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SUMMARY

Delivering health care services in an efficient and effective way has become a great

challenge for many countries due to the aging population worldwide, rising health

expenses, and increasingly complex healthcare delivery systems. It is widely recog-

nized that models and analytical tools can aid decision-making at various levels of

the healthcare delivery process, especially when decisions have to be made under

uncertainty. This thesis employs stochastic models to improve decision-making un-

der uncertainty in two specific healthcare settings: inpatient flow management and

infectious disease modeling.

In Part I of this thesis, we study patient flow from the emergency department

(ED) to hospital inpatient wards. This line of research aims to develop insights

into effective inpatient flow management to reduce the waiting time for admission to

inpatient wards from the ED. Delayed admission to inpatient wards, also known as

ED boarding, has been identified as a key contributor to ED overcrowding and is a big

challenge for many hospitals. Part I consists of three main chapters. In Chapter 2 we

present an extensive empirical study of the inpatient department at our collaborating

hospital. Motivated by this empirical study, in Chapter 3 we develop a high fidelity

stochastic processing network model to capture inpatient flow with a focus on the

transfer process from the ED to the wards. In Chapter 4 we devise a new analytical

framework, two-time-scale analysis, to predict time-dependent performance measures

for some simplified versions of our proposed model. We explore both exact Markov

chain analysis and diffusion approximations.

Part I of the thesis makes contributions in three dimensions. First, we identify

xix



several novel features that need to be built into our proposed stochastic network

model. With these features, our model is able to capture inpatient flow dynamics at

hourly resolution and reproduce the empirical time-dependent performance measures,

whereas traditional time-varying queueing models fail to do so. These features include

unconventional non-i.i.d. (independently and identically distributed) service times,

an overflow mechanism, and allocation delays. Second, our two-time-scale framework

overcomes a number of challenges faced by existing analytical methods in analyzing

models with these novel features. These challenges include time-varying arrivals and

extremely long service times. Third, analyzing the developed stochastic network

model generates a set of useful managerial insights, which allow hospital managers to

(i) identify strategies to reduce the waiting time and (ii) evaluate the trade-off between

the benefit of reducing ED congestion and the cost from implementing certain policies.

In particular, we identify early discharge policies that can eliminate the excessively

long waiting times for patients requesting beds in the morning.

In Part II of the thesis, we model the spread of influenza pandemics with a focus

on identifying factors that may lead to multiple waves of outbreak. This line of

research aims to provide insights and guidelines to public health officials in pandemic

preparedness and response. In Chapter 6 we evaluate the impact of seasonality and

viral mutation on the course of an influenza pandemic. In Chapter 7 we evaluate the

impact of changes in social mixing patterns, particularly mass gatherings and holiday

traveling, on the disease spread.

In Chapters 6 and 7 we develop agent-based simulation models to capture disease

spread across both time and space, where each agent represents an individual with

certain socio-demographic characteristics and mixing patterns. The important contri-

bution of our models is that the viral transmission characteristics and social contact

patterns, which determine the scale and velocity of the disease spread, are no longer

static. Simulating the developed models, we study the effect of the starting season

xx



of a pandemic, timing and degree of viral mutation, and duration and scale of mass

gatherings and holiday traveling on the disease spread. We identify possible scenarios

under which multiple outbreaks can occur during an influenza pandemic. Our study

can help public health officials and other decision-makers predict the entire course

of an influenza pandemic based on emerging viral characteristics at the initial stage,

determine what data to collect, foresee potential multiple waves of attack, and better

prepare response plans and intervention strategies, such as postponing or cancelling

public gathering events.
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CHAPTER I

OVERVIEW

Hospital inpatient beds accommodate patients who need to stay in a hospital (usu-

ally for one or more nights) for treatment, and these beds are one of the most

critical resources in hospitals. Inpatient flow and bed management has crucial im-

pact on hospital operations [69], especially on emergency department (ED) crowd-

edness [97, 81, 7, 150, 130]. Prolonged waiting time for admission to inpatient beds,

also known as ED boarding, has been identified as a key contributor to ED over-

crowding worldwide [146, 79, 117]. The waiting time for admission to inpatient beds,

or simply the waiting time in this thesis, is defined as the duration from when ED

doctors decide to admit a patient (i.e., the bed-request time of the patient) to when

the patient is admitted to an inpatient bed. This waiting time is closely monitored

by government agencies. For example, the ministry of health (MOH) of Singapore

publishes the daily median of this waiting time from each Singaporean public hospital

on its website (see [139]); also see reports and surveys from the department of health

in UK [40] and the US general accounting office [146]. According to [146], more than

half of the surveyed US hospitals have an average waiting time longer than 4 hours,

and 20% of the surveyed hospitals have boarded patients longer than 8 hours on

average.

While no patient likes waiting, excessively long waiting time (e.g., 8 hours or more)

is extremely undesirable, not only because patients can get very frustrated during the

long wait [118], but also because of the adverse outcome associated with it. Liu et

al. [98] and Singer et al. [141] have discovered that patients who waited longer than

6 hours after their admission decisions are more likely to experience longer inpatient
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stay, higher mortality rates, and other undesirable events in ED such as suboptimal

blood pressure control. In addition, patients continue to occupy ED resources while

waiting to be admitted and can block new patients from being treated in the ED,

which lead to ED overcrowding and sometimes ambulance diversion [1]. Moreover,

recent studies have estimated that as high as 15% of the overall time spent in EDs was

by these admitted patients (boarding patients) [22], while just a 1-hour reduction in

the mean waiting time for admission to inpatient beds would result in about $10,000

additional daily revenue for hospitals [116]. Thus, it is important for hospitals to

eliminate the excessive amount of waiting, especially for morning bed-requests.

Part I of this thesis is dedicated to (i) build a high fidelity model to capture

inpatient flow dynamics with a particular focus on the transfer process from ED

to inpatient beds, (ii) predict the time-of-day waiting time performance during this

transfer process and other important performance measures, and (iii) generate insights

into efficient inpatient flow management and identify strategies (from the inpatient

side) to reduce the waiting time and eventually alleviate ED overcrowding. This part

constitutes three main chapters (Chapters 2 to 4). Before starting the next three

chapters, we provides an overview in the rest of this chapter. In Section 1.1, we first

introduce the motivation for the research questions we aim to answer in the next

three chapters . Then we summarize our major contributions in Section 1.2. Finally,

we provide a brief literature review on patient flow models for hospital operations in

Section 1.3.

1.1 Motivation and research questions

Our study is motivated by an empirical study at our collaborating hospital in Singa-

pore, National University Hospital (NUH). NUH is one of the major public hospitals

in Singapore. It operates a busy ED and a large inpatient department that has about

1000 inpatient beds to serve patients admitted from ED and other sources. These
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inpatient beds locate in different wards, and we focus on beds in 19 general wards

(GWs) in our research (GW beds are sometimes also referred as floor beds in other

hospitals, and we give out the precise definition of GWs in Section 2.1.3). At NUH,

around 20% of patients visiting ED are admitted into a general ward after finishing

the treatment in ED, thereby becoming ED-GW patients. From January 1, 2008 to

June 30, 2009, called Period 1 in this thesis, the average waiting time for ED-GW

patients at NUH is 2.82 hours (169 minutes), which does not seem to be very long.

However, this level of complacency immediately evaporates if we examine the waiting

times of patients requesting beds in mornings. The solid curve in Figure 1a shows

that the average waiting time is more than 4 hours long for patients who request a

bed between 7 and 10am. Moreover, among these patients, Figure 1b shows that

more than 30% of them have to wait 6 hours or longer. In this paper, we define the

6-hour service level as the fraction of patients who have to wait 6 hours or longer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Bed request time

A
ve

ra
ge

 w
ai

tin
g 

(h
ou

r)

Period 1
Period 2
95% CI

(a) Average waiting times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

35

40

Bed request time

6−
ho

ur
 s

er
vi

ce
 le

ve
l (

%
)

Period 1
Period 2
95% CI

(b) 6-hour service level

Figure 1: Hourly waiting time statistics for ED-GW patients; Period 1: Jan-
uary 1, 2008 to June 30, 2009; Period 2: January 1, 2010 to December 31, 2010. Each
dot represents the average waiting time or 6-hour service level for patients requesting
beds in that hour. For example, the dot between 7 and 8 represents the value of the
hourly statistics between 7am and 8am. The 95% confidence intervals are plotted for
Period 1 curves.

The inpatient discharge policy is believed by NUH to have contributed to the

prolonged waiting times for ED-GW patients requesting beds in the morning. The
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Figure 2: Discharge time distributions in Periods 1 and 2. The values in the
first 6 hours are nearly zero and are not displayed.

solid curve in Figure 2 plots the discharge distribution of patients from general wards

at NUH in Period 1. Clearly, the peak discharge hour is between 2pm and 3pm.

Therefore, many admissions must wait until after 3pm, while bed-requests of ED-

GW patients can occur during the entire day (e.g., see the solid curve in Figure 13 in

Section 3.2.1). In other words, if there is no bed immediately available for a morning

bed-request, the incoming patient is likely to wait until afternoon to be admitted.

In fact, the time-dependency of waiting times is not unique at NUH. Similar

waiting time curves have been observed in other hospitals (see Figure 30 of [5]), and

so have the number of patients waiting at different time of a day [120, 69]. Meanwhile,

the bed-request and discharge patterns in many other hospitals are also similar to

what we observed at NUH; see, e.g., Table 1 in [120] and Figure 6 in [5]. Studies

in literature [9, 154] and government agencies [39] have recommended discharging

patients at earlier hours of the day to eliminate the temporary mismatch between

bed demand and supply in the morning.

In July 2009, NUH itself launched an early discharge campaign. After six months’

implementation, a new discharge pattern emerged in Period 2: January 1, 2010 to

December 31, 2010. The dashed curve in Figure 2 displays the new discharge distri-

bution. A morning discharge peak arises, occurring between 11am and noon; 26%
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of the patients are discharged before noon in Period 2, doubling the proportion in

Period 1 (13%). The daily average waiting time is reduced from 2.82 hours (169

minutes) in Period 1 to 2.77 hours (166 minutes) in Period 2, and the daily 6-hour

service level is reduced from 6.52% in Period 1 to 5.13% in Period 2. The dashed

curves in Figures 1a and 1b plot the time-dependent hourly average waiting time and

6-hour service level in Period 2, respectively. From these empirical results, we observe

that (a) some improvement in reducing the peak hourly 6-hour service level has been

achieved in Period 2, and (b) little progress has been made in eliminating the long

waiting times for morning bed-requests (flattening the hourly waiting time statistics)

or reducing the daily waiting time statistics.

These empirical observations raise two issues. First, it is unclear whether the im-

provements in Period 2 result from the NUH’s early discharge campaign. As in many

hospitals, the operating environment is continuously changing at NUH. Bed capacity

is being increased in response to the rising number of patients seeking treatment. In

Period 2, the bed occupancy rate (BOR) has reduced by 2.7% [136]. Therefore, it is

difficult to evaluate the impact of the early discharge policy through empirical anal-

ysis alone. Second, one wonders if there is any discharge policy, perhaps combined

with other operational policies, that can achieve a more significant improvement in

flattening or reducing the waiting time statistics. Unfortunately, it is prohibitively

expensive for hospitals to experiment with various options in a real operational en-

vironment to identify such policies. Therefore, we need a high-fidelity model to (i)

capture the inpatient flow dynamics and predict the time-dependent waiting time per-

formance, and (ii) quantify the impact of operational policies such as early discharge

and identify strategies to eliminate the long waiting times.
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1.2 Summary of contributions

Part I makes three major contributions to the modeling, theory, and practice of

inpatient flow management.

Modeling. Based on the comprehensive empirical study we conduct at NUH

(see Chapter 2), we develop a new stochastic network model to capture inpatient flow

dynamics in Chapter 3. This model can reproduce, at high fidelity, many empiri-

cal performance measures at both the hospital and the medical specialty levels. In

particular, the model can approximately replicate the time-dependent hourly waiting

time performance as shown in Figure 1.

In order for the model to be able to capture the inpatient operations at hourly

resolution, we find several key features must be built in. They include a two-time-

scale service time model, an overflow mechanism among multiple server pools, and

pre- and post-allocation delays which capture the extra amount of delay caused by

resource constraints other than bed unavailability during the ED to wards transfer

process. Under our two-time-scale service time model, service times of inpatients are

not independent and identically distributed (iid). We will elaborate this service time

model and other key features in Section 3.1. Time-varying Mt/GI/n queues or their

network versions, where the arrival process is Poisson with time-varying arrival rate

and the service times are iid, have been used in literature to model hospital operations;

see, for example, [62, 89, 1]. Despite our best efforts, we are not able to reproduce

the time-dependent performance curves using these models. See Section 3.3.2 for

simulation results for models that miss each one of the three key features.

We want to emphasize that studying inpatient flow dynamics at hourly resolution

and capturing time-of-day performance are important, especially when one evaluates

policies that impact the interface between ED and wards, where hours of waiting

matter. For example, our model predicts that certain types of discharge policies can

significantly reduce waiting times for morning bed-requests, but have limited impact
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on the daily waiting time statistics (see also the second contribution below). By

studying the time-of-day performance, we are able to gain insights into the impact of

such policies on certain sub-groups of patients, in addition to the aggregated impact

on all patients. Moreover, as pointed out by Armony et al. [5], understanding the

system’s behavior at hourly resolution is of particular importance for operational

planning when nurses and physicians are modeled as servers, e.g., for planning nurse

staffing. Thus, our model can potentially be used to aid other operational decisions

that require a understanding of the time-varying dynamics of inpatient flow.

Moreover, our model strikes a proper balance between analytical tractability and

fidelity. We are able to analyze some simplified versions of the proposed model while

still keeping certain key features, including the two-time-scale service time model and

allocation delays. This leads to our second contribution on analytical methods.

Theory. In Chapter 4, we develop an analytical framework, known as the two-

time-scale analysis, to predict time-dependent performance measures for some simpli-

fied versions of the high fidelity stochastic network model we proposed in Chapter 3.

Due to the unique features such as the two-time-scale service times and allocation

delays, no existing analytical method applies to analyzing our proposed models. Even

in the simplest setting with a single server pool, it is challenging to use existing ap-

proximation methods to predict the time-dependent hourly performances because the

service times are extremely long (the average is around 5 days) compared with the

time-variations of the arrival rate (arrival period is one day). Our proposed frame-

work can overcome this challenge as well as other difficulties. We focus on analyzing

a single-server-pool model with this two-time-scale framework, and we demonstrate

both exact analysis and diffusion approximations. The analysis help us generate

insights into the impact of different operational policies on both the daily and time-

of-day performance measures. This leads to our third contribution in the practice of

inpatient flow management.
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Practice. Through the two-time-scale analytical methods and simulation anal-

ysis of the proposed model, we obtain managerial insights into the impact of early

discharge and other operational policies on both the daily and time-of-day waiting

time performance. First, consistent with the empirical observations, the Period 2

early discharge alone has little impact on reducing or flattening the waiting time of

ED-GW patients. Second, if the hospital is able to (i) move the first discharge peak

in Period 2 three hours earlier, to occur between 8am and 9am, and still keep 26%

discharge before noon (see the dash-dotted curve in Figure 45) and (ii) meanwhile

stabilize the time-varying allocation delays, then the hourly waiting time curves can

be approximately flattened (see Figure 46). However, the daily waiting time statistics

still show limited reductions. Third, we identify policies that can significantly impact

the daily waiting time performance such as increasing bed capacity and reducing the

mean allocation delays; these policies do not necessarily flatten the hourly waiting

time curves though. Finally, we use the developed two-time-scale analytical frame-

work to provide some intuition to explain the different impacts on the hourly and

daily waiting time performance of these policies.

To the best of our knowledge, the model we have developed is the first stochastic

model to comprehensively analyze the effect of discharge policy in combination with

other strategies such as stabilizing allocation delays. The most relevant work is a

recent paper by Powell et al. [120], where the authors propose a deterministic fluid

model to analyze the effect of discharge timing on the waiting time for admission to

wards. Their model provides a simple method to calculate the hourly mean patient

count (number of patients in service and waiting), and this method can actually be

supported by a more rigorous argument using our two-time-scale analytical frame-

work. However, the fluid method is not enough to calculate the mean queue length

or other performance measures which depend on the entire distribution of the hourly

patient count. Therefore, some of the managerial insights generated in [120] can be
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misleading. For example, the authors find that by shifting the peak inpatient dis-

charge time four hours earlier, the waiting time can be reduced to zero; but zero

waiting can hardly be achieved in any hospital with as much as 90% bed utilization

and random arrivals and service times. We believe our model is more comprehensive

and sophisticated so that it captures inpatient flow operations at hourly resolution

and generates insights on many operational policies including discharge timing. Some

other relevant works on discharge policies are mostly empirical studies. For example,

[86] classifies admission data from 23 Australian hospitals into five categories based

on the relative timing of daily admission and discharge curves, and uses statistical

analysis to show that days with late discharge peaks contribute significantly to ED

overcrowding.

1.2.1 Outline of Chapters 2 to 4

The next three chapters is organized as follows. First, in Chapter 2, we present the

empirical study we conduct at the NUH inpatient department. We document statistics

for many performance measures which motivate the stochastic network model we

develop. Then, in Chapter 3, we introduce the general framework of our proposed

stochastic network model, and populate the model with empirical data documented

in Chapter 2. We simulate the populated model to generate a number of managerial

insights for reducing and flattening waiting times for admission to wards. Finally, in

Chapter 4, we introduce the two-time-scale analytical framework to analyze several

versions of our proposed model. The analysis will generate further insights for us to

understand and improve inpatient flow management.

1.3 Literature review

Hospital patient flow. Hospital patient flow has been studied extensively in

the operations research literature. For example, [5] and [70] conduct detailed studies

of patient flow in various departments at an Israeli and a US hospital, respectively.
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Readers are also referred to the many articles cited in these two papers for further

references. Armony et al. [5] do not focus on discharge policies, but they empirically

study the transfer process flow from ED to GW (which they call internal wards).

Discrete-event simulation and queueing theory are two commonly used approaches for

modeling and improving patient flow [59, 82, 157]. Compared to the rich literature on

patient flow models of ED, inpatient flow management and the interface between ED

and inpatient wards have received less attention; see the same discussion in Section 4

of [5]. Related works on inpatient operations include capacity allocation and flow

improvement in specialized hospitals or wards [63, 33, 19, 62], ward nurse staffing

[148, 155], bed assignment and overflow [145, 104], and elective admission control and

design [74, 75]. Note that Yankovic and Green [155] demonstrate that the admission

or discharge blocking caused by nurse shortages can have a significant impact on

system performance. This insight is consistent with our findings on the allocation

delays.

Stochastic network models. Stochastic network models have been a com-

mon tool to study manufacturing, communication and service systems [55, 8, 156].

In particular, research motivated by call center operations has extensively studied

stochastic systems with time-varying arrivals and time-dependent performance. For

example, Feldman et al. [44] and recent work by Liu and Whitt [99] propose staffing

algorithms to achieve time-stable performance. Unlike call center models, our hospi-

tal model has extremely long service times with an average of about five days. Within

the service time of a typical patient, the arrival pattern has gone through five cycles.

Therefore, existing approximation methods developed for call center models (such as

PSA [60, 149], lagged PSA [58], modified offered-load approximation [105], infinite-

server approximation [83], and iteration algorithms [32, 45]) are not applicable to

our hospital model. Moreover, the servers in our model are inpatient beds. It is not

realistic to adjust the number of beds within a short time window.
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Time scales in hospital operations. Previous studies have noticed different

time scales in hospital operations [124, 104]. Our two-time-scale analysis is inspired

by, but significantly different from, these works. Mandelbaum et al. [104] point out

that different time scales arise naturally when hospitals operate in the quality- and

efficiency-driven (QED) regime, i.e., the number of servers is large, service times are

in days, whereas waiting times are in hours. Ramakrishnan et al. [124] construct a

two-time-scale model for ED and wards, where the wards operate on a time scale

of days and are modeled by a discrete-time queue, and the ED operates on a much

faster time scale and is modeled by a continuous time Markov chain (CTMC). While

their discrete-time queue is similar to our discrete-time queue in the single-server-pool

setting to be introduced in Section 4.1, their focus is on improving ED operations;

our focus is the inpatient department operations and we aim to predict the time-

dependent performance during the ED to wards transfer process. We do not explicitly

model operations within the ED in this research.
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CHAPTER II

EMPIRICAL STUDY AT NUH

This chapter is organized as follows. Section 2.1 gives an overview of NUH’s inpa-

tient department. Section 2.2 describes an early discharge campaign implemented in

2009 at NUH, and explains the reason of using two periods (Periods 1 and 2) in the

empirical analysis. Sections 2.3 introduces another important performance measure,

the overflow proportion. This section also describes the basic organizational unit at

NUH, ward, and reports ward-level statistics. Sections 2.4 to 2.7 relate to the mod-

eling elements of the proposed stochastic network model in Chapter 3. Section 2.4

discusses the bed-request process (which serves as the arrival process to the stochastic

model). Sections 2.5 and 2.6 are for the service time model. Section 2.7 summarizes

the motivation of modeling allocation delays and relevant empirical studies. Finally,

Section 2.8 presents a supplement study for patients who have been internally trans-

ferred.

2.1 NUH inpatient department

This section introduces some basic information of the NUH inpatient department.

We introduce different admission sources (Section 2.1.1) and medical specialties (Sec-

tion 2.1.2), and show ED-GW patient’s waiting time performance in Periods 1 and

2. We also describe the data set used in our empirical study in Section 2.1.4. We

focus on 19 general wards, which have a total number of beds ranging from 555 to

638 between January 1, 2008 and December 31, 2010. They exclude a certain number

of wards including intensive-care-unit (ICU) wards, isolation wards, high-dependence

wards, pediatric wards, and obstetrics and gynaecology (OG) wards. All exclusions

are explained in Section 2.1.3.
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Figure 3: Four admission sources to general wards and nine patient spe-
cialties. Daily admission rates and patient distributions are estimated from data
between January 2008 and December 2010.

2.1.1 Admission sources

We classify inpatient admissions to general wards (GWs) into four sources. They

are ED-GW, ICU-GW, Elective (EL), and SDA patients. ED-GW patients are those

who have completed treatments in the ED and need to be admitted into a general

ward. ICU-GW patients are those patients who are initially admitted to ICU-type

wards (from either ED or other external resources) and are later transferred to general

wards. Most of the Elective (EL) and same-day-admission (SDA) patients come to the

hospital to receive surgeries. They are admitted via referrals from clinical physicians,

and usually have less urgent medical conditions than ED-GW or ICU-GW patients.

Figure 3a shows the four admission sources and their average daily admission rates.

Patients admitted to general wards from any of the four sources are called general

patients.

ED-GW patients and their waiting time performance

The ED of NUH provides treatment to patients in need of urgent medical care, and

determine the timely transition to the next stage of definitive care, if necessary. Of

the 310519 patients who visit ED between January 2008 and December 2010 (from
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either ambulance or walk-in arrivals), 61018 (19.7%) patients are admitted to the

GWs and become ED-GW patients. 213078 (68.6%) patients are treated and directly

discharged from ED because of death, absconded, admission no show, transferred to

other hospital, followed up at Specialist Outpatient Clinic (SOC), Primary Health

Care (PHC), General Practitioner (GP), and discharges to home. The remainder are

admitted to an ICU-type (ICU, isolation, or high-dependency) ward (12163 patients,

3.9%) for further medical care, or to the EDTU (10180 patients, 3.3%) for further

observation, or to other wards such as the Endoscopy ward.

Recall that we define the waiting time of an ED-GW patient as the duration

between her bed-request time and actual admission time. The average waiting time

for all ED-GW patients is 2.82 hours (169 minutes) for Period 1, and 2.77 hours

(166 minutes) for Period 2. In addition to the average waiting times, we consider

the x-hour service level, denoted by f(W ≥ x), that is defined as the fraction of

ED-GW patients who wait x hour or longer. Here, W denotes the waiting time of

a typical ED-GW patient. The overall 6-hour service level is 6.52% in Period 1 and

5.13% in Period 2. Table 1 also reports the 4-, 8-, and 10-hour service levels in

the two periods. Note that the 8- and 10-hour service levels show more significant

improvement in Period 2 than the average waiting time.

Our definition of waiting time is consistent with the convention in the medical

literature [146, 139], except that we use the admission time to wards as the end

point of the waiting period while literature usually use the time when the patient

exits ED. Thus, our reported waiting time in this thesis is a slight overestimation

of the value computed in the conventional way. (The gap between patient exiting

ED and admission to ward is about 18 minutes on average at NUH.) Table 1 shows

the waiting time statistics calculated in both ways. In Appendix A, we will report

hourly waiting time statistics calculated in the conventional way as well as more

distributional statistics for the waiting time.
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Table 1: The average waiting time (W̄ ) and x-hour service levels (f(W ≥ x))
for ED-GW patients. We demonstrate the waiting time statistics calculated in
two ways. One is using the duration between bed-request time and time of admission
to wards, and the other method is using the duration between bed-request time and
time of exiting ED. We use the former way to report waiting time statistics in this
thesis, while the latter way is often used in medical literature [146, 139]. Note that
the sample size differs in the two periods. This is because Period 1 contains 18 months
whereas Period 2 contains 12 months. The average monthly number of bed requests
is 1970 and 2107 for Period 1 and 2, respectively.

Period 1 Period 2
sample size 35452 25285

use admit. use ED-exit use admit. use ED-exit
time time time time

W̄ (hour) 2.82 2.52 2.77 2.46
f(W ≥ 4) 18.91% 15.73% 18.56% 15.15%
f(W ≥ 6) 6.52% 5.34% 5.13% 3.97%
f(W ≥ 8) 2.30% 1.90% 1.26% 0.86%
f(W ≥ 10) 0.98% 0.79% 0.22% 0.09%

Elective patients

Most of the Elective (EL) patients come to NUH to receive surgeries, and they are

admitted at least one day prior to surgery. The daily number of admissions from EL

patients are pre-scheduled (with an average of 18.5 patients per day). The beds for

these scheduled patients are usually reserved so that patients need not wait for their

beds when they arrive at the hospital. Moreover, the arrival times of EL patients

(the time when presenting at wards) are also scheduled as the patients are typically

advised to come in the afternoon. As a result, there is no meaningful time stamp for

EL patient’s bed-request time.

ICU-GW and SDA patients

ICU-GW and SDA patients sometimes are also referred as internal transfer patients

since they are initially admitted to a non-general ward and then transferred to a

general ward. Of the 13988 patients initially admitted to ICU-type wards (from

either ED or other admission sources) between 2008 and 2010, 8282 (59.2%) of them
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transfer to GWs later. The remaining patients are discharged directly from an ICU-

type ward.

Same-day-admission (SDA) patients first go to the operating rooms for surgical

procedures, usually in the morning, occupy a temporary bed until recovery, and are

finally admitted to a GW. An SDA patient is similar to an EL patient except that

the EL patient is admitted into a GW before the day of surgery, whereas the SDA

patient is admitted to a GW after the surgery. Therefore, it is expected that an EL

patient typically stays in a general ward bed at least one day longer than an SDA

patient.

For an ICU-GW or a SDA patient, although there is a delay between the bed-

request time and the departure time from the ward she currently stays, this waiting

time is taken less seriously than that of ED-GW patients. This claim is supported

by our empirical observations that the average waiting time is more than 7 hours for

ICU-GW patients and about 3.5 hours for SDA patients, both longer than that of

ED-GW patients. The major reason could be (a) the ICU-GW and SDA patients

have been receiving care at the current ward, thus this waiting time is not an issue

unless there is a bed shortage in ICU-type wards or the SDA ward; (b) the Ministry

of Health (MOH) of Singapore does not monitor this performance measure, so the

NUH has less incentive to improve it than the waiting time statistics for ED-GW

patients.

Besides the four admission sources we described above, there are a few patients

(around 2.5% of the total admissions to GWs) who are admitted to general wards from

other sources. For example, some patients are transferred from EDTU or Endoscopy

ward to a GW. In our empirical study, we lump these patients into the SDA admission

source due to their similar admission patterns and length of stay (LOS) distributions.

In Figure 3a, the daily admission rate for “SDA patients” already includes these

patients.
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2.1.2 Medical specialties

General patients are classified by one of nine medical specialities based on diag-

nosis at time of admission as an inpatient: Surgery, Cardiology, Orthopedic, Oncol-

ogy, General Medicine, Neurology, Renal Disease, Respiratory, and Gastroenterology-

Endocrine. Although Gastroenterology and Endocrine are two different medical spe-

cialties, we group them together and denote as Gastroenterology-Endocrine (Gastro-

Endo or Gastro for short). The grouping is based on the fact that patients from these

two specialties share the same ward and have similar LOS distributions. See [144] for

the same classification. We group Dental, Eye, and ENT patients into Surgery for

similar reasons. As explained in Section 2.4 of [136], two other specialties, Obstetrics

and Gynaecology (OG) and Paediatrics are excluded from our study.

Figure 3b plots the distribution of general patients among different specialties

and admission sources. Different specialties show very different admission-source

distributions. For example, the majority of General Medicine patients are admitted

from ED, while a significant proportion of Surgery patients are EL and SDA patients.

Figures 4a and 4b plot the average waiting time and 6-hour service level for ED-

GW patients from each specialty in the two periods of study. Renal patients show

the longest average waiting time, and their 6-hour service level is more than 10%

in both periods. Surgery, General Medicine and Respiratory patients have better

performances on the waiting time statistics than other specialties. Comparing the

two periods, the average waiting time remains similar for each specialty, but the 6-

hour service levels show a more significant reduction in Period 2 for most specialties,

especially for Cardiology and Oncology. These observations suggest that the small

fraction of patients with long waiting times benefit more in Period 2 than other

patients.
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Figure 4: Waiting times statistics for each medical specialty.
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2.1.3 Rationales for excluding certain wards

The entire inpatient department of NUH has 38 wards in total. We exclude 13 special

care units from our defined general wards, i.e., 5 ICU wards, 5 high-dependency units

(HD), 2 isolation units (ISO), and a delivery ward. It is because these wards are

dedicated to patients with special needs and therefore have different performance

expectations from GWs. We call ICU, HD, and ISO wards ICU-type wards. We

consider the interface between GW and ICU-type wards through ICU-GW patients.

We exclude four Pediatric wards because they act independently from the rest

of the hospital. The hospital rarely assigns an adult inpatient to a Pediatric ward

(1% incidence), and Pediatric inpatients rarely stays in adult wards (0.8% incidence).

Moreover, the hospital has a dedicated children’s emergency department with its own

admission process and a Pediatric intensive care unit (PICU) for critically ill newborns

and children. Thus, Pediatric patients have few interactions with adult patients, and

their performances are not the focus of our study.

Finally, we exclude two OG wards for a similar reason. Less than 1% OG patients

stay in non-OG wards, and less than 0.5% non-OG adult patients are admitted to

OG wards. Moreover, OG patients have very different admission patterns from other

adult patients. Most of them come to deliver babies, so they go to the delivery ward

or SDA ward first, and then transfer to OG wards; a few of them are directly admitted

from ED. Their length of stay (LOS) in the hospital is also significantly shorter than

other patients.

In summary, we focus on the remaining 19 general wards in the empirical study.

We refer inpatient beds in these 19 GWs as general beds. The 19 GWs are designated

to serve patients from different medical specialties, and we will give out more details

in Section 2.3.2.
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2.1.4 Data set

We obtain four raw data sets from NUH, i.e., admission data, discharge data, emer-

gency attendance data and internal transfer data. Each of the data sets contains

data entries from January 1, 2008 to December 31, 2010. We combine the four data

sets into one merged data set using patient ID and case number as identifiers. Each

record in the merged data contains a patient’s entire inpatient care history and the

following information:

1. The admission related information includes patient gender and age, admission

date and time, allocated ward and bed number, and medical specialties.

2. The discharge related information includes patient discharge date and time,

discharge ward number, and diagnostic code.

3. Based on whether there is a matched case ID in the ED attendance data, we

classify each patient record as “visited ED” or “No visit to ED”. For a patient

who have visited ED, the ED attendance related information includes “Trauma

Start” time (time of inpatient bed request) and “Trauma End” time (time of

leaving ED).

4. Based on whether there is a matched case ID in the internal transfer data,

we classify each patient record as “having been transferred” or “no transfer”.

For a patient who has gone through at least one transfer, the transfer related

information includes his/her transfer frequency, transfer in and out time for

each transfer, and target ward and bed in each transfer.

The merged data covers from January 1, 2008 to December 31, 2010. During our

empirical study, we exclude 6-month data, from July 1, 2009 to December 31, 2009,

which is when the early discharge campaign was implemented at NUH. Thus, the

data set is separated into two periods. Period 1 is from January 1, 2008 to June 30,
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2009, and Period 2 is from January 1, 2010 to December 31, 2010. Period 1 is one

and half year long (547 days) and Period 2 is one year long (365 days). In the rest

of this chapter, we will compare a number of performance measures between Periods

1 and 2. When there is no need to separate the data, the combined data set, which

combines the data from these two periods, is used. In Section 2.2, we will further

explain the reason of excluding the 6-month data from our empirical study.

An extra data set on bed request information

To better understand the delay during the ED to wards transfer process, we obtain

an extra data set which contains detailed bed-request information. In this data set,

each entry represents a bed-request that is processed by the bed management unit

(BMU) at NUH, and the patient associated with the bed request can be from various

sources, e.g., an ED-GW or an ICU-GW patient requesting a GW bed, or a patient

requesting to be transferred from one GW to another GW. Each entry contains the

following time stamps:

(a) Bed-request time: the date and time when the bed-request is submitted to the

BMU;

(b) Bed-allocation time: the date and time when a bed is allocated for the requesting

patient;

(c) Bed-confirmation time: the date and time when the allocated bed is confirmed by

nurses in the current unit (e.g., confirmed by ED nurses if the requesting patient

is an ED-GW patient);

(d) Request completion time: the date and time when the requesting patient is ad-

mitted to the allocated bed and the bed-request is completed.

This bed-request data set was extracted from an external IT system that is dif-

ferent from the NUH’s system where we obtain the other four raw data sets. Due to
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resource constraints, we only obtained bed-request data from June 1, 2008 to Decem-

ber 31, 2008, and June 1, 2010 to December 31, 2010 (14 months in total). Through

patient ID and case number, we are able to link this 14-month data set with the

merged data set.

2.2 Early discharge campaign

From July 2009 to December 2009, NUH started a campaign to discharge more pa-

tients before noon. This early discharge campaign gathered momentum and by De-

cember 2009, a new and stable discharge distribution emerged. In Section 2.2.1, we

show more empirical statistics for the discharge distributions in Periods 1 and 2. In

Section 2.2.2, we describe the measures that NUH introduced in the second half of

2009 to achieve the new discharge distribution. We also explain the reason for choos-

ing Period 1 and Period 2 data in our empirical study. In Section 2.2.3, we discuss

the changes in the operating environment between 2008 and 2010 and why they limit

us from using the empirical comparison of performance measures between Periods 1

and 2 to directly evaluate the impact of early discharge policy.

2.2.1 Discharge distributions in Periods 1 and 2

Figure 2 plots the hourly discharge distributions in the two periods. Table 2 lists

the corresponding numbers for the two discharge distributions. In Period 1, 12.7% of

the patients are discharged before noon, and there is a single discharge peak between

2pm and 3pm. In Period 2, 26.1% of the patients are discharged before noon, more

than double the percentage in Period 1. It is evident from Figure 2 that there is a

new discharge peak between 11am to 12pm in Period 2. In terms of the number of

patients, in Period 1, as many as 26.3 patients are discharged per hour during the

peak time (2-3pm). In Period 2, the peak number of discharges is reduced to 21

patients between 11am and 12pm, and the average number of patients discharged in

the original peak hour (2-3pm) is reduced to 18.7 patients. The average discharge
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Table 2: Discharge time distributions from general wards: Period 1: January
1, 2008 to June 30, 2009; Period 2: January 1, 2010 to December 31, 2010.

Dis. time Period 1 Period 2
0-1 0.15% 0.12%
1-2 0.15% 0.15%
2-3 0.11% 0.11%
3-4 0.09% 0.11%
4-5 0.10% 0.08%
5-6 0.11% 0.11%
6-7 0.15% 0.12%
7-8 0.07% 0.08%
8-9 0.16% 0.16%
9-10 1.32% 1.68%
10-11 3.69% 5.35%
11-12 6.55% 17.99%
12-13 9.77% 10.75%
13-14 19.39% 15.91%
14-15 25.74% 16.17%
15-16 10.56% 9.49%
16-17 6.08% 6.49%
17-18 4.46% 4.74%
18-19 3.68% 3.36%
19-20 3.24% 3.34%
20-21 2.55% 2.22%
21-22 1.06% 0.85%
22-23 0.47% 0.37%
23-24 0.32% 0.22%

hour is moved from 14.6 to 14.1, a half-hour earlier. These statistics indicate that

NUH has obtained a satisfactory compliance rate in discharging more patients before

noon in Period 2.

2.2.2 Implementation of the early discharge policy

The discharge process at NUH is similar to many other hospitals [63, 4, 138]. Dis-

charge planning usually begins a day or two prior to the anticipated discharge date.

On the day of discharge, the attending physician makes the morning round, confirms

the patient’s condition, and writes the discharge order. The nurses document the

order and prepare the patient for discharge. Finally, pharmacy delivers discharge
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medication if needed. Obviously, a variety of factors can affect the actual discharge

time, such as when the doctor performs the rounds, when pharmacy delivers the med-

ication, and transportation arrangements to send the patient home or to step-down

facilities.

To expedite the discharge process and have more patients discharge before noon,

NUH began an early discharge campaign from July 2009. The campaign initially

started with a small number of wards, and was later expanded to the entire inpatient

department. By December 2009, the early discharge was completely in effect. Hospital

managers have worked closely with physicians, nurses, and patients to promote the

campaign. Some of the initiatives include:

(i) Two discharge rounds: physicians in some specialties do two discharge rounds

per day (instead one morning round). They try to finish the first round before

10 am, so that some patients can leave before 12 noon. The second round begins

at about 2-3pm, and more patients can be discharged in late afternoon.

(ii) Discharge lounges: a few discharge lounges are added to several wards. Pa-

tients waiting for medicines or transportation can wait in the lounge instead of

occupying hospital beds.

(iii) Day-minus-1-discharge plans: physician and nurses identify discharge needs as

early as possible and prioritize tests (or other clearance) accordingly. Nurses

begin to prepare discharge documents and medicine before the day of discharge.

The early discharge policy was not only costly to implement, but also required time

to attain a high rate of compliance. Indeed, we observe a “stabilizing” process in the

discharge patterns when the new policy was being implemented in NUH. Figure 5a

compares the Period 1 discharge distribution with the distributions for July and

December 2009. As early as May 2009, the peak discharge value decreases from 25.7%

to 20.0% comparing to other months in Period 1, while more patients are discharged
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Figure 5: Discharge time distributions during and after the implementation
of early discharge policy at NUH.

between 11am and noon. However, at that time there is no explicit second peak in the

discharge distribution. From May through September, the value of the original peak

(between 2 and 3pm) keeps decreasing, and the proportion of patients discharged

between 11am and noon keeps increasing. Till September 2009, a new peak between

11am and noon with a peak value of 14.4% emerge. In December 2009, the new peak

is even higher (peak value 17.3%) than the 2-3pm peak value (16.4%). Figure 5b

compares the discharge distributions in some selected months of 2010. We can see

the distribution stabilizes in 2010. The above observations explain why we choose

Periods 1 and 2, since they correspond to before and after implementation of the

early discharge policy. We exclude July through December 2009 to avoid potential

bias resulting from discharge distribution instability.

As mentioned in the previous chapter, early discharge policy has been recom-

mended by many previous studies [9, 154] and government agencies [39]. However,

few hospitals have reported to implement the policy with any success. For example,

studies mention “limited success in achieving discharges by noon” in certain hospi-

tals [142, 154], or that the policy was only experimented in a few wards [39]. Several

hospitals claim that they have implemented or tried to implement the early discharge

policy [154, 39, 128, 80, 147, 132], but its impact on hospital performances has not
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been well documented. To our best knowledge, NUH is one of the first few hospitals

that have successfully implemented the early discharge policy in the entire hospital

and achieved satisfactory compliance rate as of December 2009.

2.2.3 The changing operating environment

Although NUH has successfully implemented early discharge in 2010 and high-fidelity

data is available for us to empirically compare the performance measures before and

after the implementation of early discharge, we note that pure empirical comparisons

cannot fully quantify the effectiveness of the early discharge policy due to changes in

the operating environment.

As in many hospitals, the operating environment is continuously changing at NUH.

The number of admitted general patients has been increasing from 2008 to 2010 (the

total numbers of admissions to GWs are 36473 in 2008, 38509 in 2009, and 39429

in 2010). To meet the increasing demand, NUH has increased general bed capacity

over the three years. Figure 6a plots the daily admission rate of each month (the

red curve) from January 2008 to December 2010. The blue curve in Figure 6a plots

the monthly average number of beds in GWs. As a result, we observe a change in

the bed occupancy rate (BOR). BOR is a key performance measure which reflects

the utilization of beds in a specified period (see the end of this section for a rigorous

definition). Figure 6b plots the monthly BORs of the GWs from 2008 to 2010.

The average BOR is 90.3% in Period 1, and 87.6% in Period 2. Period 2 has a

2.7% reduction of BOR. From queueing theory, we know that reduced bed utilization

can lead to a reduction in waiting time. Thus, even the waiting time is reduced in

Period 2, we cannot conclude that the reduction is purely from implementing the

early discharge policy. Therefore, we need a high fidelity data to capture inpatient

operations and evaluate the impact of early discharge and other operational policies

on system’s performance. This will be the main focus of Chapter 3.
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Figure 6: Monthly admission rate, number of beds, and BOR. The two figures
show the monthly admission rate from general patients, the monthly average number
of general beds, and monthly BOR from January 2008 to December 2010.

Definition for BOR: BOR is always defined for a specific group of beds. The

group can be all beds in a ward or all beds in all general wards. In this thesis, our

default group is all beds in all general wards if no group is specified. For a given

group of beds and a given period, BOR is defined as (see Page 10-11 of [114]):

BOR =
Total Inpatient Days of Care

Total Bed Days Available
× 100, (1)

where the total inpatient days of care equals the sum of patient days among all

patients who have used a bed in the group in the specified period, and patient days

of a patient equals the number of days within the period that a patient occupies any

bed in the group. Patient days of a patient is almost equal to patient length of stay

(LOS; see Section 2.5), except that the patient day of a same-day discharge patient is

1, while the LOS equals 0; also LOS may include days outside the given time period.

Total bed days available is equal to the sum of bed days available among all beds in the

group, where bed days available of a bed is the number of days within the time period

that bed is available to be used for patients. Note that BOR is a slightly different

concept from bed utilization, since we use service time (not the integer-valued patient

days) to calculate utilization. From our NUH data, BOR is slightly higher than the
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corresponding utilization (for all beds and for most wards), but the two values are

very close, typically differing by only 1% to 2%. Thus, we focus on reporting BOR

in the empirical study.

2.3 Ward capacity and overflow proportion

In this section, we report ward-level statistics for the 19 GWs. In particular, we

introduce an important performance measure, the overflow proportion. We first given

an overview of NUH’s ward setting in Section 2.3.1. Then in Section 2.3.2, we report

the ward-level BOR. In Section 2.3.3, we report the overflow proportion from both

ward and specialty levels. Finally in Section 2.3.4, we present some supplementary

statistics for shared wards which serve patients from multiple specialties.

2.3.1 Basic ward setting in NUH

In NUH, each GW contains a number of beds in close proximity. The wards are

relatively independent of each other, with each having its dedicated nurses, cleaning

team and other staff members. There are usually multiple rooms in each ward. A

room is equipped with 1 to 8 beds, depending on the ward “class”, and is shared

by patients of the same gender. In general, class C wards have 8 beds per room,

class B wards 4 or 6 beds per room, and class A wards 1 or 2 beds per room (see

details in [111]). Stays in class B2 or C wards are eligible for heavy subsidy from the

government, thus the daily expenses in these subsidized wards are much less than the

expenses in class A or B1 wards. As a result, there is a much greater demand for the

subsidized wards. Table 3 lists the number of beds in each of the 19 wards.

Physicians always prefer to have their patients stay in the same wards to save

rounding time. Hospital can also achieve a better match between patient needs and

nurse competencies by doing so. Therefore, NUH designates each general ward to

serve patients from only one or two (rarely three) specialties. We call the ward’s

designated specialty its primary specialty. Table 3 lists the primary specialties for
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the 19 wards.

Note that around September to December 2008, NUH changed the primary spe-

cialties for several wards to better match the demand and supply of bed for each

specialty, a reaction to the big capacity increase in late 2008 (see Figure 6a). Since

most of our reported statistics in this section relate to the ward primary specialties,

we exclude the period before the re-designated specialties became operational for

consistency. The term “reduced Period 1”, therefore, refers to the remaining time in

Period 1 after the re-designated specialties took effect. The start time for the reduced

Period 1 for each affected ward depends on the time of specialty re-designation; the

end time is fixed at June 30, 2009. Thus, the duration of the reduced Period 1 may

differ for each ward, since the re-designated specialty could take effect at different

times. Table 3 lists the start month of (reduced) Period 1 for each ward. For ex-

ample, Ward 52 was re-designated as an Orthopedic ward from November 2008, and

Ward 54 a Surgery/Orthopedic ward from March 2009.

For wards with no changes in their primary specialties, we use data points from

the entire Period 1 to calculate ward-level statistics; otherwise, we use the reduced

Period 1. We calculate ward-level statistics for Period 2 using data points from the

entire Period 2, because no speciality re-designation occurred.

2.3.2 Capacity and BOR

Figure 6b plots the monthly BOR for all general wards from January 2008 to De-

cember 2010, from which we can see the monthly BOR fluctuates between 80% and

95%. The average BOR for all GWs is 90.3% for Period 1 and 87.6% for Period 2.

In fact, if we exclude January to October 2008, the average BOR for the remaining

Period 1 is about 87.4%, which is similar to Period 2. This suggests that NUH has

successfully increased its bed capacity, resulting in BOR stabilization despite signifi-

cant increases in patient admissions from January 2008 to December 2010. The total
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Table 3: Primary specialties and BOR for the 19 general wards. The
start time of Period 1, if not January 2008, corresponds to when the re-designated
specialties took effect for wards having changed the primary specialties.

Ward Prim. specialty # of beds Per 1 start BOR (%)
Jan 08 Dec 10 Per 1 Per 2

41 Surg, Card 44 44 Feb 09 90.9 92.0
42 GM, Respi 33 44 Nov 08 86.4 92.2
43 Surg 44 44 Jan 08 93.4 88.9
44 Respi, Surg 14 44 Mar 09 79.0 80.3
51 Ortho 39 39 Jan 08 76.7 67.5
52 Ortho 22 26 Nov 08 74.4 75.3
53 GM, Neuro 46 46 Jan 08 96.8 97.1
54 Surg, Ortho 50 50 Mar 09 80.7 77.6
55 Renal 44 33 Jan 08 91.7 86.5
56 Card 17 17 Nov 08 90.1 95.1
57 Neuro 14 14 Jan 08 97.3 96.5

57O Onco 24 24 Jan 08 93.9 93.2
58 Onco 24 24 Jan 08 90.2 91.7
63 Card 43 44 Jan 08 95.5 96.1
64 Gastro 46 50 Jan 08 94.2 92.8
66 Med, Surg 31 34 Feb 09 86.9 86.8
76 Med, Card 18 18 Jan 08 90.0 94.6
78 Onco, Surg, Ortho 25 25 Mar 09 83.0 82.8
86 Onco 8 14 Jan 08 89.6 87.5

Total General Beds 555 638 90.3 87.6
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number of general beds increased from 555 beds as of January 1, 2008 to 638 beds as

of December 31, 2010.

Not surprisingly, BOR is ward dependent. Table 3 the BOR in Periods 1 and 2

for each ward. The BOR for all 19 wards are also plotted in Figure 74. We make the

following observations: (i) BORs of dedicated wards (Wards 43, 56, 57, 58, 63, 64)

are generally high, most exceeding 90%, with the exceptions of Orthopedic wards 51

and 52 which have much lower BORs for both periods; (ii) class A/B1 wards (Wards

66, 76, 78, 86) have lower BORs than other wards because they are not government-

subsidized; (iii) Ward 44 has a much lower BOR than other Medicine wards, mainly

because half of its capacity serves infectious respiratory patients who cannot share

rooms with other patients; and (iv) comparing the BORs for the two periods shows

no consistent pattern of increase or decrease.

2.3.3 Overflow proportion

Usually patients are assigned to their designated wards. However, when an ED-GW

patient has waited for several hours in the ED, but no bed from the primary wards

is available or expected to be available in the next few hours, NUH may overflow

the patient to a non-primary ward as a temporary expedient. Overflow events may

also occur among patients admitted from other sources, such as when ICU-type wards

need to free up capacity, ICU-GW patients may be overflowed. We define the overflow

proportion as the number of patients admitted to non-primary wards divided by the

total number of admissions. The admissions here include both the initial admission

and transfer to general wards, e.g., a transfer from ICU to GW is counted as a different

admission in addition to the initial admission.

Obviously, there is a trade-off between patient waiting time and overflow pro-

portion. On the one hand, the waiting time can always be reduced by overflowing

patients more aggressively since overflow acts as resource pooling. On the other hand,
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Figure 7: Overflow proportion for each specialty in Periods 1 and 2.

overflow decreases the quality of care delivered to patients and increases hospital op-

erational costs [144]. In NUH, the average overflow proportion among all patients is

26.95% and 24.99% for Periods 1 and 2, respectively. The overflow proportion for all

ED-GW patients is 29.91% in Period 1 and 28.54% in Period 2, slightly higher than

the values for all patients. The reduction of overflow proportion in Period 2 indicates

that the reduced waiting time for ED-GW patients in Period 2 does not result from

a more aggressive overflow policy.

Next, we show overflow proportions on both the specialty level and ward level.

Overflow proportion for each specialty

The overflow proportion for a specialty is defined as the number of overflow admissions

from this specialty divided by the total number of admissions from this specialty.

Figure 7 compares the overflow proportion for each specialty in Periods 1 and 2. Note

that (i) Cardiology, General Medicine, and Neurology patients have significant higher

overflow proportions than other specialties, which suggests that these specialties may

not have enough beds allocated to them; (ii) the overflow proportions of Surgery,

General Medicine, Respiratory, and Orthopedic show significant reductions in Period

2, whereas Gastro-Endo and Neurology show a big increase in Period 2.
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Overflow proportion

The overflow proportion for a ward is defined as the number of overflow admissions to

this ward divided by the total number of admissions to this ward. Figure 8 compares

the overflow proportions for GWs in Periods 1 and 2. Table 26 in Appendix A.3 lists

the corresponding numerical values.

We observe that dedicated wards (serving only one specialty) generally have a

lower overflow proportion than the shared wards (serving multiple specialties). Com-

paring the two periods, most of the wards show reduced overflow proportions in

Period 2, with some showing significant reductions (mostly dedicated wards); some

wards show a small increase. The only exceptions are Wards 44 and 52, which show

significant increases in the overflow proportions.

Moreover, comparing the BOR (Table 3) and the overflow proportion for each

ward, we can see it is generally true that if the ward has a lower BOR, its overflow

proportion will be higher; examples are Wards 51, 52, and 54. The only exception

is Ward 44, which has a low BOR and a low overflow proportion at the same time.

In practice, the BMU prefers to overflow class A/B1 patients to a non-primary class

A/B1 ward instead of downgrading them to a lower-class primary ward. This also

explains why class A/B1 wards have higher overflow proportions than most class

B2/C wards, since class A/B1 wards are “pooled” together more often.

Note that overflow proportion only takes patient count into consideration. It does

not differentiate between an overflow patient with a long LOS and an overflow patient

with a short LOS, where the latter is always preferred for the right-siting of care. In

Section A.3 of the appendix, we introduce another statistics: the BOR share, which

is the proportion of BOR contributed from primary patients and overflow patients.

