particle case, a different relationship must be used to describe this scenario. 
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Figure 3.4. (a) The relationship between St and efficiency for the wet case. Two to 90 

individual bounce and aggregation events have been averaged to make each point. (b) 

The relationship between St and efficiency for the dry case. Two to 20 events have been 

averaged to make each point. The blue lines at St = 7 [Davis et al., 1986] and 39 

[Schmeeckle et al., 2001] are thresholds below which predicted aggregation efficiency 

will be 100% based on previous collisional experiments in the presence of viscous fluids. 

Schmeeckle et al. [2001] also proposes a lower limit of St = 82 for natural sediments and 

an upper limit of St = 105, above which aggregation efficiency will be 0%. The current 

results for the wet case provide relatively good agreement with these previous studies; 

however, the hydrodynamic St number is a poor fit for the case of dry aggregating 

particles. The reported aggregation efficiency error is based on the 2.5% error inherent in 

the data collection. The error in Stokes number was calculated as a percentage of Stokes 

number based on the individual errors of each variable in Eq. 3.2. 
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 The wet Stokes numbers are larger than unity, and this can in part be explained by 

variability in contact angle and shape [Schmeeckle et al., 2001]. Also the viscous term 

appearing in the Stokes scaling is not the only force responsible for arresting the particle 

motion. The energy dissipated due to surface tension and fluid inertia in the film layer 

also contributes to lowering the restitution coefficient and promoting aggregation 

[Gollwitzer et al, 2012]. Including these terms, we calculate the restitution coefficient 

reduction relative to the dry restitution coefficient as a function of water layer thickness 

[Gollwitzer et al., 2012]. Figure 3.5a shows the ratio of the wet restitution coefficient 

relative to the dry coefficient (contour lines) as functions of the water layer thickness 

relative to the size of the ash particle and as a function of Stokes number. The zero 

restitution coefficient line is equivalent to aggregation. A clear dampening effect can be 

seen in all three wet samples (Figure 3.5c). 
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Figure 3.5. (a) The ratio of the wet restitution coefficient relative to the dry coefficient 

(contour lines). These are presented as functions of the water layer thickness relative to 

the particle diameter of the ash and as a function of Stokes number. (b) The relationship 

between restitution coefficient and Stokes number for the dry particle sample. Restitution 

coefficient is a factor of velocity and scales with Stokes number. For this plot, the 

restitution coefficient of the dry sample has been calculated using the viscosity of water, 

not air, so that the restitution coefficient results can be compared on across the same scale 

of Stokes number values for both the wet and dry samples. (c) The relationship between 

restitution coefficient and Stokes number for the wet particle sample. A clear dampening 

effect can be seen in all three samples. Each data point is an average of between 10 and 

90 individual bounce and aggregation events in both (b) and (c). The error in restitution 

coefficient for (b) and (c) is based on the standard deviation and the error in Stokes 

number is calculated based on propagating error of each variable used in the calculation 

of St. 
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 Surface tension and fluid inertia in the film layer also contribute to lowering the 

restitution coefficient and promoting aggregation in the case of particles colliding with a 

substrate covered by a thin layer of fluid [Gollwitzer et al, 2012]. Including these extra 

terms (Eq. 3.3), we can compute the restitution coefficient reduction relative to the dry 

restitution coefficient as a function of water layer thickness [Gollwitzer et al., 2012]. Ei is 

the CKE and ΔEacc is the kinetic energy required to move the interstitial fluid out of the 

way of two colliding particles. ΔEvisc is the viscous dampening experienced by the 

particle due to the fluid. ΔEb is the energy required to rupture the capillary fluid bridge 

during the particle rebound.  

i

b

i

vi sc

i

acc
dryn

E

E

E

E

E

E
ee








 2

  Eq. 3.3 

 

3.4.3 The Inertial-Electrostatic Ratio 

 Electrostatic aggregation is the most likely mechanism to explain aggregation in 

the cases where particles are not covered by a water layer. As particles become charged 

through particle - particle collisions or during initial fragmentation [Gilbert et al., 1991; 

Gilbert and Lane, 1994], electrostatic bonds form, creating loosely bound aggregates.  In 

this case, the arresting force is not viscous fluid in the space between the particles 

[Schmeeckle et al., 2001] but an electrostatic force. We define the ratio of inertial to 

electrostatic forces as the inertial-electrostatic (IE) ratio (Eq. 3.4), where δ is the distance 

between the two charges, m* is the reduced mass of the particles, u is the collisional 

velocity, k is Coulomb's constant and q is the particle charge. Average charge density 

was estimated for the particles based on the range of charge estimates of Gilbert and 
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Lane [1994], James et al. [2003] and Telling and Dufek [2012]. As the IE ratio 

approaches one or greater, aggregation efficiency should decay to zero (Figure 3.6). 
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  (Eq. 3.4) 

 The IE ratio was calculated for the data as well as for two theoretical particles 

with the highest, 10
-3

 C/kg [James et al., 2003], and lowest, 2 x 10
-4

 C/kg [Telling and 

Dufek, 2012], charge mass densities reported in the literature. Theoretical calculations of 

the IE ratio, Eq. 3.4, and aggregation efficiency, Telling and Dufek [2012], suggest that 

aggregation efficiency might range from 0.2 to 51% when the IE ratio equals one. The 

data collected for dry particles in these experiments falls into this range, with the MSH 

and Tu samples approaching zero efficiency at IE ratio values near 1 and SiO2 

efficiencies of no more than 50% as the IE ratio approaches one (Figure 3.6). 

 

Figure 3.6. The relationship between the IE ratio and aggregation efficiency for the dry 

particle sample. Each data point includes between 10 and 40 individual bounce and 

aggregation events. The error on aggregation efficiency ~2.5% and the error in the IE 

Ratio was calculated as a percentage based on the propagating error of each variable in 

Eq. 2. 
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3.4.4 Implications for Volcanic Modeling 

 During a collision, energy is dissipated through deformation, acoustic energy, 

heating and other processes. These effects are usually grouped into a restitution 

coefficient, e, which gives the ratio between the velocity after a collision to that before 

the collision. For inelastic particles, e is less than one and the energy change during a 

collision can be described as 



E  E i  e0
2
E i  (1 e0

2
)E i,  Eq. 3.5 

where eo is the 'intrinsic' restitution coefficient. If the restitution coefficient is equal to 

zero, aggregation occurs.  

 In the electrostatic case, the Coulomb force between particles also acts to 

dissipate energy after the collision takes place. In the wet case, surface tension and fluid 

inertia in the film layer contribute to lowering the restitution coefficient and promoting 

aggregation [Gollwitzer et al, 2012]. We can develop a process-based set of equations 

suitable for use in numerical modeling that defines the behavior of ash particles described 

in these experiments. One of the largest sources of variability for any given collision is 

the ash morphology and contact angle during collision. As ash particles will all be 

different it is impossible to a priori determine these features. We propose describing this 

variability through a probability distribution,  
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where 



E diss is a generic dissipation mechanism (either electrostatic or hydrodynamic) that 

can be described through a physical law and 



 diss  represents the variability arising from 

particle shape and uncertainty in evaluating the physical parameters. In the case of 
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electrostatic aggregation, the dissipation is due to oppositely charged particles, 



Eelec  (Eq. 

3.7), and the charge is approximately 4 x 10
-8

 mJ using estimates of charge density from 

James et al. [2003] and Telling and Dufek [2012]. 

r

qkq
Eelec

21   Eq. 3.7 

 In the case of hydrodynamic aggregation, using the approach of Gollwitzer et al. 

[2012], we calculate the dissipation is composed of the viscous dampening experienced 

by the particle (Eq. 3.8) due to the fluid, Evisc, 8.7 x 10
-8 

mJ, the kinetic energy change in 

the fluid due to the collision, Eacc, 4.3 x 10
-8

 mJ, and the surface energy change of the 

fluid, Eb, 8.4 x 10
-7

 mJ. 

bviscacchyd EEEE    Eq. 3.8 

Integrating this probability distribution for all dissipation energies that exceed the initial 

inertial energy of the particle,



Ei , and incorporating the energy loss described by the 

initial restitution coefficient, 



e0, approximately 0.4, gives the following set of equations 

for the aggregation fraction, 



Fagg
, for the electrostatic, 
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and hydrodynamic cases  
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 The variance, 



 D iss, was varied systematically to obtain the best fit between the 

data and this model, while the energy components were calculated based on the physical 

properties of the ash and interstitial fluid using the approach of Gollwitzer et al. [2012]. 
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In the wet case, σwet was equal to 6.9 x 10
-10

. In the dry case, we also varied the charge to 

mass ratio between the values presented in James et al. [2003] and Telling and Dufek 

[2012] so a best fit was found for σ at a given charge to mass ratio. σdry is equal to 7.4 x 

10
-11

 and was found at 5 x 10
-4

 C/kg, providing a rough estimate of particle charge in 

these experiments. 
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Figure 3.7. (a) The dry case, which includes Figure 3.2a-c is fit using Eq. 3.9. 

