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SUMMARY 

 

The interactions between the immune and nervous systems play an important role 

in immune and inflammatory conditions.  Substance P (SP), the unidecapeptide 

RPKPQQFFGLM-NH2, is known to upregulate the production of pro-inflammatory 

cytokines such as tumor necrosis factor (TNF)-α.  We report here that 

5-(Acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me) and 

4-phenyl-3-butenoic acid (PBA), two anti-inflammatory compounds developed in our 

laboratory, reduce SP-stimulated TNF-α expression in RAW 264.7 macrophages.  We 

also show that AOPHA-Me and PBA both inhibit SP-stimulated phosphorylation of JNK 

and p38 MAPK.  Furthermore, molecular modeling studies indicate that both 

AOPHA-Me and PBA dock at the ATP binding site of apoptosis 

signal-regulating kinase 1 (ASK1) with predicted docking energies of -7.0 kcal/mol and 

-5.9 kcal/mol, respectively; this binding overlaps with that of staurosporine, a known 

inhibitor of ASK1.  Taken together, these findings support the conclusion that 

AOPHA-Me and PBA inhibition of TNF-α expression in SP-stimulated RAW 264.7 

macrophages is a consequence of the inhibition JNK and p38 MAPK phosphorylation.  

We have previously shown that AOPHA-Me and PBA inhibit the amidative bioactivation 

of SP, which also would be expected to decrease formation of pro-inflammatory 

cytokines.  It is conceivable that this dual action of inhibiting amidation and MAPK 

phosphorylation may be of some advantage in enhancing the anti-inflammatory activity 

of a therapeutic molecule.          

 xv



 xvi

We also encapsulated AOPHA-Me separately in polyketal and 

poly(lactic-co-glycolic acid) microparticles.  The in-vitro release profiles of AOPHA-Me 

from these particles were characterized.  We have also shown that AOPHA-Me, when 

encapsulated in PCADK microparticles, is an effective treatment for edema induced by 

adjuvant arthritis in rats.     

In separate work, it was determined that 

myo-inositol-1,2,3,4,5,6-hexakisphosphate is an inhibitor to early-stage Loblolly pine 

somatic embryo growth.  In addition, it was determined that 

muco-inositol-1,2,3,4,5,6-hexakisphosphate is not an inhibitor to early-stage Loblolly 

pine somatic embryo growth.  These experiments demonstrate the stereochemical 

dependence of myo-inositol-1,2,3,4,5,6-hexakisphosphates inhibitory activity. 

 



 

PART 1: EVALUATION OF NOVEL ANTI-INFLAMMATORY 

COMPOUNDS IN CELL CULTURE AND EXPERIMENTAL 

ARTHRITIS 

1 



CHAPTER 1 

INTRODUCTION 

 

 General Aspects of Inflammation 

 Inflammation is an essential function of a healthy organism’s immune system.  

During the inflammatory response the immune system becomes activated through toxic 

agents, injury or infection.  By a complicated series of events, the pathogen and injured 

tissue is destroyed, and the immune system returns to its normal state (Serhan, Chiang et 

al. 2008).   

 The initial series of inflammatory events following invasion by a pathogen is 

depicted in Figure 1.  Platelets begin to close the wound while mast cells release 

vasodilators which promote the recruitment of circulating neutrophils from the blood 

stream.  Recognition of the pathogen by neutrophils and macrophages stimulates them to 

release cytokine signaling molecules which both promote the inflammatory response and 

signal for tissue repair.  Neutrophils and macrophages also destroy pathogens by 

phagocytosis.  Inflammation is associated with a set of symptoms whereby an affected 

area of the body becomes warm, red, swollen and painful.  Although primarily beneficial, 

inflammation can become a life threatening condition and chronic inflammatory diseases 

can increase the severity of other diseases such as cancer (Shacter and Weitzman 2002).   
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Figure 1.  The initial responses of the immune system to invading pathogens as illustrated 

by http://www.uic.edu/classes/bios/bios100/lecturesf04am/lect23.htm. 
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Acute Inflammation 

 Acute inflammation is the temporary rapid response of the immune system to a 

stimulating agent, usually a pathogen.  It is characterized by an increased presence of 

leukocytes (mainly macrophages and neutrophils), fluid, and plasma proteins at the site of 

stimulation (Serhan, Chiang et al. 2008).  The movement of fluid, cells and proteins is 

facilitated by vasodilatation which is triggered by signaling molecules such as histamine 

and nitric oxide (Greaves and Sabroe 1996).  Vascular permeability, allowing circulating 

cells to reach the site of stimulation, is stimulated by many signaling molecules including 

histamine and cytokines (Greaves and Sabroe 1996).  Elimination of invading pathogens 

is achieved by phagocytosis and release of digestive enzymes and reactive oxygen 

species by leukocytes, such as macrophages and neutrophils (Serhan, Chiang et al. 2008).  

Digestive enzymes and reactive oxygen species are short-lived and their release only 

continues as long as the stimulation continues (Serhan, Chiang et al. 2008).   

 Resolution of acute inflammation occurs when the invading pathogen is 

eliminated, thereby removing stimulation.  In addition the endogenous production of 

anti-inflammatory signaling molecules such as anti-inflammatory lipoxins, cytokines 

(IL-10), and growth factors (TGF-β) also contribute to the return to a non-inflammatory 

state (Serhan, Chiang et al. 2008).  Resolution results in a return to normal vascular flow 

and permeability, termination of leukocyte migration, apoptosis of migrated neutrophils 

and removal of necrotic debris, accumulated fluid, and proteins (Serhan, Chiang et al. 

2008). 
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Chronic Inflammation 

 When the inflammatory response persists for months or even years it becomes 

chronic.  This is often either because an antigen cannot be cleared from the organism in a 

short period of time, such as in cancer, or from an improperly functioning immune 

system.  Chronic inflammation is characterized by ongoing inflammation, tissue 

destruction and tissue repair (Buckley, Pilling et al. 2001).    

Healthy normal tissue can be replaced by fibrous material during chronic 

inflammation.  This occurs when healthy tissue is destroyed by the immune response.  

Growth factors and other stimulators for angiogenesis and fibroblasts are released 

resulting in scarring (Leask, Holmes et al. 2002; Auerbach, Lewis et al. 2003).   

Lymphocytes are involved in a prolonged inflammatory state and they have a 

complex interaction with macrophages wherein both cell types activate each other 

(Macatonia, Hsieh et al. 1993).  Antigen presenting cells, such as macrophages, display 

antigens on their surface after phagocytosis of foreign bodies.  Macrophages produce and 

release IL-12 after antigen display thereby activating naïve T lymphocytes (Hsieh, 

Macatonia et al. 1993).  Activated T lymphocytes activate macrophages by binding an 

antigen-displaying macrophage and releasing interferon gamma (Macatonia, Hsieh et al. 

1993).  Activated macrophages in turn release additional cytokines, which further 

activate T lymphocytes (Fearon and Locksley 1996). 

Activated T helper lymphocytes induce antibody production by activating B 

lymphocytes which then produce antibodies.  Antibodies then mark foreign bodies for 

phagocytosis.  They also interfere with a bound pathogen’s ability to function.   
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Inflammatory Diseases and Treatment 

Inflammatory diseases are serious conditions in humans which often lead to a 

diminished quality of life and mortality.  Among the most common and disabling 

diseases that are associated with chronic inflammation are atherosclerosis, tuberculosis, 

chronic lung diseases, and rheumatoid arthritis.  Rheumatoid arthritis is responsible for 

affecting the lives of approximately 46 million adults in the United States (Cheng, 

Imperatore et al. 2012).  The two most common classes of pharmaceuticals used to treat 

rheumatoid arthritis are non-steroidal anti-inflammatory drugs (NSAIDs) and 

disease-modifying antirheumatic drugs (DMARDs).  Both classes of drugs are associated 

with sometimes fatal side effects.  Therefore, there is a great need to develop new 

anti-inflammatory treatments.   

NSAIDs, when taken chronically, are known to cause gastrointestinal and 

cardiovascular toxicity.  The mortality rate in the United States from chronic use of 

NSAIDs is greater than the individual number of deaths resulting from multiple 

myeloma, asthma, cervical cancer, or Hodgkin’s disease (Singh and Triadafilopoulos 

1999).  NSAIDs selective for COX-2 do not have the associated gastrointestinal toxicity 

that non-selective NSAIDs exhibit.  However, due to their cardiovascular toxicity, the 

selective COX-2 inhibitors Vioxx and Bextra were removed from the US drug market.  

The FDA has issued a black box warning regarding the increased heart attack and stroke 

risk associated with the selective COX-2 inhibitors that remain on the market. 

DMARDs are a diverse set of drugs that differ from NSAIDs in that they have the 

ability to modify the long-term progression of the disease.  There are two main types of 

DMARDs: small molecules and biologicals.  DMARDs are now the preferred treatment 
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for rheumatoid arthritis over the use of NSAIDs.  Among the small molecule DMARDs, 

methotrexate, is the most widely used.  Originally designed as a chemotherapy drug 

which inhibits the synthesis of folate, methotrexate was found to be effective in treatment 

of rheumatoid arthritis at lower doses.  Methotrexate suppresses T-cell activation and 

adhesion molecule upregulation, and these effects are thought to explain its 

anti-inflammatory activity (Johnston, Gudjonsson et al. 2005).   

Biological DMARDs are anti-inflammatory proteins made through genetic 

engineering that are synthesized by cells and harvested.  For the treatment of rheumatoid 

arthritis, the most commonly prescribed class of biological agents are inhibitors of tumor 

necrosis factor alpha (TNF-α), a potent endogenous pro-inflammatory signaling 

molecule.  There are two types of biological TNF-α inhibitor DMARDs.  One type is 

composed of a monoclonal antibody against TNF-α and the other is composed of a 

circulating TNF-α receptor fusion protein.  These drugs must be injected and are also 

associated with patients having severe susceptibility to infection, especially tuberculosis 

(Dixon, Hyrich et al. 2010).  In addition, DMARDs are associated with a severe set of 

side effects which include hepatotoxicity, blood dyscrasias and interstitial lung disease 

(By, Scott et al. 2010). 

 

Substance P 

 Substance P (SP), the unidecapeptide RPKPQQFFGLM-NH2, is stored in nerve 

terminals and is a member of the tachykinin family of peptides, see Figure 2 (O'Connor, 

O'Connell et al. 2004).   
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Figure 2.  Structure of substance P. 

 

Tachykinins are a group of structurally related peptide hormones found in invertebrates, 

fish, reptiles, amphibians, birds and mammals.  Although once thought to be found 

exclusively in the nervous system, tachykinins and their receptors have now been 

reported in many cell types, such as human endothelial cells, human epithelial cells, and 

several human, mouse and rat immune cells (Pennefather, Lecci et al. 2004).  The most 

studied mammalian tachykinins are SP, neurokinin A (NKA), and substance K (NKK).  

These peptides share the common C-terminal amino acid sequence Phe-X-Gly-Leu-Met-

NH2  (Chang, Leeman et al. 1971; Kangawa, Minamino et al. 1983; Nawa, Kotani et al. 

1984; Tatemoto, Lundberg et al. 1985).  However, the recently-discovered endokinin 
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tachykinins possess the C-terminal amino acid sequence of Phe-X-Gly-Leu-Leu-NH2 

(Zhang, Lu et al. 2000; Page, Bell et al. 2003). 

Tachykinins transmit signals by binding to the neurokinin (NK) family of 

G protein-coupled cell surface receptors denoted NK-1R, NK-2R, and NK-3R.  These 

NK receptors are characterized as possessing seven transmembrane helical domains, an 

intracellular C-terminal loop and an extracellular N-terminal loop.  In mammals, SP is 

encoded by the preprotachykinin I gene which, through alternative splicing, also encodes 

NKA, NKK and the N-terminally extended forms of NKA (Nawa, Kotani et al. 1984; 

Carter and Krause 1990).   

SP is released upon injury and mediates a number of functions relating to the 

inflammatory response.  SP activity is relayed via binding to one of the three neurokinin 

receptors, with a preference for NK-1R.  SP upregulates the production of nitric oxide, 

thereby increasing vasodilatation.  SP also activates immune cells to produce 

pro-inflammatory cytokines such as TNF-α.  Finally, SP also serves as a neurotransmitter 

for pain.       

 

Amidation 

SP requires an essential post-translational amidation modification to be able to 

interact with its NK receptors.  Amidation is a common post-translational modification, 

and more than half of peptide hormones must be amidated in order to exhibit full 

biological activity (Yun, Johnson et al. 1993).  This enzymatic process has been well 

characterized by our laboratory and by others.        
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As shown in Figure 3, amidation is a two step process whereby the SP 

glycine-extended precursor (SP-Gly) is first acted on by peptidylglycine 

β-monooxygenase (PAM), the rate-limiting enzyme in the pathway, to form an 

α-hydroxyglycine intermediate (Katopodis and May 1990).  This step requires ascorbate, 

oxygen and copper as co-factors (Bradbury, Mistry et al. 1990).  PAM activity is found in 

the serum and several tissues, such as the pituitary, the hypothalamus, the submandibular 

glands, and as well as in other parts of the brain (Eipper, Myers et al. 1985).  

Subsequently, peptidylamidoglycolate lyase (PGL) catalyzes the dealkylation of the α-

hydroxyglycine intermediate to form the amidated peptide plus glyoxylic acid 

(Katopodis, Ping et al. 1990; Katopodis, Ping et al. 1991). 
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Peptidylamidoglycolate Lyase 

(PGL)

Peptidylglycine Monooxygenase 
(PAM)

Figure 3.  The two sequential reactions of amidation are illustrated acting on a 

glycine-extended peptide.    
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Cytokines and Chemokines 

Inflammation is controlled by a variety of signaling molecules often in a paracrine 

or autocrine fashion, as illustrated in Figure 4.  Paracrine signaling is when a cell induces 

changes in nearby cells while autocrine signaling is when a cell induces changes in itself.  

These signaling molecules are found as precursors in the plasma and are both stored in 

cells and synthesized during inflammation.  Signaling molecules exert their effect by 

binding cell surface receptors which can result in release of additional signaling 

molecules, production of cytotoxic compounds such as nitric oxide and changes in gene 

expression relating to host defense.  Cytokines are a family of protein signaling 

molecules that modify the activity of other cells.  During the inflammatory response they 

are most notably produced by activated immune cells such as macrophages and 

lymphocytes (Liles and Van Voorhis 1995).  Pro-inflammatory cytokines activate 

leukocytes and induce the production and release of addition cytokines.  Examples of 

proinflammatory cytokines include TNF-alpha and IL-12.  Chemokines are a sub-family 

of cytokines that mainly act as chemoattractants for immune cells such as macrophages, 

mast cells, neutrophils, T-lymphocytes and eosinophils.   
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Figure 4.  The autocrine and paracrine signaling network between immune cells with 

cytokines as illustrated by www.abcam.com. 
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TNF-α Signaling 

 TNF-α is a cytokine that produces complex and varied effects on cells.  It 

regulates activities relating to lipid metabolism, coagulation, insulin resistance, and 

endothelial function (Baud and Karin 2001). TNF-α is a key signaling molecule in the 

inflammatory response and has been implicated in autoimmune diseases such as 

rheumatoid arthritis (Maini, Elliott et al. 1995), ankylosing spondylitis (Brandt, Haibel et 

al. 2000), and Crohn’s disease (Derkx, Taminiau et al. 1993).  TNF-α exerts its influence 

by binding to its receptor resulting in multiple signaling pathways being activated.  

