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SUMMARY 

 

Scholars in strategy, economics, and sociology of science and technology have 

studied technology development as a source of firms’ economic gains as well as 

institutional changes. Drawing on the extant research of technology and innovation 

strategy, I investigate the problem of knowledge generation and flows in technology 

development. Specifically, I explore how firms generate novel technology and develop 

technological breakthroughs; how knowledge flows between firms affect interfirm 

cooperation in a knowledge network; and how science and technology programs impact 

the institutions of knowledge production. 

In Essay 1 (Chapter 2), I examine the antecedents of knowledge recombination 

and technological breakthroughs. Conceptualizing a firm’s exploration as a combinatory 

search of prior new-recombination (an original technology component), I investigate the 

impacts of prior new-recombination and search boundary (local vs. boundary-spanning) 

on the characteristics of focal invention. In particular, I theorize and juxtapose the 

contrasting effects of the boundary of technological search of prior new-recombination 

on the propensities that the focal invention generates new recombination and becomes a 

technological breakthrough. Specifically, I hypothesize that, when the technological 

search involves new recombination in prior inventions, 1) the likelihood of generating 

new recombination in the focal invention is greatest for a boundary spanning search, 

smallest for a local search, and intermediate for a hybrid search (which involves both 

types of search); but 2) the likelihood for the focal invention to become a technological 

breakthrough is greatest for a local search, smallest for a boundary spanning search, and 



ix 

 

intermediate for a hybrid search. I find supporting evidence from the analysis of U.S. 

nanotechnology patents granted between 1980 and 2006.  

The purpose of Essay 2 (Chapter 3) is to determine the effect of knowledge flows 

on the formation of interfirm cooperation. By distinguishing codified knowledge flows 

from tacit knowledge flows, this paper demonstrates that antecedents of interfirm 

cooperation lie in codified knowledge flows that precede interfirm cooperation. Two 

properties of asymmetry in directional codified knowledge flows, intensity and 

uncertainty, underpin this paper’s arguments and empirical tests. The main finding in this 

study is that intense codified knowledge flows weaken the formation of interfirm 

cooperation. By mapping dyadic firms to a center and a periphery firm within a 

knowledge network, I theorize that the uncertainty of directional codified knowledge 

flows induces the center and the periphery firms to pursue interfirm cooperation 

differently. The results show that while uncertainty caused by distant technology 

components in knowledge flows hinders a center firm from pursuing interfirm 

cooperation, uncertainty stimulates a periphery firm to pursue interfirm cooperation. A 

statistical analysis performed on a sample of enterprise software firms between 1992 and 

2009 supports the hypotheses of this paper.  

In Essay 3 (Chapter 4), I examine how the National Nanotechnology Initiative 

(NNI), a most recent U.S. government’s science and technology (S&T) program launched 

in 2000, impacts the nature of university research in nanotechnology. I characterize the 

NNI as a policy intervention that targets the commercialization of technology and a 

focused research direction to promote national economic growth. As such, I expect that 

the NNI has brought about unintended consequences in terms of the direction of 
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university-industry knowledge flows and the characteristics of university research output 

in nanotechnology. Using the difference-in-differences analysis of the U.S. 

nanotechnology patents filed between 1996 and 2007, I find that, for the U.S. 

universities, the NNI has increased knowledge inflows from the industry, diminished the 

branching-out to novel technologies, reduced the research scope, and decreased the 

likelihood of technological breakthroughs, as compared to other U.S. and non-U.S. 

research institutions. The findings suggest that, at least in the case of the NNI, targeted 

S&T programs of the government may increase the efficiency of university research, but 

potentially do so at a considerable price. 
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CHAPTER 1 

OVERALL RESEARCH GOAL AND IMPLICATION 

 Scholars in strategy, economics, and sociology of science and technology have 

studied technology development as a source of firms’ economic gains as well as 

institutional changes. Drawing on the extant research of technology and innovation 

strategy, I investigate the problem of knowledge generation and flows in technology 

development in this dissertation.  

 Traditionally, scholars have focused on the relationship between technology 

development and socioeconomic evolution. One view contends that technology 

development determines social and economic activity (Marx, 1935; Shumpeter, 1975). 

Another view argues that in the social economic systems, technological progress is an 

endogenous variable (Shoomookler, 1966; Nelson and Winter, 1982). While both views 

seem to be extreme, the literature agrees on one point: technology development has 

played a central role in shaping long term social structure and economic growth by 

interacting with social and economic institutions (Sahal, 1985).      

 A strong body of literature has studied the process of technology development. 

Since Kuhn (1996) opened up the revolutionary view to examine the process of science 

research, scholars have adopted the implication of science research to the field of 

technology development (Nelson and Winter, 1977). They showed that science research 

and technology development involves a process of puzzle-solving through which 

scientists and engineers recombine existing knowledge across time and space 

(Schumpeter, 1939; Nelson and Winter, 1982). The outcome of this recombination, the 

generated knowledge, usually flows from region to region, field to field, institution to 
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institution, and individual to individual. As Arrow (1962) discussed, knowledge flows 

induce the tension between the benefit of knowledge diffusion and appropriation for the 

outcomes of technology development. When science and technology policies emphasize 

the appropriation of technology development, institutions of knowledge production will 

be affected (Dasgupta and David, 1994; Nelson, 2004).     

 Building on this literature, my dissertation attempts to expand our understanding 

of the theoretical and empirical issues on technology development. As shown in Figure 

1.1, the main constructs of this dissertation are three: knowledge generation, knowledge 

flows, and institutional changes. As a source of knowledge generation, I examine 

knowledge recombination, and as a consequence of knowledge generation, I focus on 

technological breakthroughs. I begin with a widely consented proposition that knowledge 

generation is the process of recombining existing knowledge components (Schumpeter, 

1939; Nelson and Winter, 1982; Henderson and Clark, 1990; Rosenberg, 1996; 

Weitzman, 1998; Galunic and Rodan, 1998; Fleming, 2001). Following the evolutionary 

theory, the invention that serves as an input for future inventions will be substantive as a 

breakthrough in technology development (Trajtenberg, 1990; Ahuja and Lampert, 2001; 

Zucker, Darby, and Armstrong, 2002; Singh and Fleming, 2010). To recombine existing 

knowledge, organizations may draw not only on their own knowledge but also on others’ 

knowledge. Thus, knowledge flows among different organizations (Nelson and Winter, 

1982). For instance, firms quest for knowledge through interfirm cooperation (Mowery, 

Oxley, and Silverman, 1996; Uzzi, 1997; Kogut, 1988; Gulati, 1998). Given that 

interfirm cooperation accompanies expropriation risks (Teece, 1986; Williamson, 1991), 

I study the effect of pre-exiting knowledge flows on the formation of institutional 
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cooperation between firms. And more broadly, substantive sources of knowledge 

generation and flows—universities—may be affected by institutional changes such as 

national science and technology (S&T) policy initiatives (Dasgupta and David, 1994). 

Thus, I examine commercialization-oriented S&T program as an institutional change that 

affect the phenomena of knowledge generation and knowledge flows. This dissertation 

consists of three essays, which explore unanswered questions regarding these constructs. 

 In the first essay (Chapter 2), I study the antecedents of knowledge new-

recombination and technological breakthroughs. By tracing and examining new 

recombination in prior and focal invention, I extend the idea put forth by Romer (1994), 

Weitzman (1998), and Fleming (2001) that new recombination can be a source for 

technological breakthroughs. Also, I examine the search for new recombination in the 

context of local searches as well as boundary spanning searches. The search for new 

recombination may markedly vary the well-known impacts of local and boundary 

spanning searches on technology development (Rosenkopf and Nerkar, 2001). I suggest 

that local searches for new recombination contribute to bring about technological 

breakthroughs while boundary spanning searches for new recombination contribute to 

generate novel technology.  

 In the second essay (Chapter 3), I examine the effect of knowledge flows on 

interfirm cooperation.  A strong body of literature argues that interfirm cooperation 

stimulates knowledge flows. In general the literature that studies the effect of interfirm 

cooperation on knowledge flows assumes that interfirm cooperation is exogenous to 

knowledge flows between firms. However, the assumption is debatable because 

knowledge may flow before the formation of interfirm cooperation. I study this issue with 
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a novel approach. I distinguish codified and tacit knowledge flows because the conflation 

of codified knowledge and tacit knowledge causes part of the difficulty in explaining the 

triggering effect of knowledge flows on interfirm cooperation. Because tacit knowledge 

usually flows in the setting of a direct relationship, such as interfirm cooperation, tacit 

knowledge may not flow before interfirm cooperation. In this essay, I suggest that 

codified knowledge flows decrease the formation of interfirm cooperation because 

codified knowledge flows may substitute the need for tacit knowledge and, thus, reduce 

the formation of interfirm cooperation.  

 The third essay (Chapter 4) studies the impact of commercialization-oriented 

science and technology programs on university research. I show how the institutional 

changes, such as the conception of government science and technology initiatives, affect 

the institution of knowledge generation, i.e., universities. It has been generally 

understood that universities specialize in basic research (Nelson, 1959; Dasgupta and 

David, 1994), advance technology developments by often bringing about serendipitous 

exploration and technological breakthroughs (Mansfield, 1991;Nelson, 2004), and 

operate on a functional norm that research findings should be universally available to the 

research community (Merton, 1973). I suggest that the government-mandated missions 

such as ensuring national economic leadership and industrial competitiveness may 

significantly affect the institutions of knowledge production and, hence, alter the 

landscape and flows of knowledge. 

 I aim to contribute to technology and innovation strategy literature by examining 

the development of novel technologies and technological breakthroughs as well as 

knowledge flows. The findings imply that the path for technology development may be 
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randomly dispersed branching-outs from prior nodes of technology to the next nodes of 

technology. These branching-outs to subsequent technologies occur in a process through 

which the components of accumulated prior knowledge are recombined. Therefore, 

accessing prior knowledge is essential for developing a novel technology or a 

technological breakthrough. Hence, science and technology programs should play 

important roles in facilitating knowledge accessibility and thus shaping knowledge flows. 

The knowledge flows that transport technology components from one node of technology 

to another across time and space may be not only the result but also the cause of 

institutional changes. Finally, the generation of novel technology plays a significant role 

in technology development not only because novel technologies indicate technological 

breakthroughs but also because novel technologies induce subsequent inventions that 

draw on and experiment them to yield superior technological outcomes.  

 

 

Figure 1.1 Research Framework  
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CHAPTER 2 

SEARCH BOUNDARY, KNOWLEDGE RECOMBINATION, AND 

TECHNOLOGICAL BREAKTHROUGHS 

1 Introduction 

 A significant body of literature argues that the recombination of prior knowledge 

components is the source of novelty (Schumpeter, 1939; Nelson and Winter, 1982; 

Weitzman, 1998). Researchers have also emphasized the importance of new 

recombination of prior knowledge, experiences, routines, or technologies as a potential 

generator of technological breakthroughs (Nelson and Winter, 1982; Kogut and Zander, 

1992; Romer, 1994; Weitzman, 1998; Fleming, 2001). Henderson and Clark (1990) 

demonstrate that reconfiguring or rearranging existing technological components in a 

novel way can create destructive technological changes. For instance, the ceramic, a 

mixture of four elements (i.e., copper, barium, oxygen, and yttrium), that turned out to be 

a superconductor when placed under different conditions of temperature and pressure 

(Romer, 1994). Another example is an “electronic candle” Edison developed by testing 

over 6,000 new combinations with filament materials that came from all over the world 

(Weitzman, 1998). Despite the existing literature’s emphasis on the importance of new 

recombination and salient anecdotal examples, we have limited understanding of the 

antecedents of new recombination and the mechanisms through which these antecedents 

lead to technological breakthroughs.  

 The creation of new recombination has been interpreted as firms’ exploration that 

increases the variance of technological outcomes and, hence, the uncertainty surrounding 
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the success or failure of the technologies (March, 1991; Fleming, 2001). Exploration is 

associated with such terms as search, variation, experiment, risk-taking and innovation 

(March, 1991), and is likely to produce technological breakthroughs by increasing 

performance outliers including both cases of success and failure (March, 1991; Fleming, 

2001). Exploration has thus been firmly understood as an important mechanism that leads 

to technological breakthroughs (Cohen and Levinthal, 1990; Henderson and Clark, 1990; 

Ahuja and Lampert, 2001; Rosenkopf and Nerkar, 2001).  

 The prominent literature highlights the role of firms’ exploration such as 

boundary spanning search (i.e., search beyond localness) in developing technological 

breakthroughs (Nelson and Winter, 1982; Cohen and Levinthal, 1990; Henderson and 

Clark, 1990; Kogut and Zander, 1992; Ahuja and Lampert, 2001; Fleming, 2001; 

Rosenkopf and Nerkar, 2001). These studies richly document that firms explore by 

searching unfamiliar knowledge components and recombining the components in a novel 

way. However, it appears to us that two different forms of exploration—searching for 

newly recombined components and generating new recombination—have been conflated, 

both conceptually and empirically.  

 We argue that what components firms search for (for-search exploration) should 

be distinguished from how firms recombine them (for-generate exploration). For instance, 

from the above example, searching for a ceramic (i.e., new recombination of four 

elements) and generating new recombination of a ceramic, heat and pressure may each 
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represent a different style of explorations in developing superconductor technologies.
1
 

However, very little is known about the relationship between firms’ exploration in 

searching for new recombination in prior knowledge and their exploration in generating 

new recombination in focal inventions. We believe that, for at least three reasons, it is 

important to better understand this relationship. First, it is not at all clear whether for-

search exploration necessarily leads to for-generate exploration. Second, searching for 

new recombination in prior technologies may affect the development of technological 

breakthroughs differently from the way in which generating new recombination in focal 

invention does. Third, the search of new recombination may vary markedly between the 

boundaries of search, i.e., local vs. boundary spanning, in terms of their influence on 

technology developments. We therefore address this issue by examining the effect of new 

recombination in prior inventions (hereafter, prior new-recombination) on the generation 

of new recombination in focal inventions (hereafter, focal new-recombination) and on the 

development of technological breakthroughs, with respect to the boundary of the search 

(i.e., where firms look for the prior new-recombination).  

 Our intended contribution to the literature is twofold. First, we add to the 

literature of recombinant knowledge. Interestingly, the existing knowledge component 

that a focal invention draws from prior inventions can be either “original” (in the sense 

that it represents the first-ever recombination of preceding knowledge components) or 

“ordinary” (i.e., contains no such new recombination). This suggests an opportunity to 

                                                 

 

 
1
 March (1991) captures exploration using terms such as search, variation, experimentation, discovery, and 

innovation. Building on these terms, we map “for-search” exploration to search, variation, or 

experimentation, and “for-generate” exploration to discovery or innovation. 
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extend the idea put forth by scholars such as Romer (1994), Weitzman (1998), and 

Fleming (2001) that new recombination can be a source of technological breakthroughs. 

The literature, in general, identifies a focal new-recombination and then examines how 

the focal new-recombination is related to the probability of technological breakthroughs. 

Yet, prior new-recombination may exert distinct influences, separately from those of 

focal new-recombination, on the focal invention’s characteristics. That is because, while 

generating new recombination may itself create technological uncertainty (Fleming, 

2001), incorporating prior new-recombination may address, at least partially, the 

technological uncertainty that the prior new-recombination had triggered.  

 Second, we contribute to the literature of exploration by examining the 

exploration for prior new-recombination with respect to the boundary of search. 

Extending the literature on path dependency and technology-development trajectory 

(Nelson and Winter, 1977; 1982; Dosi, 1982; Cohen and Levinthal, 1990; Cohen, 2010), 

many scholars have demonstrated that firms exhibiting superior outcomes tend to explore 

beyond local boundary, while striking a balance between local and boundary spanning 

searches (Rosenkoph and Nerkar, 2001; Nerkar, 2003; Rothaermel and Alexandre, 2009; 

Kotha, Zheng, and George, 2011). In doing so, scholars seem to have considered a local 

search as exploitation (Fleming, 2001) or at least a lower degree of exploration 

(Rosenkopf and Nerkar, 2001) compared to a boundary spanning search.
2
 However, an 

                                                 

 

 
2
 For instance, Fleming (2001) states that “…Localness corresponds to inventors’ familiarity with their 

recombinant search space. Local search or exploitation (March 1991) occurs when an inventor recombines 

from a familiar set of technology components or refines a previously used combination…” (p. 119). 

Rosenkopf and Nerkar (2001) also describe that a local search enables firms to have “first-order 

competence” and a boundary spanning search to have “second-order competence.” They emphasize that 
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extensive form of exploration can be found even within a local search. For instance, 

while exploring to attain significant research outcomes, firms may encounter first-ever 

introduced new recombination that represents an original technology component within 

their local technological domain. Since original technologies are often in very primitive 

forms (Rosenberg, 1996), firms should experiment with these undefined technologies to 

turn them into useful inputs for technological developments. 

 To decouple from the potential conflation between the level of exploration and the 

boundary of technological search, we must keep one of the dimensions constant and 

examine the other. We control for the level of exploration by focusing on the search of 

prior new-recombination. By holding constant the explorative characteristic of local and 

boundary spanning searches at the search of the prior new-recombination, we can provide 

a condition for a controlled identification of the net impacts of local and boundary 

spanning searches, independent of the effects from different degrees of exploration in 

technological searches in any boundary. This approach thus advances the current 

literature in an important way. For instance, Rosenkopf and Nerkar (2001) show in their 

prominent study of the optical disc technology that, by searching for prior technological 

components—whether or not the component is an original technology—beyond the local 

technology boundary, firms produce technological breakthroughs. We note that the 

demonstrated difference in technological performance between local and boundary 

spanning searches is possibly driven by the difference between a relatively exploitative 

                                                                                                                                     

 

 
“… our focus is on what we call ‘second-order competence’: the ability of a firm to create new knowledge 

through recombination of knowledge across boundaries…”  
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local search and an explorative boundary spanning search, rather than by the difference in 

search boundaries per se. By exploiting the phenomena that firms explore new 

recombination both outside and inside of their technological domains, we compare the 

exploration in a local search with that in a boundary spanning search.  

 We argue that, with a local search, prior new-recombination is less likely to be 

rearranged or reconfigured in a new context. That is because, within a local domain, the 

prior new-recombination binds the focal invention to its own technology development 

trajectory, thereby limiting the focal invention from creating new recombination. On the 

other hand, standard procedures and shared assumptions along the technology 

development trajectory facilitate the focal invention’s improvement of the unresolved and 

untested problems surrounding the prior new-recombination. As a result, the focal 

invention reduces the technological uncertainty associated with the prior new-

recombination and thus is likely to have a high impact on subsequent inventions. 

Conversely, with a boundary spanning search for prior new-recombination, a focal 

invention is more prone to generating new recombination by transporting the prior new-

recombination from the outside to the inside of a technology boundary. However, the 

standard procedure or research method along the local technology development trajectory 

may not reduce the technological uncertainty of the prior new-recombination brought in 

from the outside of a technology boundary as effectively as in that searched inside. 

Consequently, the impact of the focal invention with a boundary spanning search for 

prior new-recombination on subsequent inventions will be lower. A “hybrid” search that 

includes both local and boundary spanning searches is then likely to exhibit an 

intermediate effect on the characteristics of the focal invention.   
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 Building on the argument above, we hypothesize as follows on the effect of 

different types of search on focal inventions: when the technological search involves new 

recombination in prior inventions, 1) the likelihood of generating new recombination in 

the focal invention is greatest for a boundary spanning search, smallest for a local search, 

and intermediate for a hybrid search;  but 2) the likelihood for the focal invention to 

becomes a technological breakthrough is greatest for a local search, smallest for a 

boundary spanning search, and intermediate for a hybrid search. 

 We test these hypotheses on the data of inventions in the field of the U.S. 

nanotechnology. Nanotechnology presents an ideal setting for this study. The paper’s 

focus on firm-generated new recombination and technological breakthroughs requires 

that firms generate significant knowledge in the technology. In nanotechnology, firms 

have indeed contributed actively and importantly to the technological advancement. For 

instance, the invention of the Scanning Tunneling Microscopy (STM) came from IBM in 

early 1980s. NEC, a Japanese company, discovered carbon nanotubes in 1990s. Also, 

because nanotechnology is not yet in a commercially mature stage (NSTC, 2011), a 

plenty of room for technological advancements exist so that we continue to observe 

abundant firm activities regarding the recombination of existing technologies and the 

development of technological breakthroughs. In particular, given the multidisciplinary 

nature of research, significant search activities both inside and outside the technological 

boundary may be crucial for achieving technological developments. Moreover, our main 

constructs (i.e., new recombination and technological breakthroughs) can be significant 

factors in determining the technology and innovation strategy of firms, regardless of their 
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size, that intend to obtain Schumpeterian rents (Schumpeter, 1975) in this technology 

space.  

 Our analysis of U.S. firm nanotechnology patents granted between 1980 and 2006 

corroborates the hypotheses. The empirical findings highlight that : 1) with a local search, 

incorporating prior new-recombination into the focal invention decreases the propensity 

of generating new-recombination in the focal invention but increases the likelihood of the 

focal invention to become a technological breakthrough; and 2) with a boundary spanning 

search, relative to a local search, incorporating a prior new-recombination into the focal 

invention improves the chances of focal new-recombination but leads to a lower 

likelihood of a technological breakthrough.   

2 Theory and Hypothesis 

2.1 New Recombination in Prior and Focal Inventions 

 To develop the arguments on the links between the search of prior new-

recombination, the generation of focal new-recombination and the development of 

technological breakthroughs, we first elaborate the concept of new recombination. 

Knowledge creation is the process of recombining existing knowledge components 

(Schumpeter, 1939; Nelson and Winter, 1982; Henderson and Clark, 1990; Rosenberg, 

1996; Weitzman, 1998; Galunic and Rodan, 1998; Fleming, 2001). Recombination 

begins with searches of knowledge components (Nelson and Winter, 1982; Rosenkopf 

and Neckar, 2001) and is processed through merges of diffused knowledge components 

(Jaffe, 1986; Cohen and Levinthal, 1990; Griliches, 1992). The literature defines 

recombinative components as: “conceptual or physical materials,” such as routines or 
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technologies (Nelson and Winter, 1982; Galunic and Rodan, 1998); “old knowledge,” 

such as existing cultivated plant varieties (Weitzman, 1998); pre-existing “elements,” 

such as materials in periodic tables, and “conditions,” such as temperature and pressure 

(Romer, 1994); and “constituents of invention,” such as Schumpeterian “factors” 

(Schumpeter, 1939; Fleming, 2001). In line with this literature, we define “components” 

to denote the existing technological knowledge. Knowledge components can be inputs for 

recombination in focal inventions as well as results of recombination in prior inventions. 

Through new recombination, knowledge components may expand in combinatoric 

manner (Romer 1994; Weitzman, 1998).  

 While there are theoretically an infinite number of potential combinations of 

knowledge components (Weitzman, 1998), only a part of them are realized in inventions. 

And some of these inventions incorporate original new recombination that did not exist 

before. Firm exploration may involve this new recombination in two ways. First, firms 

may generate new recombination in focal inventions (Weitzman, 1998; Fleming, 2001). 

Second, firms may search and use new recombination in prior inventions as components 

for their own recombination.  

 The inventions from the first type of exploration that generates focal new-

recombination are disproportionally more likely to be either successful or poor outcomes 

(March, 1991; Fleming, 2001). This implies that newly generated recombination may 

introduce technological uncertainty in the sense that the impact of the new recombination 

cannot be fully appreciated ex-ante (Rosenberg, 1996; Fleming, 2001). Thus, focal new-

recombination per se may not suggest a successful outcome, i.e., a technological 

breakthrough that firms should be eventually interested in. In contrast, we expect that the 



 

 

18 

 

second type of exploration that searches for prior new-recombination may reduce 

technological uncertainty of the prior new-recombination. Technological uncertainty 

arises from unpredictability in future usages of a novel technology or future technological 

changes following the development of the technology (Rosenberg, 1976). Hence, 

incorporating prior new-recombination into a focal invention may lessen the 

technological uncertainty that the prior new-recombination has triggered. Consequently, 

the focal invention is likely to prove useful for subsequent technology developments and 

thus become highly successful. 

2.2 Searches of Prior New-Recombination and Technological Breakthroughs 

 From the perspective of evolutionary theory, the invention that serves as an input 

for future inventions is essential for technology developments. Thus, an invention can be 

regarded as successful when other researchers recognize and build on that invention 

(Simonton, 1999; Fleming, Mingo, and Chen, 2007). Following prior studies 

(Trajtenberg, 1990; Ahuja and Lampert, 2001; Zucker, Darby, and Armstrong, 2002; 

Singh and Fleming, 2010), we define a technological breakthrough as an invention that 

has been exceptionally frequently used by subsequent inventions.
3
  

 Practically, a technological breakthrough can be determined by an invention-

specific value regarding the degree of usefulness for future technology developments. 

Given that the value distribution of inventions is highly skewed (Griliches, 1990; Harhoff 

et al, 1999), we focus on the highly impactful portion of inventions. Technological 

                                                 

 

 
3
 This definition is distinguished from that of Tushman and Anderson (1986) in which a technological 

breakthrough means competence-destroying technological discontinuity. In our definition, a technological 

breakthrough includes both radical and incremental technology developments. 
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breakthroughs play critical roles in promoting entrepreneurial activities, increasing 

welfare, and creating Schumpeterian rents (Schumpeter, 1975; Trajtenberg, 1990; 

Harhoff et al, 1999). Further, firms may be particularly interested in developing 

technological breakthroughs because these breakthroughs have been sources of growth 

and new business developments (Burgelman, 1983; Ahuja and Lampert, 2001).  

 A significant body of literature establishes that technological breakthroughs are 

induced by firms’ exploration to search for knowledge beyond their local domain. In 

general, scholars propose that, through a local search, firms can accumulate knowledge 

stocks and capabilities to continuously innovate (Cohen and Levinthal, 1989; Stuart and 

Podolny, 1996) but, through a boundary spanning search, firms can overcome path 

dependency and achieve technological breakthroughs (Ahuja and Lampart, 2001; 

Fleming, 2001; Rosenkopf and Nerkar, 2001).The literature seems to put more weights 

on boundary spanning searches than on local searches in identifying the indicator of 

technological breakthroughs.  

 What it remains unclear in this literature is what firms actually search for when 

exploring in prior technologies. The degree of exploration and the associated uncertainty 

are determined not only by the domain of search (e.g., local vs. cross-boundary) but also 

by the target of search (e.g., original vs. conventional). To unambiguously identify the 

link between search boundary and the characteristics of resulting inventions, one needs to 

adequately control for the source of variation arising from differences in search targets. 

To this end, we focus on searches of prior new-recombination that was first-ever 

introduced. It is generally considered that a local search is less explorative in nature 

(Rosenkopf and Nerkar, 2001; Fleming, 2001; Ahuja and Katila, 2004). However, given 
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that this original new-recombination is in an underdeveloped and uncertain condition 

(Rosenberg, 1996) and thus invokes many unsolved problems (Simonton, 2004)
4
, locally 

searching for the original technologies is likely to be no less explorative than searching 

for knowledge components across boundaries. If firms want to exploit relatively well-

proven examples, they may simply search imitated, applied, or updated versions of the 

original technology. In contrast, searching for the original new-recombination, even 

within the boundary of a technology field, means that firms may aspire to explore 

uncertain aspects of the prior new-recombination.
5
 The purpose of this exploration is to 

add significant technological advances such as new examples and solutions to the local 

field (Dosi, 1982), which is an unusual practice of firms in that firms have a tendency to 

exploit existing solutions (Ahuja and Lampert, 2001). Firms’ attempts to find new 

solutions are risky and render no guarantee in outcomes (March, 1991; Ahuja and 

Lampert, 2001). 

 Figure 2.2 schematically summarizes these concepts in a two-by-two matrix. On 

the dimension of search boundary, two boundaries of search exist when a focal invention 

draws on prior inventions: a local boundary or a cross-boundary; and, on the dimension 

of search target, there are two kinds of components that a focal invention searches for: an 

ordinary component or new recombination (i.e., an original component). Hence, these 

                                                 

 

 
4
 Simonton (2004) suggests that original discoveries are usually unreasonable and lack predetermined 

solutions and thus follow-up researches that address original problems are important in further developing 

the original discoveries. To comprehend original discoveries requires subsequent researches that process 

logical justification. With only these follow-up researches, the original discoveries can be accepted and 

established throughout the research community (pp.163-164).  
5
 Interviews with researchers in nanotechnology confirmed this story. The interviewees mentioned that it is 

usually easier to follow examples that interpret or apply prior original technologies; however, significant 

outcomes usually result when they go back to and examine the very original technologies in the field.   
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together generate four types of searches: an ordinary search that incorporates no prior 

new-recombination, a boundary spanning search that incorporates prior new-

recombination from outside the local domain, a local search that incorporates prior new-

recombination from inside the local domain, and a hybrid search that incorporates prior 

new-recombination from both inside and outside of the local domain. 

2.3 Search Boundaries and Focal New-recombination 

 Within a local technology field, technology developments may proceed along a 

“trajectory,” as if the trajectory moves toward some physical limits (Nelson and Winter, 

1977; Dosi, 1982; Cohen, 2010). Put differently, a technology trajectory has a certain 

inner logic of its own such as expectations for the direction of progress. This trajectory is 

thus related to firms’ technological development efforts that tend to be concentrated on a 

limited number of distinct, identifiable problems such as technological bottlenecks and 

targets for improvement (Nelson and Winter, 1977; Rosenberg, 1996). When addressing 

prior new-recombination, a focal invention may be expected to solve these trajectory-

specific problems by testing uncertain technologies around the  prior new-recombination 

(cf. Kuhn, 1996).
6
 

 On the other hand, firms have a tendency toward local searches (March and 

Simon, 1958; Nelson and Winter, 1982; Cohen and Levinthal, 1990; Ahuja and Katila, 

2004; Hansen and Lovas, 2004). A local search implies that firms search within the 

boundary of a specific technology field in which they have built a series of proximate 

                                                 

 

 
6
 This style of problem solving by firms along the technological trajectory is analogous to the puzzle-

solving by scientists as Kuhn (1996) suggests (Dosi, 1982). According to Kuhn (1996), scientists are 

puzzle-solvers who dedicate their efforts to actualize promises of a specific scientific paradigm.  
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technological experiences (Nelson and Winter, 1982). A local search may result in a 

finding of prior new-recombination that was first-ever introduced. That prior new-

recombination may, however, embody unresolved problems and untested technologies 

(Utterback, 1971; Abernathy and Utterback, 1975; Tushman and Anderson, 1986; 

Klepper, 1997), some of which the searching firms must address in their focal inventions. 

 Given that a technology trajectory is constrained in its own viewpoints toward 

problem solving, the searched prior new-recombination is less likely to be put in a new 

context other than the context of the local technology trajectory. Moreover, a focal 

invention may examine and adopt prior new-recombination by using standard procedures 

or methodologies that the technology trajectory embraces (Dosi, 1982; cf. Kuhn, 1996).
7
  

These standard procedures and methodologies may agree well, at least seemingly, with 

the prior new-recombination when it is searched locally along the same technology 

trajectory (Dosi, 1982; Levinthal and March, 1993). This apparent fit with standard 

procedures and methodologies, in addition to being on the same technology trajectory, 

may render the focal invention less apt to move the prior new-recombination to a 

different context outside the trajectory. For instance, when Graham Bell first invented the 

telephone technology in 1876, even the inventor himself failed to recognize it as a new 

technology but only considered it as “the improvement of telegraphy” (Rosenberg, 1996; 

Brock, 2009)
8
. This example shows how difficult it is ex-ante to depart from one context 

to another, such as from telegraph to telephone. As such, rearranging or reconfiguring the 

                                                 

 

 
7
 The standard procedures and methodologies may match to “rules,” “established viewpoint,” or 

“preconception” in Kuhn (1996, p.39). 
8
 In fact, Bell filed the patent under the title “the improvement of telegraphy”. (Brock, 2009) 
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locally-searched prior new-recombination into a new context may occur much less 

frequently, or at least get delayed (cf. Kuhn, 1996)
 9

.  

