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Summary 

 

In a roofing project, acquiring the underlying as-built 3D geometry and 

visualizing the roof structure is needed in different phases of the project life-cycle. A 3D 

representation of the roof structure is required from the architectural standpoint and the 

dimensions of roof plane boundaries are required from the construction standpoint. 

Architectural drawings, building information model (BIM) files, or aerial 

photogrammetry are used to estimate the roofing area in the bidding process. However, as 

a roof structure is never built to the exact drawing dimensions, as-built dimensions of 

boundaries of every roof plane after installing the underlayment have to be obtained. 

There are a number of surveying methods that can be used for this purpose: tape 

measuring, total station surveying, aerial photogrammetry, and laser scanning. Tape 

measuring is the most common practice despite the fact that it is not safe and exposes 

roofing workers to safety hazards. Roof surveying using a total station alleviates some of 

the inefficiencies, but requires trained surveyors and a stable and flat location to shoot 

from, which is not always available. The existing aerial photogrammetric methods 

eliminate most of the on-site labor requirements, but cannot fulfill the industry 

requirements for measurement accuracy. A laser scanner can well serve the purpose but 

the equipment and labor costs are prohibitive. In summary, obtaining measurements 

using the exiting roof surveying methods could be costly in terms of equipment, labor, 

and/or worker exposure to safety hazards. 

Aiming to address this limitation and provide roofing practitioners with an 

alternative roof reconstruction and surveying method that is simple to use, automated, 
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inexpensive, and safe, a close-range videogrammetric roof reconstruction framework is 

presented in this research. When using this method, a roofing contractor will simply 

collect stereo video streams of a target roof once the roof underlayment has been 

installed. The captured data is processed to generate a 3D wire-diagram for every roof 

plane. In this process, distinctive visual features of the scene (e.g., 2D points and lines) 

are first automatically detected and matched between stereo video frames. Matched 

features and the camera calibration information are used to compute an initial estimation 

of the 3D structure. Then, a hybrid bundle adjustment algorithm is used to refine the 

result and acquire the geometry that has the maximum likelihood. Afterwards, different 

planes of the roof are found in the refined 3D result using a half-plane detection 

algorithm. Finally, based on the information from points, lines, and planes, a 3D wire-

diagram is generated for every plane which includes as-built dimensions of the roof. 

The main contribution of this study is to create a general framework for 

videogrammetric roof reconstruction by identifying specific characteristics of roof scenes 

and then designing the necessary steps/processes. If an available algorithm in the 

literature fulfills the requirements at each step, it is utilized directly; otherwise, a 

modified or new algorithm is created such that the expectations are met. Specific 

contributions in this framework are the following, in the order of importance: 

 Formulate a hybrid structure from motion pipeline which combines information 

from point and line features. It involves formulating a sparse bundle adjustment 

process by representing 3D coordinates of point and lines as well as their 

projections into the image space with the same number parameters. This allows 

modifying the well-known and efficient Sparse Bundle Adjustment (SBA) 

package such that it is applicable for the given study. 
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 Validate a close-range videogrammetric roof reconstruction framework that is 

capable of producing a measureable 3D wire-diagram for every plane in a roof 

structure. 

 Determine a dynamic support region for a line segment such that its descriptor 

vector is invariant with respect to changes in the following features: scale, 

rotation, viewpoint, coordinates of the end-points. 

 Design a particular stereo camera calibration procedure that eliminates/alleviates 

the problems that conventional camera calibration algorithm encounter in far-

range applications. The goal is not to provide new mathematical relationships for 

estimating the necessary parameters; instead, conventional camera calibration 

algorithms are used in a specific procedure. 

 Design a multi-step candidate plane generation algorithm that minimizes the 

possibility of missing salient planar regions and allows dealing with a broader 

range of scenes (poorly to well-textured). 
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CHAPTER 1 

ANALYSIS 

 

1.1. Roofing Industry 

The roofing industry is part of what is known as the “building envelope” or 

“building enclosure” industry. A building envelope includes all the components that 

make up the shell or skin of the building and separate the exterior from the interior (e.g., 

walls, roofing, foundations, windows, and doors). Roofing contractors deal with the 

covering on the uppermost part of the building. They, in general, install roofing, siding, 

sheet metal, and roof drainage systems. The roofing industry can be divided into 

residential and commercial sectors which are quite different, and most companies 

specialize in one or the other. In each sector, three primary types of work are typically 

considered: new construction, maintenance/repair, and roof replacement. 

Despite this categorization, the ecosystem of a roofing project is almost the same 

for different types of works. In the bidding process, a roofing contractor uses 

architectural drawings, a Building Information Model (BIM) file, or aerial images to 

estimate the roofing area. However, a roof structure is never built to the exact drawing 

dimensions; even in roof replacement projects, the dimensions are typically altered due to 

intrinsic restrictions of the construction process. This creates a discrepancy between the 

design and as-built dimensions. Accordingly, after the project is awarded and the 

underlayment is installed, there is a need to acquire as-built dimensions of the roof 

structure in order to cut covering material such that different pieces perfectly fit together 

and the waste is minimized. The National Roofing Contractors Association (NRCA 

Roofing Manual, 2012) recommends limiting the measurement errors to ±¾in. (≈1.9cm) 

and in some cases ±1in. (≈2.54cm) in order to be able to address practical constraints; 
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however, this limitation could change based on the specifications of a project. Once the 

as-built dimensions are acquired, the covering material (e.g., sheet metal, plastic, and 

photovoltaic products) is cut and overlaid. The finished project is then handed over to the 

client and the same process is repeated when a roof replacement is needed. The current 

practice is to replace a roof based on decisions on fixed intervals, regular inspection 

results, and reported maintenance issues (Coffelt & Hendrickson, 2010). A housing roof 

cycle lasts about 15 years, and that commercial roofs average 20 years. 

As can be inferred, 3D visualization of a roof structure and collecting accurate 

enough as-built geometry is an essential activity in every roofing project. Performing this 

task using an efficient method/device has been a long-standing challenge in the roofing 

industry. 

1.2. State of Practice 

Several surveying technologies have evolved over the years aiming to provide 

efficient, precise, and simple ways to visualize and geometrically document as-built 

condition of a roof structure. Contractors use these methods for a variety of purposes 

such as estimating the area or volume of a building component (Izquierdo, et al., 2008), 

digital roof modeling (Hashiba, et al., 2003), and etc. 

A roofing contractor needs to survey a roof structure several times over the course 

of its build. A number of surveying methods are used by practitioners for this purpose: 

tape measuring, total station surveying, aerial photogrammetry, and laser scanning. They 

can be categorized into two groups based on the necessity for physical contact. These 

methods are discussed below and their advantages and limitations are analyzed. 

1.2.1. Tape measuring 

Manual measurement with a tape measure is the most common form of roof 

surveying methods and belongs to the category of methods that require physical contact 
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(NRCA Roofing Manual, 2012). When measuring with a tape measure, a team of roofing 

employees climb onto the roof with a sketch including an outline of the roof perimeter 

and take measurements manually. This process is simple and needs minimal expertise; 

however, it is time-consuming, expensive in terms of labor costs, and not always accurate 

(Wood, 2012) (Fredericks, et al., 2005). As an example and based on on-site interviews, a 

30,000 square foot “cut up” (a roof with many intersecting planes) commercial building 

may require a team of two men for approximately 6hrs to do tape measuring and 2.5hrs to 

transfer collected data in an appropriate format. The most important disadvantage of the 

tape measuring method is the necessity for physical contact that results in higher cost of 

operation and exposure of the measuring crew to fall hazards (Fredericks, et al., 2005). 

Falling is one of the most critical safety hazards, particularly on sloped roofs (Figure 1.1), 

and contributes to the very high number of occupational injuries and fall deaths which 

occur in the roofing industry (7% of private construction fatalities in 2009 (OSHA, 

2009)). Non-contact-based methods, which will be discussed below, try to alleviate these 

problems by providing the opportunity to measure as-built dimensions of a roof structure 

from a distance. However, tape measuring is still the standard practice in the industry 

despite its inherent deficiencies.  

Figure 1.1: Worker exposure to safety hazards 
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1.2.2. Total station surveying 

This roof surveying method provides accurate as-built measurements by using a 

total station which typically costs $3,000 to $8,000. Total station is an electrical/optical 

instrument that emits a single axis laser beam (Figure 1.2) and therefore, can only 

perform one measurement at a time. The process requires surveyors who are trained in 

surveying methods/techniques, hardware (survey instrument and computers), software 

(SDMS, DTM, etc.), data transfer, and metric conversion (Coaker, 2009). Moreover, 

having knowledge about different parts of a roof structure is necessary. Before taking 

measurements, a surveyor needs to prepare a sketch that outlines the roof perimeter. 

When collecting data, the surveyor locates a point on the ground to set the total station 

over. The point should be selected such that necessary surveying points (i.e., where roof 

planes come together, corners, and center points) are visible. This presents challenges in 

complex roofs with many intersecting planes where some important points are not visible 

from the ground. In this case, the surveyor would need to find a “stable” and somewhat 

“flat” location on the roof to place the instrument; the location should provide adequate 

stability which is required for taking precise measurements. The surveyor can then start 

recording X, Y, and Z coordinates of desired points and meanwhile marking them on the 

Figure 1.2: Total station surveying 
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sketch. Once the required data is recorded for all points, the surveyor can use a laptop at 

the jobsite or go back to the site office to transfer the collected data into an appropriate 

software program. Roof measurements are then extracted. In general, this surveying 

method is a safe practice because the surveyor stands on the ground or a fixed position on 

top of the roof, but it requires surveying expertise.  

1.2.3. Aerial photogrammetry 

In this process the address of the property is typed in an on-line request form and, 

using geocoding, a software program calculates longitude and latitude, enabling to extract 

the correct imagery from the available satellite/aerial images (in reality, the most accurate 

method used by leading roof measurement companies is the use of aerial photography 

and not the satellite images). CAD professionals then provide roof measurements using 

photogrammetric software programs. This technique is inexpensive, safe, and easy to use. 

It also does not require any on-site measurements and hence eliminates the on-site labor 

requirements. However, a case study that has been performed to evaluate the accuracy of 

aerial roof measurements on 1,291 roof structures indicates that measurement errors are 

expected to be in the range of ±4% of the actual length (EagleView Technologies, 2012). 

Another study shows that the acquired measurements can have errors up to 5% (Cory, 

2009). This accuracy is not sufficient and reliable for applications in the construction 

phase of a roofing project life-cycle such as digital fabrication of sheet metal roof panels 

which requires accuracy within approximately ±2cm. Therefore, this method can only be 

used in the bidding process in order to estimate the roofing area. Another disadvantage of 

this method relates to the resolution of the available satellite/aerial imagery. In the US for 

example, commercial satellite images are limited to 18 in. per pixel (0.5 m per pixel) 

while aerial images are available at resolutions down to 4 to 6 in. per pixel for most of the 

populated areas in the US (EagleView Technologies, 2011). Moreover, the method is 
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unusable if satellite images are not available for a specific property or if the satellite 

images do not include recent renovations that have changed the geometry of the roof. 

1.2.4. Laser scanning 

A laser scanner can provide a dense cloud of 3D points by measuring the distance 

of 10,000 to 100,000 points every second with mm level accuracy (Tang, et al., 2009). In 

general, the process is simple and does not expose the crew to safety hazards. The 

instrument is setup on a fixed location (sometimes it is required to put the instrument on 

top of the roof for proper visibility). A trained surveyor then collects the necessary data 

and performs post processing steps for extracting roof planes and perimeter of the roof. 

The main limitation of this method is the high hardware costs. A laser scanner may cost 

thousands of dollars (e.g., a Leica C10 laser scanner can be bought at $100,000 or be 

rented at $4,000 per job (Dai, et al., 2013)). 

1.3. State of Research 

Table 1.1 presents a summary of the state of practice. It illustrates advantages and 

limitations of the existing methods according to five factors, which are the features of an 

ideal roof surveying method from a roofing contractor perspective (presented values for 

each feature are based upon field evaluations that are performed under the NSF I-Corps 

project entitled “videogrammetric roof surveying system for digital fabrication of sheet 

metal roof panels”):  

 Cost: The cost items that are involved in a roof surveying process are 

equipment, software/processing, and labor costs. Unlike software/processing 

and labor costs, the equipment costs are one-time expenses but the payment 

may be spread out over many surveying cases. Our field evaluation has shown 

that equipment costs of less than $5,000 are acceptable for contractors; on the 
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other hand, a total of $100 per every 10,000 square feet of the roofing area is 

acceptable for total of software/processing and labor costs. 

 Accuracy: According to roofing manuals, measurement errors for sensitive 

tasks (e.g., digital fabrication of roof panels) should not exceed ±1in. 

(~±2.5cm). Although for other tasks, this threshold can be up to 3in. 

 Simplicity: In the roofing industry, a process is defined as simple if an 

average non-technical roofing employee can collect the necessary data. This 

data is going to be used directly or inputted into a software program. 

 Safety: Data collection and its processing should not expose any of the data 

collectors to safety, and especially fall, hazards. 

 Efficiency: A roof surveying method is considered to be efficient if the entire 

operation (i.e., data collection, processing, and post-processing) can be 

completed in less than 4hrs. 

 

A comparison shows that aerial photogrammetry is the least expensive, simplest, 

and safest method; however, it cannot produce accurate enough measurements for most 

activities. The reason could be the limited resolution of commercially available satellite 

images (EagleView Technologies, 2011). Considering all of these issues and aiming to 

find a roof surveying solution that is not hindered by the limitations stated above, this 

Table 1.1: A comparison among roof surveying methods (advantages and limitations) 

 
Tape 

Measuring 

Total Station 

Surveying 

Aerial 

Photogrammetry 

Laser 

Scanning 

Cost     

Accuracy     

Simplicity     

Safety     

Efficiency     

 1 
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research investigates the technical feasibility of using close-range machine vision-based 

methods. 

The use of machine vision-based techniques for 3D reconstruction of built 

environments has been the subject of many research initiatives both in computer vision 

and civil infrastructure management applications (Pollefeys, et al., 2008) (Gallup, 2011) 

(Irschara, et al., 2012) (Podbreznik & Potocnik, 2010) (Brilakis, et al., 2011) (Jog, et al., 

2011) (Golparvar‐Fard, et al., 2013) (Rashidi, et al., 2013). Existing methods typically 

perceive the 3D shape of a structure by analyzing local motions of a camera. This process 

is commonly called Structure from Motion (SfM) and is the basic geometrical theory 

behind all of these methods. In general, there are three main SfM approaches: 1) feature 

point-based SfM; 2) line-based SfM; and 3) hybrid SfM which benefits from a 

combination of points and lines. A single camera, a stereo set of cameras, or a multi-

camera system may be used to collect images/videos and then recover the 3D structure of 

the scene. The sensor system can also be calibrated or uncalibrated. Euclidean 3D 

reconstruction, however, necessitates using calibrated cameras. The following sub-

sections will first discuss the camera calibration process and then analyze each category 

of SfM approaches in terms of their possible applicability for roof reconstruction and 

surveying. Hypothesizing/detecting and subsequently verifying planar surfaces in a roof 

structure are considered next. 

1.3.1. Camera calibration 

Camera calibration is the process of determining a set of camera parameters that 

describe the mapping between 3D world coordinates and 2D image coordinates. The 

parameters to be calibrated are categorized into intrinsic and extrinsic parameters. 

Intrinsic parameters represent internal geometry and optical characteristics of the lens 

while the camera position and orientation in the 3D world reference system are extrinsic 

parameters. The existing camera calibration methods are divided into two categories: a) 
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explicit calibration (i.e., conventional approach) and b) self-calibration. Methods in the 

first category estimate the calibration parameters by establishing correspondences 

between reference points on an object with known 3D dimensions and their projection on 

the image. On the other hand, self-calibration automatically provides necessary 

parameters using the geometrical constraints in images, but is less accurate than the 

explicit methods (Furukawa & Ponce, 2009). Since the output accuracy is one of the main 

goals in this research, this section only focuses on the explicit approach. 

The first step in calibrating a camera is to define a camera model. In computer 

vision, most practical cameras are represented by a pinhole camera model (Figure 1.3). In 

this model, each point in the world space  TZYX ,, is projected by a straight line into the 

image plane, through the camera center C . The intrinsic parameters in this model are 

focal length  yx ff , , principal point ),( vu , and distortion coefficients  32121 ,,,, kppkk . 

Also, the camera position )(t  and orientation )(R  in the 3D space are extrinsic 

parameters. If image points are represented by homogeneous vectors, a 3D point is 

projected on the image plane as 

 

Figure 1.3: Pinhole camera model 
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For explicit camera calibration, a set of images is captured from different views of 

a checkerboard or an object with known dimensions. Then, correspondences between 3D 

coordinates of corner points and their 2D image projections are established. The 

abovementioned equations are finally used in a non-linear optimization problem to 

estimate the unknown camera parameters. This general process has been used in most of 

the existing camera calibration methods such as (Zhang, 2000), (Wang, et al., 2008), and 

(Furukawa & Ponce, 2009). Although these methods have been mainly proposed for a 

single camera, they can be expanded to the stereo camera calibration scenario. In this 

case, the relative position between two cameras ),( 00 tR  needs to be found beside the 

intrinsic and extrinsic parameters of each camera. The geometric relationship between the 

left ),( ll tR  and right ),( rr tR  cameras can be expressed as follows 

 

llrrlr tRRttRRR 1

0

1

0 ,    (1-6) 

 

These conventional methods have been successfully used in close-range 3D 

reconstruction applications with spatial accuracies that rival laser scanning (Seitz, et al., 

2006); however, the same level of accuracy has not been achieved in far-range 

applications even using cameras with multi megapixel resolution (Dai, et al., 2013). 
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Most of the existing image-based reconstruction methods in computer vision use a 

single camera for image acquisition. This imposes a constraint on the generated results 

because, by using a single camera, a scene can only be reconstructed up to an unknown 

scale factor (Pollefeys, et al., 2008). This limitation is of great importance in 

infrastructure applications that require spatial data collection in the Euclidean space. The 

use of a calibrated stereo camera setup eliminates this problem but at the cost of 

additional steps for camera calibration and more sensitivity of the results to the 

calibration parameters (Peng, 2011) (Xu, et al., 2012). Due to the fact that end-to-end 

dimensions of boundaries of roof planes need to be measured in the Euclidean space 

(practical constraints and safety concerns in a jobsite impede the possibility of taking a 

reference measurement for scaling up the results from a single camera), the use of a 

stereo camera setup is considered in this research and analyzed next. 