Depending on what other signaling molecules a cell has interacted with, the binding of 

TNF-α can result in either cell death or cell proliferation.  In the inflammatory state TNF-

α usually does not signal for cell death because of the activation of the mitogen-activated 

protein kinase families (MAPKs) which suppress apoptosis through their downstream 

effectors.   

 

MAPK Signaling 

 SP, LPS and cytokines such as TNF-α activate cytokine production via MAPK 

signaling (Azzolina, Guarneri et al. 2002).  MAPKs are a family of proline-directed 

protein serine/threonine kinases which transmit signals from the surface of the cell to the 

nucleus via a cascade of intracellular phosphorylation events (Raman, Chen et al. 2007).  

There are four families of MAPKs, the most studied being extracellular signal-regulated 

kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAPK; each family consists 

of three tiers of kinases where the MAPK is phosphorylated by a MAPK kinase (MKK) 
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which was phosphorylated by a MAPKK kinase (Raman, Chen et al. 2007).  This process 

activates transcription factors such as NF-κB (Lieb, Fiebich et al. 1997), which in turn 

upregulates production of cytokines, such as TNF-α.  A more detailed description of 

MAPK signaling is presented in the Discussion section.   

 

SP Upregulation in Chronic Inflammation 

 There is a need to further understand the pro-inflammatory effects of SP in 

inflammatory diseases.  It has been found that the SP concentration is raised in the 

synovial fluid of individuals with rheumatoid arthritis.  Conversely, the SP concentration 

is depleted in the synovial tissue of these individuals.  This raises the possibility that SP 

may be transferred from the tissue to the fluid during inflammation.   

Elevated levels of SP have been observed in animal models of inflammation.  The 

“gold standard” model for chronic inflammation in rats is adjuvant arthritis which has 

many similarities to human rheumatoid arthritis (Waksman 2002).  Adjuvant arthritis is 

brought on by use of Freund’s complete adjuvant (FCA), which consists of heat killed 

Mycobaterium butyricum suspended in mineral oil.  A key antigen present in the 

mycobacterium is heat shock protein 65 (HSP65) (Van 1990).  It is hypothesized that due 

to the conserved nature of heat shock proteins, the antibodies produced against HSP65 

are cross-reactive with proteins found in the host, leading to spontaneous autoimmune 

arthritis.  FCA is injected into one hindpaw in the subplantar region (Szekanecz, Halloran 

et al. 2000).  This results in a three-phase response to the antigen HSP65 .  The first 

phase is comprised of acute inflammation of the injected hindpaw, which reaches a 

maximum on day 2.  During this phase T-lymphocytes recognize, and are activated by, 
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the presence of HSP65.  The second phase occurs during days 2 through 10, where 

swelling remains constant but the population of activated lymphocytes for HSP65 grows.  

After day 10, the third phase begins with a massive cell-mediated response that causes 

further swelling of the injected hindpaw in addition to systemic inflammation of the other 

three limbs.  SP is upregulated during this process, with increased levels being found in 

the dorsal root ganglia and in the sciatic nerves (Kar, Gibson et al. 1991; Donnerer, 

Schuligoi et al. 1992).      

 

LPS Signaling 

 In bacterial infections, endotoxins are released when bacteria die.  Large 

quantities of endotoxins can induce septic shock in patients by triggering a massive 

inflammatory response.  Lipospollysacharide (LPS) is the prototypical endotoxin since it 

is also a component of the cell walls of gram negative bacteria.  Cells exposed to LPS 

generate NO and cytokines such at TNF-α following a complicated series of events where 

cell signaling pathways are activated.  LPS first complexes with LPS-binding protein 

which delivers LPS to the CD14 receptor, and this receptor then ultimately delivers LPS 

to the cell surface toll-like receptor 4 (TLR4) (Beutler 2004).  LPS binding to TLR4 

activates the myeloid differentiation primary-response protein-88 to recruit interleukin-1 

receptor-associated kinase-1 (IRAK1) and IRAK4.  IRAK4 then phosphorylates IRAK1.  

Phosphorylated IRAK1 then associates with tumor necrosis factor-receptor-associated 

factor-6 (TRAF6), TGF-β-activated kinase-1, TAK1-binding protein-1 and 

TAK1-binding protein-2.  The complex of IRAK1, TRAF6, TGF-β-activated kinase-1, 

TAK1-binding protein-1 and TAK1-binding protein-2 phosphorylates TGF-β-activated 
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kinase-1 and TAK1-binding protein-2.  This complex then associates with ubiquitin 

ligases UbC13 leading to ubiquitylation of TRAF6.  This leads to 

TAK1-binding protein-2 being activated which then activates the JNK and p38 MAPK 

families leading to cytokine and NO upregulation.   

 

Nanoparticle Drug Delivery 

 The delivery of a drug via encapsulation in nanoparticles composed of polymers 

can offer many advantages compared to traditional drug delivery methods (Heifts 2005).  

Nanoparticles can exhibit high stability, the ability to accept drugs of varying polarity, 

and the ability to be delivered by various types of administration.  Nanoparticles can also 

exhibit sustained release of an encapsulated drug.  Furthermore by incorporating ligands, 

such as peptides or RNA, on the surface of the nanoparticles it is possible to target 

nanoparticles to specific cells that interact with these ligands.   

 Poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) is a new 

polymer for nanoparticle formation, (Lee, Yang et al. 2007).  PCADK is notable for 

being acid liable due to ketal linkages forming part of the polymer backbone.  PCADK 

nanoparticles are hypothesized to be readily taken up by macrophages where they will 

rapidly hydrolyzed when exposed to the acidic environment of the phagosome.  This 

hydrolysis releases the encapsulated drug within the PCADK, thus effectively delivering 

the drug to macrophages.  When treating an inflammatory disease the ability to target a 

drug to macrophages is advantageous because of the key role macrophages play in the 

inflammatory process.         
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PBA and AOPHA 

Both rationally designed substrates and inhibitors of PAM have been designed in 

this laboratory (see Figure 5).  5-(Acetylamino)-4-oxo-6-phenyl-2-hexenoic acid 

(AOPHA) and 4-phenyl-3-butenoic acid (PBA) are turnover-dependent inhibitors of 

amidating enzyme (Bradbury, Mistry et al. 1990; Katopodis and May 1990; Feng, Shi et 

al. 2000).  In-vivo inhibition of PAM should inhibit the conversation of SP-Gly to the 

amidated product, SP.  By inhibiting the synthesis of SP, it is hypothesized that these 

compounds will exhibit anti-inflammatory activity.   

Indeed, work in our laboratory has established that AOPHA-Me and PBA both 

exhibit anti-inflammatory activity.  In animal models of acute and chronic inflammation, 

these compounds reduced edema via a non-COX inhibitory pathway (Ogonowski, May et 

al. 1997; Bauer, Sunman et al. 2007).  AOPHA-Me, when dosed via intraperitoneal 

injection, completely inhibits edema resulting from carrageenan-induced acute 

inflammation in rats (Figure 6).  In addition, PBA inhibits JNK and activates p38 MAPK 

in both ras transformed WB and human lung carcinoma cells (Matesic, Sidorova et al. 

2011).   

However, results from the animal work also suggested that these compounds may 

possess anti-inflammatory activity not related to their function as amidation inhibitors.  

To gain further understanding of their activities we investigated the effect of AOPHA-Me 

and PBA in RAW 264.7 macrophage cell culture on pro-inflammatory signaling 

pathways.     
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Figure 5.  Molecular structures of N- benzyolyglycine, N-Ac-Phe-Gly, PBA, PBA-Me, 

AOPHA and AOPHA-Me. 
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Figure 6.  AOPHA-Me reduces carrageenan-induced edema in rats in a dose dependent 

manner.  Rats were injected with 10-150 mg/kg of AOPHA-Me and the hind paw 

volumes were recorded at the indicated times after injection with carrageenan. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Instruments 

 Experiments were performed with a Shimadzu HPLC system (Kyoto, Japan), a 

HITACHI S-800 scanning electron microscope (Tokyo, Japan), a LEO-1530 scanning 

electron microscope (Tokyo, Japan), a Varian Mercury VX 400 MHz NMR spectrometer 

(Palo Alto, CA) and a Micromass Quattro mass spectrometer (Milford, MA). 

 

Materials 

RAW 264.7 cells were purchased from ATCC (Bethesda, MD).  SP, PBA, cell 

culture grade quality MTT and DMSO were purchased from Sigma-Aldrich (St. Louis, 

MO).  Cell culture quality Pen/Strep, DMEM, PBS and bicarbonate were purchased from 

Cellgro.  FBS (≤ 5 EU/mL) was purchased from Gibco (Grant Island, NY).  TNF-α 

ELISA kits were purchased from e-Bioscience (San Diego,CA).  Phospho-p38 MAP 

kinase (Thr180/Tyr182) polyclonal antibody, p38 MAP kinase polyclonal antibody, JNK 

polyclonal antibody, phospho-JNK (Thr183/Tyr185) polyclonal antibody, and anti-rabbit 

IgG alkaline phosphataseconjugated antibody were purchased from Cell Signaling 

Technology (Beverly, MA).  Tween-20, TRIS–HCl, DC Protein Assay, SDS, nonfat dry 

milk, 25X alkaline phosphatase color development buffer, 5-bromo-4-chloro-3-indolyl 

phosphate/nitroblue tetrazolium (BCIP/NBT), protein molecular mass standards, and all 

electrophoresis and transfer buffer components were from Bio-Rad (Hercules, CA).  
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Syntheses 

 

 AOPHA-Me was synthesized by the established multi-step synthesis developed in 

our laboratory (see Figure 7).  (L)-Phe-OEt is converted to N-Ac-(L)-Phe-OEt which is 

converted to N-Ac-(L)-Phe-α-ketophosphonate which is reacted with methyl gloxylate to 

form AOPHA-Me (Feng 2000; Foster 2010).  The individual reactions are described 

below.  

 

N-Ac-(L)-Phe-OEt 

 11.0 mL of acetic anhydride and 9.5 mL of pyridine were used to dissolve 5 g of 

(L)-Phe-OEt and 100 mg p-toluenesulfonic acid.  After running overnight the reaction 

was quenched with 100 mL of cold water and ice.  This reaction mixture was extracted 

four times with 25 mL of methylene chloride.  The pooled organic extracts were rinsed 

three times each with 25 mL of 0.1 HCl, water and then saturated sodium bicarbonate.  

The rinsed organic extracts were then dried over magnesium sulfate, filtered and 

evaporated to dryness under reduced pressure yielding 4.8 g of N-Ac-(l)-Phe-OEt as a 

white solid.  1H NMR ([2H]chloroform): δ 1.25 (t, 3H), δ 1.97 (s, 3H), δ 3.13 (q, 2H), δ 

4.16 (q, 2H), δ 4.87 (m, 1H), δ 5.90 (broad, 1H), δ 7.09 (m, 2H), δ 7.27 (m, 3H). 

    

N-Ac-(L)-Phe-α-ketophosphonate 

 50 mL of tetrahydrofuran, dried over sodium metal, was used to dissolve 4.7 g of 

N-Ac-(L)-Phe-OEt.  In a separate three-neck flask, kept under argon at -78° C in a dry ice 

and acetone bath,  4.4 mL dimethylmethylphosphante was dissolved in 50 mL of 

 22



tetrahydrofuran that had been dried over sodium metal.  Through the use of an addition 

funnel, 16.5 mL of 2.5 M n-BuLi in hexanes was added dropwise over 30 minutes to the  

dimethylmethylphosphante.  A white precipitate appeared during the addition and then 

disappeared after 15-30 minutes.  After the precipitate disappeared, the dissolved 

N-Ac-(l)-Phe-OEt was added to the reaction mixture.  The reaction was allowed to 

proceed overnight and gradually come to room temperature.  The next morning 100 mL 

of cold water was used to quench the reaction.  The solution was then rinsed twice with 

50 mL of diethyl ether.  The aqueous phase was retained, and its pH was lowered to 1.0 

by the addition of dilute HCl, and it was extracted four times with 25 mL methylene 

chloride.  The organic extracts were combined and dried over magnesium sulfate, 

filtered, and then evaporated under reduced pressure yielding yellow oil.  The oil was 

purified via silica gel chromatography using a solvent of chloroform and methanol    

(20:1 v/v), ultimately yielding 6.0 g of yellow oil.  1H NMR ([2H]chloroform): δ 1.98    

(s, 3H), δ 2.99-3.15 (m, 4H), δ 3.75 (m, 6H), δ 4.85 (q, 1H), δ 6.53 (d, 1H), δ 7.25 

(m, 5H). 

 

Methyl Glyoxylate 

 4.6 mL methyl dimethoxyacetone was used to dissolve 0.6 g of glyoxylic acid 

monohydrate and 100 mg p-toluenesulfonic acid.  The reaction was heated overnight 

while refluxing.  The next day, after the reaction had cooled to room temperature, 4 g of 

phosphorous pentoxide were gradually added.  The reaction was heated to reflux at 80º C 

for four hours and then distilled under reduced pressure at 70º C, to produce 3.0 mL of a 

yellow oil.  1H NMR ([2H]chloroform) δ 3.76 (singlet). 
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AOPHA-Me 

 6.0 g N-Ac-(L)-α-ketophosphonate and 2.5 mL methyl glyoxylate were dissolved 

in 10 mL of water in a flask in an ice bath.  After 5 minutes 20 mL potassium carbonate 

was added, upon which a white precipitate formed.  After 30 minutes the precipitate was 

collected by vacuum filtration and washed with cold ethyl ether.  The product was then 

recrystalized from water and ethanol before being dried over phosphorous pentoxide to 

yield 1.3 g of a white powder. 1H NMR ([2H]chloroform): δ 1.99 (s, 3H), δ 3.00-3.24 

(o, 2H), δ 3.81 (s, 3H), δ 5.09 (q, 1H), δ 6.03 (d, 1H), δ 6.78 (d, 1H, J = 15.9 Hz), δ 7.06 

(m, 2H, J = 15.9 Hz), δ 7.15 (m, 2H), δ 7.25 (m, 3H).  Mass spectrum (electrospray 

ionization) m/e = 262.1 (M + 1). 
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Figure 7.  Synthesis of AOPHA and AOPHA-Me. 
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Recrystallization of PBA 

 PBA was recrystalized from boiling hexane.  2 g of PBA was added to 

approximately 50 mL of boiling hexane.  The solution was then filtered and allowed to 

cool overnight.  The white crystals were then collected by vacuum filtration and rinsed 

with cold hexane.  The melting point was found to be 85°C. 

 

Solid Phase Peptide Synthesis.  