 Relative to a local search, a boundary spanning search for prior new-

recombination accompanies transporting of the searched prior new-recombination from 

the outside to the inside of a specific technology domain. Since the prior new-

recombination that is found through a boundary spanning search should be rearranged 

and reconfigured in a new context, the focal invention is likely to embrace “architectural” 

changes (Henderson and Clark, 1990). By transporting the prior new-recombination into 

the local trajectory of technology development, the focal invention creates technological 

connections and integrations surrounding the prior new-recombination. These new 

connections and integrations may thus lead to another new recombination in the focal 

invention.  

 Further, by providing the opportunities of experimenting and transporting the 

prior new-recombination from the outside to the inside of the local field, a boundary 

spanning search may enable firms to incorporate an idiosyncratic knowledge structure 

(Simon, 1985) that is less bounded to standard procedures or assumptions within a 

specific technology trajectory. This varied knowledge structure is likely to create new 

ideas (Simon, 1985) that are relatively free from the problems that are identified as 

targets and hence are taken for granted in the technology trajectory. These new ideas may 

                                                 

 

 
9
 This argument is parallel to Kuhn’s explanation about belated discoveries under normal science. Scientists 

stick to instrumental and theoretical expectations that standard procedures in normal science embrace. 

Thus, when new evidence emerges in a field, scientists cannot develop it directly to a new discovery. One 

such example is the identification of oxygen gas by Lavoisier in the eighteenth century. Even though it was 

before 1772 that evidence emerged on the existence of “good gas,” it was not until after 1777 that the 

discovery of oxygen was officially recognized (Kuhn, 1996, pp. 59-60).     
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thus be less redundant with other ideas that have emerged along the technology trajectory 

(Podolny and Stuart, 1995). Consequently, focal inventions based on these new ideas 

may exhibit a greater likelihood of generating new recombination. As such, a boundary 

spanning search for prior new-recombination promotes the generation of focal new-

recombination. 

 A hybrid search incorporates both a local search and a boundary spanning search. 

Given their contrasting effects on the generation of focal new-recombination, we expect 

that a hybrid search for prior new-recombination will exhibit an intermediate effect on 

the likelihood of focal new-recombination. This is because the positive effect of the 

boundary spanning search is likely to be offset, at least partially, by the countering effect 

of the local search. Therefore, new recombination in a focal invention is most likely to be 

attained by a boundary spanning search of prior new-recombination and is least likely to 

be attained by a local search, with a hybrid search exhibiting an intermediate effect. 

Formally:  

Hypothesis 1: When the technological search involves new recombination in prior 

inventions, the likelihood of generating new recombination in the focal invention is 

greatest for a boundary spanning search, smallest for a local search, and intermediate 

for a hybrid search, relative to that for an ordinary search that involves no prior new-

recombination. 

2.4 Search Boundaries and Technological Breakthroughs  

 When prior new-recombination is locally searched, the experiments around the 

prior new-recombination may generate knowledge that provides a one-step-ahead 

understanding of the specific problems raised by the prior new-recombination. These 



 

 

25 

 

experiments may involve a process of assessing and assimilating the prior new-

recombination (Cohen and Levinthal, 1990), which would go through testing, modifying, 

or adopting uncertain technological aspects of the prior new-recombination. By this 

process, the focal invention can enclose some evaluative information about the locally-

searched prior new-recombination (Fleming and Sorenson, 2004), which may 

consequently reduce the technological uncertainty that the prior new-recombination has 

created. In other words, the resolution of technological uncertainty of the prior new-

combination is contingent on how much other inventions on the trajectory improve the 

original yet primitive component (Podolny and Stuart, 1995). The following illustrates 

this point. When Binnig and Rohrer from IBM invented the STM, a boundary spanning 

search for the “tunneling” phenomena contributed to the initial new recombination of the 

STM.
10

 However, the actual success of the STM came from subsequent STM R&D 

efforts that drew on this original invention. That is, the IBM researchers generated the 

new recombination of the STM and then went back to this original component to develop 

a breakthrough technology for the STM in subsequent inventions.
11

    

 Recall that a technological development trajectory contains standard procedures 

and consented premises such as theoretical expectations and problem-solving heuristics 

                                                 

 

 
10

 “…So Binnig and Rohrer decided to build their own instrument – something new that would be capable 

of seeing and manipulating atoms at the nanoscale level. To do that, they began experimenting with 

tunneling, a quantum phenomenon in which atoms escape the surface of a solid to form a kind of cloud that 

hovers above the surface; when another surface approaches, its atomic cloud overlaps and an atomic 

exchange occurs…” (http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/microscope/, accessed on 

April 13, 2013) 
11

 These IBM researchers describe how they turned the ‘unsuccessful’ prior new-recombination into 

‘successful’ technologies in subsequent developments. “…Previous developments were unsuccessful for 

various reasons. The present letter contains the first experimental results on surface topography obtained 

with this novel technique. They demonstrate unprecedent resolution of STM and should give a taste of its 

fascinating possibilities for surface characterization…” (Binnig et al., 1982)  
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(Dosi, 1982; cf. Kuhn, 1996). The locally-searched prior new-recombination is likely to 

nicely accommodate these shared theoretical and instrumental guidelines. With these 

guidelines, a focal invention may well advance the reduction of the technological 

uncertainty surrounding the target prior new-recombination. This is because, under the 

assumption of bounded rationality, the standard procedures and agreed-upon premises 

facilitate the interpretation and understanding of the uncertainty associated with the prior 

new-recombination, and hence, will be effective in resolving that uncertainty (Simon, 

1996, p.42).  

 As a focal invention reduces the technological uncertainty of the locally-searched 

prior new-recombination, it clarifies technological opportunities to change and improve 

upon the prior new-recombination (Abernathy and Utterback, 1975; Rosenberg, 1996). 

The understanding and interpretation of the technological uncertainty may include some 

evaluative information, either positive or negative, about the prior new-recombination. 

For instance, the focal invention can greatly increase reliability on the prior new-

recombination (Fleming and Sorenson, 2004), make complementary technologies ready 

(Adner and Kapoor, 2010), provide a better alternative such as a technology with lower 

adoption cost (Rosenberg, 1976), or replace the prior new-recombination (Tushman and 

Anderson, 1986). These provisions of technological opportunities surrounding the prior 

new-recombination may make the focal invention highly useful for subsequent 

technology developments. Hence, the exploration in searching for prior new- 

recombination within a local domain will increase the likelihood of developing 

technological breakthroughs.  
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 Compared to a local search, a boundary spanning search for prior new-

recombination leads to a lower likelihood for a focal invention to become a technological 

breakthrough. There are two reasons for this expectation. First, the focal invention that 

transports the prior new-recombination from the outside to the inside of a technology 

field may not effectively reduce the technological uncertainty of the prior new-

recombination. Recall that standard procedures and methodologies along a specific 

technology trajectory facilitate the reduction of the uncertainty of new recombination 

within a local technology domain. Transporting prior new-recombination across 

boundaries makes it difficult to exploit the shared procedures and methodologies of a 

technology domain in tackling the uncertainty of the prior new-recombination (cf. 

Henderson and Clark, 1990)
12

. Take the example of the inkjet printer technology. When 

HP engineers examined new components outside their technology domain, they could not 

take advantage of their established selection processes, prototyping and testing 

procedures, and scientific methods (Fleming, 2002). As standard processes and 

methodologies in a technology field may not fully accommodate the prior new-

recombination brought in from outside the technology boundary, understanding and 

interpreting unresolved/untested problems surrounding the prior new-recombination will 

thus be limited. Therefore, the resulting focal invention may be less useful for subsequent 

inventions.  

                                                 

 

 
12

 Henderson and Clark (1990) note that contextual changes render obsolete the “information-process 

structure” or “problem-solving strategy” in an established firm. Similarly, we submit that the standard 

procedure and methodology may not work with the contextual changes such as new integrations and links 

on a technology development trajectory.   
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 Second, as a focal invention transports prior new-recombination from one to 

another technology context, the induced changes of new integrations and links around 

this prior new-recombination usually invoke “considerable confusion” in the field 

(Henderson and Clark, 1990). Inventors of subsequent inventions may be not convinced 

of the validity of those changes and thus hesitate to build on that focal invention (Sahal, 

1985). Moreover, even if the focal invention would have destructive potentials by 

creatingnew integrations and links between technological components (Henderson and 

Clark, 1990), few subsequent inventions may immediately build on the focal invention 

because it is difficult for firms to recognize and evaluate this type of subtle changes in 

technological architecture (Henderson and Cockburn, 1994). Therefore, the focal 

invention that incorporates new integrations and links that were induced by a boundary 

spanning search for prior new-recombination has limited impacts on subsequent 

technology developments.  

  The recent ongoing development of the graphene photodetector provides an 

example for a boundary spanning search and the associated new integrations and links 

(Economist, 2012; Nature Nanotechnology, 2012). To create “the thinnest and most 

flexible detector in the world,” researchers actually combine the experimental quantum 

dot-graphene photodetector with standard silicon computer chip-processing techniques.  

Many have tried to overcome the barriers to a stable integration of photon (i.e., an 

element from the graphene photodetector technology) and electron (i.e., an element from 

the silicon chip technology), making some achievements, but none has yet to 
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unequivocally succeed (Economist, 2012)
13

. A subsequent invention that can address the 

technological uncertainty around the newly generated integrations and links between 

photodetector and silicon chip technologies may well become a technological 

breakthrough for the graphene photodetector.  

 As a hybrid search includes both a local search and a boundary spanning search 

for prior new-recombination, it is likely to exhibit an intermediate effect on the likelihood 

that the focal invention becomes a technological breakthrough That is, the focal invention 

with a hybrid search reduces the technological uncertainty of the locally-searched prior 

new-recombination, thereby increasing its impact on future inventions; but it 

simultaneously creates new uncertainty from novel integrations and links associated with 

the prior new-recombination that is searched beyond the local boundary, thereby 

decreasing its usefulness for subsequent inventions. Therefore, a focal invention is most 

likely to become a technological breakthrough via a local search of prior new-

recombination, and is least likely to become one through a boundary spanning search, 

with the likelihood through a hybrid search falling in between. Formally: 

Hypothesis 2: When the technological search involves new recombination in prior 

inventions, the likelihood for the focal invention to become a technological breakthrough 

is greatest for a local search, smallest for a boundary spanning search, and intermediate 
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 “…As [Frank Koppens and his colleagues at the Institute of Photonic Sciences in Barcelona] describe in 

Nature Nanotechnology, they believe graphene can be used to make ultra-sensitive, low-cost 

photodetectors….Their purpose in doing so was to show that the technology meshes with the standard 

silicon-processing techniques used to make computer chips….Whether Dr. Koppens is the man to do it 

remains to be seen. But if he is, then he will certainly have justified the brouhaha that graphene has stirred 

up.” (Economist, 2012; Konstantatos et al., 2012) 
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for a hybrid search, relative to that for an ordinary search that involves no prior new-

recombination. 

3 Methods 

3.1 Data 

 We test these hypotheses using the data of U.S, patents in nanotechnology. We 

collected 1,848 nanotechnology patents granted to U.S. firms from 1980 to 2006, using 

the USPTO-entitled patents assigned to the class 977 (Nanotechnology). We downloaded 

the data from the USPTO website and parsed them, matching patent assignees with 

organization identifiers from the Nanobank (Zucker et al., 2007). U.S. patents or pre-

grant publications can be classified into 977 as cross-references or secondary 

classifications (USPTO Classification Order 1850, 2005). To analyze patent citations, 

subclasses, and assignees, we utilized the Kauffman COMETS database (Zucker and 

Darby, 2011). Also, we identified 7,006 patent-cited year level observations. 

 The data construction also included the identification of (1) all patents that are 

cited by any of these 1,848 nanotechnology patents (i.e., backward citations); (2) 

49,307,391 subclass pairs for the entire utility patents granted by 2008; and (3) the 

number of citations made by 2010 to the entire population of U.S. patents (i.e., forward 

citations).  

3.2 Dependent Variables 

 We constructed the following three measures of outcome of technology 

developments.  

3.2.1 Focal New-Recombination  
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 We followed prior studies (e.g., Fleming, 2001) to define new recombination as 

the first-ever recombination of two subclasses that a nanotechnology patent establishes 

among the entire patent population granted by 2008. We then constructed a variable, 

Focal New-Recombination, that counts the instances of new recombination.  Because 

subclasses allow us to examine fine-grained classifications of nanotechnology 

(Trajtenberg, Henderson, and Jaffe, 1997; Thompson and Fox-Kean, 2005), scholars 

increasingly focus on the subclass classification of patents to examine technology 

recombination (Fleming, 2001; Fleming and Sorenson, 2004; Fleming, Mingo, and Chen, 

2007).  

3.2.2 Focal New-Recombination within Nanotechnology   

 We separately identified focal new-recombination within the field of 

nanotechnology. We calculated the-first-ever recombination of two subclasses within the 

class 977. This is to examine our hypothesized effects on the “local” technology area.   

3.2.3 Technological Breakthrough  

 The patent literature has established forward citations as an indicator of economic, 

social, and technological success of the patented technology (e.g., Trajtenberg, 1990; 

Harhoff et al., 1999; Fleming, 2001; Zucker et al., 2002; Fleming, Mingo, and Chen, 

2010). Following this convention, we measured technological breakthroughs using 

forward citations. Specifically, we first generated the citation distribution of the entire 

population of U.S. patents (about 3.9 million) granted during 1976–2010. To account for 

differences in the citation hazard due to timing and technology, we used the residuals 

recovered by regressing the number of forward citations on patent class, application year, 

and grant year. This adjustment thus allows us to compare the number of forward 
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citations across patents that were applied for and granted in the same year and in the same 

technology class. We then computed the z-score for each patent using these normalized 

forward citations. Finally, we defined Technological Breakthrough as an indicator 

variable that the patent belongs to the top 5% of the citation distribution (Singh and 

Fleming, 2010).  

3.2.4 Forward Citation  

 To substantiate the mechanism by which a local search for prior new-

recombination reduces technological uncertainty, we measured the change of 

technological uncertainty by counting the number of forward citation made each year to 

each nanotechnology patent.     

3.3 Independent Variables 

 Our primary independent variables are the indicators of search types, as illustrated 

in Figure 2.1. For each type of search of prior new-recombination, we constructed the 

indicator as follows. . We first identified all patents that introduce a first-time 

combination of any two subclasses within the patent (i.e., new recombination). We then 

created for each U.S. firm nanotechnology patent a dummy variable that indicates if the 

patent cited any of the patents with the new recombination identified in the first step.
14
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 To illustrate the identification process for each quadrant, suppose that the focal patent cites a prior patent 

that has U.S. classes 977/1, 977/2, 400/3, and 400/4. The possible cases of subclass recombination are then 

(1,2), (1.3), (1,4), (2,3), (2,4), and (3,4). If none of these cases are new recombination, the focal patent 

belongs to the quadrant II. If only (1, 2) is new recombination, it belongs to III. If only (3, 4) is new 

recombination, it belongs to I. If one or more of (1,3), (1,4), (2,3) and (2,4) are new recombination, it 

belongs to IV. 
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This measure thus captures if a U.S. firm nanotechnology patent cites any prior invention 

that represents the first-time introduction of new recombination of a subclass pair. 

To trace searches of prior knowledge, we use patent citations (Mowery et al, 1996; 

Rosenkopf and Nerkar, 2001; Nerkar, 2003; Ahuja and Katila, 2004).  We are aware of 

the concern that patent citations might be a noisy proxy for knowledge search due to, for 

instance, examiner-added citations (Alcacer and Gittelman, 2006). However, we submit 

that, even if the inventor of a patent were not aware of the prior art that the examiner 

separately added as patent references, these citations still represent the existence of 

related prior knowledge. Thus, assuming that inventors also search and use the existing 

knowledge from sources including patents, we consider patent citations as a reasonable 

proxy for knowledge search.
15

 

3.3.1 Prior Ordinary-Recombination   

 We constructed a dummy variable, Prior Ordinary Recombination, that takes ‘1’ 

if the focal patent did not cite any patents that incorporate new recombination, and ‘0’ 

otherwise. This variable thus corresponds to the quadrant II in Figure 2.1.  

3.3.2 Prior New-Recombination with Local Search  

 We constructed a dummy variable, Prior New-Recombination within Local 

Search, that takes ‘1’ if the focal patent cited any patents that incorporate only new 

recombination within nanotechnology (USPTO class 977), and ‘0’ otherwise. That is, we 

first identified the first-time introduction of the new recombination of subclass pairs 

                                                 

 

 
15

 Our results are robust to the exclusion of examiner-added citations. 



 

 

34 

 

within 977 and then excluded the cases that also involve a boundary spanning search for 

prior new-recombination. This variable thus corresponds to the quadrant III in Figure 2.1.  

3.3.3 Prior New-Recombination with Boundary Spanning Search   

 We constructed a dummy variable, Prior New-Recombination with Boundary 

Spanning Search, that takes ‘1’ if the focal patent cited any patents that incorporate new 

recombination in classes other than 977, and ‘0’ otherwise. Similarly in the above 

variable, we excluded the cases that also involve a local search for prior new-

recombination.  This variable thus corresponds to the quadrant I in Figure 2.1. 

3.3.4 Prior New-Recombination with Hybrid Search   

 Prior New-Recombination with Hybrid Search takes ‘1’ if any of the prior patents 

that the focal patent cited incorporates new recombination both within and outside 977 

(i.e., conducted both a local search and a boundary spanning search). This variable thus 

corresponds to the quadrant IV in Figure 2.1. 

3.3.5 Post-Local Citation   

 This is a dummy variable, defined for the nanotechnology patents in our sample, 

that turns on for the period after the patent was first-ever cited by another nanotechnology 

patent.  

3.4 Control Variables 

3.4.1 Intensity of Local search   

 Each nanotechnology patent shows a different degree of searching for prior 

nanotechnology. Because the extent to which a patent searches local technologies affects 

forward citations (Rosenkopf and Nerkar, 2001), we controlled for the differences in the 



 

 

35 

 

intensity of local search by including the share of the citations to nanotechnology patents 

among total backward citations.  

3.4.2 All Backward Citations  

 We further included the total number of backward citations to control for the 

differences in the reliance on prior art.   

3.4.3 Exploration-exploitation mix   

 Because the degree of exploration exhibits an inverted U-shape relationship with 

the technological performance (Nerkar, 2003; Rothaermel and Alexandre, 2009; Kotha et 

al., 2011; Uotila et al., 2013), we controlled for the exploration-exploitation mix. The 

dummy variable, Exploration-exploitation mix, indicates if the focal patent cites 

nanotechnology patents and non-nanotechnology patents simultaneously. 

3.4.4 Prior new-recombination with self-citation  

 We added a dummy variable, Prior New-recombination with self-citation, that 

indicates if the focal patent cites any patent with prior new-recombination by the same 

assignee. This variable thus captures the effect of prior new-recombination that was 

introduced and cited by the same firm. This also controls for the potential effect from 

differences in organizational boundary in search (Rosenkopf and Nerkar, 2001). 

3.4.5 Non-patent References  

 We included the number of non-patent references to control for the effect of 

searching for scientific knowledge, particularly given this construct’s high correlation 

with future citation measures (Ahuja and Katila, 2004; Fleming and Sorenson, 2004).  

3.4.6 Claims  
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 The number of claims controls for the effect of patent claims on the dependent 

variables. As claims represent the coverage of protection for a patent, we expect that 

patents with more claims are likely to receive more forward citations. 

3.4.7 Citation Age   

 We included the age of backward citations to control for the potentially 

diminishing effect of prior art.  Citation Age may capture a “recency” effect on our 

dependent variables because temporal gap from prior art generally shows a high 

correlation with future citations (Nerkar, 2003). More important, citation age will control 

for the endogenous reduction of technological uncertainty over time, which we argue 

affects the likelihood of a technological breakthrough. We measure Citation Age by 

calculating the median of application years of all patents cited by the focal patent.  

3.4.8 Recombination Age  

 We also controlled for the aging effect of recombination by including 

Recombination Age. We constructed this variable by calculating the median age of all 

recombination pairs of subclasses that the focal patent incorporates. This variable thus 

indicates how “old” the set of recombination that the focal invention draws on is on 

average. Recall that our argument on the mechanism through which a boundary spanning 

search achieves greater focal new-recombination is over and above the simple logic that 

recombination may get exhausted more quickly within a local domain. Hence, we expect 

Recombination Age to control for the exhaustion effect of recombinant components over 

time.   

3.4.9 Year Fixed Effects   
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 We included grant year dummies to control for the temporal effects in the 

development of nanotechnology.  

3.4.10 Technology Category Fixed Effects   

 Nanotechnology spans multiple technology areas (NSTC 2011). Thus, we 

included technology category dummies to capture the effect of different technology 

subfields of nanotechnology. For technology categories, we used Zucker and Darby’s 

(2011) patent categorization system that assigns each U.S. patent to one of five broad 

science areas (i.e., Biology/Chemistry, Semiconductor, Computer Science, Other 

Science, and Other Engineering). 

3.4.11 Firm Fixed Effects   

 In some of the robustness check, we further included firm fixed effects to account 

for the inter-firm heterogeneity in technological capabilities.   

 Table 2.1 reports summary statistics of all variables and the matrix of correlations 

among them. 

3.5 Estimation Methodology 

 We used three different regression methods for estimation, depending on the data 

type of the dependent variable: a negative binomial regression for models with a count-

based dependent variable; a logit regression for models with a binary dependent variable; 

and an OLS regression for models with a continuous dependent variable (robustness 

checks). In all models, we report robust standard errors that are clustered by firm.  

4 Results 

4.1 Previews 
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 Before presenting the results, we show the patterns in the raw data without 

controls. Figure 2.2 presents the distribution of focal new-recombination across the four 

quadrants according to the types of search, as defined in Figure 2.1. Compared to those 

with no new recombination, focal inventions that generate new recombination exhibit a 

much greater portion of a boundary spanning search . In contrast, only a very small 

portion of these focal inventions involves a local search, compared to the focal inventions 

with no new recombination. Figure 2.3 illustrates the distribution of technological 

performance, measured by the standard-normalized number of forward citations, across 

the four quadrants in Figure 2.1. In the graph, a local search is associated with a 

significantly fatter right tail of the distribution; relative to this local search, a boundary 

spanning search exhibits a much thinner right tail.  Though only illustrative, the patterns 

shown in these figures are indeed consistent with our hypotheses. 

Insert Figures 2.2 and 2.3 about here 

4.2 Main Results 

 We now turn to the regression results. Models 1 and 2 in Table 2.2 test our 

hypothesis on focal new-recombination. In Model 1, the coefficients on search types 

generally show the order between search types that is consistent with our prediction. The 

coefficients on both the boundary spanning search and the hybrid search show 

significantly positive effects, while that on the local search is indistinguishable from zero 

(though positive). Based on the incidence rate ratio, relative to an ordinary search, a 

boundary spanning search increases the number of focal new-recombination by 57% and 

a hybrid search increases it by 43%, while a local search exhibits no advantage over an 

ordinary search in generating new recombination. The results get stronger for the local 
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search and weaker for the boundary spanning search if we restrict the domain of new 

recombination to nanotechnology (Model 2). The rate of change in the number of focal 

new-recombination by search type is in the order of a hybrid search (115%), a boundary 

spanning search (100%), an ordinary search (baseline), and then a local search (-51%). In 

Model 2, Wald test demonstrates that the coefficient of the local search is significantly 

smaller than those of the boundary spanning search (p<0.01) and the hybrid search 

(p<0.01); but the coefficient of the boundary spanning search is not significantly different 

from that of hybrid search. Hence, Hypothesis 1 is partially supported. Among the control 

variables, the intensity of local search is in general negatively correlated with focal new-

recombination and so is the total number of backward citations. Recombination age is 

significantly negatively related to focal new-recombination. Overall, the results are 

consistent with our hypothesis that focal new-recombination is most likely to result from 

a boundary spanning search and is least likely to arise from a local search. 

 Models 3 and 4 test our prediction on technological breakthroughs. The results 

confirm the hypothesis: the coefficients on search types are all positive and also 

significant (except that of the boundary spanning search), with the magnitude of effect 

consistent with the predicted order. In Model 3, using marginal effects based on logit 

coefficients
16

, the likelihood of a technological breakthrough is highest for a local search 

(35%), followed by a hybrid search (21%), and is the lowest for a boundary spanning 

search. The Wald test demonstrates that the coefficient of the local search is significantly 

greater than those of the hybrid search (p<0.05) and the boundary spanning search 
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 To compute marginal effects, we used Stata command ‘margins, dy/dx’ after logit estimation. 
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(p<0.01); the coefficient of the hybrid search is greater than that of the boundary 

spanning search (p<0.05). Together, these results fully support Hypothesis 2. Further 

controlling for focal new-recombination, which has been shown to affect the propensity 

of a technological breakthrough (e.g., Fleming, 2001), does not change the results (Model 

4).  

 We argued earlier that it is through the reduction of technological uncertainty 

surrounding prior new-recombination that searching and incorporating the prior new-

recombination increases the likelihood for the focal invention to become a technological 

breakthrough. If a first-ever incorporation of prior new-recombination into the focal 

patent indeed reduces the technological uncertainty associated with that prior knowledge, 

we should expect more future inventions to start citing this original component, not to 

mention of the focal patent that addresses the uncertainty (as is already shown in Models 

3 and 4 in Table 2.2). In particular, we expect the effect to be stronger for a locally-cited 

prior new-recombination. The analysis in Table 2.3 corroborates this proposed 

mechanism, by examining the citation patterns for nanotechnology patents. The unit of 

analysis in this analysis is patent-cited year. Model 1 shows that citation counts for a 

patent jump after the patent is cited by another nanotechnology patent for the first time, 

as indicated by the positive coefficient on Post-local cited variable. Model 2 indicates 

that patents that generate new recombination receive greater citations, though the 

coefficient seems imprecisely estimated. Model 3 reveals that the citation jump following 

the first-time citation by another nanotechnology patent is significantly greater for patents 

that generate new recombination. This suggests that any citation advantage that may 

accrue to a patent with new recombination comes from being cited by another “local” 
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invention, which clears the uncertainty that has lingered around that original technology. 

Therefore, our proposed mechanism leading to Hypothesis 2 appears to be reasonably 

substantiated.  

 The results reported in Table 2.2 generally remain robust to additional controls of 

unobserved time-invariant heterogeneity across firms (Table 2.4). Overall, these firm-

fixed effects seem to absorb significant variations, thereby reducing the precision of 

estimates. In Model 1, the coefficients on search types lose significance while the 

coefficient of a control variable, Self-citation to PN, turns significantly positive. Model 2 

shows that the order between search types is consistent with our prediction but only the 

local search remains significantly negative. . The results on technological breakthroughs 

also turn much weaker, though the order of effect is consistent with those in previous 

analysis (Models 3 and 4). In particular, the coefficient on the local search remains 

strongly positive, while that on other search type loses significance. The weakening of 

these results appears mainly due to the much smaller number of observations in each 

model (as firms with only a few patents get dropped), which may have considerably 

reduced variations in the dependent variable.  

Insert Table 2.1, 2.2, and 2.3 about here 

4.3 Robustness Checks 

 We also performed a number of variations of the analysis to ensure the robustness 

of our results.
17

 First, we controlled for the total number of prior new-recombination and 
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 Results of these additional tests are unreported due to space constraints but are available from the 

authors. 
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obtained the same results. Second, we estimated negative binomial and OLS regressions 

by using the count of new recombination and the standard-normalized number of forward 

citation as dependent variables. For the independent variables, we employed the total 

number of prior new-recombination of subclasses pairs within local search and boundary 

spanning search. The results showed robustness: the number of prior new-recombination 

with a boundary spanning search had a greater and significant effect than that with a local 

search on the number of focal new-recombination; and the number of prior new-

recombination with a local search had a greater and significant effect than that with a 

boundary spanning search on the standard-normalized number of forward citations. 

Third, we redefined a boundary spanning search as novel recombination of a subclass 

pair that consists of one subclass from nanotechnology and another subclass from outside 

nanotechnology.
18

 This is to address a potential concern that cross-boundary 

recombination should be considered as a boundary spanning search, rather than a hybrid 

search. With these alternative measures, we re-estimated models in Table 2.2. The results 

were robust to this alternative classification.  

 Finally, we repeated the analysis after excluding from backward citations all 

patent references that were added by the examiner. With these modified measures of 

search, our results remained robust. However, this alternative specification is incomplete 

because the examiner-added citation data are available only for the patents filed after 

2001, while our sample covers 1980-2006. 

                                                 

 

 
18

 For example, the combination (2,3) from footnote 14, which was classified as a hybrid search, now 

belongs to this alternative measure of a boundary spanning search. 
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 In sum, these various alternative tests show that our results are not driven by some 

particulars of the empirical design such as variable definition, sample coverage, and 

model choice. 

5 Discussion and Conclusion 

 The purpose of this paper is to examine how new recombination contributes to the 

development of technological breakthroughs. We find that the likelihood of focal new-

recombination and technological breakthroughs is a function of both search content (i.e., 

prior new-recombination) and search boundary (local vs. boundary spanning). Our 

findings characterize that first-ever new recombination in prior inventions (i.e., an 

original technology component) contributes more to developing technological 

breakthrough when searched locally, but is more conducive to generating new 

recombination when searched across boundaries. The results thus highlight the value of a 

local search, which has been generally considered less important than a boundary 

spanning search, of prior new-recombination in technology developments.   

 There are a few caveats to our findings, however. First, in identifying the search 

of prior art, we did not distinguish the source of citations. Thus, our citation measures 

include both firm citations and examiner-added citations (Alcacer and Gittelman, 2004). 

Following literature (Mowery et al., 1996; Rosenkopf and Nerkar, 2001; Ahuja and 

Katila, 2004), we believe that this measure still reasonably proxies for technological 

search. Even if the inventor filing a patent did not themselves search the examiner-added 

prior art, these patent references still indicate the existence of related prior technological 

components; this piece of technology is likely to have been searched by the inventor from 

sources other than patent documents. Our additional test also showed that our results held 
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robust to the exclusion of available examiner-added citations. Nevertheless, we 

acknowledge the possibility that more data on external citations could project a different 

shape to our results.  Second, related to the first point, we could not account for other 

channels through which firms may also search for technological components. For 

instance, consultants, customers, or suppliers have been identified as important sources of 

information for firm R&D (Cohen, Nelson, and Walsh, 2002; Roach and Cohen, 2012). 

Searches through those channels may not be reflected in patents citations. Thus, by only 

examining patent data, we may have omitted search efforts for knowledge from these 

different sources.  

 The differential effect between search types on focal new-recombination may be 

subject to an alternative interpretation. That is, the difference in their effects may simply 

come from differences in available technological components and exhaustion rate, rather 

than from the inherent advantage of a boundary spanning search in generating new links 

and integrations across boundaries as we argue. However, we believe that the greater 

positive effect of a boundary spanning search relative to that of a local search is beyond 

the effect of the relatively faster exhaustion of available components within a local 

domain. Note that our analysis controls for this exhaustion effect over time through 

Intensity of local search and Recombination age. If the exhaustion effect purely drove our 

results on focal new-recombination, the differences between search types should 

disappear with these controls. Our results show that the differences between search types 

in focal new-recombination survive the controls of exhaustion effect. 