In a stereo reconstruction problem, the accuracy of results could be very sensitive 

to the intrinsic and extrinsic stereo camera calibration parameters as well as the distance 

between the camera and the object of interest (House & Nickels, 2006) (Geiger, et al., 

2011). This may be justified by the point that in such a problem, the estimated parameters 

are kept constant in all of the SfM process and errors can accumulate. (Dang, et al., 2009) 

have presented a thorough mathematical analysis for sensitivity of stereo 3D 

Table 1.2: Sensitivity of 3D reconstruction to erroneous stereo camera calibration 

parameters (Dang et al., 2009) 
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reconstruction to erroneous camera calibration parameters. The results of this study are 

summarized in Table 1.2, where Z  is the depth of the point to be reconstructed; b  is the 

baseline; f  is the focal length in pixels; xC  is the x-coordinate of the camera center; x  is 

the x-coordinate of the point in the image space;  yx ~,~  are normalized coordinates of the 

point in the image space; and subscript L  denotes the left camera in the stereo rig. From 

this table, it can be concluded that the sensitivity of the results is the highest for yaw, 

pitch, and roll; reconstruction errors also scale linearly with b  and higher tolerances are 

acceptable in estimating b . 

The existing camera calibration packages such as Camera Calibration Toolbox not 

only provide the best estimation for each parameter but also calculate the amount of 

uncertainties in the given estimation (in terms of a ± range). This range of uncertainty is 

another source of information that could be used to analyze the sensitivity of the process. 

An observation in (Peng, 2011) indicates that if the distance between the camera set and 

the calibration board is (more or less) kept constant, the range of the uncertainties 

decreases. On the other hand, if the distance keeps varying in a larger range, higher 

uncertainties in the estimated parameters could be seen. Another observation 

demonstrated that the uncertainties for distortion parameters could be as high as 300% 

which may not have a significant impact in close-range applications but certainly affects 

the accuracy of far-range 3D reconstruction. In general, the following reasons could be 

listed for such a behavior. First, the projection function including the distortion effect is a 

non-linear function; hence if the input data covers a broader range of distances, there is a 

higher chance to be trapped in local optima. Second, the cost function in the optimization 

process is the reprojection error which is more sensitive to the data related closer 

distances; hence, the estimated parameters could result in high spatial distance error for 

data from farther distances. 
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All these observations indicate a need for further research and experiments on 

stereo camera calibration with the aim of finding proper mathematical formulation or 

calibration procedure such that the abovementioned effects could be minimized. 

1.3.2. Point-based SfM 

The feature point-based SfM approach involves a strategy of concentrating on 

points in the scene whose matching point can be automatically found across multiple 

views. The output of this approach is a “cloud” of 3D points; in this cloud, each point 

represents 3D coordinates of an object point visible in two or more views (i.e., images or 

video frames) of the same scene. Therefore, the main challenge in this approach is to 

automatically find correct matching points across different views of a scene. The 

emergence of invariant local feature points and descriptors such as SIFT (Lowe, 2004) 

and SURF (Bay, et al., 2008) have addressed this problem. Robust feature point matching 

using these descriptors has led to several successful studies in close-range 3D 

reconstruction where the object distance to the camera is less than approximately a few 

meters e.g., (Hernandez & Schmitt, 2004) (Furukawa & Ponce, 2006) (Zhang, et al., 

2010). 

In the past years, a number of studies have also shown that this approach could be 

used for reconstruction of large scale environments. For example, (Goesele, et al., 2007) 

presented a multi-view stereo algorithm for 3D reconstruction of large scale 

environments from community photo collections. A comparison between the results of 

this algorithm and the data acquired with a time-of-flight laser scanning system 

demonstrated that 90% of the points in the generated point cloud are within 128mm of 

the laser scanned model of a 51m high building. (Pollefeys, et al., 2008) and (Frahm, et 

al., 2010) studied real-time 3D reconstruction of the urban environments, which mostly 

exhibit planar surfaces. (Pollefeys, et al., 2008) have reported the following error values 

for real-time 3D reconstruction of a Firestone store using a set of horizontal and upward-
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facing video cameras: median error of 21.9mm, mean error of 47.9mm, and completeness 

of 66%; completeness measures how much of the building is reconstructed. In another 

study, (Sinha, et al., 2010) have proposed a hybrid approach that works based on feature 

point and vanishing point matches in images. Due to the use of vanishing points, this 

approach is particularly suited for man-made environments which typically consist of 

three main vanishing directions. They demonstrated that this approach is capable of 

generating better or same quality point clouds compared to BUNDLER, which is a 

standard pipeline for point-based SfM. (Gallup, 2011) recently demonstrated how to 

automatically create detailed 3D models of urban environments from street level imagery. 

The structure in urban scenes (e.g., planarity, orthogonality, verticality, and texture 

regularity) and a plane-sweep stereo method were used to achieve 3D reconstruction with 

greater efficiency in terms of running time and memory use. The main goal of this study, 

however, was to achieve high quality visualization rather than the Euclidean accuracy of 

the reconstruction. 

In the construction community, (Golparvar-Fard, et al., 2009) used the point-

based approach on uncalibrated daily progress photographs of construction sites for 

sparse 3D reconstruction of the jobsite and construction progress monitoring. The main 

limitation of this study is that it only provides 3D coordinates of feature points. Edge 

points, such as points on the perimeter of a roof, are deleted in the feature point detection 

process (Lowe, 2004) and hence they do not exist in the output. Dense point cloud 

generation algorithms such as (Furukawa & Ponce, 2010) could be used to overcome this 

limitation. The generation of a dense as-built point cloud for a construction site has been 

considered in (Golparvar‐Fard, et al., 2013). The study presents an automated approach 

for progress monitoring of activities at a jobsite based on two sources of information: a 

dense point cloud and a BIM file. The dense as-built point cloud is generated from 

unordered daily construction photo collections. Although the metric accuracy of the 
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reconstruction is not presented in those research efforts, a comparative study shows that 

errors in the order of ±6-8cm should be expected (Dai, et al., 2013). Additionally, when 

these methods are applied to reconstruct scenes from roof structures, necessary points for 

roof surveying (i.e., boundary points) may not be reconstructed. As an example for such a 

case, Figure 1.4 shows a dense point cloud that is generated for a roof model. To address 

this problem, one may consider identifying different roof planes from the 3D point cloud 

and then intersecting those planes to detect boundary lines; this could work for places that 

roof planes intersect; but not all boundary lines are located in those places.  

Another important issue with using the point-based SfM approach in the 

construction industry is that in many of the built infrastructure scenes, most areas lack 

distinctive points due to the prevalence of poorly-textured surfaces (e.g., smooth surface 

of a concrete wall) which ultimately results in several holes (i.e., missed data) (Figure 

Figure 1.4: A dense 3D point cloud from a roof model. Notice the area marked by the 

red rectangle. 

Figure 1.5: Point-based 3D reconstruction of a bridge 
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1.5) in the generated 3D point cloud and frequently causes instability that leads to failure 

of the process (Tomono, 2009).  

1.3.3. Line-based SfM 

The line-based SfM recovers the underlying 3D structure of a scene from line 

segments detected in multiple views of the scene. The output of this approach is a 3D line 

set. Similar to the feature point-based approach, the primary step here is to detect and 

match line features across views. The following paragraphs analyze the state-of-the-art 

algorithms for this purpose.  

Many of the existing line segment detection algorithms use an edge detector 

followed by a Hough transform to extract all lines that contain a number of edge points 

exceeding a threshold (Fernandes & Oliveira, 2008) (Du, et al., 2010). Drawbacks of 

these methods are: a) textured regions that have a high edge density can cause many false 

detections; and b) setting thresholds. In another category of line detection methods, edge 

points are first detected and then chained into line segments. These methods are 

parameterless and usually give well-localized, accurate results. However, many of the 

small detected lines are false positive and there is also a need for several thresholds. The 

threshold question was thoroughly studied in (Desolneux, et al., 2002). Their method 

counts the number of aligned points (i.e., points with gradient direction approximately 

orthogonal to the line segment) and then finds the line segments as outliers in a non-

structured, a contrario model. This method locates lines where alignments are present (no 

false negative) and hence has few false positives. But, it often misinterprets arrays of 

aligned line segments. (Akinlar & Topal, 2011) addressed this problem by using clean 

and contiguous chain of edge pixels produced by a new edge detection algorithm. The 

detector includes a line validation step due to the Helmholtz principle, which allows 

controlling the number of false detections. (Von Gioi, et al., 2010) also presented a linear-

time algorithm that benefits from the advantages of previous methods. The key idea was 
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to ignore gradient magnitudes and only use gradient orientations. This method requires 

no parameter tuning and gives accurate results. In general, these recent line detection 

algorithms have shown promising performance in terms of completeness, run-time 

efficiency, and the need for parameter tuning.  

Once line feature are detected, they should be matched across different views of a 

scene. Compared to point and region matching, line matching is still a very challenging 

task due to several reasons: a) inaccuracy in the location of line endpoints; b) 

unavailability of strong disambiguating geometric constraints; and c) lack of rich textures 

in the local neighborhood of a line (Schmid & Zisserman, 1997). Because of these 

inherent difficulties, several approaches have been tried through the past years to achieve 

a robust line matching algorithm. (Schmid & Zisserman, 2000) used the epipolar 

geometry for line endpoints in short baseline matching, and one parameter family of 

plane homographies in wide baseline matching. The limitation of this method is the need 

for known geometrical relations between images in advance. Aiming to remove this 

limitation, (Bay, et al., 2005) proposed a method for line matching in color images, where 

an initial set of line correspondences are generated using color histogram; then, a 

topological filter is used to iteratively increase possible matches. This method heavily 

relies on color rather than the texture around the line and it may fail in the case where 

color is not distinctive. In another category of line matching methods, researchers have 

tried to construct a multi-dimensional descriptor vector for each line segment and use the 

vector difference for locating good matches. For example, (Wang, et al., 2009) clustered 

line segments into local groups according to their spatial proximity and assigned a 

descriptor to each group. The similarity measure of group pairs is based on the location of 

line end-points, orientation of the lines, and their intersection angle; this allows the 

method to be affine invariant. The methods, however, cannot handle general camera 

motions and relies on the availability of several lines in a close proximity. In another 
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study, (Wang, et al., 2009) presented a SIFT-like descriptor called mean-standard 

deviation line descriptor (MSLD) which does not need any prior knowledge for line 

matching. It is purely image content-based and applicable to general scenes. However, 

this method provides poor matching results for line segments that are located in object 

boundaries, when the background of the object changes in two views. The reason is the 

following: the descriptor vector is built for a rectangular pixel support region around a 

line segment and therefore for a specific line segment at object boundaries, half of the 

information may completely change in two different views (Figure 1.6). There also exist 

some other studies that use line-point invariants (Fan, et al., 2012) or intersection context 

of coplanar line pairs (Kim & Lee, 2012) for robust line matching; but these methods 

heavily rely on the existence of some predefined structures which certainly limits their 

fields of application.  

The line-based SfM is mostly used for man-made scenes like office interiors or 

urban cityscapes, where not enough point features can be reliably detected, while an 

abundant number of lines are visible (Chandraker, et al., 2009). (Werner & Zisserman, 

2002) presented a method for automated architectural reconstruction across image triplets 

by classifying lines according to principal orthogonal directions. (Bartoli & Sturm, 2005) 

addressed the problem of algebraic representation of lines for camera motion estimation 

Figure 1.6: Rectangular pixel support region around line segments used in Wang et al. 

(2009). Notice completely different pixel information available in one side of the lines at 

object boundaries. 
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and 3D structure reconstruction from line correspondences across multiple views. They 

proposed orthogonal representation, which allows non-linear optimization of 3D lines 

using the minimum four parameters with an unconstrained optimization engine. This 

potentially solves the previous over-parameterizations of 3D lines that induce gauge 

freedoms and/or internal consistency constraints. (Schindler, et al., 2006) employed the 

knowledge of urban scene structure (i.e., three main directions for lines) for line-based 

SfM from multiple widely separated views. They proposed a new approach for 3D line 

representation which could ultimately allow reducing the number of optimization 

parameters for each line segment. More recently, (Chandraker, et al., 2009) proposed a 

hypothesize-and-test framework to estimate the motion of a stereo rig from line segments 

in real-time. This method avoids computationally extensive optimizations in order to 

increase speed and hence is only applicable in finding the approximate location of the 

camera set in a complex indoor environment.  

This approach (i.e., line-based SfM) has been used in most of the existing aerial 

image-based 3D roof reconstruction methods (Moons, et al., 1998) (Baillard & 

Zisserman, 2000) (Scholze, et al., 2002) (Suveg & Vosselman, 2004) (Rau, 2012) for two 

reasons: 1) line features can be localized more accurately because they have more image 

support (i.e., several pixels construct a line) than point features; and 2) the main goal in 

3D reconstruction of a roof is to extract 3D coordinates of plane boundaries which are 

typically straight lines. These methods generate nice visualizations; however, they can 

only be used for estimation purposes because errors in the order of several centimeters 

(e.g., 0.01% of the distance between the camera and the structure (Cui, et al., 2012)) are 

expected. 

1.3.4. Hybrid SfM 

A combination of point and line features is being used in this approach to broaden 

the use cases of image-based 3D reconstruction. Robust point matches are typically used 

Fig. 1.4: Rectangular pixel support region around line segments used in Wang et al. (2009). Notice 

completely different pixel information available in one side of the lines at object boundaries. 
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to boost line matching accuracy. In practical settings, it has been shown that leveraging 

image lines in addition to points can lead to improved performance (Christy & Horaud, 

1999). It is also well-known that constraints imposed by line correspondences on camera 

pose estimation are weaker than those provided by points (Hartley, 1997). Given this 

information, it seems that a visual odometry or SfM algorithm that incorporates any 

combination of point and line features is capable of generating better solution for the 

problem at hand. 

Hybrid SfM has been mostly used for indoor mapping and Simultaneous 

Localization and Mapping (SLAM) problems and has shown significant performance 

improvement and robustness (Ramalingam, et al., 2011) (Pradeep & Lim, 2012). Point 

and line features are used in (Ramalingam, et al., 2011) to develop a general technique 

for the problem of geo-localization (i.e., camera pose in the world coordinate system). 

They reported significant cumulative error reduction in motion estimation. This method is 

applicable for any combination of features including 3 points, 2 points and 1 line, 1 point 

and 2 lines, and 3 lines. In a more recent study, (Pradeep & Lim, 2012) used hybrid SfM 

to generate a minimal solver for performing online visual odometry using a stereo camera 

setup. Independent of the feature type, this method computes the 6DoF motion from 

minimal sets over the available data. Using the constraints implied by two trifocal 

tensors, it builds a system of polynomial equations and then solves it using a quaternion-

based direct solution approach. It is shown that this method generates more accurate and 

robust estimations. 

Despite the improved performance because of using hybrid SfM in the existing 

studies, none of those methods can be used for large-scale 3D reconstruction. The reason 

is that the presented mathematical relationships are only applicable for two consecutive 

pairs of images and hence cannot be used to formulate the bundle adjustment step in a 

large 3D reconstruction problem. 
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In general, it may be concluded that hybrid SfM could facilitate the 3D 

reconstruction pipeline by benefiting from well-localized line features while retaining the 

well-known advantages of point features. Despite this significant potential, no studies 

have been performed to explore and quantify the amount of performance improvement or 

loss that can be achieved in 3D reconstruction of large-scale built environments if such an 

approach is used. Moreover, the necessary mathematical formulations have not been 

presented in the literature. 

1.3.5. Hypothesizing and verifying planar surfaces 

It can be argued that the most prevalent geometric entity in built environments is a 

planar surface. The planarity assumption has been therefore widely used in the literature 

to provide a more realistic representation of the real-world scenes. Existing methods use a 

3D point cloud, a 3D line set, or a combination of 3D points and lines to identify planar 

regions. 

(Bartoli, 2007) investigated the automatic modeling of planar scenes using a 3D 

point cloud. Random sampling was utilized to generate multiple plane hypotheses, select 

the most likely planes with respect to actual images, and finally segment the point cloud 

into multi-coplanar groups. The method outperforms existing algorithms, that are only 

based on geometric criterion or a disjoint data segmentation scheme, in terms of the total 

number of detected planes. However, the number of false positive cases is higher and the 

random sampling nature of the process demands higher computational power (Sinha, et 

al., 2009). Moreover, planar surfaces in non-textured regions can be easily missed due to 

the lack of reconstructed 3D points. In order to overcome the limitations of multi-view 

stereo algorithms that require textured surfaces and therefore work poorly for many 

architectural scenes, (Furukawa, et al., 2009) used a specific Manhattan-world model 

where all planes must be orthogonal. The method retains only high-confidence points in 

textured areas and uses the normal vectors to extract three dominant orthogonal directions 
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for the scene. Although the orthogonality assumption holds true in reconstructing 

building façades and indoor scenes, it is not satisfied in general scenes from the built 

environment or roof structures. 

A piecewise planar model was also presented in (Sinha, et al., 2009) that can 

recover a fairly exhaustive set of dominant scene planes based on robust plane-fitting of 

3D points and lines while utilizing strong vanishing point cues to infer their orientations. 

The method uses a Markov Random Field formulation to generate piecewise planar depth 

maps. This necessitates some initial assumptions regarding the spatial likelihood 

distribution of each feature which reduces the generality of the method. On the other 

hand, the use of vanishing directions can limit the use-cases to scenes that contain well-

defined vanishing points (typically urban scenes that have three orthogonal vanishing 

directions). The combined use of 3D points and lines for identifying planar regions in a 

scene was also studied in (Wang, et al., 2013). The method that is formulated based on a 

family of half-planes rotating around a single 3D line and inter-image homographies. 

Their main assumption, however, is that in the local neighborhood of every line segment, 

one can find a number of feature points that are coplanar with the given line. As can be 

inferred, the need for existence of 3D feature points in the neighborhood of each line 

imposes an important limitation on this method. 