Aggregation efficiency was calculated as an average of all the collision events in these 

two figures. The numbers next to the data points represent the total number of bounce and 

aggregation events that were averaged to make each point. (b) The wet case (Figure 3.2d) 

has been fit using Eq. 3.10. The ellipses around each point represent the scatter in the 

aggregation efficiency measurement (Figure 3.2a-d) and the solid squares represent mean 

values. Aggregation efficiency was calculated as an average of all the collision events in 

these two figures. The numbers next to the data points represent the total number of 

bounce and aggregation events that were averaged to make each point. 
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Figure 3.8. This is the full range of CKE values across which wet particles can aggregate 

successfully. Aggregation efficiency for the wet case approaches zero at CKE values an 

order of magnitude higher than in the dry case. 

 

 These fits (Figure 3.7 a-b) provide a probabilistic approach to calculating 

aggregation and can be incorporated into large-scale models of ash dispersal. 

3.5 Conclusions 

 We present a set of experiments that investigates the importance of CKE, 

atmospheric pressure, residence time and subsaturated relative humidity on the 

aggregation potential of volcanic ash and an ash proxy. CKE is the most diagnostic 

parameter for ash aggregation efficiency. Relative humidity was found to become 

important for particles that had long residence times in a high humidity environment. In 

pyroclastic flows these residence times may occur during propagation, in the recirculation 

region near the volcanic vent or in co-ignimbrite plumes [Brown et al., 2010]. In volcanic 

plumes residence time of fine to very fine ash can last from > 30 minutes to >10 days, 

often in water vapor rich environments [Rose and Durant, 2011]. 
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 The physics of wet aggregation, in high relative humidity, high residence time 

conditions, can be described accurately by hydrodynamic theory. Electrostatic ash 

aggregation is dominant in humidity regimes below 71% relative humidity and in fresh 

particles. For these cases, the inertial - electrostatic ratio was developed to describe 

aggregation efficiency. Probabilistic relationships were developed for the wet and dry 

cases to predict aggregation efficiency in terms of balancing the appropriate forces 

present during a collision. These equations can be incorporated into numerical models to 

improve hazards predictions and further our understanding of how pyroclastic density 

currents and volcanic plumes develop. Further work is required to develop a probabilistic 

relationship for ice-ash interactions. 
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CHAPTER 4 

MODELLING ASH AGGREGATION AT KILAUEA 

4.1 Introduction 

The historic eruption of Kilauea volcano in 1790 produced uniquely well 

preserved deposits rich in accretionary lapilli (AL) (Mastin, 1997; Swanson et al, 2012a). 

The eruption was witnessed by native Hawaiians living on the island and recorded by 

European visitors to Hawaii in the early 1800's (Dibble, 1843; Jaggar, 1921). The ash 

deposits are often called the "Footprints ash" because footprints of people walking 

through the fresh, wet ash deposits have been preserved since the time of the eruption 

(Personal correspondence- Don Swanson). Kilauea volcano is located on the south side of 

the island of Hawaii and is part of the Hawaii Volcanoes National Park (Figure 4.1). 

 Kilauea is a shield volcano that has been active throughout nearly all of its 

recorded history and is one of the most active volcanoes on Earth (Walker, 2000). The 

volcano expands outward, toward the ocean, at an average rate of decimeters per year 

(Walker, 2000) as fresh magma expands the dike system underlying the volcano. 

Currently, the magma storage zone for Kilauea resides 2-6 km below the surface 

(Carrigan, 2000); however, for roughly 100 years prior to 1924, there was a lava lake 

present at the surface in Halemaumau crater (Walker, 2000). The draining of the lava lake 

was accompanied by explosive eruptive activity due to the combination of both magma 

and water at or near the surface of the volcano (Walker, 2000).  
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Figure 4.1. USGS map of Kilauea Volcano with an inset of the volcano location on the 

island of Hawai'i. 

 

Due to the timing of the 1790 eruption, which predates scientific study of the 

volcano, there remains significant uncertainty in the source conditions. In general, 

Hawaiian magmas have relatively low magmatic water content and erupt effusively; the 

explosivity of this eruption is likely indicative of the incorporation of water in the 

volcanic edifice. Eruptions caused by interaction between groundwater or surface water 

and magma are known as phreatomagmatic eruptions (Morrissey et al., 2000).  While 

phreatomagmatic eruptions can span a wide range of eruptive activity, they are 

characterized by the production of steam, resulting from the rapid heating of the water 
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interacting with the magmatic system, intense fragmentation marking the transition from 

a continuous melt with a dispersed gas phase to disconnected fragments of glassy, 

quenched melt, the ejection of rock surrounding the volcanic system and in general a fine 

grain size distribution (Morrissey et al., 2000).  

Multiple sources agree that the eruption was phreatomagmatic (Mastin, 1997; 

McPhie et al., 1990; Swanson et al., 2012a) but the source of the water remains contested. 

McPhie et al. (1990) suggests that the eruption was initiated when water at or near the 

water table interacted with magma in the vent conduit. Kilauea had been active for 

approximately 300 years prior to the 1790 eruption (Swanson et al., 2010b) and McPhie 

et al. (1990) proposed that, in an eruptive lull, the magma receded to below the water 

table, located roughly 500 m below the surface. Once the level of the magma in the 

conduit at Kilauea was below the water table, McPhie et al. (1990) proposed that there 

was an inflow of groundwater from the surrounding aquifer that initiated the 1790 

eruption of Kilauea. However, Mastin (1997) suggests that an inflow of water from a 

ground source into the volcanic conduit was unlikely and that the water source was more 

likely to be located at the surface. The key difference between the two studies is the 

interpretation of eruptive layers. McPhie et al. (1990) interprets the difference between 

eruptive layers in the deposit to indicate pauses in the eruption cycle that would have 

allowed for the recession of magma below the water table and a subsequent inflow of 

water into the conduit, reinitiating explosive activity. Mastin (1997), however, suggests 

that there is not sufficient evidence in the deposits to conclude that there were pauses in 

the eruptive activity that would have allowed for the magma – water interaction proposed 

in McPhie et al. (1990). Swanson et al. (2012a) examined ballistic blocks around Kilauea 



 58 

caldera and, modeling their trajectories through EJECT! (Mastin, 2001), found that they 

could reasonably have been emplaced from an explosion depth of 600m, which is the 

approximate elevation of the water table. Swanson et al. (2012a) does note though that 

the precise vent location is not known and that a different vent location could alter this 

interpretation. 

The deposits from the 1790 eruption of Kilauea are densely populated with 

accretionary lapilli (Figure 4.2). Extensive field work has been done to map their 

distribution around the volcano (Swanson, 2012- AGU) and in deposit stratigraphy 

(McPhie et al., 1990; Mastin, 1997). McPhie et al. (1990) includes the footprints ash in 

Unit 9 of the stratigraphy and Mastin (1997) places it in Unit III, just above a notable 

surge unconformity that does not appear as prominently in McPhie et al. (1990). A 

dataset containing the maximum and average accretionary lapilli sizes at hundreds of 

sites has been compiled to give a detailed picture of their distribution (Personal 

correspondence- Don Swanson). The locations of the largest accretionary lapilli and 

isobars describing the locations are shown in Figure 4.3. The largest accretionary lapilli 

are located west of the presumed vent location, which has been marked with an open 

black circle. 
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Figure 4.2. Accretionary lapilli collected at Kilauea from the Footprints Ash deposit. The 

accretionary lapilli on the right is the largest sample collected from the deposit, with a 

diameter of approximately 3 cm. Photo courtesy of the USGS. 

 

 

 

Figure 4.3. Topographic map of Kilauea Volcano with the presumed vent location 

marked with an open black circle. The location of the largest accretionary lapilli in each 

sample area is marked on the map with isobars to describe their distribution. 