 This study extends prior research on new recombination and technological 

breakthroughs, thereby claims three contributions to the literature. First, we conceptually 
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distinguish new-recombination that is searched from new-recombination that is 

generated, and empirically test the effect of “for-search” exploration on “for-generate” 

exploration. This test provides strong evidence that for-search exploration does not 

automatically imply for-generate exploration and the relationship between the two is 

highly contingent on the context of search. Second, the measure of prior new-

recombination allows us to identify a fine-grained level mechanism of how new 

recombinant knowledge (Fleming, 2001) determines the propensity that a focal invention 

becomes a technological breakthrough. We show that new recombination can contribute 

to the development of technological breakthroughs by being searched and assimilated 

locally, even though the very invention that introduces the new recombination may not 

necessarily become a technological breakthrough. Third, we provide evidence that local 

searches can also facilitate the development of technological breakthroughs, in fact more 

powerfully than boundary spanning searches do. By holding the level of exploration 

constant between boundaries of search, we show that search boundaries—local or 

boundary spanning—have distinct consequences on the technological development but 

their effects present a picture that is different from the well-established frame that favors 

a boundary spanning search as a driver of technological breakthroughs.   

 More specifically, our study offers alternative explanations for the relative 

efficacy of local and boundary spanning searches to those proposed in Rosenkopf and 

Nerkar (2001). Their findings strongly suggest that firms have to overcome localness in 

search in order to accomplish technological breakthroughs. In their study, a “boundary 

spanning search” has the highest impact, and a “local search” has the lowest impact, on 

the number of forward citations made to the focal invention (Rosenkopf and Nerkar, 



 

 

46 

 

2001). Our study offers different perspectives to the definition and role of local and 

boundary spanning searches, and the contrast in results may be reconciled by considering 

two major differences in the setup.  

 First, while their study covers all technological components as search targets, we 

focus only on searches of new recombination to control for differences in the degree of 

exploration. Second, differences in industry characteristics may generate differences in 

the impact of local and boundary spanning searches. Nanotechnology may be less 

“systemic” than the optical disc technology in Rosenkopf and Nerkar (2001). In the 

optical disc technology, firms must keep up with changes in other related technologies 

beyond their local boundary (ex. DVD players), and this catch-up is critical for 

subsequent inventions. In nanotechnology, however, this systematic relationship with 

outside of the local boundary is weaker. For instance, from the standpoint of carbon 

nanotube or nanowire research, the discovery of graphene (Geim, 2009) would not be an 

immediate necessity for a catch-up. In the same vein, the two technologies are in different 

stages of the lifecycle. Relative to the optical disk technology at the time of Rosenkopf 

and Nerkar’s (2001) study, nanotechnology still remains an emerging and much less 

commercialized technology (NSTC, 2011). We suspect that, in a technology field with a 

lower degree of commercialization, complementary technologies are still underdeveloped 

and hence searching for those technologies outside the boundary may be less important.  

Our study complements Fleming (2001), who urged future work for empirical validation, 

by providing a test for new recombination as a source of technological uncertainty. We 

trace the path of recombination by examining prior new-recombination, which we find as 

an antecedent to focal new-recombination and technological breakthroughs. This implies 
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that, while focal new-recombination may create technological uncertainty (Fleming, 

2001), the technological uncertainty of prior new-recombination may decrease as focal 

inventions search and incorporate the prior new-recombination. 

 We also offer a complementary view to the literature that promotes a balanced 

approach to exploration and exploitation (Nerkar, 2003; Rothaermel and Alexandre, 

2009; Kotha et al., 2011; Uotila et al., 2013). Studies in this literature have repeatedly 

demonstrated the inverted U-shape relationship between exploration, exploitation and 

firm performance. By holding the level of exploration-exploitation mix constant, we 

propose a microscopic view of the exploration, focusing on the intrinsic natures of local 

and boundary spanning searches. Our findings imply that, on any point of the inverted U-

shaped line, a local search for prior new-recombination generates better outcomes in 

terms of technological breakthroughs, than do other types of search. 

Our findings have a significant implication for technology and innovation strategies. 

Despite the literature’s emphasis on the importance of new recombination, new 

recombination itself is not a rare instance, at least when measured by patents; Table 2.1 

indicates that over 80% of nanotechnology patents include new recombination. However, 

new recombination seems to play a critical role in technology developments by 

influencing the likelihood of subsequent inventions becoming technological 

breakthroughs. It thus implies that firms should constantly explore the prior new-

recombination to turn the original components into sources of a technological 

breakthrough. In other words, firms may introduce a novel technology component by 

incorporating prior new-recombination outside the technology field, and this novel 
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technology component may then work as an input, by being locally searched and 

adopted, for a technological breakthrough.      

 Finally, from the managerial standpoint, our findings also speak to firm R&D 

managers who seek to achieve significant technology developments. Depending on the 

boundary of search—local or boundary spanning—searches of original technology 

components may exert differential impacts on focal inventions (i.e., increase the 

likelihood of creating a novel component or increase the likelihood of developing a 

technological breakthrough). Hence, R&D managers whose primary focus is on 

developing technological breakthroughs may focus on local searches of original 

technology and it may not be mandatory for them to extend the scope of technological 

search beyond their local domains. After all, our study highlights the importance of prior 

original technology components that enable R&D managers to attain superior 

technological outcomes, be it either through creations of novel technologies or through 

developments of technological breakthroughs.   
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 Table 2.1   Summary statistics   
 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

(1) PN with boundary spanning  

        (2) PN with hybrid search -0.805 

       (3) PN within local search -0.145 -0.061 

      (4) Number of focal new-

recombination 
0.070 -0.06 -0.027 

     (5) Number of focal new-

recombination within nano 0.011 -0.02 -0.032 0.210 

    (6) Technological breakthrough -0.083 0.124 0.043 0.023 0.087 

   (7) Focal new-recombination 0.176 -0.204 -0.098 0.165 0.150 0.027 

  (8) Intensity of local search -0.373 0.471 0.191 -0.138 -0.092 0.030 -0.395 

 (9) Exploration-exploitation mix -0.214 0.393 -0.071 -0.033 -0.039 0.091 -0.102 0.273 

(10) PN with self-citation -0.024 0.151 0.016 0.005 -0.073 0.028 -0.008 0.111 

(11) All backward citation -0.076 0.187 -0.043 0.053 -0.043 0.096 0.005 -0.067 

(12) Non-patent reference  -0.104 0.157 -0.025 0.044 0.002 0.110 0.052 -0.079 

(13) Claims 0.059 -0.015 0.008 0.046 -0.015 0.073 0.01 -0.036 

(14) Recombination age 0.053 -0.07 -0.011 -0.216 -0.322 -0.158 -0.149 0.004 

(15) Citation age 0.157 -0.14 -0.06 0.074 -0.011 -0.1 0.082 -0.312 

Obs 1848 1848 1848 1848 1848 1848 1848 1848 

Mean 0.657 0.253 0.011 10.38 1.005 0.228 0.842 0.252 

Std. Dev. 0.475 0.435 0.104 27.382 2.608 0.420 0.365 0.341 

Min 0 0 0 0 0 0 0 0 

Max 1 1 1 938 32 1 1 1 

 

  (9) (10) (11) (12) (13) (14) (15) 

(9) Exploration-exploitation mix 

       (10) Self-citation to PN 0.207 

      (11) All backward citation 0.225 0.177 

     (12) Non-patent reference  0.138 0.074 0.672 

    (13) Claims 0.042 -0.015 0.144 0.125 

   (14) Recombination age -0.029 0.019 0.017 -0.019 0.003 

  (15) Citation age -0.105 -0.019 0.117 0.039 -5E-04 0.081 

 Obs 1848 1848 1848 1848 1848 1848 1777 

Mean 0.377 0.330 16.552 13.285 23.744 10.91 5.786 

Std. Dev. 0.485 0.4702 29.320 32.835 18.714 7.409 3.448 

Min 0 0 0 0 1 0 -1 

Max 1 1 306 358 180 32 27 

 

Notes: All correlation coefficients above 0.045 or below -0.045 are significant at 5%. PN stands for Prior 

new-recombination.
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Table 2.2    The Effect of Prior New-Recombination on Focal New-

Recombination and Technological Breakthrough (Baseline: Ordinary Search) 

 

  (1) (2) (3) (4) 

 

New 

Recomb 

NanoNew 

Recomb 

Tech 

Breakthrough 

Tech 

Breakthrough 

 
nbreg nbreg logit logit 

  [IRR] [IRR] 
[marginal 

effect] 

[marginal 

effect] 

PN with boundary spanning search (a) 0.448*** 0.695*** 0.932** 0.918** 

                (0.170) (0.184) (0.456) (0.453) 

 
[1.565]*** [2.004]*** [0.144]** [0.142]** 

PN with hybrid search (b) 0.357* 0.767*** 1.325** 1.311** 
                (0.186) (0.265) (0.519) (0.520) 

 
[1.429]* [2.154]*** [0.205]** [0.202]** 

PN with local search (c) 0.049 -0.720** 2.279*** 2.278*** 
                (0.388) (0.326) (0.351) (0.359) 

 
[1.051] [0.487]** [0.353]*** [0.353]*** 

Focal new-recombination    0.309 
                   (0.204) 
Intensity of local search -1.393*** -0.194 -0.542** -0.418 
                (0.161) (0.188) (0.251) (0.264) 
Exploration-exploitation mix 0.037 0.065 0.399*** 0.400*** 
                (0.090) (0.131) (0.142) (0.143) 
Self-citation to PN 0.154* -0.200* -0.130 -0.142 

 
(0.081) (0.117) (0.146) (0.146) 

All backward citation 0.000 -0.004* 0.002 0.002 
                (0.002) (0.002) (0.003) (0.003) 
Non-patent reference -0.001 0.000 0.006** 0.006** 
                (0.002) (0.002) (0.003) (0.003) 
Claims          0.002 0.000 0.008** 0.008** 
                (0.002) (0.002) (0.004) (0.004) 
Recombination age -0.084*** -0.173*** -0.022** -0.019** 
                (0.007) (0.011) (0.009) (0.009) 
Citation age     0.011 0.004 -0.079*** -0.078*** 
                (0.010) (0.018) (0.026) (0.025) 
Constant        2.699*** 1.891*** -4.362*** -4.718*** 
                (0.210) (0.229) (0.780) (0.811) 
Technology fixed effect Yes Yes Yes Yes 
Year Fixed Effect Yes Yes Yes Yes 
     
Wald-test (χ2)     
H0: a=c 0.94 19.37 13.97 15.15 

 (p=0.333) (p=0.0000) (p=0.0002) (p=0.0001) 
H0: a=b 0.85 0.16 5.13 5.01 

 (p=0.356) (p=0.686) (p=0.024) (p=0.025) 
H0:b=c 0.55 15.45 5.68 6.16 

 (p=0.459) (p=0.0001) (p=0.017) (p=0.013) 
Log-likelihood  -5722.1 -1937.2 -865.9 -864.6 
N               1841 1841 1830 1830 

  * p<0.10    ** p<0.05    *** p<0.01. Robust standard errors clustered by firm in parentheses. Incident Rate 

Ratio (Model 1 and 2) or Marginal effect (Model 3 and 4) reported in square brackets. The dependent 

variable for Model 2 (Nano new recomb) stands for Focal new-recombination within nanotechnology. PN 

stands for Prior new-recombination.  
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Table 2.3   Post-Local Citation and Technological Uncertainty  

  

                (1) (2) (3) 

nbreg Number of Forward Citation 

Post-local cited  0.549***  0.410*** 

                (0.036)  (0.069) 

Focal new recomb  0.098 -0.035 

                 (0.066) (0.080) 

Post-local X New recomb   0.165** 

                  (0.078) 

Intensity of local search -0.246*** -0.116 -0.204*** 

                (0.069) (0.078) (0.074) 

All backward citation -0.001 -0.001 -0.001 

                (0.001) (0.001) (0.001) 

Non-patent reference 0.005*** 0.006*** 0.005*** 

                (0.001) (0.001) (0.001) 

Claims 0.004** 0.004*** 0.004*** 

 (0.001) (0.001) (0.001) 

Constant        -0.092 0.278*** -0.094 

                (0.080) (0.101) (0.112) 

Year fixed effects Yes Yes Yes 

Technology category fixed effects Yes Yes Yes 

Log-likelihood  -16216.8 -16442.3 -16208.4 

N               7006 7006 7006 

* p<0.10    ** p<0.05    *** p<0.01. Robust standard errors clustered by patent in parentheses. The unit of 

analysis is patent-cited year. The results are conditional on the patents being at least once locally cited. 
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Table 2.4  The Effect of Prior New-Recombination on Focal New-

Recombination and Technological Breakthrough with Firm Fixed Effect (Baseline: 

Ordinary Search) 

  (1) (2) (3) (4) 

 

New 

Recomb 

Nano New 

Recomb 

Tech 

Breakthrough 

Tech 

Breakthrough 

 nbreg nbreg logit logit 

PN with boundary spanning  search (a) 0.087 0.268 1.073 1.068 

                (0.150) (0.243) (0.748) (0.748) 

PN with hybrid search (b) 0.078 0.299 1.292 1.285 

                (0.175) (0.292) (0.844) (0.845) 

PN with local search (c) 0.124 -1.058*** 2.079*** 2.074*** 

                (0.309) (0.341) (0.524) (0.522) 

Focal new-recombination    0.110 

                   (0.288) 

Intensity of local search -1.233*** -0.004 -0.591* -0.555 

                (0.157) (0.204) (0.347) (0.400) 

Exploration-exploitation mix 0.077 0.065 0.329* 0.330* 

 

(0.098) (0.151) (0.196) (0.196) 

Self-citation to PN 0.176** -0.164 -0.367* -0.370** 

 

(0.083) (0.207) (0.191) (0.189) 

All Backward Citation -0.002 -0.001 -0.001 -0.001 

                (0.003) (0.004) (0.006) (0.006) 

Non Patent Reference -0.001 -0.008 0.006 0.006 

                (0.002) (0.006) (0.006) (0.006) 

Claims          0.003 0.003 0.009 0.009 

                (0.002) (0.004) (0.005) (0.005) 

Recombination age -0.086*** -0.164*** -0.036** -0.035** 

                (0.008) (0.013) (0.014) (0.015) 

Citation age     -0.004 -0.014 -0.103*** -0.102*** 

                (0.010) (0.022) (0.031) (0.031) 

Constant        4.108*** 0.746 -3.766*** -3.912*** 

                (0.420) (0.604) (1.171) (1.244) 

Year fixed effect Yes Yes Yes Yes 

Technology category fixed effect Yes Yes Yes Yes 

Firm fixed effect Yes Yes Yes Yes 

     

Wald-test (χ2)     

H0: a=c 0.02 26.41 3.69 3.80 

 (p=0.896) (p=0.0000) (p=0.055) (p=0.051) 

H0: a=b 0.03 0.02 0.76 0.74 

 (p=0.870) (p=0.8809) (p=0.382) (p=0.388) 

H0:b=c 0.03 33.52 1.56 1.60 

 (p=0.870) (p=0.0000) (p=0.212) (p=0.206) 

Log-likelihood  -5139.9 -1639.9 -513.7 -513.6 

N               1841 1841 1141 1141 

 * p<0.10    ** p<0.05    *** p<0.01. Robust standard errors clustered by firm in parentheses. PN stands for 

Prior new-recombination. Application year dummies are used for nbreg models to obtain convergence. 
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Figure 2.1  Types of Search of New Recombination 
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Note. 0: Non focal new-recombination; 1: Focal new-recombination   

 

Figure 2.2  Focal New-Recombination by Types of Search of Prior New-

Recombination 
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Note. The citations are winsorized at 0.1%.   

 

Figure 2.3 Distribution of Technological Performance by Types of Search of 

Prior New-Recombination 
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CHAPTER 3 

DO KNOWLEDGE FLOWS TRIGGER INTERFIRM 

COOPERATION? 

EVIDENCE FROM THE ENTERPRISE SOFTWARE INDUSTRY 

1 Introduction 

 A strong body of literature argues that interfirm cooperation stimulates knowledge 

flows. Whether operationalized in terms of strategic alliance (Mowery, Oxley, and 

Silverman, 1996; Rosenkopf and Almeida, 2003; Gomes-Casseres, Hagedoorn, and Jaffe, 

2006), strong ties in networks (Uzzi, 1997), formal inter-organizational networks (Owen-

Smith and Powell, 2004), or the social proximity of actors in networks (Sorenson, Rivkin, 

and Fleming, 2006), it is apparent that interfirm cooperation is an important mechanism 

that promotes knowledge flows. Interfirm cooperation induces knowledge flows by 

overlapping firms’ technological knowledge (Mowery, Oxley, and Silverman, 1996), 

facilitating the learning process (Rosenkopf and Almeida, 2003), or by increasing mutual 

trust between cooperating firms (Uzzi, 1997; Sorenson, Rivkin, and Fleming, 2006, 

2006).  

 While the specifics of knowledge flows resulting from interfirm cooperation—

technology transfer (Mowery, Oxley, and Silverman, 1996; Gomes-Casseres, Hagedoorn, 

and Jaffe, 2006), flows of fine-grained information (Uzzi, 1997), the search for new 

knowledge (Rosenkopf and Almeida, 2003), knowledge spillover through a conduit 

(Owen-Smith and Powell, 2004), or flows of complex knowledge (Sorenson, Rivkin, and 

Fleming, 2006, 2006)—are diverse, in general the literature that studies the effect of 
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interfirm cooperation on knowledge flows assumes that interfirm cooperation is 

exogenous to knowledge flows between firms. However, this assumption is debatable 

because knowledge may flow before the formation of interfirm cooperation. Despite the 

potential effect of preceding knowledge flows on firms’ propensity to interfirm 

cooperation, little is known as to how knowledge flows affect the formation of interfirm 

cooperation. By failing to explicitly examine the effect of knowledge flows on interfirm 

cooperation, understanding the relationship between interfirm cooperation and 

knowledge flows remains incomplete.  

 The effect of knowledge flows on the formation of interfirm cooperation is an 

intriguing problem because, while advantageous access to knowledge may motivate firms 

to pursue strong interfirm cooperation (Mowery, Oxley, and Silverman, 1996; Uzzi, 

1997; Kogut, 1988; Gulati, 1998), interfirm cooperation may be accompanied by the risk 

of expropriation (Teece, 1986; Williamson, 1991). To fill this gap, I address the 

following question: What aspects of knowledge flows lead firms to, or hinder firms from, 

the formation of interfirm cooperation? 

  I focus on the conditions under which interfirm cooperation is formed, by drawing 

on a growing body of literature that examines the mechanisms that drive interfirm 

cooperation. Stuart (1998) concludes that firms’ technologically proximal positioning in a 

high-technology market determines the propensity to strategic alliance. Similarly, 

Mowery, Oxley, and Silverman (1998) find that a technological overlap between firms 

induces interfirm cooperation. Rosenkopf, Matiu, and George (2001) discuss the ways in 

which industry-level technical committees increase subsequent alliance formation. 

Cassiman and Veugelers (2002) contend incoming knowledge spillovers and 
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appropriability increase firms’ research and development (R&D) cooperation. As well, 

firms cooperate through licensing when licensing-out partners signal strong knowledge-

transfer capabilities (Ceccagnoli and Jiang, 2013).  

 Adding to this line of research, this paper aims to contribute to the literature by 

unraveling the antecedent of interfirm cooperation in knowledge flows. In examining 

knowledge flows, I develop two novel approaches. First, I note that the conflation of 

codified knowledge and tacit knowledge causes part of the difficulty in explaining the 

triggering effect of knowledge flows on interfirm cooperation. To resolve this issue, I 

draw on the classic distinction between codified knowledge and tacit knowledge 

(Polanyi, 1966; Nelson and Winter, 1982; Kogut and Zander, 1992; Nonaka, 1994; Adler, 

1996). While codifications of knowledge is processed by reduction and conversion that 

allows less costly transmission and reproduction of information, tacit knowledge is 

related to know-how or expertise that can be transferred by personal demonstration and 

instruction (Polanyi, 1966; Nonaka, 1994; Adler, 1996). Because codification speeds up 

knowledge flows (Zander and Kogut, 1995; Nonaka, 1994), codified knowledge may be 

transferred faster than tacit knowledge. I begin with the consideration that, while the 

trading of tacit knowledge requires embedded and direct relationships (Von Hippel, 1988; 

Uzzi, 1997; Almeida, Song, and Grant, 2002; Cowan, Jonard, and Zimmermann, 2007), 

codified knowledge flows can precede, and thus affect, the formation of interfirm 

cooperation.  

 Second, I characterize knowledge flows as directional. Knowledge flows between 

two firms may have two directions that show asymmetries (Knott, Posen, and Wu, 2009). 

While scholars have studied knowledge transfer, sharing, and exchange, they usually 
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focus on a dyadic-level analysis in which bidirectional knowledge flows are assumed (cf. 

Mowery, Oxley, and Silverman, 1996; 1998; Gomes-Cassares et al., 2006). Thus, the 

implications of directional knowledge flows remain undeveloped. To better understand 

knowledge flows, I extend prevailing models of knowledge flows to describe the 

asymmetry of directional knowledge flows that may unequally affect the firms’ 

propensity to interfirm cooperation.      

 To tackle the effect of knowledge flows on interfirm cooperation, I consider a 

specific knowledge network in which codified knowledge flows take place between a 

center firm and periphery firms. In general, a knowledge network consists of a center 

firm that provides foundation or platform technologies and periphery firms that develop 

independent and complementary technologies by communicating knowledge with the 

center firm (Stuart, 1998; Ahuja, 2000). There exist different degrees of interfirm 

cooperation between the center and each periphery firm. 

 I propose that codified knowledge flows weaken the formation of interfirm 

cooperation between a center and a periphery firm, by mitigating the need for tacit 

knowledge. Notice that I make a distinction on whether codified and tacit knowledge 

flows are complements or substitutes. While literature has assumed that codified and tacit 

knowledge flows are complements after interfirm cooperation (Mowery, Oxley, and 

Silverman, 1996; Almeida, Song, and Grant, 2002), they could be substitutes before 

interfirm cooperation (Dasgupta and David, 1994; Zollo and Winter, 2002). I also 

contend that technological uncertainty in codified knowledge flows from a periphery firm 

hinders a center firm from pursuing interfirm cooperation because the center firm cannot 

calculate the obsolescence risk of the uncertain technology. In contrast, uncertainty in 
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codified knowledge flows from a center firm may induce a periphery firm to pursue 

interfirm cooperation because the periphery firm can resolve the uncertainty through 

collaborative troubleshooting.  

 A knowledge network in the enterprise software industry is a nice setting for this 

study. The enterprise software industry is a “complex product industry” (Cohen, Nelson, 

and Walsh, 2000) where technology consists of numerous components, many of which 

often build on other firms’ technologies. Thus, a knowledge network in the enterprise 

software industry may include significant and abundant interfirm knowledge flows, 

presenting a fertile ground to examine knowledge flows. I perform a statistical analysis 

on a sample of 243 enterprise software firms involved in the knowledge network centered 

on Oracle between 1992 and 2009. Oracle is one of the largest platform providers in the 

enterprise software industry.
19

 By analyzing codified knowledge flows (measured by 

patent citations), uncertainty in codified knowledge flows (measured by technological 

distance between cited and citing patents), and interfirm cooperation (identified through 

examining the context of news wire), I find supports for my hypotheses. The results show 

that on the likelihood of the formation of interfirm cooperation, 1) directional codified 

knowledge flows have a negative effect; 2) technological uncertainty in codified 

knowledge flows from a periphery to center firm has a negative effect; and 3) 

                                                 

 

 
19

 “Oracle is one of the world’s leading enterprise software companies. The company provides database, 

middleware software, and application software as well as related services. It has a robust market share in 

most of the markets it serves. The company leads the relational database management systems (RDBMS) 

market with a share of 48.6 percent in 2007, compared to 47.9 percent in 2006.The company was the 

second largest player in the enterprise resource planning (ERP) software market and a leading player in the 

customer relationship management (CRM) market. In 2008, the company continued to maintain its market 

position.” (Global application Software-Industry Profile, Datamonitor, 2007; Oracle Corporation-Company 

Profile, Datamonitor, 2009) 
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technological uncertainty in codified knowledge flows from a center to a periphery firm 

has a positive effect. 

2 Theory and Hypothesis 

2.1 Motivating Case Study: The Enterprise Software Industry 

 The enterprise software industry exemplifies the general features of knowledge 

flows and interfirm cooperation in a knowledge network. By interviewing the industry 

experts and examining industry documents and patents, I submit a concrete example of 

the interfirm cooperation and knowledge flows between a software vendor, such as Nsoft 

or Psoft, and a platform provider, such as Oracle.
20

 Nsoft, founded in 1994, provides 

software that can complement Oracle products. In 1996, Oracle and Nsoft first announced 

that they would work together to provide an enhanced analysis of data generated and 

stored in Oracle applications.
21

 Through this cooperation, Nsoft provided a new product 

that enabled non-technical end users to view easily critical application data by automating 

the process of extracting data from the Oracle application. According to Nsoft, “It does 

work in about two hours that would take many man-months to do manually.”
22

 Nsoft and 

                                                 

 

 
20

 I use pseudo names for periphery firms. 
21

 LexisNexis Business Wire Service, 1996. “Oracle enhances the Discoverer/2000 analysis of Oracle 

application data; Oracle and Nsoft Corp. team to deliver new products to present valuable financial and 

manufacturing data in an intuitive end user display.”  
22

 CRN, 2001. Nsoft’s nets software billed as data ‘traffic cop.’ http://www.crn.com/news/channel-

programs/18835909/noetixs-nets-software-billed-as-data-lsquo-traffic-cop-rsquo.htm (Accessed on 

September 20, 2010) 
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Oracle have repeated their cooperation to meet changes in the related technology field 

over the last 10 years.
23

  

 From the perspective of a periphery firm such as Nsoft, it is critical to understand 

detailed information regarding where and how the underlying data schema is stored in 

Oracle products (CRN, 2001). The main knowledge sources for understanding Oracle 

technology are cooperative work with Oracle developers, users of Oracle products, the 

Oracle conferences, and Oracle products and documents. Among these sources, working 

together at the developer level is a unique way to access Oracle technology because this 

cooperative work provides a direct channel to communicate with Oracle developers. For 

instance, to ensure compatibility between the Oracle and Nsoft products, technical 

engineers from both firms work alongside each other for a certain period. Through this 

type of cooperative work, Oracle technology that is not shown in a codified format can be 

accessed. Not only the periphery firms, such as Nsoft, but also the platform provider, 

Oracle, can take advantage of the cooperative work similarly by accessing the partners’ 

expertise in industry-specific technologies (e.g., the banking, telecommunication, or 

semiconductor industry solutions) or in specialized technologies (e.g., security, storage, 

or hardware). 

 Three things can be inferred from this cooperative work. First, the knowledge 

communicated through working together at the engineer or developer levels can be tacit 

in that the knowledge is embedded in individual engineers as expertise. Second, the 

                                                 

 

 
23

 LexisNexis Business Wire Service, 2002. “Nsoft Announces Alliance With Oracle-Companies Commit 

To Improved Reporting For Applications Customers”; 2007. “Nsoft Achieves Oracle Certified Advantage 

Partner Status”; 2009. “United States: Nsoft Introduces Nsoft Analytics for Oracle E-Business Suite” 
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knowledge communication renders meta-knowledge that points out how, what, and where 

to codify to achieve compatibility effectively and efficiently. While a part of meta-

knowledge can be codified, the knowledge on how to integrate and link the scattered 

knowledge can be tacit. And third, the codified knowledge reflects inner technologies that 

may be codified but hidden. For instance, the source code is codified somewhere but 

never open even to inside engineers. Obtaining these types of knowledge has been the 

best benefit of interfirm cooperation from the standpoint of technology development.  

 This style of interfirm cooperation opens up an interesting approach for my study 

because the cooperative work channels tacit knowledge. While software products, 

conferences, and documents are usually the sources of codified knowledge flows, the 

interfirm cooperation between individual developers or engineers may facilitate 

communicating tacit knowledge. Interfirm cooperation occurs in several forms: certifying 

and supporting partners’ technology, licensing-in (e.g., Original Equipment 

Manufacturer) and licensing-out (e.g., embedded licensing of software), training and 

working with counterparts for a joint business opportunity (e.g., alliances), and working 

together to standardize technology (e.g., technology consortia). All of these types of 

interfirm cooperation have a common characteristic: that individual developers or 

engineers work together to achieve technological compatibility. While firms pursue the 

benefit of tacit knowledge through interfirm cooperation, both sides of the cooperation 

are usually concerned about expropriation risks because they know that once know-how 

or expertise is transferred, their counterpart can easily implement the corresponding 

technologies.  
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 Another phenomenon of particular interest is ubiquitous codified knowledge 

flows in this industry. For instance, software, per se, represents the product of 

codification. To keep abreast of technological innovation, firms regularly search and 

monitor other firms’ technologies through codified information, e.g., newly launched 

software,
24

 conferences in the field of computer engineering and information technology, 

or patents. By utilizing available codified knowledge, until the necessity for cooperation 

is immediate, firms seem to deter or, at least, delay the formation of an interfirm 

cooperation that is likely to bear expropriation risks.
25

 Considering that interfirm 

cooperation channels tacit knowledge, this delayed cooperation may imply a possibility 

that codified knowledge flows can take the place of tacit knowledge flows.  

 The case of patent filing by Psoft, a software vendor founded in 1987, illustrates 

that the presence of codified knowledge flows can be independent of interfirm 

cooperation. Psoft filed a patent in August 2002, citing an Oracle patent filed in 1998 

months before Psoft had a chance to work with Oracle in December 2002, when it joined 

a technology consortium with Oracle.
26

 These codified knowledge flows are directional 
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 Newly launched software products generally provide codified knowledge in two ways: 1) various 

codified documents including user guides, implementation guides and entity relation diagrams (Zollo and 

Winter, 2002); 2) reverse engineering (Grimaldi and Torrisi, 2001). As an example of reverse engineering, 

the test of software functionality provides information about work flows, input or output data, and user 

interface. Also, the process of enterprise software implementation enables the understanding of how 

software works with hardware, middleware, and other software.   
25

 Industry experts I interviewed remarked that firms are always watching technology developments in 

industry through available software or industry conferences, and are very careful to take their time when 

forming interfirm cooperation because they recognize the risk of information disclosure.    
26

 LexisNexis Business Wire Service, 2002. “Momentum Builds As Eclipse Eco-System Grows; 

Consortium Grows To 30 Members In First Year; Four New Open Source Projects Form; Download 

Requests Top 3.1 Million—Eclipse is now supported by providers of a broad range of development 

technologies including specialists in modeling, code generation, metadata management, testing, embedded 

computing, enterprise middleware, collaboration, services, research and application systems vendors…” 
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in dyadic relations between Oracle and a periphery firm. For instance, in 1998 Nsoft filed 

a patent for the “Distributed Data Warehouse Query and Resource Management System,” 

which is strongly related to Oracle core technology, such as database management. This 

patent cites three Oracle patents filed in 1997 that involved the technology of “Summary 

Table Management in a Computer System.” Since Nsoft’s patent filing, Oracle has cited 

this Nsoft patent in its own new patents filed from 2001 to 2006. Assuming that patent 

citations reasonably reflect, though imperfectly, codified knowledge flows, this event of 

patent filing and citations implies that between Oracle and a periphery firm, intensity, 

timing, and direction of codified knowledge flows are asymmetric.  

