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ABSTRACT 

 

In this dissertation, a broad spectrum of research in fractional-order (FO) proportional-

integral-derivative (PID) controllers is directed to fundamental control problems such as 

stability, performance, and robustness. First, nominal stability was considered by finding all the 

possible FO PID controllers that stabilize a closed-loop system with respect to arbitrary values of 

the fractional orders λ and μ of the FO PID controller. The findings are presented on the (Kp, Ki), 

(Kp, Kd), and (Ki, Kd) planes. In order to meet nominal performance specifications, a sensitivity 

function weight was introduced and FO PID controllers were sought to meet the weighted 

sensitivity constraint. This led to a complete set of possible values of FO PID parameters that 

satisfy the given performance specifications. Following the nominal stability and performance, 

robust stability and performance were investigated. For a robust stability requirement, a 

multiplicative weight was selected to bound all multiplicative errors of a closed-loop system. 

Such FO PID controllers allow the closed-loop to remain stable for all the sets of perturbed 

plants. Nominal performance and robust stability are the prerequisite conditions for the robust 

performance of a closed-loop system. Though, in robust stability analysis, the closed-loop 

system was designed only to remain stable, it was required not only to remain stable for all the 

uncertain plants but also to satisfy given performance specifications in the robust performance 

analysis. A substantial contribution of this research is the establishment of a complete set of 

solutions for FO PID controllers, with respect to nominal stability and performance and robust 

stability and performance. The use of frequency response of a system makes it possible to apply 

the results presented in this dissertation even when a system transfer function is not known or 

unavailable, as long as the experimental frequency data of a system can be obtained.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background and Motivation 

Though its origin traces back to the late seventeenth century, fractional calculus had 

largely remained a topic of pure mathematics shared only by a small number of mathematicians 

and pure scientists for over three hundred years [1]. Fractional calculus is a form of calculus 

generalized by expanding its orders from integers to real numbers. Recently, numerous attempts 

have been made to apply the concept of the fractional calculus to the fields of physics and 

engineering including, for example, nonlinear control and fractional order controllers [2] and [3]. 

In controls, Axtell and Bise demonstrated the application of fractional calculus to control 

systems using both the s-domain and frequency-domain with the introduction of sq operator [4]. 

Undiminishing popularity of proportional-integral-derivative (PID) controllers in the process 

control field brought about considerable interest in their non-integer counterpart, PIλDμ 

controllers (where λ and μ are arbitrary real numbers) or so called fractional-order PID 

controllers. 

In order to clearly differentiate the two kinds of PID controllers, hereinafter, conventional 

integer-order PID controllers are referred to as IO PID controllers, and non-integer order or 

fractional-order PID controllers are referred to as FO PID controllers. Strictly speaking, the term 

‘fractional order’ is rather a misnomer because the orders of integration and differentiation can 

be any real numbers including not only fractions (rational numbers) but also irrational numbers. 

For that reason, it is more appropriate to use the term ‘non-integer order.’ Nonetheless, there has 

been much more research using ‘fractional-order’ than ‘non-integer order’ in automatic control 

as well as in mathematics and physics. Thus, in order to provide a consistent and strong 

connection between existing results found in the literature and the research presented here, the 

term ‘fractional-order (FO)’ will be used in the rest of this paper. 

As can be appreciated from the relationship between integer numbers and real numbers, 

the best FO PID controllers were shown to outperform the best IO PID controllers in [5]. While 

IO mathematical models are easier to work with, real physical systems are often described more 

accurately and naturally through non-integer order models. In [6], a torsional system consisting 

of a rigid disk and a flexible shaft attached thereto was modeled using an FO transfer function. 
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The resulting frequency response shows that the mechanical resonance effect is represented more 

naturally with an FO model than an IO model. 

In addition, a technique was provided for finding all IO PID controllers that stabilize a 

given plant transfer function of an arbitrary order in [7]. The stabilizing controllers that lie within 

the stability regions are plotted in three different planes of (Kp, Ki), (Kp, Kd) and (Kd, Ki). 

Furthermore, a graphical method was developed for finding all robustly stabilizing IO PID 

controllers for a closed-loop system in [8]. In particular, the methods in [7] and [8] used system 

frequency response to respective results. 

Thus, it is the objective of this research to provide generalized methods for finding all FO 

PID controllers (which of course include IO PID controllers as well) for a given system of 

arbitrary order that satisfy stability, robustness, or performance requirements by combining two 

important topics, i.e., the fractional calculus and PID controllers. Especially, the methods 

presented here will bring the existing solutions that have been applicable only to IO PID 

controllers so far under one generalized complete solution. Moreover, the benefits of using an 

FO PID controller over an IO PID controller will be demonstrated by comparing the results 

found using FO PID controllers with those found using IO PID controllers.  

 

1.2 Outline of the Dissertation 

The rest of this paper is organized as follows. Fractional calculus is introduced in Chapter 

2. Definitions, examples of calculations, and frequency domain response are included. Then, 

Chapter 3 provides a review of related literature, mainly on FO controllers, stability discussion of 

IO and FO PID controllers, and robust stability and performance of PID controllers including H∞ 

control. Chapter 4 will provide a method for finding all stabilizing FO PID controllers in terms 

of the proportional gain Kp, integral gain Ki, and derivative gain Kd of FO PID controllers, along 

with specified gain and phase margin requirements. A weighted sensitivity constraint will be 

utilized to determine all stabilizing FO PID controllers that satisfy certain performance 

requirements in Chapter 5. In Chapter 6, all FO PID controllers will be determined not only to 

stabilize a given system but also to meet a robust stability constraint. Such FO PID controllers 

guarantee the stability of a closed-loop system in question for all the possible sets of perturbed 

plants. Following the investigation of the robust stability and nominal performance of a closed-

loop system containing an FO PID controller, robust performance design of FO PID controllers 
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will be addressed in Chapter 7 so as to meet required performance specifications as well as 

robust stability constraint. Lastly, Chapter 8 will show the practical applicability of the technique 

proposed in Chapters 3 to 7 through the application to a DC motor system. 
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CHAPTER 2 

INTRODUCTION TO FRACTIONAL CALCULUS 

 

2.1 Introduction 

 As some readers may not be familiar with the concept of fractional calculus, it is 

beneficial to provide some background knowledge of the fractional calculus to help better 

understand the underlying principle of FO PID controllers. Thus, this chapter serves to provide a 

brief history, basic definitions, some examples, and the Laplace and Fourier transforms of the 

fractional calculus. 

 

2.2 Inception of Fractional Calculus 

Fractional calculus is believed to have its origin from correspondence between scholars in 

the late 17th century. In particular, the letters between Gottfried Leibniz and de l’Hôpital on 

September 30, 1695 provided the notion of fractional calculus. In the letters, Leibniz had asked 

de l’Hôpital about the possibility of non-integer orders in derivatives, and de l’Hôpital responded 

with a specific order of 1
2

 (i.e. 1
2

th derivative). Based on such historic letters, September 30, 

1695 is considered the birthday of fractional calculus, with Gottfried Leibniz being its father [1]. 

Laplace defined a fractional derivative in the form of an integral in 1812 and later S.F. Lacroix 

first discussed a derivative of fractional orders in his calculus text that included Laplace’s work. 

It is Niels Abel who applied a fractional operation for the first time to solve an integral equation 

in the tautochrone problem in 1823 [9]. 

 

2.3 Definitions of Fractional Calculus 

2.3.1 Definition by Riemann-Liouville 

Joseph Liouville first defined a fractional derivative of arbitrary order using an infinite 

series. Because of the limitation on the values of the order in his earlier definition, he proposed a 

second definition of fractional derivative of ( )x  , where both x and α are positive. In the 

meantime, Bernhard Riemann presented arbitrary-order integration using Taylor series [9] and 

[10]. Fortunately, the two seemingly different definitions of the integration of arbitrary order 
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proposed by Liouville and Riemann, respectively, were incorporated into a single formula so 

called the Riemann-Liouville fractional integral formula [11]: 

 

 1
1 ( )( )
( ) ( )

t

c c

fJ f t d
t








  

   (1) 

 

where J   is fractional integral operator of order ,   ( )f t is a causal function of time that 

identically vanishes for t < 0, c is a lower limit of integration, and   is  the Gamma function. 

For example, if we integrate ( )f t  with 1  , then  
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1
1 1

1 ( )( )
( ) ( )

1 ( )( )
(1) ( )

            = ( )

t

c c

t

c c

t

c

fJ f t d
t
fJ f t d

t

f d








 






 






 


 







 (2) 

 

which matches the standard integration of ( )f t . 

Next, Riemann-Liouville fractional derivative of order   is derived from the fractional 

integral in (1) on the basis of the reverse relationship between integral and derivative. The 

fractional derivative formula of order 0  is defined for a positive integer m such that 

1n n    [10] and [11]: 

 

 1

1 ( )( ) ( )
( ) ( )

tn
n n

a t a t a n n
a

d fD f t D J f t d
dt n t

 






 



 

 
   

   
  (3) 

 

where nD  is  the operator of the derivative of integer order n. nD  is only the left-inverse  to the 

corresponding integral operator nJ  (
n nD J I ). D  is the operator of the derivative of order 

  (which is defined as left-inverse to J 

 for arbitrary order  ). 
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2.3.2 Definition by Grunwald-Letnikov 

Along with Riemann-Liouville formula, Grunwald-Letnikov is one of the most widely 

used formulae for fractional calculus, which was introduced by Anton Karl Grunwald and then 

was demonstrated by A. V. Letnikov. The Grunwald-Letnikov fractional derivative formula was 

given by: 

 

 
0 0

1 ( 1)( ) lim ( 1) ( )
! ( 1)

t a
h

m
a h m
D f t f t mh

h m m













 
  

  
  (4) 

 

where a and t are the lower and upper limits of differentiation, respectively [10]. 

 Likewise, the Grunwald-Letnikov definition of the fractional integral (5) was obtained 

from the Grunwald-Letnikov derivative formula (4) by taking negative α in the derivative 

formula (4). Thus, Grunwald-Letnikov fractional integral formula was given by: 

 

 
0 0

( )( ) lim ( )
! ( )

t a
h

a h m

mD f t h f t mh
m

  










 
 


  (5) 

 

 As can be seen from (4) and (5), differentiation is defined for positive index (α) and 

integration is defined for negative index (-α) for the differ-integral operator (D), which is why 

(4) and (5) are collectively called “Grunwald-Letnikov fractional differintegrals” [10]. Given the 

two different forms of definition, the Riemann-Liouville formula is appropriate for determining 

the analytical solution of rather simple functions such as xa, ex, sin(x) etc., whereas, the 

Grunwald-Letnikov definition is preferred for numerical calculations [12]. 

 

2.3.3 Definition by Caputo 

In addition to the Riemann-Liouville and Grunwald-Letnikov definitions, M. Caputo 

introduced a definition of the fractional derivative in 1967 [10]:  

 

 
( )

1

1 ( )( )
( ) ( )

t n
C
a t n

a

fD f t d
n t








   

    (6) 



7 
 

 

which is defined for the order 0   (where 1n n    for a positive integer m). Although (6) 

proposed by Caputo is quite similar to (3) provided by Riemann-Liouville, the Caputo derivative 

(6) is preferred to the Riemann-Liouville derivative (3), in particular, in various engineering 

applications [12]. In addition to the above three definitions, Oldham and Spanier, K.S. Miller and 

B. Ross, Kolwankar and Gangal et al. had also introduced definitions and modifications thereof.  

 

2.4 Examples of Fractional Calculus 

The st  fractional derivative of a function ( )f t  given by Grunwald-Letnikov derivative 

is equated with a general expression of the  st  derivative of a function ( )f t in [10]: 

 

 0 0

0 0

1 ( 1)( ) lim ( 1) ( )
! ( 1)

1 ( 1)            lim ( 1) ( )
! ( 1)

t a
h

m

h m

m

h m

D f t f t mh
h m m

f t mh
h m m

























 
  

  

 
  

  





 (7) 

 

By using the gamma function, 

 

 ( 1) !
( 1) ( 1) !( )! mm m m m

 

 

  
   

       
 (8) 

 

equation (7) becomes equivalent to:  

 
0 0

1( ) lim ( 1) ( )m

h m
D f t f t mh

mh











 
   

 
  (9) 

 

Example 1. 

Let ( ) atf t e . Then, the st  fractional derivative of the given function ( ) atf t e  can be 

determined as follows: 
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( ( ) )

0 0

0 0

0 0

1( ) lim ( 1)

1                          lim ( 1) ( )

1                          lim ( ) ( 1)

ax n a x n h

h n

ax n ah n

h n

ax ah n n

h n

D f x D e e
nh

e e
nh

e e
nh


  



















 














 
    

 

 
   

 

 
  

 







 

   
0

1lim ( 1)ax ah

h
e e

h



 

  

   
0

!lim
! 1

ah
ax

h

a ee











  

                                       axa e   (10) 

The binomial formula was utilized between the third and fourth lines and the l’Hopital’s rule was 
applied between the fourth and fifth lines. 

 

Example 2. 

 The above result (10) will be used in this example along with linearity and Euler’s 
formula.  

 cos sin cos sin

                                = jx jx

D x jD x D x j x

D e j e

  

 

  

 
  

         
( )

2 2
j j xjxe e e
 
 

    

         cos( ) sin( )
2 2

x j x 
      (11) 

 

 cos sin cos sin

                               ( )jx jx

D x jD x D x j x

D e j e

  

  

  

   
  

        
( ) ( )

2 2
j j xjxe e e

 
   

    
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       cos( ) sin( )
2 2

x j x 
      (12) 

Accordingly, from (11) and (12), cos cos( )
2

D x x 
   and sin sin( )

2
D x x 

  . 

 

2.5  Frequency Domain Response 

The Laplace transform of the fractional derivative is given by: 

 

 
1

1
0 0

0
{ ( )} ( ) (0)

n
k k

t t
k

L D f t s F s s D f  


 



   (13) 

 

for the order   such that 1n n   [10] and [13]. With zero initial conditions, as is usual 

when deriving transfer functions, (13) can be simplified to: 

 

 0{ ( )} ( )tL D f t s F s   (14) 

 

In light of the relationship between derivative and integral,   is used in (13) and (14) for the 

Laplace transform of fractional integral. Thus, the Laplace transforms of fractional 

derivative/integral order   have a fractional Laplace operator s for derivative and s   for 

integral, or collectively, the fractional Laplace operator s  . With (13) and (14), any system 

represented by a differential equation of fractional order can be treated in the same way as 

integer order systems to find, for example, the transfer function [13]. 

Likewise, the Fourier transform of fractional derivative can be found by replacing s  

with ( )j   in (14) as:  

 0{ ( )} ( ) ( )tF D f t j F j    (15) 

 

Therefore, it can be seen that the frequency-domain analysis of a fractional order system 

can be carried out in the same way as that of integer order systems through the use of standard 

tools for the classical integer order systems, such as Bode and Nyquist plots. 



10 
 

CHAPTER 3 

LITERATURE REVIEW 

 

3.1 Fractional-Order (FO) Controllers 

 As an application of fractional calculus in control, Tustin introduced fractional-order 

(FO) control using fractional-order D controller in 1958 [14]. However, the unfamiliar concept 

of fractional-order hindered widespread adoption of the FO control among engineers. Fortunately, 

for the past couple of decades, fractional calculus has gained significant attention in controls. In 

[10], application of fractional calculus to electrical circuits, electrochemistry, and system 

identification and control is described, in addition to mathematical point of view such as 

solutions to fractional differential equations. The French control team CRONE (Controle 

Robuste d’Ordre Non-Entier) has also been deeply involved in the application of FO controllers 

including suspension control [15] and flexible transmission [16] of vehicles through different 

generations of CRONE controllers. It is Podlubny who generalized the fractional-order (FO) PID 

controller, or the PIλDμ controller, where λ and μ are arbitrary real numbers representing the 

orders of integrator and differentiator, respectively [17].  A simpler form of FO PID controller, 

or so called FO PIDk controller (where k is any real number), was used to suppress vibrations 

resulting from the nonlinearity of gear backlash in a torsional system [18]. In [19], FO PD, PI, 

and PID controllers are discussed by providing techniques of finding optimum values of the 

fractional orders   λ and μ. 

