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SUMMARY

In spite of the remarkable development of modern medical treatment and tech-

nology, the threat of pandemic diseases such as anthrax, cholera, and SARS has not

disappeared. As a part of emerging healthcare decision problems, many researchers

have studied how to detect and contain disease outbreaks, and our research is aligned

with this trend. This thesis mainly consists of two parts: epidemic simulation mod-

eling for effective intervention strategies and spatiotemporal monitoring for outbreak

detection.

We developed a stochastic epidemic simulation model of a pandemic influenza

virus (H1N1) to test possible interventions within a structured population. The pos-

sible interventions — such as vaccination, antiviral treatment, household prophylaxis,

school closure and social distancing — are investigated in a large number of scenarios,

including delays in vaccine delivery and low and moderate efficacy of the vaccine.

Since timely and accurate detection of a disease outbreak is crucial in terms of

preparation for emergencies in healthcare and biosurveillance, we suggest two spa-

tiotemporal monitoring charts, namely, the SMCUSUM and RMCUSUM charts, to

detect increases in the rate or count of disease incidents. Our research includes

convenient methods to approximate the control limits of the charts. An analytical

control limit approximation method for the SMCUSUM chart performs well under

certain conditions on the data distribution and monitoring range. Another control

limit approximation method for the RMCUSUM chart provides robust performance

to various monitoring range, spatial correlation structures, and data distributions

without intensive modeling of the underlying process.

xi



Chapter I

INTRODUCTION

With the ongoing threat of pandemic diseases and bioterrorism, extensive research

efforts have been undertaken on the design and performance of disease outbreak

surveillance systems and mitigation strategies. Various models, originating from dif-

ferent research fields, have been proposed for analyzing and estimating the spread of

past and future pandemics.

Epidemic simulation models that mimic events happening in the real world with-

out making strong assumptions provide useful tools to increase our understanding of

the dynamics and patterns of disease propagation. They also allow for the study and

evaluation of the potential impacts of various government policies and intervention

strategies for infectious diseases, including vaccination, prophylactic use of antivirals,

and social distancing strategies such as school closure, quarantine, and isolation.

Over the last several years, these simulation models have been influential in the

formation of pandemic preparedness plans. A simulation can explore not only the

epidemiological impact but also the economic effectiveness of additional, reactive

strategies for containing disease outbreaks. Some of the challenges pertaining to such

simulation models can be summarized as follows.

• A simulation model must imitate the complicated real world. The population

and community structure designed for the simulation should be able to capture

the characteristics of a targeted population and the population’s behaviors. For

example, places of exposure, such as households, schools, and workplaces, should

be carefully selected by observing the population and the community structures

closely. To this end, a great deal of demographic input data are often required.
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• The model logic and interventions depend on the builder’s purpose, social situ-

ations encountered, and disease characteristics. The builder needs to determine

what kinds of interventions can be employed and how to apply them in the

model. For example, the availability and amount of vaccines/antivirals can be

affected by the wealth of the country and the disease dynamics. The distri-

bution of the vaccines/antivirals can be affected by political or geographical

supply chain issues. One must also study the exposure frequencies and times of

individuals, such as contact rates and contact durations, as well as the disease

transmission parameters such as the probability that an infected person will

infect a healthy person given their contacts. For these tasks, knowledge ranging

from sociology to epidemiology may be required.

• The model is carefully calibrated to predict illness attack rates to calculate costs

resulting from applied interventions. This is where the validity of the simulation

matters. It is difficult to track a relationship between illness attack rates and

costs. In addition, both direct and indirect costs should be considered. One

may find it difficult to obtain appropriate references for these costs.

A goal in this thesis is to develop a reasonable epidemic simulation model that

can test possible interventions for a structured community. The model should be able

to report valid estimates of illness attack rates and costs associated with the different

combinations of mitigation strategies. This type of model will be quite helpful for

public health authorities when reacting to future outbreaks of pandemics.

The timely and accurate detection of a disease outbreak is crucial for preparation

for emergency situations. Before any studied mitigation strategies are performed, one

must alarm (signal) an outbreak at an appropriate time, and decide when and where

to apply the mitigation strategies.
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One of the statistical approaches developed for timely outbreak detection is sta-

tistical process control (SPC) charts. Cumulative sum (CUSUM) charts have been

especially popular in public health surveillance to detect increases in the rate or

counts of disease incidents. However, the use of CUSUM charts in biosurveillance can

be challenging when compared to the conventional SPC charts in other application

areas. Possible challenges and opportunities include the following issues.

• Since the disease outbreak is a spatiotemporal event, the surveillance method

should detect the time when an outbreak occurs as well as the coverage of the

outbreak. Fast and accurate detection is important and preferred. Also, the

performance of the method should be evaluated with respect to detection time

and accuracy.

• Correlation may exist in observed data. This could be in the form of spatial

correlation, autocorrelation (over time), or both. A detection method that can

take advantage of the correlation, or at least can be applied to the correlated

data, is needed.

• The complexity in designing CUSUM charts often relates to the dimensionality

of monitoring regions. The control limits of the CUSUM charts are typically

calibrated by trial-and-error simulation, but this task can be extremely time-

consuming and challenging if the number of monitoring regions is large.

• Surveillance through the CUSUM charts requires intensive modeling of the mon-

itoring system that changes according to the input parameters and the under-

lying data distribution (which is often unknown).

In this thesis, we focus on spatiotemporal multivariate CUSUM (MCUSUM)

charts to detect a disease outbreak. In order to avoid tedious simulations to cali-

brate the MCUSUM charts, we first propose MCUSUM charts whose control limits

3



are approximated analytically by assuming the charts are independent; and then we

will expand our research to make the charts applicable to any data distribution, even

in the presence of the correlation among the charts.

Chapter 2 introduces a stochastic model to investigate realistic strategies that

can be used in reaction to emerging outbreaks of pandemic influenza. The model

is constructed to represent a typical mid-sized North American city, and calibrated

to documented illness attack rates. Reduced attack rates and economic costs due

to the intervention strategies are estimated. Chapter 3 reviews MCUSUM charts

based on sequential likelihood ratio tests in the presence of spatial correlations, and

then proposes an analytical method that approximates the control limits, making the

design of the MCUSUM charts much more convenient. We also study how spatial

correlation impacts the scheme’s outbreak detection performance. Chapter 4 studies

another class of MCUSUM chart that can be robust to any underlying distribution of

data in the presence of spatial correlation. The chart provides reliable performance

by overcoming certain restrictions of the MCUSUM charts developed in Chapter 3.

Chapter 5 summarizes the main contributions of the thesis.
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Chapter II

REACTIVE STRATEGIES FOR DEVELOPING

OUTBREAKS OF PANDEMIC INFLUENZA

In April, 2009, the World Health Organization (WHO) announced the emergence of

a new influenza A (H1N1) virus, and on June 11, 2009, it declared that the world

was at the start of a new influenza pandemic [68]. WHO reported more than 414,000

laboratory-confirmed cases of H1N1 [67] — a gross underestimate, as many countries

simply stopped counting individual cases. The U.S. Centers for Disease Control and

Prevention reported widespread influenza activity in forty-six states, with influenza-

like illness (ILI) activity in October 2009 higher than what is seen during the peak of

many regular flu seasons; and further, “Almost all of the influenza viruses identified

. . . are 2009 H1N1 influenza A viruses” [7]. Countries found themselves in the position

of having to react to contain already developing Fall outbreaks of influenza due to

the new pandemic strain, a position they are likely to find themselves in again if and

when future waves of pandemic influenza occur.

Research has suggested that mass vaccination of 60–70% of the population prior

to the start of the flu season could effectively contain outbreaks due to pandemic

strains [12, 17, 29, 69]; and the public health preparedness plans of most countries

have, accordingly, emphasized vaccination intervention strategies. However, the re-

cent experience with H1N1 suggests that high vaccination coverage levels are difficult

to achieve. In the case of H1N1, vaccination programs in most northern hemisphere

countries started only after the virus was widely circulating. Furthermore, in some

countries, supplies of vaccine were limited [9], delivery and administration occurred

over a period of several months [37, 42], and there were reports of public skepticism
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regarding the necessity and safety of vaccination [36, 38], all of which were strong

indicators suggesting that high vaccination coverage would be difficult to achieve.

While many institutions in the U.S. and elsewhere strongly encouraged and, in some

cases, required workers to be vaccinated against seasonal influenza in 2009, H1N1 vac-

cination guidelines were focused mostly on people in certain age and high-risk groups

[8]. Delays, limited and untimely vaccination supplies, and public reluctance to be

vaccinated are likely to reduce the effectiveness of vaccination campaigns [17, 69].

The issues outlined above for the recent outbreak of H1N1 are likely to occur

again in future outbreaks of pandemic influenza. In this chapter, we explore the

effectiveness of realistic reactive intervention strategies implemented after the begin-

ning of outbreaks of pandemic influenza. We calibrate our model based on data for

the H1N1 pandemic (see Tuite et al. [63]), and we investigate the impacts of (i) the

moderate vaccination coverage levels which, based on past experience, are likely to be

realized, as well as high levels which would be more ideal; (ii) very limited treatment

of cases with antivirals and prophylaxis of cases’ households with antivirals; and (iii)

limited and practical social distancing measures such as five-day closure of individual

schools on an as-needed basis, encouragement of liberal leave policies in the work-

place, and encouragement of self-isolation. Intervention strategies that combine these

approaches are also studied (cf. Halloran et al. [18]). For all intervention strategies,

we provide cost estimates associated with morbidity and mortality that take into

account direct medical costs as well as economic consequences resulting from school

closures and work loss. The research conducted in this chapter has been published in

Andradóttir et al. [2].

2.1. Simulation Model

We developed a portable and adaptable stochastic, individual-level simulation model

of influenza spread within a structured population. The simulator is similar to models

6



developed by Longini et al. [29, 30]. A simulated population of 649,565 people was

generated stochastically to represent a typical North American city, namely, Hamil-

ton (Ontario), Canada, which was chosen due to availability of demographic and

epidemiological data necessary for constructing and calibrating the simulator. Our

population is a collection of heterogeneous individuals with various attributes that

impact whom they interact with (and hence whom they may infect or get infected

by). More specifically, each individual has the following stochastically generated at-

tributes: age, household, playgroup or daycare attended (for pre-school children),

school attended (for school-age children), workgroup (for working adults), household

census tract and workplace census subdivision, community, and neighborhood. As in

Longini et al. [30], a community consists of approximately 2000 people living within

the same census tract, and a neighborhood consists of approximately 500 people living

within proximity to each other within the same community; also see the recent papers

including Aleman et al. [1] and Stroud et al. [57], which incorporate more-detailed

individual-level behavior involving larger populations. Age and household-size dis-

tributions, shown in Figures 1 and 2, were matched to 2001 Canadian census data

[54, 55]. Household census tract assignments were made so that census tract popula-

tion sizes were consistent with 2006 census statistics [51].

Each individual belongs to three or four contact groups. In particular, each indi-

vidual belongs to a household, neighborhood, and community. In addition, children

younger than 16 belong to either a playgroup, daycare, or school, depending on age;

most children in age range 16–18 belong to a school or workgroup; and most adults

in age range 19–59 belong to a workgroup. Preschool children were categorized as be-

longing to a playgroup/daycare, each with 50% probability. We separated secondary

schools into middle schools and high schools based on grade to allow different con-

tact group sizes and to make our model more representative of mid-sized U.S. cities.

The numbers of playgroups, daycares, elementary, middle, and high schools in each
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Figure 1: Age distribution for simulated population

Figure 2: Household size distribution for simulated population
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community were based on Longini et al. [30], and were combined with the number of

individuals in each category in our simulation population to obtain the contact group

sizes.

Workgroups were formed to match 2006 employment statistics [53] as well as

census statistics on the geographical distribution of workers [52]. The number of

working adults (19–59 years old) was based on census data [52]; and the number of

working children (16–18 years old) was based on Ontario data on drop-out rates [5] and

the employment rate for ages 15–24 [52]. Rather than representing entire workplace

institutions, we formed workgroups of size 20 to represent the typical number of co-

workers an individual is likely to have close contact with during the day. Average

playgroup, daycare, and lower and upper secondary school (i.e., middle and high

school) contact group sizes were chosen following similar reasoning.

2.1.1 Disease Transmission Model

The simulator models influenza transmission over a 180-day period, within the contact

groups previously defined. To initiate influenza outbreaks, simulations are seeded

with approximately 100 randomly selected initial infectives, with all other individuals

considered susceptible (state 0). Susceptible people are assumed to have daily contacts

with other individuals in their contact groups, i.e., their household and school or

workgroups, as well as with people in their neighborhood and community. Susceptible

people have the opportunity, each day, to become infected in their contact groups.

The daily probability of infection for each susceptible person is determined by the

number of infectious contacts in his contact groups, and on the per-contact probability

of transmission for each type of contact. For example, the probability of a susceptible

child who attends daycare being infected on a particular day is:

1 −
[

Pr(child is not infected in the household)

× Pr(child is not infected in the neighborhood)

9



× Pr(child is not infected in the community)

× Pr(child is not infected at the daycare center)
]
.

Within each contact group, the probability of infection of a susceptible individual

depends on the number of infectious individuals in the group. For example, suppose

that k1 children and k2 adults in a household are infectious on a particular day. Then

the probability of a susceptible household member being infected in that household

on that day is:

1 −
[

Pr(not infected by a child in the household)k1

× Pr(not infected by an adult in the household)k2
]
.

The number of infectious people in the contact groups (e.g., k1 and k2), are random

variables that are updated at the beginning of each day.

Infection of susceptibles depends on the number of infected persons in their con-

tact groups, on the vaccine and antiviral-use status of susceptibles and their infectious

contacts, and on age- and contact-group-specific per-contact transmission probabili-

ties (Table 1). The probability that infection is transmitted from an infected person

to a susceptible person also depends on whether the infectious person is symptomatic

or asymptomatic. Table 1 shows the rates for symptomatic individuals. The trans-

mission rates for asymptomatic individuals are half of those shown in Table 1. These

probabilities are based on Longini et al. [29, 30], with adjustments made to calibrate

baseline (no intervention) results.
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Table 1: Per-contact influenza transmission probabilities within contact groups

Contact Group Transmission Probability

Household1

Child-to-child 0.8

Child-to-adult 0.3

Adult-to-child 0.3

Adult-to-adult 0.4

Community2

Pre-schooler 0.000005

School child 0.000005

Adult (ages 19–52) 0.000075

Adult (ages 53+) 0.000055

Daycares/Playgroups2

Daycares 0.028

Playgroups 0.018

Schools2

Elementary schools 0.012

Middle schools 0.011

High schools 0.010

Workgroups 0.010
1 Within households, the probability that a symptomatic child

(age 18 years or less) infects a susceptible child is 0.8; that a
symptomatic child infects a susceptible adult (at least 19 years
old), or that a symptomatic adult infects a susceptible child,
is 0.3; that a symptomatic adult infects a susceptible adult is
0.4 [30].

2 Probability that a susceptible person in the age or school group
is infected through contact with a symptomatic person in the
group.
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Table 2: Age-group-specific illness attack rates and calibrated attack rates

Simulated illness attack rates by the
percentage of adults 53+ years old

with pre-existing immunity1

Calibrated attack
rates (AR)

Age 30% 50% 70% Age AR

0–4 30.6% 31.0% 30.8% 0–4 29.5%

5–13 53.8% 55.0% 55.2% 5–18 55.9%

14–17 56.0% 57.1% 57.3%

18–22 48.9% 49.7% 49.7% 19–52 40.8%

23–52 39.6% 39.8% 39.3%

53–64 21.7% 15.3% 8.8% 53–59 14.3%

65+ 19.1% 13.2% 7.5% 60+ 11.0%

Overall 36.8% 35.4% 33.5% Overall 34.1%
1 See the discussion in Tuite et al. [62].

The simulator is calibrated to match documented illness attack rates and basic

reproduction numbers (R0), defined as the number of cases one case generates on

average over the course of its infectious period. Baseline (no-intervention) scenario

age-group-specific attack rates were derived using 2009 estimates for the H1N1 basic

reproduction number in Ontario [20, 62, 63] (see Table 2). These rates take into

account reduced risk in adults born prior to 1957 [20]. A compartmental model

parameterized in this way was well-calibrated to observed attack rates during the

Fall pandemic wave in Ontario [62]. The simulator’s R0 value of 1.4 is also consistent

with other published reports such as Fraser et al. [13], New Scientist [35] and Yang

et al. [69].

Figure 3 depicts a flowchart of the model. The modeled natural history and

simulator dynamics parameters, described below and shown in Figure 3, were based

on Longini et al. [29, 55]. People infected with influenza first pass through a 1–

3 day latent / incubation period (state 1; average length 1.9 days), during which

they do not have influenza symptoms. They are not infectious until the last day of

the period; at that point, they become half as infectious as if they were to develop
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Figure 3: Simulation flowchart and modeled influenza natural history

symptoms in the subsequent period. During that subsequent infectious period, 67%

will develop influenza symptoms (state 2), and 33% will be asymptomatic (state 3).

Symptomatic infectives are assumed to be twice as infectious as asymptomatics, and

have a chance of withdrawing home during each day of illness; upon withdrawal,

they only make contacts within their household and neighborhood, with transmission

probabilities doubled in the household contact group, until they recover. If a school

child withdraws home due to illness, one adult in the household also stays home.

Each day in states 2 and 3, an infectious person has a chance to exit the state and

be removed from the simulation (i.e., to recover or die — state 4). Probabilities for

transition into and out of states are given in Figure 3 and are based on Longini et

al. [29, 30].
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2.1.2 Intervention Strategies

We modeled a baseline case where no intervention takes place, along with strategies

representing various combinations of vaccination, antiviral treatment and household

prophylaxis, school closure, and general social distancing (see the results in Tables 3

and 4 and Table 23 provided in the Appendix A). Each component of the strategies

is described in detail below. Interventions are triggered in a particular simulation run

when the overall illness attack rate reaches 0.01%. Twenty runs of the simulator were

performed for each intervention strategy, from which average illness attack rates were

calculated. We briefly describe the interventions under consideration.