This statistic takes patients LOS into consideration since the BOR calculation involves

LOS.
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Figure 8: Overflow proportion for each ward in Periods 1 and 2.

2.3.4 Shared wards

Excluding class A/B1 wards, NUH has five shared wards (Ward 41, 42, 44, 53, and 54)

serve two primary specialties; see Table 3. Each bed in the shared wards is nominally

allocated to a certain specialty, but nurses in these wards have the flexibility to care

for patients from either speciality.

For each of the shared wards and for each period, we calculate (i) the ratio between

the BORs of the two primary specialties and (ii) the ratio between their admission

numbers. We compare these two ratios with the nominal capacity allocation. Table 4

lists these three sets of statistics (in Columns 4-5, 6-7, 8, respectively). First, we can

see that the ratios of the BORs and the ratios of admission numbers are close for

each ward, except for ward 44 in Period 2 and ward 54 in Period 1. The closeness

indicates that the average LOS of the two primary specialties are close. Second, we

can see that the ratios in Columns 4-7 are mostly above 80%, and generally exceed the

ratios of the nominal bed allocation (last column). This indicates that each ward is

predominantly used by patients from one certain specialty, regardless of the nominal

allocation.
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Table 4: Bed allocation in shared wards. The ratio of BOR is defined as the BOR
from Prim.1 specialty divided by the sum of BORs from its primary specialties. The
ratio of admissions or the ratio of allocated beds is defined similarly by just changing
BOR to the number of admissions or the number of allocated beds, respectively.
The ratios of allocated beds are estimated from the average number of beds in both
periods; the nominal bed allocation is unknown for Ward 53.

Ward Specialty Ratio of BOR Ratio of admissions Ratio of alloc beds
Prim. 1 Prim. 2 per 1 per 2 per 1 per 2

41 Surg Card 81.45 81.10 81.97 80.27 72.09
42 Gen Med Respi 94.93 95.66 92.34 93.94 77.27
44 Respi Surg 72.62 69.26 67.48 59.39 53.33
53 Gen Med Neuro 86.49 93.50 82.09 89.50 unknown
54 Ortho Surg 86.53 84.90 73.83 80.31 66.67

2.4 Bed-request process

In this section, we study the bed-request processes from the four admission sources

with a focus on the bed-request process from ED-GW patients. In Section 2.4.1,

we show the hourly bed-request pattern of ED-GW patients and its connection with

the arrival process to the emergency department. In Section 2.4.2, we test whether

the bed-request process from ED-GW patients follows a non-homogeneous Poisson

process. Finally, in Section 2.4.3 we study the bed-request processes from the other

three admission sources.

2.4.1 Bed-request rate from ED-GW patients and Arrival rate to ED

Recall that bed-request time for an ED-GW patient is when ED physicians decide to

admit and request an inpatient bed for this patient (the patient has finished treatment

in ED); it corresponds to the Trauma Start time in our data set. Only about 20% of

the arrivals to ED at NUH are admitted to the GWs and become ED-GW patients.

Figure 9a plots the hourly arrival rate to ED in Period 1. The green bars represent

the hourly arrival rates from patients who will eventually be admitted to a general

ward (i.e., ED-GW patients). The grey bars represent the arrival rates from all other

patients, who will be directly discharged from the ED or admitted to other wards.
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From the figure, we can see the total hourly arrival rates from all patients (sum of

green and grey bars) begins to increase from 7 am, followed by two peaks: a peak

between 11am and noon (21.7 per hour) and a peak between 8pm and 9pm (20.2 per

hour). This pattern is similar to those observed in many hospitals of other countries

(e.g., see Figure 1 of [61] and Figure 2 of [157]), indicating that the arrival rate pattern

to NUH’s emergency department is not unique. Moreover, Figure 9a shows that the

proportion of the green and grey bars does not change much throughout the day.

About 17% to 22% of patients arriving at the ED become ED-GW patients in each

hour, which suggests that the patient mix (ED-GW patients versus other patients) is

quite stable.

Figure 9b demonstrates the connection between ED arrival rate and bed-request

rate of ED-GW patients. The solid curve shows the arrival rate to ED from ED-GW

patients, which is identical to the green bars in Figure 9a. The dashed curve shows

the average number of bed requests from ED-GW patients during each hour. We use

the term hourly bed-request rate to denote the number of beds requested by ED-GW

patients in each hour. The bed-request rate starts to increase from 7am, and reaches

three or more per hour between noon and midnight. The peak is between 1 pm and

5pm (4.2 per hour). If we compare the two curves in Figure 9b, we can see their shapes

are similar and the dashed curve seems to be a horizontal shift of the solid curve. This

depicts the relationship between the arrival process to ED and the bed-request process

of ED-GW patients: when an ED-GW patient arrives at the emergency department,

it takes about two hours to receive treatment (plus the possible waiting time) before

a physician decides to admit him/her and makes a bed-request.

Figure 10 compares the hourly bed request rate from ED-GW patients among four

specialties in Period 1: Medicine, Surgery, Cardiology, and Orthopedic. In this figure,

we aggregate the five medical specialties belonging to the Medicine cluster (General

Medicine, Neurology, Renal Disease, Respiratory, and Gastroenterology-Endocrine)
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GW patients

Figure 9: Hourly arrival rate to the emergency department and bed-request
rate of ED-GW patients. In subfigure (b), the arrival rate to ED is from patients
who will eventually be admitted into general wards (ED-GW patients). Period 1 data
is used.

into one and omit Oncology due to its small volume. This figure shows that the

proportion of the specialties changes little over time, suggesting that patient-mix is

stable in each hour. It is also consistent with our observation that the bed-request

rate curves from each specialty have similar shapes (figures not shown here).

We use Period 1 data to plot Figures 9 and 10. Using Period 2 data show sim-

ilar patterns/phenomena, while the average arrival rate and bed-request rates both

increase in Period 2, since more patients visit the hospital in Period 2 (also see Sec-

tion 2.2.3).

2.4.2 Testing the non-homogeneous Poisson assumption for ED-GW pa-
tients

Brown et al. [16] proposed a method to test non-homogeneous Poisson arrival pro-

cesses. We apply this method to NUH data to test the bed-request process from

ED-GW patients. The null hypotheses of our test is that the bed-requests of ED-

GW patients form an inhomogeneous Poisson process with piecewise-constant arrival

rates.

To perform the test, we follow the procedures described in [16]. First, we divide
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Figure 10: Hourly bed request rate from 4 major specialties in Period 1.
The plot aggregates the five specialties belong to the Medicine cluster and omits
Oncology.

each day into 7 time blocks: 0am-2am, 2am-4am, 4am-9am, 9am-11am, 11am-13pm,

13pm-18pm, and 18pm-0am. Note that we do not use blocks of equal length. We

choose these blocks so that within each of them, the hourly arrival rates are close

for the included hours. We call a block on a certain day a time interval, e.g., 2am-

4am on May 1, 2008 is a time interval. The blocks we choose also ensure that we

have enough data points in each time interval. Second, for each time interval i, we

collect the bed-request time stamps belonging to that interval and transform the

bed-request time in the same way as introduced in [16]. That is, let T ij denote the

jth ordered bed-request time in the ith interval [T istart, T
i
end), i = 1, . . . , I, where I

denotes the total number of intervals. Let J(i) denote the total number of bed-

requests in the ith interval, and define T i0 = T istart and T iJ(i)+1 = T iend. We have

T istart = T i0 ≤ T i1 ≤ · · · ≤ T iJ(i) < T iJ(i)+1 = T iend. The transformed variable Ri
j is

defined as

Ri
j = −

(
J(i) + 1− j

)
· log

(
T iJ(i)+1 − T ij
T iJ(i)+1 − T ij−1

)
, j = 1, . . . , J(i).

38



0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Quantiles of exponential Distribution

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Distribution

(a) QQ plot against the exponential assump-
tion

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

emperical
theorical

(b) CDF plot against the exponential as-
sumption

Figure 11: QQ plot and CDF plot of {Ri
j} from all intervals in Period 1 for

the bed-request process of ED-GW patients.

Under the null hypothesis that the bed-request rate is constant within each time inter-

val, the {Ri
j}s are independent standard (with rate 1) exponential random variables

(see the derivation in [16]). Third, we aggregate the transformed values of {Ri
j} from

intervals in a certain set of days and perform the Kolmogorov-Smirnov (K-S) test on

the assumption of standard exponential distribution.

The second column in Table 5 shows the K-S test results on testing the bed-

request process for each month of Periods 1 and 2. That is, we aggregate {Ri
j} from

all intervals belonging to each month (there are about 7 × 30 = 210 time intervals

in a month), and perform 30 sets of K-S test for the 30 months. We can see that at

significant level of 5%, 24 null hypotheses (out of 30) are not rejected.

We also perform K-S tests for longer time windows, e.g., aggregating all intervals

from the 18 months in Period 1. Due to the large sample sizes (more than 35000

samples in Period 1), the p-value of K-S test at significance level 5% is very close

to zero, so it is difficult to pass the test. However, the Q-Q plot and CDF plot in

Figure 11 show that the distribution of the transformed values {Ri
j} from all intervals

in Period 1 is still visually close to the standard exponential distribution.
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Table 5: Results for Kolmogorov-Smirnov tests on testing the non-
homogeneous Poisson assumption for bed-request processes of ED-GW,
SDA, and ICU-GW patients and admission process of EL patients. A test
is passed at the significance level of 5% if the reported value is larger than 0.05.

month ED-GW EL SDA ICU
2008-01 0.0134 0.0071
2008-02 0.0638 0.0849
2008-03 0.0479 0.1802
2008-04 0.1842 0.0178
2008-05 0.0062 0.0228
2008-06 0.215 0.0002 0.0053 0.0000
2008-07 0.1028 0.1148 0 0.0001
2008-08 0.1949 0.0388 0 0.0000
2008-09 0.1064 0.0253 0.0055 0.0000
2008-10 0.1253 0.0256 0.0279 0.0003
2008-11 0.2442 0.0026 0.0001 0.0005
2008-12 0.3092 0.091 0.0098 0.0000
2009-01 0.1218 0.421
2009-02 0.0694 0.0061
2009-03 0.186 0.0925
2009-04 0.1112 0.0091
2009-05 0.0565 0.0729
2009-06 0.018 0.1876
2010-01 0.3259 0.0018
2010-02 0.9596 0.5737
2010-03 0.0851 0.0007
2010-04 0.6379 0.0004
2010-05 0.2684 0.0338
2010-06 0.003 0.1048 0.2959 0.0028
2010-07 0.0065 0.4903 0 0.0000
2010-08 0.0546 0.0064 0.0103 0.0000
2010-09 0.4329 0.4402 0.0004 0.0000
2010-10 0.795 0.0472 0.0485 0.0000
2010-11 0.0563 0.0005 0.0064 0.0000
2010-12 0.1996 0.3198 0.0127 0.0000
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The above test results suggest that it is reasonable for us to assume the bed-

request process from ED-GW patients is a non-homogeneous Poisson process with

piecewise-constant arrival rates. But note that the null hypothesis in the test does

not contain any assumption on the bed-request rates of different intervals being equal

or having a certain relationship. In particular, the test results do not suggest that the

bed-request rate function is periodic. On the contrary, we find that the bed-request

process is not a periodic Poisson process if using one day or even one week as a period.

Figures 12a and 12b clearly show that the bed-request rates depend on the day of

week, so the bed-request process cannot be periodic Poisson with one day as a period.

We then examine whether the bed-request process is periodic Poisson with one week

as a period. If this assumption were valid, then for each day of the week, the daily

bed-request on that day in all weeks would have formed an iid sequence following

a Poisson distribution. As a consequence, the mean and variance of the daily bed-

request on that day of the week would be equal or close. However, Figure 12c shows

that the sample variances are significantly larger than the sample means for each

day of the week except for Sunday, which indicates that the bed-request process is

not a periodic Poisson process with one week as a period. We conjecture that the

high variability comes from the seasonality of bed-requests (e.g., February has a lower

bed-requests rate than other months; see the red curve in Figure 6a)) and the overall

increasing trend in the bed demand (see discussions in Section 2.2.3).

Furthermore, Figure 12c demonstrates that, under the 1-day resolution, the bed-

request process shows over-dispersion, a term that was coined in Maman [103] and

means that the arrival process has “significantly larger values of the sampled CV’s

compared to the CV’s one would expect for data generated by a Poisson distribution.”

Unlike the 1-day resolution case, we observe from Figures 12a and 12b that, under

the 1-hour and 3-hour resolutions, the sample means and sample variances are close

for most intervals. This observation is consistent with the findings in Section 3.3
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Figure 12: Comparison between sample means and sample variances of bed-
requests. Three different resolutions are used: 1 hour, 3 hours, and 24 hours. Period
1 data is used.

of [103] and suggests that variability of bed-request rates at these two resolutions is

close to (or somewhat larger than) the variability of iid Poisson random variables.

Note that we have differentiated among seven days in a week in Figures 12a and 12b

to account for the day-of-week variations; Maman [103] did the same when testing

the arrival process to ED (see Section 3.3 in her paper). If we do not differentiate,

the over-dispersion phenomenon would be more prominent. Maman [103] also gave

a possible explanation for the phenomenon that the difference between the empirical

and Poisson CV’s increases when one decreases the time resolution (see Remark 3.3

there).
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2.4.3 Other admission sources

We now study the bed-request processes from SDA and ICU-GW patients and ad-

mission process from EL patients (i.e., using EL patient’s admission time stamp).

We study the admission process of EL patients because there is no meaningful time

stamps for EL patient’s bed-request time in the NUH data. Figure 13 plots the hourly

bed-request rates for SDA and ICU-GW patients and the hourly admission rate for

EL patients.
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Figure 13: Hourly bed-request rate for each admission source. The curve for
EL patients is plotted from using the admission time, so it is the hourly admission
rate for EL patients. Period 1 data is used.

We first test the non-homogeneous Poisson assumption for the bed-request pro-

cesses from SDA and ICU-GW patients and admission process from EL patients. The

fourth to sixth columns of Table 5 show the K-S test results using the monthly data

in Periods 1 and 2. Note that we only have 14-month data for the bed-request times

of SDA and ICU-GW patients (see explanation in Section 2.1.4). Thus, the last two

columns of Table 5 only display the K-S test results for these 14 months. From the

table, we see at the significance level of 5%, 17 null hypotheses out of 30 are rejected

for the EL admission process, and nearly all the null hypotheses are rejected for SDA

and ICU-GW bed-request processes (13 and 14, out of 14, are rejected for SDA and
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ICU-GW, respectively). Similar to Figure 11, Figure 14 shows the Q-Q plots and

CDF plots for the transformed values {Ri
j} for the EL admission process and the

SDA and ICU-GW bed-request processes. In the figure, {Ri
j} from all intervals in

Period 1 are aggregated. We observe that the distribution of the transformed values is

still visually close to the standard exponential distribution for EL admission process,

but not for the other two tested processes.

Two levels of random fluctuations

A closer look at the bed-request times of ICU-GW and SDA patients reveals a batching

phenomenon. Figure 15 plots the histogram of the inter-bed-request time between two

consecutive bed-requests within the same day for ICU-GW and SDA patients. From

the figures we can see that most bed-requests are less than 30 minutes away from

the previous bed-request. In particular, about half of the ICU-GW inter-bed-request

times are less than 10 minutes .

We talked to the NUH staff to understand the batching phenomenon and the

bed-request processes of ICU-GW and SDA patients. In practice, the ICU physi-

cians decides which patients should be transferred to general wards after the morning

rounds each day, and these patients to be transferred become ICU-GW patients ac-

cording to our definition. Thus, the number of bed-requests from ICU patients on

a day is determined first, and then ICU nurses submit these bed-requests to BMU,

usually in a batch. Similarly, the SDA surgeries each day are scheduled in advance,

and the number of bed-requests from SDA patients on a day is also pre-determined.

The SDA nurses submit bed-requests for SDA patients after they finish receiving

surgeries on each day. In addition, we understand that the EL admission process can

also be viewed as a two-step process in a similar way, although we do not observe

a batching phenomenon there. The elective admissions are pre-scheduled on a daily

basis, while within a day, when the elective patients arrive at the hospital and are
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(a) QQ plot (EL admission)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

emperical
theorical

(b) CDF plot (EL admission)
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(c) QQ plot (ICU-GW bed-request)
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(d) CDF plot (ICU-GW bed-request)
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(e) QQ plot (SDA bed-request)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

emperical
theorical

(f) CDF plot (SDA bed-request)

Figure 14: QQ plots and CDF plots of {Ri
j} from all intervals in Period 1

for the admission process of EL patients and the bed-request processes of
ICU-GW and SDA patients.
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(a) ICU-GW bed-requests

0−10 20−30 40−50 60−70 80−90 100−110 >120
0%

5%

10%

15%

20%

25%

30%

inter−bed−request time (minutes)

re
la

tiv
e 

fr
eq

ue
nc

y

(b) SDA bed-requests

Figure 15: Histograms of the inter-bed-request time for ICU-GW and SDA patients
using the combined data. The bin size is 10 minutes.

admitted depends on the patient and staff schedules.

Thus, there are two levels of randomness in the bed-request processes from ICU-

GW and SDA patients and in the EL admission process: (i) the number of bed-

requests or admissions each day, and (ii) when nurses submit bed-requests or when

(EL) patients are admitted within a day. Figure 16 plots the empirical distributions

of the daily number of bed-requests from ICU-GW and SDA patients and the daily

number of admissions from EL patients. From the figure, we see a two-peak shape

in the distributions of EL and SDA patients. The reason is that elective and SDA

surgeries are usually performed on weekdays, and few EL and SDA patients are

admitted on weekends. After we plot the daily number of admissions or bed-requests

for EL and SDA patients on weekdays and weekends separately, the two-peak shape

no longer appears.

For the second level of randomness, the empirical distributions of the admission

times for EL patients and bed-request times for ICU-GW and SDA patients can

be calculated from the corresponding hourly admission rate or bed-request rate in

Figure 13. In addition, we plot in Figure 17 the histogram of the first admission

time each day for EL patients and the first bed-request time each day for ICU-GW
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and SDA patients. We can see that nurses usually submit the bed-requests for ICU-

GW and SDA patients in the morning, while most EL patients are admitted in the

afternoon.

2.5 Length of Stay

In this thesis, the length of stay (LOS) of an inpatient is defined as the number of

nights the patient stays in the hospital, or equivalently, day of discharge minus day of

admission. In this section, we present empirical statistics of LOS in the two periods.

We first show the LOS distributions for all patients in Section 2.5.1. In Sections 2.5.2

and 2.5.3, we demonstrate that the LOS distribution depends on patient admission

source, speciality, and admission time. In Section 2.5.4, we compare the average LOS

between overflow patients and right-siting patients. Finally, in Section 2.5.5, we test

the iid assumptions among patient LOS.

We want to emphasize three points before starting the subsections. First, LOS is

a different concept from service time, which refers to the duration between patient

admission time and discharge time. A patient’s LOS takes only integer values, while

service time can take any real values. But LOS constitutes the majority of service

time, and the difference between the two is usually a few hours only. In Chapter 3,

we will show that a critical feature for our proposed stochastic networks is the new

service time model, in which a patient’s service time is no longer modeled as an

exogenous iid random variable, but an endogenous variable depending on LOS and

other factors. Second, our definition of LOS is consistent with the definition adopted

by most hospitals and the medical literature, except for same-day discharge patients.

We assume the LOS of same-day discharge patients is zero, while most hospitals

adjust their LOS to be 1 for billing purposes (see, for example, the National Hospital

Discharge Survey [68, 28]). Third, for all the reported statistics in this section, we

include in the samples only patients who did not transfer to ICU-type wards after
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(c) SDA bed-requests

Figure 16: Histograms of the daily
number of admissions for EL patients
and daily number of bed-requests for
ICU-GW and SDA patients using Pe-
riod 1 data.
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(c) SDA bed-requests

Figure 17: Histograms of the first ad-
mission time each day for EL patients
and the first bed-request time each
day for ICU-GW and SDA patients.
Period 1 data is used. The bin size is 30
minutes.
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their initial admission to GWs. Transfer patients have different LOS distributions,

and we will discuss them in Section 2.8.2.

2.5.1 LOS Distribution

Figure 18a plots the LOS distributions in two periods with the cut-off value at 30

days. The means (without truncation) for Periods 1 and 2 are 4.55 and 4.37 days,

respectively. The coefficients of variations (CVs), which is defined as the standard

deviation divided by the mean, are 1.28 and 1.29, respectively. More than 95% of

the patients have LOS between 0 and 15 days in both periods. The two distributions

are both right-skewed. About 0.78% and 0.73% of the patients stay in NUH for more

than 30 days in Periods 1 and 2, respectively, although the average LOS is only about

4.5 days for both periods. The maximum LOS is 206 days for Period 1 and 197 days

for Period 2. Tables 27 and 28 in Appendix A.4 show the numerical values of the

empirical LOS distributions and the tail frequencies of LOS after 30 days for the two

periods.

From the figures and tables, we can see there is little difference in the LOS distri-

butions between Periods 1 and 2. We now use the combined data of the two periods

to report statistics in the next few subsections. Figure 18b plots the empirical LOS

distribution curve from the combined data, which visually resembles a log-normal

distribution (with mean 4.65 and standard deviation 4).

2.5.2 AM- and PM-patients

Empirical evidence suggests that ED-GW patients’ LOS depends on admission times.

Figure 19a plots the average LOS for ED-GW patients admitted during each hour

(using combined data). We observe that patients admitted before 10am have similar

average LOS, and so are patients admitted after 12 noon. There is also a spike

from 10am to noon. Given these interesting features, we categorize ED-GW patients

into two groups: those admitted before noon, and those admitted after noon. For
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Figure 18: LOS distributions in Periods 1 and 2.

convenience, from now on we refer to them as ED-AM patients and ED-PM patients,

respectively.

Figure 19b also provides the admission time distributions of the four admission

sources. Around 69% of the ED-GW patients, 95% of the EL patients, 94% of the

ICU-GW patients, and 92% of the SDA patients are admitted after noon. This

suggests that for the purpose of comparing the differences of LOS between AM and

PM admissions, we should focus on ED-GW patients, since patients from other sources

comprise a very small portion of those admitted before noon.

The LOS distributions for ED-AM patients and ED-PM patients are substantially

different. Figure 20a plots their LOS distributions with the cut-off value of 20 days.

The sample size of ED-PM patients is 2.2 times that of ED-AM patients. Note that

around 11% to 13% of the ED-AM patients are same-day discharge patients (i.e.,

those with LOS=0), whereas nearly 0% of the ED-PM patients are discharged same

day in the two periods. Tables 29 in Appendix A.4 lists the total sample sizes and

numerical values of the LOS distributions for ED-AM and ED-PM patients.
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Figure 19: Average LOS with respect to admission time. The combined data
is used.
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Figure 20: LOS distribution for ED-AM and ED-PM patients.

One-day difference

Close examination reveals a difference of about one day between the average LOS for

ED-AM and ED-PM patients. Using combined data, the average LOS is 3.60 days

for all ED-AM patients and 4.66 days for all ED-PM patients. In fact, the two LOS

distributions in Figure 20a are similar in shape when we do a shift. Figure 20b shows

the comparison between the LOS distribution for ED-PM patients and the shifted

LOS distribution for ED-AM patients, where the shifted distribution means that we

shift the LOS distribution to the right-hand side of x-axis by 1 (e.g., value 1 in the

shifted distribution corresponds to value 0 in the original distribution for ED-AM

patients). We omit ED-PM patients with LOS=0 in Figure 20b due to the negligible

proportion, so the plots start from value 1. After the shift, the two distribution

curves are indeed close. Furthermore, the one-day difference in average LOS between

ED-AM and ED-PM patients persists when we look into each specialty; see Table 6

in Section 2.5.3 below.

We speculate a potential reason for the one-day difference between ED-AM and

ED-PM patients is staff schedules, i.e. most tests, consulting, and treatment occur
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between 7am and 5pm (the regular working hours). ED-AM patients can be sub-

jected to these tests and treatment since most of them are admitted in early morning

(before 6am), whereas ED-PM patients must wait until the following day since most

admissions are after 4pm. In Appendix A.4, we use two hypothetical scenarios to

further illustrate this speculation.

2.5.3 LOS distributions according to patient admission source and spe-
cialty

Table 6 reports the average and standard deviation of the LOS for each specialty

and for each admission source in Periods 1 and 2. From the table, we can clearly see

that the average LOS is both admission-source and specialty dependent. Moreover,

consistent with Section 2.5.2, the one-day difference in average LOS between ED-AM

and ED-PM patients exists across all specialties. Using the combined data, we plot

the LOS distributions for each specialty and for each admission source in Figure 21.

From Table 6 and the figures, we observe the following:

1. Comparing across specialties, Oncology, Orthopedic and Renal patients record

a longer average LOS. Surgery and Cardiology patients demonstrate a shorter

average LOS. The LOS distributions of each specialty exhibit a similar shape,

which resembles a log-normal distribution. Oncology and Renal patients tend

to have a longer tail. Both have a high proportion of patients staying longer

than 14 days (9.93% for Oncology, and 7.59% for Renal, compared with 4.95%

for all patients). The Coefficients of Variation (CV) for most combinations of

specialty and admission source are between 1 and 2 in both periods. ICU-GW

patients from specialties belonging to the Medicine cluster show a large CV

(e.g., General Medicine, Respiratory), due to their small sample sizes.

2. Comparing across all admission sources, SDA patients in general have a shorter

average LOS (about 2-3 days); ICU-GW patients, however, have a much longer
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Table 6: Average LOS for each specialty and each admission source. The
LOS is measured in days. The number in each parentheses is the standard deviation
for the corresponding average.

Cluster Period ED-GW(AM) ED-GW(PM) EL ICU-GW SDA

Surg 1 2.36 (2.93) 3.27 (3.43) 4.55 (6.55) 9.58 (12.60) 2.59 (4.72)
2 2.37 (3.04) 3.25 (3.40) 4.71 (6.11) 10.12 (13.32) 3.63 (8.09)

Card 1 2.95 (3.75) 3.83 (3.93) 4.15 (5.08) 5.22 (6.78) 2.55 (3.38)
2 3.02 (3.93) 4.01 (4.68) 4.15 (5.64) 5.15 (7.47) 2.75 (4.26)

Gen Med 1 3.94 (4.76) 5.25 (5.87) 5.32 (5.79) 10.43 (18.43) 3.17 (2.62)
2 4.09 (5.41) 5.24 (5.35) 5.47 (6.20) 8.82 (13.69) 3.15 (2.26)

Ortho 1 5.45 (8.22) 6.04 (7.04) 6.27 (6.19) 10.82 (13.32) 3.41 (4.32)
2 3.27 (4.52) 4.65 (5.64) 6.15 (7.04) 13.49 (13.82) 4.62 (6.49)

Gastro 1 3.32 (3.91) 4.48 (4.47) 3.70 (4.39) 8.33 (12.25) 3.24 (3.99)
2 3.51 (6.14) 4.18 (5.10) 3.55 (3.32) 6.97 (8.76) 3.27 (5.24)

Onco 1 5.93 (7.58) 7.03 (7.14) 6.45 (7.95) 8.62 (9.02) 4.10 (4.18)
2 5.56 (6.15) 6.62 (6.69) 6.32 (8.22) 7.65 (9.06) 4.38 (5.40)

Neuro 1 3.23 (5.22) 4.07 (4.69) 4.06 (4.69) 7.56 (7.67) 2.59 (2.40)
2 2.98 (6.69) 3.51 (4.52) 4.50 (4.77) 9.16 (11.85) 2.45 (1.85)

Renal 1 5.75 (6.55) 6.51 (6.90) 5.70 (6.20) 10.22 (12.91) 2.08 (1.16)
2 4.63 (6.56) 5.40 (6.01) 5.06 (5.80) 8.65 (12.20) 3.30 (3.27)

Respi 1 3.21 (5.10) 4.29 (4.26) 4.45 (6.27) 7.86 (10.71) 2.33 (3.33)
2 2.89 (3.65) 4.28 (4.27) 3.68 (3.81) 7.36 (9.70) 3.43 (2.07)

All 1 3.70 (5.25) 4.78 (5.45) 5.17 (6.47) 7.59 (10.82) 2.84 (4.29)
2 3.46 (5.10) 4.48 (5.11) 5.11 (6.57) 7.62 (10.77) 3.66 (6.63)
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(b) Cardiology
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(c) General Medicine
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(d) Orthopedic
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(e) Gastro-Endo
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(f) Oncology
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(h) Renal
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(i) Respiratory

Figure 21: LOS distributions of each specialty. In each plot, ED-AM and ED-
PM patients are aggregated under the group “ED”; ICU-GW and SDA patients are
aggregated under the group “Other”. The combined data is used.
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average LOS than patients from other sources for most specialties. Comparing

EL and ED-GW patients, we find that EL patients tend to have a longer average

LOS than ED-GW for most specialties.

3. Comparing between the two periods, most specialties show similar average LOS

for the two periods with two exceptions. Renal patients show a significant de-

crease in average LOS (a reduction of about 1 day) in Period 2 for all admission

sources except SDA patients. Orthopedic also shows a significant reduction in

the average LOS for ED-GW patients. In particular, there were fewer long-stay

patients in Period 2 from these two specialties indicated by our tail distribution

plots (figures omitted here).

The heterogeneity of LOS among specialties is expected, since the underlying med-

ical conditions for patients from different specialties are markedly different. Moreover,

the patient admission source also influences the average LOS. In particular, we note

that the average LOS of EL patients is longer than that of ED-GW patients from

Surgery, Cardiology, and Orthopedic. This is somewhat counter-intuitive, since ED-

GW patients generally have more urgent and complicated conditions than EL patients

and need longer treatment time. One possible explanation is that most EL patients

(from these specialties) undergo surgical procedures during their stay, but their prior-

ity in surgery scheduling is lower than that of ED-GW patients. EL patients usually

are admitted at least one day earlier before the day of surgery, while ED-GW patients

may have their surgeries done on the same day of admission due to the urgency. We

note that hospitals in other countries report similar dependency of average LOS on

admission sources (ED-admitted patients have shorter LOS than elective patients),

e.g., UK [112]. However, some studies also report shorter average LOS for elective

patients, e.g., Canada (see Page 14 of [21]) and US [17, 76]. The difference could

probably be the result of financial incentives and related factors in place.
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2.5.4 LOS between right-siting and overflow patients

As introduced in Section 2.3, NUH sometimes overflows patients to non-primary

wards. We call a patient who is assigned to a non-primary ward an overflow patient,

otherwise a right-siting patient. In this section, we compare the LOS between right-

siting and overflow patients.

Considering the dependence of LOS on admission source and specialty, Table 7

compare the average LOS for right-siting and overflow patients for each specialty and

admission source (and admission period for ED-GW patients). Specialties belonging

to the Medicine cluster are aggregated to get a more reliable estimation (with a larger

sample size). From the table, we observe that the average LOS are close between right-

siting and overflow patients for Medicine, Surgery, and Cardiology. Overflow patients

from Orthopedic show a longer average LOS than that of right-siting patients for each

admission source with the exception of SDA. In contrast, Oncology overflow patients

show a shorter average LOS than that of right-siting patients. However, given the

sample sizes of Orthopedic and Oncology overflow patients are small (as well as the

high standard deviation), we cannot definitively conclude that overflow patients have

a significant longer or shorter LOS than right-siting patients.

2.5.5 Test iid assumption for LOS

In this section, we test whether it is reasonable to assume the patients’ LOS are iid

random variables. Similar to the previous section, we test the iid assumption for each

admission source and medical specialty (and admission period for ED-GW patients).

We use the Period 1 data for the tests.

Test the identically distributed assumption

To test whether the LOS within a patient class are identically distributed, we further

separate the Period 1 data into 6 groups. Each group containing the LOS of patients

admitted within one of the six quarters in Period 1 (one and half years in total). We
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Table 7: Average LOS for right-siting and overflow patients. Period 1 data is
used. Numbers in parentheses are standard deviations. Specialties belonging to the
Medicine cluster are aggregated for a larger sample size.

Cluster Source right-siting overflow
# ALOS # ALOS

ED-AM 2010 3.45 (4.09) 2325 3.05 (4.15)
ED-PM 6360 4.61 (4.95) 4296 4.56 (4.87)

Med EL 952 3.86 (4.52) 605 4.62 (5.50)
ICU 756 7.08 (10.26) 779 6.64 (9.11)
SDA 274 3.01 (2.25) 229 2.30 (1.53)

ED-AM 1364 2.23 (2.55) 537 1.85 (2.21)
ED-PM 3040 3.04 (2.87) 590 3.04 (2.83)

Surg EL 1642 4.21 (6.23) 296 4.37 (5.37)
ICU 869 7.65 (9.02) 53 8.87 (6.83)
SDA 1894 2.26 (3.00) 281 2.12 (1.96)

ED-AM 590 2.77 (3.08) 693 2.67 (3.54)
ED-PM 1653 3.70 (3.65) 1550 3.57 (3.62)

Card EL 710 3.70 (3.65) 509 4.16 (5.25)
ICU 1332 3.95 (4.73) 237 4.27 (3.98)
SDA 459 1.92 (1.97) 249 2.08 (2.38)

ED-AM 971 4.62 (6.18) 155 6.55 (10.57)
ED-PM 2363 5.53 (6.41) 488 6.46 (7.93)

Ortho EL 1041 5.57 (4.90) 195 7.59 (7.55)
ICU 62 8.53 (9.59) 19 11.63 (18.79)
SDA 906 3.17 (3.03) 139 2.96 (2.42)

ED-AM 249 5.69 (7.35) 73 2.99 (2.83)
ED-PM 645 6.81 (7.15) 171 4.09 (4.15)

Onco EL 1348 6.10 (7.64) 214 4.35 (7.10)
ICU 148 7.43 (6.53) 19 6.89 (8.90)
SDA 7 3.43 (2.64) 2 1.50 (0.71)
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denote the 6 groups as 08Q1, 08Q2, 08Q3, 08Q4, 09Q1, and 09Q2, respectively, We

use the quarter setting since it allows us to conduct a modest number of tests for

each combination of admission source and specialty and meanwhile ensures enough

sample points within each group.

Our null hypothesis is that the samples (LOS) from two consecutive quarter-groups

follow the same distribution, and we adopt the χ2-test to test the null hypothesis (see

Test 43 in [84]). Table 8 lists the values of the test statistics and the critical value at

the significance level 5% for the five groups of tests in each patient class. Note that

the sample points for Oncology SDA patients are too few to conduct reliable tests.

Thus, we do not perform the tests for them and we leave the entries belonging to the

Oncology SDA group blank in the table. We can see that among the 120 performed

tests, the majority of them cannot reject the null hypothesis (with the test statistics

less than the critical values). The only two exceptions are highlighted in red. These

test results indicate that it is reasonable for us to assume the LOS are identically

distributed within a patient class.

Test the independence assumption

We adopt a nonparametric test proposed in [30] to investigate the serial dependence

of the LOS. We focus on testing the dependence between the LOS of two patients

admitted consecutively. The main idea of this test is to examine whether the L1

distance between the estimates of the samples’ joint density and the estimates of the

product of individual marginals is small enough. Because under the null hypothesis

of independence, the joint density of the samples should be equal to the product of

the individual marginals.

Similar to what we did for the identically distributed assumption, we test the

serial dependence for LOS within each quarter-group of each combination of admission

source and specialty (and admission period for ED-GW patients). Table 9 lists the
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Table 8: Results of the χ2-tests for testing the identically distributed as-
sumption for LOS. In the table, ts denotes for test statistics, and cv denotes for
critical values at the significance level 5%. The samples for Oncology SDA patients
are too few to conduct reliable tests, and the corresponding entires are left blank.
Specialties belonging to the Medicine cluster are aggregated for a larger sample size.

Cluster Data
ED-AM ED-PM EL SDA ICU

ts cv ts cv ts cv ts cv ts cv

Med

08Q1 vs. 08Q2 29.64 46.19 42.74 59.30 32.71 36.42 13.35 19.68 42.84 48.60
08Q2 vs. 08Q3 27.69 43.77 47.02 60.48 29.70 44.99 16.36 21.03 38.79 51.00
08Q3 vs. 08Q4 26.51 43.77 63.69 62.83 23.96 43.77 10.24 22.36 47.71 53.38
08Q4 vs. 09Q1 24.04 40.11 39.91 61.66 14.17 35.17 9.02 19.68 52.34 53.38
09Q1 vs. 09Q2 33.01 43.77 47.85 58.12 17.61 36.42 10.62 21.03 30.46 54.57

Surg

08Q1 vs. 08Q2 15.69 28.87 14.24 31.41 40.93 40.11 23.31 28.87 46.23 49.80
08Q2 vs. 08Q3 18.89 28.87 33.56 37.65 28.73 38.89 21.50 28.87 30.96 47.40
08Q3 vs. 08Q4 17.09 26.30 33.49 40.11 30.73 41.34 20.73 31.41 43.34 51.00
08Q4 vs. 09Q1 20.52 31.41 23.68 37.65 32.65 43.77 24.44 37.65 42.85 52.19
09Q1 vs. 09Q2 22.83 31.41 23.25 35.17 28.47 40.11 23.48 35.17 31.26 52.19

Card

08Q1 vs. 08Q2 27.61 31.41 39.46 41.34 20.26 38.89 11.12 21.03 23.18 41.34
08Q2 vs. 08Q3 20.97 31.41 30.67 41.34 31.04 41.34 10.00 21.03 16.05 37.65
08Q3 vs. 08Q4 17.31 31.41 18.69 40.11 29.35 37.65 7.69 23.68 18.70 37.65
08Q4 vs. 09Q1 23.32 31.41 18.78 40.11 23.42 31.41 10.16 23.68 23.99 38.89
09Q1 vs. 09Q2 22.47 30.14 24.97 41.34 20.89 33.92 10.87 19.68 29.64 41.34

Ortho

08Q1 vs. 08Q2 35.24 47.40 38.26 58.12 20.60 44.99 11.04 27.59 18.00 25.00
08Q2 vs. 08Q3 32.67 43.77 48.98 58.12 23.21 43.77 20.74 27.59 9.25 23.68
08Q3 vs. 08Q4 25.74 41.34 32.36 54.57 24.60 42.56 20.03 28.87 13.85 26.30
08Q4 vs. 09Q1 21.20 42.56 48.95 55.76 22.99 40.11 19.17 26.30 9.64 22.36
09Q1 vs. 09Q2 32.88 38.89 42.71 53.38 23.68 40.11 11.31 23.68 16.62 27.59

Onco

08Q1 vs. 08Q2 13.69 26.30 24.35 44.99 38.87 52.19 28.64 30.14
08Q2 vs. 08Q3 15.33 32.67 25.61 42.56 36.85 48.60 13.50 30.14
08Q3 vs. 08Q4 16.27 32.67 26.96 43.77 48.19 52.19 25.05 31.41
08Q4 vs. 09Q1 15.34 32.67 27.87 41.34 37.92 48.60 17.27 28.87
09Q1 vs. 09Q2 21.51 36.42 27.31 42.56 27.89 47.40 11.43 27.59
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values of the test statistics and the critical value at the significance level 5% for all

the 144 tests we have done. Again we do not perform the tests for the Oncology

SDA patients because of the small sample size. From the table, we can see that

the majority of the tests cannot reject the null hypothesis of independence (with the

test statistics less than the critical values). The seven exceptions are highlighted in

red. These test results indicate that it is reasonable for us to assume the LOS are

independent within a patient class.

2.6 Service times

In this section, we present empirical findings on patient service times, which motivate

our new service time model to be introduced in Chapter 3. As mentioned in the

previous section, LOS constitutes the majority of a patient’s service time, and it is

natural that service time is also specialty- and admission-source-dependent. Thus,

in this section we focus on service time distributions for all patients (from all admis-

sion sources and specialties). We first show service time distributions at both hourly

and daily resolutions in Section 2.6.1 and observe a clustering phenomenon under

the hourly resolution. Then in Section 2.6.2, we take a closer look at the residual

distribution of service time to explain the clustering phenomenon. The samples for

statistics reported in this sections are the same as those used in reporting LOS distri-

butions, i.e., we exclude transfer patients who transfer to ICU-type wards after their

initial admissions to GWs.

2.6.1 Service time distribution

Hourly resolution

Like LOS distributions, the service time distributions for the two periods are not

significantly different. Therefore, we plot them using the combined data. Figure 22a

shows the histogram of the service time for all patients. The bin size is 1 hour, and

each green line on the horizon axis represents a 24-hour (1 day) increment.
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Table 9: Results of the nonparametric tests for testing the serial dependence
among patient LOS. In the table, ts denotes for test statistics, and cv denotes for
critical values at the significance level 5%. The samples for Oncology SDA patients
are too few to conduct reliable tests, and the corresponding entires are left blank.
Specialties belonging to the Medicine cluster are aggregated for a larger sample size.

Cluster Data
ED-AM ED-PM EL SDA ICU

ts cv ts cv ts cv ts cv ts cv

Med

08Q1 0.367 0.357 0.285 0.288 0.539 0.573 0.519 0.615 0.819 0.848
08Q2 0.375 0.382 0.250 0.269 0.609 0.631 0.346 0.440 0.749 0.735
08Q3 0.325 0.379 0.237 0.270 0.614 0.641 0.484 0.602 0.739 0.799
08Q4 0.262 0.332 0.248 0.269 0.539 0.586 0.429 0.547 0.807 0.844
09Q1 0.348 0.327 0.229 0.257 0.507 0.538 0.437 0.581 0.871 0.894
09Q2 0.320 0.360 0.250 0.262 0.479 0.541 0.515 0.603 0.726 0.775

Surg

08Q1 0.271 0.332 0.231 0.276 0.362 0.434 0.195 0.234 0.954 0.978
08Q2 0.404 0.397 0.238 0.292 0.467 0.505 0.175 0.220 0.878 0.990
08Q3 0.308 0.399 0.283 0.316 0.459 0.500 0.159 0.238 0.927 1.008
08Q4 0.327 0.353 0.284 0.324 0.557 0.589 0.253 0.315 0.951 1.040
09Q1 0.357 0.374 0.294 0.317 0.454 0.518 0.419 0.368 1.150 1.216
09Q2 0.337 0.366 0.225 0.286 0.535 0.565 0.279 0.314 1.035 1.144

Card

08Q1 0.359 0.446 0.352 0.355 0.557 0.668 0.259 0.290 0.547 0.551
08Q2 0.524 0.548 0.391 0.382 0.585 0.602 0.221 0.300 0.416 0.465
08Q3 0.507 0.552 0.361 0.362 0.526 0.591 0.296 0.366 0.420 0.532
08Q4 0.401 0.493 0.302 0.342 0.397 0.515 0.293 0.442 0.453 0.493
09Q1 0.359 0.438 0.296 0.348 0.503 0.586 0.228 0.416 0.518 0.594
09Q2 0.407 0.466 0.320 0.338 0.501 0.533 0.400 0.467 0.396 0.465

Ortho

08Q1 0.770 0.826 0.547 0.612 0.668 0.745 0.458 0.532 2.000 2.000
08Q2 0.865 0.953 0.599 0.618 0.752 0.803 0.395 0.461 1.736 1.750
08Q3 0.691 0.726 0.572 0.592 0.607 0.711 0.422 0.444 1.560 1.590
08Q4 0.747 0.829 0.550 0.550 0.739 0.807 0.469 0.588 1.391 1.529
09Q1 0.756 0.795 0.514 0.546 0.806 0.796 0.447 0.494 1.636 1.686
09Q2 0.646 0.651 0.461 0.519 0.848 0.870 0.464 0.543 1.728 1.778

Onco

08Q1 0.877 1.078 0.901 0.963 0.647 0.708 1.237 1.332
08Q2 1.272 1.373 1.080 1.097 0.713 0.765 1.264 1.420
08Q3 1.092 1.099 0.898 1.025 0.701 0.709 1.667 1.682
08Q4 0.982 1.047 0.804 0.906 0.653 0.687 1.617 1.672
09Q1 1.272 1.300 0.882 0.934 0.678 0.746 1.723 1.756
09Q2 1.085 1.213 0.927 0.945 0.700 0.727 1.293 1.410
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service times from both periods; each green
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Figure 22: Distribution of service times in two time resolutions.

This histogram demonstrates some unique features. First, most of the data points

“cluster” around the integer values (the green lines), with multiple peaks appearing at

integer values which represent Day 1, Day 2, . . . . In fact, such clustering phenomenon

has been observed in other hospitals using the same 1-hour time resolution; see, for

example, [5]. Second, we note that connecting the peak points gives a curve with

a shape similar to the LOS distribution in Figure 18a. This indicates that there is

a strong dependence between service time and LOS, although they are two different

concepts.

Daily resolution

Figure 22b plots the histogram of the service times using the combined data, but

in daily resolution, i.e., the bin size is 1 day. Like the LOS distribution, this plot

resembles a log-normal distribution, which is consistent with the observations from [5].

However, Figure 23 shows that the LOS distribution and the day-resolution service

time distribution can be significantly different.
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Figure 23: LOS and day-resolution service time distributions for General
Medicine patients. The combined data is used.

2.6.2 Residual distribution

To better understand the clustering phenomenon in service time distribution under

hourly resolution (see Figure 22), we focus on the distribution pattern around the

integer values. We use bxc to denote the floor of a real number x, i.e., the largest

integer value r that is smaller than or equal to x. Using the time unit of day, we

define the residual of service time S as

res(S) = S − bSc. (2)

In the rest of this thesis, we always use the time unit of day for service time and

residual, unless otherwise specified.

Figure 24a shows the empirical distributions of residuals in Periods 1 and 2.

Clearly, the distributions are both U -shaped, with most residuals beging close to

0 (or 1 from periodicity). In fact, in both periods, more than 65% of the residuals

are located between 0.58 and 1 day, and another 9% are located between 0 and 0.1

day. Since bSc takes integer values, this U -shape residual distribution results in the

clustering phenomenon we observe in Figure 22.

We now show the relationship between res(S) and admission/discharge time and

explain why the residual distribution has such U -shape. Let Tadm and Tdis be the
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admission time and discharge time of a patient, respectively (all in the unit of days).

We then have

res(S) = S − bSc

= Tdis − Tadm − b(Tdis − Tadm)c

= (Tdis − bTdisc − (Tadm − bTadmc)) mod 1, (3)

where for two real numbers x and y 6= 0, x mod y = x− bx/yc · y.

The time-of-day distributions of admission and discharge (i.e., distributions of

Tadm−bTadmc and Tdis−bTdisc) jointly determine the residual distribution. We know

that the majority of patients (more than 60%) are admitted between 2pm and 10pm

(see Figure 19b), and discharged between noon and 4pm (see Figure 2) each day.

Thus, the admission hour (Tadm − bTadmc) is mostly distributed between 0.58 and

0.92 day, and the discharge hour (Tdis−bTdisc) is mostly distributed between 0.5 and

0.67 day. According to (3), the residual should mostly be distributed between 0.58 and

1 day, with some distributed between 0 and 0.09 day. This matches our observation

from Figure 24a. In summary, since most admissions occur after previous discharges,

the residual is close to 0 (or 1 from periodicity) and thus leads to the clustering

phenomenon in the service time distribution.

Next, we present additional empirical findings on the residual distribution.

Independence on the value of bSc

We examine whether the residual distribution depends on the value of bSc. Figure 24b

shows the histogram of the residuals conditioning on the values of bSc with Period

1 data. The bin size is 1 hour. Except for the case conditioning bSc = 0, the

conditional residual distributions look similar and they resemble the aggregated one

(the blue one) in Figure 24a. We observe the same phenomenon when we plot the

conditional residual histogram using Period 2 data.
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Figure 24: Empirical distribution of the residual of service time. The bin size
is 0.02 day (30 minutes).

When bSc = 0, the conditional distribution curve is significantly different from

other conditional distributions. This difference, which can also be explained using

(3), is mainly due to the admission and discharge distributions of same-day discharge

patients (see Figure 25), which are very different from those of other patients.
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Figure 25: Admission time and dis-
charge time distributions for same-
day discharge patients. The combined
data is used.
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Residual distribution for AM and PM admissions

Recall that in Section 2.5.2, we find that the average LOS of ED-AM and ED-PM

patients almost differ by 1 day. The service time, however, shows less difference

between ED-AM and ED-PM patients. The average service times are 4.15 and 3.89

days for ED-AM patients, and 4.61 and 4.30 days for ED-PM patients in Periods 1

and 2, respectively. Thus, the difference in the average service times is about 0.25

to 0.31 day (around 6-7 hours) between ED-AM and ED-PM patients, less than the

one-day difference in the average LOS.

Moreover, we find that the difference in the average service time mainly comes

from the difference in the residual distribution between ED-AM and ED-PM patients.

Figure 26 shows the residual distributions between ED-AM and ED-PM patients,

which are significantly different. The reason can still be explained by (3). The

majority of ED-AM patients (around 60%) are admitted between midnight and 4am

(see Figure 19b) and discharged between noon and 4pm (see Figure 2), thus, their

residuals are mostly distributed between 0.33-0.5 day, matching the blue curve in

Figure 26; while the majority of ED-PM patients are admitted between 2pm and

10pm and discharged between noon and 4pm, so the residual distribution is close to

the aggregated one in Figure 24a. The empirical distributions of bSc for ED-AM and

ED-PM patients, on the other hand, are close to each other.

2.7 Pre- and post-allocation delays

In this section, we take a closer look at the ED to wards transfer process and under-

stand the bottlenecks within this transfer process. Often, the inpatient bed unavail-

ability is regarded as a major bottleneck within the transfer process; while in this

section, we show that secondary bottlenecks, such as the unavailability of physicians,

ward nurses and ED porters, also have a significant effect on the waiting time of

ED-GW patients. We first provide a comprehensive description of the process flow of
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Figure 27: Process flow of the transfer from ED to GW.

a typical patient transfer from ED to a GW in Section 2.7.1. This process flow mo-

tivates us to separate an ED-GW patient waiting time into two parts: pre-allocation

delay and post-allocation delay (see Section 2.7.2). We use the two allocation delays

to capture delays caused by secondary bottlenecks. Finally in Section 2.7.3, we show

empirical distributions for the two allocation delays.

2.7.1 Transfer process from ED to general wards

When a patient finished receiving treatment in ED and physicians decide to admit

him/her, ED nurses send a bed-request to the bed management unit (BMU) for this

patient. Then BMU staff initiate bed search and allocate an appropriate bed for the

patient. After a bed is allocated, ED confirms the bed allocation and then transfers

the patient to the allocated bed. Figure 27 illustrates an example of the process flow

for transferring an ED-GW patient to a GW. In the next two subsections, we give

detailed explanation of this figure and describe (i) the bed allocation process and (ii)

the discharge process from ED after bed allocation.

Bed allocation process

At NUH, the BMU controls all types of inpatient bed allocations (including bed

allocation for ED-GW patients) during the day time, from 7am to 7pm. During the

night, a nurse manager is in charge of all bed allocations. The allocation process for

a bed-request from an ED-GW patient usually has four steps:
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1. After BMU receives the bed request, one of the BMU staff makes a tentative

bed allocation, trying to match all the criteria for the patient, such as gender,

medical specialty, class of bed.

2. The staff member then checks/negotiates with the ward nurses who are in charge

of the allocated bed in order to secure acceptance. If the ward nurses reject the

request, then the staff member has to make another tentative allocation and

repeats the negotiation process until one ward agrees to accept the patient.

3. Once a ward accepts the patient, BMU notifies the ED nurses about the bed

allocation and waits for ED’s confirmation. Usually, ED confirms the alloca-

tion. But sometimes the bed requirements might change because the patient’s

medical condition changes. Under such circumstances, ED cannot confirm the

bed allocation and has to submit a new bed-request to BMU. BMU then repeats

steps 1 and 2 to effect a new allocation.