 

Understanding where and how ash is removed from the atmosphere is crucial to 

improving predictions of atmospheric ash transport (Folch et al., 2010; Textor et al., 

2006a). The final distribution of ash that has been removed by aggregation has been 
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observed to be different than the distribution of ash removed by settling alone (Folch et 

al., 2010; Textor et al., 2006a; Veitch and Woods, 2001). Textor et al. (2006b) modeled a 

generalized large, buoyant eruption and found that aggregation could remove roughly 

50% of the ash mass from the lower atmosphere and 30% from the troposphere. It is clear 

that understanding how much ash is removed by aggregation, and where these processes 

take place, makes a significant difference to the fraction of ash available for long range 

transport away from a volcanic source. 

It is unclear whether aggregation removed material primarily from fall or flow 

regimes during the 1790 eruption of Kilauea. The ash deposits have been shown to 

include both pyroclastic flow and fall material (Mastin, 1997; McPhie et al., 1990; 

Swanson et al., 2012). Deposition of the Footprints ash layer primarily extends SW from 

the presumed vent, implying that the local wind field exercised an important control over 

the eruption (Personal correspondence- Don Swanson) (Figure 4.3). McPhie et al. (1990) 

also depicts the deposit to be “well sorted” and layered in the cross section and 

accompanying summary. These indicators typically suggest that the deposit was 

emplaced by a buoyant column. 

However, the cross section presented in Mastin (1997) includes flow 

discontinuities in the layer directly above the Footprints ash and McPhie et al. (1990) 

show flow discontinuities in the middle of the Footprints ash section. Based on the lack 

of deposits east of the vent, the eruption did not interact with the jet stream winds, which 

show a direction shift towards 270º as low as 5 km over the Hawaiian Islands. A buoyant 

plume would have had to remain very low in the atmosphere to not interact with the jet 

stream, which may significantly reduce the time in which accretionary lapilli could form. 
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The deposits, however, include a large number of well developed, large accretionary 

lapilli (Mastin, 1997; McPhie et al., 1990; Swanson et al., 2012). Finally, if the 

accretionary lapilli were forming in a low, buoyant column, they should be removed 

closer to the vent than the fine ash. The largest accretionary lapilli formed downwind of 

the thickest fine ash deposits (Personal correspondence- Don Swanson); however, the 

grain size distribution of the component ash in these accretionary lapilli has not been 

measured. There is evidence to suggest either a buoyant or collapsing eruption column, 

and it is likely that both may have been present during the eruption.  

We will be modeling the 1790 eruption of Kilauea using an Eulerian-Eulerian-

Lagrangian (EEL) numerical model (Dufek and Bergantz, 2007; Dufek and Manga, 2008; 

Dufek et al., 2009). Including the relationships driving aggregation efficiency (Telling et 

al., 2013) is the first step towards modeling this eruption. The integration of a joint 

collision and aggregation function to the EEL model is presented. The new model is 

tested on one possible eruptive scenario for the Kilauea 1790 eruption. Analysis of the 

mass fraction of aggregates over time and the volume fraction and aggregation rate of 

different ash size ranges will be used to determine where and how effectively aggregation 

processes can remove ash from the atmosphere. 

4.2 Methods 

4.2.1 Model Characterization 

Dufek and Bergantz (2007) developed a continuum multiphase numerical model, 

based on the multiphase flow with interphase exchange (MFIX) code. The model solves 

the conservation equations for momentum, mass and energy and includes closure 
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assumptions for heat and momentum transfer between phases. Six phases were solved in 

the model- water, gas and four particle phases (Table 4.1). 

 

Table 4.1. Initial particle size distribution 

Name Range % Volume Mode (µm) 

Ash - 1 d < 30 µm 15 20 

Ash - 2 30 µm ≤ d < 1000 µm 65 250 

Ash - 3 1000 µm ≤ d < 2000 

µm 

20 1000 

Lapilli d ≥ 2000 µm 0  

 

The particle size ranges are based on the work of Rose and Durant (2009), who 

define the Ash-1 and Ash-2 size ranges as very fine ash and fine ash respectively, and 

Gislason et al. (2011). Ash size data has not been collected for the footprints member of 

the 1790 eruption of Kilauea. However, detailed grain size analysis of Unit II and the top 

Golden Pumice unit have been collected (Personal Correspondence- Larry Mastin). Field 

observations confirm that the footprints ash layer is predominantly fine with a significant 

fraction of ash falling into the Ash-1 and Ash-2 categories. Of the 53 grain size 

distributions collected by Mastin (Personal Correspondence), during field campaigns in 

1992, 1994 and 2001, three had a predominantly coarse distribution that fell into the Ash-

3 category. The remaining 50 grain size distributions were used to define the initial grain 

size distribution defined in Table 4.1. 

4.2.2 Incorporating Aggregation 

The probabilistic aggregation relationships developed in Telling et al. (2013) were 

included as a subgrid model in the numerical simulation. Colliding particles are treated 
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based on two flow regimes- wet and dry. A wet collision takes place when a particle is 

covered in a water layer thicker than the particle surface roughness (Telling et al., 2013). 

The interstitial water acts as a viscous dampening force both slowing the two colliding 

particles directly prior to a collision and retarding the post-collision rebound, which 

promotes aggregation. Dry collisions may also result in aggregation due to the 

electrostatic forces between particles (Telling et al., 2013). Particle collisions and 

fragmentation are both capable of producing charged particles (Gilbert et al., 1991; James 

et al., 2002, 2003) though these dry aggregates typically disintegrate upon deposition 

(Gilbert and Lane, 1994). In this work we consider any collision occurring in above 

saturated conditions to be influenced by hydrodynamic interactions.  

Due to the decline of aggregation with increasing CKE, we can linearize the 

aggregation fraction and remain within the error of the experimental measurements 

simplifying the aggregation calculations. The wet aggregation fraction can be rewritten as 



Fagg 1 (4.03510
8)r3pu2

,  Eq. 4.1 

where Δu is the relative collision velocity, r is the reduced radius and ρp is the particle 

density. The constants (4.035x10
8
r

3
πρp) can be grouped together into one term, B, so that 

21 uBFagg 
.   Eq. 4.2 

The aggregation fraction must fall between 0 and 1 so a range of velocities in 

which aggregation will occur can be calculated. Collisional velocities that may produce 

an aggregation event will range between zero and B

1

. 
The probability distribution for 

collisional velocity, fcoli, is 



fcoll 
1

2 
exp

(u2)

4










,  Eq. 4.3 
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where θ is the granular temperature. 

The joint probability distribution can be calculated using 



ffaggregate  2
1

2 
exp

(u2)

4









0

1

B 1 Bu2 du

 Eq. 4.4 

and, after integration, the final expression for the aggregation potential of the wet case is  
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 . Eq. 4.5
 

4.2.3 Topographic and Atmospheric Characteristics 

We conducted a series of two-dimensional simulations to determine the 

aggregation potential. An NE-SW running axis that runs through the center of the 

assumed vent and parallel to the primary ash fallout was chosen to run the simulation 

along (Figure 4.4). The simulation has refined resolution near the surface with a peak 

resolution of 20 m. 
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Figure 4.4. (a) Hillslope relief topography surrounding the Kilauea vent. The black line 

shows the cross section used for topography in the model. (b) Topography across the 

Kilauea vent, located at roughly 8km. The topography profile runs from the NE to the 

SW. 
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Since no atmospheric soundings are available for the day of the eruption, we used 

atmospheric soundings from a representative day to profile the temperature, relative 

humidity, lapse rate and pressure in the atmosphere. Ash dispersal from the eruption was 

primarily carried W-SW of the vent. The jet stream over Hawaii is historically stable 

between 4-15 km and typically moves from East to West (Figure 4.5). Wind speed and 

heading data, from the weather station at Hilo International Airport, HI (PHTO), for two 

months (61 days) was compiled to describe a characteristic wind field over Hawaii. The 

lack of ash dispersal to the East of the vent suggests that the plume was definitely less 

than 15 km high and likely less than 5 km high, which is the altitude at which the winds 

begin to shift towards the jet stream heading of 270º. An average surface wind field was 

developed by sampling data from the PHTO weather station, which is the closest station 

to the vent. The SE direction of the ash deposits indicate that surface winds came from 

the NE on the day of the eruption. Northeasterly winds were averaged across a one year 

data range to determine a wind field proxy. The average wind direction was 70° with a 

speed of 10 knots. 
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Figure 4.5. Wind direction and speed data for 61 days of 2004. 

