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SUMMARY

The performance of modern many-core systems depends on the effective use of
their complex cache and memory structures, and this will likely become more pro-
nounced with the impending arrival of on-chip 3D stacked and non-volatile off-chip
byte-addressable memory. Yet to date, operating systems have not treated memory
as a first class schedulable resource, embracing memory heterogeneity. This disser-
tation presents a new system abstraction, called 'memory region’, which denotes the
current set of physical memory pages actively used by workloads. Using this abstrac-
tion, memory resources can be scheduled for applications to fully exploit a platform’s
underlying cache and memory system, thereby gaining improved performance and
predictability in execution, particularly for the consolidated workloads seen in virtu-
alized and cloud computing infrastructures. The abstraction’s implementation in the
Xen hypervisor involves the run-time detection of current memory regions, the sched-
uled mapping of those regions to caches to match performance goals, and maintaining
region-to-cache mappings using per-cache page tables.

This dissertation makes the following contributions. First, its region scheduling
method proposes that the location of memory blocks, rather than CPU utilization is
the principal determinant for where workloads are run. It develops a new scheduling
method, region scheduling, which determines the placement of memory blocks to
the caches associated with workloads’ processors. Second, treating memory blocks
as first-class resources, new methods for efficient cache management are shown to
improve application performance as well as the performance of certain operating

system functions. Third, explicit memory scheduling makes it possible to disaggregate

xiil



operating system functions, without the need to change OS sources and with only
small markups of a target guest OS. With this method, OS functions can be mapped
to specific desired platform components, an example being a file system confined to
running on specific cores and using only certain memory resources designated for its
use. This can improve performance for applications heavily dependent on certain OS
functions, by dynamically providing those functions with the resources needed for
their current use, and it can prevent performance-critical application functionality
from being needlessly perturbed by OS functions used for other purposes or by other
jobs. Fourth, extensions of region scheduling can also help applications deal with the
heterogeneous memory resources present in future systems, including on-chip stacked
DRAM and NUMA or even NVRAM memory modules. More generally, regions
scheduling is shown to apply to memory structures with well-defined differences in

memory access latencies.
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CHAPTER 1

INTRODUCTION

As heterogeneous and many-core architectures are emerging, new approaches are re-
quired to obtain performance scalability in liey of their complex memory subsystems.

On modern computer systems, memory subsystems like caches are extremely
important for application performance. Contrasting existing practice in operating
systems with their focus on CPU scheduling, this thesis posits that the memory
subsystems in future multicore systems should be treated as first-class schedulable
resources. Departing from traditional CPU-centric scheduling, we propose memory-
centric scheduling methods for using the caches and other components of future mem-
ory subsystems. In doing so, we ensure careful consideration of memory subsystem
characteristics like NUMAness (non-uniform memory access-ness), and we anticipate
future different types of memory, such as on-chip stacked DRAM or NVRAM (non-
volatile RAM), which are emerging as cost-effective alternative to current DRAM

memory configurations.

1.1 New FEzxzecution Model

This thesis contributes a software approach that embraces future memory systems
with a new programming and runtime abstraction, termed 'memory region’. In do-
ing so, it contributes an execution model that moves computation to where data is
located, vs. the traditional model of moving data to where the computation occurs.
The model is motivated by the fact that in the mult-core era, data movements are ex-
pensive, inhibiting performance scalability. The alternative memory-centric execution
model developed in our work schedules data placements and then moves computation

to where data is located. Its strengths include the following. First, it can efficiently



use caches because by eliminating duplicate cache lines and avoiding cache coherency
traffic. This can increase the effective cache sizes seen by application. Second, it
avoids data movements by moving small computation contexts vs. larger data foot-
prints, also benefiting system power usage. Its potential weaknesses addressed in this
thesis are (i) frequent migration of execution threads, requiring controls on migra-
tions to limit consequent runtime overheads, and (ii) the need to carefully place data
across a platform’s memory hierarchy.

Concretely, the ‘memory region’ software abstraction introduced, developed, and
used in this thesis may be defined as a set of physical memory pages with good spatial
and temporal locality. We next outline the development and use of this abstraction

in the remainder of this thesis.

1.2 Region Scheduling

Region scheduling can be viewed as a cache-aware scheduler for the CMP envi-
ronment, where the last level cache is performance-critical, but even on modern
processors, is not typically well utilized. This has caused hardware researchers to
propose approaches like Adaptive Spill-Receive [120], NUCA (non-uniform cache
architecture)[119], or Intel’s smart cache [118]. Unfortunately, such approaches are
limited in their ability to predict workloads’ cache behavior. The region schedul-
ing methods developed in this thesis constitute a novel, software-based approach to
detecting a workload’s cache footprint and then using that information to better
schedule the workload.

Figure 1 depicts a simple scenario in which the two LLCs (last level caches) present
on a SMP platform are not well utilized. Assume there are 4 tasks A, B, C, and D,
where A and B have large working sets that fit into one LLC, while C and D have
very small working sets. Existing CPU schedulers might well schedule A and B onto

cache-sharing CPU cores, resulting in one LLC being over-utilized, the other being
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Figure 1: Unbalanced cache usage

under-utilized. This is because a scheduler that is not aware of workloads’ working
set sizes will schedule tasks based on CPU utilization rather than their efficient cache
usage. An easy remedy for this situation, of course, is to schedule tasks A and C onto
the same cache-sharing CPU cores.

The purpose of region scheduling is to schedule tasks in cache-efficient ways. To
do so requires online information about workloads’ working sets, to answer questions
about (i) how large of these working sets, (ii) what are they comprised of, e.g., what
pages do they contain, and (iii) how much content do they share?. The 'regions’
identified in this work constitute such information, which is then used to appropriately
schedule the tasks using them.

Region scheduling is implemented for virtualized systems using the popular Xen
open source hypervisor, to realize guest-level online cache management and schedul-
ing. Its use can substantially improve application performance and in addition, it
provides hypervisor with new abilities to control guests’ memory accesses.

In the remainder of this thesis, we first introduce the memory region abstraction
and region scheduling. Its basic goal is to move computation to data vs. moving
data to where computations are run. While this runs counter to traditional cache

and memory subsystem designs that move data to where computations take place,
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Figure 2: VCPU view

the approach is justified by several architecture trends. First, on modern processor
architectures, the expense of data movement continues to increase relative to the cost
of computation. Second, data movement is subject to problems like ping-ponging
and false sharing, and such problems are aggrevated by the fact that the hardware
level is not informed about software decisions like work migration across different
runqueues. Specifically, if software (e.g., the load balancer) moves a task that has
run for a while on one cache to another cache’s core, the task will experience cache
misses to warm up the new cache, involving large numbers of cache line movements.
Region scheduling avoids such issues by using appropriate, higher level information
about tasks to reduce the effects of load balancing, to better balance the performance
benefits of task migration against the costs such migrations incur. We next outline
the concept of microscheduling used in the region scheduling approach, but refer the
reader to the next chapter for additional detail.

Figure 2 shows how tasks are run when controlled by the region scheduler. Unlike

the traditional execution model 2a, the execution under region scheduling controls
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where tasks are run based on what data, i.e., which memory regions, they touch,
e.g., for region switches such as R1->R2. In this context, microscheduling (usched) is
defined as a switch to some region located in a different cache, initiated in response
to a page touch of a page in that region. It is the page touch that triggers a page
fault, due to illegal access to memory resident on a ‘not-allowed’ cache that trig-
gers microscheduling. Page touch faults are handled by the hypervisor, along with
appropriately setting page protection information to cause page faults as and when
needed.

Figure 3 depicts the effects of frequent microscheduling. Since the overhead of
microscheduling increases with short access times to a region, the effectiveness of
microscheduling is governed by region access times. If those access times are too short,
frequent microscheduling results in increased overhead. The challenge, therefore, is to
create regions with suitably large access times but with sufficiently small granularity
to capture a workload’s current cache behavior. Region creation, therefore, is an

inherent component of the region scheduling approach.



1.3 D:isaggregated OS Services

An interesting side-effect of our ability to map certain pages to certain caches is the
resulting control over the data structures contained in those pages. For operating
system data structures and the services using them, this means that with region
scheduling, we can directly and without the need to rewrite them, control where
certain services are run. The outcome is kernel service disaggregation, to isolate
some services from the effects of others and /or to protect applications from OS service
activities on the cores and caches they use. Sample OS services considered in our work
are file systems, networks, and scheduling, with experimental results obtained for file
system and network services. For example, if the file system’s inode data structures
are mapped to one specific cache, file system calls are serviced only through the core
group that shares that cache. We implement OS service disaggregation as a natural
extension to the region scheduler, to cover all of a guest’s memory, including its kernel
data structures. The outcome is per guest application-level regioning coupled with
kernel level service disaggregation.

In this chapter, the region framework is extended to cover the OS kernel space,
and we explore not only page-to-cache mappings but also the appropriate mapping
of meaningful kernel objects to pages. Object to page mappings are established via

hypercalls informing the region scheduler.

1.4 Memory Heterogeneity

As new memory technologies are emerging [96], researchers have begun to study the
resulting heterogeneous memory systems and their characteristics [97], with goals
that include obtaining lower memory latencies and higher access bandwidths. While
cost-effective, such new technologies pose challenges to operating systems regard-
ing their effective use. This thesis explores the space of heterogeneous memory by

developing a memory management scheme based on the region abstraction. Using



3D-stacked DRAM as target heterogeneous memory, with its greater bandwidth and
lower latency compared to off-chip DRAM, region-based memory management aims
to make best use of limited 3D DRAM capacity in conjunction with large, but slower
off-chip DRAM. Specifically, the region concept is used to identify "hot’ memory
pages, automatically and without user or system input, and it is those hot pages
that are moved to 3D DRAM, via software-based data movement implemented in
the hypervisor. Memory regions, thus, are the concept needed to identify sets of
hot pages, with region movements implemented by software. Implementation of this
functionality required extensions of the region scheduling framework, including hot
page tracking, page movements performed in ways that are transparent to guest VMs
and applications, and automation of such movements in ways that benefit application
performance. An interesting side effect of this work is the ability to better manage
the memory resources used by individual VMs. With current hypervisor implemen-
tations, e.g., in Xen, a single VM’s memory must reside in some specific 'memory
node’ (there are NUMA generalizations of Xen, but those do not give explicit con-
trol to programmers [125]. Using the re-mapping methods implemented for region
scheduling provides systems with the finer-grain controls needed to map VM memory

to wherever appropriate.



CHAPTER 11

REGION SCHEDULING

2.1 Introduction

The performance of modern many-core platforms strongly depends on the effective-
ness of using their complex cache and memory structures. This indicates the need
for a memory-centric approach to platform scheduling, in which it is the locations of
memory blocks in caches rather than CPU idleness that determines where application
processes are run. Using the term memory region to denote the current set of physical
memory pages actively used by an application, this chapter presents and evaluates
region-based scheduling methods for multicore platforms. This involves (i) contin-
uously and at runtime identifying the memory regions used by executable entities,
and their sizes, (ii) mapping these regions to caches to match performance goals, and
(iii) maintaining region to cache mappings by ensuring that entities run on proces-
sors with direct access to the caches containing their regions. Region scheduling can
implement policies that (i) offer improved performance to applications by unifying
the multiple caches present on the underlying physical machine and/or by balancing
cache usage to take maximum advantage of available cache space, (ii) better isolate
applications from each other, particularly when their performance is strongly affected
by cache availability, and also (iii) take advantage of standard scheduling and CPU-
based load balancing when regioning is ineffective. This chapter describes region
scheduling and its system-level implementation and evaluates its performance with
micro-benchmarks and representative multi-core applications. Single applications see
performance improvements of up to 15% with region scheduling, and we observe 40%

latency improvements when a platform is shared by multiple applications. Superior



isolation is shown to be particularly important for cache-sensitive or real-time codes.

For modern computer architectures, memory access times and caching effective-
ness are key determinants of program and system performance. This is evident not
only from a rich set of research on caches in computer architecture [12, 13, 14, 15,
18, 19, 20, 21, 22, 23] , but also from the wide variety of cache structures found on
modern multi- and many-core platforms, ranging from single last level caches shared
by from 2 (e.g., in Intels Dual-core Xeon chips) to 8 cores (e.g., in Intels Nehalem
chips), to the distributed caches seen in the Larrabee chip [1].

Recognizing the importance of caching, modern methods for thread scheduling
take into account cache affinity [9], avoid cache thrashing [10, 11}, and/or carefully
select the threads that are permitted to share a common cache [2, 3]. Leveraging
such insights and in expectation of the increased importance of memory structures
to the performance of future multicore platforms, our research is exploring a new
approach that departs from prior process- or thread-centric scheduling methods to
instead, create a memory-centric scheduler that first allocates to caches the sets of
pages used by executable entities and then schedules those entities to the processors
that use those caches. The schedulable sets of memory pages are termed memory
regions, defined as the sets of physical pages within address spaces that currently
exhibit good locality, which means that an executable entity spends significant time
within each such page set region before changing its locality to reside elsewhere, i.e.,
in another region.

Making regions first class entities states as an explicit goal the optimization of how
memory is accessed, by controlling the map-pings of regions to caches. Region-based

scheduling;:

e tracks the regions (and their associated physical pages) being used by each

executable entity; where

e cach entity can have multiple regions, but at any one time, a physical page



resides in exactly one region;
e regions are mapped onto caches by system-defined mapping policies; and

e the system enforces the resulting cache-centric constraints on executable entities

like processes.

This chapter presents a hypervisor-level implementation of region-based schedul-
ing in which the VMM identifies and tracks the memory regions used in each address
space, estimates working set sizes and consequent cache occupancies, and then maps
regions onto caches. Mapping policies can minimize duplicate cache lines and /or cache
contention or interference (e.g., to lower cache misses [32] or to improve isolation or re-
duce interference [26]), or they can balance cache usage across multiple processes. To
attain these ends, three different scheduling policies are devised and evaluated in this
chapter: (1) cache-balancing, where the system ensures high aggregate performance
for the current processes running on a multi-core platform, (2) cache unification, in
which the different regions used by a process are distributed across multiple caches to
maximize the performance of cache-sensitive codes, and (3) cache partitioning, where
software methods approximately partition the caches used by different processes to
reduce interference or improve isolation. With region scheduling, it is also possible
to unfairly allocate caches across different processes, perhaps to provide additional
cache space to those that need it, but other than to demonstrate improvements in
isolation, we do not further experiment with such techniques in this chapter.

In order to make its performance advantages available to arbi-trary applications
and operating systems, region-based scheduling is implemented at hypervisor level,
controlling VCPU to PCPU mappings and interacting with the hypervisors page table
struc-tures (using the Xen open source hypervisor [27]). An alternative operating
system-level implementation would apply region sched-uling methods to the processes

and their address spaces manipu-lated by OS schedulers and memory managers (i.e.,
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via page tables).

The outcome is a system with the following properties:

e cache-awareness the hypervisor understands the cache structure of the underly-

ing machine, i.e., it knows which caches are associated with which P (hysical) CPUs;

e runtime region tracking low overhead runtime methods identify and track the

memory regions used by the address spaces in virtual machines;

e region-based scheduling maps the V(irtual)CPUs used by a VM to PCPUs
so as to match the VMs region mappings to cach-es; and performs runtime
micro-scheduling, which forces a VCPU-PCPU switch to prevent the hardware
from re-mapping a region when it is accessed from a PCPU associated with a

different cache.

Finally, region scheduling strictly improves upon existing cache-unaware schedul-
ing methods like those used in Unix or implemented in current hypervisors. This
is because their imple-mentation reverts to unaware methods whenever regioning is
deemed ineffective.

We evaluate the performance implications of region-based scheduling with repre-
sentative multi-core and server applications. Experiments with the SPEC benchmark
suite diagnose the potential utility and limitations of region scheduling, resulting in
runtime conditions based on which we determine when region scheduling should re-
vert to Xens standard credit-based methods. Significant performance improvements
are seen for VMs running memory- and cache-intensive codes, in part by mapping
their regions in ways that better leverage the combined cache sizes of multiple on-
chip caches, termed cache unification. More predictable levels of performance due to
improved isolation are observed for server applications with strong constraints, such
as parallel codes using barriers [26] and the enterprise level VoIP codes [25] (e.g.,

achieving up to 40% response time improvement for the latter).
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We view region-based scheduling as a first step toward design-ing schedulers that
recognize the importance, if not predominance, of cache and memory structures for
the performance of future multi-core applications. Complementing prior work on
NUMA awareness in operating systems or hypervisors [28], region sched-uling offers
system-level methods that improve and control appli-cation performance by explicitly
managing their cache usage, without requiring additional hardware support [23] or
inputs from applications [29]. Region scheduling can also be viewed as a first step
toward systems that better support modern compiler runtimes that wish to explicitly
manage the memory units places used by applications [30].

In the remainder of this chapter, Section 2.2 describes the software architecture
underlying the region scheduling approach, called the region framework. Section 2.3
presents the analysis regarding regioning process. It establishes the region tracking
algorithm, and working set tracking is presented in Section 2.4. Next, Section 2.5
presents performance evaluations. Section 2.6 details related work. The last Section
2.7 summarize results and future work, including speculations on potential hardware

support to reduce tracking costs.