 

3.2 Stability of IO and FO PID Controllers 

As in the case of IO PID controllers, the stability boundary of an FO PID controller is an 

important research topic and has received significant attention. In [20], the D-partition method 

proposed by J. Neimark in [21] and later by Y. I. Neimark in [22], which had been used for 

parameter space design of IO controllers, was used to find stability bounds of FO PI or PIλ 

controllers for four cases. These cases include all combinations of an IO/FO plant and an IO/FO 

controller. However, only a first order IO plant or an FO plant with order   (where 0 1   

0<α<1) was considered. 

In [23], the D-decomposition method was used for PIλDμ controllers that stabilize a given 

FO system with a time delay. For the closed-loop FO characteristic equation, the boundaries of 
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the stability region described by real root boundaries (RRB), infinite root boundaries (IRB) and 

complex root boundaries (CRB) were determined using the D-decomposition method. In 

particular, RRB, IRB and CRB provide a general stability region in (Kp, Ki) plane for fixed 

values of Kd, λ and μ. Unfortunately, solutions in the (Kp, Kd) plane and the (Ki, Kd) plane were 

not considered. The (Kp, Kd) plane solution is important if a PD controller is considered. The (Ki, 

Kd) plane is important because for certain forms of PID controllers it allows a user to easily 

determine the values of Kp that will produce stabilizing controllers. 

Thus, there exists a need for a more efficient and less complicated way of finding all IO 

or FO PID controllers that stabilize a given system with an IO or FO transfer function. In [7], the 

frequency response was used to find all stabilizing IO PID controllers for a given plant transfer 

function of arbitrary order. The stabilizing controllers that lie within the stability regions were 

plotted in three different planes: (Kp, Ki), (Kp, Kd) and (Kd, Ki). However, the results obtained as 

such were not applicable to more complicated FO controllers with extra degrees of freedom. 

 

3.3 Robust Stability and Performance of IO and FO PID Controllers 

For a control system design to be of practical importance, it must be robust to 

uncertainties in the system transfer function. As a consequence, the H∞ design methodology is 

often used to guarantee robustness as well as performance of a system. In [24], a method of H∞ 

optimal design was utilized for an FO PID controller to meet performance specifications and 

stability margins. A multivariable PID controller was designed to satisfy the H∞ norm in H∞ 

control problem in [25], and input and output robust stability of a predictive IO PID controller 

was discussed in [26]. Emami and Watkins proposed a graphical method for finding all IO PID 

controllers from the system frequency response that robustly stabilize a closed-system in [8]. The 

technique in [8] was applicable to single-input single-output (SISO) linear time-invariant (LTI) 

systems with time delays. 

In relation to performance requirements, a technique was proposed for finding all IO PID 

controllers that stabilize a given system and simultaneously satisfy an H∞ weighted sensitivity 

constraint in [27], in which the sensitivity function weight was introduced to meet performance 

specifications. In addition, methods were provided for determining all stabilizing IO PID 

controllers that satisfy an H∞ sensitivity or robust performance constraint, respectively, in [28] 

and [29]. Unfortunately, the methods in [25], [26], [8], [27], [28], and [29] are limited only to IO 
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PID controllers, and the technique in [24] cannot be applied to H∞ weighted sensitivity design of 

FO PID controllers. 

With respect to FO PID, PIλ, or PDμ controllers, Monje et al. discussed a variety of tuning 

rules for finding optimum values of the fractional orders λ or μ of the integrator and differentiator 

of the FO PID controller in [19]. For robustness to noise, disturbances, and uncertainties, Monje 

et al. also provided optimization methods for finding an FO PIλDμ controller with the 

introduction of five design specifications in [19]. 
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CHAPTER 4 

DETERMINATION OF ALL STABILIZING FO PID CONTROLLERS 

 

4.1 Introduction 

In this chapter, a method for finding all stabilizing FO PID controllers, or PIλDμ 

controllers for a given plant transfer function of arbitrary order is presented. In particular, it is an 

objective of this chapter to provide a method for determining all the possible values of the PID 

parameters Kp, Ki, and Kd that stabilize a given system of arbitrary order, with respect to arbitrary 

values of the fractional orders (λ and μ) of the integral and derivative parts of the FO PID 

controller. In addition to finding all stabilizing FO PID controllers for a given plant transfer 

function, the method makes it possible to determine all the parameters of FO PID controllers that 

satisfy specified gain and phase margins as well. Furthermore, the method does not require 

knowledge of plant parameters nor complicated mathematical processes. The stability boundaries 

of such FO PID controllers are calculated in the frequency domain and are given in terms of the 

proportional gain Kp, integral gain Ki, and derivative gain Kd. The stabilizing FO PID controllers 

determined as such will be represented in the (Kp, Ki, Kd) parameter space. This chapter builds 

upon the work in [32]. A detailed mathematical derivation, results, and examples follow. 

 

4.2 Stabilizing FO PID Controllers 

4.2.1 Problem Formulation 

Consider the following unity feedback control system, which is a single-input single-

output (SISO) linear time-invariant (LTI) system, shown in Fig. 1.  

 

 
Fig. 1.  A control system with negative unity feedback. 

 

The plant transfer function is Gp(s) and the transfer function of the FO PID controller Gc(s) is 

given by 
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 ( ) i
c p d

KG s K K s
s




    (16) 

 

where Kp, Ki, and Kd denote the proportional, integral and derivative gains, respectively, and λ 

and μ are arbitrary real numbers. 

To determine all the stabilizing FO PID controllers for the given plant, Kp, Ki, and Kd 

values can be found such that the close-loop characteristic polynomial Δ(s) of the system shown 

in Fig. 1 is Hurwitz stable. By determining all the values of the parameters Kp, Ki, and Kd that put 

the closed-loop system poles on the jω axis, which represents the marginal stability of the 

closed-loop system, all the stabilizing FO PID controllers can be found. For marginal stability, 

the characteristic equation Δ(s) is expressed in the frequency domain by replacing s with jω.  

 

 ( ) 1 ( ) ( ) 0p cj G j G j       (17) 

 

The plant transfer function Gp(jω) can be decomposed into real and imaginary parts as follows: 

 

 ( ) ( ) ( )p p pG j R jI     (18) 

 

Then, the characteristic equation (17) becomes 

 

  ( ) 1 ( ) ( ) ( ) 0
( )

i
p p p d

Kj R jI K K j
j




   



 
       

 
 (19) 

 

For (19), the following formula from fractional calculus is used: 

 

 
( )

2 cos sin
2 2

j
j e j




  
 

   
     

   
 (20) 

Thus,  
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( )

( )

cos sin cos sin
2 2 2 2

i
p d

i
p d

KK K j
j
KK j K j












   
    



 

          
              

          

 (21) 

 

Expanding the characteristic equation in (19) and writing it in terms of its real and imaginary 

parts yields 

 

 ( ) ( ) ( ) 0j R jI        (22) 

 

where 

 

( ) 1 ( )

1            cos ( ) sin ( )
2 2

            cos ( ) sin ( )
2 2

p p

p p i

p p d

R K R

R I K

R I K





 

 
   



 
    

  

    
     

    

    
     

    

  (23) 

 

 

( ) ( )

1            cos ( ) sin ( )
2 2

             cos ( ) sin ( )
2 2

p p

p p i

p p d

I K I

I R K

I R K





 

 
   



 
    

 

    
     

    

    
     

    

 (24) 

 

Setting the real and imaginary parts equal to zero gives: 

 

 ( )p p Ri i Rd dR K X K X K        (25) 

 ( ) 0p p Ii i Id dI K X K X K      (26) 

where 

cos ( ) +sin ( )
2 2Ri p pX R I 
   

   
    

   
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=   cos ( ) sin ( )
2 2Rd p pX R I   

         
    

    
 

sin ( ) cos ( )
2 2Ii p pX R I 
   

   
     

   
 

sin ( ) cos ( )
2 2Id p pX R I   

         
     

    
 

 

4.2.2 Solution in (Kp, Ki) Plane 

This is a three dimensional system in terms of the controller parameters Kp, Ki, and Kd. 

Hence, we will fix the value of Kd to find the stability region in the (Kp, Ki) plane. In order to 

deal with two unknowns Kp and Ki, (25) and (26) are rearranged as: 

 

 
( )
( )

pp Ri Rd d

ip Ii Id d

KR X X K
KI X X K

 



  

 

     
    

    

 (27) 

 

Solving (27) for ω≠0 and λ≠2n (where n is an integer), Kp and Ki are given by 

 

 
 

2

sin ( ) cot ( )
2 2

( )sin
2

p p

p d

p

R I
K K

G j


 
    


 

   
    

     
 
 
 

 (28) 

 
2

sin ( )2

sin sin ( )
2 2

p
i d

p

I
K K

G j



 




 


 
  



 
 
  
   
   
   

 (29) 

 

where  

 
2 2 2( ) ( ) ( )p p pG j R I     (30) 

 

If 0  , then (27) becomes 
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0 cos (0) +sin (0)

02 2
0

0 sin (0) cos (0)
2 2

p p
p

i
p p

R I
K
K

R I

 
 

 
 

    
    

           
            

    

 (31) 

 

Solving (31), we obtain that Kp is arbitrary and Ki=0, or Kp and Ki both are arbitrary with 

(0) (0) 0p pR I  , which indicates that Gp(s) has a zero at the origin. In such a case, the zero of a 

plant transfer function at the origin would cancel the pole of the PID controller at the origin. This 

should be avoided as it would cause internal instability. 

If λ=2n, then the solution exists for the following two cases: 

i) For μ≠2n and any frequency ωi that satisfies 

 

 
2

( )

sin ( )
2

p i
d

i p i

I
K

G j




  


 
 
 

 (32) 

 

the solution for Ki is given in terms of Kp as 

 

 2

( ) cot ( )
2  

( )cos
2

p i p i
i

i p

p i

R I
K K

G j




  



 

  
   

    
   
   
   

 (33) 

 

ii) For  μ=2n and any frequency ωk that satisfies 

 

 ( ) 0p kI    (34) 

 

the solution for Ki is given in terms of Kp for a fixed Kd value as 
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 1cos  
2 ( )cos

2

k
i p k d

p k

K K K
R


 

 
 


  
           

 

 (35) 

 

Thus, all possible values of the parameters Kp and Ki of stabilizing FO PID controllers for 

a fixed Kd value can be found by plotting a two-dimensional graph using the above results, with 

Kp and Ki as two Cartesian axes. This procedure will be described in detail through an example 

given in Section 4.4. In addition, for λ=μ=1, which is a conventional IO PID controller, the above 

results reduce to those presented in [7]. 

 

4.2.3 Solution in (Kp, Kd) Plane

 

Next, in order to find the stability region in the (Kp, Kd) plane, we will fix the value of Ki. 

Then, (25) and (26) can be rewritten as: 

 

 
( )
( )

pp Rd Ri i

dp Id Ii i

KR X X K
KI X X K

 



  

 

     
    

    

 (36) 

 

Solving (36) for ω≠0 and μ≠2n (where n is an integer), Kp and Kd are given by 

 

 
 

2

sin ( ) cot ( )
2 2

( )sin
2

p p

p i

p

R I
K K

G j

 
    

  

   
    

     
 
 
 

 (37) 

 

 
2

sin ( )2

sin sin ( )
2 2

p
d i

p

I
K K

G j  






 
    

 
 
  
   
   
   

 (38) 

 

If ω=0, then Kp and Kd both are arbitrary with Ki=0 or (0) (0) 0p pR I  , as is obvious 

from (36). 
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If μ =2n and ω≠0, then the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies 

 

 
2

( )

sin ( )
2

p i
i

p i

I
K

G j

 


 

 
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 
 

 (39) 

 

the solution for Kd is given in terms of Kp as 
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1 2  
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2
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d p
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G j


  

  

  
   

    
   
   
   

 (40) 

 

ii) For λ=2n and any frequency ωk that satisfies 

 

 ( ) 0p kI    (41) 

 

the solution for Kd is given in terms of Kp for a fixed Ki value as 
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( )cos

2
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k p k

k

K K K
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




  
 

  
  
     

   
   
   

 (42) 

 

Therefore, all the possible values of the parameters Kp and Kd of stabilizing FO PID 

controllers for a fixed Ki value can be determined by plotting a two-dimensional graph using the 

above results, with Kp and Kd as two Cartesian axes. Again, this procedure will be described in 

detail through an example given in Section 4.4. For λ=μ=1, which is a conventional IO PID 

controller, the above results reduce to those presented in [7]. 
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4.2.4 Solution in (Ki, Kd) Plane

 

Lastly, we will fix the value of Kp in order to determine the stability region in the (Ki, Kd) 

plane. Then, (25) and (26) can be rewritten as: 

 

 
( )

( )
Ri Rd i p p

Ii Id d p p

X X K R K
X X K I K

 



  

 

     
           

 (43) 

 

Solving (43) for ω≠0 and λ+μ≠2n (where n is an integer), Ki and Kd are given by 
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2 22

sin sin ( )
2 2

p p

i p

p
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           
        

   
    

   

 (44) 
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2 2

p p
p

d

p
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K
G j




 
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 
     

                      
         
   

 (45) 

 

If ω=0, then Ki and Kd both are arbitrary with (0) (0) 0p pR I  , or Ki=0 and Kd is 

arbitrary. 

If λ+μ=2n (where n is an integer), the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies 

 

 2

cot ( ) ( )
2

( )

p i p i

p

p i

I R
K

G j


  



 
 

   (46) 

 

the solution for Kd is given in terms of Ki as 
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       

 (47) 

 

ii) For λ=2n and any frequency ωk that satisfies 

 

 ( ) 0p kI    (48) 

 

the solution for Kd is given in terms of Ki for a fixed Kp value as 

 

 
cos

1 12
( )cos

2

d i p
k p k

k

K K K
R






  
 

  
  
     

   
   
   

 (49) 

 

Similarly, all the possible values of the parameters Ki and Kd of stabilizing FO PID 

controllers for a fixed Kp value can be found by plotting a two-dimensional graph using the 

above results, with Ki and Kd as two Cartesian axes. This procedure will be described in detail 

through an example given in Section 4.4. For λ=μ=1, which is a conventional IO PID controller, 

the above results reduce to those presented in [7]. 

 

4.3 Stabilizing FO PID Controllers with Specified Gain and Phase Margins 

4.3.1 Problem Formulation 

Often times, it is desirable to find a controller that satisfies certain gain margin (GM) and 

phase margin (PM). To this end, a gain and phase margin test function j
gpC ge   is inserted in 

the feedforward path of Fig. 1 [30], where g and  are specified gain and phase margins, 

respectively. Thus, the characteristic equation of the closed-loop system is given in the frequency 

domain by: 

 

 ( ) 1 ( ) ( )gp p gp cj G j C G j      (50) 
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The transfer functions for the plant and the FO PID controller are given in (16) and (18) as 

before. Accordingly, the characteristic equation (50) becomes 

 

   ( ) 1 ( ) cos sin ( ) ( )
( )

i
gp p d p p

Kj K K j g j R jI
j




     



 
       

 
 (51) 

 

To determine all the stabilizing FO PID controllers that satisfy specified gain and phase 

margins g and   with the given plant, Kp, Ki and Kd values can be found such that the close-loop 

characteristic polynomial Δgp(s) of the system is Hurwitz stable. By determining all the values of 

the parameters Kp, Ki and Kd that give marginal stability to the closed-loop system, all the 

stabilizing FO PID controllers can be determined. For marginal stability, the characteristic 

equation in the frequency domain is set to zero as: 

 

 ( ) 0gp j   (52) 

 

Expanding the characteristic equation (51) and writing it in terms of its real and imaginary parts 

yields 

 ( ) ( ) ( ) 0gp j R jI        (53) 

 

where 
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  
  

    
     

    

 (54) 
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
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 (55) 

 

Setting the real and imaginary parts (54) and (55) equal to zero and further simplifying 

them through the trigonometric identities gives: 

 

 0Rp p Ri i Rd dX K X K X K
g


     (56) 

 0Ip p Ii i Id dX K X K X K    (57) 

 

Where 

    cos ( ) +sin ( )Rp p pX R I      
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   

 

= cos ( ) sin ( )
2 2Rd p pX R I   

           
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    
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2 2Id p pX I R   
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    
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With the similar procedure to that of Section 4.2, all the values of the parameters Kp, Ki, 

and Kd can be determined in pairs with a third parameter fixed. The results are given in the 

following Subsections. 

 

4.3.2 Solution in (Kp, Ki) Plane 

Once again, as this is a three dimensional system in terms of the controller parameters Kp, 

Ki, and Kd, we first fix the Kd value to find the solutions of Kp and Ki. For ω≠0 and λ≠2n (where 

n is an integer), Kp and Ki are given as follows:  
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As in Subsection 4.2.2, if ω=0, we find that Kp is arbitrary and Ki=0, or Kp and Ki both 

are arbitrary with (0) (0) 0p pR I  , in which case Gp(s) has a zero at the origin. 