Glycine-extended SP (RPKPQQFFGLMG-COOH) was synthesized using a PS3 

peptide synthesizer (Rainin Instrument, Woburn, MA) with p-benzyloxybenzyl alcohol 

resin as solid support.  The peptide was cleaved from the resin with trifluoroacetic acid 

and purified by high-performance liquid chromatography (HPLC) on a C8 reverse phase 

column, and the sequence was analyzed by the Edman degradation method on a Porton 

1090 sequencer.  The molecular weight was analyzed by fast-atom bombardment mass 

spectrometry.  

 

Synthesis of poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) 

PCADK was synthesized and characterized following the procedure developed in 

the laboratory of Dr. Niren Murthy (Lee 2007; Kao 2009).  Briefly, PCADK was 

synthesized in a 100 mL two-necked flask, connected to a short-path distilling head.  The 

diols, 1,4-cyclohexanedimethanol (5 g, 34.86 mmol) and 1,5-pentanediol (0.908 mL, 8.72 

mmol) were dissolved in 15 mL of distilled benzene and kept 100 °C.  Re-crystallized 

p-toluenesulfonic acid and distilled 2,2-diethoxypropane (equal molar ratio to the two 

diols combined) was added to initiate the reaction.  Additional doses of ketals (1 mL) and 
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benzene (4 mL) were subsequently added to the reaction 2 hours later, via a pressure 

equalizing funnel, to compensate for the 2,2-dimethoxypropane and benzene that had 

been distilled off.  Two additional doses of 5 mL benzene were added to the reaction at 

hours 6 and 24 to decrease the viscosity of the reaction mixture.  After 48 hours, the 

reaction was quenched by adding triethylamine (120 μL).  The PCADK product was 

analyzed by 1H-NMR and GPC.  1H NMR ([2H]chloroform): δ 3.4 – 3.18 (m, 4H, CH2), 

δ 1.66 (s, 2H, CH), δ 1.85 – 0.93 (m, 8H, CH2), and δ 1.32 (s, 6H, CH3).  

 

Formation and Characterization of Microparticles 

 

Gel Permeation Chromatography (GPC) of PCADK  

The molecular weight of PCADK was determined by gel permeation 

chromatography (GPC) using a Shimadzu system (Kyoto, Japan) equipped with a UV 

detector.  Tetrahydrofuran was used as the mobile phase at a flow rate of 1 mL/min.  

Polystyrene standards (Peak Mw = 1,060, 2,970, 10,680 and 19,760) from Polymer 

Laboratories (Amherst, MA) were used to establish a molecular weight calibration curve. 

 

Preparation and Characterization of AOPHA-ME Loaded PCADK Microparticles  

AOPHA-Me was encapsulated into microparticles using a single oil-in-water 

emulsion, solvent evaporation method.  Briefly, 50 mg of AOPHA-Me and 450 mg of 

PCADK were dissolved in 2 mL of dichloromethane.  This solution was combined with 

16 mL of 5 % poly(vinyl alcohol) (PVA)/phosphate buffer solution (pH 7.4) and the 
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mixture was homogenized in a PowerGen homogenizer at 21,500 rpm for 2 minutes.  The 

resulting oil-in-water emulsion was added to 20 mL of 1 % PVA/phosphate buffer 

solution (pH 7.4) and stirred for 4 hours, evaporating the dichloromethane and forming 

particles.  The resulting particles were washed twice in deionized water (with 

centrifugation at 10,000 rpm) to remove the PVA, and lyophilized.  Typically these 

procedures yielded 400 mg of particles.  SEM images of the AOPHA-Me-encapsulated 

PCADK microparticles (AOPHA-Me-PKMs) and blank PCADK microparticles showed 

typical particle sizes of  0.1-2.5 μm. 

The encapsulation efficiency and loading of AOPHA-Me PKMs was analyzed by 

reverse phase HPLC.  Briefly, 3-6 mg of AOPHA-Me PKMs were dissolved in 1 mL of 

40 % acetonitrile/0.1% TFA solution.  The resulting solution was then injected into a 

Shimadzu HPLC with a Prevail C18 Column using a 40% acetonitrile/0.1% TFA mobile 

phase at 1.0 mL/min with a PDA detector set from 190-300 nm.  A standard curve of 

AOPHA-Me was generated to fit a least square linear regression.  

 

Scanning Electron Microscopy (SEM)  

SEM images were taken to analyze the morphology of the polyketal 

microparticles.  Briefly, SEM samples were prepared by attaching lyophilized particles 

onto 12.7 mm diameter aluminum sample mounting stubs (Electron Microscopy 

Sciences, Hatifield, PA), using conductive double sided carbon discs (SPI Supplies, West 

Chester, PA).  The samples were coated with a gold sputter coater (International 

Scientific Instruments, Prahran, Australia) for 1 minute under an argon atmosphere.  The 
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SEM samples were subsequently analyzed using either a HITACHI S-800 or LEO-1530 

scanning electron microscope (Tokyo, Japan). 

 

In-vitro Release of AOPHA-ME PCADK Loaded-Microparticles 

 The in-vitro release of AOPHA-Me PKMs was analyzed by HPLC.  First, a 

10 mL suspension of AOPHA-Me PKMs (0.1 mg/mL) was made in either 50 mM pH 7.4 

phosphate buffer or 50 mM pH 5.0 acetate buffer.  The suspension was then incubated at 

37°C in a shaker.  At various times the suspension was centrifuged at 15,000 rpm and 

1 mL was withdrawn.  This aliquot was then centrifuged again at 15,000 rpm and 50 μL 

was withdrawn for analysis, and the remaining volume was returned to the original 

aliquot and was then returned to 37°C in the shaker.  

 

Preparation and Characterization of AOPHA-ME PLGA Loaded-Microparticle 

 AOPHA-Me-encapsulated PLGA microparticles and blank PLGA microparticles 

were prepared and characterized in the same manner as PCADK microparticles. 

 

Cell Culture Procedures and Assays 

Cell Culture 

RAW 264.7 cells were grown in DMEM supplemented with 10% (vol/vol) FBS, 

100 U/ml penicillin, and 100 μg/ml streptomycin.  Cells were maintained at 37°C in a 

humidified atmosphere containing 5% CO2.  Confluent cells were subcultured by 

scraping and plated at 10% confluence during each passage.  For experiments, cells were 
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seeded in either 96-well plates or 12 cm2 dishes and grown overnight to 70-80% 

confluence.  At least two hours before each experiment, cell media was exchanged for 

unsupplemented DMEM.  LPS, SP, SP-Gly or PBA were dissolved in PBS and diluted in 

unsupplemented DMEM.  AOPHA-Me was dissolved in DMSO and diluted in 

unsupplemented DMEM such that the final concentration of DMSO was less than 0.1%. 

 

ELISA Assay for TNF-α 

The concentration of TNF-α present in the media of RAW 264.7 macrophages 

was determined using a mouse TNF-α ELSIA kit according to the instructions of the 

manufacturer.  Briefly, the cell supernatant was incubated in a 96-well plate coated with 

anti-TNF-α antibodies.  The cell supernatant was then washed away, and the bound 

TNF-α was incubated with another anti-TNF-α antibody conjugated to a molecule of 

biotin.  Then avidin, a powerful biotin-binding protein, conjugated to horseradish 

peroxidase was added.  The avidin-horseradish peroxidase binds to the biotin on the 

anti-TNF-α antibody.  Then the horseradish peroxidase substrate tetramethylbenzidine is 

added, which undergoes a reaction which can be monitored spectroscopically at 450 nm.     

Results are given as relative TNF-α concentrations. 

Griess Assay for Nitrite 

Nitric oxide production was quantified by measurement of its oxidation product 

nitrite via the Griess reaction (Ding 1988).  90 μL of supernatant was mixed with 45 μL 

of 1% sulfanilamide in 10% HCl, incubated for 5-10 minutes in the dark, then mixed with 

45 μL of 0.1% N-1-napthylethylenediamine dihydrochloride, then incubated for 5-10 

minutes in the dark and then the absorbance was read at 550 nm by a microplate reader.    
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Western Blot Analysis for Signaling Pathway Proteins 

RAW 264.7 cells were grown to 70-80% confluence in 12 cm2 dishes, washed 

with PBS and extracted with a mixture of 2% SDS, 1mM PMSF, and 1:100 dilution of 

protease inhibitor cocktail.  Lysed cells were scraped, transferred to microcentrifuge 

tubes, and sonicated for two, 15-second pulses at room temperature.  Protein 

concentrations were determined using the Bio-Rad DC assay.  Proteins were separated on 

12.5% acrylamide SDS gels and transferred to PVDF membranes using a Trans-Blot 

Turbo system.  Membranes were stained with Ponceau Red, and then incubated in block 

buffer for 1–2 hours.  p38 MAPK, phospho-p38 MAPK, JNK or phospho-JNK antibodies 

were incubated separately with membranes in block buffer overnight at 4˚C.  

Immunopositive bands were detected using alkaline phosphatase-linked anti-rabbit 

secondary antibody, with development using BCIP/NBT as substrates.  Blots were 

scanned on an HPscanjet 4400C scanner and band densities determined using 

UN-SCAN-IT software (version 5.1) from Silk Scientific, Inc. (Orem, UT).  Two 

replicate blots were analyzed for each experiment.  Antibodies used for the detection of 

phosphorylated forms of p38 and JNK only recognize these enzymes when they are 

dually phosphorylated at the key activation sites Thr180 and Tyr182 or Thr183 and 

Tyr185, respectively (Dérijard, Hibi et al. 1994; Raingeaud, Gupta et al. 1995). 

 

Cell Viability 

Cell viability of RAW 264.7 macrophages was determined by use of an MTT 

assay.  The MTT assay was conducted in 96-well plates, with 20 uL of 5 mg/mL MTT in 
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PBS being added to each well of the plate.  Living cells react with MTT to form 

formazan crystals.  The plates were incubated for two hours, the supernatants were 

removed, and 200 uL of DMSO was added each to each well to dissolve the formazan 

crystals.  The absorbance of the dissolved formazan crystals was read at 570 nm minus 

the absorbance at 670 nm.   

 

Molecular Modeling 

Autodock Vina was used for all docking in this study (Trott and Olson 2010).  In 

general, parameters were kept at their default values.  The size of the docking grid was 50 

x 60 x 50, which encompasses the entire apoptosis signal-regulating kinase 1 (ASK1) 

structure and the grid spacing was set at 1.0.  Ligand structures were prepared using 

ChemBio3D Ultra 12.0 and individual PDB files were prepared for docking using 

AutoDock Tools.  The 2CLQ ASK1 kinase structure was obtained from the PDB.  To 

prepare the structure for docking, the ligand and all water molecules were removed and 

charges and non-polar hydrogen atoms were added using AutoDock Tools. 

 

Experimental arthritis in rats 

Animals 

Adult male, Sprague Dawley rats were purchased from Harlan Sprague Dawley, 

Inc. (Indianapolis, IN) and allowed to acclimate for at least 5 days in appropriate caging 

prior to experimentation.  Animals were kept in the animal facility at Mercer University’s 

School of Pharmacy in Atlanta, GA and received food and water ad libitum.  All animal 
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experiments were approved by the Mercer University Institutional Animal Care and Use 

Committee (Macon, GA).   

 

Adjuvant arthritis in rats 

These experiments were carried out at Mercer University School of Pharmacy in 

collaboration with Dr. Stanley Pollack.  Adjuvant arthritis was induced in rats using the 

procedure we had previously developed.  Rats received a subplantar injection of 0.1 ml 

Freund’s Complete Adjuvant (1 mg/ml M. butyricum in mineral oil) into the right 

hindpaw (Sunman 2003).  The contralateral paw and control animals received subplantar 

injections of mineral oil only.  Changes in hindpaw volume were determined 

plethysmographically by mercury displacement at various time points following 

injections. 

Statistical analysis 

Data were analyzed with a one-way way analysis of variance and followed by Tukey’s 

post hoc test.  Values of p less than 0.05 were considered significant for all calculations.  

Statistical analyses were performed using Statistix for Windows v8.1 and Microsoft 

Excel. 
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CHAPTER 3 

RESULTS 

 

 Previous work in animals showed that AOPHA-Me and PBA possess potent 

anti-inflammatory properties.  In animal models of acute and chronic inflammation, these 

compounds reduced edema via a non-COX inhibitory pathway (Ogonowski, May et al. 

1997; Bauer, Sunman et al. 2007).  AOPHA-Me, when dosed via intraperitoneal 

injection, completely inhibits edema resulting from carrageenan-induced acute 

inflammation in rats.  In addition, PBA inhibits JNK and activates p38 MAPK in both ras 

transformed WB and human lung carcinoma cells (Matesic, Sidorova et al. 2011).  

Although designed and validated in-vitro as amidation inhibitors, the rapid 

anti-inflammatory response of AOPHA-Me in acute carragenina-induced inflammation in 

rats suggested that these inhibitors may in part draw their anti-inflammatory function 

from activities unrelated to amidation.  To gain further understanding of their activities 

we investigated the effect of AOPHA-Me and PBA in RAW 264.7 macrophage cell 

culture on pro-inflammatory signaling pathways.   

 

SP, SP-Gly AOPHA-Me and PBA do not alter RAW 264.7 Macrophage Viability 

 The effects of SP, SP-Gly, PBA and AOPHA-Me on RAW 264.7 macrophage 

viability were determined using MTT assays.  None of these compounds had any 

significant effect on cell viability after 24 hours of incubation, as shown in Figure 8.   
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Figure 8.  The effects of SP, PBA and AOPHA-Me on RAW 264.7 macrophage viability 

were determined using MTT assays.  No compound had any significant effect on cell 

viability after 24 hours of incubation.  n=4.  Data were analyzed with a one-way way 

analysis of variance and followed by Tukey’s post hoc test.  Values of p less than 0.05 

were considered significant for all calculations.  
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SP but not SP-Gly Stimulates TNF-α Production in RAW 264.7 Macrophages 

 We investigated the effects of SP and SP-Gly on TNF-α production by RAW 

264.7 macrophages.  As shown in Figure 9, incubation with SP for 24 hours stimulated 

TNF-α production in a dose-dependent manner for concentrations ranging from 

1-100 μM.  In contrast, SP-Gly at similar concentrations had no effect on TNF-α 

production, as shown in Figure 10.  To determine the time course of TNF-α upregulation 

by SP in macrophages, RAW 264.7 macrophages were incubated with 1 μM SP or 

10 μM SP for 2, 4, 8, 12, 16, 20 and 24 hours.  As shown in Figure 11, an increase in 

TNF-α concentration was apparent after about 4 hours, and reached a maximum at about 

20 hours.        