2.2 Regions

This section explains regions and the page touch methods used to implement region

tracking, micro-scheduling, and the mapping of regions to caches.
2.2.1 Software Framework and Methods

A region is a set of physical pages. Regions partition memory, since at any one time;
each page can belong to only one region. A region is private when its pages are
accessible from only one address space, with typical private regions being those that
contain heap or stack data. Shared regions, i.e., those shared among multiple address
spaces, usually contain shared pages like code. Region scheduling addresses private

regions, whereas shared regions are handled by standard caching hardware.
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Region-based scheduling explicitly places private regions into caches. Such map-
pings are maintained by having the scheduler restrict from where the regions pages
can be accessed, in ac-cordance with the hardware-level association of caches with
PCPUs. Access restrictions are based on specifications associated with page tables,
which state, for instance, that the physical frame numbers in a region, say, 10, 11,
and 12, shall be accessed only through PCPUs 0 or 2 (on our machine, both of these
share access to the same cache). With such specifications, we must ensure that a
region can only be accessed through the cache to which it has been mapped. This
is done by raising page touch faults whenever this restriction is violated. When a
fault occurs, the thread or process attempting the access is moved to one of the al-
lowable PCPUs (i.e., 0 or 2 in this example) — termed micro-scheduling. Of course,
regions may also be unmapped, and when such unmapped regions are accessed, be-
yond micro-scheduling, the additional option is to once again map the region to the
cache used by the PCPU in question — termed opening the region.

Via page touch faults and with micro-scheduling, one can en-sure that the memory
blocks in a region, e.g., pages 10, 11, and 12, exist only on cache 0, which is private
to PCPUs 0 and 2. Note that this technique also minimizes the number of duplicate
cache lines found in caches and in addition, it may potentially reduce cache coherency
traffic and false sharing of cache lines. Further, an understanding of page to cache
mappings provides approximate information about cache load, which region-based
scheduling uses to better utilize the cache resources present on multicore platforms,
as discussed in more detail in Section 2.4.

Figure 5 depicts a sample scenario in which the physical pages of an address space
are located in different regions, private and shared ones. Each private region may
be mapped to a single cache. A shared region typically exists in all caches — termed
global region — an example being R7 in the figure. When there are a large number of

global regions, there are fewer restrictions concerning how executable entities are run
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(since they can run anywhere). This means that in the extreme case of there being
only global regions, the region framework layer is not active, and region scheduling
reverts to standard methods, like the credit scheduler in our Xen implementation.
Figure 4 illustrates this by showing how region scheduling is implemented in a layer
residing between the hardware and the standard VMM scheduler.

Regions change over time, as address mappings (page table en-tries) are created
or destroyed and with changes in the behaviors of the executable entities using the
address space. An address spaces dynamic size its working set is the sum of the
dynamic sizes of its regions, and its cache load is the sum of the mapped regions sizes.
Working set size is measured at runtime (see Section 2.4). C2(11) in Figure 11 shows
the working set size of C2 is measured 11, which is sum of those for R5,R6 and R7
(5,4,2 respectively in Figure 1(a)). Regions, the address spaces in which they occur,
and their mappings to caches are depicted in Figure 11, which shows that regions
can differ in size, that VCPU to PCPU mappings are controlled to maintain region
to cache mappings, and that a single address space can be mapped across multiple
caches. The latter is particularly useful for memory- and cache-intensive applications
able to benefit from such cache unification.

Figure 11 also shows how region scheduling packs regions into caches, where the
two address spaces Al and A2 run on cache C1, while A3 runs on C2 because its
working set is larger. Cache load is shown in parentheses, the cache with a lower load

being considered emptier when regions are bin-packed into caches.
2.2.2 Life Cycle of a Memory Region

Figure 6 to 10 shows the life cycle of a memory region, using an example. When a new
virtual-to-physical mapping to a physical page is created, a region is born. In Figure
6, R1 is born with first page table entry (mapping, the first arrow) and it increases

its size (the number of physical pages it manages) to 2 with the second arrow. Now
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assume that this process (or address space) creates more mappings in page table by
requesting more physical pages, then we see more arrows from Al as in Figure 7.
New physical pages may be combined to existing region, or can create new region.
Initially it can be merged to the existing one and such regions are called 'seed’ region.
It just plays role of a initial pool of pages. Later it may be split into regular regions
once it goes through some learning phase. For now, we assume that we have two new
regions R2 and R3 somehow in this example. Therefore, the address space Al now
has three private regions R1, R2, R3. Now if another process creates mappings to
two pages P3, P4, then R3 becomes a shared region between two processes Al and
A2. To be exact, the first mapping would split R3 into new shared region R3" and
existing R3 and second mapping would create new shared region R3”, then R3’ and
R3” get merged which effectively turns the private region R3 into the shared region
R3.
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In Figure 8, A2 creates more mappings and it results more private regions R4,
R7. Similarly A3 may come into picture and create more mappings as in Figure 9.
This process, A3, has bigger working set size and naturally the private regions are
bigger in its sizes. If Al terminates and removes its mappings to pages as in Figure
10, their private regions dies accordingly and it may potentially turn a shared region
into a private region.

This example not only shows the life of a region, but it also indicates different
region types. The seed region plays the role of a pool of pages, and it splits into
regular regions later. Sometimes, such regions may be merged to form bigger region.

That is, regions can dynamically change as per the guest’s behavior.

2.2.3 Region Scheduling Implementation

Table 1 describes the data structure maintained for each region
e pgd: if a region is private, it belongs to a certain address space and pgd points
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struct region_t {

struct page_dir *pgd; // address space if private region
atomic_t vr_refcnt; // reference count
struct list_head 1ist[MAX_CACHE]; // mapping to caches
spinlock_t lock; // lock
struct list_head rmaps_list; // reverse maps
unsigned short int frame_count; // static size
unsigned short int rmap_count; // # of reverse map
unsigned short int flags; // flags
unsigned short abit[MAX_CACHE][32]; // histogram

Table 1: System-level representation of regions

to the address space.

refent: a region has a reference count, which is used to deallocate a region when

it is no longer used.
list: a region is mapped to some number of caches (typically, to only one)
lock: a region structure is protected by basic locking primitives

rmaps_list : a region has a reverse map to the page table so that region to page

mappings are easily changed

frame_count : the number of pages a region manages.

rmap_count : the number of reverse map to the page table for optimization
flags : flags that indicates current state of a region

abit : tracks the access bits

The reverse map is important because when a region is mapped to a cache, all

page table entries to all pages in the region must be modified in order to ensure that

only those address spaces running on the right cores are permitted to access it. It

is easy to maintain because Xen must already intercept all page table modifications.
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For other address spaces, we simply clear the protection bit in the page table, thereby
causing an access fault when any of them attempts to use the page. Such page touches
are not propagated to guests, but are transparently handled by the region scheduling
framework. Figure 12 depicts this. Note that without a reverse map, these actions

would require an expensive complete page table scan.
2.2.3.1 Page touch and cache switch

As indicated in Section 2.2, upon page touch, the region scheduler has two options:
(i) to allow the access, which requires mapping the touched region to the current
cache, termed opening the region; or (ii) to move the executable entity to the CPU
whose cache is currently allocated to the region, termed micro-scheduling. An entity
is micro-scheduled in order to force it to run on a different cache. For such a cache
switch, we inspect all of the regions used by that entity, set the protection bits for

the mapped regions to the target cache opening the regions and clear it for the
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other regions closing them. Figure 12 shows how page tables are manipulated for
each cache switch. Global regions, which are already mapped into both caches, are
skipped since there is no need to manipulate them.

Page table manipulations are also used to collect information about an applications
behaviour in terms of memory accesses and to track its working set. By simply closing
a region, one can detect when a VCPU enters it, for instance, which we use to help
assess working set size. By ‘closing regions that have not been accessed for a while,
region management is optimized in terms of the number of open regions it must

consider.
2.2.3.2  Micro-scheduling and cache switches

As evident from the description above, micro-scheduling involves cache switching.
This could be expensive if it required the hyper-visor to explicitly touch all of the
address spaces private regions and their page table entries. We eliminate this over-
head by main-taining per-cache page tables. This is shown in Figure 13, where the
hypervisors page tables A1C0O and A1C1 jointly have the same contents as the guests
cache table Al; they differ only in the protection bits used to ensure that regions are
open or closed with respect to certain caches. This also enables multiple threads in a
process to run across caches.

Beyond cache switching, the other costs of micro-scheduling con-cern VCPU/PCPU

re-mappings. Figure 14 depicts a case in which one VCPU runs on four PCPUs, where
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the hexadecimal in each rectangle is the unique ID for each region used by the VCPU.
In this hardware configuration, Cache 0 is shared by (or local to) PCPUs 0, 2, and
Cache 1 is shared by (local to) PCPUs 1, 3. Cache 0 is allocated to Regions 0x1884f,
Oxe4b6, and Cache 1 is allocated to Regions Oxcd4b, 0xd80e, and 0x12b44. For ex-
ample, since Region 0x1884f is mapped only to Cache 0, when the VCPU tries to
access this region, it is scheduled onto PCPUO or PCPU2. Note that it is the stan-
dard scheduler (such as Xens credit scheduler) that determines which PCPUs are
allocated to them. Micro-scheduling, then, simply makes sure that VCPUs always
run on those PCPUs that are associated with the caches allocated to the regions they
are currently accessing. Potential performance opportunities and liabilities derived
from these constraints are discussed next.

Figure 15 depicts a more complex case in which 4 VCPUs run on 4 PCPUs, where
VCPUs access some regions only through PCPUs 0, 2 and others through PCPUs 1,
3. For example, the region 0x13d83 is mapped to Cache(, and 0x1225e is mapped
to Cachel (see Figure 16 for the associated region-to-cache mapping). We can see

how the region framework balances cache loads from these figures. We discuss cache
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balancing in Section 2.4.

A potential side effect of cache balancing is that PCPUs may experience additional
idle time. This is illustrated by the idle time observed on PCPU1 in Figure 15, which
occurs because VCPUs 0, 3, 2 are running on Cache 0 (PCPUO, 2) while only VCPU1
is running on Cache 1 (PCPUI, 3). In fact, VCPUs 0, 3 are compet-ing for PCPU2,
while PCPU1 is idle. This transient imbalance of VCPUs on two caches is due
to restrictive region-to-cache map-pings. Such an imbalance is desirable if VCPU1
greatly benefits from its exclusive access to its cache (e.g., for cache-intensive codes),
but at the same time, it may increase the latencies experi-enced by other VMs due to
the effectively smaller cache sizes made available to them. The conflict is mitigated (1)
when there are more VCPUs (due to VM-internal parallelism or consolidated VMs),
so that it is likely that other VCPUs can be found to fill this gap, or (2) when there
are more PCPUs per cache. Further, we use an additional method to prevent CPU
idleness, in which instead of micro-scheduling VCPUs, we manage regions in order
to handle this conflict between CPU and cache workload balancing. Results on such
cache balancing appear in Section 2.5.3. Our final solution is to simply permit the
region framework to make regions global (region opening) to prevent CPU idleness.
Such degeneration to standard scheduling is useful for codes that do not depend much

in performance on efficient cache use.
2.3 Regioning

This section explains region identification and tracking. At two extreme ends, all
(private) physical pages in an address space could be placed (1) into a single region
(too coarse-grained) or (2) into many single-page regions (too fine-grained). The first
says that only entire address spaces can be mapped onto caches, whereas the second
states that we have little information regarding its locality. To determine page-to-

region associations, therefore, requires runtime methods that analyze the benefits and
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overheads of region formation and management, and of the micro-scheduling actions
necessary to enforce region to cache mappings. This section identifies such regioning

conditions and uses them to construct regioning algorithm.
2.3.1 Cache Unification

A simple single-threaded micro-benchmark, termed memlat (memory latency) based
on [4], is used to assess the potential utility of cache unification. This memlat has
two identically sized regions, which it traverses randomly for some given number of
memory references and across a given number of pages, termed region access time,
before its execution switches to the other region, which results in a consequent value
of region idle time (see Figure 17).

In the experiment, instead of confining the memlats regions and thus, its execution
to one cache, we map its two regions to two different caches and micro-schedule it
across the associated PCPUs, then compare it to the cache confining case. This
is done for two different generations of machines (Clovertown and Westmere — see
Section 2.5 for additional detail)

Figure 18 shows the normalized performance of the two region memlat when caches
are unified, where values greater than 1 denote improved performance compared to
the case of cache confinement. The x axis is working set sizes (2*2MB means two
2MB regions), and the y axis is access time in the number of elements touched before

a region switch occurs. In this section, access time is expressed in memory access
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count rather than actual time. The figure shows that improved performance appears
in the center, not at the edges of the graphs.

There are several interesting insights from these simple experiments. First, sub-
stantial opportunities exist for gaining perfor-mance improvements from using cache
unification, up to 45% for Clovertown and over 300% for Westmere. This is despite
signifi-cant numbers of micro-scheduling actions in Figure 18, with rates ranging from
295 to 2240 per second for successful cache-unification near the center for Clovertown,
and with rates ranging from 180 to 5100 per second for Westmere. Second, West-
mere has a greater range in which improvements are seen (>1), and this is because
of its relatively lower cost of micro-scheduling (see Section 2.5). This reflects the fact
that computer architects have taken great pains to reduce the overheads of context
switching on modern CPUs. Also, third, we can see that the microscheduling rate
in-creases as region size and access time decrease.

Second, on Clovertown, performance improvements are mar-ginal when access
times are high (>= 2°16) because in those cases, there are relatively few micro-
scheduling actions that permit applications to benefit from cache unification. Third,
as expected, when access times are too short (<=2"12), the large number of micro-
scheduling actions create overheads that outweigh the utility of cache unification.
The outcome is Condition 1, which states that access time must be in some platform-
specific range (i.e., these normative experiments have to be performed for each plat-
form used) in order for region-based scheduling to benefit from cache unification.

Conditions 2 and 3 concern cache working set sizes (recall that a cache working
set is defined as the sum of the sizes of all of the regions being used). First, there
are negative effects when working sets are too small (<=2*1.8MB for Clovertown,
<=2*4MB for Westmere), because placing working sets that would fit into a single
cache into two different caches simply causes the added overheads of micro-scheduling.

Second, when a working set is so large that it does not fit into the unified two caches,
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then again, there are no benefits from region scheduling, since there would be cache
misses both with region scheduling (and the additional overheads associated with it)
and without region scheduling. Condition 2, then, states that the total working set
size must be larger than that of a single cache, and Condition 3 states that each
working set must fit into the unified space provided by both caches. Conditions 1-
3 are shown pictorially in Figure 19. As stated earlier, actual benefits and costs
vary across platforms, but from the Westmere vs. Clovertown results shown here, it
appears that future platforms will likely further tilt the playing field toward our more

explicit methods for cache management.
2.3.2 Bottom-up Regioning

We are now ready to explain how regioning is performed. Re-gions are captured
at runtime. There are two extremes: (1) random regioning where physical pages
are placed into regions randomly, which would cause high rates of micro-scheduling,
and (2) single regioning, where all pages are placed into a single region, thereby

effectively disabling region-based scheduling and entirely avoiding micro-scheduling

29



Regioning Normal run
run
10ms
—p
1sec

Figure 20: Regioning run (p = 1%)

R1 R2 R3 R4
f LRU stack
\I/FH ) R2 i $short idle time Short R2
I A ort :_

_Meraed R12 | v i e timal__R1

i iLong idle time R3

| y R4 | |
I :
v Merged R34 . Longi

- idle time
Merged R12 Microscheduling . DA
Merged R34
vTime

Figure 21: Regions and region merging via LRU stack

overheads. Between these two extremes, we use Conditions 1-3 formulated above to
assess the utility of regioning, and we identify and track regions using a sampling-
based clustering technique, a bottom-up approach based on the notions of access and
idle times.

Each address space runs for 1% of its time in regioning mode (see Figure 20), in
which initially, there are only single-page regions that are then repeatedly merged to
form suitably sized regions to contain application locality. In addition, at the end
of each regioning phase, some regions are torn down in order to prevent them from
becoming too large and/or to capture substantial changes in application behavior
(e.g., phase changes). Finally, for accuracy, regioning performed across interrupt
handlers and system timers is adjusted to correctly consider such system activities.

Figure 21 depicts a scenario in which multiple smaller regions with longer vs.

shorter inter-region idle times are merged into a smaller number of larger regions. This
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is done as follows. First, during the regioning phase, all region switches are detected
because initially, all regions are closed (except for global regions). This means that
entering a region causes a page touch that is visible to the system. This makes it
possible to construct a stack of regions based on the (prev_region =>next_region)
occurrences. Second, when a new region is entered, the previous region is closed, so
that only one region (the current region) is open at any given time. This makes it
easy to measure the access and idle times for all regions.

As Figure 21b shows, the idle times correspond to the LRU distance between
regions. Therefore, a long idle time indicates a locality change, whereas a short idle
time between two regions is a strong indicator for merg-ing them, both of which are
shown in Figure 21. Using a threshold q to determine short idle times based on the
memlat measurements explained earlier, we merge regions when idle time is less than
q and take no action otherwise. Note that a low threshold results in fine (small)
regions, while a high threshold creates coarse (bigger) regions.