If λ=2n, then the solution exists for the following two cases: 

i) For μ≠2n and any frequency ωi that satisfies 
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the solution for Ki is given in terms of Kp as 
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 (61) 
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ii) For μ=2n and any frequency ωk that satisfies 

 

 ( ) ( ) tanp k p kI R    (62) 

 

the solution for Ki is given in terms of Kp for a fixed Kd value as 
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 

 (63) 

 

For g=1 and 0  , which is a nominal case for an FO PID controller, the above results 

(58) to (63) reduce to (28) to (35) in Subsection 4.2.2. 

 

4.3.3 Solution in (Kp, Kd) Plane

 

Next, Kp and Kd are determined in pair for ω≠0 and μ≠2n (where n is an integer) for a 

fixed Ki value by 
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 (65) 

 

If ω=0, then Kp and Kd both are arbitrary with Ki=0 or (0) (0) 0p pR I  , as in 

Subsection 4.2.3. 

If μ =2n and ω≠0, then the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies 
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the solution for Kd is given in terms of Kp as 
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ii) For λ=2n and any frequency ωk that satisfies 

 

 ( ) ( ) tanp k p kI R    (68) 

 

the solution for Kd is given in terms of Kp for a fixed Ki value as 
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Again, the above results match the ones in Subsection 4.2.3 for a nominal case of g=1 and  =0. 

 

4.3.4 Solution in (Ki, Kd) Plane

 

Lastly, Ki and Kd are given with a fixed value Kp for ω≠0 and λ+μ≠2n (where n is an 

integer) by 
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If ω=0, then Ki and Kd both are arbitrary with (0) (0) 0p pR I  , or Ki=0 and Kd is 

arbitrary, as in Subsection 4.2.4. 

If λ+μ=2n (where n is an integer), the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies  
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the solution for Kd is given in terms of Ki as 
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  
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 (73) 

 

ii) For λ=2n and any frequency ωk that satisfies 

 

 ( ) ( ) tanp k p kI R    (74) 

 

the solution for Kd is given in terms of Ki for a fixed Kp value as 
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 (75) 

 

Thus, (70) to (75) can be used to determine all the values of the parameters Ki and Kd of 

stabilizing FO PID controllers that guarantee specified gain and phase margins g and ,  

respectively, for a given plant. 

 

 

4.4 Example 

4.4.1 Problem Formulation 

Consider the following plant with a second order transfer function having a time delay of 

0.8 seconds 

 

 0.8
2

4 1( )
0.4 6

s
p

sG s e
s s




 
 (76) 

 

The objective here is to find all values of the parameters Kp, Ki, and Kd of FO PID controllers 

that stabilize the plant transfer function (76) and to compare them with IO PID controllers. There 

are a plurality of tuning rules for finding optimum values of the fractional orders λ and μ of an 

FO PID controller described by (16), such as those proposed by Monje et al. in [19]. However, 

since the goal of this research is to provide a method for finding all the possible values of the 

parameters Kp, Ki, and Kd of FO PID controllers that stabilize a plant transfer function and 

simultaneously satisfy specified gain and phase margins at any values of λ and μ, non-optimum 

values of λ=1.0 and μ=0.5 are selected for the controller transfer function in (16) for this example. 

Thus, the FO PID controller used is given by 

 

 0.5( ) i
c p d

KG s K K s
s

    (77) 
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4.4.2 Stabilizing (Kp, Ki, Kd) Parameter Space with Varying Kd 

In order to find all the values of the parameters Kp, Ki, and Kd of the FO PID controller 

(77) that stabilize the plant transfer function (76), (28) and (29) were used. Fig. 2 shows the 

stabilizing (Kp, Ki, Kd) parameter space of the FO PID controller and that of the IO PID 

controller with varying Kd values. In particular, even though (28) and (29) may be used with one 

fixed value of Kd, a three-dimensional plot like Fig. 2 can be obtained by varying the values of 

Kd over a certain range. As can be seen, the FO PID controller provides a much larger stabilizing 

parameter region than the IO PID controller. 
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Fig. 2.  Stabilizing (Kp, Ki, Kd) parameter spaces of the FO and IO PID controllers with varying 

Kd values. 
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4.4.3 Stabilizing (Kp, Kd, Ki) Parameter Space with a Phase Margin of 30° 

In this case, (64) and (65) were used to determine the parameter space region of the FO 

PID controller (77) that stabilizes the plant transfer function (76)) and simultaneously guarantees 

a minimum phase margin (PM) of 30°. The regions in the FO PID controller (77) parameter 

space that stabilize the closed-loop system and meet the PM=30° requirement are shown in Fig. 

3 in red and blue, respectively. As both conditions must be satisfied, Fig. 4 shows the 

intersection of the two regions from Fig. 3, that is, the region of all stabilizing FO PID 

controllers (77) that guarantee a PM of at least 30°. 

 

 
Fig. 3.  Stabilizing (Kp, Kd, Ki) parameter spaces of the FO PID controller with varying Ki values. 
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Fig. 4.  Stabilizing (Kp, Kd, Ki) parameter space of the FO PID controller for a PM of 30°. 

 

Likewise, the regions in the IO PID controller parameter space that stabilize the closed-

loop system and meet the PM=30° requirement are shown in Fig. 5 in red and blue, respectively. 

As both conditions must be satisfied, Fig. 6 shows the intersection of the two regions from Fig. 5, 

that is, the region of all stabilizing IO PID controllers that guarantee a PM of at least 30°. 

As can be seen from Figs. 4 and 6, the FO PID controller again provides a much larger 

stabilizing parameter region with a PM of 30° than the IO PID controller. 
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Fig. 5.  Stabilizing (Kp, Kd, Ki) parameter spaces for the IO PID controller with varying Ki values. 

 

 
Fig. 6.  Stabilizing (Kp, Kd, Ki) parameter space of the IO PID controller for a PM of 30°. 
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4.4.4 Stabilizing (Ki, Kd, Kp) Parameter Space with Varying Kp 

Lastly, (44) and (45) were used to determine the stabilizing (Ki, Kd, Kp) parameter space 

of the FO PID controller with varying Kp values, which is shown in Fig. 7 along with that of the 

IO PID controller. Not surprisingly, if Fig. 7 is rotated appropriately, it perfectly matches Fig. 2, 

thereby confirming that the stabilizing (Kp, Ki, Kd) parameter space determined using (28) and 

(29) by sweeping Kd values is congruent to the stabilizing (Ki, Kd, Kp) parameter space 

determined using (44) and (45) by sweeping Kp values. Of course, both of these regions would be 

congruent to the stabilizing (Kp, Kd, Ki) parameter space determined using (37) and (38) by 

sweeping Ki values. Again as can be expected from the relationship between integer and real 

numbers, the FO PID controller provides a much larger stabilizing parameter region than the IO 

PID controller. 
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Fig. 7.  Stabilizing (Ki, Kd, Kp) parameter spaces of the FO and IO PID controllers with varying 

Kp values. 
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4.5 Conclusion 

As described in Sections 4.2, 4.3, and 4.4, a method for determining all stabilizing PIλDμ 

or so called FO PID controllers for a given system is presented. In particular, the method makes 

it possible to determine all the values of the parameters Kp, Ki, and Kd of FO PID controllers that 

not only stabilize a plant transfer function but also satisfy specified gain and phase margins. 

Since the method is fundamentally based on the frequency response of a system, this method can 

be applied even when the system parameters such as a plant transfer function are not known. In 

addition, the results shown in Section 4.4 are promising because for this example an FO PID 

controller provides a much wider stabilizing parameter space than an IO PID controller, which in 

turn gives more flexibility in designing a controller. This is not surprising as an IO PID 

controller is a special case of an FO PID controller. 
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CHAPTER 5 

STABILIZING FO PID CONTROLLERS WITH A WEIGHTED 

SENSITIVITY CONSTRAINT 

 

5.1 Introduction 

It is the objective of this chapter to present a method for finding all the values of the 

parameters Kp, Ki and Kd of FO PID controllers that not only stabilize a given system of arbitrary 

order but also meet an H∞ weighted sensitivity condition. In particular, the method provides all 

the possible values of the parameters of PID controllers with respect to arbitrary values of the 

fractional orders (λ and μ) of an FO PID controller. This chapter builds upon the work in [33]. 

Such a method will surely complement the tuning rules for finding the values of the fractional 

order λ or μ of an FO PID controller, such as those proposed in [19]. 

To this end, a single-input single-output (SISO) linear time-invariant (LTI) system is 

considered. As the derivation of this method is based on the frequency response, the method does 

not necessarily require a system transfer function or complicated mathematics. All the 

parameters of such FO PID controllers are calculated in the frequency domain and are given in 

terms of the proportional gain Kp, integral gain Ki, and derivative gain Kd. A detailed 

mathematical derivation, results, and examples follow. 

 

5.2 FO PID Controller Design with an H∞ Weighted Sensitivity Constraint 

5.2.1 Problem Formulation  

Consider the closed-loop system shown in Fig. 8: 

 

                                        Z(s)                                                                   
                                                                  

 
                      R(s)       +      
                                               Error  
                                                               Controller                      Plant 
 
 

Fig. 8.  A closed-loop system with sensitivity function weight. 
 

 Gc(s) Gp(s) 

Ws(s) 
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The plant transfer function is Gp(s) and the transfer function of the PIλDμ or FO PID controller 

Gc(s) is given by 

 ( ) i
c p d

KG s K K s
s




    (78) 

 

where Kp, Ki and Kd denote the proportional, integral, and derivative gains, respectively, and λ 

and μ are arbitrary positive real numbers. Ws(s) is the sensitivity function weight, R(s) is the 

exogenous input signal, and Z(s) is the exogenous output signal representing the weighted error. 

The sensitivity function weight, Ws(s), is selected to meet performance specifications, such as a 

settling time, percent overshoot, etc. [31]. 

FO PID controllers that stabilize the given system Gp(s) and meet the weighted sensitivity 

condition at the same time can be determined by finding all the parameters Kp, Ki and Kd of such 

FO PID controllers. In [32], all the values of Kp, Ki and Kd of the FO PID controllers that 

stabilize the closed-loop system shown in Fig. 8 were determined. Thus, the weighted sensitivity 

condition will be considered next. 

Based on performance requirements, FO PID controllers are sought to meet the following 

weighted sensitivity constraint: 

 

 ( ) ,      
( )s

S j
W j


 


   (79) 

 

Or equivalently, using the H∞ norm, 

 

 ( ) ( )sW j S j  

  (80) 

 

Where 1( )
1 ( ) ( )p C

S j
G j G j


 




 is the frequency domain expression of the sensitivity 

function 1( )
1 ( ) ( )p C

S s
G s G s




 and   is a positive scalar that defines an upper bound of the 

magnitude of ( )S j in conjunction with ( )sW j . The plant transfer function ( )pG s  and the 
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sensitivity function weight ( )sW s
 
can be expressed in real and imaginary parts in the frequency 

domain as: 

 

 ( ) ( ) ( )p p pG j R jI     (81) 

 ( ) ( ) ( )s s sW j R jI     (82) 

 

Likewise, the FO PID controller transfer function (78) can be written in frequency domain as: 

 

 ( ) ( )
( )

i
c p d

KG j K K j
j




 


    (83) 

 

The bound in (80) can be written as: 

 

 ( ) ( )( ) ( ) ,      sj W j S j
sW j S j e     

   (84) 

 

which is equivalent to: 

 ( ) ( ) ,      sj
sW j S j e    

   (85) 

 

for some [0,2 ),s  where ( ) ( ).s sW j S j     Thus, (85) tells us that all the FO PID 

controllers that meet the condition (80) must lie within the intersecting region defined by the 

controllers that satisfy (85)  for all [0,2 ).s   From (85), it can be seen that  

 

 ( ) ( ) Sj
sW j S j e   

  (86) 

 

constitutes the boundary condition such that any FO PID controller within such boundary will 

satisfy (85), for all [0,2 ).s   Accordingly, (86) leads to 

 

 11 ( ) ( ) ( ) 0sj
p c sG j G j W j e   




    (87) 
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By substituting (81), (82), and (83), and using cos sin ,sj
s se j     the boundary condition (87) 

becomes: 

 

      
11 ( ) ( ) ( ) ( ) ( ) cos sin 0

( )
i

p p p d s s S S
KR jI K K j R jI j
j




      

 

 
        

 
 (88) 

 

It can be easily seen that if 1   , (88) reduces to the case of the conventional IO PID 

controller in [27] and if γ approaches infinity, (88) reduces the case of the closed-loop stability of 

the FO PID controller in [32]. 

Expanding (88) into real and imaginary parts gives: 

 

 Rp p Ri i Rd d RX K X K X K Y    (89) 

 Ip p Ii i Id d IX K X K X K Y    (90) 

 

where 

   ( )Rp pX R   

   cos( ) ( ) +sin( ) ( )
2 2Ri p pX R I 
     

   =   cos( ) ( ) sin( ) ( )
2 2Rd p pX R I   

      
 

 
 

   ( )Ip pX I   

   sin( ) ( ) cos( ) ( )
2 2Ii p pX R I 
       

sin( ) ( ) cos( ) ( )
2 2Id p pX R I   
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 
 

 ( )cos ( )sinR S S S SY R I
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 
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
     

 ( )sin ( )cosI S S S SY R I


   


   
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5.2.2 Solution in (Kp, Ki) Plane

 

As this is a three dimensional system in terms of the controller parameters Kp, Ki and Kd, 

we will fix the value of Kd to find the solution to (89) and (90) of the boundary condition (87). In 

matrix form, (89) and (90) are rearranged to deal with two unknowns Kp and Ki as: 

 

 Rp Ri p R Rd d

Ip Ii i I Id d

X X K Y X K
X X K Y X K

     
     

    
 (91) 

 

Solving (91) for ω≠0 and λ≠2n (where n is an integer), Kp and Ki are given by 
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where  

 
2 2 2( ) ( ) ( )p p pG j R I     (94) 
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If ω=0, then Ki=0 is implied to define a valid FO PID controller as in (78), which in turn 

leads to a PDμ controller. Such a case will be addressed in the following Subsection 5.2.3 with 

the (Kp, Kd) plane. Thus, ω≠0 is assumed in the (Kp, Ki) plane. 

If λ=2n, then the solution exists for the following two cases: 

i) For μ≠2n and any frequency ωi that satisfies 
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the solution for Ki is given in terms of Kp as 
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 (96) 

 

ii) For  μ=2n and any frequency ωk that satisfies 
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the solution for Ki is given in terms of Kp for a fixed Kd value as 
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Thus, all the possible values of Kp and Ki of stabilizing FO PID controllers for a fixed Kd 

value that meet the weighted sensitivity condition (80) can be plotted in a two-dimensional graph 

using the above results with Kp and Ki as two Cartesian axes. If 1   , which is a 

conventional IO PID controller, the above results reduce to those presented in [27]. 

 

5.2.3 Solution in (Kp, Kd) Plane

 

Likewise, we fix the value of Ki to find the solution in the (Kp, Kd) plane. Accordingly, 

(89) and (90) are rearranged as: 

 

 Rp Rd p R Ri i

Ip Id d I Ii i
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 (99) 

 

Solving (99) for ω≠0 and μ≠2n (where n is an integer), Kp and Kd are given by 
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If ω=0, then Ki=0 as discussed above in Subsection 5.2.2, leading to the following two 

cases: 
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and Kd is arbitrary.
 ii) Otherwise, no solution exists for Kp but Kd is arbitrary. 

If μ =2n and ω≠0, then the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies 
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the solution for Kd is given in terms of Kp as 
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ii) For λ=2n and any frequency ωk that satisfies 
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the solution for Kd is given in terms of Kp for a fixed Ki value as 
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Again, all the possible values of Kp and Kd of stabilizing FO PID controllers that satisfy 

the weighted sensitivity constraint (80) for a fixed Ki value can be plotted in a two-dimensional 

graph using the above results with Kp and Kd as two Cartesian axes. If 1   , which is a 

conventional IO PID controller, the above results reduce to those presented in [27]. 

 

5.2.4 Solution in (Ki, Kd) Plane

 

Lastly, the (Ki, Kd) plane solution will be determined by fixing the value of Kp. To this 

end, (89) and (90) are arranged as: 
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Solving (107) for ω≠0 and λ+μ≠2n (where n is an integer), Ki and Kd are given by 
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In the (Ki, Kd) plane, again ω≠0 is assumed without loss of generality as discussed above. 