 36



 

0

20

40

60

80

100

Control 0.1 µM SP 1 µM SP 10 µM SP 20 µM SP 100 µM SP 0.01 µM SP-Gly 10 µM SP-Gly 100 µM SP-Gly

N
or

m
al

iz
ed

 T
N

F-
al

ph
a

* 

Figure 9.  SP upregulates TNF-α in RAW 264.7 macrophages.  Cells were incubated with 

0.1-100 μM SP for 24 hours.  The cell media was analyzed for TNF-α with an ELISA kit. 

n=4.  Data were analyzed with a one-way way analysis of variance and followed by 

Tukey’s post hoc test.  Values of p less than 0.05 were considered significant for all 

calculations. * p < 0.05 versus control samples.   
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Figure 10.  SP-Gly has no effect on TNF-α in RAW 264.7 macrophages.  Cells were 

incubated with 0.01-100 μM SP-Gly for 24 hours.  The cell media was analyzed for 

TNF-α with an ELISA kit. n=4.  Data were analyzed with a one-way way analysis of 

variance and followed by Tukey’s post hoc test.  Values of p less than 0.05 were 

considered significant for all calculations.  * p < 0.05 versus control samples. 
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Figure 11.  Time-dependent effect of SP on TNF-α expression in RAW 264.7 

macrophages. Cells were incubated with 1 μM or 10 μM SP for 2, 4, 8, 12, 16, 20 and 24 

hours.  The cell media was analyzed for TNF-α with an ELISA kit. n=4.  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

Values of p less than 0.05 were considered significant for all calculations.  * p < 0.05 

versus control samples. 
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Inhibition of SP-stimulated TNF-α Production in Macrophages 

 Next, we investigated the effects of 4-phenyl-3-butenoic acid (PBA) and                                        

5-(Acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me) on 

SP-stimulation of TNF-α production by RAW 264.7 macrophages.  As shown in Figure 

12, co-incubation of 0.01-1 mM PBA with 20 μm SP for 24 hours reduced TNF-α 

expression by as much as 68%.  It is apparent from Figure 12 that AOPHA-Me is more 

potent than PBA, since a reduction in TNF-α expression of 79% was obtained in the 

presence of only 10 μM AOPHA-Me.   

 

AOPHA-Me and PBA Decrease Phosphorylation of JNK and p38 MAPK by SP in 

RAW 264.7 Macrophages 

We next examined the effects of AOPHA-Me and PBA on JNK and p38 MAPK 

phosphorylation by SP.  The procedure we used in this experiment is illustrated in Figure 

13. 
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Figure 12.  AOPHA-Me and PBA decrease SP-stimulation of TNF-α in RAW 264.7 

macrophages.  Cells were co-incubated with 20 μM SP and 0.01-1 mM PBA or 10 μM 

acrylate ester for 24 hours.  The cell media was analyzed for TNF-α with an ELISA kit. 

n=4.  Data were analyzed with a one-way way analysis of variance and followed by 

Tukey’s post hoc test.  Values of p less than 0.05 were considered significant for all 

calculations.  * p < 0.05 versus SP samples. 

* 

* 
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Figure 13.  Illustration of Western Blot technique.  Proteins from the cellular extract are 

separated using electrophoresis in a gel.  The proteins are then transferred to a membrane 

via an electrical current.  The membrane is then blocked by the addition of block buffer 

containing non-fat milk proteins.  A primary antibody is then added which binds to the 

protein of interest.  A secondary antibody, conjugated to alkaline phosphatase, is then 

added which binds the primary antibody.  The alkaline phosphatase substrates BCIP and 

NBT are then added which undergo a color change and stain the membrane. 
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Figure 14 shows the effects of SP treatment on p38 MAPK phosphorylation in 

RAW 264.7 macrophages in the absence and presence of AOPHA-Me.  It is apparent that 

treatment with 20 μM SP for 24 hours markedly increases phosphorylation of p38 

MAPK.  It has been shown that phosphorylation at both Thr180 and Tyr182 is required 

for activation of p38 MAPK (Raingeaud, Gupta et al. 1995), and the antibody we used 

for the detection of phosphorylated p38 MAPK is specific for the dually phosphorylated 

form of p38 MAPK.  It is apparent that 10 μM AOPHA-Me markedly inhibits 

phosphorylation of p38 MAPK.  As shown in Figure 15, densitometric scans of the blots 

in Figure 14 reveal a 15.6-fold increase in the immunoreactive band density of phospho-

p38 MAPK in SP-stimulated cells which is inhibited by 94% in the presence of AOPHA-

Me.   
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Figure 14.  AOPHA-Me prevents SP-stimulated activation of p38 MAPK 

(Thr180/Tyr182 phosphorylation) in RAW 264.7 macrophages.  Cells were either left 

untreated, treated with 20 μM SP, 10 μM AOPHA-Me, or co-incubated with 20 μM SP 

and 10 μM AOPHA-Me for 24 hours.  Whole cell lysates were extracted for total protein 

for Western blot analysis as described in Materials and Methods.  Identical treatments 

from replicate cultures are shown on each blot.  Phospho-p38 MAPK antibodies used are 

specific for Thr180/Tyr182.  Data were analyzed with a one-way way analysis of 

variance and followed by Tukey’s post hoc test.  Values of p less than 0.05 were 

considered significant for all calculations.   
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Figure 15.  AOPHA-Me prevents SP-stimulated activation of p38 MAPK 

(Thr180/Tyr182 phosphorylation) in RAW 264.7 macrophages.  Densitometric analysis 

of phospho-p38 and total p38 protein levels from Figure 14 reveal a 15.6-fold increase in 

the immunoreactive band density of phospho-p38 MAPK in SP-stimulated cells which is 

inhibited by 94% in the presence of AOPHA-Me.  The denstometric quantification of 

bands in scanned blots are presented as the mean ±SD, and are representative of two 

independent experiments (asterisks indicate p <0.05 compared to control, crosses indicate 

p <0.05 compared to SP).  Data were analyzed with a one-way way analysis of variance 

and followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered 

significant for all calculations.   
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Figure 16 shows the effects of SP treatment on JNK phosphorylation in the absence and 

presence of AOPHA-Me.  It is apparent that treatment with 20 μM SP for 24 hours 

increases phosphorylation of JNK.  It has been shown that phosphorylation at both 

Thr183 and Tyr185 is required for activation of JNK (Dérijard, Hibi et al. 1994), and the 

antibody we used for the detection of phosphorylated JNK is specific for the dually 

phosphorylated form of JNK.  It is apparent that 10 μM AOPHA-Me markedly inhibits 

phosphorylation of JNK.  As shown in Figure 17, densitometric scans of the blots in 

Figure 16 reveal a 2.2-fold increase in the density of phospho-JNK in SP-stimulated cells 

and an inhibition of 63% in the presence of AOPHA-Me.   
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Figure 16.  AOPHA-Me prevents SP-stimulated activation of JNK (Thr183/Tyr185 

phosphorylation) in RAW 264.7 macrophages.  Cells were either left untreated, treated 

with 20 μM SP, 10 μM AOPHA-Me, or co-incubated with 20 μM SP and 10 μM 

AOPHA-Me 24 hours.  Whole cell lysates were extracted for total protein for Western 

blot analysis as described in Materials and Methods.  Identical treatments from replicate 

cultures are shown on each blot.  Phospho-JNK antibodies used are specific for 

Thr183/Tyr185.  Data were analyzed with a one-way way analysis of variance and 

followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered significant 

for all calculations.   
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Figure 17.  AOPHA-Me prevents SP-stimulated activation of JNK (Thr183/Tyr185 

phosphorylation) in RAW 264.7 macrophages.  Densitometric analysis of phospho-JNK 

and JNK protein levels from Figure 16 reveal a 2.2-fold increase in the density of 

phospho-JNK in SP-stimulated cells and an inhibition of 63% in the presence of 

AOPHA-Me.  The denstometric quantification of bands in scanned blots are presented as 

the mean ±SD, and are representative of two independent experiments (asterisks indicate 

p <0.05 compared to control, crosses indicate p <0.05 compared to SP).  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

Values of p less than 0.05 were considered significant for all calculations.   
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Figures 18-21 illustrate similar experiments on phosphorylation of p38 MAPK 

and JNK in the presence and absence of PBA.  Once again, densitometric scans, Figures 

20 and 21, of the blots from Figures 18 and 19 reveal that SP treatment gives rise to 

9.3-fold and 2.9-fold increases in the densities of phosph-p38 MAPK and phospho-JNK, 

respectively, which are in turn inhibited by 84% and 91%, respectively, upon treatment 

with PBA. 
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Figure 18.  PBA prevents SP-stimulated activation of p38 MAPK (Thr180/Tyr182 

phosphorylation) in RAW 264.7 macrophages.  Cells were either left untreated, treated 

with 20 μM SP, 1mM PBA or co-incubated with 20 μM SP and 1 mM PBA for 24 hours.  

Whole cell lysates were extracted for total protein for Western blot analysis as described 

in Materials and Methods.  Identical treatments from replicate cultures are shown on each 

blot.  Phospho-p38 MAPK antibodies used are specific for Thr180/Tyr182.  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

Values of p less than 0.05 were considered significant for all calculations.   
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Figure 19.  PBA prevents SP-stimulated activation of p38 MAPK (Thr180/Tyr182 

phosphorylation) in RAW 264.7 macrophages.  Densitometric analysis of phospho-p38 

and total p38 protein levels from Figure 18 reveal a 9.3-fold increase in the 

immunoreactive band density of phospho-p38 MAPK in SP-stimulated cells which is 

inhibited by 84% in the presence of PBA.  The denstometric quantification of bands in 

scanned blots are presented as the mean ±SD, and are representative of two independent 

experiments (asterisks indicate p <0.05 compared to control, crosses indicate p <0.05 

compared to SP).  Data were analyzed with a one-way way analysis of variance and 

followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered significant 

for all calculations. 

 

 51



 

 

Control      SP        PBA    PBA+SP 

Total JNK 

Phospho-JNK 

     1    2     3     4     5    6     7    8  

Figure 20.  PBA prevents SP-stimulated activation of JNK (Thr183/Tyr185 

phosphorylation) in RAW 264.7 macrophages.  Cells were either left untreated, treated 

with 20 μM SP, 1mM PBA or co-incubated with 20 μM SP and 1 mM PBA for 24 hours.  

Whole cell lysates were extracted for total protein for Western blot analysis as described 

in Materials and Methods.  Identical treatments from replicate cultures are shown on each 

blot.  Phospho-JNK antibodies used are specific for Thr183/Tyr185.  Data were analyzed 

with a one-way way analysis of variance and followed by Tukey’s post hoc test.  Values 

of p less than 0.05 were considered significant for all calculations.   
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Figure 21.  PBA prevents SP-stimulated activation of JNK (Thr183/Tyr185 

phosphorylation) in RAW 264.7 macrophages.  Densitometric analysis of phospho-JNK 

and total JNK protein levels from Figure 20 reveal a 2.9-fold increase in the 

immunoreactive band density of phospho-JNK in SP-stimulated cells which is inhibited 

by 91% in the presence of PBA.  The denstometric quantification of bands in scanned 

blots are presented as the mean ±SD, and are representative of two independent 

experiments (asterisks indicate p <0.05 compared to control, crosses indicate p <0.05 

compared to SP).  Data were analyzed with a one-way way analysis of variance and 

followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered significant 

for all calculations.   
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PBA Inhibits LPS Stimulation of TNF-α Production in Macrophages 

 We investigated the effect of PBA on LPS stimulation of TNF-α production by 

RAW 264.7 macrophages.  As shown in Figure 22, treatment with 10 ng/mL LPS for 

24 hours stimulated TNF-α production in RAW 264.7 macrophages, and co-incubation of 

1 mM PBA with LPS abolished this stimulation of TNF-α production by RAW 264.7 

macrophages. 

 

0

10

20

30

40

50

60

70

80

90

100

Control 20 ng/mL LPS 20 ng/mL LPS + 1mM PBA

N
or

m
al

iz
ed

 T
N

F-
al

ph
a

* *

 

Figure 22.  Co-incubation of 1 mM PBA with 10 ng/mL LPS for 24 hours abolished LPS 

stimulation of TNF-α production by RAW 264.7 macrophages. n=4.  Data were analyzed 

with a one-way way analysis of variance and followed by Tukey’s post hoc test.  Values 

of p less than 0.05 were considered significant for all calculations.  * p < 0.05 versus 

LPS. 
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Substance P does not Enhance LPS Stimulation of TNF-α  

 We investigated the effect of SP on LPS stimulation of TNF-α production by 

RAW 264.7 macrophages.  As shown in Figure 23, treatment with 10 ng/mL LPS for 

24 hours stimulated TNF-α production in RAW 264.7 macrophages, and co-incubation of 

1-100 μM SP with LPS had no effect on the stimulation of TNF-α production by RAW 

264.7 macrophages. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 1 μM SP 10 μM SP 100 μM LPS LPS + SP 1
μM

LPS + SP 10
μM

LPS + SP 100
μM

T
N

F-
α 

 

*

*

Figure 23.  Co-incubation of 1-100 μM SP with 10 ng/mL LPS for 24 hours had no effect 

on LPS stimulation of TNF-α production by RAW 264.7 macrophages. n=4.  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

Values of p less than 0.05 were considered significant for all calculations.  * p < 0.05 

versus control. 
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 Substance P-Gly does not Enhance LPS Stimulation of TNF-α  

 We investigated the effect of SP-Gly on LPS stimulation of TNF-α production by 

RAW 264.7 macrophages.  As shown in Figure 24, treatment with 10 ng/mL LPS for 

24 hours stimulated TNF-α production in RAW 264.7 macrophages, and co-incubation of 

1 μM SP-Gly with LPS had no effect on the stimulation of TNF-α production by RAW 

264.7 macrophages. 
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Figure 24.  Co-incubation of 1 μM SP-Gly with 10 ng/mL LPS for 24 hours had no effect 

on LPS stimulation of TNF-α production by RAW 264.7 macrophages. n=4.  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

Values of p less than 0.05 were considered significant for all calculations.  * p < 0.05 

versus control. 
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Substance P or Substance P-Gly do not Enhance LPS Stimulation of Nitrite  

 We investigated the effect of SP and SP-Gly on LPS stimulation of nitrite 

production by RAW 264.7 macrophages.  As shown in Figure 25, treatment with 10 

ng/mL LPS for 24 hours stimulated nitrite production in RAW 264.7 macrophages, and 

co-incubation of 100-1000 nM SP or SP-Gly with LPS had no effect on the stimulation of 

nitrite production by RAW 264.7 macrophages. 
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Figure 25.  Co-incubation of 100-1000 nM SP or SP-Gly with 1 or 10 ng/mL LPS for 24 

hours had no effect on LPS stimulation of nitrite production by RAW 264.7 

macrophages. n=4.  Data were analyzed with a one-way way analysis of variance and 

followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered significant 

for all calculations.  * p < 0.05 versus control. 
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AOPHA-Me and PBA Virtually Dock in the ATP Binding Site of ASK1 

 Bunkoczi et al (2007) have reported the crystal structure of apoptosis 

signal-regulating kinase 1 (ASK1) bound to the kinase inhibitor staurosporine, see Figure 

25 for the structure of staurosporine.  It has been demonstrated that inhibition of ASK1 

results in decreased phosphorylation of JNK and p38 MAPK (Terao, Suzuki et al. 2012).  

We therefore used the molecular modeling software, AutoDock Vina, to investigate 

whether or not our inhibitors would overlap with the bound staurosporine when docked to 

the ATP binding site of ASK1.  To first validate the use of AutoDock Vina for this 

purpose, we docked staurosporine and observed it to be faithfully recapitulated with the 

crystallographically-determined binding of staurosporine.   