Vaccination : We model both pre-vaccination as well as reactive strategies, with

reactive vaccination programs beginning immediately, 30 days, or 60 days after the

trigger. The delays model disruptions in vaccine production and supply chains. We

allow enough doses to cover either 35% or 70% of the population. In reactive strate-

gies, we consider cases where (i) all vaccines become available at the same time, and

(ii) the doses become available in three equal-sized batches, two weeks apart, due to

additional production and supply-chain disruptions. Vaccine efficacy refers to the re-

duction, after vaccination, in the probability of becoming infected due to contact with

an infected person (VEs), or to the reduction, after vaccination, in the probability

of infecting a susceptible contact (VEi). Vaccine efficacy does not refer to the frac-

tion of individuals having an immunogenic response to the vaccine (which is typically

much larger than our measures). We study a low-efficacy single-dose vaccine (efficacy

against susceptibility to infection, VEs = 0.3, and efficacy against infectiousness, VEi

= 0.2) as well as a moderate-efficacy vaccine (VEs = 0.4, VEi = 0.5) [3]. Each day,

our model randomly vaccinates any remaining unvaccinated individuals who are ei-

ther uninfected or in the latent or asymptomatic phases of infection, all with equal

probability based on the number of available doses. Moreover, protection from the

vaccine builds over time, with 50% of the vaccine’s efficacy realized upon vaccination,
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and full protection after two weeks.

Antiviral Treatment and Household Prophylaxis : We investigate strategies

involving treatment of infected individuals with a five-day course of antivirals, as

well as strategies that also allow for ten-day prophylaxis of the infected individuals’

household members. We assume that 1% of individuals do not complete their course.

We use an antiviral efficacy against susceptibility (AVEs) of 0.3 and against infec-

tiousness (AVEi) of 0.7 [30]. Individuals receive direct benefit from antivirals only

while they are taking them. Antiviral use is considered alone and in combination

with other intervention strategies. It is assumed that antiviral courses are available

for 10% of the population and that they are distributed to infected individuals and

their household members until the supply is exhausted.

School Closure and Social Distancing : We implement a rolling school closure

model, where a daycare or school closes for five days if five or more cases are identified

in that group. Given that infected individuals are on average infectious for 4.1 days

(see Figure 3), closing schools for fewer than 5 days is unlikely to be very effective. It

is possible for these groups to close more than once during the simulation. We also

model a reduction in workplace and general community contacts of 20% (i.e., 20%

of infected individuals in each contact group will not infect other members of the

group). This represents the exercise of a general level of caution, including a modest

limitation of contacts within workgroups (e.g., by invoking occasional telecommuting

and other self-limiting behaviors, holding fewer large meetings, etc.) and also within

the general community (e.g., reduction in attendance in social groups and larger

community events, etc.).
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Table 3: Attack rates and total costs of interventions with 35% vaccination coverage

Intervention1 Delay in initiation
of vaccination2

No post-initiation
vaccination delays

Post-initiation
vaccination delay3

Attack rate (%) Cost (US$m) Attack rate (%) Cost (US$m)

None 34.1 81.1

A 31.3 75.9

S 24.0 125.0

A+S 9.2 48.0

VL Pre-vaccination 26.1 71.1

VL Reactive, no delay 28.8 77.7 28.8 77.7

VL 30-day delay 29.0 78.1 29.5 79.3

VL 60-day delay 30.7 82.2 32.2 86.0

VM Pre-vaccination 18.8 53.7

VM Reactive, no delay 22.6 62.8 22.8 63.1

VM 30-day delay 23.0 63.7 24.6 67.5

VM 60-day delay 27.3 74.1 30.8 82.5

VL+A Pre-vaccination 19.3 56.4

VL+A Reactive, no delay 25.2 70.6 25.3 70.8

VL+A 30-day delay 25.4 71.1 25.7 71.8

VL+A 60-day delay 26.2 72.9 27.1 75.0

VM+A Pre-vaccination 2.1 16.1

VM+A Reactive, no delay 8.1 30.1 10.0 34.3

VM+A 30-day delay 12.4 40.2 15.8 48.2

VM+A 60-day delay 18.6 54.7 20.8 60.1

VL+S Pre-vaccination 12.7 69.9

VL+S Reactive, no delay 17.3 93.6 17.5 95.7

VL+S 30-day delay 17.8 96.5 18.3 99.0

VL+S 60-day delay 18.6 101.9 19.6 108.8

VM+S Pre-vaccination 2.3 19.6

VM+S Reactive, no delay 6.8 41.6 8.5 49.4

VM+S 30-day delay 9.9 56.3 15.4 87.3

VM+S 60-day delay 13.4 74.7 17.9 95.7

VL+A+S Pre-vaccination 1.0 15.9

VL+A+S Reactive, no delay 3.9 29.2 4.5 32.2

VL+A+S 30-day delay 4.6 32.6 4.9 34.2

VL+A+S 60-day delay 4.8 33.8 5.4 36.8

VM+A+S Pre-vaccination 0.2 11.9

VM+A+S Reactive, no delay 0.5 13.1 0.8 14.9

VM+A+S 30-day delay 1.2 16.6 1.6 18.6

VM+A+S 60-day delay 2.0 20.2 2.4 22.0

1 Abbreviations for modeled interventions: V (vaccination of up to 35% of the population), L (low
efficacy), M (moderate efficacy), A (antiviral treatment and household prophylaxis of up to 10% of
the population), S (school closure and social distancing).

2 Initial supply-chain delays which prevent immediate initiation of vaccination programs after the inter-
vention trigger occurs.

3 Additional supply-chain delays, after initiation of the vaccination program, as a result of which vaccines
become available in three equal batches, spaced two weeks apart.
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Table 4: Attack rates and total costs of interventions with 70% vaccination coverage

Intervention1 Delay in initiation
of vaccination2

No post-initiation
vaccination delays

Post-initiation
vaccination delay3

Attack rate (%) Cost (US$m) Attack rate (%) Cost (US$m)

VL Pre-vaccination 12.0 47.0

VL Reactive, no delay 22.2 71.1 22.4 71.6

VL 30-day delay 22.7 72.4 24.1 75.7

VL 60-day delay 27.1 83.0 30.4 89.4

VM Pre-vaccination 0.2 19.3

VM Reactive, no delay 2.2 25.6 4.6 29.7

VM 30-day delay 8.1 39.5 13.3 50.2

VM 60-day delay 22.6 74.0 27.6 83.0

VL+A Pre-vaccination 3.3 28.3

VL+A Reactive, no delay 17.3 61.1 17.7 62.0

VL+A 30-day delay 17.9 62.5 18.4 63.9

VL+A 60-day delay 19.9 67.4 22.0 72.4

VM+A Pre-vaccination 0.1 20.7

VM+A Reactive, no delay 0.6 22.0 1.2 23.3

VM+A 30-day delay 2.4 26.2 4.4 30.9

VM+A 60-day delay 6.6 36.1 12.2 49.1

VL+S Pre-vaccination 0.7 22.0

VL+S Reactive, no delay 5.9 46.0 7.5 53.1

VL+S 30-day delay 9.5 63.0 11.0 70.6

VL+S 60-day delay 13.3 82.6 15.4 96.6

VM+S Pre-vaccination 0.0 19.1

VM+S Reactive, no delay 0.2 19.7 0.7 22.0

VM+S 30-day delay 1.5 25.9 3.2 34.7

VM+S 60-day delay 6.4 51.2 9.8 69.1

VL+A+S Pre-vaccination 0.2 21.3

VL+A+S Reactive, no delay 1.8 28.4 2.6 32.0

VL+A+S 30-day delay 2.9 33.6 3.2 35.2

VL+A+S 60-day delay 3.8 37.8 4.6 41.7

VM+A+S Pre-vaccination 0.0 20.6

VM+A+S Reactive, no delay 0.1 20.1 0.2 21.6

VM+A+S 30-day delay 0.5 22.8 0.7 23.8

VM+A+S 60-day delay 1.2 26.1 1.4 27.4

1 Abbreviations for modeled interventions: V (vaccination of up to 70% of the population), L (low
efficacy), M (moderate efficacy), A (antiviral treatment and household prophylaxis of up to 10% of
the population), S (school closure and social distancing).

2 Initial supply-chain delays which prevent immediate initiation of vaccination programs after the inter-
vention trigger occurs.

3 Additional supply-chain delays, after initiation of the vaccination program, as a result of which vaccines
become available in three equal batches, spaced two weeks apart.
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2.2. Economic Cost Estimation

We determine economic costs associated with the influenza outbreaks and modeled

intervention strategies. We include medical spending due to illness, costs of antivirals

and vaccines, and costs associated with teachers and other working adults staying

home due to their own illness, illness of dependent children, or due to school closure.

Medical spending includes co-payments and net payments for outpatient visits and

hospitalization, as well as prescription and over-the-counter medications for influenza

and complications or secondary infections. Costs are stratified by age-group and by

low- or high-risk status of individuals with respect to complications of influenza. We

also include the present value of earnings lost due to premature mortality.

Cost estimates and probabilities of risk status and of complications and death

were taken from Meltzer et al. [33], with costs inflated using 2008 consumer price

index and medical price index estimates [6, 23, 32, 58]. These costs are combined

with the data on age-specific attack rates, utilized vaccination doses, and days of

school closure obtained from our simulation model.

The total cost of each intervention scenario includes the cost of vaccine doses

and antiviral courses used, if any; costs associated with parents staying at home

with sick children and school teachers, parents, and children staying home due to

school closure; costs due to illness-related absence from work; medical costs associated

with illness, including outpatient visits, prescription and over-the-counter drugs, and

hospitalization; and lost earnings due to death.

We use methods described by Meltzer et al. [33] to quantify most medical and

work-loss costs (see also Medlock and Galvani [32]). Table 5 shows the proportions of

illnesses assumed to be at high risk for complications among children (0–18 years old),

younger adults (19–59 years old) and seniors (over 60). Table 6 shows estimated rates

of outpatient visits, hospitalizations, and death used in our calculations for children,

adults, and seniors at high risk and not at high risk of complications. We chose the
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Table 5: Proportions of influenza cases at high risk for complications1

Age Group Proportion at high risk

Children (0–18) 0.064

Adults (19–59) 0.144

Seniors (60+) 0.400
1 Proportions taken from Meltzer et al. [33], and adapted to our age groups.

Table 6: Outpatient visit, hospitalization, and death rates1

Rates per 1000 persons ill

Outpatient visits Hospitalization Deaths

Not at high risk

Children 165 0.20 0.014

Adults 40 0.18 0.025

Seniors 45 1.50 0.280

High risk

Children 289 2.10 0.126

Adults 70 0.83 0.100

Seniors 79 4.00 2.760
1 Rates taken from Meltzer et al. [33]

‘low’ rate estimates presented in Meltzer et al. [33], which we believe to be most

consistent with the relatively low R0 (1.4) for our model.

Frequency and costs (in US$) associated with influenza-related outpatient visits,

hospitalizations, and deaths are shown in Table 7. All the above costs were combined

with age-specific attack rates obtained from our simulation model. In addition, we

assume average costs of $25 per vaccine dose or antiviral course used, consistent with

previous reports [48]. Table 8 shows other costs associated with vaccination (i.e.,

the cost of lost time, travel, and side effects). These costs are based on Bowlby [5],

inflated as described above. The vaccination costs are combined with the number of

used vaccination doses obtained from our simulation model. We assume that 1% of

antiviral users discontinue use due to side effects; medical and other costs associated
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with these side effects are not included in our model.

To estimate costs of ill individuals staying home and work-loss associated with

parents staying at home with sick children, we multiplied the number of days (ob-

tained from our simulation model) with the inflation-adjusted average value of lost

days from Table 7. Similarly, we estimated the average number of teachers at schools

and daycares by dividing the total number of such teachers in Hamilton [56] among

the schools and daycares in our model. To estimate the cost of lost teacher produc-

tivity due to school closures, we multiplied the number of days schools and daycares

are closed in our simulation model by the average number of teachers at Hamilton

schools and daycares and by the average value of a day of lost work obtained from

Table 7.

Table 23 in the Appendix A shows age-stratified and overall illness attack rates

for all modeled scenarios, along with total cost estimates. Figure 4 depicts the total

cost (US$m) plotted vs. average overall illness attack rate (%) for each intervention.
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Table 7: Outpatient visit, hospitalization, and death costs1

Age group

Outcome category item Children Adults Seniors

Outpatient Visits

Average no. visits per case 1.52 1.52 1.52

Net payment per visit $80.90 $62.74 $82.55

Average copayment for outpatient visit $8.26 $6.60 $6.60

Net payment per prescription $41.28 $59.44 $59.44

Average prescriptions per visit 0.9 1.8 1.4

Average copayment per prescription $4.95 $4.95 $4.95

Days lost 3 2 5

Value of 1 day lost $91.85 $141.30 $91.85

Subtotal: Per-case Outpatient Costs $448.86 $496.50 $679.47

Hospitalization

Hospital cost $4,847.34 $9,932.42 $11,319.26

Net payment per outpatient visit $122.17 $155.19 $168.40

Average copayment for outpatient visit $8.26 $6.60 $6.60

Net payment for drug claims $42.93 $69.34 $67.69

Most likely days lost 5 8 10

Value of 1 day lost $91.85 $141.30 $91.85

Subtotal: Per-case Hospitalization Costs $5,479.92 $11,293.96 $12,480.40

Deaths

Average age (years) 9 35 74

PV earnings lost $1,435,750 $1,466,231 $93,027

Most likely hospital costs $5,671 $12,555 $13,718

Subtotal $1,441,422 $1,478,788 $106,746

Ill but no medical care sought

Days lost 3 2 5

Value of 1 day lost $91.85 $141.30 $91.85

Over-the-counter drugs $3.30 $3.30 $3.30

Subtotal: Per-case ill (no care sought) $278.84 $285.90 $462.53
1 Estimates based on figures from Meltzer et al. [33]. Cost estimates inflated by 2008 consumer and

medical price indices [6, 23, 58] as appropriate.
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Table 8: Costs (in US$) and impacts of vaccination1

Item Probability
of side effect

Per-case cost
of side effect

Cost scenario
(per patient)

Assumed cost of vaccination $25.00

Patient time $5.65

Patient travel costs $5.65

Side effect

Mild 0.0325 $94 $5.04

Guillain-Barre Syndrome (GBS) 0.000002 $100,800 $0.33

Anaphylaxis 0.000000157 $2,490 $0.0006
1 Estimates based on figures from Meltzer et al. [33]. Travel and side effect cost estimates inflated

by 2008 consumer and medical price indices [6, 23, 58] as appropriate.

2.3. Simulation Results

With no intervention, the average overall illness attack rate is 34.1%, with an esti-

mated total cost of $81.1 million (Table 3). Pre-vaccination of 35% of the population

with a low-efficacy vaccine reduces the average overall illness attack rate to 26.1%

(total cost $71.1 million), and with a moderate-efficacy vaccine to 18.8% (total cost

$53.7 million). Not surprisingly, pre-vaccination of 70% of the population is more

effective (overall average illness attack rate 12.0%, total cost $47.0 million for a low-

efficacy vaccine; and 0.2% and $19.3 million with a moderate-efficacy vaccine; see

Table 4).

Reactive vaccination alone, of 35% of the population with a low-efficacy vaccine

delivered in three batches, reduces the overall average illness attack rate to 28.8%

(or 22.8% with a moderate-efficacy vaccine), with a total cost of $77.7 million ($63.1

million with a moderate-efficacy vaccine). Thirty- and 60-day delays in initiation of

reactive vaccination, with vaccines delivered in three batches, result in attack rates

of 29.5% (total cost $79.3 million) and 32.2% (total cost $86.0 million), respectively,

for a low-efficacy vaccine, and 24.6% (total cost $67.5 million) and 30.8% (total cost

$82.5 million), respectively, for a moderate-efficacy vaccine. Figure 5 shows daily
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Figure 4: Total cost of intervention strategies vs. the average illness attack rate

attack rates for (i) the case of 70% coverage of low-efficacy vaccine with 60-day initial

delay, and (ii) the baseline case. For case (i), the vaccine is given on the 60th day

followed by receipt of vaccine after two additional two-week delays (see arrows in

Figure 5). Note that vaccine given on the 60th day decreases the attack rate compared

to the baseline; but the two subsequent receipts of vaccine do not result in additional

benefits. Clearly, with a 60-day delay, interventions occur too late in the epidemic to

have any meaningful effect (see Figure 5).

Antiviral use at low (10%) coverage alone results in an overall attack rate of

31.3% (total cost $75.9 million). School closure and social distancing alone result in

an attack rate of 24.0%, with a total cost of $125.0 million.

Suppose we combine reactive low-efficacy vaccination of 35% of the population

delivered in three batches, antivirals (10% coverage), and school closure and social

distancing. Then the overall average illness attack rate is 4.5% (total cost $32.2
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Figure 5: Daily attack rates

million) if no delays occur in the initiation of vaccination, and 5.4% (total cost $36.8

million) if a 60-day delay occurs. With a moderate-efficacy vaccine, the attack rate

for this last scenario reduces to 2.4% (total cost $22.0 million). Similar relationships

between interventions are apparent for interventions with 70% vaccination coverage,

shown in Table 4. Vaccination coverage of 70% with a moderate-efficacy vaccine,

combined with antiviral treatment and school closure, is highly effective, even with

an initial 60-day delay and additional supply-chain disruptions (average illness attack

rate 1.4%, total cost $27.4 million).

We note that the results when all vaccines are available at the same time are better

than those involving delivery in batches, and sometimes significantly so, especially

for a moderate-efficacy vaccine (Tables 3 and 4). Figures 6 and 7 illustrate the

comparative illness attack rates of the various intervention strategies discussed above

for all combinations of low/moderate-efficacy vaccine delivered in three batches and

at 35%/70% coverage as a function of the initial delay in vaccination implementation

due to supply-chain disruptions. The impact of vaccinating 70% of the population,
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rather than 35%, ranges from moderate to substantial, with the increased coverage

being most beneficial when the vaccine is delivered in a timely manner, and the

vaccine is either of moderate efficacy or of low efficacy applied in combination with

other intervention strategies.

Complete (age-stratified and overall) average illness attack results for all modeled

interventions are given in Table 23 in Appendix A. The comparative effectiveness of

interventions is similar when age-group-specific results are studied.

