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SUMMARY

Reactive transport models are essential tools for predicting contaminant fate

and transport in the subsurface and for designing effective remediation strategies.

Sound understanding of subsurface mixing in heterogeneous porous media is the key

for the realistic modeling of reactive transport. This dissertation aims to investigate

the extent of mixing and improve upscaling effective macroscopic models for mixing-

controlled reactive transport in connected heterogeneous formations, which usually

exhibit strongly anomalous transport behavior.

In this research, a novel approach is developed for an accurate geostatistical char-

acterization of connected heterogeneous formations transformed from Gaussian ran-

dom fields. Numerical experiments are conducted in such heterogeneous fields with

different connectivity to investigate the performance of macroscopic mean transport

models for simulating mixing-controlled reactive transport. Results show that good

characterization of anomalous transport of a conservative tracer does not necessarily

mean that the models may characterize mixing well and that, consequently, it is ques-

tionable that the models capable of characterizing anomalous transport behavior of

a conservative tracer are appropriate for simulating mixing-controlled reactive trans-

port. In connected heterogeneous fields with large hydraulic conductivity variances,

macroscopic mean models ignoring concentration variations yield good prediction,

while in fields with intermediate conductivity variances, the models must consider

both the mean concentration and concentration variations, which are very difficult to

evaluate both theoretically and experimentally.

An innovative and practical approach is developed by combining mean conserva-

tive and reactive breakthrough curves for estimating concentration variations, which

xiii



can be subsequently used by variance transport models for prediction. Furthermore,

a new macroscopic framework based on the dual-permeability conceptualization is de-

veloped for describing both mean and concentration variation for mixing-controlled

reactive transport. The developed approach and models are validated by numerical

and laboratory visualization experiments. In particular, the new dual-permeability

model demonstrates significant improvement for simulating mixing-controlled reactive

transport in heterogeneous media with intermediate conductivity variances.

Overall, results, approaches and models from this dissertation advance the un-

derstanding of subsurface mixing in anomalous transport and significantly improve

the predictive ability for modeling mixing-controlled reactive transport in connected

heterogeneous media.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Background

Contaminants released from agriculture, industry, urban runoff/storm water, and

municipal point sources have the potential to contaminate groundwater and soil.

Modeling reactive transport is essential to the design of remediation strategies for

contaminated groundwater and soil and to risk assessment. Mixing-controlled reac-

tive transport with reaction rates limited by mixing processes represents a particular

challenge in reactive transport modeling, especially in connected heterogeneous media

where transport shows anomalous behavior. The present research is motivated by the

following observations and challenges:

Figure 1.1: Two hypothetical hydraulic conductivity fields constructed by Western
et al., [2001], with similar covariance functions but different degrees of connectivity.
a) Connected conductivity pattern. b) Random conductivity pattern. c) Omnidirec-
tional variograms for the aquifer conductivity patters in a) and b), respectively
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Figure 1.2: Connected heterogeneous medium with small-scale preferential flow paths
and outflow breakthrough curves with enhanced tails. a) Connected conductivity
field. b) Mean breakthrough curves

1. A major problem for subsurface contaminant transport is the identification of

natural heterogeneity of the geologic formation. Conventional geostatistical

framework for site characterization considers hydrogeological parameters and

geophysical attributes as spatial random functions, and describes the hetero-

geneity by a distribution of conductivity values, combined with a covariance

function (or a variogram function) of separation distance and the associated

parameters such as means, variances, and integral lengths. These conventional

spatial statistics are simple yet efficient in many applications such as char-

acterization of large data sets, interpolation or extrapolation using kriging or

cokriging methods, inverse modeling, Monte Carlo simulations, and stochastic

analysis. However, it has been found in a number of field experiments that

spatial statistic properties of second order (mean and covariance function) are

not sufficient to characterize the matrix heterogeneity. For example, [West-

ern et al., 2001] constructed two hypothetical aquifers with similar covariance

functions but have very different conductivity pattern, as shown in Figure 1.1.

The connected features such as the thin bands of high-conductivity flow path

in Figure 1.1a is of particular interest in practice because connected heteroge-

neous formations usually exhibit strongly anomalous transport behaviors. As

2



illustrated in Figure 1.2, the preferential flow in small-scale high-conductivity

paths, slow flow in low-permeability zones, and mass exchange between them

all contribute to the enhanced tailing for the outflow breakthrough curves. It

remains unclear how macroscopic models work for mixing-controlled reactive

transport in heterogeneous media with different connected features.

2. Anomalous transport behavior, which is often observed in groundwater trans-

port in heterogeneous formations, refers to non-Gaussian types of behavior of

the breakthrough curves that deviate from the classical Gaussian models of

macroscopic advection-dispersion equation (ADE), which relies on the assump-

tion that dispersion behaves macroscopically as a Fickian diffusive process. At

both laboratory and field scales, various anomalous transport behaviors have

been observed in heterogeneous formations, such as irregular, non-Gaussian

shape of plume distribution, multimodal concentration breakthrough curve, or

anomalously long concentration breakthrough curve tails. Since the macroscopic

ADE model (that has a normal bell-shape concentration distribution with a

growing width being proportional to square root of time) is unsuccessful for

characterizing anomalous transport for a conservative tracer, different nonlocal

methods have been developed to describe effective transport of anomalous con-

servative transport, such as continuous time random walks (CTRW), multirate

mass transfer (MRMT), fractional advection-dispersion equations (fADE), and

memory functions. Although all these models have been successful in reproduc-

ing observed conservative transport, it is unknown whether models representing

conservative transport can be extended to reactive transport.

3. The prediction of contaminant fate and transport in the subsurface on the re-

gional scale requires characterization of spatial variability and uncertainty of

3



hydraulic parameters, as well as reaction kinetics. Because complete character-

ization is usually unavailable, macroscopic models have been commonly used

to describe flow and transport behavior on the large scale in an average sense

without the details of pore-scale parameter fields. Major challenges in devel-

oping macroscopic transport models include development of good macroscopic

frameworks that describe major flow and transport features and derivation of

upscaled effective parameters that appropriately characterize hydraulic hetero-

geneity and reaction kinetics. Conventional techniques for collecting hydroge-

ologic data rely heavily on flux-averaged breakthrough curves in conservative

tracer tests, which measure the average concentration in the outflow. These data

are then used to fit physical transport parameters for calibrating macroscopic

models. For predicting reactive transport, the common procedure is to couple

the macroscopic transport models with chemical reaction kinetics determined

in perfectly mixed laboratory experiments. In many cases, such macroscopic

transport models can accurately describe the spreading of conservative solute.

However, they may cause erroneous predication for mixing-controlled reactive

transport because they ignore the micro-scale incomplete mixing, which may

play a significant role in predicting mixing-controlled reaction rates.

1.2 Research Objectives

The research in this dissertation is aimed at improving the scientific understanding

of subsurface mixing in anomalous transport and the predictive ability for modeling

mixing-controlled reactive transport in connected heterogeneous media. To accom-

plish this objective, the specific research objectives are:

• Investigating geostatistics for characterizing connectivity properties in different

heterogeneous fields.
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• Improving the understanding of the behavior of mixing-controlled reactive trans-

port in connected heterogeneous media and the performance of classical macro-

scopic transport models.

• Develop an innovative and practical approach that combines conservative and

reactive breakthrough curves to estimate concentration variation.

• Develop a new macroscopic framework for describing both mean and concen-

tration variation for mixing-controlled reactive transport.

The present work is conducted through numerical, analytical, and experimental

approaches. Specifically, numerical experiments are conducted to simulate both con-

servative and reactive transports; analytical derivations are performed on the macro-

scopic transport framework development; and laboratory visualization experiment

conducted by Dr. Harvey’s research group at Massachusetts Institute of Technology

will be analyzed and used to validate the developed models.

1.3 Outline of the Thesis

This thesis is organized into 7 chapters, including the introduction and the summary

given later in the dissertation.

Chapter 2 reviews the mixing mechanisms for subsurface solute transports, and

summarizes macroscopic models for anomalous transport in the literature. In ad-

dition, the importance of modeling concentration fluctuations is explained in this

chapter.

Chapter 3 develops a novel numerical framework for an accurate geostatistical

characterization of connected heterogeneous formations transformed from Gaussian

random fields. And the two-cluster function of a two-cut indicator field is introduced

to quantify connectivity properties that explain different degrees of visual connectiv-

ity.
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Chapter 4 presents numerical test cases of mixing-controlled reactive transport

with a bimolecular precipitation reaction at local equilibrium in heterogeneous do-

mains with different degrees of connectivity, to examine the performance of macro-

scopic one-dimensional models.

Chapter 5 develops an innovative and practical approach for estimating concen-

tration variation. Numerical experiments, as well as laboratory visualization exper-

iments conducted by Dr. Harvey’s group at Massachusetts Institute of Technology

are analyzed and used to validate the developed approach.

Chapter 6 presents a new macroscopic modeling framework to upscale mixing-

controlled reactive transport in heterogeneous media. The concentration variance

behavior is emphasized. Numerical experiments are conducted and experimental data

are examined to validate the developed model as well.

Finally, Chapter 7 summarizes the major research findings and conclusions, and

outlines future research needs.
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CHAPTER II

LITERATURE REVIEW

This chapter reviews current upscaling models for subsurface reactive transports in

heterogeneous fields. The review emphasizes current research focusing on mixing-

controlled reactive transports, but general reactive transport models are also sum-

marized to provide additional context. This review is aimed at achieving a general

perspective on technical issues associated with spreading and mixing mechanisms for

subsurface reactive transport, and with challenges in macroscopic modeling for mean

and concentration variance.

2.1 Upscaling of Flow and Transport in Heterogeneous Me-
dia

Many processes in hydrology depend on the scale of observation. Typical examples of

multiscale processes are turbulence, catchment hydrology, and flow and transport in

porous media. With an extremely fine resolution on the conductivity field, numerical

simulations of velocity field are capable to accurately capture the effects of spatial

variability of the conductivity on the velocity field [Ababou et al., 1988, 1989; Bellin

et al., 1992, 1994; Bellin and Rubin, 1996; Dykaar and Kitanidis, 1992a, b; Hassan

et al., 1998a, b; Salandin and Fiorotto, 1998;Rubin, 2003; Cirpka, 2006]. However,

large-scale flow simulations can become computationally intensive since huge level

of details are included, and the fully resolved heterogeneity will likely not be avail-

able at field site. On the other hand, in most cases we are only interested in the

large-scale/regional transport properties, instead of the very details of the velocity

and concentration distributions. Therefore, the so-called upscaling approaches, that

describes flow and transport behaviors adequately on the large scale in an average
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sense without the loss of important details, are needed.

Figure 2.1: A representation of upscaling processes. The Darcy scale figure was given
by Ginn, et al., [2002], and the pore scale figure was given by Bear, [1972]

There are essentially two upscaling problems when developing an effective trans-

port model for field application: one is from pore-scale to the Darcy’s scale, and

the other from the Darcy’s scale to field scale, as shown in Figure 2.1, although

other intermediate scales, such as bench scale, integral scale, pilot scale, may be de-

fined [Sturman et al., 1995]. The Darcy’s scale serves as a bridge between the pore

scale and the field scale and cannot be ignored because it is practically impossible

to solve a field-scale problem directly based on pore-scale models. Even with the

advancement of supercomputing techniques, it is impossible to identify the detailed

pore-scale structures for a large domain. In addition, we may roughly estimate the

spatial and temporal scales of flow and transport behaviors for these two upscaling

problems: (1) consider pore size ∼ 1mm and molecular diffusion coefficient ∼ 10−9

8



m2/s, then the transverse diffusive timescale is ∼ 103s and the corresponding spa-

tial scale is ∼ 1cm for an average flow velocity 1m/day, (2) consider permeability

correlation length ∼ 1m, local-scale transverse dispersivity ∼ 1mm and average flow

velocity ∼ 1m/day, then the traverse dispersion timescale is ∼ 107s and spatial scale

∼ 102m. Thus, for field-scale applications, the latter would be more important. This

thesis focuses on the scale-up issues of mixing and reaction from the Darcy’s scale to

the field scale.

A common framework of upscaling is the stochastic one. In the stochastic frame-

work, heterogeneities are modeled as stochastic, time-independent fields with given

statistical properties. The characteristic large scale behavior then follows from appro-

priately defined averages over the ensemble of all possible aquifer realizations[Dentz, et

al., 2002]. In many cases, we characterize spatial fields by their statistical moments

(the mean value, the variance and the spatial or temporal moments)[Dagan,1988].

The ensemble average can be evaluated by either numerical or analytical approaches.

The numerical approach, which is also known as Monte Carlo simulations, relies on

repeated random sampling to compute the results: we generate a large number of

realizations, perform the simulation for each realization, and take the average over

all of them [Tompson and Gelhar 1990; Bellin et al. 1992; Chin and Wang 1992].

On the other hand, analytical approaches are based on inferring the statistics of a

dependent varying quantity (e.g., the mass flux of a solute) from those of the indepen-

dent (e.g., the velocity field) [Cirpka, 2005], and both Lagrangian [Dagan, 1989] and

Eulerian [Gelhar, 1993] frameworks have been well established in hydrogeology. The

temporal behaviour of transport coefficients in a medium with spatial fluctuations in

the conductivities was investigated by [Dagan, 1984, 1988, 1991] using a Lagrangian

approach, neglecting the influence of the local dispersion [Kitanidis, 1988]. In Eu-

lerian framework, the increase of macroscopic dispersion coefficients due to spatial

fluctuations in the hydraulic conductivities for the case of a saturated aquifer has

9



been investigated by [Gelhar and Axness, 1983], which describes the transport pro-

cesses on asymptotically large scales, while gives little information on the time scales

necessary to reach this asymptotic situation. Both approaches described above have

been generalized by various authors to include other kinds of heterogeneities [e.g.,

Chrysikopoulos et al., 1990; Bellin et al., 1993; Miralles-Wilhelm and Gelhar, 1996;

etc].

The general frameworks described above provide a conceptual platform for up-

scaling flow and transport in heterogeneous fields. The scaled-up issues of mixing

associated with reactive transport will be discussed next.

2.2 The Scale-up Issues of Mixing and Spreading

In heterogeneous porous media, the concepts of mixing and dilution should be distin-

guished from that of spreading. Spreading, which has been the subject of macrodis-

persion studies, is a macroscale phenomenon, which describes the spatial extent of the

mean concentration field, primarily controlled by aquifer heterogeneities [Gelhar and

Axness, 1983; Dagan, 1984; Neuman et al., 1987; Kitanidis, 1994]. Hydraulic hetero-

geneity of the formation alone leads to a spatially varying specific-discharge field. As

a result, a solute cloud introduced into the domain becomes increasingly irregular in

shape with a constant concentration. The parts of the plume that are in high-velocity

regions over a certain period of time are sheared off from the parts in low-velocity

regions. As a consequence, the plume boundary, exhibiting sharp concentration gradi-

ents, increases in size. The amount of spreading experienced by a plume undergoing

strictly advective transport in a heterogeneous domain depends on the size of the

plume [e.g., Kitanidis, 1988]. At the limit of point-like injection, no spreading would

occur at all, that is, the plume would remain a Dirac pulse [e.g., Dentz et al., 2000].

In such a situation, the exact travel distance passed by the point-like plume would

depend on the exact starting location, and the uncertainty of locating the plume
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position could be expressed by macrodispersion expressions [e.g., Fiori and Dagan,

2000]. In other words, enhanced plume spreading in a heterogeneous porous medium

does not necessarily imply it is being significantly diluted because the spreading is

mainly caused by spatially varying advection which stretches the plume but does not

dilute the solute mass.

Mixing implies that two species occupy the same spatial volume. For one species,

mixing is equivalent to dilution, indicating the decay of peak concentrations or more

uniformly distributed solute mass as it dissolves into a larger volume. The mechanisms

that may create mixing include (1) hydrodynamic dispersive mixing, associated with

fluctuations in transport velocity resulting in fingering and steep concentration gradi-

ents that are subsequently smoothed through local dispersion and molecular diffusion,

(2) kinetic mass transfer, associated with nonequilibrium sorption and stagnant pore

structures, (3) chromatographic mixing, caused by different mobility of compounds,

and (4) hydrodynamic instabilities, as in variable-density flow when a heavier fluid

overlays a lighter fluid. In this work, we are interested in the first two mechanisms

because the last two processes are fast and reaction rates may not be limited by

mixing.

The problem of incomplete mixing and species segregation may occur in any scale

if the complete mixing scale of reaction to occur is inconsistent to the numerical

discretization scale of flow and transport. For each upscaling problem in Figure 2.1,

there are two scales: the support scale and the target scale. The general upscaling

rule defines complete mixing at the support scale, evaluates incomplete mixing at

the target scale, and eventually develops effective upscaled models for the target

scale. For example, at the pore scale, the Navier-Stokes (NS) -based continuum is

assumed complete mixing and molecular diffusion is considered as the primary mixing

mechanism, and at the Darcy’s scale, the extent of incomplete mixing is evaluated

to upscale an effective pore-scale dispersion coefficient [e.g., Tartakovsky et al., 2009].
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Similarly, for upscaling an effective reactive transport model at field scale, incomplete

mixing is evaluated based on the complete mixing assumption at the Darcy’s scale,

which may be described by the effective pore-scale dispersion upscaled from the pore

scale [Kapoor et al., 1997; Gramling et al., 2002]. Thus, any transport behavior,

including the anomalous transport behavior which is the focus of this dissertation,

observed at the target scale may be caused by (1) similar behavior at the support

scale; (2) the upscaling or averaging process, i.e., the integrated behavior of many

support-scale behavior; and (3) both (1) and (2). In this research, we will not start

from the pore-scale simulation, but assume complete mixing at small Darcy’s scale

(∼ cm [Zheng and Gorelick, 2003]).

Dilution and mixing in heterogeneous aquifers are current topics of research in sub-

surface hydrology. A motivation for these studies has been to develop better methods

for the evaluation of reactive transport controlled by the rate of mixing of the inter-

acting compounds. A basic requirement for reactions to take place is the mixing of

the reacting compounds. As long as the degradation process is not limited by slow

reaction kinetics, the rate of mixing of the interacting compounds controls the rate

of transformations. The implication of the upscaling approaches suggest that param-

eters derived by upscaling are not appropriate for the description of processes on the

micro-scale. Therefore, it is not appropiate to apply the macrodispersion equation to

problems in which micro-scale mixing is the limiting factor, such as mixing-controlled

reactive transport discussed in this research, which will be explained next.

2.3 Mixing-Controlled Reactive Transport Models

2.3.1 Macroscopic Reactive Transport Models

Upscaling macroscopic reactive transport models is necessary for predicting contami-

nant fate and transport in heterogeneous subsurface because detailed characterization

of spatial variability and uncertainty of hydraulic parameters is usually unavailable

12



at field sites. Macroscopic models of mean concentrations, usually calibrated by flux-

averaged breakthrough curves of a conservative tracer and coupled with reaction ki-

netics determined in laboratory experiments, may inaccurately predict breakthrough

curves of reactive species for mixing-controlled reactive transport because of the ne-

glect of concentration variations at local scale, which may not be a problem for con-

servative transport focusing on mean concentrations but may play a significant role

in evaluating effective reaction rates for nonlinear reactions limited by solute mixing

[e.g., Molz and Widdowson, 1988; MacQuarrie and Sudicky, 1990; Kitanidis, 1994;

Kapoor et al., 1997; Cirpka and Kitanidis, 2000a; Raje and Kapoor, 2000; Cirpka,

2002; Gramling et al., 2002; Dentz and Carrera, 2007; Luo et al., 2008].