 

  

Figure 25.  Molecular structure of staurosporine. 

 

 Our results are illustrated in Figure 26.  In Figure 26A, it is evident that 

AOPHA-Me (yellow) and PBA (green) exhibit predicted overlap with both the virtually 

bound staurosporine (grey) and the crystallographically-determined binding of 

staurosporine (black).  We calculate a docking energy of -7.0 kcal/mol for binding of 

AOPHA-Me to ASK1, a docking energy of -5.9 kcal/mol for binding of PBA to ASK1, 

and a binding docking of -6.9 kcal/mol for binding of ATP to ASK1.  In addition, we 
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calculate a docking energy of -12.0 kcal/mol for the binding of staurosporine to ASK1, 

which is expected as staurosporine is known to bind more tightly than ATP to a number 

of kinases (Meggio, Deana et al. 1995).  Note that, in Figure 26B, the phenyl ring of both 

AOPHA-Me and PBA packs against the hydrophobic side-chains of the ASK1 residues 

Leu686, Val694, Ala707, and Leu810.  This is in agreement with the 

crystallographically-determined binding of staurosporine which was shown by Bunkoczi 

et al (2007) to also pack with its five-ring system against these hydrophobic residues of 

the binding pocket.  It should be noted that in studies using MKK7, the MAPK kinase 

upstream of JNK, AOPHA-Me and PBA did not bind to the ATP-binding site of MKK7. 
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Figure 26.  Docking of inhibitors into the ATP binding site of ASK1 using AutoDock 

Vina.  A.  Models of AOPHA-Me, PBA and staurosporine superimposed with the 

crystallographically-determined binding site of staurosporine.  Crystallographic 

staurosporine, black; Virtual staurosporine, grey; AOPHA-Me, yellow; PBA, green.   

B.  Superimposed models of AOPHA-Me, yellow, and PBA, green, shown with the main 

interacting residues of ASK1 in ball-and-stick representation.  Note that the phenyl ring 

of both AOPHA-Me and PBA packs against the hydrophobic side-chains of the ASK1 

residues Leu686, Val694, Ala707, and Leu810, in agreement with the 

crystallographically-determined binding of staurosporine (Bunkoczi, Salah et al. 2007).   
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Characterization of Inhibitor-Loaded Microparticles 

 In previous studies in this laboratory, we were unable to evaluate the efficacy of 

AOPHA-Me in a chronic model of inflammation in rats due to the low solubility of 

AOPHA-Me in various vehicles.  In addition, some chronic experiments had to be 

terminated early because signs of toxicity were evident in the animals, presumably from 

the solvent used to deliver the AOPHA-Me.  We therefore turned to the use of 

microparticles as a potential delivery method for AOPHA-Me in experimental chronic 

inflammation in rats.  In order to utilize this approach we obviously had to first construct 

and characterize these particles before they could be used in the appropriate animal 

experiments.  We used two different polymers to separately construct the particles.  We 

used PCADK which is unique in that it is rapidly hydrolyzed by acid.  We also used 

PLGA, a very commonly used polymer for microparticle formation with good 

biocompatibility properties.    

 

Synthesis of PCADK and determination of Molecular Weight 

 PCADK was synthesized as described in Methods, and based on GPC analysis 

was determined to have a weight average molecular mass of 10191 and a number average 

molecular mass of 4968.  A representative GPC spectrum for PCADK is shown in Figure 

27. 
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Figure 27.  The GPC spectrum of PCADK.  PCADK elutes from six to ten minutes.  The 

bar indicates the area from which the molecular mass was calculated from a standard 

curve as described in Methods. 

 

Preparation of AOPHA-Me-Loaded PCADK Particles 

AOPHA-Me loaded PCADK particles were prepared as described in Methods.  

Scanning electron microscopy was performed to determine the particle shape and size.  It 

is apparent from the Figure 28 that the particles were spheroids that ranged in diameter 

from 0.1 μm to 2.5 μm.   
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Figure 28.  SEM image of PCADK particles. 

Analysis of AOPHA-Me-Loaded PCADK particles 

PCADK particles were dissolved in 40% acetonitrile containing 0.1% TFA.    The 

solvent was analyzed for AOPHA-Me content using HPLC with a 40% acetonitrile 

solvent and a C18 column with a flow rate of 1 mL/min.  AOPHA-Me from AOPHA-Me 

PCADK particles eluted at 9.3 minutes and several peaks from empty PCADK particles 

eluted at various times over 30 minutes as shown in Figure 29.  A standard curve of pure 

AOPHA-Me was generated and it was found that PCADK particles contained 0.3% wt/wt 

of AOPHA-Me.   
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Figure 29.  HPLC spectrum of empty PCADK particles (panel A) and AOPHA-Me 

particles (panel B).  AOPHA-Me elutes at 9.3 minutes. 

 

in-vitro Release of AOPHA-Me from PCADK Particles 

PCADK particles were incubated in pH 7.4 and pH 5.0 buffers at 37 ˚C to mimic 

physiological temperature, as described in Materials and Methods.  At the indicated times 

over the course of a week the buffer was analyzed via HPLC for AOPHA-Me.  As shown 

in Figure 30, as expected, a rapid release of AOPHA-Me was observed at pH 5.0 while a 
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sustained release was obtained at pH 7.4.     
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Figure 30.  PCADK particles were incubated in pH 7.4 and pH 5.0 buffers as described in 

Methods.  At the indicated times the buffer was analyzed via HPLC for AOPHA-Me.  

n=3 

Preparation of PLGA Particles 

PLGA particles were prepared as described in Materials and Methods.  Scanning electron 

microscopy was performed to determine the particle shape and size, as shown in Figure 

31.  It is apparent from the Figure 31 that the particles were spheroids that ranged in 

diameter from 0.1 μm to 5.0 μm. 

 

 65



 

Figure 31.  SEM image of PLGA particles. 

 

Analysis of AOPHA-Me-Loaded PLGA Particles 

PLGA particles were dissolved in 40% acetonitrile containing 0.1% TFA.  The 

solvent was analyzed for AOPHA-Me content using HPLC, with a 40% acetonitrile 

solvent and a C8 column with a flow rate of 1 mL/min.  AOPHA-Me from AOPHA-Me 

PLGA particles eluted at 5.9 minutes under the conditions used, as shown in Figure 32.  

Only one significant peak eluted from empty PLGA particles at 2.5 minutes, as shown in 

Figure 32.  A standard curve of pure AOPHA-Me was generated and it was found that 

PLGA particles loaded with AOPHA-Me contained the inhibitor at 2% wt/wt.  
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Figure 32.  HPLC spectrum of empty PLGA particles (panel A) and AOPHA-Me PLGA 

particles (panel B).  AOPHA-Me elutes at 5.9 minutes. 

 

in-vitro release of AOPHA-Me-loaded PLGA particles 

PLGA particles were incubated in pH 7.4 and pH 5.0 buffers at 37 ˚C to mimic 

physiological temperatures, as described in Materials and Methods.  At the indicated 

times over the course of eight days the buffer was analyzed via HPLC for AOPHA-Me, 
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as described in Materials and Methods.  As shown in Figure 33 a sustained release of 

AOPHA-Me from PLGA particles was observed at both pH 7.4 and 5.0. 
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Figure 33.  PLGA particles were incubated in pH 7.4 and pH 5.0 buffers as described in 

Methods.  At the indicated times the buffer was analyzed via HPLC for AOPHA-Me.  

n=3. 

 

Anti-inflammatory Activity of Microparticle-Encapsulated AOPHA-Me  

 Having constructed and characterized AOPHA-Me-loaded microparticles we then 

used them as a treatment in experimental arthritis in rats induced by FCA.  Due to 

AOPHA-Me being insoluble in water this compound was previously dosed using organic 

solvents.  It was found that multiple doses using organic solvents as a carrier caused skin 

necrosis and injections had to be stopped (Sunman 2003).  AOPHA-Me-loaded 
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microparticles were suspended in sterile saline.  No signs of toxicity were observed in 

these experiments, presumably because saline was used as vehicle instead of a solvent.    

 Adjuvant arthritis was induced, as described in Materials and Methods, in rats.  

AOPHA-Me-loaded PCADK particles were dosed as a saline suspension i.p. at 200 

mg/kg during days 10-14 of the animal model of inflammation.  On day 15 the volume of 

the hindpaws was measured via liquid displacement.  As shown in Figure 34 rats that had 

received FCA developed swelling of both hindpaws and this was clearly evident from 

visual inspection and measurement of the rats.  Treatment with AOPHA-Me-loaded 

PCADK particles resulted in a statistically significant reduction in the hindpaw volume of 

both hindpaws.  It should be noted that treatment with empty PCADK particles resulted 

in a reduction in hindpaw volume, but the effect did not exhibit statistical significant.   
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Figure 34.  Effect of AOPHA-Me-loaded PCADK particles on adjuvant arthritis when 

dosed from days 10 to 14.  Empty particles controls were treated with empty PCADK 

particles. Adjuvant arthritis was induced on day 0 as described under Methods. Volumes 

of injected and contralateral paws were measured at various time points through day 15. 

Change in paw volume was calculated as the difference between the volumes of arthritic 

control, empty particle control, or AOPHA-Me-loaded particle-treated hindpaws and 

volumes of nonarthritic control hindpaws.  Data are presented as the mean S.E.M. for 

each group (n=6).  Data were analyzed with a one-way way analysis of variance and 

followed by Tukey’s post hoc test.  Values of p less than 0.05 were considered significant 

for all calculations.   
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 The effect of AOPHA-Me-loaded PLGA particles on adjuvant arthritis in rats was 

also investigated.  Adjuvant arthritis was induced as described in Materials and Methods 

in rats.  AOPHA-Me-loaded PLGA particles were dosed as a saline suspension i.p. at 200 

mg/kg during days 10-14 of the animal model of inflammation.  On day 15 the volume of 

the hindpaws was measured via liquid displacement.  As shown in Figure 35 rats that had 

received FCA developed swelling of both hindpaws and this was clearly evident from 

visual inspection of the rats.  However, as is evident from Figure 35 treatment with 

AOPHA-Me-loaded PLGA particles resulted in no statistically significant effect on 

hindpaw volume.   
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Figure 35.  Effect of AOPHA-Me-loaded PLGA particles on adjuvant arthritis when dosed 

from days 10 to 14.  Empty particles controls were treated with empty PLGA particles. 

Adjuvant arthritis was induced on day 0 as described under Methods. Volumes of injected 

and contralateral paws were measured at various time points through day 15. Change in paw 

volume was calculated as the difference between the volumes of arthritic control, empty 

particle control, or AOPHA-Me loaded particle-treated hindpaws and volumes of nonarthritic 

control hindpaws.  Data are presented as the mean S.E.M. for each group (n=6).  No group 

differed from the arthritic control group in a statistically significant manner.  Data were 

analyzed with a one-way way analysis of variance and followed by Tukey’s post hoc test.  

. 
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CHAPTER 4 

 

DISCUSSION 

 

Protein kinases comprise a class of enzymes which modify the activities of other 

enzymes by the addition of phosphate groups to tyrosine, serine or threonine amino acid 

residues.   Mitogen-activated protein kinases (MAPKs) comprise a family of 

serine/threonine protein kinases which transmit signals from cell surface receptors to the 

nucleus via a cascade of phosphorylation events, as shown in Figure 36 (Johnson and 

Lapadat 2002).  

MAPKs themselves are activated by a cascade of intracellular phosphorylation 

events following stimulation from a wide variety of receptors and receptor ligands.  

Stimulating factors and their receptors that activate MAPKs include: hormones and 

growth factors that act through receptor tyrosine kinases; cytokine receptors; peptides 

such as SP and their G-protein coupled, seven-transmembrane receptors; and 

transforming growth factor-beta related polypeptides, acting through Ser-Thr kinase 

receptors.   
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Substance P 

 TNF-α  

  

Figure 36.  The MAPK signaling cascade as illustrated by Pocrnich (Pocrnich, Liu 

et al. 2009).
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 Each MAPK family is composed of three tiers of kinases that are sequentially 

phosphorylated by the preceding MAPK family member.  First a MAP kinase kinase 

kinase phosphorylates a MAP kinase kinase, which then phosphorylates a MAP kinase.  

Phosphorylated MAPKs then activate several transcription factors such as NF-κB, AP-1, 

CREB, c-Jun, and STAT1; this leads to changes in gene expression affecting many 

aspects of cell function, such as upregulation of cytokines (Dong 2002).  Other targets of 

MAPKs include additional kinases, phosphatases and cytoskeletal elements.  Three 

families of mammalian MAPKs have been well characterized; the ERK, JNK, and p38 

MAPK families.  JNK and p38 MAPK are stress-activated MAPK families; while ERK is 

mainly activated by growth factors regulating cell growth. 

NF-κB is the central transcription factor for expression of genes involved in 

inflammatory and immune responses, such as the cytokines (e.g. TNF-α, IL-6, IL-1β) and 

the chemokines (Hayden and Ghosh 2012).  In mast cells, SP stimulates TNF-α via 

NF-κB activation by JNK and p38 MAPK, see Figure 36 (Azzolina, Guarneri et al. 2002; 

Azzolina, Bongiovanni et al. 2003).  LPS stimulation of TNF-α in RAW 264.7 

macrophages is controlled by ERK, JNK, p38 MAPK and NF-κB (Geppert, Whitehurst et 

al. 1994; Lee, Laydon et al. 1994; Swantek, Cobb et al. 1997).  

The results presented in this dissertation support the conclusion that AOPHA-Me 

and PBA reduce SP-stimulated TNF-α production by preventing phosphorylation of JNK 

and p38 MAPK in RAW 264.7 macrophages.  To demonstrate this, we first show that SP 

stimulates TNF-α expression in RAW 264.7 macrophages, as shown in Figures 8 and 10.  

This effect is both concentration dependent and reaches a maximal effect around 20-24 

hours.  We note that others have reported that SP stimulation results in TNF-α 
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upregulation in primary culture (Lee, Ho et al. 1994) but, to the best of our knowledge, 

our findings represent the first report on the effect of SP on TNF-α production in RAW 

264.7 macrophages.  Next, we report that both AOPHA-Me and PBA attenuate 

SP-stimulated TNF-α expression in RAW 264.7 macrophages, as shown in Figure 11.  

Compounds that can inhibit TNF-α signaling have been of particular interest in treating 

inflammatory diseases and indeed, we have shown that AOPHA-Me and PBA exhibit 

anti-inflammatory activity in rat models of both chronic and acute models of arthritis 

(Bauer, Sunman et al. 2007).  We note that Sun et al. (2008) have reported that treatment 

with SP increased phosphorylation of p38, but not of JNK, in RAW 264.7 macrophages; 

however they used a much lower concentration of SP in their work.  In addition, we 

report that PBA inhibits TNF-α upregulation by LPS in macrophages.        

