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SUMMARY 

 

Ultra-High-Performance Concretes (UHPCs) are a promising class of cementitious 

materials possessing mechanical properties superior to those of Normal Strength Concretes 

(NSCs).  However, UHPCs have been slow to transition from laboratory testing to insertion in 

new applications, partly due to an intuitive trial-and-error materials development process. This 

research seeks to addresses this problem by implementing a materials design process for the 

design of UHPC materials and structures subject to blast loads with specific impulses between 

1.25- and 1.5-MPa-ms and impact loads resulting from the impact of a 0.50-caliber bullet 

travelling between 900 and 1,000 m/s.  The implemented materials design process consists of 

simultaneous bottom-up deductive mappings and top-down inductive decision paths through a set 

of process-structure-property-performance (PSPP) relations identified for this purpose.  The 

bottom-up deductive mappings are constructed from a combination of  analytical models adopted 

from the literature and two hierarchical multiscale models developed to simulate the blast 

performance of a 1,626-mm tall by 864-mm wide UHPC panel and the impact performance of a 

305-mm tall by 305-mm wide UHPC panel.  Both multiscale models employ models at three 

length scales – single fiber, multiple fiber, and structural – to quantify deductive relations in 

terms of fiber pitch (6-36 mm/revolution), fiber volume fraction (0-2%), uniaxial tensile strength 

of matrix (5-12 MPa), quasi-static tensile strength of fiber-reinforced matrix (10-20 MPa), and 

dissipated energy density (20-100 kJ/m
2
).  The inductive decision path is formulated within the 

Inductive Design Exploration Method (IDEM), which determines robust combinations of 

properties, structures, and processing steps that satisfy the performance requirements.  

Subsequently, the preferred material and structural designs are determined by rank order of 

results of objective functions, defined in terms of mass and costs of the UHPC panel. 
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     CHAPTER 1: INTRODUC TION 

INTRODUCTION 

 

Advances in civilization are closely tied to advances in materials; so much so that 

entire spans of time are named after the most advanced material of the age.  For example, 

the Bronze Age was named after the then most advanced material, smelted arsenic and 

bronze.  New materials continue to advance civilization; three recent examples include: 

(1) silicon used in transistors leading to a rapid increases in inexpensive computational 

resources; (2) carbon-fiber reinforced composite materials leading to energy efficient 

airplanes, such as the Boeing 787; and (3) lithium-based compounds used in batteries 

leading to lightweight portable electronic devices such as smart phones.  Clearly, 

materials are important to the advancement of civilization. 

The process of developing new materials has been and still is a laborious, 

iterative, and intuitive process characterized by four steps: (1) generate a new idea for a 

new or improved material; (2) process the material in a laboratory environment; (3) test 

the new material for a combination of physical, chemical, thermal, or other properties; 

and (4) repeat steps one through three as needed until the desired properties are realized.  

Subsequently, the new material must find a path to commercial viability.  Here, 

commercial viability is defined by three criteria: (1) the material must be usable in a 

structure; (2) the material must be capable of being manufactured, or processed, at the 

quantities needed and with the target properties to satisfy demand; and (3) the material 

must be economically profitable at the volumes needed for the previously identified 
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structures and processing conditions.  Unfortunately this materials development and 

insertion process is not guaranteed to produce the desired new material.  Moreover, when 

it does produce a new or improved material satisfying the requirements, the materials 

development and insertion process typically requires fifteen years or longer. 

The lengthy time required by the materials development and insertion process can 

be observed in the development of Normal Strength Concretes (NSCs) and Ultra-High-

Performance Concretes (UHPCs), both of which are cementitious granular materials 

primarily composed of Portland Cement (PC), aggregate, reinforcement, and water.  

Figure 1 shows the annual consumption of Portland Cement – used here as a proxy for 

the consumption of NSC – in the United States as a function of year from 1824 to 2012 

(Anon., 1988; Graybeal, 2012; Kelly, van Oss, & Matos, 2012; Mindess, Young, & 

Darwin, 2002).  The invention of “modern” Portland Cement in 1845 marks the invention 

of NSC.  Thirty-five years later in 1880, only 22 thousand metric tons, or less than 0.5 kg 

per person, of Portland Cement were consumed in the United States.  In contrast, 415 kg 

per person of Portland Cement were consumed in 2005.  The slow development of NSCs 

is mirrored in the development of UHPCs.  For example, UHPCs were in invented 1978; 

thirty-four years later in 2012, only 18 UHPC bridges have been constructed in North 

America. Thus, the materials development and insertion process is still laden with 

problems. 
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Figure 1. United States Portland Cement (PC) consumption from 1825 to 2012, 

highlighting the 35 and 34 years span after the invention of Normal Strength 

Concrete (NSC) and Ultra-High-Performance Concrete (UHPC), 

respectively. 

The time required by the material development and insertion process is a 

symptom of four systematic problems (McDowell et al., 2009a).  First, the final material 

design is determined by optimizing the performance of the initial material design; thus 

alternative material designs with possible superior properties are tacitly omitted.  Second, 

the time needed to process and test each test material limits the rate at which new 

materials are introduced.  Third, the expense of physical experiments limits the number 

of physical experiments performed; thus, optimization in the materials development 

process continues until the performance requirement is met.  Fourth, the materials 

development process can only produce materials that are possible with current 

manufacturing technology. 

The problems associated with the materials development and insertion process 

are exacerbated for extreme loading conditions, such as blast and impact.  Specifically, 

the physical experiments forming the feedback mechanism for the materials development 
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process are more expensive and time intensive than conventionally loaded structures.  A 

confounding problem is that an expected range of levels of extreme loading, e.g. impulse 

of a blast load or the velocity of an impact, may change substantially depending on 

various factors.  To rapidly adapt to current and future extreme loading conditions, a new 

materials design process is needed. 

The genesis for the proposed materials design process emanates from Olson 

(1997), who clarified the simultaneous deductive and inductive paths within a material’s 

process-structure-property-performance relations.  The deductive path seeks to form 

accurate cause-effect relations in a bottom-up manner through the process-structure-

property-performance relations.  The inductive path involves a top-down search for 

properties, structures, and processing steps that satisfy the overall performance 

requirements of the structure. 

The recent increase in cost-effective computational resources allows the deductive 

path to be moved from a physical domain, primarily comprised of testing in a laboratory, 

to primarily a computational domain.  However, the deductive path in the computational 

domain gives rise to new problems.  First, the actual microstructure in a given physical 

sample is rarely known, instead low order attributes, such as the volume fraction and 

mean size of each constituent, may be available from processing conditions or a 

micrograph from a similarly processed material.  This leads to uncertainty in the 

placement and orientation of microstructures to be modeled.  Second, numerical 

simulations require model assumptions to be tractable.  For example, models often 

include boundary condition assumptions such as plane strain or periodic boundaries.  

Third, the number of degrees of freedom possible in numerical models is finite; therefore, 
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responses from smaller length-scales must be homogenized and the physical domain 

simulated is much smaller than physical specimens.  Fourth, multiscale modeling requires 

a transition between length and time scales.  Finally, robust design algorithms need to be 

employed. 

This dissertation addresses these problems by applying a top-down materials 

design process to the design of Ultra-High-Performance Concrete (UHPC) subject to the 

extreme loading conditions of blast and impact.  The specific objectives of this 

dissertation are to: 

 develop and validate models at length and time scales relevant to the blast loading of 

UHPC panels; 

 link the models together into a multiscale modeling framework to accurately model 

phenomenon relevant to blast loading of UHPC panels; 

 determine an appropriate mapping of the process-structure-property-performance 

relations for blast and impact loading; 

 inductively (top-down) search for ranged sets of inputs satisfying the performance 

requirements; and 

 identify preferred combinations of design variables that satisfy the system level 

requirements. 

 

The remainder of this dissertation is organized as follows.  Chapter 2 reviews 

relevant background material pertaining to UHPC materials, the development of UHPC 

materials, and extreme loading conditions such as blast and impact loading.  Chapter 3 

details the multiscale model of a UHPC blast panel consisting of three different length 
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scales: single-fiber, multiple-fiber, and structural length scale.  The multiscale model is 

validated by results of physical experiments conducted at the United States Army Corps 

of Engineers (USACE) Engineer Research Development Center (ERDC).  Chapter 4 

details the model at the structural level length scale for simulating impact loading.  

Chapter 5 provides the theoretical framework for the design problem.  Chapter 6 

exercises the design framework for designing UHPCs for blast loading and impact 

loading.  Finally, Chapter 7 summarizes the dissertation and highlights the unique 

contributions of this research. 

The unique contributions of this dissertation are as follows: 

 Develops and validates a multiscale model at three different length scales for 

predicting the evolution of damage, deflection, and critical impulse for a UHPC panel 

subjected to blast loading; 

 Develops a computational framework for the analysis of uniformly pitched non-

circular cross section reinforcement fibers pulled from a cementitious matrix.  This 

framework represents the first time that uniformly pitched non-circular cross section 

fibers have been (1) modeled in the finite element framework and (2) modeled within 

a matrix with constitutive properties other than an elastic, homogeneous matrix; 

 Provides an alternate explanation of the mechanisms causing the elastic-plastic 

response of twisted fibers being pulled from a cementitious matrix; 

 Implements the Inductive Design Exploration Method (IDEM) (Choi et al., 2008) in a 

large multiscale framework; and 

 Identifies preferred designs that minimize cost and mass of UHPC materials for 

structures and satisfy system performance requirements related to blast and impact. 
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   CHAPTER 2: BACKGROUND 

BACKGROUND 

 

The objective of this dissertation is to reduce the time required to develop new 

UHPC materials and structures to less than 10 years by implementing a materials design 

process.  To support the achievement of this, this chapter reviews relevant background 

information and is organized as follows.  Section 2.1 establishes a classification scheme 

for cementitious materials.  Section 2.2 characterizes UHPCs and compares UHPCs to 

NSCs.  Section 2.3 reviews previous research on blast and impact loading conditions.  

Section 2.4 presents the constitutive models used by previous researchers to model 

cementitious materials.  Section 2.5 reviews approaches to link different length scales 

within multiscale models.  Section 2.6 reviews approaches to the inverse design 

algorithm, IDEM. 

2.1 Classification of cementitious materials 

Cementitious materials are granular composites characterized by a common 

composition of Portland Cement and water.  Unless specified otherwise, the following 

classifications of cementitious materials are adopted in this dissertation.  Cement paste, or 

paste, is the hardened material created after curing a mixture of Portland Cement and 

water.  Cement pastes may contain other admixtures such as High-Range Water 

Reducing Agents (HRWRA), but may not contain higher length-scale constituents such 

as fibers, aggregates, or sand.  Cement mortar, or mortar, is the hardened material created 
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after curing a mixture of Portland Cement, sand, and water.  Cement mortars may contain 

admixtures such as HRWRA, but may not contain aggregate or fibers.  Normal Strength 

Concrete (NSC) is the hardened material created after mixing Portland Cement, aggregate 

with a diameter typically between 9 and 50 mm, sand, and water.  NSCs have unconfined 

compressive strengths, as specified by American Society for Testing and Materials 

(ASTM) C39 (2012a), less than or equal to 50 MPa.  Ultra-High-Performance Concrete 

(UHPC) is the hardened material created after mixing Portland Cement, sand, silica fume, 

quartz powder, high-range water reducing agents, fibers, and water.  Although UHPCs 

generally have unconfined compressive strengths greater than 150 MPa (Naaman & 

Wille, 2012), they may be more generally defined in terms of performance, rather than 

strength.  Between NSCs and UHPCs lies a range of cementitious materials referred to as 

High-Performance Concretes with unconfined compressive strengths between 50 and 150 

MPa,  .  In general, HPCs have the same constituents of UHPCs, but with a higher water 

to cement ratio, /w cm . 

2.2 Characteristics of UHPC  

UHPCs are cementitious granular composites composed of Portland Cement, 

sand, quartz powder, silica-fume, high-range water reducing agents, fibers, and water.  

The high-range water reducing agents allow water to cementitious material /w cm  ratios 

to be less than 0.3 without affecting the workability of the UHPC slurry (Richard, 

Cheyrezy, & Dugat, 1996).  In comparison, NSCs are composed of Portland Cement, 

aggregate, sand, and water, and typically have /w cm  ratios between 0.4 and 0.7.  The 

composition of UHPCs leads to a denser, less porous microstructure.  Accordingly, 
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denser microstructures lead to improved mechanical and mass transport properties.  For 

example, UHPCs typically have unconfined compressive and tensile strengths greater 

than 150 MPa and 10 MPa, respectively; NSCs have typical unconfined compressive and 

tensile strengths of 28 MPa and 3 MPa, respectively.  The improved mass transport 

properties are quantified by improved freeze-thaw performance (Thomas et al., 2012) and 

reduced chloride ion transport (Oh et al., 2002). 

The following two sections discuss the role of porosity and fiber content in the 

structure and properties of UHPC. 

2.2.1 Porosity 

Porosity in cementitious materials occurs within the cement matrix and tends to 

increase near the boundary of coarser length scale incorporated phases, e.g. fibers or 

aggregate.  Here, the matrix is defined to be cement mortar for NSCs or the hardened 

mixture of Portland Cement, water, silica fume, and quartz powder for UHPCs. 

The cementitious matrix can be divided into two different phases depending on 

the proximity to coarser length scale interstitials.  The first phase, commonly referred to 

as the Interfacial Transition Zone (ITZ), is a relatively porous region located within a 10- 

to 50-μm-thick shell around non-porous aggregates and fibers (Mehta & Monteiro, 2005).  

Even though the thickness of ITZ is quite small, the 75 to 100 µm mean spacing between 

aggregates in NSC allows the ITZ to comprise between 20 and 40% of the total volume 

not occupied by aggregates (Mindess et al., 2002).  Combined with the high levels of 

porosity, the 20 to 40% volume fraction of the ITZ to the total matrix cause the ITZ to 

dictate percolation properties, e.g. chloride ion diffusion (Oh et al., 2002), for NSC 
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microstructures.  Computational simulations by Garboczi and Bentz (1991) indicate that 

the thickness and elevated porosity of the ITZ are caused by elevated /w cm  ratios near 

the surface of interstitials.  The second phase of the matrix, or bulk matrix, is the portion 

of the matrix that is further away from the surface of coarser scale interstitials.  The bulk 

matrix is characterized by lower levels of porosity than the ITZ. 

The processing of UHPCs reduces the porosity within the ITZ and bulk matrix by 

selectively controlling the constituents.  First, high-range water reducing agents are used 

to reduce /w cm  ratios to levels near 0.2 while maintaining adequate workability, thus 

preventing the formation of voids during casting. Second, the mean particle diameter and 

volume fraction of each constituent are prescribed in order to increase the packing 

density of the microstructure (de Larrard & Sedran, 1994).  For example, consider the 

packing density of a binary granular composite composed of constituent-1 and 

constituent-2.  If both constituents are idealized as mono-disperse spheres of the same 

diameter, a random distribution of spheres leads to a 64% observed packing density, i.e., 

poreV  = 0.36 (Cumberland & Crawford, 1987).  Note that the random distribution of 

particles creates a lower packing density than the theoretically possible 76% for 

hexagonal-close-packed systems (Cumberland & Crawford, 1987).  However, if the 

constituents have different mean diameters, de Larrard and Sedran (1994) showed that 

the observed packing density can be increased to 75%, a 17% improvement over uniform 

diameter constituents, by using a 30% volume fraction of constituent-2 that has a 

diameter 1 16th
 of constituent-1.  The influence of particle size and volume fractions on 

packing density has motivated at least 15 different particle packing models that can be 

classified by the treatment of the particles in the model (discrete or continuous) and by 
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the number of components (binary, ternary, or higher order) (Alexander & Mindess, 

2005). 

By controlling the incorporated phases, or “constituents”, volume fractions of 

constituents and mean diameter of the constituents, UHPC pores are smaller and occupy 

less total volume than the pores within NSC.  For example, Klobes et al. (2008) 

determined that a UHPC had a 3.0-nm mean pore radii and a 8.8% total porosity volume 

fraction, whereas a NSC had a 54.1-nm mean pore radii and 16.9% total porosity. 

2.2.2 Fiber-Reinforcement 

Although straw and asbestos fibers have reinforced mud and clay for millennia 

(Mehta & Monteiro, 2005; Mindess et al., 2002), Naaman (1985) dates the modern use of 

short, discontinuous randomly-oriented fibers within cementitious materials to the early 

1960's.  The primary use of fibers is to increase the ductility and toughness of 

cementitious material, which is quasi-brittle without fibers.  A secondary use of fibers is 

to mitigate the risk of explosive spall due to rapid thermal heating (cf. Bentz, 2000; 

Bilodeau, Kodur, & Hoff, 2004; Hertz, 2003; Kalifa, Chéné, & Gallé, 2001).  This 

secondary use will not be covered in this dissertation. 

Fibers of various shapes and the influence of fiber shape of the response at the 

single fiber and multiple fiber length scales have been examined since the early 1960s, 

when researchers modified the morphology of fibers from straight and smooth with 

circular cross sections to include either off-axis or on-axis features (Naaman, 1985).  

Initially, researchers focused on adding off-axis features, e.g. crimping along the fiber’s 

length or making hooks at the ends of the fiber, to fibers having circular cross sections.  
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In 1999, Naaman (1999) introduced on-axis features and patented helically twisted fibers 

with polygonal-shaped cross-sections.  Although possible, experimental or numerical 

research has not been published documenting the effects of combining on-axis and off-

axis features within a single fiber.   

Fibers used in UHPCs are typically straight, smooth fibers with circular cross 

sections made from high strength steel.  The diameters of the cross section depends on 

the constituents of the matrix surrounding the fiber.  For example, Richard, Cheyrezy, 

and Roux (1996) recommend the diameter of the fiber be smaller than maximum particle 

diameter, which in their case was 0.4 mm.  A fiber’s length should be as long as possible 

without exceeding the fiber’s critical length, at which a fiber ruptures instead of slips 

(Johnston, 2001).  Typical values of the fiber length to diameter ratio, or aspect ratio,  , 

are between 60 and 100. 

The influence of fiber morphology is experimentally determined via the single-

fiber pullout test.  The result of the test is a pullout force, defined as the force at which 

the fiber inelastically is removed from the matrix, as a function of end slip.  End slip is 

measured as the difference between the current and the reference configurations for the 

point on the fiber that is initially at the crack face of the matrix.  The single-fiber pullout 

test is relatively inexpensive and can account for the angles between the fiber’s 

embedded axis and the pull direction.  The typical responses of straight, smooth fibers, 

hooked fibers, and twisted fibers are reviewed next. 

Straight, smooth fibers with circular cross sections exhibit three energy storage 

and dissipation stages (Boshoff, Mechtcherine, & van Zijl, 2009; Cunha, Barros, & Sena-

Cruz, 2010; Easley, Faber, & Shah, 1999; Kim, El-Tawil, & Naaman, 2009).  In the first 
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stage, energy is stored as the fiber undergoes relatively small displacements before the 

peak force is reached.  In the second stage, the pullout force decreases as the chemical 

bonds between the fiber and the matrix break.  In the third stage, the pullout force 

decreases as the end slip increases, and energy dissipates via friction at the fiber-matrix 

interface.  For straight, smooth fibers, the fiber length has a strong influence on the peak 

pullout force.  For example, Cunha, Barros, and Sena-Cruz (2010) reported a 100% 

increase in peak pullout force when fiber length is increased from 20 mm to 30 mm.  

Additional studies were conducted by Chan and Chu (2004a) and Guerrero and Naaman 

(2000) to determine the effects of matrix constituents on pullout behavior. 

Hooked fibers exhibit behaviors different from those of straight fibers.  As 

reported by Cunha, Barros, and Sena-Cruz (2010), a hooked fiber embedded 20 mm into a 

matrix shows a peak pullout force approximately 4.5 times that of a straight, smooth fiber 

embedded at the same depth.  Even though the peak pullout force of a hooked fiber 

increases with the embedded length of the fiber, the increase is not as pronounced as that 

for straight, smooth fibers (Cunha et al., 2010).  In addition to the three energy storage and 

dissipation mechanisms of straight, smooth fibers, hooked fibers also dissipate energy via 

plastic work during pullout.  Although not a distinct mechanism, the residual stress in a 

fiber's hook appears to increase normal tractions and ultimately the force required during 

the friction-dominated stage of pullout. 

Twisted fibers display a behavior that is different from that of either straight, 

smooth fibers or hooked fibers.  The single fiber pullout results by Naaman (2003) 

indicate substantial differences in maximum pullout force, end slip at which maximum 

pullout force is reached, and pullout force during the last 20% of the fiber length.  
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Twisted fibers generate peak pullout forces on the order of two to three times those of 

straight, smooth fibers, depending on the morphology of the twisted fiber.  The second 

difference is that twisted fibers reach maximum pullout forces at approximately 10 times 

the end slip distance as that of straight or hooked fibers.  This work-hardening behavior 

has important implications for the distribution of damage throughout structural-level 

length scales (Kim, El-Tawil, & Naaman, 2007).  The third difference is that twisted 

fibers maintain pullout forces close to the maximum pullout force for up to 80% of a 

fiber's embedded length.  These three differences cause the total work for pullout of a 

twisted fiber to be four to five times greater than that for a straight, smooth fiber 

(Naaman, 2003).  Other studies concerning twisted fibers have determined the influence 

of matrix composition (Guerrero & Naaman, 2000), the rate of pullout (Kim et al., 2009), 

and the number of fiber strands (Sujivorakul & Naaman, 2002).  Although Naaman and 

coworkers were first to use twisted, polygonal, discontinuous, and randomly oriented 

fibers, Menzel (1952) documented similar improvement in the pullout behavior of 

continuous steel rebar reinforcement placed in cementitious matrices.  Menzel's results 

indicate that a helically threaded rebar reinforcement sustains greater than 10 times the 

stress of a straight, smooth rebar over the first 0.40 mm of end slip. 

Analytical models of a single straight, smooth fiber being pulled out of a matrix 

have been framed in terms of energy balance (Focacci, Nanni, & Bakis, 2000) and 

equilibrium (Naaman et al., 1991).  The equilibrium-derived analytical model uses 

experimental data to determine five constants: bond modulus, bond strength, constant 

frictional bond stress, and two decaying frictional parameters.  Numerically, Li and 

Mobasher (1998) used a two-dimensional axisymmetric framework containing three 
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linear elastic constitutive relations to simulate the three pertinent materials: fiber, 

interface, and matrix.  The modeled mechanisms include fiber debonding and friction.  A 

clamping pressure was applied at the outer edge of the matrix to simulate shrinkage.  

Results were presented and compared to experimental data for the first 0.1 mm of end 

slip. 

An analytical model to predict the pullout force versus end slip relation for 

hooked fibers was introduced by Alwan, Naaman, and Guerrero (1999), who extended 

the model of straight, smooth fibers given by Naaman, Namur, Alwan, and Najm (1991).  

The model predicts four different characteristic responses depending on the end slip of 

the fiber.  The first characteristic response is a rapid increase in pullout load as the fiber 

undergoes debonding.  Second, the pullout force increases to a maximum value and 

maintains the maximum value as both kinks in the embedded end of the fiber respond as 

plastic hinges during increased end slip.  The third characteristic response occurs when 

the deepest kink of the embedded end of the hooked fiber completely passes through the 

curved portion of the fiber bed.  At this point, the pullout force decreases to lower value 

until the fiber is completely removed from the hooked part of the fiber bed, thus leading 

to the characteristic fourth response: a friction-dominated pullout similar to that of a 

straight, smooth fiber.   

An analytical model to predict the pullout of a twisted fiber was presented by 

Sujivorakul and Naaman (2003), with complete details given by Sujivorakul (2002).  The 

analytical model assumes a homogeneous elastic matrix surrounding an elastic-plastic 

fiber.  The model accounts for the fiber's embedded length, cross-sectional shape, pitch, 

untwisting torque, tensile strength of the fiber, and friction between the fiber and the 
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matrix.  Calibration of the model requires experimental data pertaining to the bond shear 

stress versus slip relation, untwisting torque at the embedded tip of the fiber, and a 

locking torque coefficient, each of which depend upon the pitch of the fiber and the 

cementitious matrix surrounding the fiber.  In other words, for a given fiber and matrix, a 

different calibration is required for each pitch and matrix.  Although the analytical model 

has been used to predict the pullout force during the first 5 mm of end slip, the model 

does not capture the experimentally observed matrix tunneling, defined as the erosion of 

the matrix surrounding the fiber as the fiber is pulled from the matrix, or the resulting 

rapid decrease in pullout force at end slips between 70 to 80% of the fiber's initial 

embedded length. 

Although it is important to understand how a single fiber interacts within the 

surrounding cementitious matrix, fibers are distributed throughout cementitious materials.  

Therefore, the influence of multiple fibers must also be understood.  The number of fibers 

within a cementitious material is quantified by the fiber volume fraction, 
fiber

V , defined as 

the volume of fibers divided by the total volume of the cementitious matrix and the 

fibers.  A theoretical upper bound for the maximum fiber volume fraction, ,maxfiberV , of 

randomly placed fibers was calculated and measured by Parkhouse and Kelly (1995), 

who showed that  ,max 2ln /fiberV   .  For typical aspect ratios of 60 and 100, the 

maximum fiber volume fractions are 15 and 10%, respectively.  However, UHPCs 

typically have fiber volume fractions between 1 and 3%, and rarely greater than 5%.  

Fiber volume fractions less than ,maxfiberV  are used because mechanical properties degrade 

before reaching the theoretical fiber volume fractions.  For example, Richard, Cheyrezy, 

and Roux (1996) showed that the flexural strength reaches a maximum of approximately 
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60 MPa for 4%
fiber

V   and the fracture energy reached a maximum of 36 kJ/m
2
 for 

2%
fiber

V  .  The reduction in flexural strength and fracture energy stem from a decrease 

in workability and resulting creation of porosity.  In order to reduce porosity while 

increasing fiber content, Rossi (2005) used fibers at three different length scales, namely 

lengths of 20, 7.5, and 2 mm and diameters of 0.275, 0.175, and 0.1 mm, respectively, to 

produce composites with up to 11% fiber volume fraction. 

Because direct tensile tests for concrete are very difficult (Mindess et al., 2002), 

tensile properties of cementitious materials are determined via either the third-point 

flexure test defined by American Society for Testing and Materials (ASTM) C78 (2012b) 

or the splitting tensile strength test defined by ASTM C496 (2012a).  The first method, 

third-point flexure test, typically uses a 152.4 × 152.4 × 508 mm prismatic beam subject 

to four point bending.  The tensile face of the beam is loaded at 0.9 to 1.2 MPa/min until 

fracture, at which point the modulus of rupture, R , is calculated as 
2

PL
R

bd
 , where P  is 

the maximum value of the sum of forces at the two center supports, L  is the length 

between the outside supports, and b  and d  are the width and depth of the prismatic 

beam at the fracture location.  This measurement technique has two problems: (1) the 

calculation of R  assumes small strain; and (2) measurements of ductility and toughness 

confound the influence of fiber and matrix because part of the v-notch shape to cracking.  

Part of the resistance to cracking is provided from the matrix and part of the resistance to 

fracture is provided by fibers after the matrix has already cracked.  Thus, this method is 

ill-suited to inform material design. 
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The second method, splitting tensile strength test, specifies that a specimen, in the 

shape of a right cylinder, should be compressed between two platens across the 

specimen's diameter at a constant rate between 0.7 to 1.4 MPa/min (2012a).  All other 

surfaces of the specimen must remain traction-free during the test.  Although the platens 

do create local regions of triaxial states of stress, specimens predominantly fail in tension.  

Thus, the splitting tensile strength, spf , provides a measure for the quasi-static tensile 

strength of the material. The problem with this method is that it may over-estimate the 

role of fibers due to the compressive stress increasing the normal tractions, and thus 

frictional forces, between the fiber and the matrix. 

The influence of 
fiber

V  and fiber geometry on NSC and UHPC tensile behavior are 

inferred from results of the splitting tensile strength, 
sp

f , of the composite to that of the 

corresponding cementitious material without fiber reinforcement.  As shown in Figure 2, 

the ratio of splitting tensile strength depends on the topology of the fiber as well as the 

normalized fiber volume fraction, defined as /
fiber fiber fiber

V L  , where 
fiber

L  is the length of 

the fiber and 
fiber

  is the diameter of the fiber.  The data in Figure 2 summarize 

experimental results published in peer reviewed journals between 1992 and 2010 (El-

Dieb, 2009; Gao, Sun, & Morino, 1997; Köksal et al., 2008; Lim & Oh, 1999; Song & 

Hwang, 2004; Wafa & Ashour, 1992; Yao, Li, & Wu, 2003; Zhang, Yan, & Jia, 2010). 
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Figure 2. Effect of normalized fiber volume fraction and fiber topology on the splitting 

tensile strength of NSC and UHPC. 

2.3 Loading conditions 

2.3.1 Blast loading 

Since the introduction of UHPCs (Bache, 1981), results have been published from 

five experimental programs that subjected a total of 16 UHPC panels to blast loads at 

scaled distances ranging from 0.37 to 2.18 m/kg
1/3

 (Rebentrost & Wight, 2009).  Of the 

16 panels, 13 panels were reinforced with steel rebar, and 3 panels were not reinforced.  

One of the three non-reinforced panels was 2- by 1- by 0.1-m in dimension and survived 

a reflected impulse of 1.62 MPa-ms (Wu et al., 2009).  The maximum and permanent 

centerline deflections were 13.2 and 4.1 mm, respectively.  The two remaining non-

reinforced UHPC panels were 3.5- by 1.3- by 0.1-m in dimension with one panel 

containing 2% volume fraction of fibers and the other panel containing 4% volume 



 20 

fraction of fibers (Schleyer et al., 2010a).  After subjected to a reflected impulse of 0.83 

MPa-ms.  the panels containing 2% and 4% fiber volume fractions permanently deflected 

180 and 90 mm, respectively, at their mid-heights.  Without testing until failure, the 

limited experimental data provide only a lower limit to the critical load level; the upper 

bound remains to be established. 

Additional experiments have been performed on NSCs demonstrating the 

influence of fiber-reinforcement (Lan, Lok, & Heng, 2005; Zhou et al., 2008) and 

unconfined compressive strength (Leppänen, 2005; Nyström & Gylltoft, 2009; 

Rebentrost & Wight, 2008; Schenker et al., 2008; Wu et al., 2009; Zhou et al., 2008) on 

the response of blast loaded panels. 

Numerical simulations of the blast panels have been performed via modified 

degree-of-freedom simulations using custom in-house codes (Schleyer et al., 2010b; Wu 

et al., 2009) and hydrocode simulations (Leppänen, 2005; Nyström & Gylltoft, 2009; 

Schenker et al., 2008; Zhou et al., 2008) using the Riedel-Hiermaier-Thoma (RHT) 

constitutive model (Riedel et al., 1999).  The responses of UHPC panels have been 

simulated via two different computational approaches.  Wu et al. (Wu et al., 2009) used a 

layered single-degree-of-freedom model to predict the critical energy absorption capacity 

of UHPC panels with and without steel rebar reinforcement.  This approach relies upon 

an a priori assumption of the elastic-plastic response of the panel (Biggs, 1964), which 

defines the “shape function.”  Hence, this approach is limited to elastic-plastic responses 

and cannot model fracture.  In contrast to the single-degree-of-freedom approach, Zhou et 

al. (Zhou et al., 2008) used a coupled damage-plasticity Riedel-Hiermaier-Thoma (RHT) 

constitutive model (Riedel, Wicklein, & Thoma, 2008) that is pressure-sensitive and 
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strain-rate dependent to determine the response of rebar-reinforced UHPC panels.  Spall, 

defined as the ejection of mass on the surface opposite from that of the blast load 

impingement, was modeled by deleting elements with damage values exceeding 0.22 (on 

a scale from 0 to 1) during the first 0.5 ms after loading, for strain rates greater than 10 s
-

1
.  Although it accounts for spall, this approach underestimated the experimentally 

observed deflection by approximately 40%.  Furthermore, this approach is not sensitive 

to changes in microstructure as expressed by volume fraction of fibers, aggregate, or 

porosity (Riedel, Kawai, & Kondo, 2009; Riedel et al., 2008).  Note that neither the 

layered single-degree-of-freedom model or the damage-plasticity model included 

information from length scales smaller than the UHPC or steel rebar reinforcement 

levels; thus, neither approach is suitable for supporting materials design, i.e., tailoring the 

microstructure to achieve targeted responses or properties.  Details of the five sets of 

experiments are given in Table 1. 
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Table 1.  UHPC blast loading experiments and numerical analysis. 