Since reactive transport is very sensitive to the nature of reactions [Rubin, 1983,

Willmann, et al., 2010], it is important to identify the type of reactions when extend-

ing upscaled effective macroscopic transport models to reactive transport. Reactions

can be classified as linear or nonlinear, as controlled by kinetics (slow) or equilib-

rium (fast), as homogeneous (all reactants in the same phase) or heterogeneous, etc

[Willmann, et al., 2010]. Selroos and Cvetkovic, [1992]; Bellin et al., [1993]; Roth

and Jury, [1993]; Rubin et al., [1997]; Haggerty and Gorelick, [1998]; Lawrence et al.,

[2002]; Berkowitz et al., [2008] investigated the heterogeneous sorption problems with

emphasis on the spatial and/or temporal distribution of concentrations. [Margolin et

al., 2003] showed that effective transport in heterogeneous media under linear kinetic

reactions occurring homogeneously throughout the domain can be represented by the

same nonlocal model as conservative solutes. For equilibrium or nonlinear kinetic

reactions, Rezaei et al. [2005] and De Simoni et al. [2005, 2007] showed that equilib-

rium reaction rates are controlled by mixing and depend on the species concentrations

in a nonlinear way.

A particular challenge lies in predicting mixing-controlled nonlinear reactive trans-

port, i.e., reaction is relatively faster than transport processes so that reaction rates
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are limited by solute mixing. Examples of mixing-controlled reactive transport include

bioreactive transport in steady state, and equivalent equilibrium reaction [Cirpka et

al., 2008], among others. While macroscopic models are fairly well understood and

applicable for conservative transport, dilution and reactive mixing are still difficult

to predict.

The common procedure for predicting mixing-controlled reactive transport in het-

erogeneous domains is to determine physical transport parameters by fitting model

results to flux-averaged breakthrough curves of a conservative tracer, and to deter-

mine the reactive parameters in perfectly mixing laboratory experiments. However,

such macroscopic models may inaccurately predict breakthrough curves for mixing-

controlled reactive transport. As pointed out by [Kitanidis, 1994; Kapoor et al.,

1997; and Ginn et al., 1995], among others, macrodispersion parameters describing

the increase of the second central spatial moment of a conservative tracer cannot

directly be used for the scale-up of reactive transport. Applying spreading-related

macrodispersivities to problems of mixing-controlled reactive transports leads to an

overestimation of mixing and reaction rates, and thus to erroneous mass balances

[MacQuarrie and Sudicky, 1990; Ginn et al., 1995; Miralies-Wilhelm et al., 1997].

The key point of poor performance of macroscopic models in such cases is that

the mean breakthrough curve alone does not provide information about concentra-

tion variations at local scale, which may not be a problem for conservative transport

focusing on mean concentrations but may play a significant role in evaluating effec-

tive reaction rates for nonlinear reactions limited by solute mixing. Figure 2.2(right

panel) shows that even a “perfect” macroscopic model, which may exactly repro-

duce the flux-averaged breakthrough curve of a conservative tracer (top-right subplot

in Figure 2.2), may yield significant errors in predicting concentrations of reactive

species (subplots of cA, cBand cC in the right panel of Figure 2.2). The inconsistence
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Figure 2.2: Conservative and reactive transports in a heterogeneous medium. Break-
through curves are measured at the outflow boundary. Reaction is an instantaneous
bimolecular reaction. A and B are reactive species, and C is the product

between macroscopic models assuming perfect mixing and the intrinsic solute segre-

gation or incomplete mixing at local scale has become a research focus in stochastic

hydrogeology in recent years [Dentz et al., 2010]. Sound understanding of subsur-

face mixing in heterogeneous porous media is the key for the realistic modeling of

reactive transport and is a precondition for assessing natural attenuation processes,

designing nuclear waste disposal, and developing effective monitoring network and en-

gineered remediation systems for contaminated sites. Existing methods of modeling

the mixing-controlled reactive transport, relying upon the mixing ratio of conservative

transport, include stream tube approach [Cirpka and Kitanidis, 2000a], framework

of analyzing concentration fields[Fiorotto and Caroni, 2002, 2003; Oates, 2007], and
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sampling techniques based on prior information of the breakthrough curve distribu-

tion [Cirpka et al., 2008].

2.3.2 Anomalous Transport Behavior

Anomalous transport behavior, primarily characterized by deviations of the average

breakthrough curve from Fickian behavior, has been observed in many heterogeneous

formations [e.g., Selroos and Cvetkovic, 1992; Hadermann and Heer, 1996; Berkowitz

and Scher, 1997, 1998; Berkowitz et al., 2000; Guswa and Freyberg, 2000; Harvey and

Gorelick, 2000; Haggerty et al., 2001; Zheng and Gorelick, 2003]. Examples of anoma-

lous transport behaviors include irregular, non-Gaussian shape of plume distribution

or enhanced concentration breakthrough curve tails, among others. Haggerty et al.,

[2000], among others, showed that anomalous transport behavior may provide impor-

tant information for understanding slow mixing processes because extended tailing

behavior usually indicates that some slow processes dominantly control transport at

late times. Thus, anomalous transport behavior, particularly enhanced tailing, may

serve as an indicator of slow mixing processes occurring in the subsurface and provide

valuable information for calibrating appropriate transport models.

To describe anomalous transport behaviors, many sophisticated upscaling macro-

scopic models have been developed such as fractional macroscopic advective disper-

sive equation (fADE)[Benson, et al., 2000], continuous-time random walk (CTRW)

[Berkowitz and Scher, 1998; Berkowitz et al., 2006], nonlocal models with kinetic

mass transfer particularly multirate mass transfer(MRMT)[Haggerty and Gorelick,

1995; Silva et al., 2009], among others [Cushman and Ginn, 2000; Harvey and Gore-

lick, 2000; Liu et al., 2004, 2007; Barlebo et al., 2004; Zinn et al., 2004; Carrera et

al., 1998; Salamon et al., 2007]. For conservative tracer transport, all these mod-

els are capable of giving fairly good predictions for describing anomalous behaviors,

especially enhanced tailing behavior, since mean concentrations are the simulation
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target, while reactive transport will still be difficult to predict, since both mean and

spatial variability (i.e., concentration variation) should be accounted for describing

mixing. Luo and Cirpka[2011] showed that only under specific conditions can these

improved models be effective, such as in highly-heterogeneous media or nearly ho-

mogeneous media with low flux-averaged concentration variances, as reviewed in the

next section.

2.3.3 A Recent Observation

A recent work by [Luo and Cirpka, 2011] presented numerical test cases of mixing-

controlled reactive transport with a bimolecular precipitation reaction at local equi-

librium in heterogeneous domains are investigated. The objective was to which extent

concentration fluctuations within the solute flux could be neglected in the transfer

from breakthrough curves of conservative to reactive compounds. From a strictly

theoretical standpoint of view it is clear that neglecting such variations must lead to

a mass-balance error, because the transfer from conservative to reactive compound

concentrations is nonlinear. However, the studies of [Edery et al., 2009] and [Will-

mann et al., 2010] indicated good performance, despite the fact that their models

could not account for concentration variations in the solute flux.

For the sake of completeness, we briefly describe the hydrogeological settings and

the reactive transport in [Luo and Cirpka, 2011]: An elliptic inclusion setup was con-

sidered for the heterogeneity as shown in Figure 2.3a. An elliptical low-permeability

inclusion is embedded in a rectangular two-dimensional homogeneous, isotropic do-

main. The hydraulic head is fixed at the left and right boundaries, whereas no flow

crosses the top and bottom boundaries. The major and minor axes of the ellipse are

half of the domain length and width, respectively. Table 2.1 summarizes the hydro-

geological parameters used in the numerical case. Solute transport in this domain is

essentially controlled by two dimensionless parameters:
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Figure 2.3: Investigation of performance of macroscopic models for predicting
mixing-controlled reactive transport in an elliptical, low-permeability inclusion do-
main. (a) Elliptic Inclusion: The Domain; (b) Relative prediction errors in terms of
total product mass

Krel =
K1

K2

(2.1)

Pe =
vb2

DtL
(2.2)

where K1 and K2 are the hydraulic conductivity in the inclusion and matrix, respec-

tively, Krel represents the hydraulic conductivity contrast, v is the effective mean

velocity within the entire domain, b is the half width of the elliptical inclusion, L is

the domain length, Dt is the transverse dispersion coefficient, and Pe is the transverse

Péclet number.
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Table 2.1: Hydrogeologic parameters for the hydrogeological setup with an elliptical,
low-permeability inclusion

Parameter Symbol Values

Dimension of domain L×W 5m× 2.5m
Dimension of elliptical inclusion 2a× 2b 2.5m× 1.25m
Discretization 4x×4y 0.005m× 0.005m
Hydraulic conductivity K1 10−3m/s
Hydraulic conductivity K2 10−5 ∼ 10−3m/s
Mean hydraulic gradient J 0.01
Effective porosity θ 0.4
Longitudinal dispersivity αt 0.01m
Transverse dispersion Dt 10−9 ∼ 10−6m2/s

And an instantaneous bimolecular precipitation reaction was used for nu-

merical modeling and simulations. Assume advective-dispersive transport of com-

pounds A, B and C with concentrations cA, cB, and cC . Aqueous species (solutes) A

and B react with each other, forming compound (mineral) C:

A+B → C ↓ (2.3)

This reaction is assumed to be fast compared to typical transport times, so that it

can be treated as in equilibrium. The concentrations of the aqueous species A and B

satisfy:

cA · cB = Keq (2.4)

where cA and cB are the molar concentrations of the reactive species A and B re-

spectively, and Keq is the chemical equilibrium constant. This reactive transport case

can be solved completely relying upon the mixing ratio of conservative transport [De

Simoni et al., 2005, 2007]. In the numerical simulations, K2 and Dt are varied so that

Krel ranges across three orders of magnitude (100 ∼ 102) and Pe ranges across four

orders of magnitude (100 ∼ 103). For each combination of Krel and Pe, the steady

state flow field and the reactive transport were solved.
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The results in [Luo and Cirpka, 2011] indicate largest errors in macroscopic one-

dimensional models for intermediate conductivity contrasts and high Péclet numbers

(Figure 2.3b). With respect to total and peak mass-balance errors, increasing the

degree of heterogeneity beyond a critical value led to an improvement of the per-

formance. The comparably good performance in highly heterogeneous cases can be

attributed to: (1) small fractions of the water flux passing through low conductivity

inclusions so that, while the fronts lag extremely behind in such inclusions, their con-

tribution to the overall breakthrough curve is not that big; and (2) efficient mixing

between water fluxes that have experienced low-conductivity zones and those that

have not caused by transverse dispersion over short diffusion lengths within prefer-

ential flow zones downstream of inclusions. In media with intermediate hydraulic

conductivity contrast, such models may still yield significant errors in predicting

mixing-controlled reactive transport. The decisive point is that such models concep-

tualize a single concentration within the solute flux in the mobile domain. Therefore,

they cannot account for any effects caused by concentration fluctuations within the

flux. For example, the multirate mass transfer model can describe anomalous trans-

port behavior by varying local memory functions for characterizing incomplete mixing

in the immobile domains. However, for the flow flux leaving a domain, only the mo-

bile contributions count. Thus, such models with a single flux mobile concentration

are strictly impossible to account for variations within the flux, no matter whether

reactions are considered in the immobile domains or not.

The importance of modeling concentration variation besides the mean concentra-

tion will be further illustrated in the next section.

2.3.4 Modeling Both Mean and Concentration Variation

In practical applications, macroscopic advective-dispersive-reactive models assume

that mean concentrations are representative of the actual concentration values and
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employ macrodispersion coefficients (large-time limit or scale dependent) for describ-

ing solute transport and reaction rates evaluated by mean concentrations and reaction

parameters determined in completely-mixed laboratory experiments. For mixing-

controlled reactive transport, however, uncertainties of reaction rates caused by con-

centration variations cannot be neglected. Kapoor et al.[1997] indicated that reaction

kinetics of a kinetic bimolecular reaction evaluated by average concentrations may

over-predict the transformation rate by neglecting the local-scale concentration co-

variance between reactive species introduced by transport processes. In nearly homo-

geneous porous media, Raje and Kapoor [2000] and Gramling et al. [2002] conducted

instantaneous, irreversible bimolecular reactive transport experiments and demon-

strated that reaction rates were overestimated by the macroscopic model with the

transport parameters fitted from conservative tracer tests.

The schematic description of the conventional upscaling macroscopic models is

shown in Figure 2.4 , for a conservative transport and a bimolecular reactive trans-

port. The concentration and velocity covariance, v
′
ic
′ , is described by macrodisper-

sion, while the concentration covariance, c
′
1c
′
2, is neglected. Despite the importance

in practice, concentration variations are very difficult to evaluate for a specific site.

Theoretical approximations based on stochastic hydrogeology theory may not be valid

to predict concentration variance at specific locations since they usually yield ensem-

ble behavior only for weakly heterogeneous media. Also, a complete understanding

of the geostatistical structure of the hydraulic conductivity field is required, which

involves uncertainties in practice. On the other hand, experimental measurements for

estimating concentration variance require a number of local-scale samples, which are

expensive and challenging to realize even with the advancement of multilevel sampling

techniques.
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To account for concentration variance besides mean concentration, two model-

ing frameworks have been developed. The first approach is to simulate concentra-

tion variance in addition to macroscopic mean models [Kapoor et al., 1997]. The

mean concentration is described by macroscopic transport models, and the variance

is obtained by solving a variance transport equation involving an additional variance

destruction coefficient, which is difficult to measure. For reactive transport, the con-

servative concentration statistics (mean and variance) may be incorporated into the

nonlinear reaction kinetics by linearization to evaluate the species covariance matrix,

which is subsequently used to correct the reaction rate [Oates, 2007]. It has been

shown that the probability density function of concentration of a conservative tracer

in a randomly heterogeneous medium can be approximated by a beta distribution,

which shows bimodal behavior for cases with high coefficient of variation and resem-

bles a Gaussian distribution in low-variance cases [Fiorotto and Caroni, 2002, 2003].

Thus, it is also possible to evaluate concentration distributions for reactive species by

sampling the beta distribution given the relationship between conservative and reac-

tive components [Cirpka et al., 2008]. Full probability distributions for conservative

transport were also recently reported [Schwede,et al., 2008.]. The second modeling

framework is based on the effective mixing concept and multiscale measurements. In

the analysis of point-like observations of solute breakthrough, longitudinal dispersion

does not alter the mean breakthrough time at any location, whereas transverse disper-

sion balances differences of mean breakthrough time between adjacent streamtubes

in heterogeneous formations. Both processes lead to wider local breakthrough curves.

Thus, a particular set of point-like measured breakthrough curves within an observa-

tion plane may be interpreted as caused by transport with transverse dispersion in

a highly variable velocity field or by transport with enhanced longitudinal dispersion

rather than transverse exchange, but in a less variable velocity field. This ambiguity
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is used in the advective-dispersive streamtube (ADS) approach within an Eulerian-

Lagrangian framework [Cirpka and Kitanidis, 2000a, b; Ginn, 2001; Ginn et al., 2001;

Cirpka, 2002; Janssen et al., 2006; Luo and Cirpka, 2008]. The essence of this ap-

proach is to characterize the “right” mixing and “right” advection. The dispersion

of the mean concentration breakthrough curve or macrodisperion is the summation

of the mean dispersion of local-scale breakthrough curves and the variance of the

mean of local breakthrough curves (also referred as the two-particle covariance [Fiori

and Dagan, 2000; Pannone and Kitanidis, 2004]). The “right” mixing is the mean

dispersion of local-scale measurements, while the variance of the mean describing

the advection variations should not be included for evaluating mixing. The “right”

advection is then described by an advective travel-time distribution. Integration of

all local concentration breakthrough curves over the entire travel-time distribution

yields the mean concentration breakthrough curve at the outflow boundary. Cirpka

[2002] studied a bimolecular reactive transport case, in which the original reaction

terms were maintained, i.e., concentration covariance was not included in the reaction

rate, while effective heterogeneity induced mixing was characterized by the effective

dispersion tensor [Dentz et al., 2000].

Both numerical and experimental work showed good applicability of these two

modeling frameworks [Cirpka, 2002; Janssen et al., 2006; Oates, 2007; Cirpka et al.,

2008]. The essential difference between them is that the first one aims to evaluate

effective reaction rates by explicitly accounting for the concentration covariance or

the entire distribution, while the latter creates solute segregation by a number of non-

interacting streamtubes. The first approach may become complicated for nonlinear,

heterogeneous reactions involving many species and different phases because of the

challenges in evaluating the covariance matrix [Miralles-Wilhelm et al., 1997]. The

latter is more efficient for simulating multi-species reactive transport given the “right”

advective travel-time distribution and the effective mixing parameters because within
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each streamtube it is a classical one-dimensional transport problem. However, it is

only applicable at locations where both point-scale and integral-scale measurements

are available, and is difficult to make predictions at locations without multiscale

measurements because it is challenging to predict apparent “right” mixing parameters

and “right” advective travel-time distributions [Luo and Cirpka, 2008].

2.4 Connected Heterogeneous Fields

Connected heterogeneous fields and random heterogeneous fields may share similar

geostatistical structures in terms of spatial distributions of hydraulic conductivity

[Zinn and Harvey, 2003; Knudby and Carrera, 2005], but they exhibit different trans-

port behavior, thereby excluding the effectiveness of traditional macrodispersion the-

ory for upscaling effective macroscopic models [Zinn and Harvey, 2003; Fiori et al.,

2010].

In connected heterogeneous fields, very different flow and transport behaviors can

occur even though the conductivity fields have nearly identical lognormal univariate

conductivity distributions and nearly identical isotropic spatial covariance functions

(Figure 1.1) [Western et al., [2001]; Zinn and Harvey, 2003]. Therefore, the tradi-

tional macrodispersion theory is no longer effective for upscaling effective macroscopic

models. In fact, it has been proven that advection-macrodispersion transport models

(a normal bell shape with width growing with the square root of time) fail to charac-

terize anomalous transport behavior, and kinetic mass transfer (particularly multirate

mass transfer), non-Fickian or fractional dispersion, continuous time random walk,

or more detailed hydraulic conductivity heterogeneities must be incorporated.

There are different patterns for connected heterogeneous fields in the sense that

high- or low- conductivity structures are connected (Figure 2.5). In practice, con-

nected fields can be generated through a transformation of the multigaussian field.