Figure 8A illustrates attack rate and total cost combinations for interventions that

result in at least a 75% reduction in cost compared to no intervention. Abbreviations

for modeled interventions are PV (pre-vaccination), V (vaccination), L (low-efficacy),

M (moderate efficacy), 35 (35% coverage of population), 70 (70% coverage), A (an-

tiviral treatment and household prophylaxis of up to 10% of the population), and S

(school closure and social distancing). Multiple occurrences of each plotting symbol

may occur; occurrences at higher costs and illness attack rates represent interven-

tions with longer supply-chain delays. In Figure 8A, the closer to the origin, the

more desirable an intervention is in terms of total cost and average illness attack

rate. Aside from pre-vaccination strategies, we see that 70% reactive vaccination

with a moderate-efficacy vaccine and school closure and social distancing, or even

35% reactive vaccination with a moderate-efficacy vaccine, antiviral use, and school

closure, also result in substantial reductions in cost and attack rates. Figure 8B illus-

trates attack rate and cost results for interventions that result in more-modest 50–75%

reductions in cost compared to no intervention. Once again, several strategies com-

bining vaccination, antiviral use, and school closure/social distancing are competitive

with pre-vaccination.
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Figure 6: Illness attack rates for modeled interventions with 35% vaccine coverage
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Figure 7: Illness attack rates for modeled interventions with 70% vaccine coverage
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Figure 8: Total cost of modeled intervention strategies vs. average illness attack rate
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2.4. Discussion

Previously published research has shown that pre-vaccination of 60–70% of the popu-

lation can contain seasonal as well as pandemic influenza, but that delays in vaccina-

tion can greatly reduce the effectiveness of the vaccination programs [5–8]. Our model

confirms these results for moderate-efficacy vaccines (Tables 3, 4, and 23). However,

vaccination efforts in countries such as the U.S., Canada, and others began well after

the first waves of H1N1 activity, and it is reasonable to believe that the same will

be true in future outbreaks of pandemic influenza. In particular, in the event of an

outbreak, it will likely take time to achieve high levels of vaccination coverage, and,

if past experience with seasonal influenza vaccination campaigns is an indication, it

is plausible that only low or moderate coverage will eventually be achieved. The

results of our simulation model show that delayed and low-coverage reactive vacci-

nation strategies (with a low-efficacy vaccine, plus limited use of antivirals) will not

be enough to mitigate the pandemic or to significantly reduce total costs associated

with influenza morbidity and mortality (based on results from Table 3, average ill-

ness attack rates are only reduced by 26% and total costs by 13%, compared to no

intervention).

According to our model, combining rolling, limited-duration, as-needed closures

of individual schools and a practical social distancing policy with 35% reactive low-

efficacy vaccination coverage and low-level (10%) antiviral use can reduce illness at-

tack rates by 89% compared to no intervention, as well as total costs by 64%. Sim-

ilarly, combining interventions in this manner reduces overall attack rates by 99%

and costs by 84% when a moderate-efficacy vaccine is available. This strategy re-

mains highly effective even when delays in implementing vaccination of up to 60

days occur. Previously published results have left open the question of how costly

interventions involving school closure might be [17]. Our results show that reactive

combination strategies that include practical school closure measures, when diligently
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implemented, can reduce total costs associated with influenza morbidity and mortal-

ity substantially.

Our model has several limitations. We do not consider vaccination strategies tar-

geted to high-risk groups, which could reduce costs associated with complications

from influenza. We have not modeled co-circulating strains of seasonal and pandemic

influenza or possible resistance to antiviral drugs (although, to mitigate this limita-

tion, our model assumes only low coverage with antivirals, as well as interventions

without antivirals). As is always the case with simulation models, continuing follow-

up analyses are needed, including: (i) sensitivity to model parameters; (ii) sensitivity

to model intervention triggers (e.g., overall illness attack rate, numbers of cases de-

tected in schools, etc.); (iii) sensitivity to R0, which can be heterogeneous across

cities and countries; and (iv) results for new H1N1 natural history and transmission

parameters, and new cost estimates for complications resulting from H1N1 illness, as

they become known.

Our model has several strengths. We model a large, realistic, heterogeneous pop-

ulation, base the simulation model on well-studied and documented stochastic simu-

lators, calibrate to actual H1N1 attack rates and most-likely R0 values, and have the

ability to model large numbers of scenarios in a relatively short amount of time on a

desktop platform. The model also provides cost estimates that are useful for making

policy decisions about potentially expensive interventions. In particular, we model

and analyze a variety of interventions and combinations of interventions in terms of

costs and efficacy. We also take into consideration reactive strategies incorporating

supply-chain delays, and we identify strategies that effectively contain outbreaks and

costs even in the presence of supply-chain delays, low vaccine efficacy, and low vaccine

coverage.

Our model illustrates the epidemiological effectiveness of a combination strategy
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involving short-term closures of individual schools on an as-needed basis, other practi-

cal social distancing activities, reactive vaccination of 35% or more of the population,

and limited use of antivirals for treatment and prophylaxis. The model also quantifies

the cost savings for this and alternative reactive strategies. Public health authorities

should consider placing renewed emphasis on such combination strategies when re-

acting to possible additional waves of the recent pandemic, or to new waves of future

pandemics.

31



Chapter III

SPATIOTEMPORAL BIOSURVEILLANCE: CONTROL

LIMIT APPROXIMATION AND THE IMPACT OF

SPATIAL CORRELATION

Control charts are used to determine whether or not a process being monitored is in

a state of statistical control. A charted process typically runs until it exceeds cer-

tain control limits, indicating potential problems that may require corrective actions.

The idea is for the chart to quickly detect an out-of-control state of the process,

while simultaneously avoiding false positives (declaring problems when they do not

actually exist). To this end, we denote by ARL0 the expected number of samples

(average run length) until a false alarm occurs when a monitored process is actually

in control. An out-of-control average run length is denoted as ARL1, and it repre-

sents the expected number of samples until an alarm when an out-of-control process

is monitored. ARL1s are often used as performance measures for timely detection of

an out-of-control process. Generally speaking, procedures having low ARL1s while

simultaneously possessing a pre-specified ARL0 are desirable.

Once control limits are determined given a particular ARL0, statistics constructed

from observations of a monitored process are plotted over time. As long as the

statistics fall within the control limits, the process is assumed to be in control and

no corrective action is necessary. However, a point that plots outside of the control

limits is interpreted as evidence of the out-of-control state, and subsequent analysis of

the control chart can help find the sources of variation, which can then be adjusted to

bring the process back into control. Shewhart-type charts use either raw observations

or averages of a few observations as monitoring statistics, while CUSUM-type charts
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use cumulative sums of observations [34]. There are other types of control charts that

incorporate different forms of statistics; for example, see Lucas and Saccucci [31] and

Woodall et al. [66]. Our interest in this chapter is on CUSUM-type charts.

A CUSUM control chart is a sequential analysis technique suggested by Page [39]

to monitor and detect changes in the parameter of interest. As its name implies, a

CUSUM chart raises an alarm if the cumulative sum statistic exceeds pre-specified

control limits. Since a CUSUM control chart accumulates information given during

the entire monitored time period, it is relatively sensitive to small process shifts. Due

to this proclivity, CUSUM charts have been found to be useful in the area of bio-

surveillance for detecting a slowly emerging disease cluster, which usually does not

result in a sudden large shift in the number of disease counts. Lawson [27], Sonesson

and Bock [50], Tsui et al. [60] and Woodall [64] provide reviews of many statisti-

cal surveillance methods, including CUSUM charts, in public health. Most work

using CUSUM charts assumes that the underlying observations (i.e., the observed

disease counts) follow Poisson or normal distributions, at least approximately. Either

sufficiently large numbers of counts or some transformation to normality might be

necessary to use the normality assumption on the counts.

In biosurveillance, an observation (disease count) is obtained from a region every

time unit. If one monitors only a single region to detect when a disease outbreak

occurs there, and if the collected observations from the single region are univariate,

then a univariate CUSUM chart [39, 40] is used for temporal surveillance of the region.

In the context of temporal surveillance, Fricker et al. [14] compare the performance of

a CUSUM chart against two Shewhart-type charts and one weighted moving average

chart [22, 70]. They find that the CUSUM chart performs significantly better than

the other charts across all scenarios they evaluated. When the observations follow

a Poisson distribution, Han et al. [19] compare the performance of three detection

methods: A scan statistic chart based on a fixed number of most-recent observations, a
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CUSUM chart, and an exponentially weighted moving average (EWMA) chart. Their

simulation study shows that the CUSUM chart and the EWMA chart outperform the

scan statistic chart.

When the decision maker monitors a number of adjacent regions at the same

time, we now need a spatiotemporal surveillance method to detect when and in which

regions an outbreak occurs. At a given time, each region generates an observation and

we monitor a multidimensional vector formed from these observations, which requires

a multivariate CUSUM (MCUSUM) chart [10, 21, 41]. Several researchers present

various MCUSUM charts for spatiotemporal surveillance. Rodgerson [43] introduces

an MCUSUM chart using a statistic from Tango [59] which can describe the spatial

disease pattern in the entire study region. Rogerson and Yamada [46] compare two

multivariate control chart schemes: running multiple univariate CUSUM charts (one

for each region separately) and running one MCUSUM control chart.

Multiple univariate CUSUM charts [65] are well suited to the situation where

there is little or no spatial correlation, and where changes are anticipated in a rel-

atively small number of regions. On the spatial correlation is strong and can be

well estimated, then the MCUSUM chart may be preferred, raising preferred, rais-

ing alarms faster. This is because statistics in each univariate CUSUM chart are

constructed from observations of a single region, and thus interaction among regions

due to spatial correlation are not reflected in the statistics. In biosurveillance, one

observation from a region often correlates to observations from surrounding regions

due to spatial correlation, and hence an outbreak is likely to develop in a cluster,

i.e., a group of neighboring regions. With this in mind, Rogerson and Yamada [45]

develop a CUSUM chart that uses local statistics. A local statistic is defined as a

weighted sum of observations in a local cluster that is used to detect the outbreak

cluster, where the weights can decline with increasing distance from the center of the

local cluster. Sonesson [49] defines a spatial cluster as a group of regions in a circle
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with a varying radius. However, spatial correlation among regions is not considered.

Following a similar definition of a cluster from Sonesson [49], Jiang et al. [24] relate

existing correlations among regions are present.

Although Jiang et al. [24] propose the promising MCUSUM chart for monitoring

many regions simultaneously while considering correlations among the regions, the

control limit calibration for the chart primarily relies on trial-and-error simulation.

This becomes inconvenient and time-consuming as the number of regions and the

number of clusters become large. In this chapter, we introduce a method that ana-

lytically calculates control limits of the MCUSUM chart from Jiang et al. [24] and

its variation which we call the separated MCUSUM (SMCUSUM) chart. We also

investigate the practical range of the scan radius for the control limit approximation

method.

Most of the spatiotemporal surveillance literature considers detection delay as a

main performance measure of interest, e.g., an ARL1 or a conditional expected delay

[50]. However, the detection delay alone is not a sufficient measure to evaluate the

performance of surveillance methods designed to answer both when and where the

outbreak occurs. Accurate detection of geographical locations of outbreak regions is

as important as prompt detection. Hence, spatial identification accuracy needs to

be measured as well as detection delay. A few papers including Jiang et al. [24] and

Rogerson and Yamada [46] consider spatial correlation among regions with respect

to detection delay, but have not thoroughly studied the impact of spatial correlation

on spatial identification accuracy. In this chapter, we discuss detection delay and

spatial identification accuracy as detection performance measures, and we investigate

the impact of the outbreak radius and spatial correlation on the two performance

measures.

The chapter is organized as follows. In Section 3.1, we review MCUSUM charts

that use the concept of spatial clusters in biosurveillance. In Section 3.2, we propose
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MCUSUM charts with an ARL approximation method, which can be used to set

control limits without trial-and-error simulation. Section 3.3 studies the practical

range of the scan radius and the performance of the approximation method. Section

3.4 discusses the performance of the MCUSUM chart under various experimental

configurations, in addition to the impact of the outbreak radius and spatial correlation

on detection performance. A summary and conclusions follow in Section 3.5. The

research conducted in this chapter is in print at IIE Transactions [28].

3.1. Background

In this section, we define notation, introduce our problem, and review an MCUSUM

chart for spatiotemporal biosurveillance that uses statistics constructed from spatial

clusters.

Suppose that p = M ×N regions in a rectangular shape are considered for moni-

toring, and qc = (mc, nc), where mc = 1, . . . , M and nc = 1, . . . , N , represents the

two-dimensional space coordinate of region c in a set P = {1, 2, . . . , p} as shown in

Figure 9. At each time t, a p× 1 observation vector yt = (yt1, yt2, . . . , ytp)
′ is moni-

tored. If the baseline mean value in the in-control state, θc, and the marginal variance,

σ2
c , of each component ytc are known for all c ∈ P , a standardized observation vector

xt = (xt1, xt2, . . . , xtp)
′ is obtained by setting xtc = (ytc − θc)/σc. The quantity xt

is assumed to follow a multivariate normal distribution having probability density

function fµ(x) with a mean vector µ and known variance-covariance matrix Σ, which

is constant over times t = 1, 2, . . .. Since the observation vectors are standardized,

the variance-covariance matrix and the correlation matrix are interchangeable.

Each component of xt corresponds to a standardized observation from each spatial

region at time t, so an MCUSUM chart on xt (or a subset of xt) can be constructed

for spatiotemporal biosurveillance [60, 61]. MCUSUM charts are developed to detect

a shift as soon as possible after an unknown change time ν when the null parameter
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c              qc = (mc, nc)

1 2 3 4 5 6 7 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

8 9 10 11 12 13 14 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

15 16 17 18 19 20 21 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)

22 23 24 25 26 27 28 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)

29 30 31 32 33 34 35 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)

36 37 38 39 40 41 42 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7)

43 44 45 46 47 48 49 (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

Figure 9: Coordinate expression of regions (p = 7× 7)

µ0 = 0 is shifted to the alternative parameter µ1, which indicates an out-of-control

state.

Under the assumption that the shape of the outbreak coverage is a circle, Jiang et

al. [24] define possible spatial clusters of outbreak regions as Oc,r ≡ {j | dist(qj, qc) ≤

r, j ∈ P} with scan radius r from region c, where dist(a, b) denotes the Euclidean

distance between a and b. Since the center of the circle-shaped coverage is located

in c, hereafter, we call c the center region. Note that the scan radius r can be either

constant or variable. When r is variable, r is set to be in a range from
[
0,
√
M2 +N2

]
or bounded by a given upper limit ru. However, since the number of regions in Oc,r

changes only at certain values of r such as 0, 1,
√

2, 2, and so on, it is good enough for

practical purposes to consider a finite number of possible values for r. Let R denote

the set of possible settings for r, i.e., R = {r1, r2, . . . , ru}, where u is the cardinality

of R.

When a possible outbreak cluster Oc,r is scanned, we test if the mean levels of the

regions in Oc,r are shifted, while the mean levels of the other regions are the same as

for the in-control state. Different shift vectors µc,r are considered for different Oc,r

choices, and a set of possible shift vectors can be defined as {µc,r | c ∈ P , r ∈ R}.
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Then, a CUSUM chart is designed to detect a shift from µ0 to µc,r.

Jiang et al. [24] introduce the following monitoring statistic,

S∗∗t ≡ max
c, r

Sc,rt ≡ max
c, r

max
1≤ν∗≤t

t∑
i=ν∗

`c,ri , t = 1, 2, . . . ,

where

`c,ri ≡ log
fµc,r(xi)

fµ0
(xi)

= µ′c,r Σ−1
(
xi −

µc,r
2

)
, i = 1, 2, . . . , t.

When a homogeneous shift magnitude δ > 0 is assumed over all outbreak regions,

the jth component of µc,r is δ if j ∈ Oc,r and 0 otherwise. An alarm is signaled as soon

as S∗∗t > h∗∗, where h∗∗ is a control limit that determines the operating characteristics

of the monitoring chart. When a signal is raised for the first time, we record (i) the

current time t as the time when the control chart detects the shift and (ii) ν∗ as the

estimated change time though the true change time ν is still unknown. It is notable

that Sc,rt itself is an MCUSUM statistic that can be calculated recursively by

Sc,rt = max(0, Sc,rt−1 + `c,rt ), t = 1, 2, . . . ,

where Sc,r0 = 0 for all c ∈ P and r ∈ R. Therefore, one MCUSUM statistic is recorded

for each spatial cluster, and the maximum of all pu of the MCUSUM statistics is used

as the monitoring statistic S∗∗t . Hereafter, unless otherwise specified, we call the

control chart monitoring S∗∗t the JMCUSUM chart.

Jiang et al. [24] test their JMCUSUM chart under various configurations of out-

break coverage, shift magnitude, correlations among regions, and scan radius. For a

given shift, the best (smallest) ARL1 is observed when the scan radius r matches the

radius of the actual outbreak coverage, rout. Therefore, using the correct scan radius

is important for detecting an outbreak cluster quickly, and the use of a fixed scan

radius is recommended if the outbreak radius is known. If no information is available

for the outbreak radius, using a variable scan radius seems better than using a fixed

scan radius whose value can be quite different than the true outbreak radius. When
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using the variable scan radius, the range of the scan radius should be chosen carefully

— to be wide enough to include the actual outbreak radius, but not too wide to

hinder the detection power of the analysis.

One of the critical decisions that must be made in designing a control chart is that

of specifying a control limit, e.g., the control limit h∗∗ for S∗∗t . In order to find the

appropriate control limit that yields a target ARL0, researchers often rely on tedious

trial-and-error simulation, as do Jiang et al. [24]. These simulations can be very

time-consuming, especially in the JMCUSUM chart that uses statistics constructed

from spatial clusters with different sizes, because the computational burden greatly

increases as the numbers of monitoring regions and radius settings increase. If the

control limits can be found quickly, we can save a great deal of time in setting up the

JMCUSUM chart for spatiotemporal biosurveillance.

3.2. Design of the JMCUSUM Chart

In this section, we use an analytical approximation to search for the control limits of

an MCUSUM chart.

By expanding a formula which approximates ARLs of a CUSUM chart in Kim et

al. [25], we derive the following result for the MCUSUM statistic Sc,rt :

ARL ≈


Ω2

2d2{exp[−2d(H+1.166Ω)
Ω2 ]− 1 + 2d(H+1.166Ω)

Ω2 }, if d 6= 0,

(H+1.166Ω
Ω

)2, if d = 0,
(3.2.1)

where d ≡ E [`c,rt ], Ω2 = Var
[
µ′c,rΣ

−1xt
]
, and H is the control limit of the MCUSUM

statistic Sc,rt . Note that H is not necessarily the same as h∗∗. We can analytically

calculate control limits, and even ARL1s of S∗∗t in some special cases, using Equa-

tion (3.2.1). Since the solution of Equatio (3.2.1) does not exist in a closed form, one

may refer to Rogerson [44] for a direct approximation or use a numerical approach.

We take the latter approach to solve the equation.
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3.2.1 Fixed Scan Radius

If rout is known, Jiang et al. [24] recommend fixing r = rout for good ARL1 performance

of the JMCUSUM chart. When r is fixed, our monitoring statistic becomes

S∗∗t = max
c
Sc,rt , t = 1, 2, . . . .