Time and 

Location 

Panel 

Dimensions 

L × W × t  (m) 

Number of 

Experiments 

fc (MPa) Rebar Scaled 

Distance 
(m/kg

1/3
) 

Ref. 

May 2004 

Woomera,  

Australia 

2 × 1 × 0.050 

2 × 1 × 0.075 

2 × 1 × 0.1 

7 160 yes 1.31 

1.75 

2.18 

Rebentrost 

and Wight 

(2008, 2009) 

2005 

Not 

published 

1.3 × 1 × 0.1 2 170 yes 0.12 

0.14 

Rebentrost 

and Wight 

(2009); 

Zhou et al. 

(2008) 

2006 

Woomera,  

Australia 

2 × 1 × 0.1 

(with blast 

resistance 

window) 

1 not 

available 

not 

available 

1.86 Rebentrost 

and Wight 

(2009) 

2008 

University 

of 

Adelaide, 

Australia 

2 × 1 × 0.1 1 152 no 0.50 Rebentrost 

and Wight 

(2009); 

Wu et al. 

(2009) 

2 × 1 × 0.1 1 152 yes 0.37 

2008 

Cumbria,  

England 

3.5 × 1.3 × 0.1 4 not 

published 

yes 

and 

no 

1.51 

1.93 

2.59 

Rebentrost 

and Wight 

(2009); 

Schleyer et 

al. (2010b) 

 

2.3.2 Impact loading 

Impact loading is a dynamic loading process characterized by elastic deformation, 

inelastic deformation (e.g., compaction), fracture, and fragmentation (Clayton, 2008).  

Physical characteristics of interest may include the ballistic limit, penetration depth, 

perforation thickness, and scabbing thickness (Li & Tong, 2003). 

The response of UHPCs to impact is characterized by either of two experiments: 

split Hopkinson pressure bar (SHPB) (Davies, 1948; Gebbeken, Greulich, & Pietzsch, 

2006; Grote, Park, & Zhou, 2001; Hopkinson, 1914; Kolsky, 1949) or gas gun flyer plate 

experiments (Gebbeken et al., 2006; Grote et al., 2001).  SHPB loads the test specimen in 

a state of plane strain due to the propagation of a one-dimensional compressive wave at 
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strain rates between 250 and 1,700 s
-1

 (Grote et al., 2001).  In comparison, gas gun 

experiments allow compressive loading at strain rates on the order of 10
4
 s

-1
 (Gebbeken et 

al., 2006; Grote et al., 2001).  Both sets of experiments reveal that the compressive flow 

stress of cementitious materials increases with increasing compressive strain rate (e.g., 

(Grote et al., 2001; Malvar & Ross, 1998; Malvern et al., 1985)).  These results are 

codified by CEB-FIB Model Code 90 (CEB-FIP, 1998) which suggest a significant non-

linear increase in compressive strength for strain rates greater than 30 s
-1

.  Similar to 

compressive strain-rate effects, cementitious specimens loaded in tension also have 

exhibit significant non-linear increases to tensile strength for strain rates greater than 30 

s
-1

 (CEB-FIP, 1998).  In this manner, SHPB and gas gun experiments are used to 

characterize the material properties of UHPCs during impact loading. 

Beyond UHPC material properties, it is often desired to understand how 

projectiles and targets interact.  For a given target material, target geometry, projectile 

material, and projectile geometry, the target’s response can be mapped to a “phase 

diagram” for a range of impact speeds and obliquity angles, defined as the angle between 

the projectile’s velocity vector and the normal vector of the target (Backman & 

Goldsmith, 1978).  For an obliquity angle of 0º, the phase diagram of a 6.35-mm-thick 

aluminum alloy panel impacted by a 6.35-mm-diameter ogival-noded projectile depends 

on the projectile’s speed and may be divided into three regions (Backman & Goldsmith, 

1978): (1) embeds intact in which the projectile embeds into the panel, and the panel 

remains intact; (2) perforates intact in which the projectile perforates the panel, and the 

panel remains intact; and (3) perforates shattered in which the projectile perforates the 

panel, and the panel shatters.  Here, shatter is defined as multiple fractures such that the 
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panel separates into more than 1 piece.  The ballistic limit is defined as the projectile 

velocity at which the projectile just perforates the target with a residual speed of 0 m/s; 

thus, the ballistic limit is the impact speed that separates the embeds intact and the 

perforates intact regions. 

For cementitious targets, it is common to perform physical experiments at a 0º 

obliquity angle.  The physical experiments can be classified as either penetration or 

perforation experiments.  The primary difference between the two tests are that the 

penetration experiments have very large thickness such that projectile does not perforate 

the target, whereas perforation experiments have thinner targets and the projectile may or 

may not perforate the target.  Four common responses are: (1) the penetration depth, 

defined as the depth the projectile penetrates during a penetration experiments; (2) 

scabbing limit, defined as the minimum target thickness required to prevent scabbing, or 

the ejection of mass from the distal face; (3) perforation limit, defined as the minimum 

target thickness to prevent perforation of the target by the projectile; and (4) ballistic 

limit, defined as the projectile’s minimum impact velocity such that the projectile 

perforates the target of a given thickness. 

Projectiles in penetration and perforation experiments are quantified by their 

length, diameter, mass, and nose shape.  The typical nose shapes are blunt, spherical, 

conical, and ogival.  Ogival-nosed projectiles are characterized by Caliber-Radius-Head 

(CRH)  , defined as 2s a  , where s  is the radius of ogival nose and a  is the radius 

of the projectile (Forrestal & Luk, 1992).  The type of projectile nose influences not only 

the penetration depth, but also the failure pattern of the cementitious target during 



 25 

deformation (Li et al., 2005).  For example, ogival-nosed projectiles are likely to 

penetrate, tunnel, and cause scabbing of the target. 

Impact problems have been solved by empirical, numerical, and analytical 

techniques (Backman & Goldsmith, 1978).  Empirical techniques predict the impact 

response by interpolating experimental data.  Experimental data is restricted to: (1) ratios 

of target thickness to projectile diameter less than 3; (2) projectile diameters less than 400 

mm; (3) projectile densities between 5.5 and 22.1 g/cm
3
; (4) impact velocities between 

150 and 914 m/s; (5) ratios of perforation thicknesses to projectile’s diameter between 3 

and 18; and (6) ratios of scabbing thickness to the projectile’s diameter between 3 and 18 

(Kennedy, 1976).  The interpolation of experimental results has led to no fewer than 19 

different empirical relations, as documented by Li et al. (2005).  Because of the limited 

range of applicability and need for physical experiments, empirical techniques have in 

large part been replaced by numerical and analytical techniques.  

Numerical simulations modeling impact of UHPC and NSC materials have been 

done by multiple researchers; the unique approaches are mentioned here.   Park et al. 

(2001) modeled the planar impact of a two-phase microstructure with a pressure-

dependent Drucker-Prager yield condition (Drucker & Prager, 1952) and explicit 

modeling of interfaces between the two phases.  Clayton (2008) introduced a self-

consistent theory, with a multiplicatively decomposed deformation gradient, that 

emphasizes adherence to the 2
nd

 law of thermodynamics.  Nöldgen et al. (2012) and 

Riedel et al. (2010) simulated an aircraft engine impacting steel rebar reinforced UHPC 

panels using the RHT constitutive model (Riedel et al., 1999). 
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Analytical techniques for solving the penetration problem are based on the 

Spherical Cavity Expansion (SCE) model first published by Bishop, Hill, and Mott 

(1945), who estimated the force needed to push a rigid conical punch into an 

incompressible, ductile material at quasi-static rates.  Later, Goodier (1964) extended 

SCE to include the dynamic penetration of incompressible, ductile, semi-infinite targets 

by rigid spherical penetrators.  The material model for the target was extended by 

incorporating compressible materials (Hanagud & Ross, 1971) and granular materials 

such as soil (Forrestal & Luk, 1992) and concrete (Forrestal & Tzou, 1997).  The 

concrete material model includes a cracked region of material as well as the compressible 

region of material considered previously.  Enhancement to the projectile included 

alterations for conical, blunt, ogival, and arbitrary nose shapes (Bernard & Hanagud, 

1975; Chen & Li, 2002; Forrestal & Luk, 1992).   The benefit of analytical techniques is 

that they are based on ordinary differential equations, which are significantly easier to 

solve than the partial differential equations of finite element analysis. 

Analytical techniques for solving the perforation problem have been adapted from 

the penetration problem.  Yankelevsky (1997) proposed a two-stage model for 

perforation of concrete, in which the first-stage was modeled by a Cylindrical Cavity 

Expansion (CCE) model and the second-stage was modeled as a scabbing problem.  The 

transition between the first and second stage occurs when the summed forces resisting the 

projectile from penetrating into the target equals the force required to scab material off of 

the distal face of the target.  Empirical measurements have determined that both NSCs 

and UHPCs scab at a geometric angle of approximately 70º.  Li and Tong (2003) 

extended the two-stage model to a semi-analytical technique. 
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2.4 Constitutive models for cementitious materials 

During compressive loading, cementitious materials exhibit non-linear behavior at 

stress levels less than the ultimate compressive strength.  Furthermore, the compressive 

and tensile yield strengths are asymmetric and depend upon the hydrostatic pressure and 

strain-rate.  After reaching ultimate strength, cementitious materials exhibit precipitous 

strain-softening in tension and a more gradual strain-softening in compression. 

Drucker and Prager (1952) introduced a pressure-dependent yield criteria.  Soon 

after, Kachanov (1958) introduced Continuum Damage Mechanics (CDM), which 

reduced stiffness through a monotonically increasing isotropic damage internal state 

variable (ISV).  Holmquist, Johnson, and Cook (1993) combined aspects of both models 

to create a phenomenological pressure and strain-rate sensitive damaged-plasticity model 

for brittle materials.  Lubliner et al. (1989) introduced a damaged-plasticity model based 

on compression and tension plastic strain ISV and an isotropic damage ISV, which was 

later modified by Lee and Fenves (1998) to contain two damage ISVs, one for tension 

and one for compression.   

As noted by Jirásek (1998), strain-softening constitutive models within the finite 

element method lose ellipticity, resulting in mesh dependency.  Three computational 

methods have been used to allow strain-localization during strain-softening without 

creating mesh dependency, namely integral non-local constitutive models (Jirásek & 

Rolshoven, 2003), gradient-enhanced continua (e.g., second-gradient (Abu Al-Rub & 

Voyiadjis, 2009)), and use of traction-separation elements (Hillerborg, Modéer, & 

Petersson, 1976). 
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2.5 Linking of length scales 

To model physical phenomenon, multiscale models incorporate individual models 

at different length and time scales.  These individual models have been connected, or 

linked, by nine different approaches in the literature, as documented by McDowell 

(2010).  To link a continuum model at a finer length scale to a continuum model at a 

coarser length scale, two common approaches are the concurrent and hierarchical 

approaches to multiscale modeling.  Concurrent multiscale models simultaneously solve 

the balance and constitutive laws framed at different length scales, relying on shared 

boundaries to pass information from one length scale to another (Ghosh, Lee, & 

Raghavan, 2001; Kouznetsova et al., 2002).  A significant drawback of concurrent 

multiscale modeling is the increased computational resources required.  On the other 

hand, hierarchical multiscale models simulate the response at different length scales 

independently of each other, allow more rapid and parallelizable computations (Carrere et 

al., 2004; McVeigh et al., 2006).  The challenge for hierarchical modeling is the linking 

of the length scales. 

Luscher, McDowell, and Bronkhorst (2010) recently proposed an approach to 

linking different length scales within a hierarchical multiscale model, namely the 

invariance of mass, momentum, dissipated energy, and stored energy between length 

scales.  Kinematic consistency is maintained between length scales with second-gradient 

continua at the fine and coarse length scales.  A numerical example involving a two-

phase microstructure without interfaces indicates the utility of this approach (Luscher, 

2010). 
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For cementitious material systems, there have been several documented 

multiscale models concerning the determination of material properties.  For example, 

Garboczi and Bentz (1998) utilize a two-scale model at micrometer and millimeter length 

scales to calculate the effective diffusivity of a concrete system with account of the 

evolution of hydration products.  Bernard, Ulm, and Lemarchand (2003) proposed a four-

scale model with length scales ranging from to estimate the early-age time-dependent 

properties of elastic modulus, solid percolation threshold, and Poisson's ratio of hydrated 

cement as a function of the volume fractions of the different phases. 

There are fewer examples in the literature of multiscale models that consider 

initial-boundary-value problems.  Maekawa, Ishida, Kishi (2003) simulated the life-span 

of rebar-reinforced concrete structures via a concurrent two-scale model.  The fine length 

scale is constructed using the work of Maekawa, Chaube, and Kishi (1999), who 

considered thermal conservation as well as conservation of mass and transport of water 

(H2O), chloride ions (Cl-), oxygen (O2), calcium ion (Ca2+), carbon dioxide (CO2), and 

chrome (Cr) to estimate local material properties.  The local material properties, i.e., 

strength, stiffness, temperature, water content, and pore pressure, are then used within a 

hand-shaking scheme to transition to the coarse length scale.  The coarse length scale 

consists of a 3D finite element model utilizing Galerkin’s method of weighted residual 

functions to determine fracture due to local material properties and globally applied 

boundary conditions (Maekawa, Okamura, & Pimanmas, 2003).  The influence of 

fracture on the transport of mass, e.g., water and chloride ions, is considered by passing 

the degree of damage from the coarse length back to the fine length scale.   



 30 

Kabele (2007) presented a hierarchical multiscale framework for modeling the 

fracture of high performance fiber reinforced cementitious composite beams in shear 

loading.  The four length scales – structural, distributed multiple cracks, individual 

cracks, and phenomenological microscale of individual fibers – are linked through spatial 

averaging of a representative volume element (RVE) based on overall stress and overall 

deformation of the RVE.   

2.6 Inverse materials design 

Historically, a trial-and-error materials development process required upward of 

20 years to determine the right combination of processing steps leading to the 

microstructures and properties that satisfied the desired performance level.  This problem 

motivated Olson (1997) to clarify the simultaneous deductive mappings and inductive 

decision path necessary for material design.  The deductive mappings are a set of bottom-

up cause-and-effect relations; the inductive decision path searches for properties, 

microstructures, and processes that satisfy the one or more desired performance 

requirements. 

Adopting the nomenclature of Chen et al. (1996), variables in design problems 

can be classified as either design, noise, or response.  Design variables, also referred to as 

input or control variables, are variables which a designer may control either the central 

tendency, the distribution, or the central tendency and the dispersion of the values.  Noise 

variables are variables affecting the response of a system, but are beyond a designer’s 

control (McDowell et al., 2009b).  The input and noise variables are inputs to a system 
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model, which generates responses in terms of response variables.  Together, the input, 

noise, and output variables and the system model define a system. 

The inverse design problem is to determine preferred sets of inputs which 

combine to produce the desired responses.  The solutions may be either optimal or robust.  

Optimal solutions seek to determine values of input variables which produce a maximal 

or minimal value of one or more response variables.  Robust solutions, introduced by 

Taguchi (1986), seek to determine values of input variables such that the response 

variables are insensitive to variation, or uncertainty.  Here, three types of robust solutions 

are classified.  Type I robust solutions (Taguchi, 1986) seek to determine values of input 

variables which produce responses that are insensitive to uncertainty of noise variables.  

Type II robust solutions, proposed by Chen et al. (1996), laid the foundation for 

propagated uncertainty analysis by seeking the desired performance level while 

minimizing variation due to control factors.  Type III robust solutions (Choi et al., 2005a) 

minimize variation in the performance due to the uncertainty inherent to the model. 

Choi et al. (2008) classified robust design approaches as either “all-in-one” or 

“multilevel” approaches.  In all-in-one robust approaches (Du & Chen, 2002), the system 

boundary is relatively large and may encompass multiple internal variables, yet the 

designer only deals with input and output variables.  Any intermediate variables, defined 

as variables that serve as the output variable of a lower level and an input variable to a 

higher level, are within the system.  As noted by Choi et al. (2008), the all-in-one robust 

approach requires models within a multiple model chain to be computationally or 

mathematically interfaced, thus constructing a single system.  Because all levels are 

interfaced into a single model, traditional sampling strategies such as Monte Carlo 



 32 

sampling (e.g., Choi, Grandhi, & Canfield, 2007) and Latin HyperCube sampling (e.g., 

Helton & Davis, 2003) may be used to determine the variation in the response of the 

system.  Because multiple model chains must be interfaced, the all-in-one approach is 

disadvantageous for models existing on heterogeneous computational platforms, 

problems which require intermediate decisions, and complex systems (Choi et al., 2008).  

The advantage of all-in-one approaches is that propagated error between levels is handled 

within the all-in-one model. 

Multilevel approaches split the system into multiple levels, thus creating a chain 

of systems.  The systems within a multilevel approach are connected through 

intermediate variables, which function as response variables at lower levels of hierarchy 

and input variables at higher levels of hierarchy.  The multilevel approaches in the 

literature can be divided into approaches that do and do not consider uncertainty.  

Approaches not considering uncertainty, pioneered by Schmit and Mehrinfar (1982) and 

Sobieszczanski-Sobieski et al. (1987), rely upon higher-level optimizations calling 

multiple lower-level optimizations.  Multilevel approaches considering uncertainty have 

been introduced for the worst case propagated uncertainty (Gu et al., 2000), generic 

probabilistic approaches (Du & Chen, 2002), probabilisitc analytical target cascading 

(Liu et al., 2005), and the Inductive Design Exploration Method (IDEM) (Choi et al., 

2008).  

Robust inverse algorithms can also be classified by the number of response 

variables, either univariate or multivariate (Murphy, Tsui, & Allen, 2005).  Robust 

inverse algorithms for univariate systems, or systems with one response variable, have 

been determined via either loss functions with two-step methods or utility function 



 33 

approach.  The loss function with two-step methods, introduced by Taguchi (1986), 

assigns a loss function to quantify the loss associated with a value of a response variable 

deviating from a target.  The loss function can then be minimized by determining the 

maximum signal-to-noise ratio.  In contrast to the loss function approach, the utility 

function approach (Harrington, 1965) assigns an expected utility value based on values of 

input variables. 

For inverse design problems involving multivariate responses, Murphy, Tsui, and 

Allen (2005) review three approaches for determining preferred values of input variables.  

The first approach, the additive combination of univariate loss functions (e.g., Pignatiello, 

1993), searches for robust solutions to multivariate design problems by summing 

individual univariate loss functions to make a multivariate loss function which may be 

minimized.  The second approach, the multiplicative combination of univariate utility 

functions, seeks to minimize the product of the geometric average of univariate utility 

functions.  The third approach, the compromise Decision Support Problem (cDSP) (e.g., 

Mistree, Hughes, & Bras, 1993), determines the values of design variables to achieve 

conflicting goals to the best extent possible while satisfying a set of constraints. 

For computational materials design across multiple levels, McDowell et al 

(2009b) recommend the use of robust inverse design algorithms due to natural, model 

parameter, model structure, and propagated uncertainty, as described by Isukapalli, Roy, 

& Georgopoulos (1998). 
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                     CHAPTER 3: HIERARC HICA L MULTISCALE MOD EL SIMU LATING THE RESPONSE OF A  UHPC PAN EL TO BLAST LOADING 

HIERARCHICAL MULTISCALE MODEL SIMULATING THE 

RESPONSE OF A UHPC PANEL TO BLAST LOADING 

 

The hierarchical multiscale model to simulate blast loading consists of three 

length scales as shown in Figure 3.  At the smallest length scale, labeled “Level 2,” a 

three-dimensional finite element model simulates a single fiber pulled from a 

cementitious matrix.  The model accounts for material properties of the fiber, ITZ, and 

the matrix, as well as the fiber’s length, cross-sectional shape, and helical twisting along 

the fiber axis.  An example of helical twisting is shown in the “Fiber Detail” view.   The 

right half of the fiber is not modeled due to symmetry.  Details of the model and results 

generated by the model are presented in Section 3.2. 

The next length scale, labeled “Level 1,” is a Matlab
®
 model simulating the 

tensile response caused by multiple fibers at a predefined crack within a cementitious 

matrix.  Figure 3 shows fibers crossing the predefined crack plane in red; the remaining 

fibers are shaded out for clarity.  The model accounts for fiber volume fraction, fiberV , 

fiber orientation to the crack plane, and each fiber’s pullout response calculated from the 

single fiber length scale.  Results from this model include the quasi-static maximum 

tensile strength and the dissipated energy density.  Details of the model and results 

generated by the model are presented in Section 3.3. 

The coarsest length scale, labeled “Level 0,” is a three-dimensional finite element 

model simulating the response of a UHPC panel subject to blast loading.  The model 
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accounts for dynamic loading conditions, dynamic material properties, and a distribution 

of the material’s dynamic properties, as shown by the spectrum of red from light pink to 

dark red indicating lower and higher values of interfacial tensile strengths. The gray bars 

at the top and bottom of the panel are steel restraints used as boundary conditions.  

Details of the model and results generated by the model are presented in Section 3.4. 
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Figure 3. Hierarchical multiscale models for UHPC subjected to blast loading. 

3.1 Constitutive Framework 

The model considers finite deformation.  A material point initially at a fixed reference 

coordinate x  moves to a deformed coordinate 
*x .  The mapping between 

*x  and x  is 
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specified by the displacement vector 
*u x x  .  The deformation gradient is defined by 

*x
F

x





.  For elastic-plastic materials, the deformation gradient is multiplicatively 

decomposed via 
e nF F F  , where 

eF  and 
nF  are the elastic and inelastic deformation 

gradients, and   represents the inner product (i.e., ij jkA B A B  ).  The deviatoric stress S  

is defined by S pI  , where , p , and I  are the Cauchy stress tensor, the 

hydrostatic pressure, and the second rank identity tensor, respectively.  The pressure is 

given by 1
3

:p I  , where :  is the scalar product (i.e., : ij ijA B A B ).  All tensors are 

indicated with tildes underneath the tensor (e.g., ,u F ).  In general, first rank tensors are 

indicated with lower case letters; second and higher rank tensors are indicated with upper 

case letters. 

3.1.1 Constitutive Relations - Matrix 

The matrix is represented by a pressure sensitive and strain-rate insensitive 

extended Drucker-Prager constitutive relation included in Abaqus/Explicit v6.10 (2010).  

The extended Drucker-Prager constitutive relation assumes the yield condition  

  tan 0F t p d    , (1) 

where  

 

3
1 1 1

1 1
2

r
t q

K K q

   
       

    

. (2) 

Here,   is the internal friction angle in the meridional stress plane, and d  is the 

cohesion of the material under pure shear.  In Eq. (2), q  is the Mises equivalent stress 
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defined by  3
2

:q S S , K  is the ratio between the yield stress in triaxial tension and 

the yield stress in triaxial compression and must be in the range 0.778 1.0K  , and r  is 

the third invariant of the deviatoric stress defined by  
1
39

2
:r S S S  .  Setting K  = 1 

allows the original Drucker-Prager (1952) yield condition to be recovered due to the lack 

of dependence on the third invariant of deviatoric stress.  The von Mises yield condition 

is recovered when 1K   and 0  .   

When the yield condition is satisfied (i.e., F 0), a non-associative material 

yields according to the flow rule 

 

p
p G

D
c









, (3) 

where pD  is the plastic part of the rate of deformation tensor, p  is the equivalent 

plastic strain rate defined by 2
3

:p p pD D  , c  is a constant defined by 

1
1 tan( )

3
c   , G  is the flow potential  

 

  tanG t p   , (4) 

and   is the dilation angle.  

A cementitious matrix is considered with a mass density, m , of 2.4 g/cm
3
 and an 

unconfined compressive strengths, mf , of 44 MPa.  The elastic stiffness of the 

cementitious matrix, mE , is calculated using the empirical relation  

 

 

1/3

42.15 10
10

m
m

f
E

 
   

 
 (5) 
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where mf  is specified in MPa.  Equation (5) is from CEP-FIP Model 1990 (1998), which 

is valid for normal weight concrete containing quartz aggregate and 28-day unconfined 

compressive strengths less than 80 MPa (Mehta & Monteiro, 2005).  For 44 MPamf  , 

the calculated elastic stiffness values is 35.2 GPa.  Possible softening of the matrix during 

large deformations is not considered. 

The ratio of the yield stress in triaxial tension to the yield stress in triaxial 

compression and the internal friction angle are assumed to be 0.8mK   and 28m   , as 

determined by Park, Xia, and Zhou (2001).  The dilation angle is used as a calibration 

coefficient to fit the model to experimental data presented in Sujivorakul (2002).  The 

choice of possible dilation angles is guided by Vermeer and de Borst (1984), who showed 

that the    in all cases and observed that the dilation angles of concrete are between 

0 and 20.  From the calibration, the dilation angle of the cementitious matrix is set to a 

constant value of 2.  Table 2 summarizes the material parameters used for the two 

different cementitious matrices considered. 

 

Table 2.  Material parameters used for cementitious matrix. 

mf  m  mE
 mK  

m  m
 

MPa g/cm
3
 GPa    

44 2.4 35.2 0.8 28 2 
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3.1.2 Constitutive Relations - Interfacial Transition Zone (ITZ) 

The constitutive relations for the ITZ follow those of the cementitious matrix 

except that elastic stiffness of the ITZ, ITZE , is reduced based on the work of Simeonou 

and Ahmad (1995) and Cohen, Lee, and Goldman (1995).  Simeonou and Ahmad (1995) 

compared the elastic stiffness of concrete predicted by Hashin-Shtrikman limits (Hashin 

& Shtrikman, 1963) for a two-phase composite of aggregate and cementitious matrix to 

the experimentally measured elastic stiffness’s published by five different researchers.  

The concretes were NSCs sans silica fume made with /w cm  ratios between 0.3 and 0.6.  

Results indicate that the measured elastic stiffness of concrete, cE , falls within the 

Hashin-Shtrikman limits for /w cm  ratios less than 0.41.  However, for /w cm  greater 

than or equal to 0.41, the measured cE  is less than the Hashin-Shtrikman lower limit.  

Thus, a third more compliant phase is present in the microstructure.  Using a three-phase 

Hashin-Shtrikman model (Hashin, 1992), Simeonou and Ahmad (1995) calculated that 

the elastic stiffness of ITZ is 25% to 50% that of the elastic stiffness of the matrix for an 

assumed 20 µm thickness.  The three-phase Hashin-Shtrikman model assumes spherical 

aggregate with a uniform ITZ thickness. 

Cohen, Lee, and Goldman (1995) measured the dynamic moduli of elasticity of 

four mixtures: Portland Cement mortar, Portland Cement paste, a blended mortar with 

10% of the Portland Cement replaced with silica fume, and a blended paste with 10% of 

the Portland Cement replaced with silica fume.  All four mixtures had a /w c  ratio of 
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0.52.  The elastic modulus of ITZ, ITZE , was calculated using the logarithmic rule of 

mixtures, i.e., 

      
sand paste ITZ

V V V

mortar sand paste ITZE E E E , (6) 

where E  is the measured dynamic moduli of the four constituents –mortar, sand, paste, 

and ITZ – and V  is the volume fraction of the constituent.  The ratios of ITZ pasteE E  are 

shown in Table 3. 

Table 3.  Calculated ITZ pasteE E  ratios as a function of assumed 

ITZ thickness using logarithmic rule of mixtures (Cohen et al., 1995). 

Material tITZ 

(µm) 

EITZ / Epaste  

 

100% PC 

50 0.75 

30 0.59 

10 0.15 

10% SF + 90% PC 

50 0.88 

30 0.80 

10 0.48 

 

In the model at the single fiber length scale, it is assumed that ITZt  = 50 µm and 

that  ITZ pasteE E  = 0.80.  The assumed value of ITZt  is driven by modeling convenience, 

resulting in larger values for the minimum characteristic element size.  

The dilation angle in the ITZ, ITZ , is used as a calibration constant and assumed 

to have a more restrictive upper bound than the bounds defined in Section 3.1.1, namely 

ITZ m  .  Calibration of the model indicates that 1ITZ  . 
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3.1.3 Constitutive Relations - Fiber 

The fiber is assumed to be an elastic-plastic pressure- and rate-independent 

material.  Yielding of the fiber is assumed to follow the Von Mises yield criterion, i.e., 

    3
( , , ) : 0

2

o dev dev oF S S          , (7) 

where S  is the previously defined deviatoric stress tensor,   is the back stress tensor, 

dev  is the deviatoric part of the back stress tensor defined as 1
3

:dev I    , and o  

is the yield stress.  The yield surface evolves through the evolution of the back stress 

tensor, i.e.,  

   pl pl

o

C
    


   , (8) 

where C  and   are material parameters and pl  is the equivalent plastic strain rate 

defined as 2
3

:pl pl pl   .  Because the inelastic flow is assumed to be associative, 

the evolution equation for plastic strain is given by 

 
pl F

 






, (9) 

where   is the plastic multiplier obtained from the consistency condition 0dF  .  

Damage initiation and damage evolution are not considered. 

The fiber density, f , elastic stiffness, fE , and Poisson ratio, f , are assumed to 

be 7.85 g/cm
3
, 190 GPa, and 0.33.  The remaining material parameters were determined 

from monotonic uniaxial tensile data of a non-twisted triangular fiber reported in 

Sujivorakul (2002).  The triangular fiber was manufactured by shaping music wire, 

initially with a round cross section and confirming to ASTM A228 (2007).  The 
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triangular shape is approximately the shape of an isosceles triangle with an equivalent 

diameter, e , of 0.5 mm.  Here, the equivalent diameter is defined as e fiberA  , 

where fiberA  is the cross-sectional area of the triangular fiber. 

Figure 4 compares the engineering stress as a function of engineering strain for 

experimental data and numerical simulations of a uniaxial monotonically loaded 

triangular shaped fiber which was not twisted prior to testing.  In Figure 4, the black line 

represents the experimentally observed behavior presented by Sujivorakul (2002), the red 

dashed line represents the engineering stress-engineering strain behavior of numerical 

simulations.  The calibration constants used were 260C   GPa, 1.15o   GPa, and 

195  .   
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Figure 4.   Comparison of experimental (solid black) and simulation (dashed red) stress-

strain data for monotonically loaded tensile specimens. The fibers have a 

cross section in the shape of an isosceles triangle with 0.5e   mm.  The 

gage length for the experimental data is unknown; the gage length for the 

numerical simulation is 25.4 mm. 

3.1.4 Constitutive Relations - Interfacial Friction 

A rate-independent, isotropic Coulomb friction law is employed.  In this model, 

relative motion between two surfaces is allowed when the equivalent shear stress  

 
2 2

1 2eq     (10) 

reaches or exceeds the critical stress 

 crit contactp  , (11) 

where 1  and 2  are mutually orthogonal shear stresses at the interface,   is the 

coefficient of friction, and contactp  is the normal contact pressure between the two 

surfaces.  Because the model is assumed to be isotropic, the magnitudes of the shearing 

rates 
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2 2 1
1 1 2

2 2 2
2 1 2

and
eq

eq


  




  



 

 

 (12) 

are proportional to the shear stresses 1  and 2 . 

The coefficient of Coulomb friction is determined from the experiments of Baltay 

and Gjelsvik (1990), who found that the coefficient of friction between steel and concrete 

depends on the surface finish of the steel.  For machined surfaces, the mean coefficient of 

friction is measured over the range of normal pressures from 13.8 kPa to 55 MPa.  