4. After ED’s confirmation, the bed is officially allocated to the patient.

The bed allocation process is similar for elective and internal transfer patients, except

that when the receiving ward agrees to accept the incoming patient, the bed allocation

is confirmed via other ways (no longer through ED nurses).

In the last step, when a bed is allocated to the patient, the allocated bed may be

in different status: still occupied by the patient who is going to discharge soon, or in

cleaning, or ready to be used. The bed can be allocated to a patient even if it is still

being occupied because BMU allocates beds based on two types of bed information:

(i) Real-time information: BMU has the status of all inpatient beds in real-time,

e.g., whether a bed is currently vacant, being cleaned, or being occupied;

(ii) “Planned” discharged information: BMU also has access to the planned dis-

charge information, allowing its staff to know which patients are going to be
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discharged today. The planned discharge information also includes the ward

nurses’ estimate of the expected discharge time for each planned discharge.

Thus, when the bed allocation is made from planned discharge information, the bed

can be allocated even before the bed becomes available (i.e., before the current occu-

pying patient discharges).

We note that the majority of time in the bed allocation process is spent on BMU

staff searching for appropriate beds and negotiating with ward nurses. In addition

to bed unavailability, insufficient number of BMU agents, especially during the peak

hours when a large number of bed requests are presented (usually from 1pm to 7pm),

can cause delay in the bed allocation process and thus become a bottleneck. Another

bottleneck comes from ward nurse unavailability, i.e., when nurses are busy with other

activities (e.g., doing morning rounds with physicians), they cannot communicate

with BMU staff to confirm bed-requests.

Discharging from ED and transfer to wards

When to start the ED discharge process for an ED-GW patient depends on the status

of his/her allocated bed. ED nurses monitor the real-time bed status via several big

screens in ED. If a ED-GW patient’s allocated bed is still being occupied, ED nurses

usually wait until the bed becomes available (and status changes to in clean) to start

the discharge process; otherwise, ED nurse starts to prepare the patient’s discharge

process immediately. It usually takes the following steps to discharge and transfer a

patient to a GW:

a) ED nurses ensure that all test results are complete and the patient needs no further

treatment in ED;

b) ED nurses check for vital symptoms to ensure patient’s medical stability;

c) ED physicians give written instructions for discharge from ED;
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d) ED arranges a porter (patient’s escort) and an ED nurse to transport the patient;

e) Ward nurses admit the patient to the allocated bed and complete the admission.

Delays can occur in each of the above steps even if the bed is ready to use. For

example, the patient cannot exit ED if his/her test results are not ready for release or

the patient is not medically stable. ED physicians or nurses may be busy attending

to other patients, and do not have time to prepare for the ED discharge. Similarly, if

ward nurses are busy, the patient cannot be admitted to bed. Moreover, porters may

not be available to transport patients, especially during peak hours. We see that ED

physicians, nurses, and porters may all become bottlenecks during the ED exit and

transfer process.

2.7.2 Pre- and post-allocation delays

From the previous section, we see the bed allocation process and the ED discharge

and transfer process are the two major processes prior to a ED-GW patient’s admis-

sion to a GW. Delays can not only be caused by bed unavailability, but also secondary

bottlenecks such as ED nurses and physicians. Thus, to understand the proportion

of delays caused by secondary bottlenecks in the entire waiting time of an ED-GW

patient, we use the bed-allocation time to divide the waiting time of an ED-GW pa-

tient into two parts: (i) pre-allocation delay : the duration from bed-request time to

bed-allocation time; and (ii) post-allocation delay : the duration from bed-allocation

time to admission time. We intend to use the pre-allocation delay to capture sec-

ondary bottlenecks in the bed-allocation process, and reflect the minimum amount of

time that BMU needs to search and negotiate a bed for an incoming patient. We use

the post-allocation delay to capture secondary bottlenecks in the ED discharge and

transfer process. Next, we show how we empirically estimate these two delays from

certain subgroups of patients and the empirical results.
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Estimate pre-allocation delay

Our intention is to use the pre-allocation delay to reflect the minimum amount of time

that BMU needs to search and negotiate a bed for an incoming patient. Thus, we

need to eliminate the effect of bed unavailability and other factors when estimating

the pre-allocation delay. For example, if there is no bed available upon a patient’s

bed-request time and no planned discharge information is available, BMU has to

wait until an appropriate bed becomes available to start the negotiation process.

When we estimate the pre-allocation delay, the ideal situation is to use the duration

from when BMU starts the actual bed searching process till the bed-allocation time.

Unfortunately, NUH data does not register any time stamp to reflect the start time

of the bed-allocation process. Thus, we impose the first condition to select patients

in our samples for estimating pre-allocation delay: the allocated bed is available before

the patient’s bed-request time.

Moreover, when BMU wants to overflow an incoming patient to a non-primary

ward, the staff may wait a few hours before starting the negotiation process in or-

der to control the overflow proportion. our empirical evidence also shows that the

negotiation process could take longer than allocating a primary bed (see details in

Section A.5 in the appendix). Thus, we impose the second condition to select patients

in the samples: the allocated bed comes from the primary ward for the patient. We

use these two conditions to eliminate the impact of bed unavailability and specialty

mismatch on the pre-allocation delay, so that our estimation could better reflect the

time that BMU needs to search and negotiate a bed. For the included ED-GW pa-

tients, their pre-allocation delay starts from the bed-request time and ends at the

bed-allocation time.
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Estimate post-allocation delay

For the post-allocation delay, since a bed may not be available upon the bed-allocation

time, we consider two scenarios to eliminate the impact of bed unavailability: (a)

if bed-available time (i.e., the discharge time of the previous patient occupying the

bed) is earlier than the bed-allocation time, the post-allocation delay starts from bed-

allocation time and ends at admission time; (b) otherwise, the post-allocation delay

starts from bed-available time and ends at admission time. All ED-GW patients are

included in the samples.

Note that we use the previous patient’s discharge time as the bed-available time

without taking the bed cleaning time into account. It is because bed cleaning generally

takes less than 20 minutes at NUH, and nurses usually start the ED discharge and

transfer process when bed is being cleaned. Section A.5 in the appendix provides

more empirical support.

Time-dependence

Figures 28a and 28b plot the empirical estimates of the mean and CV for the pre-

allocation and post-allocation delays, respectively. The empirical curves in Figure 28

clearly demonstrate a time-dependent feature of both allocation delays. The average

delays are longer if the delay initiation time is in the morning, especially for the pre-

allocation delay. The longer pre-allocation delay in the morning may stem mainly

from the ward side. At NUH the ward physicians and nurses are busy with morning

rounds, and therefore it may take the BMU longer time to search and negotiate for

beds. The longer post-allocation delay in the morning may stem mainly from the

ED side. The ED at NUH is usually congested in late mornings, so it is likely that

ED physicians and nurses are busy with newly arrived patients and have less time to

discharge and transfer admitted patients to wards.

73



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

A
ve

ra
ge

 (
ho

ur
)

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

3.5

4

C
V

 

 
empirical mean
empirical CV

(a) Pre-allocation delay
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(b) Post-allocation delay

Figure 28: Mean and CV of estimated pre- and post-allocation delays with
respect to the delay initiation hour. Left vertical axis is for the average; right
vertical axis is for the CV. The scale of the right vertical axis is deliberately chosen
to be large, so that the four curves are not crossed over.

2.7.3 Distribution of pre- and post-allocation delays

Figure 28 shows that the pre- and post-allocation delays depend on the delay ini-

tiation time. Thus, to estimate the distributions for the two allocation delays, we

group patients into several sub-groups according to the delay initiation hour, so that

within each sub-group, the averages of pre- or post-allocation delay for each of the

aggregated hours are close. For pre-allocation delay, we create 7 sub-groups: 1-3am,

3-5am, 11am-1pm, 1pm-3pm, 3pm-6pm, 6pm-9pm, and 9pm-1am (the next day).

For post-allocation delay, we create two sub-groups: 10am-2pm, and 2pm-5am (the

next day). These aggregations allow a moderate sample size for each sub-group. We

exclude patients whose pre-allocation delay initiates between 5am and 11am, and pa-

tients with post-allocation initiation times between 5am and 10am due to the small

sample sizes in these time intervals. Patients selected in the samples satisfy the same

conditions as we mentioned above.

Figure 29a shows empirical distributions for selected pre-allocation sub-groups,

and Figure 29b shows empirical distributions for two post-allocation sub-groups. We

observe that all the plotted distributions resemble log-normal distributions. Plots for
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Figure 29: Empirical distributions of allocation delays. Bin size is 0.2 hour (12
minutes).

some other time intervals have a similar shape.

To test the reasonableness of the log-normal assumption, we perform log-transformation

on the data points in each sub-group (for both allocation delays). Figures 30a and 31a

show the Q-Q plot of the log-transformed data against normal distribution for the

selected sub-groups. Figures 30b and 31b show histograms of the log-transformed

data and fitted normal distributions. The figures suggest that the normal distribu-

tion curves are visually close to the empirical distribution curves. We observe similar

features when analyzing the log-transformed data for other sub-groups. Although

the fitting results cannot pass rigorous statistical tests (e.g., K-S test), these figures

indicate that the log-normal assumption for pre- and post-allocation delays is still

reasonable and is a good starting point for building models.

2.8 Internal transfers

Patients may go through one or more internal transfers after their initial admissions to

GWs. Since we focus on GWs, we mainly consider two types of transfers: transfers be-

tween GWs and non-GWs (mostly ICU-type wards), and transfers between two GWs.

In this section, we conduct empirical analyses on patients who have gone through at
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(b) Histogram and fitting with a normal
distribution with mean 0.066 and std 0.96

Figure 30: Fitting the log-transformed data for pre-allocation delay. The
delay-initiation time between 11 am and 1 pm.
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(b) Histogram and fitting with a normal
distribution with mean 0.093 and std 0.60

Figure 31: Fitting the log-transformed data for post-allocation delay. The
delay-initiation time between 10 am and 2 pm.
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least one such transfer after the initial admissions. We first given an overview of all

transfer patients in Section 2.8.1 with a focus on ED-GW and EL transfer patients.

Then in Section 2.8.2, we show empirical results for patients transferred between

GWs and ICU-type wards. Finally in Section 2.8.3, we focus on patients transferred

between two GWs, including those who are initially admitted to a non-primary ward,

and then transferred to a primary ward.

2.8.1 Overall statistics on internal transfers

Out of the total 94786 general patients admitted in Periods 1 and 2, 79687 (84%)

patients have not been transferred after their initial admissions. The remaining 14840

patients (16%) have gone through at least one transfer. We call patients who has been

transferred at least once the transfer patients.

Table 10 shows the proportion of transfer patients for each admission source and

for each specialty. Clearly, the proportion of transfer patients depends on both the ad-

mission source and specialty. Comparing across admission sources, SDA patients have

the smallest proportion of transfer patients (except Oncology). Comparing across spe-

cialties, Cardiology and Surgery have the highest proportion of EL transfer patients,

whereas Oncology and Renal have a relative higher proportion of ED-GW transfer

patients than other specialties. Also note that the proportions of transfer patients are

close for ED-AM and ED-PM patients for most specialties except four belonging to

the Medicine cluster: General Medicine, Renal, Neurology, and Gastro-Endo show a

higher proportion of transfer patients for AM admissions than that of PM admissions.

Overall, transfer patients admitted from ICU-GW and SDA sources make up only

a small proportion of all transfer patients (1500 out of 14840, or about 10%), and

account for only 1.6% of all general patients. Thus, in the following analysis, we focus

on transfer patients from ED-GW and EL sources.
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Table 10: Proportion of patients who have gone through at least one internal
transfer for each admission source and for each speciality. The combined data
is used.

Specialty ED-AM ED-PM EL ICU SDA
Surg 10.96% 9.35% 27.28% 15.18% 3.93%
Cardio 19.17% 15.94% 42.15% 11.59% 9.28%
General Med 17.80% 10.97% 15.71% 12.56% 2.94%
Ortho 14.84% 14.83% 21.03% 23.29% 5.94%
Gastro-Endo 22.19% 13.07% 8.20% 9.96% 6.64%
Onco 28.34% 23.96% 19.20% 11.21% 15.79%
Neurology 16.21% 12.23% 14.06% 12.87% 2.31%
Renal disease 30.46% 19.61% 14.78% 18.14% 6.67%
Respiratory 14.74% 14.00% 16.99% 10.09% 6.50%
Total 17.76% 13.63% 25.17% 12.62% 5.42%

ED-GW and EL transfer patients

Out of the total 77904 ED-GW and EL patients admitted in Periods 1 and 2, 13340

(17%) of them have been transferred at least once after initial admission. Out of these

13340 patients, 7285 patients (54.61%) have gone through one transfer; 4428 patients

(33.19%) two transfers; and 905 patients (6.78%) three transfers. The remaining 722

patients (5.41%) have been transferred more than four times, and constitute less than

0.8% of the total general patients. Therefore, we also exclude them from the analysis

below.

Now we study the “transfer paths” of these ED-GW and EL patients with one,

two, and three transfers. Table 11 summarizes the patient count for each transfer

path. We use “1” to denote a general ward, and “0” to denote a non-general ward.

For example, path “1-0-1” means the patient is initially admitted to a GW, then

transferred to a non-GW, transferred back to a GW, and finally discharged from the

GW. We can see

(i) One-time transfer: Of the 7285 patients who transferred once, 1667 patients are

transferred to a non-general ward (more than 60% to an ICU-type ward). The

other 5618 are transferred to another general ward.
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Table 11: Decomposition of ED-GW and EL transfer patients by number of
transfers and pathways. The combined data is used. We use 1 to denote a general
ward, and 0 to denote a non-general ward. In the last row, group I contains paths
1-0-0-0, 1-1-0-0, and 1-1-1-0; group II contains paths 1-0-0-1, 1-0-1-1, and 1-1-0-1.

# of transfers total count path and count

1 7285
1-0 1-1

1667 5618

2 4428
1-0-0 1-0-1 1-1-0 1-1-1
114 4036 102 176

3 905
group I group II 1-0-1-0 1-1-1-1

44 707 130 24

(ii) Two-time transfer: Of the 4428 patients who transferred twice, the majority

(4036 patients, 91%) follow the path of “1-0-1.” In fact, more than 95% of the

non-general wards (i.e., “0” in the path) belong to one of the ICU-type wards.

Thus, we sometimes refer these 4036 patients as GW-ICU-GW patients. The

remaining patients with paths “1-0-0” and “1-1-0” are those who initially stayed

in GWs, and finally are discharged from a non-GW. Very few patients make two

transfers between three GWs (following path “1-1-1”).

(iii) Three-time transfer: Eight possible paths exist for the 905 three-time transfer

patients. We aggregate some paths when displaying the patient count in Ta-

ble 11. Group I (paths “1-0-0-0”, “1-1-0-0”, and “1-1-1-0”) represents those

patients who are initially admitted to a GW but discharged from a non-GW.

There is no back and forth between GWs and non-GWs. Group II (paths “1-0-0-

1”, “1-0-1-1”, and “1-1-0-1”) represents those patients who are initially admitted

to a GW, transferred to a non-GW during the stay, and finally discharged from

a GW. Group II constitutes the majority of the 905 patients. Finally, the re-

maining two paths, 1-0-1-0 and 1-1-1-1, form their own group. Again, we can

see that patients rarely make three transfers between four general wards.
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Figure 32: Transfer-out time distribution for transfer patients from ED-GW
and EL sources. The transfer-out time distribution is estimated from the combined
data. For reference, we also plot the Period 1 discharge distribution.

2.8.2 Transfer between GWs and ICU-type wards

In this subsection, we focus on transfer between GWs and ICU-type wards. Specifi-

cally, we consider ED-GW or EL sourced patients who transfer once or twice between

GWs and ICU-type wards after their initial admissions, i.e., patients following trans-

fer paths “1-0” and “1-0-1.” For each of these patient, his/her first visit to a GW

starts from the initial admission time and ends at the first transfer-out time to a

ICU-type ward. If he/she transfers twice, the second visit to a general ward starts

from the transfer-in time (from ICU to GW) and ends at the final discharge time.

Figure 32 plots the empirical distribution of the transfer-out time (from GW to

ICU) for these patients. We also plot the discharge time distribution in Period 1 for

comparison. Unlike the discharge distribution which has a 2-3pm peak, the transfer-

out time distribution spreads more evenly after 9am, indicating that operational

factors such as staff schedule have less influence on the transfer-out time. This is rea-

sonable since transfer from GW to ICU usually occurs when patient medical condition

gets worse and is often very urgent.

Figure 33 plots the empirical LOS distributions for these transfer patients. We

separately estimate the LOS of the first- and second-visit to GWs, i.e., number of

nights in the corresponding visit. Specifically, Figure 33a shows the three first-visit
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(a) First-visit LOS distributions for transfer
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Figure 33: Estimated LOS distributions for transfer patients. The combined
data is used. For references, LOS distribution for non-transfer ICU-GW Cardiology
patients is plotted in (b).

LOS distribution curves for transfer patients from ED-AM, ED-PM, and EL sources.

Figure 33b shows the second-visit LOS distribution for all transfer patients who trans-

ferred twice. Clearly, the first-visit LOS is mostly 0-2 days, much shorter than the

LOS of non-transfer ED-GW or EL patients. For the second-visit LOS, we also plot

the LOS distribution curve from non-transfer ICU-GW patients for comparison. Al-

though the path for the second visit and non-transfer ICU-GW patients is the same

(from ICU to a GW), their LOS distributions are significantly different.

When empirically estimating the first-visit and second-visit LOS distributions, we

exclude data entries from Orthopedic and Oncology specialties and aggregate entries

from all other specialties together. We do the aggregation because (i) the empirical

LOS distributions are close for patients from all specialties with the exception of

Orthopedic and Oncology, and (ii) we do not have enough data points to get reliable

estimation separately (for each specialty).
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2.8.3 Transfer between two GWs

In this subsection, we consider the 5618 ED-GW and EL patients who transferred

once between two GWs. We further separate these patients into two groups. The first

group consists of those patients who are initially admitted to non-primary wards and

are later transferred to a primary ward. The second group consists of the remaining

patients, who are likely patients transferred from a wrong class ward to a right class

ward (e.g., a subsidized patient transfers from a class A bed to a class B2 bed). The

first group comprises 3133 patients; and the second group 2485 patients. Each group

constitutes about 3% of the total volume of general patients.

Table 12 shows the number of patients transferred in (“flow-in”) and transferred

out (“flow-out”) for each ward among these 5618 patients. Most wards show a bal-

anced flow-in and flow-out volume. Certain wards, such as Ward 53, 55, and 63,

receive more patients transferred in than the patients transferred out. For Ward 53

and 63, it is because these two often receive Medicine and Cardiology patients who

are medically complicated from other Medicine and Cardiology wards, respectively.

Orthopedic wards (Ward 51, 52, and 54) transfer out more patients than they re-

ceive, possibly because they tend to place the overflow patients back to the primary

wards (recall the Orthopedic wards have high overflow proportions; see Section 2.3.3).

The observation here suggests that the occupancy level in each ward would not be

affected significantly by these transfers due to the balance between transfer-in and

transfer-out volume, especially considering the total volume (5618 patients) is small

comparing to the total volume of general patients.

Figure 34 plots the transfer-out time distribution for these 5618 patients. We can

see more than 85% of the transfers occur between 2pm and 10pm, the same period

when most discharges occur. This observation is consistent with NUH’s policy to

avoid non-urgent and unnecessary transfers unless there is a surfeit of beds.
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Table 12: Number of patients transferred in and out for each ward. Here,
we only consider the 5618 patients who transferred once between two GWs. The
combined data is used. Two non-GWs, Ward 48 and 96, are included because some
Surgery patients overflow to them.

Ward 41 42 43 44 48 51 52 53 54 55 56
Flow out 287 599 353 275 46 338 352 377 566 256 124
Flow in 87 42 288 147 70 57 118 800 197 785 151

Ward 57 57O 58 63 64 66 76 78 86 96 total
Flow out 126 165 267 141 669 277 101 199 80 20 5618
Flow in 220 458 434 398 632 298 190 156 81 9 5618
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Figure 34: Transfer-out time distribution for the 5618 patients who trans-
ferred once between two GWs.
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CHAPTER III

HIGH-FIDELITY MODEL FOR HOSPITAL INPATIENT

FLOW MANAGEMENT

This chapter is organized as follows. In Section 3.1, we introduce the general frame-

work of our proposed stochastic network model that captures the inpatient flow op-

erations. In Section 3.2, we populate the proposed stochastic network model with

NUH data. In Section 3.3, we verify the populated model by comparing the model

output with empirical performance. In Section 3.4, we use the populated model to

generate a number of managerial insights for reducing and flattening waiting times

for admission to wards. This chapter concludes in Section 3.5.

3.1 A stochastic network model for the inpatient operations

In this section, we describe a general framework of our proposed stochastic model.

Although the model is built upon the extensive empirical study of NUH inpatient

operations we presented in Chapter 2, the framework could be adapted to other hos-

pitals. We first give an overview of the basic ingredients of the stochastic processing

network and the basic patient flow in Section 3.1.1. Then in Sections 3.1.2 to 3.1.4,

we specify the details of three modeling features that are critical to capture inpa-

tient operations. These features are a non-iid, two-time-scale service time model, an

overflow mechanism, and pre- and post-allocation delays that create additional delay

during patient’s admission. Finally, we discuss service policies and an adjustment to

incorporate patient transfer in Sections 3.1.5 and 3.1.6, respectively.

Under a specified service policy and a specification of input parameters estimated
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Figure 35: Arrival and server pool configuration in the stochastic model of
NUH inpatient department.

from a hospital data set, the proposed stochastic model can be populated and sim-

ulated on a computer. Section 3.2 details how we populate the model using NUH

data. Section 3.3 verifies the populated model by comparing the simulation output

against the empirical estimates. We will see that our proposed stochastic model can

approximately replicate waiting time performance, even at hourly resolution, from

the empirical data.

3.1.1 A stochastic processing network with multi-server pools

Our proposed stochastic model is a variant of a stochastic processing network that

was proposed in Harrison [72] and precisely specified in Dai and Lin [38]. A stochastic

processing network processes incoming customers (patients) of various classes. The

basic ingredients of a stochastic processing network are servers, buffers, activities,

and service policies. Figure 35 depicts a stochastic processing network representation

of the NUH inpatient department.

Servers. In this paper, general ward beds play the role of servers, and these

servers are grouped into J parallel server pools. Each server pool models a general

ward or a group of similar wards. We use nj to denote the number servers in pool j,
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j = 1, . . . , J . These nj servers are assumed to be identical. The J server pools serve

customers from K different classes. Here, the customers are patients who need to

receive hospital care in a general ward, and a customer class can be a combination

of an admission source and a medical specialty, sometimes with other criteria such as

admission time. Customers in the same class are homogeneous, following the same

arrival process, service time specification, and service priority.

Buffers. In our model, each admission source is associated with an arrival

process, which is used to model the patient bed-request process. In the rest of this

chapter, we use patient and customer, bed-request and arrival, and bed and server

interchangeably. Each arriving patient (from any of the admission sources) is assigned

to a specialty with a certain probability that depends both on the source and the

arrival hour. Each arriving patient is held in a buffer, waiting to be assigned a bed

and later to be admitted into the bed. The patients waiting in these buffers are

processed following certain priorities which are specified by a service policy.

Activities and service policies. Each server pool is designated to serve

patients from one or more medical specialties, and we call the pool a primary pool

for patients from the designated specialties. We assume each class of patients can

potentially be assigned to any of the J server pools in the model. If a patient is

assigned to a primary server pool, we say she is right-sited, otherwise, overflowed.

Adapting the stochastic processing network terminology to the hospital setting, an

activity is the binding of a server pool serving a particular class of patients. When

the server pool is a primary pool for the class, the corresponding activity is said to

be a primary activity. Clearly, primary activities are more desirable because they

avoid patient overflow. However, to reduce waiting time, it is sometimes necessary

to activate non-primary activities. A service policy dictates which activities should

be initiated at a decision time point. In the hospital setting, a service policy is also

known as a bed assignment policy that dictates which beds should be assigned to
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which waiting patients at a decision time point. The decision time points have three

categories: the arrival time of a patient, the departure time of a patient, and the

overflow trigger time of a patient. A patient can be overflowed only when her waiting

time exceeds her pre-assigned overflow trigger time. The service policy also dictates

the choice of the overflow trigger time for each patient.

Basic patient flow. After a bed is assigned to a patient, she has to experience

extra delays (pre- and post-allocation delays) before she can be admitted to the

bed. Thus, a patient’s admission time is different from her bed assignment time in

our model. Once a patient is admitted, she occupies the bed until departure. The

duration of occupation is called the patient’s service time. The service time of each

patient is random and follows the two-time-scale model (4) below. At the end of the

service time, the patient departs from the system. Thus, our proposed stochastic

network model has a single-pass structure. The departure times for most patients

in our model corresponds to their discharge times from the hospital, and we use

departure and discharge interchangeably in the rest of the paper.

3.1.2 Critical feature 1: a two-time-scale service time model

The service time, S, of a patient is the duration between the admission time (Tadm)

and the discharge time (Tdis). We use day as the time unit for service times unless

specified otherwise. Clearly, the service times of patients are random. Both the

patient’s medical condition and hospital operational policies can affect the service

time. We adopt model (4) to separate different sources of influence on service times:

S = Tdis − Tadm

= (bTdisc − bTadmc) + (Tdis − bTdisc)− (Tadm − bTadmc)

= LOS + hdis − hadm. (4)

We will discuss the rationale for using service time model (4) in Section 3.1.2 below.

Here, LOS stands for length of stay and is equal to the number of midnights that the

87



patient spends in a ward, or equivalently, day of discharge minus day of admission, and

hdis and hadm stand for the time of day when the patient is admitted and discharged,

respectively. The time of day is between 0 and 1, with midnight being 0 day and 12pm

(noon) being .5 day. For a patient who is discharged on the same day of admission,

recall that our definition of her LOS is equal to 0, whereas when hospitals report

occupancy level or some other statistics [68, 28], the LOS of such same-day discharge

patients is adjusted to 1 for accounting and cost recovery purposes.

Non-iid service times

Based on the extensive empirical study on LOS and service time (see Sections 2.5

and 2.6 in Chapter 2), we make the following assumptions for the service time model

in (4):

(a) The discharge hour hdis is independent of LOS and of hadm; Section B.2 in the

appendix provides some empirical evidence for this assumption.

(b) LOS distributions are class dependent. Patients from different medical specialties

or admission sources follow different LOS distributions.

(c) For each class of patients, their LOS forms a sequence of iid random variables

following a discrete distribution. One can use an empirical LOS distribution

directly estimated from data, or a discrete version of the log-normal distribution

based on our empirical fitting results and similar findings in [5].

(d) The discharge hours hdis for each class of patients forms another sequence of

iid random variables following a certain discharge distribution. See Figure 2 in

Section 1.1 for an example of NUH’s discharge distribution.

(e) We assume all iid sequences of LOS and hdis are independent of each other, i.e.,

there is no dependency among classes.
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Note that for a class of patients, their admission hours hadm are ordered and thus

cannot be iid. Though the LOS and hdis of these patients are two independent iid

sequences, it follows from (4) that their service times are no longer exogenous variables

and are not iid.

Separation of time scales

In the service time model (4), we use LOS to capture the number of nights that a

patient needs to spend in the hospital, as a consequence of her medical conditions.

We use the other two terms to capture the extra amount of time that is caused

by operational factors. In particular, the discharge hour hdis depends on discharge

patterns that are mainly the results of schedules and behaviors of medical staff (also

see Section 2.2.2). The way we model the service time allows us to evaluate a variety

of policies that may affect the two parts of the service time (LOS versus (hdis−hadm))

jointly or separately. For example, the early discharge policy implemented at NUH

aims to reduce the operational bottlenecks and move the discharge hour hdis to an

earlier time of the day without affecting the patient’s medical conditions (LOS),

whereas expanding the capacity at a nursing home or a step-down care facility to

ensure timely discharge of patients in need of long-term care will mainly affect the

LOS term [14]. In Section 3.4, we use simulation to gain managerial insights into the

impact of early discharge and other policies on the waiting time performance.

Moreover, this service time model captures an interesting phenomenon, the sepa-

ration of time scales: the LOS is in the order of days, while (hdis−hadm) is in the order

of hours. Indeed, we can observe these two time scales from Figures 36a below, which

plots the empirical service time distribution at hourly resolution (also see the clus-

tering phenomenon we discussed in Section 2.6). On the one hand, the distribution

peaks at integer values representing 1, 2, 3, . . . days, which is captured by the LOS.

On the other hand, the sample points distribute around the integers mostly within
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the range of a few hours, which is captured by the term (hdis − hadm). Figure 36b

illustrates that our proposed service time model (4) can produce the distributions

that resemble empirical distributions. The two time scales (hour versus day) have

been discovered in other studies of hospital operations [5, 104, 125] and appointment

scheduling [6].
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(a) Empirical service time distribution for Pe-
riod 1; each green dashed line corresponds to
a 24-hour increment
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(b) Service time distribution from simulation
output; LOS and discharge distributions in
the simulation are empirically estimated from
Period 1 data

Figure 36: Service time distributions, at hourly resolution, for General
Medicine patients that are admitted in afternoons.

3.1.3 Critical feature 2: bed assignment with overflow

In this section, we spell out the details for bed assignment under a specified service

policy. In particular, we described the overflow mechanism in our model.

When a patient makes a bed-request, if a primary bed is available, that bed is

assigned to the patient. When more than one primary pool has such a bed, a priority

policy included in the service policy is used to decide which primary pool to select

from.

If no primary bed is available at the bed-request time, the patient waits in a buffer

and is assigned with an overflow trigger time T . The trigger time T may depend on

the bed-request time, the admission source, and the specialty of the patient. An
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overflow policy dictates the choice of T . The patient waits for a primary bed before

her waiting time reaches T . After that, the patient can be assigned to either a primary

bed or an overflow bed, whichever becomes available first.

Queueing implication and QED regime

Patients can be overflowed to a non-primary server pool only if her waiting time

exceeds the trigger time T . When T is not 0, a bed can be idle even if a patient

from a non-primary specialty has been waiting. Therefore, in our model the overflow

policies are in general idling, which is different from the non-idling policies employed

in many existing queueing models [90].

Overflow is an important measure for hospitals to balance the random demand

and supply of different beds and to admit patients in a reasonably short time, given

that it is difficult to adjust bed capacity among various specialties and wards in a

short time window (this is in contrast to call center operations where the agents

can be added or removed in a matter of hours). NUH data shows that the partial

resource sharing from such overflow provides enough flexibility for hospitals to run

in the Quality-and-Efficiency Driven (QED) regime, in which the average patient

waiting time (in the order of few hours) is a small fraction of the average service time

(in the order of days) and the bed utilization is high, say, > 90%. A QED regime is

usually gained by pooling a large number of servers (e.g., hundreds of beds) working

in parallel and is difficult to be achieved by a small number of servers (e.g., 30 beds

in a ward).

3.1.4 Critical feature 3: allocation delays

Motivated by the empirical observations in Section 2.7, we explicitly model opera-

tional delays that are caused by resource constraints (e.g., ED and ward nurses) other

than bed unavailability during the ED to wards transfer process. Each patient in the

model, even if a primary bed is available for her upon arrival, has to experience a
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Patient requests bed

Bed-available

Pre-allocation delay Post-allocation delay

Patient admitted 

Bed-occupied

Case A. normal allocation: a bed is available before patient requests bed

Bed-occupied

Case B. normal allocation: a bed is available after patient requests bed

Patient requests bed

Bed-available

Pre-allocation delay Post-allocation delay

Patient admitted 

Bed-occupied

Case C. forward allocation: a bed is available before pre-allocation delay expires 

Patient requests bed

Bed-available

Pre-allocation delay Post-allocation delay

Patient admitted 

Bed-occupied

Patient requests bed

Bed-available

Pre-allocation delay Post-allocation delay

Patient admitted 

Case D. forward allocation: a bed is available after pre-allocation delay expires

Figure 37: Pre- and post-allocation delays under different scenarios.

pre-allocation delay first, and then a post-allocation delay before being admitted to

the bed. We first describe the process flow from a patient’s bed-request to her ad-

mission to a bed in our model, and then explain the rationale of modeling the two

allocation delays. Figures 37 illustrates the process with two allocation delays under

various scenarios.

Patient flow from bed-request to admission

In our model, when a patient makes a bed-request, we assume two bed-allocation

modes: normal allocation and forward allocation. The two modes differ from each

other with respect to when the patient starts to experience a pre-allocation delay. In a

normal allocation, the patient starts to experience a pre-allocation delay immediately

at the bed-request time if a primary bed is available at that time (Case A in Figure 37).

If no primary bed is available, the patient waits in a buffer for a bed. When a

bed becomes available and is assigned to her, following the bed assignment policy

described in Section 3.1.3, she starts to experience a pre-allocation delay (Case B in

Figure 37). In a normal allocation, this pre-allocation delay always begins at or after

the bed-available time.

A forward allocation is used only when there is no primary bed available at the

patient’s bed-request time (Cases C and D in Figure 37). The patient starts to

experience a pre-allocation delay immediately at her bed-request time. In other words,
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a pre-allocation delay always begins before a bed becomes available in the model.

Therefore, sometimes a bed may still be unavailable when the patient finishes her

pre-allocation delay stage.

In general, a patient starts to experience a post-allocation delay when the pre-

allocation delay expires. The only exception is when the forward allocation mode

is used and a patient finishes experiencing a pre-allocation delay but a bed is still

unavailable (Case D in Figure 37). In this case, the patient waits until a bed becomes

available for her, and a post-allocation delay starts at the bed-available time. When

the post-allocation expires, the patient is admitted into the bed, completing the bed-

request process.

We assume that a bed-request at time t, if there is no primary bed available, has

probability p(t) to be a normal allocation and probability 1−p(t) to be a forward allo-

cation. We assume that the pre- and post-allocation delays are independent random

variables following certain continuous distributions. The means of the distributions

can be time-dependent, depending on when the patient requests a bed and starts to

experience the allocation delays.

Rationale for modeling and other remarks

As we can see from Section 2.7, allocating a bed to an incoming patient is a process.

We use the pre-allocation delay to model the time needed for the BMU to search and

negotiate a bed for a patient from an appropriate ward, and use the post-allocation

delay to model the delay from ED side after a bed is allocated and available to use for

an incoming patient. The start and end points of the pre-allocation delay correspond

to when a BMU agent starts and finishes the bed-allocation process, respectively. At

the end of the bed-allocation process, a bed is allocated to the patient and NUH

registers this time as the bed-allocation time. However, this bed-allocation time does

not necessarily correspond to the time when a bed is assigned to a patient in our
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model; the bed assignment in our model is specified in Section 3.1.3 and always hap-

pens at a patient’s bed-request time, overflow trigger time, or discharge time. For

example, if a primary bed is available upon a patient’s bed-request, the bed assign-

ment is instantaneously done in our model before the patient starts to experience the

pre-allocation delay. The start point of the post-allocation delay corresponds to the

allocation-completion time or the bed-available time, whichever is later, while the end

point corresponds to the patient’s admission time in practice.

Among the time stamps mentioned in the previous paragraph, NUH does not

record when the bed-allocation process starts. According to our interviews, BMU

agents normally wait until a bed becomes available before starting the bed-allocation

process (which is close to the normal-allocation mode), or sometimes they can forward-

allocate a bed based on the planned discharge information (which is close to the

forward-allocation mode). We use the normal- and forward-allocation modes to ap-

proximate the reality. Additional empirical analysis in Section B.3 also supports this

model setting. An alternative setting is to randomly assign this bed-allocation start

time to occur between the bed-request and bed-available times following a certain

distribution. We leave this extension to a future study.

3.1.5 Service policies

A service policy governs all of the decisions regarding bed assignments at various

decision time points. It has four components: (i) how to pick a bed from a primary

pool upon an arrival, (ii) how to pick a bed from a non-primary pool when a patient’s

overflow trigger time is reached; (iii) how to set an overflow trigger time; and (iv)

how to pick a waiting patient from a group of eligible patients upon the departure of

another patient. We elaborate each component below.

Component (i) specifies the priority of primary pools for each of the specialties

having more than one primary pool. In general, dedicated pools (pools serving one
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specialty) have higher priorities than shared pools (pools serving multiple specialties).

Therefore, when seeking a primary bed for a patient, we start from the dedicated

pools. If there is no dedicated bed free, we then search in shared pools.

Component (ii) specifies the priority of non-primary pools in overflowing patients.

The priority depends on the specialty of the patient to be overflowed. In general,

pools that serve similar specialties have high priority. Shared pools have higher

priority than dedicated pools. Both components (i) and (ii) need to be estimated

based on the actual configuration in the particular hospital being modeled.

Section 3.1.3 has introduced an overflow mechanism in our model. Component

(iii) sets the overflow trigger time T for patients who have to wait because of the

unavailability of primary beds upon their arrivals. When a patient’s waiting time

reaches the trigger time T , component (ii) is used to search for a non-primary bed

for her. Different hospitals may adopt different overflow policies, and we will specify

the time-dependent dynamic overflow policy adopted at NUH in Section 3.2.5.

Component (iv) is a patient priority list, which is used when a bed becomes

available and needs to be assigned to one of the eligible patients. The eligible patients

consist of both the primary patients and the overflow patients whose waiting times

are greater than their overflow trigger times. Again, this component needs to be

estimated according to each hospital’s own situation. Generally speaking, patients

who have waited longer than their overflow trigger times have a higher priority than

those who have not.

3.1.6 Modeling patient transfers between ICU and GW

In a hospital, a real patient can be transferred between a GW and an ICU-type

ward multiple times after her initial admission to the GW (see empirical results in

Section 2.8). Since our proposed network has a single-pass structure, we do the

following adjustments to incorporate such patient flows between GWs and ICU-type

95



wards.

We determine an arriving patient to be a non-transfer or a transfer patient upon

her arrival according to certain Bernoulli distributions. A non-transfer patient cor-

responds to a real patient in the hospital who does not transfer between a GW and

an ICU-type ward. The transfer patient construct is used to model the first stay in a

GW of a real patient who transfers to an ICU-type ward after the initial admission.

Thus, the discharge (departure) time of a transfer patient in the model corresponds

to the real patient’s transfer-out time, and her LOS and service time are adjusted

accordingly.

A real patient who transfers back to a GW after her first transfer will have a

second stay in the GW. To model that second stay, we create a pseudo-patient in the

model. The admission time of this pseudo-patient corresponds to the transfer-in time

(from an ICU-type ward to a GW) of the modeled real patient, and the discharge

time of this pseudo-patient corresponds to the final discharge time of the real patient

or the next transfer-out time if the real patient transfers out of the GW again. Thus,

the service time of the pseudo-patient corresponds to the duration of the second stay

of the real patient. Additional pseudo-patients can be created to accommodate triple

or more transfers in a similar way.

In the model, we treat the pseudo-patients as ICU-GW patients regardless of the

initial admission source of the corresponding real patients. That is because the ad-

mission process and admission time distribution of these pseudo-patients are close to

those of the other ICU-GW patients according to our empirical analysis. To differenti-

ate the two streams of ICU-GW patients, we call the pseudo-patients the re-admitted

ICU-GW patients, and the others the newly-admitted. When an arrival from the

ICU-GW source occurs in the model, we determine the arriving patient being newly-

admitted or re-admitted according to certain Bernoulli distributions.

Note that a real patient can also transfer between two GWs, while our proposed

96



stochastic model does not incorporate such transfers. We leave this extension to

future studies; also see discussion in Section 3.5.

3.2 Populated stochastic model using NUH data

Based on the empirical study presented in Chapter 2, we populate the proposed

stochastic network model with NUH data, which we refer to as the NUH model in

the rest of this chapter. In this section, we discuss how we empirically estimate

all the necessary input for the NUH model. Unless stated otherwise, we always use

Period 1 data to estimate the input, and the resulting NUH model is called the baseline

scenario. Section 3.2.1 introduces the arrival processes for the four admission sources.

Section 3.2.2 describes the server pool setting and the service policy. Section 3.2.3

discusses the empirical LOS and discharge distributions, while Section 3.2.4 introduces

classification of patients based on the observations of LOS distributions. Sections 3.2.5

and 3.2.6 illustrates a dynamic overflow policy and time-varying allocation delays for

the NUH model, respectively.

3.2.1 Arrivals

Time-varying arrival rates

As shown in Figure 35, patient arrivals to our model derive from four sources. For

each source, the arrival rate depends on the time of day. For ED-GW, ICU-GW,

and SDA patients, we use their empirical, hourly bed-request rates as their arrival

rates in the NUH model. For EL patients, their arrivals are pre-scheduled. NUH has

their admission times but lacks meaningful records of bed-request times. Thus, we

use their empirical, hourly admission rates as their arrival rates in the NUH model.

We assign EL patients the highest priority and set their allocation delays to be zero.

In this way, the waiting times of EL patients in the NUH model are negligible, and

hence their admission times are close to their bed-request times. Figure 13 shows

the estimated hourly arrival rates for the four admission sources in the course of a
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day. Note that in this figure, the daily arrival rate of each source is close to its daily

admission rate shown in Figure 3a, except for the ICU-GW source since re-admitted

patients are included here.

Arrival processes

A time-nonhomogeneous Poisson process for ED-GW patients. For the em-

pirical bed-request process of ED-GW patents, we conducted a detailed study to test

the assumption that it is a time-nonhomogeneous Poisson process (see Section 2.4.2).

The test results suggest it is reasonable to assume that the bed-request process for

ED-GW patients is nonhomogeneous Poisson. However, we find that the bed-request

process is not a periodic Poisson process with either one day or one week as a pe-

riod. In particular, the empirical coefficient of variation (CV) of the daily arrival rate

for each day of week is much higher than 1, the theoretical CV under the Poisson

assumption. We conjecture that the high variability comes from the seasonality of

bed-requests and the overall increasing trend in the bed demand. In the NUH model,

we assume that the ED-GW patient’s arrival process is time-nonhomogeneous Pois-

son. We further assume that it is periodic with one day as a period. The arrival rate

function of the periodic Poisson process is constant in each hour and is plotted as the

solid curve in Figure 13. Note that setting one week as a period is another reasonable

choice, and we discuss this extension as a future study to capture the day-of-week

phenomenon in Section 3.5.1.

A non-Poisson arrival process model for other sources. The number of

EL admissions each day is pre-scheduled at NUH. The bed-requests of ICU-GW or

SDA patients are departures from the ICU-type or SDA wards, and their volumes are

in a way also pre-scheduled on a daily basis: ICU physicians determine the number

of patients to be transferred to general wards after the morning rounds each day,

and then ICU nurses submit the bed-requests for these ICU-GW patients; similar
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to EL patients, the SDA surgeries each day are scheduled in advance, and the SDA

nurses submit bed-requests after SDA patients finish receiving surgeries on that day.

(Also see the discussions in Section 2.4.3.) Based on this observation, we propose

a non-Poisson arrival model for EL, ICU-GW, and SDA patients. We first generate

a total number of Ajk arrivals (to arrive in day k) from admission source j (j =

1, 2, 3, denoting EL, ICU-GW, and SDA, respectively) at the beginning of day k

(k = 0, 1, . . . ), where the value of Ajk is randomly generated from the empirical

distribution of the daily number of bed-requests for j = 2, 3 or daily admissions for

j = 1. We then randomly assign the arrival times of Ajk arrivals according to order

statistics that draw from the empirical distribution of bed-request (or admission)

times of source j. These distributions can be estimated from the arrival rate curves

in Figure 13. Note that if the daily number of arrivals follows a Poisson distribution,

the generated process is in fact a time-nonhomogeneous Poisson process with one day

as the period [95].

3.2.2 Server pools and service policy

In the NUH model, there are 15 server pools. Table 13 lists the number of servers and

the primary specialties for each server pool. This table is based on our empirical study

at NUH (see Section 2.3). We slightly adjust the number of servers in certain server

pools. The details of the adjustment are explained in Section B.4 of the appendix.

The service policy is built based on NUH’s internal guideline [110], our empirical

observations, and discussions with BMU staff. Specifically, Table 14 gives the priority

table for components (i) and (ii) of the service policy discussed in Section 3.1.5.

Component (iii), the overflow policy, will be elaborated in Section 3.2.5.

The priority list of component (iv) is given below. First, patients who have waited

longer than their overflow trigger times have a higher priority than those who have

not. This is aligned with NUH’s goal of improving the 6-hour service level. Second,
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Table 13: Server pool setting in the simulation model. Each row lists the server
pool index, primary specialty, and number of servers. The three overflow wards are
explained in Section B.4 of the appendix.

pool ID primary specialty no. of servers
0 Gen Med, Respi 41
1 Gen Med, Neuro 40
2 Renal 33
3 Neuro 12
4 Gastro-Endo 39
5 Surg 42
6 Card 40
7 Ortho 50
8 Onco 43
9 Respi, Surg 25
10 Surg, Ortho 38
11 Surg, Card 30
12 Overflow ward I 39
13 Overflow ward II 43
14 Overflow ward III 48

Total 563

Table 14: Priority of primary and overflow pools in the simulation model.
In each row, pool numbers are ordered in decreasing priority.

Specialty Primary Overflow
Surg 5, 10, 11, 9 14, 12, 13, 7, 4, 1, 0, 2, 3
Card 6, 11 13, 14, 12, 4, 10
Gen Med 0, 1 14, 13, 4, 2, 3, 9, 10, 12, 8, 7, 11, 5, 6
Ortho 7, 10 12, 5, 14, 13, 4, 1, 2
Gastro-Endo 4 14, 13, 1, 0
Onco 8 13, 14, 1
Neuro 3, 1 14, 13, 4, 2, 0, 9, 10, 8, 7, 11
Renal 2 1, 4
Respi 9, 0 14, 13, 1, 4, 2, 3, 10, 8, 7, 11, 5
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among the patients waiting longer than their overflow trigger times, those from the

primary specialties have a higher priority than the ones from overflow specialties.

Third, among patients from the same specialty, the ED-GW patients have a higher

priority than ICU-GW and SDA patients, while ICU-GW and SDA have the same

priority. This is based on the empirical observation that at NUH, ICU-GW and

SDA patients have a much longer average waiting time than ED-GW patients (see

Section 2.1.1). Also see [120] for a similar priority setting. Moreover, our model

assumes that EL patients have the highest priority among all admission sources to

account for using admission times as a proxy for bed-request times; see reasons in

Section 3.2.1. Fourth, when patients are waiting in multiple buffers with the same

priority or in a single buffer, we choose the patient with the longest waiting time.

3.2.3 Length of stay and discharge distributions

Non-transfer patients

Table 6 lists the empirically estimated mean and standard deviation of LOS for non-

transfer patients from different admission sources and specialties. We use the empiri-

cal LOS distributions estimated from Period 1 data in the NUH model. As discussed

in Section 2.5.3, admission source and specialty affect patient’s LOS. Moreover, LOS

distributions are also admission-period dependent for ED-GW patients. In the NUH

model, we use empirical discharge distributions estimated from the data. The dis-

charge distributions in the two periods are plotted in Figure 2.

Transfer patients

Section 3.1.6 explained how to incorporate the patient flows between GW’s and ICU-

type wards into the model. The transfer patients we include in the NUH model are

real ED-GW or EL patients at NUH who transfer once or twice between GW’s and

ICU-type wards after the initial admission. We do not model (i) the real patients

who are initially admitted from ICU-GW or SDA source and have been transferred;
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and (ii) the real ED-GW or EL patients who have transferred more than two times.

We exclude them because the volume of these patients is small. Therefore, only an

ED-GW or EL patient in the NUH model will be assigned to be a transfer or non-

transfer type upon her arrival. An ICU-GW patient, however, will be assigned to be

newly-admitted or re-admitted upon her arrival.

We use the first-visit LOS and transfer-out times of the modeled real patients to

estimate the LOS distributions and discharge distributions for the transferred ED-

GW or EL patients, respectively. We use the second-visit LOS of the real patients

who transferred twice to estimate the LOS distributions for the re-admitted ICU-

GW patients. These LOS distributions are plotted in Figure 33 of Section 2.8.2. The

discharge distribution of the re-admitted ICU-GW patients is the same as the one for

the non-transfer patients (as in Figure 2). Figure 32 plots the discharge (transfer-

out) distribution for all the transfer ED-GW and EL patients. We do not observe a

significant difference between the two periods.

3.2.4 Patient class

Patients belonging to the same class are homogeneous, having the same LOS and

discharge distributions. Our empirical evidence has shown that the LOS distribu-

tions depend on admission source, medical specialty, admission period (for ED-GW

patients), and whether patients are transferred or not. We proceed in the following

steps to determine a patient’s class in the NUH model:

1. When an arrival from one of the four admission sources occurs, we assign this

patient to one of the nine medical specialties, following an empirical distribution

that depends on both the bed-request hour and admission source. Figure 3b

plots the daily distributions of specialties and admission sources. After assigning

the specialty, the service priority of the patient is determined. The following

two steps make sure the LOS and discharge distributions are the same within
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Table 15: Estimated value for the parameter p of the Bernoulli distribution
to determine patient classes. For ED-GW and EL patient types, p represents
the probability of being a transfer patient; for ICU-GW, p represents the probability
of being a re-admitted patient. Parameters for specialties belonging to the Medicine
cluster (Gen Med, Gastro-Endo, Neuro, Renal, Respi) are estimated together due to
the limited number of data points, and we use Med to represent this group.

p Surg Card Med Ortho Onco
ED-GW 4.58% 11.52% 4.78% 9.42% 5.69%
EL 23.46% 39.95% 4.53% 17.04% 6.01%
ICU-GW 45.10% 43.86% 16.98% 79.69% 39.86%

a class.

2. Next, we determine whether (i) an ED-GW or EL patient is a non-transfer or a

transfer patient, (ii) an ICU-GW patient is newly-admitted or re-admitted, fol-

lowing a Bernoulli distribution which depends on the specialty. The parameters

for these Bernoulli distributions are empirically estimated based on the relations

between the patients in the model and real patients who have transferred (see

Sections 3.1.6 and 3.2.3), and are listed in Table 15.

3. Finally, at an ED-GW patient’s admission time, we determine her admission

period (AM or PM). By now, the patient’s class is fully determined.

3.2.5 A dynamic overflow policy

At NUH, there is a general guideline [110] on when and how to overflow a patient.

Consistent with this guideline, an empirical study [144] suggests that the hospital

overflows patients more aggressively during late night and early morning (before 7am).

That is, NUH will overflow a patient almost immediately upon finding that no primary

bed is available. The reason is that few discharges happen in this time period, so

there is little chance that a primary bed will become available in the next few hours.

Thus, there is no need to let the patient wait for another hour. In contrast, during

other times, the hospital tends to be more conservative, and allows a patient to
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wait some time prior to overflow in anticipation that a primary bed may become

available soon. In this way, NUH has better control on the overflow proportion,

another important performance metric being monitored (see Section 2.3.3). The

preceding discussion suggests that the trigger time T should depend on the bed-

request time. It is reasonable to assume that T is low when a bed-request occurs

during late night or early morning, and high during other times.

Based on these observations, we use a simple dynamic overflow policy in the NUH

model: when a patient requests a bed from 7am to 7pm, the overflow trigger time T

is set to be t2 = 5.0 hours, and for bed-requests in all other time periods, T is set

to be t1 = 0.2 hour. We choose 7am and 7pm as the starting and ending point to

adopt the long overflow trigger time, respectively. This choice is based on observations

from [144] and the practice at NUH. 7pm to 7am the next day is the night-shift period

at NUH. A nurse manager is in charge of dealing with all bed-requests in this period.

She has the authority to overflow patients without negotiation. The values of t1 and t2

are obtained through trial-and-error so that the simulation output curves in Figure 39

are as close to the empirical curves in the figure as possible. It is important to note

that overflow decisions are very complicated [144], sometimes subjective, in practice.

There is no data available for us to get an accurate estimation of the overflow trigger

time. Thus, our proposed dynamic policy is an approximation of the real situation.