In this research, we follow the methods by [Zinn and Harvey, 2003] , in four steps:
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Figure 2.5: Generation of a connected hydraulic conductivity field from a multi-
Gaussian field. (a) multi-Gaussian field; (b) low-conductivity structures are con-
nected; c) high-conductivity structures are connected

1. The absolute value of the multigaussian field (zero-mean, unit-variate, Figure

2.5a) is calculated. this transform shifts extreme values to become high values,

and values originally close to the mean become low values.

2. The histogram of the values in the field is converted back to a univariate Gaus-

sian distribution by mapping the CDF (cumulative distribution function) value

at each point to a standard normal CDF. This transformation can be written

explicitly as:

Y ′ =
√

2erf−1
(

2erf

(
|Y |√

2

)
− 1

)
(2.5)

where K are the field conductivities, Y ′ are the transformed values of ln(K) and

Y are the original values. This creates a field in which the extreme low values

are connected and the high values form isolated blobs, e.g., the field shown in

Figure 2.5b.
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3. Increase the block size of the field so that the integral scale matched that of the

original multigaussian field.

4. The connected field (Figure 2.5c) is then generated from the low-conductivity

connected field by reflecting the values of the low-connected field around the

mean, so connected patterns of low conductivity become connected flow paths

of high conductivity.

Flow and transport in the connected field has many of the characteristics that are

attributed to conductivity fields with layering, bimodal histograms, or large integral

scales. However, the connected field is isotropic, univariate lognormal, and has an

integral scale much smaller than the domain length. The connected field has behav-

iors similar to a layered field because the high-conductivity regions form contiguous

preferential channels for flow. It also may reproduce some of the behavior of non-

stationary fields (i.e., field with integral scales larger than the domain size) because

the high-conductivity structures span the entire domain. Finally, the connected field

can reproduce anomalous transport behaviors, such as nonequilibrium mass transfer,

that are often attributed to fields with bimodal distributions, such as low conduc-

tivity blobs embedded in a matrix of uniformly higher conductivity. This is because

the connected field also creates regions of low velocity embedded in channels of high

velocity, even though the univariate distribution is Gaussian, which is unimodal.

Investigations of mixing-controlled reactive transport in connected heterogeneous

domains are proposed in this research, which usually exhibit strongly anomalous

transport behavior (Figure 1.2) for a conservative tracer as a result of preferential

flow in small-scale high-conductivity paths, slow flow in low-permeability zones, and

mass exchange between them.
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2.5 Closure

In general, macroscopic models of mean concentrations can provide accurate predic-

tion for mixing-controlled reactive transport only when concentration variations are

negligible compared with mean concentrations or for linear reactions. Sophisticated

models have been developed to improve the predictive ability of macroscopic mean

models for equilibrium and kinetic reactions. However, the underlying implication of

perfect mixing for macroscopic models has been a limitation for their applications in

mixing-controlled reactive transport, where micro-scale mixing is the limiting factor.

In cases where concentration fluctuations cannot be neglected, both mean and

concentration variances should be evaluated in order to transfer information from

conservative-tracer data to the transport of reactive compounds when making pre-

dictions about reactive transport. In particular, mixing-controlled reactive transport

such as equilibrium and nonlinear kinetic reactions are of general interest.

Beside characteristics of flow and solute transport, the natural heterogeneity of

the porous media is also an essential factor in the prediction of contaminant fate

and transport in subsurface. Connectivity properties are especially important for

nonlinear reactive processes, where the flow can develop a channeling behavior. The

difficulty lies in evaluating the connectivity, since second order spatial statistical prop-

erties are often not sufficient to characterize the field heterogeneity in an appropri-

ate manner. In addition, connected heterogeneous domains usually exhibit strongly

anomalous transport behavior, especially enhanced tailing, which may serve as an

indicator of mixing processes occurring in the subsurface.
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CHAPTER III

GEOSTATISTICAL CHARACTERISTICS OF

CONNECTED HETEROGENEOUS FIELDS

Part of the material in this Chapter was recently published by Water Resources Re-

search (Gong, R., Haslauer, C., Chen, Y., Luo, J., 2013, Analytical relationship be-

tween Gaussian and transformed-Gaussian spatially distributed fields, Water Resour.

Res., 49, 1735-1740, doi: 10.1002/wrcr.20143.)

3.1 Introduction

The spatial dependence structure of naturally occurring parameters, such as hydraulic

conductivity (logarithm of hydraulic conductivity values), can be characterized by a

multivariate Gaussian distribution with a covariance or variogram function of separa-

tion distance. Random fields generated by such statistical approximations based on

two-point correlations show a high connectivity of intermediate values [e.g., Journel

and Alabert, 1990; Journel and Deutsch, 1993; Zinn and Harvey, 2003]. The spa-

tial structure of hydraulic conductivity influences the velocity field, which in turn

influences dependent parameters, such as the spreading behavior of a solute plume.

In recent years, a number of studies have demonstrated that flow and transport in

heterogeneous fields with preferential flow paths of connected high hydraulic con-

ductivities, referred to connected fields, may exhibit significantly different behavior

from that in disconnected heterogeneous fields [e.g., Fogg, 1986; Silliman and Wright,

1988; Wen and Gomez-Hernandez, 1997; Tidwell and Wilson, 1999; Labolle and Fogg,

2001; Zinn and Harvey, 2003; Zinn et al., 2004; Liu et al., 2004, 2007; Knudby and

Carrera, 2005; Willmann et al., 2008; Luo and Cirpka, 2011]. Particularly, connected
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high-conductivity paths may lead to early arrival times of contaminant plumes and en-

hanced tailing behavior due to kinetic mass transfer between fast and slow flow zones.

Such anomalous behavior may not be described by classical advection-dispersion mod-

els and macrodispersion theory [e.g., Zinn and Harvey, 2003; Liu et al., 2004]. The

effects of non-Gaussian dependence on macrodispersion based on the Borden data-set

have been quantified by Haslauer et al. [2012].

Generation of spatial fields that mimic the spatial dependence structure as en-

countered in nature as closely as possible is important to improve understanding of

solute transport in the subsurface. Available approaches for generating connected

random fields include the multiple-point geostatistical method with a training image

[e.g., Strebelle, 2002; Hu and Chugunova, 2008], the reorganization method of ran-

dom fields [Knudby and Carrera, 2005], the self-avoiding invasion percolation method

[Stark, 1991], the sequential indicator simulation method and the simulated anneal-

ing method for generating non-Gaussian random fields [see the review by Gomez-

Hernandez and Wen, 1998], the absolute-value transformation of multivariate Gaus-

sian fields [Zinn and Harvey, 2003], and copulas [Bardossy and Li, 2008]. Among

these approaches, the method proposed by Zinn and Harvey [2003] offers a simple

approach to generate a spatial dependence structure with different connectivity that

is non-Gaussian, but based on a multivariate normal spatial field given two-point

spatial correlations. It has been used to investigate flow and transport behavior in

heterogeneous fields with a constant spatial covariance or variogram function but

with different connectivity [e.g., Zinn and Harvey, 2003; Neuweiler and Cirpka, 2005;

Knudby and Carrera, 2005, 2006; Willmann et al., 2008].

The absolute-value transformation defines a new variable by the normal score

transform of the absolute value of the original random variable [Zinn and Harvey,

2003]:
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Y ′ (x) = −
√

2erf−1
(

2erf

(
|Y (x)|√

2

)
− 1

)
(3.1)

where Y is an autocorrelated Gaussian random field with zero mean and variance of

unity, x is the spatial location, and Y ′ is the transformed random field with connected

high conductivities (−Y ′ is a disconnected field with connected low conductivities).

To maintain the zero mean and unitary variance for individual realizations, Neuweiler

and Cirpka [2005] included a variance term in Eq. (3.1) to correct the variance

deviation; and Knudby and Carrera [2005] introduced one more step of normal score

transform to assure a standard Gaussian distribution of the underlying random field.

Linear transformation of Y ′ can then be applied to generate random fields with non-

zero mean and non-unitary variance. Connectivity of the transformed field may be

characterized by the number of connected clusters and the two-point cluster function

[Neuweiler and Cirpka, 2005; Renard and Allard, 2011]. Spatial statistical properties

of absolute-value transformed variables are different from the original multivariate

Gaussian variables. The transformed variable, by construction, is univariate normally

distributed with zero mean and unitary variance, which is necessary but not sufficient

for the transformed random field to be multivariate normal. The spatial structure of

the underlying multivariate Gaussian field is different from the spatial structure of

the transformed field, such as the shorter correlation length of the transformed field

than that of the underlying Gaussian field. An example of transformed Gaussian field

has been shown in Figure 2.5. Y can also be an autocorrelated exponential random

field, and Figure 3.1 gives an example of transformed exponential field.

The issue remaining unclear about such transformation is how exactly the spatial

correlation changes for the transformed field compared to the underlying Gaussian

random field. Zinn and Harvey [2003] presented theoretical calculation for the cor-

relation length of the absolute value of the original random field and found a scaling
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Figure 3.1: Generation of a connected hydraulic conductivity field from an expo-
nential field. (a) exponential field; (b) low-conductivity structures are connected; (c)
high-conductivity structures are connected

factor of 1.86 for the isotropic Gaussian covariance function. However, this calcu-

lation was valid for |Y (x)|, not for the final generated field, Y ′ (x). Neuweiler and

Cirpka [2005] found a scaling factor of 1.6 based on Monte Carlo simulations of

10,000 two-dimensional realizations. The common procedure is to first generate two

or three-dimensional Gaussian random fields, conduct oriented covariance or vari-

ogram analysis for each transformed realization, and then analyze the mean covari-

ance or variogram. Neuweiler and Cirpka [2005] analyzed the change of correlation

lengths based on 10,000 two-dimensional random fields with 256×256 cells for an

isotropic Gaussian covariance model, in which one point was fixed at the domain

center. Thus, the actual amount of samples for each spatial distance (from the cen-

ter to neighboring cells) is 40,000. Such a sampling procedure is computationally

demanding for a large number of multi-dimensional realizations. This note aims to

provide an accurate estimation of the spatial dependence structure of the underlying
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Gaussian structure and the transformed structure, as well as a mapping between any

two structures. The type of transformation is arbitrary. Such information is critical

for generating connected random fields with predefined spatial correlations and for

conducting stochastic analysis of flow and transport in connected random fields.

3.2 Method

Our method to obtain an accurate estimation of the spatial correlation of transformed

fields consists of two simple steps: (1) determining a unique mapping of the correla-

tion coefficients of the original multi-Gaussian fields to the transformed correlation

coefficients; and (2) mapping the correlation to spatial distance. The method is not

limited to the absolute-value transformation, but is applicable to any transformation

function, Y ′=g (Y ).

To establish the relationship between the correlations of transformed random vari-

ables and underlying Gaussian random variables, it is sufficient to focus on the joint

distribution of two random variables instead of working on multi-dimensional random

fields. The standard joint-Gaussian distribution with zero mean and variance of unity

for two random variables is described by:

fY1,Y2=
1

2π
√

1− ρ2
e
− 1

2(1−ρ2)(Y
2
1 +Y 2

2 −2ρY1Y2) (3.2)

where ρ is the correlation between Y1 and Y2. The correlation of transformed vari-

ables, Y ′1 and Y ′2 , can be evaluated by either working on the correlation definition or

sampling the joint distribution. For a specified correlation, joint samples of Y1 and

Y2 can be generated based on the well-known method of Cholesky decomposition.

By transforming Y1 and Y2 to Y ′1 and Y ′2 , we can then evaluate the new correlation.

Discretizing ρ from -1 to 1 and repeating the sampling for each ρ, one can obtain the

correlation of transformed variables, ρ′, as a function of the original correlation, ρ.

Figure 3.2 shows ρ′ as a function of ρ for the absolute-value transform described
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Figure 3.2: Relation between the correlations of an underlying standard normal
bivariate distribution, ρ, and its absolute value transformed field, ρ′
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by Eq. (3.1). For uncorrelated random variables, the transformed variables remain

uncorrelated; and for linearly correlated variables, the transformed variables are pos-

itively linearly correlated. A polynomial function with only even contributions can

be used to fit ρ′:

ρ′ (ρ) = 0.6559ρ10 − 0.8430ρ8 + 0.3538ρ6 + 0.1215ρ4 + 0.6821ρ2 (3.3)

which yields zero for originally uncorrelated variables, and 0.97 for originally linearly

correlated variables. The number of terms in the polynomial can be varied to decrease

or increase fitting quality.

In geostatistics, various geostatistical parameterizations are available for describ-

ing the two-point correlation as a function of spatial distance. If the transformation,

such as the absolute-value transformation, does not change the spatial distance be-

tween two points, the new correlation of transformed variables, ρ′, is constant for

a given ρ regardless of the type of geostatistical parameterization. Thus, one can

evaluate the spatial correlation of transformed random fields simply by mapping the

correlations to corresponding spatial distances using Figure 3.2 or substituting it into

Eq. (3.3). For example, for a random field with an isotropic Gaussian covariance

function, the correlation of the transformed field can be approximated by:

ρ′ (h) = 0.6559ρ10G − 0.8430ρ8G + 0.3538ρ6G + 0.1215ρ4G + 0.6821ρ2G (3.4)

where

ρG (h) = exp

(
−h

2

l2

)
(3.5)

and l is the correlation length.

Figure 3.3 illustrates the simple mapping procedure: calculating the correlation

for a specified distance (Figure 3.3a) and then determining the new correlation for the
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transformed field according to the identified relationship in Figure 3.2 (Figure 3.3b).

Figure 3.2 provides an accurate estimation of the transformed correlation because of

the fine discretization, and Eq. (3.3) provides an easy and fast way to approximate

the correlation.
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Figure 3.3: Quantile-quantile transformation to evaluate the correlation of the trans-
formed field based on the spatial structure of the underlying field. (a) the original
covariance model as a function of distance; and (b) mapping according to the corre-
lation relationship

Figure 3.4 further illustrates the mapping between two different spatial correlation

functions, ρ1 and ρ2. For a given correlation, ρ1 = ρ2, Figure 3.4a and 3.4b show the

different spatial distance for the two spatial correlation functions. From Figure 3.4a

to 3.4c, ρ′1 for the transformed field is obtained at the spatial distance determined in

Figure 3.4a. Combining ρ′2 = ρ′1 and the spatial distance determined in Figure 3.4b

yields the correlation ρ′2 (Figure 3.4d) as a function of the spatial distance.
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Figure 3.4: Mapping between two geostatistical correlation models. (a) the original
correlation for model 1; (b) the original correlation for model 2; (c) the transformed
correlation for model 1; (d) the transformed correlation for model 2
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3.3 Results and Discussion

3.3.1 Distribution of Transformed Data

Figure 3.5: Scattered sampling points and marginal histograms before and after the
absolute-value transformation

Figure 3.5 shows scattered sampling points and marginal histograms for absolute-

value transformation of joint-Gaussian distributions with different correlations. For

the absolute-value transformation, only if ρ = 0 or ρ = ±1 the transformed distribu-

tion is joint-Gaussian due to the normal score transform. In geostatistics, the first

condition represents the case when the two points are far enough separated such that

they are essentially uncorrelated and independent, and the second condition repre-

sents essentially a single point. For any two different points with short separation

distances compared to the correlation length, the transformed data are not multivari-

ate Gaussian, although both marginal distributions are Gaussian.

3.3.2 Correlation Changes for Specific Covariance Models

Figure 3.6 shows the isotropic correlation functions of transformed fields by the

absolute-value transformation for Gaussian and exponential covariance models. Any
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Figure 3.6: Correlations of the underlying and transformed fields for different co-
variance models. Transformed correlations are fitted by the same type of covariance
functions for the Gaussian and exponential models

other commonly used covariance models such as the spherical or matern models can

be evaluated. Eq. (3.3) shows that the common covariance model types, such as

Gaussian and exponential models, may be changed by the transformation. If the

same types of covariance models are used to fit the transformed correlations [Zinn

and Harvey, 2003; Neuweiler and Cirpka, 2005], the original correlation lengths are

1.67 and 2.64 times of the transformed one for the Gaussian and exponential model,

respectively. This result implies that one needs to scale up the cell size by 1.67 and

2.64 for connected fields with Gaussian and exponential models in order to main-

tain the same correlation lengths or to generate Gaussian random fields with larger
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correlation lengths for transformation. For example, to generate a connected field

with a correlation length of 3 cells for the Gaussian model, one needs to generate a

multivariate Gaussian field with a correlation length of 5 cells.

3.3.3 Effect of Anisotropy and Orientation

The mapping method using Figure 3.2 and Eq. (3.3) can be applied to evaluate

multi-dimensional anisotropic covariance models. Because the transformation only

changes the correlation values and does not change the spatial separation distance, the

anisotropic ratio and orientation remain constant. That is, the change ratios of corre-

lation lengths at different directions between underlying and transformed anisotropic

fields are identical to the change ratio for isotropic fields, indicating that it is sufficient

to investigate the correlation change in one dimension. Thus, to generate anisotropic

connected fields, one only needs to apply the absolute-value transform to an isotropic

Gaussian field and simply scale the cell size according to the anisotropic ratio.

3.3.4 Inverse Mapping

Scaling the cell sizes of transformed fields according to the correlation length change

ratio, as discussed in section 3.2, was used to generate connected fields with simi-

lar correlation functions as the underlying Gaussian fields [Zinn and Harvey, 2003;

Neuweiler and Cirpka, 2005]. This method is based on the assumption that the co-

variance model type is not changed by the transformation, which is not accurate as

indicated by Eq. (3.3). In our approach, the inverse mapping of Figures 3.3 and

3.4 or Eq. (3.3) can yield an accurate estimation of the correlation function required

for the underlying Gaussian field. Thus, to generate a connected field with a given

correlation function, one may first determine the required correlation function, gen-

erate the underlying Gaussian field accordingly, and then apply the absolute-value

transformation.
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3.3.5 Hole-effect Correlation

Non-monotonic correlations are known as the hole-effect structures, often used to

represent a dependence form of pseudo-periodicity [Journel and Huijbregts, 1978].

Figure 3.2 shows that the negative correlation becomes positive after the absolute-

value transformation. Thus, the anti-correlation in a random field with hole-effect

correlations cannot be maintained by the absolute-value transformation. In addition,

the non-monotonic behavior of hole-effect correlations will be maintained because of

the symmetric, monotonic relationship about zero correlation between the original

and transformed correlations. Figure 3.6c shows a hole-effect correlation and its

transformed correlation. It clearly shows that the transformed correlation structure

cannot be described by the original model.

3.3.6 Conclusion

This note investigates the effects of a transformation on the spatial dependence struc-

ture of spatially distributed random fields. An efficient method is developed to fast

and accurately evaluate the transformed correlation. Results indicate that (1) a

transformation of spatially distributed fields usually changes the spatial dependence

structure; and (2) the relationship between the dependence structures of the under-

lying and the transformed field can be expressed analytically, and it is sufficient to

do this in one dimension.

We use the developed approach to investigate the change of correlations of con-

nected random fields generated by the absolute-value transformation. Results show

(1) the correlation lengths of the underlying Gaussian fields are 1.67 and 2.64 times

of those of transformed non-Gaussian fields for Gaussian and exponential covariance

models, respectively; (2) the anisotropic ratio does not change; and (3) the anti-

correlation in hole-effect correlations cannot be maintained. In addition, the inverse

mapping can yield the accurate estimation of the correlation function required for the
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underlying Gaussian field, which can be used to generate the connected field with a

given correlation function.