All regions are opened to resume normal execution after the regioning phase has
completed. This entering/exiting of the re-gioning phase could be expensive, however,
because all regions in the address space should be closed/opened when this occurs.
This is optimized by introducing per-mode page tables in ways similar to what is
discussed in Section 2.2. As a result, the regioning phase can be entered by simply

switching to separate regioning-phase page table that already has closed entries.
2.3.3 Region Types

There are several types of regions. Initially, all regions are seed regions. When locality
is captured in the regioning phase, they become regular regions and once mapped to
some cache, they are termed local regions. As stated earlier, there are also global
regions not subject to region scheduling.

Differentiating global from other regions is done as follows. At each page-touch
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Start regioning (close all regions except global regions)

Regioning phase (merging)
End regioning (open all regions)

Cache balancer does cache allocation, cache balancing.
Teardown (pick largest local region from regioning phase and

make it into a seed region.)
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Table 2: Regioning process
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Figure 24: System view

from a seed region, the new page is determined as code if the faulting address equals
the eip (program counter) register. If the faulting address is near the stack pointer,
it is de-termined to be a stack page. Both code and stack pages are classified into
global regions, and thus, do not further participate in the regioning process. The type
transitions shown in Figure 23 apply to all other pages. In summary, the process in
Table 2 is used for regioning. Figure 24 depicts region state transitions over time.
We have not yet explained when large regions are destroyed (by turning them
into seed regions). This is done in conjunction with cache allocation to regions.
Specifically, cache allocation is performed after regioning is completed, by picking a
regular region and making it into a local region (i.e., mapping the region to some
cache). Next, we select the largest local region determined in the regioning phase
(which is marked in that phase, so this is an O(1) operation), and denote it as a
seed region, thereby initiating the process of tearing it down. We never consecutively
tear down the same region, however. In this fashion, we incrementally build (and
tear down) regions in response to observed program behavior. Finally, a region may

shrink during a run when an abnormally high microscheduling rate is detected, by

33



50% Bdynamic min
209 mdynamic max povray
= ° it . Ostatic min
bguantum Hstatic max
g 30% S hmmer
© N\ N obmk
a 20% § §
10% § . h264ref §
N omnetpp ham sphinx N
O% _ § ) I §

Figure 25: Portion of shared pages (observed min/max value)

excluding from the region the page that causes it.

Regioning is independently conducted for each core, the current policy doing it
at every 1 second of CPU time for each address space. Thus, long-lived processes
will experience more regioning actions, whereas short-lived ones may not experience
any regioning at all (i.e., if they live less than 1sec). For multithreaded applications
sharing an address space, each of the different threads (i.e., the cores on which they
run) enter the regioning phase at a different time, thereby avoiding concurrent use of

the shared page table.
2.3.4 Global Regions

Inappropriate placement of shared pages and stack pages can cause unnecessary
micro-scheduling overheads. An example is to map the glibc code onto only one cache,
which would cause virtually all processes to frequently micro-schedule to glibes cache.
To address this issue, we declare all code pages (and similarly, the stack pages) to be
global, which causes some level of cache line duplication. The resulting overheads in
terms of cache space usage are moderate, however, as shown by the measurements
in Figure 25 assessing the portion of shared pages in the SPEC benchmark suite.
The figure shows the percentage of observed shared pages at runtime, both actually

accessed (dynamic) percentage and the static percentage seen in page tables.
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2.4 Working Set Tracking

Working set sizes are determined dynamically, using the access bits (A-bits) in page
table entries. Specifically, every 100ms (as virtual time for each address space), the
page table is scanned, and the access-bit history is recorded in a 32bit word. Only
currently open regions are scanned to minimize overhead. For the example shown in
Figure 12, if it is running on C2, only the part of the page table corresponding to R6
and R7 would be scanned, for instance. The access bits gathered over time form an
access bit history (i.e., 3.2 seconds worth of access history) for each page. This is also
termed the pages access pattern recorded as region histograms based on their pages
access histories.

Figure 26 shows region R20s details. From its 10 pages ac-cess histories, it builds
a histogram by counting the number of 1s, and it calculates its working set size y
using a heuristic moving average function F below that takes the histogram as its

input. The weights are determined experimentally.

y= D HO+ Y JHO + S SHE + Y0 1) (1)

Consistent with this function, we define cache load as the sum of the dynamic sizes

of mapped regions. Interpreting this value as cache occupancy, the cache balancer
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Figure 27: Tracking working set size

uses it to determine cache imbalance; a simple greedy algorithm periodically balances
cache usage in conjunction with the regioning process.

Since access bits are gathered every 100ms, and a 32bit word is used to store its
history, roughly the past 3.2 seconds are reflected in the working set sizes used for
region scheduling. Figure 27 shows the evolution of cache working set sizes observed

over time for select benchmark codes, which the cache balancer would use.

2.5 Experimental Fvaluation

Region scheduling is evaluated on two generations of Intel plat-forms. The first,
labelled Clovertown in all figures below, is an older machine with Intel quad-core
Xeon X5365@3.00GHz cores with 1GB RAM. The caches are an 8-way L1 cache
(32K Da-ta+32K Instruction) and a 16-way 2x4MB L2 cache. The cache line size is

64bytes. The second, labelled Westmere in all figures below is a newer machine with
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two Intel six-core Xeon X5660@2.80GHz sockets with 12GB RAM. The caches are a
4-way 32KB L1I, 8-way 32KB L1D, 8-way 256KB L2, and shared 16-way 12288KB
L3.

2.5.1 Overhead

Regions are enforced by the hardware MMU. Once page protection bits are set dur-
ing opening/closing regions, no additional runtime overheads are incurred during
execution for enforcing regions. Full TLB flushes are avoided by using optimized
instructions like invlpg.

Four major overhead sources are the do_clock(), usched(), switch_cache(), and
regioning() calls, which perform page table scanning, microscheduling, page table up-
dates, and regioning respectively. Using the two-region memlat with a small working
set size, we conduct an extreme case experiment to assess these overheads, by choos-
ing working sets that perfectly fit into the two different machines caches, thereby
eliminating all potential benefits derived from micro-scheduling. When not using the
per-cache page table optimization, total overhead is measured to be roughly 5.5%
with 700 microscheduling per second. Performing the do_clock() call ten times and
making one regioning() call results in less than 1% overhead, but the switch_cache()
call constitutes over 90% of total overhead, which is effectively eliminated using said
optimization. This results in constant-time micro-scheduling, its composite time com-

prised of page fault, context switch, runqueue manipulation, IPI, and TLB flush.

37



Figure 28 briefly shows this. Micro-scheduling is measured as 47600 cycles (i.e., 15.86
us, 1.5% for 1000 uschedule actions) for Clovertown, and 17800 cycles (i.e. 6.357 us,
0.6% for 1000 uschedule) for Westmere. Do_clock() has some overheads de-pending on
page table size, but it is several milliseconds in most cases (less than 1%). Regioning
overheads benefit from the optimization that uses per-mode page tables, where an
upper bound on these costs is defined by the sampling rate p. Naturally, over-heads
are even lower, close to two TLB flushes, for codes that operate with stable regions,
like libquantum. That overall overhead is measured to be less than 3%, typically 2%

on both machines.
2.5.2 Microbenchmarks

To reduce cache contention, the cache balancer dynamically re-maps regions based
on cache loads. For example, on machine Clovertown, when running two processes of
4AMB working set size and two processes of 16KB working set size, with region schedul-
ing, the cache balancer ensures that the cache is shared by the pair of AMB+16KB
processes. This improves performance by more than 50% for all processes compared
to a region unaware mapping in which two 4MB processes share a cache. Similar re-
sults are observed on machine Westmere, using 12MB and 512KB working set sizes,
respectively.

Figure 29 shows simple experiments on both machines, in which we run two 4MB
memlats + 16KB memlat + a SPEC benchmark on the machine Clovertown, and two
12MB memlats + 512KB memlat + a SPEC benchmark on the machine Westmere.
Depending on scheduling, the SPEC benchmark experiences different levels of cache
contention. The cache balancer improves performance by correctly pairing processes
onto caches and miti-gating cache contention. The figure shows that there is sub-
stantial potential for performance improvement for all SPEC benchmarks. Or stated

negatively, without cache balancing, SPEC programs experience significant levels of
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disturbance by the presence of other cache-intensive codes.

Conversely, performance can be improved for cache-intensive codes by giving them

access to multiple caches, termed cache unification. The initial effects of cache unifi-

cation on cache loads for the simple memlat micro-benchmark on machine Clovertown

are shown in Figure 30.

and the second half

The first half of the figure shows unbalanced cache loads,

are obtained on ma-

shows balanced loads plus micro-scheduling. Similar results

chine Westmere and for brevity, are not shown here. We evaluate the performance

implications of such actions in more detail below.
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2.5.3 SPEC Benchmarks

Figure 31 depicts measured results for experiments that assess the memory access
pattern of the SPEC 2006 benchmark, which is obtained by collecting their access bit
history over a test run (see Figure 26). From these runs, it is clear that libquantum
and povray have simple access patterns, resulting in very stable regions, whereas
sphinx and namd regions are more dynamic. This is verified by Figure 32, showing
just a few regions in each cache for the first two, and a much larger number of regions
for the latter two. Results obtained on machine Westmere are consistent, except that
it tends to have bigger region sizes due to its higher performance (not reported for
brevity).

Considering the access patterns depicted in Figure 31, these measurements show
that the regioning methods correctly identify the memory region-based execution
behavior of these codes, where e.g., libquantum and povray have few regions while
namd and sphinx have many regions.

Another set of results in Figure 32 (the graphs on the right) de-pict the cache
load (sum of region sizes for each cache) imposed by these codes. First, note that
in the case of namd and sphinx, cache balancing succeeds in balancing both caches.
This is in part because the number of regions for these codes is relatively large, which
then permits the cache balancer to advantageously pack these regions into caches. In
contrast, libquantum and povray show poor cache balancing, in part due to their small
numbers of regions. Second, and as shown in Figure 33, successful cache balancing
always improves performance, with an almost 15% gain for the Sphinx benchmark.

The outcome from these experiments is that regioning and cache balancing result
in performance improvements even when the number of micro-scheduling actions is
high. In fact and as shown in Figure 34, improved performance is seen even for
very large numbers of micro-scheduling actions, e.g., the 10% improvement seen for

namd on machine Clovertown is attained with up to 2000 micro-scheduling actions
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per second! Further, Westmere shows better performance due to its cheaper micro-
scheduling. The measured cache misses in Figure 33 demonstrate why this is the case.
In many workloads, such as omnetpp, sphinx, h264ref, the measured cache miss rates
are lower with region-based scheduling.

The fact that performance benefits are seen even with high micro-scheduling rates
(up to 2000 context switches per second) is a key result of this research. This demon-
strates that given the rela-tively low cost context switching on modern architectures,
there is an almost overwhelming importance of caching to program per-formance. We
view results like these as an important motivation for carrying out and continuing
our research into memory- and cache-centric methods for processor scheduling.

We also note that these SPEC-based results are consistent with the memlat-based
ones shown in Section 2.3, thereby demonstrat-ing that the potential behaviors we
diagnosed with the memlat micro-benchmark are realistic in that they occur in actual
codes. From the memlat-based diagnostic measurements, we also note that unduly
high micro-scheduling rates can reduce or eliminate the potential performance gains
derived from cache unification. This places constraints on the granularities of re-

gions and region mappings that must be observed and taken into account by region
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scheduling.

Finally, the results in Figure 35 confirm that the bottom-up ap-proach to regioning
used in our research is viable. First, since we start with many small regions, initially,
there are many merge actions, but second, there is sufficient stability that the number
of merges quickly subsides, along with the number of re-regioning actions, as evident
from the number of global regions seen in these codes. We deduce that memory regions
are sufficiently stable to warrant their runtime detection and use, even without special

hardware support for doing so.
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2.5.4 Media Benchmark

Region scheduling can help improve performance, as shown in Section 2.5.3, but
it can also improve other important metrics, such as noise [26] for parallel codes or
timing perturbation for real-time applications. We demonstrate the latter on machine
Clovertown by measuring the response times seen for high performance IP telephony
software, Asterisk [25].

Asterisk is a complete IP PBX, comprised of a voice commu-nication server fea-
turing voice mail, conference calling, interactive voice response, etc. It supports VoIP
protocols such as SIP, MGCP, and H.323. It acts as a signalling server (SIP server)
and a media server. When it handles signalling, it deals with call set-up/teardown,
etc. When it is used as a media server, it takes a voice stream, processes it (including
transcoding, if needed), and then sends the stream to the recipient. Figure 36 shows
the configuration for Asterisk. This real-time media server requires low latencies to
process voice streams, and it requires that those latencies remain within certain upper

bounds to protect voice quality.
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Figure 37: Media server+SPEC consolidation on Clovertown

Using the SIPp traffic generator for the SIP protocol, we run experiments exer-
cising the system at 10 calls per second with RTP traffic. Signalling is initiated from
SIPp, and an 8 second pcap file (RTP stream of G.711 encoded) is sent to the media
server after call establishment. The call hold time is 10 seconds. The parameters
above imply that there are at most 200 RTP streams flowing into the media server

at any point of time (100 streams from the caller and 100 streams from the callee).
2.5.5 Cache Sharing

To demonstrate the utility of cache balancing, the VOIP experiment uses unfair
policies that offer additional cache space to a preferred virtual machine. This is
particularly important, of course, when there are multiple applications that share
access to the platforms CPU and cache/memory resources.

Figure 37 shows the media servers improved response time on machine Clover-
town when it is the only application running (denoted no consolidation), when no
region scheduling is used (denoted consolidated-credit), or when region scheduling is
employed and the media server is the preferred VM (denoted consolidated-region).
Results show that the servers response times are much more consistent for the region-

based vs. credit-based scheduling approaches, and both are worse, of course, than
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the non-shared scenario. The figure shows the cumulative number of calls with var-
ious durations observed during the runs, with a flat line being best. We also note
that the overall average response time is 7.765ms for no-consolidation, 19.415ms for
consolidated-region, and 32.535ms for consolidated-credit, re-spectively. The almost
40% improvement in the average response time seen for the server comes at a mod-
erate cost for the other applications running on the platform, with an up to 15%
detriment observed for the sphinx code. Degradation occurs because the cache bal-
ancer is instructed to provide additional cache to the media server, which is known

to be cache-sensitive.
2.5.6 Reducing Noise for Parallel Codes

We next explore the use of region scheduling to protect parallel codes (e.g., OpenMP
codes) running on a shared platform from each other and/or from the effects other
codes on the same platform may impose on them. This is particularly important as
we move toward many-core systems where the platforms on which parallel simulation
computations take place will be shared with other applications (as in consolidated
and cloud computing systems) or will be shared with additional codes that analyze
simulation output data as it is being produced [35]. One could, of course, strictly
partition nodes and their caches, but an approach like region scheduling that explicitly
understands memory usage and can better isolate codes from each other, as evident
from the results shown in the previous section, should result in improved levels of
node utilization and permit richer and more finer-grain ways of using and sharing the
node resources of future machines.

We use two virtual machines one virtual machine running a ray tracing parallel
workload (PAR VM) and other a SPEC om-netpp workload (SPEC VM). Figure 38(a)
shows the measured (worst) elapsed time and (average) CPU time for each virtual

machine. In case of raytrace, elapsed time increases as more workload is added to
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the SPEC VM. However, its CPU time stays constant. This is because this parallel
code does not reuse its data, so is not impacted by cache contention. Meanwhile, the
omnetpps performance suffers from sharing cache with PAR VM. Region scheduling
improves the SPEC VMs performance by mostly isolating PAR VM onto one cache
while SPEC VM runs on the other cache. Figure 38(b) shows their average cache
misses. In general, with region scheduling, we observe 8.39% less cache misses in

Figure 38(b).
2.6 Related Work

The importance of efficient cache usage is well known [12, 13, 14, 15]. There are hard-
ware approaches to cache partition (e.g., based on utility metrics [23] or spill /receive
[24]) and software-based methods. The ones proposed in [16, 17] are similar to those
used in our work, but these simulation-based results are focused on NUCA caches
[12], whereas we contribute a general framework for and implementation of policies
for cache management for realistic multi-cache, multi-core platforms.

Other cache-aware schedulers [5, 8] use thread migration and matching, and [6, 7]
use page coloring or guided page allocation to partition shared caches, whereas we
use page-table-based page-level affinity and microscheduling. Since our methods are
imple-mented at hypervisor level, they can be used without modifying operating
systems. Further, we go beyond earlier results to deal with multiple rather than the
single caches addressed in prior work, and for such multiple caches, we go beyond
cache partitioning to also support cache unification. Finally, we can estimate cache
loads, since we track region working sets [10, 11].

Recent work at MIT has commonalities with our work, using a synthetic directory
workload [31] as a demonstration. In that research, ideas similar to ours [32, 33, 34]
are implemented in hardware, using instruction-level execution migration. We differ

in that we extend the idea to cover all of a systems memory, and we do so in the VMM
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in order to make the functionality accessible to arbitrary unmodified applications and
systems, without requiring any hardware changes.

Affinity scheduling [9] constitutes early work motivating the importance of caching
for high performance codes. Our work can be thought as a next step in such work
page-level affinity. We have identified and demonstrated how this page-level affinity
could be used.

The term region scheduling also appears in [36], but that work has nothing in

common with what is presented in this chapter.