Despite the success of piecewise planar stereo methods in detecting planar 

regions, they typically suffer from one or both of the following issues: a) reliance on the 

availability of enough point features in the scene to generate plane hypotheses, and 

therefore high probability of failure in poorly textured scenes; and b) computationally 

expensive process for generating and verifying plane hypotheses. This indicates a need 

for further research on computationally efficient piecewise planar methods that use global 

scene information for hypothesizing plane equations while minimal assumptions are 

made. The importance of such a method is highlighted in the case of using video streams 
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which requires processing of a significant number of frames in a reasonable amount of 

time. 

1.3.6. Machine vision-based methods for 3D reconstruction of roof structures 

Although there are several methods in the literature that are able to reconstruct 

complex buildings from images with minimal user intervention, automated building 

reconstruction is still a challenging task. 3D reconstruction of roof structures is an 

important part of this category. A number of studies have been performed to automate 3D 

reconstruction of roofs in urban areas (Moons, et al., 1998) (Baillard & Zisserman, 2000) 

(Scholze, et al., 2002). These methods only use aerial images as the input data and model 

a roof as a structured ensemble of planar polygonal faces. Moreover, they assume a 

reliable set of 3D line segments have been already derived from aerial images and are 

available as the input data, without any explanation for potential methods that are needed 

to provide such data. Some of these methods with some additional manual inputs have 

been used in commercial aerial roof measurement products offered by companies like 

EagleView or SkyTech Imaging. However, they can only be used for estimation purposes 

because of the limited resolution of aerial images (errors up to ±15cm are expected). 

Following paragraphs provide more details about two of these methods that have shown 

better performance.  

(Baillard & Zisserman, 2000) presented a method for 3D reconstruction of roofs 

using multiple aerial images, with a novel approach for computing planar facets from a 

set of 3D lines. The key idea was to use both geometric and photometric constraints from 

all images (i.e., 3D planes were found by using both 3D lines and their image 

neighborhoods over multiple views). This was achieved through a plane-sweep strategy: 

first, a set of planar facets constrained by 3D lines were hypothesized in the 3D space; 

then, possible plane hypotheses were identified by checking the similarity over multiple 
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images. The method defines a one-parameter family of planes    for each 3D line 

(Figure 1.7). This implicitly results in defining a one-parameter family of homographies 

 H  between any pair of images because each plane defines a planar homography 

between two images. It requires minimal image information since a plane is generated 

from only a line correspondence and its image neighborhood; in particular, two lines are 

not required to instantiate a plane. However, the method incurs a considerable 

computational cost since it is necessary to search a continuous range (0-180 degrees) in 

order to find the correct angle of rotation for each hypothesized plane. Also, the method 

only focuses on the visualization aspect of the problem and does not provide 3D 

measurements. (Cui, et al., 2012) has shown that if such a method is used for Euclidean 

3D reconstruciton, measurement errors in the order of 0.01% of the distnace between the 

camera and the structure should be expected; given the amount of this distance in aerial 

imagery, the error could be as high as tens of centimeters.  

In another study, (Scholze, et al., 2002) proposed a model-based algorithm for 3D 

reconstruction of complex polyhedral building roofs from aerial images using semantic 

labeling. The modeling process consists of two steps. a) 3D line segments were grouped 

into planes and further into faces using a Bayesian analysis. In this step, a roof was 

geometrically modeled as an ensemble of planar polygonal faces (i.e., patches). b) The 

Figure 1.7: One parameter family of half-planes containing a 3D line L used in Baillard 

and Zisserman (2000) 
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preliminary geometric models were subject to a semantic interpretation. Five different 

semantic labels for patch segments were identified (ridge, gutter, gable, convex, and 

concave). Geometric measurements were then used to assign the semantic labels to the 

segments in a patch. One of the important shortcomings of this algorithm is the need for 

test datasets to learn the statistics of geometric measurements. 

A number of studies have been also performed to alleviate the measurement 

problem by fusing aerial photogrammetry with airborne laser scanning data (Jaw & 

Cheng, 2008) (Sampath & Shan, 2010) (Cheng, et al., 2011). Although these methods 

solve all the aforementioned problems, the cost of airborne laser scanning is prohibitive. 

 

1.4. Problem Statement and Research Objectives 

3D modeling/visualization and extracting the underlying as-built geometry using 

an efficient method/device has been a long-standing challenge in the construction 

industry. Contractors require this information for a variety of purposes such as estimating 

the area or volume of a building component, controlling the quality of construction, and 

managing the operations and maintenance. In a roofing project, dimensions of a roof 

structure should be measured in different phases of the project life-cycle. In the 

construction phase and after installing the underlayment, end-to-end dimensions of 

boundaries of every roof plane have to be obtained with a certain level of accuracy that 

could change based on the project specifications (e.g., the measurement error should not 

exceed ±2cm for digital fabrication of sheet metal roof panels). 

There are a number of methods that can be used for this purpose: tape measuring, 

total station surveying, and aerial photogrammetry. Tape measuring, as the most common 

practice, requires teams of men carrying tape measures and climbing all over the target 

roof. This is one of the most critical safety hazards, particularly on sloped roofs, and 

contributes to the very high number of occupational injuries and fall deaths which occur 
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in the roofing industry. It is also laborious and not always accurate. Roof surveying using 

a total station requires trained surveyors and a stable location to shoot from, which is not 

always available. Aerial photogrammetry needs significant amount of manual post-

processing work and can become labor intensive for complex roof structures. It can also 

be inaccurate to a degree of more than 5%. In summary, obtaining these measurements 

using the exiting methods could be costly in terms of equipment, labor, and/or worker 

exposure to safety hazards. 

A safe, inexpensive, automatic, and accurate enough roof surveying method 

eliminates all the above-mentioned problems and brings the roofing trade up to the 

modern standards of CAD/CAM used in many other industries. The existing general 

purpose automatic or semi-automatic machine vision-based approaches theoretically have 

all the desired factors except acceptable level of accuracy. 3D reconstruction algorithms 

for building roof reconstruction from aerial images have the same deficiency. However, a 

close-range machine vision-based algorithm specialized for roof surveying can 

significantly reduce the amount of error if the understanding that roofs are composed of 

intersecting planes is incorporated in the process. 

Close-range machine vision-based algorithms are typically categorized into three 

groups based on the type of visual feature that is used: points, lines, and a combination of 

points and lines. Feature point-based algorithms discard most of edge points (which are 

needed to acquire roof dimensions) because of the difficulties that exist in their matching 

process; hence, boundary points of roof planes may not be reconstructed with a high 

probability. Identifying different roof planes from the generated 3D point cloud and then 

intersecting those planes to detect boundary lines may alleviate this problem in some 

cases; but it is not a general solution because not all boundary lines are located in the 

intersection areas. Line-based algorithms can theoretically address this problem because 

roof plane boundaries are usually straight lines. However, this category of algorithms 
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suffers from three issues: 1) line matching has been less successful than point matching 

because of its inherent difficulties and mismatches have resulted in incomplete and error-

prone 3D reconstruction results; 2) line correspondences impose much weaker constraints 

than those provided by feature points on SfM steps such as camera motion estimation 

(Hartley, 1997); and 3) degeneracy for lines is far more severe than for points (Hartley & 

Zisserman, 2004). These issues could frequently cause instability that leads to failure of 

the process. The third category could solve all the previously mentioned problems by 

incorporating any combination of point and line features as available in the image so that 

the most accurate solution can be achieved. It allows using well-established mathematical 

equations that exist for point features while taking advantage of well-localized line 

features. Despite this advantage, existing methods in this category have mainly focused 

on solving the visual odometry problem, which is the process of determining the position 

and orientation of a camera in an environment, and have shown performance 

improvement in that area. The possibility of using the concepts of this category for 3D 

reconstruction of the built environment or roof structures and the subsequent performance 

improvement or loss have not been fully explored yet and still further studies are needed. 

An issue that arises with applying this category of SfM to large-scale 3D reconstruction 

problems is the need for proper mathematical formulation in order to perform the 

necessary nonlinear global optimization called bundle adjustment. (Lourakis & Argyros, 

2009) have already presented a package that is being used as an efficient tool; but, the 

current version is only applicable to point-based monocular reconstruction. Therefore, 

new mathematical formulations are needed to be incorporated in this package such that it 

is capable of handling hybrid stereo reconstruction problems. 

The primary objective of this research is to address the problem stated above by 

investigating the technical feasibility of designing a close-range video-based roof 

reconstruction framework, such that it achieves a measureable 3D wire-diagram for every 
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roof plane considering the following metrics: completeness of the wire-diagram, 

Euclidean accuracy of the end-to-end dimensions of the edges, and the number of manual 

data that is needed to fix a missing edge. 

1.5. Research Questions 

To effectively address the defined research objective, several questions need to be 

answered. Below is a summary of these questions. 

 What is the appropriate hardware system for a machine vision-based roof 

surveying algorithm? 

 How can we use the known information about sensitivity of Euclidean accuracy 

of 3D points with respect to calibration parameters and design a camera 

calibration procedure that is capable of providing higher Euclidean accuracies? 

 Which type of visual feature(s) should be detected and used through the process? 

Is it necessary to use a combination of different feature forms? 

 If a combination of visual features is needed, what is the appropriate 

mathematical formulation? 

 Is there a need for manual inputs in some steps of the process? 

 How to deal with scenarios that some roof planes or plane boundaries are not 

detected or reconstructed?  
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CHAPTER 2 

SYNTHESIS 

 

2.1. Overview of the Framework 

A close-range video-based framework for roof surveying is proposed in Figure 

2.1. In this figure, rectangular boxes represent an algorithm/function and ellipses are 

inputs/outputs. The processes that are shown by solid lines have been well-addressed in 

the literature and hence there is no need to present detailed information about them in this 

section; while dashed lines indicate a modified or new algorithm.  

When using this framework, a roofing contractor collects stereo video streams of 

a target roof plane once the roof underlayment is installed. The sensor system is a 

Figure 2.1: Overview of the proposed videogrammetric roof surveying framework 

Data Processing

Camera Calibration

Stereo Video 

Frames

Stereo Camera 

Calibration at 

Different Distances

A Set of K, 

R, and T

Stereo Videotaping at the Jobsite

Roof Stereo 

Videotaping

Stereo 

Video File

Line Segment 

Detection & 

Grouping

Long Lines 

Segments

Line Feature 

Descriptor

Line 

Descriptors
Line Matching Line Pairs

Feature Point 

Detection & 

Matching

Point Pairs

3D Wire-diagram 

& As-built 

Measurements

Half Plane 

Estimation
Hybrid SfM

Roof 

Planes

Camera 

Motion & 3D 

Structure

Plane 

Intersection



30 

 

calibrated stereo camera set that has been attached to an extendible pole; the pole allows 

providing the necessary visibility for videotaping different roof planes. The captured 

video data is processed at the jobsite using a Tablet PC or laptop. Once a 3D wire-

diagram of the target roof plane is generated, as-built dimensions are automatically 

extracted and saved in a digital file. Following steps summarize mechanics of the 

framework:  

a. Calibrate a stereo camera set for several predefined D values (D is the distance 

between the calibration pattern and camera set). This results in a set of intrinsic 

and extrinsic camera parameters for each D value. 

b. Detect distinctive feature points at each video frame, construct a descriptor vector 

for each detected point, and match them between left and right views of a stereo 

pair of video frames. 

c. Build scale-space representation of each video frame, detect line features at local 

extrema of the scale-space, and group detected features to find long line segments 

(vanishing direction, scale of the detected segments, Euclidean distance between 

the end point of one segment and the start point of another segment, and slope of 

line segments are some of factors that are used in the line segment grouping 

process). 

d. Construct two descriptor vectors for each line segment (a separate descriptor for 

each side of the line in order to address the problem of background change at 

object boundaries). 

e. Match long line segments between left and right views of a stereo pair of video 

frames. 

f. Track/match the detected visual features (i.e., feature points and lines) between 

consecutive stereo video frames and construct a feature connectivity graph. 
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g. Use a hybrid bundle adjustment algorithm, every time that a new stereo pair of 

video frames is added. The camera motion between the last pair of stereo video 

frames and previous one is initialized as zero. 

h. Repeat the feature detection, matching, and hybrid bundle adjustment processes 

until all the stereo video frames are processed. The output is the 3D structure of 

the scene and motion of the camera set in the environment. 

i. Apply a piecewise planar stereo strategy to estimate half-planes using the 

information from points and lines in order to find roof planes. 

j. Find undetected roof plane boundaries by intersecting roof planes. 

k. Construct a 3D wire-diagram for every roof plane which includes required as-

built measurements for roof surveying. 

2.2. Solution Constraints, Assumptions, and Research Hypothesis 

The proposed roof surveying framework is subject to several constraints and 

limitations. In most cases, this is the consequence of assumptions that have been made in 

different steps of the framework. The nature of the surveying activity and characteristics 

of scenes from roof structures also contribute to these constraints. 

Following control variables and delimitations are considered. A set of high-

resolution video cameras capable of streaming raw video data are used along with fixed 

focal length lenses that have the minimal distortion (e.g., <0.05%); this is necessary to 

avoid information loss during image compression, change of focal length, and ability to 

detect straight lines in frame sets. Once the sensor system is setup, the following 

parameters should not change while collecting the necessary data: video resolution, focal 

length, and relative position of the two cameras. Videotaping should be relatively 

smooth, although the framework accounts for temporary jerking and corrects it. The 

weather and illumination conditions are also assumed to be those typically used is 

surveying (ranging from cloudy to bright sunlight but not rainy). Extreme cases such as 
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very dark or shiny environments, direct sunlight towards the camera set, etc. may result 

in the failure of the framework. 

The application of the framework is limited to slopped roofs with intersecting 

planes. The existence of well-defined and almost straight edges is an important factor for 

the success of this solution. If such edges do not exist and also those edges cannot be 

found by plane intersection, or if there are curved edges, the solution may fail. The height 

of the building should not be more than the height that is accessible using an extendible 

pole; otherwise, the required visibility cannot be met. A solution could be to use a crane 

or lift to provide the necessary elevation and visibility; however, these equipment may 

not be available in every roofing jobsite or the rental/purchase cost may be detrimental. 

Moreover, the proposed solution is based upon the assumption that a roof structure only 

consists of planar surfaces; so, it cannot be applied to roofs with curvy surfaces. Finally, 

only roof planes that are visible in the video frames could be reconstructed and the 

framework is not supposed to use probability theorems to inference the invisible sections 

or missing segments. 

Consequently, the overall research hypothesis that is tested in this paper is: “if the 

proposed framework is used with the considerations explained above, a complete 3D 

wire-diagram including end-to-end dimensions of the edges can be generated for every 

roof plane.” 

2.3. How to Select Appropriate Optics 

In any computer vision application, the optics (i.e., camera and lens) should be 

selected such that the predefined goals can be achieved. The combination of the camera 

and lens is an important factor that affects the field of view, area that is covered by one 

pixel, resolution, and working distance. If these issues are not considered while selecting 

the optics, one should not expect desired outcomes no matter how robust the algorithms 
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are. This section provides recommendations in order to select the most appropriate optics 

for the problem at hand. 

Camera sensor resolution and lens focal length are the two unknown parameters 

that need to be determined. On the other hand, in a real life scenario, the range of values 

for the following parameters is expected to be known. 1) Field of view which is the width 

and height of the scene as viewed by the lens. Considering the previously explained 

challenges for line detection and matching, the minimum field of view for roof surveying 

is suggested to be half of the longest dimension in the roof structure. This should provide 

the texture information that is required for building a descriptor vector and also avoid 

detecting the target line in multiple segments. 2) Area that is covered by one pixel. 

Although most of the existing feature detection algorithms are capable of detecting the 

feature coordinates with sub-pixel accuracy (Lowe, 2004) (Bay, et al., 2008) (Von Gioi, 

et al., 2010), it is safe to assume that these coordinates could have errors up to one pixel. 

The covered area by this pixel can be selected based on the level of measurement 

accuracy that is needed (e.g., 2cm). 3) Working distance which is the distance from the 

lens to the roof structure. 

Knowing the field of view and area that is covered by one pixel, the minimum 

resolution required for the sensor can be calculated. The camera sensor resolution 

translates 1 to 1 with the image resolution which is defined as the number of pixels in the 

image and is typically presented in two dimensions (e.g., 720×1280). Each dimension can 

be considered separately but it is often the case to reduce it to one dimension for 

simplicity. 

 

sensor (image) resolution = 2 × (field of view / area covered by one pixel) (2-1) 
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For example, if the field of view is 400cm and the area that is covered by one 

pixel is selected to be 1cm, the required image resolution is 2×(400/1)=800 pixels. 

However, if we consider the possible rotations of the camera, the diagonal value needs to 

be used. Using the Pythagorean theorem the diagonal is about 1130. A sensor resolution 

of 1280×1024 could be used for this scenario. It needs to be mentions that this equation 

can be modified to solve for any of the other variables as long as there is only one 

unknown parameter. 

Once the camera is selected, the sensor size can be used to calculate the focal 

length of the lens. In the given problem, it is typically the case that the working distance 

is flexible. This allows using a range of working distance options to get a focal length 

range. Once the focal length is selected, the thresholds for working distance can be 

calculated. 

 

focal length × field of view = sensor size × working distance (2-2) 

 

As a general rule, shorter focal length for a lens would result in wider field of 

view. This can introduce radial distortion, where an image looks curved and bulged out in 

the center. It has been shown that the radial and tangential lens distortion model, which is 

used in this study, can reasonably be used to compensate for the distortions if the field of 

view is approximately less than 90 degrees (Ricolfe-Viala & Sanchez-Salmeron, 2010).  

Therefore, such considerations should be made while selecting the appropriate optics. 