 The knowledge flows and interfirm cooperation between Oracle and periphery 

firms are not unique phenomena in the enterprise software industry. In fact, the majority 

of knowledge networks based on a platform seem to experience similar knowledge flows 

and interfirm cooperation. The motivating case highlights several features of knowledge 

flows and interfirm cooperation: i) interfirm cooperation may represent communication 

of tacit knowledge; ii) codified knowledge may flow before interfirm cooperation; iii) 

firms experience directional asymmetric codified knowledge flows.   

2.2 Interfirm Cooperation and Tacit Knowledge 

 Interfirm cooperation is defined as a voluntary arrangement between firms 

involving an exchange or sharing of products, technologies, or services (Gulati, 

1998).This paper focuses on interfirm cooperation involving technical exchange or 

sharing. While the voluntary interfirm arrangements for technology innovation take 

various forms of cooperative work, including platform participation (Bresnahan and 

Greenstein, 1999), strategic alliance (Mowery et al., 1996), cooperation between 
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manufacturers and users (Von Hippel, 1988, 1994), and industry consortiums for standard 

technology (Rosenkopf, Metiu, and George, 2001), they all may provide the opportunity 

for individual engineers to contact each other and share their technical expertise (Polanyi, 

1966; Von Hippel, 1988, 1994). This expertise is associated with the tacit knowledge 

embedded in skilled engineers and technical systems (Zollo and Winter, 2002; Leonard-

Barton, 1992). Thus, interfirm cooperation enables firms to communicate tacit 

knowledge. Without this interfirm cooperation, individual engineers may not be allowed 

to collaborate with other firms’ engineers and thus tacit knowledge flows are less likely 

to occur. That is, interfirm cooperation is effective in promoting tacit knowledge flows 

(Cowan, Jonard, and Zimmermann, 2007). 

In the enterprise software industry, interfirm cooperation may take place to 

achieve technological compatibility between a centrally positioned firm and other 

periphery firms in a knowledge network (Bresnahan and Greenstein, 1999; Chellappa and 

Saraf, 2010).
27

 This interfirm cooperation is distinct in that the firms cooperate based on 

the center firm’s technology platform—a bundle of standard components around which 

platform participants and users are organized (Bresnahan and Greenstein, 1999). For 
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 The interfirm cooperation between a center firm and periphery firms within a knowledge network in the 

enterprise software industry is analogous to that of the Toyota network. First, like Toyota’s modular 

production system, in which partners improve their products without experiencing a disruption of 

integration with Toyota’s platform (Spear and Bowen, 1999), enterprise software platforms support 

modular architecture with independent modules for integration points. Thus, while cooperating, the center 

firm and the periphery firms pursue their innovations independently. Second, as Toyota positions itself at 

the center of the network and shares tacit knowledge (Dyer and Nobeoka, 2000), the platform providers, 

such as Oracle in the enterprise software industry, have a central network position, providing knowledge 

for compatibility. A salient difference between the two networks is that, while Toyota supplies a 

consolidated final product and, thus, governs its knowledge network with strong authority (Makadok and 

Coff, 2009), a center firm within a knowledge network in the enterprise software industry provides 

independent but compatible products with periphery firms, focusing on communicating knowledge that 

allows independent software products to run as a system. 
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instance, firms such as IBM cooperate with periphery firms surrounding the IBM 

computer platform to capture outside innovations (Bresnahan and Greenstein, 1999), 

while periphery firms exploit the platform technology as well as provide complementary 

technologies (Huang et al., 2013).   

2.3 Codified and Tacit Knowledge flow 

 Because firms aim to augment their knowledge (Kogut and Zander, 1992), 

knowledge flows exist among firms (Nelson and Winter, 1982) and affect further 

innovation (Cohen and Walsh, 2000). Spence (1984) and Jaffe (1986) assume that 

knowledge flows are symmetric, non-directional, and pooled, however, because firms 

manage knowledge flows heterogeneously in trying to maximize incoming knowledge 

flows and the appropriability of their knowledge, knowledge flows may become 

directional and asymmetric (Cassiman and Veugelers, 2002; Knott, Posen, and Wu, 

2009). For instance, Cohen and Levinthal (1989) suggest that incoming knowledge flows 

that is absorbed can be asymmetric by introducing the interaction between the available 

outside knowledge pool and a firms’ ability to identify, assimilate, and exploit knowledge 

from other firms. In addition to their ability to manage knowledge flows, the position of 

firms in a network may affect knowledge flows. Network theories propose that a central 

position in a network provides advantages to accessing information (Burt, 2004; Owen-

Smith and Powell, 2004). Therefore, in a knowledge network, knowledge flows from a 

center firm to periphery firms, and vice versa, may show asymmetries.   

 These asymmetric knowledge flows may affect the firm’s propensity to pursue 

interfirm cooperation. If pre-existing knowledge flows provide information that firms 

would otherwise pursue through interfirm cooperation, firms are likely to reduce forming 
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interfirm cooperation. Specifically, codified knowledge flows can flow before interfirm 

cooperation because firms can search other firms’ knowledge in codified formats 

regardless of interfirm cooperation. For example, patents can be one of the most 

important sources of knowledge flows even among rival firms because patenting requires 

the procedure of the codification and the disclosure of knowledge (Cohen et al., 2002). 

Compared to tacit knowledge that is related to know-how, expertise, or accumulated 

skills that are “sticky” to move (Von Hippel, 1988; 1994), the codified knowledge is 

easily transmitted and replicated (Kogut and Zander, 1992).  

Literature has, in general, assumed that codified and tacit knowledge flows are 

complements in interfirm cooperation (Mowery, Oxley, and Silverman, 1996; Almeida, 

Song, and Grant, 2002): if codified knowledge flows are observed, tacit knowledge flows 

are present. However, codified knowledge flows may be distinguished from tacit 

knowledge flows before the formation of interfirm cooperation. I expect that codified 

knowledge can substitute tacit knowledge for two reasons.       

First, codified knowledge can be particularly important in the enterprise software 

industry because software technology is inherently the product of codification and 

systemization. Codified knowledge is more adequate than tacit knowledge when it is used 

in a standardized, controlled context in which the whole knowledge system is reducible to 

a set of simple parts that relate to one another (Nelson and Winter, 1982). To the extent 

that these conditions hold, the role of codified knowledge may be disproportionally 

significant in developing technology (Nelson and Winter, 1982). The enterprise software 

industry agrees well with this condition because software technology can be standardized 

as well as consist of sub-modular parts. Thus, codified knowledge flows can play a 
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significant role in capturing knowledge from other firms’ technologies thereby being 

capable to act as a substitute for tacit knowledge flows (Dasgupta and David, 1994; Zollo 

and Winter, 2002).  

Second, firms may pursue codified knowledge first before they seek tacit 

knowledge from other firms. Recall that while the sources of codified knowledge such as 

software products and related documents are available on the market, tacit knowledge is 

obtained through interfirm cooperation. Interfirm cooperation may generate the risk of 

expropriation or opportunism because firms exchange and share the knowledge about 

their proprietary technologies (Teece, 1986; Rosenkopf, Matiu, and George, 2001; Katila, 

Rosenberger, and Eisenhardt, 2008). The problem of expropriation risk arises because 

interfirm cooperation requires a certain part of tacit knowledge to be open to the 

counterpart (Rosenkopf, Matiu, and George, 2001). Codified knowledge can be protected 

by legal mechanisms, such as patents and copyrights; tacit knowledge, if not 

demonstrated, is difficult for other firms to expropriate. However, once tacit knowledge 

is transferred, the efficacy of legal instruments to protect the knowledge is low (Teece, 

1986). Thus, firms may exploit codified knowledge flows first because tacit knowledge is 

more costly than codified knowledge. Considering that codification may make tacit 

knowledge explicit, despite a degree of “degradation” (Nonaka, 1994; Adler, 1996), 

obtained codified knowledge from a source may offset the need for tacit knowledge from 

that same source. Therefore, if codified knowledge flows increase, the expected role of 

tacit knowledge may decrease thereby weakening the need for interfirm cooperation.  

Nevertheless, beyond a certain point, codified knowledge is not likely to replace 

tacit knowledge because knowledge-adopting firms may need specific expertise that 
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remains in non-codified format. Tacit knowledge matters because knowledge has 

coherent aspects while codification may record only the part of the knowledge that fits 

into the codifying rules (Nelson and Winter, 1982). Although firms search and collect 

available codified knowledge about other firms’ technologies, they may still need subtle 

and tacit knowledge about how to configure and adjust corresponding technologies more 

efficiently and sufficiently (Von Hippel, 1994). Thus, the role of codified knowledge to 

compensate the need for tacit knowledge may be weakened beyond a certain point. 

Hence, I hypothesize as follows: 

Hypothesis 1: Greater flows of codified knowledge from a periphery firm to a center firm 

reduce the likelihood of interfirm cooperation between the center firm and the periphery 

firm within a knowledge network. The interfirm cooperation decreases at a decreasing 

rate until it levels off.   

Hypothesis 2: Greater flows of codified knowledge from a center firm to a periphery firm 

reduce the likelihood of interfirm cooperation between the center firm and the periphery 

firm within a knowledge network. The interfirm cooperation decreases at a decreasing 

rate until it levels off. 

2.4 Uncertainty induced by Codified Knowledge Flows  

 Codified knowledge flows may be asymmetric in bringing up uncertainty because 

codified knowledge flows transport technology components with different familiarities to 

knowledge-adopting firms. Under the assumption of bounded rationality, firms are likely 

to localize knowledge flows from external sources to the particular area of their prior 

knowledge (Cohen and Levinthal, 1990). Considering this path dependency (Nelson and 

Winter, 1982; Cohen and Levinthal, 1990), non-local knowledge components may cause 
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uncertainty in the firms that recombine these unfamiliar components (Fleming, 2001). 

That is, when firms search and recombine knowledge components from distant 

technology, the outcome of new technology is uncertain. Thus, unfamiliar knowledge 

components, introduced by non-localized knowledge flows from distant technology, may 

induce uncertainty to a knowledge-adopting firm.  

The extant literature indicates two different views of how uncertainty influences 

the formation of interfirm cooperation (Williamson, 1991; Kogut and Zander, 1992). One 

view suggests that under high uncertainty, governing interfirm cooperation may be costly 

to address the potentially unpredictable consequences of that uncertainty (Williamson, 

1991). Unpredictable changes may ruin a specified asset achieved through interfirm 

cooperation, such as technological compatibility (Williamson, 1979). Thus, forming 

bilateral relationships becomes unfeasible. This implies that uncertainty is likely to 

negatively affect the formation of interfirm cooperation. Conversely, another view holds 

that uncertainty stimulates interfirm cooperation because in order to reduce the 

uncertainty driven by others, firms may seek knowledge embedded in other firms (Kogut 

and Zander, 1992). That is, technological uncertainty caused by distant technology may 

drive the formation of interfirm cooperation because the path dependency of firms’ 

technology developments tends to deter internal development of the distant technology 

(Nelson and Winter, 1982; Cohen and Levinthal., 1990). Hence, uncertainty caused by 

distant knowledge flows can drive firms either to obviate the cost of bilateral 

relationships, thus leading to reducing the formation of interfirm cooperation, or to 

overcome the firm boundaries, thereby increasing the formation of interfirm cooperation. 

A center firm and a periphery firm that have stratified technological positions in a 
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knowledge network may interpret technological uncertainty differently (Stuart, 1998; cf. 

Resenberg, 1996). This implies that to address technological uncertainty, the center and 

periphery firm may calculate the cost and benefit of interfirm cooperation from different 

standpoints.    

A center firm, by adopting uncertain technology, can usually strengthen its 

centrality and, consequently, its power in a network because the actors who resolve 

uncertainty are identified as experts and are sought out by other players within a 

knowledge network (Burkhardt and Brass, 1990). Thus, the adoption of uncertain 

knowledge strengthens the technological prestige of a center firm within a knowledge 

network. However, there is a risk that the adopted uncertain technology will be 

obsolescent rather than dominant (Tushman and Anderson, 1986). It is likely difficult to 

calculate the risk of unfamiliar distant technology ex-ante. This risk may frustrate the 

center firm in pursuing interfirm cooperation with the periphery firm, the source of 

codified knowledge flows with technological distance because the risk of the uncertain 

technology may be greater when a center firm is more bound to the technology. Thus, the 

center firm is likely to cope with the risk of uncertain technology by being less bound to 

the source of uncertain technology (cf. Eisenhardt and Martin, 2000; Davis, Eisenhardt, 

and Bingham, 2009). Therefore, under the uncertainty introduced by adopting distant 

technology, while the center firm may utilize codified knowledge flows from the distant 

technology of a periphery firm, the center firm likely avoids the formation of interfirm 

cooperation with the periphery firm. I summarize the discussion as follows: 
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Hypothesis 3: Greater technological distance in knowledge flows from a periphery firm 

to a center firm reduces the likelihood of interfirm cooperation between the center firm 

and the periphery firm within a knowledge network. 

Considering that increasing technological uncertainty results in increased 

communication among actors, leading them to build structures to interpret the uncertainty 

that they experience (Van de Ven, Delbecq, and Koenig, 1976), under technological 

uncertainty, periphery firms may form interfirm cooperation with a center firm. The 

interfirm cooperation benefits the periphery firm by taking advantage of collaborative 

problem solving (Uzzi, 1997). In adopting distant technology from a center firm, a 

periphery firm needs to communicate with a center firm to troubleshoot and evaluate the 

uncertainty that the distant technology will generate. These benefits of troubleshooting 

cannot be obtained through mere codified knowledge flows because know-how or 

expertise may be required to solve problems. Experts from the center firm can help a 

periphery firm solve problems within the setting of interfirm cooperation (cf. Uzzi, 

1997).  

Another important consideration for a periphery firm when forming interfirm 

cooperation under uncertainty can be the expropriation risk from a center firm. Recall 

that commercial relations are invariably calculative (Williamson 1993). When a 

periphery firm adopts distant knowledge components from a center firm, it may consider 

both the benefit and risk following interfirm cooperation. Calculating the risk of interfirm 

cooperation, a periphery firm may expect a low expropriation risk when it adopts 

knowledge flows from the distant technology of a center firm. The main reason for this 

expectation is that even if a periphery firm forms interfirm cooperation and 
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communicates tacit knowledge, a center firm is not likely to move into the periphery 

firm’s distant technology field. This is because the center firm lacks the prior knowledge 

necessary to exploit the distant technology, therefore facilitating opportunistic behavior, 

such as expropriation, is unlikely. Thus, from a periphery firm’s standpoint, distant 

codified knowledge flows from a center firm may be a strong driver in pursuing interfirm 

cooperation because cooperating with a center firm may reduce the uncertainty that is 

caused by the center firm’s distant technology without the expense of expropriation.        

The previous arguments suggest that a periphery firm may pursue cooperation 

with a center firm when adopting uncertain technology from the center firm. However, 

interfirm cooperation is a dyadic agreement, thus it is important to discuss how 

uncertainty in distant knowledge flows from a center firm to a periphery firm increases 

the center firm’s interest in interfirm cooperation. Because a center firm is not usually 

aware of the codified knowledge out-flows to a periphery firm, the effect of those 

knowledge flows on the center firm is secondhand rather than direct. When the periphery 

firm proposes to form interfirm cooperation with the center firm, the center firm will 

recognize the distant technology of the periphery firm. The center firm may be interested 

in the suggestion from the periphery firm for two reasons. First, by accepting the 

suggestion, the center firm can obtain a chance to test new applications of its technology. 

Second, as the second mover in negotiations for interfirm cooperation, the center firm has 

an advantageous position to observe the periphery firm’s offers and then ensure agreeable 

conditions. Thus, the center firm likely agrees to form interfirm cooperation. Taken 

together, for each of these reasons—the benefit of understanding technological 

uncertainty and less risk of expropriation—technological uncertainty in codified 
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knowledge flows from a center firm drives a periphery firm to form interfirm cooperation 

with the center firm. The following hypothesis summarizes the discussion:   

Hypothesis 4: Greater technological distance in knowledge flows from a center firm to a 

periphery firm increases the likelihood of interfirm cooperation between the center firm 

and the periphery firm within a knowledge network. 

3 Methods 

3.1 Sample 

  I identified 2,560 firms that had codified knowledge flows with Oracle in the 

enterprise software industry from 1992 to 2009. This process began with 1,725 Oracle 

patents that had citing (forward citation) or cited (backward citation) relationships with 

those firms. I collected Oracle patents from 1976 in the United States Patent and 

Trademark Office (USPTO) patent database as Oracle was launched in 1977. The 

collected data show that Oracle filed its first patent in 1992. Among the 2,560 firms 

identified, I randomly selected 10 percent and collected annual data for those firms to test 

the hypotheses. This process resulted in a panel data that includes a total of 243 sample 

firms and 1,110 firm-year observations. I took this random sample to avoid 

autocorrelation (Fleming, Mingo, and Chen, 2009). Autocorrelation can be a problem 

because firms in a knowledge network of Oracle may have unobserved similarities. 

Hence, observations of firms can be correlated. The 10 percent random sampling may 

reduce the concern that statistically correlated firms will be included together in the 

estimation. 

3.2 Dependent Variables 
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3.2.1 Formation of interfirm cooperation. 

  I measured the formation of interfirm cooperation between Oracle and a 

periphery firm for each year by examining Lexis/Nexis news wire announcements, 

including those about teaming for co-work, alliances, partnerships, formation of forums, 

consortiums for standardizing and integrating technologies, supporting each other’s 

technologies, and achieving certification. These terms are all used to express the 

formation of interfirm cooperation by article reporters, and the core of the technical 

activities is achieving technological compatibility. To identify the formation of interfirm 

cooperation, I first searched the news releases using search terms regarding both Oracle 

and firms that cited Oracle or that were cited by Oracle and then I examined the contexts 

of the news releases to determine whether there was interfirm cooperation. The identified 

years of the formation of interfirm cooperation spanned from 1984 to 2010. Finally, for 

each firm-year observation, I constructed a variable that is equal to the number of the 

formation of interfirm cooperation between Oracle and the corresponding periphery firm.             

3.3 Independent Variables 

3.3.1 Codified knowledge flows from a periphery to a center firm/ Codified knowledge 

flows from a center to a periphery firm. 

 I measured the codified knowledge flows by using the number of patent citations. 

Because my interest is in the directional codified knowledge flows, I distinguished the 

number of citations by Oracle to a periphery firm and the number of citations by a 

corresponding periphery firm to Oracle. For codified knowledge flows from a periphery 

firm to a center firm, I used the number of citations by Oracle patents (backward 

citation); for codified knowledge flows from a center to a periphery firm, I used the 
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number of citations by a corresponding periphery firm’s patents (forward citation). Using 

these backward and forward citations, I identified two separate directions of codified 

knowledge flows. For each year between Oracle and a periphery firm, I constructed the 

independent variables of codified knowledge flows for each direction using the total 

number of backward or forward citations during previous five-year moving windows. 

The choice of a five-year period is consistent with Jiang, Tan, and Thursby (2010), Ahuja 

and Lampert (2001), and Griliches (1984) regarding the effectiveness of knowledge 

diffusion.  

 As I use patent citations, I am aware of the concern that patent citations might be 

a noisy proxy for knowledge flows because citations include examiner-added citations 

(Alcacer and Gittelman, 2006). Nevertheless, drawing on literature (Mowery, Oxley, and 

Silverman, 1996; Gomes-Casseres, Hagedoorn, and Jaffe, 2006), I consider that patent 

citations can reasonably act as a proxy for codified knowledge flows in this study. This is 

because a firm may have searched codified knowledge carried in sources (e.g., available 

software products or industry documents) other than patent files but may fail to cite the 

corresponding prior-art if the existence of prior-art patent is not well known. Examiner-

added citations may reduce this type of miss-identification because they enable tracing 

the existence and ownership of related knowledge that might flow but not be recorded. 

Another concern in using patent citations as a proxy for knowledge flows emerges 

because citations exclude knowledge flows through direct interfirm communications 

(Roach and Cohen, 2012). However, this exclusion may eventually justify the use of 

patent citations as a meaningful proxy for codified knowledge flows because this study 

intends to distinguish codified knowledge flows from tacit knowledge flows. Thus, as 
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patent citations may not represent “non-codified” knowledge flows (Roach and Cohen, 

2012), they well agree with the characteristics of codified knowledge flows, which is 

precisely what this study examines.         

3.3.2 Technology distance in knowledge flows from a periphery to a center firm/ 

Technology distance in knowledge flows from a center to a periphery firm 

 I identified technological distance on codified knowledge flows using the USPTO 

patent classes. I computed the technological distance of codified knowledge flows 

following Jaffe’s (1986) measure of technological proximity. I calculated technological 

distance longitudinally as it changes over time (Jiang, Tan, and Thursby, 2010). First, I 

calculate technological distance for each year between Oracle and a periphery firm: 

 

Fit is a dimension vector representing 473 USPTO patent classes of firm i’s 

patents that firm j cited at time t. Fjt is a dimension vector representing 473 USPTO 

patent classes of firm j’s patents that cited firm i’s patents at time t. I measured 

technology distance in codified knowledge flows from a periphery to a center firm when i 

represents 243 sample firms and j represents Oracle and measured technology distance in 

codified knowledge flows from a center to a periphery firm when i represents Oracle and 

j represents 243 sample firms. Second, constructing technology distance in codified 

knowledge flows from a periphery to a center firm or vice versa for each firm-year 

observation, I used the greatest technology distance that a focal firm (i.e., Oracle or a 

periphery firm) experienced in codified knowledge flows for the previous five years. 

When the number of codified knowledge flows is zero for five-year windows, I assumed 

that technology distance is the greatest and assigned ‘1’ to the technology distance 
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measure, building simultaneously a dummy variable that indicates a zero number of 

codified knowledge flows.
28

      

3.4 Control Variables 

3.4.1 Prior interfirm cooperation 

  I included an endogenous occurrence of interfirm cooperation, operationalized as 

the number of prior interfirm cooperation between a center firm and a periphery firm 

(Stuart, 1998). I used the past five-year experiences to control the endogenous concern 

for the effect of prior experience of interfirm cooperation.
29

       

3.4.2 Firm age 

 Rothaermel and Boeker (2008) suggest that firm age affects the formation of 

interfirm cooperation. To capture this effect, I included firm age measured as the time 

since founding. Firms whose names have changed were traced to original names to 

identify the founding year.     

3.4.3 Acquisition 

 I controlled for whether firms were acquired by other firms to capture the effect of 

acquisition on the formation of interfirm cooperation. I would expect the acquired firms 

to be weakened in their managerial actions, such as forming interfirm cooperation. 

3.4.4 Platform technology shift 

 I controlled for an environmental factor by including a dummy variable that 

indicates the years when Oracle shifted platform technologies. There were relatively 
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 I checked robustness by using alternative measures for technology distance and obtained similar results. 
29

 I also tried three-year experiences for robustness checks and obtained very similar results. 
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radical technological changes in platforms:
30

 changes to client/server environment in 

1985, supporting OLTP (Online Transaction Processing) in 1989, the first application 

software launching in 1990, supporting the Internet environment in 1995, embracing the 

JAVA programming language in 1998, supporting open standard technology XML and 

Linux in 1999, and embracing hybrid technologies instead of pursuing pure Oracle-

owned technology in 2005. It would be expected that these technological shifts in the 

platform affect possible technologies that can be compatible with the platform and, thus, 

affect the formation of interfirm cooperation.        

3.4.5 Bidirectional knowledge flows 

 I included the existence of bidirectional knowledge flows. This control variable is 

to capture the effect of bidirectional knowledge flows on forming interfirm cooperation 

that literature has depicted (Mowery, Silverman, and Oxley, 1998). I constructed a 

dummy variable that indicates the co-existence of two directional knowledge flows (i.e., 

from a periphery to a center firm and vice versa).  

3.4.6 Patent stock of a periphery firm/Patent stock of a center firm 

 Because I constructed codified knowledge flow measures using patent citations, I 

controlled for the patent stock that a periphery firm and a center firm possesses to isolate 

the effect of patent-based constructs on the formation of interfirm cooperation 

(Rothaermel and Boeker, 2008). In the context of this paper, a periphery firm and a center 

firm have a dyadic relationship, and, thus, the relative size of the patent stock of dyadic 
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firms matters. I measured the patent stocks for each year as the ratio of the patent stock of 

two dyadic firms. 

3.4.7 Industry consolidation 

This industry experienced two major merges, the Oracle-Peoplesoft merge in 

2005 and the Oracle-BEA merge in 2009. Oracle aggressively drove these mergers, 

which signaled a hostile acquisition (Peoplesoft merge) and a new market entry (BEA 

merge) to current and potential partners. Thus, I would expect that these events kept 

periphery firms from the formation of interfirm cooperation. I included a dummy variable 

that indicate the years of these industry consolidation events. 

3.4.8 Year fixed effects 

I controlled for environmental factors that varied over time but that were constant 

across firms by including year-effect dummy variables. I grouped three years as a period 

to control year effects.     

3.4.8 Firm fixed effects 

To capture the effect of unobservable heterogeneity of firm, I incorporated firm-

effect dummy variables. 

Table 3.1 provides summary statistics of these variables and the correlations 

between them. A pair of two codified knowledge flows (i.e., from center to periphery 

firm and vice versa) variables exhibits a correlation that is high enough to cause concern 

regarding multicollinearity. Hence, in the estimation model, I included each codified 

knowledge flow separately and then together to show that the effects of two codified 

knowledge flows are not due to the collinearity between them.   

 Insert Table 3.1 about here 
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3.5 Estimation 

 I operationalized the dependent variable as the number of interfirm cooperation 

formed between Oracle and a periphery firm within the Oracle knowledge network in 

each year. Hence, the observations present a firm-year panel. I report fixed effect Poisson 

models with heteroskedasticity-robust standard error. Poisson regression assumes that the 

event count is drawn from the single parameter Poisson distribution:  

 

where the parameter λ is the mean and the variance of the event count and y is a non-

negative integer count variable capturing the number of instances of interfirm 

cooperation. The standard assumption is . As robustness checks, I also 

estimated using logit and OLS models. I applied the following specification: 

 

where α1i is the firm fixed effect, α2t1 is the year fixed effect, β1, β2, β3, and β4 are the 

coefficients to be estimated for time lagged independent variables, and εt1,i is the error 

term. 

 To address the issue of unobserved firm heterogeneity that is correlated with the 

dependent variable in the panel data, I adopted fixed-effect estimators. The fixed-effect 

panel approach permits analysis of the cause and effect without strong assumptions 

(Cameron and Trivedi, 2005). With the fixed-effect estimators, I incorporated the 

estimation with heteroskedasticity-robust standard errors. The obtained robust standard 
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errors can reduce not only the concern for heteroskedasticity, but also a potential problem 

of serial correlation that the fixed-effect estimation may include in the error term 

(Woodridge, 2002).  

4 Results 

4.1 Main Results 

 Table 3.2 presents results from the fixed effect Poisson regression models that 

investigate the effect of codified knowledge flows on interfirm cooperation. For the 

baseline analysis, Model 1 contained control variables only, and Models 2 through 8 

included each direction of codified knowledge flows independently and together.  

Insert Table 3.2 about here 

 

 I found support for Hypothesis 1 in Models 2, 5, and 7; the parameter estimate for 

codified knowledge flows from a periphery to a center firm was significantly negative. 

Model 5 and 7 also supported the nonlinear effects of codified knowledge flows from a 

periphery to a center firm on the number of interfirm cooperation, showing that a 

quadratic term for codified knowledge flows from a periphery to a center firm was 

significantly positive. 

 Models 3, 6,  and 7 supported Hypothesis 2; the parameter estimate for codified 

knowledge flows from a center to a periphery firm was significantly negative. Model 6 

supported the nonlinear effects of codified knowledge flows from a center to a periphery 

firm on the number of interfirm cooperation, showing that a quadratic term for codified 
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knowledge flows from a center to a periphery firm was significantly positive. The 

quadratic term in Model 7 lacks significance while showing positive effect. 

 Model 8 supported Hypothesis 3; the parameter estimate for technology distance 

in knowledge flows from a periphery to a center firm was significantly negative, 

indicating that an increase in technological distance in codified knowledge flows from a 

periphery to a center firm decreases the number of interfirm cooperation.  

 Model 8 also supported Hypothesis 4; the parameter estimate for technology 

distance in knowledge flows from a center to a periphery firm was significantly positive, 

indicating that the number of interfirm cooperation increases with technological distance 

in codified knowledge flows from a center to a periphery firm.   

 To facilitate the interpretation of estimates, I calculated the magnitude of changes 

in the dependent variable by a unit change in independent variables.
31

 According to the 

parameter estimate, in Model 7, a unit increase in codified knowledge flows from a 

periphery to a center firm decreased the number of interfirm cooperation by 2.1 percent; a 

unit increase in codified knowledge flows from a center to a periphery firm decreased the 

number of interfirm cooperation by 5.6 percent, holding other factors constant. In terms 

of technology distances (Model 8), when the technology distance of codified knowledge 

flows from a periphery to a center firm increases from “0” to “1”, the number of interfirm 

cooperation decreased by 66 percent; when the technology distance of codified 

knowledge flows from a center to a periphery firm increased from “0” to “1”, the number 

of interfirm cooperation increased by 864 percent.     

                                                 

 

 
31

 I computed the incidence-rate ratio (IRR) after fitting the corresponding model. 
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4.2 Robustness Check 

 To ensure the robustness of the results, I performed a number of variations of the 

analysis. Table 3.3 presents the results for estimating a fixed-effect logit model using a 

new binary dependent variable, which measures the event of interfirm cooperation. The 

main results continued to hold, except the statistical significances lacked for codified 

knowledge flows from a periphery to a center firm in Model 2, codified knowledge flows 

from a center to a periphery firm in Model 3, and the quadratic term of codified 

knowledge flows from a center to a periphery firm in Model 6.  

Insert Table 3.3 and 3.4 about here 

 Also, table 3.4 presents the robust results of estimating an OLS model 

incorporating a firm fixed-effect and robust variance estimator. In general, the main 

results continued to hold, except the quadratic term of codified knowledge flows from a 

center to a periphery firm and vice versa weakened the statistical significance in Model 6.  

Insert Table 3.5 - 3.8 about here 

 In the main specification, I controlled year fixed effect by grouping three years as 

a period to recover the effects of time relevant control variables such as platform 

technology shift and industry consolidation. To ensure the robustness of the result, I 

included year dummies, excluding those control variables. The results showed robustness 

for Poisson fixed effect estimations in general except that the parameter estimate of 

codified knowledge flows from a periphery to a center firm lacked significance in Model 

2 (Table 3.5).  Also, the results of logit fixed effect regressions demonstrated robustness 

in general except that the parameter estimate of codified knowledge flows from a center 

to a periphery firm lacked significance in Model 7 and the quadratic term of codified 
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knowledge flows from a center to a periphery firm lacked significance in Model 6 while 

the parameter estimate of technological distance of codified knowledge flows from a 

periphery to a center firm strengthened significance in Model 8 (Table 3.6). Finally, the 

results of OLS regressions with fixed effect showed robustness in general except that the 

parameter estimate of technological distance of codified knowledge flows from a 

periphery to a center firm lacked significance in Model 8 while parameter estimate of 

codified knowledge flows from a periphery to a center firm strengthened significance in 

Model 4, 6, and 8 (Table 3.7). 