3.4 Quantitative Charaterization of Connectivity Patterns

3.4.1 Charateristics of Connected Fields

Heterogeneity of geologic media is an intrinsic feature of natural hydrologic systems,

and its effect on subsurface flow and transport often have a substantial influence

on the behavior of the system. The characteristics of the spatial structures have

been studied since decades [e.g., Dagan, 1986; Gelhar, 1986; Neuman, 1997]. Mostly,

we are interested in the flow and transport behaviors on large scales, and the ex-

act distribution and detailed variability of the spatial patterns are unknown. Thus

geostatistical techniques (i.e. one- and two-point statistics) and upscaled models are

often used. However, a number of studies in various areas of hydrogeology have been

demonstrated that traditional geostatistics are not sufficient for capturing and gen-

erating appropriate heterogeneity of the underlying field [Western, et al, 1998, 2001;

Wen and Gomez-Hernamdez, 1998], including hydrogeologically important examples

such as soil moisture, surface rainfall-runoff [Western et al, 1998], and hydraulic con-

ductivity in aquifer formations[Western et al, 2001]. These and other studies [e.g.,

Fogg, 1986; Silliman and Wright, 1988; Wen and Gomez-Hernandez, 1997; Tidwell

and Wilson, 1999; LaBolle and Fogg, 2001; Zinn and Harvey, 2003; Zinn et al.,

2004; Liu et al., 2004, 2007; Knudby and Carrera, 2005; Willmann et al., 2008; Luo

and Cirpka, 2011] have demonstrated that flow and transport in heterogeneous fields

with connected features (i.e., thin connected bands with high- or low- conductivity

paths) are hydrologically important, and require special attention. Intuitively, high-

conductivity flow paths form preferential flow paths (channeling) which can lead to

early breakthrough of contaminants and significant reduction of arrival times; while
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low-conductivity flow paths form flow barriers that can result in excessive tailing be-

havior. The important feature of these connected paths is the degree to which they

are interconnected, instead of their sizes or directions.

Quantification of connectivity properties in hydrogeology usually utilizes indica-

tor functions. [Journel and Alabert, 1990; Anderson, 1997] suggested that indicator

geostatistics is an appropriated tool for characterizing connectivity, while Western et

al. [1998] showed a counter-example in soil moisture patterns. Western et al. [2001]

inherits the measurements in percolation theory, and introduces two-pint cluster func-

tions and two-cut indicators[e.g., Torquato et al., 1988; Western et al, 1998, 2001;

Neuweiler and Cirpka, 2005]. Western et al. [2001] has applied these concepts on soil

moisture patterns and hydraulic conductivity in aquifer formations; while Neuweiler

and Cripka [2005] applied these concepts to investigate the influence of connectivity on

the effective relative permeability curves in unsaturated soils. Additionally, Knudby

and Carerra [2006] defines flow connectivity indicators and transport connectivity

indicators, and concludes that the degree of connectivity is process-dependent.

3.4.2 Two-cut Indicator Function

Here we use the two-point cluster function of a two-cut indicator field as a way

of quantifying connectivity properties [Torquato et al., 1988; Western et al., 2001;

Neuweiler and Cirpka, 2005].

Indicator values vary between 0 and 1. The two-cut indicator field I(x) is

defined by an upper and a lower threshold value, taking value I(x) = 1 if the original

value Y (x) at location x is between the two thresholds, and taking value I(x) = 0

otherwise. The threshold values are flexible and chose by the users, and we con-

sider threshold values for log-intrinsic permeability field since we want to analyze the

connected permeability zones.

For clusters of regions with I(x) = 1, we give each cluster an index, and denote

43



the indexed field as Cl(x). Figure 3.7 gives a simple example of a 10× 10 field.

Figure 3.7: 2-cut indicator functions for a simplified 10 by 10 field, with zero mean
and variance 1

Then we can define the two-point cluster function C(h) as the probability that

two points x and x′ with distance h = |x− x′| belong to the same cluster [Torquato

et al, 1988; Western et al, 2001; Neuweiler and Cirpka, 2005]:

C(h) =
〈I(x)P (x,x′)〉|x−x′|=h

〈I(x)〉
(3.6)

where

P (x,x′) =

 1

0

if Cl(x) = Cl(x′)

otherwise
(3.7)

In order to perform the averaging process denoted by the angular brackets, we will

need to calculate over an ensemble of N fields. For the simplified situation when there
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is only one cluster, the two-point cluster function will be identical to the correlation

function of the indicator field I(x).

3.4.2.1 Quantification of Connectivity

We are now ready to quantify and compare connectivities for the set of three dif-

ferent fields in Section 3.1, namely, the Gaussian (or exponential) random field, the

high-conductivity connected field, and the low-conductivity connected field, having

identical correlation functions.

A 2-dimensional random field with 256×256 cells is created by an isotropic Gaus-

sian (or exponential) covariance model, with one point was fixed at the domain center,

having mean 〈Y (x)〉 = 0 , variance σ2
Y (x) = 1, and correlation length of 5 cells. The

upper threshold value is chosen to be 0.7, and the lower threshold value is −0.7. And

we calculate the two-point cluster function (Eq. 3.6) based on 10,000 random fields

generated by the same procedure as described in Section 3.1.

Figure 3.8 is an example of random heterogeneous fields with Gaussian covariance

model, as well as their two-cluster functions, respectively. The first row indicates nor-

mal random field, while the second and the third rows indicate high-value connected

field and low-value connected field, respectively. And the 2nd, 3rd, and 4th columns

denote connected clusters for f < −0.7, −0.7 < f < 0.7, f > 0.7, respectively.

Different fields have different types of connected clusters: the high-value connected

field has connected clusters corresponding to the high values (f > 0.7); the low-value

connected field has connected clusters corresponding to the low values (f < −0.7);

and the normal random field does not have significant connected phenomenons except

for intermediate values (−0.7 < f < 0.7), which is consistent with our definition and

understanding of the Gaussian field: centered at the mean and scattered at extreme

values, and with the understanding that intermediate values tend to be well connected

in MultiGaussian-fields [Knudby and Carrera, 2006]. The right column of Figure 3.8
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demonstrates the two-point cluster function for each field: the red line indicates low

permeability, the blue line indicates intermediate permeability, and the green line

indicates high permeability. As for the standard gaussian field (1st row), the red

line and the green line are overlapped, suggesting that connectivities on extreme val-

ues are symmetric, and both tend to zero as distance between two points increases,

meaning that two points with extreme (low or high) conductivity values are not likely

to be connected. For intermediate values (the blue line), however, C(h) tends to be

stabilized at 0.5 when the distance is large enough (h & 0.2), meaning that most

points of the intermediate values are connected, no matter how far apart they are.

As for the high-conductivity connected fields (2nd row), the high-permeability zones

are best connected, followed by intermediate zones and low permeability zones; while

the low-conductivity connected fields (3rd row) have the opposite order: low perme-

ability zones are better connected than intermediate zones, and the high permeability

zones are least connected. By definition, all these observations are consistent with

the cluster functions in 2nd, 3rd, and 4th columns.

Figure 3.9 gives another example of random heterogeneous fields with exponential

covariance model. As we noticed, exponential covariance models are not as smooth

as Gaussian covariance models, which also affects their connectivity. Considering

the demonstration of cluster functions (2nd, 3rd, and 4th columns), there are no

significantly well connected zones as those in Figure 3.8. In addition, zones with

intermediate values are always best connected, among the set of three fields. And,

contrary to what happens in fields with Gaussian covariance model, in fields exponen-

tial model, high-permeability zones are less connected in high-conductivity connected

fields (2nd row), and low-permeability zones are less connected in low-conductivity

connected fields (3rd row). This might imply that absolute-value transformation is

not suitable for exponential fields: “high-conductivity connected” fields are not truly

connected in the high-value zones, and the “low-conductivity connected” fields are
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not truly connected in the low-value zones. Furthermore, by comparing Figure 3.8

and Figure 3.9, we conclude that fields with Gaussian covariance model have better

connectivity than those with exponential covariance model.

3.5 Closure

This chapter has reviewed methods to generate connected fields, especially the effi-

cient absolute value transformation method. Then the change of correlation length

of connected random fields generated by the absolute-value transformation has been

investigated. We carry out Monte-Carlo simulation and the results indicate that (1)

the absolute-value transformation has slight effect on changing the types of covariance

models; (2) the correlation length of the original field is 1.67 or 2.64 times of that of

the connected field for Gaussian or exponential covariance models; (3) anisotropy is

not changed by the absolute-value transformation. This chapter has also summarized

connectivity measures in the literature, and discussed two-point cluster function in

details. We conclude that two-point cluster functions can identify different degrees of

connectivity for connected fields with Gaussian covariance model, but not as reliable

when used for connected fields with exponential covariance model, which may be due

to the fact that exponential covariance models are continuous but not smooth.

Now that we have studied the characteristics of connected fields, in the following

chapters, we will focus on the flow and transport behaviors, especially the macroscopic

reactive transport models, and the estimation of concentration variations.
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CHAPTER IV

PERFORMANCE OF MACROSCOPIC MODELS IN

CONNECTED HETEROGENEOUS MEDIA

4.1 Introduction

The current research is motivated by a previous work by [Luo and Cirpka, 2011],

in which numerical cases of mixing-controlled reactive transport with a bimolecular

precipitation reaction at local equilibrium in structured and normally heterogeneous

domains are investigated. They showed that, in cases with intermediate hydraulic

conductivity contrast, making macroscopic models fit flux-averaged concentration

breakthrough curves better may not improve the prediction of mixing-controlled re-

active transport, and it becomes necessary to quantify and account for the variabil-

ity of conservative concentrations in the flux in order to formulate an appropriate

macroscopic transport model that predicts mixing-controlled reactive transport. The

objective here was to examine the performance of macroscopic models in predict-

ing mixing-controlled reactive transport in connected heterogeneous media. In other

words, we investigated to which extent concentration fluctuations within the solute

flux could be neglected in the transfer from breakthrough curves of conservative to

reactive compounds.

In connected heterogeneous fields, very different flow and transport behavior can

occur even though the conductivity fields have nearly identical lognormal univariate

conductivity distributions and nearly identical isotropic spatial covariance functions

[Western et al., 2001; Zinn and Harvey, 2003]. Therefore, the traditional macrodis-

persion theory is no longer effective for upscaling effective macroscopic models. In
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fact, it has been proven that advection-macrodispersion transport models (a nor-

mal bell shape with width growing with the square root of time) fail to characterize

anomalous transport behavior, and kinetic mass transfer (particularly multirate mass

transfer), non-Fickian or fractional dispersion, continuous time random walk, or more

detailed hydraulic conductivity heterogeneities must be incorporated. However, most

of such sophisticated macroscopic models consider the mean concentration distribu-

tion and ignore the subscale incomplete mixing. From a strictly theoretical standpoint

of view, it is clear that neglecting such variations must lead to a mass-balance error,

since the transfer from conservative to reactive compound concentrations is usually

nonlinear. However, the studies of [Edery et al., 2009] and [Willmann et al., 2010]

indicated good performance, despite the fact that their models could not account for

concentration variations in the solute flux. The present research aims to improving

the understanding of how macroscopic models perform in connected heterogeneous

media so that we know when improving macroscopic models is effective and when we

need to seek other modeling frameworks.

4.2 Methods

4.2.1 Mixing-Controlled Reactive Transport

We study the same reactive transport as the one conducted by [Luo and Cirpka,

2011]. An instantaneous bimolecular precipitation reaction was used for numerical

modeling and simulations. Assume advective-dispersive transport of compounds A,

B and C with concentrations cA, cB, and cC . Aqueous species (solutes) A and B

react with each other, forming compound (mineral) C:

A+B → C ↓ (4.1)

For simplicity, we assume all stoichiometric coefficients to be one. This reaction is

assumed to be fast compared to transport processes, so that it can be treated as in
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equilibrium. The concentrations of the aqueous species A and B satisfy:

cA · cB = Keq (4.2)

where cA and cB are the molar concentrations of the reactive species A and B respec-

tively, and Keq is the chemical equilibrium constant. The transport equations for the

reactive species A, B, and C are given by:

∂cA
∂t

+∇ · (vcA −D∇cA) = −r (4.3)

∂cB
∂t

+∇ · (vcB −D∇cB) = −r (4.4)

∂cC
∂t

+∇ · (vcC −D∇cC) = r (4.5)

where t is the time, v is the seepage velocity, defined as the specific discharge over

porosity, v = q/θ, D is the local dispersion tensor, and r is the reaction rate (pre-

cipitation of C, if r positive). A and B have the same reaction rate due to the

stoichiometry balance of the bimolecular reaction. For simplicity, we assume local

chemical equilibrium is satisfied everywhere at all times. This reactive transport case

can be solved completely relying upon the mixing ratio of conservative transport [De

Simoni et al., 2005, 2007].

4.2.2 Mixing-Ratio Approach

For the sake of completeness, the mixing-ratio methodology developed by De Simoni

et al., [2005] is briefly summarized in the following[Luo and Cirpka, 2011]. Define the

conservative component:

u = cA − cB (4.6)

which satisfies a conservative transport equation
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∂u

∂t
= −v · ∇u +∇ · (D∇u) (4.7)

Solving equations 4.2 and 4.6 yields the reactive species concentrations:

cA =
u

2
+

√
u2

4
+Keq (4.8)

cB = −u
2

+

√
u2

4
+Keq (4.9)

Thus, cAand cB can be solely evaluated on the basis of the conservative component,

i.e., cA,B(x, t) = cA,B[u(x, t)] for given chemical equilibrium constants. On other

words, we can directly obtain reactive species concentrations based on conservative

breakthrough curves and there is no need to fit a mechanistic model for predicting

reactive transport. Thus, the mixing-ratio approach can also be considered as a

“perfect” macroscopic modeling approach.

4.2.3 Random Gaussian Heterogeneous Fields

The geological settings follow those in [Luo and Cirpka, 2011], containing a two-

dimensional, rectangle site of 20m × 10m. The mean flow is in direction x, and the

variance of log hydraulic conductivity, σ2
lnK , is varied from mildly heterogeneous field

σ2
lnK = 0.2 to relatively strongly heterogeneous field σ2

lnK = 6. Table 4.1 lists all

hydrological parameters:

The log conductivity fields are generated by the spectral method of Dykaar and

Kitanidis [1992] on a rectangular 1000× 500 cell grid. The steady state flow field is

solved for a mean hydraulic gradient of 0.01 in direction x. A streamline-oriented grid

for transport with grid resolution identical to that of the rectangular grid is generated

using the streamline method of Cirpka et al. [1999a, 1999b]. The flowrate in each

stream tube is identical. The numerical schemes for solving the transport problem

follows [Cirpka et al., 1999a].

53



Table 4.1: Hydrogeologic parameters for random Gaussian heterogeneous fields
Parameter Symbol Values

Dimension of domain L×W 10m× 5m
Discretization 4x×4y 0.01m× 0.01m
Mean hydraulic conductivity 〈KG〉 1× 10−4m/s
Variance of hydraulic conductivity σ2

lnK 0.2, 0.5, 1, 2, 3, 4, 5, 6
Correlation length Ix × Iy 0.2m× 0.2m
Mean hydraulic gradient J 0.01
Effective porosity θ 0.3
Longitudinal dispersivity αL 0.01m
Transverse dispersivity αT 0.001m
Molecular diffusion Dm 10−9m2/s

Generation of connected random fields used the absolute-value transformation of

multivariate Gaussian fields [Zinn and Harvey, 2003], which offers a simple approach

to generate a spatial dependence structure with different connectivity that is non-

Gaussian, but based on a multivariate normal spatial field given two-point spatial

correlations. The absolute-value transformation defines a new variable by the nor-

mal score transform of the absolute value of the original random variable [Zinn and

Harvey, 2003]:

Y ′ (x) = −
√

2erf−1
(

2erf

(
|Y (x)|√

2

)
− 1

)
(4.10)

where Y = lnK is an autocorrelated Gaussian random field with zero mean and

variance of unity, x is the spatial location, and Y ′ is the transformed random field

with connected high conductivities (−Y ′ is a disconnected field with connected low

conductivities).

Figure 2.5 shows some generated realizations of normally, high-conductivity con-

nected and low-conductivity connected fields. All hydrological parameters are iden-

tical to those in table 4.1. The connected fields are generated using the method

developed in Chapter 3 so that all realizations have the same spatial correlation.
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4.3 Results and Discussion

4.3.1 Conservative transport

We are interested in the reactive transport after a long travel distance, i.e., the plume

has been sufficiently developed, because it is more common in reality. In our numerical

cases, the domain length is 50 times of the correlation length, which is considered as

a sufficiently long distance for macrodispersion to describe plume spreading.

Figure 4.1: Particle travel time density functions at the outflow boundary in one
realization with unitary variance of hydraulic conductivity field

Figure 4.1 shows the particle travel time density functions at the outflow boundary

in one realization with unitary variance of hydraulic conductivity field. Measurements

available in reality are usually the flux-averaged mean of all local-scale values. Figure
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4.1 clearly shows that great variations in the local scale or sub-scale are created by

hydraulic conductivity heterogeneities. Two major features can be observed from

the mean behavior: (1) the mean travel time pdf in the high-conductivity connected

field is highly asymmetric with a heavy, long tail, while the mean travel time pdfs

in normally and disconnected heterogeneous fields are rather symmetric; and (2)

the peak time in the connected field is much earlier than the other two, indicating

preferential flow paths in the connected field.

Figure 4.2: Mean travel time pdf, variance and coefficient of variation at the outflow
boundary in heterogeneous media with different connectivity and unitary variance of
lnK

Figure 4.2 shows the mean, variance and coefficient of variation of the travel time

pdf for the specific case. In general, variance follows the similar pattern as the mean,

i.e, variance vanishes at early and late times and peaks with the mean. However,

the coefficient of variation shows almost opposite pattern as the mean and variance.

At early and late times, variances are small but non-negligible compared with the
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mean, implying that ignoring such variations may still create relative large errors in

predicting reactive transport.

4.3.2 Reactive transport

Figure 4.3: Numerical results and prediction by a “perfect” macroscopic model for
the flux-averaged concentration difference of compound A between the conservative
and reactive cases at the outflow boundary, for Gaussian fields with different variance
of hydraulic conductivity

Figures 4.3-4.5 show the product species concentration breakthrough curves of

macroscopic models for predicting mixing-controlled reactive transport in normally

Gaussian, high-conductivity connected, low-conductivity connected heterogeneous

fields, respectively. Clearly, all macroscopic models overestimate the reaction rates,

yielding higher peak concentrations and more total product mass. However, by com-

paring the different types of heterogeneous fields with different variances, we can see

the macroscopic model performs much better in connected fields and in fields with

small or high variances. This finding is consistent to the results identified in structure

media in Luo and Cirpka [2011].
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Figure 4.4: Numerical results and prediction by a “perfect” macroscopic model for
the flux-averaged concentration difference of compound A between the conservative
and reactive cases at the outflow boundary, for connected fields with different variance
of hydraulic conductivity

Figure 4.6 shows the results averaged from 20 realizations for each type of het-

erogeneous fields with different variances. The relative errors for both the total mass

and peak concentrations show that (1) the highest error occurs in fields with inter-

mediate variances around 1; the error can be as high as 100%; (2) the macroscopic

model performs better in heterogeneous fields with very low (nearly homogeneous)

and high variances (highly heterogeneous); (3) at the low variance, the macroscopic

model performs best in disconnected fields and worst in connected fields; while at

the same high variance, the macroscopic model performs best in connected fields and

worst in disconnected fields.