It has been shown that upregulation of cytokines, such as TNF-α, in immune cells 

is generally controlled by the MAPK pathways (Dong 2002) and it would thus be 

expected that inhibition of MAPK activity would result in inhibition of cytokine 

upregulation.  Indeed, Azzolina et al (2002) have shown that SP upregulates TNF-α via 

activation of JNK and p38 MAPK in mast cells.  Similarly, the link between JNK and 

p38 MAPK activation and TNF-α upregulation has also been demonstrated for 

LPS-activated RAW 264.7 macrophages (Swantek, Cobb et al. 1997; Ajizian, English et 

al. 1999).  These findings support our conclusion that AOPHA-Me and PBA inhibition of 

TNF-α expression in SP-stimulated RAW 264.7 macrophages is a consequence of the 

inhibitory activities of AOPHA-Me and PBA on phosphorylation of JNK and p38 

MAPK.  In our view, it is also very likely that PBA inhibition of TNF-α upregulation by 

LPS in macrophages is due to inference in MAPK signaling.  It has been well established 
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that LPS stimulation of TNF-α expression is MAPK dependent, and we have 

demonstrated that PBA inhibits MAPK signaling.  

In contrast to our results with SP, we find that SP-Gly has no effect on TNF-α 

expression in RAW 264.7 macrophages, as shown in Figure 9.  We had hypothesized that 

SP-Gly and SP would have similar activities, on the assumption that amidation of SP-Gly 

to SP would readily occur.  It has long been assumed that the glycine-extended precursors 

of bioactive peptides have little or no bioactivity prior to amidation (Prigge, Mains et al. 

2000).  For example, SP-Gly-induced relaxation of rat aortic strips and stimulation of NO 

production in bovine endothelial cells is markedly reduced in the presence of inhibitors 

which prevent conversion of SP-Gly to SP (Oldham, Li et al. 1997; Abou-Mohamed, 

Huang et al. 2000).  It has also been shown that injection of SP-Gly and carrageenan with 

an amidation inhibitor, N,N-diethyldithiocarbamate, in rat paws has no effect on edema, 

whereas injection of SP itself with carrageenan and the same inhibitor elicited a 

significant increase in edema (Gilligan, Lovato et al. 1994).  It is therefore apparent that, 

at least under our experimental conditions, RAW 264.7 macrophages are unable to 

amidate exogenous SP-Gly to a degree that would stimulate TNF-α production. 

If RAW 264.7 macrophages are unable to amidate exogenous SP-Gly it raises the 

question of how our inhibitors, designed as amidation inhibitors, inhibit SP activation of 

JNK and p38 MAPK.  We found through the use of molecular modeling software 

Autodock Vina that AOPHA-Me and PBA are predicted to bind to the ATP binding site 

of apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPKs upstream of 

both JNK and p38 MAPK, with energies of -7.0 kcal/mol and -5.9 kcal/mol respectively.  

This is in comparison to ATP binding to the ATP binding site of ASK1 with an energy of 
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-6.9 kcal/mol.  Importantly, the phenyl ring of both AOPHA-Me and PBA packs against 

the hydrophobic side-chains of the ASK1 residues Leu686, Val694, Ala707, and Leu810.  

This is in agreement with the crystallographically-determined binding of staurosporine, a 

known ASK1 inhibitor, which was shown by Bunkoczi et al (2007) to also pack with its 

five-ring system against these hydrophobic residues of the binding pocket.  Inhibition of 

ASK1 has been shown to inhibit the activation of JNK and p38 MAPK in pancreatic β 

cells and could therefore provide a plausible explanation for the effects of AOPHA-Me 

and PBA on MAPK signaling (Terao, Suzuki et al. 2012).          

Nonsteroidal anti-inflammatory drugs (NSAIDs) and disease-modifying 

antirheumatic drugs (DMARDs) are the two most commonly used classes of drugs in 

treating rheumatoid arthritis and inflammation.  The use of anti-inflammatory compounds 

dates to antiquity as willow bark was used by the ancient Greeks (400 BC) to relieve 

fever and inflammation.  In the early 19th century salicin was determined to be the active 

molecule in willow bark, and this discovery spurred development of anti-inflammatory 

drugs.  The mechanism of action of NSAIDs was unknown Vane suggested in 1971 that 

aspirin-like drugs inhibit cyclooxygenase (COX), the enzyme responsible for the 

rate-limiting step of the biosynthesis of eicosanoids (Vane, 1971).  It has been established 

that COX catalyzes the formation of the endoperoxides hydroperoxy endoperoxide 

prostaglandin G2 and prostaglandin H2 from arachidonic acid.  The endoperoxides are 

then converted to prostanoids such as thromboxane (TXA2), prostacyclin (PGI2) and 

prostaglandin E2 (PGE2) (Botting and Botting, 2004).  COX exists as several isoforms, 

including COX-1, a constitutive isoform that is ubiquitously expressed in almost all 
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tissues, and COX-2 which is an inducible isoform that is upregulated during 

inflammation (Seibert et al., 1990).           

 Over the years NSAIDs have proven to have several therapeutic uses.  First and 

foremost, they are used as analgesics for mild-to-moderate pain.  The analgesic activity 

of NSAIDs is much less potent than that of opioids, so although NSAIDs do not possess 

the unwanted side effects of opioids on the central nervous system, NSAIDs cannot be 

substituted for opioids in cases of severe pain.  NSAIDs also lower fever (i.e. they are 

anti-pyretics).  The most common long-term use of NSAIDs is for the treatment of 

chronic inflammation in musculoskeletal disorders, such as rheumatoid arthritis, 

osteoarthritis, and ankylosing spondylitis.   

 The use of NSAIDs can give rise to serious side-effects due to non-selective 

inhibition of both COX-1 and COX-2.  Of greatest concern is their ability to inflict 

gastric or intestinal ulceration which can result in anemia from blood loss.  The inhibition 

of gastric prostaglandins (PGI2 and PGE2), which protect the gastic mucosa, can result in 

tissue damage and bleeding.  These eicosanoids inhibit stomach acid secretion, promote 

mucosal blood flow and enhance the production of cytoprotective mucus. 

     The prostanoid, TXA2 promotes platelet aggregation and is therefore essential 

for proper functioning of these cells.  Aspirin, the prototypical NSAID, is an irreversible 

inhibitor of COX, and it inhibits biosynthesis of TXA2 by activated platelets.  Because 

platelets lack a nucleus, aspirin-inhibited platelets cannot resynthesize COX so new 

platelets are required to replace the COX activity that was been lost upon aspirin 

treatment.   
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 NSAIDs also impair renal function by inhibiting vasodilatory prostaglandins.  

This leads to restricted renal blood flow and glomerular filtration.  Hypertension and 

kidney edema can also result from retention of water and salt.  Chronic use of NSAIDs 

can sometimes result in renal papillary necrosis due to decreased blood flow (i.e. 

analgesic nephropathy) (De Broe and Elseviers 1998).        

 In recent years, selective COX-2 inhibitors (Celebrex, Vioxx, and Bextra) were 

developed with the goal of retaining anti-inflammatory activity while minimizing gastric 

or intestinal side-effects.  The rationale here is that by selectively inhibiting the COX-2 

inducible isoform, the COX-1 constitutive isoform can continue to function and protect 

against ulceration.  In addition, unlike aspirin, selective COX-2 inhibitors do not impede 

platelet aggregation (Patrignani, Sciulli et al. 1999).  The COX isoforms are largely 

homologous, but they do possess several key differences in their structures; it is these 

differences that permit the design of selective COX-2 inhibitors.  COX-1 has an 

isoleucine at position 523 while COX-2 has a slightly smaller valine at position 523.  The 

smaller valine in COX-2 allows a drug to gain access to a hydrophobic side pocket which 

is otherwise blocked by the isoleucine in COX-1 (Wong et al., 1997).  Celebrex and 

Vioxx both occupy this pocket in COX-2 with a phenysulfonamide or 

phenylmethylsulfone function group, respectively (Gierse et al., 1999; Price and 

Jorgensen, 2000; Walker et al., 2001; Hood et al., 2003).  In addition, COX-2 contains a 

flexible leucine at position 503 while COX-1 contains a significantly bulkier 

phenylalanine amino acid residue.  Position 503 is near the active site of COX and the 

additional flexibility afforded by the leucine in COX-2 contributes to inhibitor binding 

(Marnett, Rowlinson et al. 1999).           
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 It has been well established that COX-2 selective inhibitors indeed exhibit less 

gastrointestinal toxicity and are better tolerated than non-selective NSAIDs (Degner, 

2004).  Selective COX-2 inhibitors have also been shown to possess equipotent activity 

in treating osteoarthritis and rheumatoid arthritis patients.  Unfortunately, use of selective 

COX-2 inhibitors has been found to increase the risk of myocardial infarction and stroke 

(Bombardier et al., 2000; Bresalier et al., 2005).   

The mechanism of this increased cardiovascular risk appears to be related to the 

inhibition of PGI2 production that results in alteration of the balance between PGI2 and 

TXA2  (Grosser, Fries et al. 2006).  TXA2 is produced by COX-1 in activated platelets 

and promotes aggregation of these cells (Patrignani, Sciulli et al. 1999).  PGI2 is a 

vasodilator that inhibits platelet activation and is synthesized downstream of both COX-1 

and COX-2 by blood vessels in vascular smooth muscle cells and endothelial cells 

(Belton, Byrne et al. 2000).  Therefore, selective inhibition of COX-2 leads to a change 

in the balance between PGI2 and TXA2 since production of PGI2 is inhibited but 

production of TXA2 is unaffected.  PGI2 receptor-deficient mice have an increased risk of 

blot clot formation (i.e. thrombosis) when subjected to appropriate stimuli (Murata et al., 

1997).  In addition, COX-2 deficient mice (COX-1+/- COX-2-/-) have a high incidence of 

mortality due to spontaneous thrombosis (Riehl, 2010).  Elevated levels of plasminogen 

activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis, give rise to a decreased 

occlusion time in the carotid artery thrombosis model for COX-2 deficient mice.  

Elevated levels of PAI-1 are associated with decreased PGI2 production, and this was 

observed in COX-2 deficient mice.   
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The risk of myocardial infarction and stroke has led the FDA and European 

Medicines Agency to withdraw Vioxx and Bextra from the market in the USA and 

Europe.  Both agencies have required that warnings be placed on Celebrex.  In addition, 

the FDA has placed a similar warning on all traditional NSAIDs. 

NSAIDs do not halt the progression of diseases such as rheumatoid arthritis.  

Although they relieve pain, swelling and improve a patient’s quality of life, joint 

destruction continues to progress, eventually leading to loss of joint function.  DMARDs 

differ from NSAIDs in that treatment with DMARDs can actually halt rheumatoid 

disease progression and joint destruction (Saag, 2008).  There are two classes of 

DMARDs: the “traditional DMARDs” are mainly small molecules that were originally 

developed for other therapeutic purposes, and the “biological DMARDs” are a class of 

recombinant proteins which have well-defined functions related to interrupting pro-

inflammatory signaling molecules.  Some of these -- methotrexate (MTX) -- are 

immunosuppressant drugs.  The mechanism of action of these traditional DMARDs is 

still not clearly understood, but is thought to be related to a depression of immune system 

function (Rath, Sander et al. 2011).   

MTX is considered to be the "gold-standard" of treatment for rheumatoid arthritis.  

If monotherapy with MTX fails, treatment will often continue with a combination of 

MTX and another DMRD.  Although the biological action of MTX is known to be 

inhibition of dihydrofolate reductase, it is not entirely clear how it functions as a DMRD.  

MTX has been found to raise the concentration of adenosine at sites of cellular injury 

(Cronstein, 1993).  Treatment of mice with MTX was found to be correlated with a 

reduction in the accumulation of leukocytes in inflamed air pouches, thereby reducing the 
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inflammatory response.  This reduction in leukocyte accumulation was eliminated upon 

administration of a selective adenosine A2 receptor antagonist, which thereby counteracts 

the effects of the increased adenosine concentration.          

The most commonly prescribed biological DMARDs are TNF-α inhibitors 

(Singh, 2012).  Two classes of TNF-α inhibitors are currently on the market.  The first 

class is comprised of recombinant monoclonal antibodies against TNF-α.  The second 

class is exemplified by Enbrel, a soluble TNF-α receptor fused to the IgG1 antibody.  

Inhibition of TNF-α signaling suppresses the immune system thereby mitigating the 

inflammatory response. 

The use of DMARDs can give rise to many unwanted and potentially deadly 

side-effects.  In particular, DMARDs can act as immunosuppressant agents, leading to 

infection or a worsening of existing infections.  The risk of contracting tuberculosis, or 

the possibility that a patient already has a latent case of tuberculosis are particular 

concerns  in the use of biological DMARDs (Roth, 2012).  The FDA now requires drug 

manufacturers to include a black box warning on biological TNF-α inhibitors because of 

this risk of infection.     

 Besides the side-effects of biological DMARDs, there are other issues that may 

complicate their use.  Biological DMARDs are proteins and therefore cannot be taken 

orally because they would be destroyed by the digestive system.  They must be 

administered by subcutaneous injection.  In addition, biological DMARDs are very 

expensive.  For example, a yearly regiment of Enbrel can cost approximately $20,000.  

Although the combination of MTX and a biological TNF-α inhibitor is the preferred 

treatment in cases where monotherapy with MTX fails, it has been determined that triple 
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therapy with MTX and two traditional DMARDs, sulfasalazine and hydroxychloroquine, 

is just as effective as Enbrel-MTX therapy but much less expensive (O’Dell, 2012). 

 Because of the severe side-effects of current DMARDs and selective COX-2 

inhibitors there is a great need to develop new anti-inflammatory drugs.  In addition, not 

all patients experience remission of their disease using current treatment regiments; 

therefore, new therapies targeting different metabolic pathways are needed.  Small 

molecule inhibitors of non-receptor protein kinases, which participate in intracellular 

signaling cascades, are of current interest for the treatment for inflammatory conditions 

(Cohen and Fleischmann 2010).  For example, several small molecule Janus kinase 

(JAK) inhibitors have proceeded through phase II or phase III clinical trials for the 

treatment of rheumatoid arthritis, irritable bowl syndrome, and psoriasis (Garber 2011; 

Fleischmann, Kremer et al. 2012).  In addition, Xeljanz, a small molecule JAK inhibitor, 

was recently approved by the FDA for clinical treatment of rheumatoid arthritis.  

Inhibition of the JAK pathway prevents the activation of several transcription factors and 

thereby impedes upregulation of a number of pro-inflammatory cytokines such as TNF-α 

and IL-6 (Quintás-Cardama, Vaddi et al. 2010).   

 There are four JAK isoforms, JAK1, JAK2, JAK3 and TYK2.  All members of 

the JAK family are upstream in the signaling cascade of pro-inflammatory pathways 

(Rawlings, Rosler et al. 2004).  Over 60 cytokines signal through receptors that require 

JAKs for activity.  Mice deficient in JAK1 and JAK2 undergo embryonic death while 

JAK3 knockout mice develop immunodeficiency disorders (Nosaka, Van Deursen et al. 

1995; Parganas, Wang et al. 1998; Rodig, Meraz et al. 1998).  Xeljanz inhibits JAK1, 

JAK2 and JAK3, but treatment with Xeljanz avoids deadly complications such as death 
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and immunosuppression because it only partially inhibits these kinases (Garber 2011).  