2.7 Conclusions And Future Work

This chapter introduces a memory-centric approach to managing the resources of
multi-core platforms, motivated by the ever-increasing importance of memory and
cache resources (and their efficient use) in multi-core architectures. Indeed, we show
results where improved performance is gained due to superior cache usage even at the
cost of relatively high rates of context switching (e.g., up to 2000 micro-scheduling
actions per second). Intuitively, this is because it is preferable to move the compu-
tational entity to where its memory is vs. moving the memory (i.e., cache lines) to
where the entity currently runs.

To realize cache-centric scheduling, we introduce the novel notion of memory re-
gions and then develop system-level support for dynamically determining these regions
for mapping them to caches so as to optimize program performance. The resulting
region framework is realized as a software layer in the Xen hypervisor, and beyond
determining and mapping memory regions to caches, its additional task is to ensure
that the entities touching memory regions are run so that region-to-cache mappings
are preserved, i.e., a process is run only on a core associated with the cache in which
its region is currently mapped.

Region scheduling could benefit from additional hardware support. For instance,
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execution migration by hardware [32, 33, 34] could reduce micro-scheduling overheads
to only 100 cycles [34], thereby further broadening the usefulness of region-scheduling
to applications. Further, there may be hardware-level opportunities to exploit the
information about the behavior of an address space in terms of its region accesses and
working set size. A particular opportunity is to use such inputs to affect the cache
eviction policy used by hardware, i.e., to select victims for eviction. For example, once
a region is unmapped from a cache, existing cache lines from the regions are ideal
victims because they will not be accessed through that cache until opening region.

Other options include (i) not to evict cache lines from shared pages, such as those
containing library codes, or (ii) to exploit the memory reference patterns detected by
region scheduling to choose as victims one-time data, e.g., one-time data such as the
inputs or outputs produced by codes. Finally, (iii) rather than pursuing hardware
methods for cache partitioning, one could exploit region scheduling for soft cache
partitioning. Such partitioning can be used to give unfair advantages to certain codes,
or even to dynamically resize codes cache sizes to adjust them to their current working
set sizes. On asymmetric multi-core architectures, this would make it possible, for
instance, to isolate small workloads onto a smaller cache while giving most other
cache capacity larger workloads.

This chapter clearly demonstrates the promise of memory-centric scheduling, but
there are several limitations in the current region framework: (i) to understand paral-
lelism in multithreaded applications remains future work; (ii) if no region is detected,
there are costs but not benefits this should be addressed; (iii) the OS kernels in guest
operating systems remain undifferentiated global regions this is the subject of the

next chapter.

52



CHAPTER II1

DISAGGREGATED OS SERVICES

3.1 Introduction

The previous chapter introduces the region scheduler and the bottom-up detection of
regions, the latter monitoring the guest VM’s memory access patterns. The methods
described are applied to user space, not kernel space, because their effectiveness de-
rives from monitoring the behavior of applications to determine appropriate page to
region mappings. Because the OS kernel space is shared by all processes running in
the virtual machine, the page access behavior seen in the OS kernel is an aggregate
behavior of all currently running applications. It is unclear to what extent such an
aggregate can lead to useful region creation. Further, since all applications — wher-
ever they run — share access to the single kernel space, it is also unclear how detected
kernel space regions should be mapped to caches, along with the regions of the appli-
cations making the kernel calls that in turn, give rise to kernel-level regions. Stated
intuitively, placing a kernel region onto a certain cache will cause a microscheduling
action for any application’s kernel call occurring on some other cache; with frequent
kernel calls, this will give rise to an inordinately high frequency of microscheduling
actions. Finally, for kernels with their complex interleaved internal code paths and
compactly laid out data structures, the automated regioning approach is limited and
inhibited by its relatively large 4KB page granularity. Specifically, while regions are
composed of 4K page sized entities, kernel data structures may not fit these 4K sizes
and/or may be co-located in the same 4K pages[129]. Needed is an additional concept
to assist us in kernel-level regioning.

In this chapter, we explore how the memory region approach can be applied to
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the OS kernel and investigate its implications. To do so, several challenges have to
be overcome. First, the region scheduler for application-level data is based on page-
to-cache mappings, with 4KB pages. This means that any objects or cache lines in
the 4KB page are treated as related objects. This false sharing phenomenon is well-
understood, and solving it would require (i) regioning at the cache-line level, which is
not feasible with current hardware or (ii) the redesign of kernel data structures, which
is not desirable due to the resulting lack of generality of the approach and the ensuing
reduced maintainability of thus redesigned OS kernels. To address these issues, we (i)
offer new functionality — object to region mapping — and (ii) apply this functionality
only to select kernel data structures and services, thereby demonstrating the utility
of regions and region scheduling for kernel level services, but without the automated

regioning used for application data.
3.1.1 Kernel Disaggregation

Region scheduling has the interesting and important property that by placing certain
kernel data structures onto certain caches, the execution of kernel services touching
those structures is determined to run on the cores associated with those caches. As
shown with the layout of user and kernel data depicted in Figure 39, kernel-level
region scheduling, therefore, can create the notion of user vs. kernel cores. In Figure
39(b), PO and P1 are user cores, while P2 and P3 are kernel cores. This effectively
specializes the cores to run certain software functions, regardless of the underlying
hardware, e.g., whether it is a homogeneous or a heterogeneous ISA architecture. The
outcome is what has been termed 'kernel disaggregation’ and in past research, such
functional disaggregation has required OS kernel redesign and/or new kernel mech-
anisms assisting disaggregated kernel operation. Region scheduling can be used to
disaggregate kernel functionality without any changes to kernel code, as demonstrated

in this chapter.
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Kernel disaggregation refers to the separation of specific kernel services or func-
tions in order to direct their placement to or confine them to certain machine re-
sources [132]. The approach has been shown useful for reducing OS ‘noise’ in high
performance systems[130], and it is the defacto standard for hardware platforms on
which certain OS services are statically mapped to run on specific hardware com-
ponents. An example of the latter is the mapping of communication functions to
smart network interface cards (NICs), sometimes also referred to as 'communication
offloading’ [131].

We offer the following general motivation for the utility of kernel disaggregation.
Consider modern cloud infrastructures [113] in which many VMs share underlying
physical machine resources. Current sharing methods implemented in say, VMware
vSphere [111] or Citrix XenServer [112], have explicit mechanisms to fairly share
CPUs, physical memory, [109, 110]. They do not, however, consider fairness in how
CPU caches are shared, despite the known importance of CPU caches to application
performance. The reason, of course, is that CPU caces remain invisible to system
software. Using regions and region scheduling, we can make CPU caches into a first
class schedulable resource considered in virtualized systems. Kernel disaggregation,
then, is a useful and interesting side effect of kernel-level regioning.

As stated above, however, kernel-level regioning is challenging and difficult to
automate. The approach taken in our work is to forego automated regioning for
kernel-level data and instead, rely on kernel developers to identify and mark — not
redesign or rewrite — kernel data structures suitable for regioning. The outcome
is an approach in which developers identify object to region mappings, which are
then used by the region scheduler to appropriately map regions to caches. Stated
with an example, the basic idea of region scheduling method is to place working sets
onto each cache and move computations to those cores. Figure 39(b) shows how

memory blocks are placed into caches using this scheme. With current CPU-centric
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Figure 39: User/Kernel cores and caches.

scheduling methods, i.e., without kernel level region scheduling, the caching hardware
mechanism blindly places data from both user and kernel space onto the same caches,
as shown in Figure 39(a). In addition, the load balancer will migrate tasks to other
caches, creating duplicate cache lines. With the memory-centric scheduling approach
realized with region scheduling, data is simply mapped onto each cache first, and then
the tasks are scheduled onto appropriate PCPUs. This results in reduced cache line
duplication, and can be used to confine tasks to certain caches.

To explain kernel-level region scheduling, we next briefly review the concept as
realized for application-level data, followed by a description of how it can be applied

to kernel-level data.
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Figure 41: Region scheduling

3.2 Memory-centric Scheduling
3.2.1 Region scheduler

As explained earlier, region scheduling is implemented in Xen, which has its own
VCPU scheduler, the credit scheduler. The region scheduler (or the region frame-
work), then, is implemented as a layer below the credit scheduler. It is responsible
for region-to-cache mapping, meaning that is is able to map a region — a set of physical
pages — onto some target cache.

Figure 41 illustrates region scheduling for two VCPUs. PCPUO and 2 share the
first LLC (last level cache) which holds the memory block B, while PCPU1, 3 share
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the second LLC which holds the memory blocks A and C. VCPUs are scheduled based
on which memory blocks they wish to access. So, for example, a VCPU would be
scheduled onto PCPUOQ or 2 if it accesses B. It would be scheduled onto PCPU1 or 3

if it accesses A or C.
3.2.2 Regioning

Region scheduling is governed by regioning page tables, one per process. In that
table, every entry is closed by default, meaning that an access to that entry generates
a page fault visible to the hypervisor. The regioning page table is the basis on which
regions are formed for each process. For a process to enter the regioning phase, we
simply perform a switch to its regioning page table, which then causes the subsequent
sets of page faults that permit us to assess its page access behavior. The outcome is
low overhead for each process’ entry into a regioning phase. For multithreaded ap-
plications, one could implement per-thread regioning page tables, with consequently
increased complexities and space overhead. The current implementation uses a sin-
gle page table shared by all threads for the given process. Each thread enters the
regioning phase at different times, avoiding overlap. This means that regioning can
be performed only one thread at a time, thus extending its duration. This choice
is suitable for longer-running, somewhat stable applications or application cohorts,
with an alternative solution required for highly dynamic, time-varying codes. We note
that there are additional challenges for regioning, including how to deal with other
dynamic behaviors, such as those caused by interrupts, changes to address spaces,

ete.

3.3 Guest-defined Region

The region scheduler defines the region-to-cache mapping, with regions detected by
the regioning algorithm. To deal with the fact that particularly for kernel-level data, a

single region may contain un-related objects — due to the 4KB page sizes in our system
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Figure 42: Guest-defined regions

— we introduce methods that permit a guest to identify regions, relying on specifi-
cations stated by system developers. This method is particularly useful if regions
are carefully placed to avoid false sharing or if there is compiler support with which
data structure mappings to pages can be controlled. For some managed languages,
their runtimes can handle such tasks automatically, without the programmer-based
annotations used in our work [126]. Additional useful support for controlling object
to region mappings might be provided by garbage collectors or heap managers, which
routinely free or move objects from one place to another.

In operating systems, one entity controlling object to region mappings is the slab
allocator [127], its task being to cache frequently used objects. This naturally creates
many regions of related objects, making it a good candidate for a developer-defined,
per guest, kernel-level region. For example, the inode cache is a key data structure
of the file system, and the slab allocator manages these inode caches.

In the remainder of this chapter, the region framework is extended to embrace the
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object-to-region mappings needed for creating regions for select kernel data struc-
tures, thereby indirectly configuring the kernel functions using those structures to
run on designated processor cores. Such OS service disaggregation is demonstrated
by applying the guest-defined regions to select Linux kernel data structures and func-
tionality.

A guest-defined region is a region in which a guest specifies which pages belong
to what region. The concept applies to both user-level and kernel-level data, but
in this chapter, it is applied to kernel data only. In either case, the guest maps
objects to regions by annotation. For example, the malloc() call can be extended
to have an additional parameter that specifies a region. Then, the region framework
maps the regions onto caches. Or a kernel developer can select kernel data structures,
annotating the kernel functions using them and/or interposing the calls made to these
structures with annotated calls. In any case, note that region-to-cache mapping is still
done by the region scheduling framework, which may globalize and localize certain
regions, if necessary. Each VCPU will then be scheduled to the correct PCPUs. For
example, in Figure 42, if the R2-to-C0 mapping is given, then VO runs only on PO or
P1 to access R2’s objects. Similarly, V1 and V2 run on P2, P3 to access R1 and R3,
respectively.

The guest-defined region API is implemented with the hypercalls in Table 3. First,
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int add_guest_region(void); // returns Rid
void del_guest_region(int rid);
void add_page(mfn, order, rid);
void del_page(mfn, order, rid);

Table 3: APIs for guest-defined region

the two functions add_guest_region() and del_guest_region() create or destroy regions.
Each returns or takes the region ID (rid) as region identification. The other two
functions, add_page() and del_page(), add or delete physically contiguous pages to
the given region.

The creation of guest-defined regions may be viewed as manual regioning. It
is efficiently done at allocation time. Once specified by the guest, the hypervisor
maps/manages the placement of regions to caches. Creating and using guest-defined

region is simple and beneficial:

e The annotation effort is minimal. For instance, we added only a few (less than
10) lines to linux/mm/slab.c using these hypercalls, with negligible runtime

overheads incurred from the use of these calls.

e Among many object caches, we chose the key data structures ext3_inode_cache,
ext3_xattr for the file system subsystem and skbuff_head_cache, skbuff_fclone_cache
for the networking subsystem, thus making it easy to disaggregate these two

important sets of functionalities to certain CPU cores.

3.4 Load Balancer Conflict

While traditional CPU-centric schedulers focus on CPU utilization, the region sched-
uler treats the memory blocks accessed by the current thread (or VCPU) as first
class schedulable entities. When the thread accesses remote memory blocks, it is
microscheduled to the processors associated with the cache where the target memory

blocks reside.
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A potential interesting issue with region scheduling is microscheduling leading to
short time slice lengths. CPU schedulers deal with time slice lengths as follows. Con-
sider a web server generating dynamic pages. For such a VM, the credit scheduler
increases time slice lengths as more CPU is consumed to generate dynamic pages.
With cpu-boundness=100, over 30% of the CPU time is consumed with time slices
of 30ms, which indicates the VCPU is preempted only by the credit scheduler. (The
credit scheduler uses a max. 30ms time slice by default). Further, we observe most
other short time slices to be consumed by network processing activities. This is nat-
ural because of the web server’s workload need for more CPU time. With region
scheduling, however, VCPUs’ time slice lengths do not increase, because of the fre-
quent microscheduling actions taken for them. In other words, with region scheduling,
a single VCPU does not accrue sufficient CPU cycles on any one core to prompt the
CPU scheduler to increase its time slice length. Instead, with the VCPU running
across multiple cores in a distributed manner, inaccurate accounting leads to inaccu-
rate inputs to the traditional credit-based scheduler. We respond to this problem by
modifying the existing credit scheduler to better understand a VCPU’s time consump-
tion when microscheduled. Specifically, time accounting is refined to use nanosecond
time resolution based on processor cycles rather than using traditional tick-based
time (Xen adjusts this value to cope with frequency drift). The result is finer-grained
time accounting and more accurate time measurement for VCPUs.

Another issue with region scheduling is its potential conflict with the traditional
load balancer on CMP/SMP platforms. The traditional load balancer tries to reduce
CPU idleness across the platform. However, in the memory-centric approach, some-
times, idle CPUs are natural. Therefore, the load balancer that prevents CPUs from
being idle by migrating VCPUs may conflict with the region layer that may keep
some CPUs idle.

A load balancer blindly moving VCPUs may cause ’spurious’ microscheduling.

62



VCPU in user
mode

VCPU4

| vepul
Kernel Kernel User
Core 0 Core l Core O

Figure 44: Load balancer conflict

For example, in Figure 44, VCPU1, 2, 3 can move to kernel core 1, but not to user
core 1. If it moves to the user core, then it will immediately invoke microschedul-
ing back to the kernel cores. This adds unnecessarily two microscheduling and such
spurious microscheduling may impact performance significantly when it occurs fre-
quently. Even when VCPU3 moves to kernel core 1, user core 1 is left idle and this
cannot be resolved until some VCPU switches back to user mode. So, in this model,
when we have unbalanced workloads in each mode, it is natural to have idle cores
and therefore, lower CPU utilization.

One easy approach to prevent the spurious microschdulings is to disable load
balancing across cache boundaries. Although it still allows load balancing within
cache-sharing cores, it easily result in lower CPU utilization. However, this approach
may be okay with ample CPU resources where there is almost no needs for load
balancing.

Rather than just disabling load balancing, our approach is to modify the load
balancer so that it carefully chooses VCPU candidates for migration. The basic idea is
to mark the VCPU that is just microscheduled so that the load balancer does not pick

that VCPU unnecessarily. Figure 45 depicts this scenario. Assume that the VCPU3

63



VCPU in VCPU in user .
Leriol mode mode * Just microscheduled

ECPU3

VCPU1 VCPU2 VCPU4

Kernel Kernel User
Core 0 Core 1 Core 0

Figure 45: Load balancer conflict

caused a page touch and just got microscheduled to Kernel Core 0. At this point the
VCPU3 is about to access its kernel data structure and it does not make sense to move
it back to the user cores since it would again cause another microscheduling back to
kernel cores. Note that the VCPUS3 is just got moved to Kernel Core 0 so it never had
a chance to resolve its accesses to kernel data structures. So, we can mark VCPU3
as an ”just microscheduled” then the load balancer can skip it. Once the scheduler
schedules VCPU3 on Kernel Core 0 (after VCPU1 and VCPU2), the mark is removed
because it is likely that VCPU3 will access to the wanted data. Once a time slice is
given to VCPU3, it would be returned to the run queue with the mark removed. This
guarantees that the microscheduled VCPU runs at least one time on the target core.
At this point, it is one of the candidates for load balancing. i.e., The mark is removed
when the VCPU is once scheduled on the core it is microscheduled to, and the load
balancer skips VCPUs with the ”just microscheduled” mark. Similarly, we can see
that VCPU2 in Figure 45 is also just microscheduled because it is marked so, and
we know that moving VCPU2 would be also unnecessary spurious microscheduling.
Meanwhile, VCPU1 does not have the mark and it indicates that it had at least

one time slice run on this core, which makes it a good candidate for load balancing.
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Thus, VCPU3 and VCPU2 must have been running on user cores until they just get
microscheduled to the kernel cores. Hence, the load balacner does not choose any
'marked” VCPU.