Figure 4.7 shows snapshots of plume development in connected fields with differ-

ent variances. The plume front is rather uniformly distributed across the domain in

the case of a small log-conductivity variance. With increasing variance, the plumes
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Figure 4.5: Numerical results and prediction by a “perfect” macroscopic model for
the flux-averaged concentration difference of compound A between the conservative
and reactive cases at the outflow boundary, for disconnected fields with different
variance of hydraulic conductivity

Figure 4.6: Relative errors of total mass and peak concentration predicted by the
“perfect” macroscopic transport model in heterogeneous media with different connec-
tivity

59



Figure 4.7: Snapshots of plume development in connected heterogeneous media with
different connectivity

are stretched, focusing in the zones with large hydraulic conductivities and form-

ing narrow preferential paths. The majority of flow moves along these preferen-

tial paths, which accounts for the large proportion in evaluating flux-average break-

through curves. In the flow focusing areas, shorter transverse distance is required for

mixing. Thus, concentration variations in highly heterogeneous fields may become

smaller than those in intermediately heterogeneous fields.
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4.4 Conclusions

We have presented numerical test cases of mixing controlled reactive transport with

a bimolecular precipitation reaction at local equilibrium in different heterogeneous

domains. We also investigate random heterogeneous fields with same variance of

hydraulic conductivity, but with different connectivity. Specifically, we study Gaus-

sian heterogeneous fields, high-conductivity connected fields, and low-conductivity

connected fields. The key objective was to analyze to what extent concentration fluc-

tuations within the solute flux could be neglected in the transfer from breakthrough

curves of conservative to reactive compounds. Our results indicate the largest errors

in macroscopic one-dimensional models for intermediate conductivity variances. With

respect to total mass balance and peak concentration errors, increasing the degree of

heterogeneity beyond a critical value led to an improvement of the performance. Our

results clearly indicate the need for developing other modeling frameworks to evalu-

ate both mean and concentration variance for simulating mixing-controlled reactive

transport in heterogeneous media, particularly in media with intermediate variances

of hydraulic conductivity.
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CHAPTER V

A STATISTICAL APPROACH TO ESTIMATE

CONCENTRATION VARIANCE

Concentration variations are very difficult to evaluate for a specific site both theoret-

ically and experimentally, despite the importance in practice. From a practical view,

the information that can be conveniently obtained through tracer tests is integrated

breakthrough curves, such as those extracted from a well or through an outflow plane.

The objective for this chapter is to develop an innovative approach that relies on the

mean or integrated breakthrough curves to estimate concentration variance. The

idea is that we will rely upon both conservative and reactive breakthrough curves:

conservative breakthrough curves provide the mean behavior while reactive ones are

resulted from both mean behavior and the species segregation or incomplete mixing.

Thus by combining these two, it is possible to extract the extent of mixing from the

reactive breakthrough curves.

5.1 Background

Reactive transport models are essential tools for understanding contaminant plume

transport, dilution, and remediation in subsurface media. Spatial variability and

uncertainty of hydraulic parameters has been identified as the major challenge in

developing appropriate models and upscaling effective transport parameters for pre-

dicting the fate and transport of contaminants in natural aquifers. The widely applied

macroscopic advection-dispersion equation (ADE) can adequately describe how the

mean or spatially averaged concentration of a conservative tracer behaves at the late
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time in the absence of detailed information of pore structures and hydraulic conduc-

tivities in a mildly random heterogeneous medium. However, such models coupled

with chemical reactions have proven unsuccessful for forecasting reactive transport

with reaction rates limited by species mixing because macrodispersion implicitly as-

sumes that plume spreading controlled by spatial variations in hydraulic conductivity

is equivalent to mixing [MacQuarrie and Sudicky, 1990; Kitanidis, 1994; Kapoor et

al., 1997; Cirpka and Kitanidis, 2000; Raje and Kapoor, 2000; Gramling et al., 2002;

Dentz and Carrera, 2007], a prerequisite for multi-species reactions to occur and much

more likely to be a limiting factor controlling the overall rate of chemical reactions.

A good macroscopic model should be able to describe both spreading and mixing.

In cases when concentration fluctuations cannot be neglected, both mean concentra-

tions and concentration variances should be evaluated for predicting mixing-controlled

reactive transport. A specific modeling framework, which accounts for both the mean

concentration and its variance, is based on transport equations of the concentration

variance in addition to macroscopic mean models [Kapoor et al., 1997]. The variance

transport equation involves terms for the generation and destruction of the concen-

tration variance, which are difficult to measure or to predict from statistical metrics

of the flow field. From conservative-concentration statistics (mean and variance), at-

tempts have been made to estimate the concentration covariance of reactive species in

nonlinear mixing-controlled reactive transport, which is subsequently used to correct

reaction rates [Oates, 2007]. More elaborate models have targeted the full concen-

tration distribution of conservative species [e.g., Fiorotto and Caroni, 2002, 2003],

which has been shown to resemble a beta distribution. For specific cases, such as

instantaneous bimolecular reactions or biokinetic reactions at steady state, the local

statistics of conservative species can be mapped to those of reactive species without

relying on linearization [Cirpka et al., 2008, 2011].
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In the present research, we are interested in developing an innovative and practi-

cal approach for estimating concentration variance. We will assume that only break-

through curves at the outflow boundary are known, which can be conveniently mea-

sured through a tracer test. The conservative breakthrough curve describes the mean

concentrations, which are not a function of concentration variations. However, the

reactive breakthrough curves are a result of both mean and concentration variations.

For example, for a bimolecular reactive transport undergoing advection and dispersion

at local scale, we have:

Conservative :
∂c

∂t
+

∂

∂xi
(vic) +

∂

∂xi
(v′ic

′)− ∂

∂xi

(
Dij

∂c

∂xi

)
= 0 (5.1)

Reactive :
∂c1
∂t

+
∂

∂xi
(vic1) +

∂

∂xi
(v′ic

′
1)−

∂

∂xi

(
Dij

∂c1
∂xi

)
+ kc1c2 = −kc′1c′2

The left-hand side of the reactive transport equation can be evaluated by the

mean and the conservative transport, which yields the macroscopic model prediction

without the consideration of concentration variance. The prediction error compared

with the true reactive breakthrough curve reflects the effects of concentration varia-

tions. We will develop an inverse algorithm with prior information of the distribution

shape (such as Beta) and sampling techniques to estimate the concentration vari-

ance. More importantly, we will directly use the concentration breakthrough curve

instead of a fitted macroscopic model so that the algorithm can be applied to any

type of heterogeneous fields. To test the developed method, we will utilize the lab-

scale visualization experiments from Dr. C.F. Harvey’s research group at MIT (@

http://web.mit.edu/ harveylab/Reactive Transport.html), in which a colorimetric re-

action was used to quantify fluid mixing, and the movement of colored dye tracers

and colorimetric chemical reactions[Oates and Harvey, 2006] were digitally imaged

through illuminated chambers [Zinn et al., 2004; Oates, 2007].
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5.2 Method

5.2.1 Estimating Concentration Variance

The beta-distribution function is used to describe the conservative concentration dis-

tribution [e.g., Fiorotto and Caroni, 2002, 2003]:

f (c/c0;α, β) =
Γ (α + β)

Γ (α) Γ (β)
(c/c0)

α−1 (1− c/c0)β−1 (5.2)

where the parameters α and β can be evaluated by the concentration mean and

variance [Oates, 2007]

α = c/c0

c/c0
(

1− c/c0
)

σ2
c/c0

− 1

 (5.3)

β =
(

1− c/c0
)c/c0

(
1− c/c0

)
σ2
c/c0

− 1

 (5.4)

Given the mean breakthrough curve of conservative tracers alone at the out flow

boundary, it is usually impossible to evaluate the species segregation and concen-

tration variance. However, if the mean breakthrough curves of reactive species are

known, it is possible to extract the concentration variations from both mean conserva-

tive and reactive breakthrough curves. For example, for a bimolecular instantaneous

reaction, one can evaluate the concentrations of reactants A and B and the product

C by sampling the approximated beta distribution.

The bimolecular instantaneous reaction case can be solved conveniently through

a conservative transport problem [e.g., Cirpka and Valocchi, 2007]:
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cA =

 X − (1−X) if X ≥ 0.5

0 if X ≤ 0.5
(5.5)

cB =

 0 if X ≥ 0.5

(1−X)−X if X ≤ 0.5
(5.6)

cC =

 (1−X) if X ≥ 0.5

X if X ≤ 0.5
(5.7)

in which X is the mixing ratio of the solution containing A in the mixture. X is

computed by solving the Heaviside problem of conservative transport.

Figure 5.1: Schematic curve that demonstrates the relationship between reactive
product concentration and mean concentration for instantaneous bimolecular irre-
versible reaction

Figure 5.1 is schematic plot that demonstrates the relationship between reactive

product concentration and mean concentration for instantaneous bimolecular irre-

versible reaction. Figure 5.2a shows the 2D contour mesh plot for mean product

concentration, and Figure 5.2b shows the contour mesh plot for reactive product con-

centration variance. We notice that the relation between mixing ratio and coefficient
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Figure 5.2: 2D mesh plot between mixing ratio, coefficient of variation, and reactive
product concentration for instantaneous bimolecular irreversible reaction: (a) mean
reactive product concentration; (b) variance of reactive product concentration

of variation is now strictly one-to-one, for all points in the mesh grid.

Figure 5.3: Schematic curve that demonstrates the relationship between reactive
product concentration and mean concentration for instantaneous bimolecular irre-
versible reaction with 1:1:1 stoichiometry and local equilibrium constant Keq
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Figure 5.4: 2D mesh plot between mixing ratio, coefficient of variation, and reac-
tive product concentration for instantaneous bimolecular irreversible reaction with
1:1:1 stoichiometry and local equilibrium constant Keq: (a) mean reactive product
concentration; (b) variance of reactive product concentration

Similarly, we consider an instantaneous bimolecular precipitation reaction with

1:1:1 stoichiometry and local equilibrium constant Keq. Figure 5.3 is schematic plot

that demonstrates the relationship between reactive product concentration and mean

concentration for instantaneous bimolecular precipitation reaction with 1:1:1 stoi-

chiometry and local equilibrium constant Keq. Figure 5.4a shows the 2D contour

mesh plot for mean product concentration, and Figure 5.4b shows the contour mesh

plot for reactive product concentration variance. Similar results are obtained as those

for instantaneous bimolecular irreversible reaction. Thus, for given relationships be-

tween conservative and reactive species concentrations, we can estimate the variance

of conservative concentrations by sampling the beta distribution.
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5.2.2 Predicting Reactive Transport

Once we have the concentration variance for both conservative and reactive trans-

ports, we can use the Eulerian concentration variance approach [Gelhar and Axness,

1983; Kapoor and Gelhar, 1994] with the advection-dispersion equation (ADE) for

conservative mean concentrations and an equation for conservative concentration

variances for predicting conservative and reactive transports with the same hydro-

geological characteristics at arbitrary location and time.

In the Eulerian stochastic framework, solute concentration c and velocity v are

treated as random variables, having a mean(c, v) and a zero-mean fluctuation(c′, v′).

The 1-dimensional transport model for conservative concentration mean(c) and variance(σ2
c )

can be summarized by the following equations[Gelhar and Axness, 1983; Kapoor and

Gelhar, 1994; Oates, 2007]:

∂c

∂t
= −v ∂c

∂x
+ vAx

∂2c

∂x2
(5.8)

∂σ2
c

∂t
= −v∂σ

2
c

∂x
+ vAx

∂2σ2
c

∂x2
+ 2vAx

(
∂c

∂x

)2

− v

χL,t
σ2
c

where v is the mean velocity, Ax is the 1-dimensional macrodispersivity for the macro-

dispersion closure approximations, and χL,t is the variance length scale derived from

variance destruction:

c′v′ = −vAx
∂c

∂x(
v′c′2

)
= −vAx

∂σ2
c

∂x
(5.9)

2α

(
∂c′

∂x

)2

= χσ2
c =

v

χL,t
σ2
c

where α is the local dispersivity, and χL,t can be considered as a characteristic length

that a plume travels in order to destroy variance. In addition, χL,t is considered
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time-dependent, especially at early time, and can be further expressed as [Oates,

2007]:

χL,t = χL
(
1− e−(vt)/χG

)
(5.10)

where χL is the variance length scale that can be considered as characteristic distance

a plume has to travel to destroy variance, and χG is the variance growth scale, which

can be considered as a characteristic length that a plume travels in order to reach the

asymptotic variance length scale χL.

In summary, the algorithm for predicting mixing-controlled reactive transport can

be summarized as:

1. Conducting both conservative and reactive tracer tests with known reaction

kinetics, such as bimolecular instantaneous reactions, and measure concentra-

tion breakthrough curves for both conservative and reactive species at a certain

observation point, such as the outflow boundary;

2. Estimating the concentration variance by the sampling approach and using both

mean conservative and reactive breakthrough curves;

3. Fitting the mean transport equations for both mean concentrations and vari-

ances, i.e., fitting Eqs. 5.8 to obtain coefficients v, Ax, χL, χG;

4. Solving the transport equations for mean and variance for other locations;

5. Applying the sampling approach again for predicting the mean and variance of

reactive species breakthrough curves.

5.3 The Numerical Case — Lab-scale Visualization Exper-
iments for Conservative and Reactive Transports

We use the lab-scale visualization experiments from Dr. Harvey’s research group

at MIT (@ http://web.mit.edu/ harveylab/Reactive Transport.html) to understand
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fluid-fluid mixing, and utilize their experimental data for our numerical experiments.

The experimental setup shown in Figure 5.5 (Oates, [2007]) was used for the Tiron-

molybdate reaction as described by Gramling et al. [2002] and the tanks of het-

erogeneous porous media created by Zinn et al., [2004]. Three 40 × 20 × 0.65cm

glass-walled experimental chambers are filled with different size glass beads and have

different spatially variable hydraulic conductivities. All chambers contain large glass

beads (2.1mm diameter) packed around circular inclusions (2.5cm diameter) contain-

ing smaller glass beads: 0.9mm diameter for mildly heterogeneous media having a

conductivity contrast of 6; 0.135mm diameter for intermediate heterogeneous media

having a conductivity contrast of 300; and 0.057mm diameter for highly heteroge-

neous media having a conductivity contrast of 1800. The dominant solute transport

processes in the three chambers are different: conservative solute transport in the

mild heterogeneous chamber is dominated by advection-dispersion and can be fully

described by the macroscopic advective-dispersive-equation (ADE) models; while ad-

vection mass transfer is dominated in the intermediate heterogeneous chamber; and

diffusion mass transfer is dominated in the highly heterogeneous chamber can be

reproduced by advective mass-transfer model [Zinn et al., 2004; Oates, 2007].

We first briefly summarize the complex reaction of Tiron (Ti) and molybdate

(Mo), and their representation in the absorbing imaging experiment. Next, we will

show different patterns of the reactive transport in mild/intermediate/highly het-

erogeneous porous media. And finally, we are ready to demonstrate the developed

innovative reactive-transport framework, based on the experimental data, and to test

the effectiveness of the new method incorporating the evaluation of concentration

variations.
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Figure 5.5: Experimental chamber containing circular inclusions of low conductivity
as porous media Oates, [2007].

5.3.1 Tiron–Molybdate Reaction

Two tiron-molybdate species with a metal to ligand ratio of 1:1 and 1:2 have been

reported by [Sommer, 1962; Oates, 2007]. The first complexation reaction can be

written as:

Ti+Mo
MoTi (5.11)

where Ti is the molar concentration of Tiron; Mo is the molar concentration of

molybdate; and MoTi is the molar concentration of the 1:1 complex. This reaction

is assumed to be fast compared to typical transport times, so that this first reaction
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can be treated as in local equilibrium:

K1 =
[MoTi]

[Mo][Ti]
(5.12)

where K1 is the first equilibrium constant (liters/mol). This first product then un-

dergoes an additional reaction with Tiron, and the second complexation reaction can

be written as:

MoTi+ Ti
MoTi2 (5.13)

where MoTi2 is the second chelate formed. The second reaction can also be expressed

in the equilibrium expression:

K2 =
[MoTi2]

[MoTi][Ti]
(5.14)

where K2 is the second equilibrium constant (liters/mol).

In the lab-scale visualization experiments conducted by Harvey’s research group,

two clear solutions of 0.05M Tiron and 0.025M molybdate are mixed and buffered at

pH 6.1, which results in the progressive change of solute color as the reactants react

and the products diluted[Oates, 2007].

5.3.2 Tiron and Molybdate Reaction Model

When the reactants Tiron and Molybdate are mixed, mass balances combined with

equilibrium reaction rates (Eqs. 5.12, 5.14) give independent analytical solutions for

each of the complexes [Oates, 2007]:

[MoTi] = f([TiT ], [MoT ], K1, K2)

[MoTi2] = f([TiT ], [MoT ], K1, K2)
(5.15)

where MoT is the total molybdate, and TiT is the total Tiron.

In addition, the additive property of Beer’s Law ensures that the linear absorbance

(A1) of the two products (MoTi and MoTi2) can be expressed in a linear form:
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− log

(
T

T0

)
= A1 = ε1 [MoTi] + ε2 [MoTi2] (5.16)

where T/T0 is the fraction of light transmitted, ε1 and ε2 are coefficients that in-

clude the transmittance path length and the corresponding molar absorptivity of the

compound.

The equilibrium constants K1 and K2, and the linear absorbance coefficients ε1

and ε2, are determined by fitting observed absorbance at 580nm to Eqs. 5.15 and

5.16. The perfect fitting gives the following parameter values, as reported by [Oates,

2007]:

K1 = 3.4± 0.8× 103 liter/mol

K2 = 7.5± 1× 102 liter/mol

ε1 = 4.3± 2 liter/(mol*cm)

ε2 = 83± 1 liter/(mol*cm)

(5.17)

Therefore, at a pH of 6.1 and a wavelength of 580nm, absorbance is dominated by

the MoTi2 species.

Finally, [Oates, 2007] obtained the relationship between the digital camera recorded

polychromatic absorption and the monochromatic absorbance predicted by Beer’s

Law, which is found nonlinear, but very well described by an exponential function:

A1 = 0.021 ∗ (e3.7∗A/A0 − 1) (5.18)

where A1 is the monochromatic absorbance at 580nm, and A/A0 is the normalized

camera imaged absorbance. Thus the camera absorbance are transformed into linear

absorbance.