 In general, Model 8 in Tables 3.2 through 3.4 show that the terms of two codified 

knowledge flows lacked significance by adding the two terms of technological distances 

in codified knowledge flows. This may raise a concern of a potential correlation between 

the natures of two measures: codified knowledge flows and technological distances of 

codified knowledge flows. Hence, I used an alternative measure for technological 

uncertainty: technological novelty. As novel technologies usually bring up uncertainty 

(Rosenberg, 1996), technological novelty can be a good alternative measure for 

technological uncertainty. However, it may be different from the technological distance 

measure in that novel technologies are not necessarily distant technologies. A first-ever 

recombination of two subclasses can be considered as inventing a novel technological 

component (Fleming, 2001). Following this convention, I measured technological novelty 

using the number of the new recombination of patent subclasses pairs that codified 

knowledge flows included during previous five-year moving windows. Table 3.8 reports 

robust results in general except that the test of novelty in codified knowledge flows from 

a center to a periphery lacked significance, though the sign was consistent with the 
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prediction (Model 1 and 2). This indicates that technological novelty in codified 

knowledge flows from a center to a periphery firm may not reduce a periphery firm’s 

concern for expropriation risks as much as technological distance in codified knowledge 

flows from a center to periphery firm does, thereby not increasing significantly the 

formation of interfirm cooperation.     

 As the USPTO issued a pro-software patent guideline in 1996, my sample period 

included a strong legal regime change that strengthened the patentability of software 

inventions (Cockburn and MacGarvie, 2011; Huang et al., 2013). For robustness check, I 

employed this institutional change to indicate the increase of overall codified knowledge 

flows. The result shows robustness in general (Table 3.6, Model 3). The parameter 

estimate for the post-period of the pro-software regime change was significantly negative, 

indicating that the increase of codified knowledge flows weakens the likelihood of 

interfirm cooperation, though the regime change represents the increase of overall 

codified knowledge flows instead of each directional codified knowledge flow.
32

  

 I performed additional multiple robustness checks.
33

 I ran robustness analyses 

with alternative technology distances for observations with zero codified knowledge 

flows. First, I checked robustness by calculating the technology distance from codified 

knowledge flows at t+1 when the number of codified knowledge flows is zero at t during 

the past five years. The number of observations decreased to 179 in this model (number 

                                                 

 

 
32

 In addition, this regime change may have impacted the results of my estimations that examine patent 

data. Hence, I ran a robustness check using only post-1996 data in the sample with the same models in 

Table 2. While the number of observations was reduced to 522 (number of firms = 60), the results showed 

robustness. 
33

 Tables for these robustness tests are unreported due to space concerns but are available from the author. 
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of firms = 20). The main result remained robust. Second, I took technology distance as 

missing in zero codified knowledge flows. The model decreased to 144 observations 

(number of firms = 17), and the main result was robust in general, except the parameter 

estimate of technology distance in knowledge flows from a periphery to a center firm 

lacked statistical significance.  

 I tested whether the effect of codified knowledge flows is robust when “certifying 

partners” is excluded from the count of formation of interfirm cooperation. While 

interfirm cooperation represents tacit knowledge communication in this paper, the 

activity of certifying partners, a type of interfirm cooperation, can also be used to signal 

legitimacy in the market rather than to communicate tacit knowledge. Six instances of 

certifying partners were identified and excluded. The results continued to hold; the 

quadratic term of codified knowledge flows from a center to periphery firm weakened the 

statistical significance. 

 As shown in Table 1, the low mean of the dependent variable suggests that the 

dependent variable includes many zero values. Thus, a potential issue is that some firms 

are systematically out of contention for the formation of interfirm cooperation. Hence, I 

tested my predictions using zero-inflated Poisson models by controlling for the effect of 

each firm on the zero inflation. The result showed robustness in general. The only change 

was that in Model 2, codified knowledge flows from a periphery to a center firm lacked 

significance.  

 Finally, because there was a nontrivial correlation (0.69) between two codified 

knowledge flows, I estimated models that included each codified knowledge flow 

separately. Models 2 and 3 indicated that the effects of two codified knowledge flows are 
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not due to the collinearity between them. Each effect of codified knowledge flows was 

negative and significant. I also tested the same models after centering the variables of 

codified knowledge flows and their quadratic terms at their means. The results were 

robust.    

5 Discussion and Conclusion 

 The purpose of this paper is to determine the effect of knowledge flows on the 

formation of interfirm cooperation. By distinguishing codified knowledge flow from tacit 

knowledge flow, I demonstrate that the antecedents of interfirm cooperation lie in 

codified knowledge flows. I find that intense codified knowledge flows weaken the 

formation of interfirm cooperation because codified knowledge flows offset the need for 

tacit knowledge flows. While uncertainty caused by distant technology components in 

codified knowledge flows hinders a center firm from pursuing interfirm cooperation, the 

uncertainty stimulates a periphery firm to pursue interfirm cooperation.  

 The findings of this paper contribute to the existing literature in four ways. First, 

by focusing on the effect of knowledge flows on interfirm cooperation, I complement the 

current understanding about the relations between the two variables: knowledge flows 

and interfirm cooperation. Drawing on well-established arguments that interfirm 

cooperation facilitates knowledge flows (Mowery, Oxley, and Silverman, 1996; Gomes-

Casseres, Hagedoorn, and Jaffe, 2006), I present evidence that interfirm cooperation 

could be endogenous to codified knowledge flows. That is, the results of this paper 

uphold the notion that knowledge flows can be not only the result but also cause of 

interfirm cooperation. Second, I relax the theoretical assumption of bidirectional and 

symmetric knowledge flows in literature, by addressing directional asymmetric codified 
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knowledge flows separately. In examining those two-directional knowledge flows that 

have different impacts on the formation of interfirm cooperation, I refine the construct, 

technology distance in codified knowledge flows, which can characterize the asymmetry 

in technological uncertainty of the directional codified knowledge flows. Third, the 

conclusions formed during this study add an insight to our understanding of the role of 

uncertainty in forming interfirm cooperation. The literature provides contrasting 

explanations for the effects of uncertainty on interfirm cooperation (Williamson, 1991; 

Kogut and Zander, 1992). By examining the technological uncertainty caused by 

directional codified knowledge flows, I try to synthesize the positive or negative effects 

of uncertainty on the formation of interfirm cooperation within a knowledge network. 

Fourth, this study also contributes to extending the work on firms’ technology and 

cooperation strategy by demonstrating that the technological changes such as adopting 

knowledge flows can be an antecedent to the formation of interfirm cooperation.  

 This study is not without limitations. First, I used the instance of interfirm 

cooperation as a proxy for tacit knowledge flows without distinguishing tacit knowledge 

flows from interfirm cooperation. However, I believe that this measure is a reasonable 

proxy for the tacit knowledge flows because if tacit knowledge flows between firms, 

there should be interfirm cooperation. Recall that it is not legitimate for individual 

engineers to communicate their tacit knowledge related to firm-owned technologies 

without the setting of interfirm cooperation. Also, interfirm cooperation in this paper 

most likely indicates tacit knowledge flows because I excluded any type of interfirm 

cooperation that may be not related to technology exchange or sharing. For example, I 

did not count instances of interfirm cooperation based on marketing or distribution 
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alliances. Nevertheless, if possible, a separate proxy for tacit knowledge flows from 

interfirm cooperation might further solidify the results. Second, considerable unobserved 

factors may exist across firms in choosing technology strategies and thus intervene to 

form interfirm cooperation. To minimize this concern, I incorporate firm fixed-effects, 

environmental variables such as platform technology changes and industry 

consolidations, and periphery firms’ age in the estimations. This approach may address 

the unobserved time-invariant heterogeneities across firms, the environmental changes, 

and firms’ age dependent changes. Nevertheless, I acknowledge that due to the lack of 

data, the inability to fully address time-variant firm heterogeneity is clearly a limitation.  

 My findings imply that the impact of directional codified knowledge flows is 

absorbed in different ways and induces the formation of interfirm cooperation according 

to the firm’s position in a knowledge network. The findings on the role of codified 

knowledge flows help explain a mechanism that guides firms when choosing their 

cooperating partners, presenting a possible answer to the question (Stuart, 1998): While a 

strong body of research has demonstrated that interfirm cooperation contributes to 

technology development and firm growth, why do some firms choose to cooperate and 

others do not? In the enterprise software industry, in which codified knowledge plays a 

central role in knowledge diffusion, my perspective implies that firms avoid the risk of 

interfirm cooperation by discerning preceding codified knowledge flows, and reduce the 

uncertainty of adopting distant technology components by manipulating interfirm 

cooperation. In particular, periphery firms may have the incentives to cooperate with a 

platform when the platform firm continuously introduces distant technological 
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components that drive technological uncertainty in the knowledge network surrounding 

the platform.  

 Relatedly, this study has managerial implications for both platform and periphery 

firms seeking technologies that would not be codified. While platform firms encourage 

periphery firms to enter their platforms (Huang et al., 2013), my findings suggest that 

platform firms may first commit to attracting periphery firms that present proximate 

technologies so they can develop standard platforms among similar technologies. This 

implies that periphery firms with proximate technologies can wait for platforms to 

approach them, while periphery firms with distant technologies may access platforms 

first when they need tacit knowledge about platform technologies. Meanwhile, the 

platforms may need to pay attention to the composition of their platform-joining 

periphery firms and the technology boundary of their platforms. This is because the 

coverage of technologies on platform may determine the distance of technologies 

between platforms and periphery firms, which may affect periphery firms’ choice of 

whether to collaborate. If platforms cover broad technology areas with a view to be a 

consolidated enterprise platform, platform firms should be proactive in obtaining 

cooperating periphery firms. On the contrary, if platforms focus on limited areas of 

technologies, they may attract periphery firms that possess distant technologies as first 

movers to form interfirm cooperation.                           

 For future study, the finding that the patent stock of a periphery firm has a 

statistically significant negative effect on interfirm cooperation and that the patent stock 

of a center firm has a statistically significant positive effect may be an avenue for future 

research (Model 8 in Table 2). The impact of the patent stock of a center firm can be 
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consistent with the literature that proposes that firms build entry barriers, fences, or 

preemptions by patenting (Cohen et al., 2000; Cockburn and McGarvie, 2011; 

Ceccagnoli, 2009) because a center firm can pursue interfirm cooperation as it secures the 

protection of its innovation by strong patent stock. On the contrary, the impact of the 

patent stock of a periphery firm raises the question: What is the role of patenting for 

periphery firms in a knowledge network? By accumulating patent stocks, a periphery 

firm may redirect its efforts toward building a new knowledge network that will position 

the periphery firm at the center rather than strengthening interfirm cooperation with a 

center firm in a focal knowledge network.   

 Finally, I conclude with remarks about the limitations of generalizing the results 

in this paper to extended contexts. Because this study is based on a single industry as well 

as a single knowledge network, future studies should test whether the results of this paper 

are replicable in other industries and multiple knowledge networks. I believe that the 

characterization of directional codified knowledge flows—asymmetries in intensity and 

technological uncertainty—should be generally applicable for future study.  
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Table 3.1 Summary Statistics  

  Variable 1 2 3 4 5 6 7 8 

1 
Formation of  

interfirm cooperation          

2 
Codified knowledge flows  

from a periphery to a center firm 
0.003  

       

3 
Codified knowledge flows  

from a center to a periphery firm 
-0.005  0.690  

      

4 
Technology distance  

from a periphery to a center firm 
0.062  -0.154  -0.123  

     

5 
Technology distance 

from a center to a periphery firm 
0.072  -0.064  -0.207  -0.079  

    

6 Prior interfirm cooperation 0.228 0.169 0.178 -0.032 0.039 
   

7 Firm age 0.099  0.291  0.215  -0.014  0.029  0.230 
  

8 Acquisition -0.100  -0.047  -0.108  -0.024  0.077  -0.062 -0.119  
 

9 Platform technology shift 0.045  -0.020  -0.048  0.025  -0.033  0.028 -0.007  0.045  

10 Bidirectional knowledge flows 0.022  0.341  0.477  -0.218  -0.345  0.179 0.190  -0.122  

11 Patent stock of a periphery firm 0.070  -0.048  -0.057  0.103  0.101  0.130 0.108  0.000  

12 Patent stock of a center firm -0.074  -0.108  -0.234  -0.063  0.326  -0.227 -0.220  0.092  

13 Industry consolidation -0.021  0.070  0.029  0.069  0.017  0.012 0.002  0.028  

  N 1110 1110 1110 1110 1110 1110 1110 1110 

 
N-g 243 243 243 243 243 243 243 243 

 
Mean 0.158  7.45  3.3171  0.809  0.855  0.558  24.77  0.105  

 
Std. Dev. 0.422  24.55  9.4582  0.272  0.237  1.074  33.44  0.306  

 
Min 0 0 0 0 0 0 0 0 

  Max 4 310 81 1 1 7 178 1 

 
All correlation coefficients above 0.07 are significant at p<0.05. 

     

          

    9 10 11 12 13 

   10 Bidirectional knowledge flows -0.052  
    

   11 Patent stock of a periphery firm 0.091  -0.093  
   

   12 Patent stock of a center firm -0.058  -0.404  -0.127  
  

   13 Industry consolidation 0.511  0.045  -0.054  0.044  
 

     N 1110 1110 1110 1110 1110 

   
 
N-g 243 243 243 243 243 

   
 
Mean 0.230  0.249  25.64  681.55  0.096  

   
 
Std. Dev. 0.421  0.432  154.04  897.04  0.295  

   
 
Min 0 0 0 0 0 

     Max 1 1 987.383 2185.92 1 

   

 

All correlation coefficients above 0.07 are significant at p<0.05. 

       



 

 

107 

 

Table 3.2 Fixed Effects Poisson Regression Results  

  D.V: Formation of Interfirm Cooperation 

  Estimated Coefficients in top line 

  (Robust S.E in parentheses) 

  [Incidence rate ratios in bracket] 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

 

-0.009* 

 

-0.006 -0.023** -0.008 -0.021* -0.005 

  from a periphery to a center firm 

 

(0.0048) 

 

(0.0076) (0.0111) (0.0087) (0.0114) (0.0062) 

  

 

[0.991] 

 

[0.994] [0.977] [0.932] [0.979] [0.995] 

Codified knowledge flows  

  

-0.027** -0.017 -0.019 -0.071*** -0.058* -0.026 

  from a center to a periphery firm 

  

(0.0106) (0.0177) (0.0165) (0.0260) (0.0302) (0.0199) 

  

  

[0.973] [0.983] [0.981] [0.992] [0.944] [0.975] 

Technology distance  

       

-1.080* 

  from a periphery to a center firm 

       

(0.6008) 

  

       

[0.340] 

Technology distance 

       

2.265*** 

  from a center to a periphery firm 

       

(0.7943) 

  

       

[9.635] 

Codified knowledge flows  

    

7E-05** 

 

6E-05* 

   from a periphery to a center firm ^2 

    

(3E-05) 

 

(3E-05) 

   

    

[1.0001] 

 

[1.0001] 

 Codified knowledge flows  

     

0.001* 0.001 

   from a center to a periphery firm^2 

     

(0.0006) (0.0006) 

   

     

[1.001] [1.001] 

 Zero Codified knowledge flows  

       

1.374*** 

  from a periphery to a center firm 

       

(0.4259) 

Zero Codified knowledge flows  

       

0.455 

  from a center to a periphery firm 

       

(0.4026) 

  

        Prior interfirm cooperation -0.088* -0.118*** -0.103 -0.114** -0.123** -0.119** -0.125** -0.048 

  (0.0463) (0.0407) (0.0672) (0.0494) (0.0495) (0.0495) (0.0505) (0.0639) 

Firm age 0.144 0.132 0.137 0.132 0.142 0.136 0.142 0.102 

  (0.1082) (0.1081) (0.1050) (0.1059) (0.1067) (0.1037) (0.1042) (0.0987) 

Acquisition -0.871 -1.024 -1.084 -1.099 -1.156* -1.239* -1.244* -1.609*** 

  (0.6121) (0.6646) (0.6623) (0.6754) (0.6986) (0.6683) (0.6880) (0.5983) 

                       (continued) 
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Table 3.2 Continued 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Platform technology shift 0.556** 0.486* 0.466* 0.453* 0.416 0.406 0.390 0.427* 

  (0.2605) (0.2570) (0.2700) (0.2650) (0.2681) (0.2644) (0.2661) (0.2360) 

Bidirectional knowledge flows 0.261 0.377 0.392 0.422 0.580 0.610 0.675* 1.439*** 

  (0.3829) (0.3976) (0.3737) (0.3940) (0.3819) (0.3841) (0.3720) (0.5465) 

Patent stock of a periphery firm -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002** 

  (0.0011) (0.0010) (0.0010) (0.0010) (0.0009) (0.0010) (0.0009) (0.0008) 

Patent stock of a center firm 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

  (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002) 

Industry consolidation -0.556 -0.506 -0.493 -0.482 -0.458 -0.441 -0.440 -0.627* 

                (0.3785) (0.3654) (0.3848) (0.3754) (0.3759) (0.3688) (0.3688) (0.3512) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood  -252.412 -250.227 -250.068 -249.583 -247.906 -247.880 -247.031 -234.301 

N               658 658 658 658 658 658 658 658 

N-g             67 67 67 67 67 67 67 67 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Robust standard errors clustered by each firm are in parentheses. Incident rate ratios [IRR] are in brackets.  

 

 

 

 

 

 

 

 

 

 

 



 

 

109 

 

Table 3.3       Fixed Effects Logit Regression Results  

  D.V: Formation of Interfirm Cooperation (binary) 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

  from a periphery to a center firm 

 

-0.010 

 

-0.007 -0.034** -0.010 -0.032** -0.010 

  

 

(0.0062) 

 

(0.0073) (0.0157) (0.0080) (0.0160) (0.0074) 

Codified knowledge flows  

  from a center to a periphery firm 

  

-0.026 -0.014 -0.014 -0.077* -0.057 -0.031 

  

  

(0.0170) (0.0204) (0.0211) (0.0452) (0.0458) (0.0225) 

Technology distance  

  from a periphery to a center firm 

       

-2.147*** 

  

       

(0.8065) 

Technology distance 

  from a center to a periphery firm 

       

2.691*** 

  

       

(0.9738) 

Codified knowledge flows  

  from a periphery to a center firm ^2 

    

1E-04** 

 

8E-05* 

   

    

(0.0001) 

 

(0.0001) 

 Codified knowledge flows  

  from a center to a periphery firm^2 

     

0.001 0.001 

   

     

(0.0007) (0.0007) 

 Zero Codified knowledge flows  

  from a periphery to a center firm 

       

2.799*** 

  

       

(0.6542) 

Zero Codified knowledge flows  

  from a center to a periphery firm 

       

1.130 

  

       

(0.7144) 

Prior interfirm cooperation -0.117 -0.168 -0.141 -0.166 -0.191* -0.175* -0.193* -0.140 

  (0.0974) (0.1030) (0.1004) (0.1033) (0.1057) (0.1040) (0.1057) (0.1147) 

Firm age 0.216 0.218 0.220 0.219 0.231 0.223 0.230 0.237 

  (0.1572) (0.1587) (0.1583) (0.1589) (0.1601) (0.1591) (0.1600) (0.1661) 

                        (continued) 
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Table 3.3        Continued 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Acquisition -0.594 -0.731 -0.771 -0.786 -0.845 -0.935 -0.934 -1.155 

  (0.7761) (0.7829) (0.7882) (0.7887) (0.7933) (0.7991) (0.8005) (0.8925) 

Platform technology shift 0.795** 0.761* 0.735* 0.739* 0.716* 0.698* 0.690* 0.821* 

  (0.3945) (0.3977) (0.3973) (0.3988) (0.4004) (0.4004) (0.4015) (0.4271) 

Bidirectional knowledge flows 0.444 0.544 0.565 0.581 0.778* 0.772* 0.879** 2.550*** 

  (0.4095) (0.4144) (0.4159) (0.4174) (0.4298) (0.4347) (0.4393) (0.7251) 

Patent stock of a periphery firm 2E-04 -3E-04 -2E-04 -4E-04 -0.001 -2E-04 -0.001 -0.001 

  (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0012) (0.0013) (0.0013) 

Patent stock of a center firm 0.001*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 

  (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) 

Industry consolidation -0.473 -0.454 -0.436 -0.439 -0.438 -0.399 -0.421 -0.601 

                (0.5038) (0.5072) (0.5062) (0.5074) (0.5072) (0.5075) (0.5073) (0.5472) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood  -189.490 -187.886 -188.181 -187.649 -185.650 -186.400 -185.070 -168.050 

N               658 658 658 658 658 658 658 658 

N-g             67 67 67 67 67 67 67 67 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Classical standard errors (independent and identically distributed) are in parentheses. 
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Table 3.4 Fixed Effects OLS Results  

  D.V: Formation of Interfirm Cooperation 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

  from a periphery to a center firm 

 

-0.003*** 

 

-0.003* -0.008** -0.003** -0.007** -0.003** 

  

 

(0.0012) 

 

(0.0015) (0.0037) (0.0015) (0.0035) (0.0015) 

Codified knowledge flows  

  from a center to a periphery firm 

  

-0.008*** -0.003 -0.003 -0.014** -0.011* -0.004 

  

  

(0.0022) (0.0023) (0.0024) (0.0067) (0.0066) (0.0026) 

Technology distance  

  from a periphery to a center firm 

       

-0.136 

  

       

(0.0860) 

Technology distance 

  from a center to a periphery firm 

       

0.318*** 

  

       

(0.1179) 

Codified knowledge flows  

  from a periphery to a center firm ^2 

    

1E-05* 

 

2E-05 

   

    

(1E-05) 

 

(1E-05) 

 Codified knowledge flows  

  from a center to a periphery firm^2 

 

  

   

1E-04 1E-04 

   

     

(0.0001) (0.0001) 

 Zero Codified knowledge flows  

  from a periphery to a center firm 

       

0.359*** 

  

       

(0.0972) 

Zero Codified knowledge flows  

  from a center to a periphery firm 

       

0.177* 

  

       

(0.0943) 

Prior interfirm cooperation 
-0.056** -0.069*** -0.060** -0.068*** -0.070*** -0.069*** -0.070*** 

-

0.063*** 

  (0.0230) (0.0242) (0.0250) (0.0244) (0.0253) (0.0244) (0.0252) (0.0240) 

Firm age 0.014 0.016 0.016 0.016 0.018 0.016 0.018 0.024 

  (0.0169) (0.0167) (0.0168) (0.0167) (0.0166) (0.0166) (0.0165) (0.0165) 

(continued) 
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Table 3.4 Continued 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Acquisition -0.036 -0.075 -0.078 -0.087 -0.098 -0.106 -0.111 -0.114* 

  (0.0691) (0.0698) (0.0722) (0.0721) (0.0725) (0.0725) (0.0724) (0.0595) 

Platform technology shift 0.096 0.088 0.083 0.084 0.080 0.076 0.075 0.088 

  (0.0659) (0.0642) (0.0643) (0.0644) (0.0631) (0.0627) (0.0622) (0.0597) 

Bidirectional knowledge flows 0.003 0.037 0.046 0.049 0.075 0.081 0.095 0.364*** 

  (0.0715) (0.0661) (0.0668) (0.0673) (0.0629) (0.0646) (0.0638) (0.0932) 

Patent stock of a periphery firm -9E-05 -3E-04 -2E-04 -3E-04 -3E-04 -3E-04 3E-04 -4E-04 

  (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0002) 

Patent stock of a center firm 1E-04*** 2E-04*** 2E-04*** 2E-04*** 2E-04*** 2E-04*** 2E-04*** 1E-04*** 

  (4E-05) (4E-05) (0.0001) (4E-05) (4E-05) (0.0001) (5E-05) (0.0001) 

Industry consolidation -0.100 -0.090 -0.091 -0.088 -0.085 -0.081 -0.080 -0.090 

                (0.0859) (0.0844) (0.0848) (0.0844) (0.0837) (0.0826) (0.0826) (0.0802) 

Constant -0.091 -0.283 -0.195 -0.292 -0.325 -0.304 -0.328 -0.875*** 

  (0.2051) (0.2446) (0.2084) (0.2384) (0.2319) (0.2367) (0.2324) (0.2896) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

R-Square 0.099 0.121 0.113 0.123 0.130 0.128 0.133 0.172 

N               1110 1110 1110 1110 1110 1110 1110 1110 

N-g             243 243 243 243 243 243 243 243 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Robust standard errors clustered by each firm are in parentheses.  
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Table 3.5 Fixed Effects Poisson Regression Results: Robustness Check with Year Dummies  

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

  from a periphery to a center firm 

 

-0.009 

 

-0.006 -0.024* -0.008 -0.022* -0.005 

  

 

(0.0054) 

 

(0.0078) (0.0128) (0.0084) (0.0130) (0.0064) 

Codified knowledge flows  

  from a center to a periphery firm 

  

-0.028** -0.017 -0.019 -0.074*** -0.061** -0.026 

  

  

(0.0117) (0.0182) (0.0171) (0.0217) (0.0245) (0.0223) 

Technology distance  

  from a periphery to a center firm 

       

-1.119* 

  

       

(0.6063) 

Technology distance 

  from a center to a periphery firm 

       

2.304*** 

  

       

(0.8768) 

Codified knowledge flows  

  from a periphery to a center firm ^2 

    

0.0001** 

 

0.0001 

   

    

(0.00004) 

 

(0.00003) 

 Codified knowledge flows  

  from a center to a periphery firm^2 

     

0.001** 0.001* 

   

     

(0.0005) (0.0005) 

 Zero Codified knowledge flows  

  from a periphery to a center firm 

       

1.343*** 

  

       

(0.4416) 

Zero Codified knowledge flows  

  from a center to a periphery firm 

       

0.227 

  

       

(0.4759) 

Prior interfirm cooperation -0.064 -0.094** -0.075 -0.087 -0.095* -0.090 -0.096* -0.032 

  (0.0535) (0.0468) (0.0709) (0.0536) (0.0533) (0.0557) (0.0554) (0.0676) 

Firm age -0.095* -0.077 -0.076 -0.072 -0.058 -0.056 -0.050 -0.042 

  (0.0524) (0.0492) (0.0586) (0.0532) (0.0514) (0.0504) (0.0497) (0.0488) 

(continued) 
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Table 3.5 Continued 

Acquisition -1.009* -1.127* -1.186* -1.191* -1.234* -1.317** -1.318** -1.499*** 

  (0.6126) (0.6459) (0.6492) (0.6577) (0.6708) (0.6420) (0.6556) (0.5740) 

Bidirectional knowledge flows 0.157 0.283 0.325 0.348 0.519 0.563 0.628 1.272** 

  (0.4024) (0.4444) (0.4093) (0.4391) (0.4396) (0.4193) (0.4240) (0.5533) 

Patent stock of a periphery firm -0.001* -0.002** -0.002** -0.002** -0.002*** -0.002*** -0.002*** -0.002*** 

  (0.0008) (0.0007) (0.0006) (0.0007) (0.0006) (0.0006) (0.0006) (0.0004) 

Patent stock of a center firm 0.001*** 0.001*** 0.001*** 0.001*** 0.002*** 0.002*** 0.002*** 0.001*** 

  (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood  -247.333 -245.120 -245.026 -244.514 -242.754 -242.506 -241.696 -230.318 

N               658 658 658 658 658 658 658 658 

N-g             67 67 67 67 67 67 67 67 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Robust standard errors clustered by each firm are in parentheses.  The years of platform technology shift and industry consolidation are omitted 

as a baseline to obtain convergence.  
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Table 3.6          Fixed Effects Logit Regression Results: Robustness Check with Year Dummies 

 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

  from a periphery to a center firm 

 

-0.011* 

 

-0.009 -0.036** -0.012 -0.033** -0.010 

  

 

(0.0060) 

 

(0.0071) (0.0158) (0.0076) (0.0163) (0.0070) 

Codified knowledge flows  

  from a center to a periphery firm 

  

-0.035** -0.010 -0.010 -0.077* -0.057 -0.028 

  

  

(0.0169) (0.0205) (0.0214) (0.0457) (0.0469) (0.0225) 

Technology distance  

  from a periphery to a center firm 

       

-2.503*** 

  

       

(0.8027) 

Technology distance 

  from a center to a periphery firm 

       

2.613*** 

  

       

(0.9702) 

Codified knowledge flows  

  from a periphery to a center firm ^2 

    

0.000* 

 

0.0001 

   

    

(0.0000) 

 

(0.0001) 

 Codified knowledge flows  

  from a center to a periphery firm^2 

     

0.001 0.001 

   

     

(0.0006) (0.0007) 

 Zero Codified knowledge flows  

  from a periphery to a center firm 

       

2.741*** 

  

       

(0.6411) 

Zero Codified knowledge flows  

  from a center to a periphery firm 

       

0.835 

  

       

(0.6809) 

Prior interfirm cooperation -0.117 -0.183* -0.142 -0.182* -0.208* -0.189* -0.207* -0.097 

  (0.0980) (0.1038) (0.0972) (0.1039) (0.1061) (0.1044) (0.1061) (0.1116) 

Firm age -0.103** -0.076 -0.039 -0.073 -0.054 -0.054 -0.045 -0.004 

  (0.0527) (0.0537) (0.0453) (0.0543) (0.0551) (0.0552) (0.0555) (0.0602) 

(continued) 
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Table 3.6       Continued 

 

Acquisition -0.972 -1.127 -1.396* -1.164 -1.224 -1.305* -1.310* -1.512* 

  (0.7692) (0.7793) (0.7741) (0.7839) (0.7899) (0.7908) (0.7944) (0.8647) 

Bidirectional knowledge flows 0.193 0.319 0.158 0.340 0.535 0.530 0.630 2.081*** 

  (0.4095) (0.4147) (0.3985) (0.4161) (0.4294) (0.4313) (0.4364) (0.7006) 

Patent stock of a periphery firm -0.001 -0.002 -0.001 -0.002 -0.002* -0.002 -0.002* -0.003** 

  (0.0010) (0.0010) (0.0010) (0.0010) (0.0011) (0.0011) (0.0011) (0.0012) 

Patent stock of a center firm 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 

  (0.0005) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0006) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood  -184.649 -182.422 -192.351 -182.311 -180.448 -180.908 -179.797 -163.697 

N               658 658 658 658 658 658 658 658 

N-g             67 67 67 67 67 67 67 67 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Classical standard errors (independent and identically distributed) are in parentheses. The years of platform technology shift and industry 

consolidation are omitted as a baseline to obtain convergence.  
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Table 3.7       Fixed Effects OLS Regression Results: Robustness Check with Year Dummies 

                (1) (2) (3) (4) (5) (6) (7) (8) 

Codified knowledge flows  

  from a periphery to a center firm 

 

-0.003*** 

 

-0.003* -0.008** -0.003** -0.007** -0.003** 

  

 

(0.0012) 

 

(0.0016) (0.0033) (0.0016) (0.0031) (0.0015) 

Codified knowledge flows  

  from a center to a periphery firm 

  

-0.009*** -0.003 -0.002 -0.015** -0.012* -0.004 

  

  

(0.0023) (0.0023) (0.0023) (0.0064) (0.0061) (0.0026) 

Technology distance  

  from a periphery to a center firm 

       

-0.136 

  

       

(0.0934) 

Technology distance 

  from a center to a periphery firm 

       

0.308*** 

  

       

(0.1184) 

Codified knowledge flows  

  from a periphery to a center firm ^2 

    

0.00002** 

 

0.00002* 

   