Although Baltay and Gjelsvik (1990) assigned a mean value of 0.47, the data for 

machined steel surfaces indicate a parabolic response with the maximum value of   = 

0.58 for a normal stress of 3.4 MPa and a minimum value of  = 0.35 for contactp   3.4 

MPa and contactp   55 MPa.  For steel surfaces with mill scale, Baltay and Gjelsvik 

(Baltay & Gjelsvik, 1990) reported that the coefficient of friction is 0.2 for contactp  = 10 

kPa and increases to 0.53 for contactp = 34.5 MPa.  In this work, a pressure-independent 

coefficient is assumed to be 0.45 at steel-ITZ interfaces. 

For cementitious materials in contact with other cementitious materials, the 

American Concrete Institute ACI 381 (2008a) recommends higher pressure-independent 

coefficients of friction, namely 1.0 for normal-weight concrete placed against another 

hardened concrete with an intentionally roughened surface, and 1.4 for cementitious 

surfaces formed within a monolithically placed structure.  In this work, a pressure-

independent coefficient is assumed to be 1.05 at interfaces formed as a result of fracture 

within cementitious materials. 



 45 

 

3.2 Model at the single fiber length scale 

The model at the single fiber length scale is implemented in three dimensions 

with a single fiber embedded in a 50-µm-thick ITZ, which is then embedded within a 

cementitious matrix.  Figure 5 shows a sample instantiation of the reference configuration 

of the model with the matrix shaded in gray, ITZ shaded in red, and fiber shaded in green.  

In Figure 5, the triangular fiber has a 0.5-mm equivalent diameter, a 6.35-mm pitch, and a 

total length of 15.5 mm, of which 12.5 mm has been embedded into the matrix.  The 

remaining 3 mm is classified as the free length, freeL , of the fiber.  The numbers 1-6 in 

yellow rectangles define faces of the model for future reference.  Relative displacements 

between the nodes on the external surface of the fiber and the nodes on the internal 

surface of the ITZ are permitted; however, relative displacements between the nodes on 

the external surface of the ITZ and the nodes on the internal surface of the matrix are not 

permitted. 
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Figure 5. Illustration of the model at the internal view showing the matrix (gray), ITZ 

(red), and fiber (green).  The 0.5e   mm triangular cross-section fiber has a 

pitch of 6.35 mm and total length of 15.5 mm, of which 12.5 mm was 

embedded into the cementitious matrix. 

All fibers are assumed to have cross sections in the shape of isosceles triangles 

which are not warp as a result of the manufacturing process, equivalent diameters of 0.5 

mm, and isotropic material properties.  Furthermore, it is assumed that the fiber-ITZ and 

ITZ-matrix interfaces experience perfect geometrical contact (i.e., no voids or non-

uniformity in bonding) in the reference configuration.  Chemical adhesion between the 

fiber and the ITZ is not considered. 

3.2.1  Boundary and Loading Conditions 

The boundary conditions are applied in two steps. In the first step, face 1 of the 

fiber is fixed in the x3 direction while the matrix and ITZ domains undergo an isotropic 
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volumetric reduction of 840 µm/m through a linear shrinkage of -280 µm/m in each of 

the three directions.  Rigid body translation is prevented by fixing the center point of the 

fiber's positive x3 face in the x1 and x2 directions.  The choice of -280 μm/m linear 

shrinkage is based on the recommendation of CEB-FIB Model Code 1990 (1998) for the 

shrinkage of a cementitious composite after two days of curing in a normal hardening 

cement.  The linear shrinkage is applied via a smooth step function prebuilt in Abaqus 

such that the linear shrinkage is 0 µm/m at 0 ms, -280 µm/m at 0.008 ms, and the partial 

derivative of shrinkage with respect to time is zero at 0 and 0.008 ms. 

In the second step, the fiber is pulled from the ITZ and matrix.  Matrix faces 1-5 

are traction-free; face 6 of the matrix is fixed in the x1, x2, and x3 direction.  Face 1 of the 

fiber is pulled in the x3 direction at a velocity that linearly increases via a smooth step 

function from 0 m/s at 0 ms to 10 m/s at 0.125 ms and remains constant thereafter.  As it 

is being pulled from the ITZ and matrix, the fiber is prevented from rotating about the x3 

axis. 

3.2.2  Meshing and numerical algorithm 

Meshes were generated using Abaqus’s (Dessault Systemes, 2010) native 

meshing algorithm.  The matrix was meshed by 4-node tetrahedral elements using an 

unstructured, graduated mesh with a maximum characteristic element length of 1 mm at 

matrix faces 2-5 that decreased to 110 µm at the matrix-ITZ interface.  The ITZ was 

meshed by 4-node linear tetrahedral elements, with a characteristic element length of 110 

µm.  The fiber was meshed by 8-node linear reduced integration hexahedral elements 

with a characteristic element length of 110 µm.  The meshing resulted in approximately 
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90,000 matrix elements, 14,000 ITZ elements, and 4,000 fiber elements.  It is noted that 

this numerical model is mesh sensitive: the mesh density alters the surface roughness at 

the fiber-ITZ interface, causing different levels of tractions during slip.  The different 

levels of traction then lead to varying amounts of plasticity in the matrix and the ITZ.  To 

account for mesh-sensitivity, the model is calibrated in Section 3.2.3. 

Numerical results were calculated by Abaqus/Explicit v6.10-1 running on 40 

AMD 2350QC processing cores.  For instantiations with eL  = 12.5 mm, the processing 

time varied from 48 to 300 hours depending on the severity of contact and distortion of 

the ITZ and matrix elements.   

3.2.3 Model Calibration and Validation 

The model was calibrated to experimental data reported by Sujivorakul (2002), 

who reported pullout forces as a function of end slip for twisted fibers with triangular 

cross sections pulled from cf  = 44 MPa cement mortar.  The fibers had been embedded 

12.7-mm into the cement mortar.  The two data sets chosen from Sujivorakul (2002) for 

calibration and validation had pitches of 12.7 and 38.1 mm. 

In physical experiments, the free length of each fiber was minimized, leading to 

an unknown, yet positive distance between the face of the cementitious material and the 

point that the fiber was pulled from.  This positive value of free length was not 

necessarily constant for the three fibers considered for calibration.  In contrast, the 

numerical simulations assume a fixed free length of 3.0 mm unless specified otherwise. 

The model was calibrated by adjusting the dilation angles of the matrix and the 

ITZ such that the pullout force as a function of end slip of the numerical simulation 
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matched that of the aforementioned physical experiments.  Here, pullout force is defined 

as the total traction in the positive x3 direction on the x3 face of the fiber (cf. Figure 5); 

end slip is defined as the displacement in the x3 direction of the x3 face of the fiber with 

the reference position taken from the reference configuration.  Starting with the 12.7-mm 

pitch fiber, dilation angles of 2º and 1º were chosen for the matrix and the ITZ.  

Subsequently, the model was validated by simulating a fiber-ITZ-matrix system with the 

same material parameters and a 38.1-mm fiber pitch.  Results of the simulations 

generated in this work and experimental data generated by Sujivorakul (2002) are 

compared in Figure 6.  In Figure 6, numerical data are shown as thin dashed lines shaded 

red for the 12.7-mm pitch and blue for the 38.1-mm pitch.  Data generated by physical 

experiments are shown as thick solid lines and are shaded the same color as their 

corresponding experimental data with the same pitch.  For comparison, a third pair of 

curves, shaded black, indicate data for straight, smooth fibers with 0.5-mm-diameter 

circular cross sections.  The dashed black line was generated using a numerical 

simulation similar to the model shown in Figure 5, except that the fiber was straight and 

smooth with a 0.5-mm-diameter cross section.  The mesh at the fiber-ITZ interface of the 

circular fiber had a characteristic element length of 55 μm, which is smaller than the 

characteristic element length used for the twisted triangular fibers.  It is assumed that the 

need for the finer mesh is attributable to discretization errors introduced in three-

dimensional meshing.  The thick solid black line corresponds to experimental 

measurements in Sujivorakul (2002). 
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Figure 6. Calibration curves for triangular fibers with initial pitches 12.7 (blue) and 

38.1 (green) mm.  The black pair of lines represent data for straight, smooth 

fibers with circular cross sections.  Experimental data of Sujivorakul (2002) 

are shown as solid lines, and data from numerical simulations are shown as 

dashed lines. 

Experimental and numerical results can also be compared by the maximum 

pullout force and the total work of pullout.  Here, the total work is defined as the integral 

of pullout force integrated over the end slip for end slips between zero and eL .  Figures 

7a and 7b compare the maximum pullout force and work during pullout for experimental 

data of Sujivorakul (2002) and the numerical simulations utilizing the model at the single 

fiber length scale.  In Figure 7, data points representing experiments are shown as squares 

shaded red; data points representing numerical simulations are shown as circles shaded 

green.  The two dashed lines at the bottom of each figure have a constant value, 

representing the value for a straight, smooth fiber.  For the twisted fibers considered, the 

numerical simulation under-predicts the maximum pullout for by a maximum of 13%, 

and over-predicts the total work by 16%. 
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     (a) Maximum pullout force      (b) Total work during pullout 

Figure 7. (a) Maximum pullout force and (b) total work during pullout as functions of 

fiber pitch comparing data from experiments (Sujivorakul, 2002) (shaded 

red) and numerical simulations (shaded green) for 12.5eL   mm and 44cf   

MPa.  The two dashed horizontal lines at the bottom represent the value for a 

straight smooth fiber. 

3.2.3.1 Replication of experimental phenomena 

Although the mechanisms in the numerical simulations cause slip-hardening and 

matrix tunneling, it is not assumed that the numerical model presented here provides a 

unique solution predicting these phenomena.  In lieu of an exhaustive analysis, Figure 8 

compares the pullout forces as a function of end slip computed by the model utilizing 

different constitutive relations for the matrix and ITZ.  The solid red curve indicates the 

pullout response of the elastic-plastic matrix and ITZ constitutive relations as described 

in Sections 3.1.1 and 3.1.2.  In comparison, the dashed black line shows the pullout 

response of the model assuming a purely elastic response for the matrix and ITZ.  At end 

slips less than 2 mm, the pullout responses are indistinguishable.  However, for end slips 

between 2 and 12.5 mm, the pullout force of the model using purely elastic constitutive 
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relations for the matrix and ITZ displays slip-softening.  Additionally, the elastic curve 

does not display any tunneling effects described previously. 
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Figure 8. Pullout force as a function of end slip for utilizing an elastic-plastic elastic 

ITZ-matrix (dashed black) and a elastic-plastic (solid red) ITZ-matrix system. 

Beyond reproducing the experimental pullout curves, maximum pullout force, and 

total work, the model reproduces the untwisting of fibers during pullout.  Here, 

untwisting is defined as the increase of a fiber’s pitch from the initial pitch to a finite 

pitch greater than the initial pitch.  To illustrate this phenomenon, Figure 9 shows the 

deformation and evolution of plastic strain of the outside of a 12.7-mm initial pitch fiber 

at end slip increments of 2.5 mm.  For clarity, the ITZ and 44cf   MPa matrix 

surrounding the fiber are not shown; however, the positive x3 face of the cementitious 

matrix is marked with a light gray vertical line.  At each increment of end slip, the 

portion of the fiber within the cementitious material is to the left of the light gray line, 

and is marked as the “Embedded portion of fiber.”  In Figure 9, the image of the fiber at 

the top left of the figure represents the fiber’s deformation and equivalent plastic strain 

after the matrix and ITZ have shrunk, but before the fiber has been pulled from the 
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matrix.  The image of the fiber at the bottom right represents the fiber at an end slip of 

12.5 mm.  At an end slip of 12.5 mm, the fiber has been removed from the matrix, but has 

not come to rest and may subsequently relax. 
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Figure 9. Evolution of deformation and equivalent plastic strain as a function of end 

slip for a triangular fiber with an initial 12.7-mm pitch pulled from a 44cf   

MPa matrix. 

Similar to physical experiments, numerical simulations indicate that the fiber 

untwists due to mechanical pullout from the matrix.  From Figure 9, it is observed that 

equivalent plastic strain primarily accumulates in longitudinal bands positioned at the 

center of each of the three flats.  The longitudinal bands extend from the free tip of the 

fiber to the point at which the fiber exits the matrix.  From this observation, it is 

determined that the fiber exhibits primarily an elastic behavior within the matrix and ITZ.  

On the triangular fiber shown, there are three such longitudinal bands with maximum 

equivalent plastic strain values of 0.05. 
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3.2.4 Results 

The numerical model focus was utilized to investigate dissipative mechanism 

active during fiber pullout, determine the behavior of a fiber at an in situ crack, and 

estimate the pullout response of twisted fibers from cementitious matrices with 

unconfined compressive strengths between 80 and 200 MPa.. 

3.2.4.1 Active mechanisms in the numerical model 

In this section, mechanisms of the numerical model are investigated to gain 

insight into possible mechanisms in the physical experiments.  In particular, the 

mechanisms of interest are the transfer of tractions at the fiber-ITZ interface, causes of 

the slip-hardening response and tunneling response, and the interplay of the different 

dissipation mechanisms. 

The transfer of tractions at the fiber-ITZ interface can be observed in the 

evolution of 33 , as seen in Figure 10 for a 12.7-mm pitch fiber.  For reference, Figure 

10 shows results of the same set of material properties and initial fiber geometries as the 

results shown in Figure 9.  Similar to Figure 9, the ITZ and matrix surrounding the fiber 

have been removed for clarity and replaced with the farthest right vertical gray line 

marking the positive 3x  face of the matrix. 
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Figure 10. Evolution of 33  as a function of end slip for a triangular fiber with an initial 

12.7-mm pitch pulled from a 44cf   MPa matrix. 

For end slips between 5.0 and 10.0 mm inclusive, there is of gradient of 33  

starting approximately 3 mm into the matrix and ending at the positive x3 face of the 

matrix.  In Figure 10, the location of the gradient is identified as the “Stress Transition 

Zone (STZ).”  The function of the STZ is to transfer tractions from the twisted fiber to 

the matrix.  For example, consider the distribution of 33  along the x3 axis shown in 

Figure 10 at an end slip of 5.0 mm.   At the left edge, or the beginning, of the STZ, 

33  200 MPa, whereas 33  500 MPa at the right edge, or conclusion, of the STZ.  The 

significance of the STZ is that a small domain of material controls the global response of 

the fiber.  Although similar in name, the STZ is fundamentally different than the ITZ:  

STZ is an inhomogeneous region composed of fiber, ITZ, and bulk matrix with a location 

that can only be determined only after a crack plane in the matrix has been established.  
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The ITZ is a result of processing conditions and exists regardless of a crack plane in 

cementitious materials. 

The slip-hardening and tunneling responses observed in Figure 6 are direct 

consequences of the STZ.  For example, Figure 11 shows evolution of 33  and the 

equivalent plastic strain in the ITZ and matrix as a function of end slip in a 12.7-mm-

pitch fiber-ITZ-matrix system at a 1 0 mmx   section view.     
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Figure 11. Evolution of equivalent plastic strain and 33  as a function of end slip in the 

fiber-ITZ-matrix system.  The fiber has a triangular cross section with a pitch 

of 12.7 mm and an embedded length of 12.5 mm in a 44cf   MPa matrix. 
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The equivalent plastic strains within the STZ in Figure 11 cause the numerical 

model to predict slip-hardening and tunneling via the following sequence of events.  

First, the ITZ plastically deforms via granular flow causing the matrix to dilate.  The 

dilation of the ITZ leads to plastic deformation and dilation of the matrix within an 

approximate 1.25 mm radius of the fiber.  This local dilation of the matrix is confined by 

regions of the matrix further from the fiber, ultimately causing the normal tractions at the 

fiber-ITZ interface to increase.  The increase in the fiber-ITZ normal tractions increase 

frictional resistance via the isotropic Coulomb relations, which in combination with the 

plasticity of the ITZ and matrix, cause the observed slip-hardening. 

The tunneling response is also a consequence of granular flow of the ITZ and 

matrix.  For example, the granular flow and dilation of the ITZ and matrix elements leads 

to the erosion, or displacement from the fiber bed, of a small number of elements, as 

visible in Figure 11 for end slip values greater than or equal to 5.0 mm.  After a sufficient 

number of ITZ and matrix elements erode, the fiber bed surrounding the matrix no longer 

remains in contact with the fiber, thus leading to tunneling. 

Unlike physical experiments, numerical models allow the total work to be 

partitioned into different mechanisms.  Figure 12 partitions the total work into friction, 

plastic dissipation of the combined fiber-ITZ-matrix system, and strain energy for 

systems containing 12.7- and 38.1-mm pitch fibers.  The plastic dissipation of the 

combined system is further partitioned in Figure 13, which partitions total plastic 

dissipation into the plastic dissipation due to the granular flow of the ITZ, plastic 

deformation of the fiber, and granular flow of the matrix material. 

 



 59 

0.0

0.5

1.0

1.5

2.0

0.0 2.5 5.0 7.5 10.0 12.5

E
n

er
g

y
 (

J
)

End slip (mm)

Plastic

dissipation

0.0

0.5

1.0

1.5

2.0

0.0 2.5 5.0 7.5 10.0 12.5

E
n

er
g

y
 (

J
)

End slip (mm)

Plastic dissipation

Strain energy

 
       (a) 12.7-mm pitch       (b) 38.1-mm pitch 

 

Figure 12. Partition of total work as a function of end slip for fibers with (a) 12.7-mm 

and (b) 38.1-mm pitches.  Each fiber was embedded 12.5 mm into an ITZ-

matrix system with 44cf   MPa. 
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Figure 13. Partition of total plastic dissipation as a function of end slip for (a) 12.7-mm 

and (b) 38.1-mm pitched fibers.  Each fiber was embedded 12.5 mm into an 

ITZ-matrix system with 44cf   MPa. 

The work partitions shown in Figures 12 and 13 indicate that the model is highly 

dissipative, with less than 1% of the total work stored as strain energy.  Of the remaining 

99% of the total work, friction is the dominant energy dissipation mechanism during the 
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first 80% of end slip.  This observation is significant in that both the numerical model 

presented here and the analytical model presented by Sujivorakul (2002) primarily 

account for pullout forces through frictional effects.  The primary difference between the 

models is that the numerical model accounts for increased pullout resistance by including 

plasticity and dilation of the ITZ and matrix materials, instead of adding a torque 

component to the embedded end of the fiber. 

Interestingly, plastic dissipation of the 12.7- and 38.1-mm fibers accounts for only 

8% and 2% of the total work within each respective system.  To further explore this 

observation, a numerical model was constructed of a 12.5-mm long, straight, triangular 

shaped fiber utilizing the same constitutive relation given in Section 3.1.3.  The straight 

fiber was then twisted about its primary axis, i.e., the x3 axis as shown in the Fiber Detail 

view of Figure 5, in order to form twisted fibers with 12.7- and 38.1-mm pitches.  The 

positive x3 face of the fiber was fixed; the negative x3 face was rotated either 8.2 or 4.9 

radians, depending on whether the final pitch was 12.7 or 38.1 mm, during a smooth step 

function with a duration of 1 ms.  During rotation, the negative x3 face of the fiber was 

permitted to translate in the x3 direction.  The fiber was then allowed to relax for 1 ms 

before being untwisted the same number of radians as the fiber was previously twisted.  

Note that the angle of applied twist, i.e., 8.2 or 4.9 radians, was greater than the final 

desired twists of 2  or 2
3
  for the 12.7- and 38.1-mm pitched fibers due to elastic 

recovery. 

The applied torque and work required to twist the straight fibers to pitches of 12.7 

and 38.1 mm are shown in Figure 14.  In Figure 14 torque data are shown as thin dashed 

lines; data for the work, defined as the integral of the torque over the angle of twist, are 
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shown as solid lines.  The numerically calculated torque values are slightly greater than 

the theoretical fully plastic torque value of 35 N-mm, which is calculated by  
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, (13) 

 

as determined by Chakrabarty (2006).  In the preceding equation, yield  is the yield 

strength of the fiber, i.e., 2,412 MPa, and b  is the width of the fiber, i.e., 0.67 mm for the 

0.5e   triangular shaped fiber shown in Figure 5.  A comparison of the work required 

to twist a triangular fiber, as shown in  Figure 14, and the total work required to pull a 

twisted fiber from a cementitious material, as shown in Figure 12, indicates that twisted 

fibers require more work to be removed from a cementitious matrix than work to be 

twisted. 
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Figure 14. Applied torque and work required to twist fibers to 12.7- and 38.1-mm 

pitches.  Fibers have ultimate tensile strengths of 2,412 MPa and lengths of 

12.5 mm. 
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3.2.4.2 Behavior of an in situ fiber at a crack face 

Physical experiments are limited by the lack of control of all parameters.  For 

example, the free length of the fiber, freeL , can be minimized in experiments, but never 

eliminated  (cf. Figure 5).  This specific limitation prevents researchers from 

experimentally determining the in situ behavior of twisted fibers at a crack face, where 

the fiber experiences a free length of 0 mm.  In this section, the validated numerical 

model is utilized to gain insights into the pullout response at a crack face by simulating 

twisted fibers with zero free lengths.   

Figures 15a and 15b show the pullout responses of 12.7- and 38.1-mm pitch fibers 

comparing the pullout force versus end slip data from experiments (solid line) to those 

generated by numerical simulations having 3.0- and 0.0-mm free lengths. 
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          (a) pitch = 12.7 mm                    (b) pitch = 38.1 mm 

Figure 15. The effect of free length of fiber quantified by the pullout force as a function 

of end slip for initial fiber pitches of (a) 12.7 mm and (b) 38.1 mm embedded 

in a 44cf   MPa matrix.  Experimental data of Sujivorakul (2002) show as 

solid lines; numerical simulation data with freeL   3.0 mm shaded the same 

color as the experimental data with dashed lines; numerical simulation data 

with freeL 0.0 mm are shaded as black dashed lines. 
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The numerical simulations indicate that the effect of free length is more 

pronounced for the fiber’s having larger initial pitches.  In particular, the fiber with an 

initial pitch of 38.1 mm and freeL   3.0 mm exhibits a maximum pullout force of 90 N; 

whereas the same fiber-ITZ-matrix system had a maximum pullout force of 165 N.  This 

83% increase in pullout force is not observed in the fiber-ITZ-matrix system with 12.7-

mm pitch, which shows a more modest 17% increase in maximum pullout force.  The 

primary significance of this finding is that experimental single fiber pullout tests provide 

a lower bound to the pullout forces experienced in-situ at a crack face.   

3.2.4.3 Extended model for mortars containing silica fume and higher unconfined 

compressive strengths  

For higher strength matrices, experimental data indicate that the pullout response 

changes from a slip-hardening response to either a slip-neutral or slip-softening response 

for end slips between 10 and 80% of the fiber’s embedded length.  Therefore, it is 

postulated that the previously identified STZ does not sufficiently dilate to increase the 

cause slip-hardening responses.  Instead, the higher strength ITZs and matrices 

experience yielding and dilation such that either the slip-neutral or slip-softening 

behavior is present.  For example, consider the experimental responses reported by 

Sujivorakul (2002) shown in Figure 16 for a 12.7-mm initial pitch fiber embedded 12.7 

mm deep into two different matrices: 44cf   MPa and 84cf   MPa. 
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Figure 16.  Experimentally measured pullout force versus end slip displacement for fibers 

with an initial pitch of 12.7 mm (adapted from Sujivorakul (2002)). 

Recalling Figure 8, the numerical model predicts slip-hardening behavior if the 

ITZ and matrix are assumed to have purely elastic responses.  This observation motivates 

the modeling of fiber-ITZ-matrix systems with higher strength matrices, such as the 

84cf   MPa response in Figure 16.  However, changing the matrix and ITZ to elastic 

constitutive relations with 43.7mE   GPa, 0.2m  , 35.0ITZE   GPa, and 0.2ITZ  , 

and the linear shrinkage to -140 μm/m, per the CEB-FIB model code shrinkage estimates, 

under-predicts the pullout force at all end slips.  A possible explanation for the under-

prediction is found in the results of Chan and Chu (2004b), who showed cementitious 

material attached to straight, smooth circular fibers after being pulled from a cementitious 

material containing 30% silica fume by weight.  The silica fume enhanced the chemical 

bond to the fiber, thus causing a fracture surface within the monolithically poured 

cementitious material.  Therefore, the assumed 0.45 coefficient of friction at a steel-

concrete interface is no longer valid; instead, it is assumed that the coefficient of friction 

increases to 1.05, which is between 1.0 for concrete placed against intentionally 
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roughened concrete surfaces and 1.40 for concrete placed monolithically, as 

recommended by the American Concrete Institute’s (ACI) Building Code Requirements 

ACI 318 (2008a). 

From this assumed coefficient of friction,  a simplified version of the model with 

elastic ITZ and matrix constitutive relations is utilized to estimate the pullout response of 

fibers from the matrix.  The other significant change is the change to the Young’s 

modulus brought by changes in the measured compressive strength.  Figure 17 shows the 

calculated pullout response from simulations as dashed lines and the measured 

experimental data of Sujivorakul (2002) as solid lines. 
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Figure 17. Pullout force as a function of end slip for 84cf   MPa.  Experimental data 

shown as solid line and numerical data shown as dashed lines. 

A comparison of the simulated and experimental data indicate that the simulation 

data are in the same rank order as the experimental data.  To examine the differences 

quantitatively, Figures 18a and 18b compare the maximum pullout force and the total 

work during pullout for fibers with pitches of 6.35, 12.7, and 38.1 mm after being pulled 

from a 84cf   MPa matrix.  For a given pitch, the maximum difference between the 
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maximum pullout force of the experiments and that of the numerical simulation is 11%; 

the maximum difference between the total work of the experiments and that of the 

numerical simulations is 7%. 
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   (a) Maximum pullout force        (b) Total work 

Figure 18. (a) Maximum pullout force and (b) total work during pullout for twisted 

fibers with an embedded length of 12.5 mm after pullout from 84cf   MPa 

matrix. 

Experimental data are not available for the single fiber pullout of twisted fibers 

from matrices with unconfined compressive strengths in excess of 84 MPa; however, an 

estimate of the pullout response can be provided by altering material parameters of the 

numerical model to understand the pullout response of higher strength matrices.  Here it 

is assumed that the mechanisms of pullout from higher strength matrices match those of 

the 84cf   MPa, resulting in assumed elastic behavior of the matrix and ITZ with a 

coefficient of friction value representative of concrete to concrete sliding.  For a 200cf   

MPa matrix, the material parameters are 58.4mE   GPa, 0.2m  , 35ITZE   GPa, 

0.2ITZ  , and linear shrinkage of 0 μm/m.  The elastic moduli are estimates utilizing 
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Eq. (5); the Poisson ratios are assumed values; and the coefficient of linear shrinkage is 

estimated from the CEB-FIB 1990 model code (1998).  The assumed 1.05 coefficient of 

friction matches the coefficient of friction value assumed for the 84cf   MPa matrix 

materials. 
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Figure 19. Pullout force as a function of end slip calculated in numerical simulations for 

200cf   MPa. 

3.2.4.4 Effect of fiber pitch and matrix unconfined compressive strength 

The effects of fiber pitch and unconfined compressive strength of the matrix are 

explored for a fiber with a triangular cross section that has been twisted at a pitches 

between 6.35 and 38.1 mm.  All the numerical simulations were run with 3.0-mm free 

lengths.  Figures 20a and 20b summarize results of numerical simulations for the (a) 

maximum pullout force and (b) total work as a function of fiber pitch and cf . 
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   (a) Maximum pullout force       (b) Total work 

Figure 20. Effect of fiber pitch and cf  on the (a) maximum pullout force and (b) total 

work during pullout. 

3.2.4.5 Effect of Fiber Length 

The effect of fiber length is explored in this section for a fiber with a triangular 

cross section that has been twisted at a pitch of 12.7 mm with a free length of 3.0 mm.  

The embedded length ranges from 2.5 to 12.5 mm at increments of 2.5 mm.  Results are 

shown in Figure 21.  The results indicate that all fibers experience slip-hardening 

followed by slip-softening behavior in the last 2 mm of pullout.  For this combination of 

cementitious and fiber materials and fiber geometry, only the fibers embedded 7.5 mm or 

greater have maximum pullout forces greater than or equal to 150 N. 
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Figure 21.  Numerically calculated pullout force as a function of end slip for triangular 

cross section fibers twisted at pitch = 12.7 mm and pulled from 44cf   MPa.  

3.2.5  Treatment of fibers with arbitrary embedded lengths 

Calculations at the single fiber length scale are resource intensive, requiring up to 

400 hours to compute a single instantiation.  This relatively long computation time 

combined with the infinite number of possible fiber embedded lengths at the multiple 

fiber length scale presents a problem:  the extensive time required to compute all the 

pullout responses for the multiple fiber length scale is impracticable. 

As a solution to this problem, the pullout force, P , as a function of end slip,  , is 

calculated for each combination of fiber and matrix parameters of interest using the 

maximum fiber embedded length, ,max / 2e fiberL L .  Then an offset end slip, defined as 

,maxoffset e eL L    ,   is added to the actual end slip   of fibers with ,maxe eL L .  The 

pullout force as a function of an arbitrary embedded length eL  and end slip   is 

approximately equal to the pullout force at ,maxeL  and the combined end slip 

comb offset   , i.e., 
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   ,max, ,e e offsetP L P L  

. (14) 

Figure 22 shows data from numerical simulations for the pullout force as a 

function of combined end slip for a 12.7-mm pitch fiber embedded 2.5-, 5.0-, 7.5-, 10.0-, 

and 12.5-mm deep into a matrix.  The matrix strengths are 44-, 84-, and 200-MPa for 

Figures 22a, 22b, and 22c, respectively.  In each plot, data for the 12.5-mm embedded 

fiber and 2.5-mm embedded fiber are shaded dark and light blue, respectively.  Data at 

intermediate fiber embedded lengths are shaded in colors graded between dark and light 

blue.  By plotting the pullout forces as a function of the combined end slip, the validity of 

Eq. (14) can be assessed.  Although the 44cf   MPa does not overlay well for eL  2.5 

and 5.0 mm, the 84cf   and 120cf   MPa are of greatest interest. 
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   (a) 44cf   MPa        (b) 84cf   MPa 
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        (c) 200cf   MPa  

Figure 22. Pullout force as a function of the addition of end slip and offset end slip for 

fibers with uniform 12.7-mm pitch for 2.5 12.5 mmeL   embedded within 

(a) 44cf   MPa, (b) 84cf   MPa, and (c) 200cf   matrix. 

3.3 Multiple fiber length scale 

A two-element Rigid-Body-Spring-Model (RBSM) is adopted at the multiple 

fiber length scale to define the traction-separation response of an interface bridged by 

fibers.  The RBSM assumes that after the matrix at a given interface cracks, the entire 

load is carried by the fibers (Bolander Jr. & Saito, 1997).  Here, RBSM is introduced as 
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part of a multiscale model, instead of a standalone model at the structural length scale 

(e.g., Bolander, Choi, & Duddukuri, 2009). 

As shown in Figure 23, the RBSM model consists of two rigid elements, labeled 1 

and 2, and a large number of fibers shaded in red that cross the x1 = 0 plane between the 

two rigid elements.  Fibers are independently placed at pseudo-random positions and 

orientations within the model’s three-dimensional domain until the desired volume 

fraction is reached.  Note that the fibers that do not cross the rigid element interface are 

hidden in Figure 23.  During deformation, rigid element 1 is restrained in all directions 

while rigid element 2 is displaced by   in the x1 direction; all other translations and 

rotations of either rigid element are prohibited.  By summing the force of each fiber, a 

homogenized traction-separation response can be calculated that accounts for fiber 

orientation, length, volume fraction, and force-end slip relations. 
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Figure 23.  Sample instantiation of the Rigid-Body-Spring-Model (RBSM) at the 

multiple fiber length scale with 2%fiberV  , 14 mm fiber length, and 0.185 

mm fiber diameter. 
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This model simplifies the multiple fiber length scale problem through several key 

assumptions.  It is assumed that the matrix crack plane is predetermined, that the stress 

field around one fiber does not influence the stress field of other fibers (Bolander et al., 

2009), that all fibers uniformly displace during the imposed displacement  , the response 

of fibers are strain-rate insensitive, and that after any fiber is removed from the matrix, 

the forces are instantly and uniformly distributed to the other fibers that bridge the crack 

plane.  