In the following numerical experiments, the actual solute concentration is the

monochromatic absorbance, thus Eq. 5.18 need to be performed after we read in the

data from the experimental video. Figure 5.6 demonstrates the relationships between
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Figure 5.6: Schematic curves that demonstrate the relationship between total prod-
uct characterized by the monochromatic absorbance in the Mo-Ti reaction and the
image absorbance from the camera

total product characterized by the monochromatic absorbance in the Mo-Ti reaction

and the image absorbance from the camera.

5.4 Results and Discussion

5.4.1 Conservative Transports

To utilize the experimental data from the visualization chamber experiment, we first

capture the high resolution movie and convert the concentration data according to

the colorbar values, and store the concentration data at different time t as snapshots

for further calculation. Then the concentration mean and variance at the outflow

boundary can be computed using the 2D snapshot concentration data.

Figure 5.7(a, b, c) are snapshots from the high-resolution video for conservative

transports of mild, intermediate, and highly heterogeneous fields, respectively. The

concentration value on each single grid can be read according to the colorbar, thus a

detailed mapping of the concentration field can be obtained from the video. Therefore,

mean concentration and concentration variance can easily be calculated subsequently.

Figure 5.8(a,b,c) show the mean concentration and concentration variation for
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Figure 5.7: Snapshots from the high-resolution video for conservative trans-
ports of mild, intermediate, and highly heterogeneous fields, respectively
(@http://web.mit.edu/harvey-lab/Reactive Transport.html)
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Figure 5.8: Mean and concentration variation for conservative transport break-
through curve at outflow boundary for mild, intermediate, and highly heterogeneous
fields, respectively

mild, intermediate, and highly heterogeneous media at the outflow boundary for

conservative transport. As observed from the Figure 5.8b, the concentration data from

the experimental video for intermediate heterogeneous media does not contain the full

transport process. In the following of this work, we will only use the experimental

data for mild and highly heterogeneous media (K1/K2 = 6 and K1/K2 = 1800,

respectively).

In addition, we calculated the normalized mean square error (NRMSE) to quantify

the concentration variance as:

NRMSE(X) =

∑
V ar(X)∑
X

2 (5.19)

For mild heterogeneous media, NRMSE = 0.054. For highly heterogeneous media,

NRMSE = 0.029.
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Figure 5.9: Compare histograms for data from video V.S. the fitted beta dis-
tributions, for mild heterogeneous field, at different locations along the x-axis.
Subfigures from (a)-(h) are corresponding to concentration histograms at x =
2, 4, 6, 8, 10, 12, 14, 16cm, respectively. The blue histograms are from experimental
video data, and the red lines are the fitted beta distributions, correspondingly

Figure 5.10: Compare histograms for data from video V.S. the fitted beta dis-
tributions, for highly heterogeneous field, at different locations along the x-axis.
Subfigures from (a)-(h) are corresponding to concentration histograms at x =
1, 3, 5, 7, 9, 11, 13, 15cm, respectively. The blue histograms are from experimental
video data, and the red lines are the fitted beta distributions, correspondingly
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For both mildly and highly heterogeneous fields, the beta-distribution assumption

can be validated by the conservative concentration data (Figures 5.9 and 5.10).The

beta distribution match the experimental concentration histogram pretty well.

5.4.2 Mixing-controlled Reactive Transport

Figure 5.11: 2D mesh plot between mixing ratio, coefficient of variation, and reactive
product concentration for Mo-Ti reaction: (a) mean reactive product concentration;
(b) variance of reactive product concentration

For the particular Mo-Ti reaction, mean reactive product can be obtained by

beta-distribution sampling (Eqs. 5.2 and 5.3) assuming mean concentration (µ) and

coefficient of variation(CV = σc/µ) are known and on the mesh grids. Combining

the reaction production curve in Figure 5.6, we can give a full contour mapping for

mean product concentration and product variance, with respect to conservative mean

concentration and concentration variation. Figure 5.11 shows the 2D contour mesh

plot for mean product concentration for Mo-Ti reaction, which contains products of

MoTi and MoTi2. Except for (µ,CV ) values that fall in the lower right corner of
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the graph, there is a 1-1 mapping between mixing ratio(equivalent to mean conserva-

tive concentration) and concentration variation, thus fix the reactive product mean

concentration for a given mean conservative concentration, and subsequently fix the

concentration variation for reactive product.

Figure 5.12: Snapshots of reactive transport for mild and highly heterogeneous fields,
respectively (@http://web.mit.edu/harvey-lab/Reactive Transport.html)

For the Tiron-molybdate reaction in the visualization experiments, the concen-

tration of reactive product is available from the experimental data. Figures 5.12(a,b)

are snapshots from the high-resolution video for conservative transports of mild and

highly heterogeneous fields, respectively. The visual plots of concentrations also yield

the concentration variance by extracting all local concentration. Figure 5.13(a,b)
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Figure 5.13: Mean and concentration variation for reactive transport breakthrough
curve at outflow boundary for mild and highly heterogeneous fields, respectively
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show the concentration mean and variance data for the concentration breakthrough

curves of Tiron-molybdate reaction product at the outflow boundary, for mild and

highly heterogeneous fields, respectively. For mild heterogeneous media, NRMSE

= 0.220; and for highly heterogeneous media, with NRMSE = 0.057.

Figure 5.14: Performance of fitted beta-distributed conservative concentration vari-
ance for reactant A at snapshot time T = 22 min, for mild heterogeneous media

Figure 5.14 shows a reactive concentration fitting at T = 22 min for mild het-

erogeneous field. By sampling the beta-distribution, we can fit the mean reactive

concentration and the concentration variance for conservative concentration very well

(Figure 5.14b, c). With these information, we obtain the sampled concentration

variance for reactive concentration (Figure 5.14d), which is in accordance with exper-

imental data. Figure 5.15 shows similar results for highly heterogeneous field.

Figure 5.16 shows that the developed approach yields very good prediction results

for the breakthrough curves at the outflow boundary for highly heterogeneous media
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Figure 5.15: Performance of fitted beta-distributed conservative concentration vari-
ance for reactant A at snapshot time T = 100 min, for highly heterogeneous media
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Figure 5.16: Reproduce concentration variance for reactive transport in highly het-
erogeneous media by sampling technique:(a) fitted mean breakthrough curve; (b)
fitted concentration variance by sampling technique

by sampling the approximated beta distribution, while macroscopic model (mean

model) from the conservative tracer test overestimated the peak. The uncertainty

analysis is straightforward based on the samples. The mean concentration can either

directly use the measured breakthrough curve because the step injection mode is

applied to both conservative and reactive transport or use the predicted concentration

breakthrough curve by the upscaled macroscopic model.

Figure 5.17 shows fitted macroscopic transport model for predicting conservative

transport in mild heterogeneous chamber, at four different time snapshots: T =

8, 22, 36, 50 min. Figure 5.18 shows the corresponding reactive species concentrations
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Figure 5.17: Predicted mean concentration and concentration variance for conserva-
tive transport in mild heterogeneous chamber, at four different time snapshots
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Figure 5.18: Predicted mean concentration and concentration variance for reactive
transport in mild heterogeneous chamber, at four different time snapshots

for reactive transport. Our developed approach clearly demonstrate good predictive

power for estimating concentration variance and predicting mixing-controlled reactive

transport.

Figure 5.19 demonstrates the sensitivity of parameters χL and χG when fitting the

1-dimensional mean and concentration model (Eqs. 5.8). In fact, there is a range of

values for the parameter pair (χL,χG) that gives similar fitting performance regarding

the experimental data we used.

5.5 Conclusions

Characterization of concentration variance is the key for modeling mixing-controlled

reactive transport. Concentration variance is usually difficult to measure because it
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Figure 5.19: Sensitivity measurement for χL and χG

requires many local measurements. In this research, we propose to use mean concen-

tration breakthrough curves of both conservative and reactive tracers to estimate the

concentration variance. The conservative breakthrough curve only contains the in-

formation of mean concentrations, while the reactive breakthrough curves are results

of both concentration mean and variance. Based on the relationship between con-

servative and reactive concentrations, we can estimate the variance by sampling the

beta distribution to fit the mean reactive breakthrough curve. For prediction, both

mean and fitted variance can be described by macroscopic transport models: one for

mean concentration, and the other for the variance with additional parameters. Our

approach is validated by the visualization experiments conducted at MIT. Although

the experiments provide all concentration distributions, our approach only requires

both conservative and reactive breakthrough curves at observation locations. In ad-

dition, our results suggest that one should conduct both conservative and reactive

tracer tests for upscaling macroscopic transport models because conservative tracer
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tests are insufficient for evaluating local concentration variations.
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CHAPTER VI

A DUAL-PERMEABILITY TRANSPORT MODEL FOR

SIMULATING MIXING-CONTROLLED REACTIVE

TRANSPORT

6.1 Introduction

Upscaling macroscopic reactive transport models is necessary for predicting contam-

inant fate and transport in the heterogeneous subsurface because detailed charac-

terization of spatial variability and uncertainty of hydraulic parameters is usually

unavailable at field sites. Macroscopic models are usually calibrated by flux-averaged

breakthrough curves of a conservative tracer and coupled with reaction kinetics deter-

mined in laboratory experiments. Such macroscopic models may inaccurately predict

breakthrough curves of reactive species because they neglect concentration variations

at local scale when evaluating effective reaction rates for nonlinear reactions limited

by solute mixing [e.g., Molz and Widdowson, 1988; MacQuarrie and Sudicky, 1990;

Kitanidis, 1994; Kapoor et al., 1997; Cirpka and Kitanidis, 2000a; Raje and Kapoor,

2000; Cirpka, 2002; Gramling et al., 2002; Dentz and Carrera, 2007; Luo et al., 2008].

Luo and Cirpka [2011] showed that even a “perfect” macroscopic model, which may

exactly reproduce the mean breakthrough curve of a conservative tracer, may yield

significant errors in predicting concentration breakthrough curves of reactive species in

mixing-controlled reactive transport. Such inconsistence between macroscopic mean

models assuming perfect mixing and the inherent solute segregation or incomplete

mixing at local scale has become a research focus in recent years (see a recent review

by Dentz et al. [2010]).
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In general, macroscopic models of mean concentrations can provide accurate pre-

diction for mixing-controlled reactive transport only when concentration variations

are negligible compared with mean concentrations or for linear reactions, the rate

of which is independent of the degree of mixing. To improve the predictive ability

of macroscopic mean models, many sophisticated models have been developed such

as multi-rate mass transfer models [Haggerty and Georelick, 1995], and continuous

time random walk [Berkowitz and Scher, 1997, 1998;], and fractal dispersion models

[Benson, et al, 2000]. Such models are capable of describing anomalous behavior,

particularly enhanced tailing, of concentration breakthrough curves, which cannot

be characterized well by classical advection-macrodisperion models. Several recent

studies showed that these models may improve the prediction of mixing-controlled

reactive transport in heterogeneous media [Edery et al., 2009; Willmann et al., 2010].

However, Luo and Cirpka [2011] showed that only under specific conditions these

improved models can be effective, such as in highly-heterogeneous media or nearly

homogeneous media with low flux-averaged concentration variances. In media with

intermediate hydraulic conductivity contrast, such models may still yield significant

errors in predicting mixing-controlled reactive transport. The decisive point is that

such models conceptualize a single concentration within the solute flux in the mobile

domain. Therefore, they cannot account for any effects caused by concentration fluc-

tuations within the flux. For example, the multirate mass transfer model can describe

anomalous transport behavior by varying local memory functions for characterizing

incomplete mixing in the immobile domains. However, for the flow flux leaving a

domain, only the mobile contributions count. Thus, such models with a single mobile

flux concentration are strictly incapable to account for variations within the flux, no

matter whether reactions are considered in the immobile domain(s) or not. We see a

clear research need in deriving upscaled nonlocal transport formalisms that go beyond

ensemble mean concentrations so that both long-tails or other anomalous features of
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the flux-averaged breakthrough curves can be captured and concentration variations

be quantified.

A good macroscopic model should be able to describe both spreading and mixing.

In cases when concentration fluctuations cannot be neglected, both mean concentra-

tions and concentration variances should be evaluated for predicting mixing-controlled

reactive transport. A specific modeling framework, which accounts for both the mean

concentration and its variance, is based on transport equations of the concentration

variance in addition to macroscopic mean models [Kapoor et al., 1997]. The variance

transport equation involves terms for the generation and destruction of the concen-

tration variance, which are difficult to measure or to predict from statistical metrics

of the flow field. From conservative-concentration statistics (mean and variance), at-

tempts have been made to estimate the concentration covariance of reactive species in

nonlinear mixing-controlled reactive transport, which is subsequently used to correct

reaction rates [Oates, 2007]. More elaborate models have targeted the full concen-

tration distribution of conservative species [e.g., Fiorotto and Caroni, 2002, 2003],

which has been shown to resemble a beta distribution. For specific cases, such as

instantaneous bimolecular reactions or biokinetic reactions at steady state, the local

statistics of conservative species can be mapped to those of reactive species without

relying on linearization [ Cirpka et al., 2008, 2011].

An alternative modeling framework is based on the effective mixing concept and

multi-scale measurements. In the analysis of point-like observations of solute break-

through, longitudinal dispersion does not alter the mean breakthrough time at any

location, whereas transverse dispersion balances differences of mean breakthrough

time between adjacent streamtubes in heterogeneous formations. Both processes lead

to wider local breakthrough curves. Thus, a particular set of point-like measured

breakthrough curves within an observation plane may be interpreted as caused by

transport with transverse dispersion in a highly variable velocity field or by transport
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with enhanced longitudinal dispersion rather than transverse exchange, but in a less

variable velocity field. This ambiguity is used in the advective-dispersive streamtube

(ADS) approach within an Eulerian-Lagrangian framework [Cirpka and Kitanidis,

2000a, b; Ginn, 2001; Ginn et al., 2001; Cirpka, 2002; Janssen et al., 2006; Luo

and Cirpka, 2008]. The essence of this approach is to characterize the “right” mix-

ing and “right” variability of advection. The dispersion of the mean concentration

breakthrough curve or macrodisperion is the summation of the mean dispersion of

local-scale breakthrough curves and the variance of the mean of local breakthrough

curves (also referred as the two-particle covariance [Fiori and Dagan, 2000; Pannone

and Kitanidis, 2004]). The “right” mixing is the mean dispersion of local-scale mea-

surements, while the variance of the mean describing the advection variations should

not be included for evaluating mixing. The “right” advection is then described by an

advective travel-time distribution. Integration of all local concentration breakthrough

curves over the entire travel-time distribution yields the mean concentration break-

through curve at the outflow boundary. Cirpka [2002] studied a bimolecular reactive

transport case, in which the original reaction terms were maintained, i.e., concentra-

tion covariance was not included in the reaction rate, while effective heterogeneity-

induced mixing was characterized by the effective dispersion tensor [Dentz et al.,

2000].

Both numerical and experimental work showed good applicability of these two

modeling frameworks [Cirpka, 2002; Janssen et al., 2006; Oates, 2007; Cirpka et al.,

2008]. The essential difference between them is that the first one aims to evaluate

effective reaction rates by explicitly accounting for the concentration covariance or

the entire distribution, while the latter approximates solute segregation by a number

of non-interacting streamtubes. The first approach may become complicated for non-

linear, heterogeneous reactions involving many species and different phases because of

the challenges in evaluating the covariance matrix [Miralles-Wilhelm et al., 1997]. The
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latter is more efficient for simulating multi-species reactive transport given the “right”

advective travel-time distribution and the effective mixing parameters because within

each streamtube it is a classical one-dimensional transport problem. However, it is

only applicable at locations where both point-scale and integral-scale measurements

are available, and it is difficult to make predictions at locations without multi-scale

measurements because it is challenging to predict apparent “right” mixing parameters

and “right” advective travel-time distributions [Luo and Cirpka, 2008]. Furthermore,

numerical solutions of both modeling frameworks require sophisticated numerical ap-

proaches, such as inverse modeling of travel-time distributions [Luo and Cirpka, 2008]

and evaluation of concentration curvature fields [Kapoor and Kitanidis, 2000; Luo et

al., 2008], which are usually unavailable in widely-applied solute transport codes.

In this study, we present a dual-permeability modeling framework to upscale

mixing-controlled reactive transport in heterogeneous media. Its conceptualization

is similar to the dual-porosity model in which the medium is assumed to consist

of two distinct pore systems with different hydraulic properties and kinetic mass

transfer between them [Dykhulzen, 1987; Gerke and van Genuchten, 1993]. The dual-

porosity model has successfully been applied to simulate the preferential movement

of water and solutes in structured soils or fractured rocks [Gerke and van Genuchten,

1993]. Stochastic analysis was also conducted for solute transport in heterogeneous,

dual-permeability media [e.g., Hu et al., 2002]. However, it has not been applied

to upscale mixing-controlled reactive transport in heterogeneous media. The dual-

permeability model considers the concentration at any location as a flux-weighted or

volume-weighted mean of the two concentrations in two pore systems, which natu-

rally yield the evaluation of the concentration variance within the flux and within

the volume. The present research aims to use the dual-permeability model to quan-

tify both concentration mean and variance for evaluating mixing-controlled reactive

transport, while most previous studies of the dual-permeability model focused on

93



the mean behavior of conservative transport. In some sense, the dual-permeability

model is the simplest streamtube method with only two streamtubes. However, the

dual-permeability model considers kinetic mass transfer between the two streamtubes

that cannot be incorporated in the non-interacting streamtube method. Furthermore,

solution of the dual-permeability model is much simpler than the models discussed

above. An analytical solution was recently reported for conservative transport [Leij

et al., 2012]. Finally, we shall notice that the dual-permeability model for simulating

mixing-controlled reactive transport is not just a mathematical manipulation. Both

laboratory and numerical experiments have demonstrated that it may be necessary

to include one more advection term to simulate solute transport in media with in-

termediate hydraulic conductivity contrast [Gramling et al., 2002; Luo and Cirpka,

2011; Leij et al., 2012].

6.2 Dual-Permeability Model

6.2.1 Governing Equations

The subsurface medium is conceptualized as two overlapped domains with different

flow velocities and dispersion coefficients and a linear kinetic mass transfer term

between. The transport governing equations for a conservative tracer are given by

[Dykhulzen, 1987; Gerke and van Genuchten, 1993; Leij et al., 2012]:

θf
∂cf
∂t

= −qf
∂cf
∂x

+ θfDf
∂2cf
∂x2

+ α (cs − cf ) (6.1)

θs
∂cs
∂t

= −qs
∂cs
∂x

+ θsDs
∂2cs
∂x2

+ α (cf − cs) (6.2)

where cf and cs are concentrations in the fast- and slow-flow domain, respectively; t is

time; x is travel distance; θf and θs are porosities of the fast- and slow-flow domains,

respectively; qf and qs are specific discharges; Df and Ds are dispersion coefficients,

and α is the first-order mass transfer rate coefficient. By neglecting molecular diffusion

and assuming the same dispersivity, Df and Ds are written as:
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Df = αlvf = αlqf/θf (6.3)

Ds = αlvs = αlqs/θs (6.4)

in which αl is the apparent longitudinal dispersivity, and vf and vs are fast and slow

velocities. Different dispersivities may be defined but analytical solution may not be

available [Leij et al., 2012].