    

(0.00001) 

 

(0.00001) 

 Codified knowledge flows  

  from a center to a periphery firm^2 

     

0.0002* 0.0002 

   

     

(0.0001) (0.0001) 

 Zero Codified knowledge flows  

  from a periphery to a center firm 

       

0.332*** 

  

       

(0.1059) 

Zero Codified knowledge flows  

  from a center to a periphery firm 

       

0.148 

  

       

(0.1051) 

Prior interfirm cooperation -0.053** -0.066*** -0.058** -0.065*** -0.067*** -0.065*** -0.067*** -0.059** 

  (0.0251) (0.0241) (0.0251) (0.0243) (0.0247) (0.0244) (0.0247) (0.0236) 

Firm age -0.024** -0.019* -0.012 -0.018* -0.015 -0.016 -0.014 -0.007 

  (0.0110) (0.0105) (0.0084) (0.0106) (0.0101) (0.0103) (0.0100) (0.0118) 

(continued) 
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Table 3.7       Continued 

 

Acquisition -0.062 -0.098 -0.132* -0.109 -0.120 -0.128* -0.133* -0.124** 

  (0.0686) (0.0696) (0.0729) (0.0729) (0.0733) (0.0731) (0.0732) (0.0613) 

Bidirectional knowledge flows -0.013 0.021 0.015 0.032 0.060 0.067 0.081 0.319*** 

  (0.0713) (0.0692) (0.0702) (0.0689) (0.0658) (0.0654) (0.0657) (0.0973) 

Patent stock of a periphery firm 
-0.0002* -0.0004** -0.0003** -0.0004** -0.0004** -0.0004** -0.0004** 

-

0.0004*** 

  (0.0001) (0.0002) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Patent stock of a center firm 0.0002*** 0.0002*** 0.0003*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 

  (0.00005) (0.00005) (0.0001) (0.00005) (0.0001) (0.0001) (0.00005) (0.0001) 

Constant 0.671** 0.573** 0.440** 0.558** 0.493* 0.524** 0.478* 0.084 

  (0.2805) (0.2664) (0.2215) (0.2690) (0.2569) (0.2630) (0.2553) (0.3388) 

Year Effect Yes Yes Yes Yes Yes Yes Yes Yes 

R-Square 0.124 0.145 0.110 0.147 0.155 0.153 0.158 0.189 

N               1110 1110 1110 1110 1110 1110 1110 1110 

N-g             243 243 243 243 243 243 243 243 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Robust standard errors clustered by each firm are in parentheses.  The years of platform technology shift and industry consolidation are omitted 

as a baseline to obtain convergence.  
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Table 3.8       Fixed Effects Poisson Regression Results with Novelty/ Post-legal 

regime change  

                (1) (2) (3) 

Novelty from a periphery to a center firm -0.017*** -0.019*** 

   (0.0031) (0.0033) 

 Novelty  from a center to a periphery firm 0.003 0.008 

 

 

(0.0081) (0.0063) 

 Codified knowledge flows  from a periphery to a center firm 0.017*** 0.019*** 

   (0.0059) (0.0056) 

 Codified knowledge flows  from a center to a periphery firm -0.048** -0.065*** 

   (0.0228) (0.0249) 

 Technology distance from a periphery to a center firm 

 

-0.821 

   

 

(0.6335) 

 Technology distance from a center to a periphery firm 

 

2.574*** 

   

 

(0.7014) 

 Zero Codified knowledge flows from a periphery to a center firm 

 

1.289*** 

   

 

(0.4091) 

 Zero Codified knowledge flows from a center to a periphery firm 

 

0.297 

   

 

(0.3753) 

 Post-legal regime change 

  

-1.086*** 

  

  

(0.404) 

Prior interfirm cooperation -0.107** -0.048 -0.071 

  (0.0436) (0.0628) (0.0492) 

Firm age 0.118 0.087 0.161 

  (0.1080) (0.1025) (0.1111) 

Acquisition -1.194* -1.707*** -0.821 

  (0.6768) (0.6140) (0.5951) 

Platform technology shift 0.416 0.358 0.218 

  (0.2757) (0.2440) (0.3042) 

Bidirectional knowledge flows 0.608* 1.587*** 0.245 

  (0.3378) (0.4786) (0.3878) 

Patent stock of a periphery firm -0.001 -0.002*** -0.001 

  (0.0009) (0.0007) (0.001) 

Patent stock of a center firm 0.001*** 0.001*** 0.001*** 

  (0.0003) (0.0002) (0.0003) 

Industry consolidation -0.502 -0.629* -0.358 

                (0.4002) (0.3602) (0.3733) 

Year Effect Yes Yes Yes 

Log-likelihood  -244.974 -229.501 -249.996 

N               658 658 658 

N-g             67 67 67 

* p<0.10    ** p<0.05    *** p<0.01   

Notes. Robust standard errors clustered by each firm are in parentheses. 
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CHAPTER 3 APPENDIX 

Comparative Statics Analysis 

I present a comparative statics analysis to formalize the effect of codified knowledge flows on the utility of 

interfirm cooperation. Consider a utility of interfirm cooperation, U, that is determined by a benefit of tacit 

knowledge, B, and transaction cost, C. The utilities of interfirm cooperation of a center firm (denoted by c) 

and a periphery firm (denoted by p) are, respectively: 

, 

. 

The effect of the intensity of two directional codified knowledge flows, (knowledge flows from a 

periphery firm to a center firm) and (knowledge flows from a center firm to a periphery firm) on the 

utility of interfirm cooperation can be analyzed from the first order condition,  and . For both a center 

firm and a periphery firm, because codified knowledge flows offset the need for tacit knowledge and 

reduce the benefit of tacit knowledge,  and . Because disclosed knowledge in codified 

knowledge flows increases the expropriation risk,  and  . Hence, I propose that: 

 ;  (1) 

 .  (2) 

The effect of uncertainty in two directional codified knowledge flows,  in , and  in , on the utility 

of interfirm cooperation can be analyzed from the first order condition,  and . From the perspective 

of a center firm, because uncertain technological components of a periphery firm have a risk of 

obsolescence, increasing  does not affect the need for tacit knowledge, and thus, , because the 

governance cost for a bilateral relationship in interfirm cooperation increases under uncertainty, . 

From the perspective of a periphery firm, because tacit knowledge from a center firm is beneficial for 

understanding uncertain components introduced by a center firm, ; because expropriation risk by a 

center firm is low in cooperation for an uncertain distant technology, . Hence, I propose that:        

 ;   (3) 

 .  (4) 

The propositions formulate the four testable hypotheses in the main section of this paper.  
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CHAPTER 4 

THE IMPACTS OF COMMERCIALIZATION-ORIENTED SCIENCE 

AND TECHNOLOGY PROGRAMS ON UNIVERSITY RESEARCH: 

EVIDENCE FROM THE U.S. NATIONAL NANOTECHNOLOGY 

INITIATIVE 

1 Introduction 

 Since Vannevar Bush’s (1945) influential report, Science: The Endless Frontier, 

that highlighted the importance of basic research for advances in applied research and 

commercialization, university research has become a major vehicle through which 

governments seek to promote national economic growth. Based on the logic that stronger 

government support would enhance the effectiveness of the national innovation system, 

government science and technology (S&T) programs have become primary funding 

sources of university research in the U.S. (Nelson, 2004; Stephan, 2010). These programs 

are often associated with specific missions to be accomplished, as famously represented 

in the Apollo Program that aimed at “landing a man on the Moon.”
34

 In fact, over 90% of 

the government research and development (R&D) spending in the U.S. is considered to 

have mission-oriented rationales (Mowery, 2009). How might, then, targeted government 

S&T programs have influenced the nature of research in the U.S. universities, arguably 

                                                 

 

 
34

 On May 25, 1961, addressing to a joint session of the U.S. Congress, then President John F. Kennedy 

stated a goal of “landing a man on the Moon and returning him safely to the Earth” by the end of the 1960s. 

This led to the Apollo Program, by far the largest single government S&T program in the U.S. history. 
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the most significant beneficiary of such programs? This paper is our attempt to examine 

this question. 

 While national priorities play a role in setting broad research directions in Bush’s 

manifesto, his original argument suggested a high degree of autonomy for science (Bush, 

1945; Nelson, 2004; Mowery, 2009). Further, researchers have argued that decisions on 

specific areas to be funded should be left to scientists (Martin, 2003; Mowery, 2009). 

This casts a fundamental contrast with government S&T programs that promote mission-

oriented initiatives, which may redirect university research to work on specific 

technology areas to maximize economic payoffs from the funding (Dasgupta and David, 

1994). In particular, government-mandated missions such as ensuring the U.S. economic 

leadership may significantly affect the institutions of knowledge production and, hence, 

alter the landscape and flows of knowledge. It is generally understood that universities 

specialize in basic research (Nelson, 1959; Dasgupta and David, 1994), advance 

technology developments by often bringing about serendipitous exploration and 

technological breakthroughs (Mansfield, 1991; Nelson, 2004), and operate on a 

functional norm that substantive findings should be universally available to the research 

community (Merton, 1973). Government S&T programs with specific orientations such 

as commercialization can undermine these general assumptions on university research. 

We posit that commercialization-oriented S&T programs alter the characteristics of 

university research in technology development by influencing the direction of university 

research and by potentially overemphasizing the link to commercialization.   

 Despite the existing research on the influence of government funding on overall 

research outcomes, little is known about how government initiatives with specific targets 
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may interfere with science and technology (Jaffe, 2006). Researchers have recently begun 

to address this issue by investigating the role of institutions and science policy in 

knowledge accumulation and the direction of scientific research (Murray et al., 2009; 

Furman, Murray, and Stern, 2010; Furman and Stern, 2010). Among what remains 

underexplored is the effect of government initiatives on knowledge flows and the nature 

of knowledge produced in the institutions such as universities that rely heavily on 

government funding. This omission is puzzling because government initiatives may be 

conflicting with the propositions that institutions of scientific research should be self-

governed and thus independently decide the priority of their research agenda (Polanyi, 

1962), and that the results of scientific research should be publicly disclosed and shared 

(Dasgupta and David, 1994; Nelson, 2004). To fill this void, we examine the impacts of a 

particular S&T program on university research in terms of the direction of knowledge 

flow between the university and the industry and the characteristics of research output 

such as branching-out to novel technologies, research scope and technological 

breakthroughs. 

 We argue that this program’s particular emphasis on commercialization will 

induce university research to increasingly utilize knowledge flows from industry because 

firms tend to have technologies to solve problems that are directly relevant to market 

demand; due to greater interests in economic returns, university researchers will reduce 

accessibility to their findings through secrecy and incomplete disclosures, which, in turn, 

forecloses their own possibility of branching-out to subsequent novel technologies. We 

also contend that a focused research direction mandated by the program will influence 

university research to reduce the exploration of uncertain technologies and hence the 
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variance of technological outcomes, and thereby lead to curtailed technological 

breakthroughs. 

 Our empirical setting is the National Nanotechnology Initiative (NNI), a U.S. 

federal government S&T program launched in 2000. Since its inception, the NNI has 

coordinated the disbursement of over $14 billion by 2011. By funneling the budget into 

nanotechnology R&D, the NNI guides the direction of university research toward the 

research agenda it has set up (Bush, 1945; Dasgupta and David, 1994; Mowery, 2009). 

The NNI is clearly a targeted government initiative in that it not only serves general 

government missions in national defense, agriculture, health and education, but also 

pursues its own mission of securing the economic leadership of the U.S. in 

nanotechnology.
35

 In particular, the NNI is intended to “advance the U.S. productivity 

and industrial competitiveness through coordinated investments in nanotechnology.”
36

 

Based on this mandate, we characterize the NNI as the onset of a policy intervention that 

emphasizes the commercialization of nanotechnology and a focused research direction to 

attain national economic growth. This program sets the university apart from the private 

sector that was largely unaffected by this policy drive. It also distinguishes the U.S. from 

other countries that were free of such a policy shift during the period of our study. Hence, 

the NNI provides a nice natural experiment that we can exploit to isolate the impact of 

this particular policy intervention on university research outcomes.  

                                                 

 

 
35

 The President’s Committee of Advisors on Science and Technology noted that the NNI has an “excellent 

multi-agency framework to ensure U.S. leadership in this emerging field that will be essential for economic 

and national security leadership in the first half of the next century” (NNI, The Initiative and Its 

Implementation Plan, 2000). 
36

 The 21st Century Nanotechnology Research and Development Act. Public Law 108-153. The 108
th

 

Congress. 

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=108_cong_public_laws&docid=f:publ153.108
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 Analyzing 3,720 nanotechnology patents filed with the United States Patent and 

Trademark Office (USPTO) between 1996 and 2007, we find support for our hypotheses. 

Specifically, our difference-in-differences estimation show that, following the NNI, U.S. 

universities have become 1) more reliant on industry-generated knowledge; 2) less prone 

to branch out to novel technology areas; 3) narrower in patent scopes; and 4) less likely to 

produce technological breakthroughs. These outcomes are totally counterintuitive 

because the goals of government S&T programs are in general to facilitate knowledge 

transfers from university to industry, not the reverse, and to build a strong national 

innovation system characterized by greater innovative output. Our findings suggest that 

targeted S&T policy interventions do exert significant impacts on university research, but 

potentially in an unexpected way. 

2 NNI as A Natural Experiment 

 The NNI is the U.S. federal interagency program for coordinating R&D and 

enhancing communication and collaborative activities in nanoscale science, engineering 

and technology. The NNI represents the individual and cooperative nanotechnology-

related activities of 25 federal agencies
37

 with a range of research and regulatory roles 

                                                 

 

 
37

 The federal agencies participating in the NNI include Consumer Product Safety Commission, 

Department of Defense, Department of Energy, Department of Homeland Security, Department of Justice, 

Department of Transportation (including the Federal Highway Administration), Environmental Protection 

Agency, Food and Drug Administration, Forest Service, National Aeronautics and Space Administration, 

National Institute for Occupational Safety and Health, National Institute of Food and Agriculture, National 

Institute of Standards and Technology, National Institutes of Health, National Science Foundation, Bureau 

of Industry and Security, Department of Education, Department of Labor (including the Occupational 

Safety and Health Administration), Department of State, Department of the Treasury, Director of National 

Intelligence, Nuclear Regulatory Commission, U.S. Geological Survey, U.S. International Trade 

Commission, and USPTO. Source: The National Science and Technology Council (NSTC), Supplement to 

the President's FY 2012 Budget, 2011. 
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and responsibilities. The primary goals of this program are to increase the transfer of new 

technologies from university to industry and facilitate the commercialization of 

nanotechnology (NNI Strategic Plan, 2011). Federal agencies put coordinated efforts 

toward identifying specific R&D targets, setting up R&D directions
38

 in nanotechnology 

and expediting commercialization by focusing on applications (NNI Research Direction 

II, 2004).  

 Funding is the main mechanism that the NNI uses to achieve its goals by 

supporting nanotechnology research. The participating federal agencies have pre-

allocated R&D budgets for nanotechnology; the publicized NNI budget represents the 

collective sum of these agency-level budgets. Federal research grants are awarded by 

individual agencies in accordance with their respective missions. While the NNI utilizes a 

traditional government funding system, it drives a national strategic plan for 

nanotechnology with integrated and unified directions across funding agencies. The NNI 

has been one of the top priorities in the S&T policy agenda that former Presidents have 

pursued. On January 21, 2000, President Clinton announced the launch of the NNI in a 

public address at the California Institute of Technology. On December 3, 2003, following 

up on the Clinton Administration’s initiative, President Bush signed into law the “21st 

Century Nanotechnology Research and Development Act,” which guaranteed a multi-

year funding into nanotechnology research. To support the interests of these high-profile 

                                                 

 

 
38

 An early-stage plan for the NNI had very specific guidelines. For instance, the deliverables in the first 

five years were to “…develop new standard reference materials for semiconductor, lab-on-a-chip-

technologies, nanomagnetics, and calibration and quality assurance analysis for nanosystem first achieved 

by FY2003… [and to] develop 3-D measurement methods for the analysis for physical and chemical at or 

near atomic spatial resolution first achieved by FY2004 …” (NNI, The Initiatives and Implementations 

Plan, 2000). 

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=108_cong_public_laws&docid=f:publ153.108
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=108_cong_public_laws&docid=f:publ153.108
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policymakers and respond to the calls by the Act, the NNI needed to make tangible the 

benefit of increased funding and enforce the requirements of reviews and reporting (Lane 

and Kalil, 2005). The 2010 budget provides $1.9 billion for the NNI, reflecting a steady 

growth in the NNI investment (see Figure 1). The cumulative NNI investment by 2011 

exceeds $14 billion. This magnitude of budget makes the NNI the biggest U.S. 

government S&T program since the Apollo Program. 

Insert Figure 4.1 about here 

 The NNI program involves many actors such as universities, government, and 

industry. From the inception, the NNI has hosted a series of workshops inviting these 

actors to identify major technological barriers to achieving its goal, which is to promote 

the economic competitiveness of the U.S.
39

 These workshops play a significant role in 

highlighting the need for targeted funding and in setting up focused research directions 

by gathering inputs from the scientific community as well as informing strategic plans to 

it. In particular, these workshops underscore specific research targets and metrics of 

progress toward those targets and the commercialization efforts for economic growth. For 

instance, a report from one of these workshop sessions shows strong interests of the 

participants in licensing, intellectual property (IP) rights, and new business models in 

nanotechnology (NNI Southern Regional Workshop, 2002). These workshops thus have 

been an impactful mechanism to propagate the NNI goals within the nanotechnology 

research community. 

                                                 

 

 
39

 Since 2000, the Nanoscale Science, Engineering, and Technology Committee, the subcommittee of  the 

NSTC, has organized over 20 official NNI workshops and, separately, the NNI participating agencies have 

organized many more workshops that were associated with or supportive of the initiative (NNI, Strategic 

Planning Stakeholder Workshop, 2010). 
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 Workshops typically consist of leading plenary sessions followed by breakout 

sessions. In plenary sessions, experts in a subject matter share their insights and discussed 

the current state of specific areas and application domains of nanotechnology research. In 

breakout sessions, participants brainstorm for each of the NNI goals (e.g., “Foster the 

transfer of new technologies into products for commercial and public benefit”), 

discussing, revising and prioritizing pre-defined objectives with a view to achieving these 

goals.
40

 This type of communication should have helped promote ideas that are well 

aligned with the NNI goals among workshop participants (NSTC, 2010). Our interviews 

with university nanoscientists who have participated in these workshops confirm that the 

workshops serve as venues for the participants to obtain information about the most 

interesting research topics and potential directions for future research. In particular, 

workshop sessions on specific industry sectors provide hints for university researchers on 

areas that appear more promising for receiving grants. Our interviewees repeatedly 

confided that their priority is always on fundable research topics and they often set aside 

new research ideas that deem less suited for winning grants. 

 This practical orientation of the NNI is likely to exert disproportionally greater 

impacts on university research than on the R&D in other institutions because the 

direction of the NNI-led investments for economic returns presents a starker contrast with 

the norms of academia such as universalism, disinterestedness and communism (Merton, 

                                                 

 

 
40

 Some examples of the brainstorming questions include: “Are there new forms of public-private 

partnerships that you could recommend to improve commercialization?” “What do you think the NNI 

should do in regard to improving/fostering technology transfer and commercialization?” “What U.S. 

Government policies (or lack thereof) are helping or hindering the commercialization of nanotechnology in 

the United States?” (NSTC, 2010). 
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1973) that had traditionally discouraged university researchers from engaging in 

commercialization-oriented activities. Further, and more important for our empirical 

design, the NNI’s initiation on focused research and commercialization appears largely 

exogenous to the academic community. Though some prominent university scholars 

provided individual inputs to the NNI’s establishment
41

, the academic community on the 

whole seems to have been disinterested in, or unaware of, the specifics of the NNI until 

its launch. Hence, the NNI can be considered as an exogenous shock to the 

nanotechnology research community.
42

 

 The U.S. NNI is probably one of the strongest commercialization-oriented 

government programs we know of in the early 21
st
 century. Other countries such as 

Japan, U.K., Germany, and France that are known for their high nanotechnology 

capabilities did not show a noticeable shift in their nanotechnology policies until 2010, 

when the U.K. and Germany finally introduced national nanotechnology policies similar 

                                                 

 

 
41

 Inputs from these prominent scholars have been general endorsements to nanotechnology as a promising 

field that deserves aggressive national investments, rather than suggestions of specific research topics to be 

included in the agenda. For instance, Richard Smalley, a Nobel Laureate in chemistry, concluded in his 

testimony to the Senate Subcommittee on Science, Technology and Space: “We are about to be able to 

build things that work on the smallest possible length scales. It is in our Nation's best interest to move 

boldly into this new field” (NSTC, 1999b). 
42

 In fact, the NNI launch seems to have been a “surprise” to most people involved, even to the policy 

makers. The following quote illustrates this point: “ …On behalf of the interagency group, on March 11, 

1999, in the historic Indian Hall at the White House’s Office of Science and Technology Policy (OSTP), I 

proposed the NNI with a budget of half billion dollars for fiscal year 2001. I was given 10 minutes to make 

the case. While two other topics were on the agenda of that meeting, nanotechnology captured the 

imagination of those present and discussions reverberated for about two hours. It was the first time that a 

forum at this level with representatives from the major federal R&D departments reached a decision to 

consider exploration of nanotechnology as a national priority. In parallel, over two dozen of other 

competing topics were under consideration by OSTP for priority funding in fiscal year 2001. We had the 

attention of Neal Lane, then the Presidential Science Advisor, and Tom Kalil, then economic assistant to 

the President. However, few experts gave even a small chance to nanotechnology to become a national 

priority program. However, after a long series of evaluations, NNI was approved and had a budget of $489 

million in FY 2001…” (Roco, 2007, p. 3.11) Our interviews with scientists affirm this point that they were 

not aware of or interested in the NNI agenda until they were presented with the related funding opportunity 

announcements, workshops, or news about the NNI. 
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to the NNI.
43

 Japan and France have traditionally focused on industry nanotechnology 

research and their science policies for nanotechnology remained largely unchanged since 

late 1980s.
44

 We found no evidence of significant shifts in science policy regime for 

nanotechnology in these advanced countries during the period of our study. Thus, these 

countries seem to be free of any government initiatives that might have directly affected 

university nanotechnology research in a similar way that the NNI did to the U.S. 

universities. Therefore, we consider the NNI as a policy intervention that constitutes a 

reasonable natural experiment by which we can identify the impact of a government S&T 

program on university research, relative to the research conducted in other U.S. and non-

U.S. institutions.  

3 Theory and Hypothesis 

3.1 NNI and Knowledge Flows 

 To the extent that nanotechnology research in university relies on the NNI 

funding, university researchers are likely to be responsive to the initiative’s agenda and, 

thus, may accordingly align their research with those strategic goals to secure continued 

funding. For several reasons, we consider this assumption to be reasonable. First, the 

federal government has been the largest sponsor of university research, providing over 
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 UK, Nanotechnology Strategy: Small Technologies, Great Opportunity, March 2010. 

http://webarchive.nationalarchives.gov.uk/+/interactive.bis.gov.uk/nano/. Accessed on December 4, 2011. 

Germany, Nano Initiative–Action Plan, 2010. http://www.research-in-germany.de/dachportal/en/v-links-

and-downloads-einordnen/downloads/nano/2176/nanobroschuere.pdf. Accessed on December 4, 2011. 
44

 For instance, France has developed since 1970 its nanotechnology based on regional industry clusters as 

a network of micro-nano platforms (MAIT, 2009). The Japanese government has supported the 

establishment of the nanotechnology industry by building industry consortia such as the Semiconductor 

Industry Research Institute Japan (Present Status of Japanese Nanotechnology Efforts, 1997).  

http://webarchive.nationalarchives.gov.uk/+/interactive.bis.gov.uk/nano/
http://www.research-in-germany.de/dachportal/en/v-links-and-downloads-einordnen/downloads/nano/2176/nanobroschuere.pdf
http://www.research-in-germany.de/dachportal/en/v-links-and-downloads-einordnen/downloads/nano/2176/nanobroschuere.pdf


 

 

131 

 

60% of the research budget (Stephan, 2010). Second, funding agencies have influenced 

the focus of university research by setting up specific goals (Bush, 1945; Nelson, 2004; 

Mowery, 2009). Third, university nanotechnology researchers compete for NNI-funded 

grants (Lane and Kalil, 2005). We do not mean that university researchers necessarily 

change their research direction as radically as from basic research to applied research 

(Thursby and Thursby, 2003). Rather, we expect that, to qualify for funding, university 

researchers will pay attention to the NNI agenda in determining their research direction
45

 

and hence, at the margin, the research outcome will bear out the impact of the program to 

a measurable extent. 

 Recall that the NNI focuses on facilitating the application of nanotechnology. One 

of the NNI’s strategic goals is to foster the conversion of new technologies into products 

for commercial and public benefits (cf. Mowery, 2009). Because solving practical 

problems often leads to important basic research findings as byproducts, university 

researchers may be willing to adopt the NNI research agenda that have practical 

orientations. This motivates the university researchers to pay increased attention to 

technological developments from the industry (Rosenberg, 1990; Stokes, 1997). That is, 

when the commercialization-focused program is in place, the university research that 

inherently seeks no immediate practical application and yet involves greater motives of 

utility may take the development in the industry as a reference point. This is because the 

industry is another important institution that possesses knowledge about the current state 

                                                 

 

 
45

 For example, when university researchers find a funding program that broadly fits to their research 

directions, they may adjust the details of their research to meet the specific requirements of that program. 

Our interviews with nanotechnology scientists in universities confirmed this intuition. 
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of technology and the opportunities for improvement (Arora and Gambardella, 1994; 

Etzkowitz and Leydesdorff, 2000). To meet the goal of the funding, university 

researchers may seek technological inputs from the industry that applies nanotechnology 

primarily to commercial ends. The industry-generated technology might have information 

that is fundamentally different from the university-generated technology because 

downstream technologies tend to be developed in response to market demands (Von 

Hippel, 1988; Cohen, Nelson and Walsh, 2002). The input from the industry can thus be 

useful for understanding practical applications of the technology. Therefore, under the 

NNI, university researchers will have greater motivations to appropriate from 

technological developments in the industry. The form of this appropriation, however, 

may not be limited to simply obtaining practical ideas from the industry. University 

researchers can use any areas of research in which the industry possesses a relatively 

advanced technology such as methods, tools, and new materials that are essential for 

solving problems and thereby producing outcomes with implications for practical use.
46

 

Hence, with the launch of the NNI, university researchers may have looked to the 

industry technology significantly more than they did before. This has likely resulted in an 

increase of knowledge flows from the industry to the university. Hence, we hypothesize 

the following: 

                                                 

 

 
46

 For instance, the Atomic Force Microscopy or the Scanning Tunneling Microscopy, which enables 

researchers to image, measure and manipulate matter at the nanoscale, was first developed by a group of 

IBM scientists in 1981. Since then, a significant body of university research has relied on this particular 

technology to develop the next level of technology. The discovery of nanotubes exhibits a similar case. 

Since the NEC’s discovery of multi-walled carbon nanotubes in 1991, nanotubes have become an important 

topic in university nanotechnology research. 
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Hypothesis 1: The NNI has likely increased knowledge flows from the industry to the U.S. 

university in nanotechnology. 

3.2 NNI, Research Novelty and Research Scope 

 The government agenda for facilitating the application and commercialization of 

technology may have accelerated the privatization of university research outcomes. The 

privatization of research results is essentially an induced effect by the NNI that 

emphasizes the connection of its sponsored research to economic activities. For instance, 

under the NNI, universities are encouraged to file patents on research results or take 

additional steps toward commercialization such as licensing materials, founding 

companies, and cooperating with industrial material suppliers or manufacturers.
47

 
48

 In 

response to the emphasis on economic values of nanotechnology research, the concern of 

property rights has likely increased among university researchers who would be 

otherwise disinterested in pursuing property rights, thereby leading to the increased 

privatization of their research findings (Demsetz, 1967). 

 When a certain technology is privatized in early stages of development, the 

successive generation of diverse and useful derivative ideas may be hindered by the 

restricted access to prior technology (Dasgupta and David, 1994; Nelson, 2004; Aghion, 

                                                 

 

 
47

 Some excerpts from the NNI documents illustrate these points. For example, “…nanotechnology 

research…, which will drive the creation of new IP and wealth generation through new companies in 

medical applications…” (Nanotechnology Coordination Office, 2002). According to the 21st Century 

Nanotechnology R&D Act, the NNI “shall establish metrics for evaluation.” Also, prior studies that 

examined the nanotechnology development used patent data as a direct measure of technological 

innovation (Roco, 2007, 2011).  
48

 The NNI official website advertises their achievements, many of which include the part of “Patent and 

other steps toward commercialization” (http://www.nano.gov/nanotechnology-initiatives/nano-

achievements. Accessed on December 4, 2011). This implies that the NNI considers patenting as an 

important step toward commercialization.  

http://www.nano.gov/nanotechnology-initiatives/nano-achievements
http://www.nano.gov/nanotechnology-initiatives/nano-achievements
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Dewatripont, and Stein, 2008). As knowledge is accumulated over time, prior knowledge 

becomes a critical input for new knowledge creation (Fleming, 2001). Imagine the path 

for technology development as randomly dispersed branching-outs from prior nodes of 

technology to the next nodes of new technology. These branching-outs to a novel 

technology occur in a process in which the components of accumulated knowledge are 

recombined to produce an invention. Thus, accessing prior knowledge is essential for 

branching out to a new technology. If, for any reason, the access to certain prior 

technology is restricted, this prior technology cannot be used as an input for future 

technology developments and, hence, the subsequent branching-out from the technology 

is discouraged.  

 We argue that the NNI has reduced the access to prior knowledge generated by 

university research in nanotechnology and, thus, has decreased the branching-out to a 

new technology. We suggest two reasons for this expectation: increased secrecy and the 

incomplete disclosure of research findings. First, with the NNI’s commercialization 

orientation, the privatization of university research may have accompanied by increased 

secrecy. To maximize the economic value of their research that can be potentially 

commercialized, university researchers may attempt to protect their findings with secrecy 

and refrain from making them freely available for future research (Walsh and Hong, 

2003; Walsh , Cho and Cohen, 2005; Walsh et al., 2007).
49

 University research has been 

an important open resource for future technology developments. When information 

sharing of research becomes problematic, the beneficiaries of this open resource face 
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 For instance, university researchers may become less willing to discuss research in progress with those 

outside their research group (Walsh and Hong, 2003). 
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restricted accessibility. Patent filings of university research could mitigate the concern for 

the expropriation risk. However, patenting is generally a step toward commercialization 

(NNI
50

; Roco, 2011). IP rights such as patents per se do not reduce accessibility of the 

technology, but commercialization prompted by patenting can do so (Walsh et al., 2005, 

2007). When university researchers consider or are involved in commercializing their 

research, they may increase secrecy to secure at least a part of their research that is 

critical for commercialization. This is particularly so given that licensed university 

technologies are typically in an embryonic stage and, hence, their commercialization 

requires further inputs from university researchers (Jensen and Thursby, 2001). While the 

increased secrecy reduces the expropriation risk of university research, it hides certain 

research findings from the map of possible branching-outs to future technology 

developments.   

 Second, the commercialization-oriented goals of the NNI may have triggered 

delays in disclosing, or resulted in partial disclosures of, university research findings. 