 

horizontal field of view = 2 × arctan(width / 2×focal length) (2-3) 

vertical field of view = 2 × arctan(height / 2×focal length) (2-4) 
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In addition to the camera optics, the synchronization of two cameras in a stereo 

setup should be considered. There are several methods, ranging from hardware to 

software solutions, that could be used to synchronize the shutter and exposure of the two 

cameras such that they take pictures exactly at the same time. An overview of these 

methods could be found in (Persson, 2009). However, these methods do not always 

provide 100% performance and therefore the issue of using slightly unsynchronized 

cameras and its impact on the 3D reconstruction results could be raised. This issue has 

been studied in (Fujiyoshi, et al., 2003) (Svedman, et al., 2005) (Svedman, 2005) (Wolf, 

2006) (Bazargani, et al., 2012). It has been shown in (Svedman, 2005) that such errors in 

synchronization could results in errors up to 0.6% of the Z coordinate of a 3D point.  

Since the goal of this research is not to be involved in hardware design, the 

research takes advantage of the existing high-performance digital cameras that are 

designed for computer vision applications and allow a user to ask for a frame at any given 

time using their API. However, this does not limit the application of the proposed 

framework because theoretically any two cameras could be synchronized in order to build 

a stereo camera system. 

2.4. Multi-Step Stereo Camera Calibration for Improved Euclidean Accuracy 

The accuracy of results in far-range stereo image-based 3D reconstruction is very 

sensitive to the intrinsic and extrinsic camera parameters determined during camera 

calibration. The existing camera calibration algorithms could induce a significant amount 

of error due to poor estimation accuracies and wide range of uncertainties in camera 

parameters, when they are used for far-range scenarios such as mapping civil 

infrastructure. This may lead to unusable results, and even failure of the whole 

reconstruction process. 

Inspired by the results of previous studies ( (House & Nickels, 2006) (Strecha, et 

al., 2008) (Peng, 2011) (Xu, et al., 2012)) and considering a constant size for the 
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calibration board as the control variable, this research hypothesizes that the following 

procedure for a multi-step stereo camera calibration can enhance the final Euclidean 

accuracy of 3D points. If the distance between the sensor system and the calibration 

board is denoted by D , a conventional explicit stereo camera calibration procedure is 

repeated i  times ( ni ,...1 ) for different D  values. At each repetition, a different value is 

selected for D  (e.g., mDi 10 ) and while it is kept constant, a set of stereo video 

streams are collected (Figure 2.2). During the video recording process, the camera system 

and the board move in a way that iD  does not change significantly. The best strategy 

could be keeping the camera set in fixed location and instead moving the calibration 

board in different directions and angles. As a requirement, the calibration board should be 

videotaped from different angles and the whole pattern should be visible in all video 

frames. The collected data is then used as the input in a conventional calibration 

algorithm to find the required parameters. The result corresponding to iD  is saved and 

the process is repeated for another D . The outcome is a multiple set of calibration 

parameters  nii ,...,1|  , each corresponding to a specific D . It is necessary to mention 

that while videotaping, it is preferred to move the camera set such that the calibration 

board appears at different areas of video frames. It is known that if the calibration pattern 

only appears at the central part of video frames, the estimations will behave poorly at 

peripheral areas (Zhang, 2000).  

Figure 2.2: Data collection schematic for a D value (left: side view; right: top-down 

view) 



37 

 

The sensor system is then used to collect stereo videos from a target infrastructure 

scene. In the processing step (i.e., SfM), the results of the proposed multi-step stereo 

camera calibration procedure are used. First, the average of each calibration parameter is 

calculated from  nii ,...,1|  . In the visual triangulation step, these average values are 

used to find an initial estimation of 3D coordinates of points. For point j  in k -th stereo 

view ( jkp ), the i  that has the closest D  to the Z  coordinate of jkp  is found. The 

corresponding calibration parameters are then tied to jkp  and the 3D coordinates are 

recalculated. This new information is inputted in the bundle adjustment process to 

achieve the final estimation for 3D points.  

As can be inferred, this section did not aim to provide new mathematical 

relationships for estimating the necessary parameters. Instead, conventional camera 

calibration algorithms (e.g., OpenCV or Bouguet’s camera calibration toolbox) were 

used; but, a new procedure was proposed to perform separate conventional camera 

calibration for some predefined D  values. 

2.5. Improved Affine Invariant Descriptor Vector for Line Segments 

Line segments cannot be described using the conventional correlation windows or 

any modified version of this approach because of the following reasons: unstable location 

of end-points, weak epipolar constraint (i.e., only epipolar beam and not epipolar line), 

and lack of distinctive texture in the local neighborhood. Previous studies have proposed 

using histogram-based descriptor vectors (e.g., image gradients, color, clustering 

according to spatial proximity) to address this issue; however, most of these algorithms 

fail to provide a highly distinctive descriptor for line matching under rotation, 

illumination change,  image blur, viewpoint change, and partial occlusion. The primary 

reason is the following: these algorithms (such as MSLD (Wang, et al., 2009)) assign a 

rectangular pixel support region to every line segment with predefined dimensions 
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disregarding the length of the line or the visual texture in the local neighborhood; 

therefore, the information inside the support region could be very different for a specific 

line in two views which makes the matching process very difficult if not impossible. This 

section hypothesizes that assigning a dynamic pixel support region for a line segment will 

increase the distinctiveness of the generated descriptor vector. The MSLD algorithm 

(Wang, et al., 2009) is considered here as the basis and the proposed hypothesis is applied 

to modify/improve this algorithm. 

Straight lines are initially detected in an image using the exiting state-of-the-art 

methods that work based on the scale-space theory such as (Khaleghi, et al., 2009). 

Collinear line segments are then merged to generate long line segments. Since line 

segments are often not fully extracted and split into several smaller (more or less) 

collinear line fragments, the merging process is necessary to avoid mismatches because 

of gaps in the edge response. The output of these two primary steps is used as the input 

for the next step which is constructing descriptor vectors for a line segment. 

A very important issue that should be dealt with in the beginning is the problem 

of occluding object boundaries (Figure 1.6). In such boundaries, a change in viewpoint 

will cause inconsistency with the image in one side of the occlusion and make the 

descriptor vector inaccurate. A very simple solution for this problem is to separate the 

pixel support region into two parts, one on either side of the line segment, and generate a 

descriptor for each of these sides (side 1 and side 2). Since only one of the two 

descriptors will be on the side of the occluding boundary, the information from the other 

one can be used for locating robust matches. An issue that arises with this strategy is the 

question that which descriptors should be used to compare line segment A with B (i.e., A-

side-1 with B-side-1 or B-side-2 and vice versa). The use of the epipolar geometry is 

proposed here to address this problem. For this purpose, line segments in each view are 

converted into directed lines. The two end-points of a line segment are randomly labeled 
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as s  and e ; the directed line is therefore se . The side in the clockwise direction is called 

1side  and the other side is labeled as 2side . Now, the epipolar lines corresponding to the 

points 1s  and 1e  in view 1 are found using the fundamental matrix. If the epipolar lines 

are not parallel to the line in view 2, two scenarios could happen: 

 Epipolar line for 1s  is closer to 2s  and the one for 1e  is closer to 2e ; in this case, 

side 1 in view 1 should be compared with side 1 in view 2 and side 2 in view 1 

should be compared with side 2 in view 2 

 Epipolar line for 1s  is closer to 2e  and the one for 1e  is closer to 2s ; in this case, 

side 1 in view 1 should be compared with side 2 in view 2 and side 2 in view 1 

should be compared with side 1 in view 2 

 

However, if the epipolar lines are more or less parallel to the line in view 2, the 

abovementioned approach cannot be used. In this case, the unit normal vector of the 

directed line in view 1 ( n ) is calculated in the clockwise direction and added to 1e  to 

achieve point p . The fundamental matrix between two views is used to calculate the 

epipolar line corresponding to p . As shown in Figure 2.3, the dot product between the 

Figure 2.3: Determining the side correspondence in two views using epipolar geometry 
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normal vector of the line in view 2 ( N ) and the vector from 2e  to the intersection of the 

epipolar line and normal vector can determine the corresponding sides. If the dot product 

is greater than or equal zero, the sides with same numbers should be compared to each 

other and vice versa. 

After addressing the problem of occluding boundaries, a support region needs to 

be determined for each side of a line segment. An algorithm which works based on 

locating zero-crossings in the Laplacian function is proposed here. It has been shown that 

a region enclosed by the zero-crossings of the Laplacian operator is scale-invariant and 

also insensitive to a wide range of viewpoint transformations (Lindeberg, 1998) 

(Tuytelaars & van Gool, 2000). In order to locate such a region, a seed point should to be 

given first. The proposed algorithm uses the two end-points of a line segment as well as 

its middle point for this purpose. Starting from each seed point, the Laplacian operator is 

used on the pixels along rays emanating from the seed point (Figure 2.4). The zero-

crossing on each ray is marked as a boundary point (the zero-crossings are typically 

located at places that image gradient changes rapidly). The enclosed region that is 

generated by connecting these boundary points is the region of interest.  

The generated support region has the following features: a) the shape and size of 

the region is more or less the same despite the potential inaccuracies in locating the end-

points of a physical line segment in an image (Figure 2.5); b) in poorly-textured areas, the 

region expands until edge-like points are detected; hence, the region always consists of 

Figure 2.4: Laplacian along “rays” emanating from start, middle, and end points of a line 

segment 
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points that are distinctive; c) the shape and size of the region is more or less the same in 

two views with viewpoint changes or distortions.  

Once a pixel support region is assigned to each line segment, a multi-dimensional 

descriptor vector needs to be constructed for each region based on the local image 

gradients of the enclosed pixels. The direct use of the MSLD algorithm (Wang, et al., 

2009) in this case would not result in desirable and distinctive descriptors because of the 

viewpoint changes, image rotations, and distortions. This research proposes using the 

canonical representation of the regions before assigning the descriptors. It is known that 

two directions are required for canonical representation. The direction of the line segment 

is proposed to be used as the first direction. In order to determine the second direction, 

the histogram of the angle of gradients for pixels inside the region should be found first. 

The peak of this histogram is proposed to be used as the second direction. An example is 

demonstrated in Figure 2.6. Finally, MSLD algorithm is applied on the canonical 

representation of the regions and its similarity measure is used to match line segments in 

different views. 

2.6. Hybrid Bundle Adjustment 

In a 3D reconstruction pipeline, the 3D structure of an environment and the 

motion of a camera set are initially estimated using linear methods (in a video-based 

Figure 2.5: Shape and size of the support region despite inaccuracies in locating the end-

points 



42 

 

method, the local motion of the camera set between two frames could be simply 

initialized as zero); however, they are refined later in a non-linear optimization process 

called bundle adjustment. The Sparse Bundle Adjustment (SBA) package in (Lourakis & 

Argyros, 2009) is currently used for monocular point-based SfM as a well-known and 

efficient tool. The mathematical relationships used in the SBA package for solving a 

large but sparse optimization problem are generic and could be generalized for problems 

that include lines or a combination of points and lines. However, no such formulation 

exists in the literature. The focus of this section is therefore to provide the mathematical 

relationships needed in a stereo-based hybrid bundle adjustment process such that the 

SBA package can be modified and used for solving the given optimization problem. The 

main challenge here is to parameterize 3D points and lines as well as their reprojections 

in the 2D image space with the same number of parameters in order to be able to use the 

SBA package. These formulations are presented for two different scenarios: a) all stereo 

camera calibration parameters are known and fixed; and b) the extrinsic parameters (i.e., 

rotation and translation between the left and right cameras) are known and fixed but only 

an initial estimation is available for the internal parameters.  

Figure 2.6: An example for canonical representation of support regions (red/horizontal 

line: line segment; blue/vertical line: direction of the peak of the histogram of angle of 

gradients 
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2.6.1. Hybrid bundle adjustment if all calibration parameters are known 

Assuming all the internal and external parameters of the stereo camera setup are 

known through the calibration process and the captured video frames are undistorted, 

location of the stereo camera rig in the environment at time i  is denoted by seven 

parameters (three for translation and a unit quaternion vector for rotation). Therefore, the 

camera projection matrices at time i  (
i

LP  and 
i

RP ) can be represented as follows 
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where LK  and RK  are the left and right intrinsic camera parameters; 
i

LR  and 
i

Lt  are the 

rotation matrix and translation vector of the left camera at time i  with respect to a 

predefined coordinate system (typically left camera center at time 0i ); 

khjgife iiii


  is the quaternion representation of 

i

LR  (the unit quaternion 

representation is used for 
i

LR  to reduce the number of optimization parameters from 9 to 

4 for each camera view); R  and t  are the extrinsic (i.e., rotation and translation) 

calibration information of the stereo camera rig. 

The set of camera calibration information, that is estimated based on the 

procedure presented in section 2.4, is used here. For a specific feature and based on the 

disparity in the left and right views, an initial depth value is estimated using the 

information corresponding to one of D values. Then, the closest D value to the initial 

depth is found and the corresponding calibration information is used afterwards. 
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Knowing left and right camera projection matrices at time i  allows calculating 

2D image coordinates of the projection of 3D points and lines in the stereo video frames 

at time i . If j -th 3D point is denoted by  Tj WZYXN  , homogeneous 

coordinates of its projection in left and right camera views at time i  (
ij

Ln  and 
ij

Rn ) are 
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On the other hand, a 3D line can be represented by a homogeneous Plucker 6-vector L . 

Given two 3D points  mMM TT |~  and  nNN TT |~ : 
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k -th 3D line in Plucker coordinates ( kL ) can be parameterized by orthonormal 

representation proposed in (Bartoli & Sturm, 2005). Four optimization parameters are 

needed for each 3D line which is the same number of parameters used for 3D points; this 

satisfies the need for representing 3D points and lines with the same number of 

parameters. If the initial estimation for a 3D line is given by  TTT
baL 000 |~ , the 

orthonormal representation of 0L  is   )2()3(, SOSOWU   where 
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The four optimization parameters are   |TT   where the 3-vector   and the 

scalar   are used to update U  and W . Once   is computed in the minimization process, 

)(URU   and )(WRW  . Using this representation, homogeneous coordinates of 

the projection of k -th 3D line in left and right camera views at time i  (
ik

Ll  and 
ik

Rl ) can 

be calculated by 

 

kL

ik

L LPl
~


 (2-14) 

kR

ik

R LPl
~


 (2-15) 

 

where LP
~

 and RP
~

 are 3×6 matrices which can be found as follows. Given a 3×4 camera 

projection matrix  pPP | , P
~

 is defined as     PpPPP T



 |det
~

 to project Plucker 

line coordinates. Consequently and similar to points, the projection of lines in 2D image 

space needs three parameters.  

Jacobian of the reprojection function   xcbaf ˆ,,   is another important part of the 

hybrid bundle adjustment process presented here. The function f  takes 

 TT

i

TT aaaa ,...,, 21 ,  TT

j

TT bbbb ,...,, 21 , and  TT

k

TT cccc ,...,, 21  as parameters and 

returns  TT

lik

T

l

T

pij

T

p xxxxx ˆ,...,ˆ,ˆ,...,ˆˆ
1111 . Here, ia  is the vector of estimated location of the 

left camera at time i , including a translation vector and a unit quaternion vector for 

rotation (7 parameters in total); jb  is the vector representing the 4 parameters of the j -th 

world point in the homogeneous coordinate system; kc  is the vector including the 4 
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parameters used for orthonormal representation of the k -th world line; pijx̂  is the 

projected homogeneous image coordinates of world point j  in the i -th stereo frame (6 

parameters in total); and likx̂  is the homogeneous projected image coordinates of world 

line k  in the i -th stereo frame (6 parameters in total). The Jacobian matrix, in this case, 

will have a sparse structure. 

Once the coordinates of projected points and lines in the stereo video frames are 

found, total reprojection error is calculated by adding individual errors of all points and 

lines. For each point, the Euclidean distance between the original image point and its 

reprojection is considered as the error. The error for each line is the normalized area 

between the original line and its reprojection; the normalized error is the result of 

dividing the area by the length of the original line. SBA minimizes the summed squared 

reprojection error. 

The output of the whole process is a sparse 3D point cloud and a set of infinite 3D 

lines that their Plucker coordinates are known. 3D points can be directly visualized and 

used in subsequent processes; however, infinite 3D lines need to be converted to 3D line 

segments with specific end-points. The following equations could be used to find 3D 

points that are on a 3D line with Plucker coordinates. 

If  1,,, 321 mmmM   and  1,,, 321 nnnN   are two 3D points with homogeneous 

coordinates, the Plucker coordinates of the line that is connecting them are 

 

 321321 ,,,,,~ bbbaaaL  (2-16) 

122133113223321 ,, nmnmanmnmanmnma   (2-17) 

333222111 ,, mnbmnbmnb   (2-18) 
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If the moment part of the coordinates is denoted by    321321 ,,,, aaavvvV   and the 

direction part is denoted by    321321 ,,,, bbbwwwW  , a 3D point  1,,, 321 qqqQ   on L  

must satisfy the following equation 

 

VQW   where   is the cross product (2-19) 

12332 vqwqw   (2-20) 

23113 vqwqw   (2-21) 

31221 vqwqw   (2-22) 

 

In the given problem, the 3D coordinates of Q  are unknown, but V , W , 2D coordinates 

of the line end-points in the image space, and the projection matrix are known. Therefore, 

a linear system of equations can be established and solved for Q . 

2.6.2. Hybrid bundle adjustment if only extrinsic calibration parameters are known 

When the exact values for internal camera parameters are not known and only an 

initial estimation of their values have been calculated, captured video frames cannot be 

reliably undistorted. This means that straight lines may appear as curved line segments 

and hence the algorithm presented in the previous section cannot be used. Preliminary 

findings are indicating that this scenario is probable due to the uncertainties that we face 

in estimating these parameters. Moreover, the Euclidean accuracy of 3D points and lines 

is sensitive to the distortion coefficients in far-range applications which is another reason 

that suggests to include internal camera parameters in the optimization process. 

Following paragraphs provide mathematical relationships needed for this purpose. 

The required process for feature points is straight forward. Feature points are 

detected in distorted video frames and then initial estimation of camera parameters 
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(information corresponding to an appropriate D value) are used to find an initial 

estimation for 3D points and camera motion. The projection model in this case is the 

following (only left camera is considered here for simplicity but the same formulae can 

be used for right camera by changing the camera matrix and other information) 
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zyyzxx  ,  (2-24) 
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where 
222 yxr  ,  LLLLL kppkk 32121 ,,,,  are distortion coefficients for the left camera, 

 L

y

L

x ff ,  are the horizontal and vertical focal length of the left camera, and  L

y

L

x cc ,  is the 

principal point. These formulations are used to calculate reprojection of 3D points and the 

corresponding Jacobian matrix. The reprojection error is the Euclidean distance between 

the detected point in the distorted view and its reprojection into the 2D image space. 

