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algorithm, the algorithm from [29] (Heap), the improved expansion
pattern (Hybrid) and pruning opportunities (Epan) separately, and
finally the improvements together. Bandwidths were determined to
maximize classification accuracy on the largest set and scaled via the
theoretic inverse relationship to N

1
5 . Only one processor used. . . . . 94

3 Running times for the multi-bandwidth algorithm and the single-bandwidth
algorithm run on all bandwidth combinations. Bandwidth range is con-
stant between runs and bandwidths are tested at linear intervals. Only
one processor used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Speed-up for parallelized classification of the full 40m SDSS data set.
Excluding data access and tree building shows that the underlying com-
putation has workable speed-up. Future parallelization of tree building
may then make this feasible. . . . . . . . . . . . . . . . . . . . . . . . 97

5 Speed-up for parallelized classification of LOO CV with the multi-
bandwidth algorithm. This is more favorable because the multi-bandwidth
algorithm performs a larger proportion of parallelizable work than does
single-bandwidth classification. . . . . . . . . . . . . . . . . . . . . . 98

ix



SUMMARY

In the wake of the Big Data phenomenon, the computing world has seen a

number of computational paradigms developed in response to the sudden need to

process ever-increasing volumes of data. Most notably, MapReduce has proven quite

successful in scaling out an extensible class of simple algorithms to even hundreds

of thousands of nodes. However, there are some tasks—even embarrassingly paral-

lelizable ones—that neither MapReduce nor any existing automated parallelization

framework is well-equipped to perform. For instance, any computation that (naively)

requires consideration of all pairs of inputs becomes prohibitively expensive even when

parallelized over a large number of worker nodes.

Many of the most desirable methods in machine learning and statistics exhibit

these kinds of all-pairs or, more generally, all-tuples computations; accordingly, their

application in the Big Data setting may seem beyond hope. However, a new al-

gorithmic strategy inspired by breakthroughs in computational physics has shown

great promise for a wide class of computations dubbed generalized N -body problems

(GNBPs). This strategy, which involves the simultaneous traversal of multiple space-

partitioning trees, has been applied to a succession of well-known learning methods,

accelerating each asymptotically and by orders of magnitude. Examples of these in-

clude all-k-nearest-neighbors search, k-nearest-neighbors classification, k-means clus-

tering, EM for mixtures of Gaussians, kernel density estimation, kernel discriminant

analysis, kernel machines, particle filters, the n-point correlation, and many others.

For each of these problems, no overall faster algorithms are known. Further, these

dual- and multi-tree algorithms compute either exact results or approximations to

within specified error bounds, a rarity amongst fast methods.
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This dissertation aims to unify a family of GNBPs under a common framework in

order to ease implementation and future study. We start by formalizing the problem

class and then describe a general algorithm, the generalized fast multipole method

(GFMM), capable of solving all problems that fit the class, though with varying de-

grees of speedup. We then show O(N) and O(logN) theoretical run-time bounds

that may be obtained under certain conditions. As a corollary, we derive the tight-

est known general-dimensional run-time bounds for exact all-nearest-neighbors and

several approximated kernel summations.

Next, we implement a number of these algorithms in a commercial database, em-

pirically demonstrating dramatic asymptotic speedup over their conventional SQL

implementations. Lastly, we implement a fast, parallelized algorithm for kernel dis-

criminant analysis and apply it to a large dataset (40 million points in 4D) from the

Sloan Digital Sky Survey, identifying approximately one million quasars with high

accuracy. This exceeds the previous largest catalog of quasars in size by a factor of

ten and has since been used in a follow-up study to confirm the existence of dark

energy.
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CHAPTER I

THE GENERALIZED FAST MULTIPOLE METHOD

In this chapter, we present the mathematical foundations of a highly successful algo-

rithmic strategy that has resulted in the fastest algorithms for a diverse collection of

computations in physical simulation, computational geometry, machine learning, and

beyond. Specifically, we formalize for the first time the class of generalized N-body

problems (GNBPs), which unifies N -body simulation, all-nearest-neighbors, kernel

density estimation, the n-point correlation, and many others. We then show that

these are all solved by the generalized fast multipole method (GFMM), an abstract

algorithm that may be specialized into an efficient, higher-order divide-and-conquer

solution for any GNBP. Further, we demonstrate the potency of GNBPs and the

GFMM by deriving a fast algorithm for the recently described affinity propagation

method, achieving dramatic asymptotic speed-up.