 

 
Figure 4.6. Atmospheric soundings used to create the background atmosphere during the 

eruption. Temperature, pressure and humidity, with respect to altitude, are all shown. 
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4.2.4 Simulations 

The two eruptive scenarios give rise to an array of possible eruptive conditions. 

Estimates of explosive depth range from 400 - 700 m below the caldera rim, which used 

as a reference point in the literature (McPhie et al., 1990; Mastin, 1997; Swanson et al., 

2012a). The approximate depth of the caldera floor below the rim was estimated in the 

1820’s to be 400 m. Consequently, 400 m corresponds roughly to the caldera surface and 

700 m depth corresponds to an elevation of 500 m with an overlying lithostatic load of 

approximately 300 m. The water table depth is estimated to be 500 m (McPhie et al., 

1990) to 600 m (Mastin, 1997; Swanson et al., 2012a) below the caldera rim, providing 

the deepest estimate for the initiation depth of the eruption. Overpressure values range 

from 10 - 30 MPa (Mastin, 1997). Mastin (1997) based this range on the pressure 

required in the conduit, considering the lithostatic load of degassed magma, to produce an 

eruption. The maximum estimate of 30 MPa is actually above the required pressure but is 

included to test a complete range of conditions for different eruptive scenarios.  Appendix 

C summarizes the 12 numerical simulations that would test this range of data. Due to 

computational constraints, one simulation was run for this study to test the model. The 

depth of the eruption source was located 650 – 700 m below the surface and the 

overpressure caused by the magma – water interaction was estimated to be 1.9 MPa. This 

test simulation roughly corresponds to Run 11 in Appendix C. 

 

4.3 Simulation Results 

 The trial simulation had an explosive source depth of 650-700 m and an 

overpressure of 19 MPa, roughly corresponding to Run 11 in Appendix C. This 
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simulation is a test of the aggregation relationships in the framework of a multifluid 

model and the results presented are not necessarily the best fit to the 1790 eruption of 

Kilauea. The test eruption produced a PDC that spread out in both directions from the 

vent and seemed to be controlled only weakly by the ambient wind field. Relative 

humidity, particle volume fraction, aggregation rates, cumulative aggregation and deposit 

thickness were all examined. 

 The mass fraction of aggregates developing throughout the eruption column with 

time was examined (Figure 4.7). Aggregate formation began roughly 50 s after the 

initiation of the eruption. The majority of the aggregates were produced in the PDC 

between the ground and 1200 m (Figure 4.7), a range of the flow that is less than 200 m 

thick near the vent (Figure 4.4b). A comparatively small amount of aggregate began to 

form at higher altitudes between 80 and 100 seconds after the initiation of the eruption 

(Figure 4.7). Roughly 10% of the total aggregate formation occurs between 1200 and 

5000 m and, for this eruption, aggregation is negligible above 5000 m. 
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Figure 4.7. The mass of aggregates developing at different altitudes with respect to time. 

Aggregation between 1000 - 1200 m and the cumulative aggregation are plotted on the 

left axis. The mass of aggregation taking place at all other altitude levels is on the right 

axis.  

 Aggregation rate was considered with respect to both time and particle size. The 

relative humidity and aggregation rates for the three ash size samples are shown at 150 s. 

The aggregation rate for the Ash-1 sample at 150 s is shown in Figure 4.8 and the volume 

fraction of Ash-1 present at this time is shown in Figure 4.11a. Aggregation rates are 

highest near the ground and lowest along the top and the front edge of the PDC. Higher 

volume fractions of particles than the plume average are visible near the bottom of the 

flow (Figure 4.11a) and these regions also correspond to higher rates of aggregation. The 

coignimbrite plume beginning to form at the front of the flow behaves somewhat 

differently. The volume fraction of Ash-1 in this region approaches that close to the bed 

throughout the rest of the flow (Figure 4.11a) but aggregation rates typically remain low 

(Figure 4.8).  
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Figure 4.8. A comparison to the relative humidity, with % RH represented on the left 

color bar, produced by the eruption to the aggregation rate, log scale on the right color 

bar, of Ash-1 at 150 s after the start of the eruption. The width of the area shown is 14 

km. 

 

 

 The instantaneous aggregation rate and volume fraction for the Ash-2 (Figures 4.9 

and 4.11b) and Ash-3 (Figures 4.10 and 4.11c) samples, at 150 s into the simulation, 

show that both samples aggregate most efficiently in the coignimbrite column. Neither 

sample displays the tendency for enhanced aggregation near the bed that is seen in Ash-1.  

 

Figure 4.9. A comparison to the relative humidity, with % RH represented on the left 

color bar, produced by the eruption and the aggregation rate, on the right color bar, of 

Ash-2 at 150 s after the start of the eruption. The width of the area shown is 14 km. 
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Figure 4.10. A comparison to the relative humidity, with % RH on the left color bar, 

produced by the eruption and the aggregation rate, on the right color bar, of Ash-3 at 150 

s after the start of the eruption. The width of the area shown is 14 km. 

 

 The volume fraction of Ash-4 at 150 s is shown in Figure 4.11d. The volume 

fraction is highest near the ground, where aggregates are forming most efficiently in Ash-

1, and in the coignimbrite column, where Ash-2 and Ash-3 are aggregating more 

efficiently.  

 

 
Figure 4.11. The volume fraction of Ash-1 (a), Ash-2 (b), Ash-3 (c) and Ash-4 (d) at 150s 

into the eruption simulation, plotted on a logarithmic scale. 
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 The behavior of Ash-2 was also examined earlier in the simulation, at 100 s. The 

early injection of water vapor into the atmosphere, well ahead of the erupted Ash-2, can 

be seen reaching neutral buoyancy, the point where the eruption column and the 

atmosphere have roughly the same density, in the atmosphere and has just begun to 

spread out at 100 s (Figure 4.12).  The Ash-2 sample is in the process of being erupted 

from the volcanic conduit and the material has not yet collapsed to form a PDC. Despite 

the eruption still being in the jet phase, when the jet density is greater than that of the 

atmosphere and upward motion is being controlled by the inertial energy of the eruption, 

aggregation is still occurring in the high volume fraction jet center (Figure 4.12 and 

4.13).  

 

 

 

Figure 4.12. A comparison to the relative humidity, with % RH on the left color bar, 

produced by the eruption and the aggregation rate, on the right color bar, of Ash-2 at 100 

s after the start of the eruption. The width of the area shown is 14 km. 
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Figure 4.13. The volume fraction, plotted on a logarithmic scale, of Ash-2 present at 100 

s into the simulation. The width of the area shown is 14 km. 

 

 

4.4 Simulation Discussion 

Ample water vapor was available during the 1790 eruption of Kilauea volcano 

due to both the phreatomagmatic nature of the eruption (Mastin, 1997; McPhie et al., 

1990; Swanson et al., 2012a) and the high level water vapor typically present in the 

Hawaiian atmosphere (Figure 4.6). Consequently, the ash sizes examined interact 

consistently in a high relative humidity environment. Additionally, the PDC resulting 

from the eruption is saturated for the duration of the trial so most of the ash is likely to be 

covered with at least a monolayer of water shortly after the start of the eruption. Telling 

et al. (2013) showed that the ash surface only needs to adsorb enough water for the water 

layer depth to exceed the porosity of the ash surface, which is typically on the order of 

nanometers to micrometers (Carter et al., 2009). A subsaturated atmosphere can take 

around 50 minutes to generate a water layer that is thicker than the ash surface porosity 

(Telling et al., 2013) but the saturated conditions in the modeled plume would increase 
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the speed of water layer development. Aggregates are first observed only 50 seconds into 

the simulation in the jet region and later in the PDC (Figure 4.7). 

Ash-2 typically aggregates more efficiently than either Ash-1 or Ash-3. Studies of 

ash size distribution have shown that there is substantially less ash in the Ash-1 and Ash-

3 size ranges than in the Ash-2 range (Gislason et al., 2011; Rose and Durant, 2009). 

Additionally, the 1790 Kilauea ash is considered to be a particularly fine ash deposit 

(Personal Correspondence- Larry Mastin and Don Swanson). Collisions involving Ash-3, 

due to its large size, have higher CKE values, lowering the probability that aggregation 

will occur (Gilbert and Lane, 1994; Telling and Dufek, 2012; Telling et al., 2013). 