If λ+μ=2n (where n is an integer), the solution exists for the following two cases: 

i) For λ≠2n and any frequency ωi that satisfies 
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the solution for Kd is given in terms of Ki as 
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ii)  For λ=2n and any frequency ωk that satisfies 

 

 
 

( )sin ( )cos( ) ( )
( )cos ( )sin

S k S S k S
p k p k

S k S S k S

R II R
R I
   

 
    


 

 
 (112) 

 

the solution for Kd is given in terms of Ki for a fixed Kp value as 

 

    
cos( ) ( )cos ( )sin1 12

( )cos( ) cos( ) ( )
2 2

S k S S k S
d i p

k p k
k k p k

R IK K K
R R


 




   

      

 
  

     
 
 

 (113) 

 

Likewise, all the values of Ki and Kd of stabilizing FO PID controllers that satisfy the 

weighted sensitivity condition (80) for a fixed Kp value can be found in the (Ki, Kd) plane using 

the above results with Ki and Kd as two Cartesian axes. For 1   , the above results reduce to 

those presented in [27]. 

It should be noted that all the results in this section are expressed in the frequency domain. 

As a consequence, the controller parameters Kp, Ki, and Kd of the FO PID controllers that not 

only stabilize a given system but also meet an H∞ weighted sensitivity condition can be 

determined directly from an experimental frequency response when the system transfer function 

or system parameters are unknown. 

 

5.3 Example 

5.3.1 Problem Formulation 

Now, a numerical example will be given to illustrate the application and effectiveness of 

the results derived in Section 5.2. In order to present a comparable and tangible example, I will 

use the liquid level system in [19], which was modeled by a first-order transfer function as 
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with a time delay of 50 seconds. 

The objective of this example is to find all the possible values of the parameters Kp, Ki 

and Kd of FO PID controllers that stabilize the given system (114) and simultaneously satisfy the 

weighted sensitivity condition (80) where 1  . Then the results will be compared with those of 

an IO PID controller for better understanding of advantages in using FO PID controllers. There 

are a plurality of tuning rules for finding optimum values of the fractional orders λ and μ of FO 

PID controllers. So, the values λ=0.8968 and μ=0.4773 in [19] will be used for the FO PID 

controller in (78)  to show how effective and useful the method presented here is to find the 

values of the parameters Kp, Ki, and Kd of FO PID controllers. Thus, the FO PID controller used 

is given by 

 

 0.4773
0.8968( ) i

c p d
KG s K K s

s
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In addition, let the closed-loop system shown in Fig. 8 be required to meet performance 

specifications of a settling time of 1000 seconds, a percent overshoot of 15%, and a steady-state 

error less than or equal to 0.05. For such performance requirements, the method described in [31] 

leads to the following sensitivity function weight Ws(s): 
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
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 (116) 

 

5.3.2 Weighted Sensitivity Region in (Kp, Ki) Plane 

In order to find the weighted sensitivity region in the (Kp, Ki) plane for the plant transfer 

function (114) and the FO PID controller transfer function (115), (92) and (93) were used with a 

fixed value Kd=4.3867 which is again from [19], when 1  . In detail, all the possible values of 

the parameters Kp and Ki of FO PID controllers that satisfy the weighted sensitivity condition 

defined by (80) can be determined by finding an intersecting region of all the solutions to (92) 

and (93) for [0,2 )S   in a given range of frequency ω. Such an intersecting region lies on or 

within the boundary set by (86) for [0,2 )S  , thereby constituting the solution for meeting the 
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weighted sensitivity constraint (80). The corresponding stability region can be obtained by taking 

    in (92) and (93), which is the same as that disclosed in [32]. 

In Fig. 9, the weighted sensitivity region and the stability boundary of the FO PID 

controller are plotted in the (Kp, Ki) plane for Kd=4.3867. For comparison, those of the IO PID 

controller are shown in Fig. 10. As can be seen from Figs. 2 and 3, even though the FO and IO 

PID controllers both provide a fairly large stability region, the FO PID controller provides a 

much larger weighted sensitivity region than the IO PID controller for Kd=4.3867. These 

weighted sensitivity regions represent all the possible values of Kp and Ki for Kd=4.3867 that 

stabilize the plant transfer function (114) and meet the weighted sensitivity condition (80). 
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Fig. 9.  Stability boundary and weighted sensitivity region in (Kp, Ki) plane for the FO PID 

controller in (115) with Kd=4.3867. 
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Fig. 10.  Stability boundary and weighted sensitivity region in (Kp, Ki) plane for the IO PID 

controller with Kd=4.3867. 

 

To verify that FO PID controllers lying in such intersecting region truly meet the 

weighted sensitivity condition (80) and the performance specifications, an arbitrary controller 

was chosen from the weighted sensitivity region of the FO PID controller in Fig. 9, which is Kp= 

0.5982 and Ki=0.0068, as marked on the plot. Therefore, the chosen FO PID controller is 
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0.0068( ) 0.5982 4.3867cFOG s s
s
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Fig. 11 shows ( ) ( )SW j S j   with the FO PID controller in (117) and illustrates that 

( ) ( )SW j S j 


 is equal to 0.973, which is of course less than 1  . Fig. 12 illustrates the 

corresponding closed-loop step response with the FO PID controller (117). The closed-loop 

system shows a percent overshoot of P.O=5.42%, a 2% settling time of ts=871 seconds, and a 
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steady-state error of 0.002, all of which meet the performance requirements (ts=1000 seconds, 

P.O=15%, and a steady-state error less than or equal to 0.05). To plot the closed-loop step 

response with the FO PID controller (117), the FO PID controller transfer function was 

approximated using the fractional power pole (FPP) and fractional power zero (FPZ) methods 

given in [34] and [35], respectively. 
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Fig. 11.  ( ) ( )SW j S j   with the FO PID controller in (117). 
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Fig. 12.  Closed-loop step response with the FO PID controller in (117). 

 

5.3.3 Weighted Sensitivity Region in (Kp, Kd) Plane 

Similarly, the stability boundary and the weighted sensitivity region in the (Kp, Kd) plane 

for the system transfer function (114) and the FO PID controller transfer function (115) with a 

fixed value Ki=0.01, which is again from [19], were determined by using (100) and (101). As 

discussed previously, an intersecting region of all solutions to (100) and (101) when γ=1 for 

[0,2 )S   in a range of frequency ω is the weighted sensitivity region and the corresponding 

stability region is obtained by setting     in (100) and (101). For comparison, those of the IO 

PID controller were also determined. 

Fig. 13 shows the stability boundaries of the FO PID controller (115) and that of the IO 

PID controllers for Ki=0.01, respectively. Fig. 14 and Fig. 15 show the weighted sensitivity 

regions of the FO PID controller (115) and that of the IO PID controller in the (Kp, Kd) plane for 

Ki=0.01, respectively. 

As can be seen from Fig. 13, the IO PID controller provides a noticeably larger stability 

region than the FO PID controller (115) for Ki=0.01 in the (Kp, Kd) plane. However, whereas the 
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FO PID controller (115) provides a fairly large weighted sensitivity region in the (Kp, Kd) plane 

for Ki=0.01, the IO PID controller does not provide any weighted sensitivity region. The IO PID 

controller could be a better choice if we considered a stability region only; however, the FO PID 

controller is definitely a better choice in light of satisfying the performance specifications 

described early. In particular, the IO PID controller is not a plausible choice in this specific 

example with the weighted sensitivity constraint. 

While one weighted sensitivity region was determined in the (Kp, Kd) plane for a value of 

Ki in the example, it is possible to find all the weighted sensitivity regions by varying Ki values. 
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Fig. 13.  Stability boundaries of the FO and IO PID controllers in (Kp, Kd) plane for Ki=0.01. 
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Fig. 14.  Weighted sensitivity region in (Kp, Kd) plane for the FO PID controller with Ki=0.01. 
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Fig. 15.  Weighted sensitivity region in (Kp, Kd) plane for the IO PID controller with Ki=0.01. 
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5.4 Conclusion 

As described in Sections 5.2 and 5.3, a method is presented for determining all the values 

of the parameters of FO PID controllers, which include IO PID controllers as well, that not only 

stabilize a given system but also meet an H∞ weighted sensitivity condition. In particular, since 

the presented method includes existing solutions applicable to IO PID controllers and provides a 

complete set of solutions to so called FO PID controllers, it serves as a complete and generalized 

solution to determining all parameters of stabilizing PID controllers with a weighted sensitivity 

constraint. The method complements tuning rules for finding optimum values of the fractional 

orders λ and μ such as those proposed in [19]. 

Furthermore, as the results have been derived using frequency response of a system, this 

method can be applied even when a system transfer function is not known as long as the 

frequency response data of the system is obtainable. Furthermore, the results shown in Section 

5.3 clearly indicate that even in cases where no IO PID controllers satisfy a given H∞ weighted 

sensitivity condition, FO PID controllers may provide a fairly wide range of solutions.  
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CHAPTER 6 

ROBUSTLY STABILIZING FO PID CONTROLLERS 

 

6.1 Introduction 

This chapter is directed to the robust stability of a control system. A method is presented 

for finding all PID controllers (both IO and FO PID controllers) that stabilize a system of 

arbitrary order with a time delay and simultaneously meet a robust stability condition. In 

particular, the method is designed to determine all the values of the parameters Kp, Ki, and Kd of 

FO PID controllers that robustly stabilize the closed-loop system. For a robust stability 

requirement, a multiplicative weight is selected to bound all multiplicative errors of the closed-

loop system. Especially, such FO PID controllers remain stable for all the possible sets of 

perturbed plants. This chapter builds upon the work in [36]. This technique can be used even 

when the transfer function of a system is not available, as long as the system frequency response 

can be obtained. 

A single-input single-output (SISO) linear time-invariant (LTI) system shown in Fig. 16 

is considered. As the derivation of this method relies on the frequency response only, the method 

does not necessarily require a system transfer function. A detailed mathematical derivation, 

results, and examples follow. 

 

6.2 FO PID Controller Design for Robust Stability 

6.2.1 Problem Formulation 

Consider the closed-loop system shown in Fig. 16, 

 

 
Fig. 16.  A closed-loop system with multiplicative uncertainty. 
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where Gpn(s) is the nominal plant and Gpp(s) is the perturbed plant. The FO PID controller, Gc(s), 

is given by 

 ( ) i
c p d

KG s K K s
s




    (118) 

 

where Kp, Ki and Kd denote the proportional, integral, and derivative gains, respectively, and λ 

and μ are arbitrary positive real numbers. Wm(s) is the multiplicative weight (or multiplicative 

weighting function) and Δm(s) represents normalized uncertain perturbation such that 

( ) 1m j


  . Signal R(s) is the reference input, and Y(s) is the output. The multiplicative 

weight, Wm(s), is selected to bound all multiplicative errors of the closed-loop system, as 

described in [31]. 

In this chapter, FO PID controllers that stabilize the closed-loop system and 

simultaneously meet a robust stability condition will be determined by finding all the parameters 

Kp, Ki and Kd of such FO PID controllers for ( ) 1m j


  . Possible values of Kp, Ki and Kd of 

the FO PID controllers that stabilize the closed-loop system shown in Fig. 16 were found in [32]. 

The closed-loop system in Fig. 16 is robustly stable if the nominal system is stable and if 

   

 ( ) ,      
( )m

T j
W j


 


   (119) 

 

where 1  [31]. 

This can be written equivalently as, 

 

 ( ) ( )mW j T j  

  (120) 

 

where 
( ) ( )

( )
1 ( ) ( )

pn c

pn c

G j G j
T j

G j G j
 


 




 is the frequency domain representation of the 

complementary sensitivity function 
( ) ( )

( )
1 ( ) ( )

pn c

pn c

G s G s
T s

G s G s



 and γ is a positive scalar that defines 

the upper bound of the magnitude of ( )T j  in conjunction with ( )mW j . 
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In the frequency domain, the nominal plant transfer function Gpn(s) and the multiplicative 

weight Wm(s) can be expressed in terms of their real and imaginary parts as: 

 

 ( ) ( ) ( )pn p pG j R jI     (121) 

 ( ) ( ) ( )m m mW j R jI     (122) 

 

Similarly, the FO PID controller transfer function (118) can be expressed in frequency domain 

as: 

 ( ) ( )
( )

i
c p d

KG j K K j
j




 


    (123) 

 

The constraint in (119) and (120) can be written as: 

 

 ( ) ( )( ) ( ) ,      mj W j T j
mW j T j e     

   (124) 

 

which is equivalent to: 

 ( ) ( ) ,      mj
mW j T j e       (125) 

 

for some [0,2 ),m  where ( ) ( ).m mW j T j     Thus, (125) tells us that all the FO PID 

controllers that meet the condition (120) must lie in the intersection defined by the controllers 

that satisfy (125)  for all [0,2 ).m    From (125), it is clear that 

 

 ( ) ( ) mj
mW j T j e     (126) 

 

constitutes the boundary condition such that any FO PID controller within such boundary will 

satisfy (125), for all [0,2 ).m   Accordingly, (126) can be written as 

 

 11 ( ) ( ) ( ) ( ) ( ) 0mj
pn c m pn cG j G j W j G j G j e     


    (127) 
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By substituting (121), (122), and (123), and using cos sin ,mj
m me j    the boundary condition 

(127) becomes: 

 

 

    

1 ( ) ( ) ( )
( )

1   ( ) ( ) ( ) ( ) ( ) cos sin 0
( )

i
p p p d

i
m m p p p d m m

KR jI K K j
j

KR jI R jI K K j j
j









  


      
 

 
    

 

 
       

 

 (128) 

 

It can be easily seen that if λ=μ=1, (128) reduces to the case of the IO PID controller in [8] and if 

γ goes to infinity, (128) reduces to the case of the closed-loop stability of the FO PID controller 

in [32]. 

Expanding (128) into real and imaginary parts gives: 

 

 Rp p Ri i Rd d RX K X K X K Y    (129) 

 Ip p Ii i Id d IX K X K X K Y    (130) 

where 

 

 

 

( ) ( )cos ( )sin1( )
( ) ( )sin ( )cos

p m m m m
Rp p

p m m m m

R R I
X R

I R I


    
 

     

   
    

     

, 

 

 

cos ( ) ( ) ( ) ( )
21cos ( ) +sin ( )

2 2
sin ( ) ( ) ( ) ( )

2

m p m p m

Ri p p

m p m p m

R R I I
X R I

R I I R


     

 
   

 
     

  
    

                 
    

  

, 

 

 

= cos ( ) -sin ( )
2 2

cos ( ) ( ) ( ) ( )
2

        
sin ( ) ( ) ( ) ( )

2

Rd p p

m p m p m

m p m p m

X R I

R R I I

R I I R

 

 

 
    


     



 
     





    
    
    

  
    

  
  
    

  

, 
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 

 

( ) ( )sin ( )cos1( )
( ) ( )cos ( )sin

p m m m m
Ip p

p m m m m

R R I
X I

I R I


    
 

     

  
    

     

, 

 

 

sin ( ) ( ) ( ) ( )
21cos ( ) -sin ( )

2 2
cos ( ) ( ) ( ) ( )

2

m p m p m

Ii p p

m p m p m

R R I I
X I R

R I I R


     

 
   

 
     

  
    

                 
    

  

, 

 

 

cos ( ) +sin ( )
2 2

sin ( ) ( ) ( ) ( )
2

         
cos ( ) ( ) ( ) ( )

2

Id p p

m p m p m

m p m p m

X I R

R R I I

R I I R

 

 

 
    


     



 
     





    
     

    

  
   

  
  
    

  

, 

 

RY   , and 0IY  . 

 

6.2.2 Solution in (Kp, Ki) Plane 

As this is a three dimensional system in terms of the controller parameters Kp, Ki and Kd, 

the value of Kd will be fixed to find the solution to (129) and (130) in the  (Kp, Ki) plane. In 

matrix form, (129) and (130) can be written in terms of the two unknowns Kp and Ki as:  

 

 Rp Ri p R Rd d

Ip Ii i I Id d

X X K Y X K
X X K Y X K

     
     

    
 (131) 

 

Solving (131) for non-singular case, Kp and Ki are given by 
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 

 

1

( )sin ( )cos
2 2

cos ( ) ( ) ( ) ( )
21

sin ( ) ( ) ( ) ( )sin ( ) 22

sin
2

p p

m p m p m

m p m p m

p d

R I

R I I R

R R I I
K K

D


 
   


     

        





    
     

    
   

    
   

            
       

 
 
 

 (132) 

 

  

 

 

1

cos ( ) ( ) ( ) ( )1 ( )sin sin ( ) ( ) ( ) ( )2

sin
2

m p m p m

p

m p m p m

i d

R I I R
I

R R I I
K K

D



 

    
 

      







  
    
     

     
 
 
 

 (133) 

 

where 

 
2 2

1 2

1 2sin ( ) ( ) 1 ( )cos ( )sin
2 p m m m m mD G j W j R I
      

 

  
     

   
, 

 
2 2 2( ) ( ) ( )p p pG j R I    , and 2 2 2( ) ( ) ( )m m mW j R I    . 