This removes most of spurious microscheduling successfully. However, sometimes
some spurious microschedulings are still observed when a VCPU does not consume
its time slice enough long and just yield its CPU core quickly. i.e., it sleeps frequently
and loses its mark quickly, which eliminates the hints to the load balancer.

So, finally we do the mark removal only after some threshold CPU time. Giving
10ms of CPU running time before the removal of mark effectively reduced spurious
microscheduling to a negligible level. This is because the VCPUs being microsched-
uled rarely spend that much time (10ms) on the cache-sharing cores. However, note
that we use intact load balancing algorithm to the cache-sharing cores. Since they
share the cache, they can freely steal work among themselves.

One noteworthy point is the relationship between VM consolidation and the load
balancer conflict. While traditional CPU-centric schedulers are not impacted signif-
icantly with the number of VCPUs, the memory-centric scheduler may be affected
substantially. For example, we would not see any lower CPU utilization if only 2
VCPUs are given to the virtual machine in Figure 44 and 45. The microscheduled
VCPUs would always find some idle core in the target cache since the last level cache
has 2 cores each. So it would not have to be queued into the run queue. In fact,
this is the case for many cloud platforms. In cloud environments, the underlying
physical machines have lots of CPU cores while the virtual machines are various mix
of small to medium number of VCPUs. In such environments, it is less likely that
the load balancer conflicts with the memory-centric scheduler because of ample CPU
core resources.

Meanwhile, higher degree of VM consolidation also reduces the conflicts that may

cause the lower CPU utilization because there are more chances to fill idle cores when
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we have more VCPUs in the system. On cloud environments, often over-subscribed
systems have a high degree of VM consolidation and the memory-centric scheduler

would easily find VCPUs to schedule, which prevents idle cores.

3.5 Micro-Benchmarks

This section demonstrates kernel disaggregation via the region scheduler using a sim-
ple web server example as an microbenchmakr. This would help us explain the ap-
proach and its implications. For web server evaluation, we use the popular web server,
apache2, running on CentOS and Xen. Requests are generated at the client side con-
currently by the apache benchmarking tool, ab. The concurrency level of 40 is given,
and 40000 requests are processed in total. Web-static represents static files of sizes
10KB, 100KB, and 1000KB. However, the modern web servers often serve dynamic
pages using dynamic languages such as PHP. Therefore, such dynamic page genera-
tion is emulated. Web-php represents such dynamically rendered pages and emulates
CPU load using cpu-boundness parameter that is the number of pages to generate. It
is basically the number of loop iteration, so 100 is ten times more computation than
10. We use cpu-boundness value 1, 10, 50, 100 to represent least, little, medium,
intensive cpu-load for Web-php.

The machine has four cores, with two declared as kernel cores (kernel0, 1) and the
rest (user 0, 1) as user cores. Kernel cores share one last level cache and user cores
share a different last level cache. Therefore, the number of VCPUs is 4 by default.
In addition, we will also take a look at the case of 2 VCPUs. The Figure 46 and 47
is Web-static, which serves static files and the Figure 48 and 49 is Web-php, which
dynamically generates web pages using php interpreter. Each graph also has 2VCPU
case for comparison.

The Figure 46 and 48 shows CPU utilization of each physical CPU cores in per-

centage. X axis is the name of cores where kernel0O, kernell are kernel cores and user0,
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userl are user cores. Y axis is the CPU utilization percentage and the box shows 25th
percentile value and 75th percentile value, with the median value in it. The box has
two lines at its head and bottom, showing the maximum and minimum values.

The Figure 47 and 49 is similar to CPU utilization graphs, but they show three
statistics for the corresponding run, system call rate (syscall), microschduling rate

(usched), and kernel-user mode switch (switch).
3.5.1 Kernel cores

In Figure 46 CPU utilization graph for Web-static, we can see that the overall CPU
utilization drops as the file size increases, because the network interface card handles
most of the work. Also, if we compare the kernel space to user space, the kernel space
activity is a bit more than the user space activity. (The total kernel space activity
would be sum of kernel0 and kernell and similarly the total user space activity would
be sum of user0 and userl.) At file size = 10k, the kernel-user ratio is roughly
around 6:4. However, as the file size increases, user activity reduces sharply. At file
size = 1000k, the kernel core is steadily utilized (see kernel0), while the user core’s
utilizations drops sharply. This is because the portion of network processing increases
as the file size increases. We can see a similar trend with 2 VPCUs.

Figure 47 shows other statistics, the number of system calls, microscheduling, and
kernel-user mode switches per second. They all drop as the file size increases, spending
more time on network processing. The microscheduling rate is twice the system call
rate as microscheduling happens at each system call entry and exit. “switch” shows
the number of kernel-user mode switches per second, and this includes other kernel
activities such as interrupt handling in addition to system calls.

Figure 48 CPU utilization graph clearly shows big portion of user space activity,
because they are Web-php dynamic page generation. As more processing is done

in user space to render the requested page, user cores get more and more active
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Figure 46: Web-static CPU utilization
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while the kernel cores are less active. Even with very low cpu-boundness values (cpu-
boundness=1), more user space activity was required than the kernel space activity.
Each request to the web server invokes dynamic language processing to generate the
web page. This shows the heaviness of dynamic page processing in the web server.
As more user cores are used heavily, the system call rates and microscheduling rates
drop as in Figure 49.

Figure 50 shows the relative performance compared to that obtained when using
the regular Xen credit scheduler. X axis is both Web-static and Web-php runs while Y
axis is normalized performance based on the number of requests per seconds measured
at the client side. “disabled” is the regular Xen credit scheduler while “enabled” is the
region scheduler. In case of Web-php (cpu=1,10,50,100) the performance was only
half of that of credit scheduler. This is because the kernel cores are idle while user
cores are fully used. See the cpu=10,50,100 in Figure 48 where the kernel cores go
idle while the user cores are fully utilized and this effectively halves the performance
experienced at the client side, as seen in Figure 50(a). This is an example that strict
separation of memory regions onto caches may cause unbalanced use of CPU cores.
In this case the user space activities are dominant, thus only user cores are active
while kernel cores are idle.

The performance impact comes from two major factors. The first factor is CPU
utilization issue due to the strict memory-centric approach. As discussed in the pre-
vious section 3.4, such unbalanced use of CPU cores can be mitigated when there are
ample CPU core resources, compared to number of VCPUs. The relative performance
increases at cpu=10, 50, 100 in Figure 50(b) demonstrates that. The Figure 50(b)
shows the case of 2 VCPUs rather than (full) 4 VCPUs. This means that the memory-
centric scheduler would work better if more CPU cores are provided, compared to the
number of VCPUs.

In case of Web-static size=100k,1000k, it shows a bit better performance than
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the Xen credit scheduler. See the Figure 46 where we can find that CPU utilization
is quite low for those runs. This indicates that the strict memory-centric scheduler
would work better with low CPU utilization environment.

Also note that, at cpu=1 and filesize=10k,100k,1000k, the relative performance
is similar for both 4 and 2 VCPUs, because CPUs are not fully utilized, so there are
spare CPU resources.

The second factor is the microscheduling overhead. Assuming that using 2 VCPUs
eliminates lower CPU utilization issue, the performance impact would be due to the
microscheduling overhead. At cpu=1,10,50,100, Figure 50(b) shows microscheduling

overhead in proportion to the microscheduling rate in Figure 49(b).
3.5.2 File system cores

Other than just kernel-user space, region scheduler can map a certain subsystem using
guest-defined regions. In this subsection, two cores are declared as file system cores
and the other two cores are declared as “user and other” cores. This demonstrates
how certain subsystem can be mapped to certain cache. In general, by mapping file
system to certain cores, the microscheduling rate and the system call rate dropped
significantly. The microscheduling rate dropped to less than 40000 in Figure 52 and
thisis 1/2 or 1/3 when it’s compared to kernel core case ( Figure 47 and 49 ). This is as
expected since only file system activities are microscheduled, rather than whole kernel
space. Also we can see that the microscheduling rate is now dropped below the level
of system call, unlike kernel core cases where microscheduling rate was much higher
than system call rate. This is because only file system activities are microscheduled.
This reduced microscheduling rate improves performance as below.

Figure 51 shows the performance impact for the file system core. In general, the
performance shows the same trend as before, but it shows some improvements. In the

case of 4 VCPUs, it shows a similar performance with kernel cores (Compare Figure
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51(a) and Figure 50(a)). Meanwhile, in case of 2 VCPUs, it shows better results than
kernel cores up to 10% (Compare Figure 51(b) and Figure 50(b)). This is because of
the significantly reduced microscheduling rate.

Similarly, Figure 53 shows the case of network core where networking is mapped
to one cache, and Figure 54 shows the file system and network cores (fsnet) where
networking and file system both are mapped to one cache. Although the performance
is better than that of file system core case, lower CPU utilization issue still blocks
better performance than Xen scheduler.

Figure 55 shows the number of API calls to set up guest-defined regions. X axis
is time in second and Y axis is the number of API calls. This basically shows that
the API call overhead is negligible. Once the slap allocator in the guest establishes
page-to-region associations, it rarely changes the association.

In sum, this section shows the cost of rigid (or strict) partitioning of each space
onto caches. It causes a high rate of microscheduling and substantial overhead. Such
overhead can be significantly reduced by relaxing the separation of two spaces — use
space and kernel space. One approach is to simply globalize some regions or pages.

Next section discusses about this.
3.5.3 Discussion

In this section, we demonstrated the strict memory-centric scheduler approach ( the
strict partitioning of each space onto caches ) and discussed about its potentials and
limitations. We did not introduce globalization yet, thus it is called strict memory-
centric approach and we observed how such strictness introduces unbalances or high
overhead. Therefore, we would like to conclude as follows. In general, the strict
memory-centric approach has an issue of unbalanced core usage. However, under
certain conditions such as lower VCPU-to-PCPU ratio and low CPU utilization, the

issue of unbalanced core usage is mitigated and it may see some performance benefits
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due to the cache effectiveness. Also the strict memory-centric approach has an issue of
high microscheduling. It may cause high microscheduling overhead so it is necessary

to relax the strictness to control the high microscheduling rate.

3.6 Globalization

Section 3.5 details a case of single VM, simple web server. It not only shows the
possibility of kernel disaggregation by functionality, but also shows some limitations of
this approach. The major issue is that it may cause a high rate of microscheduling due
to the strict region-to-cache mapping. To remedy this, we introduce globalization that
permits some global mappings of regions. Those global regions are accessible through
all PCPUs. This dramatically reduces the microscheduling rate with consequently

reduced overheads.
3.6.1 VM Consolidation

Cloud environments routinly see workloads consolidated onto some small number of
physical machines [109]. For example, application tiers may be placed onto machines
running the database tier, to deal with abrupt spikes in load [108]. This helps scal-
ing, but can cause interference as workloads share underlying machine resources. In
response, one approach [108] simply pins each workload onto some specific cores,
but this does not offer good isolation (workloads share other machine resources, like
caches and memory bandwidth) and leads to under-utilization of machine hardware
(pinning means that workloads cannot move even when other resources are currently
idle).

Region scheduling benefits from high levels of consolidation, as there are more
VCPUs than PCPUs, which makes it likely for some VCPU to be schedulable, thus
avoiding the potential performance degradation due to core idleness seen in the ex-

periments above. We next explore this topic experimentally.
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3.7 Fvaluation

In this evaluation, four-socket Intel Westmere server machine is used, so we consider
four caches that each is 24MB. The consolidated workloads studied in this section run
front tier applications like the webserver, back tier applications like mysqld database
server, and the memcached caching system as a simple example of application tier

functionality.
3.7.1 Memcached

Memcached is a memory-caching system used to speedup dynamic pages on websites.
It caches data and objects in DRAM, thereby reducing database accesses. We use
three well-known three PHP codes that generate dynamic web pages MediaWiki [115],
WordPress [116], and XpressEngine [117]. MediaWiki is PHP code originally written
for Wikipedia. WordPress and XpressEngine are content management systems (CMS)
used for websites, blogging, etc. Memcached can be used with these to speed up their

dynamic web page generation.

Name Description Improvement
MediaWiki | Wiki package in PHP 1.8%
WordPress Web site or blogs 4.6%

XpressEngine Web site or blogs -2.8%

Table 4: Three PHP codes for dynamic page generation

Figure 56 and Table 4 shows single VM case. Although two positive impacts of
1.8% and 4.6% were observed, also there was a negative impact of -2.8%. For this run,
on average, roughly 120 regions ( 4*30 in Figure 56(a) ) are mapped to each cache
(cache0, cachel, cache2, cache3 in Figure 56). Considering the number of pages that
is mapped to each cache in Figure 56B, 3000pages, about 12MB of memory is mapped
to each cache. Although no performance benefits were observed for this single VM

case, the region scheduler is mapping each memory regions to the caches.
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3.7.2 VM Consolidation

To emulate higher levels of consolidation, we add two additional VMs, AsteriskVM
and SPECVM. AsteriskVM runs Asterisk, which is a popular IP-telephony workload,
or a SW telephone private branch exchange (PBX). SPECVM runs the SPEC2k6
CPU benchmarks.

Name Description
Apache2+Mysqgld Web server + DB
Asterisk IP telephony
SPEC2k6 SPEC CPU benchmark

Table 5: VM Consolidation

As is apparent from the Figure 58, there is some positive impact on performance
from the higher levels of consolidation used in these experiments. Also 2 to 6%
improvements are observed for Apache2 web server on the client side. As more VMs
are added, there are more VCPUs than PCPUs, which leads to more regions being
detected, as shown in Figure 57. On average, 400 regions are formed and they are
mapped to each cache, as per the cache balancing methods part of region scheduling.
As a result, performance is increased by up to 5% for SPEC VM, and the response
time for Asterisk VM is improved by up to 10%.

Nonetheless, with the applications and kernel functionality evaluated to date, we
see only modest gains from disaggregating kernel functionality by memory regions.
We hypothesize several causes for this. First, micro-scheduling overheads remain high
for the experimental runs performed in this chapter. Reasons include a potential lack
of modularity of kernel functions, i.e., given the complex nature of kernel code, it is
difficult to confine say, the file system functions to interact only with each other and
not with other kernel functions. The latter, however, will result in microscheduling
overheads. This may lead to short runs and frequent microscheduling. Second, typ-

ical kernel activity such as file I/O is short, which implies that they may not run
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sufficiently long to amortize the overheads of (i) microscheduling when the VCPU
start the operation, followed by (ii) microscheduling when returning to the previous
activity. Up to roughly 10000 microscheduling per a second is observed and this
was quite high rate. Third, the globalization strategy eventually grows globalized
memory portion and this is effectively reverting region scheduler to the Xen credit
scheduler. Although this would reduce microscheduling rate, at the same time we
lose the benefits of the regioning scheduler.

Therefore, in overall, applying region scheduling to the kernel level seems limited in
its usefulness in spite of its novel approach of specializing cores for each functionality.
This is in part because of the nature of kernel core that it is shared across all processes
. For example, the file system is used by all processes and hence good spatial locality

on files gets lost from the kernel’s perspective.

3.8 Related Work
3.9 Conclusions And Future Work

Recent work such as FlexSC is close to our work in that it also creates the notion of
user cores and kernel cores. FlexSC [106] replaces the traditional synchronous system
call with an asynchronous exceptionless system call mechanism. In the asynchronous
system call mechanism, the user thread uses simple RPC-like mechanism to request
OS services on other core. The user thread simply marks a flag then switch to next
user thread in the threads pool. In this way, the user core runs only user code while
the other cores runs only kernel code. This approach can be viewed as an user cores
and kernel cores. It also briefly mentions the interesting scheduling issues regarding
user core and kernel core discussed in this chapter. However, FlexSC requires new
threading pacakages in the user space and it handles whole kernel space rather than
its subsystem because it intercepts the system call. Compared to our work, it has

benefits of new user level threading pacakage and simple message passing. It uses a
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new user level library based on simple message passing, instead of microscheduling.
In our work, we targets virtualized environment with transparent support for guests.
Therefore, in the region scheduling, there is no need to modify the applications, and
the hypervisor deals with disaggregation, entirely through its use of the scheduling
and region layers. This allows fine-grained core specialization such as file system cores

and network cores.
3.9.1 Discussion

This work demonstrates kernel service disaggregation by region scheduling, trans-
parent to guests. The VCPUs are microscheduled to the cores where the desired
functionality is mapped to. The functionality such as file services is mapped to each
cache unit because the cache is what makes big difference between cores. Because the
region scheduler manages the last level cache and it already maps the memory region
to the caches, it could be leveraged naturally to implement mapping the functionality
to the cores. This may be viewed as an specializing core groups to a specific func-
tonality. We have demonstrated the kernel core where all kernel services are mapped,
and the file system core where the file system is mapped. Similarly, the network cores
are demonstrated. Then, the load balancer conflict is identified and analyzed, so the
globalization strategy is introduced to overcome such limitation and it was useful to
control microscheduling overhead. Also we considered VM-consolidated environments
such as cloud environments as an oversubscribed systems. However, in general, only
modest gains were achieved in spite of successful mapping of kernel functionality to
the caches. The approach is good in that the caches are more efficiently used by the
workloads, but in case of kernel space, they seem to have small footprint and often
shared across processes. This likely makes this approach less attractive for kernel
spaces.