This chapter is arranged as follows: We first consider the classical N -body simula-

tion problem in physics, which has been solved efficiently by a number of algorithms

characterized by the hierarchical decomposition of the input space into smaller, more

manageable subproblems. We then consider several examples of how this same idea

may be employed to accelerate methods in different fields, thereby demonstrating its

general applicability. Next, we formally define the class of GNBPs and derive the

GFMM, which solves them all. Lastly, we show experimental results for the GFMM

and thus empirically confirm the orders-of-magnitude speedup that it can provide.
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1.1 The classical N-body problem

The N -body problem is a fundamental and challenging problem in computational

physics that lies at the heart of physical simulations in astronomy, cosmology, chem-

istry, and drug design, among other fields. It also appears in the computation of a

variety of forces and potentials, such as the gravitational potential, which we will

consider throughout the following. Given a set of N point masses with known ini-

tial positions and velocities, our task is to determine the trajectories of these masses

as determined by Newtonian gravitation. In other words, we would like to know

the position and velocity of each mass at any future (or past) point in time. The

large number of variables in Newton’s equations of motion make an analytic solution

impossible in general for N ≥ 3. Therefore, we must solve the problem numerically.

The standard numerical approach discretizes time. At each (small) time step, we

compute the force—i.e. the negative gradient of the potential—on each mass due to

all the other masses. We then update the positions and velocities of each mass as

if they were subjected to this (constant) force for the entire time interval.1 At each

time step, computing the exact force on each point requires O(N2) operations, which

becomes intractable for large N . It is thus of interest to consider approximated forces

or potentials that can be computed much more quickly while still ensuring bounded

error. For the remainder of this thesis, we use the term “N-body problem” to refer

specifically to the computation of these forces or potentials at a given time step, e.g.:

∀i∈I : potential(xi) = −
∑

j 6=i

G
m(xj)

d(xi, xj)
. (1)

Tackling this computational challenge has led the development of what has been

judged to be one of the top ten algorithms of the 20th century [12]: the fast multipole

method (FMM). This algorithm is one of a family of solutions called tree codes, which

1More sophisticated time integrations are possible, such as leapfrog and Runge-Kutta. We omit
discussion of these because our results do not deal with the time integration step.
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can approximate force computations in O(N logN) overall time, including the cost of

building the tree. In fact, after tree construction, the FMM completes all remaining

work in just O(N) time, a property commonly seen amongst other GNBPs.

In this section, we review three foundational and yet still commonly used tree

codes in some detail: the Barnes-Hut simulation, Appel’s algorithm, and the FMM.

Throughout, we highlight the key features of the N -body problem that permit the

development of fast algorithms.

1.1.1 The Barnes-Hut simulation

As the name suggests, tree codes perform computation via the traversal of space-

partitioning trees. In particular, the Barnes-Hut algorithm for N -body simulation [4]

traverses a single tree to approximate forces at individual query points. As we shall

see, when a node is sufficiently distant from the query, it is possible to approximate

the contribution of all points in the node in constant time.

The algorithm begins by constructing an octree on the set of input points. The

root of an octree is a cube that contains all the points, and child nodes are formed

by splitting each parent node’s bounding box along the midpoints of each dimension,

thereby forming eight equally sized regions. Empty nodes are omitted, and recursive

construction stops when nodes contain just one point or, alternately, fewer than some

user-specified number of points.