 

If ω=0, then (131) becomes 

 

 
0 0
0 0

Ri p

Ii i

X K
X K

     
     
    

 (134) 

 

Solving (134), we determine that either Kp is arbitrary and Ki=0, or Kp and Ki both are arbitrary if 

(0) (0) 0p pR I  , which indicates that Gpn(s) has a zero at the origin. In such a case, the zero of 

a plant transfer function at the origin cancels the pole of the PID controller at the origin, thereby 

causing internal instability. 

Thus, all the possible values of Kp and Ki of stabilizing FO PID controllers for a fixed Kd 

value that meet the robust stability condition (120) can be plotted in a two-dimensional graph 

using the above results with Kp and Ki as two Cartesian axes. If λ=μ=1, which is a conventional 
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IO PID controller, the above results reduce to those presented in [8]. 

 

6.2.3 Solution in (Kp, Kd) Plane

 

Likewise, value of Ki will be fixed to determine the solution in the (Kp, Kd) plane. 

Accordingly, (129) and (130)  are rearranged as: 

 

 Rp Rd p R Ri i

Ip Id d I Ii i

X X K Y X K
X X K Y X K

     
     

    
 (135) 

 

Solving (135) for non-singular case, Kp and Kd are given by 

 

  

 

 

2

( )sin ( )cos
2 2

cos ( ) ( ) ( ) ( )
21

sin ( ) ( ) ( ) ( )sin ( ) 22

sin
2

p p

m p m p m

m p m p m

p i

R I

R I I R

R R I I
K K

D

 
   


     

        


 

    
     

    
   

    
   

            
       

 
 
 

 (136) 

 

     

 

 

2

cos ( ) ( ) ( ) ( )1( )sin sin ( ) ( ) ( ) ( )2

sin
2

m p m p m

p

m p m p m
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R I I R
I

R R I I
K K

D 

    


      

 
 

  
   
     

     
 
 
 

 (137) 

 

where  
2 2

2 2

1 2sin ( ) ( ) 1 ( )cos ( )sin
2 p m m m m mD G j W j R I
      

 

  
     

   
. 

 

If ω=0, then Kp and Kd both are arbitrary with Ki=0 or (0) (0) 0p pR I  , as is obvious 

from (135). 

Again, possible values of Kp and Kd of FO PID controllers that stabilize the closed-loop 
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system in Fig. 16 and simultaneously satisfy the robust stability condition (120) for a fixed Ki 

value can be plotted in a two-dimensional graph using the above results with Kp and Kd as two 

Cartesian axes. If λ=μ=1, which is a conventional IO PID controller, the above results reduce to 

those presented in [8]. 

 

6.2.4 Solution in (Ki, Kd) Plane

 

Lastly, the (Ki, Kd) plane solution will be determined by fixing the value of Kp. Thus, 

(129) and (130)  can be written as: 

 

 R Rp pRi Rd i

I Ip pIi Id d

Y X KX X K
Y X KX X K
    

           
 (138) 

 

Solving (138) for non-singular case, Ki and Kd are given by 
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       

     
   
    

   
             

       
 

 
 

 (139) 
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   

    
   

                     
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 

 (140) 
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where  
2 2

3 2

1 2sin ( ) ( ) ( ) 1 ( )cos ( )sin
2 p m m m m mD G j W j R I
       

 

  
      

   
. 

 

If ω=0, then Ki and Kd both are arbitrary if (0) (0) 0p pR I  , or Ki=0 and Kd is arbitrary. 

Likewise, all the values of Ki and Kd of stabilizing FO PID controllers that satisfy the 

robust stability condition (120) for a fixed Kp value can be found in the (Ki, Kd) plane using the 

above results with Ki and Kd as two Cartesian axes. For λ=μ=1, the above results reduce to those 

presented in [8]. 

It should be noted that all the results in this section were derived in the frequency domain. 

As a consequence, the controller parameters Kp, Ki, and Kd of FO PID controllers that stabilize a 

given system and simultaneously meet a robust stability condition can be determined directly 

from an experimental frequency response when either the system transfer function or system 

parameters are unknown. 

 

6.3 Example 

6.3.1 Problem Formulation 

Now, a numerical example will be given to illustrate the application and effectiveness of 

the results derived in Section 6.2. In order to clearly show the advantage of using FO PID 

controllers over IO PID controllers, we will use the example in [8], in which all IO PID 

controllers that stabilized a closed-system and satisfied the robust stability condition were found. 

In the example of [8], a feedback loop comprises a DC motor and an unknown communication 

delay of between 0.05 and 0.15 seconds. The nominal model of the DC motor was given by 

 

 65.5( )
( 34.6)

s
pnG s e

s s



 (141) 

 

Where τ, representing a time delay, was selected to be the mean of the unknown communication 

delay, or 0.1 second. 

The objective of this example is to find all the values of the parameters Kp, Ki and Kd of 

the FO PID controller that stabilizes the closed-loop system shown in Fig. 16 with the nominal 

plant (141) and simultaneously satisfy the robust stability condition (120) where γ=1. As 
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discussed above, there are a multitude of tuning rules for finding the values of the fractional 

orders λ and μ of the FO PID controllers. A non-optimal FO PID controller was chosen to have 

λ=1.32 and μ=0.65. Thus, the FO PID controller used is given by 

 

 0.65
1.32( ) i

cFO p d
KG s K K s

s
    (142) 

 

In [8], the multiplicative weight, Wm(s), was chosen as 

 

 ( )
0.357 20m

sW s
s




 (143) 

to bound the multiplicative errors. 

 

 

6.3.2 Robust Stability Region in (Kp, Ki) Plane 

In order to find the robust stability region in the (Kp, Ki) plane for the closed-loop system 

with the nominal plant transfer function (141) and the FO PID controller transfer function (142), 

(132) and (133) were used with a fixed value Kd=0.4 and γ=1. In detail, all the possible values of 

the parameters Kp and Ki of FO PID controllers that satisfy the robust stability condition defined 

by (120) can be determined by finding an intersection of all the solutions to (132) and (133) for 

[0,2 )m   in a given range of frequency ω. Such intersection lies on or within the boundary set 

by (126) for [0,2 ),m   thereby constituting a true solution to the robust stability constraint 

(120). The corresponding nominal stability boundary can be calculated by taking γ=∞ in (132) 

and (133), which is the same as that disclosed in [32]. 

Fig. 17 shows the nominal stability boundary of the FO PID controller (142) and that of 

the IO PID controllers for Kd=0.4, respectively. Fig. 18 and Fig. 19 show the robust stability 

region of the FO PID controller (142) and that of the IO PID controller in the (Kp, Ki) plane for 

Kd=0.4, respectively. 

As can be seen from Fig. 17, both the IO and FO PID controllers provide a large nominal 

stability region in the (Kp, Ki) plane for Kd=0.4. However, whereas the FO PID controller (142) 

provides a large robust stability region in the (Kp, Ki) plane for Kd=0.4, the IO PID controller 
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does not provide any weighted sensitivity region, as shown in Figs. 18 and 19 respectively. In 

more detail, the robust stability region represents all the possible values of Kp and Ki of the FO 

PID for Kd=0.4 that stabilizes the closed-loop system with the nominal plant transfer function 

(141) and simultaneously satisfy the robust stability condition (120). Accordingly, the IO PID 

controller is not a plausible choice in this specific example with the uncertainty of a time delay. 
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Fig. 17.  Nominal stability boundaries of the FO and IO PID controllers in (Kp, Ki) plane for 

Kd=0.4. 

 

To verify that the FO PID controllers lying in such intersection truly meet the robust 

stability constraint (120), an arbitrary controller was chosen from the robust stability region of 

the FO PID controller in Fig. 18, which is Kp= 2.8053 and Ki=11.4035, as marked on the plot. 

Therefore, the chosen FO PID controller is 

 

 0.65
1.32

11.4035( ) 2.8053 0.4cFOG s s
s

     (144) 



65 
 

 

Fig. 20 shows ( ) ( )mW j T j   with the FO PID controller (144) and illustrates that 

( ) ( )mW j T j 


 is equal to 0.699, which is of course less than γ=1.  
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Fig. 18.  Robust stability region in (Kp, Ki) plane for the FO PID controller with Kd=0.4. 
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Fig. 19.  Robust stability region in (Kp, Ki) plane for the IO PID controller with Kd=0.4. 
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Fig. 20.  ( ) ( )mW j T j   with the FO PID controller (144). 
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6.3.3 Robust Stability Region in (Kp, Kd) Plane 

Similarly, the nominal stability boundary and the robust stability region in the (Kp, Kd) 

plane for the closed-loop system with the nominal plant (141) and the FO PID controller (142) 

were determined for a fixed value Ki=22 using (136) and (137). As discussed earlier, an 

intersecting region of all solutions to (136) and (137) when γ=1 for [0,2 )m   in a given range 

of frequency ω is the robust stability region and the corresponding nominal stability boundary is 

obtained by setting γ=∞ in (136) and (137). 

In Fig. 21, the robust stability region and the nominal stability boundary of the FO PID 

controller (142) are plotted in the (Kp, Kd) plane for Ki=22. For comparison, those of the IO PID 

controller are shown in Fig. 22. As can be seen from Figs. 21 and 22, even though the FO PID 

controller and the IO PID controller both provide a large nominal stability region, the FO PID 

controller provides a much larger robust stability region than the IO PID controller for Ki=22. 

While the robust stability region was determined in the (Kp, Kd) plane for one fixed value of Ki in 

the example, it is possible to find the entire robust stability region by varying Ki values over a 

certain range. 

Again, in order to verify that FO PID controllers lying in such intersecting region meet 

the robust stability condition (120), an arbitrary controller was chosen from the robust stability 

region of the FO PID controller in Fig. 21, which is Kp= 3.3070 and Kd=0.3457, as marked on the 

plot. Therefore, the chosen FO PID controller is 

 

 0.65
1.32
22( ) 3.3070 0.3457cFOG s s
s

     (145) 

 

Fig. 23 shows ( ) ( )mW j T j   with the FO PID controller (145) and illustrates that 

( ) ( )mW j T j 


 is equal to 0.745, which is less than γ=1. 
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Fig. 21.  Nominal stability boundary and robust stability region in (Kp, Kd) plane for the FO PID 

controller with Ki=22. 
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Fig. 22.  Nominal stability boundary and robust stability region in (Kp, Kd) plane for the IO PID 

controller with Ki=22. 
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Fig. 23.  ( ) ( )mW j T j   with the FO PID controller (145). 

 

6.4 Conclusion 

As described and illustrated in Sections 6.2 and 6.3, a method is presented for finding all 

the values of the parameters of FO PID controllers that stabilize a given system and meet a 

robust stability condition. In addition, the method presented here can be used alone as well as in 

combination with other tuning rules for finding the values of the fractional orders λ and μ of FO 

PID controllers. Furthermore, as the derivation has completely relied upon the frequency 

response of a system, this method can be used even when a system transfer function is not known 

as long as the frequency response data of the system can be acquired. Moreover, the results 

shown in Section 6.3 clearly show that FO PID controllers could provide a fairly wide range of 

solutions even if there would be no solution to IO PID controllers that satisfy a robust stability 

condition. 
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  CHAPTER 7 

FO PID CONTROLLER DESIGN FOR ROBUST PERFORMANCE 

 

7.1 Introduction 

Following the investigation of the robust stability and nominal performance of a control 

system, robust performance of a closed-loop system with an FO PID controller will be explored 

next. This chapter presents a method for finding all FO PID controllers that stabilize a given 

system of arbitrary order with a time delay and simultaneously meet a robust performance 

constraint. In particular, it is an object of this chapter to provide a method for determining all the 

possible values of the parameters Kp, Ki and Kd of stabilizing FO PID controllers that satisfy 

robust performance requirements. This chapter builds upon the work in [37]. For robust 

performance of a closed-loop system, the nominal performance requirement and robust stability 

constraint must be satisfied first, thereby leading to a problem of a combination of robust 

stability and weighted sensitivity. 

To this end, a single-input single-output (SISO) linear time-invariant (LTI) system will 

be considered. As in the previous topics, the method presented here does not necessarily require 

a system transfer function because the procedure is completely based on the frequency response 

of the system. A detailed mathematical derivation, results, and examples follow. 

 

7.2 FO PID Controller Design for Robust Performance 

7.2.1 Problem Formulation 

Consider the closed-loop system shown in Fig. 24, 

 

 
Fig. 24.  A closed-loop system with multiplicative uncertainty. 
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where Gpn(s) is the nominal plant and Gpp(s) is the perturbed plant. The FO PID controller, Gc(s), 

is given by 

 ( ) i
c p d

KG s K K s
s




    (146) 

 

where Kp, Ki and Kd denote the proportional, integral, and derivative gains, respectively, and λ 

and μ are arbitrary positive real numbers. Wm(s) is the multiplicative weight and Δm(s) represents 

the normalized uncertain perturbation such that  ( ) 1.m j


  Ws(s) is the sensitivity function 

weight and R(s) is the input signal. Y(s) is the closed-loop system output and Z(s) is the output 

signal representing the weighted error. The multiplicative weight, Wm(s), is selected to bound all 

multiplicative errors of the closed-loop system and the sensitivity function weight, Ws(s), is 

selected to meet performance specifications, such as a settling time, percent overshoot, et cetera, 

as described in [31]. 

In this paper, FO PID controllers that stabilize the nominal closed-loop system shown in 

Fig. 24 and meet a robust performance constraint at the same time can be determined by finding 

all the parameters Kp, Ki and Kd of such FO PID controllers. All the values of Kp, Ki and Kd of the 

FO PID controllers that stabilize the nominal closed-loop system were determined in [32].  

The robust performance constraint for a SISO system is given in [31] by: 

 

 ( ) ( ) ( ) ( ) ,     s mW j S j W j T j         (147) 

 

where 1( )
1 ( ) ( )pn C

S j
G j G j


 




 is the sensitivity function, 
( ) ( )

( )
1 ( ) ( )

pn c

pn c

G j G j
T s

G j G j
 

 



 is the 

complementary sensitivity function, and 1  [31]. In the frequency domain, the nominal plant 

transfer function Gpn(s), the multiplicative weight Wm(s), and  the sensitivity function weight 

Ws(s) can be expressed in terms of their real and imaginary parts as: 

 

 ( ) ( ) ( )pn p pG j R jI     (148) 

 ( ) ( ) ( )m m mW j R jI     (149) 

 ( ) ( ) ( )s s sW j R jI     (150) 
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Likewise, the FO PID controller transfer function (146) can be written in the frequency domain 

as: 

 

 ( ) ( )
( )

i
c p d

KG j K K j
j




 


    (151) 

 

The robust performance constraint in (147) can be written with magnitude and phase as: 

 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ,      s mj W j S j j W j T j
s mW j S j e W j T j e         

    (152) 

 

which is equivalent to: 

 

 ( ) ( ) ( ) ( ) ,      s mj j
s mW j S j e W j T j e      

    (153) 

 

for some [0,2 ),s   where ( ) ( )s sW j S j    and [0,2 ),m   where 

( ) ( ).m mW j T j     Thus, (153) indicates that all the FO PID controllers that meet the 

condition (147) must lie within the intersection defined by the controller parameters that satisfy 

(153) for all [0,2 )s   and [0,2 ).m   From (153), the boundary equation for the robust 

performance condition is given by 

 

 ( ) ( ) ( ) ( ) ,      s mj j
s mW j S j e W j T j e      

    (154) 

 

Accordingly, expanding (154) leads to 

 

 1 11 ( ) ( ) ( ) ( ) ( ) ( ) 0s mj j
pn c s m pn cG j G j W j e W j G j G j e      

 


     (155) 

 

By substituting (148) through (151) and using cos sinmj
m me j    and 

cos sin ,sj
s se j    the boundary condition (155) becomes: 
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    

    

11 ( ) ( ) ( ) ( ) ( ) cos sin
( )

1 ( ) ( ) ( ) ( ) ( ) cos sin 0
( )

i
p p p d s s s s

i
m m p p p d m m

KR jI K K j R jI j
j

KR jI R jI K K j j
j









      
 

      
 

 
       

 

 
        

 

 (156) 

 

It can be easily seen that if λ=μ=1, (156) reduces to the case of the conventional IO PID 

controller in [29] and if γ approaches infinity, (156) reduces to the case of the nominal closed-

loop stability of the FO PID controller in [32]. 