This means that the number of possible spatial clusters Oc,r is reduced to p, and one

MCUSUM statistic, Sc,rt , is monitored for each spatial cluster. An alarm is raised

when any of the p MCUSUM statistics exceed a common control limit h∗∗. If an

alarm is incurred by Sc,rt , then c is considered to be the center of the outbreak.

When an ARL0 for Sc,rt is specified and the monitored process is in control, Equa-

tion (3.2.1) easily enables us to approximate H for Sc,rt . Therefore, if we monitor only

one spatial cluster Oc∗,r, then S∗∗t = Sc
∗,r
t , and we can set h∗∗ = H directly. However,

finding h∗∗ yielding a target ARL0 for S∗∗t is no longer a simple matter if we monitor

more than one cluster.

Suppose we monitor p > 1 spatial clusters at the same time. Then the run length

of S∗∗t becomes equivalent to the minimum run length of p MCUSUM statistics,

and this implies that an ARL0 for each Sc,rt should be set to a much larger value

than the targeted ARL0 for S∗∗t . When we assume independence among the Sc,rt for

c ∈ P , we can expect that the run length of Sc,rt is approximately p times longer

than the run length of S∗∗t . For this reason, we can obtain h∗∗ by calculating the H

value that yields an average run length of pARL0 for Sc,rt . This ARL0 adjustment

is similar to a Bonferroni adjustment mentioned in David [11] and Rogerson and

Yamada [46]. Note that the Sc,rt s may not be independent and the approximation

quality can be diminished if r > 0 or positive spatial correlation exists. In any case,

the JMCUSUM chart for the fixed scan radius, denoted as the JMCUSUM-F chart,

can be implemented as follows.
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The JMCUSUM-F chart

1. Pick any spatial cluster Oc,r. Then

(a) Solve Equation (3.2.1) for H using the corresponding Sc,rt with pARL0.

(b) Set h∗∗ = H.

2. Raise an alarm at t if S∗∗t > h∗∗.

After h∗∗ is obtained, Equation (3.2.1) can be used again to approximate the

ARL1 of the JMCUSUM-F chart, denoted as ARLJF
1 . In the out-of-control state, xt

is assumed to follow a multivariate normal distribution with parameters µ1 and Σ.

The quantity ARLJF
1 can be approximated by the minimum of the ARL1s calculated

for c ∈ P with the shift vector µ1, which is likely to be achieved at the outbreak

center. In Section 3.4, we will confirm that most of the alarms are truly raised by

one spatial cluster whose center matches the outbreak center; and thus the ARL1

approximation method based on that cluster is acceptable when r is fixed.

3.2.2 Variable Scan Radius

If rout is unknown, the use of a variable r is recommended. Let us denote the

JMCUSUM chart with the variable scan radius as the JMCUSUM-V chart. In this

case, S∗∗t becomes equivalent to the maximum of pu MCUSUM statistics, and an

alarm is raised as soon as any of the pu MCUSUM statistics hits a common control

limit h∗∗ calibrated by trial-and-error simulation. If an alarm is incurred by Sc,rt , then

c is considered as the center of the outbreak and r is interpreted as the radius of the

detected outbreak cluster.

Since the number of nonzero components in µc,r depends on r, Equation (3.2.1)

provides different control limits for different r settings. For this reason, unlike the

JMCUSUM-F chart, it is not easy to analytically approximate a common control

limit h∗∗ for the JMCUSUM-V chart. Instead, we suggest a new MCUSUM chart

41



that does not require the common control limit h∗∗.

From Table I in Jiang et al. [24], we notice the empirical fact that the ARL1

performance of the JMCUSUM-V chart seems to be close to the minimum of the

ARL1s of various JMCUSUM-F charts, each applied with r = r1, r = r2, . . . , and

r = ru, respectively. The minimum is usually achieved when the center of a spatial

cluster matches the outbreak center and r = rout no matter what rout is tested. This

can be interpreted to mean that the JMCUSUM-V chart behaves like a mixture of the

multiple JMCUSUM-F charts. Based on this intuition, we suggest a new MCUSUM

chart named the separated-MCUSUM (SMCUSUM) which develops an MCUSUM

control chart for each scan radius r ∈ R separately:

S∗rt ≡ max
c
Sc,rt , t = 1, 2, . . . .

Then the SMCUSUM chart is implemented as follows.

The SMCUSUM chart

1. For each r ∈ R,

(a) Pick any spatial cluster Oc,r.

(b) Solve Equation (3.2.1) for H using the corresponding Sc,rt with puARL0.

(c) Set h∗r = H.

2. Raise an alarm at t if any S∗rt ≥ h∗r for r ∈ R.

Note that the JMCUSUM-F chart with an analytical control limit can be a special

case of the SMCUSUM chart. In Section 3.3, we will show by experimentation that

the ARL0s of the SMCUSUM chart are indeed close to the target ARL0. The good

news is that, by using the SMCUSUM chart, we do not need to search for h∗∗ via

trial-and-error simulation. This advantage saves significant time, especially when we

deal with large problems with numerous possible values of the scan radius r.
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3.3. Approximation Accuracy

In this section, we test the accuracy of the control limit and ARL1 approximations

under various experimental configurations.

3.3.1 Experimental Setup

We construct an archetypal example with 7 × 7 and 20 × 20 regions. The target

ARL0 is set to 100 and 370, respectively. The range of the scan radius r is discussed

in the next subsection. For the out-of-control state, we assume a homogeneous shift

magnitude with δ = 1, and consider outbreak clusters with various rout values when

the outbreak center cout is located at the center of the 7×7 regional system (region 25).

Figure 10 illustrates outbreak regions with cout = 25 colored in gray for rout = 0, 1, 2.

We consider two different correlation structures. The first correlation structure Σ1

denotes the p×p correlation matrix given in Jiang et al. [24], where any pair of adjacent

regions has a correlation coefficient 0 ≤ ρ ≤ 1, any two cross-adjacent regions have

correlation coefficient ρ/2, and any other pairs of regions have no correlation. For the

second correlation structure Σ2, any pair of regions has a correlation coefficient that

depends on the distance between the regions. Specifically, the (α, β)th element of Σ2

is ρdist(qα,qβ) for α, β ∈ P . Figure 11 illustrates the different correlation settings of Σ1

and Σ2 for region 25, which correspond to the 25th rows of Σ1 and Σ2, respectively. We

rout = 0          rout = 1         rout = 2 

Figure 10: Outbreak clusters when cout = 25 (outbreak regions are in gray)
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Figure 11: Correlation settings of Σ1 and Σ2 for region 25

run our examples with spatial correlation parameter ρ = 0.0, 0.2, 0.4, 0.7. However,

the eigenvalues of Σ1 approach zero or become negative when ρ ≥ 0.5, which results

in an ill-conditioned Σ1. Thus, we restrict ρ < 0.5 for Σ1.

Note that the number of regions in a cluster can be smaller near the edge of the

study area. In order to keep the same number of regions in each cluster, we have added

dummy regions. For example, we actually simulate 9 × 9 regions to monitor 7 × 7

regions with r = 2. Moreover, we conduct 100,000 replications of each experiment to

calibrate empirical control limits, and 10,000 replications to obtain empirical ARLs

(either ARL0 or ARL1). All analytical control limits and ARL1s are calculated by

solving Equation (3.2.1) for S25,r
t .

Hereafter, we mainly focus on the experimental results based on the case with

p = 7 × 7 and ARL0 = 100, while other results with additional parameters (e.g.,

p = 20× 20 or the target ARL0 = 370) are reported in Appendix B.

3.3.2 Range of the Scan Radius

The performance of the JMCUSUM-F chart depends heavily on the accuracy of Equa-

tion (3.2.1). For this reason, we determine the practical range of the scan radius

r by studying how the accuracy of Equation (3.2.1) changes as r increases in the
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JMCUSUM-F chart. Note that the JMCUSUM-F chart essentially runs p MCUSUM

charts at the same time and stops when any of the MCUSUM charts signals an out-

of-control alarm. We calculate analytical control limits from Equation (3.2.1) when

the overall target ARL0 is 100, 370, or 700. The case ARL0 = 700 is additionally

considered in this section to study the impact of the target ARL0. Then, we record

the ratios of the empirical ARL0 to the target ARL0 for a single MCUSUM chart and

the JMCUSUM-F chart, respectively, for r = 0, 1,
√

2, 2, and
√

5 when δ = 1 and

ρ = 0.

From Section 3.1, we know that one MCUSUM statistic is based on the cumula-

tive sum of `c,ri = µ′c,rΣ
−1
(
xi − µc,r/2

)
. We see that the single MCUSUM chart is

the same as a classical CUSUM chart with a reference value k = 0.5
√
µ′c,rΣ

−1µc,r

by setting `c,ri = µ′c,rΣ
−1xi − k

√
µ′c,rΣ

−1µc,r, where
√
µ′c,rΣ

−1µc,r is the standard

deviation of `c,ri . For δ > 0 and 0 ≤ ρ < 1, a large value of r increases the standard

deviation of `c,ri ; and since k is proportional to the standard deviation of `c,ri , k also

increases as r increases. Table 9 illustrates the relationship between r and k when

δ = 1 and ρ = 0.

Figure 12 depicts the impact of r on the accuracy of Equation (3.2.1) for a single

MCUSUM chart with various target ARL0s. It shows that the ratio of the empirical

ARL0 to the target ARL0 decreases until r reaches 2. Figure 13 shows that the ratio

decreases as the reference value k for a classical CUSUM chart increases up to about

k = 1.8; Rogerson [44] also reports a similar decreasing trend as k increases for a

Table 9: r versus k when δ = 1 and ρ = 0

r k

0 0.5

1 ≈ 1.1√
2 1.5

2 ≈ 1.8√
5 ≈ 2.3
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Figure 12: Empirical ARL0

Target ARL0
(%) versus r for a single MCUSUM chart

70

80

90

100

110

120

Target ARL0 = 49x100

Target ARL0 = 49x370

Target ARL0 = 49x700

40

50

60

70

0.1 0.6 1.1 1.6 2.1

Target ARL0 = 49x700

k

Figure 13: Empirical ARL0

Target ARL0
(%) versus k for a single MCUSUMchart

classical CUSUM chart. One can easily see that Figures 12 and 13 match well. For

example, the ratio of ARL0s is approximately 80% when r =
√

2 in Figure 12, and

the ratio is also about 80% when k = 1.5 in Figure 13.

The ratio graphs having different target ARL0s start to behave quite differently

when r > 2 and k > 2 as shown in Figures 12 and 13, respectively. From Figure 12,

there can be more than a 30% drop in ARL0 from the target when r > 2. However,

to determine the range of r values where the approximation works well, we need to
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Target ARL0
(%) versus r for the JMCUSUM-F chart

consider the performance of the JMCUSUM-F chart where dependence among the

MCUSUM statistics exists.

In spatiotemporal monitoring, dependence among MCUSUM statistics is natural

due to overlapping regions among clusters or spatial correlation. The dependence

among the MCUSUM statistics becomes stronger as r or ρ increase. Figure 14 depicts

the performance of the JMCUSUM-F chart with p = 7× 7, δ = 1, ρ = 0, and target

ARL0 = 100, 370, and 700. By comparing Figures 12 and 14, we see that the positive

dependence among the MCUSUM statistics (due to overlapping regions) tends to shift

the graphs of ARL0 ratios in Figure 12 in the upward direction while keeping their

overall shapes over r. We also notice that the tendency strengthens as r increases.

Figure 14 shows that the ratios are within a 10% difference of the target for various

ARL0s when r is small (i.e., 0, 1,
√

2), but the ratios deviate more from the target

when r is large. This implies that the target ARL0 does not significantly affect the

accuracy of the approximation method if k is small. By considering the upward trend

due to dependence and the impact of the target ARL0, we recommend the use of r

such that k ≤ 2 when p = 7× 7 and ρ = 0. Now, we explain the impacts of ρ and p.

• Spatial correlation ρ changes the standard deviation of `c,ri and thus the values
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of k. Therefore, for a given ρ > 0, we recommend that one ought to calculate k

and find the range of r such that k ≤ 2. For example, if ρ = 0.2, then k ≈ 1.8

for r =
√

8, and k ≈ 2 for r = 3 under the correlation structure Σ2. The ratios

of the empirical ARL0 to the target are 90.62% and 84.66%, respectively. Thus,

in this case, one can use r up to 3 expecting no more than a 20% drop in the

empirical ARL0 from the target.

• Appendix B provides figures similar to Figures 12 and 14 for the case p = 20×20.

The figures show that there is still a shift in the upward direction, but the shift

amount is smaller for p = 20× 20 when compared to p = 7× 7. This is because

there are more MCUSUM statistics with fewer overlapping regions, and overall

dependence among MCUSUM statistics diminishes with large p. Thus, the

range of k ≤ 2 is still recommended.

Following the recommendation, we test r up to 2 (i.e., ru = 2), which ensures

k ≤ 2 for all values of ρ considered; and we set the largest rout = 2 as well. As a

consequence, we test the SMCUSUM chart with r ∈ R = {0, 1,
√

2, 2}.

3.3.3 Results for the Fixed Scan Radius Case

We summarize some of our main results.

Control limits : Empirically and analytically evaluated control limits are pre-

sented in Table 10 under different configurations with a fixed scan radius. Although

the Sc,rt s for different spatial clusters are no longer independent if r > 0 or ρ > 0,

the empirical control limits match the analytical control limits well. The analytical

approximation exhibits excellent performance, especially when ρ < 0.5.

In-control average run length : Before delivering test results for ARLJF
1 s, we

need to confirm that the targeted ARL0 is truly achieved with the analytical control

limits. Empirical ARL0s of the JMCUSUM-F chart with analytical h∗∗ are reported

in Table 11. No matter what correlation structure is used, the results in Table 11
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Table 10: Empirical h∗∗ (Analytical h∗∗) when r is fixed

Σ1 Σ2

ρ r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

0.0 6.55 (6.64) 6.79 (6.81) 6.28 (6.17) 6.56 (6.64) 6.79 (6.81) 6.28 (6.17)

0.2 6.63 (6.70) 6.86 (6.86) 6.62 (6.52) 6.62 (6.70) 6.86 (6.86) 6.66 (6.55)

0.4 6.83 (6.86) 6.78 (6.74) 6.58 (6.38) 6.77 (6.80) 6.85 (6.82) 6.70 (6.56)

0.7 – – – 6.89 (6.87) 6.65 (6.43) 6.29 (5.94)

Table 11: Empirical ARL0 of the JMCUSUM-F chart with analytical h∗∗

Σ1 Σ2

ρ r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

0.0 107.82 103.29 91.55 107.80 99.56 90.74

0.2 106.85 101.34 90.98 106.53 99.51 90.42

0.4 104.05 93.49 83.41 104.72 97.96 86.01

0.7 – – – 98.33 80.28 72.13

provide values close to 100 (i.e., the targeted ARL0) when ρ < 0.5. The case in which

ρ > 0.5 is tested as well for Σ2. However, the approximation quality seems diminished

for such high ρ compared to the results for ρ < 0.5. As ρ and r become larger, stronger

positive correlation occurs between spatial clusters and therefore smaller ARL0s are

observed.

Out-of-control average run length : In Section 3.2.1, we suggest an analytical

method to approximate ARL1s for the fixed scan radius case. Analytical ARLJF
1 s

are compared to empirical ARLJF
1 s in Table 12. To see the gap caused by the ARL1

approximation but not by the control limit approximation, analytical control limits

are used to obtain both empirical and analytical ARLJF
1 s. Although the JMCUSUM-F

chart yields some deviations of ARL0s from 100 (Table 11), ARLJF
1 s for both methods

exhibit no significant difference (Table 12).

Additional ARL results for the JMCUSUM-F chart with p = 7 × 7 and 20 × 20,

target ARL0 = 100, 370, and ρ = 0.0, 0.2, 0.4, 0.7 are provided in Appendix B.

49



Table 12: Empirical ARLJF
1 (Analytical ARLJF

1 ) with analytical h∗∗

Σ1 Σ2

ρ r = rout = 0 r = rout = 1 r = rout = 2 r = rout = 0 r = rout = 1 r = rout = 2

0.0 13.34 (13.62) 3.33 (3.37) 1.49 (1.44) 13.29 (13.61) 3.37 (3.36) 1.47 (1.44)

0.2 11.66 (11.86) 4.06 (4.04) 2.07 (2.05) 11.82 (12.05) 4.04 (4.02) 2.15 (2.11)

0.4 6.88 (6.96) 2.88 (2.86) 1.81 (1.74) 8.88 (9.03) 3.54 (3.52) 2.21 (2.15)

0.7 – – – 4.44 (4.37) 1.93 (1.84) 1.33 (1.22)

3.3.4 Results for the Variable Scan Radius Case

In Section 3.2.2, we presented the SMCUSUM chart using a separate analytical control

limit h∗r instead of a common control limit h∗∗. In order to compare the performance

of the SMCUSUM chart to that of the JMCUSUM-V chart, ARL0s and ARL1s for

the SMCUSUM chart are reported in Tables 13 and 14.

In Table 13, the SMCUSUM chart results in actual ARL0s close to the target

ARL0 = 100. Similar to the fixed scan radius case, smaller ARL0s are observed

in Table 13 as the spatial correlation parameter, ρ, increases. In Table 14, ARLJV
1

(ARLS
1) represents an empirical ARL1 achieved by the JMCUSUM-V (SMCUSUM)

chart from 10,000 replications. Although the SMCUSUM chart gives slightly larger

(smaller) ARL0s for ρ < 0.5 (ρ > 0.5) than the target ARL0 (Table 13), its ARL1

performance is very close to that of the JMCUSUM-V chart (Table 14). Thus, the

SMCUSUM chart provides similar performance to the JMCUSUM-V chart, but al-

lows for analytical control limits — so that it is more convenient to implement the

SMCUSUM chart than the JMCUSUM-V chart.