The model is decomposed into two parts: (1) pre-cracking tensile strength and (2) 

evolution of strength after matrix cracking.  During the pre-cracking domain, the elastic 

stiffness of the composite is defined using a simple rule of mixtures approach, i.e., 

 (1 )c fiber m l fiber fE V E V E   , (15) 

where cE  is the elastic stiffness of the two-phase composite, mE  is the elastic stiffness of 

the matrix, l  is a parameter accounting for fiber embedded length defined as 

tanh( /2)

/2
1l

fiber

fiber

L

L




   ,   is a parameter defined as 

2

2

ln( / )

m

f

G

E r R r
  , mG  is the shear 

modulus of the matrix, fE  is the elastic stiffness of the fiber, r  is the radius of the fiber, 

R  is the mean radius of the matrix around one fiber, fiberL  is the total length of the fiber, 

  is a parameter associated with orientation of fiber defined as 4

1

1 cos
fN

iifN 


  , 

fN  is the total number of fibers that cross the crack plane, and i  is the inclination able 

of the thi  fiber between the fiber’s direction and that of the direction of displacement (i.e., 

x1).  At a displacement of / 2matrix muL  , the pre-cracking strength is ,t pre c muf E  , where 

mu
 
is the fracture strain of the matrix without fibers. 
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After cracking of the matrix, the evolution of tensile strength, ( )tf  , is calculated 

by summing the pullout resistance of each fiber that crosses the predefined crack plane, 

i.e., 
1

( ) ( , ) ,fN

t i ei
f f L


 


  where if   is the pullout resistance of the thi  fiber accounting 

for the inclination angle, and eL  is the minimum embedded length in a Euclidian sense.  

The relation between if   and the pullout resistance of the thi  fiber oriented parallel to the 

pullout direction, if , is assumed as  

 
( , ) / cos( ) for 45 45

( , )
( , ) / cos(45 ) for 45

i e i i

i e

i e i

f L
f L

f L

  


 

    
 

  
. (16) 

The form of Eq. (16) is based on experimental work of Li et al. (1990), who 

measured the pullout force of straight, smooth fibers at inclination angles between 0   

and 60  . 

The pullout force if  can be determined by experiments, analytical models, or 

numerical techniques.  For straight, smooth fibers, an analytical fiber debonding model is 

utilized that assumes the fiber slips out of the matrix and does not rupture.  Resistance to 

slipping is characterized by the interfacial shear strength, s , which represents the 

chemical bonding between the fiber and the matrix, and the frictional shear strength, i , 

which represents the mechanical resistance to the fiber slipping.  By assuming that s  

and i  are equal, Gopalratnam and Shuh (1987) showed that if  increases linearly to the 

maximum pullout force, i.e., 

 max

2
sinh( / 2) (1 )cosh( / 2)

max
(1 )cosh( / 2)

s

e e i e

e

r
mL rL m mL

f
mL

 
    

  

  
  

   

, (17) 
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and then decreases linearly to zero at eL  .  In Eq. (17), r  and   were previously 

defined, m  is a monotonically increasing parameter that ranges from zero for an 

undamaged fiber-matrix interface to one for a completely damaged fiber-matrix interface, 

and  /f f m mA E A E   is a non-dimensional parameter relating the area of the fiber, fA , 

and the elastic modulus of the fiber to the area of the matrix, mA , and the elastic modulus 

of the matrix.  An approximate solution to Eq. (17) can be found by assuming that 

(1 )cosh( / 2)emL   , which results in maxf  to be found at 2 a cosh /
ecr s iLm    . 

Material parameters for the matrix are assigned as 58.4 GPa
m

E  , 0.2
m

  , and 

3
0.20 10

mu



  , representative of a matrix with 200 MPa unconfined compressive 

strength.  Values of the interfacial shear strength, i , for uncoated straight, smooth fibers 

have been experimentally measured to be 5 (Shannag, Brincker, & Hansen, 1997), 4.8 – 

5.5 (Chan & Chu, 2004a), 6 – 8 (Park et al., 2012), and 10 MPa (Orange, Acker, & 

Vernet, 1999).   Here, it is assumed that i  = s = 6 MPa. 

3.4 Structural length scale 

As shown in Figure 24, the model at the structural length scale is implemented in 

three dimensions and consists of a UHPC panel shaded in red constrained by steel 

restraints shaded in gray.  The face of the panel shown in Figure 24 is denoted the 

proximal face; the face not shown is denoted the distal face.  The panel consists of bulk 

elements and zero-thickness cohesive elements, which connect the two adjacent bulk 

elements together.  Bulk elements dictate the compressive response of the panel, and the 
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cohesive elements dictate the tensile response of the panel.  In addition to modeling the 

mean values of cohesive properties, the model accounts for a Gaussian distribution of 

cohesive element properties, as indicated in Figure 24. 

The panel is located between the front and back restraints such that there are 

neither gaps nor compressive tractions between the panel and the restraints.  The front 

restraints, top and bottom, represent 76.2 × 76.2 × 7.94 mm square structural steel tubing.  

The back restraints, top and bottom, represent 203.2 × 152.4 × 12.7 mm square structural 

steel tubing.  All four restraints are modeled without internal or external radii. 
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Figure 24. Model at the structural length scale showing the proximal face and restraints. 

The constitutive model of the bulk elements in the panel is the extended Drucker-

Prager constitutive model described in Section 0, with 
'

200 MPa
c

f   and 58.4 GPa
m

E  .  
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The interfacial debonding between two adjacent bulk elements is modeled via zero-

thickness cohesive elements.  A custom VUMAT (Dessault Systemes, 2010) defines a 

strain-rate sensitive traction-separation constitutive law used by the cohesive elements.  

Responses in the normal and tangent directions are uncoupled until the stress exceeds the 

strain-rate sensitive strength, at which point damage initiates.  The isotropic damage 

internal state variable increases monotonically from zero (i.e., undamaged) to one (i.e., 

completely damaged) at the maximum rate of damage in the normal or tangent directions.  

Note that dissipated energy density is rate-insensitive as implied by Kim et al. (2009) for 

straight, smooth fibers.  The structural and multiple fiber length scales through two 

cohesive element material parameters, namely the maximum quasi-static tensile strength 

and the dissipated energy density during pullout.  The cohesive stiffness is assumed to be 

200 GPa.  The friction model is the rate- and pressure-independent, isotropic Coulomb 

friction law described in Section 3.1.4 and uses a 0.45 coefficient of friction.  

Interpenetration of elements is severely penalized.  The restraints are assumed to be linear 

elastic with a 200-GPa Young’s modulus, 0.3 Poisson ratio, and 7.85-g/cm
3
 mass density. 

Prior to loading, boundary conditions are applied to all four restraints.  All four 

restraints have boundary conditions defined at the positive and negative x1 faces, which 

prevent the translation or rotation of all nodes on those faces.  Two additional boundaries 

are defined for the back restraints.  First, the nodes on the positive x2 face on the top back 

restraint are prevented from translating and rotating,  Second, the nodes on the negative 

x2 face on the bottom back restraint are prevented from translating and rotating.  After 

applying boundary conditions to the four restraints, the proximal face of the panel is 

loaded by a time-dependent pressure in the negative x3 direction.  A pressure of max
p  is 
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applied at 0 ms and linearly decreases to 0 Pa at 15 ms.  From this pressure profile, the 

applied specific impulse I  is 
max

15

2

ms
I p . 

3.4.1 Strain-rate sensitive traction-separation 

Interfacial debonding between bulk elements is modeled using zero-thickness 

cohesive elements and a strain-rate sensitive traction-separation constitutive model 

implemented via a custom VUMAT subroutine called by ABAQUS/Explicit.  If the strain 

rate,  , is equal to a quasi-static strain rate, the model assumes the bilinear response 

shown in Figure 25, where T  is the traction,   is the separation, K  is the stiffness of the 

cohesive elements, and 
cG  is the work of separation defined as the integral of traction 

from zero separation to the separation at complete failure, 
f . Subscripts , ,n s and t  

indicate the normal and two tangential directions, respectively.  Note that the traction-

separation constitutive relation at quasi-static strain rates is the same as the prebuilt 

traction-separation constitutive relation in ABAQUS (Dessault Systemes, 2010). 
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Figure 25. Traction-separation constitutive relation for a quasi-static strain rate. 
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The strain rate of each element at each time interval is calculated by 

 , ,max n s t

elem

d

dt L


  , where , ,n s td  is the incremental separation in the , ,n s  and t  directions, 

dt  is the time step, and elemL  is the characteristic element size.  The dynamic tensile 

strength, , ,n s tT 
, is defined as , , , ,

o

n s t n s tT TDIF T   , where the tensile dynamic inflation 

factor (from Zhou et al. (2008)) is expressed as  

 

4
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
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

 


   
  

 (18) 

For 310   a conservative estimate of 310   is assumed.  As suggested by Kim 

et al. (2009), the work of extracting straight, smooth fibers from a cementitious matrix is 

relatively rate insensitive; hence, it is assumed that the work or separation is invariant 

with respect to strain-rate. 

The initial linear-elastic portion in Figure 25 is decoupled in the normal and tangential 

directions (i.e., i i iT K   where , ,i n s t  without summation implied, and iK  is the 

stiffness in the thi  direction).  Damage initiation (peak traction in Figure 25) leads to 

coupling between the normal and tangential directions and is governed by the quadratic 

initiation criterion      
2 22

1
n s t

n s t

T TT

T T T     , where the Macaulay brackets are defined by 

 1/ 2x x x  .  Damage evolution is calculated by 
( )

( )
max

f max o
i ii

fmax o
i ii

d
  

  





 
  

 
, where 

, ,i n s t  without summation implied and max  is the maximum separation during the 

loading history (Dessault Systemes, 2010).  
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3.4.1.1 Mesh sensitivity 

The strain-rate sensitive traction-separation constitutive model introduces a 

characteristic length scale, i.e., elemL , to reduce the mesh sensitivity of the model.  This 

section examines the mesh sensitivity of the model, as determined by the deflection at the 

center of the UHPC panel (cf. Figure 24) for a predefined loading condition and fixed 

material parameters.  In this section, a fixed panel thickness of panelt   50.8 mm was used 

for all instantiations. 

The material parameters used to study mesh sensitivity are as follows.  Bulk 

elements utilized a 2.57-g/cm
3 

mass density, 58.4-GPa elastic modulus, 200-MPa 

unconfined compressive strength, 28º internal friction angle, 22º dilation angle, and 0.8 

ratio of triaxial tension yield strength to triaxial compression yield strength.  Cohesive 

elements utilized a 200-GPa stiffness, 11.7-MPa quasi-static tensile strength, and 13.5-

kJ/m
2
 energy dissipation density.  The UHPC panel was meshed with 1, 2, 4, and 6 

elements through the thickness of the panel, resulting in charL  = 50.8, 25.4, 12.7, and 

8.467 mm, respectively.  A maximum applied pressure of 273 kPa was applied to the 

proximal face of the panel, resulting in an applied impulse of 2.05 MPa-ms. 

Results of the mesh sensitivity study are shown in Figure 26, which shows the 

displacement at the center of the panel as a function of time.  The calculated 

displacements as functions of time for charL  = 12.7 and 8.47 mm are similar, indicating 

that the charL  = 12.7 mm results in a converged mesh. 
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Figure 26. Deflection at the center of panel as a function of mesh density. 

3.4.2 Validation of the multiscale model at the structural length scale 

The model was validated by comparing simulated results to experimental results 

of Ellis, DiPaolo, McDowell, and Zhou (2013), which provide a 0.97 MPa-ms lower 

bound and a 1.46 MPa-ms for the critical specific impulse of the panel.  Here, critical 

specific impulse is defined as the lowest value of specific impulse that fractures the 

panel. 

3.4.2.1 Physical experiment setup 

A UHPC slurry was prepared at the United States Army Corps of Engineers 

(USACE) Engineering Research and Development Center (ERDC) using Ductal
®
 

BS1000 Grey premix, Chryso
®
 Fluid Primea 150 high-range water reducing agent, 2% 

volume fraction, fiberV , of steel fibers, and water at a 0.19 nominal water to cementitious 

material ratio.  The fibers were 14 mm-long with 0.185 mm-diameter circular cross-

section and were measured to have a 2.16-GPa tensile strength, 210 GPa elastic stiffness, 
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and 7.85 g/cm
3
 mass density.  The four constituents were mixed in a Nikko high shear 

mixer according to recommendations provided by Lafarge, the manufacturer of Ductal. 

The mixed UHPC slurry was poured into four different rectangular cavities each 

having dimensions of 1,626 mm (long) × 864 mm (wide) × 50.4 mm (deep).  At the 

bottom of each cavity, two layers of Hardwire
®

 3×2-4-12-500 brass reinforcement 

(HardwireLLC, n.d.) were placed at +45º and -45º from the direction of the 1,626 mm 

length of the cavity.  Panels were then cured at 22ºC under wet burlap for 24 hours, 

followed by 2 days in a steam cabinet at 91ºC. 

The mechanical properties of UHPC were measured fourteen days after pouring 

using three 101.6 mm-diameter by 203.2 mm-tall cylinders.  The cylinders were poured 

from the same UHPC slurry and cured using the same protocol as the panels.  Test results 

for the density, UHPC ,  and quasi-static unconfined compressive strength, cf , are given in 

Table 4. 

Table 4.  Density and unconfined compressive strength for cylindrical specimens. 

Sample ID UHPC  (kg/m
3
) cf  (MPa) 

125-11DIP #1 2,567 200 

125-11DIP #2 2,566 206 

125-11DIP #3 2,565 196 

Mean  2,566 201 

Standard Deviation 1.0 5.0 

 

Figure 27 shows a backscatter scanning electron microscope (SEM) image of the 

as-cured UHPC microstructure (Wang, Mattus, & Ren, 2009).  In Figure 27, the black 

circle represents porosity, the white ellipses represent fibers, the dark grey represents 

quartz aggregate, and the regions between the previously listed components represent the 

paste.  The magnified view at the right of Figure 27 shows that the paste is composed of 
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unhydrated clinker (white), quartz powder (dark grey), cracks (black) and hydrated 

Calcium-Silicate-Hydrate (medium grey).  Note that SEM images were recorded in a 

vacuum, which implies that the visible cracks in the magnified view may be due to drying 

during the preparation of the specimen for SEM studies. 
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Figure 27. Backscatter scanning electron microscope image of UHPC microstructure 

(Wang et al., 2009). 

Panels were tested at the United States Army Corps of Engineers (USACE) 

Engineering Research and Development Center (ERDC) Blast Loading Simulator (BLS) 

located in Vicksburg, MS (DiPaolo et al., 2012).  As shown in Figure 28, the BLS is 

composed of a driver, expansion rings, straight rings, and the target vessel.  After the 

UHPC panel is placed in the target fixture, the target vessel is connected to the straight 

rings.  To initiate the test, a disk between the driver and expansion rings is ruptured, thus 

releasing the compressed air contained within the driver.  The pressure wave travels 

through the expansion and straight rings before encountering the target located in the 

target vessel.  The BLS produces planar waveforms with peak reflected pressures and 

impulses of 552 kPa and 11.0 MPa-ms, respectively. 
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Figure 28.  Schematic of Blast Load Simulator (BLS). 

The UHPC panel is placed in the target fixture at the location indicated in Figure 

28.  The target fixture consists of an insert and a cover as shown in Figures 3a and 3b, 

respectively.  The insert consists of two 203.2 × 152.4 × 12.7 mm structural steel tubes 

and two 50.8 × 50.8 × 6.35 mm structural tubes.  The panel is placed in the insert with the 

Hardwire reinforced surface adjacent to the 50.8 × 50.8 × 6.35 mm steel tubing.  The 

cover keeps the panel in position before and during testing.  The target fixture imposes 

conditions similar to, but not exactly the same as, “simply supported” boundary 

conditions. 

Reflected pressure was recorded by six pressure transducers located at the 

positions shown as small yellow circles on the target fixture cover in Figure 29b.  

Displacement of the distal face of the panel was recorded by an accelerometer and laser 

measurement system at the positions indicated in Figure 29b.  Video images of the distal 

face were recorded at a 1,000 frames per second. 



 85 

1
,3

2
1

 m
m

1
,3

8
4

 m
m

1
,7

2
7

 m
m

1,260 mm

1
,4

7
3

 m
m

1
,3

2
1

 m
m

1
,6

2
6

 m
m

864 mm

Laser Accel.

83 mm

 

          (a) Insert          (b) Cover, UHPC panel, and sensor locations 

Figure 29. Target fixture as viewed from section A-A (cf. Figure 28) showing the (a) 

target fixture insert and (b) target fixture cover, proximal face of UHPC 

panel, and sensor locations. 

3.4.2.2 Parameters estimated by model at the single fiber and multiple fiber length 

scales 

Validation of the multiscale model starts with the choice of a straight, smooth 

fiber morphology, with the maximum pullout force given by Eq. (17).  Then using 2% 

fiber volume fraction of 14-mm long by 0.185-mm diameter simulated fibers, 100 

realizations of the model at the multiple fiber length was the model at the multiple fiber 

length scale were used to determine the values of four variables – mean tensile strength, 

standard deviation of the tensile strength, mean dissipated energy density, and standard 

deviation of the dissipated energy density – to inform the model at the structural length 

scale via a hand-shaking scheme.  In this manner, the homogenization scheme ensures 
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that the energy barrier to fracture, i.e., the maximum tensile stress, and the dissipated 

energy are consistent between length scales. 

Results of the 100 realizations at the multiple fiber length scale are shown in 

Figure 30.  Figure 30a shows the tensile stress versus displacement, where the dissipated 

energy density is the integral of tensile stress over the displacement  ; Figures 30b and  

30c show histograms of the maximum tensile strength and the dissipated energy density, 

respectively, with Gaussian distribution function overlaid on each histogram. 

0 2.5 5 7.5
0

5

10

15

20

 (mm)


 (M

P
a)

0

σ
te

n
si

le
(M

P
a
)

20

15

10

5

δ (mm)

2.5 5.0 7.50

 

11.69 11.7 11.71 11.72
0

10

20

30

Max Tensile Strength (MPa)

F
re

q
u
e
n
c
y

F
re

q
u

en
cy 20

10

Max tensile strength (MPa)

11.70 11.71 11.7211.69

30

0

Mean = 11.701

Std. Dev. = 0.001

  
(a) Tensile stress versus         (b) Histogram of maximum          

          displacement            tensile strength      

 

11 13 15 17
0

10

20

30

Energy Dissipated (MPa-mm)

F
re

q
u
e
n
c
y

F
re

q
u

en
cy 20

10

Dissipated energy (MPa-mm)

13 15 1711

30

0

Mean = 13.5

Std. Dev. = 0.6

 
                 (c) Histogram of  

          dissipated energy density 
 

Figure 30. Stochastic variation of (a) tensile stress versus displacement, which leads to 

mean and standard deviation values of (b) maximum tensile strength and (c) 

dissipated energy density. 
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The results shown in Figure 30 from the multiple fiber length scale are used for 

the cohesive material structural length parameters at the structural length scale, as listed 

in Table 5. 

Table 5.  Cohesive element material properties. 

n,s,tK  (GPa) o

n,s,t
T

 
(MPa)

 
 c

n,s,t
G  (kJ/m

2
) 

 

  Mean Std. Dev.  Mean Std. Dev.  

200  11.7 0.0  13.5 0.6  

3.4.2.3 Comparison of numerical simulations and physical experiments 

The four physical panels were subjected to reflected impulses from 0.77 to 2.05 

MPa-ms.  Panels 1 and 2 fractured when exposed to reflected impulses of 2.05 and 1.46 

MPa-ms, respectively.  Panel 3 survived two tests at impulses of 0.77 and 0.97 MPa-ms 

before fracturing during a third test at an impulse of 1.46 MPa-ms.  Panel 4 was 

intentionally perforated prior to testing, at which the panel fractured when loaded with a 

0.97 MPa-ms impulse.  From the experiments, the critical impulse that caused an initially 

intact panel to fracture was between 0.97 and 1.46 MPa-ms.  For the four panels tested, 

fracture created negligible particle debris and led to fracture surfaces containing 

protruding fibers. 

Validation of the multiscale model was based on three criteria: critical impulse to 

fracture the panel, which created two or more separate sections of the panel; deformation 

and fracture patterns; and displacement at the mid-height of the panel.  Specifically, the 

multiscale model determined the critical specific impulse to be between a 0.97-MPa-ms 

lower bound and a 1.21-MPa-ms upper bound, which is within the experimentally 

determined 0.97-MPa-ms lower bound and 1.46-MPa-ms upper bound. 
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The remaining two validation criteria were based on experimental results with an 

experimentally observed impulse of 2.05 MPa-ms after 15 ms, the time at which a 

through-crack was evident.  Figure 31 shows the comparison between the numerically 

applied pressure shown as a black dashed line and the experimentally observed pressure 

shown as a solid purple line.  The resulting experimental observed and numerically 

applied impulses are shown as solid blue and dashed orange lines, respectively. 

 

0.00

0.67

1.33

2.00

2.67

3.33

4.00

0

50

100

150

200

250

300

0 6 12 18 24 30

Im
p

u
ls

e
 (

M
P

a
-m

s)

P
r
e
ss

u
r
e
 (

k
P

a
)

Time (ms)

Exp. Pressure

Num. Pressure

Exp. Impulse

Num. Impulse

 

Figure 31.  Idealized pressure and impulse compared to the experimentally observed 

pressure and impulse for validating multiscale model. 

Figure 32 shows the deformation and fracture patterns of Panel 1, which was 

subjected to a 2.05-MPa-ms impulse, and one instantiation of the multiscale model 

subjected to the same impulse.  At 6 ms, the physical experiment and the simulation 

indicate parabolic deformation; moreover, the simulation exhibits distributed cracking.  

At 12 ms, the distributed cracking in the simulation has coalesced into two prevailing 

cracks near the panel’s mid-height.  Images of the experimental panel indicate similar 
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phenomenon with the distributed cracking coalescing into a characteristic mid-height 

fracture.  Subsequently, the simulated panel fractured at two additional locations near the 

top and bottom restraints.  Because the video of the physical experiment taken of the 

distal face, it can only be assumed that the fractures near the top and bottom restraints 

occurred after the mid-height fracture. 
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Figure 32. Physical experiment and one instantiation of the multiscale model of a UHPC 

panel subjected to a 2.05 MPa-ms reflected impulse.  The instantiation 

exhibits distributed cracking at 6 ms before crack coalescence and growth at 

12 ms.  Both the physical experiments and numerical simulations possess 

three areas of characteristic fracture – one at the lower restraint, one at the 

mid-height, and one at the top restraint. 

The last criteria for model validation is the displacement of the center of the panel 

as a function of time, as shown in Figure 33.  For times less than 18 ms, the simulation 

under predicts the displacement measured by the accelerometer by a maximum of 23%.  
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Several possible reasons for the error include the assumed 0.2 × 10
-3

 strain of the matrix 

at failure, mu ,  the assumed strain-rate tensile dynamic inflation factor, and the exclusion 

of fluid-structure interactions.  For times greater than 18 ms, accelerometer data and 

video images indicate that the numerical simulation over-predicts displacements.  This 

over-prediction is attributed to the exclusion of the distal face mesh from the model.  

Noting that crack coalescence occurs at 12 ms, it is assumed that the calculated critical 

specific impulse is relatively unaffected by the lack of the distal face mesh in the model. 
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Figure 33.  Comparison of displacement of the center of the panel in the x3 direction (cf. 

Figure 24) measured by accelerometer and laser interferometer measurement 

systems and the displacement predicted by the multiscale model (I = 2.05 

MPa-ms). 

3.4.3 Accumulation of damage 

After validation, the multiscale model was utilized to predict the damage initiation 

impulse at which the panel accumulated less than 1% total damage.  Here, total damage is 

defined as the sum of damage of all cohesive elements divided by total number of 
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elements.  As shown by the evolution of total damage for impulses between 0.24- and 

2.05-MPa-ms in Figure 34, an impulse of 0.24-MPa-ms produced less than 1% total 

damage for the material parameters considered.  By determining the damage initiation 

impulse, panels may be quickly assessed for damage after subjected to a given impulse 

load. 

 

0

0.1

0.2

0.3

0.4

0.5

0 6 12 18 24 30

T
o

ta
l 
D

a
m

a
g

e

Time (ms)

0.96 MPa-ms

0.24 MPa-ms

0.48 MPa-ms

Mid-height

fracture
Mid-height

fracture

 

Figure 34. Total damage for simulated UHPC panel with a mean  11.7-MPa mean , ,

o

n s tT  

and 13.5-kJ/m2 mean , ,

o

n s tG  for impulses between 0.24- and 2.05-MPa-ms. 

3.4.4 Effect of quasi-static tensile strength and dissipated energy density 

The validated multiscale model was used within a parametric study to determine 

the influence of mean , ,

o

n s tT  and , ,

c

n s tG  material properties on the critical specific impulse 

required to completely fracture the simulated panel.  Results of the parametric study are 

shown in Figure 35 with tensile strengths of 14.7, 20, and 40 MPa shown as blue circles, 

purple triangles, and orange squares, respectively.  The validation point using the 
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material properties from Table 5 is shown as a gray diamond within the experimentally 

determined range of 0.97- to 1.46-MPa-ms shown as a yellow rectangle.  As expected, 

the critical specific impulse increases with both increasing dissipated energy densities at 

the interface and the maximum tensile strength.  For a dissipated energy density of 20 

kJ/m
2
, doubling the tensile strength from 20 to 40 MPa increases the critical specific 

impulse by only 16%.  In comparison, doubling the dissipated energy density from 20 to 

40 kJ/m
2
 increases the critical specific impulse by 40% for a 14.7 MPa tensile strength.  

These results indicate that increases to the dissipated energy density, e.g. changes to fiber 

content or fiber geometries, offer the most efficient improvements to the critical specific 

impulse. 
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Figure 35. Calculated critical specific impulses required to completely fracture the 

simulated UHPC panel with dissipated energy densities between 20 and 80 

kJ/m
2
 and tensile strengths of 14.7, 20, and 40 MPa.  
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3.4.5 Effect of panel thickness 

The effect of panel thickness is examined in this section.  Three panel thicknesses 

were examined between at thicknesses of 38.1, 50.8, and 63.5 mm.  At each panel 

thickness, four dissipated energy densities – 20, 40, 60, and 80 kJ/m
2
 – and three quasi-

static tensile strengths – 14.7, 20, and 40 MPa – were examined to determine the critical 

specific impulse, at which the panel fractures.  Critical specific impulses were found 

through a bisection method to determine the maximum reflected impulses that does not 

fracture the panel and the minimum reflected impulse that does fracture the panel.  

Results from the simulation are shown in Figure 36. 

 



 94 

0.0

1.5

3.0

4.5

6.0

0 20 40 60 80 100

C
ri

ti
ca

l 
S

p
ec

if
ic

 I
m

p
u

ls
e

(M
P

a
-m

s)

Dissipated Energy Density at Interface 

(kJ/m2)

40 MPa
20 MPa

14.7 MPa

, ,
o

n s t
T

0.0

1.5

3.0

4.5

6.0

0 20 40 60 80 100

C
ri

ti
ca

l 
S

p
ec

if
ic

 I
m

p
u

ls
e

(M
P

a
-m

s)

Dissipated Energy Density at Interface 

(kJ/m2)

40 MPa

20 MPa

14.7 MPa

, ,
o

n s t
T

 

             (a) panelt  = 38.1 mm       (b) panelt  = 50.8 mm 
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      (c) panelt  = 63.5 mm 

Figure 36. Simulated critical specific impulses for panel thicknesses of (a) 38.1 mm, (b) 

50.8 mm, and (c) 63.5 mm. 

Figure 36c indicates an unexpected increase in critical specific impulse between 

, , 60n s tG   and 80 kJ/m
2
 for simulations with 

0

, , 14.7n s tT  MPa.  Moreover, the critical 

specific impulse of 4.65 MPa-ms surpasses the 3.63-MPa-ms critical specific impulse for 

the 
0

, , 20n s tT   MPa panel with the same 63.5-mm thickness and 80-kJ/m
2
 energy 

dissipation density.  This change in behavior is a result of the 63.5panelt   mm, 
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0

, , 14.7n s tT   MPa, and , , 80n s tG   kJ/m
2
 panel instantiation behaving in a ductile manner, 

as shown by the damage, deformation, and fracture patterns shown in Figure 37.   In 

Figure 37a, the , , 60n s tG   kJ/m
2
 was loaded with a 3.0-MPa-ms specific impulse, leading 

to the characteristic brittle fracture pattern observed in experiments (cf. Figure 32)  and in 

all the instantiations except the , , 80n s tG   kJ/m
2
 shown in Figure 37b.  The ductile 

response shown in Figure 37b was marked by a pronounced parabolic shape, significant 

distributed cracking on the distal face, and fracture initiation at the upper and lower 

restraints instead of the mid-height of the panel.   
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Figure 37. Comparison of damage, deformation, and fracture patterns for 63.5-mm thick 

simulated panels with  
0

, , 14.7n s tT   MPa, and (a) , ,n s tG  60 MPa and (b) 

, , 80n s tG   MPa.  Images are shown 12 ms after the initiation of a (a) 3.0 

MPa-ms and (b) 4.78 MPa-ms applied impulse. 
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The implications of these findings extend beyond finding a single instantiation 

exhibiting relatively higher critical specific impulses.  Rather, the ductile response 

implies that a yet to be determined domain of quasi-static tensile strengths and dissipated 

energy densities may cause the simulated panel to exhibit a desired ductile response.  The 

second implication is that increasing the dissipation at lower length scales, i.e., the 

multiple fiber length scale which was homogenized to the cohesive elements at the 

structural length scale, has a significant influence on the structural response.  

3.5 Summary 

This chapter presents a multiscale model consisting of three length scales – single 

fiber, multiple fiber, and structural panel – to simulate the response of UHPC blast panels 

to reflected impulses between 0.5 and 4.5 MPa-ms. 

At the single fiber length scale, a model was developed to predict the pullout 

force as a function of material properties and fiber morphology, which is expressed via 

the fiber’s cross section, equivalent diameter, and the pitch at which the fiber was twisted 

along its primary axis.  The model accounts for three phases of material: fiber, an 

Interfacial Transition Zone (ITZ) between the fiber and the surrounding matrix, and the 

matrix.  The dissipation mechanisms considered include plastic deformation of the fiber, 

friction at the fiber-ITZ interface, and plastic deformation due to granular flow of the ITZ 

and matrix.  The model was calibrated to experimental data using a triangular cross-

section fiber with a 0.5-mm equivalent diameter and a 12.7-mm pitch.  The surrounding 

matrix had an unconfined compressive strength, cf , of 44 MPa.  Subsequently, the model 
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was validated to experimental data for 38.1-mm pitched fibers using the same material 

properties as the 12.7-mm pitch fiber. 

For higher strength matrices containing silica fume, the coefficient of friction was 

increased from 0.45, representing steel on concrete sliding friction, to 1.05 which is 

between the range of 1.0 for a concrete surface intentionally roughened and 1.40 for two 

concrete surfaces formed after a monolithically poured concrete fractures.  At the 1.05 

coefficient of friction value, the matrix and ITZ are assumed to be elastic.  Results of 

numerical simulation are shown to agree within 11% and 7% of the maximum pullout 

force and total work during pullout, respectively. 

Results at the single fiber length scale indicate that fiber morphology significantly 

influences the resistance of fibers against pullout from the cementitious material. 