Expanding (156) into real and imaginary parts and setting them equal to zero gives: 

 

 Rp p Ri i Rd d RX K X K X K Y    (157) 

 Ip p Ii i Id d IX K X K X K Y    (158) 

where 

    
1( ) ( ) ( )cos ( )sin ( ) ( )sin ( )cosRp p p m m m m p m m m mX R R R I I R I           


 
      

 
 

 

 

cos ( ) ( ) ( ) ( )
21cos ( ) +sin ( ) ,

2 2
sin ( ) ( ) ( ) ( )

2

m p m p m

Ri p p

m p m p m

R R I I
X R I

R I I R


     

 
   

 
     

  
    

                 
    

  

 

   

= cos ( ) -sin ( )
2 2

 cos ( ) ( ) ( ) ( ) sin ( ) ( ) ( ) ( ) ,
2 2

Rd p p

m p m p m m p m p m

X R I

R R I I R I I R

 

 

 
    

  
           







    
    

    

    
          

    

   

    
1( ) ( ) ( )sin ( )cos ( ) ( )cos ( )sin ,Ip p p m m m m p m m m mX I R R I I R I           


 
     

 
 

 

 

sin ( ) ( ) ( ) ( )
21cos ( ) -sin ( ) ,

2 2
cos ( ) ( ) ( ) ( )

2

m p m p m

Ii p p

m p m p m

R R I I
X I R

R I I R


     

 
   

 
     

  
    

                 
    

  
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   

cos ( ) +sin ( )
2 2

   sin ( ) ( ) ( ) ( ) cos ( ) ( ) ( ) ( ) ,
2 2

Id p p

m p m p m m p m p m

X I R

R R I I R I I R

 

 

 
    

  
           







    
     

    

    
         

    

  

 ( )cos ( )sinR s s s sY R I


 
    


    , and 

 ( )sin ( )cosI s s s sY R I


   


  . 

 

As this is a three dimensional system in terms of the controller parameters Kp, Ki and Kd, 

one of the three parameters will be fixed to find the solution for the other two parameters in 

(157) and (158). 

 

7.2.2 Solution in (Kp, Ki) Plane 

In order to find the solution in the (Kp, Ki) plane, the value of Kd will be fixed. In matrix 

form, (157) and (158) are rearranged to deal with the two unknowns Kp and Ki as: 

 

 Rp Ri p R Rd d

Ip Ii i I Id d

X X K Y X K
X X K Y X K

     
     

    
 (159) 

 

Solving (159) for the non-singular case, Kp and Ki are given by 

 

    

 

1 2 3 4

1 2

sin ( ) ( )sin( ) ( ) cos( )2 2 2
sin( ) sin( )

2 2

cos( ) sin( ) cos( ) sin( )
2 2 2 2         

sin( )
2

cos sin
2 2         

p p

p d

m m s s

s m s m

R I
K K

D

A A A A

D

B B



       


 
 

   
       


 

 
     

 
  

   

 
       

 

   
       

  

 3 4

2 sin( )
2

B B

D 
 




   (160) 
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 

      

1 2 3 4

1 2 3 4

2

sin( ) ( ) cos sin cos sin2 +
sin( ) sin( ) sin( )

2 2 2
cos sin

        
sin( )

2

p m m s s
i d

s m s m

I A A A A
K K

D D

B B B B

D



  




      

 
  
   

    


 


  

 

    


 (161) 

 

where 

 

1 ( ) ( ) ( ) ( ),p m p mA R I I R        2 ( ) ( ) ( ) ( ),p m p mA R R I I      

3 ( ) ( ) ( ) ( ),p s p sA R I I R        4 ( ) ( ) ( ) ( ),p s p sA R R I I      

 1 ( ) ( ) ( ) ( ) ( ) ,p m s m sB R R I I R          2 ( ) ( ) ( ) ( ) ( ) ,p m s m sB I R R I I       

 3 ( ) ( ) ( ) ( ) ( ) ,p m s m sB R R R I I         4 ( ) ( ) ( ) ( ) ( ) ,p m s m sB I R I I R       

 
2 2

2

1 2( ) 1 ( ) ( )cos ( )sinp m m m m mD G j W j R I     
 

 
    

 
, 

2 2 2( ) ( ) ( ),p p pG j R I     and 2 2 2( ) ( ) ( )m m mW j R I    . 

 

Thus, all stabilizing FO PID controllers for a fixed Kd value that meet the robust performance 

constraint (147) can be plotted in a two-dimensional graph using (160) and (161) with Kp and Ki 

as the two Cartesian axes. If λ=μ=1, which is a conventional IO PID controller, the above results 

reduce to those presented in [29]. 

 

7.2.3 Solution in (Kp, Kd) Plane

 

Now, the value of Ki will be fixed to determine the solution in the (Kp, Kd) plane. 

Accordingly, (157) and (158) are rearranged as: 

 

 Rp Rd p R Ri i
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 (162) 
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Solving (162) for the non-singular case, Kp and Kd are given by 
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Again, all stabilizing FO PID controllers that satisfy the robust performance condition 

(147) can be found for a fixed Ki value in the (Kp, Kd) plane. If λ=μ=1, which is a conventional 

IO PID controller, the above results reduce to those presented in [29]. 

 

7.2.4 Solution in (Ki, Kd) Plane

 

Lastly, the (Ki, Kd) plane solution will be determined by fixing the value of Kp. Thus, 

(157) and (158) can be written as: 
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 (165) 
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Solving (165) for the non-singular case, Ki and Kd are given by 
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Likewise, all stabilizing FO PID controllers that meet the robust performance constraint 

(147) for a fixed Kp value can be determined in the (Ki, Kd) plane using (166) and (167) with Ki 

and Kd as the two Cartesian axes. For λ=μ=1, the above results reduce to those presented in [29] 

for the conventional IO PID controller. 

It should be noted that all the derivations in this section are based on the frequency 

response of a system. As a consequence, the controller parameters Kp, Ki, and Kd of the FO PID 

controllers that not only stabilize a given system but also meet a robust performance constraint 

can be determined directly from an experimental frequency response if the system transfer 

function or system parameters are unknown. While the solution was derived in each plane for a 

fixed value of a third parameter, a complete solution can be constructed by varying the third 
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parameter for a specified range. 

 

7.3 Example 

7.3.1 Problem Formulation 

Now, a numerical example will be given to illustrate the application of the results derived 

in Section II. In order to compare results, we will use the example in [29], in which all IO PID 

controllers that stabilize the closed-system and satisfy a robust performance constraint were 

found. The feedback loop now has an unknown time delay of between 0 and 1 second. The 

nominal model of the system was given by 

 

 0.5 1( )
(2 1)( 1)

s
pn

sG s e
s s

 


 
 (168) 

 

where τ, representing a time delay, was selected to be the mean of the delay, or 0.5 

seconds. 

The objective of this example is to find all the values of the parameters Kp, Ki and Kd of 

the FO PID controller (146) that stabilizes the closed-loop system shown in Fig. 24 with the 

nominal plant (168) and simultaneously satisfies the robust performance constraint (147) where 

γ=1. As the goal is to find all the parameters Kp, Ki and Kd of the FO PID controller (146) with 

respect to arbitrary values of the fractional orders λ and μ, a non-optimal FO PID controller was 

chosen to have λ=0.98 and μ=0.25. Thus, the FO PID controller used is given by 

 

 0.25
0.98( ) i

c p d
KG s K K s

s
    (169) 

 

Using the method described in [31], the multiplicative weight, ( ),mW s  was chosen as 

 ( )
0.3571 1.9m

sW s
s




 (170) 

 

to bound the multiplicative errors resulting from the unknown time delay of 0 to 1 second. In 

addition, the closed-loop system shown in Fig. 24 is required to meet a settling time of 40 
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seconds, a percent overshoot of 5%, and a steady-state error less than or equal to 1%. Thus, the 

sensitivity function weight, Ws(s), was determined in accordance with the method in [31] to meet 

such performance specifications as: 

 

 0.780( 0.1314)( )
( 0.001025)s

sW s
s





 (171) 

 

7.3.2 Robust Performance Region in (Kp, Ki) Plane 

In order to find the robust performance region in the (Kp, Ki) plane for the plant transfer 

function (168) and the FO PID controller transfer function (169), (160) and (161) were used with 

a fixed value Kd=0.4 when γ=1. All FO PID controllers that satisfy the robust performance 

condition defined by (147) can be determined by finding an intersection of all the solutions to 

(160) and (161) for [0,2 )s   and [0,2 )m   in a given range of frequency ω. Such an 

intersection lies on or within the boundary set by (154) for [0,2 )s   and [0,2 ),m   thereby 

constituting a true solution to the robust performance constraint (147). The corresponding 

nominal stability region can be obtained by setting γ=∞ in (160) and (161), which is the same as 

that given in [32]. 

Fig. 25 shows the nominal stability boundaries of the FO PID controller (169) and the IO 

PID controller for Kd=0.4, respectively. Fig. 26 and Fig. 27 show the robust performance regions 

of the FO PID controller (169) and the IO PID controller in the (Kp, Ki) plane, respectively. 

As can be seen from Fig. 25, both the IO and FO PID controllers provide a large nominal 

stability region in the (Kp, Ki) plane for Kd=0.4. However, whereas the FO PID controller (169) 

provides a decent robust performance region in the (Kp, Ki) plane, the IO PID controller does not 

provide any robust performance region at all. The robust performance region represents all the 

possible values of Kp and Ki of the FO PID controller (169) for Kd=0.4 that stabilizes the closed-

loop system with the nominal plant transfer function (168) and simultaneously satisfy the robust 

performance condition (147). In particular, the FO PID controller with these parameter values 

along with the fixed value Kd=0.4 makes the closed-loop system stable for the time delay of the 

range of 0 to 1 second as well as satisfies the performance specifications of a settling time, a 

percent overshoot, and a steady state error as mentioned at the beginning of the example. 
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Accordingly, the IO PID controller is not a plausible choice in this specific example with the 

time delay uncertainty and performance specifications. 
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Fig. 25.  Nominal stability boundaries of the FO and IO PID controllers in (Kp, Ki) plane for 

Kd=0.4. 

 

To verify that FO PID controllers lying in such an intersection truly meet the robust 

performance constraint (147) and the performance specifications, an arbitrary controller was 

chosen from the robust performance region of the FO PID controller in Fig. 26, which is Kp= 

0.0345 and Ki=0.1274, as marked on the plot. Therefore, the chosen FO PID controller is 
 

 0.25
0.98

0.1274( ) 0.0345 0.4cFOG s s
s

    (172) 

 

Fig. 28 shows ( ) ( ) ( ) ( )s mW j S j W j T j     and illustrates that 

max( ( ) ( ) ( ) ( ) )s mW j S j W j T j


     is equal to 0.997, which is less than γ=1. Fig. 29 shows 
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the corresponding closed-loop step responses with the FO PID controller (172) for the time 

delays 0,  0.5,  and 1   second. Even for the worst case with 1   second, the closed-loop 

system has a percent overshoot of P.O=3.13%, a 2% settling time of ts=25.3 seconds, and a zero 

steady-state error, all of which meet the performance requirements. In other words, the closed-

loop system satisfies all the performance specifications for the complete range of the time delay. 

To generate the closed-loop step response with the FO PID controller (172), the FO PID 

controller transfer function was approximated using the fractional power pole (FPP) and 

fractional power zero (FPZ) methods in [34] and [35], respectively. 
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Fig. 26.  Robust performance region in (Kp, Ki) plane for the FO PID controller (169) with 

Kd=0.4. 
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Fig. 27.  Robust performance region in (Kp, Ki) plane for the IO PID controller with Kd=0.4. 
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Fig. 28.  ( ) ( ) ( ) ( )s mW j S j W j T j     with the FO PID controller in (172). 
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Fig. 29.  Closed-loop step responses with the FO PID controller in (172) for the time delays 

0,  0.5,  and 1  second. 

 

7.3.3 Robust Performance Region in (Ki, Kd) Plane 

Similarly, the nominal stability boundary and the robust performance region in the (Ki, 

Kd) plane for the FO PID controller (169) with a fixed value Kp=0.04 were determined by using 

(166) and (167). As previously, an intersection of all the solutions to (166) and (167) for 

[0,2 )s   and [0,2 )m   in a given range of frequency ω is the robust performance region 

and the corresponding nominal stability boundary was obtained by taking γ=∞ in (166) and (167). 

Figs. 30 and 31 show the nominal stability boundary and the robust performance region 

of the FO PID controller (169) in the (Ki, Kd) plane for Kp=0.04, respectively. To verify that FO 

PID controllers in such an intersection meet the robust performance constraint (147), an arbitrary 

controller was chosen from the robust performance region of the FO PID controller in Fig. 31, 

which is Ki=0.1255 and Kd=0.3887, as marked on the plot. Thus, the chosen FO PID controller is 
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Fig. 30.  Nominal stability boundary in the (Ki, Kd) plane for the FO PID controller (169) with 

Kp=0.04. 
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Fig. 31.  Robust performance region in (Ki, Kd) plane for the FO PID controller (169) with 

Kp=0.04. 
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Fig. 32 shows the corresponding closed-loop step responses with the FO PID controller 

(173) for the time delays 0,  0.5,  and 1  second. As can be seen, all the performance 

specifications are met for the complete range of the time delay including the worst case with 

1   second, which has a percent overshoot of P.O=2.49%, a 2% settling time of ts=24.4 

seconds, and a zero steady-state error. 
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Fig. 32.  Closed-loop step response with the FO PID controller in (173) for the time delays 

0,  0.5,  and 1   second. 

 

7.4 Conclusion 

As described in Sections 7.2 and 7.3, a method has been presented for determining all FO 

PID controllers that not only stabilize a given system with a time delay but also meet a robust 

performance condition. In particular, FO PID controllers have been designed so that the closed-

loop system including the FO PID controller is robustly stable for a time delay uncertainty and 

meets desired performance specifications, such as a settling time, percent overshoot, and steady 

state error. As can be seen from the results of the example in Section III, even when there is no 
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IO PID controller available that satisfies a given robust performance constraint in some cases, 

FO PID controllers may be able to provide a decent range of solutions. In addition, since the 

results have been derived based on the frequency response of a system, this method can be 

applied even when a system transfer function is not available. 
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CHAPTER 8 

WEIGHTED SENSITIVITY DESIGN OF PID CONTROLLERS APPLIED 

TO A DC MOTOR 

 

8.1 Introduction 

As described in Chapters 4 through 7, the methods presented in this dissertation utilize 

the frequency response of a physical apparatus without relying on the knowledge of the system 

transfer function. In order to provide applicability and usefulness of the techniques presented in 

the previous chapters, this chapter provides an example of FO PID controller design with a 

weighted sensitivity constraint applied to a direct current (DC) motor.  In particular, the results 

set forth in Chapter 5 will be used with the frequency response data directly acquired through 

experiments on a DC motor. An SRV-02 DC motor from Quanser Consulting, Inc. will be used 

because of a long-time experimental setup in the Department of Electrical Engineering and 

Computer Science at Wichita State University and versatility and flexibility of its 

implementation. The Quanser SRV-02 DC motor supports the real-time design and 

implementation of various control schemes using Matlab and Simulink tools [38]. 

Therefore, it is the objective of this chapter to find all the numerical values of the 

parameters Kp, Ki and Kd of FO PID controllers that stabilize a given system and simultaneously 

meet an H∞ weighted sensitivity constraint, using measured frequency response of the DC motor 

without knowing its transfer function. Such parameters Kp, Ki and Kd of FO PID controllers will 

be determined with respect to arbitrary values of the fractional orders (λ and μ). A single-input 

single-output (SISO) system is considered, with the motor input voltage as the input and the load 

shaft position as the output. Detailed experiment setups, measurement of frequency response, 

and results follow. 