For a Dirac impulse input of mass at the inlet of an initially free, semi-infinite

domain, the boundary and initial conditions are defined as:

vfcf −Df
∂cf
∂x

∣∣∣∣
x=0

=
minvf

A (vf + vs)
δ (t) (6.5)

vscs −Ds
∂cs
∂x

∣∣∣∣
x=0

=
minvs

A (vf + vs)
δ (t) (6.6)

∂cf
∂x

∣∣∣∣
x=∞

=
∂cs
∂x

∣∣∣∣
x=∞

= 0 (6.7)

cf (x, 0) = cs (x, 0) = 0 (6.8)

where min is the input mass at the domain inlet, and δ is the Dirac delta function.

6.2.2 Dimensional Analysis

For the transport model presented above, it will be more convenient to consider its

dimensionless form. First, we introduce the porosity and discharge flow ratios:

β =
θf
θs

(6.9)

η =
qf
qs

(6.10)

in which β is the porosity ratio and η is the discharge ratio, which may be interpreted

as the hydraulic conductivity or permeability contrast given the same hydraulic gra-

dient for the fast- and slow-flow domain. The velocity contrast can then be expressed

as:
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vf
vs

=
qf/θf
qs/θs

= η/β ≥ 1 (6.11)

For a transport system with a total flow discharge q = qf + qs and a total porosity

θ = θf + θs, we have:

qf =
η

1 + η
q (6.12)

qs =
1

1 + η
q (6.13)

θf =
β

1 + β
θ (6.14)

θs =
1

1 + β
θ (6.15)

We introduce dimensionless parameters in terms of the total specific discharge q

and total porosity θ:

Concentration: Cf =
Acf
min

, Cs =
Acs
min

(6.16)

Travel distance: X =
x

L
(6.17)

Time:T =
qt

θL
(6.18)

Péclet number:Pe =
L

αl
(6.19)

Damköhler number: Da =
αL

q
(6.20)

in which L is the travel distance at the domain outlet, and T = 1 corresponds to one

pore volume (PV) of the entire domain.

Eqs. (6.1) and (6.2) can be transformed to:

∂Cf
∂T

=
η (1 + β)

(1 + η) β

(
−∂Cf
∂X

+
1

Pe

∂2Cf
∂X2

)
+

1 + β

β
Da (Cs − Cf ) (6.21)

∂Cs
∂T

=
1 + β

1 + η

(
−∂Cs
∂X

+
1

Pe

∂2Cs
∂X2

)
+ (1 + β)Da (Cf − Cs) (6.22)
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and the boundary and initial conditions become:

Cf −
1

Pe

∂Cf
∂X

∣∣∣∣
X=0

= δ (T ) (6.23)

Cs −
1

Pe

∂Cs
∂X

∣∣∣∣
X=0

= δ (T ) (6.24)

∂Cf
∂X

∣∣∣∣
X=∞

=
∂Cs
∂X

∣∣∣∣
X=∞

= 0 (6.25)

Cf (X, 0) = Cs (X, 0) = 0 (6.26)

6.2.3 Analytical Solution

For investigating concentration breakthrough curves, we focus on the flux concentra-

tion:

C∗f = Cf −
1

Pe

∂Cf
∂X

(6.27)

C∗s = Cs −
1

Pe

∂Cs
∂X

(6.28)

Leij et al. [2012] presented an analytical solution for residence concentrations with a

first-type step input boundary condition. Following the same procedure, we obtain the

Laplace solutions for flux concentrations with the defined input boundary condition

of the third type:

C̄∗f =
V1 − V1V2
V1 − V2

exp

[
XPe

2

(
1−

√
1 + 4λ1/Pe

)]
+
−V2 + V1V2
V1 − V2

exp

[
XPe

2

(
1−

√
1 + 4λ2/Pe

)]
(6.29)

C̄∗s =
1− V2
V1 − V2

exp

[
XPe

2

(
1−

√
1 + 4λ1/Pe

)]
+
−1 + V1
V1 − V2

exp

[
XPe

2

(
1−

√
1 + 4λ2/Pe

)]
(6.30)

in which λ1 and λ2 are:
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λ1 =
1 + η

2(1 + β)η
(Dab1 + sa1 + r) (6.31)

λ2 =
1 + η

2(1 + β)η
(Dab1 + sa1 − r) (6.32)

and V1 and V2 are:

V1 =
Dab2 + sa2 − r
2Daη(β + 1)

(6.33)

V2 =
Dab2 + sa2 + r

2Daη(β + 1)
(6.34)

with the defined variables:

a1 = η + β, a2 = η − β (6.35)

b1 = (1 + β) (η + 1) , b2 = (1 + β) (η − 1) (6.36)

r (s) =
√
D2
ab

2
1 + 2Dasa2b2 + a22s

2 (6.37)

The flux-averaged breakthrough curve is the mixture of solutions in the two pore

systems. Thus, the mean concentration is given by:

C∗m =
qf
q
C∗f +

qs
q
C∗s =

η

1 + η
C∗f +

1

1 + η
C∗s (6.38)

and its Laplace solution is

C̄∗m =
η

1 + η
C̄∗f +

1

1 + η
C̄∗s

The concentration variance within the flux is given by:

σ2
C =

η

1 + η

(
C∗f − C∗m

)2
+

1

1 + η
(C∗s − C∗m)2

=
η

(1 + η)2
(
C∗f − C∗s

)2
(6.39)
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and

C̄∗f−C̄∗s =
(V1 − 1) (V2 − 1)

V1 − V2

{
exp

[
XPe

2

(
1−

√
1 + 4λ2/Pe

)]
− exp

[
XPe

2

(
1−

√
1 + 4λ1/Pe

)]}
(6.40)

The mean concentration and variance may also be defined for the residence concen-

tration weighted by the porosities.

6.3 Behavior of Concentration Variance within the Flux

The concentration variance within the flux at a given location, X = 1 for the outlet,

is controlled by the dimensionless parameters: β, η, Pe and Da, in which β and η

mainly control the flow velocity and discharge contrast, whereas Pe and Da describe

the mixing effects. In the following, we will focus on the concentration variance within

the flux for a step input at the inlet, which is also the displacement reactive transport

case that will be studied in the next section. The concentration breakthrough curves

are simply the time integrals of the solutions presented in the previous section. The

normalized root mean squared error (NRMSE) is used to quantify the concentration

variance within the flux,

NRMSE =

√∫
σ2
CdT

C∗max − C∗min

(6.41)

in which C∗max = 1 and C∗min = 0 for a step input.

6.3.1 Effects of Flow Contrast

Figure 6.1 shows the effects of the porosity ratio and discharge contrast (or hydraulic

conductivity contrast). For given constant mixing parameters, Pe and Da, and poros-

ity ratio, β, the concentration variance within the flux is a non-monotonic function

of the discharge contrast, η (Figure 6.1a). The maximum concentration variance oc-

curs at an intermediate value of η. This observation is consistent to the findings of
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Figure 6.1: The concentration variance (quantified by NRMSE) within the flux, for
given constant mixing parameters, Pe and Da, and porosity ratio, β

Luo and Cirpka [2011]: Macroscopic mean models that perfectly fit flux-averaged

conservative concentration breakthrough curves may not improve the prediction of

mixing-controlled reactive transport in cases with intermediate hydraulic conductiv-

ity contrast, because it is necessary to quantify and account for the variability of

conservative concentrations in the flux. In high contrast cases, most flow takes place

in the fast flow paths, which results in a small variance of the flux-weighted concen-

tration even though the offset in the breakthrough between the slow and fast travel

paths is substantial. Figure 6.1b shows that the concentration variance monotonically

decreases with the porosity ratio for given discharge contrast. Since the discharge con-

trast relates to the ratio of specific discharge, an increase in the ratio of porosities

implies a decrease in the ratio of effective velocity thus reducing the concentration

variance.

Figure 6.2 shows several breakthrough curves of concentrations in the two domain

and flux averaged as well as breakthrough curves of the concentration variance. The

NRMSE or the overall variance, Eq. (6.41), is determined by both the magnitude

of the variance and the duration over which the concentrations in the two domains
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Figure 6.2: Breakthrough curves of concentrations in the two domain and flux aver-
aged, and breakthrough curves of the concentration variance

significantly differ. At a smaller discharge and velocity contrast (Figure 6.2a), the

variance magnitude (see the peaks of variances in Figure 6.2a, b, and c) is greater,

but the duration of large concentration variance is shorter. At a larger discharge and

velocity contrast (Figure 6.2c), the mean breakthrough curve has a long tail because of

the slow flow, but the mean value is dominated by the concentration in the fast flow,

resulting in a small concentration variance. At an intermediate discharge contrast

(Figure 6.2b), the integral effects of both variance magnitude and duration result in

a larger overall variance.

6.3.2 Effects of Mixing Processes

Figure 6.3 shows the effects of longitudinal dispersion and first-order mass transfer

on the overall concentration variance. Figure 6.3a shows that the concentration vari-

ance increases with the Péclet number, which implies that a larger dispersivitiy or

a longer travel distance yields a smaller normalized concentration variance. Figure

6.3b shows that a higher Damköhler number (e.g., a larger first-order mass transfer

rate coefficient) yields a smaller concentration variance because mass transfer between
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Figure 6.3: Overall concentration variance (quantified by NRMSE) as a function
of (a) Péclet number and discharge contrast, η; and (b) Damköhler number and
discharge contrast, η

the fast and slow domains diminishes concentration differences between the two do-

mains. At the limit of very large Da values, the kinetic mass transfer instantaneously

reaches equilibrium, resulting in identical concentrations in the two domains and thus

zero concentration variance. For small Da values, the dual-permeability model ap-

proaches the limit of two non-interacting streamtubes. Figure 6.3 essentially implies

that larger mixing effects in both longitudinal and transverse directions yield smaller

concentration variances within the flux.

However, there is a fundamental difference between the cases with zero and non-

zero Da numbers. Within the dual-permeability model, kinetic mass transfer is the

only mechanism that causes transverse mixing between the fast and slow domains,

functioning similarly as transverse dispersion in continuous models. With the decrease

of Da, the magnitude of the concentration variance increases (comparing Figure 6.3a

with Figure 6.4a, and the non-monotonic behavior with the discharge contrast is still

valid. However, the non-monotonic behavior becomes monotonically increasing if the

kinetic mass transfer is completely ignored (Figure 6.4b). The appendix shows the
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Figure 6.4: Overall concentration variance (quantified by NRMSE) as a function of
Péclet number and discharge contrast, η, for Damköhler numbers being (a)non-zero
and (b)zero

analytical proof for the monotonic behavior of the non-interacting case.

6.4 Application to Mixing-Controlled Reactive Transport

It is straightforward to extend the dual-permeability model to reactive transport by

incorporating reaction kinetics in the fast and slow domains.

θf
∂cf,i
∂t

= −qf
∂cf,i
∂x

+ θfDf
∂2cf,i
∂x2

+ α (cs,i − cf,i) + rf,i (cf,1, cf,2, ...) (6.42)

θs
∂cs,i
∂t

= −qs
∂cs,i
∂x

+ θsDs
∂2cs,i
∂x2

+ α (cf,i − cs,i) + rs,i (cs,1, cs,2, ...) (6.43)

in which cf,i and cs,i are the concentrations of ith reactive species in the fast and slow

flow domains, and rf,i and rs,i are reaction rates. Reactions are treated separately

in these two domains and mass exchange occurs through kinetic mass transfer. One

may also include equilibrium or kinetic sorption by including solid phases in both

domains.

Similarly to conservative transport, the reactive concentration breakthrough curves

are weighted by the discharge fluxes, and the residence concentrations are weighted
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by porosities. Unlike other models involving the evaluation of concentration vari-

ations or distributions, the dual-permeability model can be conveniently solved by

modifying existing numerical codes. In addition, if concentration variances are avail-

able, one may jointly fit the flux-weighted mean and variance. We shall notice that

the dual-permeability model yields two concentrations at each time and location,

which essentially uses a binomial distribution to approximate the actual concentra-

tion distribution. However, the dual-permeability model aims to approximate the

concentration variance instead of evaluating the concentration distribution.

6.5 Numerical Experiments

The general procedure to develop a dual-permeability model is similar to that for

the classical advection-dispersion equation or the mobile-immobile transport model.

Transport parameters are estimated by fitting flux-weighted breakthrough curves of

conservative tracers. Reaction kinetics are then included in the transport model to

predict breakthrough curves of reactive species. Comparing with the classical mobile-

immobile model, there is only one more parameter, i.e., the velocity in the slow flow

domain or the discharge contrast, to be estimated. To examine the performance of

the dual-permeability model, we will compare the dual-permeability model with an

approach in which a single domain is assumed characterized by exactly meeting the

flux-averaged breakthrough curve of a conservative compound. This is considered

as the “perfect” transport model based on a single concentration within the flux.

We will present two numerical studies of mixing-controlled reactive transport: one

in a structured medium with a single, elliptical, low-permeability inclusion within

a homogeneous, isotropic medium [see, Luo and Cirpka, 2011]; and the other in

random heterogeneous media with different variances of hydraulic conductivity. We

will consider the most practical cases in which the only known information is the

measured flux-weighted breakthrough curve of a conservative tracer at the domain
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outlet.

6.5.1 Hydrogeological Settings

Figure 6.5: The elliptical inclusion setup: an elliptical low-permeability inclusion is
embedded in a rectangular two-dimensional homogeneous, isotropic domain

Figure 6.5 shows the first setup used in our simulations: an elliptical low-permeability

inclusion is embedded in a rectangular two-dimensional homogeneous, isotropic do-

main. The hydraulic head is fixed at the left and right boundaries, whereas no flow

crosses the top and bottom boundaries. The major and minor axes of the ellipse are

half of the domain length and width, respectively. Table 6.1 summarizes the hydro-

geological parameters used in the numerical case. Solute transport in this domain is

essentially controlled by two dimensionless parameters

Kr =
K1

K2

(6.44)

Pe =
vb2

DtL
(6.45)

in which K1 and K2 are the hydraulic conductivity in the inclusion and matrix,

respectively; Kr represents the hydraulic conductivity contrast; v is the effective

mean velocity within the entire domain; b is the half width of the elliptical inclusion;
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L is the domain length; Dt is the transverse dispersion coefficient; and Pe is the

transverse Péclet number.

Table 6.1: Hydrogeologic parameters for heterogeneous cases with an elliptical, low-
permeability inclusion

Parameter Symbol Values

Dimension of domain L×W 5m× 2.5m
Dimension of elliptical inclusion 2a× 2b 2.5m× 1.25m
Discretization ∆x×∆y 0.005m× 0.005m
Hydraulic conductivity K1 10−3m/s
Hydraulic conductivity Contrast Krel 1.8, 10, 100
Mean hydraulic gradient J 0.01
Effective porosity θ 0.4
Péclet number Pe 396, 588, 560

The second set of simulations is performed in random heterogeneous fields, which

may be considered as a composition of many low- or high-permeable inclusions [Surib-

hatla et al., 2004]. We consider sets of two-dimensional heterogeneous fields in which

the mean flow is in direction x. The length and width of the domain are 20m and

10m, respectively. Variances of log hydraulic conductivity, 0.2, 0.5, 0.8, 1, 2, ..., and

6, are chosen to represent mildly to strongly heterogeneous fields. All hydrogeologi-

cal parameters are listed in Table 6.2. 100 log-conductivities fields are generated for

each variance by the spectral method of Dykaar and Kitanidis [1992] on a rectangular

1000×500 cell grid. The steady-state flow field is solved for a mean hydraulic gradient

of 0.01 in direction x. A streamline-oriented grid for transport with grid resolution

identical to that of the rectangular grid is generated using the streamline method of

Cirpka et al. [1999a, 1999b]. The flow rate in each stream tube is identical. The

numerical schemes for solving the transport problem have been presented elsewhere

[Cirpka et al., 1999a].

6.5.2 Mixing-Controlled Reaction

We consider reactive transport of compounds undergoing an instantaneous bimolec-

ular precipitation reaction with 1:1:1 stoichiometry:
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Table 6.2: Hydrogeologic parameters for two-dimensional Gaussian random het-
erogenous cases

Parameter Symbol Values

Dimension of domain L×W 20m× 10m
Discretization ∆x×∆y 0.02m× 0.02m
Mean hydraulic conductivity e〈lnK〉 1.16× 10−5m/s
Variance of hydraulic conductivity σ2

lnK 0.2, 0.5, 0.8, 1, 2, 3, 4, 5, 6
Correlation length Ix × Iy 0.4m× 0.4m
Mean hydraulic gradient J 0.01
Effective porosity θ 0.3
Longitudinal dispersivity α` 0.02m
Transverse dispersivity αt 0.02m
Molecular diffusion Dm 10−9m2/s

A+B→ C ↓ (6.46)

in which A and B are aqueous species (solutes) and C is a mineral, present through-

out the domain. This reaction is assumed to be fast compared to typical transport

processes, so that it can be treated as being in local equilibrium. The concentrations

of the aqueous species A and B satisfy:

cAcB = Keq (6.47)

where cA and cB are the molar concentrations of the reactive species A and B, re-

spectively, and Keq is the solubility product. The same reaction rates of A and B

are identical due to the stoichiometry considered. In the following, we consider that

Eq. (6.47) is satisfied at all locations and times and Keq = 0.01 (with a unit of

squared concentration). Replacement simulations are considered for the bimolecular

precipitation reaction, i.e., we assume that the domain is initially uniformly filled

with a solution containing species A, and a solution of species A and B with a con-

stant concentration is continuously injected into the domain at the inflow boundary.

This reactive transport case can be solved completely relying on the mixing ratio of

conservative transport [De Simoni et al., 2005, 2007; Luo and Cirpka, 2011].
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6.5.3 Measure of Goodness

To obtain measures of goodness for the transport models, we consider the concentra-

tion of compound A consumed in the reaction, denoted cmissA , which is the difference

between cA(t) in calculations where A behaves like a conservative compound and in

calculations where it undergoes the precipitation reaction with compound B. We ana-

lyze the total mass of consumed A and the maximum value of cmissA . The measures of

goodness are relative errors of the macroscopic model predictions and the true values

obtained at the outflow boundary, which are defined as relative error in total pre-

cipitated mass, εT , and relative error in peak precipitated mass, εP [Luo and Cirpka,

2011]:

εT =

∫
〈cmissA 〉∗ dt∫
〈cmissA 〉 dt

− 1 (6.48)

εP =
〈cmissA 〉∗max

〈cmissA 〉max

− 1 (6.49)

in which 〈cmissA 〉∗ is the flux average of cmissA predicted by the macroscopic models,

and 〈cmissA 〉 is the true value.