Additionally, in longer duration simulations, the heavy Ash-3 sample will deposit first 

and will have the lowest circulation time, reducing the amount of time it is available for 

aggregation, though these effects are less important in the simulation presented here.   

Ash-1, the finest size range of particles, undergoes aggregation throughout more 

of the flow (Figure 4.8) than Ash-2 (Figure 4.9) but forms measurable aggregates at 

lower rates. In order for an aggregate to form, it must reach the size limit for lapilli set in 

Table 4.1. Ash-1, due to its small size, takes significantly longer than Ash-2 or Ash-3 to 

grow to the size of a lapillus. The smallest size fraction of ash is more likely to travel at 

higher velocities, closely tracing the fluid motion, particularly near the plume boundaries, 

than Ash-2 or Ash-3, which results in high CKE collisions and reduces aggregation 

efficiency. However, a high volume fraction of Ash-1 is present near the bed (Figure 

4.11a) and aggregating efficiently in this region (Figure 4.8). The high aggregation rates, 

particularly in the fine Ash-1 sample, indicate that the collisional frequency is 

particularly high in this region. Continuing the tale of the three little ash particles, Ash-2 
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tends to aggregate most efficiently, particularly near the front of the flow. The middle ash 

size range is abundant throughout the eruption, has a lower mass than Ash-3 and has, 

overall, less energy than Ash-1, promoting the aggregation efficiency of the sample. 

Pyroclastic density currents are high energy flows and aggregates form most 

efficiently in low CKE collisions, leading to the question of whether PDC’s can 

effectively produce aggregates. However, Branney et al. (2011) and Brown et al. (2010) 

have both shown that aggregates can form efficiently in some ground hugging flows. This 

simulation of a possible eruption scenario at Kilauea volcano further confirms that 

aggregates can, under the right conditions, form very efficiently in PDC’s. Over the 

course of the simulation, aggregates consistently formed most efficiently in the high 

particle density, low energy regions of the PDC, between the ground and 1200 m, 

regardless of particle size. Aggregates forming higher in the atmosphere, where the 

volume fraction was significantly lower, took longer to initiate and account for only 10% 

of the total aggregate mass at the end of the simulation.  The high particle density of ash 

in PDC’s may indeed promote aggregation more than the high energy nature of the flow 

retards it though further comparison of aggregation in buoyant eruption columns and 

PDC’s is needed. 

4.5 Conclusions 

The well preserved deposits of the 1790 Kilauea eruption provide a unique 

opportunity to compare volcanic modeling of aggregate distributions to field data. The 

eruption simulation confirmed that aggregates can and do form efficiently in PDC’s and 

can even begin forming in the inertial jet region. Three ash size ranges were tested. The 

finest ash was found to aggregate in most areas of the flow but never reached the 
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aggregation efficiency of the mid-sized ash sample, which aggregated very efficiently 

along the front of the flow and in the coignimbrite column. 

Water vapor from both the plume and the atmosphere are important in analyzing 

plume dynamics and particle interactions. The phreatomagmatic Kilauea 1790 eruption 

was water rich and likely mixed with an atmosphere close to saturation, which kept the 

eruption plume from diluting over the course of the simulation presented. Water vapor 

saturation throughout the eruption significantly decreased the time required for 

aggregation to initiate from tens of minutes to only tens of seconds.  

Further study is necessary to better understand the 1790 eruption of Kilauea 

volcano. A complete set of numerical simulations should be completed to test the range 

of depth and overpressure conditions published in the literature. This will refine our 

understanding of what caused such an uncharacteristically large and explosive eruption of 

Kilauea volcano. 
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CHAPTER 5 

CONCLUSIONS 

 

Ash aggregation has been shown to be important for plume dynamics and 

atmospheric dispersal of ash (Stevenson et al., 2012; Taddeucci et al., 2011). However, 

previous studies, particularly Folch et al. (2010), Folch (2012) and Veitch and Woods 

(2001), have cited the need for research to examine the microphysics involved in ash 

aggregation. Folch et al. (2010) concluded that both atmospheric and magmatic water 

vapor play a role in ash aggregation. Textor et al. (2006b) suggested that atmospheric 

water vapor exercised little control on aggregation rates; however, Textor et al. (2006b) 

and Folch et al. (2010) both noted that more experimental data is needed to refine the 

numerical simulations that they present. 

The experiments presented here seek to address this problem of limited 

experimental data. Over 12,000 particle interactions were recorded and the effect of 

atmospheric conditions, CKE and residence time was analyzed. The first experiment 

involved only low residence time interactions, at both low and high relative humidity, 

where both particles in each collision were moving. Relative humidity was observed to 

have no effect on the efficiency of aggregation but the important effect that CKE has on 

aggregation efficiency was isolated. Increasing CKE was found to significantly decrease 

aggregation efficiency. The earlier results of Gilbert and Lane (1994) observed a decrease 

in aggregation efficiency with increasing particle diameter, which, when converted to 

CKE, showed the same trend seen in the results of the first experiment. Probabilistic 
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relationships relating aggregation efficiency to CKE were determined for use in 

numerical modeling. 

However, the results of the first experiment indicated that atmospheric water 

vapor has little effect on ash aggregation, as was suggested by Textor et al. (2006b), but 

the results of Folch (2010) strongly suggested otherwise. The second set of experiments 

presented here was designed to more thoroughly examine the influence of atmospheric 

water vapor, pressure and residence time on aggregation efficiency. Instead of examining 

collisions between two moving ash particles, which could only be reliably tracked for a 

short duration, collisions between one fixed and moving particle were observed. Fixing 

an ash sample to a slide prior to the particle-particle collision allowed for a more robust 

examination of relative humidity and particle residence time.  

Aggregation efficiency was still found to decrease with increasing CKE across the 

range of conditions tested; however, a clear difference in this trend at high relative 

humidity and high residence time allowed for the definition of wet and dry aggregation 

regimes. Dry aggregation, due to electrostatic charging at the ash surface, was found to 

be dominant at low relative humidity and high relative humidity that was not maintained 

for a long period of time. The efficiency of dry aggregation decays swiftly with 

increasing CKE. Wet aggregation occurs when a particle has circulated in a high 

humidity atmosphere long enough to develop a surface water layer thicker than the length 

scale of the surface roughness. Aggregation efficiency decays more gradually with 

increasing CKE in this regime resulting in efficiencies that are 20-60% higher than at 

similar CKE values in the dry aggregation regime. More robust probabilistic relationships 

were determined, based on a combination of theory and experimental data, to describe 
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wet and dry aggregation efficiency in terms of the appropriate forces present during each 

type of collision. 

Finally, to test the validity of these relationships, a numerical simulation of the 

1790 eruption of Kilauea volcano, HI, is presented. The relationships developed after the 

second set of experiments were incorporated into a multiphase flow simulation and the 

eruption parameters were defined based on published estimates in the literature. A range 

of source depths and overpressures caused by the phreatomagmatic eruption was isolated 

and one set of source conditions was tested in depth to examine the eruption dynamics. 

The simulation produced a PDC with the beginning of a coignimbrite column forming by 

150 s after the start of the eruption. Three ash size ranges were examined for aggregation 

potential and the abundant, middle Ash-2 range was found to aggregate most efficiently 

though the fine Ash-1 range aggregated throughout more of the PDC. The largest size 

range of ash aggregated least efficiently due to the high values of CKE produced by the 

heavier ash sample. The wet eruption and high relative humidity atmosphere were both 

key to maintaining high aggregation rates throughout the eruption because the 

atmosphere did not readily decrease the water vapor available in the plume during 

mixing. Finally, the simulation showed that aggregation can occur efficiently in PDC’s. 

The combination of experiments and simulation presented here are needed to 

improve our understanding of the impact that microphysical ash interactions have on 

eruption dynamics. Ash aggregation can alter the deposition patterns of ash in both 

buoyant eruption columns and pyroclastic density currents. However, past estimates of 

aggregation efficiency have been poor and the interaction between the ambient 

atmosphere, as opposed to the volcanic column, and ash has often been neglected 
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entirely. The experiments presented here on ash aggregation in subsaturated 

environments have shown that ash can and does aggregate even in these lower water 

vapor environments and, therefore, is important in both near-plume and distant 

environments. Experiments, however, cannot provide a complete picture of how ash 

aggregation effects plume dynamics. Numerical simulations provide a macroscopic view 

into the effect that these microphysical processes have on plume dynamics. 