In case of line features, the process is more complex. First, the initial estimations 

of internal camera parameters are used to undistort a video frame. Line segments are then 

detected in the undistorted view. On the other hand, an edge point detection algorithm 
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with subpixel accuracy is used on the original (i.e., distorted) view to find the subpixel 

location of the edge pixels that correspond to the detected lines in the undistorted view. 

This way, a number of points on the curved line segment in the original view are 

acquired. These points ( d ) will be used in next steps to calculate reprojection errors 

(Figure 2.7).  

Similar to the case of feature points, initial estimation of camera parameters are 

used to find an initial estimation for 3D lines and camera motion. The same projection 

process that is described in the previous section is applied to find the projection of 3D 

lines. This leads to coordinates of projected line in the undistorted view. To calculate the 

reprojection error, undistorted coordinates of d  are first found using the internal camera 

parameters in the optimization process. Below is the algorithm that can be used for this 

purpose. 

 

x0 = (ud – cx) / fx; 

y0 = (vd – cy) / fy; 

x = x0; 

y = y0; 

for (int iter = 0; iter < 5; iter++) { 

r2 = x * x + y * y; 

Figure 2.7: Detection of points  
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icdist = 1.0 / (1 + ((k3 * r2 + k2) * r2 + k1) * r2); 

deltaX = 2 * p1 * x * y + p2 * (r2 + 2 * x *x); 

deltaY = p1 * (r2 + 2 * y * y) + 2 * p2 * x * y; 

x = (x0 – deltaX) * icdist; 

y = (y0 – deltaY) * icdist; } 

u = (x * fx) + cx; 

v = (y + fy) + cy; 

 

where ud and vd are distorted coordinates of a point while u and v are its undistorted 

coordinates. The reprojection error is the sum of the Euclidean distance between 

undistorted coordinates of d  and the projected line, divided by the number of points in 

d . 

2.7. Hypothesizing and Verifying Planar Surfaces 

The ultimate goal of this section is automatic identification of salient planar 

regions using global scene information as the input data (a sparse 3D point cloud, 3D line 

segments, multi-view correspondence of points and lines, and camera projection matrix 

for each view). The input data is the output of the proposed hybrid SfM algorithm. Two 

major steps need to be followed in order to identify salient planar regions: generating 

plane hypotheses and verifying candidate planes. 

2.7.1. Generating plane hypotheses 

A three-step strategy is proposed to formulate candidate planes. In the first step, 

half-planes are identified using a combination of 3D points and line segments while 

satisfying coplanar and region constraints. The region constraint restricts the range over 

which the search process is performed. It is simply a rectangle around the projection of a 

3D line in one of the views. The length of this rectangle is the length of the 2D line in the 
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view and the width can be selected as a predefined percentage of the line length. On the 

other hand, the coplanar constraint limits the selection of candidate half-planes to those in 

which all the feature points are coplanar in the 3D world scene. A successful formulation 

is achieved if coplanar feature points exist that are located in the local neighborhood of a 

3D line segment. As can be inferred, this is a strong assumption which may not hold true 

in many scenarios. The second and third steps address this issue. These two steps only 

consider the points and lines that have not been used for hypothesized half-planes during 

the first step. The second step formulates a plane from two intersecting line segments and 

verifies their coplanarity using intersection context. On the other hand, a RANSAC-based 

approach is used in the third step to hypothesize a plane from at least three points. 

Identification of Half-Planes: Assuming that each correct half-plane contains at 

least one corresponding feature point in multiple views, a half-plane is parameterized 

using a 3D line segment L  and a 3D feature point X  which is located within a restricted 

3D region around L . This region is defined using a normal distribution centered at L  

with a standard deviation of  . Let pS  be the set of all points in the 3D sparse point 

cloud that satisfy the region constraint for L . If the number of points in pS  is greater than 

one ( 1pS ), sufficient information exists to hypothesize a half-plane and then verify it. 

For each point iX  in pS , the number of points that are coplanar with the half-plane 

parameterized by L  and iX  is computed and the set S  containing feature points whose 

associated half-plane corresponds to the highest number of coplanar points is identified. 

 

 pijiij SXXLXdXSS  ,)),(,(|max   (2-28) 

 

where ),,,(),( 4321  jXL  is the homogeneous 4-vector   in the world coordinate 

system that represents the half-plane parameterized by the 3D line L  and the feature 
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point jX . The same process is applied to all 3D line segments and the points and lines 

that have been used to parameterize half-planes are marked as “used”. 

Coplanar Lines from Intersection Context: Line segments that at least one side 

of them have not been used in the half-plane formulation step are considered here. Given 

this line set, intersecting lines are paired when both are closely located (i.e., the distance 

between end points and the intersection point is less than a threshold). Although there is a 

high probability that two intersecting lines are coplanar, the final set could generally 

include both coplanar and non-coplanar pairs. The discrimination is therefore based on 

the following fact: when the intersection point of two intersecting lines is back-projected 

onto the 2D image space, a match of the intersection point can be found in multiple 

views. The matching similarity is estimated by assigning invariant region descriptors 

such as SIFT or SURF to back-projected intersection points and computing the Euclidean 

distance between them. If two lines are labeled as coplanar, a plane hypothesis is 

generated from homogeneous coordinates of end-points of the first line segment ( 1X  and 

2X ) and one of the end points of the second line segment ( 3X ). 
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      2133231

~~~
,

~~~~
XXXXXXX

T
  (2-30) 

 

RANSAC-Based Plane Hypothesis Generation from Points: The objective 

here is to find multiple locally fit models for the set of 3D points that have not been used 

in the half-plane identification step ( pS ) using a RANSAC-based approach (i.e., 

sampling, scoring, and contiguity). A plane equation can be computed from three points 

in pS  that have been sampled randomly. The first point is selected while considering a 
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uniform distribution over pS . However, the second and third points are sampled from 

normal distributions centered at the first point with a standard deviation of   . The plane 

equation (i.e., model) can be calculated using equations 2-29 and 2-30. Each model is 

then evaluated according to points that are at nearby distance of the original samples. The 

inlier set for each model is determined by computing the distance of each point to the 

plane. A new plane is obtained as the least-square fit to the inlier points. 

2.7.2. Verifying candidate planes 

The output of the described procedures in the previous section is a set of plane 

hypotheses that may include repetitive or incorrect candidates. This section proposes to 

use photo-consistency measures for identifying correct planes according to the geometry 

demonstrated in Figure 2.8. The figure shows that point to point correspondences can be 

calculated over a set of images using the homographies defined by a 3D plane equation. 

Given the plane  , a 3×3 homography matrix i

jH  is found between the i -th and j -th 

Figure 2.8: Geometric correspondence between views 
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views, so that a homogeneous point ix  in the i -th view is mapped to jx  in the j -th view 

 

ij

i

j xHx   (2-31) 

 

The 3×4 camera projection matrices for each view are used to calculate the 

homography matrices. Considering two views, if the projection matrix for the first view 

is presented in the canonical form ]0|[IP   and the projection matrix for the other view 

is denoted by ]|[ aAP   then 

 

aVAH   where  TV 321

4

,,
1




  (2-32) 

 

where   is the plane in the homogeneous 4-vector form and 04  . 

Having calculated the homography matrices for each pair of views, the following 

image intensity similarity score function is used to assess the correlation of image patches 

mapped by the homographies 
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where POI  represents the points of interest that are obtained using the canny edge 

detector; and  i

jj xxCor ,  is the normalized cross correlation between points jx  and 
i

jx  

within a local n×n window. Plane candidates that their corresponding similarity score is 

less than a predefined threshold are discarded. The remaining candidates are evaluated 

based on the equation, slope, and perpendicular distance to find nearly identical planes 
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that overlap. These planes are merged together and the plane equation is recalculated 

using a least-square optimization approach. 

2.8. Performance Metrics 

Although the main goal of this research is to investigate the technical feasibility 

of the proposed close-range video-based roof reconstruction framework, there are several 

intermediate steps involved in the process which can be evaluated separately according to 

different performance metrics. These intermediate steps are multi-step stereo camera 

calibration, straight line matching, hybrid SfM, and identifying salient planar regions. 

Multi-step stereo camera calibration: The performance of the proposed 

calibration procedure is assessed based on the following metrics. a) Spatial accuracy of 

the initial estimation for 3D coordinates of points with different range values. In a stereo 

reconstruction, 3D points can be achieved from only left and right views of a scene at a 

given time. In this research, this 3D information is regarded as the initial estimation for 

3D coordinates of points. Therefore, this metric aims to evaluate the spatial accuracy of 

the 3D points that are reconstructed from only left and right views while different 

calibration information is used. b) Spatial accuracy of a dense 3D point cloud. Since the 

reconstruction from only left and right views at a given time is not complete and accurate 

enough for the purpose of this research, a complete 3D reconstruction of the scene is 

generated from multiple sets of stereo frames. This metric aims to evaluate the accuracy 

of this reconstruction. 

Improved straight line descriptors: Two performance metrics are used for this 

algorithm: recall and precision for line matching in two views. Recall is the number of 

correct matches divided by the total number of straight lines that are visible in both 

views. Precision is the number of correct matches divided by the total number of matches 

that are generated by the algorithm. 
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Hybrid SfM: Average reprojection error for point and line features, total number 

of processed views, completeness of the reconstruction, and spatial accuracy of the 

reconstructed features are the metrics to be considered for this step. These evaluations are 

performed in three scenarios: 1) only points are used; 2) only lines are used; and 3) a 

combination of points and lines are used. 

Identify salient planar regions: The performance metrics for the detection 

accuracy include true positive (TP), false positive (FP), and false negative (FN). TP 

represents the planar regions that are detected correctly; FP shows the non-planar regions 

that are detected as a planar region; and FN represents the planar regions that are not 

detected. 

Close-range video-based roof reconstruction: The proposed framework is 

supposed to generate a measureable 3D wire-diagram for every roof plane. Following 

metrics are used to evaluate this framework: completeness of the wire-diagram, 

Euclidean accuracy of the end-to-end dimensions of the edges, and the number of manual 

data that is needed to fix a missing edge. 

It also needs to be noted that the processing time is not considered as an important 

factor in this study and hence it is not measured in any of the above mentioned steps. 
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CHAPTER 3 

SYNTHESIS 

 

3.1. Solution Implementation and Prototype 

A prototype is created using Microsoft Visual C# and Windows Presentation 

Foundation (WPF) to implement the proposed framework. OpenCV (Intel® Open Source 

C++ Computer Vision Library) and VXL are selected as its main image processing 

libraries. They both are free and open source. The C# prototype provides a base to 

connect to any number of cameras through Ethernet network, USB, and IEEE 1394 

connection with real-time responsiveness. On the other hand, C++ dll files (dynamic link 

library) are generated for several algorithms (e.g., hybrid bundle adjustment) and then 

invoked from the C# platform. The reason is twofold: better run-time efficiency by 

avoiding managed code; and direct use of the existing open source C++ codes that are 

available online. 

A step by step procedure is followed to implement different steps of the proposed 

framework and test their performance. Following paragraphs provide more details about 

these steps. 

Multi-step stereo camera calibration: An automatic stereo camera calibration 

algorithm is developed using the functions available in OpenCV. The user runs the 

program while videotaping a calibration pattern at a predefined distance from the camera 

set. The program is real-time responsive and automatically detects the calibration pattern 

in every video frame. Once the pattern is successfully detected in a pair of stereo video 

frames using the OpenCV’s cvFindChessboardCorners function, chessboard corners are 

automatically refined to their location with subpixel accuracy and also matched between 

the two views by invoking the cvFindCornerSubPix function (Figure 3.1). This process 



58 

 

continues until enough number of views are captured (typically between 30 to 40). Then, 

the calibration function (cvStereoCalibrate) is invoked and the necessary parameters are 

calculated. cvStereoCalibrate provides the possibility of calibrating a stereo camera set 

according to different constraints such as zero radial or tangential distortions, fixed 

principal point, fixed aspect ratio, and/or fixed focal length. The same process is repeated 

for different D values.  

Feature point detection and matching: Among the various feature point 

detection algorithms available in the literature, the 64-dimensional version of SURF 

algorithm is selected. Once these feature points are detected, their corresponding 

descriptor vectors are computed. These points are then matched between the left and right 

views using the distance between descriptor vectors. A RANSAC algorithm is also used 

to further discard mismatches. All these steps are performed using the available functions 

in OpenCV library. 

Line feature detection and matching: A combination of the algorithms 

presented by (Khaleghi, et al., 2009) and (Von Gioi, et al., 2010) is used to detect straight 

line segments. The detection algorithm aims at extracting lines that are repeatable and 

stable with respect to scale variations due to change of viewpoint. The algorithm takes a 

Figure 3.1: Automatically detected and matched corner points in the calibration process 

using OpenCV 
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video frame ),( yxI  along with a set of Gaussian kernels ),,( iyxG  , where i  is the 

kernel width or scale. The first step is to generate the scale-space representation of the 

given video frame at k  different scales through convolution with Gaussian kernels of 

different width. The DoG images are then computed and stored for each of the scales. 

Then, Line Segment Detector (LSD) proposed by (Von Gioi, et al., 2010) is applied to 

localize potential line segments and keep only the ones for which the DoG attains an 

extrema over scales. The algorithm initially computes the level-line angle at each pixel to 

generate a level-line field. The field is then segmented into connected regions of pixels 

that share the same level-line angle up to a certain tolerance (each connected region is a 

candidate for a line segment). The candidates are subject to a validation procedure which 

is based on the a contrario approach and the Helmholtz principle. The produced line 

segments may contain lines that are pieces of a longer line segment. To group these 

collinear segments, the prototype uses the HSV-based algorithm presented in (Bay, et al., 

2005). 

In order to build the HSV-based descriptor, an image is represented in the HSV 

color space which enables certain invariance towards illumination changes and provides 

enough distinctiveness between colors. The well-known quantization approach proposed 

in (Smith & Chang, 1995) is used to partition the HSV color space into 166 bins. This 

quantization approach places more importance on the hue channel than on saturation and 

value. For each line segment, a rectangular local neighborhood, perpendicular to the line, 

is selected and a color histogram ch  is created for the pixels in the neighborhood. ch  is 

the vector  166,21 ...,, hhh  in which each bin ih  contains the number of pixels having a 

certain color i , normalized by the total number of pixels in the selected neighborhood. 

Once a descriptor is generated for each line segment, the similarity between two 

segments is determined. This is measured using the distance between their descriptors 
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   2121 chchAchchd
T

  (3-1) 

 

where  jiaA ,  is a 166×166 matrix and its elements are the Euclidean distance between 

ic  and jc  of the palette p  in the quantized HSV color space (equation 3-2). If two line 

segments are collinear and have similar color histograms, they are merged into one longer 

segment. 

 

             5.0222

, sinsincoscos
2

1
jijjjiiijjjiiiji VVHSVHSVHSVHSVa   (3-2) 

 

After detecting line features and merging collinear ones, correspondences are 

established across multiple frame sets. For this purpose, multi-dimensional descriptor 

vectors are constructed for each line segment based on the improved affine invariant line 

descriptor proposed in section 2.5 and the MSLD algorithm (Wang, et al., 2009). The 

first step is to assign a dynamic pixel support region to each side of a line segment. As 

explained before, rays emanating from the start, middle, and end point of a line segment 

and zero-crossings of the Laplacian operator are used to locate an enclosed region. A 

gradient histogram is then constructed for the pixels inside each region according to the 

gradient magnitude m  and orientation   at each pixel. If the location of a pixel in an 

image is shown by  yx,  and the intensity value of the pixel at  yx,  is represented by 

 yxI , , the gradient magnitude  yxm ,  and orientation  yx,  are calculated by 
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where  is the angle of gradient (i.e., orientation); dy is the local intensity gradient in the 

vertical direction; and dx  is the local intensity gradient in the horizontal direction. It can 

be seen that   is more or less equal to the orientation of the line segment in 2D image 

space. 

The angle between a line segment and the gradient orientation of the pixels inside 

its support region could change significantly with viewpoint changes and hence adversely 

affect the matching process. To alleviate this problem, the perspective distortion of the 

support regions needs to be compensated. This is accomplished by rectifying a line 

segment and the peak of its support region’s gradient orientation histogram into a special 

configuration in which the two directions are orthogonal. This normalized image region 

is called canonical representation. The rectification is performed by estimating a 2D 

homography matrix kH  from a region patch  kxP  to a canonical frame kC , and the 

transformation is represented by 

 

   kkkk xHPxCC   (3-5) 

 

Once the regions are transformed to the canonical frame, a modified version of 

the SIFT-like strategy proposed in (Wang, et al., 2009) is used to construct the line 

descriptor. As illustrated in Figure 3.2, a gradient histogram-based descriptor is 

constructed for support regions at each side of a line segment. The relative orientation 

values are found by subtracting the line orientation from pixel gradient orientations in the 

canonical frame; this helps to obtain rotation invariance. The relative orientation values at 

each support region are used to form orientation histograms that summarize the content 

over 8 bins covering the 360 degree range of orientations. Moreover, each relative 

orientation value is weighted by its gradient magnitude and Gaussian-weighted circular 

window with 5.1 , as suggested in (Lowe, 2004). The gradient description matrix 
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(GDM) concept proposed in (Wang, et al., 2009) is then used for each side of a line. 

Accordingly for each line segment L , two GDMs are formed. The mean and standard 

deviation of the vectors constructing a GDM is found and normalized to make the 

descriptor invariant to linear changes of illumination. The mean and standard deviation 

vectors are then concatenated to construct a 32-dimensional descriptor vector for each 

side of the line segment. Euclidean distance between descriptors is finally used to match 

line segment in different views.  