Next, we confirm that ARLS
1 is similar to the minimum of the ARL1s associated

with the JMCUSUM-F charts, each applied with r = 0, 1,
√

2, 2, respectively. Both

empirical and analytical ARLJF
1 s of the JMCUSUM-F charts are obtained for outbreak

scenarios with rout = 0, 1, 2. For each value of rout, we note that the JMCUSUM-F

chart with r = rout gives the minimum of the ARLJF
1 s. The minimum ARLJF

1 s are

given in Table 12; and the ARLJF
1 s in Table 12 are very close to the ARLS

1s in Table
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Table 13: Empirical ARL0 for the SMCUSUM chart with analytical h∗r

ρ Σ1 Σ2

0.0 117.66 118.82

0.2 113.68 113.11

0.4 105.77 106.40

0.7 – 87.13

Table 14: Empirical ARLJV
1 (ARLS

1)

Σ1 Σ2

ρ rout = 0 rout = 1 rout = 2 rout = 0 rout = 1 rout = 2

0.0 14.60 (15.05) 3.66 (3.79) 1.67 (1.73) 14.50 (15.23) 3.62 (3.76) 1.72 (1.73)

0.2 13.40 (13.23) 4.60 (4.62) 2.42 (2.60) 13.30 (13.56) 4.48 (4.61) 2.50 (2.67)

0.4 8.03 (7.88) 3.39 (3.33) 2.20 (2.47) 10.10 (10.21) 4.08 (4.12) 2.60 (2.89)

0.7 – – – 4.94 (5.01) 2.26 (2.22) 1.59 (1.81)

14. For example, when Σ1 is used with rout = 1 and ρ = 0.2, the minimum empirical

(analytical) ARLJF
1 is 4.06 (4.04), which is only slightly smaller than the empirical

ARLJV
1 (ARLS

1), 4.60 (4.62). The ARLS
1s tend to be slightly larger than the minimum

ARLJF
1 s for the configurations we tested, but the differences are not significant, sup-

porting our conjecture in Section 3.2.2. The same tendency is observed for ARLJV
1 s

as well.

Additional ARL results for the SMCUSUM chart are provided in Appendix B for

p = 7× 7 and 20× 20, with target ARL0 = 100, 370 and ρ = 0.0, 0.2, 0.4, 0.7.

3.4. Impact of Spatial Correlation on Detection Perfor-
mance

This section investigates the impact of correlation on detection performance as mea-

sured by detection delay and spatial identification accuracy, using the JMCUSUM-F

and SMCUSUM charts.

For a control chart used in spatiotemporal biosurveillance, two important ques-

tions are: (i) how quickly does the chart detect an outbreak? and (ii) how accurate is
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the chart in identifying the outbreak cluster? ARL1s are a generally accepted measure

of detection delay and thus can be used to answer the first question.

To answer the second question, we focus on two spatial identification accuracy

measures: the correct alarm percentage (CP) giving the proportion of time that a

chart exactly detects the true outbreak cluster with the correct center and radius;

and the sum of the alarm percentages (SP) that detect a cluster including all of the

outbreak regions — in the context of contagious disease surveillance, the outcome

we most want to avoid is that of missing any outbreak region. Other identification

accuracy measures for spatial cluster detection can be found in the literature. For

example, Gangnon and Clayton [15] report the proportion of time that their methods

detect at least one, half of, or all outbreak regions in the outbreak cluster. Gangnon

and Clayton [16] also discuss the power of their likelihood ratio tests (i.e., cluster

detection rates from known clustering models).

In order to investigate the relationship between detection performance and spatial

correlation, we run a series of experiments under various scenarios. The detection

performance is tested under the same experimental setup from Section 3.3.1, but

with one additional value of δ = 0.5. We use the JMCUSUM-F chart from Section

3.2.1 for the fixed scan radius case, and the SMCUSUM chart from Section 3.2.2

for the variable scan radius case. As a measure of detection delay, ARL1s for each

configuration are presented in the last four columns of Tables 15 and 16. All of the

ARL1s reported in the tables are empirically obtained by simulation with analytical

control limits based on 10,000 replications. As measures of identification accuracy,

Tables 15 and 16 report values of CP and SP under the correlation structures Σ1 and

Σ2, respectively.
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Table 15: Identification accuracy CP (SP) with Σ1

CP (SP) Empirical ARL1

δ ρ rout r = 0 r = 1 r = 2 r = var r = 0 r = 1 r = 2 r = var

0.5

0.0

0 83.73 (83.73) – (49.61) – (47.47) 63.93 (81.63) 40.02 71.34 93.75 44.87

1 – 85.89 (85.89) – (73.06) 68.74 (83.59) 22.85 10.67 18.75 12.27

2 – – 73.89 (73.89) 65.52 (65.52) 17.94 6.90 4.63 5.67

0.2

0 86.81 (86.81) – (52.19) – (50.84) 66.91 (83.69) 35.53 70.67 88.82 40.04

1 – 89.16 (89.16) – (69.49) 77.30 (85.86) 28.15 12.94 25.81 15.09

2 – – 83.09 (83.09) 76.17 (76.17) 24.29 11.38 6.62 8.35

0.4

0 91.26 (91.26) – (62.88) – (57.73) 74.17 (89.39) 21.90 52.27 73.64 25.65

1 – 89.65 (89.65) – (65.15) 85.73 (89.95) 18.64 9.26 19.10 10.96

2 – – 87.26 (87.26) 78.93 (78.93) 17.48 10.21 5.76 7.77

1.0

0.0

0 95.40 (95.40) – (61.65) – (51.16) 82.24 (91.97) 13.34 46.18 59.90 15.05

1 – 92.39 (92.39) – (80.73) 79.05 (88.62) 7.65 3.33 7.23 3.79

2 – – 81.89 (81.89) 71.42 (71.42) 6.10 2.26 1.47 1.73

0.2

0 96.14 (96.14) – (64.42) – (56.46) 85.40 (93.71) 11.66 45.17 62.48 13.23

1 – 95.43 (95.43) – (78.38) 87.72 (92.84) 9.68 4.06 10.55 4.62

2 – – 89.59 (89.59) 81.18 (81.18) 8.34 3.74 2.07 2.60

0.4

0 96.99 (96.99) – (76.44) – (62.57) 87.76 (96.04) 6.88 27.57 45.76 7.88

1 – 94.66 (94.66) – (73.62) 92.52 (94.74) 6.14 2.88 7.41 3.33

2 – – 91.50 (91.50) 81.77 (81.77) 5.97 3.36 1.81 2.47

Table 16: Identification accuracy CP (SP) with Σ2

CP (SP) Empirical ARL1

δ ρ rout r = 0 r = 1 r = 2 r = var r = 0 r = 1 r = 2 r = var

0.5

0.0

0 84.17 (84.17) – (49.56) – (47.64) 63.71 (81.02) 40.40 72.06 94.72 44.87

1 – 85.93 (85.93) – (72.41) 68.11 (82.69) 22.70 10.70 18.68 12.40

2 – – 73.48 (73.48) 64.55 (64.55) 17.88 6.90 4.65 5.65

0.2

0 86.88 (86.88) – (52.41) – (53.64) 67.43 (83.69) 36.16 71.24 89.39 41.08

1 – 90.60 (90.60) – (71.55) 79.75 (87.79) 28.16 12.91 26.13 15.15

2 – – 85.67 (85.67) 78.98 (78.98) 24.79 12.04 6.82 8.57

0.4

0 89.90 (89.90) – (56.53) – (57.98) 72.01 (87.40) 27.80 64.37 78.95 31.82

1 – 92.69 (92.69) – (69.53) 87.19 (91.95) 25.46 11.50 28.49 13.52

2 – – 91.48 (91.48) 84.84 (84.84) 22.69 15.07 7.12 9.22

1.0

0.0

0 94.75 (94.75) – (60.90) – (52.04) 82.66 (91.90) 13.29 46.06 62.09 15.23

1 – 92.70 (92.70) – (81.68) 79.06 (88.65) 7.57 3.37 7.24 3.76

2 – – 82.00 (82.00) 70.93 (70.93) 6.03 2.25 1.47 1.73

0.2

0 95.62 (95.62) – (65.51) – (56.40) 85.17 (93.69) 11.82 45.85 63.03 13.56

1 – 96.08 (96.08) – (81.14) 88.50 (93.57) 9.62 4.04 11.24 4.61

2 – – 91.70 (91.70) 83.22 (83.22) 8.55 4.01 2.15 2.67

0.4

0 97.18 (97.18) – (70.15) – (63.50) 88.22 (95.46) 8.88 38.39 54.55 10.21

1 – 97.09 (97.09) – (79.22) 93.61 (96.07) 8.74 3.54 12.44 4.12

2 – – 95.31 (95.31) 87.27 (87.27) 7.82 5.13 2.21 2.89
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3.4.1 Outbreak Radius

With respect to the ARL1s in Tables 15 and 16, it is easy to see the importance of

matching the scan radius to the actual outbreak radius. The use of the fixed scan

radius r = rout always results in the smallest ARL1s and the largest alarm percentages

under all configurations tested. The SMCUSUM chart with a variable scan radius

always provides the second-best ARL1s. With respect to spatial identification accu-

racy, the alarm percentages when using the variable scan radius are not as good as

those with the fixed scan radius r = rout, but give reasonably high values, especially

when the correlation is high. If the radius of the real outbreak increases, then both

the JMCUSUM-F and SMCUSUM charts raise an alarm more quickly. However, the

values of CP and SP decrease as rout increases. There is not much difference between

the experimental results for Σ1 and Σ2, except that the ARL1s decrease more slowly

as ρ increases when Σ2 is used.

3.4.2 Spatial Correlation

To see the impact of spatial correlation on both the ARL1 and alarm percentages more

clearly, we depict the results of the fixed scan radius case. Figure 15 shows the ARL1

and CP as functions of correlation for rout = 0, 1, 2 with δ = 1 and Σ2. In Figure 15,

the ARL1 does not have a monotonic relationship with spatial correlation, but the

CP increases as correlation increases. This shows that positive correlation does not

always support faster detection but helps accurate identification. (The same ARL1

and CP patterns appear with the variable scan radius.) Regarding the relationship

between spatial correlation and ARL1s, one can find a similar conclusion in Rogerson

and Yamada [46], although the authors use different MCUSUM charts than ours. We

drew graphs of ARL1 and SP versus spatial correlation with different δ and Σ1 values,

which are not reported in this thesis, and we observed similar patterns. These results

imply that faster detection does not guarantee accurate identification.
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Figure 15: Spatial correlation vs. ARL1 and CP with δ = 1 and Σ2

3.5. Conclusions

We propose a method to calculate approximate control limits for the JMCUSUM-F

chart where the scan radius is fixed, and to study the range of the scan radius where

the method works well. A new MCUSUM chart is also proposed for the case of a

variable scan radius, namely, the SMCUSUM chart, whose performance is similar to

the JMCUSUM-V chart but calculates control limits analytically. By using the pro-

posed charts, one can avoid cumbersome time-consuming trial-and-error simulation

to calibrate control limits, which makes the use of MCUSUM charts more convenient

in practice.

In addition, we introduce the correct alarm percentage and the sum of alarm per-

centages to evaluate identification accuracy of the proposed charts for biosurveillance;

and we study the impact of the outbreak radius and spatial correlation on ARL1s and

identification accuracy.

The experimental results show that matching r to rout is important not only with

regard to ARL1s, but also for identification accuracy. Using a chart designed for the

variable scan radius case is a safer choice for both ARL1 and identification accuracy
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if rout is unknown. Larger rout helps fast detection but makes identification of the

outbreak cluster difficult. On the other hand, we find that higher spatial correlation

does not always help faster detection, but it does help accurate identification.
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Chapter IV

ROBUST DISTRIBUTION-FREE MCUSUM CHARTS

FOR SPATIOTEMPORAL BIOSURVEILLANCE IN THE

PRESENCE OF SPATIAL CORRELATION

In Chapter 3, we focused on an analytical method to approximate the control limits

in order to overcome the fact that many MCUSUM charts rely on time-consuming

trial-and-error simulations to search for their control limits. Based on the MCUSUM

chart developed by Jiang et al. [24] (the JMCUSUM chart), we suggested another

MCUSUM chart, named the SMCUSUM chart, that applies analytical control limits

separately to each of the group of MCUSUM charts having the same scan radius. We

tested our method under various configurations of outbreak coverage, shift magnitude,

spatial correlations among regions, and scan radius. The control limit approximation

method works well in a certain range of radius values, while the ARL1 performance

of the SMCUSUM charts is similar to that of the JMCUSUM charts.

In this chapter, we design and develop a new MCUSUM chart, namely, the Robust-

MCUSUM (RMCUSUM) chart, motivated from the JMCUSUM and SMCUSUM

charts. Our new method searches for the control limits of the correlated MCUSUM

charts for any underlying distribution of data (i.e., distribution-free) and any range of

scan radius. The chapter is organized as follows: Section 4.1 defines notation and the

problem itself, reviews the monitoring statistics of the JMCUSUM and SMCUSUM

charts, and gives motivating examples. Section 4.2 presents our new RMCUSUM

chart, and then Section 4.3 delivers the experimental setup and results to test the

performance of the RMCUSUM chart. Section 4.4 concludes this chapter.
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4.1. Background and Motivation

As background, we first define the notation needed to describe the problem and the

RMCUSUM chart. Then we explain how our motivation arises from the JMCUSUM

and SMCUSUM charts.

4.1.1 Notation and Problem

We consider p = M × N regions in a rectangular shape for monitoring. The two-

dimensional space coordinate of region c in a set P = {1, 2, . . . , p} is denoted as qc =

(mc, nc), where mc = 1, . . . , M and nc = 1, . . . , N (See Figure 16). At each time

t, an observation vector yt = (yt1, yt2, . . . , ytp)
′ is monitored from p regions. If the

baseline mean value in the in-control state, θc, and the marginal variance, σ2
c , of each

component ytc are known for all c ∈ P , we obtain a standardized observation vector

xt = (xt1, xt2, . . . , xtp)
′ by setting xtc = (ytc − θc)/σc. The quantity xt is assumed

to follow a multivariate distribution having probability density function fµ(x) with a

mean vector µ and known variance-covariance matrix Σ. We assume that Σ does not

change over times t = 1, 2, . . ., while µ can change when there is a shift. With the

standardized observation vectors, the variance-covariance matrix and the correlation

matrix are interchangeable.

Since each component of xt corresponds to a standardized observation from each

spatial region at time t, we can construct an MCUSUM chart on xt (or a subset of

xt) for spatiotemporal biosurveillance. The MCUSUM chart is developed to detect

a shift as soon as possible after the null parameter µ0 = 0 in the in–control state is

shifted to the alternative parameter µ1 (which indicates an out–of–control state) at

an unknown change time ν.

Employing the assumption from Jiang et al. [24] that the shape of the outbreak

coverage is a circle, we define possible spatial clusters of outbreak regions as Oc,r ≡

{j | dist(qj, qc) ≤ r, j ∈ P} with scan radius r from region c, where dist(a, b) denotes
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c              qc = (mc, nc)

1 2 3 4 5 6 7 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

8 9 10 11 12 13 14 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

15 16 17 18 19 20 21 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)

22 23 24 25 26 27 28 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)

29 30 31 32 33 34 35 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)

36 37 38 39 40 41 42 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7)

43 44 45 46 47 48 49 (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

Figure 16: Coordinate expression of regions (p = 7× 7)

the Euclidean distance between a and b. Since the center of the circle-shaped coverage

is located in c, let c denote the center region of the outbreak cluster Oc,r.

The scan radius r can be either constant or variable. When r is variable, r can

be in a range from
[
0,
√
M2 +N2

]
or bounded by a given upper limit ru. However,

since the number of regions in Oc,r changes only at certain values of r, we consider

a finite number of possible values of r such as 0, 1,
√

2, 2, and so on for practical

purposes. Let R denote the set of possible settings for r, i.e., R = {r1, r2, . . . , ru},

where u is the cardinality of R.

We scan each possible outbreak cluster Oc,r and test if the mean levels of the

regions in Oc,r are shifted, assuming the mean levels of the other regions stay in the

in-control state. For different Oc,r choices, different shift vectors µc,r are considered,

and a set of possible shift vectors is defined as {µc,r | c ∈ P , r ∈ R}. When a

homogeneous shift magnitude δ > 0 is assumed over all outbreak regions, the jth

component of µc,r is δ if j ∈ Oc,r and 0 otherwise. An MCUSUM chart is designed

to detect a shift from µ0 to µc,r as soon as possible.

In advance of presenting the RMCUSUM chart in Section 4.2, we introduce some

additional notation and assumptions.
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Suppose the discrete-time stochastic process {Yi : i = 1, 2, . . .} has a steady-

state distribution with marginal mean E[Yi] and marginal variance Var[Yi]. Then the

standardized CUSUM is defined as

Ct(s) ≡
∑btsc

i=1 Yi − tsE[Yi]

ΩY

√
t

for s ∈ [0, 1], (4.1.1)

where b·c is the floor function and Ω2
Y is the variance parameter for the process {Yi},

defined as

Ω2
Y ≡ lim

t→∞
tVar[Y (t)] =

∞∑
h=−∞

Cov(Yi, Yi+h)

when Y (t) ≡ t−1
∑t

i=1 Yi is the sample mean of the first t observations. Note that

Ω2
Y = Var[Yi] if the process {Yi : i = 1, 2, . . .} has no autocorrelation over time.

Let {W(u) : u ∈ [0, ∞)} denote a standard Brownian motion process so that the

random variables W(s) and W(u) for arbitrary s, u ∈ [0, ∞) are jointly normal with

E[W(s)] = E[W(u)] = 0 and Cov[W(s),W(u)] = min{s, u}.

For each positive integer t, the random function Ct(·) is an element of D[0, 1],

the space of functions on [0, 1] that are right-continuous and have left-hand limits

[4]. As Kim et al. [25] do, we assume that {Yi : i = 1, 2, . . .} satisfies the following

Functional Central Limit Theorem (FCLT).

Assumption FCLT. There exist finite real constants E[Yi] and Ω2
Y > 0 such that

the sequence of random functions {Ct(·) : t = 1, 2, . . .} converges in distribution to a

standard Brownian motion W(·) in the space D[0, 1] as t→∞. Formally, we write

Ct(·)
D−−−→

t→∞
W(·),

where
D−−−→

t→∞
denotes convergence in distribution as t→∞.

Note that, based on the definition (4.1.1) and the assumption FCLT, the following
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approximation holds for Yi in any distribution if t is sufficiently large.

t∑
i=1

Yi = E[Yi]t+ ΩY

√
t Ct(1)

D
≈ E[Yi]t+ ΩY

√
tW(1)

D
= E[Yi]t+ ΩYW(t) (4.1.2)

where
D
≈ denotes approximate equality in distribution and

D
= denotes exact equality

in distribution.

As we saw in Chapter 3, both of the JMCUSUM and SMCUSUM charts are based

on the monitoring statistic,

S∗∗t ≡ max
c, r

Sc,rt ≡ max
c, r

max
1≤ν∗≤t

t∑
i=ν∗

`c,ri , t = 1, 2, . . . ,

where

`c,ri ≡ µ′c,r Σ−1
(
xi −

µc,r
2

)
, i = 1, 2, . . . , t.