 

8.2 Frequency Response Measurement of SRV-02 DC Motor  

8.2.1 Experimental Setup 

Consider the closed-loop system shown in Fig. 8 in Chapter 5. In this experiment, the 

plant is the SRV-02 DC motor system [38] as shown in Fig. 33 below. Note that the SRV-02 DC 

motor system has low and high-gear configurations as shown in Fig. 34 and that the latter will be 

used in the experiment. Emami and Watkins used the SRV-02 DC motor in the high-gear 



88 
 

configuration to design a discrete-time PID controller to regulate its shaft position in [39].  Fig. 

35 shows complete connections of the hardware components, the SRV-02 motor, Quanser 

VoltPAQ-X2 (dual-channel power amplifier), Quanser Q8-USB (data acquisition board), and 

analog sensors adapter. 

 

 
Fig. 33.  Quanser SRV-02 DC motor system. 

 

 
Fig. 34.  Low and high-gear configurations of Quanser SRV-02 DC motor system. 
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Fig. 35.  Hardware connections between SRV-02, amplifier, and data acquisition board. 

 

Fig. 36 shows the Simulink diagram used to conduct the experiments. Inside the SRV02-

ET Position subsystem, the SRV02-ET subsystem contains QUARC® blocks that interface with 

the DC motor and sensors in the SRV-02 system. The power amplifier is used to drive the motor 

and the encoder is used to measure the angular position of the load shaft (rad). 

 

 
Fig. 36.  Simulink model with QUARC® and SRV-02 ET Position block. 
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8.2.2 Measurement of Frequency Response

 

In this experiment, the frequency response of the load shaft of the SRV-02 DC motor was 

measured. The measured frequency response will be used instead of the transfer function to 

design the controller to regulate the load shaft position of the DC motor in the high-gear 

configuration. In other words, the technique described in Chapter 5 is applied to the DC motor to 

find all the possible FO PID controllers that satisfy desired performance specifications using the 

measured frequency response without the knowledge of the transfer function. As mentioned 

previously, the encoder was selected in the Pos Src source block in Fig. 36 as the sensor to 

measure the angular position of the load shaft. 

The frequency response of the DC motor was obtained by providing a sine wave input 

signal to the motor and measuring the output sine wave from it. The amplitude of the input sine 

wave provided by Signal Generator block was kept constant at 1 but its frequency was varied. 

For each frequency point, the amplitude and the peak time of the output sine wave were recorded. 

Table 1 shows the amplitude and peak time of the output signal and the peak time of the 

input signal for frequency points between 0.01 to 100 radians/second. As the input signal has an 

amplitude of 1, the Bode magnitude plot can be drawn directly from the frequency and the output 

signal amplitude. The phase (in degrees) was calculated for each frequency by taking the 

difference in peak time between the input and output signals and multiplying it by a 

corresponding frequency. Table 2 shows the calculated magnitude in both absolute value and in 

dB and phase in degrees versus frequency. Then, the data in Table 2 was loaded in MATLAB to 

store as frequency-response data (FRD)  format. Thus, the experimental frequency response of 

the SRV-02 DC motor was obtained as shown in Fig. 37. 
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TABLE 1 

 MEASURED AMPLITUDE AND PEAK TIME OF OUTPUT SIGNAL AND INPUT SIGNAL 

PEAK TIME VERSUS FREQUENCY 

Frequency 
(rad/s) 

Amplitude 
(Output Signal) 

Peak Time 
(Input Signal) 

Peak Time 
(Output Signal) 

0.01 510.049 785.25 944 
0.02 256.417 392.5 471.9 
0.03 171.0418 261.8 314.8 
0.04 127.706905 196.22 235.98 
0.05 102.37555 157.02 188.84 
0.06 85.5228 130.8 157.32 
0.08 63.737585 98.1 118 
0.09 57.11085 87.2 104.9 
0.1 51.3435 78.54 94.48 
0.2 25.588095 39.24 47.22 
0.3 17.028095 26.16 31.49 
0.4 12.80531 19.62 23.62 
0.5 10.231932 15.705 18.91 
0.6 8.51273 13.09 15.765 
0.8 6.413555 9.82 11.83 
0.9 5.698835 8.726 10.516 
1 5.129233 7.8525 9.464 
2 2.563233 3.928 4.752 
3 1.70587 2.62 3.174 
4 1.27487 1.964 2.386 
5 1.019568 1.571 1.916 
6 0.841602 1.31 1.604 
7 0.721835 1.122 1.377 
8 0.629835 0.982 1.208 
9 0.552405 0.874 1.077 
10 0.496233 0.786 0.973 
20 0.222415 0.393 0.499 
30 0.131925 0.262 0.339 
40 0.08591 0.3535 0.415 
50 0.059825 0.283 0.334 
60 0.044475 0.236 0.2805 
70 0.034495 0.202 0.241 
80 0.02838 0.1772 0.212 
90 0.02301 0.15702 0.1885 

100 0.018405 0.1412 0.17 
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TABLE 2  

CALCULATED MAGNITUDE AND PHASE 

Frequency 
(rad/s) 

Magnitude 
(abs) 

Magnitude 
(dB) 

Phase 
(Degree) 

0.01 510.049 54.1522 -90.9570689 
0.02 256.417 48.1789 -90.9857168 
0.03 171.0418 44.662 -91.10030838 
0.04 127.706905 42.1243 -91.1232267 
0.05 102.37555 40.2039 -91.15760417 
0.06 85.5228 38.6416 -91.16906333 
0.08 63.737585 36.0879 -91.21489996 
0.09 57.11085 35.1344 -91.27219575 
0.1 51.3435 34.2097 -91.32949154 
0.2 25.588095 28.1608 -91.44408313 
0.3 17.028095 24.6233 -91.6159705 
0.4 12.80531 22.1478 -91.67326629 
0.5 10.231932 20.1992 -91.81650577 
0.6 8.51273 18.6014 -91.95974525 
0.8 6.413555 16.142 -92.13163262 
0.9 5.698835 15.1157 -92.30352 
1 5.129233 14.201 -92.33216789 
2 2.563233 8.1758 -94.42346428 
3 1.70587 4.6389 -95.22560536 
4 1.27487 2.1093 -96.71529594 
5 1.019568 0.1683 -98.83524022 
6 0.841602 -1.4979 -101.0697761 
7 0.721835 -2.8312 -102.2729877 
8 0.629835 -4.0155 -103.5907909 
9 0.552405 -5.1548 -104.6794109 

10 0.496233 -6.0863 -107.14313 
20 0.222415 -13.0567 -121.4670778 
30 0.131925 -17.5935 -132.3532782 
40 0.08591 -21.3191 -140.9476469 
50 0.059825 -24.4623 -146.1042682 
60 0.044475 -27.0377 -152.9797631 
70 0.034495 -29.2449 -156.4175106 
80 0.02838 -30.9398 -159.5114833 
90 0.02301 -32.7617 -162.3304363 
100 0.018405 -34.7013 -165.0118793 

 

 



93 
 

-40

-30

-20

-10

0

10

20

30

40

50

60

M
a

g
n

it
u

d
e

 (
d

B
)

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)  

Fig. 37.  Experimental frequency response of the SRV-02 DC motor. 

 

 

8.3 FO PID Controller Design with a Weighted Sensitivity Constraint for a DC Motor 

8.3.1 Problem Formulation 

The objective of this example is to find all parameters Kp, Ki and Kd of an FO PID 

controller that stabilize the DC motor represented by the Bode diagram in Fig. 37 and 

simultaneously satisfy the weighted sensitivity constraint (80) where 1  . In particular, there is 

no direct knowledge of the transfer function of the DC motor except the measured frequency 

response thereof. In consideration of practical applicability, an FO PI controller was selected by 

setting the derivative gain, Kd, equal to zero. As the goal is to find all the parameters Kp and Ki of 

the FO PI controller with respect to arbitrary values of the fractional order λ, a non-optimal FO 

PI controller was chosen to have λ=0.2. Thus, the FO PI controller used is given by 
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 0.2( ) i
c p

KG s K
s

   (174) 

 

In addition, the closed-loop system shown in Fig. 8 is required to meet performance 

specifications of a settling time of 2 seconds, a percent overshoot of 15%, and a steady-state 

error less than or equal to 1%. For such performance requirements, the method described in [31] 

leads to the following sensitivity function weight Ws(s): 

 

 0.69224( 3.952)( )
( 0.02736)s

sW s
s





 (175) 

 

8.3.2 Weighted Sensitivity Region in (Kp, Ki) Plane 

In order to find the weighted sensitivity region in the (Kp, Ki) plane for the DC motor 

with the FO PI controller transfer function (174), (92) and (93) were used with Kd=0 when 1  . 

As discussed in Chapter 5, all the possible values of the parameters Kp and Ki of the FO PI 

controller (174) that satisfy the weighted sensitivity constraint (80) can be determined by finding 

an intersection of all the solutions to (92) and (93) for [0,2 )s   in a given range of frequency 

ω. The corresponding nominal stability region can be obtained by taking     in (92) and (93). 

In Fig. 38, the weighted sensitivity region and the nominal stability boundary of the FO 

PI controller (174) are shown in the (Kp, Ki) plane. While the nominal stability boundary 

represents the region for the possible values of Kp and Ki to stabilize the DC motor for Kd=0 in 

this case, the weighted sensitivity region represents all the possible values of Kp and Ki that not 

only stabilize the DC motor but also satisfy the weighted sensitivity constraint (80) to meet the 

performance specifications. 
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Fig. 38.  Nominal stability boundary and weighted sensitivity region in (Kp, Ki) plane for the FO 

PI controller in (174). 

 

To verify that FO PI controllers lying in the weighted sensitivity region meet the 

weighted sensitivity constraint (80), an arbitrary controller was chosen from the weighted 

sensitivity region of the FO PI controller in Fig. 38, which is Kp= 1.55 and Ki= 0.41, as marked 

on the plot. Therefore, the chosen FO PI controller is 

 

 0.2

0.41( ) 1.55cFOG s
s

    (176) 

 

Fig. 39 shows ( ) ( )SW j S j   with the FO PI controller in (176) and illustrates that 

( ) ( )SW j S j 


 is equal to 0.833, which is of course less than 1  . Thus, the weighted 

sensitivity constraint is met. 
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Fig. 39.  ( ) ( )SW j S j   with the FO PI controller in (176). 

 

8.4 Implementation of the FO PI Controller on the Quanser SRV-02 DC Motor 

8.4.1 Experimental Setup 

After designing the FO PI controller (176) for the weighted sensitivity constraint of the 

closed-loop system containing the Quanser SRV-02 DC Motor, the FO PI controller was 

implemented on the DC motor to regulate the angular position of the load shaft. The objective of 

this experiment is to observe the closed-loop position control of the DC motor load shaft for 

practical applicability. Accordingly, the step response of the closed-loop system was measured 

for the SRV-02 hardware equipment using the FO PI controller (176). 

Before conducting the experiments, the Matlab setup script file was configured according 

to the SRV-02 DC motor setup, such as for low or high gear configuration, load type, sensor and 

amplifier types, etc [38]. In the experiment, the settings are as follows: high-gear configuration, 

no load, encoder as the sensor, and VoltPAQ as the power amplifier. 

Fig. 40 shows the Simulink diagram used to implement the closed-loop step response of 

the DC motor with respect to the angular position of load shaft, using the FO PI controller (176).  
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As described in Section 8.3.1, the SRV02-ET Position subsystem contains QUARC® blocks that 

interface with the DC motor and sensors in the SRV-02 system. In the Simulink model, the HIL 

Initialize block in the SRV02-ET subsystem (which is under the SRV02-ET Position subsystem) 

was configured to have q8-usb for the DAQ device board type. The encoder was selected 

through the Pos Src source block as the sensor to measure the angular position of the load shaft. 

 

 
Fig. 40.  Simulink model with FO PID and SRV02- ET Position blocks. 

 

The Fractional PID block (the name was changed to FO PID block in this experiment for 

the sake of clarity as shown in Fig. 40) found in a Simulink library called nintblocks was used for 

the implementation of the FO PI controller (176). The nintblocks library which also includes 

Fractional derivative block is part of Ninteger toolbox in Matlab [40]. The Ninteger toolbox is 

used to implement FO PID controllers and to assess their performance in both the frequency and 

time domain and may be freely distributed and downloaded from the Internet. Fig. 41 shows 

Fractional PID block parameters window, in which: 

 Kp is the proportional gain, 

 Kd is the derivative gain, 

 vd is the fractional derivative order, 

 ki is the integral gain, 

 vi is the fractional integral order, and 

 n is the number of zeros and poles of the approximation. 
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Fig. 41.  Fractional PID block parameters window. 

 

For FO PI controller (176) implementation, the parameters were set as follows: kp = 1.55, 

kd = 0, vd = 0.63 (this value does not affect at all because kd is zero), ki = 0.41, vi = 0.2, 

frequency band [0.01, 100] rad/s, and n=20 as can be seen from Fig. 42. The Crone (Commande 

robuste d’ordere non-entier) method was selected in the FO PID block to approximate the FO PI 

controller to have 20 poles and zeros in the approximation within the frequency range [0.01, 100] 

rad/s. 

 

8.4.2 Step Response of the DC Motor with the FO PI controller 

A step reference signal was set with the amplitude of 1 at the step time of 1 second. Then, 

the Simulink diagram was compiled by clicking build in the Quarc pull-down menu, and the 

experiment began by clicking start in the Quarc menu. Fig. 42 shows the step response of the DC 

motor in relation to the load shaft position (rad) with the FO PI controller (176). As can be seen 

from Fig. 42, the DC motor shows a 2% settling time (Ts) of 0.255 seconds (the step signal was 

applied at 1 second) with no overshoot. In light of the performance specifications (Ts = 2 

seconds,  %OS = 15%, and ess (steady-state error) ≤ 1%) mentioned in Section 8.3.1, the FO PI 

controller (176) can be used satisfactorily. 



99 
 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

L
o
a
d
 S

h
a
ft
 P

o
s
it
io

n
 (

ra
d
)

Position: 0.98 radians

Time: 1.255 seconds

 
Fig. 42.  Measured step response of the DC motor with the FO PI controller in (176). 

 

8.5 Conclusion 

As illustrated in Sections 8.2 and 8.3, the method presented in Chapter 5 was applied to a 

DC motor system to find a weighted sensitivity region for satisfying desired performance 

specifications of the DC motor. Such weighted sensitivity regions guarantee the stability as well 

as the robust performance of the closed-loop system containing the DC motor and the FO PI 

controller. As claimed in Chapters 4 through 7, the technique was successfully applied to the DC 

motor with only the experimental frequency response without the knowledge of the transfer 

function. As expected, the FO PI controller was able to provide a large weighted sensitivity 

region in the (Kp, Ki) plane. In addition, an FO PI controller was implemented on the closed-loop 

system of the Quanser SRV-02 DC motor to regulate the angular position of the load shaft for 

practical applicability. The FO PI controller was able to make the DC motor system meet all the 

performance specifications introduced in in Section 8.3.1. 
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 

 

9.1 Summary 

The theoretical and metholological research in this dissertation relates to fundamental 

control problems of FO PID controllers such as stability, performance, and robustness. First, 

nominal stability was investigated by finding all the possible FO PID controllers that stabilize a 

closed-loop system containing a plant transfer function of arbitrary order with a time delay. In 

particular, all the possible values of the parameters Kp, Ki, and Kd of FO PID controllers were 

determined with respect to arbitrary values of the fractional orders λ and μ of the FO PID 

controller. The frequency response of a system was used to derive the results, so that this 

technique can be applied even when the system parameters such as a transfer function are not 

known. The findings were presented on the (Kp, Ki), (Kp, Kd), and (Ki, Kd) planes. 

In order to satisfy nominal performance requirements such as a settling time, percent 

overshoot, steady-state error, etc., a sensitivity function weight was introduced and FO PID 

controllers were sought to meet the weighted sensitivity constraint. This led to a complete set of 

possible values of FO PID controller parameters that satisfy the given performance specifications. 

Following the nominal stability and performance, robust stability and performance were 

investigated. For a robust stability requirement, a multiplicative weight was selected to bound all 

multiplicative errors of a closed-loop system taking into account a parametric uncertainty of an 

unknown time delay. Such FO PID controllers allow the closed-loop to remain stable for all the 

sets of perturbed plants. Nominal performance and robust stability are the prerequisite conditions 

for the robust performance of a closed-loop system. Though, the closed-loop system was 

designed only to remain stable in robust stability analysis, it was required not only to remain 

stable for all the uncertain plants but also to satisfy given performance specifications in the 

robust performance analysis. 