Other variants of the overflow policy are possible, e.g., triggering an overflow event

when the number of waiting patients exceeds a specified threshold, selecting the value

of T based on the remaining service times of patients who are in service. We leave

these extensions for future study.

3.2.6 Pre- and post-allocation delays

In this section, we focus on estimating allocation delays for ED-GW patients. We first

explain how to model allocation delays for other patients. We assume the allocation
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delays of the EL patients to be zero in the model, having explained the rationale of

doing so in Section 3.2.1. For ICU-GW and SDA patients, we do not have good time

stamps to estimate of their pre- and post-allocation delays reliably. We simply assume

their allocation delays follow the same distributions as the ones used to generate the

allocation delays for ED-GW patients. Sensitivity analysis shows that a moderate

amount of change to the allocation delay distributions of ICU-GW and SDA patients

will not affect the overall performance of ED-GW patients.

Distributions of the time-dependent allocation delays

In the NUH data set, at the bed-request time of an ED-GW patient either (i) the

allocated bed is already available for the patient or (ii) the bed is not available and is

still occupied by another patient. Case (i) corresponds to Case A in Figure 37, and

we select a subset of case (i) patients in the data set to estimate the pre-allocation

delay distribution. The subset consists of case (i) patients whose allocated beds are

from their primary wards. By selecting this group of patients, we try to minimize the

influence of bed shortage and specialty mismatch on pre-allocation delay so that our

estimation can reflect the minimum time needed for BMU agents to allocate a bed.

For the post-allocation delay, there is no such influence and we include all ED-GW

patients to estimate its distribution. Also see Section 2.7.3 in Chapter 2 for The

selected samples and estimating details.

The empirical histograms and distributional fitting results suggest that using a

log-normal distribution is a good starting point for modeling each of the allocation

delays. Thus, our model assumes the pre- or post-allocation delay initiated within

each hour of a day to be a iid random variable that follows a log-normal distribution.

The mean and CV of the log-normal distribution depends on the initiation hour (i.e.,

the hour when the allocation-delay starts).

Figures 38a and 38b plot the empirical estimates of the mean and CV for the
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Figure 38: Mean and CV of pre- and post-allocation delays used in the
simulation model. Left vertical axis is for the average; right vertical axis is for the
CV. The scale of the right vertical axis is deliberately chosen to be large, so that the
four curves are not crossed over.

pre-allocation and post-allocation delays, respectively. In our baseline simulation

scenario, we use the two dashed curves denoted with a plus sign as the inputs for

the time-dependent mean and CV for each allocation delay, respectively. These two

curves are slightly smoother than (but still within the 95% confidence intervals of)

the corresponding empirical curves, which have random noise since the sample sizes

in certain time intervals are small, particularly between 8am and 10am.

Estimating the normal allocation probabilities p(t)

Recall from Section 3.1.4 that in the model, when a patient makes a bed-request at

time t and there is no primary bed available at the time, we assume with probability

p(t) the allocation for the patient is a normal allocation, meaning this patient will

wait until a bed is available before starting to experience the pre-allocation delay.

Unfortunately, the NUH data set do not have accurate time stamps to allow us
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estimate p(t) reliably. In our baseline scenario, we choose

p(t) =



0 h(t) ∈ [0, 6),

.25 h(t) ∈ [6, 8),

1 h(t) ∈ [8, 12),

.75 h(t) ∈ [12, 14),

.5 h(t) ∈ [14, 20),

0 h(t) ∈ [20, 24),

(5)

where h(t) stands for the hour of the day of the bed-request time t. The choice of p(t)

is based on the current practice at NUH and empirical estimation of the proportion

of patients whose bed-allocation process approximately corresponds to the normal-

allocation mode in the model. Section B.3 in the appendix discusses the details of

estimating p(t) in different time intervals. We realize that, despite our best efforts,

our choice of p(t) using (5) is still ad hoc. We report a sensitivity analysis of the

choice of p(t) in Section 3.4.4.

3.3 Verification of the populated NUH model

Recall that the populated NUH model, using the input described in Sections 3.2.1

to 3.2.6, is referred to as the baseline scenario. In Section 3.3.1, we first show the

simulation output from the baseline scenario matches several key empirical perfor-

mance measures. Then in Section 3.3.2, we show that the simulation output from

each model which misses one of the three critical features introduced in Section 3.1

cannot replicate the empirical performance measures.

To implement these models, we wrote simulation code in C++ language. For each

simulation run, we start from an empty system and simulate for a total of 106 days.

We then divide the simulation output into 10 batches. The performance measures are

calculated by averaging the last 9 batches, with the first batch discarded to eliminate
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transient effects. Unless otherwise specified, all simulation estimates in this paper are

from simulation runs under this setting. The choice of the simulation setting is justi-

fied following standard techniques in the literature [91]. Note that in this and the next

section, we rely on simulation to obtain the desired performance measures, because

there is no existing analytical tool to analyze the proposed stochastic model either

exactly or approximately. As mentioned in the introduction, this chapter focuses on

establishing a high fidelity model that can capture the inpatient flow dynamics at

hourly resolution. We develop a two-time-scale analytical framework to analyze some

simplified version of the proposed model in Chapter 4.

3.3.1 The baseline scenario

Recall that the inputs for the baseline scenario are estimated from NUH Period 1 data.

Thus, we compare the outputs from this scenario against the empirical performance

in Period 1 to verify the NUH model. From simulating the baseline scenario, the daily

average waiting time for all ED-GW patients is 2.82 hours and the daily 6-hour ser-

vice level is 6.29%, close to what we observed empirically in Period 1. Furthermore,

Figure 39 shows that the simulation estimates approximately replicate the empiri-

cal estimates of the time-of-day (hourly) waiting time performance for all ED-GW

patients. Table 16 compares the simulation estimates with the empirical estimates

of the average waiting time and the 6-hour service level for each specialty. We can

see that the waiting time statistics, even at the specialty level, can be approximately

replicated by our simulation.

Besides the waiting time, we can also approximately replicate other key perfor-

mance measures. The utilization rate is 89.2% from simulation, a little bit higher

than the 88.0% empirical utilization in Period 1. Figure 40a plots the hourly average

queue length for all ED-GW patients for both simulation and empirical estimates.

We point out that our model cannot perfectly replicate the overflow proportion.
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Figure 39: Baseline simulation output compares with empirical estimates.
This figure compares hourly average waiting time and 6-hour service level between
empirical estimates and simulation estimates from the baseline scenario. Empirical
estimates are from Period 1 data.

Table 16: Simulation and empirical estimates of waiting time statistics for
ED-GW patients from each specialty. The simulation estimates are from simu-
lating the baseline scenario, and the empirical estimates are from Period 1 data. The
numbers in the parentheses are for the 95% confidence interval of the corresponding
value. The confidence intervals for the simulation output are calculated following
the batch mean method [91]; the confidence intervals for the empirical statistics are
calculated with the standard deviations and sample sizes from the actual data.

average waiting time (hour) 6-h service level (%)
Specialty simulation empirical simulation empirical
Surg 2.64 (2.63, 2.64) 2.61 (2.56, 2.65) 4.85 (4.80, 4.90) 5.45 (4.87, 6.02)
Card 2.97 (2.97, 2.98) 3.08 (3.03, 3.13) 6.81 (6.75, 6.87) 8.36 (7.63, 9.10)
Gen Med 2.73 (2.72, 2.74) 2.64 (2.60, 2.68) 5.39 (5.34, 5.44) 4.79 (4.32, 5.26)
Ortho 2.73 (2.72, 2.73) 2.79 (2.74, 2.85) 5.22 (5.17, 5.28) 5.84 (5.16, 6.53)
Gastro 2.88 (2.88, 2.89) 2.97 (2.90, 3.04) 8.07 (8.00, 8.14) 7.64 (6.73, 8.56)
Onco 2.88 (2.87, 2.88) 2.96 (2.86, 3.07) 7.58 (7.53, 7.64) 8.15 (6.81, 9.50)
Neuro 2.84 (2.83, 2.85) 2.81 (2.75, 2.88) 6.49 (6.43, 6.55) 5.93 (5.04, 6.83)
Renal 3.23 (3.22, 3.24) 3.41 (3.32, 3.51) 10.5 (10.4, 10.5) 11.6 (10.3, 12.9)
Respi 2.82 (2.81, 2.82) 2.77 (2.68, 2.85) 6.25 (6.18, 6.31) 5.50 (4.36, 6.63)
All 2.82 (2.81, 2.82) 2.82 (2.80, 2.84) 6.29 (6.24, 6.34) 6.52 (6.26, 6.78)
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Figure 40: Baseline simulation output compares with empirical estimates.
This figure compares hourly average queue length and overflow proportion between
empirical estimates and simulation estimates from the baseline scenario. Empirical
estimates are from Period 1 data.

Although the simulated overflow proportions for most specialties are close to their

empirical counterparts (see Figure 40b), the baseline simulation underestimates the

overflow proportions for Surgery, General Medicine, and Neurology specialties. The

underestimation in these three specialties leads to an overall underestimation of over-

flow proportion across all specialties (16.35% in the baseline versus 26.95% from

Period 1 data). Moreover, there are certain performance measures that we choose

not to calibrate in the model, including the waiting time statistics for ICU-GW and

SDA patients. As mentioned, the waiting time statistics for these patients are not our

primary focus. Moreover, sensitivity analysis shows that whether or not we can accu-

rately replicate their waiting times has little impact on the waiting time statistics of

ED-GW patients. Readers are referred to Sections B.9 and B.6for more discussion on

the challenges in calibrating overflow proportions and results of sensitivity analysis,

respectively.

3.3.2 Models missing any of the critical features

To show the necessity of modeling the three critical features discussed in Section 3.1

(i.e., the two-time-scale service times, overflow mechanism, and allocation delays), we
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Figure 41: Simulation output from using an iid service time model.

simulate three versions of the model, each missing one of the critical features. All

other input settings for the three versions remain the same as we simulate the base-

line scenario unless otherwise specified. Again, we compare the simulation estimates

against the empirical performance in Period 1.

Model with conventional iid service times

The two-time-scale service time model proposed in Section 3.1.2 is contrary to the

exogenous, iid service time model often used in the queueing literature. We compare

an iid service time model with our proposed non-iid model. The iid model assumes the

service time S to be the sum of two independent random variables: an integer variable

corresponding to the floor of service time bSc, and a residual variable corresponding

to (S − bSc). For patients from the same class, we assume their integer parts and

residual parts each form an iid sequence based on the empirical evidence. Since

the two sequences are independent, the service times are iid. Even though this iid

exogenous service time model can reproduce service time distributions such as the

one in Figure 36a, it is not able to reproduce the discharge distribution and hourly

waiting time statistics; see the simulation output in Figure 41 for an illustration.

Therefore, we believe that our new two-time-scale service time model is an important

feature to capture inpatient flow operations. Sections 2.6.2 and B.1 contain detailed
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Figure 42: Simulation output from a model without allocation delays.

empirical observations and discussion of the iid service time model.

Model without allocation delays

Figure 42 compares the simulation and empirical estimates of the hourly average

waiting time and hourly average queue length for ED-GW patients. In the simulation

setting, no allocation delays are modeled. We can see that the hourly performance

curves from simulation are completely different from the empirical estimates. In

particular, note that the solid curve in Figure 42b, which shows a rapid drop in

the simulated average queue length between 11am and 3pm, contrasts sharply with

the empirical (dashed) curve, which drops slowly after 2pm. The main reason for the

rapid drop in the solid curve is that in Period 1, between 11am and 3pm, the discharge

rate increases in each hour until reaching the peak at 2-3pm (see Figure 2), and a

waiting patient in the simulation is admitted into service immediately once a discharge

occurs. Thus, Figure 42 suggests the existence of extra delays after bed discharges.

In this simulation scenario, to make the daily average waiting time comparable to the

estimate from the baseline scenario (2.82 hours) we decrease the numbers of servers

listed in Table 13 while keeping all other settings the same as the baseline scenario.
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Figure 43: Simulation output from using a static overflow policy. In the static
overflow policy, we use a fixed overflow trigger time T = 4.0 hours.

Model without the dynamic overflow policy

Section 3.1.3 has discussed the important role of overflow in achieving a QED regime

for hospital operations. Furthermore, we find that adopting a dynamic overflow policy

is also critical to replicate the empirical performance at NUH. Figure 43 compares em-

pirical estimates of the hourly waiting time statistics with simulation estimates from

a model with a static overflow trigger time T = 4.0 hours. Clearly, the model with

a static overflow policy fails to capture the dynamics in NUH inpatient operations.

In particular, note that under the static overflow policy, the simulation estimates of

the average waiting time for patients arriving in the night (10pm to 5am the next

day) are about 4 hours, much higher than the empirical estimates. It is because in

the simulation these night arrivals have to wait at least 4 hours for an overflow bed

if no primary bed is available upon their arrivals, even though a new primary bed is

unlikely to become available within 4 hours due to the discharge pattern.

3.4 Factors that impact ED-GW patients’ waiting time

We do “what-if” analyses in this section and address the research questions raised in

the introduction (see Section 1.1), i.e., (i) quantify the impact of the NUH Period 2

early discharge policy and (ii) identify operational policies that can reduce the waiting
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times of ED-GW patients. We focus on the impact of the tested policies on both the

daily and hourly waiting time performance. In Section 3.4.1, we show that early

discharge in Period 2 has little impact on the daily and hourly waiting time statistics.

In Section 3.4.2, we show that a hypothetical Period 3 policy can flatten the hourly

waiting time performance, but has limited impact on reducing the daily waiting time

statistics. In Section 3.4.3, we study policies that mainly impact the daily waiting

time performance, such as increasing bed capacity and reducing LOS. In Section 3.4.4,

we show that most of our gained insights are robust under sensitivity analysis. Finally,

we explain in Section 3.4.5 why these policies have different impact on the daily and

hourly waiting time performance.

3.4.1 Period 2 discharge has a limited impact on reducing waiting time
statistics

To evaluate the impact of NUH’s Period 2 early discharge policy, we simulate a

scenario with the same inputs as in the baseline scenario, but using the discharge

distribution estimated from Period 2 data (i.e., using the dashed curve in Figure 2

instead of the solid curve). Figure 44 compares the simulation estimates of hourly

waiting time statistics with those from the baseline scenario. From Figure 44a, the

hourly average waiting times show little difference between the two scenarios. From

Figure 44b, the hourly 6-hour service level exhibits some reduction for bed-requests

between 7am and 11am, e.g, the peak value is now 22% compared to 30% in the

baseline scenario, but the values for other hours are almost identical in both scenarios.

Not surprisingly, other performance measures from these two scenarios are almost

identical. The daily average waiting time under this early discharge scenario is 2.75

hours, a 4-minute reduction, versus 2.82 hours in the baseline scenario. The 6-hour

service level is 5.64% versus 6.29% in the baseline scenario. The overflow proportion

is 16.26%, not significantly different from the baseline value of 16.35%.

To summarize, our model predicts that the Period 2 early discharge policy has
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Figure 44: Comparing hourly waiting time statistics under the baseline
scenario and scenario with Period 2 discharge distribution.

limited impact on reducing daily waiting time statistics and overflow proportions

at NUH, and that this policy alone cannot flatten the waiting time performance

throughout the day even though it helps to reduce the peak hourly 6-hour service

level. This prediction is consistent with our empirical observations of performance in

Periods 1 and 2; e.g., see Figure 1.

3.4.2 A hypothetical Period 3 policy can have a significant impact on
flattening waiting time statistics

We consider a hypothetical discharge distribution, which still discharges 26% of pa-

tients before noon as in Period 2, but shifts the first discharge peak time to 8-9am,

i.e., three hours earlier than the first discharge peak time in Period 2. Figure 45

plots this hypothetical discharge distribution. In addition, we assume a hypothetical

allocation delay model: each allocation delay (pre- or post-allocation delay) follows

a log-normal distribution with a constant mean, which is estimated from the empir-

ical daily average. The estimated means of the pre- and post-allocation delays are

1.07 and 1.20 hours, respectively. We keep the same values of CV as in the baseline

scenario, i.e., CV = 1 and 0.6 for the pre- and post-allocation delays, respectively.

We call the combination of the hypothetical discharge distribution and the hypo-

thetical allocation delay model a Period 3 policy. The Period 3 policy has not been
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Figure 45: Period 2 discharge distribution and a hypothetical discharge
distribution. In the hypothetical discharge distribution, the first peak is at 8-9am
and 26% patients discharge before noon. Each dot represents the fraction of patients
who are discharged during that hour. The values in the first 4 hours are nearly zero
and are not displayed.

implemented yet at NUH and may not be fully practical. We call it Period 3 policy

because it has the potential to be implemented in the future. For consistency, we call

the combination of the Period 2 discharge distribution (which has been implemented)

and the time-varying allocation delay model (see Section 3.2.6) the Period 2 policy.

Figure 46 compares the hourly waiting time statistics between the baseline scenario

and the hypothetical Period 3 scenario. Under the Period 3 policy, patients requesting

beds in the morning (7am to noon) experience similar average waiting times (2.76 to

2.99 hours) as the daily average (2.59 hours), but the daily average is only 13 minutes

lower than the daily average in the baseline scenario. The peak value of the hourly

6-hour service level drops from 30% under the baseline scenario to 6.9% under the

Period 3 policy, with the daily 6-hour service level dropping from 6.29% to 4.02%.

The overflow proportion drops slightly, from 16.35% under the baseline scenario to

15.69% under the Period 3 policy.

Compared to the Period 2 policy, the Period 3 policy requires achieving both a

more aggressive early discharge distribution and allocation delays that are time-stable

with constant means throughout the day. Simulation results show that when either

component is missing (only implementing the aggressive early discharge policy or
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Figure 46: Comparing hourly waiting time statistics under the baseline
scenario and scenario with Period 3 policy. Period 3 policy: hypothetical
discharge distribution with first peak at 8-9am and constant mean allocation delays.

only stabilizing the allocation delays), the average waiting times for morning bed-

requests are still about 1-2 hours longer than the daily average and the waiting time

performance is not approximately flattened.

In summary, our model predicts that this hypothetical Period 3 policy can elim-

inate the excessively long waiting times for ED-GW patients requesting beds in the

morning. Simultaneous implementation of both the aggressive early discharge pol-

icy and allocation delay stabilization is necessary for the Period 3 policy to achieve

an approximately time-stable performance in waiting times. However, the Period 3

policy has limited impact on reducing the daily waiting time statistics and overflow

proportion in the NUH setting.

Findings from other early discharge scenarios

To obtain more insights into the impact of discharge timing, we test other hypothetical

discharge distributions combined with the time-varying or constant-mean allocation

delay models. Section B.5 in the appendix details the tested policies and simulation

results. We highlight two main observations here that are consistent with what we

see from the Period 3 policy.

First, an early discharge policy mainly impacts the time-of-day pattern of the
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waiting time performance. Several tested combinations of early discharge distribu-

tions and constant-mean allocation delays can flatten the waiting time performance.

Moreover, we find that the timing of the first discharge peak has a major impact on

flattening the performance. For example, if the hospital retains the first discharge

peak time between 11am and noon as in Period 2, even pushing 75% patients to dis-

charge before noon and stabilizing the allocation delays cannot approximately flatten

the waiting time performance.

Second, an early discharge policy has limited impact on the daily average waiting

time and overflow proportion in the NUH setting. In particular, we test a discharge

distribution with every patient discharged at as early as midnight to study the largest

improvement that an early discharge policy might bring. When the mean allocation

delays are constant, the daily average waiting time under this extreme early discharge

scenario is 2.42 hours (a 24-minutes reduction from the baseline scenario) and the

overflow proportion is 14.00%.

3.4.3 Policies impact on the daily waiting time statistics and overflow
proportion

In this section, we show three policies that can significantly reduce the daily waiting

time statistics and overflow proportions. They are increasing the bed capacity, re-

ducing the LOS, and reducing the mean allocation delays. Specifically, we consider

three scenarios. In the first one, we increase the number of servers from 563 (baseline)

to 632 so that the utilization rate is reduced from 89.2% to 79.4% (a 10 percentage

point reduction). In the second one, we eliminate excessively long LOS by limiting

each patient to stay in the hospital for a maximum of 14 days. The utilization rate is

thereby reduced to 78.5%, close to that in the first scenario. In the third scenario, we

reduce the mean pre- and post-allocation delays by 30 minutes each. In each scenario,

we use the baseline (Period 1) discharge distribution and assume the constant-mean

allocation delay model; all other settings not specified here remain the same as in the
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baseline scenario.

The daily average waiting times are 2.45, 2.46, and 1.80 hours in the first, second,

and third scenario, respectively. The daily 6-hour service levels are 2.60%, 2.60%,

and 2.31%, respectively; and the overflow proportions are 8.19%, 8.17%, and 15.94%,

respectively. Figure 47 plots the hourly waiting time statistics under the three sce-

narios. Comparing to the baseline scenario, a 10% capacity increase results in a

significant reduction in the overflow proportion (a 8% absolute reduction) but only

reduces the daily average waiting time by 22 minutes. Reducing the LOS shows a

similar impact since it is essentially equivalent to creating more capacity. A total

one hour reduction in the mean pre- and post-allocation delays leads to a one hour

reduction in the daily average waiting time, while it has limited impact on reducing

the overflow proportion. In all three scenarios, the daily 6-hour service levels are

significantly reduced.

Furthermore, we see from the figure that in all three scenarios, the hourly average

waiting time is not stabilized, i.e., the average waiting time for patients requesting

beds between 7am and 11am is still about 1-2 hours longer than the daily average. The

hourly 6-hour service level, though, appears to be more time-stable than the average

waiting time for each scenario, especially considering that the peak value is 30% in

the baseline. Note that until we increase the bed capacity to 707 beds (utilization rate

reduces to 71.0%), the waiting time curves can be approximately stabilized; whereas

reducing the mean allocation delays down to 0 still cannot achieve a time-stable

performance.

In summary, our model predicts that reducing the mean allocation delays can

significantly reduce the daily average waiting times, while increasing the bed capacity

or reducing the LOS mainly impact the overflow proportion in the NUH setting.

Moreover, these policies have less impact on the time-of-day pattern of waiting time

performance and they do not necessarily flatten the hourly waiting time performance.
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Figure 47: Hourly waiting time statistics under three scenarios. Scenario
1: increasing bed capacity by 10%; Scenario 2: assuming each patient can stay in
the hospital for a maximum of 14 days; Scenario 3: reducing the mean pre- and
post-allocation delays by 30-minutes for each. In each scenario, we use the Period 1
discharge distribution and assume the constant-mean allocation delay model.

Our results suggest that at NUH the 2-3 hours average waiting time mainly comes

from secondary bottlenecks other than bed unavailability, such as inadequate nurse

staffing. This finding is consistent with the observation in a recent paper that the

long waiting time of ED-GW patients may not be caused by a lack of inpatient beds

but rather by other inefficiencies which slow the transitions of care between different

hospital units [116]. In the following section, we will evaluate the impact of increasing

capacity and reducing LOS in a more capacity-constrained setting.

3.4.4 Sensitivity analysis

To examine the robustness of the insights we have gained so far, we test five policies –

the Period 2 and Period 3 policies and the three alternative policies described in the

previous section – under different model settings for sensitivity analysis. These set-

tings include using alternative arrival models, changing the priority among ICU-GW,

SDA and ED-GW patients, and choosing different values for the normal allocation

probability p(t). The simulation results show that the insights we gained are robust

under the tested model variations.

In addition, to evaluate the five policies when the system load is high, we increase
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the daily arrival rates of ED-GW patients by 7%, similar to the increase we empirically

observed from Period 1 to Period 2. When all other settings are kept the same as in

the baseline, utilization under the increased arrival rate assumption becomes 93%, and

the daily average waiting time and 6-hour service level become 4.37 hours and 18.60%,

respectively. We test the five policies under the increased arrival rate assumption.

We find that the insights we have gained are still robust in this capacity-constrained

setting, except that (a) increasing capacity by 10% or reducing the LOS now shows

a significant reduction in daily average waiting times (reduce from 4.37 to about

2.5 hours); (b) the Period 3 policy can also greatly reduce the daily waiting time

statistics because of its side effect of reducing the LOS, which results from using

different LOS distributions between AM- and PM-admitted ED-GW patients (see

Table 6). Sections B.6 and B.7 in the appendix detail all the experiment setting and

simulation results of the sensitivity analysis discussed in this section.

3.4.5 Intuition about the gained insights

Our evaluated policies show different impacts on the daily and hourly waiting time

performance. The reason lies in the separation of time scales, which is captured by our

two-time-scale service time model in Equation (4). We now provide some intuition to

explain the findings we have obtained so far. A more mathematical explanation can

be obtained through the two-time-scale analytical framework developed in Chapter 4.

There are two types of waiting in our model. (i) The total number of discharges

in one day is less than the total number of arrivals in that day, and therefore some

patients have to wait till next day to get a bed. (ii) Within a day, the discharge timing

is too late so that morning arrivals have to wait several hours (till the afternoon) to

get a bed. The first type of waiting, reflected in the daily waiting time performance,

can be affected by the daily arrival rate, LOS distributions and bed capacity. The

second type of waiting, reflected in the time-of-day (hourly) waiting times, can be
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affected by the time-varying arrival rates and discharge patterns.

Clearly, merely shifting the discharge timing earlier can eliminate or reduce the

second type of waiting, not the first. Thus, early discharge policies can flatten hourly

waiting time curves, but has limited impact on further reducing daily waiting times

(when there is no side-effect in reducing the LOS). Moreover, to achieve the flattening

effect, the early discharge policy needs to ensure a modest number of patients be

discharged early enough (before 9-10am in the NUH setting as suggested by our

simulation results) so that beds become available before the queue starts to build

up in the morning. This also explains why Period 2 policy has a limited impact on

flattening the hourly waiting time curves, since its first discharge peak starts at 11am,

which is not early enough.

In comparison, increasing capacity or reducing LOS helps reduce the first type of

waiting and thus can reduce daily waiting time statistics. This effect is particularly

significant in a capacity-constrained setting. Even when bed utilization is low, but

not excessively low (not lower than 71% in the NUH setting), many morning arrivals

can still experience the second type of waiting due to not enough patients being

discharged early enough. This is why increasing capacity does not necessarily flatten

the hourly waiting time curves.

3.5 Concluding remarks and future research

We have proposed a high-fidelity stochastic network model for inpatient flow man-

agement, which can be used as a tool to quantify the impact of various operational

policies. In particular, the model captures time-of-day waiting time performance for

ED-GW patients and enables us to identify policies that can reduce or flatten waiting

times. Our model predicts that a hypothetical Period 3 policy (and similar policies

with certain early discharge distributions and constant-mean allocation delays) can

achieve time-stable waiting time statistics throughout the day, but has limited impact
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on the daily average waiting time and overflow proportion in the NUH setting. Our

model also predicts that reducing the mean allocation delay significantly reduces the

daily average waiting time, and increasing bed capacity or reducing LOS can greatly

reduce the overflow proportion; however, these three policies have less impact on the

time-of-day pattern of waiting time performance and they do not necessarily stabilize

waiting time statistics. These insights can help hospital managers choose among dif-

ferent policies to implement, depending on the choice of objective, such as to reduce

the peak waiting in the morning or to reduce daily waiting time statistics.

Readers should be aware of two issues when interpreting these findings. First,

we focus on evaluating the impact of discharge policies and other policies on the

waiting time performance of ED-GW patients in this paper. There could be other

benefits of these policies that our paper has not modeled. For example, it is believed

that early discharge allows more flexibility to transfer patients from ICU to GWs

when ICU wards become congested. Second, regarding the impact on the waiting

times, the evaluation of these policies is based on predictions from the populated

NUH model and comparison to the baseline scenario. Thus, our findings may not be

always generalizable to other hospital settings. Section B.5.4 in the appendix shows

an example where the Period 2 policy can have more significant benefits in a different

setting.

On the implementation level, we recognize the challenges in implementing the

Period 3 policy in practice. On the one hand, discharging patients as early as 8-9am

is difficult since physicians and nurses are busy with the morning rounds at about

this time. On the other hand, stabilizing allocation delays also requires coordination

throughout the entire hospital and proper staffing at different units at various hours of

the day. Though the Period 3 policy is purely hypothetical and may not be completely

practical, we believe it can serve as a goal for hospital managers to aim at if they

intend to eliminate excessively long waiting times for morning bed-requests.
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More importantly, our model provides an efficient tool to evaluate the impact of

a spectrum of policies that lie between Period 2 and Period 3 policies. Based on

the outcomes and costs of implementation, hospital managers can choose the desired

levels of effort to implement these policies. Besides the discharge policy, our model

allows hospital managers to evaluate the trade-off between the benefit of reducing

ED overcrowding and the cost of implementing a number of operational and strategic

polices.

3.5.1 Future work

Our proposed model on inpatient flow management in this paper can be used for

other studies that intend to integrate the ED and inpatient department operations

together. Our model can potentially be extended in several directions.

First, we use pre- and post-allocation delays as two black boxes to model all pos-

sible secondary bottlenecks including ward nurse and BMU staff shortage at certain

times of the day, partly because we want to maintain the tractability of the proposed

model. Detailed studies are needed to further understand these secondary bottlenecks

so that we can explicitly incorporate them into the model and identify strategies to

reduce allocation delays. The two-queue model proposed in [155] appears relevant to

this line of research.

Second, our proposed model is a parallel-server system with a single-pass routing

structure. In particular, we do not model ICU-type wards and patient flows within

ICU-type wards in our system, because the data requirements to model them would

be at another level and are beyond the scope of this paper. An extension would be to

build upon this paper and recent studies on ICU management [29, 87] to model both

ICU-type wards and general wards as a stochastic network that has internal routings

between these wards. The extended model could study waiting times for ED-GW and

ICU-GW patients as well as waiting times for ED-ICU patients or GW-ICU patients,
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and can better evaluate the impact of early discharge and other policies on patients

besides ED-GW patients. Besides, we do not model internal patient transfers between

two general wards (e.g., see Section 2.8.3). Future studies can extend our proposed

model to incorporate transfer activities among different server pools.

Third, considering day-of-week phenomena is another important extension to

make the model more realistic. Currently, we assume that ED-GW patients have

a stable daily arrival volume without differentiating days of a week. We also assume

that elective admissions are stationary by day, while recent work pointed out that

elective schedule is actually the main source of daily occupancy variation in many

hospitals [74]. Our model can be extended to predict day-of-week performance and

help design a better elective schedule.

Finally, to obtain structural insights into the impact of many policies such as dis-

charge timing and overflow trigger time, simulation alone is difficult. There is a need

to develop analytical methodology, not purely simulations, to predict performance

measures that depend on hour-of-day. In the next chapter, we introduce a new an-

alytical framework to analyze models with some of the critical features we discover

in this chapter. We believe the model proposed in this chapter and our preliminary

analytical tools will stimulate more analytical research to develop tools to study a

new class of stochastic models.
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CHAPTER IV

A TWO-TIME-SCALE ANALYTICAL FRAMEWORK

In this chapter, we illustrate a new analytical framework, two-time-scale analysis, to

analyze a class of time-varying queueing models that are motivated by the stochastic

model we proposed in Chapter 3. The two important features for this class of queueing

models is that (a) the service time is no longer iid but follows (4), and (b) there

are allocation delays during the patient (customer) admission process. We focus on

analyzing single-pool models with these two features. Note that in Chapter 3 we also

demonstrated that the multi-pool structure with the overflow mechanism is another

important feature in capturing hospital inpatient flow; however, in this chapter, we

do not incorporate this third feature in our analysis. Developing analytical methods

for multi-pool models will be left in a future project.

This chapter is organized as follows. In Section 4.1, we first illustrate a single-

pool model without allocation delay and introduce the time-dependent performance

measures we focus on. We then demonstrate the basic idea of the two-time-scale

approach on this single-pool model in Section 4.2. Then in Section 4.3, we analyze

a single-pool model with allocation delays. We show numerical results from the two-

time-scale analysis in Section 4.4. To devise efficient numerical algorithm to compute

different time-dependent performance measures, we explore diffusion approximations

in Section 4.5. These approximations are based on limit theorems, and we prove the

limit theorems in Section 4.6. This chapter concludes in Section 4.7.

4.1 A single-pool model without allocation delays

We study a single-pool model denoted as an Mperi/G2timeScale/N queue. There are

N servers in the server pool, modeling N inpatient beds. The “Mperi” denotes the
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patient arrival process, which is a periodic Poisson process with one day as a period.

The “G2timeScale” denotes the service time model, which is unconventional and follows

(4):

S = LOS + hdis − hadm.

The service time of a patient corresponds to the duration that the patient occupies

an inpatient bed. It has been shown in Chapter 3 that this two-time-scale service

time model is critical to predict steady-state, time-dependent performance measures

for hospital inpatient flow management.

In our model, the customers are to model patients. We assume the customers

are from a single class with a common arrival rate function and common LOS and

discharge distributions. Thus, the model we study here is a single-class single-pool

model. We use λ(t) to denote the common arrival rate function. It satisfies λ(t) =

λ(t+1) for any t ≥ 0. The daily arrival rate is Λ =
∫ 1

0
λ(t)dt. The LOS of each patient

follows a geometric distribution which takes values on 1, 2, . . . and has a success

probability of µ (equivalently, the mean LOS is m = 1
µ
). For notational simplicity, we

assume that there is no arrival or discharge at the exact point of midnight each day.

In the rest of this chapter, we still use servers and beds, and customers and patients,

interchangeably.

This single-pool model has the following dynamics. Upon a patient arrival, we

check the server-pool status. If there is a free bed, we admit the patient into service

(i.e., the patient starts to occupy the bed); otherwise, we move the patient to the

common buffer (waiting area). At the discharge time of a patient, we check the

buffer status. If the buffer is empty, the bed becomes idle; otherwise, we assign the

bed to the first patient waiting in the buffer following the first-come-first-out (FIFO)

rule. After a patient is admitted, she occupies the assigned bed until discharge. The

duration between admission and discharge is the patient’s service time S.

Performance measures. We focus on predicting the steady-state time-dependent
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performance measures for the single-pool model. The performance curves we are in-

terested in are the time-dependent mean queue length E∞[Q(t)] (similar to those in

Figure 40a), time-dependent mean virtual waiting time E∞[W (t)] (similar to those

in Figure 39a), and time-dependent 6-hour service level P∞(W (t) ≥ 6) (similar to

those in Figure 39b). Here, Q(t) denotes the queue length at time t, and W (t) is the

waiting time for a virtual customer arriving at time t. We use the subscript ∞ to

denote the steady-state expectation or probability.

4.2 A two-time-scale approach for the single-pool model

The two-time-scale approach essentially has two steps. First, we consider the queue-

ing system day by day, and obtain the stationary distribution of the so-called midnight

customer count. Then, based on the midnight customer count, we calculate the dis-

tribution of the customer count for different time of day. In Sections 4.2.1-4.2.2, we

illustrate these two steps of the two-time-scale approach. Once we get the distribu-

tion of the time-dependent customer count, we can calculate different performance

measures. In Section 4.2.3, we demonstrate how to predict the time-dependent per-

formance measures in the single-pool model we introduced in Section 4.1.

4.2.1 A two-time-scale approach: step 1, midnight dynamics

Let Xk denote the number of customers in system at the midnight (zero hour) of

day k, i.e., the midnight customer count. Let Ak and Dk denote the total number

of arrivals and discharges within day k, respectively. We then have the following

relationship between Xk and Xk+1:

Xk+1 = Xk + Ak −Dk, k = 0, 1, . . . . (6)

Under our arrival process assumption, Ak is a Poisson random variable with rate

Λ. Since there is no same-day discharge (LOS is at least one day), the number

of discharges on day k only depends on the number of customers admitted before
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day k. Recall that LOS follows a geometric distribution. Then Dk is in fact a

binomial random variable with parameters (min{Xk, N}, µ), only depending on Xk.

Moreover, we assume that the arrival process is independent of the LOS and discharge

distributions. Therefore, {Xk : k = 0, 1, . . .} forms a discrete-time Markov chain

(DTMC), and its transition probability from state i to state j is:

Pij =

min{i,N}∑
k=max{0,i−j}

g(i, k) · f(k + j − i). (7)

Here f(k) = Λk

k!
e−Λ is the probability mass function (pmf) at k for the Poisson

distribution with rate Λ, and g(i, k) is the pmf for the binomial distribution.

The Markov chain is irreducible. Moreover, one can prove that this Markov chain

is positive recurrent with a unique stationary distribution π if

ρ =
Λ

Nµ
< 1. (8)

The argument is simple by checking the Foster-Lyapunov criterion [15], i.e., when

x > N , we have

E[Xk+1 −Xk|Xk = x] = E[Ak −Dk|Xk = x] = Λ−Nµ = −Nµ(1− ρ) < 0.

Under condition (8), we can compute the stationary distribution π numerically.

4.2.2 A two-time-scale approach: step 2, time-of-day queue length dy-
namics

For t ≥ 0, we define X(t) to be the total number of customers in the system at

time t, i.e., time-of-day customer count. We assume that X(0) follows the stationary

distribution π of {Xk : k = 1, 2, . . .}. Similar to (6), for t ≥ 0, X(t) can be expressed

in the following form

X(t) = X(0) + A(0,t] −D(0,t]. (9)

Here, A(0,t] denotes the cumulative number of arrivals in the period (0, t], and D(0,t]

denotes the cumulative number of discharges in the period (0, t]. We first argue that
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the process X = {X(t), t ≥ 0} is periodic with one day as a period. We start from

showing that X(t) =d X(t + 1) for t ≥ 0 with =d denoting equal in distribution.

Since X(0) follows the stationary distribution π, we know the customer count at each

midnight, X(k), k = 1, 2, . . . , also follows the stationary distribution π. Meanwhile,

for any t ≥ 0, X(t) and X(t+ 1) can be further represented as

X(t) = X(kt) + A(kt,t] −D(kt,t],

X(t+ 1) = X(kt + 1) + A(kt+1,t+1] −D(kt+1,t+1],

where kt = btc is the most recent midnight before time t. Since the arrival process has

the period of one day, both A(kt,t] and A(kt+1,t+1] follow a Poisson distribution with the

same mean
∫ t−kt

0
λ(s)ds and are independent of X(kt) and X(kt+1), respectively. The

two discharge quantities, D(kt,t] and D(kt+1,t+1], follow binomial distributions with pa-

rameters (min{X(kt), N}, µq(0,t−kt]) and (min{X(kt + 1), N}, µq(0,t−kt]), respectively;

here q(0,t−kt] is the common cumulative discharge distribution from 0 to t− kt. Note

that D(kt,t] only depends on X(kt) and D(kt+1,t+1] only on X(kt + 1), while X(kt) and

X(kt + 1) have the same distribution π. Thus, the two discharge quantities also have

the same distribution. Eventually, we can see that X(t) and X(t+ 1) have the same

distribution.

The above argument can be generalized to prove (X(t1), X(t2)) =d (X(t1 +

1), X(t2 +1)) for t1, t2 ∈ [kt, kt+1). Then, for any finite K-dimensional joint distribu-

tion, we can show (X(t1), . . . , X(tK)) =d (X(t1 + 1), . . . , X(tK + 1)) for t1, . . . , tK ∈

[kt, kt+1). Eventually, we have {X(t), kt ≤ t < kt+1} =d {X(t+1), kt ≤ t < kt+1},

and thus, it is sufficient for us to focus on the dynamics of X(t) for 0 ≤ t < 1. Con-

ditioning on X(0), we can see from the above argument that the distribution of X(t)

is a convolution between a Poisson and a binomial distributions. Un-conditioning on

X(0) with the stationary distribution π, we can obtain the distribution for X(t).
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4.2.3 Predict time-dependent queue length and waiting time dynamics

Mean queue length

For any t ≥ 0, given the stationary distribution of X(t), the steady-state mean queue

length at t is

E∞[Q(t)] = E∞[(X(t)−N)+], (10)

where, for a real number a, a+ = max(a, 0). Since X(t) is periodic, it is obvious that

E∞[Q(t)] is also periodic with one day as a period.

Mean waiting time

We now consider the steady-state mean virtual waiting time E∞[W (t)] for a virtual

customer arriving at time t. Again, because X(t) is periodic, we can argue that

E∞[W (t)] is also periodic with one day as a period (below also gives more details on

how E∞[W (t)] depends on X(t)). As a result, we focus on 0 ≤ t < 1.

To illustrate the calculation, we further assume the discharge hour hdis follows a

discrete distribution, taking values on a finite number of points t1, t2, . . . , tn with

probabilities qt1 , qt2 , . . . , qtn , respectively. Under this discharge distribution, the

discharges are in batches. Next, we focus on illustrating the case when t < t1, where

t1 is the first discharge point.

1. Given the stationary distributions of X(t), we know that there is a chance of

p0(t) = P∞(X(t) < N) that the virtual customer does not need to wait, and

thus W (t) = 0. With probability (1− p0(t)), this customer cannot enter service

immediately and need to wait.

2. Conditioning on the latter case that this customer needs to wait, we know there

are X(t)−N customers wait in front of her. Given the value of X(0) = x0, the

number of discharges between t and t1, D(t,t1], is a binomial random variable

with parameters (x0, qt1µ) since there is no discharge from 0 to t. Thus, we can
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compute

pt1(t) = P∞(X(t) ≥ N,X(t)−N < D(t,t1])

= P∞(0 ≤ X(0) + A(0,t] −N < D(0,t1]), (11)

which is the probability that at least X(t)−N + 1 customers will be discharged

by t1. The second equation in (11) follows from the fact that X(t) = X(0)+A(0,t]

and D(t,t1] = D(0,t1] for t < t1. With the chance of pt1(t), the virtual customer

will enter service at t1 and W (t) = t1 − t.

3. Next, we compute

pt2(t) = P∞(X(t)−N ≥ D(t,t1], X(t)−N < D(t,t2])

= P∞(D(0,t1] ≤ X(0) + A(0,t] −N < D(0,t2]), (12)

which is the probability that at least X(t)−N + 1 customers will be discharged

by t2 but less than X(t) − N + 1 customers were discharged before t1. Here,

the number of discharges by t2, D(t,t2] = D(0,t2] follows a binomial distribution

with parameters (x0, (qt1 + qt2)µ)). Then, with the chance of pt2(t), the virtual

customer will enter service at t2 and W (t) = t2 − t.

4. We repeat this procedure iteratively and calculate until

ptn(t) = P∞(X(t)−N ≥ D(t,tn−1], X(t)−N < D(t,tn])

= P∞(D(0,tn−1] ≤ X(0) + A(0,t] −N < D(0,tn]), (13)

which is the chance that at least X(t) − N + 1 customers will be discharged

today by tn but less than X(t)−N + 1 customers were discharged before tn−1.

Similarly, with probability ptn(t), the customer will enter service at tn, and the

waiting time W (t) = tn − t; otherwise, this virtual customer needs to wait till

at least the next day to be admitted.
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5. The probability that a customer needs to wait till t1 the next day to be admitted

is:

p1
t1

(t) = P∞(X(t)−N ≥ D(t,1], X(t)−N < D(t,1+t1])

= P∞(D(0,1] ≤ X(0) + A(0,t] −N < D(0,1+t1]).

The number of customers discharged by the next day at time t1, D(0,1+t1] is

the sum of D(0,1] and D(1,1+t1]. Note that D(0,1] follows a binomial distribution

with parameters (X(0), µ), while D(1,1+t1] follows a binomial distribution with

parameters (N, qt1µ) since the server pool is full at the beginning of the next day.

Similarly, we can obtain p1
t2

(t), . . . , p1
tn(t), which denote the probabilities that

the virtual customer enters service at time t2, . . . , tn the next day, respectively.

Sequentially, we can perform the same procedure for discharges k days later.

In general, for a given day k (k = 1, 2, . . . ) and discharge time ti ≥ t2, the

probability pkti(t) can be expressed as

pkti(t) = P∞(X(t)−N ≥ D(t,k+ti−1], X(t)−N < D(t,k+ti])

= P∞(D(0,k+ti−1] ≤ X(0) + A(0,t] −N < D(0,k+ti]), ti ≥ t2, (14)

while for ti = t1,

pkt1(t) = P∞(X(t)−N ≥ D(t,k], X(t)−N < D(t,k+t1])

= P∞(D(0,k] ≤ X(0) + A(0,t] −N < D(0,k+t1]). (15)

The waiting time associated with the probability pkti is W (t) = (k + ti − t).

The discharge quantity, D(0,k+ti] is the sum of D(0,1] and D(1,k+ti], which follow

two binomial distributions with parameters (X(0), µ) and parameters (N,µ(k+∑i
j=1 qtj)), respectively.

Eventually, we can numerically evaluate the mean waiting time E∞[W (t)] for

133



0 ≤ t < t1 using the following equation:

E∞[W (t)] =
n∑
i=1

pti(t) · (ti − t) +
∞∑
k=1

n∑
i=1

pkti(t) · (k + ti − t). (16)

The mean waiting time for t1 ≤ t < tn can be calculated in a similar manner:

E∞[W (t)] =
n∑

i=i∗

pti(t) · (ti − t) +
∞∑
k=1

n∑
i=1

pkti(t) · (k + ti − t), (17)

where ti∗ is the first discharge time point after t; while for tn ≤ t < 1, the mean

waiting time is simply

E∞[W (t)] =
∞∑
k=1

n∑
i=1

pkti(t) · (k + ti − t). (18)

Note that the set of probabilities pti(t) and pkti(t) in (17) and (18) have consistent

expressions as those for the case of 0 ≤ t < t1, i.e., the displays in (11) to (14). In

particular, note that for t1 ≤ t < tn, if t < ti−1 < ti (or equivalently, ti > ti∗ is not

the first discharge point after t), then

pti(t) = P∞(X(t)−N ≥ D(t,ti−1], X(t)−N < D(t,ti])

= P∞(D(0,ti−1] ≤ X(0) + A(0,t] −N < D(0,ti]), (19)

consistent with (12) and (13); the second equation follows from the fact that X(t) =

X(0) + A(0,t] −D(0,t]. If ti = ti∗ is the first discharge point after t (t1 ≤ t < tn), then

pti∗ (t) = P∞(X(t)−N ≥ 0, X(t)−N < D(t,ti∗ ])

= P∞(D(0,t] ≤ X(0) + A(0,t] −N < D(0,ti∗ ]), (20)

consistent with (11).

6-hour service level

The 6-hour service level can be obtained in a similar way as the mean virtual waiting

time. For example, for a virtual customer arriving at time 0 ≤ t < t1, the 6-hour

service level is

P∞(W (t) ≥ 6) =
n∑
i=1

pti1{ti−t≥6/24} +
∞∑
k=1

n∑
i=1

p
(k)
ti , (21)
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where 1{·} is the indicator function. The 6-hour service level for the case t1 ≤ t < tn

or t1 ≤ t < tn can be adapted from (17) or (18) in a similar way.

4.3 Single-pool model with allocation delays

In this section, we introduce a revised Mperi/G2timeScale/N model with the second

critical feature: allocation delays. We first describe the queueing dynamics for this

revised system in Section 4.3.1. Then in Section 4.3.2 we show how to adapt the two-

time-scale analysis to predict time-dependent performance measures in this revised

system.

4.3.1 System dynamics

In a single-pool Mperi/G2timeScale/N model with allocation delays (see the description

of allocation delays in Sections 2.7 and 3.1.4), we assume each patient needs to experi-

ence an extra amount of delay after a bed becomes available for her. Thus, we assume

there are two buffers working in series: the waiting-bed queue, and the allocation-delay

queue. These two buffers holding waiting customers in different status.

Specifically, upon each patient arrival, we first check the server-pool status. If

there is a free bed, we assign the bed to the patient and move the patient to the

allocation-delay queue; otherwise, we move the patient to the waiting-bed queue. At

the discharge time of a previous patient, we check the waiting-bed queue. If it is not

empty, the newly-freed bed is assigned to the first patient waiting in the waiting-bed

queue (following the FIFO rule), and we then move this patient to the allocation-delay

queue. Otherwise, the bed becomes idle.

When a patient is moved to the allocation-delay queue, she stays there for a

random amount of time, Talloc. After this Talloc time expires, she is admitted into

service. The service time of a patient in this revised single-pool model still follows a

form that is similar to (4), except that we replace the admission hour hadm with the

bed-assignment hour halloc, and LOS is slightly modified to represent the number of
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midnights between the bed-assignment and discharge times. Recall that a patient’s

bed-assignment time is either at her arrival time or at the discharge time of a previous

patient. We assume that the allocation delays of each patient forms a sequence of

iid random variables and are independent of the allocation times (i.e., not time-

dependent).

Note that comparing to the high-fidelity model we developed in Chapter 3, here

we use a simplified setting for modeling allocation delays. Each patient in this revised

single-pool model adopts the normal-allocation mode as introduced in Section 3.1.4,

i.e., the patient starts to experience allocation delays only after a bed is assigned

to her (see Cases A and B in Figure 37). The Talloc amount of delay represents the

sum of pre- and post-allocation delays, and corresponds to the total delays that (i)

BMU needs to search and negotiate for a bed and (ii) ED needs to discharge the

patient from ED and transport her to inpatient wards. Moreover, we focus on the

case that Talloc is not time-dependent, whereas in the high-fidelity model, both pre-

and post-allocation delays have time-varying means.

4.3.2 Predict the performance measures

Mean queue length

The steady-state, time-dependent mean queue length E∞[Q(t)] equals to the sum of

the two buffer sizes at time t, i.e.,

E∞[Q(t)] = E∞[Qbed(t)] + E∞[Qalloc(t)],

where Qbed(t) and Qalloc(t) denote the number of customers waiting in the waiting-bed

queue and the allocation-delay queue, respectively. We separately calculate each of

the mean queue lengths. Below, we mainly focus on calculating the mean allocation-

delay queue length.

To obtain E∞[Qalloc(t)], we further separate the “arrivals” to the allocation-delay
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queue into two streams (to differentiate, we refer the patients arriving to the single-

pool system the external arrivals). These two arrival streams are: (i) the external

arrivals who get a free bed immediately upon arriving to the single-pool system; and

(ii) the patients in the waiting-bed queue who get a free bed at the discharge times

of previous patients. It is easy to argue that the arrivals from the first stream still

follow a periodic Poisson process with one day as a period, because this stream of

arrivals is essentially a “thinning” of the external arrival process, and the thinning

probability p0(t) = P∞(X(t) < N) (i.e., the non-blocking probability) is independent

of the external arrivals coming at or after time t. We use A
(1)
alloc to denote the first

stream of arrivals to the allocation-delay queue.

To illustrate the second stream of arrival process (denote as A
(2)
alloc), we again

consider the batch discharge policies, where the discharge hour hdis follows a discrete

distribution taking values on a finite number of points t1, t2, . . . , tn with probabilities

qt1 , qt2 , . . . , qtn , respectively. Then, this arrival stream forms a batch arrival process,

and at a discharge point ti, the number of patients arriving at the allocation-delay

queue equals

A
(2)
alloc(ti) = (X(t−i )−N)+ − (X(ti)−N)+,

where X(t−i ) denotes the left limit of X(·) at time ti.

Next, we separately calculate the mean allocation-delay queue length from the

two arrival streams, i.e.,

E∞[Qalloc(t)] = E∞[Q
(1)
alloc(t)] + E∞[Q

(2)
alloc(t)]. (22)

For the queue length formed by customers from the first arrival stream, we utilize

the infinite-server queue theory since we can consider these customers as receiving

“service” in an Mperi/GI/∞ system with the service times being Talloc and the arrival

process being A
(1)
alloc. Let Falloc(·) denotes the CDF of the allocation delay Talloc. From
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Theorem 1 of [41], we know that

E∞[Q
(1)
alloc(t)] = E[λ

(1)
alloc(t− Talloc,e)]E[Talloc]. (23)

Here, Talloc,e denotes the random variable associated with the equilibrium-residual-

lifetime CDF of the allocation delay Talloc

Falloc,e(t) = P(Talloc,e ≤ t) =
1

E[Talloc]

∫ t

0

(1− Falloc(u))du, t ≥ 0,

and λ
(1)
alloc(·) = p0(·)λ(·) denotes the arrival rate function of the arrival process A

(1)
alloc.