Hybrid Structure from Motion: When a new pair of stereo video frames ( is ) is 

added to the processing pipeline, the visual features in the previous pair ( 1is ) are 

tracked/matched among the two consecutive frame sets. Matched visual features as well 

as the calibration information are used to calculate an initial estimation for camera 

motion between is  and 1is  (this can be also initialized to zero because of the use of 

video data). To calculate the camera motion, the trifocal tensor-based method proposed in 

(Pradeep & Lim, 2012) is used. Assuming a stereo setup in its canonical form and two 

subsequent stereo frame sets as input (four frames in total), two trifocal tensors are 

calculated based on TTL RttRT 00   and    TTR RRtttRRT 00000  ; where 0R  and 0t  

are the extrinsic calibration information; R  and t  encode the rigid camera motion 

Figure 3.2: Gradient histogram for each side of a line segment 
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between the two frame sets; LT  is a trifocal tensor that can be calculated from point and 

line correspondences between the left and right views before the motion and the left view 

after the motion; and RT  is a trifocal tensor that is calculated from feature 

correspondences in the left and right views before the motion and the right view after the 

motion. Using these relationships, one can write a linear system of equations in terms of 

the twelve unknown parameters of the motion. 

The estimation of points, lines, and camera poses for the reconstructed scene is 

refined using the proposed hybrid bundle adjustment process. A modified version of the 

Sparse Bundle Adjustment package is developed to include the proposed mathematical 

formulation. The parameter vector p  includes the parameters that have to be refined. The 

length of p  is lp nnm 447  ; 7 parameters for each camera pose, 4 parameters for 

homogeneous 3D coordinates of each point, and 4 parameters for orthonormal 

representation of every line. On the other hand, the measurement vector x  includes the 

2D coordinates of the detected features in the existing views. The length of x  is 

vlvp nn 33  ; 3 parameters for homogeneous 2D coordinates of a world point that is visible 

in a view and 3 parameters for the homogeneous 2D coordinates of a world line that is 

visible in a view. 

If camera poses are parameterized with a quaternion vector  4321 ,,, qqqq  as well 

as a translation vector  zyx ttt ,,  and a 3D point is parameterized with a 4-vector 

 1,,, XYX , the point projection function can be defined as equation 3-6. The partial 

derivatives of this function with respect to the camera and point parameters are also 

needed in the optimization process. These derivatives are the Jacobians (equation 3-7). 

 

   1,,,,,,,,,,1,, 4321 ZYXtttqqqqfvu zyxp

T
  (3-6) 
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The same camera parameterization is also used for lines. However in this case, 

two sets of parameters are needed for 3D lines: 6-vector initial Plucker coordinates 

 TT ppppppL 6543210 ,,,,,  which are constant and 4-vector optimization angles 

  ,,, 321 . Optimization angles are used to update the initial Plucker coordinates and 

then the updated line is projected into the image space. Having this parameterization, the 

line projection function is defined as equation 3-8. The Jacobians are also shown in 

equation 3-9. 

 

   6543213214321321 ,,,,,,,,,,,,,,,,,, pppppptttqqqqflll zyxl

T
  (3-8) 
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Maple 15.0 software package is used to generate the C code related to the point 

and line projection and Jacobian functions that are defined above. The output of this step 
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is the optimized values for camera poses and 3D structure of the scene. The same process 

is repeated when a new pair of stereo video frames is added; all the information extracted 

from previous pairs and the new pair is optimized in the hybrid bundle adjustment 

process. Once all the pairs are added, the final output of the process is the 3D structure of 

the scene which includes 3D coordinates of feature points and lines. 

Identify salient planar regions: Roof patches can be modeled as planar, convex 

polygonal patches with straight line segments connecting the corner points (Scholze, et 

al., 2002). The planar surfaces are modeled using a homography matrix. A half-plane 

extraction process is first performed by identifying points that are coplanar with a line 

segment. For each line segment, a rectangular region is defined and the 3D points that are 

enclosed in that region are assumed to be coplanar with the line. The length of the region 

is equal to the length of the line and its width is supposed to be 20% of the length. A half-

plane   is formulated using a feature point X  and a line L . Additional half-planes are 

also found from previously defined intersection context of coplanar lines and 3-point 

RANSAC-based approaches. The correct half-planes in the set of generated options are 

identified using the defined equations for image intensity similarity of the planes over 

multiple views. These half-planes are then merged to create larger planar regions. Two 

half-planes are merged if the angle difference between their normal vectors is less than 

5
0
, their perpendicular distance is less than 10cm, and there are no other planes in 

between (Scholze, et al., 2002). 

Since the planes are built by merging half-planes that each correspond to a 3D 

line, a set of 3D lines can be associated to each plane. Having this information, the 

convex hull of the associated 3D lines is calculated for each plane; this helps to 

differentiate between border lines and other interior lines. In order to define the 

boundaries of a plane, a closed delineation is applied on its convex hull. This process is 

mostly based on heuristic rules. Two rules are used here. First, the end points of the 
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border lines are updated if they intersect to each other or their inner end points are very 

close; the original end points are replaced with the intersection point and the convex hull 

is recalculated. Second, a priori knowledge about the geometry of roof structures is used 

to refine the calculated convex hulls. It is known that the angle between adjacent border 

lines in a roof plane can be reasonably modeled using 15
0
 steps (Scholze, et al., 2002). A 

convex hull is replaced with the closest polygon that satisfies this assumption. 

3.2. Design of Experiments 

This section provides details of experiments that are designed to validate the 

proposed framework. To provide a thorough performance evaluation and address the 

defined objectives of this research, two groups of experiments have been designed and 

implemented in different environments. The first group evaluates the intermediate steps 

of the proposed framework as separate entities. On the other hand, the second group 

evaluates the performance of the whole framework as a package. 

The primary control variable in these experiments is the technical properties of 

the sensor system which need to be fixed while collecting the necessary data. According 

to the formulation that is provided in section 2.3, two high-resolution cameras 

(2448×2048 pixels if the field of view and area covered by one pixel are assumed to be 

700cm and 1cm, respectively) and two fixed focal length lenses (f = 16mm, 25mm) are 

used to setup a stereo camera system. The cameras have the capability to provide a video 

frame at any given time if asked by the software prototype; this enables capturing frames 

from two cameras at the exact same time. The stereo setup is attached to an extendible 

pole that can cover heights required for videotaping up to a two-story residential building. 

3.2.1. Experiments for testing individual steps 

Multi-step stereo camera calibration: In order to study the impact of using 

conventional stereo camera calibration procedures on the accuracy of 3D coordinates of 



67 

 

points versus the proposed one, a well-textured planar scene (Figure 3.3) is selected for 

two reasons: a) it allows controlling the Z coordinate of 3D points in the desired range by 

simply changing the distance between a stereo camera system and the planar face; and b) 

well-textured regions provide the opportunity to detect and match enough number of 

feature points in stereo views such that the results can be statistically significant. A set of 

two Flea2 cameras are used; these cameras are capable of streaming raw video data and 

comply with the aforementioned requirements. An appropriate baseline distance is also 

selected based on the following mathematical analysis and typical range values that are 

encountered in infrastructure applications (i.e., 10m to 25m).  

Given the use of a stereo system, the baseline distance between the left and right 

cameras ( b ) can be selected based on a simple formulation presented in (Gallup, 2011) 

for analyzing the reconstruction accuracy in a stereo setup (Figure 3.4).  
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where z  is the depth in cm, z is the expected measurement error in cm, f  is the focal 

length measured in pixels, and d  is the disparity error of a feature correspondence. As 

Figure 3.3: Well-textured planar environment for stereo camera calibration experiments 
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an example, in case of using two 5MP cameras with 16mm fixed focal length lenses and 

assuming mz 20 , cmz 2 , 6500f , and 1.0d , the baseline distance can be 

calculated as 30cm.  

A checkerboard with an appropriate number of black and white squares in two 

perpendicular directions is also required for the calibration process. The number of 

squares and their dimensions are selected according to the scene (a pattern of 13×14 

squares each with a dimension of 60mm). 

For camera calibration, six sets of stereo video streams are captured from the 

board under different conditions. In the first set which will be used for testing 

conventional procedures, the distance between the camera and the board changes in the 

range of mDm 155 1   while capturing the videos. Captured video frames should cover 

different views and angles of the board while the camera moves smoothly toward and/or 

away from the board. The next five sets are needed to test the proposed stereo camera 

calibration procedure. In these sets, the distance between the camera system and the 

board is fixed to mD 52  , mD 103  , mD 154  , mD 205  , and mD 256  , 

Figure 3.4: Depth error as a function of disparity error (Gallup, 2011) 
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respectively. These limits have been selected according to the typical range values that 

we encounter in building applications. The sensor system is also used to collect stereo 

videos from the planar scene while the distance of the camera to the planar scene changes 

from mDm 255  . This data is a control variable and will be used for 3D 

reconstruction of the scene in two scenarios: a) using conventional calibration procedures 

(parameters acquired from the 1
st
 set of calibration videos); and b) using the proposed 

multi-step calibration procedure (multiple set of parameters acquired from the 2
nd

 to 6
th

 

set of calibration videos). 

The performance of the proposed calibration procedure is assessed based on the 

following metrics: a) spatial accuracy of the initial estimation for 3D coordinates of 

points with different range values (only one set of stereo frames is used in this case); and 

b) spatial accuracy of a dense 3D point cloud. For the first metric, stereo frames 

corresponding to }25,20,15,10,5{ mD   are extracted from the planar scene video to 

detect and match feature points. Calibration parameters from the conventional and 

proposed procedures are then used to estimate 3D coordinates of feature points from left 

and right views of stereo frames. Spatial distance between pairs of feature points is then 

calculated for each case and compared to the ground truth data that is acquired using total 

station surveying. For the second metric, calibration parameters from the conventional 

and proposed procedures are used separately in a dense 3D reconstruction package and 

the spatial accuracy of the results is evaluated. The sample size at all experiments is 

considered to be 50 which corresponds to 90% confidence level and ±10% confidence 

interval. 

Improved affine invariant line descriptors: A modified version of the MSLD 

algorithm (Wang, et al., 2009) is proposed and hence need to be evaluated. Its 

performance is tested on real image pairs extracted from video streams. These pairs are 

not necessarily the left and right views of the stereo video streams and they could be left 
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or right frames from different time stamps. Two primary criteria are used in this 

evaluation: ratio of correct matches CM to total number of lines that are visible in both 

views TL (i.e., recall), and ratio of correct matches CM to total number of matches TM 

(i.e., precision). CM, TM, and TL are determined manually and via visual inspection. To 

achieve a realistic comparison, all thresholds and decision making parameters are set to 

the values that have been recommended in (Wang, et al., 2009). The same matching 

criteria have been also applied in these experiments. For example, the dimension of the 

descriptor vectors is set to 72. The NNDR (nearest/next ratio) ratio and the global 

threshold are also set to 0.8 and 0.55, respectively. 

In order to achieve 95% confidence and ±5% confidence interval, 400 image pairs 

are extracted from video streams or taken with a digital camera. This data have been 

collected from four different environments (Figure 3.5). These environments are a 

Figure 3.5: Four different environments to test improved affine invariant line descriptor 
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building façade with poorly-textured aluminum panels, a building façade with well-

textured brick pattern, a roof model with surfaces that are a combination of metal panels 

and plywood, and finally a residential roof structure. The image pairs have different 

resolutions and are captured with different cameras and lens specifications (e.g., 8, 5, 

and/or 3 megapixel resolution + 8, 16, and/or 25mm focal length). The data set is 

categorized into five groups based on the kind of transformation/change that exist 

between the two views (each group consists of 80 samples): rotation, scale, image blur, 

illumination, and viewpoint change. It need to be mentioned that other than illumination 

which has been changed using image editing software programs, all other cases are 

extracted directly from the collected data with no modification/editing. In all 

experiments, line segments are detected using the LSD algorithm proposed in (Von Gioi, 

et al., 2010) which is a parmeterless algorithm and does not any parameter tuning. 

Hybrid Structure from Motion: The ultimate goal of the experiments in this 

section is to evaluate the effect of combining point and line information in the SfM 

pipeline. This effect has been already tested for visual odometry problems but no such 

study could be found in the literature for a large-scale 3D reconstruction problem. Two 

sets of experiments have been designed for this purpose. The first set is performed in a 

controlled, yet realistic setting that includes a roof model. The model has been 

constructed with actual materials that are typically used in a sheet metal roofing project. 

It consists of poorly-textured areas as well as well-textured plywood parts. The repetitive 

pattern of the sheet metal also provides a challenging environment for feature detection 

and matching. This could result in noisy feature correspondences which is necessary to 

test the robustness of the algorithm when wrong matches exist. The second set, on the 

other hand, is performed in a large-scale environment which is a building façade with 

brick patterns and three faces. The environment is selected such that an abundant number 

of point and/or line features could be detected, so there is enough information to run the 
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hybrid SfM with any or a combination of the existing data types. The repetitive patterns 

on the walls again create a challenging environment for the algorithm to be tested. 

Snapshots of these two environments are demonstrated in Figure 3.6. 

Two Flea2 cameras (2448×2048 pixels) and TAMRON lenses with mmf 25  

are used in all of the experiments in this section. The stereo camera system is setup using 

the cameras and lenses while the baseline distance is selected as 30cm according to the 

analysis provided in the multi-step stereo camera calibration procedure. The sensor 

system is calibrated for 5 megapixel resolution using a board with a pattern of 13×14 

squares each with a dimension of 60mm. Once the system is calibrated, the scenes are 

videotaped from such that the distance between the camera and the object of interest 

changes between 5 to 15 meters. The reason for not selecting a specific distance is to be 

able to generalize the outcome of the experiments. These are the control variables in our 

experiments.  

Each experiment is repeated for two camera resolutions: 5 and 3 megapixel. It is 

necessary to mention that although the camera system is calibrated only for 5 megapixel 

resolution, the same data with some changes is applicable for the experiments with 3 

megapixel resolutions. It is known that the distortion coefficients are the same regardless 

of the camera resolutions used but the focal length should be scaled based on the current 

Figure 3.6: Two different environments to test the hybrid SfM algorithm 
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resolution. In each experiment, three scenarios are tested: a) only point features are used; 

b) only line features are used; and c) a combination of point and line features are used. 

The software prototype is architecture such that the use of point or line features can be 

controlled using a flag that could be set to true or false. At each one of these scenarios, 

the following metrics are evaluated: total number of views that have been successfully 

processed, average reprojection error, and spatial accuracy of the reconstructed scene. 

Identify salient planar regions: Two sets of experiments are designed to 

evaluate the performance of the proposed algorithm for this section. The first set includes 

identifying salient planar regions in a building façade. The scene is selected to be well-

textured and hence the capability to detect an abundant number of point and line features 

is expected. It also resembles the very common scenario that has been tested in most of 

the previous studies in the literature (i.e., a scene with three orthogonal vanishing 

directions). The geometry of the scene allows collecting visual data while there is no 

occlusion. On the other hand, the second set considers a residential roof structure with 

more complex geometry and several intersecting planes. The texture of the roof planes 

are such that reasonable amount of feature points can be detected while there also exist 

straight edges. In this case, a planar region can be partially occluded depending on the 

angle of view. These two environments are demonstrated in Figure 3.7.  

Figure 3.7: A building façade and a residential roof structure 
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The necessary input data for this section includes a sparse 3D point cloud, 3D line 

segments, and camera matrices at each view. For the building façade experiment, this 

data has been generated while doing the experiments related to the hybrid SfM approach. 

However for the residential roof structure, the data is generated while doing the 

experiments related to 3D reconstruction of roof structures (these experiments are 

introduced in the next section). Hence, all the constraints and control variables that are 

defined in those two sections apply here. 

At each experiment, the performance of the planar region detection method is 

evaluated and compared with (Wang, et al., 2013) which is the most state-of-the-art study 

in the literature. The performance metrics for the detection accuracy include true positive 

(TP), false positive (FP), and false negative (FN). TP represents the planar regions that 

are detected correctly; FP shows the non-planar regions that are detected as a planar 

region; and FN represents the planar regions that are not detected. 

Close-range video-based roof reconstruction: The goal here is to evaluate the 

overall hypothesis of this research and validate the entire framework. Four separate 

experiments are designed in this section ranging from very simple to complex scenarios. 

The first experiment is conducted on the roof model that has been already used in some 

of the previous experiments. The roof model is an ideal case for proof of concept because 

it provides a controlled, yet realistic environment that has most of the challenges that one 

may encounter in a real-life case. The second experiment includes one side of a 

residential roof structure with a simple rectangular roof plane. The simple geometry in 

this case is used to show the feasibility of generating a measureable 3D wire-diagram for 

every roof plane. The roof plane can be videotaped from the ground with 100% visibility 

(i.e., no occlusion). Moreover, the practical constraints in data collection and processing 

are those that will be encountered in a real jobsite. The two other experiments include the 

roof structure of two residential buildings with more complex geometry and several 
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intersecting planes; they represent real-life scenarios for using the proposed framework. 

Again, the videos are captured from the ground. However in this case, a roof plane can be 

partially occluded by other planes depending on the angle of view. Sample views of these 

environments are shown in Figure 3.8.  

The same stereo camera system and calibration information that were used in the 

experiments related to the hybrid bundle adjustment are used. The experiments are 

repeated for two different camera resolutions (5 and 3 megapixel) in order to evaluate the 

effect of resolution on the output accuracy. The average distance between the camera set 

and the roof structures is kept at roughly 20m during the data collection process. The 

camera motion is also smooth to create the minimum motion blur.  

 The metrics that are used in this evaluation are the following: completeness of the 

wire-diagram (whether all boundaries of a roof plane are reconstructed or not), Euclidean 

Figure 3.8: Four different environments to test the roof reconstruction framework 
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accuracy of the end-to-end dimensions of the edges (the absolute value of the difference 

between corresponding measurements in the 3D wire-diagrams and ground truth data is 

reported as the error), and the number of manual data that is needed to fix a missing edge. 