A significant contribution of this research is the establishment of a complete set of 

solutions for FO PID controllers, with respect to nominal stability and performance and robust 

stability and performance. Since the results also cover existing solutions applicable only to the 

conventional IO PID controller, they serve as complete and generalized solutions to PID 

controllers, whether they are of integer or non-integer. 
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The use of frequency response of a system has produced interesting and potentially 

powerful results in applications. That is, the results achieved in this research can be applied even 

when a system transfer function is not known or unavailable, as long as the experimental 

frequency data of a system can be obtained. In Chapter 8, this technique was applied to a DC 

motor system to find weighted sensitivity regions for meeting performance specifications by 

using only the measured frequency response of the DC motor system without the knowledge of 

the transfer function thereof.  

Many of the control problems encountered in this research have shown promising results 

for FO PID controllers. This is because FO PID controllers have been able to provide usable 

solutions even when there is no solution for the conventional IO PID controller. Furthermore, FO 

PID controllers, in general, exhibit a wider range of solutions and better performance than the IO 

PID controller, thereby providing more flexibility in design. This is no surprise, considering that 

integer numbers are a special case of real numbers. 

 

9.2 Future Work 

Now that important aspects of PID controllers have been successfully investigated, the 

focus of my attention at the moment is to apply the results to physical systems. As discussed in 

Chapter 8, the results in stability, robustness, and performance have been applied to a DC motor 

system. The next phase of research includes applications of the results presented here to such 

physical apparatus as a ball and beam system, an inverted pendulum, and a high-fidelity linear 

cart.  

In addition, a unified approach will be investigated for FO PID controllers in both 

continuous and discrete time with respect to nominal stability, sensitivity, and weighed 

sensitivity as in the IO PID controller [39]. This unified approach will allow for the use of one 

technique for both continuous and discrete time PID controller design.  

As one of the most helpful environments for students’ learning is bridging classroom 

instruction to the world they live in, it is crucial to motivate students with not only knowledge 

but also meaningful impact of such knowledge through applications. Development of 

experiments applicable to classroom instruction is an essential part that will benefit students by 

providing opportunities for them to witness the powerful potential of the knowledge they learn. 
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APPENDIX 

1. NOMINAL STABILITY OF FO PID CONTROLLERS 

 

The following MATLAB script is for finding the nominal stability boundary of fractional-order 

(FO) PID controllers in Chapter 4. 

 

1. MATLAB code for Fig. 2 
 

clear all; 
clc; 
 

% Al is for lambda and Be is for mu 
Al = 1.0;          
Be = 0.5; 

  
G = tf([4 1],[1 0.4 6]) 
get(G); 
td = 0.8; 
set(G,'iodelay',td); 

  
gm = 1; 
PM = 0; 

pm = PM*(pi/180); 

  
Kdc_min = -0.5; 
Kdc_max = 1.5; 

  
ax11 = [-0.5 3.0, -0.5 1.2, -1.4 0.3]; 

  
for Kdc = Kdc_min:0.01:Kdc_max; 

     
    if Kdc <= 0.35 
        IvW1 = 0.7; 
        IvW2 = 5; 
    else 
        IvW1 = 1; 
        IvW2 = 5; 
    end     
        options = optimset('Display','off');  
        wrange = fsolve(@myfunPI, [IvW1 IvW2], options, Kdc, G, pm, gm, Al, 

Be); 
        wmax = max(wrange); 
        wmin = min(wrange); 

         
        if wmin+0.0005 <= wmax 
            z = wmin:(wmax-wmin)/100:wmax; 
            Gp = frd(G,z); 
            Rp = real(Gp); 
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            Ip = imag(Gp); 
            magGp = abs(Gp); 

     
            zAl = frd(z'.^Al,z); 
            zBe = frd(z'.^Be,z); 

     
            Kp = -(Kdc)*(zBe)*sin((pi/2)*(Al+Be))/sin((pi/2)*Al)-(1/gm)*(Rp* 

sin(pm+(pi/2)*Al)-Ip*cos(pm+(pi/2)*Al))/(sin((pi/2)*Al)* 

(magGp^2)); 
Ki = (Kdc)*(zAl*zBe)*sin((pi/2)*Be)/sin((pi/2)*Al)+ (1/gm)*(zAl) 

*(sin(pm)*Rp-cos(pm)*Ip)/(sin((pi/2)*Al)*(magGp^2)); 

        
            y = [Ki.responsedata(:)-0]'; 
            [i,k] = find(abs(diff(sign(y)))>1); 

             
            n = sum(i); 

  
            if n >0 
                wn = zeros(1,n); 

                 
                for i = 1:n; 
                    wn(i) = interp1(y(k(i):k(i)+1),z(k(i):k(i)+1), 0); 
                end 

             
                for i = 1:n; 
                    wnAl(i) = wn(i)'.^Al; 
                    wnBe(i) = wn(i)'.^Be;  

  
                    Gp21(i) = (4*j*wn(i)+1)/((j*wn(i)).^2+0.4*j*wn(i)+6) 

 *exp(-0.8*j*wn(i)); 

                                 
                    Rp21(i) = real(Gp21(i)); 
                    Ip21(i) = imag(Gp21(i)); 
                    magGp21(i) = abs(Gp21(i)); 

  
                    Kp21(i) = -(Kdc)*(wnBe(i))*sin((pi/2)*(Al+Be))/ 

sin((pi/2)*Al)-(1/gm)*(Rp21(i)*sin(pm+(pi/2)*Al)-Ip21(i) 

*cos(pm+(pi/2)*Al))/(sin((pi/2)*Al)*(magGp21(i)^2)); 
                end 

             
                if Kp21(1) < Kp21(2) 

                     
                    figure(2) 
                    Kp211 = Kp21(1):0.001:Kp21(2); 
                    Ki1 = Kp211*0; 

               

     line('Xdata',Ki1(1,:),'Ydata',Kdc*ones(size(Kp211)), 

  'Zdata',Kp211(1,:),'color','r'); 

                    axis(ax11); 
                    xlabel('K_i'); 
                    ylabel('K_d'); 
                    zlabel('K_p'); 
                    grid on; 
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                    zn = wn(1):(wn(2)-wn(1))/100:wn(2);     
                    Gp22 = frd(G,zn); 
                    Rp22 = real(Gp22); 
                    Ip22 = imag(Gp22); 
                    magGp22 = abs(Gp22); 

                     
                    znAl = frd(zn'.^Al,zn); 
                    znBe = frd(zn'.^Be,zn); 

     
                    Kp22 = -(Kdc)*(znBe)*sin((pi/2)*(Al+Be))/sin((pi/2)*Al)- 

(1/gm)*(Rp22*sin(pm+(pi/2)*Al)-Ip22*cos(pm+(pi/2)*Al))/ 

(sin((pi/2)*Al)*(magGp22^2)); 
                    Ki22 = (Kdc)*(znAl*znBe)*sin((pi/2)*Be)/sin((pi/2)*Al) 

  +(1/gm)*(znAl)*(sin(pm)*Rp22-cos(pm)*Ip22)/  

  (sin((pi/2)*Al)*(magGp22^2)); 

        
                    figure(2); 
                    line('Xdata',Ki22.responsedata(1,:),'Ydata', 

  Kdc*ones(size(zn)), 'Zdata',Kp22.responsedata(1,:),  

  'color','r'); 

                 
                else 
                    figure(2) 
                    Kp211 = Kp21(2):0.001:Kp21(1); 
                    Ki1 = Kp211*0; 

                     
                    line('Xdata',Ki1(1,:),'Ydata',Kdc*ones(size(Kp211)), 

  'Zdata',Kp211(1,:),'color','r'); 
                    axis(ax11); 
                    xlabel('K_i'); 
                    ylabel('K_d'); 
                    zlabel('K_p'); 
                    grid on; 

                                         
                    zn1 = wmin:(wn(1)-wmin)/200:wn(1); 
                    Gp221 = frd(G,zn1); 
                    Rp221 = real(Gp221); 
                    Ip221 = imag(Gp221); 
                    magGp221 = abs(Gp221); 

                     
                    zn1Al = frd(zn1'.^Al,zn1); 
                    zn1Be = frd(zn1'.^Be,zn1); 

     
                    Kp221 = -(Kdc)*(zn1Be)*sin((pi/2)*(Al+Be))/sin((pi/2)*Al) 

-(1/gm)*(Rp221*sin(pm+(pi/2)*Al)-Ip221*cos(pm+(pi/2)*Al))    

/(sin((pi/2)*Al)*(magGp221^2)); 
                    Ki221 = (Kdc)*(zn1Al*zn1Be)*sin((pi/2)*Be)/sin((pi/2)*Al) 

  +(1/gm)*(zn1Al)*(sin(pm)*Rp221-cos(pm)*Ip221)/  

  (sin((pi/2)*Al)*(magGp221^2)); 

        
 

                    figure(2); 
                    line('Xdata',Ki221.responsedata(1,:),'Ydata', 

  Kdc*ones(size(zn1)),'Zdata',Kp221.responsedata(1,:), 

  'color','r'); 
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                    zn2 = wn(2):(wmax-wn(2))/200:wmax; 
                    Gp222 = frd(G,zn2); 
                    Rp222 = real(Gp222); 
                    Ip222 = imag(Gp222); 
                    magGp222 = abs(Gp222); 

                     
                    zn2Al = frd(zn2'.^Al,zn2); 
                    zn2Be = frd(zn2'.^Be,zn2); 

     
                    Kp222 = -(Kdc)*(zn2Be)*sin((pi/2)*(Al+Be))/sin((pi/2)*Al) 

-(1/gm)*(Rp222*sin(pm+(pi/2)*Al)-Ip222*cos(pm+(pi/2)*Al)) 

/(sin((pi/2)*Al)*(magGp222^2)); 
                    Ki222 = (Kdc)*(zn2Al*zn2Be)*sin((pi/2)*Be)/sin((pi/2)*Al) 

  +(1/gm)*(zn2Al)*(sin(pm)*Rp222-cos(pm)*Ip222) 

  /(sin((pi/2)*Al)*(magGp222^2)); 

               
                    figure(2); 
                    line('Xdata',Ki222.responsedata(1,:),'Ydata', 

  Kdc*ones(size(zn2)),'Zdata',Kp222.responsedata(1,:), 

  'color','r');                     

                     
                end 

                    
            else 

                 
                Gpt = freqresp(G,wmin); 
                Rpt = real(Gpt); 
                Ipt = imag(Gpt); 
                magGpt = abs(Gpt); 

                 
                Kit = (Kdc)*(wmin.^(Al+Be))*sin((pi/2)*Be)/sin((pi/2)*Al) 

    +(1/gm)*(wmin.^Al)*(sin(pm)*Rpt-cos(pm)*Ipt)/(sin((pi/2)*Al) 

    *(magGpt^2)); 

                 
                if Kit > 0 

                     
                    figure(2) 
                    line('Xdata',Ki.responsedata(1,:),'Ydata', 

  Kdc*ones(size(z)),'Zdata',Kp.responsedata(1,:), 

  'color','r'); 
                    xlabel('K_i'); 
                    ylabel('K_d'); 
                    zlabel('K_p'); 
                    axis(ax11); 
                    grid on 
                end 
            end 
        end 

    
end 

  
title('Stability Space for Varying K_d') 
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2. ROBUSTLY STABILIZING FO PID CONTROLLER DESIGN 

 

The following MATLAB script is for finding the robust stability region of FO PID controllers in 

Chapter 6. 

 

1. MATLAB code for Fig. 21 
 
s = zpk('s') 
 

% integer-order (IO) case 
% Al = 1.0;        % the value for alpha 
% Be = 1.0;        % the value for beta 

 
% fractional-order (FO) case 
Al = 1.32;        % the value for alpha 
Be = 0.65;        % the value for beta  

 

G = tf([65.5],[1 34.6 0]) 
get(G); 
td = 0.1; 
set(G,'iodelay',td); 

  
Kic = 22; 

  
w = 0.001:0.02:60; 
t = 0:0.001:60; 

  
ax2 = [0 9, -0.5 2]; 

  
Wm = tf([1 0],[1/2.8 20]) 

  
% for robust stability 
gamma = 1; 
 

% % for nominal stability 
% gamma = inf; 

  
if  mod(Be,2) == 0 
    ax21 = [-3 5, -4 5]; 
    [Kp,Kd] = Kps_Kds_RS_son(Al,Be,G,w,Kic,ax2,ax21,Wm,gamma); 
else 
    if  Al == 1.0 & Be == 1.0 
        [Kp,Kd] = Kpi_Kdi_RS_son(Al,Be,G,w,Kic,ax2,Wm,gamma); 
    else 
        [Kp,Kd] = Kpf_Kdf_RS_son(Al,Be,G,w,Kic,ax2,Wm,gamma); 
    end 
end 
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The following is a function file for finding the robust stability region in Fig. 21 for FO PID 

controllers. 

  
function [Kp,Kd] = Kpf_Kdf_RS_son(Al,Be,G,w,Kic,ax2,Wm,gamma); 

  
Gp = frd(G,w); 
Rp = real(Gp); 

Ip = imag(Gp); 
magGp = abs(Gp); 

  
omAl = frd(w'.^Al,w); 
omBe = frd(w'.^Be,w); 

  
Wmf = frd(Wm,w); 
Rm = real(Wmf); 
Im = imag(Wmf); 
magWm = abs(Wmf); 

  
if gamma == inf 

     
    for theta = 0:1:2*pi; 
        Dp = (omAl)*sin((pi/2)*Be)*(magGp^2)*((1/(gamma^2))*(magWm^2)+1 

  -(2/gamma)*(Rm*cos(theta)-Im*sin(theta))); 
        Kp = -(Kic)*sin((pi/2)*(Al+Be))/(omAl*sin((pi/2)*Be))-(omAl)* 

  (Rp*sin((pi/2)*Be)+Ip*cos((pi/2)*Be)-(1/gamma)*cos((pi/2)*Be+theta) 

  *(Rp*Im+Ip*Rm)-(1/gamma)*sin((pi/2)*Be+theta)*(Rp*Rm-Ip*Im))/(Dp); 
        Dd = (omAl*omBe)*sin((pi/2)*Be)*(magGp^2)*((1/(gamma^2))*(magWm^2)+1- 

  (2/gamma)*(Rm*cos(theta)-Im*sin(theta))); 
        Kd = (Kic)*sin((pi/2)*Al)/((omAl*omBe)*sin((pi/2)*Be))+(omAl)*(Ip- 

  (1/gamma)*cos(theta)*(Rp*Im+Ip*Rm)-(1/gamma)*sin(theta) 

  *(Rp*Rm-Ip*Im))/(Dd); 

       
        figure(21) 
        line('Xdata',Kp.responsedata(:),'Ydata',Kd.responsedata(:),'color', 

  'r','linestyle','-','linewidth',2.0); 
        grid on; 
        xlabel('K_p') 
        ylabel('K_d') 
        axis(ax2); 
    end 
else 

  
    for theta = 0:0.06:2*pi; 
        Dp = (omAl)*sin((pi/2)*Be)*(magGp^2)*((1/(gamma^2))*(magWm^2)+1- 

  (2/gamma)*(Rm*cos(theta)-Im*sin(theta))); 
        Kp = -(Kic)*sin((pi/2)*(Al+Be))/(omAl*sin((pi/2)*Be)) - (omAl)* 

  (Rp*sin((pi/2)*Be)+Ip*cos((pi/2)*Be)-(1/gamma)*cos((pi/2) 

  *Be+theta)*(Rp*Im+Ip*Rm)-(1/gamma)*sin((pi/2)*Be+theta) 

  *(Rp*Rm-Ip*Im))/(Dp); 
        Dd = (omAl*omBe)*sin((pi/2)*Be)*(magGp^2)*((1/(gamma^2))*(magWm^2)+1 

  -(2/gamma)*(Rm*cos(theta)-Im*sin(theta))); 
        Kd = (Kic)*sin((pi/2)*Al)/((omAl*omBe)*sin((pi/2)*Be))+(omAl) 
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  *(Ip-(1/gamma)*cos(theta)*(Rp*Im+Ip*Rm)-(1/gamma)*sin(theta) 

  *(Rp*Rm-Ip*Im))/(Dd); 

         
        figure(21) 
        line('Xdata',Kp.responsedata(:),'Ydata',Kd.responsedata(:),'color', 

  'c','linestyle','-','linewidth',0.5); 
        grid on; 
        xlabel('K_p') 
        ylabel('K_d') 
        axis(ax2); 
    end 
end 

  
hold on 

  
title('FO PID Case in (K_p,K_d) Plane') 

 

 

 