Experimentation, combined with numerical modeling, has significantly improved our 

understanding of ash aggregation processes. These results can be expanded to model past 

volcanic activity, predict possible outcomes of future eruptions and even to improve our 

understanding of planetary environments. 
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CHAPTER 6 

FUTURE WORK 

 

6.1 Ash Dispersal and Aggregation Mechanisms 

  

 Volcanic hazards are widespread, affecting nearly all latitudes, and many 

volcanoes are in close proximity to population centers, posing a significant hazard 

(Handbook for Volcanic Risk Management). Aside from the immediate hazard posed by 

an eruption from PDC’s or lava flows, the airborne hazard of ash, fine particulate and gas 

emissions can be deadly to both humans and animals (Marzano et al., 2010; Prata and 

Tupper, 2009). Fine ash and gas that is injected into the stratosphere can affect regional 

and global climate for weeks to years, depending on the size of the eruption (Niemeier et 

al., 2009; Robock, 2000). However, models of ash transport and settling still fall short of 

correctly predicting these behaviors and improving our understanding of aggregation 

mechanisms has been highlighted in numerous publications as one of the most important 

improvements to modeling efforts (DiMuro et al., 2008; Folch, 2012; Folch et al., 2012). 

 Aggregation produces larger, heavier particles that are removed more quickly 

from the atmosphere (Brown et al., 2010; Gilbert and Lane, 1994). The effect of this 

removal can be seen in field deposits from Mount St. Helens, where the Ritzville bulge 

has been attributed to the removal of fine ash from the atmosphere through aggregation 

(Veitch and Woods, 2001), and at Soufriere Volcano, where fine ash was not well sorted 

moving away from the vent and showed a distribution similar to that seen in disintegrated 

AL (Brazier et al., 1982). Until recently, many models have neglected aggregation 
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entirely (Barsotti et al., 2008; Folch et al., 2009) or oversimplified the problem by 

neglecting atmospheric effects or by determining the degree of aggregation occurring 

ahead of time (Folch, 2012). Our understanding of ash aggregation mechanisms and their 

importance has been improved through continued experimentation and improved 

numerical modeling.  

The experiments of Gilbert and Lane (1994) were the first to examine wet 

aggregation, instead of using a water droplet proxy. However, Gilbert and Lane (1994) 

collides ash with fixed polystyrene spheres and suspended water droplets, not with other 

ash particles. The effects of atmospheric conditions on aggregation were not specifically 

investigated in the study though it was noted that relative humidity was low, 10-15%, 

during the water droplet experiments and that it could be varied during the experiments 

with polystyrene spheres but no record of the variation was published. Despite these 

limitations, Gilbert and Lane (1994) was the first study to define a relationship between 

ash size and aggregation efficiency. 

These studies have answered important questions about aggregation processes. 

Eruption models of both contemporary and historic eruptions have shown that including 

aggregation is important to correctly modeling ash fall (Costa et al., 2010; Folch, 2012; 

Folch et al., 2012; Textor et al., 2006a; Veitch and Woods, 2001) and that atmospheric 

conditions do have an effect on aggregation rates (Folch et al., 2010; Folch, 2012). 

Gilbert and lane (1994) first identified the important relationship between particle size 

and aggregation efficiency and Costa et al. (2010) later used this data to show a further 

relationship between particle Stokes number and aggregation efficiency. They have also 

introduced important new questions about exactly what processes drive aggregation 
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efficiency at the particle scale, what flow regions are most likely to promote aggregation, 

how to define wet and dry aggregation and which atmospheric conditions are most 

important to consider in numerical modeling. 

Telling and Dufek (2012) and Telling et al. (2013) have provided aggregation rate 

data for real ash samples across a wide range of conditions. The experiments in Telling 

and Dufek (2012) allow ash particles to collide with one another but, since ash is only 

allowed to interact briefly with the environment, the ash is prevented from equilibrating 

with the surroundings. Despite not collecting sufficient data on ash – atmosphere 

interactions, Telling and Dufek (2012) confirmed and expanded on the results of Gilbert 

and Lane (1994). The relationship between particle size, when converted to CKE, and 

aggregation efficiency observed by Gilbert and Lane (1994) was also observed in Telling 

and Dufek (2012) (Figure 2.7). Telling et al. (2013) also collided two ash particles, 

however, one sample was fixed but allowed to equilibrate with the atmosphere for 

extended time periods and the other sample was mobile but not allowed to interact with 

the atmosphere for more than a few seconds. These experiments further confirmed the 

importance of CKE in determining the aggregation efficiency of ash particles. The longer 

residence times tested in Telling et al. (2013) led to the definition of what is required for 

wet and dry aggregation to be effective and provided a more nuanced investigation of 

atmospheric effects on aggregation efficiency. Combining the results of these 

experiments with the theory of Gollwitzer et al. (2012) furthered our understanding of 

what microphysical forces need to be considered in each type of aggregation event. The 

relationships determined through this experimental work have provided new methods to 

model ash behavior in volcanic eruptions. The modeling work on the 1790 eruption of 
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Kilauea shows that these relationships can be successfully integrated into a numerical 

simulation without significantly increasing the computational time required. Still, a 

number of exciting open questions remain. 

 What is the aggregation efficiency in the collision of two moving particles that 

have both been allowed to equilibrate with the atmosphere?  

 Does the atmospheric composition of gasses have an effect on aggregation 

efficiency?  

 How much is the required residence time for a wet particle collision reduced by 

when both particles are allowed to interact with the atmosphere? How much does 

a supersaturated flow accelerate this effect? 

 Investigating aggregation efficiency between two moving particles, both of which 

have been allowed time to equilibrate with their environment, would be step forward in 

this type of experimental research. Examining collisions between ash particles is 

important to further our understanding of the importance that surface chemistry and 

particle roughness may have in aggregation efficiency. Though, studies done to date, 

including Delmelle et al. (2005) and Lathem et al. (2011), indicate that chemical 

composition has a minimal effect on ash behavior. Allowing both particles to equilibrate 

with the atmosphere before colliding is likely to reduce the residence time required to 

significantly increase aggregation efficiency as well. Further experimentation would be 

necessary to determine how much the time may be reduced by and whether the effects 

may also be seen at lower values of relative humidity. These open questions are key to 

improving our ability to model volcanic eruptions. 
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 What secondary mechanisms may adhere AL more thoroughly, after aggregation 

has occurred? 

 What fraction of well developed wet and dry aggregates breaks up after 

contacting the ground? 

 How might ambient temperature affect the efficacy of these processes? 

Research on aggregation processes has largely focused on hydrodynamic and 

electrostatic mechanisms for aggregate formation. However, studies, including Gilbert 

and Lane (1994) and Textor et al. (2006a), have suggested other primary and secondary 

mechanisms as well. Bacon and Sarma (1991) have shown that dust aggregates bound by 

water alone will break up upon contact with the ground and James et al. (2003) have 

found that this fate is also shared by electrostatic aggregates. However, many volcanic 

deposits include well preserved aggregates so clearly there are other processes at work in 

volcanic flows. Gilbert and Lane (1994) suggest that silicate minerals on the surface of 

ash particles may be partially dissolved by acids condensing from the plume, enhancing 

the cohesiveness of aggregates. Other minerals, including sodium chloride and calcium 

sulphate, have also been observed in aggregates (Delmelle et al. (2007); Gilbert and 

Lane, 1994). The deposition and crystallization of these secondary minerals has been 

suggested as a bonding mechanism that preserves aggregates through deposition (Tomita 

et al., 1985; Gilbert and Lane, 1994). Beyond this work isolating what types of minerals 

may play a role in adhering and preserving ash aggregates, little additional research has 

been done into where these processes are most effective or what conditions promote these 

processes.  
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Gilbert and Lane (1994) cite, in particular, the need for further research into the 

relationship between temperature and the efficiency of these ash surface processes. At 

lower temperatures, the water in wet ash aggregates can freeze, altering both the 

residence time of the aggregate in the atmosphere and the collection properties of the 

aggregate (Van Eaton et al., 2012b). Experiments conducted by Van Eaton et al. (2012) 

showed that, once frozen, icy ash aggregates begin to collect fine ash (< 31 μm) more 

efficiently. However, aside from the different collection efficiencies associated with ice 

aggregates, there are also large scale effects on the plume associated with ice aggregate 

formation. The latent heat release associated with the formation of ice aggregates heats 

the plume and increases the buoyancy of the eruption (Van Eaton and Wilson, 2013). 