This slows down the accumulation of prior technologies that would otherwise readily 

become inputs to new recombination. Commercialization activities such as licensing 

restrict, or at least delay, the disclosure of university research (Thursby and Thursby, 

2002, 2003). The NNI as a federal funding mechanism per se does not reduce disclosures 

because the funding requires the research results to be eventually disclosed as 

achievements. However, since the NNI emphasizes explicit links to industry and 

commercialization, university researchers may conceal certain part of information from 
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 http://www.nano.gov/nanotechnology-initiatives/nano-achievements. Accessed on December 4, 2011. 
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publication, delay disclosures, or deny the request of other researchers to share the 

research apparatus or intermediate research procedures (Dasgupta and David, 1994; 

Thursby and Thursby, 2003). The delay or the incomplete disclosure may render it more 

difficult for some important findings, which could be a stepping stone for new technology 

developments, to appear on future technology paths. Consequently, the accessibility of 

prior university-generated knowledge is reduced.
51

 

 This reduced accessibility will likely lead to fewer branching-outs to new 

technologies. Such an adverse effect is particularly to be greater for university 

researchers because open communication has been the norm in academia. It must be 

disturbing for university researchers that the access to peers’ research findings is 

hindered, or peer researchers delay disclosures. Note that, traditionally, the reward 

system in academia has depended only on priority (Merton, 1973). There is an inherent 

tension between full disclosure (to contribute to the accumulation of knowledge) and 

individual incentives (to win the priority race by reserving some parts of findings for own 

next research). Nevertheless, university researchers have learned that research is an 

infinitely repeated game and hence disclosing their findings is a dominant strategy 

(Dasgupta and David, 1994). By adding a different channel of earning benefits, the 

encouraged commercialization of university research distorts this reward system and the 

incentives of university researchers to disclose knowledge. As a result, university 

researchers will choose to restrict the access by peer researchers if the expected economic 
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 The increased secrecy and incomplete disclosure of research findings may at first appear conflicting with 

the incentive to publicly disclose the knowledge through patenting and licensing. Note, however, that both 

are driven by the incentive to appropriate better from those findings, seeking private benefits as against 

public benefits. 
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rents from concealment are greater than the expected rents from disclosure. Therefore, 

while the reduced accessibility of prior technology affects the whole research community 

that draws on university research as an open source for future developments, it affects 

university research more significantly than other institutions such as firms, leading to 

fewer branching-outs to a new technology from university research. 

 In addition to their impacts on research novelty through reductions in branching-

outs to novel technologies, the NNI’s commercialization-oriented initiatives may also 

reduce the scope of university research because these initiatives may induce university 

researchers to focus more narrowly on commercially viable areas. While branching-out to 

a novel technology characterizes the propensity to generate new recombination of 

technological components (Fleming, 2001), research scopes represent the breadth of 

components that constitute an invention (Lerner, 1994).  

 Research scopes may well be influenced by government S&T programs that set 

up the direction of research to align national research efforts to achieve the mission 

efficiently. For instance, the NNI plans to introduce prototypes, new products, and 

productive processes according to pre-defined timelines. Through the strategic plan 

reports, the NNI designates specific agenda for federal agencies and prescribes directions 

of nanotechnology research based on extensive planning sessions (NNI Research 

Directions II, 2004; Roco, 2011). Hence, for continued funding, university researchers 

need to show their “fit” with these directions and generate tangible outcomes in line with 

the targets. Government research agenda and planning tend to improve overall 

performance of S&T research (Lane and Kalil, 2005; Roco, 2007; NSTC, 2010). 

However, these guidelines may drive university researchers to focus on areas in which 
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visible outcomes are anticipated along the pre-defined directions. While the planning and 

management of technology development might help increase the efficiency of university 

research in the designated research areas, it may narrow down the scope of research by 

redirecting research efforts toward specific areas of focus.   

 From the university researchers’ standpoint, narrower research scopes may be 

preferable because broader scopes increase the complexity in recombining technological 

components across areas. The complexity tends to amplify the uncertainty in outcomes 

because the number of unpredictable interactions between components increases 

(Fleming and Sorenson, 2004). Thus, university researchers may want to avoid 

uncertainty by reducing the complexity, which will lead to a narrower scope of each 

project. Further, narrowed research scopes can also decrease branching-outs to a new 

technology by reducing the inputs for new recombination.  The following two hypotheses 

summarize the discussion thus far: 

Hypothesis 2: The NNI has likely decreased the branching-out to a new technology in the 

U.S. university research in nanotechnology. 

Hypothesis 3: The NNI has likely decreased the research scope of the U.S. university 

research in nanotechnology. 

3.3 NNI and Technological Breakthrough Outcomes 

A complete prediction for scientific discoveries or technology developments is virtually 

impossible. Thus, the government-initiated planning and management of research 

directions is liable to ignore or foreclose opportunities that could lead to technological 

breakthroughs in university research. Further, due to incomplete information and 

bounded rationality, even with carefully designed research programs there always remain 
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unconsidered technological paths, some of which would have delivered significant 

breakthroughs. We define a technological breakthrough as an invention that has 

significant impacts on subsequent technology developments (Trajtenberg, 1990; Ahuja 

and Lampart, 2001; Zucker, Darby and Armstrong, 2002; Singh and Fleming, 2010).
52

   

Achieving technological breakthrough outcomes may also become harder because, under 

the focused research directions guided by government initiatives such as the NNI, 

university researchers are likely to reduce exploration. Following the argument in 

Hypothesis 3, the narrowed research scopes imply that university researchers exploit 

more the focused areas in which expected results are less uncertain but explore less 

frequently in areas with greater uncertainty in outcomes. Fewer branching-outs to novel 

technologies also suggest that university researchers reduce exploration. To branch out to 

a new technology, university researchers must take the risk of challenging uncertain 

paths, search across various technological components, and try out untapped 

recombination of existing technologies. Narrowed research scopes and fewer branching-

outs would reflect the reduction in these types of activities. Decreased explorations in 

university research will lead to smaller variances and, more importantly, fewer outliers in 

research outcomes (March, 1991). Reductions in both tails in the outcome distribution 

imply less frequent breakthroughs (March 1991; Singh and Fleming, 2010) as well as 

fewer failures. Therefore, under the NNI, university researchers are likely to have 

reduced exploration and thus produced fewer breakthrough outcomes.   
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Technological breakthroughs do not necessarily lead to successes in commercialization, though 

technological breakthroughs are likely to be positively correlated with economic rents (Harhoff, Narin, 

Scherer and Vopel, 1999). . 
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We have so far argued that university researchers reduce exploration outside the paths 

designated by commercialization-oriented programs. However, because government 

programs may encourage university researchers to explore within the pre-defined paths, 

we need to consider if this type of exploration could contribute to technological 

breakthroughs. Within a pre-defined path, searches and variations may be short-lived 

because the technological sources that can be combined into a new technology are much 

more limited than in areas outside the path. The force that drives university 

nanotechnology research into areas of promising results may improve the efficiency and 

hence increase the mean value of outcomes or reduce failures, but it is less likely to 

increase the portion of breakthrough outcomes. Therefore, under the NNI that pursues 

pre-defined paths for technological development, university researchers are likely to 

focus their exploration within the paths with less uncertainty, thereby generate fewer 

breakthrough outcomes. Hence, we hypothesize the following:     

Hypothesis 4: The NNI has likely decreased the proportion of technological 

breakthroughs from the U.S. university research in nanotechnology. 

4 Empirical Design 

4.1 Overview 

 To test our hypotheses, it is not enough to simply demonstrate differences in the 

characteristics of the U.S. university research before and after the launch of the NNI 

because the differences may be confounded by various factors that could be at play along 

the lifecycle of nanotechnology. Hence, we care to address an important specification 

issue, i.e., the counterfactuals. If the NNI changed the nature of university research, the 

difference between the pre- and post-NNI university research in the U.S. would become 
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clear only when compared with other U.S. and non-U.S. institutions that conducted 

nanotechnology research but were immune to, or at least less influenced by, the NNI. 

Thus, we employ a difference-in-differences estimation to isolate the marginal effect of 

the NNI on the U.S. university research from the influences of generic factors in the 

development of nanotechnology.  

 For empirical specifications, we exploit two elements. First, other U.S. and non-

U.S. institutions and organizations also conduct nanotechnology research. Thus, we first 

identify the type (university, industry, and other research institutions) and the nationality 

(U.S., U.K., Germany, Japan, and France) of nanotechnology research institutions. We 

chose these four non-U.S. countries because they have the largest numbers of U.S. 

nanotechnology patents
53

 but experienced no significant changes in their science policy 

for nanotechnology, at least not during the period of our study. As argued earlier, the NNI 

has likely exerted the greatest impact on university research because it asked university 

researchers to perform what they have been largely unfamiliar with, i.e., focused research 

and the commercialization of research outcomes. In contrast, other research institutions, 

particularly the industry, may have been affected much less by the NNI’s emphasis on 

economic benefits and targeted research because these are essentially what they have 

been doing routinely. For the analysis, we divide the patents into the “treatment” group 

(i.e., nanotechnology patents by the U.S. universities) and the “control” group (i.e., 

nanotechnology patents by all other institutions). To check robustness, we vary control 

groups by non-U.S. universities or U.S. non-universities. We also experiment with an 
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 Together, they claim over 70% of all U.S. nanotechnology patents filed by non-U.S. organizations during 

the period of our study. 
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alternative control group consisting of U.S. university patents in a different technology 

class. 

 Second, the NNI began in 2000, which is long after the enactment of the Bayh 

Dole Act of 1980
54

. Hence, by the time of NNI launch, any impact of this legislation on 

university research has presumably been stabilized. Thus, we consider the impact of the 

NNI to be orthogonal to the overall tendency toward commercialization of university 

research prompted by the Bayh Dole Act. Moreover, while the university research 

community as a whole seems to have been unaware of the launch or specific goals of the 

NNI, university researchers learn the direction of the initiative when they find the 

Funding Opportunities Announcement from the NNI-participating agencies. According to 

its strategic plan, the NNI seeks to achieve the goals by influencing each member 

agency’s funding opportunities that attract the interest of university researchers. 

Therefore, the NNI is reasonably exogenous to university research and our difference-in-

differences analysis exploits this property.     

 We construct our dataset using a public trail of nanotechnology research, i.e., 

nanotechnology patents filed with and granted by the USPTO. At least for three reasons, 

nanotechnology patent data are suitable for our empirical corroboration. First, patent data 

provide unique contents such as application dates and technology subclasses. Because 

each patent lists the application date, which is likely to be close to the time of research, 

they can provide a basis for systematically measuring the impact of the NNI on research 
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 The Bayh-Dole Act, enacted on December 12, 1980, enabled small businesses and non-profit 

organizations including universities to retain the right to inventions made under federally-funded research 

programs. 
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characteristics. Moreover, patent data provide the subclass-level technology 

classification. For instance, the three-digit nanotechnology class 977 covers a collection 

of 264 distinct subclass references. Subclasses are very useful for capturing technological 

changes because they provide fine-grained information for technology development 

(Trajtenberg, Henderson, and Jaffe, 1997; Thompson and Fox-Kean, 2005).  

Second, patent citations reflect knowledge flows, though not perfectly (Jaffe, Trajtenberg, 

Henderson, 1993; Mowery, Oxley, and Silverman, 1996; Gomes-Casseres, Hagedoorn, 

and Jaffe, 2006). We are aware of the concern that patent citations might be a noisy proxy 

for knowledge flows due to, for instance, examiner-added citations (Alcacer and 

Gittelman, 2006). Nevertheless, we draw on a recent study (Jaffe, Trajtenberg, and 

Fogarty, 2005), which demonstrates that citations and knowledge flows are highly 

correlated in the aggregate level. Their finding suggests that “aggregate" citations can be 

used as good proxies for knowledge flows between organizations. Our comparison is 

conducted at the organization level (i.e., U.S. universities vs. other institutions), which 

justifies the use of patent citations as a meaningful proxy for interorganizational 

knowledge flows. Moreover, even if the researcher filing a patent was not aware of the 

prior art that the examiner searched and added to patent references, these citations 

nevertheless represent the existence and the ownership of related prior knowledge. Thus, 

assuming that researchers also search and use the existing knowledge that are contained 

in sources other than patent documents, we use patent citations as a reasonable proxy for 

knowledge flows.  

 Third, there is a well-established tradition in the patent literature of measuring 

technological breakthroughs by forward citations (e.g., Singh and Fleming, 2010). The 



 

 

144 

 

intensity of forward citations represents not only a technological significance but also the 

economic value of a technology such as consumer surplus generated (Trajtenberg, 1990) 

or the organization’s market value (Hall, Jaffe, and Trajtenberg, 2005). This well fits the 

NNI’s goal, which is to improve the economic value of nanotechnology. Hence, we can 

effectively use forward citations to measure the NNI’s impact on the production of 

technological breakthroughs from university research. 

4.2 Data 

 We identified 5,401 nanotechnology patents filed by the institutions in the U.S., 

U.K., Japan, Germany, and France from 1970 to 2010, using the USPTO-entitled patents 

assigned to the Class 977 (Nanotechnology).
55

 We downloaded the data from the USPTO 

website and parsed them, matching patent assignees with organization identifier from 

Nanobank (Zucker et al., 2007).  Since the U.S. patents or pre-grant publications can be 

classified into 977 only as cross-references or secondary classifications (USPTO, 2005), 

the Class 977 helps us to identify all patented nanotechnology research across all 

scientific fields (e.g., physics, chemistry, material science, and biology).  

 Our data construction also identified: (1) nanotechnology patents that are cited by 

any of these 5,401 nanotechnology patents (i.e., backward citations); (2) 11,095 subclass 

pairs under Class 977; and (3) the number of citations made by 2010 to these 

nanotechnology patents (i.e., forward citations). For the analysis, we used the five-year 
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 In 2005, the USPTO established a new classification reference 977 for nanotechnology and re-classified 

all relevant patents into this class dating back to 1970. The Class 977 “provides for disclosure related to 

nanostructure that has at least one physical dimension of approximately 1-100 nanometers; and possesses a 

special property, provides a special function, or produces a special effect that is uniquely attributable to the 

structure’s nanoscale physical size” (USPTO, 2005). This agrees well with the NNI’s definition of 

nanotechnology (NNI, The Initiatives and Implementations Plan, 2000). 
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window surrounding the year 2001 (i.e., 1997-2001 and 2002-2006) to compare between 

the pre- and post-NNI.
56

  

4.3 Dependent Variables 

 We utilized four measures of outcomes to test our hypotheses regarding the 

impact of the NNI on university research.     

4.3.1 Knowledge Flows from Industry 

 We used backward citations to measure knowledge flows (Mowery, Oxley, and 

Silverman, 1996; Gomes-Casseres, Hagedoorn, and Jaffe, 2006). Specifically, we 

constructed for each patent a variable that is equal to the number of backward citations 

made to industry nanotechnology patents divided by the number of backward citations 

made to all nanotechnology patents. Hence, this measure ranges from zero to one. Notice 

that the measure is undefined, and hence was treated as missing, for patents that do not 

cite prior nanotechnology patents. There were 3,091 nanotechnology patents that had at 

least one backward citation to prior nanotechnology patents.  

4.3.2 Branching-Out to a Novel Technology  

 Because subclasses allow us to examine fine-grained classifications of 

nanotechnology (Trajtenberg, Henderson, and Jaffe, 1997; Thompson and Fox-Kean, 

2005), researchers increasingly focus on the subclass classification of patents to examine 

technology transfer, technology recombination, and patent scope (Lerner, 1994; Fleming, 

2001; Fleming and Sorenson, 2004; Thompson and Fox-Kean, 2005; Fleming, Mingo, 
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 This reduces the number of patents to 3,720 that are actually used for most of the analysis. We also tried 

four- and six-year windows for robustness checks and obtained very similar results. 
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and Chen, 2007). A first-ever recombination of two subclasses can be considered as 

inventing a new aspect of the corresponding technology (Fleming, 2001; Fleming and 

Sorenson, 2004; Fleming, Mingo, and Chen, 2007). Following this convention, we 

measured the branching-out to a novel technology by the new recombination of 

subclasses that a nanotechnology patent established for the first time within the Class 

977. For each nanotechnology patent, we then constructed a dummy variable that 

indicates if the patent incorporates a branching-out.     

4.3.3 Research Scope 

 Subclasses were developed to address the shortcomings associated with defining a 

technology by a single aspect (USPTO, 2005). Thus, subclass-level classifications 

convey additional information about the technology within the three-digit class 

technology. We measured the research scope of nanotechnology by the number of 

subclasses within the Class 977.
57

 Notice that we consider each patent as the unit of 

research and, hence, treat the patent scope as equivalent to the research scope. If a 

nanotechnology patent covers a broader scope of research in nanotechnology, it would be 

classified into more subclasses within the Class 977. Hence, all else equal, a greater 

number of subclasses imply a broader scope of research underlying the patent. 

4.3.4 Technological Breakthroughs 
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 One could alternatively use the number of International Patent Classification (IPC) classes to proxy for 

patent scope (e.g., Lerner, 1994). However, IPC classes are intended for industry and profession (Lerner, 

1994), whereas the U.S. subclass classification scheme is based on the structure and function of technology. 

Given the interest of our study in the change of technological nature, subclass classifications appear more 

appropriate. 
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 The patent literature has established forward citations as an indicator of economic, 

social, and technological success of the patented technology (e.g., Singh and Fleming, 

2010). Following this convention, we measured technological breakthroughs using 

forward citations. Specifically, we first generated the citation distribution of the entire 

population of U.S. patents (about 3.9 million) granted in 1976-2010. To account for 

differences in the citation hazard due to timing and technology, we used the residuals 

recovered from regressing the number of forward citations on primary patent class, 

application year, and grant year. This adjustment allows us to compare the number of 

forward citations across patents that were applied for and granted in the same year and in 

the same technology class. We then computed the z-scores based on these normalized 

forward citations (Z_norm). Finally, we defined a technological breakthrough (Top5%) as 

the patent belonging to the top 5% of the citation distribution (Singh and Fleming, 2010) 

and assigned ‘1’ to the measure for these patents and ‘0’ for others. 

4.4 Independent Variables 

 The independent variables for the main models are the indicators of the post-NNI 

period and the U.S. university. The indicator of the post-NNI period, PostNNI, signifies 

whether the patent was filed in or after 2002. We defined PostNNI to cover the period 

from one year after 2001, considering that patents can be applied for only after some 

research results are achieved. Because the NNI was announced in early 2000 and the 

actual funding grew significantly in 2001 (see Figure 4.2), it seems reasonable to allow 

for at least one year of time lag for the NNI to take into measurable effect. The U.S. 

university indicator, USuniversity, represents whether the assignee of the patent is a U.S. 

university. For the patents that are co-assigned to university and other institutions, we 
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classified them as university patents.
58

 We use the interaction term between PostNNI and 

USuniversity to identify the hypothesized effects of the NNI on university research.  

Insert Figure 4.2 about here 

4.5 Control Variables 

4.5.1 Non-patent References  

 The technology associated with each patent has a different degree of basicness or 

commercialization potential. A more basic or less applied technology may, by nature, be 

associated with less knowledge flows from the industry and/or receive more citations. 

Hence, we controlled for this effect by including the number of non-patent references in 

the tests of Hypotheses 1 and 4. We expect that non-patent references also capture 

another effect of academic knowledge on future citations. This proxy for the usage of 

academic knowledge is highly correlated with citation measures (Ahuja and Katila, 2004; 

Fleming and Sorenson, 2004). Hence, non-patent references control for the effect of 

academic knowledge on citation measures that we use to examine knowledge flows 

(Hypothesis 1) and technological breakthroughs (Hypothesis 4).
59

   

4.5.2 Claims  

 We included the number of claims to control for the effect of patent claims on the 

dependent variables. In particular, we expect that patents with more claims are likely to 

elicit greater forward citations, more subclass references, and fewer backward citations to 
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 Classifying these patens as non-university patents makes little change to the results. 
59

 Because we expect that non-patent references are theoretically orthogonal to the dependent variables that 

are based on subclasses, the main models testing Hypothesis 2 and 3 do not include this variable as control. 

Controlling for non-patent references makes little difference to the results.   
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industry patents. Patent claims reflect the technological originality or the coverage of 

protection and, hence, may be positively correlated with the novelty, scope, and 

usefulness of technology. On the other hand, patent claims may be negatively correlated 

with backward citations to industry patents because the reliance on prior art reduces room 

for novel claims.  

4.5.3 University-Firm Co-patent 

 We included the dummy for patents that are co-assigned to university and firm to 

control for the effect of firm-involved university research.  

4.5.4 Year-Fixed Effects 

 We included the application year dummies to capture the temporal effects in the 

development of nanotechnology.   

 Table 4.1 provides summary statistics of these variables and the correlations 

between them. No pair of explanatory variables exhibits a correlation that is high enough 

to cause a concern of multicollinearity. 

Insert Table 4.1 about here 

4.6 Estimation Method 

 For Hypothesis 1, we operationalize the dependent variable as the share of 

backward citations made to industry patents. Hence, we begin with an OLS specification. 

As a robustness check, we also estimate the negative binomial model with the number of 

backward citations as the dependent variable. For Hypotheses 2 and 4, we estimate logit 

models with the dependent variable indicating whether each patent branched out to novel 

technologies (H2) or belonged to the top 5% in the citation distribution (H4). For 
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Hypothesis 4, we alternatively use an OLS estimation that operationalizes the dependent 

variable as the standard normalized forward citations. For Hypothesis 3, we use a log-log 

linear model and a negative binomial model. In all models, we report heteroskedasticity-

robust standard errors.  

 Our main empirical model is the  following: 

 

where αt is the year effect, βj’s are the coefficients to be estimated, and εi is the error 

term. Table 4.2 reports the estimation results. For robustness tests, we estimate the 

following models: 

 

on the university-only sample that consists of U.S. and non-U.S. universities, and,  

 

on the U.S. only sample. We tested on the latter sample to obtain the most conservative 

estimates. That is because U.S. institutions may be going through the same life-cycle of 

nanotechnology and, hence, by restricting to this subsample we can address the concern 

of a confounding effect from differences in the technology life-cycle between countries. 

Table 4.3 presents the results of these additional estimations.  

5 Results 

5.1 Previews 

 We begin by showing some patterns in the raw data without controlling for 

anything. Figures 3 through 7 illustrate the changes in our measures of the 

nanotechnology research in U.S. universities as compared to that in all other institutions 
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between the pre-NNI period (1997-2001) and the post-NNI period (2002-2006). For both 

periods, we computed and compared the unconditional means of the dependent variables 

for U.S. universities and all other institutions. 

Insert Figures 4.3 through 4.7 about here 

 Figure 3 indicates an overall decreasing trend of knowledge flows from the 

industry but, if de-trended, U.S. universities may have increased knowledge inflows from 

the industry after the NNI, more than other institutions did. Figure 4.4 illustrates that the 

gap between U.S. universities and other institutions in branching out to novel 

technologies is greater in the pre-NNI period than in the post-NNI period. Similarly, the 

research scope of U.S. universities declined more rapidly than that of other institutions 

between the periods (Figure 4.5). Figure 4.6 also suggests a significant reduction in 

breakthrough outcomes from U.S. universities. Kernel density plots (Figure 4.7) strongly 

support this interpretation by showing that the U.S. university research in the post-NNI 

period exhibits a contracted density for the right-tail outcomes. Interestingly, after the 

NNI, the mean value of the U.S. university research has increased, but apparently at the 

expense of extreme outcomes in both tails.    

5.2 Regression Results 

 We now turn to the regression results. Models 2-1 (OLS) and 2-2 (negative 

binomial) in Table 4.2 support Hypothesis 1: the interaction term between USuniversity 

and PostNNI indicated a significant increase in knowledge flows from the industry to 

U.S. universities following the NNI.  

Insert Table 4.2 about here 
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 We found support for Hypothesis 2 from Models 2-3 and 2-4. In Model 2-3, the 

interaction term between USuniversity and PostNNI suggested a significant reduction of 

U.S. universities’ branching-out to novel technologies after the NNI. We also carefully 

considered a possibility that, by restricting the access to university research, the NNI may 

have adversely affected the entire U.S. nanotechnology research community including the 

industry. Thus, in Model 2-4, we estimated a logit model with the U.S. indicator, US, and 

its interaction with PostNNI. This is to see if the U.S. nanotechnology research exhibits a 

distinct characteristic as compared to that of non-U.S. countries. The coefficient on the 

interaction term was negative, indicating that, after the NNI, U.S. institutions as a whole 

generated fewer branching-outs to novel technologies relative to non-U.S. institutions.  

Models 2-5 (OLS) and 2-6 (negative binomial) in Table 4.2 support Hypothesis 3: the 

interaction between USuniversity and PostNNI indicated that, following the NNI launch, 

the research scope of U.S. universities in nanotechnology has significantly decreased 

relative to other U.S. and non-U.S. institutions. 

 Hypothesis 4 was also supported in Models 2-7 (logit) and 2-8 (OLS). In both 

models, the interaction term between USuniversity and PostNNI confirmed a significant 

reduction of breakthrough outcomes after the NNI. The analysis on subsets of the sample, 

in which the observations were divided into two groups—the above-mean outcome group 

(Z_norm > 0) and the below-mean outcome group (Z_norm < 0)—revealed that, in the 

post-NNI period, “successful” outcomes of the U.S. university research decreased 

relative to other institutions (Model 2-9), but not their “poor” outcomes (Model 2-10). 
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To facilitate the interpretation of estimates, we calculated the magnitude of changes in the 

dependent variables after the NNI launch.
60

 In terms of knowledge flows (H1), the 

industry-to-university knowledge flows for U.S universities increased by 36.1% after the 

NNI, relative to all other institutions (Model 2-2). Following the NNI, the probability of 

branching out to a new technology by U.S. universities decreased by 18.5%, relative to 

all other institutions (Model 2-3). The research scope of U.S. universities was also 

reduced by 10.2%, compared to other institutions (Model 2-6). The relative decline in 

technological breakthroughs for U.S. universities (H4) was even more drastic (-44.9%, 

Model 2-7).   

 We obtained robust results on subsets of data: the university-only sample and the 

U.S.-only sample (Table 4.3). Model 3-1 and 3-2 together confirm the post-NNI boost in 

knowledge flows from the industry to U.S. universities. U.S. universities also reduced the 

branching-out to novel technologies in the post-NNI period but the reduction was not 

statistically significant when compared to non-U.S. universities (Model 3-3) or to other 

U.S. institutions (Model 3-4). These results suggest that, while U.S universities or the 

U.S. research community as a whole reduced the branching-out in the post-NNI period, 

U.S. universities and other U.S. institutions are indistinguishable from each other in that 

effect. Model 3-5 implies that the adverse effects were greater for the U.S. industry’s 

branching-out relative to the industry in other countries. The result of Model 2-5 and 2-6 
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 For logit models (2-3 and 2-7), we first followed Zelner (2009) to calculate the predicted DVs for the 

pre- and post-NNI, including both the conditional effect of interaction term and the main effect, holding all 

other variables at their means. We then computed the changes in the relative ratio of the predicted values 

between the U.S. universities and other institutions. For negative binomial models (2-2 and 2-6), we 

computed the incidence-rate ratios (IRR) after fitting the corresponding model.  



 

 

154 

 

on the research scope was confirmed in the university-only sample (Model 3-6) and the 

U.S.-only sample (Model 3-7). These models thus support that, after the NNI, the 

research scope of U.S. universities significantly decreased relative to all other 

institutions. Finally, results on the U.S.-only sample (Models 3-8 and 3-10) and the 

university-only sample (Model 3-9) provide confirmatory evidence that the post-NNI 

period has witnessed significant reductions in technological breakthroughs generated by 

U.S. universities. 

Insert Table 4.3 about here 

 Our analysis in this section assumes that the timing of the NNI was exogenous. If, 

however, there existed any pre-NNI trends that were in the same directions as we 

hypothesized for the post-NNI period, our regressions would be confounded with these 

pre-trends, resulting in biased estimates. We checked this possibility by running a 

falsification test with “placebo” treatment effects. Specifically, we first created dummies 

for each year before and after the treatment year (i.e., 2001), with each dummy taking ‘1’ 

for U.S. university patents applied for in the corresponding year and ‘0’ for all other 

patents and years. We then ran the regressions based on Models 2-1, 2-3, 2-5 and 2-7 in 

Table 4.2.
61

 Figures 4.8 through 4.11 plot the coefficients of these year dummies. Though 

there were some noisy upticks and downticks, none of the graphs seemed to indicate any 

clear pre-trend and 95 percent confidence intervals in the pre-treatment years always 

contained zero. Changes in the post-treatment years were also consistent with the 
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 Further controlling for country-fixed effects interacted with time trends made little difference to the 

patterns observed from models without such controls. 
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hypothesized directions, though the coefficients appeared somewhat imprecisely 

estimated.  

Insert Figures 4.8 through 4.11 about here 

5.3 Robustness Checks 

 To ensure the robustness of our results, we performed a number of different 

variations of the analysis.
62

 To begin with, we varied time windows for the NNI regime. 

First, we dropped observations of 2001 because, being a transition period, the year 2001 

could represent a turbulent environment characterized by strong initial policy drives and 

the phenomenal increase in funding (see Figure 4.2). We then re-estimated the entire 

models with the modified five-year windows (i.e., 1996-2000 and 2002-2006). The 

results were robust to this variation. Second, we employed four- and six-year windows 

surrounding 2001 and re-estimated our preferred models for each hypothesis. The results 

were robust except that the four-year window-based test of Hypothesis 2 lacked 

significance, though the sign was consistent with the prediction.  

In addition, we controlled for country-fixed effects in the estimation and obtained robust 

results. The only notable changes were that, in Models 2-1 and 2-7, the statistical 

significance of the coefficient of the interaction term between USuniversity and PostNNI 

slightly decreased (to a 5% level).  

 In testing our prediction on the knowledge flow from the industry (Hypothesis 1), 

for each patent we excluded from backward citations all patent references that were 

added by the examiner. With this modified measure of knowledge flow, the interaction 
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 Results of these tests are unreported due to space constraints but are available from the authors. 
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term between USuniversity and PostNNI lost significance. However, this alternative 

specification is problematic because the examiner-added citation data are available only 

for the patents filed after 2001, rendering the inter-period comparison almost 

meaningless. Hence, we do not consider this result as convincing evidence for rejecting 

our hypothesis on knowledge flows.  

 Finally, we replaced our control group (i.e., nanotechnology patents by U.S. non-

university and non-U.S. institutions) with U.S. university patents in the liquid crystal 

display (LCD) technology. Our choice of this technology field owes to three reasons. 

First, from the beginning, LCD technology has consistently been commercialization-

oriented. Second, to the best of our knowledge, no policy intervention comparable to the 

NNI has occurred in the U.S. during the course of technology development. Third, the 

overlap between LCD technology and nanotechnology has been minimal; in particular, 

none of U.S. LCD patents belonged to nanotechnology. We identified a total of 21,129 

patents that were filed with the USPTO from 1971 to 2010.
63

 Among them, 201 patents 

were assigned to at least one of U.S. universities. We first checked if these U.S. 

university LCD patents exhibited a similar trend during the period of our study. We did 

not find a similar phenomenon in this technology as we did in nanotechnology. We then 

compared U.S university nanotechnology patents with U.S university LCD technology 

patents using a difference-in-differences estimation similar to the one in our main 

analysis. We used technology-age fixed effects instead of application year-fixed effects to 
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 We followed Stolpe (2002) and Lee, Kim and Lim (2011) to identify LCD patents using the U.S. patent 

class 349. 
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account for the temporal effects due to potentially different technology lifecycles.
64

 With 

this alternative control group, all but H3 of our hypotheses found support (at least at the 

10% level). Hence, our original control group appears to perform reasonably well in 

controlling for the baseline effects. 