While the JMCUSUM chart applies a control limit directly to the monitoring statistic,

the SMCUSUM chart applies separate control limits according to different scan radius

options.

Note that Sc,rt itself is an MCUSUM statistic that can be calculated recursively

by

Sc,rt = max(0, Sc,rt−1 + `c,rt ), t = 1, 2, . . . ,

where Sc,r0 = 0 for all c ∈ P and r ∈ R. Then it is easy to see that Sc,rt is always

equal to Sc,r(t)−min{Sc,r(n) : n = 1, 2, . . . , t}, where Sc,r(t) ≡
∑t

i=1 `
c,r
i .

4.1.2 Motivation

Though both of the JMCUSUM and SMCUSUM charts perform well, the SMCUSUM

chart has an advantage. While searching for the appropriate control limit that yields

the target ARL0, the JMCUSUM chart uses tedious trial-and-error simulation that

requires intensive modeling of the underlying process. The SMCUSUM chart uses an
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analytical approximation method that is much faster in terms of calculating its control

limit than trial-and-error simulation. In spite of the advantage, we still present some

motivations for developing a new MCUSUM chart for practical use.

First, Chapter 3 showed that the performance of the SMCUSUM chart highly

depends on a reference value for the chart (i.e., k = 0.5
√
µ′c,rΣ

−1µc,r) and recom-

mends use of a reference value k ≤ 2. With this condition on the reference value, the

range of the scan radius is restricted, and this restricted range may cause inconve-

nience for users, especially when the monitoring area is large. In addition, since the

performance of the SMCUSUM chart deteriorates as the reference value increases,

that control limit approximation method becomes less reliable when the reference

value gets closer to 2. For example, when the number of regions p = 7× 7, the shift

magnitude δ = 1, the scan radius r = 2, and no spatial correlation exists among the

regions, the reference value of the SMCUSUM chart is approximately 1.8. With the

reference value close to 2, the empirical ARL0 of the SMCUSUM chart stays around

80% of the target ARL0, 370.

Second, the control limit approximation method for the SMCUSUM chart is based

on the independence assumption on the underlying MCUSUM statistics, Sc,rt . How-

ever, the assumption is not valid if there is positive spatial correlation among the

data or if there are overlapped regions among the spatial clusters.

Finally, both of the JMCUSUM and SMCUSUM charts are developed and tested

under the assumption that the regional disease counts data follow a multivariate

normal distribution. Unfortunately, the underlying distribution of incident data is

often unknown or modeled by a Poisson distribution, and the performance of the

charts originally developed for normal data may deteriorate when applied to non-

normal data. For example, when we apply the JMCUSUM chart to multivariate

Poisson data having all marginal means equal to 5 with the number of regions p =

7 × 7, the shift magnitude δ = 1, the scan radius r = 0, and the spatial correlation
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parameter ρ = 0.4, the empirical ARL0 drops to 44.61, which is far from the target

ARL0 = 100.

In Section 4.2, we introduce our RMCUSUM chart with a control limit search

method that can handle the correlations among the MCUSUM charts without inten-

sive modeling of the underlying process, while achieving robustness to any scan radius

range, spatial correlation, and data distribution.

4.2. RMCUSUM Charts

For the RMCUSUM chart, we introduce the following monitoring statistic,

G∗∗t ≡ max
c,r

Gc,r
t ≡ max

c,r
max

1≤ν∗≤t

t∑
`=ν∗

(αc,r` − kσ
c,r) , t = 1, 2, . . . .

where αc,r` ≡ µ′c,rΣ
−1x`, k is a constant reference value, and σc,r is the standard

deviation of αc,r`
(
i.e.,

√
µ′c,rΣ

−1µc,r
)

for ` = 1, 2, . . . , t. An alarm is signaled as

soon as G∗∗t ≥ g∗∗, where g∗∗ is an approximated control limit that determines the

operating characteristics of the monitoring chart. When a signal is raised for the first

time, we record (i) the current time t as the time when the control chart detects the

shift and (ii) ν∗ as the estimated change time, though the true change time ν is still

unknown.

Similar to Sc,rt , the quantity Gc,r
t is itself an MCUSUM statistic that can be cal-

culated by

Gc,r
t = max(0, Gc,r

t−1 + αc,rt − kσc,r)

= Sc(t)−min{Sc(i) : i = 1, 2, . . . , t}, t = 1, 2, . . . , (4.2.1)

where Sc(t) ≡
∑t

`=1 (αc,r` − kσc,r) and Gc,r
0 = 0 for all c ∈ P and r ∈ R. Therefore,

one MCUSUM statistic Gc,r
t is recorded for each spatial cluster, and the maximum of

all pu of the MCUSUM statistics is used as the monitoring statistic G∗∗t .

It is notable that our monitoring statistic G∗∗t becomes S∗∗t when k =

0.5
√
µ′c,rΣ

−1µc,r. Chapter 3 suggested an analytical control limit approximation
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method for S∗∗t that can be applicable while k ≤ 2. Though that approximation

method is very fast and convenient for calculating the control limit, the possible

range of the scan radius r is restricted due to the constraint on k. In order to avoid

such a restriction on r, we use a constant k that does not depend on r as in a classical

CUSUM chart.

For the RMCUSUM chart, it is desirable that (i) g∗∗ should deliver the exact target

ARL0; and (ii) the search for such g∗∗ should not require cumbersome modeling of

the underlying process, which can be challenging with large r. In the next two

subsections, we present our RMCUSUM chart, which incorporates a new control

limit search method that achieves these two goals when the scan radius r is fixed or

variable.

4.2.1 RMCUSUM Chart for the Fixed Scan Radius

We first consider the RMCUSUM chart for the fixed scan radius, namely,

RMCUSUM-F. If the actual outbreak radius rout is known or can be approximated

well, r can be fixed to rout for good ARL1 performance of the chart. When r is fixed,

our monitoring statistic becomes

G∗∗t = max
c
Gc,r
t , t = 1, 2, . . . .

This means that the number of possible spatial clusters Oc,r is reduced to p, and one

MCUSUM statistic, Gc,r
t , is monitored for each spatial cluster. An alarm is raised

when any of the p MCUSUM statistics exceed a common control limit g∗∗. If an

alarm is incurred by Gc,r
t , then c is considered to be the center of the outbreak.

Due to the overlapped regions among the Oc,rs for c ∈ P and the spatial correlation

existing in the regional data xt, it is typically true that the Gc,r
t s for c ∈ P are

correlated and that the correlation among the Gc,r
t s makes the search for proper

control limits difficult — as one can observe from the performance deterioration of the

SMCUSUM chart in Chapter 3. We propose a method that deals with the correlation

64



among the Gc,r
t s.

First, note that

G1,r
t

G2,r
t

...

Gp,r
t


≡



S1(t)−min{S1(i) : i = 1, 2, . . . , t}

S2(t)−min{S2(i) : i = 1, 2, . . . , t}
...

Sp(t)−min{Sp(i) : i = 1, 2, . . . , t}


We define α(`) as the p × 1 vector

(
α1,r
` , . . . , αp,r`

)′
and Γ as the p × p variance-

covariance matrix of α(`). Since αc,r` s for all c ∈ P are linear combinations of the

data x`, Γ can be derived analytically from the known Σ. When Γ is a positive-

definite matrix, there exists Γ
1
2 that satisfies Γ = Γ

1
2 [Γ

1
2 ]′. Then, for the data with

any distribution,

S(t) ≡



S1(t)

S2(t)

...

Sp(t)


D
≈−Kt+ Γ

1
2W (t), (4.2.2)

where K denotes a p × 1 vector (kσ1,r, . . . , kσp,r)′, W (t) denotes a p × 1 vector

(W1(t), . . . , Wp(t))
′ with independent standard Brownian motion process compo-

nents (see Appendix C for the detailed derivation). Note that Equation (4.2.2) is

the multivariate version of Equation (4.1.2). By Equation (4.1.2), the values ofWc(t)

for c ∈ P and integer values of t can be generated by the summation of t i.i.d. standard

normal observations.

We search by trial-and-error for g∗∗ yielding the target ARL0. Figure 17 pro-

vides the detailed procedure of the RMCUSUM-F chart, including the trial-and-error

simulation search for its control limit. In Figure 17, Phase I depicts the steps for

finding the control limit value g∗∗, while Phase II shows the step for running the

RMCUSUM-F chart with the resulting g∗∗. Though g∗∗ is determined by trial-and-

error, the search does not require any complicated modeling to generate correlated
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Phase I. Searching for the control limit.

Step 1. Select a value of g∗∗ and determine the number of replications τ .

Step 2. Set t = 1, S(0) = 0, W (0) = 0, and the iteration counter i = 0.

Step 3. Generate Z = [Z1, Z2, . . . , Zp]
′ where the Zcs are i.i.d. standard nor-

mal random variables for all c ∈ P .

Step 4. Set W (t) = W (t− 1) +Z and S(t) = −Kt+ Γ
1
2W (t).

Step 5. For c ∈ P , set

Gc,r
t = Sc(t)−min{Sc(i) : i = 1, . . . , t}

= max
(

0, Gc,r
t−1 − kσc,r + [Γ

1
2Z]c

)
where [Γ

1
2Z]c denotes the cth element of Γ

1
2Z.

Step 6. If G∗∗t ≥ g∗∗, raise an alarm, record t as a run length, and set i = i+1.

Step 7. If i = τ , go to Step 8. Otherwise, set t = t+ 1 and go to Step 3.

Step 8. Calculate ARL0. If it is close to the target ARL0, go to Phase II.
Otherwise, pick a different value for g∗∗ and go to Step 2.

Phase II. Running the RMCUSUMf chart with the control limit.

Step 1. For each t = 1, 2, . . ., obtain xt and calculate G∗∗t . Raise an out-of-
control alarm if G∗∗t ≥ g∗∗.

Remark: To select a value of g∗∗ efficiently in Phase I, one may use a bisection
method or other metaheuristics instead of trying arbitrary values.

Figure 17: The RMCUSUMf chart

variables — we only need to generate p i.i.d. standard normal variables.

4.2.2 RMCUSUM Chart for the Variable Scan Radius

If rout is unknown, the use of a variable r is recommended. In this case, G∗∗t becomes

equivalent to the maximum of pu statistics, and an alarm is raised as soon as any of

the pu MCUSUM statistics hits a common control limit g∗∗.

In order to find g∗∗ for the pu correlated MCUSUM charts, we can consider a chart

similar to the RMCUSUM-F by expanding the dimension from p to pu. However, with
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the expanded dimension pu, Γ is often not positive–definite, which implies Γ
1
2 does not

exist. Therefore, instead of using the simple expansion of the RMCUSUM-F chart,

we introduce an alternative chart RMCUSUM-V, which is similar to the SMCUSUM

chart.

Before discussing the RMCUSUM-V chart, we need to define two types of correla-

tion related to the overlapped regions of spatial clusters for the pu MCUSUM charts.

One is the correlation among the charts with the same radius (SR-type correlation).

The other is the correlation among the charts with different radii (DR-type correla-

tion). For example, G1,r2
t and G2,r2

t have SR-type correlation, while G1,r2
t and G2,r3

t

have DR-type correlation.

Since the correlation among the αc,rt s directly affects the correlation among the

Gc,r
t s, the correlation among the pu MCUSUM charts can be presented by a pu× pu

matrix

Ψ ≡



Ψr1,r1 Ψr1,r2 . . . Ψr1,ru−1 Ψr1,ru

Ψr2,r1 Ψr2,r2 . . . Ψr1,ru−1 Ψr2,ru

...
...

...
...

...

Ψru,r1 Ψru,r2 . . . Ψru,ru−1 Ψru,ru


where the (i,j)th element of a p× p matrix Ψra,rb is the correlation between αi,rat and

αj,rbt for i, j ∈ P and ra, rb ∈ R. Note that Ψra,rb with ra = rb is related to the

SR-type correlation and Ψra,rb with ra 6= rb is related to the DR-type correlation.

Recall that the SMCUSUM chart applies different control limits to the MCUSUM

charts with different r (while the JMCUSUM chart applies one common control limit

to all MCUSUM charts). We employ a similar idea here, so that our monitoring

statistics for the RMCUSUM-V chart become

G∗rt ≡ max
c

Gc,r
t , t = 1, 2, . . . ,

for r ∈ R; and an alarm is raised at t if any G∗rt hits the corresponding control limit,

g∗r.
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Our goal in this section is to develop the RMCUSUM-V chart that can accommo-

date both the SR-type and DR-type correlations. Note that the monitoring statistic

G∗rt is the maximum of p MCUSUM statistics with the same radius, and thus the

SR-type correlation can be dealt with simply by searching for the control limit g∗r

via Phase I of the RMCUSUM-F chart in Figure 17. For this reason, we mainly

discuss how to handle the DR-type correlation among the G∗rt s.

If there is no DR-type correlation among the u G∗rt s, finding g∗r that yields uARL0

for each r ∈ R can be good enough to achieve the target ARL0 of the RMCUSUM-V

chart. However, as we saw in similar cases for the SMCUSUM chart (See Pages 40

and 49 in Chapter 3), the chart using the control limits with uARL0 may not perform

well for the cases where the DR-type correlation actually exists.

For the RMCUSUM-V chart, we adjust u to a corrected value ǔ by considering the

impact of the DR-type correlation, so that the control limits yielding ǔARL0 for each

G∗rt can truly achieve the RMCUSUM-V chart’s target ARL0. Figure 18 formalizes

the procedure for the RMCUSUM-V chart. Note that the RMCUSUM-F chart is a

spatial case of the RMCUSUM-V chart with ǔ = 1 and no DR-type correlation.

A remaining question for the RMCUSUMv chart is, of course, how to find ǔ

values. In order to find ǔ, we first introduce a measure of the DR-type correlation

Phase I. Searching for the control limits.

Step 1. Find ǔ (See Figure 21 later).

Step 2. For each G∗rt and r ∈ R, find g∗r that yields ǔARL0 by running Phase
I of the RMCUSUMf chart.

Phase II. Running the RMCUSUMv chart with the control limits.

Step 1. For each t = 1, 2, . . ., obtain xt and calculate G∗rt for r ∈ R. Raise
an out-of-control alarm if any G∗rt ≥ g∗r.

Figure 18: The RMCUSUMv chart
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and a measure of the impact of the DR-type correlation. Then we present a method

to estimate ǔ by using the relationship between the two measures.

Measure of the DR-type correlation : Recall that Ψra,rb with ra = rb is

related to the SR-type correlation and Ψra,rb with ra 6= rb is related to the DR-type

correlation. Hence, the average value of all components in Ψra,rb with ra 6= rb can

be used a measure of the DR-type correlation. For given p, k, and target ARL0, let

DRCρ denote the average value for a common spatial correlation parameter ρ. Then

we use Dρ = DRCρ/DRC0 as a standardized measure of the DR-type correlation for

that particular ρ.

Measure of the impact of the DR-type correlation : First, let us assume

the u G∗rt s are independent, and suppose we find g∗rs that yield uARL0 for the respec-

tive G∗rt s by running Phase I of the RMCUSUM-F chart. If we run the RMCUSUM-V

chart with the g∗rs under the in-control state, we can obtain empirical ARL0 esti-

mates. Obviously, if the DR-type correlation exists among the G∗rt s, the empirical

ARL0 will likely be different than the target ARL0 of the RMCUSUM-V chart. Let

Aρ denote the ratio of the empirical ARL0 to the target ARL0 for a given ρ (i.e.,

Aρ = Empirical ARL0

Target ARL0
). Then Aρ can be used as a measure of the DR-type correlation’s

impact on the ARL0.

We set our correction term ǔ = u
Aρ

= u· Target ARL0

Empirical ARL0
. This means that we set ǔ < u

if the empirical ARL0 is larger than the target ARL0 and ǔ > u if the empirical ARL0

is smaller than the target. Our method for setting ǔ is based on an empirical guess,

but we will confirm that the ǔ performs well under various experimental configurations

in Section 4.3.

Since obtaining Aρ for the numerous ρ-values under consideration requires a great

deal of simulation time and effort, we present a more-convenient method to estimate

Aρ (and thus ǔ) by studying the relationship between Dρ and Aρ.
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Relationship between Dρ and Aρ: We plot Aρ as a function of Dρ and em-

pirically find a linear relationship between them. More specifically, under each con-

figuration in Table 17, Figure 19 depicts the relationship between Dρ and Aρ for Σ2

with ρ = 0.0, 0.2, 0.4, and 0.7, where Σ2 is the same correlation structure defined

in Chapter 3. Under the correlation structure Σ2, Dρ is largest (i.e., 1) when ρ = 0

and becomes smaller as ρ > 0 gets larger. Similarly, Aρ is largest when ρ = 0 (i.e.,

Dρ = 1) and becomes smaller as ρ > 0 gets larger (i.e., Dρ gets smaller). In Figure

Table 17: Configurations

Configuration p k R Target ARL0

1 7× 7 0.5 {0, 1,
√

2, 2} 100

2 7× 7 0.5 {1,
√

2} 100

3 7× 7 0.5 {
√

2, 2} 100

4 7× 7 0.1 {
√

2, 2} 100

5 7× 7 0.5 {
√

2, 2} 370

6 20× 20 0.5 {
√

2, 2} 100
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Figure 19: Dρ vs Aρ
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19, Aρ increases linearly as Dρ increases for the all configurations.

Estimation of Aρ and ǔ: Assuming that the linear relationship between Dρ

and Aρ holds for all configurations, we can estimate Aρ for various ρ by interpolation.

For example, suppose that we first run the RMCUSUM-V chart with ρ1 and ρ2 and

obtain Dρ1 , Dρ2 , Aρ1 , and Aρ2 . After drawing a line between the two points (Dρ1 ,

Aρ1) and (Dρ2 , Aρ2) as depicted in Figure 20, we can estimate Aρ for any ρ1 ≤ ρ ≤ ρ2

from the following equation,

Aρ ≈
Aρ1 − Aρ2

Dρ1 −Dρ2

(Dρ −Dρ2) + Aρ2 , (4.2.3)

where Dρ is the value calculated analytically without the trial-and-error simulation.

Since ǔ can be estimated by u/Aρ, we can reduce the computational burden when

testing various ρ for the RMCUSUM-V chart.

Figure 21 summarizes the procedure of finding ǔ.

A
1

A

A
22

D
2

D D
1

Figure 20: Estimation of Aρ
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Step 1. Determine ρ1 and ρ2. Calculate Dρ1 and Dρ2 .