For the queue length formed by customers from the second arrival stream, we

know that among all the customers who arrived before t, the chance that such a

customer is still in the allocation-delay queue is P (Talloc > t− tarr) = 1− F (t− tarr).

Here, tarr denotes one of the batch arrival time before t. Therefore, we know that

E∞[Q
(2)
alloc(t)] =

∑
tarr≤t

E[A
(2)
alloc(tarr)](1− F (tarr − t)). (24)

Combining (22) to (24), we can calculate the mean allocation-delay queue length

E∞[Qalloc(t)] for any time t.

Finally, for E∞[Qbed(t)], it can be calculated in the same way as introduced in

Section 4.2.3. Because the waiting-bed queue has the same dynamics as the single-

pool system without allocation delays.

Mean waiting time and 6-hour service level

It is easy to see from the description in Section 4.3.1 that the total waiting time for

a virtual customer arriving at time t in the revised single-pool system is

W (t) = Wbed(t) + Talloc.

Here, Wbed(t) is the time that this customer needs to wait before getting a bed

assigned. Note that Wbed(t) can be calculated in the same way as illustrated in

Section 4.2.3, because the waiting-bed queue has the same dynamics as the single-

pool system without allocation delays.
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Therefore, we know the mean waiting time

E∞[W (t)] = E∞[Wbed(t)] + E∞[Talloc], (25)

and the 6-hour service level

P∞ (W (t) ≥ 6) = P∞ (Wbed(t) + Talloc ≥ 6)

=

∫ 6

0

P∞ (Wbed(t) ≥ 6− x) f(x)dx, (26)

where f(x) is the pdf of the allocation delay Talloc.

4.4 Numerical results

In this section, we present some numerical results for the single-pool model. In the

numerical experiments, the arrival rate function λ(t) is assumed to be piecewise-

constant, i.e., the arrival rate is constant in each hour. We proportionally enlarged

the hourly arrival rates represented by the solid curve of Figure 13, so that the

daily arrival rate Λ = 90.95 is close to the empirical daily arrival rate from the four

admission sources. We do this adjustment because the single-pool model only has

one class of customers. The parameter for the LOS distribution is chosen to be

pLOS = 1/5.3, i.e., the mean LOS is 5.3 days. The total number of servers is N = 525.

The allocation delay, Talloc, follows a log-normal distribution with mean = 2.5 hours

and CV = 1.

To evaluate the impact of discharge timing, we test three discharge distributions:

NUH Period 1 and Period 2 discharge distributions, and the aggressive early discharge

distribution in the hypothetical Period 3 policy (see description of these discharge

policies in Section 3.4). Figure 48 plots the steady-state time-dependent mean waiting

time curves and mean queue length curves under the three discharge scenarios. We

can see that (i) the Period 2 early discharge policy has limited impact on stabilizing

the waiting time performances, (ii) the hypothetical Period 3 discharge policy shows

a more significant impact on stabilizing the waiting time performances, and (iii) early
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Figure 48: Numerical results for the steady-state time-dependent mean
waiting time and mean queue length. Three discharge distributions are tested:
NUH Period 1 and Period 2 discharge distributions, and the aggressive early discharge
distribution in the hypothetical Period 3 policy.

discharge policies mainly impact the hourly performance measures, not the daily

performance. These insights are consistent with our simulation study of the high-

fidelity multi-pool model; see summary of the simulation findings in Section 3.4.

4.5 Diffusion approximations

Sections 4.2 and 4.3 have introduced how to predict the time-dependent performance

measures under the two-time-scale analysis framework. A key step for the prediction

is to numerically solve the stationary distribution π for the midnight customer count

process. However, when the system size is large and heavily utilized, it becomes ineffi-

cient to compute the stationary distribution this way. Moreover, since the numerical

solutions do not have closed-form expressions, it is still difficult to gain structural

insights into understanding the system dynamics. Thus, in this section we explore

diffusion approximations to devise efficient numerical algorithms to obtain the mid-

night count stationary distribution and to predict the time-dependent performance

measures, which eventually help us provide more insights into improving hospital

inpatient operations.

In this section, we focus on studying the single-pool model without allocation
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delays, since the adjustment to incorporate allocation delays is fairly standard and

does not involve intensive computations. We develop diffusion approximations for the

midnight customer count process, the hourly customer count process, and the time-

dependent performance measures in Sections 4.5.1 to 4.5.3. We then demonstrate in

Section 4.5.4 that these approximations are good even when the system size is small

(N around 60-70) and the utilization is moderate. The diffusion approximations

proposed in this section are for systems with fixed N , and these approximations are

rooted in limit theorems, i.e., stochastic processes convergence when N → ∞. We

will prove limit theorems in Section 4.6.

4.5.1 Approximation for the midnight customer count

We first explore diffusion approximations for the midnight customer count process

{Xk, k = 0, 1, 2 . . .}. Let A(0,k] =
∑k−1

i=0 Ai be the cumulative number of arrivals and

D(0,k] be the cumulative number of departures from 0 until the midnight (zero hour) of

day k. Assume that the system starts from an initial state X0. Under the assumption

that the LOS distribution is geometric, it follows from (6) that

Xk = X0 + A(0,k] −D(0,k]

= X0 + A(0,k] −
Z0+...+Zk−1∑

i=1

ξi, (27)

where {ξi : i = 1, 2, . . .} is a sequence of iid Bernoulli random variables with proba-

bility µ = 1/m taking value 1, and Zi = min(Xi, N) is the number of busy servers at

the midnight of day i. After proper centering, it follows from (27) that

Xk −N = Yk + µ

k−1∑
i=0

(Xi −N)−, k = 0, 1, 2 . . . (28)

where, for an x ∈ R, x− = max(−x, 0),

Yk = X0 −N + (A(0,k] − kΛ)−
Z0+...+Zk−1∑

i=1

(ξi − µ) + k(Λ− µN), (29)
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and we have used the fact that (N−Zi) is equal to the number of idle servers (Xi−N)−

at the midnight of day i.

We define the diffusion-scaled processes X̃k = (Xk−N)/
√
N . It follows from (28)

that

X̃k = Ỹk + µ
k−1∑
i=0

(X̃i)
− k = 0, 1, 2 . . . , (30)

where Ỹk = 1√
N
Yk. When the daily arrival rate Λ is high and the number of servers

N is large so that β =
√
N(1− ρ) is moderate (where ρ is defined in (8)), we propose

to use a discrete-time diffusion process {X̃∗k : k = 0, 1, 2, . . .} to replace the diffusion-

scaled midnight customer count process {X̃k : k = 0, 1, 2, . . .}. The discrete-time

diffusion process {X̃∗k : k = 0, 1, 2, . . .} satisfies the following equation:

X̃∗k = Ỹ ∗k + µ
k−1∑
i=0

(X̃∗i )−, k = 0, 1, 2, . . . . (31)

Here Ỹ ∗k = Ỹ ∗(k) for k = 0, 1, 2, . . . , and {Ỹ ∗(t), t ≥ 0} is a Brownian motion with

mean −µβ and variance σ2 = ρµ(2 − µ). The discrete-time process {Ỹ ∗k : k =

0, 1, 2 . . .} is an embedding of the corresponding Brownian motion. In other words,

it is a random walk with the step sizes being iid following a normal distribution with

mean −µβ and variance σ2 = ρµ(2 − µ). This approximation is based on the limit

theorem we will prove in Section 4.6.

Stationary distribution of the the discrete-time diffusion process

Ideally, we want to obtain an explicit formula for the stationary density π∗(·) of the

discrete-time diffusion process {X̃∗k : k = 0, 1, 2, . . .}. Using π∗(·), we can approximate

the stationary distribution of the unscaled midnight customer count by

P(X∞ = x) ≈ π∗
(
x−N√

N

)
/
√
N. (32)

At the current stage, it is challenging to obtain the exact formula for π∗(x).

Alternative, we propose an approximation for π∗. The approximate formula π̃(x) is
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given in (33) below:

π̃(x) =

 α1 exp(−2µβx
σ2 ), x ≥ 0;

α2 exp(− (2µ−µ2)(x+β)2

2σ2 ), x < 0;
(33)

where α1 and α2 are normalizing constants that make π̃(x) continuous at zero. In

Section 4.5.4, we show that this approximate density π̃(x) can already produce re-

markably good approximation for the stationary distribution of the midnight count

as well as the time-dependent performance measures of our interest.

To explain the rational of proposing the approximate formula (33), note that

discrete-time diffusion process {X̃∗k : k = 0, 1, 2 . . .} can be seen as a discrete-time

analog of the following (continuous-time) piecewise-linear diffusion process {X̌(t), t ≥

0} which satisfies

X̌(t) = Y̌ (t) + µ

∫ t

0

(X̌(s))−ds, t ≥ 0, (34)

where {Y̌ (t), t ≥ 0} is a Brownian motion. It is well known that the diffusion limits

for GI/M/n queues in the Quality- and Efficiency-Driven (QED) regime have the

same form as {X̌(t), t ≥ 0} [66]; also see more discussion on the QED regime in

Section 4.6. Based on this analogy, we can see that {X̃∗k : k = 0, 1, 2 . . . , } behaves

as a discrete version of the Ornstein-Uhlenbeck (OU) process on (−∞, 0] and as a

reflected random walk on [0,∞). Motivated by the technique introduced in [18] and

based on the fact that the stationary density of the discrete-time OU process has a

Gaussian form and that the reflected random walk has an exponential tail [88, 137, 11],

we thus propose using π̃(x) to approximate the stationary density π∗(x). The proof

that the stationary density of the discrete-time OU process has a Gaussian form is

provided in Appendix C.1.

4.5.2 Approximate the hourly customer count

Recall the hourly customer count at time t can be represented as

X(t) = Xk + A(k,t] −D(k,t],
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where k = btc is the most recent midnight before time t so that k ≤ t < k + 1.

Moreover, A(k,t] denotes the total number of arrivals from the midnight of day k to

time t. Its mean equals Λψ(t) with ψ(t) =
∫ t−k

0
λ(s)ds/

∫ 1

0
λ(s)ds. We use D(k,t]

denote the total number of discharges from the midnight of day k to time t, which

equals

D(k,t] =

Zk∑
i=0

ξi,t

where ξi,t is sequence of iid Bernoulli random variables with success probability

µP(hdis ≤ t− k), hdis is the discharge time (time of the day), and Zk is the number of

busy servers at the midnight of day k. We introduce φ(t) = P(hdis ≤ t− k), and the

mean of D(k,t] equals ZN
k µφ(t). We can see that the arrival rate pattern determines

ψ(t), while the discharge distribution determines φ(t).

Similar to the midnight count process, we first do proper centering for X(t):

X(t)−N −Nµ(ψ(t)− φ(t)) = (Xk −N) + Y (t) + µφ(t)(Xk −N)−, (35)

where

Y (t) =
(
A(k,t] − Λψ(t)

)
−
(
D(k,t] − Zkµφ(t)

)
+ (Λ−Nµ)ψ(t),

and we again use the fact that (N − Zk) = (Xk −N)− is the number of idle servers

at the midnight of day k.

Let

X̃(t) =
1√
N

(X(t)−N −Nµ(ψ(t)− φ(t))) ,

Ã(k,t] =
A(k,t] − Λψ(t)√

N
,

D̃(k,t] =
D(k,t] − Zkµφ(t)√

N
.

Dividing both sides of (35) by
√
N , we know the diffusion-scaled hourly customer

count X̃(t) satisfies the following:

X̃(t) = X̃k + Ỹ (t) + µφ(t)
(
X̃k

)−
, (36)
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where X̃k is the diffusion-scaled midnight customer count, and

Ỹ (t) = Ã(k,t] − D̃(k,t] +
√
Nµψ(t)(ρ− 1).

When the daily arrival rate Λ is high and the number of servers N is large so that

β =
√
N(1−ρ) is moderate, we can use then density π̃ to approximate the stationary

distribution of X̃k as described in Section 4.5.1. Moreover, the diffusion-scaled arrival

Ã(k,t] and discharge D̃(k,t] can be approximated by two normal random variables by

the central limit theorem (CLT). Thus, the term Ỹ (t) can be approximated by a

normal random variable with mean −µβψ(t) and variance

γ2 = ρµψ(t) + ρµφ(t)(1− µφ(t)).

Note that when both ψ(t) and φ(t) equal 1, γ2 = σ2 = ρµ(2 − µ), where σ2 is the

variance in the diffusion approximations for the midnight count process.

Eventually, the distribution of X̃(t) can be approximated by a convolution of the

diffusion-scaled midnight count (with distribution π̃) and a normal random variable.

To spell out the details, we know from (36) that conditioning on the value of X̃k = x,

when x ≥ 0,

X̃(t) = x+ Ỹ (t),

while for x < 0,

X̃(t) = (1− µφ(t))x+ Ỹ (t).

Let h(x) denote the pdf of the normal distribution with mean −µβψ(t) and variance

γ2. Thus, we propose using the following formula to approximate the stationary

density of X̃(t) = z:

f(z) =

∫ ∞
0

h(z − x)π̃(x)dx+

∫ 0

−∞
h(z − (1− µφ(t))x)π̃(x)dx. (37)

Let Υ1 =
∫∞

0
h(z − x)π̃(x)dx, and Υ2 =

∫ 0

−∞ h(z − (1 − µφ(t))x)π̃(x)dx. After
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doing some algebra, we have

Υ1 =

∫ ∞
0

α1√
2πγ

exp

(
−(x−m)2

2γ2

)
exp (−θx) dx

=

∫ ∞
0

α1√
2πγ

exp

(
−2mθ − γ2θ2

2

)
exp

(
− [x− (m− γ2θ)]2

2γ2

)
dx

= α1 exp

(
−θ

2
(2m− γ2θ)

)(
1− Φ

(
−m− γ

2θ

γ

))
, (38)

where

θ =
2µβ

σ2
, m = y + µβψ(t),

Φ(x) is the CDF of standard normal distribution, and α1 (as well as α2 below) are

the normalizing constants in π̃.

We also have

Υ2 =

∫ 0

−∞

α2√
2πγ

exp

(
−(x− l)2

2w2

)
exp

(
−(x+ β)2

2s2

)
dx

=

∫ 0

−∞

α2√
2πγ

exp

−
[
x− s2l−w2β

s2+w2

]2

2w2s2

(s2+w2)

 exp

(
− (l + β)2

2(s2 + w2)

)
dx

=
α2

γ

ws√
w2 + s2

exp

(
− (l + β)2

2(s2 + w2)

)
Φ

(
− s2l − w2β

ws
√
w2 + s2

)
, (39)

where

w2 =
γ2

(1− µφ(t))2
, s2 =

σ2

2µ− µ2
, l =

z + µβψ(t)

1− µφ(t)
.

Plugging (38) and (39) back to (37), we can evaluate f(z) for any given value

of X̃(t) = z. Till now, we have obtained closed-form expressions to approximate

the stationary distributions for both the midnight customer count and the hourly

customer count.

4.5.3 Approximate the time-dependent performance

In Section 4.5.2, we have obtained the approximate stationary distribution for the

hourly customer count X(t). Thus, applying (10) again, we can get the approximate

mean queue length for any t ≥ 0.
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Next, we focus on introducing how to approximate the hourly mean waiting time

E∞[W (t)]. We briefly introduce how to approximate the 6-hour service level at the

end of this sub-section.

Mean waiting time

Consistent with Section 4.2.3, we adopt the batch discharge policy when calculating

the mean waiting time, i.e., the discharge hour hdis follows a discrete distribution, tak-

ing values on a finite number of points t1, t2, . . . , tn with probabilities qt1 , qt2 , . . . , qtn ,

respectively. As from Section 4.2.3, we can see the key step to get the mean waiting

time is to calculate the set of probabilities pti(t) and pkti(t). Recall that pti(t) denotes

the probability that a virtual customer arriving at time t needs to wait till time ti

(the same day) to be admitted, i.e., for 0 ≤ t < ti, if ti is the first discharge point

after t,

pti(t) = P∞
(
D(0,t] ≤ X(0) + A(0,t] −N < D(0,ti]

)
;

otherwise,

pti(t) = P∞
(
D(0,ti−1] ≤ X(0) + A(0,t] −N < D(0,ti]

)
.

The probability pkti(t) denotes the probability that a virtual customer arriving at time

t needs to wait till time ti on k days later (k = 1, 2, . . . ) to be admitted, i.e.,

pkti(t) = P∞
(
D(0,k+ti−1] ≤ X(0) + A(0,t] −N < D(0,k+ti]

)
.

Thus, we introduce how to approximate these probabilities.

Similar to Section 4.2.3, we focus on discussing the case when 0 ≤ t < t1. We

first show how to approximate pt1(t) = P∞
(
0 ≤ X(0) + A(0,t] −N < D(0,t1]

)
. This

probability can be further written as

pt1(t) = P∞{X(0)−N + A(0,t] < D(0,t1]}

− P∞{X(0)−N + A(0,t] < D(0,t1], X(0)−N + A(0,t] < 0}

= P∞{X(0)−N + A(0,t] < D(0,t1]} − P∞{X(0)−N + A(0,t] < 0}.
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Let pL
t1

(t) denote P∞{X(0)−N +A(0,t] < D(0,t1]}, and pR
t1

(t) denote P∞{X(0)−N +

A(0,t] < 0}. We have that

pL
t1

(t) = P∞
(
(X(0)−N) + A(0,t] − Λψ(t)

< (D(0,t1] − Z(0)µφ(t1)) + µφ(t1)(Z(0)−N) +Nµφ(t1)− Λψ(t)
)

= P∞
(
X̃(0) + Ã(0,t] < D̃(0,t1] − µφ(t1)(X̃(0))− +

√
Nµφ(t1)−

√
Nµρψ(t)

)
.

and

pR
t1

(t) = P∞
(
(X(0)−N) + A(0,t] − Λψ(t) < −Λψ(t)

)
= P∞

(
X̃(0) + Ã(0,t] < −

√
Nµρψ(t)

)
.

Conditioning on the value of the diffusion-scaled midnight count X̃(0) = x, we have

that

pt1(t)|x = pL
t1

(t)|x− pR
t1

(t)|x

= P
(
Ã(0,t] − D̃(0,t1] < −x− µφ(t1)x− +

√
Nµφ(t1)−

√
Nµρψ(t)

)
− P

(
Ã(0,t] < −x−

√
Nµρψ(t)

)
.

Recall that Ã(0,t] and D̃(0,t1] are independent and we can use two normal ran-

dom variables to approximate Ã(0,t] and Ã(0,t] − D̃(0,t1], respectively. Thus, we can

approximate pt1(t)|x by

pt1(t)|x ≈ Φ

(
g1(x)

δ1

)
− Φ

(
g0(x)

δ0

)
.

where Φ is the CDF of the standard normal distribution,

g0(x) = −x−
√
Nµρψ(t), g1(x) = −x− µφ(t1)x− +

√
Nµφ(t1)−

√
Nµρψ(t),

δ0 =
√
ρµψ(t), and δ1 =

√
ρµψ(t) + ρµφ(t1)(1− µφ(t1)). Then, we can approximate

the unconditional probability pt1(t) by using the approximate stationary density π̃

for X̃(0), i.e.,

pt1(t) ≈
∫ ∞
−∞

Φ

(
g1(x)

δ1

)
π̃(x)dx−

∫ ∞
−∞

Φ

(
g0(x)

δ0

)
π̃(x)dx. (40)
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Next, we show how to approximate a general pti(t) for 0 ≤ t < ti−1 < ti. Similarly,

this probability can be further written as

pti(t) = P∞
(
(X(0)−N) + A(0,t] < D(0,ti]

)
− P∞

(
(X(0)−N) + A(0,t] < D(0,ti−1]

)
= P∞

(
X̃(0) + Ã(0,t] < D̃(0,ti] − µφ(ti)(X̃(0))− +

√
Nµφ(ti)−

√
Nµρψ(t)

)
− P∞

(
X̃(0) + Ã(0,t] < D̃(0,ti−1] − µφ(ti−1)(X̃(0))− +

√
Nµφ(ti−1)−

√
Nµρψ(t)

)
.

Conditioning on the value of the diffusion-scaled midnight count X̃(0) = x and using

two normal random variables to approximate Ã(0,t] − D̃(0,ti] and Ã(0,t] − D̃(0,ti−1], we

have

pti(t)|x = P
(
Ã(0,t] − D̃(0,ti] < −x− µφ(ti)(x)− +

√
Nµφ(ti)−

√
Nµρψ(t)

)
− P

(
Ã(0,t] − D̃(0,ti−1] < −x− µφ(ti−1)(x)− +

√
Nµφ(ti−1)−

√
Nµρψ(t)

)
≈ Φ

(
gi(x)

δi

)
− Φ

(
gi−1(x)

δi−1

)
.

where

gi(x) = −x− µφ(ti)x
− +
√
Nµφ(ti)−

√
Nµρψ(t),

and δi =
√
ρµψ(t) + ρµφ(ti)(1− µφ(ti)). Then similarly, we can approximate the

unconditional probability pti(t) by using the approximate stationary density π̃ for

X̃(0), i.e.,

pti(t) ≈
∫ ∞
−∞

Φ

(
gi(x)

δi

)
π̃(x)dx−

∫ ∞
−∞

Φ

(
gi−1(x)

δi−1

)
π̃(x)dx. (41)

Finally, we show how to how to approximate the overnight waiting probabilities.

We illustrate with p1
ti

(t) for 0 ≤ t < t1. This probability can be further written as

p1
ti

(t) = P∞
(
(X(0)−N) + A(0,t] < D(0,1+ti]

)
− P∞

(
(X(0)−N) + A(0,t] < D(0,1+ti−1]

)
= P∞

(
X̃(0) + Ã(0,t] < D̃(0,1+ti] − µ(X̃(0))− +

√
Nµ(1 + φ(ti))−

√
Nµρψ(t)

)
− P∞

(
X̃(0) + Ã(0,t] < D̃(0,1+ti−1] − µ(X̃(0))− +

√
Nµ(1 + φ(ti−1))−

√
Nµρψ(t)

)
.
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Conditioning on the value of the diffusion-scaled midnight count X̃(0) = x, and using

two normal random variables to approximate Ã(0,t] − D̃(0,1+ti] and Ã(0,t] − D̃(0,1+ti−1],

we have

pti(t)|x = P
(
Ã(0,t] − D̃(0,1+ti] < −x− µx− +

√
Nµ(1 + φ(ti))−

√
Nµρψ(t)

)
− P

(
Ã(0,t] − D̃(0,1+ti−1] < −x− µx− +

√
Nµ(1 + φ(ti−1))−

√
Nµρψ(t)

)
≈ Φ

(
g1
i (x)

δ1
i

)
− Φ

(
g1
i−1(x)

δ1
i−1

)
.

where

g1
i (x) = −x− µx− +

√
Nµ(1 + φ(ti))−

√
Nµρψ(t),

and δ1
i =

√
ρµψ(t) + ρµ(1− µ) + µφ(ti)(1− µφ(ti)). Then similarly, we can approxi-

mate the unconditional probability p1
ti

(t) by using the approximate stationary density

π̃ for X̃(0), i.e.,

p1
ti

(t) ≈
∫ ∞
−∞

Φ

(
g1
i (x)

δ1
i

)
π̃(x)dx−

∫ ∞
−∞

Φ

(
g1
i−1(x)

δ1
i−1

)
π̃(x)dx. (42)

Unfortunately, there is no closed-form expression for the probabilities in (40) to

(42). Because
∫ 0

−∞Φ
(
gi(x)
δi

)
π̃(x)dx or

∫ 0

−∞Φ
(
g1i (x)

δ1i

)
π̃(x)dx involves the convolution

between Φ and a normal density, which in general does not have a closed-form ex-

pression. Thus, we need to numerically evaluate these probabilities.

6-hour service level

Once we have the set of the probabilities pti(t) and pkti(t), we can apply (21) to obtain

the 6-hour service level. When allocation delay is presented, we then just need to

apply (26).

4.5.4 Numerical results on the diffusion approximation

Midnight count approximation

Figure 49 compares the stationary distributions of the midnight customer count solved

from the exact Markov chain analysis (following the algorithm in Section 4.2.1) and
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(b) N = 505, ρ = 0.95
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(c) N = 525, ρ = 0.91

Figure 49: Stationary distribution of the midnight customer count from ex-
act Markov chain analysis and diffusion approximation (large systems).
Red curves are computed through the Markov chain analysis described in Sec-
tion 4.2.1; the blue curves are computed through the diffusion approximations in
Section 4.5. Parameters for the Mperi/G2timeScale/N queue: Λ = 90.95, µ = 1/5.3, and
λ(·) has the shape as the solid curve in Figure 13. No allocation delay is included.

from using the density π̃ and (32). The parameter setting for these experiments

remain the same as we introduced in Section 4.4 except that no allocation delay

is included. We do not specify the discharge distribution either since the midnight

customer count distribution is not sensitive to the discharge distribution. We test

three sets of N (N = 490, 505, 525) with the utilization ρ ranging from 91% to 98%.

It is clear from Figure 49 that the approximation based on (32) and (33) is quite

accurate.

We have also computed the stationary distributions of the midnight count on

smaller systems with N = 66 and 132. In these experiments, we fix the mean LOS =

5.3 days and proportionally scaled the hourly arrival rate, so that the daily arrival rate

Λ = 11.37 for N = 66 and Λ = 22.74 for N = 132. Figure 50 show the corresponding

plots of the midnight customer count distribution. We can see that even when N
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(a) N = 66,Λ = 11.37, ρ = 0.91
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Figure 50: Stationary distribution of the midnight customer count from ex-
act Markov chain analysis and diffusion approximation (small systems).
Red curves are computed through the Markov chain analysis described in Sec-
tion 4.2.1; the blue curves are computed through the diffusion approximations in
Section 4.5. Parameters for the Mperi/G2timeScale/N queue: µ = 1/5.3, λ(·) has the
same shape as the solid curve in Figure 13 but is proportionally adjusted so that
Λ = 11.37 for N = 66 and Λ = 22.74 for N = 132. No allocation delay is included.

is only 66 and the utilization is 91%, the stationary distribution computed from the

diffusion approximation is still very close to the one solved from the Markov chain

analysis.

Hourly count approximation

Figure 51 compares the stationary distribution of the hourly customer count X(t) for

certain time t (t = 10/24, 15/24, 20/24, corresponding to 10am, 3pm, and 8pm, re-

spectively) when N = 525. We adopt the Period 1 discharge distribution, while other

parameter settings remain the same as in the experiments for the midnight count.

From Figure 51, we can see that the distribution curves from the diffusion approxi-

mations are again very close to those obtained from exact Markov chain analysis for

the three t we tested.

Similarly, we have compared the hourly count distributions on smaller systems.

Figure 52 show that the diffusion approximation still performs well when the system

size is small (N = 66). The distribution curves for X(t) are still very close to each

other for the three t values we have tested.
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(a) N = 525, t = 10 am
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(b) N = 525, t = 3 pm
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(c) N = 525, t = 8 pm

Figure 51: The stationary distribution of X(t) from exact Markov chain
analysis and diffusion approximation for N = 525. Mean LOS is 5.3 days;
Λ = 90.95, ρ = 0.92; no allocation delay is modeled. Period 1 discharge distribution
is used.
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(a) N = 66, t = 10 am
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(b) N = 66, t = 3 pm
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Figure 52: The stationary distribution of X(t) from exact Markov chain
analysis and diffusion approximation for N = 66. Mean LOS is 5.3 days;
Λ = 11.37, ρ = 0.91; no allocation delay is modeled. Period 1 discharge distribution
is used.
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(a) N = 505, ρ = 0.95
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(b) N = 525, ρ = 0.92

Figure 53: Time-dependent mean queue length from exact Markov chain
analysis and diffusion approximation (large systems). N = 505, 525, Λ =
90.95, mean LOS is 5.3 days; no allocation delay is modeled. Period 1 discharge
distribution is used.

Time-dependent performance measures

Below we compare the hourly performance measures obtained from the exact analysis

and diffusion approximation. The parameter setting for each experiment remains

the same as the corresponding setting used in plotting the hourly customer count

distribution. In addition, we include the allocation delays so that the figures are

comparable to those demonstrated in Section 4.4. The allocation delay Talloc follows

a log-normal distribution with mean 2.5 hours and CV 1.

Mean queue length. Figure 53 compares the time-dependent mean queue

length curves for N = 505 and N = 525. We can see the approximate time-dependent

mean queue length curve is very close to the one obtained from the exact analysis,

especially when N = 525. Figure 54 show that the mean-queue length curves for

smaller system size (N = 66 or 123). In smaller systems, the mean queue length

curves demonstrate more differences between the approximation and exact analysis

than what we see in the large systems, but the two curves are still fairly close to each

other (the maximum difference is less than 0.5).

Mean waiting time and 6-hour service level. Figures 55 to 57 plots the

time-dependent mean waiting time and 6-hour service level curves for N = 525,
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(a) N = 66,Λ = 11.37, ρ = 0.91
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(b) N = 132,Λ = 22.74, ρ = 0.91

Figure 54: Time-dependent mean queue length from exact Markov chain
analysis and diffusion approximation (small systems). N = 66, 132, mean
LOS is 5.3 days; no allocation delay is modeled. Period 1 discharge distribution is
used.

N = 132, and N = 66, respectively. Generally speaking, the diffusion approximation

works better on approximating the 6-hour service level than approximating the mean

waiting time. Also, it is not surprising that the approximations are better for larger

systems (N = 505 and N = 132) than for small systems (N = 66).

Note that the gap between the diffusion approximation and Markov chain analysis

can come from two sources: (i) we do not have the exact formula for the stationary

density π∗ of the diffusion-scaled midnight count and have to use the approximate

density π̃ in (33); (ii) even if we feed in the exact stationary density obtained from

Markov chain analysis, the approximation itself may not be accurate since we use nor-

mal random variables to approximate the hourly arrival and discharge. To separate

these two sources of inaccuracy, in an additional set of experiments, we feed in the ex-

act stationary distribution for the midnight customer count (which are obtained from

Markov chain analysis), and then use the approximation introduced in Section 4.5.3

to get the hourly mean waiting time and 6-hour service level. We find that when we

eliminate the first source of inaccuracy, the diffusion approximation produces perfor-

mance curves that are almost identical to those obtained from Markov chain analysis.

For example, as illustrated in Figure 58, for N = 66, the gap in the mean waiting time
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(b) 6-hour service level

Figure 55: Time-dependent mean waiting time and 6-hour service level
from exact Markov chain analysis and diffusion approximation (N = 525).
N = 525, Λ = 90.95, mean LOS is 5.3 days; allocation delay follows a log-normal
distribution with mean 2.5 hours and CV 1. Period 1 discharge distribution is used.
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(b) 6-hour service level

Figure 56: Time-dependent mean waiting time and 6-hour service level
from exact Markov chain analysis and diffusion approximation (N = 132).
N = 132, Λ = 22.74, mean LOS is 5.3 days; allocation delay follows a log-normal
distribution with mean 2.5 hours and CV 1. Period 1 discharge distribution is used.
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(b) 6-hour service level

Figure 57: Time-dependent mean waiting time and 6-hour service level from
exact Markov chain analysis and diffusion approximation (N = 66). N = 66,
Λ = 11.37, mean LOS is 5.3 days; allocation delay follows a log-normal distribution
with mean 2.5 hours and CV 1. Period 1 discharge distribution is used.

between Markov chain analysis and diffusion approximation reduces from 1.2 hours

to only around 0.35 hour after using the exact midnight distribution. Therefore, the

results indicate that the gap we observed in Figures 55 to 57 are mainly from the first

source, i.e., π̃ is only an approximation to π∗.

4.6 Diffusion limits for the single-pool model

In Section 4.5, we have demonstrated the diffusion approximations based on Equa-

tions 32 and 33 provide an efficient tool to approximate the stationary distribution

of the customer count and predict the time-dependent performance measures. These

approximations are based on the convergence of stochastic processes. In this section,

we prove the limit theorem that supports the diffusion approximation.

Instead of fixing the number of servers N , we now consider a sequence of

Mperi/G2timeScale/N queues indexed by N , i.e., a sequence of single-pool models de-

scribed in Section 4.1. Again, we do not consider allocation delays in this section.

Let ΛN be the daily arrival rate of the Nth system. Let m = 1/µ, the mean LOS,

be fixed and ρN = (ΛNm)/N be the traffic intensity of the Nth system. We assume
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(a) N = 66,Λ = 11.37, ρ = 0.91
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(b) N = 132,Λ = 22.74, ρ = 0.91

Figure 58: Time-dependent mean waiting time from diffusion approximation
when feeding in exact stationary distribution of the midnight customer
count (N = 66 and N = 132). Blue curves are computed through the Markov
chain analysis described in Section 4.2.1; red curves are computed through the hourly
diffusion approximations in Section 4.5.3 while the midnight count distributions are
obtained from Markov chain analysis. µ = 1/5.3, Λ = 11.37 for N = 66 and Λ = 22.74
for N = 132; allocation delay follows a log-normal distribution with mean 2.5 hours
and CV 1. Period 1 discharge distribution is used.

that

lim
N→∞

ΛN/N = Λ∗, and lim
N→∞

√
N(1− ρN) = β∗ for some β∗ > 0. (43)

Analogous to the conventional many-server queues that model customer call cen-

ters [54], when condition (43) holds, the sequence of Mperi/G2timeScale/N systems is

said to be in the Quality- and Efficiency-Driven (QED) regime.

We use XN
k to denote the midnight customer count at the midnight of day k in

the Nth system. We consider the diffusion-scaled midnight customer count processes

{X̃N
k : k = 0, 1, 2, . . .} for the sequence of singe-pool systems. Recall that X̃N

k =

(XN
k −N)/

√
N satisfies the following relationship:

X̃N
k = Ỹ N

k + µ
k−1∑
i=0

(X̃N
i )− k = 0, 1, 2 . . . , (44)

where

Ỹ N
k = X̃N

0 +
1√
N

k−1∑
i=0

(
ANi − ΛN

)
− 1√

N

ZN
0 +...+ZN

k−1∑
i=1

(ξi − µ) + k
√
Nµ(ρN − 1),

{ANi } is a sequence of Poisson random variables with mean ΛN , and {ξi} is a sequence

of Bernoulli random variables with success probability 1/µ. We assume the initial
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condition

X̃N
0 ⇒ X∗0 as N →∞, (45)

where ⇒ denotes convergence in distribution. Under the many-server heavy-traffic

framework (e.g., see [37]), we prove the following limit theorem:

Theorem 1 Consider a sequence of Mperi/G2timeScale/N single-pool systems that sat-

isfies (43) and (45). Then for any integer K > 0, X̃N
· ⇒ X∗· on the compact set

[0, K] as N →∞. The discrete-time limit process X∗ satisfies

X∗k = Y ∗k + µ
k−1∑
i=0

(X∗i )−, k = 0, 1, 2, . . . , K (46)

where Y ∗k = Y ∗(k) for k = 0, 1, . . . , and {Y ∗(t), t ≥ 0} is a Brownian motion starting

from X∗0 and having mean −µβ and variance Λ∗ + µ(1− µ). Here X̃N
· ⇒ X∗· on the

compact set means the convergence of the joint K-dimensional distributions for any

given K, i.e.,

(
X̃N

0 , X̃
N
1 , . . . , X̃

N
K

)
⇒ (X∗0 , X

∗
1 , . . . , X

∗
K) as N →∞. (47)

The proof of this theorem is as below. The key step is to prove that {Ỹ N
k , k =

0, 1, . . . } converges to {Y ∗k , k = 0, 1, . . . } on any given compact set [0, K]. Then, the

convergence of X̃N to X∗ naturally follows because of the linear form in (46).

Recall that {Ỹ N
k , k = 0, 1, . . . } and {Y ∗k , k = 0, 1, . . . } are two random walks, we

want to show

Ỹ N ⇒ Y ∗ as N →∞ (48)

on any given compact set [0, K] (K ∈ Z+), or equivalently,

(
Ỹ N

0 , Ỹ N
1 , . . . , Ỹ N

K

)
⇒ (Y ∗0 , Y

∗
1 , . . . , Y

∗
K) as N →∞. (49)
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Arrival process

To prove (49), we start from considering the convergence of the diffusion-scaled arrival

processes. For the Nth system, we introduce EN
k = 1√

N

∑k−1
i=0

(
ANi − ΛN

)
, which can

be re-written as

EN
k =

√
ΛN

N

∑kN
i=1 ζi√

N
, (50)

where {ζi} represents a sequence of iid random variables with mean 0 and variance

1. We want to show

(
EN

0 , E
N
1 , . . . , E

N
K

)
⇒ (E∗0 , E

∗
1 , . . . , E

∗
K) as N →∞. (51)

Here, E∗k = E(k) is an embedding of the Brownian motion E(·) with drift 0 and

variance Λ∗.

To prove (51), we introduce another process EN ′(·):

EN ′(t) =

∑btNc
i=1 ζi√
N

. (52)

It is easy to see that

EN
k =

√
ΛN

N
EN ′(k) for k = 0, 1, . . . .

The convergence of EN ′(·) to a standard Brownian motion in the space of D =

D([0,∞),R) endowed with the Skorohod’s J1 topology can be easily proven by ap-

plying the Donsker’s theorem. Then, using Condition (43) that limN→∞ ΛN/N = Λ∗,

we can show
√

ΛN

N
EN ′(·)⇒ E(·). Thus, (51) naturally follows since the convergence

of the stochastic processes directly implies the convergence of the finite-dimensional

joint distributions.

Discharge process

Next, we consider the diffusion-scaled discrete-time discharge process. For the Nth

system, we introduce DN
k = 1√

N

∑ZN
0 +...+ZN

k−1

i=1 (ξi − µ), which can be further rewritten
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as

DN
k =

∑TN
k
i=1 ηi√
N

, (53)

where

TNk =
k−1∑
j=0

Zj,

and {ηi} represents a sequence of iid random variables with mean 0 and variance

µ(1− µ). We want to show on any given compact set [0, K],

(
DN

0 , D
N
1 , . . . , D

N
K

)
⇒ (S∗0 , S

∗
1 , . . . , S

∗
K) as N →∞. (54)

Here, for 0 ≤ k ≤ K, S∗k = S̃(k), and S̃(·) is a Brownian motion with drift 0 and

variance µ(1− µ).

We define

T̄Nk =
TNk
N
,

and

Sn =
n∑
i=1

ηi.

Then, we can represent DN
k as

DN
k =

1√
N
ST̄N

k N ,

and (
DN

0 , D
N
1 , . . . , D

N
K

)
=

(
1√
N
ST̄N

0 N ,
1√
N
ST̄N

1 N , . . . ,
1√
N
ST̄N

KN

)
.

Thus, proving (54) is equivalent to showing(
1√
N
ST̄N

0 N ,
1√
N
ST̄N

1 N , . . . ,
1√
N
ST̄N

KN

)
⇒ (S∗0 , S

∗
1 , . . . , S

∗
K) when N →∞. (55)

To prove (55), we again introduce a continuous-time process {DN ′(t), t ≥ 0},

which is a composition of two processes, 1√
N
Sb·Nc ◦ T̄Nb·c. Clearly, when t = k, we have

DN
k =

1√
N
ST̄N

k N = DN ′(k),

161



since T̄Nk N is always an integer. If we can show

1√
N
Sb·Nc ⇒ S̃(·) (56)

in D and

T̄Nb·c → T̄b·c in probability (57)

in D with T̄btc = btc, then applying the random time change theorem, we can

prove (55). Convergence in (56) follows from the Donsker’s theorem. Below, we

focus on proving (57). To do that, it is sufficient for us to show for each 0 ≤ k ≤ K,

T̄Nk → k almost surely. Equivalently, we use induction to show for each 0 ≤ k ≤ K,

ZN
k /N → 1 almost surely.

We first rewrite the system equation (use the fluid scaling)

X̄N
k = Ȳ N

k +
k−1∑
i=0

(X̄N
i )−, (58)

where

X̄N
k =

XN
k −N
N

,

and

Ȳ N
k = X̄N

0 +

∑kN
i=1 ζi
N

−
∑TN

k
i=1 ηi
N

+
k(ρN − 1)√

N
.

Assume that XN
0 = N , then X̄N

0 = 0 and ZN
0 = N (X̄N

0 → 0 is trivial). The induction

is as follows:

• When k = 1, we have

Ȳ N
1 = X̄N

0 +

∑N
i=1 ζi
N

−
∑N

i=1 ηi
N

+
(ρN − 1)√

N
.

Recall that ζi and ηi are centered random variables with mean 0. By Law of

Large Numbers, it is obvious that

Ȳ N
1 → 0 a.s. when N →∞.

Thus, X̄N
1 = Ȳ N

1 → 0 a.s., and ZN
1 /N → 1 a.s..
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• Assume that at k, we have for all 0 ≤ j ≤ k, X̄N
j → 0 a.s. and ZN

j /N → 1 a.s..

Then for k + 1, we have T̄Nk+1 → (k + 1) a.s. and

Ȳ N
k+1 = X̄N

0 +

∑(k+1)N
i=1 ζi
N

−
∑TN

k+1

i=1 ηi
N

+
(k + 1)(ρN − 1)√

N

=

∑(k+1)N
i=1 ζi
N

−
∑TN

k+1

i=1 ηi
TNk+1

·
TNk+1

N
+

(k + 1)(ρN − 1)√
N

(59)

→ 0 a.s.. (60)

Then

X̄N
k+1 = Ȳ N

k+1 +
k∑
j=0

(X̄N
j )− → 0 a.s.,

completing the proof of Theorem 1.

4.7 Conclusion and future work

In this chapter, we have developed an analytical framework, known as the two-time-

scale analysis, to predict time-dependent performance measures for a class of time-

varying queues that are motivated by modeling hospital inpatient flow management.

This analytical framework overcomes many challenges that cannot be solved by ex-

isting methods for large-scale queueing systems. They include (a) the arrival process

has a time-varying, periodic arrival rate, (b) the service times are no longer exoge-

nous variables but explicitly depend on LOS, admission and discharge times, and

(c) service times are extremely long compared with the time variations of the arrival

rate. Using the framework, we have developed exact methods and diffusion approx-

imations to predict time-dependent performance measures. This analytical research

can greatly advance the understanding of a new class of queueing models and eventu-

ally provides insights into analyzing the high-fidelity, multi-pool stochastic processing

network models. Our study also provides structural insights into eliminating the ex-

cessive long waiting times for admission to inpatient wards from ED.

Note that a major simplified assumption we have used in the analysis of this chap-

ter is the geometric distribution for LOS. To examine the impact of this assumption
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on system’s performance, we conduct simulation experiments to compare with two

other LOS distributions: empirical LOS distribution estimated from all Medicine ED-

GW patients (no AM/PM difference), and empirical LOS distribution with AM/PM

difference. In the latter setting with AM/PM difference, each patient’s LOS has a

certain chance p to follow the AM distribution, and a chance 1− p to follow the PM

distribution; see more details on AM/PM difference in Section 2.5.2. The mean LOS

is kept the same as 5.3 days, while the coefficient of variation (CV) is increased as

comparing to the geometric LOS distribution; the CV is the largest in the setting

with AM/PM difference.

From Figures 59 and 60, we can see in general, when the LOS distribution has a

larger CV, the mean waiting time and mean queue length is larger. The 6-hour service

level shows little difference though. More importantly, we note that the shapes of the

performance curves under different LOS distributions are similar. This indicates

that the LOS distribution does not have the first-order effect in capturing the time-

dependent empirical performance curves as in Figures 39a to 40a. Incorporating

the multi-pool structure with the overflow mechanism is the next priority to better

capture the empirical performance curves. Extending the two-time-scale analysis to

a multi-pool model will be left in a future project.
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(c) 6-hour service level

Figure 59: Time-dependent performance measures under different LOS dis-
tributions (N = 505). N = 505, Λ = 90.95, allocation delay follows a log-normal
distribution with mean 2.5 hours and CV 1. Period 1 discharge distribution is used.
Three LOS distributions are tested: geometric distribution, empirical LOS distri-
bution estimated from all Medicine ED-GW patients (no AM/PM difference), and
empirical LOS distribution with AM/PM difference. The mean LOS is 5.3 days for
all three settings. The blue curves (using geometric LOS distribution) are obtained
from Markov chain analysis, while other curves are from simulation estimates. In the
last setting with AM/PM difference, each patient’s LOS has a certain chance p to
follow the AM distribution, and a chance 1 − p to follow the PM distribution; see
more details on AM/PM difference in Section 2.5.2.
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(c) 6-hour service level

Figure 60: Time-dependent performance measures under different LOS dis-
tributions (N = 66). N = 66, Λ = 11.37, allocation delay follows a log-normal
distribution with mean 2.5 hours and CV 1. Period 1 discharge distribution is used.
Three LOS distributions are tested: geometric distribution, empirical LOS distri-
bution estimated from all Medicine ED-GW patients (no AM/PM difference), and
empirical LOS distribution with AM/PM difference. The mean LOS is 5.3 days for
all three settings. The blue curves (using geometric LOS distribution) are obtained
from Markov chain analysis, while other curves are from simulation estimates. In the
last setting with AM/PM difference, each patient’s LOS has a certain chance p to
follow the AM distribution, and a chance 1 − p to follow the PM distribution; see
more details on AM/PM difference in Section 2.5.2.
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CHAPTER V

OVERVIEW

5.1 Background

An influenza pandemic is defined as an epidemic of an influenza virus “occurring

worldwide, or over a very wide area, crossing international boundaries and usually

affecting a large number of people [119].” In contrast to the regular seasonal influenza,

pandemics occur infrequently. There were three major pandemics in the 20th century,

with the 1918 Spanish influenza pandemic the most severe one in recent history. Due

to no previous exposure to the pandemic virus, the population usually has little or

no immunity, and thus pandemics can cause much higher levels of mortality. For

example, it is estimated that the 1918 Spanish flu caused approximately 50 million

deaths [52].

Understanding potential changes in the spread of the disease and predicting the

course of a pandemic have always been central issues for public health preparedness.

They are particularly important when multiple waves of attack is possible. Previous

influenza pandemics have shown that an outbreak can consist of multiple waves with

intervening periods of relatively lower disease activity. For example, the 1918 pan-

demic began with an initial smaller herald outbreak in spring 1918 mostly affecting

the USA and Europe, subsiding in summer 1918. A second much larger global wave

occurred in autumn 1918, affecting both Northern and Southern hemispheres. After

disease activity appeared to decline in January 1919, a third wave followed in late

winter 1919 and early spring 1919 [113, 143]. The 1956 pandemic has also shown

two waves of outbreak with the first wave attacking children and young adults and

the second wave mostly attacking elderly [52]. Studies have started to notice the risk
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of multiple waves of attack in a pandemic influenza outbreak and emphasized the

challenges of making response plans under multiple waves [107, 109].

More recently, when the 2009 H1N1 influenza pandemic emerged in spring 2009,

public health officials were prompt to forecast what would happen in fall 2009 and

winter 2009-2010. When disease activity increased in September and October 2009,

decision makers wondered whether another wave might occur during the winter due

to the closure of schools and workplaces in the Holiday season or emergence of new

strains caused by viral mutation. Public health officials tried to determine potential

response strategies and surge capacity needs based on observed disease transmission

characteristics during the course of the 2009 pandemic. They also tried to determine

the type of data that should be collected during each stage of the epidemic to assist

forecasting.

Computer simulation models can help public health officials forecast the disease

spread process and make preparedness plans. In particular, agent-based simulation

models have become one of the most popular tools to predict the spread of infec-

tious diseases since such models can capture social contact and mixing patterns at

individual (“agent”) levels. In Part II of this thesis, we use agent-based simulation

models with detailed data from the state of Georgia to study potential factors that

could cause multiple waves and understand their impact on the entire course of an

influenza pandemic. Our study aims to identify what combinations of factors would

lead to multiple epidemic waves and examine the characteristics of the subsequent

waves. Our eventual goal is to generate insights into intervention strategies and help

public health officials make emergency response plans and decide what data to collect.

Specifically, we focus on evaluating the impact of two types of factors on the

disease spread process. In Chapter 6, we study the viral characteristic aspect and

explore how (i) seasonal changes in transmission dynamics and (ii) viral mutation

may affect the course of an influenza pandemic. In Chapter 7, we study how changes
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in human social mixing pattens would impact the disease spread process and lead to

multiple waves of attack.

In the remainder of this chapter, we first summarize the contributions of our study

in Section 5.2. We also give a brief literature review on commonly used disease spread

models. Then, we introduce a basic version of the agent-based simulation model in

Section 5.3 to provide some background information, since the simulation models

we develop in Chapters 6 and 7 are based on this basic version (which is initially

developed by [42, 153]). In Chapters 6 and 7, we incorporate the new features such

as seasonality, viral mutation, and social mixing changes into the basic version.

5.2 Contributions and literature review

5.2.1 Contributions

Influenza viral pathogen characteristics and behavior are not necessarily static during

an epidemic due to seasonal changes or viral mutation, and these non-static behavior

may lead to the appearance of multiple waves. Besides, mass changes in social mixing

patterns such as mass gathering and Holiday traveling have also been regarded as po-

tential factors that can cause multiple waves of outbreak [109]. However, as far as we

know, most existing disease-spread simulation models assume the viral characteristics

or social mixing patters are static. These models generally consider a single wave;

they did not explicitly model the possibility of multiple waves throughout the pan-

demic course or specifically evaluate the impact of factors that may lead to multiple

waves [46, 101, 56, 153].

In our study, we explicitly incorporate the features of seasonality, viral mutation,

and changes of social mixing patterns in the agent-based simulation models. Our

models allow us to evaluate the impact of non-static viral characteristic and social

mixing change on the entire course of an influenza pandemic. The simulation results

predict various scenarios under which multiple waves of attack are possible. The
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insights we have gained can alert public health officials and other decision makers the

possibility of subsequent waves, and thus can help them better prepare and execute

response plans and intervention strategies not only before a pandemic emerges but

also throughout its entire course.

More specifically, simulating seasonality and viral mutation scenarios show that

the starting month of a pandemic and the timing and degree of viral mutation can

substantially alter the course of an influenza pandemic. These two factors, seasonality

and mutation, can lead to two- or even three-waves of epidemic outbreaks. Our

insights gained from the simulation results can help public health officials to determine

what data on the viral characteristics needs to be collected to facilitate forecasting

and planning. Our study also confirms the importance of active surveillance and virus

typing during the entire course of an pandemic, even when the disease activity starts

to subside. These findings can complement previous studies that analyze seasonality

and viral mutation for other epidemics such as seasonal influenza [24] and measles [50].

More public health implications from seasonality and viral mutation scenarios are

summarized in Section 6.4.

Simulating mass gathering and traveling scenarios show that traveling or gath-

erings that occur shortly before the epidemic peak may worsen the disease spread,

resulting in a higher peak prevalence and total attack rate and in some cases gener-

ating two epidemic peaks. These findings can help public officials determine if and

when to cancel large public gatherings or enforce regional travel restrictions, advi-

sories, or surveillance during an influenza pandemic (see our recommendations on

traveling and mass gatherings in Section 7.4). Although previous studies have sug-

gested that social mixing patterns play an important role in influenza spread and

social distancing measures such as school closure may be able to mitigate an epi-

demic [34, 36, 46, 64, 92, 13, 25, 43, 65, 73, 77, 85, 108, 127], few studies have focused

on the opposite of social distancing (i.e., social gatherings) during an epidemic. There
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have been studies on the potential effects of national and international travel restric-

tions, e.g., border closures or international air travel restrictions, but less on local

or regional travel [46]. As far as we know, our study takes the first initiative to use

simulation models to demonstrate the potential negative impact of Holiday traveling

and mass gathering.