This secondary heating often promotes turbulence as well (Van Eaton and Wilson, 2013), 

which could have an important impact on an area of the volcanic plume in the upper 

atmosphere that would otherwise be considered a more laminar flow predominantly 

controlled by atmospheric winds. The amount of water vapor present in an eruption, as 

well as in the ambient atmosphere, may determine whether the effects of latent heat 

release need to be considered in eruption modeling and further numerical eruption 

simulations should be used to explore this forcing. Additionally, research into the 

composition of ash, other sulfates that may form in volcanic eruptions and glass melting 

at ash boundaries may improve our understanding of why some eruptions have well 

preserved aggregates and others do not. 

6.2 Volcanic Modeling 

Building on the previous modeling (Swanson et al., 2012a) and field work 

(Mastin, 1997; McPhie et al., 1990; Swanson et al., 2012a) at Kilauea, the modeling 
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presented here allows us to assess both the validity of the aggregation relationships 

developed in earlier work and the source of the 1790 eruption of Kilauea. Continuing this 

modeling work could provide valuable new insights into the eruption. Completing a full 

suite of numerical simulations to test the range of possible depth and overpressure 

conditions that may have led to the 1790 eruption of Kilauea volcano is necessary to 

refine our understanding of the eruption source (Appendix C). Obtaining grain size 

distributions specific to the Footprints ash layer would refine both the estimates of 

aggregate size and, possibly, fallout distribution. Due to the unusually fine nature 

(Personal correspondence, Don Swanson, USGS) of the Footprints ash, which has a mean 

diameter of less than 60 μm, a laser diffraction particle size analyzer would need to be 

used, in addition to traditional sieving techniques, to fully analyze the grain size 

distribution (Van Eaton and Wilson, 2013). 

 Can a comparison of the distribution of aggregates in the field to that produced 

by a numerical simulation help us to identify the source conditions of the 1790 

eruption of Kilauea? 

 Are aggregates preferentially collecting a certain size range of ash? Can a 

comparison of ash grain size distribution to aggregate grain size distribution help 

answer this? 

 Can models predict the selective aggregation of certain grain sizes? 

A more in depth study of the aggregates themselves would answer important 

questions about whether any of the aggregates are cored or show layering, which is useful 

in determining the type of environment they were produced in. Grain size analysis of 

broken down aggregates from the Footprints ash could be conducted so that the actual 
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grain size of aggregate material could be compared to that in the modeled aggregates. 

Determining whether the aggregates are preferentially collecting a certain grain size 

material, as has been seen in other studies (Brazier et al., 1982), and whether the model 

can correctly capture this behavior would improve model outputs in future work and 

provide useful information about systemic bias in the model. 

 What is the mean and minimum grain size of AL in the Kilauea Footprints 

deposit? 

 Are models better able to predict the mean or minimum AL distribution than 

the maximum AL size distribution? 

 Further field work should also be conducted at Kilauea to more fully map the 

distribution of aggregates in the Footprints deposit. The current data focuses on the 

largest aggregates, resulting in large uncertainties in the average size of aggregates and 

how they are distributed around the volcano. This type of investigation, when combined 

with studies from other eruptions, might also help us to identify and model the 

relationship between aggregate distribution and maximum aggregate size. If a widely 

applicable model could be produced, it may serve to reduce the computational time 

needed to incorporate aggregation into volcanic models. 

 How sensitive are other eruption types and locations to aggregation processes? 

 Which models react most to the addition of these aggregation relationships and 

why are they more sensitive? 

 Lastly, the modeling efforts in this research could be applied to other eruptions 

and the aggregation relationships developed here could be incorporated into other types 

of volcanic models. Both types of modeling studies would provide sensitivity data 
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including where wet and dry aggregation mechanisms are most applicable, which models 

best represent the aggregate distribution in the field and which types of eruptions are 

most likely to be impacted by aggregation. Understanding whether one, or both, types of 

aggregation may be neglected in certain situations could simplify and shorten volcanic 

modeling requirements in certain areas. 

6.3 Planetary applications 

 Can volcanic models that include aggregation be used to estimate atmospheric 

conditions on Mars during periods of volcanic activity? 

 Volcanism is present throughout the solar system and the experiments and 

modeling done here are applicable beyond Earth. Wilson and Head (2007) modeled 

volcanic deposits on Mars, incorporating the aggregation relationships in Gilbert and 

Lane (1994), and estimated a size range for aggregates on Mars. However, the model that 

they ran used contemporary Martian atmospheric conditions to model eruptions that took 

place in the Noachian and Hesperian periods, roughly 3000 – 400 million years ago. 

Reverse modeling to loosely estimate eruption and atmospheric conditions may be 

possible using the relationships developed here and deposits on Mars that have been 

identified to include aggregates. This type of reverse modeling is limited by the relatively 

few constraints that can be placed on Martian aggregate distribution but would provide an 

interesting point of comparison for future work. 
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APPENDIX A 

TABLE OF EXPERIMENT 1 PHYSICAL RUN PARAMETERS 

 

Date Sample 
Trial 
ID 

Temperature, 
ºC 

Relative Humidity, 
% 

Width 
(m) 

Height 
(m) 

Spatial Resolution 
(μm/pix) 

Frame Rate  
(per s) 

No. of 
Particles 

7-Dec-
09 Ballotini 1 20.6 26.3 0.036 0.038 141x148 2000 111113 

  2 20.6 26.3    2000 36425 

  3 21.3 73.3    2000 5698 

  4 21.0 61.6    2000 51697 

  5a 21.2 70.5    2000 19791 

  5b 21.2 70.5    2000 14422 

18-Jan-
10 Ballotini 1 20.4 38.6 0.042 0.045 164x176 3000 3725 

  2 20.4 38.5    3000 1358 

  3 20.4 37.7    3000 622 

  4 20.4 38.5    2801 3319 

  5 20.5 36.7    2900 5353 

  6a 20.6 54.6    2900 8798 

  6b 20.6 54.6    2900 10088 

  7 20.6 59.0    2900 12742 

  8 20.5 59.9    2900 31633 

  9a 20.5 65.9    2900 12353 

  9b 20.5 65.9    2900 23571 

  10 20.6 75.3    2900 8224 

25-Jan-
10 Ballotini 1a 19.6 34.1 0.045 0.044 176x172 2000 1943 

  1b 19.6 34.1    2000 1943 

  3a 19.7 31.5    2801 4140 

  3b 19.7 31.5    2801 2344 
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Date Sample 
Trial 
ID 

Temperature, 
ºC 

Relative Humidity, 
% 

Width 
(m) 

Height 
(m) 

Spatial Resolution 
(μm/pix) 

Frame Rate 
 (per s) 

No. of 
Particles 

25-Jan-
10  4 20.2 66.1    2801 6520 

  5a 20.1 66.2    2900 3697 

  5b 20.1 66.2    2900 3407 

  6 20.1 66.8    2900 1447 

  7 20.1 72.4    2900 1500 

  8 20.1 74.3    3000 2258 

  9a 20.1 75.7    2900 6637 

  9b 20.1 75.7    2900 17312 

  10a 20.1 70.3    2900 3087 

  10b 20.1 70.3    2900 5889 

1-Feb-
10 Ash 3a 20.9 23.1 0.045 0.044 176x172 1800 864 

  3b 20.9 23.1    1800 1517 

  4b 21.0 23.2    1800 1418 

  5b 21.0 23.5    1800 2376 

  6b 21.1 23.6    1800 2634 

  7 21.1 23.8    1800 809 

  8b 21.4 47.2    1800 1697 

  9 21.6 53.7    1800 3443 

3-Feb-
10 Ash 2a 20.4 25.7 0.045 0.044 176x172 2400 3092 

  3a 20.5 26.4    2200 1604 

  4a 20.6 26.3    2000 9184 

  5a 21.2 59.5    2000 1791 

  6a 21.2 62.8    1800 9347 

  6b 21.2 62.8    1800 29348 

  6c 21.2 62.8    1800 20239 

  6d 21.2 62.8    1800 14758 

  7b 21.1 64.5    1800 17477 

  7c 21.1 64.5    1800 10860 

  8a 21.0 62.1    1800 5582 
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Date Sample Trial 
ID 

Temperature, 
ºC 

Relative Humidity, 
% 

Width 
(m) 

Height 
(m) 

Spatial Resolution 
(μm/pix) 

Frame Rate 
(per s) 