 Our argument for the impact on technological breakthroughs (Hypothesis 4) 

included that fewer branching-outs and reduced research scopes would lead to reductions 

in the choice sets available for recombinative efforts of exploration and thereby 

potentially decrease the likelihood of technological breakthroughs (i.e., mediation 

effects). Hence, we checked how much of the effect we found on Hypothesis 4 might be 

attributable to these possible mediation effects of branching out and research scope on the 

NNI impact on technological breakthroughs. The results showed negative and significant 

mediation effects. However, the first-order effect of the NNI on technological 

breakthroughs remained significant and sizeable, validating Hypothesis 4 as an 

independent mechanism.
65
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 While the LCD technology essentially began in 1968 when RCA discovered a totally new type of 

electronic display (Kawamoto, 2002 ; Lee et al., 2011), nanotechnology had a breakthrough to start by 

IBM’s invention of the Scanning Tunneling Microscopy in 1981 (http://www.nano.gov/timeline, accessed 

on November 28, 2012). The gap of start years between two technologies suggests that LCD technology 

and nanotechnology may be at different stages of technology lifecycle. We computed technology age as 

‘application year minus 1968’ for LCD technology patents and ‘application year minus 1981’ for 

nanotechnology patents.  
65

 Specifically, we first added to Model 2-7 in Table 2 the variable branching-out to novel technology. The 

coefficient of this variable was positive and significant (β = 0.387, p<0.01) while that of 

PostNNI*USuniversity remained negative and significant (β = -0.646, p<0.05). We then compared this 

estimate on PostNNI*USuniversity with that in Model 2-7 (β = -0.668, p<0.05) using the two-sample t-test 

for comparing two means. The test strongly rejected the null hypothesis of coefficient equality (t = -2.892, 

p<0.01). We repeated the same procedure for research scope. The coefficient on research scope was also 

positive and significant (β = 0.105, p<0.01) while that of PostNNI*USuniversity remained strongly negative 

(β = -0.654, p<0.05). The two-sample t-test again rejected the null hypothesis of coefficient equality (t = -

1.824, p<0.1). 
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6 Discussion and Conclusion 

 The purpose of this paper is to examine the impact of a specific government 

program in S&T, namely the NNI, on the knowledge flows and the nature of university 

research. Our intended contribution is not so much in demonstrating how the program 

increases research productivity as in understanding how such policy intervention 

influences the flows and the characteristics of university-generated knowledge. Noting 

that government S&T programs normally seek to facilitate technology transfer from the 

university to the industry and promote a strong national innovation system, we examine 

the U.S. NNI that emphasizes the commercialization of nanotechnology and sets the 

directions for focused research. Our results suggest that the NNI may have led to 

unintended consequences in the flow and the landscape of knowledge within the field of 

nanotechnology. Specifically, we find that, after the NNI, U.S. universities have 

significantly increased knowledge inflows from the industry, reduced branching-outs to 

novel technologies, narrowed down the research scope, and become less likely to 

generate technological breakthrough outcomes in nanotechnology, as compared to other 

U.S. and non-U.S. research institutions. None of these consequences appear to be 

consistent with the NNI’s objectives. 

 These findings may remain open to alternative interpretations. First and foremost, 

the U.S. could be entering the steady state faster, or at least be more advanced, than other 

countries in nanotechnology, independent of the NNI. Then, what we find might simply 

be capturing differences in the normal progression of life-cycles which, over time, tend to 

exhibit diminished room for exploration and curtailed technological outcomes in both 

tails. However, for at least several reasons, our results are unlikely to be confounded by 
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potential life-cycle effects. At the time of the NNI launch, nanotechnology was 

considered as being still at an early stage and was not expected to enter a maturity stage 

until well after 2020 (Roco 2007). A series of documents related to the NNI also describe 

the NNI as a science project identifying an emerging technology (e.g., NSTC, 1999a; 

NSF, 2001). In particular, the state of the U.S. in nanoscale science and technology 

seemed at best on a par with that of other major countries such as the E.U. and Japan 

(NSTC, 1999a). Our results also survive the additional controls of heterogeneity across 

countries and technology areas within nanotechnology.
66

 Moreover, our results show that, 

while successful technology outcomes (i.e., breakthroughs) in the U.S. university 

research significantly decreased, failures (i.e., left-tail outcomes) did not decrease in the 

post-NNI period. If the technology life-cycle effect purely drove our results, failures too 

should have been reduced. This asymmetry in the variance reduction in technological 

outcomes suggests that an exogenous source of variation such as the NNI launch has 

indeed influenced the U.S. university research. The NNI may have contributed to this 

asymmetry by selectively funding relatively certain research proposals, thereby leading to 

more “successful” (but not necessarily breakthrough) outcomes. This, in turn, implies that 

the (variance-reducing) NNI effect should be greater on the right tail of distribution of 
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 Specifically, we first added dummies for technology categories, country dummies, and the interactions 

between country dummies and technology category dummies. For technology categories, we used the 

patent categorization system by Zucker and Darby (2011) that assigns each U.S. patent to one of five broad 

science areas (i.e., Biology/Chemistry, Semiconductor, Computer Science, Other Science, and Other 

Engineering), By this, we allow for a different intercept for each country-technology category within 

nanotechnology. The results remained unchanged. Alternatively, we controlled for country-fixed effects, a 

time trend and the interactions between country-fixed effects and the time trend. This estimation thus 

allows the slope to vary across countries, thereby explicitly accounting for potential inter-country 

differences in technology lifecycle. The results were robust except for the research scope (Hypothesis 3), 

which was significant only at 10% on a one-tailed test. Results of these tests are unreported due to space 

constraints but are available from the authors. 
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technological performance, which is precisely what we find.
67

 Our quantile regression 

confirmed this asymmetry in the shift of outcome distribution: the right-hand side (at 75 

percentile) of the citation distribution significantly shrank after the NNI while the left-

hand side (at 25 percentile) remained statistically unchanged.   

 Second, if the relative quality of U.S. industry patents in nanotechnology 

increased because of the NNI, U.S. universities may start relying more on industry 

patents not necessarily because of a shift in research direction but because of the higher 

intrinsic value of these patents as research inputs. It is possible that the NNI may have 

boosted the quality of nanotechnology patents by U.S. firms, and hence improved the 

usefulness of these patents as research inputs. However, if U.S. universities “substituted” 

to industry patents due to the increased usefulness of these patents, it is not entirely clear 

why other institutions, U.S. firms in particular, did not also switch into these high-quality 

patents for their research. For the “substitution” to replace the “shift” as an account for 

our finding in knowledge flow, one has to explain what caused U.S. universities to rely 

disproportionately more on these “better” patents than all other institutions did. In 

particular, given that our finding also holds for the U.S.-only sample, it is quite puzzling 

why U.S. firms did not try to take advantage of these research input as much as U.S. 

universities did. Hence, the substitution effect is unlikely to have dominated the shift 

effect in knowledge flows. 

 Third, the decrease in U.S. universities’ branching-out to novel technology could 

also result if the U.S. university research has become concentrated over time in specific 

                                                 

 

 
67

 Our results are conditional on the research outcome being ultimately granted for a patent and hence the 

demonstrated reduction in variance following the NNI holds for outcomes that cleared that hurdle.  
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areas that are commercially more promising, or if the NNI-designated research topics 

have triggered a “fad” (Abrahamson, 1991) among U.S. university researchers in 

choosing research projects (i.e., “hot” topics), or both. If these were the case, even if U.S. 

university researchers did not increase secrecy and hence the access to their prior 

knowledge was not actually restricted, branching-outs to a new technology in the U.S. 

university research may still decrease. That is because the increased concentration of 

research areas or the new fad in topic selection will most likely result in a narrow-down 

of research scopes while the accessibility of university research may remain unaffected. 

Though plausible, these alternative mechanisms do not seem compatible with other inter-

country differences we observe in the data. For instance, U.S. firm patents exhibited a 

disproportionally greater reduction in the propensity to cite non-patent references in the 

post-NNI period, as compared to non-U.S. firm patents. Considering that a majority of 

non-patent references are the result of university research (i.e., publications in academic 

journals), this finding implies that the industry’s access to prior knowledge from 

university research may have become more restrictive in the U.S. than in non-U.S. 

countries.  

 Fourth, some of our findings could result if, with the NNI, university researchers 

have shifted from basic research to more applied work. To the extent that the argument of 

Arora and Gambardella (1994) holds for a distinction between university research and 

industry research, university researchers’ shift to applied work following the NNI may 

produce outputs that are more specific to application-focused problems, more incremental 

in nature and less widely used by future inventions. These together would then lead to the 

same phenomena we report in this paper. However, this “domain shift” hypothesis is not 
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inconsistent with our arguments for Hypotheses 2 through 4. In fact, we suspect that the 

NNI’s intention to promote commercialization may have induced a domain shift for at 

least some of university researchers. We have nuanced this possibility in our discussion 

of researchers’ recognition or concern of economic rents for their research (Section 3.2). 

Our arguments do not require that university researchers have necessarily shifted research 

domains with the NNI but are certainly compatible with such shifts.    

 Fifth, and related to the above discussion, the domain shift hypothesis can be also 

consistent with our finding of increased university citations to industry patents.  That is, 

changes in citation pattern could result if university research moved closer to industry 

research in knowledge space.
68

 Given our data, we cannot unambiguously determine if 

such result follows because university researchers increasingly used industry-generated 

knowledge (while preserving their domains of research) or because they increasingly 

started working on problem domains that are traditionally of industry researchers. The 

truth may perhaps lie in between.  

 From the empirical standpoint, we claim two contributions. First, by identifying 

the NNI as a natural experiment and exploiting the difference-in-differences design, we 

improve our confidence in claiming more than just correlations from the findings. This is 

also our attempted response to the call for a more precise identification based on 
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 Citation rates could also increase if, for instance, the potential pool of patents to be cited grew after the 

NNI, independent of changes in citation behavior. We tested this possibility by estimating models akin to 

Models 2-1 and 2-2 except that, instead of the university’s citation to industry patents, we used the 

industry’s citation to university patents as the dependent variable. The result showed that, following the 

NNI, the U.S. industry significantly decreased citations to U.S. university patents. These asymmetric 

changes in citation rates between the university and the industry appears consistent with our interpretation 

of U.S. universities’ increasing, and disproportionate, utilization of industry knowledge, rather than with 

the overall growth of citation pool. 
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counterfactuals in measuring the effect of policy interventions in the economics of 

science (Jaffe, 2006). Second, our econometric approach allows us to measure the 

changes in the landscape of research such as knowledge flows, branching out to a new 

technology, research scope, and the generation of breakthrough knowledge within 

universities as institutions of knowledge production. These changes may not necessarily 

bring short-term economic consequences but have long-term effects on the economy, 

which we do not directly examine in this paper. To the proposition that institutional 

changes imposed on the open science and the political patronage impact the long-term 

performance of the science and technology community (Dasgupta and David, 1994), we 

provide robust empirical evidence.  

 Our study is not without limitations. First, in the analysis of knowledge flows, we 

used all citations without distinguishing the source of those citations. We believe that this 

measure reasonably proxies for the actual knowledge flow because, even if the researcher 

filing a patent was not aware of the prior art that the examiner searched and added later to 

patent references, these citations still imply the existence and the ownership of related 

prior knowledge; this piece of knowledge is likely to have been exposed to the researcher 

perhaps in formats other than patent documents. Nevertheless, we acknowledge that our 

inability to make the distinction between inventor-added citations and examiner-added 

citations is clearly a limitation, which we cannot currently address given the lack of data. 

Second, and more broadly, we treated all universities as if they were identical in 

patenting strategy. However, considerable heterogeneity exists across universities in the 

IP policy (such as patenting and licensing), faculty reward system and resource 

management at technology transfer offices, not to mention of wide variations in 
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faculty/researcher quality (Siegel, Waldman and Link, 2003; O’Shea et al. 2005). 

Moreover, each university may pursue a different path in the refinement of their IP 

regime. Our findings are admittedly the aggregate effect across universities, each of 

which may have been influenced differently by the NNI. Given our empirical design, 

however, ignoring these differences will be an issue only if all of U.S. universities have 

simultaneously shifted their IP regimes (and did so specifically for nanotechnology) at 

the same time as the NNI launch. To the best of our knowledge, there is no evidence of 

such collective and concurrent shifts. Further, since we do not focus on the quantitative 

aspect of patenting, our measures of outcomes (except perhaps forward citations) appear 

less vulnerable to different intensities of patenting across universities. Nevertheless, 

incorporating these inter-university differences in IP regime might further solidify our 

results.  

 Our findings have a significant implication for S&T policies that pursue 

maximizing national economic benefits. As Figure 4.11 illustrates, commercialization-

oriented government programs may exert dual impacts on university research. Under the 

NNI, the mean value of university research clearly moved upward and poor outcomes 

decreased, but breakthrough outcomes decreased as well. The government-initiated 

emphasis on commercialization and focused research directions may improve the average 

economic payoffs by increasing the outcome efficiency in university research. However, 

these interventions may undermine open paths toward novel technologies and hinder 

explorations of unknown fields, thereby reducing the chances of achieving breakthrough 
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outcomes from university research.
69

 From the policy standpoint, the NNI has clearly 

accomplished some of its goals; the inter-agency efforts for nanotechnology development 

are assessed to have been aligned and structured well to promote commercialization of 

nanotechnology (NNI Review Committee et al., 2006).
70

 However, our study provides 

evidence that these accomplishments may have been accompanied by potentially 

unintended changes in the characteristics of university research. Considering that the 

ultimate goal of the NNI is to achieve the U.S. national leadership of nanotechnology 

development in industrial competitiveness (21st Century Nanotechnology Research and 

Development Act), the changing characteristics of university research—particularly the 

decreases in branching-out to a novel technology and technological breakthroughs 

compared to other countries—may suggest at least a partial departure from the original 

intention of the NNI.
71

 Hence, these consequences on university nanotechnology research 
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 An example may help illustrate these potential side-effects. Harvard University, a first-rate 

nanotechnology research university in the U.S., had nine nanotechnology patents in the post-NNI period. 

Six of them (67%) heavily cite industry patents (i.e., belong to the top 5% in the number of backward 

citations to industry patents), have no branching-out to a new technology, and are classified to only one or 

two subclasses within 977. Moreover, none of these qualify as a technological breakthrough according to 

our definition. This paints a stark contrast with its pre-NNI performance: Harvard had 18 nanotechnology 

patents prior to 2002 but none of these patents exhibit the type of the post-NNI pattern.  In particular, eight 

of these pre-NNI patents (44.4%) were technological breakthroughs per our definition. This case, albeit 

anecdotal, seems to illustrate the kind of effects we demonstrate in this paper. 
70

 The report describes that “…NNI-related R&D is world-class and in many instances world-leading, and 

[that] it is making invaluable contributions to the advancement of knowledge and innovation in the United 

States”(p.22)  and “ NNI activities have produced significant advances in these and other application areas 

and are progressing from fundamental discovery to technological applications and commercialization” 

(p.36). 
71

 An excerpt from the NNI’s own assessment alludes to this point in reporting that “as a percentage of 

nanoscience and nanoengineering published papers, the fraction originating from the United States declined 

from 40 percent in the early 1990s to less than 30 percent in 2004, whereas U.S.-based entities continued to 

lead in the number of U.S. patents awarded” (NNI Review Committee et al., 2006, p.5). Given that journal 

publication has traditionally been a universal, and perhaps preferred, outlet for university research findings, 

changes in the outlet composition may be at least partly related to the shifts in university research 

characteristics we advance in this paper. 
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are not only unexpected in light of the NNI’s ultimate goal but may also counter to what 

university research is generally expected to pursue.  

 These adverse impacts may well spread to the entire research community, as 

indicated by the overall reduction in U.S. institutions’ branching-out to novel 

technologies in the post-NNI period. The U.S. research community, the primary 

beneficiary of knowledge spillovers from U.S. universities, seems to have been affected 

indirectly by the post-NNI perturbation in the nature of university research. In particular, 

the reduced accessibility of the U.S. university research in the post-NNI period may have 

taxed the U.S. industry more heavily than it did the non-U.S. industry by increasing the 

relative cost of accessing the channels of knowledge acquisition such as publications or 

formal/informal communications with university researchers (cf. Cohen et al, 2002). The 

increased secrecy and incomplete disclosure of university research findings raise the 

effective cost (such as search cost, licensing fees and infringement liabilities) that 

industry researchers may bear to use these findings. In particular, the program-induced 

marginal changes in the knowledge flow and the characteristics of university research 

may significantly reduce knowledge “spillovers” from universities. Considering that the 

industry R&D has traditionally been the beneficiary of informal knowledge spillovers 

from university research (Owen-Smith and Powell, 2004), firms may now need to expend 

unprecedented efforts to recover the benefit from such spillovers. For instance, to access 

the knowledge that had previously been obtained at little cost, firms may have to engage 

in more direct and formal collaborations with universities. 

 Finally, whether or not government S&T programs, in general, attain the social 

optimum is beyond the scope of our study. After all, the answer depends on the policy 
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decision that sets up objective functions in the domain of science and technology. 

However, our analysis generally underscores the importance of the immediate disclosure 

of research results and the autonomy of scientists and engineers in determining the 

priorities in conducting research in universities (Bush, 1945; Polanyi, 1962; Merton, 

1973; Dasgupta and David, 1994; Nelson, 2004). 
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Table 4.1   Summary Statistics 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)  (12) (13) 

(1) Knowledge flow from industry (ratio) 

            (2) Knowledge flow from industry (count) 0.333 
            (3) Branching-out to novel technology -0.094 -0.051 

           (4) (Log)Subclasses (Research scope) -0.042 -0.016 0.674 
          (5) Subclasses (Research scope) -0.032 -0.009 0.636 0.950 

         (6) Top 5% (Breakthrough)1) 0.016 0.009 0.074 0.039 0.039 

        (7) Z_norm (Breakthrough) -0.015 0.008 0.075 0.041 0.037 0.720 

       (8) PostNNI 0.074 0.093 -0.054 -0.042 -0.044 -0.228 -0.131 

      (9) US -0.072 0.068 0.048 0.025 0.020 0.079 0.113 0.056 

     (10) University -0.083 -0.038 0.043 0.029 0.021 0.040 0.083 0.070 0.256 

    (11) US University -0.083 -0.033 0.046 0.028 0.021 0.050 0.089 0.055 0.303 0.968 

   (12) Non-patent references 0.003 0.281 0.001 1.0E-4 -0.001 0.034 0.067 0.094 0.183 0.141 0.150 

  (13) Claims -0.004 0.025 0.010 0.002 0.002 0.103 0.111 -0.033 0.158 0.073 0.081 0.115 

 (14) (Log)Claims 0.001 0.025 0.001 -0.010 -0.008 0.095 0.120 -0.028 0.186 0.087 0.096 0.097 0.819 

(15) University-firm copatent 0.005 0.026 -0.017 -0.010 -0.002 0.004 0.027 -0.003 0.035 0.219 0.188 0.021 0.034 

(16) Total backward citations 0.098 0.491 -0.015 -0.020 -0.022 0.040 0.070 0.063 0.186 -0.039 -0.031 0.619 0.144 

N 5401 5401 5401 5401 5401 5401 5401 3720 5401 5401 5401 5401 5401 

Mean 0.391 2.331 0.285 0.522 2.054 0.143 0.403 0.502 0.721 0.202 0.192 13.850 20.974 

Std. Dev. 0.431 6.426 0.452 0.597 1.483 0.350 1.336 0.500 0.449 0.402 0.394 31.538 17.476 

Min. 0 0 0 0 1 0 -1.488 0 0 0 0 0 0 

Max. 1 95 1 2.773 16 1 20.647 1 1 1 1 436 296 

 

  (14) (15) (16) 

(14) (Log)Claims 
   (15) University-firm copatent 0.032 

  (16) Total backward citations 0.126 0.014   

N 5400 5401 5401 

Mean 2.762 0.012 14.403 

Std. Dev. 0.795 0.109 28.626 

Min. 0 0 0 

Max. 5.690 1 406 

Notes: 1) Technological breakthroughs are defined as the patents that belong to the top 5% of the forward citation distribution of the entire U.S. patent population 

(granted in 1976-2010).  2) All correlation coefficients above 0.03 or below -0.03 are significant at 5%. 
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Table 4.2   Models for the Effect of the NNI on University Research 

 

                (2-1) (2-2) (2-3) (2-4) (2-5) (2-6) (2-7) (2-8) (2-9) (2-10) 

D.V.: Knowledge flow Knowledge flow 
Branching-

out 
Branching-

out 
Log 

(Subclass) Subclass Top5% z_norm z_norm>0 z_norm<0 

Estimation method:       OLS(Ratio) NB Logit Logit OLS NB Logit OLS OLS OLS 

USuniversity    -0.273*** -0.331*** 0.573*** 

 

0.138*** 0.137*** 0.563*** 0.366*** 0.504*** 0.015 

                (0.032) (0.097) (0.127) 

 

(0.036) (0.039) (0.148) (0.105) (0.150) (0.020) 

PostNNI*USuniversity 0.100*** 0.309*** -0.354** 

 

-0.113** -0.108* -0.668** -0.374*** -0.571*** 0.002 

                (0.039) (0.116) (0.178) 

 

(0.047) (0.055) (0.327) (0.108) (0.153) (0.024) 

US              

   

0.411*** 

                      

   

(0.122) 

      PostNNI*US      

   

-0.484*** 

                      

   

(0.177) 

      Non-patent references -0.001*** -0.003*** 

    

0.007*** 0.003*** 0.004*** 1.35E-4 

                (1.40E-4) (0.001) 

    

(0.001) (0.001) (0.001) (1.04E-4) 

Claims          -0.001** -4.87E-4 0.003 0.003 

 

0.001 0.014*** 0.006*** 0.003** 4.16E-4 

                (3.61E-4) (0.001) (0.002) (0.002) 

 

(0.001) (0.003) (0.001) (0.001) (4.02E-4) 

(Log)Claims       

    

0.011 

                     

    

(0.012) 

     University-firm copatent  0.138** 0.513*** -0.483 -0.247 -0.087 -0.048 -1.061 -0.136 0.003 0.010 

                (0.057) (0.161) (0.335) (0.331) (0.083) (0.119) (0.677) (0.184) (0.218) (0.039) 

Total backward citations   

 

0.020*** 

                        

 

(0.001) 

        Constant        0.833*** 1.088*** -1.232*** -1.430*** 0.431*** 0.646*** -1.727*** 0.324*** 1.182*** -0.411*** 

                (0.026) (0.096) (0.138) (0.162) (0.048) (0.042) (0.150) (0.086) (0.132) (0.024) 

Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared       0.101       0.020     0.054 0.176 0.218 

Log-likelihood  
 

-4805.5 -2105.1 -2110.2 
 

-6007.5 -1090.5 
   N               2135 2135 3720 3720 3720 3720 3720 3720 2201 1519 

Notes: PostNNI is collinear with one of the year-fixed effects and hence is not identified. * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses. 
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Table 4.3   Models for the Effect of the NNI Estimated on Subsamples (University-only Sample and U.S.-only Sample) 

 

                (3-1) (3-2) (3-3) (3-4) (3-5) (3-6) (3-7) (3-8) (3-9) (3-10) 

Sample: University US University US Firms University US US University US 

D.V.: 
Knowledge 

flow 
Knowledge 

flow 
Branching-

out 
Branching-

out 
Branching-

out 
Log 

(Subclass) 
Log 

(Subclass) 
Top5% z_norm z_norm 

Estimation method: OLS(Ratio) OLS(Ratio) Logit Logit Logit OLS OLS Logit OLS OLS 

US              -0.416*** 
 

0.554 
 

0.420*** 0.287* 
  

0.976*** 
                 (0.062) 

 
(0.714) 

 
(0.137) (0.158) 

  
(0.175) 

 PostNNI*US      0.335*** 
 

-0.349 
 

-0.601*** -0.356* 
  

-0.988*** 
                 (0.104) 

 
(0.829) 

 
(0.202) (0.189) 

  
(0.188) 

 University 
 

-0.262*** 
 

0.477*** 
  

0.129*** 0.359** 
 

0.241** 

                
 

(0.033) 
 

(0.134) 
  

(0.037) (0.152) 
 

(0.111) 

PostNNI*University 
 

0.087** 
 

-0.211 
  

-0.097* -0.641* 
 

-0.233** 

                
 

(0.040) 
 

(0.188) 
  

(0.049) (0.329) 
 

(0.114) 

Non-patent references -0.001*** -0.001*** 
     

0.007*** 0.85E-4 0.003*** 

                (2.92E-4) (1.40E-4) 
     

(0.001) (0.001) (0.001) 

Claims          -0.001* -0.001 0.003 0.003 0.002 
  

0.012*** 0.007*** 0.005*** 

                (0.001) (0.000) (0.004) (0.002) (0.002) 

  

(0.002) (0.002) (0.001) 

(Log)Claims       
     

0.007 0.020 
                   

     
(0.028) (0.014) 

   University-firm 

copatent  0.151*** 0.172*** -0.539 -0.415 -0.151 -0.110 -0.054 -1.000 -0.143 -0.195 

                (0.056) (0.053) (0.352) (0.359) (0.333) (0.088) (0.098) (0.645) (0.191) (0.224) 

Constant        0.883*** 0.818*** -1.118 -1.116*** -1.466*** 0.298 0.412*** -1.449*** -0.134 0.475*** 

                (0.106) (0.034) (0.769) (0.159) (0.183) (0.190) (0.058) (0.167) (0.313) (0.107) 

Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared       0.093 0.101        0.031 0.024    0.077 0.059 

Log-likelihood  

 

 -498.802 -1585.733 -1457.744 

 

 -887.006 

  N               524 1619 838 2762 2652 838 2762 2762 838 2762 

Notes: PostNNI is collinear with one of the year-fixed effects and hence is not identified. We do not conduct the regression of Top5% using the university-only sample 

because the non-U.S. universities have zero patents with top 5% forward citations. Models 3-1, 3-3, 3-6 and 3-9 use the university nanotechnology patents (both U.S. and 

non-U.S.); Models 3-2, 3-4, 3-7, 3-8 and 3-10 use the U.S. nanotechnology patents; and Model 3-5 uses the firm nanotechnology patents (both U.S. and non-U.S.). * 

p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses. 
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Figure 4.1: Trends in the NNI Investment 

Figure 4.2: Growth Rates of the NNI Funding 

Note: ‘0’ indicates the pre-NNI period  

and ‘1’ the post-NNI period 

Figure 4.3: Pre- and Post-NNI Comparison of Knowledge Flows 

 from Industry (Raw Data, Five-Year Window) 
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Figure 4.4: Pre- and Post-NNI Comparison of Branching-outs to Novel  

Technologies (Raw Data, Five-Year Window) 
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Figure 4.5: Pre- and Post-NNI Comparison of Research Scope (Raw Data,  

Five-Year Window) 

Figure 4.6: Pre- and Post-NNI Comparison of the Proportion of Technological 

Breakthroughs (Raw Data, Five-Year Window)   
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Figure 4.7: Pre- and Post-NNI Comparison of the Distribution of the Number of 

Forward Citations (Kernel Density) 

Note: z_normcites is the standard-

normalized number of forward 

citations made to each 

nanotechnology patent among all 

patents applied for and granted in the 

same year and in the same technology 

class. 

Figure 4.8:  Pre- and Post-NNI Effects on Knowledge Flows from Industry 

Figure 4.9: Pre- and Post-NNI Effects on Branching-out 
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Figure 4.10: Pre- and Post-NNI Effects on Research scope 

Figure 4.11: Pre- and Post-NNI Effects on Technological Breakthroughs 
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CHAPTER 4 APPENDIX 

Table A4.1: List of Federal Agencies Participating in the NNI 

 
Federal agencies with budgets dedicated to  

nanotechnology research and development  

Agency mission and nanotechnology interest Budget  

(FY00-

11,$ 

million) 

Consumer Product Safety Commission 

(CPSC)  

Safe use of nanotechnology in consumer products 3 

Department of Defense (DOD)  Warfighting capabilities of nation (ex. Novel focal plane 

arrays and chemical/biological sensors, photocatalytic 

coatings) 

3,586 

Department of Energy (DOE)  Solving energy and climate challenges (ex. Energy 

storage, alternative fuels) 

2,700 

Department of Homeland Security (DHS)  Enhancement in component technology performance for 

homeland security application (ex. Materials toolbox, 

advanced preconcentrators, sensing platform) 

45 

Department of Justice (DOJ)  Nanotechnology as an integral component of R&D as 

applicable to criminal justice needs 

13 

Department of Transportation (DOT, 

including the Federal Highway 

Administration, FHWA)  

Safety, liable communities, state of good repair, economic 

competitiveness and environmental sustainability (ex. 

Innovative materials and coatings with durability) 

9 

Environmental Protection Agency (EPA)  Protection of human health and the environment by 

understanding engineered nanomaterials (ex. 

Environmental sensing, replacing more-toxic substances) 

102 

Food and Drug Administration  

(FDA, Department of Health and Human 

Services)  

Protect and promote public health and help ensure the 

responsible development of nanotechnology  

15 

Forest Service (FS, Department of 

Agriculture)  

Potential benefit of nanotechnology from the nation's use 

of renewable resources (ex. Cellulose nanofibers and 

cellulose nanocrystals) 

25 

National Aeronautics and Space 

administration (NASA)  

NASA aerospace R&D to reduce vehicle weight, enhance 

performance and reliability (engineered materials, energy 

generation and storage, sensors) 

348 

National Institute for Occupational Safety 

and Health (NIOSH, Department of Health 

and Human Services/Centers for Disease 

Control and Prevention)  

Conduct research and provide guidance to protect the 

health and safety of people exposed to the hazards of an 

emerging technology (ex. Toxicology studies) 

40 

National Institute of Food and Agriculture  

(NIFA, Department of Agriculture)  

Lead food and agricultural sciences to help create better 

future of the nation. Nanotechnology for revolutionary 

improvement in agriculture and food system 

50 

National Institute of Standards and 

Technology (NIST, Department of 

Commerce)  

Develop measurements, standards, and data crucial to a 

wide range of industries and Federal agencies, (ex. 

development of new spectroscopic methods to increase in 

advanced photovoltaics) 

923 

National Institutes of Health (NIH, 

Department of Health and Human Services)  

Nanotechnology to make valuable contribution to biology 

and  

medicine. NIH R&D for nanotherapeutics and diagnostic 

biomarkers, test, and devices. 

2180 

National Science Foundation (NSF)  Fundamental nanoscale science and engineering in and 

across all disciplines. Advance nanotechnology 

innovations though translational research program by 

partnering with industry, states, and other agencies. 

3,624 

Notes: 1) Other participating agencies: Bureau of Industry and Security, Department of Education, Department of Labor (including the 

Occupational Safety and Health Administration), Department of State, Department of the Treasury, Director of National Intelligence, 

Nuclear Regulatory Commission, U.S. Geological Survey, U.S. International Trade Commission, and USPTO; 2) Budget data include 
estimation or projected budgets for some period and do not include Congress direct budge ($548M by DOD and $10M by NASA). 

Source: The National Science and Technology Council (NSTC), Supplement to the President's FY 2012 Budget; 2011; The National 
Science and Technology Council (NSTC), Supplement to the President's FY 2009 Budget; 2008; The National Science and 

Technology Council (NSTC), National Nanotechnology Initiative. Strategic Plan, 2011; Roco, 2007 