However, Xeljanz carries a black box warning informing patients that treatment with 

Xeljanz carries an increased risk for infection, cancers and lymphoma.   

 Three other JAK inhibitors are currently being tested in clinical trials.  In contrast 

to Xeljanz these inhibitors each are selective for JAK isoforms.  LY3009104 inhibits 

JAK1 and JAK2, VX-509 inhibits JAK3 and GLPG0634 inhibits JAK1.  These 

compounds are expected to have different therapeutic windows, and avoid some of the 

side-effects that a non-selective JAK inhibitor such as Xeljanz carries.     

 Previous work in our laboratory has shown that AOPHA-Me is an 

anti-inflammatory agent in acute carragenina-induced inflammation in rats.  We have 

now demonstrated that AOPHA-Me when encapsulated in PCADK particles displays 

anti-inflammatory activity in chronic FCA-induced inflammation in rats.  Of note is that 

when AOPHA was encapsulated in PLGA particles no anti-inflammatory effect was 

observed even though a greater amount of AOPHA-Me was successfully encapsulated in 

the particles.  As confirmed by our in-vitro release results, PCADK particles have the 

unique property of being rapidly degraded in the presence of acid compared to PLGA 

particles.  We therefore conclude that the anti-inflammatory activity of 

AOPHA-Me-loaded PCADK particles is due, in part, to the acid-labile properties of 

PCADK polymer.  

 Also of note was that we observed that empty PCADK and PLGA particles 

reduced the symptoms of edema in the model but not in a statistically significant manner.  

It has been found that injection of mineral oil alone affords protection against the 

inflammatory response of injected FCA in rats (Zhang 1999).  The authors hypothesized 
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that the mineral oil can affect the balance of immune cell response in the host leading to 

protection against FCA.  Similarly, we hypothesize that empty microparticles could also 

affect host immune cell response.   

 In summary we have demonstrated that the anti-inflammatory compounds 

AOPHA-Me and PBA interrupt TNF-α upregulation in RAW 264.7 macrophages by SP.  

In addition, we have also shown that these compounds inhibit the phosphorylation and 

thereby activation of JNK and p38 MAPK by SP.  Molecular modeling predictions are 

consistent with the view that our compounds bind to the ATP-binding site of MAPKs 

upstream of JNK and p38 MAPK, which would thereby inhibit JNK and p38 MAPK 

phosphorylation.  We have also shown that AOPHA-Me, when encapsulated in PCADK 

microparticles, is an effective treatment for edema induced by FCA in rats.     

 AOPHA and PBA were designed and confirmed to be amidation inhibitors.  Our 

results suggest that the inhibition of both TNF-α signaling and MAPK activation by these 

compounds is unrelated to their activity as amidation inhibitors.  It is conceivable that 

this dual action of inhibiting PAM and MAPKs may be of some advantage in enhancing 

the anti-inflammatory activity of a therapeutic molecule.  Pro-inflammatory amidated 

peptide hormones such as SP activate MAPK signaling.  Thus, inhibition of amidation 

and MAPK signaling would be expected to further inhibit pro-inflammatory signals from 

peptide hormones than an amidation inhibitor alone.  It is hopeful that future studies will 

help elucidate the relative advantages of inhibiting amidation and/or MAPK signaling in 

the design of the next generation of anti-inflammatory drugs.

 86



 

PART 2: 

IDENTIFICATION OF THE STEREOCHEMICAL DEPENDENCE 

OF MYO-INOSITOL-1,2,3,4,5,6-HEXAKISPHOSPHATE 

INHIBITION TO EARLY-STAGE LOBLOLLY PINE SOMATIC 

EMBRYO GROWTH 
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CHAPTER 5 

INTRODUCTION 

 

Planting and harvesting of Loblolly pine (LP, Pinus tadea) dominates the forestry 

industry in the southern USA, with over one billion seedlings planted per year (Schultz 

1999).  LP belongs to the gymnosperms, which are vascular plants whose seeds are not 

contained by a fruiting body.  Somatic embryogenesis (SE), the technique of asexually 

generating plant embryos in tissue culture, holds great promise for the clonal 

reproduction of high value trees such as LP produced from breeding and genetic 

engineering programs.          

 

Reproduction in gymnosperms 

Reproduction in plants proceeds by the process called the alternation of 

generations where a multicellular diploid body, the sporophyte, produces spores by 

meiosis which develop into a multicellular haploid body, the gametophyte, by mitotic 

division (Goldberg, de Paiva et al. 1994).  The gendered gametophyte then produces 

gametes, either sperm or eggs, by mitosis.  The sperm and egg then combine to produce a 

diploid embryo which by mitotic division matures to become a new sporophyte, thus 

completing the cycle.  This is in contrast to animals, where a diploid organism directly 

produces haploid gametes by meiosis.  In pines, the tree is the dominant sporophyte life 

stage.  In pines, the gametophyte life stage exists only for reproduction and is contained 

within the cones of the sporophyte.  The sporophyte produces two types of spores, 

microspores and megaspores, which are produced by the microsporangia and 
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megasporangia, respectively (Reiser and Fischer 1993).  These reproductive organs are 

housed in separate cones on the same tree.  The microspores develop into pollen.  The 

pollen is released by the tree and brought to the ovule of either the same or a different 

tree by either winds or insects where it develops into the male gametophyte.  The male 

gametophyte then produces sperm.  The macrospore is retained by the pine within cones 

and develops into a female gametophyte (FG) which produces two to six eggs.  The eggs 

are fertilized when the female gametophyte takes in the sperm of the male gametophyte 

via a structure called a pollen tube which is grown by the male gametophyte.   

 Only one embryo typically survives embryogenesis to full development.  After 

fertilization, this embryo grows inside the FG which is encompassed by the seed.  The 

embryo passes through three stages of development, proembryogensis, early 

embryogenesis and then late embryogenesis.  Figure 37 shows a classification system, 

developed by Pullman and Webb (1994), where LP embryogenesis is subdivided into 

nine distinct stages based on morphological characteristics of the embryo. 

 Proembryogensis, which is equivalent to stage 1, involves the initial cell divisions 

after fertilization but before formation of the embryo.  The proembryo is divided into four 

tiers of cells with each tier being composed of four cells (Owens 2006).  One of these 

tiers develops into the embryo proper and another becomes the suspensor system.  The 

suspensor system provides functions such as, physically supporting the embryo inside the 

FG, producing growth hormones and facilitating nutrient transfer from the egg and FG.  

The embryo is nourished by the egg cytoplasm during this stage.  During early and late 

embryogenesis the embryo’s nourishment is supplied by the FG.   
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 Early embryogenesis, occurs during stages 2-4, and involves suspensor elongation 

and formation of the root meristem.  The undifferentiated embryonic cell mass also 

continues to grow.  During early embryogensis, the embryo and suspensor system are an 

intertwined mass of tubular and isodiametric cells.   

 Late embryogenesis, includes stages 5-9, and involves the formation of the polar 

meristems of the root and shoot via differentiation in the embryonic mass.  At stage 9 the 

suspensor system undergoes programmed cell death.  Following seed dispersal, the 

dormant embryo will germinate and form a seedling.   
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Figure 37.  Zygotic embryos of Loblolly pine, stages 1 through 9.2, modified from 

(Cairney and Pullman 2007). 
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Somatic Embryogenesis 

 SE is a tissue culture technique where a plant is clonally propagated from an 

embryonic cell line which was cloned from either zygotic embryos or FGs.  It also refers 

to the development of the somatic embryo, as illustrated in Figure 38.  Somatic 

embryogenesis is initiated from a dissected seed when either the zygotic embryo or FG is 

placed in tissue culture medium containing plant growth regulators, such as auxin and 

cytokinin.  These regulators induce the plant tissue to proliferate into a tissue mass 

containing multiple somatic embryos (Cairney and Pullman 2007).  These stage 1 and 2 

somatic embryos are then induced to multiply in either liquid or solid culture.  The 

somatic embryos are clones of each other.  During the development and maturation 

phase, which encompasses stages 3-7, somatic embryos are induced to develop into stage 

8 and 9 embryos capable of germination.  Maturation of somatic embryos is typically 

achieved on a semi-solid medium over 3 to 6 weeks.  Perhaps the most important 

distinction between zygotic and somatic embryogenesis is that the somatic embryo is 

grown in the absence of the FG.  Thus all of the nutrients and chemical messengers 

supplied by the FG would be absent in somatic embryogenesis and must be supplied by 

the tissue culture medium.   
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Figure 38.  Somatic embryos of Loblolly pine, stages 1 through 9.1 modified from 

(Cairney and Pullman 2007). 
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Usefulness of SE in LP clonal forestry 

Wood is used as a raw material in products such as paper and building materials 

in addition to a myriad of individual consumer products such as furniture.  It is also used 

as an energy source, notably within a paper mill where the unused portion of the tree is 

incinerated.  Different industries desire various properties from trees such as faster 

growth, resistance to disease and insects and modification of the lignin content.  These 

traits can be selected by breeding programs or genetic engineering and superior trees are 

propagated by control of pollination, plant cutting, and micro-propagation.  Somatic 

embryogenesis can also be used to mass produce clones of superior trees.  Although 

commercially successful in trees such as Eucalyptus and Poplus, somatic embryogenesis 

has not been as successful for LP.  This is not due to a single factor but rather low culture 

initiation and survival, low somatic embryo germination and loss of desired genotypes 

over time all contribute to difficulty in LP SE.   

 

myo-Inositol-1,2,3,4,5,6-Hexakisphosphate 

 myo-inositol-1,2,3,4,5,6-hexakisphosphate (myo-InsP6), also called phytic acid, is 

one of the isomers InsP6.  All have six phosphate groups attached to six carbon groups.  

Figure 39 illustrates the structures of InsP6 and its isomers.  myo-InsP6 is ubiquitous in 

plant and animal cells (Abel, Anderson et al. 2001).  It serves as a source of phosphate 

and inositol storage in plants (Raboy 2003).  myo-InsP6 has been found to possess anti-

cancer activity in human cell lines such as colon carcinoma HT-29 cells (Sakamoto, 

Venkatraman et al. 1993), erythroleukemia K562 cells (Shamsuddin, Baten et al. 1992), 

prostate carcinoma DU145 cells (Singh, Agarwal et al. 2003), and cervical carcinoma 
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HeLa cells (Ferry, Matsuda et al. 2002) and in animal models of pulmonary neoplasia 

(Wattenberg 1995), colon cancer (Challa, Rao et al. 1997) and skin tumors (Gupta, Singh 

et al. 2003).  

                          

Figure 39. Stereoisomers of inositol hexakisphosphate.  

 

When dosed with inositol, myo-InsP6 was found to improve the effect of 

chemotherapy when given as an adjunct treatment in human colon cancer patients 

(Druzijanic, Juricic et al. 2004).  Treatment also improved patients’ quality of life by the 
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diminishing side effects of chemotherapy such as nausea, vomiting, and alopecia.  It also 

prevented the loss of white blood cells and platelets.  In addition, myo-InsP6 treatment in 

lung cancer was found to increase the regression rate of dysplastic lesions (Lam, 

McWilliams et al. 2006).   Conversely, when used as an adjuvant treatment with 

chemotherapy for breast cancer, myo-InsP6 and inositol was found to have no effect on 

tumor markers (Bacic, Druzijanic et al. 2010).  However, the patients’ quality of life was 

markedly improved by treatment with myo-InsP6 and inositol. 

myo-InsP6 is a chelating agent and due to its attraction for cations such as 

calcium, magnesium, iron, and zinc it has been historically classified as an anti-nutrient.  

However it has been shown to have benefits when taken as a dietary supplement where it 

has been shown to posses activity preventing kidney stone formation in rats (Grases, 

Garcia-Gonzalez et al. 1998) and lowering serum cholesterol in rats (Jariwalla, Sabin et 

al. 1990).  In addition there is evidence it serves as a co-factor in DNA repair (Hanakahi, 

Bartlet-Jones et al. 2000) and in yeast it is involved in mRNA export from the nucleus to 

the cytosol (York, Odom et al. 1999). 

 

Isomers of InsP6 

While myo-InsP6 is ubiquitous, the other stereoisomers of InsP6 are rarely found 

in nature.  scyllo-, neo-, and D-chiro-InsP6 have been isolated from soil (Cosgrove 1980).  

However, only neo- and D-chiro-InsP6 have ever been found in an organism.  neo- and 

D-chiro-InsP6 have been found only in human intestinal amoebae and velvet mesquite 

leaves, respectively (L'Annunziata and Fuller 1971; Martin, Laussmann et al. 2000).  

muco-InsP6 was also reported as being detected in velvet mesquite leaves but this finding 

 96



has been criticized on analytical grounds (L'Annunziata and Fuller 1971; Cosgrove 

1980).  The remaining four inositol stereoisomers (allo, L-chiro, cis, and epi) do not 

appear to occur in nature in their phosphorylated forms.   
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CHAPTER 6 

MATERIALS AND METHODS 

Materials 

 Phytic acid dodecasodium salt hydrate from rice was obtained from Sigma (St 

Louis, MO).   muco-inositol hexakisphosphate (muco-InsP6) was a generous gift by Dr. 

Alan Richardson from the collection of the late Dr. Dennis Cosgrove.  There is some 

uncertainty as to the barium stoichiometry in this muco-InsP6 material, and due to the 

very limited quantity available to us we were unable to carry out any experiments to 

resolve this uncertainty.  The range of muco-InsP6 concentrations tested was such that 

even if the barium stoichiometry in the sample was as low as zero or as high as six, the 

tested concentrations spanned the range over which InsP6 itself exhibits inhibitory 

activity. 

 

Preparation of maintenance and multiplication media (1133 and 1250) 

 Media components and concentrations (1133 and 1250) are listed in Table 1.  

Both media were prepared by mixing all the reagents with the exception of abscisic acid 

and glutamine, adjusting the pH to 5.7 with 1N KOH and autoclaving the resulting 

mixture in the absence (1133) or the presence (1250) of Gelrite using the liquid cycle 

(highest temperature of 121 °C).  Abscisic acid and glutamine were filter-sterilized 

through a 0.2 μm syringe filter (Pall, East Hills, NY) and then added to the autoclaved 

media mixture.  Two ml of the subsequent media mixture was poured into each well of a 

24-well Costar #3526 cluster plate (Corning, Corning, NY). 
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Table 1.  Media ingredients of media 1133 and 1250. 

 

Embryogenic Cell Culture Maintenance 

 Embryogenic cultures were maintained as described in Pullman, Johnson et al. 

(2003). Cultures were stored in 250-ml Erlenmeyer flasks incubated in the dark at 20 to 

22°C. Every seven days, the contents of the culture flask were poured into sterile 

centrifuge tubes and settled by gravity for 20 min.  The old liquid media was decanted, 

settled cell volumes were measured to monitor the cell growth, and cells were 

resuspended in media 1133 at a density of 1 ml settled cells/9 ml medium (5 ml of settled 
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cells/45 ml of media 1133).  The cultures were rotated at 90-100 rpm and maintained 

with weekly transfers at the same ratio of cells to medium. 