Computation then loops over all input points, invoking Algorithm 1 at each one

paired with the octree’s root. This computes the approximate potential at each query

point q due to the entire input set X ; accordingly, line 11 divides computation into

subproblems representing the potentials at the query due to each octant of the current

node. Recursion terminates in either of two ways: in the base case (lines 5–8) or by

pruning (lines 3–4). The base case occurs when the tree node in question is a leaf,

thus preventing any further recursion. In this case, the potential due to the leaf node

3



Algorithm 1 The Barnes-Hut simulation

function BarnesHut(q,X, s)
let d← d(q, center(X))

3: if d > s · diameter(X) then

potential(q)← potential(q)−Gm(X)
d

else if is leaf(X) then
6: for all x ∈ X, x 6= q do

potential(q)← potential(q)−G m(x)
d(q,x)

end for

9: else

for all X ′ ∈ children(X) do
BarnesHut(q,X ′, s)

12: end for

end if

end function

is computed exactly, ignoring reference points in the special case that they match the

query.

Pruning, on the other hand, occurs whenever the approximation of the node by

a pseudoparticle at its center of mass can only incur at most ǫ relative error in the

result. It can be shown that this will always occur when the distance between the

query and the center of mass is greater than some multiple s ∈ Θ(1
ǫ
) of the node’s

diameter. Because only constantly many nodes at a given depth can fit within the

pruning radius, the running time of the algorithm is bounded by the maximum depth

of the tree. For uniformly distributed data, the expected maximum depth of an octree

is O(logN), and thus the potential at each may be computed in expected O(logN)

time. Because there are O(N) total queries, the overall running time is O(N logN),

which is coincidentally the same as the cost of building the tree.

The key features from which this algorithm obtains it speedup are, first, the

decomposition of problems into more manageable subproblems and, second, the ap-

proximation of all but the nearest subproblems with a quick pruning procedure. An

additional note of importance is the fact that nodes’ centers of mass—needed for

pruning—may be found in just O(N) time by an efficient leaf-to-root pass at the

4



time of tree construction. Storage of this precomputed information within the tree’s

nodes embodies the notion of cached sufficient statistics, a more sophisticated example

of which is shown for the FMM.

1.1.2 Appel’s algorithm

While the run-time complexity of the Barnes-Hut simulation already matches that

of tree building, which it itself lower bounded in general at Ω(N logN), the constant

coefficients associated with computing forces or potentials greatly outweigh those of

forming the tree. Therefore, it is desirable to optimize tree traversal to the greatest

extent possible, as this ultimately extends the maximum feasible scope of computa-

tion.

In this vein, Appel’s algorithm [2] simultaneously traverses over two trees (or,

rather, two copies of the same tree)—one for the reference data and another for the

queries—and thereby shares the work of distance computation and pruning over large

groups of points. This algorithm relies on the same basic observation as Barnes-Hut:

that the potential at a query point due to a distant collection of references is well-

approximated by the potential due to a pseudoparticle at the references’ center of

mass. Appel’s algorithm however makes a further observation: that the potential at

a collection of nearby queries due to a distant reference point is well-approximated

by the potential evaluated at the queries’ center of mass. In conjunction, these two

ideas allow for the frequent pruning of node pairs visited over the course of dual-tree

traversal.

The entire computation is performed by invoking Algorithm 2 on the query and

reference roots, Q and X . Similar to BarnesHut, line 14 recursively decomposes

work into smaller problems, but it must additionally split the query node and pair

each query child with each reference child to ensure consideration of all pairs of points.

The base case (lines 5–10) is relatively unchanged, however special handling (elided)

5



Algorithm 2 Appel’s algorithm

function Appels(Q,X, s)
let d← d(center(Q), center(X))

3: if d > s · (diameter(Q) + diameter(X)) then

potential(Q)← potential(Q)−Gm(X)
d

else if is leaf(Q) and is leaf(X) then
6: for all q ∈ Q do

for all x ∈ X, x 6= q do

potential(q)← potential(q)−G m(x)
d(q,x)

9: end for

end for

else

12: for all Q′ ∈ children(Q) do
for all X ′ ∈ children(X) do

Appels(Q′, X ′, s)
15: end for

end for

end if

18: end function

is necessary when one node becomes a leaf while the other remains interior. Pruning

(lines 3–4) must consider both nodes’ diameters, but is otherwise also similar to the

Barnes-Hut simulation.

Appel’s original claim was that the above method is O(N logN), however Es-

selink [19] later proved that the algorithm is in fact O(N) for uniform distributions.