6.6 Results

Figure 6.6 shows the mean breakthrough curves of the conservative-species concen-

tration and the associated concentration variance, the travel-time distributions and

the mean reactive breakthrough curves averaged over the outflow boundary for three

specific cases with hydraulic conductivity contrasts of 1.8, 10 and 100 at similar

Péclet numbers. All travel-time distributions are bimodal, resulting from a fraction

of the total flux to pass through the low-conductivity inclusion while the remaining

flux surpasses the inclusion. The variability in concentration results mainly from

different times (and shapes) of breakthrough between stream tubes passing through

108



Figure 6.6: The mean breakthrough curves of the conservative-species concentra-
tion and the associated concentration variance, the travel-time distributions and the
mean reactive breakthrough curves averaged over the outflow boundary for three spe-
cific cases with hydraulic conductivity contrasts of 1.8, 10 and 100 at similar Péclet
numbers

the low-permeability inclusion and those bypassing it. The case with larger con-

ductivity contrast shows a significantly enhanced tail after the first peak in both

mean concentration and concentration variance. All cases could not be reproduced

by a 1-D ADE model, and more sophisticated, most likely nonlocal macroscopic

models may be needed to capture the observed anomalous transport behavior in

the conservative breakthrough curves. However, even such models cannot describe

the concentration variances in the flux because only a single concentration can be

predicted. The dual-permeability model yields very good descriptions of the conser-

vative breakthrough curves for all cases. With the breakthrough curve fitting, the

dual-permeability model predicts the concentration variance well, particularly for the

cases with intermediate hydraulic conductivity contrasts, Kr = 1.8 and 10. For the
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high contrast case, Kr = 100, the dual-permeability model reproduces the long tail of

the concentration variance, but misses the peak. For reactive breakthrough curves,

the dual-permeability model yields much better prediction than the “perfect” model

relying on a single flux concentration.

Table 6.3: Fitted parameters and prediction errors for heterogeneous cases with an
elliptical, low-permeability inclusion
Elliptical Inclusion Cases I. II. III.

Pe = 588, Krel = 10 Pe = 560, Krel = 100 Pe = 396, Kr = 1.8

Péclet number 197 143 231
Damköhler number 0.034 0.015 0.012

Porosity ratio 2.97 3.99 1.73
Discharge ratio 11.7 185.7 2.2

εT (Dual-K model) 0.41 0.12 0.03
εT (“Perfect” model) 2.65 0.44 0.80
εP (Dual-K model) 0.14 0.24 0.04
εP (“Perfect” model) 0.24 0.25 0.48

Table 6.3 summarizes the fitted parameters and the prediction errors. The fit-

ted discharge ratios follow the same order of the hydraulic conductivity contrasts.

The dual-permeability model significantly improves the prediction of the reactive

transport in terms of the total mass consumed and the peak of the consumed concen-

tration. Specifically, for Kr = 1.8, the overestimation of the total precipitated mass

and the peak concentration consumed (εT and εP) drops from 80% and 48% to 3%

and 4%, respectively; for Kr = 10, εT and εP drop from 265% and 24% to 41% and

14%; for Kr = 100, the total error improves from 44% to 12%, while the peak does

not change much because the variance peak is not captured. These cases demon-

strate that the dual-permeability model can significantly improve the prediction of

mixing-controlled reactive transport by including only one more parameter than the

classical mobile-immobile model, particularly for media with intermediate hydraulic

conductivity contrasts, where the concentration variations are important.

Figure 6.7 shows the prediction errors for the Gaussian heterogeneous cases. With

the increase of the hydraulic conductivity variance, the errors of the “perfect” model

110



Figure 6.7: Prediction errors for Gaussian heterogeneous cases: relative error in total
precipitated mass, εT , and relative error in peak precipitated mass, εP

with a single flux concentration decreases because highly heterogeneous hydraulic

conductivity fields do not necessarily lead to high concentration variations. In these

cases, the majority of flow occurs in preferential paths, which dominate the evaluation

of the flux-averaged concentration. Thus, macroscopic, single flux-domain models

perform better in highly than in mildly heterogeneous cases. For all cases, the dual-

permeability model yields a better prediction in general in terms of both the total

precipitated mass and the peak of missing concentration. We want to remark that

the predictions in the random fields are better than for the elliptical cases because

the domain size is 50 integral scales and the prediction error decreases with increasing

travel distance, which is consistent with the common understanding, that mixing can

catch up with spreading in the large-distance limit.
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6.7 Conclusions

Macroscopic models with a single flux concentration are incapable of representing

incomplete mixing, and thus concentration variations, within the solute flux. This

has been identified as the major mechanism responsible for inaccurate predictions

of mixing-controlled reactive transport. From a strict point of view, such models

work well only when the concentration variations within the flux are small or when

the reaction is linear. Because the transfer from conservative to reactive compound

concentrations is usually nonlinear, it is clear that neglecting such variations must

lead to a mass-balance error. Thus, it is generally necessary to consider concentration

variations in the upscaling of mixing-controlled reactive transport. In the present

study, we propose adopting the dual-permeability model for such purposes. Because

the dual-permeability model gives two local flux concentrations, one in the fast- and

the other in the slow-flow domain, it conveniently predicts both the mean and variance

of the flux concentration.

Dimensionless analytical solutions were developed for the dual-permeability model.

The concentration variance within the flux is controlled by four dimensionless parame-

ters, namely the porosity ratio, discharge ratio, the Péclet number, and the Damköhler

number. The normalized total concentration variance decreases with the increase of

the porosity ratio and the Damköhler number and with the decrease of the Péclet

number, while it changes non-monotonically with the discharge ratio. The maximum

concentration variance occurs at intermediate discharge contrasts.

We have numerically tested the dual-permeability model for mixing-controlled

reactive transport with a bimolecular precipitation reaction at local equilibrium in

heterogeneous domains. The case of a single inclusion could be characterized by

two dimensionless variables: the hydraulic conductivity contrast and the transverse

Péclet number. In the simulations using random fields, the hydraulic conductivity

contrast was replaced by the variance of log-conductivity. Our results indicate that the
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dual-permeability model generally better predicts breakthrough curves of the reactive

compounds for both the structured and random heterogeneous media. Particularly,

in the cases of elliptical inclusions with intermediate hydraulic conductivity contrast,

the total precipitated mass and the peak difference between reactive and conservative

concentrations are significantly improved. For the case with a long concentration

tail, the dual-permeability model yields performed well with respect to the total

precipitated mass, but the peak difference was not well captured.

If conservative concentration breakthrough curves can be well characterized by

macroscopic models with a single flux concentration, such as the classical advection-

dispersion and mobile-immobile models, the fitted dual-permeability model usually

approaches such macroscopic models. In such cases, the dual-permeability model un-

derestimates the concentration variance the same way as the single flux-domain mod-

els, yielding identical predictions of reactive breakthrough curves. However, in general

the dual-permeability model yields the chance of better predicting mixing-controlled

reactive transport than macroscopic models with a single flux concentration. Under

which conditions flux averaged breakthrough curves of conservative compounds are

sufficient to unanimously identify multiple flux domains is beyond the scope of the

current study.

Appendix

Consider the dual-permeable domain as two parallel non-interacting plug flow of pure

advection. For a domain-free initial condition, i.e., Cf (t = 0) = Cs (t = 0) = 0, and

unit step inputs, i.e., Cf (x = 0) = Cs (x = 0) = 1, the solutions of Cf and Cs at

X = 1 are given by:
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Cf (T ) = H

(
(1 + η) β

η (1 + β)

)
(6.50)

Cs (T ) = H

(
1 + η

1 + β

)
(6.51)

where H is the Heaviside step function. The flux-averaged breakthrough curve is

Cm (T ) =
η

1 + η
H

(
(1 + η) β

η (1 + β)

)
+

1

1 + η
H

(
1 + η

1 + β

)
(6.52)

which can be expanded as

Cm =


0, T < (1+η)β

η(1+β)

η
1+η

, (1+η)β
η(1+β)

≤ T < 1+η
1+β

1, T ≥ 1+η
1+β

(6.53)

Thus, for T < (1+η)β
η(1+β)

and T ≥ 1+η
1+β

, no concentration variation occurs between the local

and flux-averaged breakthrough curves. For (1+η)β
η(1+β)

≤ T < 1+η
1+β

, the concentrations in

the fast and slow flow are 1 and 0, respectively, and the variance is constant:

σ2
C =

η

(1 + η)2
(6.54)

The total variance over the time course is

Ω =

∫ 1+η
1+β

(1+η)β
η(1+β)

η

(1 + η)2
dT =

η

(1 + η)2

[
1 + η

1 + β
− (1 + η) β

η (1 + β)

]
=

η − β
(1 + η) (1 + β)

(6.55)

and the NRMSE is

NRMSE =
Ω

C∗max − C∗min

=
η − β

(1 + η) (1 + β)
(6.56)

Taking the first derivatives of Eq. (6.55) with respect to β and η yields:

∂Ω

∂β
= − 1

(1 + β)2
< 0 (6.57)

∂Ω

∂η
=

1

(1 + η)2
> 0 (6.58)
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CHAPTER VII

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

7.1 Summary

This dissertation investigates the extent of mixing and improves upscaling effective

macroscopic models for mixing-controlled reactive transport in connected heteroge-

neous formations, which usually exhibit strongly anomalous transport behavior.

A numerical framework is developed for an accurate geostatistical characteriza-

tion of connected heterogeneous formations transformed from Gaussian random fields.

Numerical experiments are conducted in such heterogeneous fields with different con-

nectivity to investigate the performance of macroscopic mean transport models for

simulating mixing-controlled reactive transport. Results show that good characteri-

zation of anomalous transport of a conservative tracer does not necessarily mean that

the models may characterize mixing well and that, consequently, it is questionable

that the models capable of characterizing anomalous transport behavior of a conser-

vative tracer are appropriate for simulating mixing-controlled reactive transport. In

connected heterogeneous fields with large hydraulic conductivity variances, macro-

scopic mean models ignoring concentration variations yield good prediction, while in

fields with intermediate conductivity variances, the models must consider both the

mean concentration and concentration variations, which are very difficult to evaluate

both theoretically and experimentally.

An innovative and practical approach is developed by combining mean conserva-

tive and reactive breakthrough curves for estimating concentration variations, which

can be subsequently used by variance transport models for prediction. Furthermore,
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a new macroscopic framework based on the dual-permeability conceptualization is de-

veloped for describing both mean and concentration variation for mixing-controlled

reactive transport. The developed approach and models are validated by numerical

and laboratory visualization experiments. In particular, the new dual-permeability

model demonstrates significant improvement for simulating mixing-controlled reactive

transport in heterogeneous media with intermediate conductivity variances.

Overall, results, approaches and models from this dissertation advance the un-

derstanding of subsurface mixing in anomalous transport and significantly improve

the predictive ability for modeling mixing-controlled reactive transport in connected

heterogeneous media.

7.2 Research Conclusions

Major conclusions that can be drawn from this research include:

1. Geostatistical characterization of connected random fields

Application of the numerical approach to geostatistically characterize connected

heterogeneous formations transformed from Gaussian random fields provides a quan-

titative view of the change of correlation length of connected random fields before

and after the transformation. The Monte-Carlo simulation and the results indicate

that

• The absolute-value transformation has slight effect on changing the types of

covariance models;

• The correlation length of the original field is 1.67 or 2.64 times of that of the

connected field for Gaussian or exponential covariance models, respectively;

• Anisotropy is not changed by the absolute-value transformation.
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• Connectivity measures in the literature and two-point cluster function is also

discussed in details, by which we conclude that two-point cluster functions can

identify different degrees of connectivity for Gaussian fields, but not as reli-

able as for exponential fields, which may be due to the fact that exponential

covariance models are continuous but not differentiable.

2. Performance of macroscopic mean models

Numerical test cases of mixing controlled reactive transport with a bimolecular

precipitation reaction at local equilibrium in different heterogeneous domains are

conducted on random heterogeneous fields with same variance of hydraulic conduc-

tivity and different connectivity. Specifically, we study Gaussian heterogeneous fields,

high-conductivity connected fields, and low-conductivity connected fields. The key

objective was to analyze to what extent concentration fluctuations within the so-

lute flux could be neglected in the transfer from breakthrough curves of conservative

to reactive compounds. The numerical results indicate that largest errors occur in

macroscopic one-dimensional models for intermediate conductivity variances. With

respect to total mass balance and peak concentration errors, increasing the degree of

heterogeneity beyond a critical value led to an improvement of the performance. Our

results clearly indicate the need for developing other modeling frameworks to evalu-

ate both mean and concentration variance for simulating mixing-controlled reactive

transport in heterogeneous media, particularly in media with intermediate variances

of hydraulic conductivity.

3. Estimating concentration variance

Characterization of concentration variance is the key for modeling mixing-controlled

reactive transport, but concentration variance is usually difficult to measure because

it requires many local measurements. The innovative and practical approach we pro-

posed uses mean concentration breakthrough curves of both conservative and reactive
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tracers to estimate the concentration variance. The conservative breakthrough curve

only contains the information of mean concentrations, while the reactive breakthrough

curves are results of both concentration mean and variance. Based on the relation-

ship between conservative and reactive concentrations, concentration variance can be

estimated by sampling the beta distribution to fit the mean reactive breakthrough

curve. In addition, both mean and fitted variance can be described by macroscopic

transport models for prediction purpose: one for mean concentration, and the other

for the variance with additional parameters. Our approach is validated by the vi-

sualization experiments conducted at MIT. Although the experiments provide all

concentration distributions, our approach only requires both conservative and reac-

tive breakthrough curves at observation locations. Furthermore, our results suggest

that one should conduct both conservative and reactive tracer tests for upscaling

macroscopic transport models because conservative tracer tests are insufficient for

evaluating local concentration variations.

4. New macroscopic model

Macroscopic models with a single flux concentration are incapable of represent-

ing incomplete mixing, and thus concentration variations, within the solute flux. A

dual-permeability model is presented in this dissertation to include concentration

variations in the upscaling of mixing-controlled reactive transport. Because the dual-

permeability model gives two local flux concentrations, one in the fast- and the other

in the slow-flow domain, both the mean and variance of the flux concentration can

be conveniently predicted. Dimensionless analytical solutions were developed for the

dual-permeability model. The concentration variance within the flux is controlled by

four dimensionless parameters, namely the porosity ratio, discharge ratio, the Péclet

number, and the Damköhler number. The normalized total concentration variance

decreases with the increase of the porosity ratio and the Damköhler number and with
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the decrease of the Péclet number, while it changes non-monotonically with the dis-

charge ratio. The maximum concentration variance occurs at intermediate discharge

contrasts. Numerical tests for the dual-permeability model for mixing-controlled re-

active transport with a bimolecular precipitation reaction at local equilibrium in

heterogeneous domains are conducted. The case of a single inclusion could be char-

acterized by two dimensionless variables: the hydraulic conductivity contrast and

the transverse Péclet number. In the simulations using random fields, the hydraulic

conductivity contrast was replaced by the variance of log-conductivity. Our results in-

dicate that the dual-permeability model generally better predicts breakthrough curves

of the reactive compounds for both the structured and random heterogeneous media.

Particularly, in the cases of elliptical inclusions with intermediate hydraulic conduc-

tivity contrast, the total precipitated mass and the peak difference between reactive

and conservative concentrations are significantly improved. For the case with a long

concentration tail, the dual-permeability model performed well with respect to the

total precipitated mass, but the peak difference was not well captured.

7.3 Recommended Future Work

Based on the research conducted in this dissertation, I recommend the following topics

that worth further investigation:

1. Although we have investigated the characterization of geostatistical (or “static”)

connectivity by two-cluster function, flow connectivity and transport connectiv-

ity, or “dynamic” connectivities, have not been discussed. In general, flow and

transport connectivities are often controlled by the connected high-permeability

areas such as “channels” or by the presence of hydraulic barriers. Techniques

that already been developed in the framework of percolation theory and frac-

tured media would be good candidates for quantification. There have been some

recent research on flow and transport connectivities such as Sanchez-Vila, et al.,
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[1996], Knudby and Carrera[2005,2006], Renard and Allard [2011], and multi-

ple definitions and quantifications have been carried out, which indicated that

flow and transport connecivities are more process-dependent. They not only

depend on the geometry of the heterogeneous field, but also depend on physical

parameters in flow and transport dynamics. The concept of flow and trans-

port connectivity and their quantifications would be worth further studying.

For example, which connectivity definition shall we use to quantify a specific

solute flow or transport process? What information do we gain if we properly

choose connectivity quantifications? Numerical and experimental studies need

to be conducted to answer these questions. In addition, the approach used to

generate connected random fields is absolute-value transformation of Gaussian

random fields because it can generate connected fields given a geostatistical

structural model. Connected random fields generated by other methods should

be investigated.

2. The performance of macroscopic mean models is examined using the Monte-

Carlo method, which is computationally expensive. Model reduction is helpful

for examining large amount of realizations. For example, the temporal moment

method may be applied to transfer the transient transport cases to steady-state

equations, and the concentration breakthrough curves can be reconstructed by

the temporal moments. In addition, the mixing-controlled reactive transport

uses instantaneous reactions, which can be expressed as a function of the con-

servative concentrations. There is a need to examine the reactive transport with

kinetic reactions. Furthermore, our method relates the performance with the

discrete conductivity variances. Finer discretization of conductivity variances

are needed to identify more accurate turning points of the macroscopic mean

model performance.
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3. We propose to use both conservative and reactive tracer tests to estimate con-

centration variations and assume that reactive species concentrations are func-

tions of conservative concentrations. In practice, there is always a reaction

timescale. For kinetic reactions, a simple relationship between conservative and

reactive tracer concentrations may not be available. It is needed to develop a

method to estimate concentration variances based on kinetic, multi-component

reactions. Furthermore, concentration breakthrough curves are usually flux-

weighted. The local fluxes are difficult to measure. Thus, the estimated con-

centration variances may be considered as flux concentration variances. How to

relate it to residence concentration variances needs further study.

4. The proposed dual-permeability modeling framework upscales mixing-controlled

reactive transport in heterogeneous media. The general procedure to develop a

dual-permeability model is similar to that for the classical advection-dispersion

equation or the mobile-immobile transport model. Transport parameters are

estimated by fitting flux-weighted breakthrough curves of conservative trac-

ers. Reaction kinetics are then included in the transport model to predict

breakthrough curves of reactive species. Comparing with the classical mobile-

immobile model, there is only one more parameter, i.e., the velocity in the slow

flow domain or the discharge contrast, to be estimated. The difference between

daul-permeability model and mobil-immobile model would be worth discussing.

The method of temporal moment analysis, in this case, would be a convenient

tool for characterization, which has been used by Valocchi [1983] to address the

difference between mobil-immobile model and advection-dispersion model. A

rigorous model selection procedure can be helpful for determining which model

is more appropriate. In addition, we may need to examine the applicability of

multi-permeability model, in which the mass transfer among all permeability

zones needs to be appropriately characterized. The previous multi-tube method
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completely neglected such mass transfer.

5. Much of the verification and validation of the developed methods has focused

on the numerical cases and lab-scale experimental cases. Less effort has been

spent on field studies. Flow and transport processes may be influenced by the

field geometry, geochemical reactions, and even pore structure change, which

will affect the performance of our theoretical models. Effort should be made to

conduct field studies, and results should be included in evaluating the model

effectiveness and reliability.
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