However, if we take a look at other side of this work other than the performance
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improvements, this work may have a potential impact on the heterogeneous systems.
The region scheduler is used to functionally disaggregate kernel services to certain
CPUs and, in general, any heterogeneous functions can be mapped to different CPU
cores. Furthermore, in theory, it is possible for each CPU to have different instruction
set architecture (ISA). In this case, code can be a mixture of heterogeneous ISAs and
each type of instructions would be mapped to the corresponding CPUs. By using the
memory region abstraction, each code do not have to be annotated which ISA it is,
but they can form a code region which can be automatically microscheduled to the

correct cores.

(e[l (c)(ca)

Core-level socket-level
heterogeneity heterogeneity

Figure 59: Platforms consisting of heterogeneous resources

Modern computing platforms are heterogeneous in several of their resources. Het-
erogeneous processors, consisting of CPU cores that are different in their perfor-
mance/power capabilities, have been proposed as an energy-efficient alternative to
homogeneous configurations [50, 56, 67]. This form of performance heterogeneity can
exist at many levels: cores within a socket or across sockets, as shown in Figure 59.
There are several commercial implementations of such heterogeneous CPU architec-
tures [45, 55, 61, 78]. Several studies have shown that different processor architectures
are suited for different applications. For example, prior work has discussed the utility
of low-powered cores for the design of datacenters [41, 62] as well as the need for
high-performance brawny cores [43, 68]. Various scheduling methods for heteroge-

neous cores have also been investigated [58, 66, 70, 85]. Use of the DVFS (dynamic
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voltage and frequency scaling) [81] also creates another kind of heterogeneity. More-
over, processors can be heterogeneous in the levels of performance offered [50, 56, 67],
like the big/little cores commonly found in today’s client systems [45, 55, 78]. Also in
multi-socket system, 1/O configuration is one other factor that creates heterogeneity.
For example, some cores or sockets can be near the I/O bus than others [122].

With the likely increased use of heterogeneous ISA cores, or functionally asymmet-
ric cores, one of the major obstacles for effective use of such heterogeneous platforms
is their programmability. The region abstraction can be used to make it easier to
program future heterogeneous systems. The simple idea, shown in Figure 60, is as
follows. We assume a program to be either already able to run on some certain pro-
cessor and/or for it to be compilsed into some multiple-ISA binary code (another
option is to use fault and migrate when ISAs are only partly heterogeneous [124]. We
then use the region scheduling framework to match code sections to corresponding
ISA cores. We next consider ‘memory heterogeneity’ in future multicore systems,

again using region scheduling to deal with its effects.
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CHAPTER IV

MEMORY HETEROGENEITY

4.1 Introduction

We next present a software-controlled technique for managing the heterogeneous
memory resources of next generation multicore platforms. With new memory tech-
nologies like PCM (Phase change memory) , NVRAM emerges, there is a need for
heterogeneity-aware system software capable to exploiting and dealing with mem-
ory heterogeneity [121]. We illustrate the ability of the region scheduling approac
to cope with such heterogeneity by considering 3D-stacked DRAM, which provides
low-latency accesses to relatively small amounts of DRAM located on a chip. We
implement our solutions in the Xen hypervisor for virtualized environments, and this
chapter demonstrates how the hypervisor can handle such heterogeneous memory
configurations. Experimental evaluations emulate differences in memory access la-
tencies by using NUMA nodes on a multi-socket Westmere machine, slowing down
accesses to these nodes by throttling the memory controller and reducing the mem-
ory in one of these nodes to the smaller memory capacities expected for future 3D
DRAM configurations. In this case, the main question is which memory pages should
be in the valuable 3D-stack DRAM. Because 3D-stack DRAM is limited in its size,
compared to the traditional off-chip DRAM, it is critical to intelligently choose such
pages. Since the region framework has the capability to track working sets, we utilize
the region framework to implement policies for this emulated heterogeneous memory.

Because this is transparent to guest VMs, it is also transparent to the applications,
which shows that the region framework unburdens programmers, hiding from them

the details of heterogeneous memory management. Further, VM implementations
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are not affected, which is important because it enables easy VM migration among
heterogeneous nodes. This would not be the case if the VM or application were
programmed or optimized assuming certain heterogeneous memory configurations, a
case in point being the current separation of (discrete) accelerator from host memory.
Benefits will be particularly apparent in public clouds like Amazon EC2 [38] and
Google’s Compute Engines [54], as for such VM deployments, the region framework
hides the underlying complexity associated with memory heterogenity from guest
VMs. More specifically, with region scheduling, guest VM memory usage can be
adapted for the memory configurations seen on underlying hardware, at hypervisor
level and without the need to involve guest VMs.

The region framework does online detection of hot memory pages and transparent
page migration. It offers a simple abstraction of homogeneous scalable virtual mem-
ory to guest VMs, which is then mapped appropriately to underlying heterogeneous
memory. Our experimental evaluation on an emulated heterogeneous memory plat-
form uses workload traces from real-world data, demonstrating the ability to provide
high on-demand performance while also reducing resource usage for these workloads.

We note that another advantage of using regions and region scheduling with VMs
on heterogeneous memory platforms is improved elasticity in VM resource assignment.
Currently, resource allocations for VMs are coarse-grained, with commercial cloud
services like Amazon EC2 AutoScale [39] relying on server-level scaling via fixed
instance types. Further, these instances can only be rented on the order of several
minutes to a full hour, and applications are charged for the entire instance even if it is
only partially used [40]. Thus, scaling out is a rather heavy-weight and coarse-grained
operation, having high cost implications for the end-user and limiting the frequencies
at which these scale-out mechanisms can be used. For example, changing a small VM
instance to a large VM instance in Amazon EC2 requires shutting down the current

VM, changing its properties, and rebooting the VM — which is a rather slow operation.
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Server scaling also does not provide a way to improve the performance of existing
resources owned by an application, e.g., moving from a VM instance to another type
of instance with different resources requires a VM restart in Amazon EC2. Previous
work has highlighted the need for long running instances in datacenters for predictable
performance [44]. Customers could implement their VM-internal solutions to this
problem, but this is complex. Finally, these mechanisms may require application-
level changes to deal with new resources such as load-balancing across instances, etc.

The region framework enables fine-grained memory page allocations across the
heterogeneous memory of underlying machines. For example, a VM may want to
allocate only 10% of its DRAM memory in 3D-stacked fast DRAM to optimally run
its workloads, then incrementally increase or decrease its portion as its loads or re-
quirements change. This enables better pricing strategies for both the customer and
the cloud computing providers [40], because it allows frequent adjustments of the
resource allocations of applications. Given the competition among cloud providers
for cheaper/better services, fine-grained resource management may prove to be a
compelling feature of future cloud platforms [37]. Another advantage to this ap-
proach is that it can be transparent to the VM and applications, not requiring
sophisticated software changes to deal with varying resources. Several techniques
have been proposed in the literature to enable fine-grained resource management in
clouds [44, 82, 80, 86]. However, each of these focus on a specific approach, without
a unifying mechanism to enable their adoption.

The presence of heterogeneous memory brings significant management challenges
since application performance with respect to memory is governed not by the total
amount of fast vs. slow memory allocated to an application, but instead, by the
fast vs. slow memory speeds experienced by an application’s current memory foot-

print [94]. To address these issues, the region framework scans the access-bit history
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for each VM, obtained by periodically scanning the access-bits available in page ta-
bles. The history is used to detect a guest’s ‘hot’ memory pages, i.e., the current
memory footprints of the running applications. In addition, guest page tables are
mirrored in the hypervisor, allowing it to manipulate guest page mappings in a guest-
transparent manner, thus making possible page migrations (between slower vs. faster
memories) by simply changing mappings in these mirror page tables, without guest
involvement.

The region framework is implemented in the Xen hypervisor. In order to evalu-
ate its utility and overheads with actual applications and workloads, not relying on
architectural simulators, memory controller throttling is used to emulate memory sub-
system heterogeneity. With workloads that use traces from Google cluster data [59],
experimental evaluations show that by exploiting heterogeneity in an unobtrusive way,
the region framework makes it possible to achieve on-demand performance boosts and
cost savings for cloud applications with diverse resource requirements. Specifically,
the memory scaling mechanisms reduces, on average, 30% memory resource usage

and thus, the memory costs for these workloads.

30-stacked
memaory
(Low capacity) <:> Off—chip <;:I'> Off-chip
memory Storage
C0 C1 (High capacity) (High capacity)

C2 || C3

Figure 61: Hetero memory

The introduction of new memory technologies such as die-stacked 3D memories,
NVRAM , in addition to traditional DRAM, can result into a hierarchy of heteroge-

neous memory organization shown in Figure 61. 3D stacked memories can provide
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lower latency and higher bandwidth, in comparison to traditional off-chip memo-
ries [96]. However, the capacity of such memories is likely to be limited to only a
few hundreds of megabytes [97]. Thus, a combination of both fast on-chip memory
with additional slower off-chip memory is needed for higher capacity and expansion
capabilities, specially for high-end enterprise machines. Further, addition of disag-
gregated memory or persistent memory technologies can also result in memory het-
erogeneity [91, 101, 92, 95]. Other types of memory includes persistent memory, flash

memory.
4.1.1 Heterogeneous memory

The recently proposed 3D die-stacked memory [96] not only provides lower access
latency and higher bandwidths but also provides lower power in comparison to tra-
ditional off-chip memory. Because it is stacked on-chip, it is likely to be constrained
in its capacity. The capacity is projected to range only up to a few hundreds of
megabytes [97] and this suggests a usage model where such on-chip memory is com-
bined with the off-chip memory providing both higher capacity and low latency. Fig-
ure 61 depicts such a heterogeneous memory subsystem, consisting of slow off-chip
memory and fast on-chip memory.

The 3D stacked DRAM on chip can be used in two ways. First is to use it as an
hardware-managed cache. This has an advantage of being able to quickly react to
changing memory access patterns. Also it provides a transparent way to incorporate
such new memory architecture in a way that supports legecy applications. However, it
has some drawbacks and challenges. It would result in high overhead for managing the
tags of such large sized caches and it would require an extended coherency support.
These all consumes more power. Also diminishing returns are expected due to the
big size of the cache.

The second is to use it as an software-managed memory. In this chapter we explore
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options that an operating system or hypervisor can take. Such system software can
use its high-level information about the application’s behavior to manage such het-
erogeneous memory resources. Specifically we will take a look at 3D stacked DRAM
that is explicitly exposed as a system-visible memory to the hypervisor. Then the
feasibility of software-based memory management is evaluated for such heterogeneous
memory platforms.

Specifically, we assume the virtualized environment as the use of virtualization in
server systems increases. Then, several challenges for managing such heterogeneous
memory resources are identified. First, the CPU provides only limited information
about the memory access patterns of the guest VMs. In case of x86, it only provides
one-bit information called access bit in the page tables. Thus, this requires efficient
methods to detect which pages are critical for a guest’s performance based on such
limited information from hardware. Second, to retain transparency to the guest OSes,
the hypervisor should handle the page tables separately from that of guest VMs.
Implementing the management scheme transparently may be challenging because the
page tables are owned by the guest in paravirtualized environment. This also would
make it difficult to migrate any of its pages between memories without guest involved.
In case of the full virtualization where the hardware virtualization support is used,
additional layer of page table can be used, but even in this case, such mappings
should be handled properly. Also, TLB management across cores should be handled
properly.

In this chapter, we present techniques to address these two points above. (1)
The hypervisor is enhanced to build an access-bit history for each virtual machine,
periodically scanning the page tables for collect access-bits. This ‘A-bit history’ is
then used to identify ‘hot’ pages and calculate the working set size. (2) This scanning
page table may incur significant overhead; we introduce many optimizations such

as additional data structures for quick accessing page table entries. (3) Also we
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carefully design the scanning algorithm so the virtual time of guest VMs are used
to determine scan intervals. This contributes to the accurate accounting. (4) To
enable transparent page migrations, the hypervisor is extended to mirror the guest
page tables. The hypervisor uses the mirrored page table not to disturb guest while
it migrates pages. This enables transparent page migration.

Mechanisms such as page access tracking, hot page detection, and mirroring page
table are all implemented in the Xen open-source hypervisor. So it enables exper-
imental evaluation of overheads in realistic server platforms. Then, a multi-socket
Intel Westmere platform is used to emulate such future memory heterogeneity. One
of the machine’s memory controllers is throttled resulting in the presence of both ‘fast’
and ‘slow’ memory. One regular DRAM node acts as ‘fast’” memory and the other
throttled DRAM node acts as an ‘slow’ memory in the system. Therefore, such exper-
imental results on this machine and memory configuration characterizes the memory
behavior of the standard server workloads in terms of their working set sizes and
the performance impact of memory heterogeneity. We evaluate the page migration
mechanism by micro-benchmarks, to show the feasibility of software management for
future heterogeneous memory systems.

In summary, this chapter’s technical contributions include:

e A hypervisor-level mechanism to detect guest memory access patterns using

access bit information.

e Transparency support for managing heterogeneous memory for virtual ma-

chines, implemented by the hypervisor.

e An evaluation of the sensitivity of several server workloads to the performance

of heterogeneous memory subsystems.

In the remainder of this chapter, we first describe the mechanisms used for tracking

guest activity and policies for stacked memory allocation in Section 4.2. Section 4.3
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describes our evaluation methodology, with experimental results presented in Sec-
tion 4.3.3. Finally, related work and conclusions are described in Section 4.5 and 4.6

respectively.

4.2 Heterogeneous Memory Management

Concerning the memory subsystem, the region framework provides the interface of
a performance-scalable memory over heterogeneous components by changing a VM’s
allocation in different memories, i.e., use of fast memory for high-performance E-
states and slow memory for slower E-states. This section describes elasticity manage-
ment for heterogeneous memories involving fast die-stacked memory and slow off-chip
DRAMs. Since the die-stacked memory is small in capacity in comparison to the off-
chip DRAM, a subset of pages from application’s memory need to be chosen to be
placed in the stacked-DRAM. For this purpose, it is important to detect and manage
application’s ‘hot’ pages that are critical to its performance which in turn requires

efficient way of memory access tracking.
4.2.1 Memory Access Tracking

Modern processors provide only limited support from hardware for detecting appli-
cations’ memory access patterns. On x86, each page table entry has an access bit,
which is set by the hardware when the corresponding page is accessed. Software is
responsible for clearing/using this bit. We use this single-bit information and build
access bit history to determine a VM’s memory access pattern. Specifically, we pe-
riodically scan and collect the access bits, forming a bitmap called as ‘A-bit history’
(access-bit history) shown in Figure 62. A 32-bit word and a 100ms time interval is
used for scanning implying 3.2 seconds of virtual time corresponding to one word. If
the A-bit history has many 1’s, i.e. dense A-bit history, it would indicate that the
page is hot and frequently accessed. A threshold of 22, obtained experimentally, is

used in our work for marking a page as hot. We also adopted many optimizations to
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minimize page table scanning overheads, which is discussed later in this section.
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Figure 62: Tracking hot pages using access-bits

Since application processes within a guest VM run in virtual time, it is important
to consider the process’s virtual time rather than wall-clock time for an accurate A-bit
history. Thus, page tables are scanned over ‘virtual’ time which avoids unnecessary
page table scans, providing more accurate detection of hot pages. Each time the
100ms boundary is crossed in virtual time, the page table is scanned and A-bits are
collected. For accurate accounting, events such as timer tick (TIMER), address space
switch (NEW_CR3), and vCPU switch (SCHEDULE) are taken into account. This
allows us to track each process’ virtual time and accurately detect its hot pages. Our
implementation collects and maintains A-bit history for each machine frames for any
guest VMs, including the management domain.

Figure 63 depicts two VMs — VMO and VM1 — where each VM has processes
Procl,2,3 and ProcA,B, respectively. Three events, TIMER, NEW_CR3 and SCHED-
ULE, occur along its execution timeline. They correspond to the 10ms timer tick, the

CR3 switch (process switch), and the VCPU switch, respectively. At these points, the
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actual time spent in execution is calculated and accumulated for each process. In this
fashion, each process’ virtual time is tracked, thus enabling the accurate detection of
hot pages (this is because virtual time is the actual time spent running on each core).
This allows us to track each process’ virtual time and accurately detect its hot pages.
Our implementation collects and maintains A-bit history for each machine frames for

any guest VMs, including the management domain.

VMO VM1 VMO

CR3 change

| | | | >
I I -
I Proct lProczProc ProcAl procB  proca Proc3  Proc2 | Proc3

VCPU change

VMO has Proc1,2,3 Procl ——>

VM1 has ProcA,B
Proc2 —>—>

Proc3 —>—>—

100ms

Figure 63: Tracking virtual time: TIMER event (10ms tick) is not shown.