This thesis, on the other hand, proves that the algorithm is O(N) even for arbitrarily

distributed data. In short, because the pruning radius may again be expressed as a

constant multiple of node width, only constantly many nodes at a given depth may

ever be paired with a splitting node. Because there are only O(N) total nodes, and

because the work performed at any single node pair is constant and is the direct result

of a node split, the overall running time is itself O(N).

An important final step of computation is to propagate pruned potentials found

for interior nodes to the leaves of the query tree. Rather than performing this step

as soon as pruning occurs, which would incur O(N logN) work overall, propagation

of results must be postponed until after dual-tree traversal. It can then be completed

6



in an O(N) root-to-leaf pass—effectively the reverse of the computation of cached

sufficient statistics. Again, a more sophisticated example of this is shown for the

FMM.

1.1.3 The fast multipole method

The FMM [30] follows in steps of Appel’s algorithm by considering pairs of nodes

and approximating computation at nodes that are sufficiently separated from one

another. However, unlike Appel’s algorithm, which employs the monopole (center

of mass) approximation for well-separated pairs, the FMM maintains higher-order

multipole expansions about various points, thereby enabling it to prune even more

aggressively. In fact, the FMM always prunes all nodes that are not immediately

adjacent to the query node, and the specified error tolerance ǫ controls the order p of

truncated series expansion instead of the pruning radius.

The FMM uses two different kinds of series expansions: the multipole expansion,

which approximates the potential due to a distant group of reference points, and

the local expansion, which approximates the potential at a nearby group of query

points. The chief task throughout computation of the FMM is then the translation

of series expansions from one central point to another as well as from multipole to

local. Because these translations feature significantly in the computation of cached

sufficient statistics and the propagation of postponed results, we explicitly demon-

strate these phases (FmmUpward and FmmDownward, respectively) along with

the usual dual-tree traversal (FmmSideToSide) in Algorithm 3.

Translation is facilitated by a host of theorems developed by Greengard for both

the 2- and 3-dimensional cases [31]. The remarkable intricacy of these theorems

is beyond the scope of this thesis, as their particular formulations have no direct

bearing on the nature of the GFMM. It is enough to say that there exist means of

translation that adequately bound error for p ∈ Θ(⌈log 1
ǫ
⌉). The cost of operations on

7



Algorithm 3 The fast multipole method

function FmmUpward(X, p)
if is leaf(X) then

3: Compute a multipole expansion about X for all x ∈ X
else

for all X ′ ∈ children(X) do
6: FmmUpward(X ′, p)

Translate multipole expansion about X ′ into that of X
end for

9: end if

end function

function FmmSideToSide(Q,X, p)
12: if dmin(Q,X) > 0 then // i.e. if Q and X are nonadjacent

Convert multipole expansion about X into local expansion about Q
else if is leaf(Q) and is leaf(X) then

15: for all q ∈ Q do

for all x ∈ X, x 6= q do

potential(q)← potential(q)−G m(x)
d(q,x)

18: end for

end for

else

21: for all Q′ ∈ children(Q) do
for all X ′ ∈ children(X) do

FmmSideToSide(Q′, X ′, p)
24: end for

end for

end if

27: end function

function FmmDownward(Q, p)
if is leaf(Q) then

30: Evaluate the local expansion about Q at all q ∈ Q
else

for all Q′ ∈ children(Q) do
33: Translate local expansion about Q into that of Q′

FmmDownward(Q′, p)
end for

36: end if

end function
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series expansions is bounded by a constant O(p2) and thus, considering the restricted

pruning radius, the algorithm is again O(N) overall.

At this point, we feel it is important to note that, while most discussion of the

FMM revolves around the creation and manipulation of series expansions as its pri-

mary source of speedup, in fact the FMM is fast for the same reasons that the Barnes-

Hut simulation and Appel’s algorithm are fast. All three of these tree codes embody

the concepts of divide and conquer, and bounding the total number of divisions that

must ultimately be “conquered” is the key to deriving their worst-case run-time com-

plexities. The translation theorems of the FMM are simply a means of proving that

its particularly aggressive form of pruning is safe; the other tree codes with their

loosened pruning radii are nonetheless slower by at most a constant dependent on ǫ,

and at that their cost of pruning is significantly reduced. We shall see in Chapter 2

that a generalized notion of the pruning radius may in fact be used to bound the

running times of all GNBPs.