Specifically, the twisting of fibers around their own axes can increase the maximum 

pullout force by 5 times and the total work during pullout by over 10 times.  The 

mechanisms responsible for this improvement are enhanced interactions between the 

fiber and the ITZ caused by granular flow and dilation of the ITZ and matrix.  The 

interactions manifest as a domain identified as the stress transition zone (STZ). 

The free length, defined as the portion of the fiber between the cementitious 

material and the position at which the fiber is pulled from, influences the pullout response 

of twisted fibers measured in physical experiments.  Specifically, numerical simulations 

indicate that 0.0-mm free lengths, such as the free lengths found at crack surfaces in situ, 

cause twisted fibers to have higher pullout forces than similar fibers with 3.0-mm free 

lengths.  The level of influence varied by the fiber pitch, decreasing with decreasing fiber 
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pitch.  This finding is significant because it indicates that experimental pullout data may 

be viewed as conservative compared to in situ performance. 

 At the multiple fiber length scale, fibers are placed pseudo-randomly and 

independently within a three-dimensional domain consisting of two elastic elements 

separated by a predefined crack surface.  Each fiber crossing the predefined crack face is 

assigned a pullout force versus end slip relation, which can be defined via experiments, 

analytical solutions, or computational solutions.  For example, the pullout force versus 

end slip relation for straight smooth fibers with circular cross-sections is calculated via 

analytical equations with interfacial shear strengths taken from literature.  The pullout 

force versus end slip relations for triangular cross-sectional fibers twisted along their axes 

were calculated using the single fiber length scale model.  The pullout force of each fiber 

is adjusted to account for the inclination angle, defined as the angle between the fiber’s 

major axis and the normal of the predefined crack plane.  The model at the multiple fiber 

length scale adds information relating to the fiber volume fraction and fiber orientation 

relative to a predefined crack.  The model homogenizes the response of fibers to calculate 

a quasi-static tensile strength and the dissipated energy density at each interface.  By 

running 100 instantiations for each combination of fiber and matrix parameters, 

distribution functions are found for the quasi-static tensile strength and dissipated energy 

density, which are used for scale transition to the structural length scale. 

At the structural length scale, a three-dimensional cohesive finite element model, 

utilizing a strain-rate sensitive cohesive traction-separation response, was used to 

simulate the blast response of a 1625.6-mm tall by 863.6-mm wide UHPC panel placed 

within top and bottom steel restraints.  Blast loads are applied to the simulated panel via 
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an applied pressure of maxp  at 0 ms that linearly decreases to 0 Pa at 15 ms, resulting in a 

reflected impulsive of max 15 ms
2

p
I  .  Validation of the multiscale model is based on 

comparing numerical results to physical experiments of a 50.8-mm thick panel 

constructed using a UHPC with a 200 MPa unconfined compressive strength and 2% 

fiber volume fraction of 14-mm long by 0.185-mm diameter straight, smooth fibers.  

Validation of the numerical model is based upon the calculated deflections at mid-height 

of panel being with 23% of the physical experiment, fracture patterns, and the 

numerically determined critical specific impulse being within the experimentally 

determined critical specific impulse. 

Using the validated model, a parametric study was conducted to determined the 

critical specific impulse as a function of panel thickness at levels of  38.1, 50.4, and 63.5 

mm; quasi-static fiber-reinforced tensile strengths at levels of 14.7, 20, and 40 MPa; and 

dissipated energy densities at levels of 20, 40, 60, and 80 kJ/m
2
.  Results indicate that 

combinations of panel thickness, quasi-static fiber-reinforced tensile strength, and 

dissipated energy density can change the response of the UHPC system from brittle to 

ductile, which significantly increases the critical specific impulse of a panel. 
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            CHAPTER 4: MODEL OF P ENETRATION A T THE STRUCTU RAL LENGTH SCALE 

MODEL OF PERFORATION AT THE STRUCTURAL LENGTH 

SCALE 

 

 

The response of cementitious materials to ballistic impact is often framed in terms 

of penetration depth, scabbing limit, perforation limit, and ballistic limit.  These four 

performance metrics are reasonable when considering rebar-reinforced cementitious 

materials.  However, previous research (Dancygier & Yankelevsky, 1996; Zhang et al., 

2005) indicates non-reinforced high strength concretes (HSCs) and UHPCs exhibit a 

more dangerous response: non-reinforced HSCs and UHPCs may shatter, defined as 

fractures emanating from the site of impact to the edge of the structure causing 

catastrophic failure (cf. Figure 5), due to impact and subsequent perforation by 

projectiles.  This chapter reviews the response of HSCs and UHPCs to impact and 

introduces a model at the structural length scale to determine the cause-and-effect relation 

between the shattering of cementitious panels due to impact and the material properties, 

e.g. quasi-static tensile strength or dissipated energy density, of the cementitious panel. 

A review of published experimental data in the literature indicates the following 

trends for the ballistic impact of HSCs and UHPCs.  First, significant increases in 

compressive strength of the cementitious material in the panel cause a projectile’s 

residual velocity to decrease slightly.  For example, Hanchak et al. (1992) impacted two 

sets of rebar-reinforced panels – one with cf  = 48 MPa, the other with cf  = 140 MPa – 

with 25.4-mm diameter projectiles impacting the panels at  velocities between 300 and 
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1,100 m/s.  For the same impact velocity, the residual velocity of a projectile exiting a cf  

= 140 MPa panel was only 20% slower than the residual velocity of a similar projectile 

exiting a cf  = 48 MPa panel.  Second, for projectiles not perforating the cementitious 

panel, the penetration depth and spall diameter, defined as the diameter of the crater on 

the proximal face due to impact, decrease as the unconfined compressive strength 

increases up to approximately 115 MPa (Zhang et al., 2005).   For unconfined 

compressive strengths greater than 115 MPa, the penetration depth and spall diameter 

were approximately the same as for cementitious panels with cf  = 115 MPa (Zhang et 

al., 2005). 

Previous work suggests that fibers, even at low fiber volume fractions, 

significantly reduce or eliminate the growth of radial fractures caused by impact.  For 

example, Zhang et al. (2005) observed shattering of 88 187cf   cementitious panels 

without fibers, whereas a 1.5% fiber volume fraction of 13-mm long by 0.2-mm diameter 

fibers reduced the propagation of radial cracks such that cementitious panels made from 

similar materials did not shatter due to the impact of a 15 g projectile traveling between 

620 and 700 m/s.  Similar results were found by Dancygier and Yankelevsky (1996), who 

performed impact experiments on 400-mm by 400-mm plates by 40- to 60-mm thick 

95 110cf   MPa cementitious panels with and without 0.8% fiber volume fraction of 

hooked fibers.  In addition to reducing shattering of cementitious materials, Zhang et al. 

(2005) and Dancygier, Yankelevsky, and Jaegermann (2007) experimentally determined 

that fibers within cementitious materials reduced the spall diameter.  However, Zhang et 
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al. (2005) showed that the penetration depth is relatively unaffected by the presence of 

1.5% fiber volume fraction of 13-mm long by 0.20-mm diameter straight, smooth fibers. 

4.1 Model of penetration at the structural length scale 

A three-dimensional cohesive finite element model at the structural length scale 

was used to determine if a UHPC panel would fracture due to ballistic impact.  As shown 

in Figure 38, the model consists of a ballistic projectile shaded orange and a UHPC panel 

shaded gray.  The UHPC panel was 304.8-mm wide by 304.8-mm tall by a uniform, but 

adjustable, thickness panelt  between 38.1 and 76.2 mm at increments of 12.7 mm.  The 

model accounts for compressive properties of the UHPC material via bulk elements 

utilizing Drucker-Prager constitutive relations (cf. Section 3.1.1); tensile and shear are 

accounted for via zero-thickness cohesive elements which separate bulk elements.  The 

zero-thickness cohesive elements utilize the strain-rate sensitive traction-separation 

cohesive relation described in Section 3.4.1.  The rigid projectile has properties similar to 

a 0.50 caliber bullet and impacts the center of the UHPC panel’s positive x3 face at an 

imposed velocity between 900 and 1,000 m/s.   
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Figure 38.  Model of penetration at the structural length scale. 

4.1.1 Description of projectile 

The projectile was modeled as an analytically rigid three-dimensional part with an 

ogive-shaped nose, cylindrical body, and center of gravity, CG , as shown in the two-

dimensional sketch in Figure 39.  The 58.69 mm overall height of a 0.50 caliber bullet 

(DiPaolo et al., 2012) was reduced to 55.50 mm for the simulated projectile in order to 

enforce a projectile mass of 42.8 grams and the assumed 7.85-g/cm
3
 mass density,  .  

The mass moments of inertia about the center of gravity are defined as 
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where 1x , 2x , and 3x  are positioned about the center of gravity of the projectile.  The 

values of 11I , 22I , and 33I  used for the simulated projectile were 7,656; 826; and 7,656 g-

mm
3
, respectively. 
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Figure 39.  Geometry of modeled projectile. 

4.1.2 Boundary and loading conditions 

The projectile was initially located such that the tip of the ogive nose was 5 mm 

from the center of the proximal face of the UHPC panel.  The projectile was oriented 

such that the major axis of the projectile was normal to the plane of the UHPC panel’s 

proximal face.  The projectile was linearly accelerated in the negative x3 direction from 

an initial velocity of 0 m/s to an imposed velocity V  with a fixed magnitude between 900 

and 1,000 m/s at 1 μs.  After 1 μs, the imposed velocity V  was held constant for the 

duration of the simulation.  During the entire simulation, the rigid projectile’s remaining 

5 degrees of freedom were fixed, thus imposing an obliquity angle of 0º.  The UHPC 
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panel had traction free boundary conditions on all six external surfaces for the entire 150 

μs of simulated time.  

4.1.3 Meshing and numerical algorithm 

The UHPC panel was meshed by ABAQUS’s native meshing algorithm (Dessault 

Systemes, 2010) into bulk and cohesive elements.  Bulk elements were meshed by 8-node 

hexahedral reduced integration linear elements with characteristic element sizes 

depending on the UHPC panel thickness as shown in Table 6.  Between any two adjacent 

bulk elements, zero-thickness 8-node hexahedral cohesive elements were placed to model 

the traction-separation response.  The projectile was meshed by 4-node rigid tetrahedral 

elements. 

Numerical results were generated by ABAQUS/Explicit v6.10-1 and solved on 24 

AMD 2350QC processing cores.  For a panel thickness of 76.2 mm, processing times 

varied from 8 to 16 hours for 150 μs of simulated time. 

Table 6.  Mesh characteristics by panel thickness. 

Panel 

thickness 

Characteristic 

element size 

Approximate Number of 

elements 

(mm) (mm) Bulk Cohesive 

38.1 4.76 32,800 93,200 

50.8 5.08 36,000 103,200 

63.5 5.29 40,400 116,300 

76.2 5.44 43,900 127,000 
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4.1.4 Model validation 

The model of penetration at the structural length scale was validated using 

experimental data of Ren, Mattus, Wang, and DiPaolo (2013), who showed that fiber 

reinforced UHPC samples were perforated, but not shattered, by a 0.50 caliber bullet 

travelling at 914 m/s.  The UHPC material was reported to have nominal 185cf   MPa 

and  2%fV   of 14-mm long by 0.185-mm diameter steel fibers.  The panel dimensions 

reported by Ren, Mattus, Wang, and DiPaolo (2013), i.e., 304 × 304 × 76 mm
3
, are 

similar to the model.  It is assumed that UHPC panels with 0%fV   will shatter as a 

result of impact. 

The bulk elements utilize a Drucker-Prager constitutive model described in 

Section 3.1.1, with material parameters given in Table 7.  In Table 7, cf  is the 

unconfined compressive strength,   is the mass density, E  is the modulus of elasticity, 

K  is the ratio between the yield stress in triaxial tension and the yield stress in triaxial 

compression,   is the internal friction angle in the meriodonal plane, and   is the 

dilation angle.  The cf  was chosen to match the experimental data of Ren, Mattus, Wang, 

and DiPaolo (2013), and   was chosen to match experimental results of Park, Xia, and 

Zhou (2001).  The sources for all other material parameters match those described in 

Section 3.1.1. 

Table 7.  Material parameters for validating the impact model. 

cf    E  K      

(MPa) (g/cm
3
) (GPa)  ( º ) ( º ) 

185 2.57 56.9 0.8 28 22 
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The cohesive elements utilize the strain-rate sensitive traction-separation relation 

described in Section 3.4.1.  The material properties utilized for validation of the model 

are given in Table 8.  In Table 8, E  is the stiffness of the cohesive elements; 
0

, ,n s tT  is the 

quasi-static tensile strength in the n , s , and t  directions; and 
0%

, ,
fV

n x tG


 and 
2%

, ,
fV

n s tG


 are the 

dissipated energy densities for UHPCs containing 0%fV   and 2%fV  , respectively.  

Values for 
0

, ,n s tT , 
0%

, ,
fV

n s tG


, and 
2%

, ,
fV

n s tG


 were obtained from the model at the multiple fiber 

length scale for 0.185-mm diameter by 14-mm long fibers at their respective volume 

fractions. 

Table 8.  Material parameters of cohesive elements used for validating penetration model. 

E  0

, ,n s tT  
0%

, ,
fV

n s tG


 
2%

, ,
fV

n s tG


 

(GPa) (MPa) (kJ/m
2
) (kJ/m

2
) 

200 11.7 0.1 13.5 

 

 

The model was validated by confirming that an instantiation using 
0%

, ,
fV

n s tG


 

fractures, whereas an instantiation using 
2%

, ,
fV

n s tG


 does not fracture.   Both instantiations 

are impacted by projectiles traveling at 914 m/s at the time of impact.  Results of the two 

validation instantiations are shown in Figures 37a and 37b, which show the displacement 

magnitudes of UHPC panels utilizing 
0%

, ,
fV

n s tG


and  
2%

, ,
fV

n s tG


, respectively, 150 μs after 

impact.   The isometric view in the left of each figure shows the proximal face of the 

UHPC panel and the resulting spall;  the side view in the right of each figure shows the 

spall from the proximal face and the larger diameter scab material from the distal face of 
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the panel.  As shown in the left of Figure 37a, the panel utilizing 
0

, ,
fV

n s tG


 shows evidence 

of large displacements in the x1 and x2 directions emanating from the center of the panel.  

These large displacements are indicative of fracture and are precursors to the panel 

shattering.  In contrast, Figure 37b exhibits relatively small displacement magnitudes, 

except at a local region within approximately 85 mm of the point of projectile impact. 
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Figure 40. Displacement magnitudes for UHPC panels reinforced with (a) 
0%

, ,
fV

n s tG


 and 

(b) 
2%

, ,
fV

n s tG


 of 0.185-mm diameter by 14-mm long steel fibers.  Images are 

shown 150 μs after impact of a projectile with a velocity of  at 914 m/s.   
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A clearer view of the orientation and position of fracture within the UHPC panels 

can be seen in Figure 41, which shows the evolution of cohesive damage in simulated 

UHPC panels utilizing 
0%

, ,
fV

n s tG


 and 
2%

, ,
fV

n s tG


.  The cohesive damage in the 
0%

, ,
fV

n s tG


 

microstructure instantiation indicates severe damage at the center of the panel indicating 

the ejection of mass from the proximal face of the panel.  Surrounding the severe damage 

at the center of the panel, there are a large number of bands of cohesive damage, 

indicating the shattering of the panel.  The cohesive damage of the 
2%

, ,
fV

n s tG


 microstructure 

instantiation also indicates severe cohesive damage at the center of the panel, indicating 

the ejection of mass from the proximal face.  However, the 
2%

, ,
fV

n s tG


 microstructure 

instantiation does not indicate connected bands of cohesive damage emanating from the 

site of impact.  Therefore, for the two instantiations examined, the penetration model is 

capable of discriminating between shattered perforation and intact perforation responses. 
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Figure 41. Evolution of cohesive damage for simulated UHPC panels reinforced 

dissipated energy densities 
0%

, ,
fV

n s tG


 and 
2%

, ,
fV

n s tG


, which represent fV  = 0 and 

2% of 0.18-mm diameter by 14-mm long steel fibers.  Both simulated panels 

were 76.2-mm thick with , ,

o

n s tT  = 11.7 MPa and impacted by a projectile with 

a velocity of 914 m/s. 

4.2 Results 

The penetration model at the structural length scale was used to determine if a 

simulated panel fractured or remained intact during perforation by projectiles travelling at 

9000 and 1,000 m/s.  Here, fracture is defined as connected bands of cohesive elements 

having cohesive damage greater than or equal to 0.98 at simulated times of 90 μs.  The 90 

μs time was chosen because not all the simulations completed the full 150 μs simulated 

time due to excessive element distortion and interpenetration.  Per the validation study, 

the 90 μs simulated time was adequate for fracture to be evident.  
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To determine the fracture response of the panel, a parametric study was conducted 

utilizing 18 combinations of panelt   at levels of 38.1, 50.4, and 63.5 mm, 
0

, ,n s tT  at levels of 

5 and 12 MPa, and , ,n s tG  at levels of 0.1, 5, and 10 kJ/m
2
.  The remaining material 

parameters were prescribed as a function of 
0

, ,n s tT  and are shown in Table 9. 

Table 9.  Material parameters in impact simulations. 

0

, ,n s tT  cf  mE  , ,n s tG   
m  

(MPa) (MPa) (GPa) (kJ/m
2
) (kg/m

3
) 

5 80 43.0 0.1 2,400 

12 200 58.3 5.0 2,400 

 

Figure 42 shows cohesive damage for the 18 instantiations simulated at 90 μs 

after impact.  In Figure 42, each column has a constant value of , ,n s tG , which is shown at 

the top of the column and increases from 0.1 to 10 MPa-mm moving left to right.  Each 

row in Figure 42 represents instantiations with fixed panelt  and , ,

o

n s tT  as shown to the right 

of each row.  Of the 18 instantiations, 16 of the instantiations completed at least 90 μs of 

simulated time; the remaining two instantiations do not have images shown in Figure 42. 
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Figure 42. Cohesive damage of simulated UHPC panels 90 μs after the impact of a 

projectile traveling at 1,000 m/s.  The instantiations shown have material 

properties of , ,n s tG  = 0.1, 5.0, and 10.0 MPa-mm; oT  = 5 and 12 MPa; and 

panelt  = 38.1, 50.8, and 63.5 mm.  

As shown in the left column of Figure 42, all instantiations with , ,n s tG  = 0.1 MPa-

mm fractured by or before 90 μs due to the impact of the projectile travelling at 1,000 

m/s.  In contrast, cohesive damage images for instantiations with , ,n s tG  = 5 and 10 MPa 

show a lack of interconnected damage, indicating that the panel sustains damage, but 

does not shatter.  Assuming straight, smooth fibers of 0.185-mm diameter and 14-mm 

length, energy dissipation densities of 5.0 and 10.0 MPa-mm represent fiber volume 
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fractions of 0.75 and 1.5%, respectively.  Results of the simulations are summarized in 

Table 10. 

Table 10. Results of impact simulations to determine if a simulated UHPC panel fractures 

by or before 90 μs after being impacted by a projectile traveling at 1,000 m/s. 

Figure 42 

subfigure 
panelt  0

, ,n s tT  cf  , ,n s tG   Fractures 

(mm) (MPa) (MPa) (kJ/m
2
)  

a 38.1 5 80 0.1 yes 

b 38.1 5 80 5.0 no 

c 38.1 5 80 10.0 no 

d 38.1 12 200 0.1 yes 

e 38.1 12 200 5.0 no 

f 38.1 12 200 10.0 no 

g 50.8 5 80 0.1 yes 

h 50.8 5 80 5.0 no 

i 50.8 5 80 10.0 DNF 

j 50.8 12 200 0.1 yes 

k 50.8 12 200 5.0 no 

l 50.8 12 200 10.0 no 

m 63.5 5 80 0.1 yes 

n 63.5 5 80 5.0 no 

o 63.5 5 80 10.0 no 

p 63.5 12 200 0.1 yes 

q 63.5 12 200 5.0 DNF 

r 63.5 12 200 10.0 no 

DNF = Simulation did not complete 90 μs. 

 

The legitimacy of the results shown in Table 10 can be judged in comparison to 

the experimental results of Zhang et al. (2005) and Dancygier and Yankelevsky (1996).  

Zhang et al. (2005) studied the effects of fiber-reinforcement on the impact response of 

cementitious panels with cf  ranging between 45 and 225 MPa.  The cementitious panels 

were reinforced by a 1.5% fiber volume fraction of 13-mm long by 0.2-mm diameter 

steel fibers.  Results of Zhang et al. (2005) indicate that the 1.5% fiber fraction of the 

specified was sufficient to prevent the cementitious panels from shattering.  Similar 

results were found by Dancygier and Yankelevsky (1996), who measured the  impact 
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response of 400-mm wide by 400-mm tall by 40- to 60-mm thick panels.  They found 

0.8% fiber volume fraction of 30-mm long by 0.5-mm diameter hooked fibers to be 

sufficient to prevent cementitious panels from shattering upon impact.  The cementitious 

panels were constructed using materials with cf  ranging from 34 to 104 MPa.  The 

projectiles had a 25-mm diameter, 120-g mass, and impacted the cementitious panels at 

velocities between 85 and 230 m/s. 

4.3 Summary 

A three-dimensional Cohesive Finite Element Model (CFEM) of a 304.8-wide by 

304.8-mm tall UHPC panel of a uniform, but adjustable, thickness was developed and 

validated to determine the fracture response of a UHPC panel to ballistic impact.  The 

model was used to determine the fracture resistance of UHPC panels struck by a 

projectile traveling at 1,000 m/s as a function of panel thickness (38.1, 50.8, and 63.5 

mm), uniaxial tensile strength of the fiber-reinforced matrix (5 and 12 MPa), and energy 

dissipation density (0.1, 5.0, and 10.0 MPa-mm).  The 0.1, 5.0, and 10.0 MPa-mm levels 

of energy dissipation density correspond to 0, 0.75, and 1.5% fiber volume fraction of 

0.185-mm diameter by 14-mm long straight, smooth fibers. 

For the parameters used in the this study, the model indicates the fracture 

response of the UHPC panel is highly dependent upon on the energy dissipation density.  

For example, all instantiations fractured that had energy dissipation densities of 0.1 MPa-

mm, whereas all instantiations using energy dissipation densities of 5.0 or 10.0 MPa-mm 

were perforated but remained intact.  From these results, it is concluded that energy 

dissipation density is the dominant material parameter preventing the fracture of UHPC 
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panels impacted by projectiles.  This conclusion is consistent with experimental data 

available in the literature. 

 



 117 

    CHAPTER 5: MA TERIA L D ESIGN 

MATERIAL DESIGN 

 

The goal of computational material design is to determine combinations of 

constituents, properties of materials, and other characteristics (e.g., fiber topologies) that 

achieve system-level performance requirements.  This goal is accomplished by 

simultaneously solving two distinct paths – a bottom-up deductive modeling and 

simulation path and a top-down inductive decision path.  The bottom-up mappings seek 

to assemble process-structure-properties-performance (PSPP) relations, which can be 

found via experimental, analytical, or computational techniques.  In this dissertation, the 

multiscale computational model presented in Chapter 3 is utilized to simulate blast 

loading to construct the deductive bottom-up set of mappings.  The ballistic impact 

deductive mappings are taken from Chapter 4, at the structural length scale, and the 

models at the single fiber and multiple fiber length scales in Chapter 3.  Deductive 

mappings between processing conditions, porosity within the paste and ITZ, and the non-

fiber-reinforced cementitious matrix are taken from the literature and an analytical model 

presented in Chapter 4. 

In contrast to the bottom-up deductive mappings, the top-down inductive decision 

path is an entirely different problem with different goals and a different approach to 

uncertainty.  The goal of the inductive decision path is to efficiently determine the 

constituents, material properties, and other characteristics that satisfy the system-level 

performance requirements.  To achieve this goal, uncertainty within the deductive path is 

quantified, thus allowing solutions of the inductive decision path to be tolerant of the 
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effects of uncertainty, or robust.  The result of the inductive decision path is the feasible 

input space, defined as the set of inputs values (e.g., constituents, constituent material 

properties) that satisfy the system-level requirements.  Within the feasible input space, 

discrete sets of input values are evaluated for system-level goals expressed in terms of 

objective functions.  The objective functions of this work can include the mass of the 

panel and costs of raw materials.  Note that objective functions and system-level 

performance requirements are fundamentally different: system-level performance 

requirements must be satisfied for a material design to be feasible, whereas objective 

functions assign preference to a given design.  The notion of preference allows a designer 

to determine the Pareto frontier, defined as the set of preferred input values within the 

feasible input space that satisfy performance requirements and goals.. 

This remainder of this chapter presents the theoretical framework for the material 

design problem.  The sections are as follows.  Section 5.1 reviews the classification 

system of uncertainty.  Section 5.2 compares optimal and robust designs.  Section 5.3 

reviews the theoretical framework for the Inductive Design Exploration Method (IDEM).  

Section 5.4 presents how IDEM was implemented in MatLab
®
 such that it could be used 

for materials design.  Section 5.5 presents the advantages of using IDEM as the inverse 

materials design algorithm, and Section 5.6 summarizes this Chapter. 

5.1 Uncertainty 

Uncertainty is associated with the degree of variability of an input to or response 

of a system.  In the broadest sense, uncertainty is delineated into two categories: aleatory 

and epistemic.  Aleatory uncertainty is inherent to the system and must be quantified in a 
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statistical sense via moments of probability distribution functions.  In contrast, epistemic 

uncertainty can be reduced by increasing the knowledge of a system via refined 

measurement techniques or acquiring more samples.  The level of epistemic uncertainty 

is often selected, tacitly or explicitly, based on financial or practical limitations. 

For computational materials design using numerical simulations, McDowell, et al. 

(2009a) suggest a further decomposition of sources of uncertainty, which is an extension 

of the uncertainty classification presented by Isukapalli, Roy, and Georgopoulos (1998). 

 Natural Uncertainty (NU) is a subset of aleatory uncertainty quantifying the 

inherent randomness of the physical system.  Natural uncertainty can be further 

delineated into parameterizable and unparameterizable uncertainty.  

Parameterizable uncertainty may be expressed as a numeric variance, e.g., the 

variance in the length of a fiber or the variance in the fiber volume fraction within 

a statistical volume element.  Unparameterizable uncertainty cannot be expressed 

numerically and is a result of the unknown position and orientation of individual 

constituents (e.g., fibers, grains) within realized microstructures.  As such, 

unparameterizable uncertainty is related to the size of the chosen statistical 

volume element. 

 Model Parameter Uncertainty (MPU) is a subset of epistemic uncertainty 

resulting from a lack of data related to parameter estimation in the model.  Several 

examples of model parameter uncertainty include the coefficient of friction 

between steel and concrete, shrinkage coefficients of cementitious materials, 

elastic modulus of the UHPC used in the blast panels, and strain-rate sensitivity of 
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cementitious materials.  Model parameter uncertainty may be reduced by refining 

the measurement technique or taking more measurements. 

 Model Structure Uncertainty (MSU) is a combination of aleatory and epistemic 

uncertainty resulting from the simplifications and approximations in numerical 

modeling.  Although the level of uncertainty can be reduced by refining the 

assumptions of numerical models, model structure uncertainty cannot be 

eliminated.  Examples of MSU pertaining to the multiscale modeling of blast 

loaded UHPC panels can be found at each length scale.  At the single fiber length 

scale, three examples of MSU include: (1) the assumed non-strain-softening 

Drucker-Prager constitutive relation used to represent the response of the ITZ and 

the matrix; (2) the idealization that the ITZ as a 50 μm uniformly thick, 

homogeneous material having an elastic stiffness value 80% of the elastic 

stiffness of the matrix; and (3) the assumption that friction is pressure-

independent.  At the multiple fiber length scale, two examples of MSU include: 

(1) the crack plane was represented by a predefined perfectly flat crack surface; 

and (2) the stress fields in the matrix surrounding individual fibers do not interact.  

At the coarsest length scale, four examples of MSU include: (1) the assumed 

linear traction-separation response of fiber-reinforced cementitious materials; and 

(2) the simplification of the loading conditions to use a linear decaying applied 

pressure; (3) the Hardwire steel cloth on the distal face was not modeled; and (4) 

the simplification of the boundary conditions to square steel tubing with sharp 

corners. 
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 Propagated Uncertainty (PU) is a combination of aleatory and epistemic 

uncertainty resulting from the propagation of error from one model level to the 

next.  For example, the three-length scale model of the a UHPC blast panel 

involve the following propagation of uncertainty.  Starting at the single fiber 

length scale, the pullout force versus end slip relation used as an input to the 

multiple fiber length scale.  The uncertainty of the pullout force is propagated to 

the model at the multiple fiber length scale, which results in homogenized 

traction-separation relations for a given fiber and fiber volume fractions.  These 

homogenized traction-separation relations, and the uncertainty with the relations 

are then propagated to the structural length scale.   

5.2 Optimal versus Robust solutions 

For a given set of input parameters, the presence of uncertainty fundamentally 

alters a system’s response: instead of a single deterministic response, a system will 

produce a stochastic range of responses.  This range of responses alters the type of 

solutions sought.  One possible type of solution is an optimal solution, which seeks to 

determine the set of input variables that maximize, or minimize, the mean response of the 

objective function regardless of the variation of the response.  The problem with optimal 

solutions is that uncertainty may cause responses that do not satisfy the system-level 

performance requirements.  Therefore, solutions are sought instead that are robust to the 

influences of uncertainty. 
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Robust solutions seek to find sets of input variables with responses that are 

insensitive to uncertainty while satisfying system-level performance requirements.  The 

three types of robust solutions considered are described below and shown in Figure 43. 

 Type I Robust Solutions seek a satisfying level of a response function based on 

insensitivity of response to noise variables, or variables beyond the control of a 

material designer, while meeting system-level performance requirements 

(Taguchi, 1992).  

 Type II Robust Solutions seek a satisfying level of a response function based on 

insensitivity of the response due to uncertainty of the input variables (Chen et al., 

1996). 

 Type III Robust Solutions seek to the desired performance level while 

minimizing the effects of uncertainty in the response function (Choi et al., 2005b). 
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Figure 43.  Comparison of optimal and robust solutions (adapted from McDowell et al., 

2009a). 
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The types of robust solutions considered are driven by the computational design 

of UHPC materials.  In particular, Type I and Type II robust solutions are useful for 

mitigating uncertainty associated with batch processed materials such as UHPC.  Type III 

robustness is critical to account for the assumptions within the computational modeling 

framework. 

5.3 Inductive Design Exploration Method (IDEM) 

The inductive decision path is implemented via the Inductive Design Exploration 

Method (IDEM) (Choi, 2005), which, as shown in Figure 44, is a three-step method that 

determines feasible values of input variables for a given performance requirement.  

Between any two spaces, IDEM discretizes input variables, projects each set of 

discretized input values to a range in the output space, and determines which sets of 

discrete input values satisfy the output space performance requirements.  For example, 

consider the y- and z-spaces shaded in blue in Figure 44 as the input and output space.  

The y-space is composed of the y1 and y2 input variables with each set of discrete input 

values, or “input value”, show as black dots in Step 1.  In Step 2, each input value is 

projected to the output z-space via the function g.  Note that the projection of each input 

value creates a range of possible results, as indicated by the yellow ellipse in the z-space.  

In step 3, the range of output in z-space from a single input value is compared to the z-

space performance requirement.  If the range of output is within the z-space performance 

requirement, the input value satisfies the performance requirement.  Although Figure 44 

shows IDEM with three spaces and two variables in each space, IDEM may be 
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generalized to m-spaces with each space having up to n-variables, where m and n are 

positive integers.   

Step 1

x space

y space

z space

Step 2

Step 3

Performance 

requirements

Identified feasible 

design space

x1

x2

y1

y2

z1

z2

 

Figure 44. Schematic of Inductive Design Exploration Method (IDEM) applied to a 

three-space hierarchical problem consisting of x-, y-, and z-spaces. The 

schematic is shown with two variables in each space. 