The mean and standard deviation of errors are finally used to calculate the 95 percentile 

error. 
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CHAPTER 4 

VALIDATION 

 

4.1. Multi-Step Stereo Camera Calibration 

Prior to perform the designed experiments for this section, a preliminary study 

was implemented to assess the amount of uncertainty that may exist in estimating 

different calibration parameters. The existing stereo camera set (two Flea2 cameras with 

a resolution of 2448×2048 pixels as well as two fixed focal length lenses with mmf 25  

and a baseline distance of cmb 30 ) was used. In this experiment, four different 

scenarios for D  (i.e., distance between the camera set and calibration patter) were used 

including mD 10 , mD 20 , mD 30 , and mD 3010 . As can be seen, in the first 

three cases, D  was kept constant at predefined values and in the last case, D  was 

varying from 10 to 30 meters. Once the video streams were collected, the camera 

calibration software was run 5 times for each case. The reason for multiple runs of the 

software for the same data was to study whether they could all result in the same 

calibration parameters or not. Table 4.1 illustrates the results of this experiment for the 

first and last cases (other experiments followed the same pattern and hence were not 

presented due to the limited space). It can be inferred from Table 4.1 that there is a 

significant variation for estimated intrinsic camera parameters (i.e., focal length, principal 

point, and distortion coefficients) even for experiments with similar D  values. This may 

happen because of the complex structure of the lens or slight changes in the zoom/focus 

while collecting data. However, this variation is almost negligible for estimated extrinsic 

parameters (i.e., rotation and translation). This may indicate that intrinsic camera 

parameters are somehow needed to be included in the optimization processes in the SfM 

pipeline so that the values with maximum likelihood could be achieved. 



78 

 

Table 4.1: Estimated camera calibration parameters in different experiments 

 
D = 10m D = 10-30m 

1 2 3 4 5 1 2 3 4 5 
L

ef
t 

C
am

er
a 

P
ar

am
et

er
s 

fx 5638 5620 5609 5680 5574 5563 5589 5542 5615 5601 

fy 5614 5604 5583 5707 5546 5592 5556 5539 5563 5641 

Cx 478 495 515 483 451 511 537 518 494 502 

Cy 421 435 471 449 406 383 723 405 394 463 

k1 -0.11 -0.08 -0.12 -0.07 -0.08 -0.12 -0.1 -0.09 -0.14 -0.08 

k2 -4.67 -3.72 -5.03 -5.14 -4.75 -7.63 -5.43 -5.89 -7.14 -6.54 

p1 -0.003 -0.003 -0.002 -0.004 -0.002 -0.004 -0.003 -0.004 -0.004 -0.002 

p2 -0.007 -0.005 -0.005 -0.006 -0.004 -0.008 -0.008 -0.005 -0.007 -0.008 

k3 -76 -64 -86 -67 -92 -83 -55 -68 -76 -59 

R
ig

h
t 

C
am

er
a 

P
ar

am
et

er
s 

fx 5589 5602 5574 5561 5469 5614 5659 5635 5587 5605 

fy 5588 5611 5569 5573 5504 5607 5640 5608 5572 5598 

Cx 498 479 462 505 481 540 564 503 485 528 

Cy 438 452 401 468 459 424 473 416 449 485 

k1 -0.07 -0.07 -0.06 -0.09 -0.06 -0.05 -0.07 -0.1 -0.05 -0.08 

k2 0.94 1.4 0.72 0.83 1.04 -2.7 -1.9 -2.12 -2.96 -2.54 

p1 0 0.01 0.02 0 0.15 -0.003 -0.001 0 -0.003 -0.002 

p2 -0.006 -0.008 -0.008 -0.007 -0.005 -0.008 -0.006 -0.005 -0.008 -0.01 

k3 -95 -104 -81 -92 -89 -107 -102 -98 -121 -115 

R
o

ta
ti

o
n

 R1 0.016 0.016 0.015 0.017 0.015 0.015 0.016 0.016 0.015 0.016 

R2 0 -0.001 -0.001 0.0005 0 0 -0.001 0 0.0002 0 

R3 0.0101 0.0105 0.0103 0.0101 0.0109 0.0104 0.0106 0.0105 0.0105 0.102 

T
ra

n
sl

at
io

n
 T1 -309 -307 -309 -308 -308 -310 -309 -307 -309 -308 

T2 1.6 2.1 1.7 1.5 1.9 1.9 1.7 1.6 1.6 1.5 

T3 -40 -43 -41 -41 -38 -44 -42 -45 -40 -43 
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The designed sets of experiments were then performed according to the specified 

details. The previously mentioned camera system and calibration board were used to 

capture the six sets of required data for calibration from the building with brick pattern 

facade. Using the developed automatic calibration software, 50 stereo frames were 

extracted in each case (i.e., mD 5 , mD 10 , mD 15 , mD 20 , and mD 25 ) and 

the calibration parameters were calculated. Then, another set of stereo video streams were 

captured from the façade while the distance between the camera system and the façade 

was changing in the range of mDm 255  . Figures 4.1, 4.2, and 4.3 demonstrate some 

of the intermediate results. 

For evaluating the first performance metric (i.e., spatial accuracy of the initial 

estimation for 3D coordinates of points with different range values), stereo frames 

corresponding to }25,20,15,10,5{ mD   were extracted from the façade video and 3D 

coordinates of feature points were calculated using the sets of estimated calibration 

parameters. Spatial distance between pairs of 3D feature points was then compared to the 

ground truth data. Table 4.2 illustrates the average error at each scenario (sample size of 

50). The results indicate that a more accurate initial estimation can be done for a point at 

a range of Z  using the calibration parameters that correspond to ZD  ; this supports the 

hypothesis in this research. 

 

Table 4.2: Average spatial distance error for different calibration scenarios 

Calibration 

Scenario 

Average spatial distance error (cm) 

mZ 5  mZ 10  mZ 15  mZ 20  mZ 25  

mD 5  ±2.6 ±4.8 ±9.8 ±17.7 ±23.8 

mD 10  ±2.9 ±4.3 ±8.5 ±15.9 ±20.2 

mD 15  ±3.5 ±5 ±6.3 ±14.5 ±19.6 

mD 20  ±4.2 ±6.1 ±9 ±11.3 ±18.4 

mD 25  ±5.1 ±7.5 ±12.7 ±15.2 ±15 

mDm 255   ±3.2 ±4.9 ±10.1 ±15.6 ±19.2 
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Figure 4.1: Video frames for calibration at D=10m, D=20m, and D=30m 

Figure 4.2: Automatically detected and matched calibration board corners 

Figure 4.3: Visualization of the extrinsic parameters 
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To evaluate the second performance metric (i.e., spatial accuracy of a dense 3D 

point cloud), two dense 3D point clouds of the façade were generated using all the frames 

in the façade video. The key-frame selection method proposed in (Rashidi, et al., 2013) 

was use to extract frames that have minimum motion blur and appropriate number of 

feature points while the camera motion between two consecutive key-frames is larger 

than a minimum value. The same thresholds that have been proposed in (Rashidi, et al., 

2013) were used for this purpose. In addition, the patch-based multi-view stereo software 

which is based on (Furukawa & Ponce, 2010) and available online, was used to generate 

the dense 3D reconstructions; the output of the proposed stereo reconstruction algorithm 

(i.e., camera location and projection matrices for each view and a sparse 3D point cloud) 

was used as the input data to this software. 

The results of the conventional camera calibration procedure were used to generate 

the first point cloud (Figure 4.4). The second one was generated using the calibration 

parameters acquired from the proposed procedure (Figure 4.5). 50 pairs of points were 

selected randomly at each case and the spatial distance was compared to the ground truth 

data. Total station surveying was used to acquire the ground truth data. The average error in 

the first point cloud was ±12.6cm while this average error was ±9.5cm in the second point 

cloud. This shows an average of 3.1cm (25%) improvement in the accuracy of results 

because of using the proposed multi-step stereo camera calibration procedure. The relative 

improved accuracy can also be visually seen by comparing the point clouds in Figures 4.4 

and 4.5. The second point cloud is sharper in planar areas. Again this supports the presented 

hypothesis in this research. It is necessary to mention that this accuracy may be further 

improved by modifying the multi-view geometry process which is out of the scope of this 

research. 
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Figure 4.4: Dense 3D point cloud using the conventional stereo camera calibration 

Figure 4.5: Dense 3D point cloud using the proposed multi-step stereo camera 

calibration 



83 

 

4.2. Improved Affine Invariant Line Descriptors 

Stereo video streams and photographs were captured from the four different 

environments introduced in the design of experiment section with different camera and 

lens configurations. Image/frame pairs were then extracted from the data such that they 

cover a wide range of changes such as rotation, scale, image blur, illumination, and 

viewpoint changes. Some of these samples are illustrated in Figure 4.6. Scale-space 

representations of the images were first generated and then the LSD method (Von Gioi, et 

al., 2010) was applied to detect line features at the local extrema. For each detected line 

segment, two multi-dimensional descriptor vectors were found using the original MSLD 

algorithm (Wang, et al., 2009) and the proposed improved version. Line segments were 

then matched by comparing those descriptors.  

Figure 4.6: Sample image pairs for rotation, scale, illumination, blur, and viewpoint 

changes 
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The results of this comparison are presented in Figure 4.7 according to two 

metrics: recall and precision. Recall is the ratio of correct matches to total number of lines 

that are visible in both views and precision is the ratio of correct matches to total number of 

matches.  

 As can be inferred from Figure 4.7, the improved MSLD performs better in terms 

of rotation, scale, and viewpoint changes. On the other hand, the performance of the 

original and improved MSLD algorithms is more or less the same in illumination and blur 

changes. Table 4.3 numerically demonstrates these comparisons by presenting the 

average recall and precision at each scenario. In general, the improved MSLD 

outperforms the original algorithm in most cases (+4% increase in recall and +5% 

increase in precision) which is due to the use of assigning dynamic pixel support regions 

and converting the regions to the canonical form. 

 

Table 4.3: Average recall and precision for original and improved MSLD 

Change 

Scenario 

Recall Precision 

Original Improved Original Improved 

Rotation 0.69 0.74 0.82 0.88 

Scale 0.57 0.62 0.79 0.84 

Illumination 0.72 0.74 0.89 0.90 

Blur 0.56 0.56 0.77 0.80 

Viewpoint 0.60 0.65 0.72 0.78 
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Figure 4.7: Recall and precision of the original and improved MSLD in different 

scenarios 
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4.3. Hybrid Structure from Motion 

This section presents the outcome of several experiments aiming to validate the 

proposed hybrid SfM algorithm. For a comprehensive evaluation, two environments with 

different characteristics were selected and stereo video streams were captured. The 

experiments were repeated for two different camera resolutions and the scenes were 

reconstructed three times using points, lines, and a combination of points and lines. The 

following paragraphs present the detailed analysis of these experiments. 

Roof model: A roof model that is covered with actual roofing materials was the 

subject in the first experiment. 72 stereo frames were extracted from the captured video 

data using the key-frame selection algorithm proposed in (Rashidi, et al., 2013). These 

frames had a resolution of 2448×2048 (5 megapixels). The same stereo frames were 

down-sampled using an image editing program to a resolution of 1900×1600 (3 

megapixels). These two sets of frames allow analyzing the effect of image resolution of 

the output. Once the input data was ready, the “line flag” in our hybrid SfM software 

prototype was turned off and the data was only processed using the point features. Figure 

4.8 illustrates a snapshot of the results for the 5 and 3 megapixel resolutions. Table 4.4 

also compares the results of the scenarios according to different performance metrics. As 

Figure 4.7 cont.: Recall and precision of the original and improved MSLD in 

different scenarios 
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can be seen, most of the reconstructed points in both scenarios belong to the background 

trees and the face of the model that is covered with plywood.  

Figure 4.8 (a): Point-based 3D reconstruction of the roof model (resolution = 3MP) 

Figure 4.8 (b): Point-based 3D reconstruction of the roof model (resolution = 5MP) 
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Table 4.4: Performance evaluation for point-based 3D reconstruction of the roof model 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total No. 

of points 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error 

(cm) 

2448×2048 25 69 6974 0.012 4.23 

1900×1600 19.5 57 5235 0.027 5.74 

 

In the next step, the “point flag” was turned off and the “line flag” was turned on. 

The same input data (i.e., 72 stereo video frames) was then used to achieve a line-based 

3D reconstruction. The results are illustrated in Figure 4.9 and a numerical comparison is 

presented in Table 4.5. None of the two reconstructions were completely successful in 

this case. The main reasons could be the following: a) at least 13 line triplets are needed 

to calculate a trifocal tensor while the same can be done with 7 point triplets; b) 

degeneracy for lines is far more severe than the degeneracy for points; c) lines provide 

less mathematical constraints on camera pose and hence the probability of failure is 

higher in this case; and d) two separate lines that are along each other can only provide 

the same mathematical constraints because the equation of infinite lines are used in the 

reconstruction process. 

 

 

 

 

 

 

 

 

 

   3 MP                                                                         5 MP 

Figure 4.9: Line-based 3D reconstruction of the roof model 
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Table 4.5: Performance evaluation for line-based 3D reconstruction of the roof model 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total No. 

of lines 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error 

(cm) 

2448×2048 25 33 94 4.18 13.7 

1900×1600 19.5 31 76 7.25 19.5 

 

Finally, the combination of point and line data was used to generate a sparse 3D 

point cloud and a 3D line set from the roof model. Figure 4.10 demonstrates the 

reconstruction outcome for the two resolutions and the numerical comparison is made in 

Table 4.6. As can be seen, the robustness of the algorithm has increased due to the 

simultaneous use of points and lines. Higher number views could be processed during the 

reconstruction phase which means more robustness in estimating the camera motion in 

the environment. The accuracy of the reconstruction is more or less the same as the 

accuracy of the point-based case. In comparison, the accuracy level for reconstructed 

lines is less than the accuracy of points. Another significant advantage of this 

reconstruction is the clear visual perception of the object that is due to the use of line in 

addition to points. 

 

Table 4.6: Performance evaluation for hybrid 3D reconstruction of the roof model 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total 

No. of 

points 

Total 

No. of 

lines 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error (cm) 

points lines points lines 

2448×2048 25 70 6851 126 0.013 0.59 4.26 7.4 

1900×1600 19.5 64 5347 98 0.029 0.84 5.81 9.1 
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Figure 4.10 (b): Hybrid 3D reconstruction of the roof model (resolution = 5MP) 

Figure 4.10 (a): Hybrid 3D reconstruction of the roof model (resolution = 3MP) 
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Building façade: The subject of the next experiment is a building façade with 

brick pattern. The goal here is to test the algorithm on a larger scale object and analyze 

the outcome. Same as the previous case, all experiments were repeated for two different 

image resolutions. 427 stereo frames were extracted and processed to produce sparse 3D 

point clouds and line sets. The resolution of the original video streams was 5 megapixel 

and the same dataset was also down-sampled to 3 megapixel in order to be able to study 

the resolution effect. 

Initially, the point-based 3D reconstruction experiment was performed. Due to the 

visual characteristics of the façade surfaces, many distinctive point features could be 

detected, matched, and reconstructed. This is different than the case presented for the roof 

model, as no feature point could be detected on sheet metal area. The very high number 

of feature points in the façade case allowed a more accurate reconstruction which can be 

verified both visually and numerically. It needs to be reminded that most of the 

reconstructed points in the roof model case were from the background trees and the parts 

with plywood texture. The output of the point-based reconstruction is illustrated in Figure 

4.11 and the numerical comparisons are presented in Table 4.7.  

 

Table 4.7: Performance evaluation for point-based 3D reconstruction of the façade 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total No. 

of points 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error 

(cm) 

2448×2048 25 418 13002 0.009 3.65 

1900×1600 19.5 407 11809 0.009 4.27 
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Figure 4.11 (a): Point-based 3D reconstruction of the façade (resolution = 3MP) 

Figure 4.11 (b): Point-based 3D reconstruction of the façade (resolution = 5MP) 
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A line-based 3D reconstruction was performed on the dataset from the façade in 

the next step. Compared to the roof model case, the algorithm produced a better 

reconstruction mainly due to the prevalence of point features which helped in the line 

matching process. Figure 4.12 shows the results for 5 and 3 megapixel resolutions. Table 

4.8 provides the numerical analysis of the results. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8: Performance evaluation for line-based 3D reconstruction of the façade 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total No. 

of lines 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error 

(cm) 

2448×2048 25 338 164 3.85 9.2 

1900×1600 19.5 329 153 4.11 11.3 

 

 

 

 

 

   3 MP                                                                         5 MP 

Figure 4.12: Line-based 3D reconstruction of the façade 
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The last step was to perform a hybrid 3D reconstruction of the façade using the 

complete package. Figure 4.13 and Table 4.9 demonstrate the reconstruction results and 

analysis. The analyses from the two experiments (i.e., roof model and façade) indicate 

that the hybrid reconstruction is a more robust approach that is capable of producing 

more accurate representation of the underlying geometry. Line degeneracy was also an 

important factor in the reconstruction. Lines in 3D space lying on the epipolar plane 

could not be reconstructed using the two views because they intersect the camera 

baseline. Therefore, in case of estimating the measurement error, lines that are close to 

intersecting the baseline can be poorly localized in the reconstruction. In general, the 

degeneracy for lines is far more severe than points. There is three-parameter family of 

lines which cannot be recovered: one parameter for the position of the baseline, and the 

other two for the start of lines through each point on the baseline (Hartley & Zisserman, 

2004). 

 

Table 4.9: Performance evaluation for hybrid 3D reconstruction of the façade 

Resolution 

Focal 

Length 

(mm) 

No. of 

reconstructed 

views 

Total 

No. of 

points 

Total 

No. of 

lines 

Avg. 

reprojection 

error (pixel) 

Avg. spatial 

distance error (cm) 

points lines points lines 

2448×2048 25 427 13509 361 0.012 1.07 4.74 6.7 

1900×1600 19.5 421 12082 322 0.014 1.35 5.03 7.5 
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Figure 4.13 (a): Hybrid 3D reconstruction of the façade (resolution = 3MP) 

Figure 4.13 (b): Hybrid 3D reconstruction of the façade (resolution = 5MP) 
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An issue that can be noticed in the results of the hybrid 3D reconstruction of the 

façade is the existence of line segments that have significant amount of error in 3D 

location and/or end-points. Two reasons could be listed for such errors. First, the 

reprojection error for a line segment in the hybrid bundle adjustment process is calculated 

by using the homogeneous coordinates of projected lines. In such a scenario, the value of 

the third coordinate typically has significant scale difference with the first and second 

coordinates. Such a scale difference can introduce errors in the existence of noise. 

Second, the hybrid bundle adjustment works with Plucker coordinates of infinite lines. 