1.2 Tree codes in other applications

In light of the breakthrough algorithms in physical simulation described above, efforts

have been made to apply similar solution techniques to other computations that

traditionally require O(N2) time or worse. In particular, a great deal of effort has been

made in the field of computational geometry to derive algorithms for nearest-neighbors

search and related problems based on efficient traversals of spatially-informed data

structures. One example is the well-separated pair decomposition [11], which was

the first work to unify the computations of all-nearest-neighbors and the N -body

problem. Another example, considered in some detail below, is Gray’s discussion of

“N -body problems” in statistical learning [25], which explores all-nearest-neighbors,

kernel density estimation, and the n-point correlation. Following Gray’s publication,

a series of other papers have applied the same algorithmic techniques in solving yet
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Algorithm 4 Nearest-neighbors search

function NnSearch(q,X)
if dmin(q,X) ≥ distance(q) then return

3: else if is leaf(X) then
for all x ∈ X do

distance(q)← min{distance(q), d(q, x)}
6: end for

else

for all X ′ ∈ children(X) prioritized by dmin(q, ·) do
9: NnSearch(q,X ′)

end for

end if

12: end function

other generalized N-body problems [43, 44, 65, 34, 46], a class of problems that we

formally describe for the first time in Section 1.3 of this thesis.

1.2.1 Nearest-neighbors search

Nearest-neighbors search is a fundamental problem in computational geometry that

serves as a preliminary step of many other methods, including many methods in ma-

chine learning. For instance, k-nearest-neighbors classification uses found neighbors

directly as “votes” to predict the class of each query point [44]. On the other hand,

some other methods sparsify input similarity matrices so as to only represent rela-

tionships between each point’s k nearest other points [18]. Yet further applications

also exist in manifold dimensionality reduction [66, 74] and clustering [57, 45].

For being such a core analysis in so many methods, the nearest-neighbors search

problem [59] is relatively easy to express:

neighbor(q) = argmin
j∈J

d(q, xj); (2)

that is, for a given query point q, find the reference point xj with minimum distance

to q. Alternately, the k-nearest-neighbors search problem slightly extends the above

to return a list containing the k nearest such points, which we indicate with argmink.

10



Algorithm 5 All-nearest-neighbors

function AllNn(Q,X)
if dmin(Q,X) ≥ distance(Q) then return

3: else if is leaf(Q) and is leaf(X) then
for all q ∈ Q do

for all x ∈ X, x 6= q do

6: distance(q)← min{distance(q), d(q, x)}
end for

end for

9: distance(Q)← max{distance(q) : q ∈ Q}
else

for all Q′ ∈ children(Q) do
12: for all X ′ ∈ children(X) prioritized by dmin(Q

′, ·) do
AllNn(Q′, X ′)

end for

15: end for

distance(Q)← max{distance(Q′) : Q′ ∈ children(Q)}
end if

18: end function

Another variation of this problem is all-nearest-neighbors,

∀i∈I : neighbor(xi) = argmin
j∈J

d(xi, xj), (3)

which in the monochromatic case—i.e. when I = J—must be careful not to identify

input points xi as their own nearest neighbors.

Clearly, if implemented by way of looping over all input data, the nearest-neighbors

search problem is O(N) and all-nearest-neighbors is O(N2). As a result—and because

some past methods bounding the run-time complexity of nearest-neighbors search

have proven impractical—many studies that require the identification of points’ near-

est neighbors have so far focused on small datasets, and a number of approximate

nearest-neighbors search methods have been proposed, e.g. [37]. However, as has

been demonstrated [23, 25, 6] and is reinforced in this thesis, fast, practical, and ex-

act nearest-neighbors search methods are possible, even in high-dimensional and/or

non-Euclidean spaces.