To determine which sets input values satisfy the output performance requirement, 

IDEM employs the Hyper-Dimensional Error Margin Index ( HDEMI ).  Here, the 

HDEMI  of the thi  output space variable is defined as 
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where i  is the number of variables in the output space, j  is the number discrete points on 

a boundary, mean  is the output value without considering Type I, II, or III uncertainty, 

B j  is the output performance requirement composed of j  points, B i

j  is the output 

boundary of a single input value in the thi  output direction, u i  is a unit vector of the thi  
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variable, and   is the feasible output space defined by jB .  Note that  mean B uj i
 

is the absolute value of the distance between mean  and the boundary of the projected 

input point in direction of the thi  output variable.  Similarly,  mean B u
i

j i
  is the 

absolute value of the distance between mean  and the boundary of the output space 

projected in the thi  direction.  Figure 45 shows a graphical representation of the 

projection of a discrete set of input values to a range in the output space, thus allowing 

the calculation of the iHDEMI .    In Figure 45, the feasible output space is shaded red 

and the projected output range from a single discrete input value is shaded yellow. 
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Figure 45.  Schematic of the Hyper-Dimensional Error Margin Index (HDEMI) showing 

the projection of a discrete input value to a range of outputs (adapted from 

Choi et al., 2008). 

The boundary of the output range of a single point, B i

j , is determined by the type 

or types of robustness desired.  Given the input space  1,..., ,...,k ny y y y , the input 
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value  0 1,0 ,0 ,0,..., ,...,k ny y y y  projects to the mean  output value 0 0( )gz y , where g  

is a function relating y  and z .  Type II robustness accounts for variations in the output 

defined as 
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where n  is the dimension of the input space, 
k

g

y




 is the absolute value of the partial 

derivative of g  with respect to ky , and ky  is the expected variation of the thk  input 

variable.  Type III robustness assumes knowledge of the deviation of the response 

function g .  Specifically, the lower and upper bound of g  are defined as lowerg  and 

upperg .  In a similar manner to Eq. (21), the variation of 0z  due to lowerg  and upperg  are 

defined as 
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The maximum and minimum boundaries of uncertainty accounting for Type II and III 

robustness are then defined as 
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Finally, the deviation from the nominal value 0z  is found by  
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 Input points with HDEMI  values greater than one indicate the feasible input 

space; input points with HDEMI  values less than one indicate the infeasible space.  The 

boundary between the feasible and infeasible spaces have, by definition, HDEMI values 

equal to one.  However, the prior discretization of the input space into a set of input 

points does not guarantee that the prior defined points will lie on the boundary.  Thus, 

points on the boundary must be determined. 

Figure 46 illustrates the how the boundary is determined between the feasible 

input points (shaded in blue) and the infeasible input points (shaded in gray) for a two-

dimensional input space.  The input space consists of 1y  and 2y  input variables that have 

been discretized into 4 and 3 points, respectively, with the index of each discretized point 

shown as a superscript, e.g. 
4

1y  represents the fourth discretized point of the 1y  input 

variable.  For each orthogonal direction, the input points are search to find adjacent pairs 

of points that are feasible and infeasible.  If such an adjacent pair of points is found, it is 

assumed that exactly one boundary point exists between the adjacent points.  This 

boundary point is found via a bisection method. 
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Symbol Description HDEMImin

Feasible input points > 1

Infeasible input points < 1

Boundary input point in y1 direction 1

Boundary input point in y2 direction 1

True constraint boundary

y1

y2

1

1y 2

1y 3

1y 4

1y

1

2y

2

2y

3

2y

 

Figure 46. Determination of the input space’s boundary for a two-dimensional input 

space consisting of feasible and infeasible input points. 

For design problems containing more than two spaces, the performance at the 

highest-level space is used to determine the feasible input space at the next-to-highest 

space.  The calculated feasible input space, or more specifically the boundary of the input 

space, becomes the output performance requirement at the next-finer scale.  In this 

recursive manner, IDEM can be used for problems across multiple spaces or length 

scales. 

5.4 Implementation of IDEM in MATLAB
®
  

To implement IDEM, a computer program was written and validated in the 

MATLAB
®
 programming language.  The MATLAB programming language was chosen 

due to its integrated graphics capabilities, symbolic mathematical operator, and 
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widespread availability. The program's flow chart in Figure 47 highlights the algorithm 

and structure of the program, which consists of the main script, IDCE.m, and three 

functions: fHDEMIPrep.m , fHDEMI.m, and bHDEMI.m. 

The remainder of this section provides details pertaining to the main script and 

function calls within the program.  For clarity, the Courier New font will be used in 

the remainder of this section to identify verbatim symbols or text taken from the 

MATLAB program. 
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Figure 47. Flow chart of MATLAB® program for calculating the feasible input spaces 

for linear and nonlinear response functions. 
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5.4.1 MATLAB script: IDCE.m 

The main script for the IDEM program, named IDCE.m, contains the five 

different inputs that will need to be adjusted for design problems containing up to three 

variables.  Note that IDCE.m and the three functions automatically adjust to the number 

of input variables entered by the user.  To change the program for a different design 

problem, the following five  inputs must be changed. 

 Symbolic input variables are the symbolic names given to the input variables.  In 

IDCE.m, the symbolic names are declared after the syms command using all 

upper-case letters.  The upper-case letters are not required, but are convenient for 

distinguishing between the symbolic variable name and the vector of discretized 

input values given the same name in lower-case letters.  After updating the names 

of the symbolic input variables, the new symbolic input variables names must be 

entered as arguments of the VAR vector.  For example, Figure 48 contains 

example code for defining the three symbolic input variables to 

DISSIPATEDENERGY, STRENGTH, and THICKNESS. 

 

syms DISSIPATEDENERGY

syms STRENGTH

syms THICKNESS

VAR=[STRENGTH DISSIPATEDENERGY THICKNESS];

 

 

Figure 48.  Example code for declaring the name of the symbolic input variables. 
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 Discretized input vectors are vectors that discretize the symbolic input variables 

into the desired values.  In IDCE.m, the discretized input vectors are adjusted by 

defining a vector using the same name as the symbolic input variables, but given 

in all lower-case.  If the names of any of the discretized input vectors are changed, 

the names of the discretized vectors should be updated in the v vector.  Note that 

the sequence of the symbolic input variables listed in VAR and the sequence of 

discretized input vectors listed in v must match.  Figure 49 gives example code 

for defining for the discretized input vectors that match the symbolic input 

variables given in Figure 48.  As defined in Figure 49, the  thickness vector 

will be equal to (39, 45, 51, 57, 63). 

 

dissipatedenergy=(20:5:80); % Dissipated energy density (MPa-mm)

strength=(11:0.5:18);      % Quasi-static tensile strength (MPa)

thickness=(39:6:63);       % panel thickness (mm)

v=[{strength} {dissipatedenergy} {thickness}];

 

Figure 49.  Example code for defining the discretized input vectors. 

 Uncertainty of input variables is the amount of uncertainty of the discretized 

input vector expressed in the same units as the variables in the discretized input 

vector and as a absolute value of the deviation.  As such, the uncertainty of input 

variables accounts for Type II Robustness.  In IDCE.m, the discretized input error 

is specified by the ie1, ie2, and ie3 variables. 
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 Response functions are the nominal, upper, and lower response functions, which 

have determined from either numerical simulations, analytical models, or 

experimental data.  In IDCE.m, the nominal, upper, and lower response functions 

are specified by the f, fmax, and fmin variables in terms of the symbolic input 

variables.  It is through fmax and fmin that IDEM accounts for Type III 

Robustness.  An example code is given in Figure 50 for defining the three 

different response surfaces. 

 

f = 0.0668 ...

+ 0.0074*THICKNESS + 0.0081*STRENGTH ... 

- 0.0282*DISSIPATEDENERGY + 0.0004*THICKNESS*STRENGTH ...

+ 0.0000*STRENGTH*DISSIPATEDENERGY ...

+ 0.0010*DISSIPATEDENERGY*THICKNESS;

fmax=0.0678 ...

+ 0.0074*THICKNESS + 0.0081*STRENGTH ... 

- 0.0282*DISSIPATEDENERGY + 0.0004*THICKNESS*STRENGTH ...

+ 0.0000*STRENGTH*DISSIPATEDENERGY ...

+ 0.0010*DISSIPATEDENERGY*THICKNESS;

fmin=0.0668 ...

+ 0.0074*THICKNESS + 0.0081*STRENGTH ... 

- 0.0282*DISSIPATEDENERGY + 0.0004*THICKNESS*STRENGTH ...

+ 0.0000*STRENGTH*DISSIPATEDENERGY ...

+ 0.0010*DISSIPATEDENERGY*THICKNESS;

 
 

Figure 50. Example code for defining the nominal, maximum, and minimum response 

functions. 

 Performance Requirements are the requirements that the range of responses 

must satisfy for the discrete input to be considered part of the feasible input space.  

For simple cases involving a single response, the upper and lower performance 
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requirements are set by the fusl and flsl variables.  For single-sided 

performance requirements, set the non-necessary performance requirement 

variable to be equal to NoSL.  For example, if the performance requirement is that 

the material must have a tensile yield strength greater than or equal to 100 MPa, 

the performance requirement should be specified as flsl=100 and fusl=NoSL. 

For more complicated performance requirements which might be encountered in 

inductive decision paths containing three or more levels of hierarchy, a set of 

boundary points to the feasible domain is imported from the previous level of 

hierarchy.  The boundary points stored in Bnd2Plot are used to define a surface 

inside which are points that satisfy the performance requirements.  Should the 

performance requirements consist of more than one contiguous domain, IDCE.m 

needs to be run separate times for each contiguous domain. 

 

In addition to the five items listed previously, there are four variables – vlabel1, 

vlabel2, vlabel3, and cHDEMI – that need to be defined for labeling axes and titles of 

the graphical output.   

5.4.2 MATLAB function: fHDEMIPrep.m 

The function fHDEMI.m prepares response functions to be used within the 

IDCE.m script by calculating the symbolic partial derivatives of any function with respect 

to the symbolic variables listed in the n-length VAR vector.  The function requires two 

input arguments: (1) a response function (e.g. f, fmax, or fmin); and (2) a vector of 

symbol  variables used in the response function, i.e., the VAR vector.  The 
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fHDEMIPrep.m function returns a 1n  length cell of anonymous functions where the 

first element in the cell is the anonymous function of the response function and the 2
nd

 

through n+1 elements are anonymous functions of the partial derivatives of the variables 

listed in VAR, i.e., 

 

.









fHDEMI(f,VAR){1}=f

f
fHDEMI(f,VAR){2}=

VAR(1)

f
fHDEMI(f,VAR){n+1}=

VAR(n)

 (25) 

In MATLAB, cells are similar to vectors in that they can store variables or numbers, but 

cells may also store text strings and anonymous functions.  Hence, cells are a generalized 

form of a vector.  The term anonymous function refers to a class of functions that are 

defined within scripts and do not require a standalone file.  As such, anonymous 

functions are more flexible than traditional functions and can as elements in a cell. 

5.4.3 MATLAB function: fHDEMI.m 

For input points whose responses must satisfy a scalar interval, the function 

fHDEMI.m calculates the value of HDEMI  for each discrete set of input values.  The 

function requires five arguments: (1) an array of anonymous functions in the sequence  

 

,

 

 

 

 

 

 

f f
f, , , ,

VAR(1) VAR(n)

fmax fmax
fmax, , , ,

VAR(1) VAR(n)

fmin fmin
fmin, , , 

VAR(1) VAR(n)

 (26) 
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where n is the length of the VAR vector; (2) an n-length vector of the discrete input values 

to calculate the HDEMI value for; (3) an n-length vector of the uncertainties associated 

with each discrete input value; (4) the lower performance requirement; and (5) the upper 

performance requirement.  If the mean response is outside of the performance 

requirements, fHDEMI.m  returns a scalar value of -1.  Otherwise, fHDEMI.m returns the 

scalar result of Eq. (20). 

 The fHDEMI.m function is first called by IDCE.m to determine the values of 

HDEMI for each set of discretized input values.  After HDEMI values for each discrete 

input value have been calculated, fHDEMI.m is called by bHDEMI.m to determine the 

HDEMI value of midpoint value during a bisection root-finding method. 

For responses having performance requirements defined as a series of points in an 

m-dimensional space, fHDEMI.m is not called.  Instead, the list of boundary points 

BndPoints and feasible points FeasPoints defining the performance requirement are 

used to define an m-dimensional Delaunay triangulation.  The Delaunay triangulation is 

then used to determine HDEMI values per Eq. (20) in the m-dimensional space. 

5.4.4 MATLAB function: bHDEMI.m 

Given a performance requirement for an output space, the function bHDEMI.m is 

determines the boundary points, i.e., points such that HDEMI equals one, between the 

feasible and infeasible input spaces.  To accomplish this task, bHDEMI.m employs a 

bisection method up to a finite number, kmax, of iterations. 

The function bHDEMI.m requires eight arguments: (1) the array of anonymous 

functions specified in Eq. (26); (2) an n-length vector specifying a feasible input point, 
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where n is the length of VAR; (3) an n-length vector specifying an infeasible input point 

that is adjacent to the feasible input point; (4) an n-length vector specifying the 

uncertainty of the feasible and infeasible input points, which are assumed to have the 

same uncertainty; (5) lower performance requirement; (6) upper performance 

requirement; (7) upper bound of the allowable HDEMI value, HTP, which is typically set 

equal to 1.005; (8) lower bound on the allowable HDEMI value, HTM, which is typically 

set equal to 0.995.  If the bisection method finds a boundary point, bpy , with an HDEMI 

value between HTM and HTP with fewer iterations than kmax, the function returns bpy  as 

an n-length vector.  If a root of the equation is not determined before the maximum 

number of iterations, bHDEMI.m returns with an error. 

5.5 Advantages of using IDEM in computational materials design 

Computational materials design using IDEM has several advantages over other 

approaches.  First, IDEM is capable of determining either optimal or robust solutions.  As 

previously mentioned, robust solutions offer significant advantages for batch processes 

such as the manufacture of NSCs and UHPCs.  Second, IDEM separates the hierarchical 

design problem  into tasks between each level of hierarchy.  By separating the 

hierarchical design problem to tasks at each level, changes to the range of the input space, 

discretization of the input space, or the response function between input space and the 

output space can be made quickly.  This is especially important in multilevel designs 

because only the input and output spaces of interest need to be recalculated.  Third, 

IDEM is parallelizable due to its modular nature.  Fourth, IDEM is well suited to design 

problems at the early stages of design.  It is often in the early stages of design that 



 138 

significant portions of time are lost due to trying to determine the optimum of a local 

extremum, without understanding if the extremum satisfies the system-level 

requirements.     

5.6 Summary 

The materials design process consists of bottom-up mappings and top-down 

inductive decision path which must be solved simultaneously.  The bottom-up deductive 

mappings seeks to accurately determine relations between causes and effects via 

experimental data, analytic models, or computational models.  The inductive decision 

path seeks to efficiently determine feasible input spaces that satisfy the system-level 

performance objectives.  Whereas the deductive mappings seek to employ accurate 

relations, the inductive decision path seeks to mitigate the effects of uncertainty. 

Uncertainty can be classified as aleatory uncertainty, defined as the irreducible 

uncertainty that can only be quantified in a statistical sense, or epistemic uncertainty, 

which can be reduced via a larger number of measurements or more accurate 

measurements.  For purposes of computational materials design, uncertainty is further 

classified into Natural Uncertainty, Model Parameter Uncertainty, Model Structure 

Uncertainty, and Propagated Uncertainty.  The presence of uncertainty motivates the 

choice of robust solutions instead of optimal solutions. 

The three types of robust solutions considered are Type I, Type II, and Type III.  

Type I robust solutions seek to find values of input variables that satisfy system-level 

performance requirements with account of noise variables.  Type II robust solutions seek 

to values of input variables that satisfy the performance objectives with account for 
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uncertainty in the value of the input variables.  Type III robust solutions seek to find 

values of input variables that satisfy performance objections with account for uncertainty 

in the response functions. 

Robust solutions are implemented in the inductive decision path via the Inductive 

Design Exploration Method (IDEM) (Choi et al., 2008), which is a systematic three-step 

method that determines feasible values of input variables for a given performance 

requirements.  Between any two spaces, IDEM discretizes the input space into points, 

projects each input point to a range of output in the output space, and determines if each 

input point satisfies the output space’s performance requirement.  The set of input points 

satisfying the performance objective are defined as the feasible input space, around which 

a boundary is defined.  The design of multiscale materials is possible by recursive 

applications of IDEM, in which the boundary of the feasible input space at the coarser 

level of hierarchy becomes the performance requirement at the finer level of hierarchy. 

IDEM was programmed and verified in the MATLAB
®
 programming language 

for responses having up to three input variables, which had to satisfy three performance 

requirements simultaneously.  Details of the MATLAB program are listed in this 

dissertation such that the IDEM code can be used by other researchers. 

IDEM is well suited to the computational materials design process because it: (1) 

can determine either optimal or robust designs; (2) separates hierarchical design problems 

into a systematic three-step algorithm which can be applied recursively for multilevel 

problems; (3) can be implemented in a parallelized computational environment due to its 

modular nature; and (4) finds ranges of feasible solutions, which is important at the early 

stages of design. 
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                 CHAPTER 6: APPLICA TION: D ESIGN OF U HPC MATERIA LS AND STRUCTUR ES FOR BLA ST AND IMPAC T 

APPLICATION: DESIGN OF UHPC MATERIALS AND 

STRUCTURES FOR BLAST AND IMPACT 

 

This chapter applies the materials design methodology presented in Chapter 5 to 

the design of UHPC materials and structures.  The design problem is divided into two 

steps.  The first step is to determine the feasible input space of constituent attributes, 

constituent properties, processing conditions, and panel thickness such that a 1,625.6-mm 

tall by 863.6-mm wide UHPC panel (cf. Figure 24) survives blast loading and a 304.8-

mm tall by 304.8-mm wide panel made of the same UHPC material and to the same 

thickness as the blast panel survives ballistic impact.  The second step is to identify 

preferred solutions that satisfy the performance requirements and are preferred in terms 

of objective functions that may include mass or cost of the panel. 

The sections of this Chapter are as follows.  Section 6.1 defines the performance 

requirements for the two objectives considered.  Section 6.2 presents the Process-

Structure-Properties-Performance (PSPP) mapping used for the design of UHPC 

materials.  Sections 6.3, 6.4 and 6.5 detail the process-structure, structure-property, and 

property-performance relations, respectively.  Section 6.6 presents results of the feasible 

design space as well as minimized mass and minimized costs solutions.  Section 6.7 

summarizes the chapter and presents conclusions. 
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6.1 Multifunctional performance requirements 

6.1.1 Blast loading 

The performance requirement for “blast loading” is defined such that a 1,625.6-

mm tall by 863.6-mm wide UHPC panel should survive, i.e., not fracture into two or 

more pieces, a blast load with a specific impulse, I , between 1.25- and 1.5-MPa-ms. 

The UHPC panel’s response, i.e., either survive the blast load or fracture due to 

the blast load, is determined using the computational model for blast loading at the 

structural length scale (cf. Chapter 3.4), which is shown in Figure 51.  In the model, the 

blast load is applied to the proximal face with a pressure max

2

15 ms

I
p   at 0 ms and 

linearly decreases to 0 Pa at 15 ms.  Prior to and during blast loading, the simulated panel 

is constrained by four restraints (shaded gray in Figure 51) modeled with a linear elastic 

constitutive relation utilizing a 200-MPa Young’s modulus, 0.3 Poisson ratio, and 7.85-

g/cm
3
 mass density.   The back restraint in the positive x2 direction is fixed on its positive 

x2 face; the back restraint in the negative x2 direction is fixed on its negative x2 face.  All 

four restraints are fixed at their positive and negative x1 faces.  In this manner, the 

boundary conditions are similar to, but not exactly the same as, “simply supported” 

boundary conditions. 

The UHPC panel is modeled using bulk elements separated by zero-thickness 

cohesive elements.  The bulk elements utilize the Drucker-Prager constitutive relation, 

described in Section 3.1.1 of this dissertation, with a 200-MPa unconfined compressive 

strength, 2.57-g/cm
3
 mass density, 58.4-GPa Young’s modulus, 28º internal friction 
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angle, 20º dilation angle, and K   0.8.  Between each adjacent pair of bulk elements, a 

zero-thickness cohesive element is placed to simulate fiber pullout.  The zero-thickness 

cohesive elements utilize the strain-rate sensitive traction-separation relation described in 

Section 3.4.1 of this dissertation.  Cohesive elements use a stiffness of 200 GPa, quasi-

static tensile strength values between 10 and 20 MPa, and dissipated energy density 

values between 20 and 100 kJ/m
2
.  Prior to the application of blast loads, the panel is 

assumed to be as manufactured, i.e., neither perforated due to ballistic impact nor 

containing damaged cohesive elements.   

Cementitious Blast 

Panel
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Front Restraint (Steel)

Darker red = higher strength

Lighter red = lower strength
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Figure 51. Model of blast loading at the structural length scale. 
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6.1.2 Impact loading 

The performance requirement for “impact loading” is that a 304.8-mm tall by 

304.8-mm wide panel made from the same material and the same thickness as the blast 

panel must not completely fracture due to the impact of a 0.50-cal bullet (12.95-mm 

diameter, 58.67-mm length, and 42.8-g mass (DiPaolo et al., 2012)) traveling between 

900 and 1,000 m/s and striking the panel at an obliquity angle of 0º.  The performance 

requirement limits neither perforation nor penetration of the UHPC panel by the 

projectile. 

The UHPC panel’s response is simulated by the model of penetration at the 

structural length scale (cf. Chapter 4), which is shown in Figure 52.  In the model, the 

simulated projectile (shaded in orange) impacts the center of the positive x3 face of the 

simulated UHPC panel (shaded in gray) at imposed velocities between 900 and 1,000 

m/s.  The projectile is modeled as a rigid part; the UHPC panel is modeled using the same 

arrangement and material properties as the bulk and cohesive elements in the blast model 

at the structural length scale.  The UHPC panel has traction free surfaces on all six 

exterior faces. 
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Figure 52.  Model of penetration at the structural length scale. 

6.2 Process-structure-properties-performance (PSPP) Map 

To employ the Inductive Design Exploration Method (IDEM), a set of process-

structure-property-performance (PSPP) mappings must be defined.  Here, it is assumed 

that the PSPP mappings shown in Figure 53 define the relevant relations for the design of 

UHPC for the multifunctional objectives considered.  In Figure 53 , cause-and-effect 

relations are read from left to right and designated by straight lines without arrows.  The 

arrows in the processing path indicate a time sequence, not cause-and-effect relations.  

Some of the process parameters are surrounded by parentheses, indicating that the 

process parameter is listed for a reference, rather than as inputs to cause-and-effect 

relationships.  The PSPP mappings for structures, properties, and performance are 

separated into micro-, meso-, and macro-scale relations, which allows delineation of the 

PSPP mappings for a multiscale material such as UHPC.  For each of the process-
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structure, structure-property, or property-performance relations shown in Figure 53, a 

relation is defined analytical models or numerical modeling which have been validated by 

experimental data.   
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Figure 53. A set of process-structure-property-performance (PSPP) mappings for design 

of UHPC subject to blast and ballistic loading. 



 146 

6.3 Process-structure relations 

6.3.1 Mix Constituents and curing Temperature to Porosity (MCTP) model of 

hydrated UHPC 

The relation between the mix constituents, curing temperature, and the porosity in 

the hardened cement paste depends on the constituent volume fractions, constituent sizes, 

hydration of the cement paste, interfacial transition zone, and the curing procedure.  To 

account for these dependencies, the model assumes hydrated concrete consists of three 

phases: aggregate, bulk hardened cement paste (or bulk paste), and the Interfacial 

Transition Zone (ITZ).  The first phase, aggregates, consists of coarse and fine aggregates 

that are assumed to be non-reactive during the hydration process.  Aggregates are 

characterized by their shape, specific gravity, and their distribution of sizes.  The volume 

fraction of aggregate, aggV , is defined as volume of solids in the aggregate to the volume 

of UHPC.  The remaining volume is assumed to consist of bulk paste and ITZ. 

The second phase, bulk paste, consists of the products of hydration, water, and 

porosity.  Within bulk paste, the porosity is delineated into gel and capillary porosity.  

Adopting the definition used by Klobes et al. (2008), gel porosity is defined as porosity 

with characteristic radii less than 25 nm, which represents the porosity within the 

Calcium-Silicate-Hydrate (CSH) gel.  Capillary porosity is defined as porosity with 

characteristic radii between 25 nm and 25 μm, representing the porosity between CSH gel 

structures.  

The third phase of material, the Interfacial Transition Zone (ITZ), is a relatively 

porous region between the aggregate and the bulk paste.  Although relatively thin with a 
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typical thickness between 10 and 40 μm, ITZ can occupy up to 20 to 40% of the volume 

of the combined volume of bulk paste and ITZ in a normal strength concretes (Mindess et 

al., 2002).   Similar to the bulk paste, the ITZ is delineated into gel and capillary porosity 

using the same definitions given above.   

Figure 54 shows the set of process-structure relations used within the Mix 

Constituent and curing Temperature to Porosity (MCTP) model.  Starting at the bottom of 

the process column, w cm  is the mass ratio of water to cementitious material, cemV  is the 

volume fraction of Portland cement, and SFV  is the volume fraction of silica fume. In the 

structure column, aggV , ITZV , and pasteV  are the volume fractions of aggregate, ITZ, and 

bulk paste.  The total volume fraction of pores, poreV , is delineated into gel porosity 

within the bulk paste, ,gel pasteV , capillary porosity within the bulk paste, ,cap pasteV , gel 

porosity within ITZ, ,gel ITZV , and capillary porosity within the ITZ, ,cap ITZV , each with 

their own respective characteristic radii, denoted by r  with a matching subscript.  The 

mean pore radius, porer , is a linear combination of the delineated pore radii and their 

respective volume fractions. 

The components of the MCTP model are not new; the MCTP model is a new 

combination of previously documented models assembled in the following sequence.  

First, ITZV  is calculated from aggV  and an assumed aggregate size distribution via the void 

exclusion probability model introduced by Lu and Torquato (1992) and later applied to 

cementitious microstructures by Garboczi and Bentz (1998).  Next, the ratios of gel 

porosity to bulk paste and capillary porosity to bulk paste are calculated using w cm  and 

the desired hydration levels within the Powers hydration model (cf. Mindess et al., 2002).  
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The maximum porosity in the ITZ has been empirically determined to be two to three 

times that of the total porosity of the bulk paste (Ollivier, Maso, & Bourdette, 1995).  The 

total porosity in the ITZ is determined by assuming an ITZ thickness of 20 μm, the 

maximum porosity in the ITZ is 2.5 times that of the total porosity in the paste, and that 

the maximum porosity in the ITZ cannot exceed 1.  Then, the Powers hydration model is 

employed to calculate the gel porosity in the ITZ, which is then subtracted from the total 

ITZ porosity, thus allowing the capillary porosity in the ITZ to be calculated.  Finally, the 

radii of gel pores are assumed to be constant; the radii of the capillary pores are assumed 

to be a function of packing density of silica fume, as calculated by the Linear Packing 

Model (Stovall, de Larrard, & Buil, 1986),  and curing temperature. 
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Figure 54. Process-structure (PS) relations used to determine volume fraction of 

porosity, poreV , and the mean pore radius, porer . 



 149 

6.3.2.1 Analytical theory of ITZ in cementitious materials 

The volume fraction of ITZ, ITZV , is predicted by the void exclusion probability 

model used by Garboczi and Bentz (1998), who assumed that hydrated concrete can be 

additively decomposed into aggregate, bulk paste, and ITZ.  Thus, the volume fraction of 

ITZ is given by 

  1ITZ V ITZ aggV e t V   , (27) 

where ITZt
 is the thickness of the of ITZ surrounding the aggregates, aggV

 is the volume 

fraction of aggregate, and 
 V ITZe t

 is a function derived by Lu and Torquato (1992) 

describing the volume of the bulk paste surrounding a hard-particle and the hard 

particles’ inter-penetrable shells.  The function form of Ve
 is  

 
     2 31 expV ITZ agg ITZ ITZ ITZe t V N ct d t g t     

  , (28) 

where N  is the total number of aggregates in a unit volume defined by 

 
1

3 31

1

9
ln

4

M agg agg i i

i
ii i

V V r
N

rr r

 





 
  

  
 , where M  is the total number of bins (or sieves used in 

aggregate sieve analysis) used in the aggregate size distribution, agg iV   is the volume 

fraction of aggregates in the thi  bin, 1ir   is the largest radius particle in the bin, ir  is the 

smallest radius particle in the bin, and c , d , and g  are functions defined by  
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In the preceding equation, 2  is defined as 2

2 2 / 3N R  , A  is a constant assumed 

to be equal to zero following the work of Garboczi and Bentz (1998), and R  and 2R  

are averages in terms of the number of aggregates of the assumed particle size defined as 

 
 

1 1
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






  . (30) 

The assumed thickness ITZt  is guided by the computational results of Garboczi 

and Bentz (1991), who determined ITZt  to be approximately equal to the diameter of 

monodisperse simulated cement grains within a two-dimensional simulation.  Here, it is 

assumed ITZt  = 20 μm, which is similar to the 15 μm median diameter of cement grains. 

The porosity within the ITZ has been experimentally determined to increase from 

the far-field value of the bulk porosity at a distance ITZt  from the surface of each 

aggregate to a maximum value at the surface of each aggregate (e.g. Gao et al., 2013).  

The maximum value of porosity has been experimentally measured to lie between 1.6 and 

3.5 (Gao et al., 2013) for cement pastes without silica fume and was recommended to be 

within a range of 2 to 3 (Ollivier et al., 1995).  In this work, it is assumed that the 

porosity within the ITZ linearly increases from a far-field value at a distance ITZt  from 

the surface of each aggregate to a maximum value of 2.5 times the far-field porosity of 
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the bulk cement paste.  Should the value 2.5 times the far-field porosity value exceed 

unity, the maximum porosity value is set equal to unity.   

6.3.2.2 Powers hydration model 

After calculating ITZV , the volume fractions of past and ITZ are know.  However, 

the amount of porosity within each phase remains unknown.  Here, the Powers hydration 

model (cf. Mindess et al., 2002) is adopted to determine the amount of porosity present as 

a function of the water to cementitious material ratio and the degree of hydration.   

The Powers hydration model assumes that hydrating water is either evaporable or 

non-evaporable.  Evaporable water evaporates at a temperature of 105 ºC and resides 

within either gel or capillary pores, which have characteristic radii on the order of 1-25 

nm and 25-25,000 nm, respectively (Klobes et al., 2008).  The mass of water in the gel 

pores, in units of gram of water per gram of original cement, is given by 

 0.18gw  , (31) 

where   is the degree of hydration which monotonically increases from zero to a 

maximum value of one, and 0.18 is a constant of proportionality empirically determined.   