Once the final estimations for these coordinates are acquired, two 3D points that 

represent the end-points of the line have to be found. A system of linear equations is 

constructed for that purpose. The solution for this system could be erroneous because of 

the noise in the input data. 

4.4. Identify Salient Planar Regions 

This section presents the results of the experiments on two environments that 

include planar surfaces: the building façade with brick pattern and a residential roof 

structure. At each experiment, the performance of the proposed method was evaluated in 

comparison with the algorithm presented in (Wang, et al., 2013) as the benchmark. Table 

4.10 demonstrates the results of this comparison. In this table, TP represents the planar 

regions that are detected correctly; FP shows the non-planar regions that are detected as a 

planar region; and FN represents the planar regions that are not detected. 

 

Table 4.10: Performance evaluation of the proposed method to identify planar regions 

Method 
Façade Roof Structure 

TP FP FN TP FP FN 

Proposed 

Method 
6 0 1 14 1 1 

Wang et 

al. (2013) 
6 1 1 12 0 3 
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As indicated in Table 4.10, the first experiments led to the same results for both 

methods in terms of TP and FN. The main reason is that sufficient number of feature 

points could be detected in the local neighborhood of each line segment which is the 

primary assumption in the benchmark method; hence the perfoemance of both methods is 

at the highest. Figure 4.14 indicates two line segments and the neighborhood area around 

them that is calculated based on a normal distribution function; it is assumed that the 

feature points in those areas are coplanar with their corresponding line segments. 

Results from the second experiment further highlight the performance 

improvement because of using the proposed method. The roof structure scene displays 

characteristics that do not always satisfy the requirements of the benchmark method; 

accordingly, the method presented in (Wang, et al., 2013) fails to detect two planar 

regions compared to the proposed method. 

 

Figure 4.14: Examples of line segments and their neighborhood calculated from a 

normal distribution function 
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4.5. Close-Range Video-Based Roof Reconstruction 

This section presents the results of four experiments aiming to evaluate the 

performance of the proposed videogrammetric roof reconstruction framework. The 

framework is a collection of all the previously evaluated steps (i.e., section 4.1 to 4.4) in 

addition to some other steps that have been extensively evaluated in the literature. It is 

designed specifically to take advantage of the knowledge about characteristics of a roof 

structure. The framework holds the promise to produce a measureable 3D wire-diagram 

for each plane in a roofing structure such that no/minimum manual input is required. The 

experiments begin with very simple scenarios and then extended to complex roof 

structures with several intersecting planes. The previously mentioned calibrated stereo 

camera setup (i.e., two video cameras with a resolution of 2448×2048 pixels + two fixed 

focal length lenses with mmf 25  + an extendible pole) was used to collect the video 

streams in all the experiments. The videos were also pre-processed using the algorithm 

presented in (Rashidi, et al., 2013) in order to extract key-frames with minimum motion 

blur and sufficient visual data. These experiments are presented below. 

As suggested in (Scholze, et al., 2002) and in all four experiments, roof planes 

were modeled as planar, convex polygonal patches. It is supposed that straight line 

segments connect the corner points at each plane. Moreover, only the simplest polygons 

(triangular and quadrangular) were considered and the composition of these two 

primitives was used to describe more complex planes. According to the same study, the 

angles between adjacent roof patch borders were modeled using 15
0
 angle steps. 

Therefore, the finite set of possible angles is 

 

 00000000000 165,150,135,120,105,90,75,60,45,30,15  
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Roof model: The roof model provides a controlled, yet realistic environment in 

order to prove the concept of the videogrammetric roof reconstruction. No occlusion 

involved in this experiment and most of the practical constraints that are available in a 

construction jobsite could be avoided. On the other hand, the geometry is very simple and 

only three intersecting planes need to be measured. The experiment was performed on the 

same video data that was used in section 4.3. In this experiment, the pairs of line 

segments that are nearly coplanar were located by a distance threshold of 5cm and an 

angle threshold of 5
0
. The three major planes on the object were successfully detected 

and the boundaries of the planes were determined by intersecting the reconstructed lines 

on each plane and finding the convex hull from the data. The 95 percentile error in 

measuring the end-to-end dimensions of the roof plane boundaries was also calculated 

compared to the ground truth data. Figure 4.15 demonstrates the results and the numerical 

analysis is presented in Table 4.11.  

 

Table 4.11: Performance evaluation for 3D reconstruction of the roof model 

Resolution 

Focal 

Length 

(mm) 

No. of 

missing edges 

No. of generated 

wire-diagrams 

out of 3 

95 percentile 

measurement 

error (cm) 

Manual 

input 

2448×2048 25 0 3 2.83 NONE 

1900×1600 19.5 0 3 3.17 NONE 

Figure 4.15: Measureable 3D wire-diagrams for planes in the roof model 



100 

 

Simple residential roof: After evaluating the framework in a controlled setting, 

this experiment tests the package in a more realistic environment. The goal in this 

experiment is to keep the geometry as simple as possible but add practical constraints that 

one may encounter when using the framework such as cluttered environment in the 

background, lack of accessibility, limited visibility, and fragmented straight line 

segments. The experiment also tests the applicability of the framework for real-size roof 

structures. The target roof belongs to a one-story residential building and has a very 

simple geometry. The underlying geometry includes a rectangular plane and two slopped 

planes that are inside the main plane. 35 stereo video frames were extracted from the 

recorded data. In this experiment, a distance threshold of 5cm and an angle threshold of 

5
0
 were used to find line pairs that are nearly coplanar. The major planes in the scene 

were successfully detected and the 95 percentile measurement error was calculated. 

Figure 4.16 and Table 4.12 summarize the findings in this experiment. 

 

Table 4.12: Performance evaluation for 3D reconstruction of the simple residential roof 

Resolution 

Focal 

Length 

(mm) 

No. of 

missing edges 

No. of generated 

wire-diagrams 

out of 3 

95 percentile 

measurement 

error (cm) 

Manual 

input 

2448×2048 25 0 3 3.27 NONE 

1900×1600 19.5 0 3 4.52 NONE 

Figure 4.16: Measureable 3D wire-diagrams for planes in the simple residential roof 



101 

 

Complex roof structures: This section presents two more experiments on roof 

structures with a more complex geometry and several intersecting planes. They represent 

real-life scenarios for using the proposed framework and impose all possible practical 

constraints; these include large-scale environment, partial occlusion of roof planes due to 

the angle of view, perspective distortion of the views because of wide baselines, 

difficulties in videotaping the structure from the ground, and potential moving objects in 

the background. 

The first case is a roof structure that is located on top of a two-story residential 

building that has a façade with brick pattern. Although the texture of the roof covering 

material is such that enough number of feature points could be detected to run the 

package, the façade texture was also very rich in terms of the existence of feature points. 

This allowed robust estimation of the camera motion in the environment. The proposed 

framework could successfully generate a sparse 3D point cloud and a 3D line set. In 

detecting the roof planes, the algorithm failed to detect one of the planes and also a 

surface was incorrectly labeled as a roof plane; however, the rest of the planes were 

identified correctly. Therefore, two manual inputs were needed to correct the mistakes of 

the algorithm. Once the wire-diagrams were generated, the end-to-end dimensions of the 

planes were compared with the ground truth data that was collected using total station 

surveying. In general, this experiment supported the research hypothesis and showed that 

the videogrammetric roof reconstruction framework is capable of producing measureable 

3D wire-diagrams for roof planes with no/minimum manual input. Several intermediate 

results are demonstrated in Figures 4.17-4.23 and Table 4.13 shows the numerical 

analysis. 
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Table 4.13: Performance evaluation for 3D reconstruction of the first complex roof 

Resolution 

Focal 

Length 

(mm) 

No. of 

missing edges 

No. of generated 

wire-diagrams 

out of 14 

95 percentile 

measurement 

error (cm) 

Manual 

input 

2448×2048 25 0 14 4.79 TWO 

1900×1600 19.5 1 13 6.38 FIVE 

 

Figure 4.17: Sample results for collinear line merging in reconstructing the first 

complex roof (first column: true positive (TP); second column: false positive (FP); and 

third column: false negative (FN)) 

Figure 4.18: Sparse 3D point cloud generated for the first complex roof (some 

redundant parts of the point cloud have been deleted manually for a better 

visualization) 
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Figure 4.19: 3D line set generated for the first complex roof (redundant parts have 

been deleted manually for a better visualization) 

Figure 4.20: Hypotheses for coplanar line segments. Line with the same color present 

a plane hypothesis. 
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Figure 4.21: Extracted roof planes BEFORE imposing the knowledge about the 

geometry of a roof structure and manual inputs 

Figure 4.22: Extracted roof planes AFTER imposing the knowledge about the 

geometry of a roof structure and manual inputs 
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The second case is another residential roof structure with a complex geometry that 

includes a total of 12 planes. The algorithm could successfully identify all the existing 

roof planes but it also incorrectly marked two areas in the background trees as planar 

faces. Two manual inputs were therefore needed to remove the false positives. On the 

other hand, there was a missing edge on one of the trapezoidal faces which needed to be 

manually added. Using the modified data, a 3D wire-diagram was generated for each of 

the roof planes and the end-to-end measurements were extracted. As Table 4.14 indicates, 

the package demonstrated a nearly similar behavior as the previous experiment. The 

generated 3D wire-diagrams and measurements are shown in Figures 4.24 and 4.25. 

 

Table 4.14: Performance evaluation for 3D reconstruction of the second complex roof 

Resolution 

Focal 

Length 

(mm) 

No. of 

missing edges 

No. of generated 

wire-diagrams 

out of 12 

95 percentile 

measurement 

error (cm) 

Manual 

input 

2448×2048 25 1 11 4.93 THREE 

1900×1600 19.5 3 11 7.12 SEVEN 

Figure 4.23: Extracted measurements for the first complex roof. The numbers and 

lines have been printed manually on an image from the roof structure. 
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Figure 4.24: Extracted roof planes for the second complex roof. Redundant data has 

been deleted manually for a better visualization. 

Figure 4.25: Extracted measurements for the second complex roof. The numbers and 

lines have been printed manually on an image from the roof structure. 
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CHAPTER 5 

CONCLUSIONAND FUTURE WORK 

 

5.1. Conclusion 

A roofing contractor typically needs to acquire dimensions of a roof structure 

several times over the course of its build because a structure is never built to the exact 

drawing dimensions. Current surveying practices in the roofing industry are labor 

intensive, time consuming, and/or unsafe. Tape measuring is still the standard practice in 

the industry despite its apparent limitations. A videogrammetric framework was 

presented in this research as an alternative method for roof surveying. Compared to the 

existing methods, it is less expensive, more automated, safer, and simpler to use. When 

using this method, a roofing contractor collects stereo video streams of a target roof. A 

3D wire-diagram is then generated for every roof plane and necessary measurements are 

extracted. 

Four different experiments were used to validate the entire framework. They all 

supported the research hypothesis presented in this study. They showed the capability of 

the framework to produce a sparse 3D point cloud and a 3D line set for a typical roof 

structure that consists of several intersecting planes, provided that the structure can be 

properly videotaped from the ground using an extendible pole. The reconstruction of the 

scene can then be used to identify salient planar surfaces on the roof and locate the 

boundary lines. Although there may exist a few number of missing edges/planes or 

falsely identified surfaces in the results, they could be corrected via the minimum amount 

of manual input (i.e., selecting a surface and deleting it or connecting the corner points of 

an identified plane). The amount of manual input, if any, is tremendously less than the 

inputs that are required for the existing methods. Another advantage of the method is the 
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level of measurement accuracy (i.e., errors less than ±5cm) which is significantly higher 

than the accuracy that can be achieved by exiting roof surveying methods that use aerial 

images (i.e., errors in the order of ±15cm and higher). Therefore, the proposed method is 

a viable replacement for aerial measurements that is extensively being used in the 

industry for roof area estimation, damage assessment, appraisal, and insurance claims. 

However, the current version of the framework cannot satisfy the level of accuracy that is 

needed for special tasks such as digital fabrication of sheet metal roof panels which 

requires errors less than 0.5in. or 0.75in; for such a purpose, total station surveying is still 

the best choice. 

These experiments also revealed a very important point about the proper way that 

a roof structure should be videotaped if a certain straight line needs to be included in the 

reconstruction. One of the very common cases that results in line degeneracy and hence 

the failure in reconstruction of the line is the following: if the camera motion in the 

environment is more or less parallel to the target physical line, the configuration will be 

degenerate. It is therefore recommended to collect the video data such that the camera 

motion covers at least two vertical directions; this results in a higher probability for a 

successful reconstruction. Another solution would be tilting the stereo camera setup for 

90 degrees and collecting another round of data by following approximately the same 

camera path that is used in the first round. 

In addition to evaluating the entire framework, a number of intermediate steps 

were also validated as separate entities. These include multi-step stereo camera 

calibration procedure, improved descriptor vectors for line segments, hybrid SfM, and 

efficient recognition of salient planar regions in a scene. 

A multi-step stereo camera calibration procedure was proposed aiming to enhance 

the Euclidean accuracy of 3D reconstruction in far-range scenarios. It recommended 

using a set of discrete values for representing the distance between the sensor system and 
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the calibration board ( D ). For each D , a set of stereo video streams were collected while 

the distance between the camera and the board was fixed to D . Conventional stereo 

camera calibration algorithms were then used to calculate calibration parameters for the 

given D . Repeating this process for all the values resulted in a multiple set of parameters 

each corresponding to a specific D . The sets of calibration parameters were then used in 

the SfM process with the following assumption: for each 3D point, the set of calibration 

parameters that have the closest D  value to the point’s Z  coordinate should be used. 

The experimental results demonstrated that this procedure is capable of reducing the 

spatial measurement errors by 25%. 

Descriptor vectors that are constructed for each line segment based on the MSLD 

algorithm were also improved by incorporating a dynamic support region and canonical 

form representation. The support region was determined based on the zero-crossings of 

the Laplacian function; the region is therefore scale-invariant and insensitive to a wide 

range of viewpoint transformations. The canonical representation was also used to 

compensate for the image distortion. The improved algorithm outperformed the original 

one in terms of rotation, scale, and viewpoint changes. However, its performance 

remained more or less the same for illumination and blur changes. In average, the 

improved algorithm resulted in 4% increase in recall and 5% increase in precision. 

A mathematical formulation was defined for a hybrid SfM approach that allows 

camera motion estimation and 3D structure inference from a combination of point and 

line features. The extensive set of experiments indicated that the average reprojection 

error and average spatial distance error for point features in a hybrid reconstruction is 

more or less the same as the case of a point-based 3D reconstruction. However, these 

metrics are significantly higher for line features; this means that a hybrid approach is 

more robust than a line-based 3D reconstruction. On the other hand, the hybrid approach 
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generates 3D information with more visual clues about the underlying geometry (points + 

edges). 

Motivated by the fact that man-made environments are often composed of 

piecewise planar or nearly planar primitives, a multi-step method was presented for 

identifying salient planar regions in built environments. The method is based on 

hypothesizing candidate planes from a cloud of reconstructed 3D points and line 

segments. The first set of candidates were found using a combination of points and lines. 

The information that had not been used in the first step was further processed to find 

candidate planes from a pair of line segments or a set of three points. An image intensity 

similarity function was finally used to verify each plane hypothesis; those that do not 

satisfy the minimum requirements were discarded and the rest was searched for nearly 

identical plane equations to be merged. The performance of the method was evaluated in 

comparison with the most state-of-the-art algorithm in the literature as the benchmark. 

The results indicated that the proposed method outperforms the benchmark method both 

in terms of the plane detection accuracy and computational efficiency. 

5.2. Future Work 

While performing the research, several additional questions were raised that could 

be the subject of future research efforts. Moreover, a number of open problems exist that 

need to be solved. As a result, the following directions and ideas are presented. 

The proposed multi-step stereo camera calibration procedure was based upon the 

observation that a constant distance between the camera system and the calibration board 

can decrease the uncertainty range for estimations. This point was not proven 

mathematically and only its correctness was supported through several experiments. A 

comprehensive mathematical analysis to study the relationship between the distance and 

uncertainty range could be very helpful for understanding the nature of problem. It can 

also enable quantifying the impact of each parameter on the final outcome. 
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In the field of aerial photogrammetry, a very sophisticated calibration process is 

performed for airborne mapping cameras. Such a process may be applicable in close-

range 3D reconstruction of large-scale environments, but it has not been studied yet. A 

study that investigates the performance improvement/loss and its trade-off with the extra 

computational requirements could be invaluable. 

In the recent years, drones have been used in numerous applications to collect 

visual data. Compared to planes, drones are more flexible and less expensive. Moreover, 

they can fly in much lower heights and are capable of collecting data from close 

distances. Since the presented methods in this research are generic and hence applicable 

to the data collected via drones or Unmanned Aerial Vehicles (UAVs), one may study the 

proposed framework if such data is used as input. However, it needs to be considered that 

the use cases for drones and UAVs are restricted by several regulations. 

As explained in previous sections, measurements with errors less than ±5cm could 

be achieved in this research. The followings are some recommendations that could be 

considered in future research efforts to scale down the amount of error. First, algorithms 

that use a series of measurements observed over time and produce estimates of unknown 

variables (e.g., Kalman Filter or Extended Kalman Filter) can be used to build a model 

for the state of the system and maximize the a posteriori probability of those previous 

measurements. These algorithms may be used for camera motion estimation or 3D 

coordinates of visual features. Second, additional sensor types such as GPS or INS could 

be fused into the sensor system in order to provide extra data for the current location, 

relative movement, etc. Those extra data could prevent the optimization from local 

optima and increase the robustness of the framework. Moreover, they can be used as 

filters to remove potential mismatches in corresponding features. Third, probabilistic 

approaches that estimate the geometry with the most likelihood can be used. The 

integration of these algorithms with the existing BIM models (as a source for estimating 
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the initial geometry) could potentially increase the overall performance. Fourth, the use 

of a more advanced hardware is the last solution that can increase the measurement 

accuracy in the cost of higher cost or computational requirements. This could mean: 

cameras with higher resolution, less motion blur, higher signal to noise ratio, and/or 

integrated sensors such as GPS; rectilinear lenses capable of keeping lines that appear 

straight in the real world straight on the image sensor. 
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