Algorithms 4 and 5 depict pseudocode that quickly solves the nearest-neighbors
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search problem and all-nearest-neighbors, respectively. Pruning is made possible by

annotating each query node (or the query point) with an upper bound on the distance

to any contained point’s candidate nearest neighbor. Then, whenever the minimum

distance between the query and a reference node is greater than this upper bound,

the reference node may be pruned with no additional work. Accordingly, key in both

algorithms is the prioritization of reference tree traversal (e.g. line 12 of Algorithm 5)

so that nearer nodes are visited first. This heuristic increases the chances of finding

nearer candidate neighbors earlier, which in turn encourages earlier and more frequent

pruning.

The difference between the fast algorithms for nearest-neighbors search and all-

nearest-neighbors is the same as the difference between the Barnes-Hut simulation at

a single query and Appel’s algorithm. Correspondingly, nearest-neighbors search can

be shown to be O(logN) in various settings [23, 6] and all-nearest-neighbors can be

shown to be O(N) after index construction [11, 6]. In this thesis, we derive for both

methods bounds with the tightest known dimensional coefficients as corollaries to our

abstract analysis of the GFMM.

1.2.2 Kernel density estimation

Probability density is a core concept in machine learning and statistics that plays

a major role in topics as fundamental as computing the expected value of a ran-

dom variable. While it is rarely possible to know probability density exactly, even

estimated probability densities can result in extremely powerful classifiers [65], regres-

sors [35], and other forms of prediction [76]. Kernel density estimation (KDE) [68]

is a nonparametric means of estimating probability density and, as such, is able to

adapt to the data’s underlying distribution without explicit specification of a data

model. This property makes KDE ideal for many tasks where the underlying model

is poorly understood or hopelessly complicated, such as computer vision [16, 50] and
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bioinformatics [20, 52].

KDE models a dataset’s overall probability density function (pdf) as the aver-

age of a multitude of simple pdfs centered at each point in the dataset. While not

strictly necessary, it is often convenient to restrict allowable pdfs to kernel functions

of distance:

f̂(q) =
1

N

∑

j∈J

Kh(d(q, xj)). (4)

For example, one might define kernel Kh with bandwidth h to be the Gaussian pdf:

Kh(v) =
1

(h
√
2π)D

e−
1
2
( v
h
)2 ; (5)

alternate kernels, such as the Epanechnikov kernel [17], also exist with various desir-

able properties. Regardless, an important prerequisite of any application of KDE is

optimal bandwidth selection. It can be shown that optimal h shrinks as O(N−1/5) [68];

however, in practice it is best to choose h to minimize leave-one-out cross-validation

(LOOCV) error for the method at hand. LOOCV kernel density estimates may be

computed

∀i∈I : f̂(xi) =
1

N − 1

∑

j 6=i

Kh(d(xi, xj)), (6)

which itself may be computed by summing over all j ∈ I and then subtracting Kh(0)

before normalization, though this is less numerically stable.

As with both the N -body problem and all-nearest-neighbors, implementation of

LOOCV KDE as nested loops results in a run-time complexity of O(N2). Fast

O(N logN) and O(N) non-hierarchical solutions have been proposed via the fast

Fourier transform [69] and series expansions [32, 78], respectively, but these either

are restricted to low-dimensional Euclidean space or fail to perform as expected un-

der various conditions [8]. On the other hand, dual-tree algorithms like the one shown

in Algorithm 6 have been shown to be fast both in practice [27, 28, 43, 41, 42] and

in theory [62], again even for non-Euclidean metric spaces. The resulting algorithms
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Algorithm 6 All-pairs KDE

function Kde(Q,X, h, ǫ)
if Kh(dmin(Q,X))−Kh(dmax(Q,X)) < ǫ then

3: density(Q)← density(Q) + |X| ·Kh(d(center(Q), center(X)))
else if is leaf(Q) and is leaf(X) then

for all q ∈ Q do

6: for all x ∈ X do

density(q)← density(q) +Kh(d(q, x))
end for

9: end for

else

for all Q′ ∈ children(Q) do
12: for all X ′ ∈ children(X) do

Kde(Q′, X ′, h, ǫ)
end for

15: end for

end if

end function

are very similar to Appel’s algorithm and the FMM, as both N -body simulation and

KDE represent sums over functions of distance. However, because kernel functions

generally lack the relationship present in the N -body problem between relative error

in distance and in the result, pruning must operate under slightly different circum-

stances, as shown in line 2. As we shall see, this difference has some impact on the

algorithm’s run-time analysis. Nonetheless, this thesis proves KDE to be O(N) after

index construction, again as a corollary to the run-time bound of the GFMM and

again resulting in the tightest known dimensional coefficients for the general dimen-

sional case.