Non-evaporable water is chemically bound within Calcium-Silicate-Hydrate (CSH) and 

may only be released by heating CSH to 1000 ºC (Mindess et al., 2002).  The mass of 

non-evaporable water, in units of gram of water per gram of original cement, is given by 

 0.24nw  , (32) 
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where 0.24 is a constant of proportionality empirically determined to account for the 

stoichiometry of the chemical reaction.  For complete hydration, i.e., 1  , the minimum 

ratio of the mass of water to the mass of original cement is given by 

 min g nw w w  , (33) 

which can also be stated as the minimum water to cement ratio,  
min

0.42w c  .  For 

UHPCs, w c  ratios of between 0.20 and 0.30 are typical, leading to reduced maximum 

possible levels of hydration, poss , calculated by 

 
 

min
0.42

poss

w c w c

w c
   . (34) 

During hydration, the Powers model separates the hydrated cement paste into four 

constituents: unhydrated cement, hydration products (i.e., cement gel), gel pores, and 

capillary pores.  The volume of unhydrated cement, in terms of cm
3
 / g of original 

cement, is given by 

  
1

1u

cem

V
sg

  , (35) 

where 3.15cemsg   is the specific gravity of cement.  The volume of hydration products 

excluding gel pores, in cm
3
 per g of original cement is given by 

 V 0.50hp  . (36) 

The volume of gel pores, which are assumed to be saturated with water, is given by 

 V 0.18g  , (37) 

and the volume of capillary pores is given by 

 V 0.36c w c   . (38) 

The initial volume of cement paste is given by 
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1

Vp

cem

w c
sg

  . (39) 

The volume fraction of capillary pores to cement paste is given by 

 
/

0.36

1cap paste

cem

w c
P

w c
sg






, (40) 

and the volume fraction of gel pores to cement paste is given by 

 
/

0.18

1gel paste

cem

P

w c
sg






. (41) 

6.3.2.3 Packing density of silica fume prior to hydration 

It is known that the addition of silica fume reduces the porosity, specifically the 

porosity within the ITZ of hardened cement paste.  One explanation is that silica fume, 

which has mean diameters between 0.1 and 0.3 μm, serves as a pozzolanic interstitial 

particle between cement particles with median particle diameters between 10 and 20 μm 

prior to hydration.  To account for this effect, the MCTP model incorporates a particle 

packing to determine the ratio of the actual volume fraction of silica fume to the volume 

fraction of silica fume which provides the densest possible dry packing density. 

There are a large number of packing models which have been classified by Kumar 

and Santhanam (2003) as discrete or continuous.  Within discrete models, the models are 

further classified as binary (e.g. Furnas, 1931), ternary (e.g. Goltermann, Johansen, & 

Palbol, 1997), and multi-component (e.g. Fedors & Landel, 1979; Larrard, 1999; Stovall 

et al., 1986).  Continuous models are strictly multi-component.  Further classification is 

possible based the types of effects, i.e., wall effects, loosening effects, or compaction 
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effects, incorporated into the model.  Wall effects are the changes to packing density 

caused by the interaction of relatively small particles with a much larger particle.  

Loosening effects are the changes to packing density due to a smaller particle not 

completely fitting within the vacancy caused by a larger particle.  Compaction effects are 

the changes in packing density due to the compaction of particles.  A comparison of 

packing models by Jones, Zheng, and Newlands (2002) found that the different models 

predicted packing densities for binary systems within 2.4 to 5.5 % of actual packing 

densities, deviated by up to 42% in the volume fraction of the small component to 

maximize the packing density, and that the major differences in the predicted packing 

density of the models arises when the ratio of small to large particle diameters is greater 

than 50%. 

The design of UHPC materials utilizes the Linear Packing Model (LPM) 

introduced by Stovall, de Larrard, and Buil (1986).  The LPM models an n-component 

system and accounts for the packing density of each component, i , volume fraction of 

each component, iV , wall and loosening effects, and the distribution of each component’s 

size with a mean radius, ir .  The model assumes that the n-components are rank sorted by 

size such that 1 ... ...i nr r r    .  The packing density of the mix of components, mix , is 

the minimum of the n equations describing the packing density of the thi  fully-packed 

system, i.e., 

 
     

1

1 1
1 1 , ,

i
i i n

i j jj j i
g i j V f i j V







  


   

. (42) 
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In Eq. (42), i  is the fully-packed packing density of the thi  component (i.e., i i  ), 

 , 1 i

j

r
g i j

r
   adjusts for the wall effect of small particles encountering a particle of 

much larger radius, and  

  

 

3

3

1

,
1 1

,

j i

i i
j i

jT i j

r r

f i j r
r r

rr r



 







  
     

 

 (43) 

adjusts for the loosening effect.  In Eq. (43),   is the ratio of the voids between larger 

sized particles to the radius of the larger sized particles which is assumed to be 0.2, and 

      3 3 31 1 3 1i
T i j i

r

r r
r


            

 
 is a functional relationship 

determined by assuming that two components of the radius will have equivalent mix  for 

0.5i j   .  For jr  sufficiently small that that it does not displace the thi  component, 

 ,f i j  does not predict any loosening.  However, the packing density of the mix is 

reduced should the 
thj  particle displace the thi  particles due to the loosening effect. 

Although it is possible to assign particle size distributions, Eq. (42) provides a 

better estimation when the diameter of the smaller particle is at most 50% of the diameter 

of the next larger particle.  Therefore, this work will assume that distributions of coarse 

and fine aggregates can be lumped into a mean value. 

Validation of the packing model is shown in Figure 55, which shows a 

comparison of the results of the packing model to results presented by Stovall, de 

Larrard, and Buil (1986) for binary systems with 1 2r r  ratios of 0.0143, 0.06, 0.089, 

0.153, 0.290, and 0.29, and 1 2 0.62   .  In Figure 55, smallV  is the volume fraction of 
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the smaller particle.  The results presented by Stovall, de Larrard, and Buil deviate by a 

mean difference of 2% from the experimental data of McGeary (1961), who measured the 

packing density of steel spheres.  

Stovall, de Larrard,     Simulated

r1/r2 and Buil (1986)          Results

0.0143

0.060

0.089

0.153

0.209

0.290

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.00 0.25 0.50 0.75 1.00

ρ
m

ix

Vsmall  

Figure 55. Comparison of simulated mix  for a binary system of particles.  Data points 

were reported by Stovall, de Larrard, and Buil (1986); data used to construct 

the solid lines were generated by the model described in Section 6.3.2.3. 

The packing density of individual components, i , depends on the arrangement 

and the shape of the particles.  A hexagonal close packed arrangement of spheres has a 

packing factor of 0.74, whereas randomly placed spheres have a packing factor of 

approximately 0.64 (Cumberland & Crawford, 1987).  For non-spherical particles, such 

as sand, the packing factor is approximately 0.56 (Stovall et al., 1986). 

6.3.2.4 Validation of the combined packing and hydration model 

The combined packing and hydration models are compared to Mercury Infusion 

Porosity (MIP) measurements of a NSC and HSC cured at room temperature and a UHPC 

cured at 250 ºC, as reported by Klobes et al. (2008).  The data from Klobes et al. is 



 157 

summarized in Table 11, in which CEM I 32.5 R, CEM I 42.5 R, and CEM I 52.5 R are 

types of Portland cement specified by the European standard EN 197-1 to develop 

minimum unconfined compressive strengths of 32.5, 42.5, and 52.5 MPa, respectively, at 

28 days (Lyons, 2012).  The ‘R’ designation indicates high early strength development 

with minimum unconfined compressive strengths of 10, 20, and 30 MPa, respectively, 

after 2 days. 

Table 11.  Cementitious constituents, composition (kg of constituent / m
3
 of concrete), 

and Mercury Infusion Porosity (MIP) measurements reported by Klobes et al. (2008). 

Concrete Normal Strength 

Concrete (NSC) 

High Strength 

Concrete (HSC) 

Ultra-High 

Performance 

Concrete (UHPC) 

Composition    

Cement type CEM I 32.5 R CEM I 42.5 R CEM 52.5 R 

Cement (kg/m
3
) 310 500 500 

Silica fume (kg/m
3
) - 50 116 

Fly ash (kg/m
3
) - - 123 

Quartz filler (kg/m
3
) - - 82 

w/c 0.60 0.24 0.28 

w/cm 0.60 0.22 0.23 

Superplasticizer (%) - 4.5 2.8 

Aggregate (kg/m
3
) 1827 1672 1340 

Max size aggregate (mm) 32 16 2 

Curing 6 days 20 ºC 

underwater 

6 days 20 ºC 

underwater 

3 days underwater, 

2 days 250 ºC  

Porosity    

Total porosity (%) 16.9 11.4 8.8 

Gel porosity (%) 

( 2 25r   nm) 

5.5 3.6 6.1 

Capillary porosity (%) 

( 25 25,000r   nm) 

11.2 7.6 2.6 

Mean pore radius (nm) 54.1 29.8 3.0 

 

 

Because silica fume is pozzolanic and undergoes a hydration reaction in the 

presence of water, the listed w c  ratios of 0.60, 0.24, and 0.28 overestimate the true mass 

ratio of water to reactive materials.  Thus, it is appropriate to replace w c  with the mass 
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ratio of water to cementitious materials, w cm , within the Powers model.  Here, the mass 

ratio of water to cementitious materials is defined as  

 
1 2 ...

W
w cm

C k SF k FA


  
, (44) 

where W  is the mass of water, C  is the mass of cement, SF  is the mass of silica fume, 

1k  is a pozzolanic efficiency factor for silica fume, FA is the mass of fly ash, 2k  is 

pozzolanic efficiency factor of fly ash, and the ellipse represents other secondary 

cementitious materials (Siddique, 2008).  The determination of ik  values has been 

framed in terms of an equivalent 28-day unconfined compressive strength for concretes 

having the same workability and same mass of cement (e.g. Hassaballah & Wenzel, 

1995), and in terms of mass of cement that could be replaced with the mass of secondary 

cementitious material (Wong & Abdul Razak, 2005).  A review of models and 

experimental work of Wong and Abdul Razak (2005) indicates unique values of ik  are 

elusive, even for a binary mixture of cement and one type of secondary cementitious 

material.  For this dissertation, it is assumed that the efficiency factors for silica fume and 

fly ash are one and zero, respectively, which follows the convention of Klobes et al. 

(2008).  This definition yields a w cm  values of 0.60, 0.22, and 0.23 for the composition 

shown in Table 13. 

The remaining physical properties of the constituents were not listed by Klobes et 

al. (2008), but are assumed to be in accordance with the physical properties reported by 

Mindess, Young, and Darwin (2002) and Yazici et al. (2009) listed in Table 12.  In Table 

12, i  is the packing factor used within the Linear Packing Model with values given by 

Stovall, de Larrard, and Buil (1986). 
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Table 12.  Physical properties of Portland cement, pozzolans, and quartz powder. 

Material Mean size 

(μm) 

shape specific 

gravity 
i  

3
 

Portland cement 
1
  10-15 angular, irregular 3.15 0.56 

fly ash 
1
 10-15 most spherical 2.3 0.56 

Silica fume 
1 

 0.1-0.3 spherical 2.2 0.64 

quartz powder 
2
  100-400  angular 2.7 0.56 

1
 Mindess, Young, and Darwin (2002) 

2
 Yazici et al. (2009) 

3
 Stovall, de Larrard, and Buil (1986) 

 

 

The coarse and fine aggregates are assumed to following the gradation data given 

in Table 13, which were constructed using the ASTM’s Standard Specification for 

Concrete Aggregates (2008b) and the maximum size aggregate given in Table 11.  

Furthermore, it was assumed that the volume of coarse aggregates is 1.5 times the volume 

of the fine aggregates in accordance with Garboczi and Bentz (1998).  The assumed 

specific gravity and packing factors for both coarse and fine aggregates is 2.7 and 0.56.  

For reference, the fineness modulus of the assumed fine aggregate in the NSC and HSC is 

3.15; the fineness modulus (cf. Mindess et al., 2002)of the assumed fine aggregate in the 

UHPC is 3.25. 

 



 160 

Table 13.  Assumed gradation of coarse and fine aggregates. 

Concrete Normal Strength 

Concrete (NSC) 

High Strength 

Concrete (HSC) 

Ultra-High 

Performance 

Concrete (UHPC) 

Sieve Parameters 
Volume fraction contained within each sieve 

Dmin (mm) Dmax (mm) 

0.075 0.15 0.04 0.04 0.11 

0.15 0.30 0.08 0.08 0.18 

0.30 0.60 0.12 0.12 0.24 

0.60 1.18 0.10 0.10 0.29 

1.18 2.36 0.06 0.11 0.18 

2.36 4.75 0.00 0.10 0.00 

4.75 9.5 0.05 0.30 0.00 

9.5 12.5 0.10 0.10 0.00 

12.5 19.5 0.30 0.05 0.00 

19.5 25.0 0.10 0.00 0.00 

25.0 37.5 0.05 0.00 0.00 

 

 

To demonstrate the MCTP model, an example calculation of the poreV  and porer  is 

given for the NSC material reported by Klobes et al. (2008).  First, the volume fraction of 

aggregate is calculated as 

 
3

3

kg aggregate 3

m  concrete

kg aggregate 3

m aggregate

1827 m aggregate
0.677 ,

2700 m  concrete

agg

agg

agg

m
V


    (45) 

Using 0.677aggV  , ITZt  = 20 μm, and the Normal Strength Concrete aggregate gradation 

given in Table 13, the void exclusion probability model calculates 
57.21 10R   , 

2 7.66 10 9R    , 89.48 10c   , 2 740  , 0.0015d  , 8.21g  , and 

3

3

m ITZ

m  concrete
0.101ITZV  .  The volume fraction of the bulk paste, pasteV , here defined to be 

not within a distance ITZt  of any aggregate surface  is  

 

3

3

m paste
1 0.222 .

m  concrete
paste agg ITZV V V     (46) 
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The porosity within the paste, also referred to as the far-field porosity in Section 6.3.2.1, 

is calculated using the Powers hydration model.  Using w cm  = 0.6, the Powers 

hydration model predicts the hydration is complete, i.e., 1  , /cap pasteP  = 0.262, and 

/gel pasteP  = 0.196.   The volume fractions of capillary pores in the paste and of gel pores in 

the paste are calculated as 

 
  

  

, /

, /

0.262 0.222 0.058, and

0.196 0.222 0.044.

cap paste cap paste paste

gel paste gel paste paste

V P V

V P V

  

  
 (47) 

The maximum porosity in the ITZ, maxP , is equal to the minimum of either one or 2.5 

times the porosity in the paste, i.e., 2.5 × (0.262 + 0.196) = 1.15.  In this case, the 

maximum porosity in the ITZ is set equal to one.  The volume of porosity in the ITZ 

divided by the volume of the ITZ, ITZP , is calculated assuming a linear distribution of 

porosity throughout the ITZ, i.e.,   1
max / /2

0.729ITZ gel paste cap pasteP P P P    .  The 

volume fraction of the gel pores in the ITZ are calculated as 

   , / 0.196 0.101 0.020.gel ITZ gel paste ITZV P V    (48) 

The volume fraction of capillary porosity in the ITZ are calculated as 

     , / 0.729 0.196 0.101 0.053cap ITZ ITZ gel paste ITZV P P V     . (49) 

Results of the MCTP model and experimental results reported by Klobes et al. (2008) are 

compared in Table 14.  
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Table 14. Comparison of porosity volume fractions from MCTP model and MIP 

experimental data of Klobes et al. (2008). 

Concrete Normal Strength 

Concrete (NSC) 

High Strength 

Concrete (HSC) 

Ultra-High 

Performance 

Concrete (UHPC) 

 MCTP 

model 

Klobes 

et al. 

(2008) 

MCTP 

model 

Klobes 

et al. 

(2008) 

MCTP 

model 

Klobes 

et al. 

(2008) 

Parameter       

aggV  0.677 0.677 0.619 0.619 0.527 0.527 

ITZV  0.101  0.101  0.187  

     ,gel ITZV  0.020  0.018  0.034  

     ,cap ITZV  0.053  0.024  0.045  

actual  1.00  0.524  0.548  

pasteV  0.222  0.280  0.287  

     ,gel pasteV  0.044  0.049  0.085  

     ,cap pasteV  0.058  0.016  0.062  

Results       

poresV  0.175 0.169 0.107 0.114 0.147 0.088 

     ,gel poresV  0.064 0.055 0.067 0.036 0.085 0.061 

     ,cap poresV  0.111 0.112 0.040 0.076 0.028 0.026 

 

For the NSC and HSC samples, poreV  predicted by the MCTP model and 

measured by Klobes et al. (2008) agree within 7%.  For the NSC sample, the partitioning 

of the gel and capillary porosity is qualitatively correct, with the majority of the porosity 

classified as capillary porosity.  However, the partitioning of porosity within the HSC 

sample is qualitatively incorrect: the MCTP model predicts a majority of porosity within 

the gel pores, whereas measurements indicate the opposite.  One possible explanation for 

the discrepancy is the assumed 25 nm demarcation radius between gel and capillary 

porosity.  The experimental data of Klobes et al. (2008) indicate a pronounced peak in 
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porosity at a pore radius of 25 nm; thus, small measurement errors or ink bottle effects 

could alter the partitioning of porosity. 

For the UHPC, the MCTP model predicts poreV  = 0.147, and the experiments 

indicated poreV  = 0.088.  Here, the difference is attributed to the assumed thickness of ITZ 

and thermal curing, which has been observed by other researchers to reduce the porosity 

in the ITZ and the porosity throughout the bulk cement paste.  For example, Scheydt and 

Müller (2012) show SEM images indicating the presence of a 2- to 4-μm-thick ITZ 

surrounding steel fibers within a UHPC cured at 20 ºC for 28 days; however, a UHPC 

made from the same composition and cured for 3 days at 90 ºC shows the complete 

absence of an ITZ.  Accordingly, poreV  decreased by 39% from 0.089 to 0.054, which 

cannot be fully explained by changing the microstructure of the ITZ to match the bulk 

paste.  Similarly, Cheyrezy, Maret, and Frouin (1995) observed an 82% decrease in poreV  

from 0.085 to 0.015 for a non-fiber-reinforced UHPC cured at 20 and 90 ºC, respectively.  

For curing temperatures greater than 90 ºC, Cheyrezy, Maret, and Frouin (1995) found 

poreV  decreased by a maximum of 87%  at a curing temperature of 150 ºC.  Above 150 

ºC, poreV  increased such that poreV  at a 250 ºC curing temperature was slightly greater 

than poreV  at a 90 ºC curing temperature.  The decrease in poreV  reported by Scheydt and 

Müller (2012) and Cheyrezy, Maret, and Frouin (1995) is congruent with autogenous 

shrinkage and the increase of capillary stresses caused self-desiccation (Mindess et al., 

2002).  Here, a conservative estimate is applied such that poreV  decreases by 25% for 

curing temperatures at and above 90 ºC. 
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Table 15. Comparison of porosity volume fractions for UHPC using MCTP model and 

MIP experimental data of Klobes et al. (2008). 

Concrete Ultra-High 

Performance 

Concrete (UHPC) 

Ultra-High Performance 

Concrete (UHPC): no ITZ, 

25% capillary porosity 

reduction from heating 

 model exp. model exp. 

Parameter     

aggV  0.527 0.527 0.527 0.527 

ITZV  0.187  -  

     ,gel ITZV  0.034  -  

     ,cap ITZV  0.045  -  

actual  0.548  0.548  

pasteV  0.287  0.473  

     ,gel pasteV  0.085  0.064  

     ,cap pasteV  0.062  0.028  

Results     

poresV  0.147 0.088 0.085 0.088 

     ,gel poresV  0.085 0.061 0.064 0.061 

     ,cap poresV  0.028 0.026 0.021 0.026 

 

The MCTP model has been shown to estimate the total porosity to within 7% of 

three experimental measurements reported by Klobes et al. (2008); however, the mean 

pore size as a function of mix constituents and process remains to be determined.  As a 

first estimate, it is assumed that the average pore radius can be calculated as a volume 

weighted mean of the diameters of the four types of porosity, i.e., 

 
, , , , , , , ,

, , , ,

gel paste gel paste cap paste cap paste gel ITZ gel ITZ cap ITZ cap ITZ

pore

gel paste cap paste gel ITZ gel ITZ

r V r V r V r V
r

V V V V

  


  
, (50) 

where ,gel paster , ,cap paster , ,gel ITZr , and ,cap ITZr  are assumed  radii of the four of the four types 

of pores.  Both of the gel radii, i.e., ,gel paster  and ,gel ITZr , are assumed to be equal to 2 nm.  

The silica fume, which increases self-desiccation, and the effect of curing temperature are 
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assumed to reduce the pore radii of the capillary porosity, not the gel porosity.  Therefore, 

the relevant task is to determine ,cap paster  and ,cap ITZr  as functions of quantity of silica fume 

and curing temperature.  Here, an empirical relation is used to fit the data of Klobes et al. 

(2008) to the assumed forms 

 

 , 0 1 2

,max

, 3 4

,max

20 , and

,

SF
cap ITZ cure

SF

SF
cap paste

SF

V
r c c c T

V

V
r c c

V

   
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 (51) 

where SFV  is the volume fraction of silica fume, ,maxSFV  is the volume fraction of silica 

fume in a packing configuration in which the silica fume is fully packed thus filling all 

the vacancies between cement grains, and cureT  is the curing temperature specified in ºC.  

There is no assumed dependence of temperature on ,cap ITZr  because it is assumed that ITZ 

is absent after a UHPC is thermally cured.  After fitting the constants to data in Klobes et 

al. (2008), Eq. (51) is rewritten as 
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130 45 0.45 20 , and

35 60 .
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cap ITZ cure
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cap paste

SF

V
r T

V

V
r

V

   

 

 (52) 

Combining Eqs. (50) and (52) with data in Table 14, the MCTP model can be used to 

predict the average pore radii, porer .  Figure 56 shows the MCTP model’s estimate of porer  

as a function of the measured porer .  The solid black line represents a one-to-one 

correlation, and the two dashed gray lines represent ±10% deviation from a one-to-one 

correlation. 
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Figure 56. Comparison of average pore radii, porer , measured experimentally by Klobes 

et al. (2008) and estimated via MCTP model.  The solid black line represents 

a one-to-one relation and the dashed gray lines above and below the black 

line represent errors of ± 10%. 

6.3.2.4 Response surfaces 

The previously described model is used to create response surfaces to be used 

within IDEM.  For the response surface, it is assumed that all gradations of coarse and 

fine aggregates follows the gradation listed for in Table 16, which is identical to the 

gradation of coarse and fine aggregates for UHPC listed in Table 13.  This gradation 

represents a mixture of a sand and quartz powder with a maximum aggregate size of 2 

mm.  The volume fractions listed in Table 16 sum to unity, and thus represent the volume 

fraction of a size of aggregate within all of the aggregate, not the volume fraction of a 

size of aggregate within the UHPC.  The volume fraction of aggregate to the total volume 

is given by 

  1 /agg cem SF cem cem SF SF waterV V V w cm V V       . (53) 
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Table 16.  Assumed gradation of aggregates. 

Sieve Parameters Volume fraction 

contained within each 

sieve 

Dmin (mm) Dmax (mm) 

0.075 0.15 0.11 

0.15 0.30 0.18 

0.30 0.60 0.24 

0.60 1.18 0.29 

1.18 2.36 0.18 

2.36 4.75 0.00 

4.75 9.5 0.00 

9.5 12.5 0.00 

12.5 19.5 0.00 

19.5 25.0 0.00 

25.0 37.5 0.00 

 

 The MCTP model simulated 200 different combinations of parameters 

encompassing a space of cureT  (20 and 90 ºC), cemV  (0.1 to 0.24), SFV  (0.02 to 0.05), and 

w cm  (0.22 to 0.30).  Results of the 200 different simulations were then fit to a 

regression model to generate a functional forms  

 

 

22

, , 0.0398 0.000167 0.201 0.193 0.298

0.00761 0.000735 0.00198

0.315 0.558 1.37 0.165 ,

pore cem SF cure cem SF

cure cem cure SF cure

cem cem SF cem

V w cm V V T V V w cm

T V T V T w cm

V V V V w cm w cm

     

  

   

(54) 

and 

 

 
2

2

, , 70.9 0.76 71.5 91.1 16.8

1.10 1.33 0.307 31.9

309 65.2 64.5 78.3 .

pore cem SF cure cem sf

cure cem cure SF cure cem

cem SF cem SF SF

r w cm V V T V V w cm

T V T V T w cm V

V V V w cm V V w cm

    

   

   

 (55) 

Figure 57 compares poreV  as predicted by the regression model in Eq. (54) and the 

prediction of poreV  by the MCTP model.  The regression model predicts the result of the 

MCTP model within 10% except for 0.04poreV  .  
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Figure 57. Comparison of poreV  predicted by regression model (i.e., Eq. (54)) and poreV  

predicted by the MCTP model.  The solid black line represents a one-to-one 

relation and the dashed gray lines above and below the black line represent 

errors of ± 10%. 

Figure 58 compares porer  as predicted by the regression model in Eq. (55) and the 

prediction of porer  by the MCTP model.  The regression model predicts the result of the 

MCTP model within 15% except for 3porer  .   In Figure 58, there is a large gap in data 

for porer  values between 10 and 33 nm.  This gap is due to the substantial decrease in porer  

caused by curing at 90 ºC. 
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Figure 58. Comparison of porer  predicted by regression model (i.e., Eq. (55)) and porer  

predicted by the MCTP model.  The solid black line represents a one-to-one 

relation and the dashed gray lines above and below the black line represent 

errors of ± 15%. 

6.3.2 Mix constituents to single fiber 

The mix constituents to single fiber relation is defined by the three-dimensional 

numerical model at the single fiber length scale, as described in Section 3.2 of this 

dissertation. 

6.3.3 Mix constituents to multiple fibers 

The mix constituents to multiple fiber relation assumes that the volume fraction of 

fibers within the mix constituents are randomly placed and oriented within the UHPC 

microstructure.  Furthermore, it is assumed that the fibers do not undergo mechanical 

deformation during the mixing process; therefore, the fiber length, diameter, morphology, 

and initial curvature remain the same during mixing.  Possible clumping, introduction of 

porosity due to clumping, and fiber orientation from wall effects are not considered.  The 
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fiber aspect ratio,  , is fixed at 50 and the ultimate tensile strength of the fiber is 

assumed to be 2,400 MPa. 

6.4 Structure-responses relations 

6.4.1 Relation between single fiber pullout, Multiple fibers, tensile strength of the 

matrix, and the tensile response of a fiber-reinforced matrix 

The relation between the single fiber pullout, multiple fibers, tensile strength of 

the matrix, and tensile responses of the fiber-reinforced matrix are defined by the model 

at the multiple-fiber length scale (cf. Chapter 3).  In particular, the model utilizes the 

uniaxial tensile strength of the matrix, tf , and the pullout force versus end slip relations 

to compute the quasi-static tensile strength and the dissipated energy density of the 

composite.  Pullout force versus end slip relations for straight, smooth fibers were 

simulated via the analytical model developed by Gopalratnam and Shuh (1987).  Pullout 

force versus end slip relations for fiber containing morphology, i.e., polygonal cross 

sections twisted along the fiber length, were generated by the model at the single fiber 

length scale with the pullout force set to zero for the final 20% of / 2fiberL , in accordance 

with experimental data presented by Sujivorakul (2002). 

The pullout force versus end slip behavior for each fiber is used as the scale 

transition mechanism to the multiple fiber length scale.  The multiple fiber length scale 

introduces fiber volume fraction and fiber inclination angle (cf. Li et al., 1990) to predict 

the quasi-static tensile strength and the dissipated energy density, which together define 

the tensile response.  Figure 59 shows the maximum tensile strength of the fiber 
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reinforced matrix as a function of fiber volume fraction, fiber pitch, and non-reinforced 

matrix tensile strength.  At 0.5%fiberV  , the maximum tensile strength of the fiber 

reinforced composite is dominated by increases in the matrix tensile strength, as indicated 

by the vertically-delineated iso-levels in Figure 59a.  However, for 2%fiberV   the 

maximum pullout force of fibers of different pitch dominates the maximum tensile 

strength response as indicated by horizontal iso-levels in Figure 59d. 

(a) Vfiber = 0.5% (b) Vfiber = 1.0%

(c) Vfiber = 1.5% (d) Vfiber = 2.0%
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Figure 59. Maximum tensile strength as a function of fiber volume fractions between 0.5 

and 2%, fiber pitch, and non-reinforced matrix tensile strength.  All fibers 

had a 0.5-mm equivalent diameter and 25-mm length. 
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The 168 data points used to generate the contour plots in Figure 59 were fit to a 

rule of mixtures form, i.e., 

   0.30.85 1 1300 0.0075o

fiber t fiberT V f V pitch    , (56) 

where   are McCauley brackets signifying  1
2

x x x  , and 0.85, 1300, -0.0075, 

and -0.3 are fitting parameters.  The correlation between the data calculated by the multi 

fiber length scale and the regression are shown in Figure 60.  The solid black represents 

the regression shown in Eq. (56), and the dashed gray lines above and below the black 

line represent errors of ± 20%. 
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Figure 60. Comparison of 0T  as calculated by the model at the multiple fiber length 

scale (MFLS) and regression.  The solid black line represents a one-to-one 

relation and the dashed gray lines above and below the black line represent 

errors of ± 20%. 

Figure 61 shows the dissipated energy density as a function of fiber volume 

fractions between 0.5% and 2%, fiber pitch between 6 and 36 mm, and the non-

reinforced matrix tensile strength between 5 and 11.4 MPa.  The brittle nature of the 

matrix causes the dissipated energy density to be highly dependent upon the fiber volume 
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fraction and pitch of the fiber.  In Figure 61, this behavior can be observed by the 

horizontal iso-levels of dissipated energy density, which increase with increasing fiber 

volume fraction.  For comparison, the dissipated energy density for a fiber reinforced 

matrix having 200-MPa unconfined compressive strength and 2%fiberV   of 0.185-mm 

diameter by 14-m long straight smooth fibers is 13.5 kJ/m
2
, which is approximately one-

third that of a similar matrix with triangular cross section fibers with a 36-mm pitch.  
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Figure 61. Dissipated energy densities as functions of fiber volume fractions between 

0.5 and 2%, fiber pitch, and non-reinforced matrix tensile strengths.  All 

fibers had a 0.5-mm equivalent diameter and 25-mm length. 
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The 168 data points used to generate the contour plots shown in Figure 61 were fit 

to the non-linear regression 

 0.166 4320 62.4dis fiber fiberE V V pitch   , (57) 

where fiberV  is specified in decimal form, i.e., 0.005 0.02fiberV  , and pitch  is specified 

in mm.  Figure 62 compares disE  as calculated by the model at the multiple fiber length 

scale (MFLS) to disE  as calculated by the linear regression in Eq. (57).  The solid black 

line represents a one-to-one correlation, and the dashed gray lines above and below the 

black line represent errors of ± 10%. 
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Figure 62. Comparison of disE  as calculated by the model at the multiple fiber length 

scale and the fitting linear regression.  The solid black line represents a one-

to-one relation and the dashed gray lines above and below the black line 

represent errors of ± 10%. 

6.4.2 Relation between porosity and compressive strength 

The relation between porosity and compressive strength has been studied 

extensively.  Powers (1958) measured the volume fraction of porosity, poreV , and the 
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unconfined compressive strength, cf , of cement pastes over the range 27 117cf   

MPa.  The data were used to determine the empirical relation  
3

234 1c poref V  , where 

234 is a constant representing the intrinsic strength of porosity-free cement paste.  Later, 

Odler and Rӧßler  (1985) measured the distribution of pore radii within cement pastes 

over the range 4 112cf  MPa that had been cured at temperatures between 25 and 

100ºC.  They fit their experimental data to the linear relation  

 0 1 10 2 10 100 3 100c pore pore poref c cV c V c V       , (58) 

where 0c , 1c , 2c , and 3c  are empirically determined  parameters, and 10poreV  , 10 100poreV   , 

and 100poreV   are the volume fractions of porosity for pores with mean pore radii, porer , 

less than 10 nm, between 10 and 100 nm, and greater than 100 nm, respectively.   