No. of 
Particles 

3-Feb-
10  8b 21.0 62.1    1800 19701 

  8c 21.0 62.1    1800 21688 

22-Feb-
10 Ash 5 20.9 43.5 0.045 0.044 176x172 2000 2062 
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APPENDIX B 

TABLE OF EXPERIMENT 2 PHYSICAL RUN PARAMETERS 

 

Date Run No. Sample Type Resolution (μm/pix) T (°C) RH (%) P (kPa) t (min) 

2/1/2012 1 SiO2 42 21.2 34.9 101.4 10 

2/1/2012 2 SiO2 42 21.6 34.4 101.4 20 

2/1/2012 3 SiO2 42 22.1 34.0 101.4 30 

2/1/2012 4 SiO2 42 22.5 33.6 101.4 40 

2/1/2012 5 SiO2 42 22.8 32.9 101.4 50 

2/1/2012 6 SiO2 42 22.8 29.0 101.4 60 

2/1/2012 7 SiO2 42 23.0 31.0 101.4 70 

2/1/2012 8 SiO2 42 23.0 28.4 101.4 80 

2/1/2012 9 SiO2 42 23.5 29.9 101.4 90 

2/13/2012 1 SiO2 56 23.5 71.5 102.7  - 

2/13/2012 2 SiO2 56 24.1 76.1 102.7  - 

2/13/2012 3 SiO2 56 24.4 80.0 102.7  - 

2/13/2012 4 SiO2 56 24.5 85.5 102.7  - 

2/13/2012 5 SiO2 56 24.6 86.4 102.7  - 

2/24/2012 1 SiO2 65 21.1 90.0 18.4 1 

2/24/2012 2 SiO2 65 21.3 91.3 38.7 11 

2/24/2012 3 SiO2 65 21.6 90.8 50.6 15 

2/24/2012 4 SiO2 65 23.1 87.3 30.2 20 

2/24/2012 5 SiO2 65 23.3 81.2 21.8 30 

2/24/2012 6 SiO2 65 24.5 79.5 24.1 35 

2/24/2012 7 SiO2 65 24.6 82.5 38.7 40 

2/24/2012 8 SiO2 65 24.7 83.0 56.0 45 

2/24/2012 9 SiO2 65 22.4 76.4 16.7 47 

2/24/2012 10 SiO2 65 22.6 85.6 24.8 49 

2/24/2012 11 SiO2 65 22.9 87.3 42.8 55 

3/5/2012 1 MSH 55 22.1 20.8 98.9 10 

3/5/2012 2 MSH 55 22.5 23.3 99.0 15 

3/5/2012 3 MSH 55 22.7 24.2 99.0 20 

3/5/2012 4 MSH 55 23.0 24.8 99.0 25 

3/5/2012 5 MSH 55 23.2 25.1 99.0 30 

3/5/2012 6 MSH 55 23.5 15.2 24.4 31 

3/5/2012 7 MSH 55 23.6 19.9 60.0 35 

3/5/2012 8 MSH 55 24.0 13.4 12.6 36 

3/5/2012 9 MSH 55 24.3 11.5 14.3 37 
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Date Run No. Sample Type Resolution (μm/pix) T (°C) RH (%) P (kPa) t (min) 

3/5/2012 10 MSH 55 24.4 16.2 36.3 45 

3/5/2012 11 MSH 55 24.6 17.6 65.1 60 

3/5/2012 12 MSH 55 24.8 18.3 82.1 80 

3/5/2012 13 MSH 55 24.9 12.7 12.6 81 

3/5/2012 14 MSH 55 25.0 15.9 29.5 87 

3/5/2012 15 MSH 55 25.1 16.9 43.1 99 

3/9/2012 1 MSH 55 17.6 89.5 102.5 20 

3/9/2012 2 MSH 55 18.1 90.5 102.5 35 

3/9/2012 3 MSH 55 18.4 90.9 102.5 45 

3/9/2012 4 MSH 55 18.4 91.4 102.5 60 

3/9/2012 5 MSH 55 19.0 92.3 102.5 80 

3/9/2012 6 MSH 55 19.8 92.7 102.5 100 

4/16/2012 1 Tu 44 18.3 60.6 99.0 10 

4/16/2012 2 Tu 44 19.2 54.2 99.0 20 

4/16/2012 3 Tu 44 19.6 54.0 99.0 30 

4/16/2012 4 Tu 44 20.0 54.1 99.0 40 

4/16/2012 5 Tu 44 20.4 54.1 99.0 50 

4/16/2012 6 Tu 44 20.5 36.1 14.2 60 

4/16/2012 7 Tu 44 21.1 45.0 31.2 70 

4/16/2012 8 Tu 44 21.5 47.2 48.1 80 

4/16/2012 9 Tu 44 21.7 48.4 60.0 90 

4/16/2012 10 Tu 44 22.1 49.6 77.0 100 

4/18/2012 1 Tu 42 20.9 90.9 98.5 70 

4/18/2012 2 Tu 42 21.1 91.4 98.5 76 

4/18/2012 3 Tu 42 21.5 91.8 98.5 83 

4/18/2012 5 Tu 42 22.2 92.2 98.5 95 

4/18/2012 6 Tu 42 22.5 92.2 98.5 99 

4/18/2012 7 Tu 42 23.1 91.1 15.5 120 

4/18/2012 8 Tu 42 23.3 92.6 25.7 124 

4/18/2012 9 Tu 42 23.5 92.9 34.1 130 

4/18/2012 10 Tu 42 23.7 93.0 42.6 135 

4/18/2012 11 Tu 42 24.1 92.8 54.5 140 

4/18/2012 12 Tu 42 24.3 92.6 63.0 145 

4/18/2012 13 Tu 42 24.6 92.3 73.1 151 

4/25/2012 1 Tu 41 19.3 93.4 13.4 30 

4/25/2012 2 Tu 41 19.5 94.2 13.4 40 

4/25/2012 3 Tu 41 20.1 93.9 13.4 47 

4/25/2012 4 Tu 41 20.7 94.2 21.8 55 

4/25/2012 5 Tu 41 21.3 94.0 28.6 60 

4/25/2012 6 Tu 41 21.7 93.8 35.4 65 
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Date Run No. Sample Type Resolution (μm/pix) T (°C) RH (%) P (kPa) t (min) 

4/25/2012 7 Tu 41 22.1 93.6 42.2 70 

4/25/2012 8 Tu 41 22.4 93.4 47.3 75 

8/20/2012 1 MSH 41 19.6 91.4 100.9 75 

8/20/2012 2 MSH 41 19.8 92.6 100.9 82 

8/20/2012 3 MSH 41 20.0 93.0 100.9 90 

8/20/2012 4 MSH 41 20.2 94.2 23.0 95 

8/20/2012 5 MSH 41 20.8 94.9 65.3 100 

8/20/2012 6 MSH 41 21.2 94.5 84.0 105 

8/20/2012 7 MSH 41 20.7 94.0 100.9 150 

8/21/2012 1 SiO2 44 21.1 90.5 101.1 75 

8/21/2012 2 SiO2 44 21.6 92.5 101.1 90 

8/21/2012 3 SiO2 44 22.1 93.2 101.1 95 

8/21/2012 4 SiO2 44 22.8 93.0 16.3 100 

8/21/2012 5 SiO2 44 23.7 94.4 35.0 110 

8/21/2012 6 SiO2 44 24.4 94.2 50.2 115 

9/4/2012 1 MSH 40 20.2 92.6 100.9 90 

9/4/2012 2 MSH 40 20.5 92.7 100.9 92 

9/4/2012 3 MSH 40 20.4 93.4 17.9 100 

9/4/2012 4 MSH 40 20.7 94.5 23.0 115 

9/4/2012 5 MSH 40 21.0 94.8 29.7 120 

9/4/2012 6 MSH 40 21.2 94.8 33.1 125 

9/4/2012 7 MSH 40 21.9 94.8 50.1 130 

9/4/2012 8 MSH 40 22.2 93.9 67.0 155 
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APPENDIX C 

RANGE OF ERUPTIVE CONDITIONS AT KILAUEA VOLCANO 

 

 

 

Run ID 
Depth 

(m) 
Pressure 

(MPa) 

1 400 10 

2 400 20 

3 400 30 

4 500 10 

5 500 20 

6 500 30 

7 600 10 

8 600 20 

9 600 30 

10 700 10 

11 700 20 

12 700 30 
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