1.2.3 The n-point correlation

In astronomy, a correlation function is a measure of fractal dimension that, among

other applications, may be used to differentiate between data distributions—e.g. be-

tween the distributions of simulated and observed datasets. The n-point correlation

function [56] in particular is a measure of the data’s “lumpiness.” It has been used to

study properties of the cosmic microwave background radiation [71], the large-scale
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structure of the universe [54, 49, 48], and dark energy [1].

In the case that n = 2, the n-point correlation function hinges upon the sum

X(2)(h) =
∑

i∈J

∑

j>i

[d(xi, xj) ≤ h], (7)

where Iverson bracket [·] returns 1 when its contents are true and 0 otherwise. This has

the effect of counting the number of unique unordered pairs of distinct points (xi, xj)

such that xi and xj are within distance h of one another. For n > 2, the relevant sum

of the n-point correlation might instead be expressed

X(n)(h) =
∑

j1∈J

∑

j2>j1

· · ·
∑

jn>jn−1

[d(xjk , xjl) ≤ h : 1 ≤ k < l ≤ n], (8)

which instead counts n-tuples of points that satisfy the bracketed matcher. More

sophisticated matchers are also possible, which for instance might bound distance

both above some hlo and below some hhi, or might have separate bounds for each of

the
(
n
2

)
distances between the n points [46, 47]. While these complicate computation,

we shall see that they play only a minor role in the asymptotic running time.

Algorithm 7 approximates the 2-point correlation to within ǫ absolute error in

the threshold distance h. It is easy to see that, because all pairs within h − ǫ will

be counted as usual and all pairs outside h + ǫ will be excluded as usual, the resul-

tant approximation X̂(2)(h) is bounded between the exact results of X(2)(h− ǫ) and

X(2)(h + ǫ). If one then plots X̂(2)(h) as a function of h, this is equivalent to having

error bars along the the x-axis rather than the usual y-axis.

Observe that Algorithm 7 is different from preceding algorithms in that it obeys

triangular recursion with lines 2 and 6, which enforces the constraint that j > i in

Equation 7. Further, TwoPt is able to prune not only via exclusion of node pairs

that are distant from one another (line 3) but also via inclusion of pairs that are

close-in (lines 4–9). While both of these optimizations have the effect of reducing the

amount of overall work, they have no impact on the asymptotic running time.2

2Monochromatic all-nearest-neighbors, LOOCV KDE, and the N -body problem can also all make
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Algorithm 7 The 2-point correlation

function TwoPt(X1, X2, h, ǫ)
if begin(X1) > end(X2) then return 0

3: else if dmin(X1, X2) > h− ǫ then return 0
else if dmax(X1, X2) ≤ h+ ǫ then

if X1 = X2 then

6: return 1
2
|X1|(|X1| − 1)

else

return |X1| · |X2|
9: end if

else if is leaf(X1) and is leaf(X2) then
. . . // Base case elided

12: else

let sum← 0
for all X ′

1 ∈ children(X1) do
15: for all X ′

2 ∈ children(X2) do
sum← sum +TwoPt(X ′

1, X
′
2, h, ǫ)

end for

18: end for

return sum

end if

21: end function

For n′ = min{n,D+1}, previous papers have given both conjectured [25] and ob-

served [51] asymptotic run-time bounds of O(Nn′− 1
D(

n′

2 )) for certain exact n-point cor-

relation functions in Euclidean space. These bounds only apply to rigid, simplex-like

matchers, and yet have exponent strictly greater than 1 for all dimensionalities D > 1.