Step 2. Obtain Aρ1 and Aρ2 .

Step 2.1 For each r ∈ R and ρ1, find the g∗r that yields uARL0 by running
Phase I of the RMCUSUM-F chart.

Step 2.2 With the g∗rs in hand, run the RMCUSUM-V chart and obtain the
empirical ARL0.

Step 2.3 Calculate Aρ1 = EmpiricalARL0

TargetARL0
.

Step 2.4 Repeat Steps 2.1–2.3 for ρ2 to calculate Aρ2 .

Step 3. For a given ρ to test, estimate Aρ by Equation (4.2.3).

Step 4. Set ǔ = u/Aρ.

Figure 21: Finding ǔ

4.3. Experiments

In this section, we test the accuracy of the RMCUSUM charts as well as the robust-

ness of the charts to the underlying distribution of regional data and the correlation

structure.

4.3.1 Experimental Setup

For archetypal examples, we consider 7× 7 and 20× 20 regions for p when the target

ARL0 is set to 100 and 370. For the out-of-control state, we assume a homogeneous

shift magnitude with δ = 1.

Outbreak cluster : Outbreak clusters with various rout values are tested when

the outbreak center cout is located at the center of the 7 × 7 or 20 × 20 grid of the

regional system. For example, Figure 22 illustrates outbreak regions in the 7 × 7

regional system, colored in gray with cout = 25 and rout = 0, 1, 2.

Spatial correlation : We mainly consider two different correlation structures

for xt. The first correlation structure Σ1 denotes the p × p correlation matrix given

in Jian et al. [24], where any pair of adjacent regions has a correlation coefficient
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rout = 0          rout = 1         rout = 2 

Figure 22: Outbreak clusters when cout = 25 (outbreak regions are in gray)

0 ≤ ρ ≤ 1, any two cross-adjacent regions have correlation coefficient ρ/2, and

any other pairs of regions have no correlation. The second correlation structure Σ2

denotes the p×p correlation matrix given in Chapter 3, where any pair of regions has a

correlation coefficient that depends on the distance between the regions. Specifically,

the (i, j)th element of Σ2 is ρdist(qi,qj) for i, j ∈ P . Under the 7 × 7 regional system,

Figure 23 compares the different correlation settings of Σ1 and Σ2 for region 25, which

corresponds to the 25th rows of Σ1 and Σ2, respectively. We test the spatial correlation

parameter ρ = 0.0, 0.2, 0.4, 0.7 for our examples. However, the eigenvalues of Σ1

approach zero or become negative when ρ ≥ 0.5, which results in an ill-conditioned

Σ1. Thus, we restrict ρ < 0.5 for Σ1.

Marginal distribution : We test two different underlying distributions for the

raw data yt. One is the multivariate normal distribution with mean vector µ, and the

other is the multivariate Poisson distribution with the mean vector whose components

are all 5. The reference value k is set to 0.5 for the normal data as is usually used

for a classical CUSUM chart, and k is set to 0.1 for the Poisson data as in Kim et

al. [25].

Note that a cluster near the edge of the study area can contain a relatively smaller

number of regions. In order to keep the number of regions in each cluster the same,

we have added dummy regions. For example, we actually generate 9 × 9 regions to
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0 0 0 0 
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0 0 0 0 0 0 0 

Figure 23: Correlation settings of Σ1 and Σ2 for region 25

monitor 7×7 regions with r = 2. We conduct 10,000 replications of each experiment to

calibrate empirical control limits (i.e., τ = 10,000), and 3,000 replications to obtain

empirical ARLs (either ARL0 or ARL1). In order to interpolate the lines for the

RMCUSUM-V chart, we use ρ1 = 0.00 and ρ2 = 0.49 for Σ1, and ρ1 = 0.00 and

ρ2 = 0.99 for Σ2.

4.3.2 Accuracy of Control Limits

The RMCUSUM charts are designed to be distribution-free. In order to test the

accuracy of the control limits of the RMCUSUM charts, we apply the charts with

the data following the multivariate normal distribution and the multivariate Poisson

distribution under the Σ2 spatial correlation structure.

Range of the scan radius: Table 18 exhibits the empirical ARL0s of the

RMCUSUM charts under various experimental configurations with the multivariate

normal data. Note that the ARL0 values are from the RMCUSUM-F charts when the

cardinality of R is 1, while the ARL0 values are from the RMCUSUM-V charts when

the cardinality of R is greater than 1. In Table 18, all empirical ARL0s are −3% to

8% off from the target ARL0s for all configurations tested. Unlike the SMCUSUM

chart, the RMCUSUM chart does not have any restriction on the range of the scan
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Table 18: Empirical ARL0 from the multivariate normal data

p R Target ARL0 ρ Empirical ARL0

7× 7 {1} 100 0.0 100.65

7× 7 {1} 100 0.4 100.52

7× 7 {1,
√

2} 100 0.2 104.89

7× 7 {1,
√

2} 100 0.7 101.46

7× 7 {
√

2, 2} 100 0.4 97.54

7× 7 {
√

2, 2} 100 0.7 104.10

7× 7 {
√

2, 2} 370 0.0 371.74

7× 7 {
√

2, 2} 370 0.2 393.53

7× 7 {0, 1,
√

2, 2} 100 0.0 102.68

7× 7 {0, 1,
√

2, 2} 100 0.4 104.16

20× 20 {5} 100 0.0 100.59

20× 20 {5} 100 0.4 100.44

20× 20 {
√

2, 2} 100 0.2 99.58

20× 20 {
√

2, 2} 100 0.7 107.85

20× 20 {
√

20, 5} 100 0.4 101.36

20× 20 {
√

20, 5} 370 0.0 371.19

radius. For example, the RMCUSUM chart performs well under the configurations

p = 20× 20 and R = {5} or {
√

20, 5} while the SMCUSUM chart is not able to test

those configurations due to the restrictions on its reference value and the range of the

scan radius. In addition, the empirical ARL0 of the SMCUSUM chart decreases as ρ

increases because of its assumption on the independence of the MCUSUM statistics.

We do not observe such performance deterioration with the RMCUSUM chart. Note

that the RMCUSUM-F chart does not require the ǔ estimation procedure and thus

can result in less simulation/interpolation error when compared to the RMCUSUM-V

chart. This fact is confirmed by the empirical ARL0s of the fixed radius cases (within

±1% from the target) in Table 18.

Non-normality : We experiment with multivariate Poisson data in order to

test the robustness to non-normality. Table 19 presents the empirical ARL0s of the

RMCUSUM charts arising from the multivariate Poisson data. The reference value

k is set to 0.1, which is employed for analogous Poisson experimentation in Kim et

al. [25]. Under all configurations tested, the RMCUSUM chart always gives results
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Table 19: Empirical ARL0 from the multivariate Poisson data

p R Target ARL0 ρ Empirical ARL0

7× 7 {1} 100 0.0 95.04

7× 7 {1} 100 0.4 95.73

7× 7 {1,
√

2} 100 0.2 96.29

7× 7 {
√

2, 2} 100 0.0 97.53

7× 7 {
√

2, 2} 100 0.4 98.96

7× 7 {
√

2, 2} 370 0.0 354.83

7× 7 {
√

2, 2} 370 0.2 352.68

7× 7 {0, 1,
√

2, 2} 100 0.0 94.51

7× 7 {0, 1,
√

2, 2} 100 0.4 95.67

20× 20 {5} 100 0.2 94.26

20× 20 {
√

2, 2} 100 0.4 96.12

20× 20 {
√

2, 2} 370 0.0 354.09
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Figure 24: Σ3 and Σ4

within −6% of the target ARL0s.

Spatial correlation structure : In order to study the robustness to the spatial

correlation structure, we test the RMCUSUM charts under the two additional spatial

correlation structures, Σ3 and Σ4. The additional correlation structures depend on

the distance between the regions. Specifically, the (i, j)th element of Σ3 is 0.5dist(qi,qj)

for i, j ∈ P while the (i, j)th element of Σ4 is 0.3 − 0.1(dist(qi, qj) − 1). Figure 24
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compares Σ3 and Σ4 to Σ2 with ρ = 0.2, 0.4, 0.7. When applied to the configuration

p = 7 × 7, R = {
√

2, 2}, target ARL0 = 100, and multivariate normal data, the

RMCUSUM charts for Σ3 and Σ4 provide the empirical ARL0s 105.62 and 104.87

respectively.

In all of the configurations we tested, the RMCUSUM chart finds its control limits

that deliver ARL0s close to the target.

4.3.3 ARL1 Performance

ARL1s are often used as a performance measure for timely detection of outbreaks. In

addition to satisfying the pre-specified target ARL0, it is also desirable for CUSUM

charts to achieve low ARL1s.

In Tables 20 and 21, we display the ARL1 performance of the RMCUSUM charts

under Σ2 when the control limits are searched to yield the target ARL0 = 100.

Table 20 reports the ARL1s arising from multivariate normal data, while Table 21

reports the ARL1s from multivariate Poisson data. In both Tables 20 and 21, the

RMCUSUM charts provide lower ARL1s as the actual outbreak radius rout gets larger.

Further, when the chart’s scan radius exactly matches the actual outbreak radius (i.e.,

rout = r = 1), the RMCUSUM chart with the fixed scan radius R = {1} performs

better than the chart with variable scan radius R = {0, 1,
√

2, 2}.

All of the ARL1s in Table 21 are larger than the corresponding entries in Table

20, which implies that the RMCUSUM charts take more time to detect outbreaks

Table 20: ARL1 from multivariate normal data

p ρ rout R = {1} R = {0, 1,
√

2, 2}

7× 7 0.0

0 26.63 14.67

1 4.32 4.91

2 3.39 2.91

7× 7 0.4

0 21.66 10.57

1 4.48 5.38

2 6.07 3.89
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Table 21: ARL1 from multivariate Poisson data

p ρ rout R = {1} R = {0, 1,
√

2, 2}

7× 7 0.0

0 32.7 24.96

1 8.58 10.44

2 7.37 6.1

7× 7 0.4

0 30.29 20.08

1 9.13 11.39

2 12.68 8.52

Table 22: ARL1 comparison

RMCUSUM ARL1 (JMCUSUM ARL1)

δ ρ rout R = {0} R = {1} R = {2} R = {0, 1,
√

2, 2}

0.5

0.0

0 41.86 (36.94) 61.59 (62.02) 66.04 (72.16) 44.61 (41.17)

1 19.00 (21.39) 10.56 (10.41) 13.98 (16.49) 11.59 (10.93)

2 12.67 (16.58) 7.02 (6.69) 5.25 (4.43) 6.10 (4.93)

0.2

0 37.37 (33.69) 63.92 (64.77) 71.15 (74.20) 42.33 (37.89)

1 26.63 (26.39) 12.53 (12.54) 20.30 (23.81) 14.45 (13.78)

2 20.23 (22.77) 10.95 (10.86) 6.99 (6.42) 8.22 (7.18)

0.4

0 20.88 (21.28) 43.58 (47.86) 55.42 (66.20) 23.72 (24.22)

1 16.39 (17.54) 9.30 (9.02) 15.57 (18.66) 10.96 (10.39)

2 15.09 (16.66) 10.20 (10.00) 6.32 (5.63) 7.52 (6.41)

1.0

0.0

0 13.17 (13.08) 26.63 (47.75) 36.40 (66.68) 14.67 (14.60)

1 7.46 (7.46) 4.32 (3.36) 5.72 (7.57) 4.91 (3.66)

2 5.93 (5.95) 3.39 (2.24) 2.50 (1.45) 2.91 (1.67)

0.2

0 11.54 (11.66) 27.16 (44.04) 37.92 (67.81) 13.34 (13.40)

1 9.54 (9.56) 4.94 (4.08) 7.89 (11.15) 5.76 (4.60)

2 8.40 (8.24) 4.93 (3.74) 3.16 (2.11) 3.69 (2.42)

0.4

0 7.17 (6.91) 15.06 (28.31) 22.05 (54.09) 8.35 (8.03)

1 6.53 (6.13) 3.91 (2.92) 6.32 (7.92) 4.58 (3.39)

2 6.51 (5.95) 4.63 (3.40) 2.89 (1.84) 3.39 (2.20)

in the case of multivariate Poisson data than with multivariate normal data. This

is because the multivariate Poisson distribution we test is asymmetric and generates

negative values for the standardized xt more frequently than does the multivariate

normal distribution; and the reference value k we use for the multivariate Poisson

data is different than the k for the multivariate normal data.

Table 22 compares the ARL1s of the RMCUSUM chart to the ARL1s of the

JMCUSUM chart under Σ2. For all configurations in Table 22, the target ARL0
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is set to 100. The RMCUSUM charts provide significantly lower ARL1s than the

JMCUSUM charts for the fixed radius cases r > rout. With the variable radius,

the JMCUSUM charts produce slightly lower ARL1s than the RMCUSUM charts.

Overall, ARL1 performances of the RMCUSUM and JMCUSUM charts are similar.

4.4. Conclusions

Motivated by the JMCUSUM and SMCUSUM charts, we wish to develop a new

method that can search for the control limits of correlated MCUSUM charts. The

new method is named the RMCUSUM chart, and is designed to be distribution-free

for the underlying data, restriction-free for the range of scan radius, and robust to

spatial correlation structures.

The RMCUSUM chart determines its control limits via simple simulation and

interpolation. Our search method requires the variance-covariance matrix of the data

and the generation of independent standard normal observations, but does not require

modeling of the underlying process.

Control limits for the RMCUSUM charts are accurately determined under various

problem configurations. We test the RMCUSUM charts with four different spatial

correlation structures and two underlying distributions of data that have been con-

sidered in the biosurveillance literature. We find a linear relationship between the

suggested measure of DR-type correlation and its impact on empirical ARL0s, and we

develop a technique to reduce the computational burden for testing the RMCUSUM

charts.

While maintaining satisfactory accuracy of the control limits, the RMCUSUM

charts produce comparable ARL1s to those from the JMCUSUM charts; but the

RMCUSUM charts perform better when we use a fixed scan radius larger than the

actual outbreak radius.
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Chapter V

CONTRIBUTIONS

The epidemic simulation model discussed in this thesis reports valid estimates of

illness attack rates and economic costs associated with different combinations of mit-

igation strategies. Our research show that delays in vaccination can greatly reduce

the effectiveness of the vaccination strategy, and that reactive combination strate-

gies including practical school closure can substantially reduce total costs associated

with influenza morbidity and mortality. We also provide the information needed for

users to build a simulation model for disease propagation, to use the model to better

understand diseases, and to identify appropriate intervention strategies.

In order to decide when and where to apply the mitigation strategies, the detection

of an outbreak should be accomplished at an early time. In terms of statistical

approaches for outbreak detection in the presence of spatial correlation, we develop

spatiotemporal monitoring statistics for two MCUSUM charts, named SMCUSUM

and RMCUSUM.

From the SMCUSUM chart, we study how the outbreak coverage and spatial

correlation impact the charts’s performance, and find that higher spatial correlation

does not always yield faster detection but often facilitates accurate identification of

outbreaks. When assuming the independence among the MCUSUM statistics and

confining the scan radius to a certain range, we approximate the control limits ana-

lytically so that we can completely avoid the computational burden for trial-and-error

simulations to find the control limit. The approximation method is effective especially

when the number of monitoring regions is large.

When severe correlations exist among the MCUSUM statistics or when the scan
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radius should not be restricted, one can use the RMCUSUM chart. A critical strength

of the control limit approximation method for the RMCUSUM chart is that we can

use such a chart even when the data distribution is unknown — without modeling of

the complicated underlying process. Based on our experimental results, we believe

that the RMCUSUM chart is robust enough to handle a variety of data distributions

and spatial correlation structures.

By using the epidemic simulation model and the MCUSUM charts suggested in

this thesis, we expect to help public health authorities, practitioners, researchers, and

decision makers when preparing or reacting to future outbreaks of pandemics.
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Table 23: Average age-stratified overall illness attack rates (%) and cost estimates

Average Overall Illness Attack Rate (%) Cost
(US$m)

Intervention1 Pre-
schoolers

School
children

Young
adults Adults

Older
Adults

Overall

No Intervention 29.5 55.9 40.8 14.3 11 34.1 81.1

Vaccination Only, Low Efficacy, 35% Coverage

Pre-vaccination 21.2 47.9 30.2 9.5 7.3 26.1 71.1

Reactive Vaccination2:

Initial Dly: None Addl Dly: Yes 24 51 33.8 11 8.5 28.8 77.7

Initial Dly: 30 Day Addl Dly: Yes 24.6 51.6 34.6 11.4 8.8 29.5 79.3

Initial Dly: 60 Day Addl Dly: Yes 27.4 54.2 38.3 13.1 10.1 32.2 86

Initial Dly: None Addl Dly: No 24 51 33.8 11 8.4 28.8 77.7

Initial Dly: 30 Day Addl Dly: No 24.2 51.3 34 11.1 8.5 29 78.1

Initial Dly: 60 Day Addl Dly: No 25.6 52.6 36.3 12.2 9.3 30.7 82.2

Vaccination Only, Low Efficacy, 70% Coverage

Pre-vaccination 8.8 25.3 13.1 3.6 2.8 12 47

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 17.8 43.2 25.4 7.7 5.9 22.4 71.6