The analytical model chosen for the relation between porosity and compressive 

strength is derived from Kumar and Bhattacharjee (2003), who developed a functional 

form of cf  based on Griffith model of fracture (Griffith, 1921).  The function form starts 

with the tensile stress require for fracture of a brittle material, i.e., 

 
2

t

ET
f

a
 , (59) 

where E  is the effective modulus of elasticity for the porous material, T  is the effective 

fracture surface energy for the porous material, and a  is the half-crack length.  Two 

assumptions are required to incorporate porosity.  First, it is assumed that the effective 

modulus is  0 1 poreE E V  , where 0E  is the modulus of elasticity for the material 

without porosity.  Second, it is assumed that 0(1 )poreT T V  , where 0T  is the fracture 

surface energy for the material without porosity.  The effects of hydration in Kumar and 
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Bhattacharjee’s model are accounted for by introducing the mass fraction of cementitious 

materials, cM , such that Equation (59) is expressed as  

 
 

1

1 pore

t c

pore

V
f k M

r


 , (60) 

where 1k  is a constant depending upon 0E  and 0T .  Finally, the unconfined compressive 

strength is assumed to proportional to tf , resulting in  

 
 

2

1 pore

c c

pore

V
f k M

r


 , (61) 

where 2k  is a different material constant.  The model was used by Kumar and 

Bhattacharjee (2003) to fit experimental data with 13.6 43.2cf   MPa and 

0.38 0.65w cm  .  Here, the model is adapted for matrices with lower w cm  and 

greater compressive strengths by replacing cM with 
1

w cm
, resulting in  

 
 1 pore

c

pore

V
f K

w cm r


 . (62) 

The material constant K  is determined by fitting experimental data of Kumar and 

Bhattacharjee (2003) and Klobes, Rübner, Hempel, and Prinz (2008).  Figure 63a shows 

the fit of the linear regression determining 99.3K   MPa nm , thus resulting in the 

nominal relation 

 
1

99.3
pore

c

pore

V
f

w cm r


 . (63) 

Figure 63b compares cf  as measured to the prediction of the model.  The solid black line 

has a slope of one, the two gray lines have slopes ±10% from unity.  
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Figure 63. (a) Fitting of material constant K  for the compressive strength as a function 

of the volume fraction of pores, poreV , mean pore radius, porer , and mass ratio 

of water to cementitious materials, w cm .  (b) Comparison of cf  as 

calculated by Equation (63) to cf  as experimentally measured.  The solid 

black line represents a one-to-one relation and the dashed gray lines represent 

errors of ± 10%. 

6.4.3 Relation between porosity and tensile response 

The tensile response of UHPCs may be measured via flexural tests (ASTM 1609; 

2012b), split cylinder (ASTM C496; 2004), or direct tension tests.  Due to the difficulty 

and recent emergence of the direct tensile tests, there is a paucity of data in literature 

regarding direct tensile tests, porosity, and pore size distribution.  Therefore, an 

intermediate relation between tensile strength and compressive strength will be used to 

determine a relation between tensile strength and porosity.   

The relation between tensile strength and compressive strength has typically been 

expressed as a power law relation, i.e.,  0

n

t cf c f , where 0c  and n  are material 

parameters to be determined from experiments, from which n  is typically in the range 

between 0.5 and 0.75 for concretes with cf  between 7 and 69 MPa (Oluokun, 1991).  
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Data from Garas-Yanni (2009), Pul (2008), and Zheng, Kwan, and Lee (2001) shown in 

Figure 64 was used for calibration.  In Figure 64, the black line represents the nominal 

relation between tf  and cf , i.e., 

  
0.74

0.177t cf f . (64) 

The gray lines below and above the nominal relation represent the lower and upper 

functions, i.e., 

 
 

 

0.74

,

0.74

,

0.144 , and

0.216 .

t lower c

t upper c

f f

f f




 (65) 

 

0

5

10

15

20

0 50 100 150 200

f t
(M

P
a

)

fc (MPa)

 
0.74

2

0.177

R 0.75

t cf f



Zheng, Kwan, & Lee (2001)

Pul (2008)

Garas-Yanni (2009)

 

Figure 64. Relation between uniaxial tensile strength, tf , and unconfined compressive 

strength, cf . 

Using Eq. (63), the nominal relation between tf  and poreV , porer , and w cm  is 

expressed as 
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, (66) 

and the lower and upper bounds of tf  are expressed as 
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 (67) 

6.5 Response-performance relations 

6.5.1 Relation between panel thickness, fiber-reinforced tensile properties, and blast 

loading 

The relation between the tensile responses and blast loading is determined by the 

model at the structural length scale, as presented in Chapter 3.  Inputs to the model 

include quasi-static tensile strength, oT , and the dissipated energy density, disE , at an 

interface.  The model at the structural length scale introduces strain-rate dependent 

behavior at the interfaces via a custom VUMAT.  Results of the model at the structural 

length scale include the critical specific impulse at which the panel completely fractures, 

displacements of the center of the panel, and fracture patterns. 

Excluding the data point for oT  = 14.7 MPa, disE  = 80 kJ/m
2
, panelt  = 63.5 mm, a 

linear regression analysis of the data shown in Figure 36 generates the following response 

function for critical specific impulse: 
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4 40.857 0.0262 6.51 10 4.22 10o

cr disI t tT tE        . (68) 
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Figure 65. Comparison of the critical specific impulse crI  as calculated by the Blast 

Panel Structural Length Scale (BPSLS) model and Equation (68).  The solid 

black line represents a one-to-one relation and the dashed gray lines above 

and below the black line represent errors of ± 10%. 

6.5.2 Relation between panel thickness, fiber-reinforced tensile strength, compressive 

strength, and impact loading 

The relation between the panel thickness, fiber-reinforced tensile strength, 

compressive strength, and impact loading is defined by the perforation model at the 

structural length scale.  Results of the model indicate that the shatter resistance of a panel 

are highly dependent upon the dissipated energy density.  Specifically, the panel was 

observed to not shatter for instantiations with dissipated energy densities greater than or 

equal to 5 MPa-mm.  Therefore, a 5 MPa-mm level of dissipated energy density is the 

lower bound for the design. 
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6.6 Results 

6.6.1 Feasible design space 

The feasible properties must satisfy the both the blast loading and impact loading 

performance requirements.  Recalling that the model of perforation at the structural 

length scale predicts the panel won’t shatter for disE   5 MPa-mm, the clarification of the 

design task to determine feasible properties is listed in Figure 66. 

In Figure 66, the design space is shown at the top of the figure and discretized 

according to the following convention.  The lower bound for the design space is given as 

the first number following the opening bracket.  Separated by a colon, the number in the 

center of the bracket is the increment size, which is followed by another colon and the 

upper bound of the design space.  For example, the quasi-static tensile strength, oT , has a 

lower bound of 10 MPa, an increment of 2 MPa, and a maximum value of 20 MPa.  

Therefore, the discretized quasi-static tensile strength space is 10, 12, 14, 16, 18, and 20 

MPa.  The response is regression equation defined previously.  For Figure 66, the 

response was defined in Section 6.5.1.  The uncertainty is the assumed uncertainty in the 

variables of the design space and quantified uncertainty of the response functions. 
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Design Space Matrix tensile strength, ft x1 = [  5    : 1 : 12] (MPa)

Axial length per revolution, pitch x2 = [ 6 : 3    : 36] (mm)

Panel thickness, tpanel x3 = [ 39    : 6    : 63] (mm)

Fiber volume fraction, Vf x4 = [   0.5 : 0.5 :   2] (mm)

Responses T o (ft , pitch, tpanel) = 0.166 + 4320 Vf - 62.4 Vf pitch

Edis (ft , pitch, tpanel) = 0.85(1-Vf ) + 1300 <Vf - 0.0075> pitch -0.3

Uncertainty Δx1 = [± 10%]

Δx2 = [± 10%]

Δx3 = [± 10%]

Δx4 = [± 10%]

T oupper (ft , pitch, t) = 1.1 T o

T olower (ft , pitch, t) = 0.9 T o

Edis,upper (ft , pitch, t) = 1.2 Edis

Edis,lower (ft , pitch, t) = 0.8 Edis

Fixed Parameters Fiber length Lfiber = 25 mm

Fiber cross-section width ϕe = 0.5 mm

Goal The combination ft –pitch–tpanel–Vf should satisfy the requirements quasi-static tensile 

strength, T 
o
,  and dissipated energy density, Edis, of the fiber-reinforced composite.

Task Objectives Identify the ft –pitch–tpanel–Vf input space such that HDEMIT o≥ 1 and HDEMIEdis
≥ 1.  

 

Figure 66. Clarification of design task for impulsive loading of UHPC panel. 

With the design task clarified, IDEM can be used to determine the feasible design 

space and boundary of the feasible design space as shown in Figure 67.  In Figure 67, sets 

of discrete input values satisfying the performance requirements are shown as blue 

outlined circles; sets of discrete input values at the boundary, i.e., 1.5 1I MPa msHDEMI    , 

are shown as solid black diamonds.  Infeasible points, i.e., 1.5 1I MPa msHDEMI    , are not 

shown in Figure 67. 
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Figure 67. Feasible UHPC properties and panel thicknesses which survive a 1.5-MPa-

ms specific impulse blast load and will not shatter as a consequence of being 

impacted by a 42.8-g projectile traveling at 1,000 m/s. 

Figure 68 clarifies the design task to determine feasible matrix tensile strength, 

fiber pitch, panel thickness and fiber volume fractions.  The feasible space of the two 

responses, quasi-static tensile strength of the fiber-reinforced microstructure, oT , and 

dissipated energy density, disE , were found previously in Figure 67. 
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Design Space Matrix tensile strength, ft x1 = [  5    : 0.5   : 9] (MPa)

Axial length per revolution, pitch x2 = [ 6 : 3    : 36] (mm)

Panel thickness, tpanel x3 = [ 39   : 6    : 63] (mm)

Fiber volume fraction, Vf x4 = [   1.25 : 0.25 :   2] (%)

Responses T o (ft , pitch, tpanel) = 0.166 + 4320 Vf - 62.4 Vf pitch

Edis (ft , pitch, tpanel) = 0.85(1-Vf ) + 1300 <Vf - 0.0075> pitch -0.3

Uncertainty Δx1 = [± 10%]

Δx2 = [± 10%]

Δx3 = [± 10%]

Δx4 = [± 10%]

T oupper (ft , pitch, t) = 1.1 T o

T olower (ft , pitch, t) = 0.9 T o

Edis,upper (ft , pitch, t) = 1.2 Edis

Edis,lower (ft , pitch, t) = 0.8 Edis

Fixed Parameters Fiber length Lfiber = 25 mm

Fiber cross-section width ϕe = 0.5 mm

Goal The combination ft –pitch–tpanel–Vf should satisfy the requirements quasi-static tensile 

strength, T 
o
,  and dissipated energy density, Edis, of the fiber-reinforced composite.

Task Objectives Identify the ft –pitch–tpanel–Vf input space such that HDEMIT o≥ 1 and HDEMIEdis
≥ 1.  

 

Figure 68. Clarification of design task to determine material properties and structural 

attributes satisfying impact loading. 

The clarified design task from Figure 68 facilitates IDEM to determine the 

feasible design space, as shown in Figure 69.   
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Figure 69. Feasible t panel ff pitch t V    input space that satisfies the identified 

0

dis panelT E t   feasible space identified in Figure 67. 

The remainder of this section provides the clarified design task for the material 

structures and processes in Figures 70 and 72, respectively.  The feasible spaces and 

boundaries of the feasible spaces for structures and processes are shown in Figures 71 

and 73, respectively.  Note that for the clarification of the design task to define the 

feasible processing space shown in Figure 72 and the feasible processing design space in 

Figure 73, it is assumed that the UHPC has been thermally cured at 90 ºC; no points are 

feasible with a curing temperature of 20 ºC. 
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Design Space Water to cementitious material ratio, w/cm x1 = [ 0.15 :  0.05 :   0.45] ( )

Volume fraction of pores, Vpore x2 = [ 0.01 :  0.05 :   0.51] ( )

Mean pore radii, rpore x3 = [ 1      :  5 : 31      ] (nm)

Responses

Uncertainty Δx1 = [± 5%]

Δx2 = [± 5%]

Δx3 = [± 10%]

Goal The combination w/cm–Vpore–rpore should satisfy the requirements for non-fiber-

reinforced matrix tensile strength, ft.

Task Objectives Identify the w/cm–Vpore–rpore input space such that HDEMIft
≥ 1.  
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Figure 70. Clarification of design task to determine material structural attributes 

satisfying the non-fiber-reinforced tensile strength of the matrix. 
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Figure 71. Feasible pore porew cm V r   input space that satisfies the specified uniaxial 

tensile strength of the matrix, tf , for 5 8tf   MPa. 
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Design Space Curing temperature, Tcure x1 = [ 20, 90] (ºC)

Volume fraction cement, Vcem x2 = [ 0.10 : 0.02 : 0.20] ( )

Volume fraction silica fume, VSF x3 = [ 0.01 : 0.01 : 0.05] ( )

Water to cementitious material ratio, w/cm x4 = [ 0.20 : 0.02 : 0.30] ( )

Responses

Uncertainty Δx1 = [± 0%]

Δx2 = [± 5%]

Δx3 = [± 5%]

Δx4 = [± 5%]

Vpore,upper (w/cm, Vcem, VSF) = 1.1 Vpore

Vpore,lower (w/cm, Vcem, VSF) = 0.9 Vpore

rpore, upper (w/cm, Vcem, VSF) = 1.15 rpore

rpore, lower (w/cm, Vcem, VSF) = 0.85 rpore

Fixed Parameters gradation of aggregate

ρcem = 3,150 kg/m3, ρSF = 2,200 kg/m3

Tcure = 90 ºC

Goal The combination Tcure–Vcem–VSF –w/cm should satisfy the requirements for volume 

fraction of porosity, Vpore, and average pore radius, rpore

Task Objectives Identify the Tcure–Vcem–VSF –w/cm input space such that HDEMIVpore
≥ 1, and 

HDEMIrpore
≥ 1. 
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Figure 72. Clarification of design task to determine material processes satisfying the 

structure performance requirements.   
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Figure 73. Feasible cem SFV V w cm   input space that satisfies the specified uniaxial 

tensile strength of the matrix, tf , for 5 8tf   MPa and cureT = 90 ºC. 

6.6.2 Minimal mass within the feasible design space 

Determining the minimum mass of a panel within the feasible design space is 

important for several reasons.  First, the mass of the UHPC panel may impact the 

transportation of UHPC panels either from the construction site to the final structure or if 

the final structure is intended to be mobile.  Second, the mass of UHPC panels may 

impact the design and load-carrying capability of the structure supporting the panels, thus 

causing the overall costs of a structure incorporating the UHPC panels to increase.  

Therefore, it is important to understand material and structural designs that satisfy the 

performance requirements while minimizing mass of the panel. 
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A rule of mixtures approach is utilized to calculate the mass density of the UHPC 

material, i.e., 

    1 ,
UHPC fiber fiber fiber cem cem SF SF agg agg cem cem SF SF

water

V V
w cm

V V V V V      



 

      
 

(69) 

where iV  are the volume fractions of the thi  materials, and i  are the mass densities of 

the thi  materials.  In Eq. (69), the volume fractions and water to cement ratio are 

determined from the feasible design space, and the mass densities are listed in Table 17.  

The mass of the panel is  

 ,UHPC panel panel panelmass t w h  (70) 

where panelt  is the thickness of the panel which can vary between 39 and 63 mm, and 

panelw  and panelh  are the width and height of the panel fixed to 1625.6 and 863.6 mm, 

respectively. 

Table 17.  Mass densities of UHPC constituents. 

fiber  
cem  SF  agg  

water  

(kg/m
3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) 

7,850 3,150 2,200 2,700 1,000 
   

The mass of the panel was calculated using Eqs. (69) and (70) for each previously 

identified feasible and boundary point.  The minimum mass of all feasible and boundary 

points was then found via the constrained optimization problem: 
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 (71) 

Results of the constrained optimization problem using data determined from a 

robust design approach indicate that a 160.0 kg UHPC panel can survive a 1.5 MPa-ms 

specific impulse.  The preferred material design contains cemV = 0.196, SFV  = 0.049, 

w cm  = 0.30, and aggV  = 0.517, and fiberV  = 0.020 of triangular cross section fibers that 

have been twisted to a 6-mm pitch,.  After curing at 90 ºC , the matrix has a 7-MPa 

uniaxial tensile strength.  Using the mass densities listed in Table 17, the UHPC material 

design uses 618 kg of Portland cement, 108 kg of silica fume, 218 kg of water, and 1396 

kg of aggregate following the aggregate distribution given in Table 16.  The feasible 

UHPC panel is 45.6-mm thick. 

6.6.3 Minimal cost within the feasible design space 

In addition to determining minimal mass of all possible feasible designs, other 

objective functions can be used.  For example, a cost objective function  

 UHPC panel panel panelcost t w h   (72) 

can be defined, where the cost density of UHPC 
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   1

UHPC fiber fiber fiber

fiber cem cem cem SF SF SF agg agg agg cem cem SF SF water

water

V

w cm
V V V V V V



    


  

        



 
 
   (73) 

defines the costs of the UHPC per unit volume.  In Eq. (73), i  is the cost of the thi  

material per kg, with individual values of i  are listed in United States Dollars (USD) 

per kg of material in Table 18.  The cost density of fiber, fiber , was calculated assuming 

a 0.800 USD/kg cost density for raw steel, and that raw steel accounts for 40% of the 

costs of the manufactured fibers.  The cost densities for Portland Cement, cem , silica 

fume, SF , and aggregate, agg , were sourced from the National Institute of Standards 

and Technology (NIST) Concrete Optimization Software Tool (COST) program (Cost 

Optimization Software Tool (COST), 2001).  The cost density of water, water , was 

assumed. 

Table 18.  Cost densities of UHPC constituents. 

fiber  
cem  SF  agg  

water  

(USD/kg) (USD/kg) (USD/kg) (USD/kg) (USD/kg) 
2.00 0.081 0.88 0.013 0.0004 

   

The minimum cost of the UHPC panel is determined through the constrained 

optimization problem  
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 (74) 

Results of the constrained optimization problem using feasible and boundary data 

points from IDEM indicate that preferred minimized cost UHPC panel costs $23.79 per 

panel, or $339 / m
3
.  The preferred material design contains cemV = 0.197, SFV  = 0.029, 

w cm  = 0.20, and aggV  = 0.620 , and fiberV = 0.017 of fibers having triangular cross 

sections that have been twisted to a 6-mm pitch, .  The matrix has an 8-MPa uniaxial 

tensile strength, created by curing a mixture of at 90 ºC.  Using the mass densities listed 

in Table 17, the UHPC material design uses 621 kg of Portland cement, 64 kg of silica 

fume, 1674 kg of aggregate following the aggregate distribution given in Table 16 

representing a 2-mm maximum aggregate size sand mixed with quartz powder, and 137 

kg of water.  The feasible UHPC panel is 50.9 mm thick. 

6.7 Summary 

This chapter exercises a computational framework for the design of materials with 

a hierarchy of microstructures and mesostructures via hierarchical multiscale modeling to 

define the deductive mappings and the Inductive Design Exploration Method (IDEM) to 

define the inductive decision path.   
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The hierarchical multiscale model draws upon previous results in this dissertation, 

e.g. models at the single fiber and structural length scales, as well as analytical models 

and data taken from literature.  For example, this chapter introduces the Mix Constituent 

and curing Temperature to Porosity (MCTP) model to relate the volume fractions of 

aggregate, cement, and silica fume; assumed distribution of aggregate size; mass ratio of 

water to cementitious material; and curing temperature to the volume fraction of porosity 

and the mean pore radii.  MCTP is a combination of the void exclusion probability model 

(Lu & Torquato, 1992), Powers hydration model (cf. Mindess et al., 2002), and Linear 

Packing Model (Stovall et al., 1986) which has been validated in comparison to the 

experimental work of Klobes et al. (2008).   

After defining the deductive mappings, IDEM is applied to top level of hierarchy, 

i.e., the relation between the panel thickness, quasi-static tensile strength, dissipated 

energy density, and the panel surviving the 1.5 MPa-ms specific impulse blast load and 

the relation between dissipated energy density and the panel not completely fracturing 

due to the perforation of a projectile traveling 1,000 m/s, to determine the feasible space 

of panel thicknesses, quasi-static tensile strengths, and dissipated energy densities.  The 

feasible space of panel thickness, quasi-static tensile strengths, and dissipated energy 

densities are then searched for the boundary between the feasible and infeasible spaces.   

For multilevel problems, the boundary of the input space is used for the performance 

requirement for the next finer scale of hierarchy.  For example, the next finer level of 

hierarchy for the quasi-static tensile strength and dissipated energy density space is the 

space of matrix tensile strength, fiber pitch, and fiber volume fraction.  The iterative 
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process continues until the finest level of hierarchy is searched for parameters that satisfy 

the performance requirement of the next coarser hierarchy. 

The objective functions of mass and cost were used to determine the preferred set 

of solutions from all identified feasible and boundary solutions.  It was determined that 

the preferred solution to minimize mass was different than the preferred solution to 

minimize cost. 

There are two significant aspects to this work.  First, a set of PSPP relations were 

identified for the design of UHPC materials and structures for ballistic and blast loading.  

These relations facilitate not only the design of UHPC materials and structures for the 

stated performance requirements, but allow the new UHPC materials and structures to be 

rapidly designed based on new performance requirements.  The second significant aspect 

of this work is that it exercised a computational framework for the design of new 

materials and structures to significantly reduce the time required compared to empirical 

development routes.   
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    CHAPTER 7: CONCLU SION S 

CONCLUSIONS 

 

7.1 Summary 

A computational framework was developed and exercised for the design of Ultra-

High-Performance Concrete (UHPC) materials and structures subject to a blast load with 

a specific impulse between 1.25- and 1.5-MPa-ms and the impact of a 0.50-caliber bullet 

travelling at a velocity between 900 and 1,000 m/s.  The considered structure for blast 

loading was a 1626-mm tall by 864-mm wide panel with a uniform, but adjustable, 

thickness; the considered structure for impact loading was a 305-mm tall by 305-mm 

wide panel made from the same material and to the thickness as the blast panel. 

The computational framework consists of two distinct paths – a bottom-up 

deductive modeling and simulation path and a top-down inductive decision path – 

through a set of process-structure-property-performance (PSPP) relations.   The bottom-

up deductive mappings consist of two analytical models and two multiscale models, each 

consisting of three length scales.  The first analytical model defines a relation between 

volume fractions of Portland cement, silica fume, and aggregates; aggregate size 

distribution; curing temperatures; pore volume fraction; and mean pore radius through a 

combination of the void exclusion probability model, Powers hydration model, and 

Linear Packing Model.  The second analytical model defines a relation between volume 

fraction of porosity, mean pore radius, and the uniaxial quasi-static tensile strength of a 
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non-fiber-reinforced cementitious matrix.  Both multiscale models consist of models at 

three length scales – single fiber, multiple fiber, and structural.  At the single fiber length 

scale, a model was developed to predict the pullout force as a function of material 

properties and fiber morphology, which is expressed via the fiber’s cross section, 

equivalent diameter, and the pitch at which the fiber was twisted.  The model accounts 

energy dissipated due to granular flow of the 50-μm-thick ITZ and surrounding cement 

paste, friction between the fiber and the matrix, and the plastic work of the fiber.  The 

resulting pullout force versus end slip relations are projected onto each fiber at the 

multiple fiber length scale.  The multiple fiber length scale accounts for the overall fiber 

volume fraction, each fiber’s embedded length and inclination angle, and the tensile 

strength of the cementitious matrix to determine a Gaussian distribution of the quasi-

static tensile strength and dissipated energy density due to separation at a predefined 

crack plane.  The mean and the standard deviation of the quasi-static tensile strength and 

the dissipated energy density of the fiber-reinforced matrix are used within a hand-

shaking scheme to inform zero-thickness strain-rate sensitive cohesive elements at the 

structural length scale.  By incorporating the cohesive elements, the two models at the 

structural length scale can account for dynamic fracture of fiber-reinforced UHPCs. 

After defining the deductive mappings, the PSPP relations were searched for 

combinations of properties, structures, and processing steps that satisfied the system-level 

blast and impact performance requirements via the Inductive Design Exploration Method 

(IDME).  For the considered PSPP relations and loading conditions, the design problem 

was delineated into four levels of hierarchy.  Starting at the top level of hierarchy, IDEM 

discretized input variables, projected each set of discretized input values with account of 
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uncertainty to a range in the output space, and determined which sets of discrete input 

values satisfied the output space performance requirements.  The feasible input values, 

i.e., the input values that satisfied the output space requirements, were used to determine 

the boundary of the feasible space, which was then used as the boundary of the output 

space for the next finer level of hierarchy.  Through this recursive scheme, IDEM 

determined the feasible values of the seven design variables (i.e., curing temperature, 

water to cementitious material ratio, fiber pitch, and volume fractions of fiber, silica 

fume, aggregate, and Portland cement), which the designer can directly control.  Finally, 

preferred combinations of the feasible values of design variables were determined 

through the use of objective functions, defined in terms of mass and raw material cost of 

the of the manufactured panel. 

7.2 Summary of principles for designing UHPC materials for extreme loading 

conditions 

The design of UHPC materials and structures for extreme loading conditions, 

such as blast and impact, requires detailed analysis.  However, research presented in this 

dissertation and available in the literature provides general guidelines for the design of 

UHPC materials and structures.  This section summarizes these findings. 

Impact resistance of UHPC materials and structures can be broadly delineated 

into resistance to shattering, perforation, spalling, and penetration.  This work found that 

dissipated energy densities less than 5 MPa-mm led to the shattering of UHPC panels 

irrespective of panel thicknesses between 38.1 and 76.2 mm.  One method of producing 

panels with a minimum dissipated energy density of 5 MPa-mm is to introduce a 0.75% 
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fiber volume fraction of 14-mm long by 0.185-mm diameter straight, smooth fibers to the 

UHPC matrix.  This conclusion is qualitatively, if not quantitatively, consistent with 

experimental results of Zhang et al. (2005), who found that cementitious panels 

incorporating a 1.5% fiber volume fraction of 13-mm long by 0.2-mm diameter fibers 

reduced the propagation of cracks beyond the impact crater sufficiently to prevent 

fracture into two or more pieces.  Additionally, Zhang et al. (2005) found that similar 

cementitious panels without fibers shattered due to impact.  Similar results were found by 

Dancygier and Yankelevsky (1996) using 0.8% fiber volume fractions of 30-mm long by 

0.5-mm diameter hooked fibers in cementitious panels with compressive strengths 

between 95 and 104 MPa.  Beyond shatter resistance, fibers have been shown to reduce 

the size of proximal craters (Zhang et al., 2005).  However, fiber content has a minimal 

influence on either perforation or penetration responses of cementitious panels 

(Almusallam et al., 2013; Zhang et al., 2005). 

The ability of a cementitious panel to decelerate a projectile can be measured by 

either the penetration depth (i.e., the distance a projectile travels from the proximal face 

before stopping within a cementitious panel) or the residual velocity (i.e., the velocity at 

which a projectile exits distal face of the cementitious panel) of the projectile.  Although 

both the penetration depth and the residual velocity have been reduced by increased 

unconfined compressive strengths, the reduction was marginal for compressive strengths 

above  MPa (Hanchak et al., 1992; Zhang et al., 2005).  This conclusion has motivated 

some authors to postulate that a 100-MPa unconfined compressive strength is preferred 

due to economic considerations (Zhang et al., 2005).  
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Numerical simulations of 1,626-mm tall by 864-mm wide UHPC panels without 

rebar-reinforcement were conducted to determine combinations of quasi-static tensile 

strength of the fiber-reinforced UHPC, dissipated energy of the fiber-reinforced UHPC, 

and panel thickness (38.1 to 63.5 mm) which survived blast loads with specific impulses 

between 0.5 and 4.5 MPa-ms.  The results, presented in Figure 36, were used to 

determine the critical specific impulse, defined as the maximum specific impulse which 

the panel will not fracture into two or more pieces, of each combination of panel 

thickness, quasi-static tensile strength, and dissipated energy density.  Results indicate the 

numerical simulations indicate the preferred avenue to improve the critical specific 

impulse is the dissipated energy density.  Results from the multiple fiber length scale 

indicate the dissipated energy density is primarily influenced by the type of fibers with 

twisted fibers preferred to straight smooth fibers.  For specific impulse greater than the 

critical specific impulse, most panels failed in a brittle fashion, i.e., fractured in the center 

and then fractured near the top and bottom restraints.  However, numerical simulations 

indicate that a ductile response is possible with dramatically greater critical specific 

impulses.  For example, a 63.5-mm-thick panel with a 14.7-MPa quasi-static tensile 

strength and an 80-kJ/m
2
 dissipated energy density had a critical specific impulse of 4.65 

MPa-ms, which was 28% greater than the 3.63 Mpa-ms for a similar panel with a 20-

MPa quasi-static tensile strength.  One method to achieve the 80-kJ/m
2
 dissipated energy 

density for the simulated ductile response is to incorporate 2.0% fiber volume fraction of 

25-mm long by 0.5-mm equivalent diameter triangular fibers with a 6-mm pitch.  

However, it is impossible to achieve the 80-kJ/m
2
 dissipated energy density with straight, 

smooth fibers. 
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7.3 Novel contributions 

The unique contributions of this dissertation are as follows. 

 Develops and validates a multiscale model at three different length scales for 

predicting the evolution of damage, deflection, and critical impulse for a UHPC panel 

subjected to blast loading; 

 Develops a computational framework for the analysis of uniformly pitched non-

circular cross section reinforcement fibers pulled from a cementitious matrix.  This 

framework represents the first time that uniformly pitched non-circular cross section 

fibers have been (1) modeled in the finite element framework and (2) modeled within 

a matrix with constitutive properties other than an elastic, homogeneous matrix; 

 Provides an alternate explanation of the mechanisms causing the elastic-plastic 

response of twisted fibers being pulled from a cementitious matrix; 

 Implements the Inductive Design Exploration Method (IDEM) (Choi et al., 2008) in a 

large multiscale framework; and 

 Identifies preferred designs that minimize cost and mass of UHPC materials for 

structures and satisfy system performance requirements related to blast and impact. 

7.4 Suggestions for future work 

This dissertation has focused on developing and exercising a computational 

framework for the design of cementitious materials and structures using data available in 

literature as well as various engineering assumptions.  To refine this research, it is 

recommended to pursue the following avenues listed in order or priority. 
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First, it is recommended to validate the pullout response of a single twisted fiber 

pulled from cementitious matrices with unconfined compressive strengths between 100 

and 200 MPa.  Experimental data in the literature documents the pullout response of 

twisted fibers from cementitious materials with unconfined compressive strengths from 

28 to 84 MPa (e.g. Kim et al., 2009; Sujivorakul, 2002), but experimental data does not 

exist for matrices with unconfined compressive strengths greater than 84 MPa. 

Second, it is recommended to develop strain-rate sensitivity within the model at 

the single fiber length scale.  Although not important for straight, smooth or hooked 

fibers, twisted fibers exhibited strain-rate sensitivity in the pullout force versus end slip 

response for end slip rates between 0.0178 and 17.8 mm/s (Kim et al., 2009).  In 

particular, slower slip-rates produced a slip-hardening response and less total energy 

dissipated; higher slip rates produced a slip-neutral pullout response with slightly greater 

total energy dissipated.  Of most concern, the 17.8 mm/s slip-rates caused the fiber to 

break during pullout.  This refinement at the single fiber length scale would be used to 

inform the blast model at the structural length scale.  The ultimate effect is that the pitch 

of the fiber might need to be reduced in order to prevent fiber breakage. 

Third, explore the ductile response of UHPC panels at high energy dissipation and 

thickness.  This response was somewhat unexpected and the region of response should be 

investigated numerically and experimentally to determine the bounds of the response. 

Fourth, incorporate exposure to rapid thermal heating as one of the performance 

requirements.  It is well documented that UHPCs exposed to rapid thermal heating 

experience thermal spall, defined as the ejection of mass from the heated surface (e.g. 
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Kalifa et al., 2001; Kalifa, Menneteau, & Quenard, 2000).  This undesirable response has 

been experimentally shown to be mitigated through the addition of polypropylene fibers. 

Finally, it is recommended to validate the shatter resistance of UHPC panels 

subject to ballistic impact.  Ideally, a designed experiment would be performed to 

determine the threshold fiber volume fraction such that the panels do not fracture as a 

function of panel thickness, and unconfined compressive strength.  This experimental 

data could be used to validate the numerically determined threshold value of dissipated 

energy density. 
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