5.2.2 Literature review on disease spread models

Various disease spread models have been developed to predict the spread patterns

and the effect of intervention strategies for different infectious diseases such as in-

fluenza, smallpox and SARS [48, 96]. Generally speaking, the following models are

commonly used to model the spread of infectious disease: (i) compartmental differ-

ential equation models [53], (ii) agent-based simulation models [46, 101, 56, 153], and

(iii) random graph models [23]. The most popular compartmental model is the S-I-R

model, where every individual is in one of the disease stages: susceptible (S), infected

(I), or recovered (R). The cumulative number of people in each stage have instan-

taneous changes over the time, which are dictated by a set of differential equations.

In agent-based simulation models, the entire population is constituted by individuals

(agents) and social contact networks, e.g., households and peer groups. Discrete event

simulation is used to simulate the spread of the disease on the social networks. In

random graph models, random graphs are used to construct the contact network, and

the disease spread is predicted accordingly. Rahmandad and Sterman [123] have given

a comprehensive comparison between agent-based and differential equation models.

A main feature that distinguishes these disease spread models is the mixing as-

sumption. Homogeneous mixing (compartment models) assumes every individual has

the same chance to get infected, while in heterogenous mixing (agent-based simula-

tion models or random graph models), the chance of getting infected for an individual

depends on the number of contacts he/she makes during a day and the status of the
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people he/she has contacted with. Obviously, agent-based simulation models and

random graph models can better represent the actual disease transmissions than the

compartment models. For our study in Chapters 6 and 7, we use agent-based simula-

tion models to get more reliable predictions on the course of an influenza pandemic.

Moreover, to study the impact of social mixing patterns in Chapter 7, agent-based

models naturally become one of the best choices.

5.3 Basic disease spread model

5.3.1 Baseline model settings

The basic agent-based disease spread model developed in [42, 153] is a spatially and

temporally explicit agent-based simulation model that consists of a population of

computer agents, with each agent representing an individual programmed with socio-

demographic characteristics and behaviors. In the rest of Part II of this thesis, we

use agent and individual interchangeably. The disease spread model consists of two

parts: (i) the natural disease progression within an infected individual, and (ii) the

contact network of each individual in the population. We now illustrate the disease

progression and contact models.

Disease progression

At the beginning of each simulation run, all agents in the population are susceptible.

On Day 1, three infected agents are introduced into the population. Contact with an

infectious agent has a probability of transmission of the virus to the susceptible agent.

A newly infected agent then progresses through the following stages: Susceptible-

Exposed-Infected-Recovered (SEIR), based on the incubation and infectious periods

of the disease. After being infected, each agent first progresses through the incuba-

tion period, then through the presymptomatic phase, and then has a probability pA of

remaining asymptomatic and a probability (1−pA) of becoming symptomatic during
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Figure 61: An example of the contact network.

the infectious period. Each symptomatic agent has a probability pH of requiring hos-

pitalization (H). Each hospitalized agent has a probability pD of dying. Agents who

survive infection eventually assume the recovered state and are immune to infection.

The duration of each stage follows a certain random distribution as summarized in

Table 17 below. The disease progression model is depicted in Figure 1 of [153].

Contact network

Each agent has an assigned household, a peer group (representing workplaces and

schools), and a community. Each day agents move among these different locations

and mix within other agents who are in the same location. Hence, a susceptible agent

can get infected through contacts with his/her family members in the household,

classmates/colleagues in the peergroup, or randomly meets someone when going to

public places (communities) such as grocery stores, theaters, etc. Figure 61 diagrams

an example of the contact network.

5.3.2 Simulation logic

We use discrete-event simulation technique to simulate the spread of the disease on

the contact network. The simulation progresses with two types of events: (i) the next
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infection event and (ii) disease progression event within an individual. The next infec-

tion event is generated by evaluating the instantaneous total “force of infection” [153]

and drawing the corresponding event trigger time from an exponential distribution

(with the mean equal to the total force of infection). The individual associated with

the infection event is selected uniformly from a social group (e.g., a household or a

peergroup), and this social group is randomly selected according to its contribution to

the total force of infection. After infection, an individual transitions from one disease

stage to another (such as become symptomatic from the pre-symptomatic stage),

and the trigger time for a disease progression event is generated from the random

distributions associated with each disease stage.

The instantaneous force of infection represents the rate at which susceptible per-

sons become infected. The total force of infection is the sum of the force of infection

experienced by each individual. The force of infection experienced by the ith indi-

vidual during the day (λDi ) and during the night (λNi ) in the baseline model are as

follows:

λDi = Si

N∑
j=1

(δPGij mjεjhPGhX,jβ + δCij
mjhChX,jβ

Ni

)

λNi = Si

N∑
j=1

(δHij
mjhX,jβ

nHAi
+ δCij

mjhChX,jβ

Ni

)

where Si and mi are the relative susceptibility and infectivity of the ith individual.

Ni is the number of population in the ith individual’s community and nHAi is the

active household size of this individual where dead and hospitalized individuals are

not counted. δYij (Y ∈ {H, PG, C}) is the indicator function defined for location Y

(households, peer groups or community)

δYij =


1 if person i and j are in the same location Y

0 otherwise
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and εj is the indicator showing whether person j withdraws from workplace or school:

εj =


1 if person j mixes in the peergroup

0 if person j withdraws from the peergroup

We assume that 100% symptomatic children and 50% symptomatic adults withdraw

from their peergroups. Finally, hX,j is the relative hazard rate of the jth person if

he/she is in the disease stage X, i.e.,

hX,j =



hPS if person j is in the presymptomatic stage

hAS if person j is in the asymptomatic stage

1 if person j is in the symptomatic stage

0 otherwise

We can see that the total force of infection is determined by the number of infec-

tious individuals (i.e., individuals in the presymptomatic, asymptomatic and symp-

tomatic stages) and number of susceptible individuals at the current time, as well

as the parameters β, hPS, hAS, hPG, and hC . The relative hazard rates (hPS, hAS,

hPG, and hC) adjust the probability of infection between two individuals’ contacts in

different social groups and in different disease stages. Generally speaking, the prob-

ability of infection is the highest when contacts occur in households, medium when

occur in peer groups, lowest when occur in communities. An susceptible individual

is more infectious than an individual in the presymptomatic or asymptomatic stage.

5.3.3 Data and model calibration

The agent-based simulation model is age-structured. We divide the population into

five age groups: 0-5, 6-11, 12-18, 19-64, ≥65 years. The first three groups represent

children who are assumed to have higher susceptibility and infectivity compared to

adults. Individuals in the fourth group are working adults. The last age group
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represents the elderly. The demographic properties for each age group are populated

by the 2000 U.S. Census Data.

For the contact network, we assign each agent to a household according to the

household distributions obtained from the 2000 U.S. Census Data. The average peer-

group (classroom) sizes are 14, 20, and 30 for the three childrens groups, respectively.

The workplace size for working adults is a Poisson random variable with mean 20

(maximum 1000). We assume the elderly do not mix in peer groups. Table 17 below

lists the distributions of the size of the households, peer groups and communities. It

also lists the parameter values for the disease progression model.

Finally, to calibrate the disease spread through the contact network, we need to

estimate the five parameters: the coefficient of transmission β and the relative hazard

rates hPS, hAS, hPG, and hC . It is difficult to directly estimate these parameters from

data. Thus, we use a similar nonlinear technique as in [153] to calculate the values

of the five parameters from another five parameters that are easier to be estimated

from data.

Specifically, let rXY be the average number of people infected in Y by an individual

who is at stage X where Y is the household (H), peer group (PG) or the community

(C) and X is the presymptomatic (P ), asymptomatic (A) or symptomatic (S) stage.

We can write rXY in terms of β, hPS, hAS, hPG, and hC as follows:
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rPH =
7∑

n=1

pn(n− 1)(1− φP (
hPSβ

2n
))

rAH = pA

7∑
n=1

pn(n− 1)φP (
hPSβ

2n
)(1− φA(

hASβ

2n
))

rSH = (1− pA)

7∑
n=1

pn(n− 1)φP (
hPSβ

2n
)(1− φS(

β

2n
))

rP,PG = (q1n1 + q2n2 + q3n3 + q4n4 + q5n5)(1− φP (
hPShPGβ

2
))

rA,PG = pA(q1n1 + q2n2 + q3n3 + q4n4 + q5n5)φP (
hPShPGβ

2
)(1− φA(

hAShPGβ

2
))

rS,PG = (1− pA)[(q1n1 + q2n2 + q3n3)φP (
hPShPGβ

2
)(1− φS(0)) + (q4n4 + q5n5)φP (

hPShPGβ

2
)(1− φS(

hPGβ

4
))]

rPC = N(1− φP (
hPShCβ

2N
))

rAC = pANφP (
hPShCβ

2N
)(1− φA(

hAShCβ

2N
))

rSC = (1− pA)NφP (
hPShCβ

2N
)(1− φS(

hCβ

2N
))

Here, qi is the proportion of population in age group i for i = 1, · · · , 5, pA is the

probability that a presymptomatic individual does not develop symptoms, and ni is

the average size of peer groups for age group i. We assume the maximum household

size is 7, and pn is the probability that an individual lives in a household size of n. N

is the total population size. φX(h) = E(e−hDX ) is the probability that an infection

does not occur between two individuals during phase X (X ∈ {P,A, S}, DX is the

duration of stage X) for a constant hazard of infection h.

We can also represent rXY in terms of the following disease parameters: the

reproduction rate R0 (average number of secondary cases generated by each infected

individual); θ, the proportion of transmission that occurs at either presymptomatic

or asymptomatic stage; ω, the proportion of infections generated by individuals who

are never symptomatic; γ, the proportion of transmission that occurs outside the

households; and δ, the proportion of transmission outside the home that occurs in

the community.
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R0 = rPH + rAH + rSH + rP,PG + rA,PG + rS,PG + rPC + rAC + rSC

θ =
rPH + rAH + rP,PG + rA,PG + rPC + rAC

R0

ω =
rAH + pArPH + rA,PG + pArP,PG + rAC + pArPC

R0

γ =
rP,PG + rA,PG + rS,PG + rPC + rAC + rSC

R0

δ =
rPC + rAC + rSC

rP,PG + rA,PG + rS,PG + rPC + rAC + rSC

To derive the first equation between rXY and R0, we use the idea that the average

number of secondary cases from a typical infectious individual generated in his/her so-

cial groups is equal to R0. Similarly, we can derive the other four equations. Through

the intermediate values of rXY , for given values of R0, θ, ω, γ, and δ, we can solve

the above nonlinear equations and obtain the values for β, hPS, hAS, hPG, and hC .

The values of R0, θ, ω, γ, and δ used in the baseline simulation are given in Table 17

(also see Table 1 of [133]).

Model calibration

Calibration of the disease spread simulation model is based on previously pub-

lished methods [46, 153]. For a given R0, we target the corresponding attack rates

from studies of previous pandemics, i.e., we fine-tune certain parameters until an ap-

propriate attack rate (proportion of symptomatic cases out of the total population)

is obtained. The baseline simulation model is calibrated to match the attack rate

in the 1918 pandemic: when R0=1.8, the clinical attack rate is 50% [153]. We have

also done experiments to calibrate the model for other pandemics in the history. For

example, we fine-tune the R0 value to 1.53 to match the age-specific attack rates in

the 1957 pandemic as shown in [31]. Table 18 shows the values of adjusted parame-

ters to achieve the age-specific clinical attack rates in the 1957 pandemic. Table 19

reports the age-specific attack rates from [31] and from our simulation model, re-

spectively. Note that R0 = 1.53 is consistent with the estimates 1.5-1.7 for the 1957
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Table 17: Values of the key parameters in the baseline disease spread sim-
ulation model.

Parameter Explanation Base Value Source

pA Probability of infected individual 0.4 for working adults, [49, 56, 101]

being asymptomatic 0.25 for others

pH Probability of symptomatic individual 0.18 for age 0-5, [153, 101]

requiring hospitalization 0.12 for 65+ and 0.06 for others

pD Probability hospitalized individual 0.344 for age 0-5, [153, 23]

not surviving 0.172 for others

Duration of Duration of exposed Weibull with mean 1.48, [153, 47]

E + IP and presymptomatic stage std. 0.47, offset 0.5

Duration of Duration of symptomatic stage Exponential with [153]

IS mean 2.7313

Duration of Duration of asymptomatic stage Exponential with [153]

IA mean 1.63878

Duration of Duration of hospitalized stage Exponential with [153, 47]

IH mean 14

R0 Reproductive rate 1.8 in baseline [153, 46, 101]

(sensitivity test: 1.3 and 1.5) [47, 65]

θ Proportion of transmission that occurs 0.3 [153]

at pre- or asymptomatic stage

ω Proportion of infections generated 0.15 [153]

by individuals who are asymptomatic

γ Proportion of transmission 0.7 [46]

that occurs outside the households

δ Proportion of transmission outside the 0.5 [46]

home that occurs in the community

mi Relative infectivity 1.3158 for children, [23, 42]

of the ith person 0.8772 for adults

Si Relative susceptibility 1.1036 for children, [23, 42]

of the ith person (0 if not susceptible) 0.9597 for adults

pn Probability that an individual p1=10.33%, p2=23.55%, [20]

lives in a household size of n p3=20.45%, p4=23.00%,

p5=12.79%, p6=5.91%, p7=3.97%

Classroom Number of individuals Uniform(9,19) for ages 0-5, [153, 35]

size in a classroom uniform(15,25) for ages 6-11,

(children’s peergroup) uniform(25,35) for ages 12-18

Workplace Number of individuals in Poisson with mean 20 [153, 101]

size a workplace (adults’ peergroup) (maximum 1000)

Community Number of individuals in Maximum = 29341, [20]

size a census tract (1615 tracts in total) minimum =218
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Table 18: Adjusted parameter values to achieve the attack rates in the 1957
Pandemic.

Parameter Baseline value Adjusted value

pA 0.4 for working adults, 0.33 for age 0-18, 0.50 for
0.25 for others age 19-64, 0.68 for age 65+

R0 1.8 1.53
Si 1.1036 for children, 0.9597 1.4236 for children, 0.8374

for adults, 0 if not susceptible for adults, 0 if not susceptible

Table 19: Age-specific attack rates from the 1957 pandemic [31] and from
simulation.

Age Group Attack Rate of the 1957 Pandemic [31] Attack Rate from simulation

0-5 years 32.17% 33.05%

6-11 years 35.02% 35.37%

12-18 years 38.44% 38.67%

19-64 years 22.24% 21.88%

≥65 years 10.00% 10.04%

Total 24.72% 24.53%

pandemic [31]. This also provides us a way to validate the simulation model (similar

validation method has been used in other papers [46]).
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CHAPTER VI

THE IMPACT OF SEASONALITY AND VIRAL

MUTATION ON THE COURSE OF AN INFLUENZA

PANDEMIC

6.1 Introduction

Influenza viral mutations and environmental factors can affect viral transmission dy-

namics, virulence, and population and individual host susceptibility and, in turn,

alter the course of the epidemic and may lead to the appearance of multiple waves.

Various infectious pathogens including influenza, measles, chickenpox, and pertussis

have exhibited seasonality in their outbreak and epidemic patterns [2, 10, 12, 34,

51, 57, 100, 115]. Transmission of seasonal influenza tends to substantially increase

from November to February in the Northern hemisphere and from May to August

in the Southern hemisphere. Studies have postulated a number of possible causes

of influenza seasonality, including changes in human mixing patterns, fluctuations

in human immunity, and most recently environmental humidity [102, 131]. The in-

fluenza virus can also mutate, resulting in either incremental changes (antigenic drift)

or more substantial changes (antigenic shift).

In this chapter, we focus on exploring how (i) seasonal changes in transmission

dynamics and (ii) viral mutation may affect the course of an influenza pandemic.

Based on the basic agent-base simulation model described in Section 5.3, we specify

the details of modeling seasonality and viral mutation in Section 6.2. We then demon-

strate simulation results in Section 6.3 to show the impact of seasonality and viral

mutation with a focus on identifying scenarios with multiple waves of attack. Finally,

we summarize our finds and implications for public health planning in Section 6.4.
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6.2 Modeling seasonality and viral mutation

6.2.1 Modeling seasonality

To model seasonality, we assume the reproductive rate (R0) value as a sinusoidal

function of time t:

R0(t) = R∗0 · (1 + ε cos(2πt)). (61)

Here, R∗0 is the baseline reproductive rate, and ε (0 < ε < 1) characterizes the degree

of seasonality. More temperate regions tend to have a higher ε and lower R∗0; more

tropical regions tend to have lower ε but higher R∗0. Figure 62 demonstrates examples

of the variation of R0(t) under different values of ε and the starting time when the

initial seed case appears.

Equation (61) allows us to vary R0 during the course of the pandemic. We directly

set the R0 value (rather than the transmission rate β) as a function of time t, while

β and other disease parameters at time t are calculated based on the values of R0(t).

For computational efficiency, we used linear interpolation to convert the continuous

function in (61) into a step function with 12 discrete monthly R0 values (see Table 1

of [134]). The discretization approximated the continuous function with sufficient

accuracy.

6.2.2 Modeling viral mutation

To model viral mutation, we assume that a new viral strain is introduced at time t∗

(i.e. t∗ number of days after the appearance of the initial seed) in the simulation.

After the introduction of the new strain, each day a fraction δ (0 < δ < 1) of

the recovered population lose their immunity (i.e., reverted to being susceptible).

A reverted susceptible individual, if got infected by the new strain, goes over the

same disease progression process as we described in the basic SEIR model. Figure 63

depicts the revised SEIR model which incorporates viral mutation. We assume that

each individual can be infected at most two times (once by the original strain and

182



Figure 62: Plot of R0 value as function of time. The figure shows the baseline
reproductive rate R∗0 = 1.5, degree of seasonality ε = 0.07, 0.18, and 0.30. The
four intervals represent four different times (January, April, July, October) when the
initial seed case appears. Within different intervals, the variation patterns of R0

are different. For example, in the first interval, the value of R0 first decreases then
increases; in the third interval, the value of R0 first increases then decreases).
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Figure 63: Natural disease history with viral mutation.

once by the new strain).

Our mutation model assumes that the new mutant strain had the same R0 value as

the original strain. Hence, our simulation runs track disease spread in the population

without distinguishing the infections caused by the original strain from those caused

by the new strain, which is consistent with the assumption employed by Ferguson et

al. [49].

Note that the probability that a recovered individual loses his or her immunity

and becomes susceptible on day t (t > t∗), p(t), increases as t increases. For an
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individual from the “candidate” population (recovered individuals who have not re-

entered the susceptible stage), the day T when he/she re-enters the susceptible stage

is a geometric random variable with probability distribution:

Pr(T = t) = δ(1− δ)(t−t∗−1).

Thus, the probability

p(t) = 1− (1− δ)(t−t∗) (62)

increases as t increases since 0 < δ < 1.

6.2.3 Combination of seasonality and viral mutation

In order to study the joint impact of seasonality and viral mutation on an influenza

pandemic, we combine the seasonality and mutation models for some experiments.

The combined model assumes that the R0 value of the circulating strain (either the

original or the mutant strain) will change over time in the same manner described

by (61) and employes the resulting discrete monthly R0 values for computational

efficiency, as we described above.

6.2.4 Simulation runs and sensitivity analysis

To study the impact of seasonality, we test three values of R∗0 (1.5, 1.8, and 2.0) and

three values of ε (0.07, 0.18, and 0.30). Under each combination of R∗0 and ε, we test

four different starting times (January, April, July, October) of the initial seed case.

We use t0 to denote this starting time in the remaining of this chapter. Moreover,

considering the time of emergence of the 2009 H1N1 pandemic influenza, we further

test three more months in spring for the initial seed case (February, March, May)

with each of the combinations of R∗0 and ε. In total, we have 63 different scenarios

for seasonality, and we run 10 simulation replications for each scenario. The time

horizon for each simulation replication is 365 days.
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To study the impact of viral mutation, we test three R0 values: 1.5, 1.8, and 2.1.

These values are consistent with the estimates for R0 in relevant studies [15-17]. We

also explore the effects of using six different values for δ (0.5%, 1.5%, 5%, 8%, 10%,

20%) derived from previous studies [19, 25]. Using rough estimates, an antigenic drift

occurs on average every 2 to 8 years, and the antigenic shift occurs approximately

three times every 100 years [26]. We consider an influenza pandemic that starts from

an antigenic shift (i.e. the population has low immunity to the virus), and test five

values for t∗ (30, 60, 90, 120, 180) to ensure a comprehensive experimental setting for

the antigenic drift. If t∗ is larger than 180, our simulation results show that it can

be considered to be a new epidemic with a smaller susceptible population. The total

number of mutation scenarios is 120 with 10 simulation replications for each scenario.

The time horizon for each simulation replication is 365 days. Also see Tables 2 and 3

in [134] for the combinations of parameter values used in the seasonality and mutation

scenarios.

Finally, we also consider different specific scenarios with modeling both seasonality

and viral mutation to explore the combinations of factors that may lead to a third

wave (e.g., simulated time horizon of 500 days and 10 replications with parameters

R∗0 = 1.5, ε = 0.3, δ = 0.5%, 1.5%, 5%, t∗ = 150, 180, 250, 275, and the pandemic

starting in April).

6.3 Results

We focus on the following performance measures when comparing different simulation

scenarios: daily prevalence (the number of symptomatic and asymptomatic individ-

uals over the total population), peak prevalence value and peak day, and whether a

second or third wave emerges.
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6.3.1 Seasonality scenarios

Figure 64 shows the daily prevalence curves for different combinations of (R∗0, ε, t0)

from the seasonality scenarios. As Figure 64 demonstrates, a pandemic that begins

in April can result in two waves (the first in spring and the second in the subsequent

autumn/winter), whereas pandemics beginning in January, July, and October do not

result in additional waves for the set of variables that we have tested. Our simulation

also shows that a pandemic starting in March can result in two waves (the first in

spring and the second in the subsequent autumn), and no additional waves appear if

the pandemic begins in February or May.

As shown in Figure 64, with the degree of seasonality ε held constant, the peak

prevalence day for the first wave of the pandemic occurs earlier for higher values

of R∗0. In situations where a second epidemic wave occurs, the second wave’s peak

prevalence day occurs later and the peak value is smaller for lower values of R∗0.

Holding the baseline value R∗0 constant, a pandemic that starts in January or

October has an earlier peak prevalence day and a higher peak prevalence for higher

degrees of seasonality ε. A pandemic that starts in April or July has a later peak

prevalence day and a smaller peak prevalence for higher degrees of seasonality.

6.3.2 Mutation scenarios

Figure 65 shows the daily prevalence curves for different combinations of (R0, δ, t
∗)

values. The simulation results suggest that 10 days after the initial wave’s peak

prevalence may be a critical threshold. Viral mutations introduced before this time

do not result in a second wave but can (i) increase the initial wave’s peak prevalence

and (ii) delay the peak prevalence day. However, a viral mutation introduced after

this time could result in a second wave. Moreover, after this time threshold, the later

the viral mutation emerges, then the later the peak prevalence of the second wave

come, if it occurs.
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Moreover, not all viral mutations introduced after this time threshold result in

a second wave. A loss of immunity rate δ smaller than 1% daily seems to prevent

the appearance of a second wave. Second waves appear only when δ is above 1%.

Additionally, a higher δ results in an earlier peak prevalence day and a higher peak

prevalence for the second wave, if one exists.

Figure 65 shows that when R0=1.5 and δ=0.05, the peak prevalence of the second

wave increases as t∗ increases from 90 to 180. However, when δ increases to 0.10, the

peak prevalence of the second wave decreases as t∗ increases from 90 to 180. Table 20

summarizes the different impact on the second peak when increasing t∗ under different

values of R0 and δ. Also see Figure 5 of [134] on the effects of varying δ, t∗, and R0.

Table 20: The peak prevalence value in the second wave varies as the mutant
strain emerges later. (+): the value of the second wave’s peak prevalence is higher
if the mutant strain emerges later. (–): the value of the second wave’s peak prevalence
is lower if the mutant strain emerges later.

Loss of immunity rate (δ)
Reproductive rate (R0) 0.05 0.10 0.20

2.1 + + –
1.8 + – –
1.5 + – –

6.3.3 Seasonality and viral mutation scenarios

Certain combinations of seasonality and mutation scenarios (e.g., R∗0=1.5, a degree of

seasonality ε=0.3, and a loss of immunity rate δ=0.015) are able to reproduce three-

wave epidemic curves similar to those seen in the 1918 pandemic. In the scenario

demonstrated in Figure 66, the first case is introduced in April in the simulation and

the mutant strain emerges 275 days after the initial seed infection. The simulated

time horizon spans 500 days to include the third wave. Applying a constant mortality

rate [15] reproduces the shapes of the observed 1918 pandemic mortality curves very

closely (see figures in [1, 2]).
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Figure 64: Daily prevalence curves for sea-
sonality scenarios.. Nine curves in each panel
correspond to nine pairs of (R∗

0, ε) values. The
x axis represents the simulation day, the y axis
represents the degree of seasonality ε, and the z
axis (vertical) represents the daily prevalence of
infectious cases (the number of symptomatic and
asymptomatic persons over the total population).
The epidemic starts in four different months: (a)
January, (b) April, (c) July, (d) October.

Figure 65: Daily prevalence curves for mu-
tation scenarios. Each panel contains six curves
corresponding to six pairs of (δ, t∗) values (δ=0.05
and 0.10, t∗=60, 90, and 180). The x axis rep-
resents the simulation day, and the y axis repre-
sents the daily prevalence of infectious cases (the
number of symptomatic and asymptomatic per-
sons over the total population). The subfigures
show different reproductive rates (a) R0=1.5, (b)
R0=1.8, (c) R0=2.1.
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Figure 66: Reproduced prevalence curve for the 1918 pandemics. The x
axis represents the simulation day, and the y axis represents the daily prevalence
of infectious cases (the number of symptomatic and asymptomatic persons over the
total population). Three prevalence peaks can occur with a baseline reproductive
rate R∗0 = 1.5, degree of seasonality ε = 0.30, loss of immunity rate δ = 0.015. The
pandemic starts in April and the mutant strain emerges at day 275.

As described earlier, without seasonality, a second wave would not appear if the

loss of immunity rate is below 0.01. However, with seasonality added, we find scenarios

where a third wave could occur if the loss of immunity rate is greater than 0.005, a

viral mutation emerges after 180 days from the initial seed case, and the degree of

seasonality is equal to 0.18. In these cases, the first two waves reflect seasonal effects,

and the third wave results from the viral mutation.

6.4 Discussion

Our study shows that seasonality and viral mutation can substantially alter the course

of an influenza pandemic. Both seasonality and viral mutation can lead to a second

epidemic wave. The combination of seasonality and viral mutation can even lead to

three epidemic waves similar to what observed in the 1918 influenza pandemic.

When modeling seasonality with a sinusoidal function, we demonstrate how dif-

ferent factors (e.g., degree of seasonality) can influence the daily prevalence curve.

In particular, we find that the month that a pandemic appears could help determine
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whether a second wave may occur. A pandemic that begins in April can result in two

waves, whereas pandemics beginning in January, July, and October do not result in

additional waves for the set of variables that we have tested. We give a brief explana-

tion here. First, a pandemic starting in January (in the Northern hemisphere) with a

high reproductive rate (R0) may infect too many susceptibles (in turn, producing too

many immune persons) to allow for a second wave to occur [71, 3, 78, 129]. Second, a

pandemic that begins in April has only a short timeframe to infect susceptibles before

summer when the R0 value decreases. As a result, the first wave is relatively mild,

leaving a large population of susceptibles remaining to be infected in autumn, when

the R0 value rises again. This situation provides a fertile ground for a second wave.

Finally, a pandemic that starts in July may not have a large enough R0 to generate an

epidemic curve until autumn, while a pandemic starting in October rapidly affects a

large number of persons (leaving relatively fewer susceptible persons) so that a second

wave may not be possible.

Regarding viral mutation, our study shows that the time in which a viral mutation

emerges may affect the peak prevalence, the timing of the peak, and whether a second

wave occurs. Viral mutations that emerges more than 10 days after the peak preva-

lence day accompanied by a loss of immunity rate of more than 1%of the recovered

population can lead to a second wave. Moreover, we find that when a viral mutation

leads to a second wave, the characteristics of the second wave depend on the value of

R0, the emergence time of the mutant strain (t∗) and the loss of immunity rate (δ).

The variations in the value of the peak prevalence in the second wave (Table 20) are

related to the force of infection. Recall that the force of infection is the rate at which

susceptible persons are infected by the virus, which is higher if there are more infec-

tious persons. The prevalence of infections depends on the current value of the force

of infection as well as the number of susceptible persons. Holding other parameters

fixed, if the mutation begins earlier, then the value of the force of infection is higher
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because the first wave has not completely disappeared and the number of infectious

persons is higher; if the mutation begins later, the number of susceptible persons is

higher because the recovered pool is larger. Thus, the peak prevalence of the second

wave can be either higher or lower when the mutation emerges later. According to

the simulation results, when R0 = 1.5, the first factor dominates when the loss of

immunity rate δ = 0.10, while the second factor dominates when δ = 0.05.

6.4.1 Public health implications

As the 2009 influenza pandemic (H1N1) has demonstrated, public health officials and

other decision makers must plan and execute strategies not only before a pandemic

emerges but also throughout its course. Within a limited time window, they also must

determine what data needs to be collected to facilitate forecasting and planning. Early

characterization of the ambient circumstances and the emerging viral characteristics

may help predict the behavior of the pandemic and the corresponding intervention

requirements. When a pandemic emerges in spring, for example, a noteworthy concern

is whether the pandemic will re-emerge with greater or less severity in the following

autumn. Our simulation suggests that decision-makers may want to watch for certain

characteristics such as the month when the pandemic initially starts and the rate at

which recovered patients are being re-infected to aid their forecasts. If a second wave

is possible, then decision-makers can plan medical supplies, personnel staffing, and

education of the public accordingly, and the time gained for planning may even allow

for a vaccine to be developed.

Additionally, our simulation study confirms the importance of active surveillance

and virus typing during the course of an pandemic or epidemic. A viral mutation that

emerges during the downward slope of an initial wave may take public health officials

by surprise. It is valuable to closely monitor patients who have already been infected

and detect new strains as soon as they emerge. Without this additional information,
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the gross epidemiological behavior of an initial wave can be very deceptive.

Finally, re-creating a three-wave epidemic curve may help shed additional light

on the 1918 pandemic, which has been the source of much of the scientific and pre-

paredness communities’s understanding of influenza epidemics. Our simulation offers

a profile of conditions that may have been present in 1918.

6.4.2 Conclusions and limitations

Our study demonstrates how different seasonal effects and the timing and degree of

viral mutation can substantially alter the course of an influenza pandemic. Early

characterization of the ambient circumstances and the emerging viral characteristics

may help public health officials and other decision-makers predict the subsequent

behavior of a pandemic or epidemic and the corresponding intervention requirements.

Further, the advance notice of potential subsequent waves can help improve planning

decisions. Future studies may look at the effectiveness of different public health

interventions in many of our simulated scenarios.

We also want to mention that computer models and simulations by definition

are simplifications of real life. They include a number of assumptions and cannot

fully capture every possible factor or effect. Computer simulations can help delineate

possible relationships and understand the importance of various questions and char-

acteristics. Caution should be used when attempting to make definitive forecasts.

The current results may not be generalizable to all locations and conditions.
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CHAPTER VII

THE IMPACT OF MASS GATHERINGS AND HOLIDAY

TRAVELING ON THE COURSE OF AN INFLUENZA

PANDEMIC

7.1 Introduction

During the 2009 H1N1 influenza pandemic, concerns arose about the potential neg-

ative effects of mass public gatherings and travel on the course of the pandemic.

For example, when the H1N1 pandemic appeared to be subsiding in December 2009,

public health officials contemplated whether changes in social mixing patterns due

to a combination of Holiday travel with school and workplace closures could lead

to an additional wave of outbreaks similar to those seen in 1918 and 1957 [67]. The

World Health Organization (WHO), the U.S. Centers for Disease Control and Preven-

tion (CDC), and many other public health organizations published recommendations

[26, 27, 151, 152, 140, 122, 121] suggesting the public defer non-essential travel to

infected areas and emphasizing taking appropriate precautions (e.g., hand hygiene)

during traveling, attending and/or hosting mass gathering events. However, the deci-

sions regarding cancelling or postponing mass gatherings are left to local authorities;

travel restrictions are generally not recommended [152, 34, 36, 46, 64], but some coun-

tries have introduced new travel regulations relating to the 2009 H1N1 outbreaks.

Better understanding the potential effects of changes in social mixing patterns

could help public officials determine if and when to cancel large public gatherings

or enforce regional travel restrictions, advisories, or surveillance during an influenza

pandemic. In this chapter, we explore how various changes in social mixing and

contact patterns, representing mass gatherings and Holiday traveling, may affect the
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course of an influenza pandemic. We use simulation to study the impact of social

mixing patterns and explore scenarios in which additional epidemic waves can appear

due to social mixing changes. In Section 7.2, we specify the details of modeling

social mixing changes in the agent-based simulation model. Then in Section 7.3, we

show simulation results under various mass gathering (non-Holiday) scenarios and

Holiday traveling scenarios. We demonstrate the impact of changing social mixing

patterns on the aggregate epidemic prevalence as well as its regional impact and

impact on traveler’s family members. Finally in Section 7.4, we summarize our finds

and implications for public health planning.

7.2 Models

Our study utilizes the basic agent-based simulation model developed in Section 5.3.

Recall that the simulation model consists of a population of computer agents, with

each agent representing an individual with socio-demographic characteristics and be-

haviors. To incorporate the changes in social mixing patterns, we have significantly

modified the model, particularly for disease spread on the contact network (the in-

dividual disease progression process remains the same as in the baseline simulation

model). Correspondingly, model calibration needs to be adjusted to incorporate these

changes. In the following two subsection, we introduce the major changes we have

made to model mass public gatherings and Holiday travel.

7.2.1 Modeling mass social mixing: public gatherings and Holiday travel

To explore the effects of mass social mixing changes (e.g., large public gatherings and

Holiday traveling), we divide the year into a regular period and a traveling period.

The traveling period starts at day t∗ after the introduction of the initial infected case

and lasts for l days; the remaining days before and after this traveling period comprise

the regular period. During the regular period, agents move back and forth between

households and workplaces or schools. They mix in the workplaces or schools during
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the day and in their households during the night. Agents also mix in the communities

during the day and night by visiting common areas such as grocery stores, churches,

theaters, etc.

At the beginning of the traveling period, we select p% of the total agent population

(in two different ways, see below) to change mixing patterns. They mix in a large

group (i.e., traveling/gathering group) to model temporal mass gathering locations or

events, e.g., airports, shopping malls, or the annual Georgia Tech versus University

of Georgia football game. We consider the following two scenarios:

• Non-Holiday: p% of the total agent population is sampled randomly. Agents

selected to mix in the traveling/gathering group only have contact with each

other in the group, and no longer interact with their family members or class-

mates/colleagues, or mix in their usual communities. The (1− p)% agents not

in the traveling group retain their usual mixing routines, e.g., mix in their work-

places or schools during the day and in their households during the night. This

scenario represents mass public gatherings, e.g., a football game, road race, con-

cert, convention, or demonstration, where one does not necessarily attend the

events or travel with his/her family. The traveling/gathering group can include

event attendees, visitors, and local residents.

• Holiday: A subset of households is randomly sampled so that p% of the total

agent population is chosen to mix in the traveling/gathering group. The agents

travel with their family members (i.e., mix in the household day and night), and

also interact with other agents in the traveling group during the day. However,

they no longer mix in their schools, workplaces or usual communities. The

agents not selected for travel reduce their peer group mixing activities. Schools

and a percentage of workplaces (baseline 50%) are closed during the traveling

period (l days) so that agents no longer mix in these locations. This setting
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Figure 67: An example of the contact network during the traveling period.
The figure shows an example of the contact network, i.e., how persons interact with
each other in households, workplaces, schools, communities, and/or temporary mass
gathering locations.

represents travel or mass gatherings during a holiday, e.g., Thanksgiving or New

Year’s Eve.

When the traveling period ends, all the agents return to their regular mixing routines.

Figure 67 diagrams an example of the new contact network during the traveling

period.

7.2.2 Force of infection and model calibration

From the description in Section 7.2.1, we can see that there are three levels of mixing

for each individual during the regular period (i.e., household, peer group, and commu-

nity), and four potential levels of mixing during the traveling period (i.e., household,

peer group, community, and the traveling/gathering group). A susceptible individ-

ual can become infected not only through contacts with his/her family members,

classmates/colleagues, or random contacts with someone when going to community

places, but also through contacts with other travelers or attendees when traveling

or attending mass gathering events. Therefore, we need to adjust the calculation of

force of infection to reflect the new level of mixing during the traveling period, and
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recalibrate the disease transmission parameters (e.g., the transmission rate β). For

mixing in the regular period, the calculation of force of infection remains to be the

same as in the baseline simulation model.

Traveling Period: Non-Holiday Setting

During the traveling period in the non-Holiday scenario, individuals who are traveling

or gathering have different mixing patterns from those are not:

1. Individual not traveling/attending mass gatherings: retains his/her usual mix-

ing pattern in the regular period, i.e. mix in household (night), peergroup (day)

and community (day/night);

2. Individual traveling/attending mass gatherings: only mix in the traveling/mass

gathering group (day/night).

Thus, the force of infection experienced by the ith person during the day (λDi ) and

during the night (λNi ) in the traveling period are calculated as follows:

λDi = Si ·

(1− σi) ·
N∑
j=1

(δPGij mjεjhPGhX,jβ + δCij
(1− σj)mjhChX,jβ

NA
i

) + σi ·
N∑
j=1

δTij
σjmj h̃X,j β̃

NT


λNi = Si ·

(1− σi) ·
N∑
j=1

(δHij ·
(1− σj)mjhX,jβ

nHAi
+ δCij ·

(1− σj)mjhChX,jβ

NA
i

) + σi ·
N∑
j=1

δTij
σjmj h̃X,j β̃

NT



Here Si and mi are the relative susceptibility and infectivity of the ith person (see

Table 17). NA
i is the number of population in the ith person’s community except

those persons who are traveling or attending mass gatherings, and nHAi is the active

household size of this person where persons who are dead, hospitalized, or traveling

are not counted. NT is the number of population in the traveling group, i.e., the

number of persons who are traveling or attending mass gatherings. Moreover, δYij

(Y ∈ {H, PG, C, T}) is the indicator function defined for location Y (households,
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peer groups, community, or the traveling group)

δYij =


1 if person i and j are in the same location Y,

0 otherwise;

and εj is the indicator showing whether person j withdraws from workplace or school:

εj =


1 if person j mixes in the peergroup,

0 if person j withdraws from the peergroup.

As in the baseline model, we still assume that 100% symptomatic children and 50%

symptomatic adults withdraw from their peergroups. Besides, individuals who are

traveling or attending mass gathering events also withdraw from their peergroups.

The indicator variable σi is to show whether person i is traveling or attending mass

gatherings:

σi =


1 if person i is traveling or attending mass gathering events,

0 otherwise.

Finally, hX,j is the relative hazard rate of the jth person if he/she is in the disease stage

X and not traveling, and h̃X,j is the relative hazard rate if this person is traveling:

h̃X,j =



h̃PS if person j is in the presymptomatic stage,

h̃AS if person j is in the asymptomatic stage,

1 if person j is in the symptomatic stage,

0 otherwise.

We use β and β̃ to differentiate the transmission rate for individuals who are not

traveling or gathering and for those who are traveling/gathering.

From the above equations for the non-Holiday setting, we can see that during

the day, the new infection event (determined by λDi ) can occur in a peergroup, in a

traveling group, or in a community; while during the night, the new infection event

(determined by λNi ) can occur in a household, in a traveling group, or in a community.
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Traveling Period: Holiday Setting

In the Holiday setting, we have three different mixing patterns during the traveling

period, i.e., one pattern for individuals who travel, and two patterns for those who

do not travel:

1. Working adults who still go to work: keep his/her regular mixing patterns, i.e.,

mix in household (night), peergroup (day) and community (day/night);

2. Children, elderly, and working adults who do not travel but stay at home: mix

in household (day/night) and community (day/night);

3. Individuals traveling with their family members: mix in traveling/gathering

group (day) and household (day/night).

Thus, the force of infection experienced by the ith person during the day (λDi )

and during the night (λNi ) in the traveling period are calculated as follows:

λDi =


Si ·

∑N
j=1(δPGij mjεiεjhPGhX,jβ + δCij

(1−σj)mjhChX,jβ

NA
i

) if retaining mixing patterns (σi = 0, εi = 1)

Si ·
∑N
j=1(δHij ·

(1−εj)mj h̃X,j β̃

nHA
i

+ δCij
(1−σj)mj h̃C h̃X,j β̃

NA
i

) if staying at home all day (σi = 0, εi = 0)

Si ·
∑N
j=1(δHij ·

mj h̄X,j β̄

nHA
i

+ δTij
σjmj h̄T h̄X,j β̄

NT
) if traveling (σi = 1, εi = 0)

λNi =


Si ·

∑N
j=1 δ

H
ij ·

mjhX,jβ

nHA
i

if not traveling (σi = 0)

Si ·
∑N
j=1 δ

H
ij ·

mj h̄X,j β̄

nHA
i

if traveling (σi = 1)

Here Si and mi are the relative susceptibility and infectivity of the ith person. NA
i

is the number of population in the ith person’s community except those persons who

are traveling or attending mass gatherings, and nHAi is the active household size of

this person where dead and hospitalized persons are not counted. NT is the number

of population in the traveling group, i.e., the number of persons who are traveling

or attending mass gatherings. Moreover, δYij (Y ∈ {H, PG, C, T}) is the indicator
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function defined for location Y (households, peer groups, community, or the traveling

group)

δYij =


1 if person i and j are in the same location Y,

0 otherwise;

and εj is the indicator showing whether person j withdraws from workplace or school

εj =


1 if person j mixes in the peergroup,

0 if person j withdraw from the peergroup.

We assume that 100% children and 50% adults withdraw from their peergroups during

the Holiday season. Besides, individuals who are traveling also withdraw from their

peergroups. The indicator variable σi is to show whether person i is traveling or

attending mass gatherings:

σi =


1 if person i is traveling during Holiday,

0 otherwise.

Finally, hX,j is the relative hazard rate of the jth person if he/she is in the disease

stage X and retains the regular mixing patterns; h̃X,j is the relative hazard rate if

this person is not traveling and stays at home during the day; and h̄X,j is the relative

hazard rate for traveling individuals:

h̄X,j =



h̄PS if person j is in the presymptomatic stage,

h̄AS if person j is in the asymptomatic stage,

1 if person j is in the symptomatic stage,

0 otherwise.

From the previous equations for the Holiday setting, we can see that during the

night, the new infection event (determined by λNi ) only occur in a household and in

a community; while during the day, the new infection event (determined by λDi ) can

occur in a household, in a peergroup, in a traveling group, or in a community.
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Since the calculation of force of infection is adjusted to reflect the changes in

social mixing patters, we also need to recalibrate disease transmission parameters for

individuals who have changed their mixing patterns during the traveling period (e.g.,

the new transmission rate β̃ and β̄). We use the nonlinear techniques introduced

in Section 5.3.3 to estimate these parameters from other input parameters such as

the reproductive rate R0. The details of calibrating the disease parameters are in

Appendix D.1.

7.2.3 Simulation runs and sensitivity analyses

The individual disease progression model adopts the same distributional settings as

in the baseline model (see Table 17). Parameters for populating the contact network,

unless otherwise specified, also remain the same as we used in the baseline model.

The demographic features in the model are populated from the 2000 census data for

the state of Georgia and are the same as listed in Table 17.

To study the impact of traveling and mass gathering events on the course of an

influenza pandemic, we test different scenarios with three initial reproductive rates

(initial R0): 1.3, 1.5, and 1.8, which correspond to R0 estimates from past pandemics

in 1918, 1957, 1968, and 2009 [153, 46, 65, 101, 47]. Here, the initial R0 refers to the

R0 value before any social mixing changes occur and is a model input to calculate the

disease parameters in Section 7.2.2. It is different from the resulting R0 value, which

is the R0 after the mass social mixing changes are instituted and is a performance

measure we obtain from simulation experiments. Separate scenarios also explore the

effects of using different traveling/gathering starting dates t∗ (Day 30, 60, 90, 120,

180), traveling/gathering durations l (0.5 day, 1 day, 2 days, and 3 days for the non-

Holiday scenario, 3 and 5 days for the Holiday scenario), and the proportion of the

population that travels/gathers during the traveling period, p (1%, 5%, 10% and 25%

for the non-Holiday scenario [cite: 32-37], 25% and 50% for the Holiday scenario [cite:
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43,44]).

To study the regional impact of traveling and mass gathering events, we explore

different proportions of population who participate in traveling/gathering in different

locations (i.e., different p values). For example, similar to the Annual Cherry Blossom

Festival in Macon, Georgia, we assume in one experimental scenario that 50% of

the population travels/gathers in the Bibb County and its nearest 5 counties [20],

and 9.5% of the population travels/gathers in other counties (so that for the entire

population p = 10%) under the non-Holiday setting.

The total number of experimental scenarios is 125 for the non-Holiday scenario and

60 for the Holiday scenario with 10 replications for each experiment unless indicated

otherwise. The time horizon for each simulation replication is 365 days.

7.3 Results

For the non-Holiday scenario, we focus on the characteristics of peak prevalence and

the total attack rate since only one epidemic peak appears; for the Holiday scenar-

ios, we focus on whether two epidemic peaks are present (i.e., the influenza activity

declines first and increases later). In the non-Holiday setting, we also examine the

impact of transmissions to the traveler and their family and within regions where

gathering occurs. Tables 21, 22, and 23 report the initial baseline R0 (before social

mixing changes are introduced) values, the peak prevalence, the total attack rate,

and the resulting R0 values after the mass social mixing changes are instituted for

experiments under the non-Holiday setting.

7.3.1 The timing of mass travel/public gatherings t∗

As the results from simulating non-Holiday scenarios demonstrate, when the initial

R0 = 1.5, mass traveling or public gatherings that commence more than 20 days (e.g.,

t∗ = 90, 120, or 180) after the epidemic peak (Day 70 in the baseline scenario with

R0 = 1.5) have little impact on the peak prevalence or the total attack rate. Mass
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Table 21: Results from Different Mass Gathering Scenarios (Initial R0 =
1.5). The table shows the total attack rate (i.e., proportion of population that has ever
been infected), the peak prevalence day and value in the non-Holiday scenarios, with
several combinations of values for l (duration of the traveling/mass traveling period)
and p (the proportion of the population traveling/gathering) when the initial R0

equals to 1.5. In the baseline scenario, no traveling/gathering occurs. The resulting
R0 values (after adding the traveling/mass gathering period) are obtained from the
baseline scenarios to match the peak prevalence and the total attack rate showed
in this table. The standard deviation is 0.04-0.09% for the peak prevalence and is
0.17-0.30% for the total attack rate.

% of traveling Traveling Period Resulting Peak Peak Total
(p) Start Duration R0 Prevalence Day Attack Rate

Day 30 0.5 1.5 2.73% 70 51.00%
Day 30 1 1.5 2.76% 70 51.00%
Day 30 2 1.5 2.78% 71 51.00%

p=1% Day 30 3 1.5 2.79% 70 51.00%
Day 60 0.5 1.5 2.74% 70 51.00%
Day 60 1 1.5 2.76% 70 51.00%
Day 60 2 1.5 2.74% 70 51.00%
Day 60 3 1.5 2.75% 71 51.00%
Day 30 0.5 1.5 2.74% 69 51.00%
Day 30 1 1.5 2.77% 70 51.00%
Day 30 2 1.5 2.77% 70 51.00%

p=5% Day 30 3 1.5 2.80% 70 51.00%
Day 60 0.5 1.5 2.74% 69 51.00%
Day 60 1 1.5 2.81% 70 51.20%
Day 60 2 1.51 2.83% 70 51.20%
Day 60 3 1.5 2.78% 70 51.10%
Day 30 0.5 1.5 2.74% 69 51.00%
Day 30 1 1.5 2.78% 69 51.00%
Day 30 2 1.5 2.80% 69 51.00%

p=10% Day 30 3 1.5 2.82% 68 51.10%
Day60 0.5 1.5 2.80% 69 51.00%
Day 60 1 1.51 2.85% 70 51.30%
Day 60 2 1.51 2.89% 69 51.40%
Day 60 3 1.5 2.80% 70 51.10%
Day 30 0.5 1.5 2.79% 69 51.00%
Day 30 1 1.5 2.80% 68 51.10%
Day 30 2 1.5 2.80% 68 51.10%

p=25% Day 30 3 1.5 2.83% 70 51.00%
Day 60 0.5 1.51 2.90% 69 51.40%
Day 60 1 1.52 3.04% 69 51.70%
Day 60 2 1.53 3.12% 69 52.00%
Day 60 3 1.51 2.96% 71 51.40%

Baseline 1.5 2.73% 70 51.00%
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Table 22: Results from Different Mass Gathering Scenarios (Initial R0 =
1.3). The table shows the total attack rate (i.e., proportion of population that has ever
been infected), the peak prevalence day and value in the non-Holiday scenarios, with
several combinations of values for l (duration of the traveling/mass traveling period)
and p (the proportion of the population traveling/gathering) when the initial R0

equals to 1.3. In the baseline scenario, no traveling/gathering occurs. The standard
deviation is 0.02-0.05% for the peak prevalence and is 0.22-0.41% for the total attack
rate.

% of traveling Traveling Period Resulting Peak Peak Total
(p) Start Duration R0 Prevalence Day Attack Rate

Day 60 0.5 1.3 0.96% 98 32.50%
Day 60 1 1.3 0.97% 99 32.50%
Day 60 2 1.3 0.96% 98 32.80%

p=1% Day 60 3 1.3 0.98% 98 32.90%
Day 90 0.5 1.3 0.96% 97 32.50%
Day 90 1 1.3 0.97% 98 32.60%
Day 90 2 1.3 0.98% 97 32.80%
Day 90 3 1.3 0.98% 97 32.80%

Day 60 0.5 1.3 0.97% 96 32.60%
Day 60 1 1.3 0.98% 97 32.60%
Day 60 2 1.3 0.98% 97 32.80%

p=5% Day 60 3 1.3 1.00% 96 32.90%
Day 90 0.5 1.3 0.98% 97 32.80%
Day 90 1 1.3 0.98% 96 32.70%
Day 90 2 1.31 1.00% 99 33.10%
Day 90 3 1.3 0.97% 101 32.70%

Day 60 0.5 1.3 0.98% 96 32.80%
Day 60 1 1.3 0.98% 96 32.70%
Day 60 2 1.3 0.99% 95 32.90%

p=10% Day 60 3 1.3 1.01% 97 32.90%
Day 90 0.5 1.3 0.99% 98 32.80%
Day 90 1 1.31 1.00% 97 33.10%
Day 90 2 1.31 1.02% 99 33.10%
Day 90 3 1.3 0.98% 99 32.80%

Day 60 0.5 1.3 0.98% 97 32.80%
Day 60 1 1.3 1.00% 97 32.70%
Day 60 2 1.31 1.05% 94 33.20%

p=25% Day 60 3 1.3 1.03% 99 32.70%
Day 90 0.5 1.31 1.04% 98 33.10%
Day 90 1 1.31 1.07% 99 33.30%
Day 90 2 1.32 1.11% 99 33.70%
Day 90 3 1.31 1.02% 99 33.00%

Baseline 1.3 0.96% 94 32.40%

204



Table 23: Results from Different Mass Gathering Scenarios (Initial R0 =
1.8). The table shows the total attack rate (i.e., proportion of population that has ever
been infected), the peak prevalence day and value in the non-Holiday scenarios, with
several combinations of values for l (duration of the traveling/mass traveling period)
and p (the proportion of the population traveling/gathering) when the initial R0

equals to 1.8. In the baseline scenario, no traveling/gathering occurs. The standard
deviation is 0.08-0.15% for the peak prevalence and is 0.07-0.18% for the total attack
rate.