Initial Dly: 30 Day Addl Dly: Yes 19.2 45.1 27.7 8.6 6.6 24.1 75.7

Initial Dly: 60 Day Addl Dly: Yes 25.4 52.2 36 12.1 9.3 30.4 89.4

Initial Dly: None Addl Dly: No 17.4 42.9 25.1 7.6 5.8 22.2 71.1

Initial Dly: 30 Day Addl Dly: No 18.1 43.5 25.8 7.9 6 22.7 72.4

Initial Dly: 60 Day Addl Dly: No 22 48.2 31.8 10.3 7.8 27.1 83

Vaccination Only, Moderate Efficacy, 35% Coverage

Pre-vaccination 14.4 37.5 21.1 6.3 4.7 18.8 53.7

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 18 43.4 26 8 6.1 22.8 63.1

Initial Dly: 30 Day Addl Dly: Yes 19.6 45.5 28.4 8.9 6.8 24.6 67.5

Initial Dly: 60 Day Addl Dly: Yes 25.7 52.5 36.5 12.3 9.4 30.8 82.5

Initial Dly: None Addl Dly: No 18 43.2 25.8 7.9 6 22.6 62.8

Initial Dly: 30 Day Addl Dly: No 18.3 43.7 26.4 8.1 6.2 23 63.7

Initial Dly: 60 Day Addl Dly: No 22.2 48.3 32.1 10.3 8 27.3 74.1

Vaccination Only, Moderate Efficacy, 70% Coverage

Pre-vaccination 0.1 0.4 0.2 0.04 0.03 0.2 19.3

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 3.3 10.1 5 1.3 1 4.6 29.7

Initial Dly: 30 Day Addl Dly: Yes 9.7 26.8 15 4.3 3.3 13.3 50.2

Initial Dly: 60 Day Addl Dly: Yes 22.3 48.3 32.6 10.6 8.1 27.6 83

Initial Dly: None Addl Dly: No 1.5 4.7 2.3 0.6 0.5 2.2 25.6

Initial Dly: 30 Day Addl Dly: No 5.7 17.1 8.9 2.4 1.9 8.1 39.5

Initial Dly: 60 Day Addl Dly: No 17.5 40.5 26.7 8.3 6.3 22.6 74

Antivirals (10% Cov.) Only 26 53 37.3 12.7 9.6 31.3 75.9

SC/SD, Only 22.5 43.6 27.7 8.6 6.7 24 125

Antivirals (10% Cov.)+SC/SD 7.1 18.8 10.2 2.8 2.2 9.2 48

1 We use the abbreviation SC/SD for School closure/Social distancing intervention.
2 In reactive vaccination scenarios, two types of supply-chain delays that can affect vaccination programs are

considered: an initial delay (initial dly) in program implementation of 0, 30, or 60 days; and additional delays
(addl dly) after initiation of the program, such that vaccine doses become available in three equal batches, two
weeks apart (rather than in one batch).
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Table 23 (Continued)

Average Overall Illness Attack Rate (%) Cost
(US$m)

Intervention Pre-
schoolers

School
children

Young
adults Adults

Older
Adults

Overall

Vaccination (Low Efficacy, 35% Coverage) + Antivirals (10% Coverage)

Pre-vaccination 14 37.8 22 6.5 5 19.3 56.4

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 19.6 46.9 29.3 9.2 7 25.3 70.8

Initial Dly: 30 Day Addl Dly: Yes 20.1 47.4 29.9 9.4 7.1 25.7 71.8

Initial Dly: 60 Day Addl Dly: Yes 21.4 48.8 31.6 10.1 7.7 27.1 75

Initial Dly: None Addl Dly: No 19.5 46.7 29.2 9.1 6.9 25.2 70.6

Initial Dly: 30 Day Addl Dly: No 19.7 47 29.5 9.2 7 25.4 71.1

Initial Dly: 60 Day Addl Dly: No 20.6 47.9 30.5 9.6 7.3 26.2 72.9

Vaccination (Low Efficacy, 70% Coverage) + Antivirals (10% Coverage)

Pre-vaccination 2 7.3 3.6 0.9 0.7 3.3 28.3

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 12.6 35.9 19.8 5.7 4.4 17.7 62

Initial Dly: 30 Day Addl Dly: Yes 13.1 37.2 20.7 6 4.6 18.4 63.9

Initial Dly: 60 Day Addl Dly: Yes 16.5 42.3 25.2 7.6 5.8 22 72.4

Initial Dly: None Addl Dly: No 12.2 34.9 19.4 5.6 4.2 17.3 61.1

Initial Dly: 30 Day Addl Dly: No 12.6 36.2 20 5.8 4.4 17.9 62.5

Initial Dly: 60 Day Addl Dly: No 14.6 39.6 22.5 6.6 5.1 19.9 67.4

Vaccination (Moderate Efficacy, 35% Coverage) + Antivirals (10% Coverage)

Pre-vaccination 1.2 4.8 2.3 0.6 0.5 2.1 16.1

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 6.2 21.1 11.1 3 2.3 10 34.3

Initial Dly: 30 Day Addl Dly: Yes 10.9 32.2 17.8 5.1 3.9 15.8 48.2

Initial Dly: 60 Day Addl Dly: Yes 15.4 40.4 23.8 7.1 5.4 20.8 60.1

Initial Dly: None Addl Dly: No 4.8 17.4 9 2.4 1.8 8.1 30.1

Initial Dly: 30 Day Addl Dly: No 8.2 25.9 13.9 3.9 2.9 12.4 40.2

Initial Dly: 60 Day Addl Dly: No 13.3 36.9 21 6.1 4.7 18.6 54.7

Vaccination (Moderate Efficacy, 70% Coverage) + Antivirals (10% Coverage)

Pre-vaccination 0.03 0.14 0.05 0.01 0.01 0.05 20.7

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 0.7 2.7 1.2 0.3 0.2 1.2 23.3

Initial Dly: 30 Day Addl Dly: Yes 2.6 1.6 4.8 1.3 1 4.4 30.9

Initial Dly: 60 Day Addl Dly: Yes 8 25 13.7 3.8 2.9 12.2 49.1

Initial Dly: None Addl Dly: No 0.4 1.5 0.6 0.2 0.1 0.6 22

Initial Dly: 30 Day Addl Dly: No 1.4 5.4 2.6 0.7 0.5 2.4 26.2

Initial Dly: 60 Day Addl Dly: No 3.9 14 7.4 2 1.5 6.6 36.1

Vaccination (Low Efficacy, 35% Coverage) + SC/SD

Pre-vaccination 10.9 26.3 13.9 3.9 3.1 12.7 69.9

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 15.5 34.7 19.6 5.7 4.5 17.5 95.7

Initial Dly: 30 Day Addl Dly: Yes 16.3 35.9 20.4 6 4.7 18.3 99

Initial Dly: 60 Day Addl Dly: Yes 17.5 37.7 22.1 6.6 5.1 19.6 108.8

Initial Dly: None Addl Dly: No 15.3 34.3 19.3 5.6 4.4 17.3 93.6

Initial Dly: 30 Day Addl Dly: No 15.8 35.2 19.9 5.8 4.5 17.8 96.5

Initial Dly: 60 Day Addl Dly: No 16.7 36.3 20.9 6.2 4.8 18.6 101.9

Vaccination (Low Efficacy, 70% Coverage) + SC/SD

Pre-vaccination 0.5 1.6 0.7 0.2 0.1 0.7 22

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 6.1 16 8.1 2.2 1.7 7.5 53.1

Initial Dly: 30 Day Addl Dly: Yes 9.2 23.3 12 3.3 2.6 11 70.6

Initial Dly: 60 Day Addl Dly: Yes 13.3 30.7 17.1 4.9 3.9 15.4 96.6

Initial Dly: None Addl Dly: No 4.8 12.7 6.3 1.7 1.3 5.9 46

Initial Dly: 30 Day Addl Dly: No 7.9 10.3 10.3 2.8 2.2 9.5 63

Initial Dly: 60 Day Addl Dly: No 11.3 27.3 14.6 4.1 3.2 13.3 82.6
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Table 23 (Continued)

Average Overall Illness Attack Rate (%) Cost
(US$m)

Intervention Pre-
schoolers

School
children

Young
adults Adults

Older
Adults

Overall

Vaccination (Moderate Efficacy, 35% Coverage) + SC/SD

Pre-vaccination 1.8 5 2.4 0.6 0.5 2.3 19.6

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 7.1 18 9.3 2.5 2 8.5 49.4

Initial Dly: 30 Day Addl Dly: Yes 13.5 30.7 17.1 4.9 3.9 15.4 87.3

Initial Dly: 60 Day Addl Dly: Yes 15.8 35.5 19.9 5.8 4.5 17.9 95.7

Initial Dly: None Addl Dly: No 5.6 14.4 7.4 2 1.6 6.8 41.6

Initial Dly: 30 Day Addl Dly: No 8.4 10.8 10.8 3 2.3 9.9 56.3

Initial Dly: 60 Day Addl Dly: No 11.6 27.3 14.8 4.2 3.3 13.4 74.7

Vaccination (Moderate Efficacy, 70% Coverage) + SC/SD

Pre-vaccination 0.03 0.1 0.04 0.01 0.01 0.04 19.1

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 0.5 1.6 0.7 0.2 0.1 0.7 22

Initial Dly: 30 Day Addl Dly: Yes 2.6 7 3.5 0.9 0.7 3.2 34.7

Initial Dly: 60 Day Addl Dly: Yes 8.4 19.9 10.9 3 2.4 9.8 69.1

Initial Dly: None Addl Dly: No 0.15 0.48 0.19 0.05 0.04 0.19 19.7

Initial Dly: 30 Day Addl Dly: No 1.21 3.29 1.58 0.42 0.32 1.49 25.9

Initial Dly: 60 Day Addl Dly: No 5.19 13.11 7.01 1.88 1.48 6.35 51.2

Vaccination (Low Efficacy, 35% Coverage) + Antivirals (10% Coverage) + SC/SD

Pre-vaccination 0.7 2.4 1.1 0.3 0.2 1 15.9

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 3.1 9.8 4.8 1.3 1 4.5 32.2

Initial Dly: 30 Day Addl Dly: Yes 3.3 10.7 5.4 1.4 1.1 4.9 34.2

Initial Dly: 60 Day Addl Dly: Yes 3.6 11.7 5.6 1.5 1.2 5.4 36.8

Initial Dly: None Addl Dly: No 2.6 8.4 4.2 1.1 0.8 3.9 29.2

Initial Dly: 30 Day Addl Dly: No 3.1 10 5 1.3 1 4.6 32.6

Initial Dly: 60 Day Addl Dly: No 3.2 10.4 5.2 1.4 1.1 4.8 33.8

Vaccination (Low Efficacy, 70% Coverage) + Antivirals (10% Coverage) + SC/SD

Pre-vaccination 0.2 0.5 0.2 0.1 0.04 0.2 21.3

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 1.8 5.9 2.7 0.7 0.6 2.6 32

Initial Dly: 30 Day Addl Dly: Yes 2.3 7.1 3.4 0.9 0.7 3.2 35.2

Initial Dly: 60 Day Addl Dly: Yes 3.2 10 4.9 1.3 1 4.6 41.7

Initial Dly: None Addl Dly: No 1.2 3.9 1.9 0.5 0.4 1.8 28.4

Initial Dly: 30 Day Addl Dly: No 2 6.4 3.1 0.8 0.6 2.9 33.6

Initial Dly: 60 Day Addl Dly: No 2.7 8.4 4.1 1.1 0.8 3.8 37.8

Vaccination (Moderate Efficacy, 35% Coverage) + Antivirals (10% Coverage) + SC/SD

Pre-vaccination 0.1 0.6 0.2 0.1 0.04 0.2 11.9

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 0.5 1.9 0.9 0.2 0.2 0.8 14.9

Initial Dly: 30 Day Addl Dly: Yes 1.1 3.7 1.7 0.5 0.3 1.6 18.6

Initial Dly: 60 Day Addl Dly: Yes 1.5 5.3 2.5 0.6 0.5 2.4 22

Initial Dly: None Addl Dly: No 0.3 1.1 0.5 0.1 0.1 0.5 13.1

Initial Dly: 30 Day Addl Dly: No 0.8 2.8 1.3 0.3 0.3 1.2 16.6

Initial Dly: 60 Day Addl Dly: No 1.2 4.4 2.1 0.5 0.4 2 20.2

Vaccination (Moderate Efficacy, 70% Coverage) + Antivirals (10% Coverage) + SC/SD

Pre-vaccination 0.02 0.05 0.02 0.01 0 0.02 20.6

Reactive Vaccination:

Initial Dly: None Addl Dly: Yes 0.2 0.6 0.2 0.1 0.1 0.2 21.6

Initial Dly: 30 Day Addl Dly: Yes 0.5 1.6 0.7 0.2 0.1 0.7 23.8

Initial Dly: 60 Day Addl Dly: Yes 0.9 3.2 1.5 0.4 0.3 1.4 27.4

Initial Dly: None Addl Dly: No 0.1 0.3 0.1 0.03 0.02 0.1 20.1

Initial Dly: 30 Day Addl Dly: No 0.3 1.1 0.5 0.1 0.1 0.5 22.8

Initial Dly: 60 Day Addl Dly: No 0.8 2.7 1.3 0.3 0.3 1.2 26.1
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APPENDIX B

Additional experimental results are provided for p = 7×7, 20×20, and ARL0 = 100,

370. Based on the results from Chapter 3, we expect similar performances with Σ1

and Σ2, and thus run the additional experiments only with Σ2. For the out-of-control

state when p = 20 × 20, we have the outbreak center cout = 210 (i.e., at coordinate

qc = (11, 10)) with rout = 0, 1, 2, and assume a homogeneous shift magnitude δ = 1.

For the JMCUSUM-F chart with p = 20 × 20, we provide a series of figures

corresponding to Figures 12, 13, and 14, respectively. We only test the target values

ARL0 = 100 and 370 here; we expect that the tendency of the ratio (the empirical

ARL0 to the target ARL0) with a larger target ARL0 = 700 would not be significantly

different from the tendency observed in Section 3.3.2. Figure 25 depicts the impact of

r on the ARL approximation accuracy for a single MCUSUM chart. Figure 26 shows

how the ratio changes for a classical CUSUM chart as k increases. Figure 27 gives

the performance of the JMCUSUM-F chart. In order to keep k ≤ 2 for all ρ values

tested, we consider r ∈ {0, 1,
√

2, 2}.

The detailed experimental results are presented in Tables 24, 25, 26, and 27. For

the fixed scan radius case, empirical ARL0s of the JMCUSUM-F chart with analytical

control limits are reported for some selected scan radius options in Table 24. Table 25

compares analytical ARLJF
1 s to empirical ARLJF

1 s with analytical control limits. For

the variable scan radius case, Table 26 presents empirical ARL0s of the SMCUSUM

chart with analytical control limits, and Table 27 compares empirical ARL1s of the

JMCUSUM-V chart and SMCUSUM chart under various experimental configurations.
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Target ARL0
(%) versus r for the JMCUSUM-F chart

Table 24: Empirical ARL0 of the JMCUSUM-F chart with analytical h∗∗

p Target ARL0 ρ r = 0 r = 1 r = 2

7× 7 370

0.0 377.42 355.96 298.78

0.2 385.42 358.85 326.63

0.4 376.32 352.58 315.08

0.7 353.37 292.37 239.32

20× 20 100

0.0 113.60 97.96 81.55

0.2 112.76 99.82 90.74

0.4 107.32 97.57 88.49

0.7 100.02 82.38 64.75

20× 20 370

0.0 383.59 358.96 288.24

0.2 386.37 356.28 325.12

0.4 371.55 349.61 323.49

0.7 360.43 302.55 233.97
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Table 25: Empirical (analytical) ARLJF
1 with analytical h∗∗

p Target ARL0 ρ r = rout = 0 r = rout = 1 r = rout = 2

7× 7 370

0.0 16.18 (16.23) 3.92 (3.89) 1.70 (1.64)

0.2 14.32 (14.32) 4.76 (4.65) 2.50 (2.43)

0.4 10.68 (10.65) 4.13 (4.07) 2.57 (2.47)

0.7 5.16 (5.08) 2.22 (2.10) 1.50 (1.39)

20× 20 100

0.0 17.57 (17.81) 4.23 (4.21) 1.82 (1.76)

0.2 15.43 (15.69) 5.04 (5.04) 2.70 (2.62)

0.4 11.51 (11.63) 4.45 (4.40) 2.74 (2.66)

0.7 5.56 (5.50) 2.37 (2.26) 1.60 (1.49)

20× 20 370

0.0 20.27 (20.42) 4.79 (4.73) 2.07 (1.97)

0.2 18.04 (17.96) 5.77 (5.68) 3.04 (2.93)

0.4 13.30 (13.25) 5.06 (4.95) 3.11 (2.97)

0.7 6.28 (6.21) 2.63 (2.52) 1.80 (1.65)

Table 26: Empirical ARL0 for the SMCUSUM chart with analytical h∗r

p Target ARL0 ρ ARL0

7× 7 370

0.0 383.18

0.2 368.12

0.4 349.58

0.7 326.57

20× 20 100

0.0 107.45

0.2 100.38

0.4 95.52

0.7 90.30

20× 20 370

0.0 367.94

0.2 348.87

0.4 337.64

0.7 325.26

Table 27: Empirical ARLJV
1 (ARLS

1)

p Target ARL0 ρ rout = 0 rout = 1 rout = 2

7× 7 370

0.0 17.75 (17.94) 4.25 (4.29) 1.90 (1.92)

0.2 16.64 (16.67) 5.28 (5.39) 2.89 (2.85)

0.4 12.54 (12.69) 4.80 (4.87) 3.02 (2.98)

0.7 5.64 (5.70) 2.53 (2.45) 1.49 (1.68)

20× 20 100

0.0 18.37 (18.57) 4.91 (4.63) 2.03 (2.05)

0.2 16.96 (16.98) 5.65 (5.75) 3.07 (3.05)

0.4 13.05 (13.15) 5.11 (5.11) 3.20 (3.15)

0.7 6.01 (6.03) 2.65 (2.59) 1.59 (1.79)

20× 20 370

0.0 22.07 (22.07) 5.13 (5.16) 2.27 (2.28)

0.2 20.35 (20.36) 6.42 (6.47) 3.41 (3.37)

0.4 15.24 (15.31) 5.71 (5.74) 3.54 (3.50)

0.7 6.79 (6.82) 2.93 (2.87) 1.77 (1.98)
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APPENDIX C

In this Appendix, we provide the detailed derivation of Equation (4.2.2).

First, note that

S(t) =



S1(t)

S2(t)

...

Sp(t)


= −Kt+

t∑
`=1

α(`)

where
∑

denotes the componentwise summation of vectors.

If Γ is positive-definite, there exist the matrices Λ and Q that satisfy Γ = QΛQ′ =

QΛ
1
2 (QΛ

1
2 )′ [47]. From the eigen decomposition, Λ is the p×p diagonal matrix whose

entries are the eigenvalues of Γ and Q is the p× p orthogonal matrix (i.e., Q′ = Q−1)

whose columns are the eigenvectors of Γ.

From the similar idea employed in Kim and Dieker [26], for V (t) ≡ Λ−
1
2Q′α(`),

E [V (`)] = 0

in the in-control state and

Var [V (`)] = Var
[
Λ−

1
2Q′α(`)

]
= Λ−

1
2Q′ΓQΛ−

1
2

′
= Ip.

Then, by Equation (4.1.2),
t∑

`=1

V (`)
D
≈W (t).

Therefore, where we set Γ
1
2 = QΛ

1
2 ,

S(t) = −Kt+
t∑

`=1

α(`)

= −Kt+QΛ
1
2

t∑
`=1

V (`)

D
≈ −Kt+ Γ

1
2W (t).
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