Because the virtual time is utilized, A-bit histories from all active guest VMs are
collected and maintained. Xen uses frame tables for physical memory management
and this table is a large table that each entry corresponds to each physical page. This
table is central to Xen’s memory management and we extended this table to embed
our A-bit history and other information as in Figure 64. This additional information
such as A-bit history is used to save each frame’s A-bit history. In addition, other
fields such as next/prev pointers are used to form linked lists of pages for easy access.

Also, note that we have Rmap structure in this table, which saves reverse mapping
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information. It enables quick unmapping and mapping for any arbitrarily given pages.
Each physical page, which mfn indexes, has one Rmap_list. Rmap_list is a list of
Rmap_set and Rmap_set is a fixed sized array which contains pointers to page table
(PT) and page table index (PTT). Thus, it provides reverse maps to the page tables so
that it enables iterating all mappings to the given pages. By iterating these rmaps,
virtual-to-physical mappings can be easily remapped. It would be too expensive

operation without this Rmap structure. This remapping is used for page migration.

Extended frame table

mfn Page 0 A-bit history Time Next/prev Rmap _list
Page 1 H H H H
max_pages

Rmap_set —> ...... _®

(Fixed size array) Rmap_set (Fixed size array)
PT_and PTI PT _and PTI

Page Table
(512
3 entries)

Figure 64: Extended frame table with a-bit history and reverse maps

To enable transparent page migrations to guest VMs, Xen is extended to mirror
any guest’s page table. Since the page table is installed in the hardware base register
(CR3 in case of x86), any changes to CR3 is detected and page table is mirrored.
This is quite similiar to shadow page table, but it is more flexible and also it was
used to enable per-cache page tables in the earlier chapter. This allows us to change

mappings without impacting guest OS.

4.2.1.1 Hot Page Management

Hot pages detected using A-bit history are actively managed by moving them in

and out of fast/slow memories. There are four categories of pages and associated
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actions depending on their residencies and status, as shown in Table 6. Active hot
pages should be migrated to or maintained in fast memory and inactive cold pages
should be discarded. While cases 2 & 3 are relatively easy tasks, actions 1 and 4 are
the primary determinants of the overhead of page migrations which are handled as
described below.

Hot page lists can be quite long, which can result in substantial overheads to scan
and migrate pages. In addition, inactive pages must be detected and evicted from

the list. In total, there are four categories of pages, as shown in Table 6.

Residency | Status Action
Oft-Chip Active | Migrate to on-chip DRAM
Oft-Chip Inactive Drop from the list

On-Chip Active Keep in on-chip DRAM
On-Chip Inactive | Migrate to off-chip DRAM

=W N =

Table 6: Hot page management actions

Hot pages are managed to form a linked list (see Figure 65) which can be quite
long if the workload has big working set and it can result in substantial overheads to
scan and migrate pages. Thus, it is important to manage this list in efficient way.
To efficiently manage this list and because page migration is expensive operation,
only parts of the list are considered at one time where MAX_SCAN (currently 512)
determines the number of pages that are scanned in a time window (every 100ms).
This amortizes and limits overheads. Also this means that we do page-migrations
somewhat lazily, not immediately and this seems to be good when working set is
unstable. Further, the removal of inactive pages may incur page migrations to off-chip
memory, causing significant overhead for other co-running applications. In addition,
pages freed by the guest are likely to be used again by the next job since memory
allocation in guest VMs often reuses previously freed pages. It is, therefore, beneficial
to employ ‘lazy’ page migrations, delaying such page evictions from stacked DRAM,
to reduce these overheads by migrating only MAX_MFNS pages from the hot page
list. Also there is TIME_WINDOW macro that defines when pages in the list get
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inactive. TIME_WINDOW macro (currently 3000ms) defines when a page in the list
become inactive. Thus, if a page in the list is not accessed for 3000ms, it is considered
inactive and eventually discarded. So, if pages in the list dont get accessed for 3000ms,
it would be considered inactive and eventually get removed from the list. While this
removal is not an overhead, sometimes it may incur page migration to off-chip and
this is expensive. Thus, the overall overhead largely depends on the number of page
migrations. Therefore, lazy page-migrations help us to reduce some overhead here.
Also, the host page list is scanned in reverse direction while newly arrived hot pages
get inserted in head. Since the tail tends to populated with older pages, this optimizes
further avoiding unnecessary page migrations.

In Table 6, while the categories (2) and (3) are a relatively easy task, categories (1)
and (4) are the primary determinants of the overhead of page migration. It is these
overheads that cause us to limit page migrations, as explained above and elaborated
further next.

We currently move only some max number of inactive pages upon their detection
with the timer-based approach described above. A more radical alternative we have
considered is to evict pages from the list immediately upon an application’s comple-
tion. However, this would incur significant page migration overhead likely visible to
other currently running applications, plus there will be freed pages (by guests) that
will again be used by the next job (because memory allocation in guest VMs often
reuse previously freed pages). It is therefore, beneficial to delay such page evictions
from stacked DRAM, where if pages are not reused, they will simply be migrated
later, when detected as inactive.

A more radical alternative we have considered is to evict pages from the list
immediately upon an application’s completion. However, this would incur significant
page migration overhead likely visible to other currently running applications. In

addition, pages freed by the guest are likely to be used again by the next job since
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Figure 65: Hot page management and associated actions

memory allocation in guest VMs often reuse previously freed pages. It is, therefore,
beneficial to delay such page evictions from stacked DRAM, where if pages are not
reused, they will simply be migrated later, when detected as inactive.

A final note concerning list management is that list scanning happens in a reverse
direction, because newly added pages are added to the front of the list. So, the tail

of the list typically has the oldest pages.
4.2.1.2  Transparent Page Migration

The region framework may migrate pages between different memories. Such migra-
tions require remapping guest page tables which are hidden from the hypervisor.
In order to do this in a guest-transparent way, guest’s page tables are mirrored in
the hypervisor as shown in Figure 66. For para-virtualized guests, page tables are
write-protected and require hypervisor’s involvement in updating page table entries
through a hypercall. We simply intercept these calls and re-create a mirror version of
the page tables and install them in the CR3 hardware register, forcing guest to use
these mirrors. This allows us to freely change virtual-to-physical mappings, without
any changes to the guest OS.

In addition, more optimizations are introduced to minimize negative cache im-
pact. Rather than scanning page tables completely, separate metadata structures

using linked list and pointers, shown in Figure 66, are used for easy iterations over
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the page table entries, optimizing page table scanning for access bits. Without this
optimization, the whole 4KB of each page table would be scanned, thus trashing
valuable 4KB-worth cache lines. This is especially true for interior (L2, L3, L4) page
tables. Only existing mappings are managed in this list which effectively eliminates
unnecessary scans. Furthermore, L1 page tables (leaf node) uses a bitmap to quickly
detect present pages. This again eliminates unnecessary scans on the L1 page table
and prevents valuable cache lines from being evicted.

Also, more optimizations are introduced to minimize negative cache impact. Rather
than scanning full page tables, we use separate data structures using pointers for easy
iterations over page table entries. Further, bitmap is adopted to easily find present
pages in L1 page table. Without these optimizations, page scanning becomes too ex-
pensive, reading multiple 4KB page tables, and it would also trashes cache contents,
which would be hidden overheads. We could minimize negative impacts on caches
using such various optimizations.

L4

L3 L2 L1
4KB page
ﬂ/D ] N

table)

struct
address
space
=process

struct
page
table

Guest’s page table

Guest

Hypervisor ﬂ/D

Mirrored page table Linked list based tree

L1
L4 L3 L2 L4 L3 L2 L1

Figure 66: Page table mirroring and linked-list-based tree for quick scan
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Further, a bitmap is adopted to easily find pages present in L1 page table. Without
these optimizations, page scanning becomes too expensive, reading multiple 4KB page
tables, and also evicting cache contents leading to further overheads. We minimize
such negative impacts on caches using these various optimizations.

For guest transparency, the hypervisor mirrors each guest’s page table and installs
it in a hardware register. This allows us to freely change virtual-to-physical mappings,
without any changes to the guest OS. In addition, small, separate, meta-data on these
page tables are maintained, using a linked list and pointers, as shown in Figure 66.
This optimizes the page table scan for access bits. Without this optimization, the
whole 4KB of each page table would be scanned, thus trashing valuable 4KB-worth
cache lines. This is especially true for interior (L2, L3, L4) page tables. Only existing
mappings are managed in this list, so this effectively eliminates unnecessary scans.
Furthermore, L1 page tables (leaf node) uses a bitmap to quickly detect present pages.
This again eliminates unnecessary scans on the L1 page table and prevents valuable

cache lines from being evicted.
4.2.1.3 Handling Shared Pages

Since any machine frame can be shared between multiple processes/guests, all the
corresponding page table entries must be updated while migrating a page. To do
this efficiently, we employ reverse maps, Rmap structure in Figure 64, which stores
this reverse mapping information, i.e., from a page in physical memory to entries in
various page tables, enabling easy remapping for any given page. We can iterate over
this Rmap list to find all the mappings to a given page. Remapping pages would be
prohibitively expensive without this Rmap structure. Thus, Rmap enables efficient
page remapping. Each machine page (mfn) is associated with one Rmap _list, which
is a list of Rmap_set. Rmap_set is a fixed size array that contains pointers to page

table (PT) and page table index (PTI).
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Xen hypervisor employs frame tables for easy memory management. This frame
table is extended to have the A-bit history, Rmaps, and other additional information
as shown in Figure 64. The last-update timestamps make it possible to detect inactive

pages from the hot-page list while Next/Prev are pointers forming linked lists.
4.2.2 Memory Allocation Policy

Under the heterogeneous memory platform, the memory allocation is getting more
challenging. In our experimental setup, we have a fast stacked-DRAM memory and
slow off-chip DRAM. Our basic policy aims to place pages to utilize a limited capacity
of fast stacked DRAM for a VM. Basically it moves the pages with highest hit rate
to stacked DRAM. For hot read-only pages, we can maintain two copies in both
memories — home copy and satellite copy — and this eliminates the need of migrating
back the page to slow memory later. Such read-only pages can be simply discarded
when it’s evicted. However, dirty pages needs to be migrated back to the slow memory
when it’s evicted from the fast memory.

Regarding the allocation policy, similar to the physical memory allocation of OSes,
we tries to aim to distribute stacked memory across VMs based on their activity.
First, we can think about share-based allocation that uses some pre-defined shares.
For example, such shares can be set by the administrator to divide the stacked DRAM
capacity among VMs according to their policy. The memory can be distributed simply
in proportion to each VM’s pre-defined shares. For example, a VM with twice share
would allocate twice stacked memory than other VM.

Second, the allocation may be based on the working set size to pursue overall
performance improvement. This policy uses the working set size information for each
VM control memory allocation. The working set size is used as the share value and

the stacked DRAM capacity will be divided by a weighted sum formula.
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4.3 Exzperimental FEvaluation #1

4.3.1 Heterogeneous Memory Emulation

Many previous research works on stacked DRAM used some kind of architectural
simulators. However, we chose to emulate heterogeneous memory on a real machine.
On a multi-socket platform, we emulated the target heterogeneous memory to con-

duct the heterogeneous memory research on the actual systems with realistic server
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Figure 67: WSS curve for SPEC CPU2006 applications (x-axis = time (s), y-axis =
WSS (MB)).

We emulate our heterogeneous memory system on a dual-socket 12 core Westmere

x5650 server machine. It is equipped with 12GB DDR3 memory and the cores from
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Figure 68: Histograms of pages and corresponding access counts

the second sockets are disabled, making only the cores from the first socket are used for
running workloads. The workloads can access both memories at each socket but they
experience various memory latency due to the NUMA configuration that provides an
approximate 1.5x difference in memory latency between the two nodes. However, we
further slow down the remote node using the memory controller throttling to emulate
realistic heterogeneous configurations.

The memory throttling could be done by writing to the PCI registers (Integrated

Memory Controller Channel Thermal Control). When applying different values of

109



throttling, more various memory configurations could be emulated for other emerg-
ing memory technologies [100, 104]. See Table 7 for a comparison of normalized
bandwidth and latency for three memory configurations for the memory-intensive
stream benchmark [99]. MO is no-throttling case and it serves as an base configura-
tion for evaluation and M1 and M2 shows more throttled memory configurations. M1
represents small throttled case and M2 represents high throttled case. With higher
levels of throttling, we can see lower bandwidth and higher latency with M1 (2.5x)

and M2 (5x) configurations.
4.3.2 Workloads

We use a set of server-centric workloads of diversity to evaluate the impact of het-
erogeneity on server workloads. They are summarized in Table 8. They include
CPU-intensive SPEC CPU2006 benchmarks, multi-threaded PARSEC benchmarks,
and several MapReduce data processing benchmarks and with data analytics ker-
nels. In case of the MapReduce benchmarks, it uses the shared-memory Phoenix

implementation of MapReduce [102] and its input datasets are cached in memory.
4.3.3 Results

Figure 67 shows the working-set size (WSS) graphs as a function of time for several
SPEC CPU2006 workloads. The WSS changes dynamically over time for almost
all these applications, indicating the need for dynamic memory management. The
working-set size represents only the amount of memory pages that are accessed by
an application concurrently. However, it does not tell us how various pages are used
by the current application in its allocated memory. So, even if two applications have
the same WSS, each may have much diverse memory footprints. For example, one
can use the same set of pages throughout its execution, while the other may keep
changing its active memory region.

Figure 68 illustrates these workloads further. The figure shows the access count
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histogram for many SPEC CPU2006 workloads. The X-axis is the number of 1’s in
the access bit history and the Y-axis is the number of pages. Note that the maximum
values of X axis and Y axis are set to 300 and 1000 for better visibility, respectively.

Looking at the figure, we can observe some clear distinction between hot pages
and cold pages. Although some are in the gray area between the two, hot pages
are located near the right end of the graphs and the cold pages are located near the
left end of the graphs. Based on this observation, the hot page detection algorithm
tries to capture the hot pages on the right side (z > 22) in Figure 68. We have
decided experimentally the threshold value of 22 based on these observations. Some
small changes to this threshold do not seem to make much difference, so the shown
behavior was robust for different threshold values. These results verifies that the fact
that at a given time only a fraction of the allocated memory is used actively by the
application and those are critical for the performance. Thus, these pages should be
placed in the fast memory for maximizing performance while the other cold pages

may be placed in the slow memory.

Workloads Name Description
Phoenix Shared-memory MapReduce kernels
PARSEC Multi-threaded application kernels
SPECCPU Single-threaded CPU-intensive benchmarks

Table 8: Workload summary

As the memory is slowed-down, the performance dropped as expected for those
workloads in Table 8. As expected, the performance dropped much severely in case
of M2, compared to M1. The highest impact was for the mef workloads to be 1431%
(15x) and 537% (6x) for the two configurations, while many also showed an small
impact. Thus, it is expected to see substantial performance gains by managing the
hot memory pages for these workloads that experience severe impacts.

To evaluate the page migration mechanisms, the micro-benchmark memlat is used.

Memlat allocates a large region of memory and access it randomly to measure memory
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Time Osec | 5sec| 10 sec | 15 sec | 20 sec | 25 sec | 30 sec

Memory latency (cycles) | 900 792 620 498 367 367 367

Table 9: page migration evaluation using memlat

access latency. It verified that the memory latency goes down as the page migration
mechanisms migrates hot pages from slow memory to fast memory as in Table 9. The
latency initially was around 900 cycles and it gradually dropped to below 400 cycles
in 20 seconds, while the latency remains high around 900 cycles when the migration
is disabled. This verified that the page migration mechanism work and it helps lower
the memory latency by page migration. This result shows the effectiveness of our

software-controlled approach for managing heterogeneous memory.

4.4 Experimental FEvaluation #2
4.4.1 Experimental Setup

Our experimental platform consists of a dual-socket 12 core Intel Westmere server
with 12GB DDR3 memory. In order to experiment with real platform and workloads,
we emulate heterogeneity on this platform. Processor heterogeneity is emulated using
CPU throttling by writing to CPU MSRs which allows changing the duty cycle of
each core independently. Similarly, memory throttling is used to emulate heteroge-
neous memory (performed by writing to PCI registers of the memory controller) to
slow down the memory controller. This allows us to experiment with memory config-
urations of various speeds such as M1 and M2 being approximately 2x and 5x slower
than the original MO configuration without any throttling.

Similarly, the incremental unit in the 3D-stacked memory is defined and it is
termed E-state for convenience. The memory evaluation is done using a platform
configuration with 512MB of 3D-stacked DRAM memory configuration and an E-state
step of 64MB, resulting into 8 memory E-states. The fine-grained scaling mechanisms

are compared against a base case configuration with static allocation of 1U CPU
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resources (E5 CPU state) and 256 MB stacked memory (E4 memory state).