% of traveling Traveling Period Resulting Peak Peak Total
(p) Start Duration R0 Prevalence Day Attack Rate

Day 30 0.5 1.8 5.99% 50 68.40%
Day 30 1 1.8 5.99% 51 68.40%
Day 30 2 1.8 6.00% 50 68.40%

p=1% Day 30 3 1.8 6.00% 50 68.40%
Day 45 0.5 1.8 5.99% 51 68.40%
Day 45 1 1.8 6.00% 51 68.40%
Day 45 2 1.8 5.99% 51 68.40%
Day 45 3 1.8 5.96% 51 68.40%

Day 30 0.5 1.8 6.01% 50 68.40%
Day 30 1 1.8 6.01% 50 68.40%
Day 30 2 1.8 6.03% 50 68.40%

p=5% Day 30 3 1.8 6.10% 51 68.40%
Day 45 0.5 1.8 6.04% 51 68.40%
Day 45 1 1.8 6.05% 50 68.60%
Day 45 2 1.81 6.09% 51 68.70%
Day 45 3 1.8 5.94% 51 68.40%

Day 30 0.5 1.8 6.03% 51 68.40%
Day 30 1 1.8 6.08% 50 68.40%
Day 30 2 1.8 6.12% 50 68.40%

p=10% Day 30 3 1.8 6.17% 51 68.40%
Day 45 0.5 1.8 6.05% 51 68.50%
Day 45 1 1.81 6.20% 50 68.60%
Day 45 2 1.8 6.07% 51 68.50%
Day 45 3 1.8 5.99% 51 68.40%

Day 30 0.5 1.8 6.08% 50 68.40%
Day 30 1 1.81 6.16% 50 68.50%
Day 30 2 1.82 6.31% 50 68.60%

p=25% Day 30 3 1.82 6.40% 50 68.50%
Day 45 0.5 1.82 6.20% 51 68.80%
Day 45 1 1.83 6.49% 50 69.30%
Day 45 2 1.83 6.58% 51 69.50%
Day 45 3 1.82 6.21% 53 68.60%

Baseline 1.8 5.99% 50 68.40%
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traveling or public gatherings that commence well prior (i.e., more than 40 days)

to the epidemic peak (e.g., t∗ = 30) have a minor but not significant impact. For

example, having 25% of the population traveling increases the peak prevalence from

2.73% (baseline) to 2.80% (around 2% relative increase in the peak percentage) but

does not affect the overall attack rate much.

However, mass traveling that begins shortly before the peak prevalence day (e.g.,

t∗ = 60, 10 days before the peak in the baseline case) can significantly increase

the peak prevalence, e.g., 25% of the population traveling for 1 day increases the

peak prevalence from 2.73% (baseline) to 3.04% (around a 11% relative increase) and

increases the overall attack rate from 51.0% (baseline) to 51.7%. This translates to

an additional 63,502 individuals being infected in Georgia [20]. Tables 21 to 23 show

how different starting time of the traveling/gathering period affect the epidemic under

non-Holiday conditions for all the initial R0 values we have tested.

The results of simulating the Holiday scenarios show similar observations on the

impact of the starting time t∗. When the initial R0 = 1.5, mass traveling/gatherings

that occur more than 20 days after the epidemic peak or more than 40 days before the

peak do not lead to a second epidemic peak; otherwise, two explicit epidemic peaks

can appear under certain scenarios as we demonstrate in the next section.

7.3.2 Impact of Holiday traveling on multiple peaks

Figure 68 shows the resulting epidemic curves (i.e., the daily prevalence of infected

individuals) for the entire state of Georgia under the Holiday scenario where 25% of

the population mixes in the traveling group during a 5-day traveling period. Fig-

ure 68(a) shows the scenario with the initial R0 = 1.5 when the traveling period

starts on Day 60; Figure 68(b) shows the scenario with the initial R0 = 1.3 when

the traveling period starts on Day 90. Figure 68 shows that the Holiday scenario

can generate two prevalence peaks, while this is not seen in any of the non-Holiday
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scenarios we tested. We have simulated a variety of scenarios with different initial

R0 values, Holiday traveling durations and proportions of the population on travel to

explore scenarios that can generate two distinct epidemic peaks. Generally speaking,

two peaks appear when Holiday traveling occurs within 5-20 days (depending on the

initial R0 values) before the prevalence peak day in the baseline (no traveling) sce-

nario. The prevalence, the timings of the two peaks, and the total attack rate depend

on the parameter settings in each scenario.
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Figure 68: Epidemic curves in the Holiday scenarios. The figure shows the
daily prevalence of infection (i.e., proportion of the symptomatic and asymptomatic
persons over the entire population) for the entire state of Georgia und er the Holiday
setting. Here 25% of the population travels during a 5-day traveling or mass gathering
period with two initial R0 values: a) R0=1.5; b) R0=1.3.

The appearance of the two epidemic peaks is due to partial social-distancing, as

a large proportion of the population no longer mixes in the workplaces/schools when

the Holiday (traveling) begins, causing a momentary drop in new infection cases until

the Holiday is over and mixing resumes. To isolate the effects of traveling versus the

reduction in peer group mixings, Figure 69 compares the epidemic curves for the entire

state of Georgia in the following two scenarios using the initial R0 = 1.5: (1) 25%
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population on travel during a 5-day Holiday period starting on Day 60 as previously

described; (2) the same number of persons reduce their peer group mixings and stay

at home day and night during a 5-day period starting on Day 60. The second scenario

models social distancing or household quarantine. As shown in Figure 69, there are

two epidemic peaks in both scenarios; however, the prevalence of the second peak

in the social-distancing scenario (2.47%) is lower than that in the traveling scenario

(2.86%). The total attack rate in the former is 50.4%, and 51.7% in the latter. This

is consistent with our previous observation: traveling/mass gatherings can lead to an

increase in the peak prevalence and the total attack rate, but do not cause a second

peak alone among the experiments we test.
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Figure 69: Epidemic curves in the Holiday and social distancing scenarios.
The figure shows the daily prevalence of infection (i.e., proportion of the symptomatic
and asymptomatic persons over the entire population) for the entire state of Georgia
under the Holiday and the social distancing settings. Here the initial R0=1.5; 25%
of the population travels during a 5-day period starting on Day 60 (solid curve), or
reduces their peer group mixings during the same period time (dotted curve).
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7.3.3 The duration of the mass traveling period (l) and the proportion
of the population traveling (p) under the non-Holiday setting

Tables 21 to 23 also compare the peak prevalence and the total attack rate in Georgia

for different combinations of traveling/gathering duration l and the proportion of the

population that travels/gathers when the initial R0 = 1.3, 1.5, and 1.8 under non-

Holiday conditions. As Tables 21 to 23 demonstrate, even a half-day event can lead

to as high as an 8% increase in the peak prevalence (e.g., with 25% of the population

involved in a half-day event starting on Day 90 and the initial R0 = 1.3). Moreover,

1-day and 2-day traveling periods result in similar peak prevalence values to each

other (a 3% maximum relative difference) and very similar total attack rates (a 1%

maximum relative difference).

However, extending the event duration from 2 to 3 days reduces the peak preva-

lence and total attack rate somewhat (although they remain higher than if mass

gathering did not occur) in some scenarios. For example, when the initial R0 = 1.5

and 10% of the population is involved in a mass gathering event, the resulting peak

prevalence and total attack rate are 2.89% and 51.4%, respectively, after a 2-day event

starting on Day 60; however, these values are 2.80% and 51.1%, respectively, after

a 3-day event starting at the same time. Note that the baseline average infectious

period is 3-4 days (see Table 17). We conduct sensitivity analyses in which the in-

fectious period is assumed to be of 7 days [93, 94]. Under the new assumption of the

infectious period, when the initial R0 = 1.5, the total attack rate is 49.05% and the

peak prevalence is 4.05% in the baseline scenario without traveling/mass gathering.

The total attack rate becomes 51.2%, 51.3%, and 51.4% when the traveling period

starts at 20 days before the epidemic peak (in the baseline scenario) and lasts for 1,

2 and 3 days, respectively. The peak prevalence becomes 4.56%, 4.58%, and 4.60%,

respectively. Thus, when the infectious period is 7 days, the total attack rate and

peak prevalence increase when the traveling/gathering duration l increases.
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The proportion of the population traveling/gathering shows a larger impact on

the peak prevalence and the total attack rate. When the initial R0 = 1.5 and 25%

of the population starts traveling on Day 60 for 1 day, the peak prevalence increases

from 2.73% (baseline) to 3.04% (approximately a 11% relative increase), significantly

greater than the 4% relative peak prevalence increase (compared to baseline) when

only 10% of the population travels on Day 60. Smaller mass gatherings (i.e., 1%-5%

of the population) do not result in substantial increases in the peak prevalence and

the total attack rate. Tables 21 to 23 show that this observation holds for other initial

R0 values as well.

7.3.4 Risk for travelers’ families under the non-Holiday setting

To study the potential increase of the infection risk for the people traveling/gathering

and for their family members (i.e., the impact of secondary transmissions), we com-

pare the prevalence and the total attack rate in the non-Holiday setting to the baseline

scenarios, for the population of travelers/gatherers and their family members.

When the initial R0 = 1.5 and 10% of the population is on travel during a 1-day

traveling period beginning at Day 60 (or Day 30), the value of the peak prevalence is

2.97% (or 2.86%, respectively) and the total attack rate is 53.5% (or 53.0%, respec-

tively) among the population of travelers/gatherers and their family members, while

the peak prevalence in the entire population is 2.85% (or 2.78%, respectively) with a

total attack rate 51.3% (or 51.0%, respectively).

The peak prevalence value and the total attack rate for individuals who travel or

attend mass gatherings and their family members are higher than the corresponding

average values for the entire population when the traveling or mass gatherings occur

before the epidemic peak. Even if the traveling period starts at Day 90 (20 days after

the epidemic peak in the baseline scenario), the total attack rate for the travelers and

their families is 53.0%, still higher than that for the entire state (51.0%).
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7.3.5 Regional impact of traveling and mass gatherings

The aforementioned scenarios assume that the proportion of persons traveling/gathering

are uniform throughout the entire state; however, mass gatherings may disproportion-

ately involve residents of certain areas or neighborhoods (e.g., residents closer to the

mass gathering event may be more likely to attend than persons remote). Therefore,

an additional set of scenarios explores the impact of regional differences in traveling

and mass gatherings under the non-Holiday setting. Figure 70 depicts the scenarios

when the initial R0 = 1.5, the traveling period is 1 day, and 50% of the population

in Bibb County and its nearest 5 counties [20] are mixing in the traveling group with

9.5% of the population traveling from all other counties (resulting in 10.4% total of

the entire population on travel). Figure 70 shows the maximum and minimum, the

25% and 75% percentiles, and the mean of the peak prevalence value and the peak

day for Bibb County (from 50 replications) with traveling starting on Day 30, Day

60, and without traveling (baseline scenario).

As shown in Figure 70(a), when the traveling/mass gathering starts on Day 60 and

lasts for 1 day, the peak prevalence in Bibb County can reach as high as 4% in some

experiments (compared to 2.82% in the entire state). The average peak prevalence is

3.32%, and the average total attack rate is 50.1%, which are higher than the baseline

value of peak prevalence (2.82%) and total attack rate (48.9%) for Bibb County.

Moreover, Figure 70(b) indicates that the traveling/gathering occurring before

the peak prevalence day (e.g., Day 30) can synchronize the timing of the epidemic

curves in a local county and in the entire state. In the baseline case, the day when

the prevalence peaks in Bibb County can appear as late as Day 95, which is 25 days

after the peak day in the entire state. With traveling/mass gathering occurring on

Day 30, the peak day in Bibb County is mostly reached before Day 75 (with 75%

chance); and furthermore, in some experiments, the peak day can occur as early as

Day 56 due to the early introduction of seed infections to the local area.
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Figure 70: Peak prevalence value and peak day in Bibb County. The box
plots show the range (with maximum and minimum, dotted line), 25% (lower gray
line) and 75% (upper gray line) percentile, and the mean value (solid black line) for
the peak prevalence (subfigure a) and the peak day (subfigure b) in Bibb County.
Here 50% of the population from Bibb County and its nearest 5 counties travels and
mixes with 9.5% of the population from other counties in the traveling group. The
initial R0=1.5, the traveling period lasts for 1 day, and it starts on Day 30, 60, or no
traveling (baseline).

7.4 Discussion

Our simulation experiments have identified situations where mass traveling or gather-

ings that occur shortly before the epidemic peak may worsen or alter the course of the

influenza epidemic (e.g., resulting in a higher peak prevalence and total attack rate

and in some cases generating two epidemic peaks), which may substantially affect

planning and potentially strain healthcare facilities and resources. This impact can

be greatest on the local communities hosting the mass gatherings. Therefore, pub-

lic health officials, local authorities, and other decision makers may consider closely

monitoring, postponing or canceling public gatherings near the peak of an epidemic.

Moreover, pandemic surveillance and other responses should not necessarily be slowed

even after a large decline in influenza activity since a second epidemic peak may occur

after Holiday traveling. Conversely, our experiments suggest that mass traveling or

gatherings may have little effect when occurring relatively early or past the peak in
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an epidemic (with high enough herd immunity achieved [71, 3, 78, 129]).

Our study emphasizes the impact of social mixing patterns and the creation and

distribution of immune individuals on the progression of an epidemic. Specifically,

when individuals mix in households, schools, and workplaces without major changes,

they can generate pockets of adequate herd immunity to prevent additional trans-

mission. In other words, if a large percentage of individuals at one’s workplace and

household are immune then one’s risk of infection may be low, even though many

infectious individuals are still in the population. This is because individuals tend to

stick with their typical social contacts and do not mix with a majority of the pop-

ulation. However, a mass gathering brings together people that normally would not

mix, i.e., it brings together susceptible and infectious individuals that would not have

interacted otherwise, thus potentially worsening the epidemic.

Additionally, the differences between the durations of the mass gathering and

the pathogen’s infectious period can substantially alter the impact of mass gathering.

When the mass gathering period is shorter than the pathogens infectious period (e.g.,

when the mass gathering is 1-2 days versus 3-4 days for the infectious period), mass

gathering creates new infectious individuals who then return to their households,

workplaces, and schools to infect their standard social networks, thereby worsening

the epidemic. Conversely, when the mass gathering lasts as long as or longer than the

pathogen’s infectious period (e.g., when the mass gathering infectious period is 3-4

days and the pathogen’s infectious period is 3-4 days), mass gathering can actually

act as a mass immunization or mass quarantine event, keeping people in one location

while they are infectious and then returning them to their social networks only after

they are immune. Sensitivity analyses that increase the average infectious period to

7 days support this conclusion.
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7.4.1 Public health implications

Canceling or postponing mass gatherings near the epidemic peak can be challenging.

As seen during the 2009 H1N1 pandemic, it can be difficult to determine the current

and anticipated future status of an ongoing epidemic. Moreover, changing a previously

scheduled event can have economic and logistic consequences. In some cases, the

scheduled date of a mass gathering can have significance. For example, Memish et

al. [106] discussed the global religious event Hajj (pilgrimage by Muslims to Saudi

Arabia, attracting more than 2.5 million pilgrims from the whole world every year),

which is difficult to cancel during a pandemic.

The alternative to changing the scheduling of an event is close monitoring and en-

forcement of hygienic measures and precautions during the event. Memish et al. [106]

and Rashid et al. [126] presented several recommendations for local governments to

follow, including screening, surveillance, and most importantly, encouraging atten-

dees from high risk groups (e.g., elderly and pregnant women) to postpone their

participation in the event. Also, reducing the length and the scale of an event could

be less drastic ways of reducing disease transmission. Even if an event cannot be

cancelled, knowing that it may increase the overall attack rate and peak prevalence

could help public health decision makers prepare (e.g., increasing health care resource

availability and surge capacity).

7.4.2 Conclusion and future direction

Our study demonstrates how social mixing dynamics can be captured in a heteroge-

neous population, and shows the impact on prevalence, peak timing, and secondary

transmissions within families or regions. Our study suggests that when mass gath-

erings and traveling occur close to the peak of an epidemic, they could worsen the

overall attack rate and the peak prevalence. However, such changes in social mixing

may have little effect when they occur earlier or later in the course of an epidemic.
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Public health decision makers may use this information to help decide whether to

postpone, cancel, monitor, or enforce infection control measures during a mass gath-

ering or Holiday season.

From the modeling side, we have developed an agent-based simulation model which

allows the flexibility to change mass social mixing patterns in different time periods.

Such flexibility is not explicitly incorporated in other presented simulation models.

We have also developed new ways to estimate transmission parameters to calibrate the

disease spread model when individuals can have different mixing patterns. This model

may be generalized to other settings besides Holiday traveling and mass gathering

events, such as modeling patients seeking medical care and mixing with other patients

in hospitals during an influenza pandemic.

Finally, similar to the previous chapter, we want to emphasize that computer

simulations are simplifications of real life. Rather than make decisions, simulation

can identify potentially important factors and relationships for decision makers. Our

model does incorporate a number of assumptions and cannot fully capture every pos-

sible factor or effect. For example, we assume homogeneous mixing within the travel-

ing/mass gathering group during the traveling/gathering period. In real life, people

may not have contact with every attendee in a mass gathering. Also, mass gathering

events are not equivalent. Some may involve closer and more extended contact than

others. The type of venue and location can play a significant role. Different events

can involve people of different ages, socioeconomic status, and potentially health sta-

tus. Future studies could extend our model to incorporate these realistic features.

We also want to mention that although we have conducted a wide-range of sensitivity

analyses, it is not possible to explore every possible combination of parameters.

215



APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Dealing with entries with missing admission or dis-
charge information

The data we have covers three years, from 2008 to 2010. Records with admission or

discharge time outside the three-year period have incomplete admission or discharge

information. For example, if a patient is admitted before January 1, 2008 and is

discharged on January 15, 2008, then her admission information is missing. We note

that there are 650 records lacking admission information and 10 lacking discharge

information. To ensure consistency, we apply the following conventions to these

records:

1. All records with complete admission information are included in any analysis

that is related to inpatient admission (e.g., admission time, daily admission

rate), no matter whether discharge information is missing or not.

2. All records with complete discharge information are included in any analysis

that is related to discharge (e.g., discharge distribution in Section 2.2), no matter

whether admission information is missing or not.

3. Only records with both admission and discharge information are included in

the analysis for LOS and service time (e.g., Sections 2.5 and 2.6). Records with

either missing admission or discharge information are excluded.

4. All records identified as “visited ED” and with complete admission information

are included in analyzing ED-GW patient’s waiting times and bed-request rates,

no matter whether discharge information is missing or not.
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Figure 71: Empirical distributions of the waiting times for ED-GW patients.
The waiting times are calculated in the conventional way, i.e., using the duration
between bed-request and patient exiting ED. The bin size is 0.5 hour, and points
falling beyond 12 hours are lumped together into the last bin.

As a consequence of following these conventions, the total sample size may vary

for different analyses.

A.2 Waiting time statistics calculated in the conventional
way

As introduced in Section 2.1.1, waiting time reported in this thesis is calculated in

a slightly different way from that used in the medical literature. Here, we report

waiting time statistics calculated from the conventional way in literature, i.e., using

the duration between bed-request time and when patient exiting from ED.

A.2.1 Distribution of waiting time

Figure 71a shows the empirical distributions of waiting times for all ED-GW patients

in Periods 1 and 2. The bin size is 0.5 hour, and points falling beyond 12 hours

are lumped together into the last bin. For hospital management purpose, we are

particularly interested in those patients with excessive long waiting times. Thus in

Figure 71b, we provide a detailed plot for the waiting time distribution between 6 and

12 hours. The shapes of the overall distribution curves look similar in both periods.
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Figure 72: Waiting time statistics for ED-GW patients by bed-request hour.
The waiting times are calculated in the conventional way, i.e., using the duration
between bed-request and patient exiting ED.

The tail distributions, however, exhibit significant differences.

A.2.2 Hourly average waiting time

As reported in Table 1, the average waiting time (calculated in the conventional way)

for all ED-GW patients is 2.52 hours for Period 1, and 2.46 hours for Period 2, a

reduction of 3.6 minutes. Thus, there is no significant difference between the two

periods.

Figure 72a plots the hourly average waiting time. Figure 72a shows a similar

shape as Figure 1a(a); the difference between the two figures is that we calculate

the waiting times differently. Table 24 lists the corresponding numerical values for

Figure 72a.

A.2.3 Service levels

Figure 72b, which shows the 6-hour service level with respect to bed-request hour, is

similar to Figure 1(b) in [135], except that we calculate the waiting times differently.

Table 24 lists the corresponding numerical values. We also observe a time-dependent

feature of the 6-hour service level. Patients requesting beds between 6am and 12noon
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Table 24: The average waiting times and service levels by bed-request hour.

per bed-request hour
1 2 3 4 5 6 7 8 9 10 11 12

req. dist. 1 4.33 3.48 2.71 2.40 1.81 1.71 1.68 1.50 1.62 2.41 3.51 4.62
(%) 2 4.31 3.33 2.57 2.09 1.65 1.67 1.53 1.67 1.77 2.57 3.41 4.98
avg. wait 1 2.12 2.05 2.02 1.89 1.87 2.15 2.96 3.95 4.24 4.33 3.89 3.45
(h) 2 1.91 1.92 1.94 1.78 1.71 1.99 2.76 3.72 3.94 3.89 3.47 3.31
f(W ≥ 4) 1 8.34 6.24 5.93 5.64 6.22 10.87 23.49 42.59 52.70 56.84 48.79 32.82
(%) 2 6.88 5.95 5.24 3.02 3.37 7.57 23.20 43.94 49.22 44.68 36.54 30.84
f(W ≥ 6) 1 3.39 3.24 3.33 3.41 4.04 7.08 18.62 30.02 31.13 24.91 12.30 8.11
(%) 2 1.01 1.31 2.00 1.13 2.16 2.60 12.89 20.90 21.70 15.25 10.56 7.95
f(W ≥ 8) 1 2.80 2.43 2.81 2.59 2.80 4.45 11.24 9.57 7.65 4.21 2.89 2.20
(%) 2 0.18 0.83 0.92 0.76 0.96 1.18 3.09 5.94 3.36 2.16 2.55 1.91
f(W ≥ 10) 1 2.35 2.27 1.98 1.18 1.87 1.15 2.35 1.50 1.22 0.82 0.56 0.49
(%) 2 0.00 0.12 0.31 0.57 0.24 0.00 0.00 0.24 0.00 0.15 0.12 0.00

per bed-request hour
13 14 15 16 17 18 19 20 21 22 23 24

req. dist. 1 5.46 6.18 6.30 6.61 6.14 6.16 5.64 4.86 5.07 5.55 5.12 5.12
(%) 2 5.73 5.99 6.58 6.84 5.92 5.92 5.40 5.09 5.20 5.62 5.20 4.98
avg. wait 1 3.04 2.81 2.58 2.41 2.37 2.42 2.17 2.10 2.04 2.05 2.09 2.03
(h) 2 3.02 2.73 2.62 2.42 2.39 2.44 2.21 2.14 2.14 1.98 1.94 1.92
f(W ≥ 4) 1 22.99 20.40 16.88 14.94 12.37 10.77 7.20 6.85 6.40 5.95 6.94 6.44
(%) 2 25.45 20.59 17.43 12.83 11.03 11.49 8.57 8.16 8.14 6.41 7.15 6.20
f(W ≥ 6) 1 5.79 5.61 4.03 2.39 1.98 1.79 1.30 1.86 1.56 2.24 2.92 3.08
(%) 2 5.93 4.36 3.19 1.91 1.87 2.00 1.17 1.79 1.83 1.62 1.45 0.71
f(W ≥ 8) 1 1.29 1.46 0.58 0.30 0.60 0.50 0.35 0.75 0.78 1.32 2.09 2.09
(%) 2 1.10 0.33 0.60 0.17 0.00 0.73 0.22 0.78 0.46 0.35 0.23 0.48
f(W ≥ 10) 1 0.05 0.23 0.04 0.17 0.05 0.23 0.20 0.46 0.56 1.02 1.82 1.38
(%) 2 0.14 0.00 0.06 0.00 0.00 0.27 0.00 0.08 0.08 0.00 0.15 0.08

have a much higher chance of waiting more than 6 hours than patients requesting

beds in other hours. In Period 1, about 1 out of 3 patients requesting beds between 8

and 9am have to wait more than 6 hours. Comparing the two periods, the peak value

of the 6-hour service level (8-9am) decreases from 31% to to 22% in Period 2. Table 24

also lists the 4-, 8-, and 10-hour service levels with respect to the bed-request hour.

The 8-hour and 10-hour service levels are greatly reduced in each hour in Period 2.

A.2.4 Waiting time statistics for each specialty

Figures 73a and 73b plot the average waiting times and 6-hour service levels for

the nine specialties in the two periods. Table 25 shows the corresponding numerical

values, and contains statistics for other service levels.
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Figure 73: Waiting time statistics for each specialty. The waiting times are
calculated in the conventional way, i.e., using the duration between bed-request and
patient exiting ED.

We make two observations. First, the nine specialties exhibit similar average

waiting time and 6-hour service levels in each period (especially in Period 2). This

balanced result could have been achieved through years of continual adjustment in

resource allocation (e.g., bed and ward allocation) and a proper overflow policy (see

Section 2.3.3). Renal and Cardiology patients show longer average waiting times

than the overall average, while Surgical, General Medicine, and Respiratory patients

show shorter average waiting times than the overall average. The potential reasons

could be that (i) Surgery, General Medicine, and Respiratory wards have relatively

low BORs (see Table 3); moreover, patients from Surgery and General Medicine can

be overflowed to wards of other specialties easily since they have less specialized

requirements; (ii) Renal and Cardiology wards have high BORs, and these patients

need more specialized care and equipment (e.g., dialysis for Renal patients, telemetry

beds for Cardiology patients) so it is more difficult for them to be overflowed.

Second, comparing the two periods, we can see that the average waiting time does

not change much for each specialty except for Renal and Respiratory. Meanwhile,

the 6-hour service level exhibits a significant reduction in Period 2 for each specialty

except Neurology. These observations are consistent with what we observed from the

hospital-level statistics (see Table 1). They all suggest that patients with long waiting
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times (as noted, a very small amount) benefit more in Period 2 than most patients.

Table 25: Waiting time statistics for ED-GW patients from each specialty.

Period Sample size avg. wait f(W ≥ 4) f(W ≥ 6) f(W ≥ 8) f(W ≥ 10)
(h) (%) (%) (%) (%)

Surg 1 6078 2.31 13.29 4.46 1.40 0.61
2 3926 2.29 12.66 2.95 0.76 0.05

Card 1 5437 2.74 19.22 6.71 2.21 0.74
2 4011 2.60 18.08 4.54 0.85 0.02

Gen Med 1 7913 2.32 12.26 3.80 1.44 0.80
2 6176 2.28 11.92 3.04 0.65 0.08

Ortho 1 4557 2.55 15.16 5.00 1.73 0.75
2 2899 2.53 13.42 3.04 0.83 0.07

Gastro-Endo 1 3348 2.67 18.43 6.30 2.42 0.96
2 2309 2.64 19.23 5.67 1.08 0.09

Onco 1 1586 2.63 17.40 6.43 3.22 1.32
2 1271 2.49 16.76 3.93 0.79 0.08

Neuro 1 2669 2.47 15.36 4.38 1.57 0.52
2 1979 2.65 18.85 4.95 0.76 0.10

Renal 1 2315 2.99 23.24 9.07 3.59 1.43
2 1686 2.68 19.51 6.58 2.02 0.42

Respi 1 1549 2.45 14.33 4.39 1.23 0.39
2 1028 2.26 12.16 3.11 0.58 0.00

A.3 BOR contributed by primary and overflow specialties
for each ward

Besides the overflow proportion introduced in Section 2.3.3, we define BOR share of

a specialty (or group of specialties) as the BOR of the speciality, or group, divided by

the total BOR for a certain ward. To calculate the BOR of one specialty for a given

ward, the numerator in Equation (1) counts the total patient days for patients from

that specialty who used beds in the ward. The denominator counts the total bed days

available for all beds from that ward. Thus, the sum of the BORs from each specialty

equals the total BOR of that ward (as reported in Table 3). Correspondingly, the

BOR share from each specialty adds up to 1 for that ward.

When modeling beds in a ward as servers, the BOR share resembles the workload

share in queueing systems, i.e., out of all “busy” periods, the average proportion of
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time that these beds are “working” on patients from a particular specialty. The BOR

share provides us with a deeper insight into the overflow issue. Patients who are

initially assigned to a wrong ward may be transferred to the right ward later (see

more discussions in Section 2.8.3 on such transfers). Typically, this happens a day

or two after the patient’s initial admission; otherwise, the hospital usually allows the

patient to remain in the wrong ward until discharge. The overflow proportion only

takes patient count into consideration, without differentiating an overflow patient

with a long LOS from an overflow patient with a short LOS, where the latter is

always preferred for the right-siting of care. Therefore, we study this BOR share

statistic, since it takes patient’s LOS into consideration from the BOR calculation.

Figure 74 plots the BORs from primary and non-primary specialties for each ward

in Periods 1 and 2. We also refer the two BORs as right-siting BOR and overflow

BOR, respectively. Each bar in the figure represents the total BOR for each ward

in the corresponding period. Even though the figure does not directly plot the BOR

share (since the BOR share from primary and non-primary specialties should add

up to 1 for a ward), it gives us some insight regarding the time the ward serves

right-siting patients and overflow patients, as well as its “idle” time, when it is not

serving patients. Table 26 contains the numerical values for the overflow BOR share

for each ward in Periods 1 and 2. Using 1 minus the overflow BOR share obtains

the right-siting BOR share. We observe similar features regarding the overflow BOR

share and overflow proportions. For example, dedicated wards have lower BOR share

from overflow patients, and Orthopedic wards and class A/B1 wards expend more

time treating overflow patients. Moreover, most wards in Period 2 show a reduction

in overflow BOR share.

Comparing the overflow BOR share with overflow proportion in Table 26, we can

see that the overflow BOR share is generally smaller than the corresponding overflow

proportion, e.g., ward 54 and 55. This has two implications. First, some overflow
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Figure 74: BOR from primary and non-primary specialties for each ward
in Period 1 and 2. Each bar height represents the total BOR for each ward in the
corresponding period. The y-axis starts from 45%.

patients only stay in the wrong wards for a day or two before transfer to a right

ward. Thus, the lower overflow BOR share value (compared to overflow proportion)

reflects NUH’s efforts on right-siting. Second, the overflow patients have a shorter

average LOS compared to the primary patients, even when they do not transfer to

a right ward, e.g., ward 58 is dedicated to serve Oncology patients, and most of its

overflow patients are from General Medicine with a shorter average LOS. In fact, this

also explains why ward 43 shows a higher overflow BOR share value than overflow

proportion in Period 1, since most of its overflow patients are from Orthopedic with

a longer average LOS than its primary Surgery patients.

A.4 Additional statistics for LOS and service time

A.4.1 LOS distributions

Table 27 lists the empirical distributions of LOS in Periods 1 and 2, with the cut-off

value at 30 days. Table 28 lists the tail frequencies of LOS after 30 days for the two

periods; the bin size is 5 days and the cut-off value is 90 days.

Table 29 lists the total sample sizes and the LOS distributions, truncated to the

first 21 values, for ED-AM and ED-PM patients in the two periods.

223



Table 26: Overflow proportion and BOR share for each ward.

Ward OvFlow proportion (%) OvFlow BOR share (%)
per 1 per 2 per 1 per 2

41 11.2 12.5 11.4 8.3
42 30.5 11.8 23.7 8.9
43 19.7 17.3 25.1 15.5
44 12.1 24.0 14.9 23.2
51 27.1 31.0 14.3 19.4
52 33.0 41.9 21.3 28.5
53 20.4 12.1 15.2 16.6
54 40.1 37.0 25.8 21.6
55 37.7 35.3 29.0 25.1
56 15.7 5.7 12.6 3.2
57 19.2 14.0 13.9 11.6
57 21.6 14.9 11.8 8.1
58 25.3 13.5 13.5 6.6
63 6.5 5.6 5.2 4.5
64 50.7 52.9 47.0 49.3
66 30.0 28.2 27.9 29.3
76 44.8 47.5 48.4 50.2
78 46.7 41.2 43.0 37.1
86 10.0 8.7 4.0 3.2

Total 27.0 25.0 21.4 19.2

Table 27: LOS distribution in Periods 1 and 2. The cut-off value is chosen at 30 days.

LOS Period 1 Period 2 LOS Period 1 Period 2

0 2.85% 3.30% 16 0.52% 0.43%

1 19.99% 20.40% 17 0.44% 0.32%

2 21.62% 22.05% 18 0.32% 0.30%

3 14.85% 14.95% 19 0.32% 0.25%

4 9.99% 10.20% 20 0.29% 0.26%

5 6.86% 6.88% 21 0.26% 0.21%

6 5.05% 4.98% 22 0.23% 0.20%

7 3.69% 3.43% 23 0.15% 0.17%

8 2.75% 2.69% 24 0.18% 0.21%

9 2.08% 1.96% 25 0.12% 0.11%

10 1.70% 1.51% 26 0.14% 0.13%

11 1.29% 1.05% 27 0.07% 0.08%

12 1.10% 0.93% 28 0.10% 0.08%

13 0.85% 0.82% 29 0.07% 0.08%

14 0.70% 0.67% 30 0.09% 0.05%

15 0.55% 0.56% > 30 0.78% 0.73%
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Table 28: LOS tail frequencies (start from 31 days, cut-off at 90 days).

bin Period 1 Period 2 bin Period 1 Period 2
(30,35] 0.25% 0.27% (60,65] 0.03% 0.02%
(35,40] 0.16% 0.15% (65,70] 0.02% 0.02%
(40,45] 0.10% 0.09% (70,75] 0.01% 0.01%
(45,50] 0.08% 0.06% (75,80] 0.01% 0.01%
(50,55] 0.04% 0.05% (80,85] 0.01% 0.01%
(55,60] 0.04% 0.02% (85,90] 0.01% 0.01%

> 90 0.02% 0.02%

Table 29: LOS distributions for ED-GW patients admitted in AM and PM.
Sample sizes only include ED-GW patients.

ED-AM ED-PM
Period 1 Period 2 Period 1 Period 2

sample size
10156 7189 22897 16046

LOS distribution (%)
0 11.29 13.12 0.32 0.42
1 25.67 26.44 15.45 17.33
2 18.87 18.97 23.03 23.44
3 12.40 11.95 17.02 17.23
4 8.04 8.07 11.38 11.25
5 5.18 4.49 7.77 7.59
6 3.92 3.78 5.28 4.97
7 2.88 2.66 3.75 3.66
8 1.93 2.18 3.00 2.78
9 1.57 1.36 2.25 2.14
10 1.50 1.13 1.81 1.56
11 1.03 0.95 1.42 1.06
12 0.94 0.64 1.15 0.98
13 0.70 0.61 0.92 0.83
14 0.49 0.49 0.76 0.72
15 0.46 0.40 0.57 0.56
16 0.48 0.29 0.48 0.52
17 0.36 0.26 0.54 0.33
18 0.27 0.22 0.36 0.29
19 0.22 0.22 0.36 0.26
20 0.18 0.21 0.31 0.26
>20 1.63 1.54 2.08 1.82
average 3.70 3.46 4.78 4.48
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A.4.2 Speculation on the one-day difference in average LOS between ED-
AM and ED-PM patients

We use the following example with two hypothetical scenarios to further illustrate our

speculation on the one-day difference in average LOS between ED-AM and ED-PM

patients. In this example, we make three assumptions: an AM patient is admitted

at 2am; a PM patient is admitted at 4pm; and both patients are discharged at

3pm. These assumptions actually represent a typical situation, since most ED-AM

patients are admitted between midnight and 4 am, most ED-PM patients are admitted

between 3pm and 8pm, and the discharge peak is between 2pm and 3pm.

Scenario 1

An AM-patient admitted at 2am on May 1, 2008 has a medical condition that requires

1 day for surgery and 2 days for pre/post-surgery testing and treatment. She can

utilize the day of admission (May 1) to do pre-surgery tests. She receives surgery and

other treatment on May 2 and May 3. She discharges at 3pm on May 4, 2008.

Scenario 2

A PM-patient admitted at 4pm on May 1, 2008 has the same medical condition as

the AM-patient. But her admission time renders the day of admission wasted, and

“pushes” the surgery and all pre/post testing and treatment one day later. Thus, she

discharges at 3pm on May 5, 2008.

It is easy to calculate that the AM patient’s entire service time is 3.54 days (85

hours) and and the LOS is 3 days, whereas the PM patient’s entire service time is

3.96 days (95 hours) and the LOS is 4 days. The difference between the service time

in the two scenarios is 0.42 day (10 hours), and the difference between LOS is 1 day.

All these numbers match the statistics we show for ED-AM and ED-PM patients (see

Section 2.6.2 for statistics on service time), which indicates our speculation could
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be a reasonable explanation for the one-day difference between ED-AM and ED-PM

patients. Future studies are needed to concretely identify factors causing this one-day

difference.

A.5 Pre- and post-allocation delays

A.5.1 Pre-allocation delay

In Figure 28a, the hourly average for the pre-allocation delay is estimated from pa-

tients satisfying two conditions: (i) the allocated bed is available before the bed

request time; and (ii) the allocated bed comes from the primary ward for the patient.

We now show more empirical evidence for using condition (ii).

Figure 75 compares the empirical average durations between bed-request time and

bed-allocation time for right-siting and overflow patients. Condition (i) is imposed

for both groups of patients, and the two curves are plotted as functions of bed-

request time. Clearly we can see that the average for overflow patients (red curve)

is significantly longer than that for right-siting patients (blue curve). Moreover, we

observe that for bed-request time from 1am to 8am, the differences in the average

duration between overflow and right-siting patients are smaller than the differences

in other hours.

We interpret Figure 75 with caution, because it cannot provide a definitive conclu-

sion that overflow patients have a longer pre-allocation delay. In practice, BMU may

wait for some time before deciding to overflow a patient if no primary bed is available

upon the bed-request time. The actual search/negotiation process, which we use pre-

allocation delay to capture, only starts after the overflow decision is made. Therefore,

the actual pre-allocation delay for an overflow patient should equal to the duration

between bed request and allocation time minus this “BMU’s waiting time”. However,

the lack of time stamps prevents us from estimating the BMU’s waiting time and thus

the pre-allocation delay for overflow patients. The proposed model (see Section 4.2
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Figure 75: Average duration between bed-request time and bed-allocation
time for right-siting and overflow patients. In both scenarios, the bed available
time is earlier than the bed-request time.

of [135]) employs an overflow trigger time to mimic the BMU’s waiting time, but it is

only an approximation of the BMU practice and cannot be used in the allocation esti-

mation. Thus, the stochastic model in [135] does not differentiate pre-allocation delay

between right-siting and overflow patients. The model estimates the pre-allocation

delay distributions from right-siting patients, and use them to approximate those of

the overflow patients.

A.5.2 Post-allocation delay

Note that when estimating post-allocation delay, we do not differentiate the post-

allocation delay distributions between the following two scenarios: (i) the allocated

bed is available before the allocation time; and (ii) the allocated bed is available after

the allocation time. Here, bed being “available” indicates that the previous patient

occupying the bed has been discharged. In scenario (ii), the bed needs to be cleaned

after the previous patient’s discharge. This assumption on the post-allocation delay is

supported by our empirical results. We separately estimate the average for the post-

allocation delay under scenarios (i) and (ii). Figure 76 compares the hourly average

between the two scenarios. We can see the blue curve, which represents scenario (i), is

close to the red curve, which represents scenario (ii). The closeness of the two curves

suggests that the bed cleaning time has almost no impact on the post-allocation delay.
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Figure 76: Estimated average post-allocation delay with respect to the delay
initiation time. Scenario (i): the allocated bed is available before the allocation
time; (ii) the allocated bed is available after the allocation time. Certain time interval
of the red curve is omitted because of limited data points. Post-allocation delay equals
the duration between the bed allocation time and the admission time for scenario (i);
and duration between the bed available time and the admission time for scenario (ii).

The observation from Figure 76 can be partially explained as follows. NUH im-

plements an auto countdown system for bed cleaning. After a patient is discharged,

the bed tracking system marks the bed as “in cleaning” and automatically counts

down for 30 minutes. After 30 minutes, no matter whether the bed is indeed cleaned

or not, the system changes the bed status to “vacant”, indicating it is ready to serve

a new patient. The ED nurses can access the bed status information in real time.

They know that the ED discharge and transfer process typically takes longer than

the 30-minute cleaning time. If a patient is waiting her allocated bed to receive her,

the nurses usually initiate the discharge process once the bed status changes to “in

cleaning” (or shortly after the change, indicated by the fact that the red curve is

slightly higher than the blue curve in Figure 76). After the bed status changes to

vacant, ED can then send the patient to the allocated bed. In such a way, the auto

countdown system enables the nurses to do the discharge/transfer in parallel with

the bed cleaning process. This ensures that the bed cleaning time does not become

a major bottleneck like those discussed in Section 2.7.1.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Generating iid service times from bSc and residual

Following Equation (2), one can choose to model the service time S as the sum of two

random variables: an integer variable corresponding to bSc, and a residual variable

corresponding to res(S). Moreover, Figure 24b, which shows similar distributions

of the residuals regardless of the values for bSc, suggests an independency between

the integer and residual variables. For a class of patients (patient class depends on

admission source, specialty, admission period, etc; see the definition in Section 3.1

of [135]), we assume that their integer and residual parts each forms an iid sequence

and the two sequences are independent. Thus, the service times are also iid. This iid

model is different from the non-iid service time model proposed in [135].

To populate this iid service time model, we empirically estimate the distributions

for bSc and res(S) as shown in the previous sections. For simulation, we generate the

inter and residual parts independently from the appropriate empirical distributions,

and use their sum as the service time.

B.2 Additional empirical results for the service time model

The proposed service time model in the main paper is in the form of (see Equation

(3) in Section 4.3 of [135]):

S = LOS + hdis − hadm, (63)

where LOS stands for the length of stay of the patient, and hdis and hadm represent

hour of patient admission and discharge, respectively. The model assumes that hdis

is independent of LOS and of hadm because LOS is believed to capture the amount
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Figure 77: Independence between admission and discharge hours and between LOS
and discharge hours using Period 1 data.

of time that a patient needs to spend in a ward due to medical reasons, whereas

discharge hour hdis clearly depends on the discharge patterns, which are mainly the

results of scheduling and behaviors of medical staff. In this section, we provide some

empirical evidence to support the assumption of the independency between hdis and

LOS and the independency between hdis and hadm. The dependency of LOS on the

admission time has been discussed in Section 2.5.2.

Figure 77a plots the discharge distribution with respect to different admission

hour, while Figure 77b plots the discharge distribution with respect to different LOS

values. We note the closeness of the discharge distribution curves regardless of ad-

mission hour or LOS value. Even though we do not conduct a rigorous statistical

analysis, the two figures support our assumption that the the discharge hour hdis is

independent of LOS and of hadm.

B.3 Estimating the normal allocation probability p(t)

Recall that when a patient makes a bed-request at time t and there is no primary

bed available at the time, we assume with probability p(t) the allocation mode for

the patient is the normal-allocation mode, meaning this patient will wait until a bed
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is available before starting to experience the pre-allocation delay. In this section,

we first demonstrate some empirical evidence to support our way of modeling the

two allocation modes. Then we explain the rationale for using p(t) given in (5) in

Section 3.2.6. Consistent with the notation in Section 3.2.6, we use h(t) = 24(t−btc)

to denote the time-of-day for the bed-request time t. We use hour as the time unit

for h(t), and day for t.

B.3.1 Rationale of the two allocation modes

We first empirically study the duration between bed-request time and bed-allocation

time (i.e., when a bed is allocated to an incoming patient) for three different groups of

patients. Figure 78a plots the empirical estimate of the average of this duration with

respect to the bed-request hour for the three groups. The first group, corresponding

to the blue curve, consists of ED-GW patients whose allocated bed is a primary bed

and the bed is available before the bed-request time. The second group, corresponding

to the red curve, consists of ED-GW patients whose allocated bed is not available at

bed-request time and whose bed-allocation time is later than the bed-available time.

For a patient in this group, the bed-allocation start time (i.e., when BMU agents

start the bed searching and negotiation process) can be either before or at the bed-

available time. In the latter case, the allocation is a normal allocation in our model.

The third group, corresponding to the green curve, consists of ED-GW patients whose

allocated bed is not available at bed-request time and whose allocation-completion

time is earlier than the bed-available time. For a patient in this group, her bed-

allocation start time is definitely before the bed-available time. Thus, this allocation

cannot be a normal allocation. But we are not sure if it is a forward allocation

as in the model because its allocation-start time may not start immediately at the

bed-request time.

Recall that when we estimate the pre-allocation delay in the model, we use the
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duration between bed-request time and bed-allocation time from the first group pa-

tients to reflect the minimum amount of time that BMU needs to search and allocates

a bed. Thus, if the empirical data shows that

(a) the average duration between bed-available and bed-allocation time from the

second group of patients is close to the average pre-allocation delay estimated

from the first group of patients;

(b) the average duration between bed-request and bed-allocation time from the third

group of patients is close to the average pre-allocation delay estimated from the

first group of patients;

then it is a reasonable approximation of reality to (i) model the bed-allocation for

the second group of patients the normal allocation, and (ii) model the bed-allocation

for the third group of patients the forward allocation.

We first consider condition (b). From Figure 78a, we can see that for the majority

of bed-request hours, from 11am to midnight, the blue and green curves are very close,

suggesting that condition (b) approximately holds in this interval. Then we investi-

gate condition (a). For second group of patients represented by the red curve, we plot

a modified curve in Figure 78b. In the modification, we exclude the pure waiting times

due to bed unavailability, and plot the average duration between their bed-available

and bed-allocation times. We can see that the modified red curve is close to the blue

curve between 2pm to 8pm, suggesting that condition (a) also approximately holds in

the interval. Therefore, it is reasonable for us to use the two allocation modes (normal

versus forward allocation) to approximate the reality. Furthermore, the second group

of patients approximately correspond to patients experienced normal allocation, while

the third group of patients approximately correspond to those experienced forward

allocation.
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Figure 78: Estimate average duration between bed-request and bed-
allocation for different groups of patients. In sub-figure(a): average duration
between bed-request time and allocation-completion time for ED-GW patients as a
function of bed-request time; in the red curve, we omit certain time intervals due to
the lack of data points (fewer than 15 points in each hour). In sub-figure(b): the red
curve is a revision from the red one in sub-figure(a); the two other curves are kept
the same. In the revision, the duration is revised to be between bed-available time
and allocation-completion time, and is plotted against the bed-available time, not the
bed-request time.

B.3.2 Estimating p(t) in different time intervals

Now, we explain the rational of using the values in (5) for p(t) in different time

intervals.

First, the choice of p(t) = 1 for h(t) between 8am and 12 noon is consistent

with the current practice at NUH. In order to do a forward allocation, the planned

discharge information should be available. Most wards do the morning rounds at

about 9-11am, and nurses would only know which patients will be discharged after

finishing the rounds. Thus, BMU typically receives the planned discharge information

when the time is close to noon.

Second, for h(t) between 2pm and 8pm, we use p̂(i) to empirically estimate p(t)

for each hour i between 2pm and 8pm. For all ED-GW patients (in the NUH data)
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whose bed-request time falls within hour i, we define p̂(i) as

p̂(i) =
# of patients whose bed-allocation time > bed-available time

# of patients whose bed is not available at bed-request time
. (64)

Here, the denominator consists of the patients whose allocated bed is not available

at the bed-request time, i.e., the sum of the second and third groups of patients

introduced in Section B.3.1. The patients included in the numerator are those from

the second group of patients, which correspond approximately to normal allocations

in this time interval. Therefore, it is reasonable to use p̂(i) to estimate p(t) for h(t)

between 2pm and 8pm. Figure 79 shows that, between 2pm and 8pm, the ratio p̂(i)

in (64) fluctuates near the (40%, 50%) range. Based on these empirical estimates, we

set p(t) = .5 between 2pm and 8pm.

Third, our empirical analysis also shows that, between 8pm and 6am the next day,

there are very few (fewer than 15 each hour) normal allocations, suggesting p(t) is

close to zero. Therefore, we set p(t) = 0 for h(t) between 8pm and 6am the next day.

Fourth, during each of the remaining time intervals of a day, (6, 8] or (12, 2], we

estimate p(t) by interpolating its values in the neighboring intervals to avoid sudden

changes of p(t). The actual values of p(t) in these two intervals are obtained by trial-

and-error so that the simulation estimates can approximately replicate the empirical

waiting time performance.

Note that we did not use p̂(i) to estimate p(t) in all intervals. This is because

within the time interval (6, 11), the three curves in Figure 78b diverge, suggesting

that either condition (a) or (b) is severely violated. Therefore, we do not use p̂(i)

in (64) to estimate p(t) in this interval.

Finally, we realize that, despite our best efforts, our choice of p(t) is still ad

hoc. Therefore, we have conducted a sensitivity analysis of the choice of p(t) in

Section B.6.4.
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Figure 79: Estimated values of p(t) from empirical data and values used in the baseline
simulation.

B.4 Server pool setting

Table 13 lists 15 server pools. Each row specifies one server pool with the basic in-

formation including index, primary specialty, and number of servers. The table is

based on the empirical study at NUH. We slightly adjust the number of servers in

certain server pools because our proposed stochastic model does not capture all the

constraints in bed assignment. For example, Orthopedic patients with open wounds

cannot stay in the same room with patients who have acquired Methicillin-resistant

Staphylococcus Aureus (MRSA), while our model does not differentiate MRSA pa-

tients from non-MRSA patients. Moreover, our model does not explicitly consider

patients’ preference for bed classes (beds in private and shared rooms are in different

classes; see Section 2.3.1 for details of bed classes.) To compensate for the inefficiency

caused by class mismatch in the real hospital setting, we assume pools 12, 13, and

14, which correspond to three wards that have class A or class B1 beds, to be over-

flow pools. These three pools only accept patients whose overflow trigger times are

reached in the model. This adjustment is based on the facts that these wards usu-

ally do not admit patients who prefer class B2 or class C beds (for financial reasons)

except for urgent situations. We also re-allocate some servers from the Orthopedic

and Gastro-Endo pools (pools 4,7,10) into the three overflow pools. Thus, the server
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numbers in these overflow pools are larger than the actual number of class A/B1 beds.

This re-allocation is to capture the high overflow proportions in the Orthopedic and

Gastro-Endo wards.

B.5 Simulation results for additional early discharge sce-
narios

In this section, we study the impact of early discharge on ED-GW patient’s waiting

time performance using a more comprehensive set of discharge distributions. In Sec-

tion B.5.1, we introduce the hypothetical discharge distributions that will be tested.

Then in Section B.5.2, we show simulation results from scenarios that use these dis-

charge distributions. In Section B.5.3, we study a scenario that uses the Period 2

early discharge distribution and includes a capacity increase at the same time. We

compare the simulation output from this scenario with the empirical performance in

Period 2. In Section B.5.4, we demonstrate with an example that the Period 2 early

discharge policy could have more significant benefits in reducing ED-GW patient’s

waiting time in other hospital settings.

B.5.1 Hypothetical discharge distributions

In our simulation experiments, we test a midnight discharge distribution and three

other groups of early discharge distributions. The midnight discharge distribution

simply assumes that all discharges occur at 0am each day, while the three other

groups of discharge distributions are constructed as follows:

• Group (a) keeps the second discharge peak in the Period 2 discharge distribution

unchanged, shifts the first discharge peak earlier by 1, 2, and 3 hours, and retains

26% discharge before noon;

• Group (b) uses a two-peak discharge distribution similar to the one in Period 2,

but assumes 75% discharge before noon; the timing of the first peak is 9-10am,
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10-11am, or 11am to noon;

• Group (c) shifts the entire Period 1 discharge distribution earlier by 1, 2, and

3 hours.