 

Early-stage somatic embryogenic multiplication bioassay  

 The staging system illustrated in Figure 40 was used to evaluate morphological 

development in zygotic and somatic embryos.  Somatic embryos at stage 2 were isolated 

by forceps from suspension culture and placed on 2 mL of multiplication medium 1250 

contained in 24-well plates.  myo- InsP6 and muco-InsP6 stock solutions were adjusted to 

pH 5.7 using MES buffer and sterilized with a 0.2 μm syringe filter.  50 microliters of 

sterile solution was topically applied to each stage 2 somatic embryos.  Embryos were 

grown in the dark at 23-25 oC and after four to seven weeks the diameter of the 

embryogenic tissue was measured with a dissecting microscope using a calibrated 

eyepiece reticle.  Typically a single embryo, approximately 1 mm in size, grows into a 

mass of multiple embryos about 5-9 mm in diameter depending on culture genotype, 

medium contents, and time.   
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Figure 40.  Illustration of early-stage somatic embryo growth bioassay.  A single stage 2 

embryo is placed in on 2 mL of multiplication medium 1250 contained in 24-well plates.  

In 4-6 weeks, the single embryo will multiply into a colony of embryos 5-9 mm in 

diameter.     

 

Statistical analysis 

 All the data were evaluated by multifactor analysis of variance.  The significant 

differences between means of each treatment were determined by the multiple range test 

at 95% level of significance.  Both analyses were performed using Statgraphics Plus 

Version 4.0 (Manugistics, Rockville, MD).   
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CHAPTER 7 

RESULTS 

  

In previous work, we have shown that extracts from early-stage FGs stimulate growth 

and multiplication of early-stage somatic embryos, whereas water extracts from late-stage 

FGs contain substance(s) inhibitory to early-stage somatic embryo growth (De Silva, 

Bostwick et al. 2008).  The early-stage stimulator was isolated and determined to be citric 

acid on the basis of NMR and mass spectrometry.  Topical application of citric acid to LP 

somatic embryos was found to be stimulatory to early-stage growth.  In addition, the 

amount of citric acid isolated from FGs (65 nmoles per stage 2-3 FG) was found to be in 

good correlation with the amount of citric acid (25-50 nmoles) that stimulates early-stage 

embryo growth.    

 As shown by us, identical exact mass and fragmentation patterns obtained from 

high resolution exact mass measurement and MS/MS analysis under negative mode 

clearly identified a purified inhibitor of early-stage LP somatic embryo growth from 

late-stage FG tissue as one of the isomers of inositol-1,2,3,4,5,6-hexakisphosphate (Wu, 

Cameron Sullards et al. 2012).  The active molecule was then identified as myo-inositol 

hexakisphosphate on the basis of 1H-, 31P- and 13C-NMR, 1H-1H COSY, 1H-31P HSQC 

and 1H-13C HSQC, when compared to an authentic standard of myo-InsP6. 

 

Concentration dependence of bioactivity on myo-InsP6 

Bioassays were carried out to confirm that the myo-InsP6 authentic standard inhibits 

the early-stage somatic embryo growth.  Results for five genotypes (51, 222, 433, 279, 
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132) tested at none and five concentrations of myo-InsP6 are averaged and shown in 

Figure 41.  The myo-InsP6 standard at five concentrations was found to inhibit somatic 

embryo growth in a statistically significant manner.  Furthermore, inhibition 

corresponding to the concentration of myo-InsP6 actually isolated from female 

gametophytes (0.32 µM in the bioassay well) was the most significant.  An additional 

two genotypes were tested at none and 0.32 µM.  All seven genotypes tested showed 

reduced growth in the bioassay with application of InsP6 at 0.32 µM; differences were 

statistically significant at P = 0.05. 

 

 

Figure 41.  Bioassay results averaged for five genotypes (51, 222, 433, 279, 132) tested at 

different concentrations of myo-InsP6 standard. Means of five genotypes are shown along 

with 95% least significant difference (LSD) intervals for each concentration of myo-InsP6 

tested. 
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muco-IP6 does not inhibit early-stage somatic embryo growth 

Bioassays were carried out to test whether or not muco-InsP6, a stereoisomer of 

myo-InsP6, also inhibits early-stage embryo growth.  Results for one genotype (652) 

tested at none and six concentrations of muco-InsP6 are shown in Table 2.  It is evident 

from the data that muco-InsP6 at six concentrations does not inhibit somatic embryo 

growth. 

 

Table 2. Effect of muco-InsP6 on early-stage somatic embryo growth. 

 

Diameter values are followed by their standard error.  No treatment was statistically 

different from any other group, ANOVA p > 0.05. 

1 Calculated muco-InsP6 molar concentration ranges for barium stoichiometry from 

zero to six (see ‘Materials and Methods’ section). 
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CHAPTER 8 

DISCUSSION 

 

Clonal forestry is beset by many challenges.  Tree plantations require extensive 

tracts of land to be dedicated to only growing trees and years of growing time are 

required before the trees can be harvested.  The trees can also be lost to a variety of 

natural disasters such as fire, disease and storms before they are harvested. 

Tree plantations of elite tree genotypes allow rapid growth and harvesting of 

wood.  Other advantages of clonal propagation of trees via SE include the consistent 

production of the same genotype, the ability to quickly plant new genotypes according to 

changes in the environment, and the ability to better control the genetic diversity of a tree 

plantation.  However, only 12% of wood consumption comes from genetically modified 

tree plantations.  Most commercial forestry operations utilize wild trees or come from 

basic seed collections (Gupta, Pullman et al. 1993; Merkle and Dean 2000) 

It should be possible to double the biomass harvested of clonally propagated trees 

compared to a conventional tree plantation (Ragauskas, Williams et al. 2006).  Among 

the many advantageous traits that can be introduced into clonally propagated trees 

include disease and pest resistance, tolerance for drought and cold conditions, increased 

nitrogen acquisition, a reduction in root systems, and increased cellulose content that is 

more easily processed. 

 Currently, somatic embryos of LP do not fully develop.  Depending on the 

specific genotype, varying levels of success in LP SE have been achieved.  However, no 

genotype consistently develops past stage 9.1 (see Figure 38).  It is also not uncommon to 
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face low initiation rates, low culture survival, low maturation rates and low germination, 

as well as low or no embryo production.  To overcome these obstacles it is necessary to 

further understand the molecular biology of SE and identify signaling molecules that 

affect SE. 

 In previous work, we have shown that extracts from early-stage FGs stimulate 

growth and multiplication of early-stage somatic embryos, whereas water extracts from 

late-stage FGs contain substance(s) inhibitory to early-stage somatic embryo growth (De 

Silva, Bostwick et al. 2008).  The early-stage stimulator was isolated and determined to 

be citric acid on the basis of NMR and mass spectrometry.  Topical application of citric 

acid to LP somatic embryos was found to be stimulatory to early-stage growth.  In 

addition, the amount of citric acid isolated from FGs (65 nmoles per stage 2-3 FG) was 

found to be in good correlation with the amount of citric acid (25-50 nmoles) that 

stimulates early-stage embryo growth.    

As shown by us, identical exact mass and fragmentation patterns obtained from 

high resolution exact mass measurement and MS/MS analysis under negative mode 

clearly identified a purified inhibitor of early-stage LP somatic embryo growth from 

late-stage FG tissue as one of the isomers of inositol-1,2,3,4,5,6-hexakisphosphate (Wu, 

Cameron Sullards et al. 2012).  The active molecule was then identified as myo-inositol 

hexakisphosphate on the basis of 1H-, 31P- and 13C-NMR, 1H-1H COSY, 1H-31P HSQC 

and 1H-13C HSQC, when compared to an authentic standard of myo-InsP6.   

  myo-InsP6 is ubiquitous and the most abundant inositol phosphate derivative in 

eukaryotic cells.  It is known for its anticancer activity in reducing the proliferation of 

malignant cells (Shamsuddin, Baten et al. 1992; Shamsuddin, Yang et al. 1995; Ferry, 
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Matsuda et al. 2002).  Additionally, myo-InsP6 increases differentiation of malignant 

cells leading to reversion to the normal phenotype with decreased production of tumor 

markers (Shamsuddin, Vucenik et al. 2005).  Some evidence has begun to emerge that 

myo-InsP6 may also function as a signaling molecule in plant cells.  Lemtiri-Chlieh et al. 

(2000) reported that the plant stress hormone, abscisic acid, increases myo-InsP6 in intact 

guard cells of Solanum tuberosum and that InsP6 inhibits the inward rectifying K+ current 

of S. tuberosum and Vicia faba guard cell protoplasts in a Ca2+-dependent manner.  

Subsequently (Lemtiri-Chlieh, MacRobbie et al. 2003), they showed by laser uncaging of 

myo-InsP6, in V. faba guard cell protoplasts loaded with calcium-sensitive dye, that InsP6 

causes release of Ca2+ from internal stores.  It should also be noted that Tan et al. (2007) 

have recently reported that InsP6 is a cofactor in the transport inhibitor response 1 protein 

that senses and becomes activated by the phytohormone auxin.  However, reduction of 

proliferation in plant cells by myo-InsP6 has not been reported to date, and many aspects 

of the function of myo-InsP6 in plants have remained undefined (Turner, Papházy et al. 

2002; Raboy 2003).  Our findings constitute the first report that InsP6 inhibits cell 

proliferation in plants.   

 Is it possible that inhibition of somatic embryo growth in plants by myo-InsP6 and 

myo-InsP6’s anticancer activity occur via similar mechanisms?  In cancer cell lines, 

myo-InsP6 has been found to both suppresses and enhances various signaling pathways, 

resulting in a reduction in cancer cell proliferation.  It enhances protein kinase C δ 

(PKCδ) activity, and inhibits ERK, p38 MAPK, protein kinase B (PKB) and 

phosphatidylinositide 3-kinases (PI3K) (Huang, Ma et al. 1997; Vucenik, Ramakrishna et 

 107



al. 2005; Gu, Raina et al. 2010).  However, plants do not express PKC δ or PKB but they 

do express ERK, p38 MAPK and PI3K (Munnik and Testerink 2009). 

 The effect of the inhibition of ERK and p38 MAPK signaling has not been 

investigated in plant embryos.  However, bovine blastocyst formation was blocked when 

both ERK and p38 MAPK signaling was inhibited (Madan, Calder et al. 2005).  It has 

been found that the ERKs are activated during pollen embryogenesis for several plant 

species (Coronado, González-Melendi et al. 2002).  In addition, cork oak 

(Quercus suber L.) has been found to display activated ERKs during early proembryo 

development (Ramírez, Testillano et al. 2004).  Based on these results it is possible that 

inhibition of MAPK signaling may contribute to the effect of myo-InsP6 on LP early-stage 

somatic embryo growth. 

 In JB6 epidermal cells, it has been shown that myo-InsP6 inhibits epidermal 

growth factor-induced phosphatidylinositol-3 kinase (PtdIns 3-kinase), thereby impairing 

epidermal growth factor- or phorbol ester-induced cell transformation and activator 

protein 1 activation (Huang, Ma et al. 1997).  PtdIns 3-kinases are widely distributed in 

eukaryotic cells, and they are involved in a number of cellular processes, including 

activation of intracellular signaling molecules such as rac, ras, rab, mitogen-activated 

protein kinase, protein kinase B⁄ Akt(Vanhaesebroeck and Waterfield 1999), protein 

kinase C and JNK ⁄ p38 kinase (Leevers, Vanhaesebroeck et al. 1999; Meijer and Munnik 

2003; Amin, Mansfield et al. 2007).  Turning to plants, PtdIns 3-kinase homologs have 

been cloned in soybean (Hong and Verma 1994), Arabidopsis thaliana (Welters, 

Takegawa et al. 1994) and Brassica napus ((Das, Hussain et al. 2005), and expression of 

antisense PtdIns 3-kinase AtVPS34 mRNA results in severe inhibition in growth and 
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development of second-generation transformed plants.  Recently, both PtdIns 3-kinase 

and PtdIns 4-kinase activities have been observed during the induction of somatic 

embryogenesis in Coffea arabica (Ek-Ramos, Palma et al. 2003), and the products of both 

kinase activities were detected in the somatic-embryo extracts.  Moreover, growth of 

these somatic embryos was inhibited when a kinase inhibitor was included in the 

induction medium during the first differentiated stage (Ek-Ramos, Palma et al. 2003).    

Taken together, these facts are not inconsistent with the notion that inhibition of PtdIns 

kinase may be a common feature of myo-InsP6’s activity as an inhibitor of somatic 

embryo growth in plants and as an anticancer agent, but at this point the evidence must be 

regarded as circumstantial.  In this regard, we have carried out a BLAST database search 

on an expressed sequence tag library of LP somatic embryos (Cairney, Zheng et al. 

2006), and we have identified one singleton (Gene Bank number DR688191) that shows 

83% identity in amino acid sequence to that of PtdIns 3-kinase AtVPS34.  Clearly, 

additional studies will be needed to fully elucidate the mechanisms by which myo-InsP6, 

(and perhaps other inositol phosphates as well) regulate cellular growth and development 

in plants.  Such studies could well lead to significant improvements in the technology of 

somatic embryogenesis in plants. 

  muco-InsP6 does not inhibit early-stage somatic embryo growth, demonstrating 

that inhibition by myo-InsP6 is stereospecific.  Because muco-InsP6 does not inhibit 

early-stage embryonic growth it is clear that the inhibitory effect of myo-InsP6 is not 

based on a change in media osmolality or due to the addition of a highly charged species 

to the plant cell media.   Little work has been done with muco-InsP6 so it is unknown if 

muco-InsP6 inhibits or fails to inhibit any enzymes or has an effect on cancer cell growth.  
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It would be expected that if inhibition of somatic embryo growth in plants by myo-InsP6 

and anticancer activity of myo-InsP6 occur via similar mechanisms then muco-InsP6 

would also fail to possess anticancer activity.  It is known that myo-InsP6 interacts with 

iron during iron transport through the cytosol or cellular organelles, such that myo-InsP6 

inhibits hydroxyl radical catalysis by iron (Hawkins, Poyner et al. 1993).  The 

1, 2, 3 (axial-equatorial-axial) phosphate grouping in myo-InsP6 is crucial for this 

activity.  muco-InsP6 does not have a 1, 2, 3 (axial-equatorial-axial) phosphate grouping 

which would presumably diminish its ability to interact with iron relative to myo-InsP6. 

InsP5 isomers which lack this phosphate group show diminished iron binding capacity 

(Hawkins, Poyner et al. 1993).  If the ability of myo-InsP6 to bind iron contributes to the 

inhibition of somatic embryo growth that property would be absent in experiments using 

muco-InsP6 which would explain the observed stereochemical dependency.  It is also 

possible that the specific stereochemistry of myo-InsP6 allows it to act as an enzyme 

inhibitor while muco-InsP6 cannot act as an enzyme inhibitor.  

 Future studies will further examine the natural products of FGs from stage 9.1.  In 

preliminary work it was found that complete extracts of stage 9.1 FGs stimulated SE 

germination.  Isolation of the natural product(s) responsible for the enhanced germination 

is possible via separation of the complete stage 9.1 extract by chromatography followed 

by germination bioassays.  The isolated compound(s) can then be identified from NMR 

and mass spectrometry analysis.   
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