4.4.2 Workloads

Evaluation is carried out using a web-server and an in-house memcached-like (mem-
store) application which service a stream of incoming requests from a client machine.
The web server launches a CPU-intensive computation kernel, while memstore per-
forms a memory lookup operation in response to each request. The memstore appli-
cation allows us to load memory subsystem with its peak capacity, avoiding CPU and
network bottlenecks associated with standard memcached implementation. In ad-
dition, several other benchmarks including SPEC CPU2006 and modern datacenter

applications are also included in the analysis.
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Figure 69: Workload traces based on Google cluster data [59]

Evaluating the impact of memory heterogeneity, Figure 70 compare the perfor-
mance of several SPEC CPU2006 applications (Figure 70(a)) and various modern
cloud application benchmarks including graph database, graph search, key-value
store, Lucene search engine, Tomcat server and kmeans, page-rank, streamcluster
algorithms (Figure 70(b)) on different memory configurations. Specifically, it shows
normalized performance at the base M0 configuration (without throttling) and M1

and M2 memory configurations (by applying different amount of memory controller
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Figure 70: Impact of memory performance on several datacenter applications

throttling). As evident from the figure, several applications observe severe perfor-
mance degradation due to slow memory performance, including 14x (5x) and 7x (4x)
performance loss for mef and kvstore (key-value store) applications for the two mem-
ory configurations: M2 and M1. Other applications like bzip and page-rank exhibit
less sensitivity. Overall, these results suggest that memory performance is critical to
various applications which can benefit from the fine-grained management of hetero-

geneous memory resources.
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Figure 71: Working set size detection using access-bit history (x-axis = time (s),
y-axis = WSS (MB)).

Showing the application of the A-bit history based mechanisms to obtain working-
set sizes (WSS) of applications, Figure 71 plots WSS graphs as a function of time

for several SPEC CPU2006 workloads. As seen in the figure, working-set sizevaries
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across applications from ~10MB for omnetpp to a much larger value of ~200MB for
memory-intensive workloads like mcf. Further, WSS dynamically changes over time
for these applications, thereby showing the need for dynamic memory management.

Further, Figure 72 shows performance impact of memory E-state scaling on the
memstore application by gradually scaling the E-states from E7 to EQ, i.e., increasing
the size of fast memory allocation, where each state is maintained for five seconds
before scaling to the next state. The non-scaling scenario (NS) shows a flat latency
graph at 34ms and 42ms for the M1 and M2 configurations respectively. In compar-
ison, when the E-states are scaled up from E7 (left) to EO (right) in Figure 72(a),
average latency for each memory operation decreases gradually to 8ms. The reduced
access time with the fine-grained scaling also causes a 4.3x increase in the application
throughput (from 0.28M to 1.2M) (Figure 72(b)). Also, the performance of the NS
and ES configurations is comparable when no fast memory is used, signifying negli-
gible overheads due to management operations such as page table scans, mirroring,
and maintaining other data structures. These results demonstrate that resource scal-
ing on heterogeneous memory systems can be applied to obtain the desired QoS for

memory-sensitive applications.
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Figure 72: Impact of the fine-grained memory scaling on the performance of mem-
store application

Concerning fine-grained memory management, Figure 73 presents results for the
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Figure 73: Experimental results for memory E-state scaling

memstore application using the load traces shown in Figure 69 to vary the datastore
size. The figure compares the QoS score, and resource usage for the base configuration
(NS-B) with the QoS-driven policy (ES-Q) under M1 and M2 memory configurations.
We also experimented with the resource-driven ES-R policy which showed only minor
variation for the memory scaling experiments. The base case configuration consists of
256MB of stacked DRAM (state E4). As data in Figure 73(a) suggests, ES provides
2.3x better QoS score for job J4, while the performance is comparable for J1 and J3.
J2 shows 15% performance loss with scaling due to its varying memory usage causing
frequent scaling operations. Further, comparable behavior is noticed across the two
memory configurations (M1 and M2). The resource usage results in Figure 73(b)
illustrates that ES policies significantly reduce fast memory usage of jobs J1, J2, and
J3 (75%, 70%, and 25% respectively). In comparison, J4 observes a 50% increase in its
resource usage due to its large memory footprints. Overall, the fine-grained memory
scaling using the region framework provides 30% lower stacked memory usage and
thus cost, while maintaining performance.

In this manner, the region framework exploits platform heterogeneity and enables
dynamic scaling of resources to meet desired application performance/cost trade-

offs. As shown by the experimental data, it not only better services load peaks in
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comparison to homogeneous platforms (upto 2.3x) but also provides savings (average
21% for CPU and 30% for memory) scaling down resources during idle periods. Also,
E-state driver can be customized to meet different user requirements, either meeting
high QoS requirement using an aggressive policy or reducing resource usage while

maintaining performance by using a conservative policy.

4.5 Related Work

For detecting the memory usage behavior of virtual machines, several approaches have
been discussed including sampling, ghost buffer, etc. [103, 93, 98]. In comparison, the
approach explored in this work uses page-table access bits to detect not only working
set size of virtual machines, but also provide ‘hotness’ information of each page to
guide page placement. Further, several architectural solutions have been proposed
for page placement strategies for NVRAM-based hybrid memory systems, DRAM
caches, and disaggregated memory [91, 101, 92, 95|. In comparison, our work fo-
cuses on software-controlled memory management for more efficient utilization of the
stacked DRAM. Ballooning is a well-known technique for adjusting the memory allo-
cation of virtual machines [42, 103]. this work generalizes such resource scaling in a
unified way to various components. Given the rising contribution of memory power to
overall system power, there is increasingly more emphasis on memory voltage scaling
efforts [47]. Similarly, several studies have been made to understand the interaction
between processor and memory voltage scaling [48]. This work’s approach goes be-
yond voltage scaling and power management to support heterogeneous resources for

efficient operation.

4.6 Conclusions And Future Work

This chapter presents systems software mechanisms for managing heterogeneous mem-
ory resources that consist of a combination of fast 3D die-stacked DRAM and off-chip
DRAM. We believe that such stacked DRAM should be managed by software rather
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than by hardware (hardware managed cache) for flexible management. To this end,
we propose and evaluate mechanisms for tracking the memory behavior of virtual ma-
chines and managing memory mappings, in a guest-transparent manner. We conduct
experimental evaluations on an emulated heterogeneous memory platform. Prelimi-
nary results show the effects of memory heterogeneity on various workloads and our
ability to track guest memory access patterns and improve performance by managing
how stacked DRAM is used by applications.

Also this chapter presents the new memory management scheme using memory
region for managing heterogeneous resources in the cloud platforms, providing fine-
grained scaling capabilities for applications. To manage heterogeneity, it uses the
memory region abstraction. The proposed abstractions are very useful to manage
heterogeneity in memory subsystem. The region framework is implemented and ex-
tended in the Xen hypervisor. Evaluation is carried out using real-world traces on
an emulated heterogeneous platform, showing that the region framework can pro-
vide VMs with the capabilities to quickly obtain resource for handling load spikes or
minimize cost during low load periods.

There are several possible directions for future work. With the introduction of
fine-grain resource scaling mechanisms on cloud platforms, a whole new area becomes
open concerning the design of policies for requesting and allocating resources in the
presence of multiple competing users. Market based allocation mechanisms based on
game theory become relevant in this context.

Other form of heterogeneous memory could be small, fast scratchpad on chip. For
example, single cloud computer (SCC) has a very small, fast scratchpad on chip. Such
memory is more limited in its size, and faster. However, same pricinple of hot pages
applies to the scratchpad memory. Hot data should be placed on the fast, small,
memory such as scratchpad memory. Because it is more limited in its size, more

sophiscated approach to choose hot pages may be needed. Also the big difference is
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that such scratchpad is typically private to the cores. This would create a new kind of
region that is private to the cores. Meanwhile, NVM is also interesting case becasuse
it has persistency. Perhaps a new kind of region such as non-volatile region can be
created to capture the characteristics of being non-volatile.

However, there would be some limitations as well becasue the hot-page detection
is inaccurate due to the large 4KB page size. It is possible that only one accessed
cache line makes the whole page dragged into the fast memory wasting most of its

space.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis, the novel abstraction for memory-centric computing has been presented.
It, combined with microscheduling, can be used to implement a cache-aware scheduler
and guest-defined regions.

The final chapter of this dissertation summarizes what can be achieved with mem-
ory region, and identifies other open problems that can be research subject in the

future.

5.1 The Memory Region

One of the major contribution of this dissertation is the introduction of the memory
region abstraction and the region scheduler which employs the abstraction. Physical
memory is partitioned into regions, and regions are mapped to caches. CPU cores
can access only the allowed or mapped regions. This is enforced by the page tables
used by the processor MMUs.

The basic idea of region scheduling is to move computation, not data, because
data movement is expensive. Specifically, region scheduling causes the migration of
computations to the caches in which regions are located. This migration is termed
micro-scheduling, and the scheduler tries to find balance between high microschedul-
ing overhead and performance benefits realized from data being local. Additional
hardware support to optimize microscheduling overhead (e.g., to 100s cycles) would
widen the usefulness of the approach. Finally, we note that as implemented now,
region scheduling operates at page granularity, which makes region scheduling some-

what similar to a page-level approach to cache affinity.
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5.2 Hardware Support and Codesign

The region framework is an implementation of a different execution model in which
data is placed into memory units and computation moves to the data’s location. This
is in contrast to traditional approaches in which the hardware moves DRAM contents
to cache, and cache lines to the processor’s registers. We posit that such hardware
driven data movements, shown useful in the era of single core computing, suffer from
the high expense of data movements in the multi-core era. Cache coherency traffic
further contributes to this problem.

To overcome the high cost of data movement, both in overhead and in power
consumption, this thesis designs, implements, and experiments with the alternative
memory-centric region-based execution model. Lacking hardware support for this
model, however, results in its implementation solely in software, with consequent
overheads due to frequent microscheduling and the need for hot page detection coupled
with using the MMU for ensuring that processes always run where their memory
regions are located. There are many possible codesign options that the overheads
would be greatly reduced with.

(i) reduced microscheduling cost: the microscheduling is one of the major over-
heads and it is highly desirable that the hardware supports it directly. Some research
papers assumes 100s cycles for context migration [34] while our pure software imple-
mentation showed tens of thousands cycles (47600 cycles or 17800 cycles depending on
the machines). If such fast hardware microscheduling is supported, it would greatly
broaden usefulness of the memory-centric scheduler.

(ii) efficiently detecting memory regions, at finer levels of granularity than the
page-based methods used in regioning software: Current 4KB page is quite coarse
to handle by the region framework and it is the source of inaccurate accounting and
working set tracking. For example, the access bit tells us that at least one cache line

in a 4KB page is accessed but it does not tell us how many cache lines are accessed. It
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may be any from one cache line to whole page that is accessed. This makes working
set size tracking inaccurate. Furthermore, it confuses the regioning algorithm greatly
if any unrelated object resides in a page because any access to the unrelated object
is not differentiated from the regioning algorithm’s perspective. Thus, allowing cache
line granularity rather than 4KB page would greatly increase accuracy of the region
framework algorithms.

(iii) make ’faults’ on inappropriate memory references (i.e., accesses to memory
in regions placed elsewhere) first class scheduling events. Currently per-cache page
tables are used to enfore region-to-cache mappings and this can be implemented in
hardware relatively easily. The pure software-based implementation adds a bit of
overheads for page table manipulation operations and also it adds more TLB flushes.
It also doubles space consumption as well.

(iv) detailed cache information: One of the considerations in the region schedul-
ing is cache occupancy but it is hard to calculate it accurately. Software does not
have information on which cache lines are evicted or not, and this makes it difficult
to schedule tasks based on their cache footprint. Some research [123] proposes an
useful hardware support for region scheduling and the cache footprints at cache line
granularity would greatly help accurate task scheduling.

Region scheduling is implemented in the Xen hypervisor for generality, but this
makes it harder to detect memory regions due to a lack of knowledge about memory
page usage. The introduction of object to region mappings in Section 3.3 demon-
strates the utility of gaining such additional semantic information. More specifically,
as implemented now, regioning has to carefully detect and track which pages are stack,
code, and data. This is done by at each page fault, analyzing the faulted address,
the privilge mode, and the fault causes, to determine in what context of the OS the
page is used. We were able to implement methods that determine page types, with

high probability, but these methods strongly depend on the underlying architecture.
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On the other hand, such information is readily available at the OS level, which sug-
gest that (i) region scheduling may be more easily implemented in operating systems
and/or (ii) there is a need for additional APIs between guest VMs and the hypervisor

to assist the latter in determinations like these [128].

5.3 Conclusions and Future Work

This work started from the questions on the cache coherency protocols and the ques-
tions naturally led us to the reason why cache lines are moved around. The distance
between the location of computation and that of operands is getting farther and it is
also going non-uniform, moreover. The hardware approaches seems expensive in both
performance and power, mainly because of lack of high-level information. The data
is blindly moved around and, so, many side effects such as ping-pong effects are hard
to avoid. We believe that software should be involved to properly solve this problem
leveraging its high level information. Also we think that moving computation rather
than data would make more sense in the future as the computation gets cheaper while
the data movements gets more expensive.

Furthermore, new memory technologies such as PCM, NVM, 3D-stacked DRAM
is posing new challenges. Hence, this dissertation proposes software approach to
fulfill the new ideas and bridge between the hardware approaches and the software
approaches for memory-centric computing. So, this dissertation introduces the mem-
ory region abstraction and its implementation on x86 to embrace many aspects of
current and future memory subsystem. It was implemented in the hypervisor so that
the unmodified guest OSes can run and benefits automatically from the hypervisor.
The guest OS also may be written to use memory region services via hypercalls if it
wants.

The region scheduling can be viewed as an alternative execution model based on

the memory-centric paradigm. Traditional execution model is computation-centric
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and it moves around its data or operands between many other places such as memory,
cache and registers. Although this was successful until now, it suffers from expen-
sive data movements and scalability issues as the computing trends moves towards
to multi/many-core environments. We believe that radically different approach is re-
quired to achieve scalable, low-power computing in the future and this new execution
model or region scheduling could be the direction for the future computing platforms.

As the current hardware is not suitable for the new execution model, the new
model had to be implemented in pure software level and it had to employ various tricky
techniques to realize the ideas behind it. Microscheduling overhead was not so cheap
that various optimization techniques are introduced to control the microscheduling
overhead.

Also, using the memory region abstraction, functionalities could be mapped to
each cache and cores could be specialized to the mapped functionality. The disaggre-
gated OS services using region scheduling were demonstrated. This not only shows
the usefulness of the memory region abstraction, but it also shows that the new exe-
cution model can be applied to the kernel space and potentially to the heterogeneous
platoform.

The memory region is also showed to be useful to manage the newly emeged
memory systems such as 3D stacked DRAM. The region framework is used to support
the (emulated) 3D-stacked DRAM heterogeneous memory system. The basic idea is
to identify hot pages across the whole system and place them onto 3D-stacked DRAM
rather than slow off-chip DRAM memory.

Evaluation results show that the memory region can be very useful and the
memory-centric scheduler is promising to achieve better utilization of caches. Also
it could be applied to the kernel space, not only to the user space, showing that the
cores could be specialized for specific functionality by using the region framework.

Additional results show that the memory region can be used to deal with future
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heterogeneous memory systems such as 3D stacked DRAM.

To fulfill truely memory-centric computing, our new execution model should be
codesigned with hardware approaches. Therefore, our future work is to codesign newly
the memory-centric approach with hardware approach. Current implementation and
design is for only current hardware, so the whole design and implementation should

be reviewed if it is newly codesigned with hardware.
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The performance of modern many-core systems depends on the effective use
of their complex cache and memory structures, and this will likely become more pro-
nounced with the impending arrival of on-chip 3D stacked and non-volatile off-chip
byte-addressable memory. Yet to date, operating systems have not treated memory
as a first class schedulable resource, embracing memory heterogeneity. This disser-
tation presents a new software abstraction, called memory region, which denotes the
current set of physical memory pages actively used by workloads. Using this abstrac-
tion, memory resources can be scheduled for applications to fully exploit a platform’s
underlying cache and memory system, thereby gaining improved performance and
predictability in execution, particularly for the consolidated workloads seen in vir-
tualized and cloud computing infrastructures. The abstraction’s implementation in
the Xen hypervisor involves the run-time detection of memory regions, the scheduled
mapping of these regions to caches to match performance goals, and maintaining
region-to-cache mappings using per-cache page tables.

This dissertation makes the following specific contributions. First, its region
scheduling method proposes that the location of memory blocks rather than CPU
utilization is the principal determinant where workloads are run. It proposes a new
scheduling method, the region scheduling that the location of memory blocks deter-
mines where the workloads are run. Second, treating memory blocks as first-class
resources, new methods for efficient cache management are shown to improve appli-

cation performance as well as the performance of certain operating system functions.



Third, explicit memory scheduling makes it possible to disaggregate operating sys-
tems, without the need to change OS sources and with only small markups of target
guest OS functionality. With this method, OS functions can be mapped to specific
desired platform components, such as file system confined to running on specific cores
and using only certain memory resources designated for its use. This can improve
performance for applications heavily dependent on certain OS functions, by dynami-
cally providing those functions with the resources needed for their current use, and it
can prevent performance-critical application functionality from being needlessly per-
turbed by OS functions used for other purposes or by other jobs. Fourth, extensions
of region scheduling can also help applications deal with the heterogeneous memory
resources present in future systems, including on-chip stacked DRAM and NUMA
or even NVRAM memory modules. More generally, regions scheduling is shown to

apply to memory structures with well-defined differences in memory access latencies.

143