Figure 80 plots these three groups of discharge distributions. Note that the discharge

distribution used in the Period 3 policy belongs to group (a) with the first discharge

peak occurring between 8 and 9am. We differentiate the distributions within each of

the three groups by their peak time, where the peak time for groups (a) and (b) refer

to the time of the first discharge peak.

We use the midnight discharge distribution to test the maximum benefits that an

early discharge policy might bring in reducing ED-GW patient’s waiting time. We

use groups (a) and (b) to test the impact of discharge timing and the proportion of

discharge before noon on waiting time performance. Group (c) is motivated by the

discharge scenarios tested in [120].

In our experiments, both the time-varying and the constant-mean allocation delay

models are tested, combined with different discharge distributions as described above.

B.5.2 Selected simulation results

Simultaneous improvement is needed to flatten the waiting time curves

To achieve an approximately flattened waiting time performance, the hypothetical

Period 3 policy proposed in Section 6.2 of the main paper [135] requires improvement

in both the discharge timing and allocation delays. Here, we demonstrate that this

simultaneous improvement is necessary. To show our results, we consider two scenar-

ios. The first scenario uses the Period 2 discharge distribution and the constant-mean

allocation delay model. The second scenario uses the same discharge distribution in

the Period 3 policy and the time-varying allocation delay model. Each of these two

scenarios differs from the Period 3 policy scenario only in one factor: either the dis-

charge distribution or the allocation delay model.
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Figure 80: Three groups of hypothetical discharge distributions

Figure 81 plots the hourly waiting time statistics under these two scenarios. We see

that in both scenarios, the average waiting time curve is not approximately flattened,

i.e., the average waiting time for patients requesting beds between 7am and 11am

is still about 1-2 hours longer than the daily average. The hourly 6-hour service

level, though, appears to be more time-stable than the average waiting time for each

scenario, especially considering the peak value is 30% in the baseline scenario.

Simulation experiments with other early discharge distributions that we have

tested also confirm the need for simultaneous improvement in allocation delays and

discharge timing to achieve time-stable waiting time performance.

Impact of the discharge timing

Figures 82 to 85 show the hourly waiting time statistics under different early discharge

distributions. In each scenario, the combination of an early discharge distribution and

the constant-mean allocation delay model is used; all other settings remain the same
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Figure 81: Hourly waiting time statistics under two scenarios. Scenario 1: Pe-
riod 2 discharge distribution and constant mean allocation delays; Scenario 2: Period
3 discharge distribution and time-varying mean allocation delays.

as in the baseline scenario. We observe the following from the figures.

First, in the National University Hospital (NUH) setting, the combination of early

discharge and stabilized allocation delays can flatten the hourly waiting time perfor-

mance, but has limited impact on the daily average waiting time and overflow pro-

portions. This is true even if every patient can be discharged as early as midnight as

shown in Figure 85. Indeed, in this case the daily average waiting time can only be

reduced by 24 minutes from the baseline scenario, and the overflow proportion shows

a less than 3% absolute reduction from the baseline scenario.

Second, the proportion of patients discharged before noon affects the waiting

time performance. Generally speaking, the waiting time is shorter if more patients

are discharged before noon. Moreover, we find that the timing of the first peak is

important in flattening the waiting time performance. For example, if the hospital

retains the first discharge peak time to occur between 11am and noon as in the Period

2 policy, even pushing 75% of the patients to be discharged before noon and stabilizing

the allocation delays cannot flatten the waiting time performance.

Third, we observe that the waiting time performance under the 9-10am discharge

peak scenario in group (a) is close to the performance under the 10-11am discharge
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Figure 82: Hourly waiting time statistics under scenarios with hypothetical discharge dis-
tributions of group (a): 26% of patients discharged before noon. A constant-mean allocation
delay model is used.
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Figure 83: Hourly waiting time statistics under scenarios with hypothetical discharge dis-
tributions of group (b): 75% of patients discharged before noon. A constant-mean allocation
delay model is used.

peak scenario in group (b). Recall that the distributions in group (a) are based on

what NUH has achieved in practice since 2010, but shift the first discharge peak to

earlier time of the day. This observation indicates that if pushing 75% of the patients

to be discharged before noon is too difficult, NUH (and other hospitals alike) can

achieve similar waiting time performance by discharging the 26% of patients who are

able to leave in the morning as early as possible.
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Figure 84: Hourly waiting time statistics under scenarios with hypothetical discharge dis-
tributions of group (c): shift the entire Period 1 discharge distribution. A constant-mean
allocation delay model is used.
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Figure 85: Hourly waiting time statistics under the midnight discharge scenario.
Constant-mean allocation delay model is used.
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B.5.3 Comparing with Period 2 empirical statistics

In the introduction section of the main paper, we have discussed the changing oper-

ating environment from Period 1 to Period 2 at NUH. In Period 2, not only was the

early discharge policy implemented, many other factors were also changed from Pe-

riod 1. These factors include the arrival rates, the average length of stay (LOS), and

the bed capacity. As a result, the bed occupancy rate (BOR) showed a 2.7% absolute

reduction from Period 1 to Period 2, and the daily utilization showed a 1.7% absolute

reduction. (Note that BOR and daily utilization are two slightly different concepts

and are calculated in different ways; see Section 3.3 in the Companion paper [136].)

To compare with the empirical performance in Period 2, we simulate a scenario

in which (i) the Period 2 discharge distribution is used, and (ii) the bed capacity is

increased from the baseline scenario, producing a similar reduction in the BOR and

daily utilization as we observed empirically in Period 2. Other settings remain the

same as in the baseline scenario. Note that this new scenario is different from the

Period 2 policy scenario we introduced in Section 6.1 of the main paper, since the

Period 2 policy does not include an increase in bed capacity.

Figure 86 shows the simulation estimates of hourly waiting time statistics from

the new scenario (Period 2 discharge + increasing capacity) and the empirical waiting

time statistics in Period 2. For reference, we also plot the simulation estimates from

the Period 2 policy scenario. From the figure, we can see that the hourly waiting time

curves from the new scenario and the Period 2 policy scenario are close to the Period

2 empirical waiting time curves. In particular, the curves from the new scenario can

better reproduce the empirical curves between 9pm and 6am (next day) than those

from the Period 2 policy scenario.

Moreover, from Figure 1 in the main paper, we can see that the empirical hourly

waiting time statistics, especially the 6-hour service level, show a reduction between

9pm and 6am in Period 2. This reduction does not appear in the simulated waiting
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Figure 86: Simulation output compares with empirical estimates: hourly average
waiting time and 6-hour service level. The empirical estimates are from using Period 2
data.

time statistics when we change from the baseline scenario to the Period 2 policy

scenario (see Figure 16 in the main paper). However, if we compare the new scenario

to the baseline scenario, we observe a similar reduction in the simulated waiting time

statistics between 9pm and 6am. The reason is that the new scenario includes a

capacity increase, which leads to a reduction in the waiting time for patients arriving

in midnight and early morning. This is also why the new scenario can better reproduce

the empirical performance in Period 2, since the actual utilization in Period 2 was

indeed reduced. Readers are also referred to Section 6.5 of the main paper for our

discussion on how capacity increases impact waiting time statistics.

Through the observations in this section, we again see the capability of our pro-

posed model in capturing the time-varying hourly waiting time performance and

predicting the impact of various factors on the waiting time performance.

B.5.4 Period 2 policy could show more significant impact in other settings

In Section 7 of the main paper, we have mentioned two issues that readers should

be aware of when interpreting our findings in Section 6. In particular, we want

to point out here that, although the Period 2 early discharge policy shows limited

impact on the waiting time statistics when compared to our baseline scenario, it
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does not imply this early discharge policy is not beneficial in other hospital settings.

Indeed, even in Period 1, NUH manages discharge planning in a more efficient way

than many hospitals around the world. If NUH were not discharging patients so

efficiently in Period 1 (i.e., if the baseline scenario were different), we would find that

implementing a Period 2 policy could bring more significant improvements to waiting

time performance. We show an example below.

Armony et al [5] report that the discharge distribution in an Israeli hospital has

a peak discharge time between 4pm and 5pm, which is two hours later than the peak

discharge time in Period 1 at NUH. We now evaluate the impact of the Period 2 policy

in comparison with an Israeli discharge scenario, which uses a discharge distribution

similar to the one at this Israeli hospital and keeps all other settings the same as in the

baseline. Figure 87 plots the hourly waiting time curves under the Israeli discharge

scenario and the Period 2 policy scenario. We observe a significant improvement of

waiting time statistics after implementing the Period 2 early discharge policy, even

though the waiting time curves are not flattened. The daily 6-hour service level

reduces from 9.26% in the Israeli discharge scenario to 5.50% in the Period 2 policy

scenario (with the hourly peak value reducing from 44% to 23%). The daily average

waiting time also reduces from 3.08 to 2.73 hours.

The above example indicates that implementing the Period 2 early discharge policy

can be very helpful to improve waiting time performance in certain settings, especially

if the hospital’s current discharge timing is late. Thus, other hospitals can learn from

NUH’s experience in implementing the Period 2 discharge policy. The Companion

paper [136] documents the details on the implementation of the Period 2 discharge

policy.
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Figure 87: Hourly waiting time statistics under the scenarios with the Period 2 dis-
charge distribution and a hypothetical discharge distribution with the peak time at
4-5pm.

B.6 Sensitivity analysis of different modeling settings

In the main chapter, we evaluate the impact of five operations policies on waiting

time performance and overflow proportions. These five policies are a Period 2 policy;

a Period 3 policy; increasing bed capacity by 10%; reducing LOS by controlling the

maximum stay being 14 days; and reducing the mean pre- and post-allocation delays

by 30 minutes each.

To examine the robustness of the insights we have gained in Section 6, we test

these five policies under different model settings for sensitivity analysis. These settings

include using alternative arrival models (Section B.6.1), changing the priority among

ICU-GW, SDA and ED-GW patients (Section B.6.2), using different distributions

for the allocation delays (Section B.6.3), and choosing different values for the normal

allocation probability p(t) (Section B.6.4).

B.6.1 Sensitivity analysis of the arrival models

Recall that in the baseline scenario we use a time-nonhomogeneous Poisson process

to model the arrivals of ED-GW patients, and non-Poisson processes to model the

arrivals of other patients. (See description of the baseline setting in Sections 4.1 of
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the main paper [135].) Here, we perform sensitivity analysis on the choice of the

arrival process models to study its impact on the hourly waiting time performance of

ED-GW patients.

We test two alternative settings for the arrival processes. In the first setting, we as-

sume the arrival processes from the four admission sources are all time-nonhomogeneous

Poisson with periods of one day. The arrival rates are plotted in Figure 7 of the main

paper. In the second setting, we test a modified arrival process model for ICU-GW

and SDA patients based on the one proposed in Section 4.1.2 of the main paper (the

arrival processes for ED-GW and EL patients remain the same as in the baseline sce-

nario). For the modified arrival process, after we generate the Ajk arrivals to arrive on

day k from source j, we randomly assign the first arrival to a specific time of the day

according to the empirical distribution of the first bed-request time. Then we assign

the arrival times of the remaining Ajk − 1 arrivals sequentially, 10 minutes later than

the previous one. This modified arrival model is to capture a batching phenomenon

we have observed from the bed-request times of ICU-GW and SDA patients, i.e., the

inter-bed-request time is only about 10-20 minutes for most bed-requests on the same

day. See additional empirical analysis in Section 6 of the Companion paper [136].

We call the scenario using the first alternative arrival setting (all non-homogeneous

Poisson) the revised-baseline-arrival1 scenario. Similarly, we call the scenario using

the second alternative arrival setting (batch model for ICU-GW and SDA patients)

the revised-baseline-arrival2 scenario. Figure 88 compares the waiting time perfor-

mance under the baseline scenario, the revised-baseline-arrival1 scenario, and the

revised-baseline-arrival2 scenario. From the figure we can see that the waiting time

performance is not sensitive to the choice of arrival models, and in particular the

performance under the revised-baseline-arrival2 scenario is almost identical to that in

the baseline scenario.

Next, we evaluate the five policies in comparison to the corresponding revised
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Figure 88: Hourly waiting time statistics under the baseline scenario and
scenarios with different choices of arrival models. All simulation settings are
kept the same in each scenario except the arrival models. In the revised-baseline-
arrival1 scenario, all four arrival processes are non-homogeneous Poisson. In the
revised-baseline-arrival2 scenario, a new batch arrival model is used for ICU-GW and
SDA patients.

baseline scenario. For example, to evaluate the impact of the Period 2 policy, we

compare the scenario using the Period 2 discharge distribution and the first alterna-

tive arrival setting with the revised-Baseline-arrival1 scenario. All other settings not

specified here remain the same as in the baseline. Figures 89 and 90 plot the hourly

waiting time performance for these scenarios. Note that the performance curves un-

der the reduced LOS scenario are almost identical to those under the increased bed

capacity scenario, and we do not plot them in the figures. In each figure, the choice

of the arrival model is fixed.

From these figures, we can reach the following conclusions. First, the early dis-

charge policy, implemented at the level that NUH achieved in Period 2, has limited

impact on reducing or flattening the waiting time statistics for ED-GW patients. Sec-

ond, the hypothetical Period 3 policy can stabilize the hourly waiting time curves but

has limited impact on the daily waiting time statistics. Third, increasing capacity,

reducing LOS, or reducing mean allocation delays can reduce the daily waiting time

statistics and overflow proportions, but these policies alone do not necessarily stabi-

lize the hourly waiting time performance. In other words, the insights we gained in
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Figure 89: Hourly waiting time statistics under the revised-baseline-arrival1 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the arrival models
are the same, i.e., we assume a non-homogeneous Poisson process for each admission
source. For Policy (ii) to (iv), the constant-mean allocation delay model is used.

Section 6 of [135] are not sensitive to the choice of arrival models we have tested.

B.6.2 Sensitivity analysis of the patient priority

In the baseline simulation setting, EL patients have the highest priority, ED-GW

patients the second, and ICU-GW and SDA patients have the lowest priority. We

experiment with two alternative settings for patient priority. The first setting assigns

ICU-GW and SDA patients a higher priority than ED-GW patients while keeping

the highest priority for EL patients. The second setting assigns the highest priority

to ICU-GW and SDA patients, followed by EL patients, and ED-GW patients have

the lowest priority. We call the scenario using the first alternative priority setting the

revised-baseline-priority1 scenario. Similarly, we call the scenario using the second

alternative priority setting the revised-baseline-priority2 scenario.

Figure 91 compares the waiting time performance for ED-GW patients under the

baseline scenario, the revised-baseline-priority1 scenario, and the revised-baseline-

priority2 scenario. From the figure, we can see that the hourly waiting time curves

under the two scenarios with alternative priority settings are almost identical, and
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Figure 90: Hourly waiting time statistics under the revised-baseline-arrival2 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the arrival models
are the same, i.e., we assume a batch arrival model for ICU-GW and SDA patients.
For Policy (ii) to (iv), the constant-mean allocation delay model is used.

they are higher than the corresponding curves from the baseline scenario. This is ex-

pected since ED-GW patients have the lowest priority in the two alternative settings,

and they have to wait longer than in the baseline scenario.

We evaluate the five policies in comparison to the corresponding revised baseline

scenario. Figures 92 and 93 plot the hourly waiting time performance for these

scenarios. Similar to the previous section, we do not plot the performance curves

under the reduced LOS scenario since they are almost identical to those under the

increased bed capacity scenario. In each figure, the priority setting is fixed.

From these figures, we can see that the insights gained in Section 6 of the main

paper [135] are not sensitive to the patient priority settings that we have tested.

Also note that under Period 3 policy, the hourly waiting time curves in Figures 92

and 93 are not as flattened as in the baseline, though the flattening effect is still

significant. This is because ICU-GW and SDA patients, who request beds mostly in

the morning, now have higher priority than ED-GW patients in the revised-baseline-

priority1 and revised-baseline-priority2 scenarios. As a result, the morning congestion

for ED-GW patients is more severe than in the baseline. To eliminate the excessively
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Figure 91: Hourly waiting time statistics under the baseline scenario and scenarios
with different patient priority settings. All simulation settings are kept the same in
each scenario except patient’s priority. In the revised-baseline-priority1 scenario, EL
¿ ICU-GW = SDA ¿ ED-GW. In the revised-baseline-priority2 scenario, ICU-GW =
SDA ¿ EL ¿ ED-GW.

long waiting times for morning ED-GW bed-requests, an early discharge policy even

more aggressive than Period 3 policy needs to be implemented.

B.6.3 Sensitivity analysis of the allocation delay distributions

In the baseline setting, the pre- and post-allocation delays follow log-normal distribu-

tions with time-dependent means and coefficients of variation (CVs). For sensitivity

analysis, we test two other distributions for the pre- and post-allocation delays: ex-

ponential and normal distributions. We assume the means (and the CVs for normal

distributions) are still time-dependent, following the dashed lines with plus sign in

Figure 10 of the main paper [135]. We call the scenario using the exponential allo-

cation delay assumption the revised-baseline-exponential scenario. Similarly, we call

the scenario using the normal allocation delay assumption the revised-baseline-normal

scenario.

Figure 94 compares the waiting time performance for ED-GW patients under the

baseline scenario, the revised-baseline-exponential scenario, and the revised-baseline-

normal scenario. From the figures we can see that the performance measures are

not very sensitive to the allocation delay distributions. In fact, the hourly average
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Figure 92: Hourly waiting time statistics under the revised-baseline-priority1 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the patient priority
settings are the same (EL ¿ ICU-GW = SDA ¿ ED-GW). For Policy (ii) to (iv), the
constant-mean allocation delay model is used.
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Figure 93: Hourly waiting time statistics under the revised-baseline-priority2 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the patient priority
settings are the same (ICU-GW = SDA ¿ EL ¿ ED-GW). For Policy (ii) to (iv), the
constant-mean allocation delay model is used.
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Figure 94: Hourly waiting time statistics under the baseline scenario and scenarios
with different allocation delay distributions. All simulation settings are kept the same
in each scenario except the distributions of allocation delays. In the revised-baseline-
exponential scenario, exponential distributions are used for the two allocation delays.
In the revised-baseline-normal scenario, normal distributions are used.

waiting time curves under the three scenarios are almost identical. This is because

the average waiting time is affected by the mean allocation delays, while these mean

values remain the same in all three scenarios. The differences in the allocation delay

distributions are reflected through the 6-hour service level, which captures the tail

distribution of the waiting times. Recall that the CV of an exponential distribution

is 1, which is higher than the empirical CVs observed in Figure 10 of the main paper.

Figure 94b is consistent with the common belief that higher variability contributes to

longer waiting times.

We evaluate the five policies in comparison to the corresponding revised baseline

scenario. Figures 95 and 96 plot the hourly waiting time performance for these

scenarios. We do not plot the performance curves under the reduced LOS scenario

since they are almost identical to those under the increased bed capacity scenario. In

each figure, the allocation delay distributions are fixed.

Not surprisingly, the insights gained in Section 6 of the main paper are robust with

respect to the tested allocation delay distributions, since the waiting time performance

is not sensitive to the tested distributions.
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Figure 95: Hourly waiting time statistics under the revised-baseline-exponential sce-
nario and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the allocation delays
follow exponential distributions. For Policy (ii) to (iv), the constant-mean allocation
delay model is used.
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Figure 96: Hourly waiting time statistics under the revised-baseline-normal scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the allocation delays
follow normal distributions. For Policy (ii) to (iv), the constant-mean allocation delay
model is used.
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B.6.4 Sensitivity analysis of the normal allocation probability p(t)

In the baseline scenario, the normal allocation probability, p(t) follows a step function

with respect to t (see (2) in Section 4.6.2 of [135]). In this section, we perform

sensitivity analysis on the value of p(t) to study its impact on the hourly waiting

time performance. We adopt three constant functions and assume p(t) = 0, 0.5, or 1

for all t. Here, p(t) = 0 and p(t) = 1 serve as the lower bound and upper bound for

all possible choices of p(t), respectively, while p(t) = 0.5 is in between.

Figure 97 plots the hourly waiting time statistics under the baseline scenario and

three new scenarios, which have the same settings as the baseline except for the

values of p(t). We call the three new scenarios the revised-baseline-p(t)-j scenario for

p(t) = j (j = 0, 0.5, 1).

From Figure 97 we can see that the waiting time is longer when the value of p(t)

is larger, i.e., when normal-allocation mode is more frequently used than forward-

allocation mode. This is because in the normal-allocation mode, the pre-allocation

delay starts only after a bed becomes available, which is later than or the same as

the bed-request time; in contrast, the pre-allocation delay always starts at the bed-

request time in the forward-allocation mode. As a result, the entire waiting time

for a patient in the normal-allocation mode is longer than or equal to that in the

forward-allocation mode on a given sample path. Moreover, note that the value of

p(t) seems to have a local effect on the hourly waiting time performance. The waiting

time curve for the baseline scenario coincides with one of the other three waiting time

curves during certain intervals when the values of p(t) are the same. For example,

the baseline curve overlaps with the curve from the p(t) = 0 scenario between 0 and

6am since we set p(t) = 0 during that interval in the baseline scenario.

We evaluate the five policies in comparison to the corresponding revised baseline

scenario. Figures 98 through 100 plot the hourly waiting time performance for these

scenarios. We do not plot the performance curves under the reduced LOS scenario
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Figure 97: Hourly waiting time statistics under the baseline scenario and scenarios
with different choices of p(t). All simulation settings are kept the same in each scenario
except the values of p(t).

since they are almost identical to those under the increased bed capacity scenario. In

each figure, the choice of p(t) is fixed. Again, we can see that the insights gained in

Section 6 of the main paper are not sensitive to the tested values of p(t).

B.7 Sensitivity analysis of system load

In Section 6.3 of the main paper, we find that the modeled hospital queueing system

is not heavily loaded in the NUH setting. The 2-3 hours average waiting time at

NUH mainly comes from secondary bottlenecks such as nurse shortages rather than

bed unavailability. In this section, to examine the robustness of our gained insights

in a more heavily utilized setting, we increase the system load. In Section B.7.1, we

increase the daily arrival rate of ED-GW patients and evaluate the five operational

policies that are tested in Section B.6. Under the increased arrival rate setting, we find

that the Period 3 policy can have a great impact on the daily waiting time statistics

because of its side effect in reducing LOS, while this side effect is caused by the differ-

ent LOS distributions between patients admitted before noon (AM) and after noon

(PM). Thus, to separate the impact of discharge timing from the impact of reducing

LOS, we eliminate the difference between the LOS distributions and re-evaluate the

five policies under a similar heavily-loaded environment in Section B.7.2. Finally, in

256



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Bed request time

A
ve

ra
ge

 w
ai

tin
g 

(h
ou

r)

 

 
revised−baseline−p(t)−0
Period 2 policy
Period 3 policy
10% bed increase
reduce alloc delay

(a) Average waiting time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

Bed request time

6−
ho

ur
 s

er
vi

ce
 le

ve
l (

%
)

 

 
revised−baseline−p(t)−0
Period 2 policy
Period 3 policy
10% bed increase
reduce alloc delay

(b) 6-hour service level

Figure 98: Hourly waiting time statistics under the revised-baseline-p(t)-0 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, p(t) = 0 for all t.
For Policy (ii) to (iv), the constant-mean allocation delay model is used.
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Figure 99: Hourly waiting time statistics under the revised-baseline-p(t)-0.5 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, p(t) = 0.5 for all
t. For Policy (ii) to (iv), the constant-mean allocation delay model is used.
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Figure 100: Hourly waiting time statistics under the revised-baseline-p(t)-1 scenario
and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, p(t) = 1 for all t.
For Policy (ii) to (iv), the constant-mean allocation delay model is used.

Section B.7.3 we summarize several conditions under which the early discharge policy

can significantly impact the daily waiting time performance.

B.7.1 Impact of the five policies under the increased arrival rate setting

We increase the daily arrival rate of ED-GW patients by 7% from the baseline setting,

similar to the increase from Period 1 to Period 2 we empirically observed. When all

other settings remain the same as in the baseline, simulation shows the utilization

under the increased arrival scenario becomes 93%, and the daily average waiting time

and 6-hour service level become 4.37 hours and 18.60%, respectively. In other words,

we create a more capacity-constrained scenario than the baseline scenario, and we call

this new scenario the revised-baseline-increase-arrival scenario. Figure 101 compares

the hourly waiting time curves between the new scenario and the baseline scenario.

The curves from the new scenario have similar shapes as the curves from the baseline

scenario, but are higher than the latter because of the increased system load.

We evaluate the impact of the five policies under the increased arrival rate setting

and compare them with the revised-baseline-increase-arrival scenario. Figures 102
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Figure 101: Hourly waiting time statistics under the baseline scenario and the scenario
with increased arrival rate (revised-baseline-increase-arrival scenario).

plots the hourly waiting time performance for these scenarios. Note that the perfor-

mance curves under the reduced LOS scenario are almost identical to those under the

increased bed capacity scenario, and we do not plot them in the figures.

From these figures, we can see that most conclusions we get in Section 6 of the

main paper [135] still hold. First, the Period 2 early discharge policy has limited

impact on reducing or flattening the waiting time statistics for ED-GW patients.

Second, increasing capacity, reducing LOS, or reducing mean allocation delays can

reduce the daily waiting time statistics and overflow proportions, but these policies

alone cannot stabilize the hourly waiting time performance. In particular, comparing

to the revised-baseline-increase-arrival scenario, increasing 10% bed capacity here

reduces the daily average waiting time from 4.37 hours to 2.49 hours and the 6-hour

service level from 18.60% to 2.82%, a much more significant impact on reducing the

daily waiting time statistics than what we observed under the original NUH setting.

This is expected because increasing capacity can greatly reduce system congestion

and patient waiting time in a capacity-constrained setting, but has smaller impact if

the system is not heavily loaded.

An exception is that the hypothetical Period 3 policy now not only stabilizes

the hourly waiting time, but also has significant impact on the daily waiting time
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Figure 102: Hourly waiting time statistics under the revised-baseline-increase-arrival
scenario and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed
capacity increase, and (iv) reduce mean allocation delays. In all scenarios, the daily
arrival rate for ED-GW patients is increased by 7% from the baseline setting. For
Policy (ii) to (iv), the constant-mean allocation delay model is used.

statistics. The daily average waiting time is reduced from 4.37 hours in the revised-

baseline-increase-arrival scenario to 3.16 hours in the Period 3 policy scenario, and

the 6-hour service level is reduced from 18.60% to 9.41%. The large reduction in the

daily waiting times is mainly because of our assumption that the AM-admitted and

PM-admitted ED-GW patients have different LOS distributions. This assumption

is supported by our empirical study at NUH; see Section 4.3 of the main paper

which shows that the mean LOS of AM-admitted ED-GW patients is about 1 day

less than the mean LOS of PM-admitted patients across all specialties. After the

Period 3 early discharge, more morning arrivals can be admitted before noon instead

of waiting till the afternoon, and they become AM-admitted patients. As a result, the

LOS is reduced and eventually the system utilization is reduced. We further verify

this argument in the next section.

B.7.2 Impact of the five policies without the AM/PM difference in LOS

In this section, we assume that the AM-admitted ED-GW patients have the same

LOS distributions as PM-admitted ED-GW patients for each specialty. We do so

to eliminate the side effect of reducing LOS and to gain insights into the impact of
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discharge timing when we evaluate early discharge policies.

Because the AM-admitted patients now have longer average LOS, we adjust the

number of servers to create a capacity-constrained setting that has a similar system

load as the revised-baseline-increase-arrival scenario introduced in the previous sec-

tion. All other settings remain the same as in the baseline scenario. We call this

scenario, without the difference in LOS distributions between AM- and PM-admitted

patients (or AM/PM difference for short), the revised-baseline-noAMPM scenario.

Simulation shows the system utilization under this new scenario is 94%. The daily

average waiting time and 6-hour service level become 4.38 hours and 19.34%, respec-

tively, which are similar to the values in the revised-baseline-increase-arrival scenario.

The hourly waiting time curves under this new scenario are also close to those under

the revised-baseline-increase-arrival scenario; see the solid lines in Figure 103.

We re-evaluate the impact of the five policies without the AM/PM difference in

LOS. Figure 103 plots the hourly waiting time curves under these policies. Note that

the performance curves under the reduced LOS scenario (i.e., control maximum LOS

to be 14 days) are almost identical to those under the increased bed capacity scenario,

so we do not plot them in the figure.

Comparing Figure 103 with Figure 102, we can see that Period 2 policy, increasing

capacity, and reducing mean allocation delays show similar impact on the waiting

time statistics no matter whether we consider the AM/PM difference in LOS or not.

However, Period 3 policy shows a very different impact after we eliminate the AM/PM

difference: it approximately flattens the hourly waiting time curves, but has limited

impact on reducing the daily waiting time statistics. The daily average waiting time

is reduced from 4.38 hours in the revised-baseline-noAMPM scenario to 3.92 hours in

the Period 3 policy scenario, and the 6-hour service level is only reduced from 19.34%

to 16.18%. This observation is consistent with what we get in Section 6.2 of the main

paper.
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Figure 103: Hourly waiting time statistics under the revised-baseline-noAMPM sce-
nario and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii) 10% bed capacity
increase, and (iv) reduce mean allocation delays. In all scenarios, the AM-admitted
patients have the same LOS distributions as PM-admitted patients. For Policy (ii)
to (iv), the constant-mean allocation delay model is used.

In addition, we study the impact of the AM/PM difference in LOS when the

system is not heavily loaded. We develop a revised-baseline-noAMPM-normal-load

scenario by (i) assuming the AM-admitted patients have the same LOS distributions

as PM-admitted patients and (ii) adjusting the number of servers to reach a simi-

lar system load as in the baseline scenario. Under this scenario, the daily average

waiting time and 6-hour service level from simulation estimates are 2.80 hours and

6.27%, respectively, close to the values in the baseline scenario. We re-evaluate the

impact of the five policies under this lower system load. Figures 104 plots the hourly

waiting time performance for these scenarios. Comparing the performance curves in

Figures 104 to those in Figures 16 to 18 of the main paper, we can see that the five

policies show similar impact with or without considering the AM/PM difference. In

particular, the side effect of reducing LOS brought by the early discharge policy dost

not show much impact on the waiting time when the system is not heavily loaded.
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Figure 104: Hourly waiting time statistics under the revised-baseline-noAMPM-
normal-load scenario and scenarios with (i) Period 2 policy, (ii) Period 3 policy, (iii)
10% bed capacity increase, and (iv) reduce mean allocation delays. In all scenarios,
the AM-admitted patients have the same LOS distributions as PM-admitted patients.
For Policy (ii) to (iv), the constant-mean allocation delay model is used.

B.7.3 Conditions for an early discharge policy to significantly impact the
daily waiting time performance

Based on our simulation findings in Sections B.7.1 and B.7.2, we summarize here a

few conditions under which an early discharge policy can show a significant impact

on the daily waiting time statistics.

First, when the LOS of AM-admitted patients is shorter than the LOS of PM-

admitted patients, implementing an early discharge policy can reduce LOS in addition

to shifting the discharge timing. Therefore, early discharge can significantly affect the

system load and reduce the daily waiting time statistics. However, when the AM- and

PM-admitted patients have the same LOS distributions, the early discharge policy no

longer affects the LOS but only influences the discharge timing. In this case, shifting

the discharge timing can flatten the waiting time curve but has limited impact on

reducing the daily waiting time statistics. In Section 6.5 of the main paper, we have

provided some intuitive explanation for why reducing LOS and shifting discharge

timing have different impacts on the daily and hourly waiting time performance.

Second, given that the early discharge policy shows a side effect of reducing LOS,
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the impact of reducing LOS on the waiting time statistics is significant only when the

system is heavily loaded. In the NUH setting, the Period 3 policy shows a limited

impact on the daily performance even if we use different LOS distributions for AM-

and PM-admitted patients (see Section 6.2 of the main paper). The main reason is

that the system load is not high enough in the NUH setting.

Third, in order for an early discharge policy to show a significant side effect of

reducing LOS, the discharge timing needs to be early enough. Unlike the Period 3 pol-

icy, the Period 2 early discharge policy cannot reduce the daily waiting time statistics

much, no matter whether we differentiate between AM- and PM-admitted patients

or not. This is because, under the Period 2 policy, the first discharge peak is between

11am and noon. Even after implementing the Period 2 early discharge, most morning

arrivals still have to be admitted after noon due to the allocation delays (which on

average takes about 2 hours) and the LOS is not effectively reduced.

Finally, we want to point out the need of future research to identify the factors

causing the AM/PM difference in LOS. This line of research can help us better under-

stand whether the 1-day difference in the mean LOS between AM- and PM-admitted

patients will still exist when more patients are admitted in the morning than what we

observed so far. Eventually, this research can help us generate more comprehensive

insights into the benefits of early discharge policies and other operational policies.

B.8 The warm-up period and the length and number of
batches

This section contains supplementary details for the simulation experiment settings.

We show that our choices of the warm-up period and the length and number of batches

are appropriate for our simulation study.

In each simulation experiment, we simulate for a total of 106 days, and divide

the simulation output into 10 batches. The performance measures are calculated by

averaging the last 9 batches, with the first batch discarded to eliminate transient
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Figure 105: Moving average plots from 5 replications. Each replication contains 105

days.

effects. This simulation setting is justified as below.

First, we follow the standard procedures in the literature to observe the moving

average plot [91] and determine the warm-up period. We run n = 5 replications of the

baseline scenario (5-10 replications are recommended choices in the literature), with

each replication running for m = 105 days. We define Yji be the ith observation from

the jth replication, where the ith observation can be a chosen performance measure

on day i, e.g., the daily average buffer size or average number of busy servers on day

i. Let Ȳi = 1
n

∑n
j=1 Yji. For a given time-window w, we define the moving average as

Ȳi(w) =


1

2w+1

∑w
s=−w Ȳi+s, if i = w + 1, . . . ,m− w;

1
2i−1

∑i−1
s=−(i−1) Ȳi+s, if i = 1, . . . , w.

The time-window w is chosen through experiments, so that we can both observe the

initial transient effects and have a reasonably smooth plot after the system converges

to steady state. Figure 105 shows the moving average plots for the daily average

buffer size and average number of busy servers. We chose w = 500 for the buffer

size plot and w = 100 for the busy server plot. It is clear that before 104 days, the

sequence of {Ȳi(w)} appears to have converged, indicating our choice of 105 days as

the warm-up period is more than enough.
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Figure 106: Hourly waiting time statistics from each batch.

Second, Figure 106 compares the hourly waiting time statistics from each of the

last nine batches under the baseline scenario (the warm-up batch is excluded), and

each batch contains a total of 105 days. It is clear from the figure that the waiting time

curves from the 9 batches are very close to each other, suggesting (i) the system is

running in the steady state; and (ii) the choice of the number of batches and length of

each batch is appropriate to produce a tight confidence interval for the reported batch

means. Table 30 below reports the the confidence intervals for the batch means of the

hourly average waiting time and the hourly 6-hour service level. For comparison, the

confidence intervals of the corresponding empirical hourly waiting time statistics are

also reported in the table. Table 3 in the main paper reports the confidence intervals

for the batch means of the daily and specialty-level average waiting times and 6-hour

service levels.

B.9 Additional discussion on the overflow proportion

Besides ED-GW patient’s waiting time, the overflow proportion is one of the per-

formance measures of interest to us and is monitored closely at NUH. This section

provides more discussion on the overflow proportions. In Section B.9.1, we explain

the challenges in reproducing the empirical overflow proportions with our model. In
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Table 30: Simulation and empirical estimates of the waiting time statistics
for ED-GW patients requesting beds in each hour of the day. The simulation
estimates are from simulating the baseline scenario, and the empirical estimates are
from Period 1 data. The numbers in the parentheses are for the 95% confidence
interval of the corresponding value. The confidence intervals for the simulation output
are calculated following the batch mean method [91]; the confidence intervals for the
empirical statistics are calculated with the standard deviations and sample sizes from
the actual data.

average waiting time (hour) 6-hour service level (%)
hour simulation empirical simulation empirical
1 2.32 (2.31, 2.33) 2.41 (2.30, 2.51) 5.33 (5.25, 5.41) 3.62 (2.69, 4.56)
2 2.36 (2.36, 2.37) 2.32 (2.20, 2.43) 6.28 (6.20, 6.35) 3.54 (2.51, 4.56)
3 2.38 (2.36, 2.39) 2.31 (2.18, 2.43) 7.08 (6.97, 7.19) 3.70 (2.52, 4.89)
4 2.36 (2.35, 2.37) 2.17 (2.05, 2.28) 7.68 (7.60, 7.76) 3.71 (2.45, 4.97)
5 2.32 (2.32, 2.33) 2.19 (2.04, 2.34) 7.76 (7.68, 7.83) 4.81 (3.16, 6.47)
6 2.43 (2.42, 2.43) 2.51 (2.32, 2.70) 8.64 (8.53, 8.75) 8.70 (6.46, 10.94)
7 3.01 (3.00, 3.01) 3.24 (3.01, 3.47) 12.64 (12.54, 12.75) 18.97 (15.83, 22.10)
8 4.42 (4.41, 4.43) 4.33 (4.08, 4.57) 23.60 (23.46, 23.74) 33.21 (29.22, 37.20)
9 4.89 (4.88, 4.90) 4.64 (4.41, 4.86) 29.67 (29.52, 29.81) 36.52 (32.59, 40.46)
10 4.49 (4.49, 4.50) 4.74 (4.58, 4.89) 20.32 (20.24, 20.40) 30.84 (27.75, 33.94)
11 4.03 (4.03, 4.04) 4.22 (4.11, 4.33) 13.15 (13.10, 13.21) 16.61 (14.55, 18.68)
12 3.68 (3.68, 3.68) 3.81 (3.72, 3.90) 9.25 (9.21, 9.28) 10.99 (9.48, 12.50)
13 3.22 (3.21, 3.22) 3.37 (3.30, 3.45) 6.33 (6.29, 6.38) 7.50 (6.33, 8.67)
14 2.88 (2.88, 2.89) 3.15 (3.07, 3.22) 5.09 (5.06, 5.12) 7.24 (6.16, 8.33)
15 2.80 (2.79, 2.81) 2.88 (2.81, 2.94) 4.95 (4.91, 4.99) 5.46 (4.51, 6.40)
16 2.74 (2.74, 2.75) 2.73 (2.67, 2.80) 4.11 (4.07, 4.15) 3.87 (3.09, 4.65)
17 2.80 (2.79, 2.80) 2.65 (2.59, 2.71) 3.65 (3.61, 3.68) 2.56 (1.90, 3.22)
18 2.73 (2.72, 2.74) 2.74 (2.68, 2.80) 3.22 (3.18, 3.27) 2.56 (1.90, 3.22)
19 2.56 (2.55, 2.57) 2.48 (2.42, 2.55) 2.98 (2.93, 3.02) 1.84 (1.25, 2.42)
20 2.46 (2.45, 2.47) 2.40 (2.33, 2.48) 2.88 (2.82, 2.93) 2.25 (1.55, 2.94)
21 2.45 (2.44, 2.46) 2.32 (2.25, 2.40) 3.18 (3.11, 3.25) 1.78 (1.17, 2.39)
22 2.32 (2.31, 2.33) 2.30 (2.22, 2.38) 3.18 (3.11, 3.25) 2.59 (1.89, 3.29)
23 2.38 (2.37, 2.39) 2.33 (2.23, 2.43) 3.92 (3.83, 4.00) 3.50 (2.66, 4.34)
24 2.40 (2.39, 2.41) 2.27 (2.18, 2.36) 4.73 (4.64, 4.82) 3.13 (2.33, 3.93)
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Section B.9.2, we provide some intuitive explanation on why early discharge poli-

cies show limited impact on overflow proportions. We also discuss future research

directions on overflow policies.

B.9.1 Challenges in calibrating the overflow proportion

Figure 12b in the main paper [135] compares the simulation estimates of the specialty-

level overflow proportions from the baseline scenario with the empirical estimates in

Period 1. From the figure, we observe that, for most specialties, their overflow pro-

portions from simulation are close to the empirical estimates. The exceptions are

Surgery, General Medicine, and Neurology, whose overflow proportions from simula-

tion are much lower than the empirical values. In fact, this is the main reason why

the overflow proportion across all specialties from the baseline simulation (16.35%) is

lower than the empirical estimate (26.95%) in Period 1. We point out that perfectly

calibrating the overflow proportions is challenging with our current model setting for

two reasons.

First, our model does not capture all overflow events happened in reality. There

are two kinds of overflow in practice, which are triggered by different factors: pas-

sive overflow is triggered to avoid excessively long waiting times, while intentional

overflow is triggered by other reasons such as medical needs. An example for an in-

tentional overflow is that a General Medicine patient with a potential heart problem

is overflowed to a Cardiology ward for telemetry care. See similar descriptions on

intentional overflow in [144]. Our model captures passive overflow but not intentional

overflow, whereas the empirical estimates include both overflow events. (Note that

it is difficult to differentiate between passive overflow and intentional overflow from

the data we currently have.) As a result, the empirical overflow proportions can be

higher than the simulation estimates from our model.

Second, our model assumes the shared server pools have complete flexibility, i.e.,
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each bed in such a pool can serve a patient from any primary specialty. In practice,

however, complete flexibility is impossible in the shared wards, as indicated by the

empirical study at NUH [136]. This complete flexibility in our model can reduce

the occurrence of overflow events. For example, Neurology and General Medicine

specialities share a ward (a server pool in the model). From the baseline simulation,

Neurology patients constitute 29% of all primary admissions to the shared server pool.

However, this proportion is only 18% for the shared ward (Ward 53) in Period 1 from

the empirical data, which suggests that sometimes a Neurology patient may not be

able to be admitted to the shared ward even if a bed is available there. In this case,

the Neurology patient could be overflowed to other wards in practice, but such an

overflow does not occur in the model. As a result, the overflow proportions estimated

from our model can be smaller than the empirical estimates. Future research is needed

to identify better ways of modeling the shared wards.

B.9.2 Early discharge policies have limited impact on the overflow pro-
portions

Sections 6.1 and 6.2 of the main paper [135] demonstrate that early discharge policies

have a limited impact on reducing the overflow proportion, even under the extreme

midnight discharge policy. We provide an intuitive explanation here. Consider pa-

tients requesting beds in the morning (7am to noon) since early discharge policies

mainly affect these patients. In our simulation setting, the overflow trigger time T is

long in the morning (T = 5.0 hours from 7am to 7pm). Thus, even in the baseline

scenario, primary beds are likely to become available for morning arrivals before their

waiting times exceed five hours (recall that most discharges start to occur from noon

under the baseline Period 1 discharge distribution). In other words, under the given

overflow policy, there are already very few morning arrivals overflowed in the baseline

scenario. Therefore, although more beds become available in the morning after the

early discharge, the overflow proportion will not be affected much.
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In our present simulation study, we assume the overflow policy is fixed, and we

focus on evaluating the early discharge policy and other policies under the given

overflow policy. Clearly, the choice of overflow policy can greatly impact the waiting

time performance; see Figure 11 and Figure 15 in the main paper for an example.

Future research is needed to identify the impact of different overflow policies on

waiting time performance and to evaluate the impact of other operational policies

under different overflow policies. Moreover, the overflow policy we currently assume

in the model is motivated by what NUH used in practice, and it may not be optimal.

For efficient inpatient operations, it will be important to identify optimal or near-

optimal overflow policies when taking multiple objectives into consideration, e.g.,

balancing the trade-off between the overflow proportion and waiting time.
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 The stationary distribution of discrete OU process

Similar to the continuous-time version of the Ornstein-Uhlenbeck (OU) process, we

define its discrete-time version {Xk, k = 0, 1, . . . } as:

Xk = Yk − µ
k−1∑
i=0

Xi, k = 0, 1, . . . (65)

where {Yk :=
∑k−1

i=0 ξi, k = 0, 1, . . . } is a Gaussian random walk, i.e., {ξi} is a sequence

of iid random variables following a normal distribution with mean θ and variance σ2.

In our analysis below, we enforce a critical assumption on µ, i.e., 0 < µ < 2.

Note that {Xk, k = 0, 1, . . . } is a Markov process since

Xk+1 −Xk = (Yk+1 − Yk)− µXk.

The transition probability from state y to state x is

P(Xk+1 = x|Xk = y) = fθ,σ2(x− (1− µ)y),

where fθ,σ2(s) denotes the probability density function associated with a normal ran-

dom variable with mean θ and variance σ2.

Let π denote a normal density with mean θ/µ and variance

σ2

2µ− µ2
,

i.e.,

π(y) =

√
2µ− µ2

√
2πσ

exp

(
−(2µ− µ2)(y − θ/µ)2

2σ2

)
.
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Since we assume 0 < µ < 2, the variance is always positive. We now show that π

is the stationary density for the discrete version of OU process. It is equivalent to

showing that

π(x) =

∫ ∞
−∞

P(x|y)π(y)dy (66)

for any given x.

We have

P (x|y)π(y) =

√
2µ− µ2

√
2πσ

1√
2πσ

exp

(
−(2µ− µ2)(y − θ/µ)2

2σ2

)
exp

(
−(x− (1− µ)y − θ)2

2σ2

)
=

√
(2µ− µ2)√

2πσ

1√
2πσ

exp

(
−y

2 − 2[(1− µ)x+ θ]y

2σ2

)
exp

(
−(2µ− µ2)θ2/µ2 + (x− θ)2

2σ2

)
=

√
(2µ− µ2)√

2πσ

1√
2πσ

exp

(
− [y − ((1− µ)x+ θ)]2

2σ2

)
· exp

(
−(2µ− µ2)θ2/µ2 + (x− θ)2 − [(1− µ)x+ θ]2

2σ2

)
.

Among which,

V (x) = exp

(
−(2µ− µ2)θ2/µ2 + (x− θ)2 − [(1− µ)x+ θ]2

2σ2

)
= exp

(
−(2µ− µ2)θ2/µ2 + (2µ− µ2)x2 − 2(2− µ)θx

2σ2

)
= exp

(
−(2µ− µ2)(x− θ/µ)2

2σ2

)
.

Then, we have∫ ∞
−∞

P(x|y)π(y)dy =

√
(2µ− µ2)√

2πσ
exp

(
−(2µ− µ2)(x− θ/µ)2

2σ2

)
·
∫ ∞
−∞

1√
2πσ

exp(− [y − ((1− µ)x+ θ)]2

2σ2
)dy

=

√
(2µ− µ2)√

2πσ
· exp

(
−(2µ− µ2)(x− θ/µ)2

2σ2

)
,

which takes the exact form as the normal density with mean θ/µ and variance

σ2/(2µ − µ2) and thus, equals to π(x). This completes our proof for π being the

stationary density
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APPENDIX D

APPENDIX FOR CHAPTER 7

D.1 Model calibration for mass gathering and Holiday trav-
eling scenarios

D.1.1 Mass gathering (non-Holiday) scenarios

During the traveling period, the disease parameters for individuals not traveling/gathering

(β, hPS, hAS, hPG, hC) remain the same as in the baseline model (see Section 5.3.3).

For individuals who travel or attend mass gathering events, we need to calculate their

infection hazard rate (h̃PS and h̃AS) and the transmission rate β̃. To do that, let rXT

be the average number of people infected in T (traveling/gathering group) by an in-

dividual who is at stage X (X can be the presymptomatic (P ), asymptomatic (A) or

symptomatic (S) stage):

rPT = NT (1− φP (
h̃PSβ̃

NT

))

rAT = pANTφP (
h̃PSβ̃

NT

)(1− φA(
h̃ASβ̃

NT

))

rST = (1− pA)NTφP (
h̃PSβ̃

NT

)(1− φS(
β̃

NT

))

where NT is the number of population on travel.

We then use R0, θ, and ω to represent rXT :

R0 = rPT + rAT + rST

θ =
rPT + rAT

R0

ω =
rAT + pArPT

R0

.

Given R0, θ, and ω, we can calculate β̃, h̃PS and h̃AS through solving these non-linear

equations. Note that the parameters γ and δ (see explanation in Table 17) are not
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involved. It is because if a susceptible person who travels or attends gathering events

gets infected during the traveling period, the source of infection is 100% from contact-

ing with other people in the traveling/gathering group. We assume the values of R0,

θ, and ω remain the same as in the baseline model for individuals who travel/gather

during the traveling period.

D.1.2 Holiday traveling scenarios

The disease parameters for individuals who retain their regular mixing patterns (β,

hPS, hAS, hPG, hC) remain the same as in the baseline model (see Section 5.3.3). We

need to recalibrate the disease parameters for individuals who do not travel but stay

at home during the day (β̃, h̃PS, h̃AS, and h̃C) and for the traveling individuals (β̄,

h̄PS, h̄AS, and h̄T ). Next, we discuss how to calculate the disease parameters for these

two groups of individuals.

Individuals not traveling and staying at home all day

Let r̃XY be the average number of people infected in Y by an individual who is at

stage X (i.e., X can be the presymptomatic (P ), asymptomatic (A) or symptomatic

(S) stage; Y can be the household (H) or the community (C) ):

r̃PH =
7∑

n=1

pn(n− 1)(1− φP (
h̃PSβ̃

n
))

r̃AH = pA

7∑
n=1

pn(n− 1)φP (
h̃PSβ̃

n
)(1− φA(

h̃ASβ̃

n
))

r̃SH = (1− pA)
7∑

n=1

pn(n− 1)φP (
h̃PSβ̃

n
)(1− φS(

β̃

n
))

r̃PC = N(1− φP (
h̃PSh̃C β̃

N
))

r̃AC = pANφP (
h̃PSh̃C β̃

N
)(1− φA(

h̃AShC β̃

N
))

r̃SC = (1− pA)NφP (
h̃PSh̃C β̃

N
)(1− φS(

h̃C β̃

N
)).
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We can also represent r̃XY in terms of R0, θ, ω and γ:

R0 = r̃PH + r̃AH + r̃SH + r̃PC + r̃AC + r̃SC

θ =
r̃PH + r̃AH + r̃PC + r̃AC

R0

ω =
r̃AH + pAr̃PH + r̃AC + pAr̃PC

R0

γ =
r̃PC + r̃AC + r̃SC

R0

.

Given the values of R0, θ, ω and γ, we can determine r̃XT and further calculate β̃,

h̃PS, h̃AS, and h̃C . We assume R0, θ, ω, and γ take the same values as in the baseline

model (see Table 17).

Traveling individuals

Let r̄XY be the average number of people infected in Y by an individual who is at

stage X (i.e., X can be the presymptomatic (P ), asymptomatic (A) or symptomatic

(S) stage; Y can be the household (H) or the traveling group (T ) ):

r̄PH =
7∑

n=1

pn(n− 1)(1− φP (
h̄PSβ̄

n
))

r̄AH = pA

7∑
n=1

pn(n− 1)φP (
h̄PSβ̄

n
)(1− φA(

h̄ASβ̄

n
))

r̄SH = (1− pA)
7∑

n=1

pn(n− 1)φP (
h̄PSβ̄

n
)(1− φS(

β̄

n
))

r̄PT = NT (1− φP (
h̄PSh̄T β̄

2NT

))

r̄AT = pANTφP (
h̄PSh̄T β̄

2NT

)(1− φA(
h̄ASh̄T β̄

2NT

))

r̄ST = (1− pA)NTφP (
h̄PSh̄T β̄

2NT

)(1− φS(
h̄T β̄

2NT

))

where NT is the number of individuals on travel.
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We can also represent r̄XY in terms of R0, θ, ω and γ.

R0 = r̄PH + r̄AH + r̄SH + r̄PT + r̄AT + r̄ST

θ =
r̄PH + r̄AH + r̄PT + r̄AT

R0

ω =
r̄AH + pAr̄PH + r̄AT + pAr̄PT

R0

γ =
r̄PT + r̄AT + r̄ST

R0

.

Given the values of R0, θ, ω and γ, we can determine r̄XY and then further

calculate β̄, h̄PS, h̄AS, and h̄T . We assume R0, θ, and ω take the same values as in

the baseline model (see Table 17), and γ=0.4 (i.e., the proportion of transmission

that occurs in the traveling group is 40%).
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