This thesis, on the other hand, proves theoretical run-time bounds for a broader class

of 2-point and n-point correlation functions in the general dimensional case, both of

which are surprisingly O(N), though with dimensional coefficient growing exponen-

tially in n. These bounds, along with our bound for the Axilrod-Teller potential in

Section 2.7, also represent the first such bounds for GNBPs of order greater than 2,

which we explain in the following section.

use of triangular recursion, effectively halving the number of distance computations and visited
node pairs. Further, KDE with the Epanechnikov kernel is capable of both exclusion and inclusion
pruning, as demonstrated in Chapter 4. Because these forms of pruning can occur even when ǫ = 0,
accelerated exact computation is possible for both the n-point correlation and Epanechnikov KDE;
however, asymptotic run-time bounds are less favorable for this case.
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1.3 Generalized N-body problems

It is clear from the discussion above and from the content of Algorithms 1–7 that

very similar algorithmic strategies can efficiently solve the N -body problem, nearest-

neighbors search, KDE, and the n-point correlation despite these problems’ disparate

properties and requirements. Further, the mathematical representations of each of

these problems given in Equations 1–4 and 6–8 all visibly adhere to a motif of aggre-

gating over values computed at all pairs (or larger groupings) of inputs. Considering

these two observations, this section provides the first formal definition of an impor-

tant class of GNBPs, which unites the problems described above along with many

others into a single family and thereby lays the foundations for the major claim of

this thesis:

Claim 1 (Thesis statement). All generalized N -body problems (GNBPs) may be

solved by an abstract algorithm, the generalized fast multipole method (GFMM),

which can be implemented as a generic software framework and can be shown to

be asymptotically fast under certain circumstances.

1.3.1 Reductions

As noted above, the aggregation—or reduction—is a characteristic feature of GNBP

computation. Throughout this thesis, we consider reductions over index sets, e.g. over

all j ∈ J , as opposed to directly over the data. This both enables datasets to contain

identical points at distinct indices and allows us to consider alternate uses of indices,

such as testing whether i < j in the 2-point correlation. We thus define:

Definition 1. Given a commutative, associative binary operation ⊕ : P × P → P

with identity element e⊕ ∈ P, a reduction
⊕

is defined such that, for any (finite)
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indexed family (vj ∈ P)j∈J ,

⊕

j∈J

vj = vj(1) ⊕ vj(2) ⊕ . . .⊕ vj(N)

if index set J is itself defined J = {j(1), j(2), . . . , j(N)}.

Note that this is distinct from higher-order function fold in that fold operates on an

ordered list and thus permits binary operations that are neither commutative nor

associative. We require these properties because, in order to accelerate computation,

we must have the ability to partition and rearrange subcomputations in a manner

more conducive to pruning. We further require an identity element for later conve-

nience; note, however, that any P may be augmented with an element e⊕ defined by

fiat to be the identity of ⊕. Accordingly, operation ⊕ in conjunction with its domain

of partial results P specifies a commutative monoid.3

Again looking at the problems discussed above, we observe that some GNBPs bear

more than one (of the same) reduction, as in the 2-point and n-point correlations,

but also that many GNBPs involve nonreduced index sets, as in all-nearest-neighbors

and LOOCV KDE. Such index sets serve as batch queries, i.e. they produce sepa-

rate results for each i ∈ I. Throughout the above, we achieve this behavior with a

combination of the universal quantifier ∀ and the assignment of results to a family

of variables pi indexed by i ∈ I. An alternate representation of this same behavior

instead makes use of the disjoint union to form the set containing all pairs (i, pi):

Definition 2. The disjoint union
⊎

is defined such that, for any (finite) indexed

family (pi ∈ P)i∈I ,
⊎

i∈I

pi =
⋃

i∈I

{(i, pi)}.

3This is not a group because we do not require inverse elements, and indeed useful reductions
such as min and max do not offer these.
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Further, for indexed families of disjoint unions (Pi ⊆ Ik × P)i∈I and any inte-

ger k ≥ 1, we generalize

⊎

i∈I

Pi =
⋃

i∈I

{((i, i′), p) : (i′, p) ∈ Pi}.

If index set I is defined I = {i(1), i(2), . . . , i(M)}, then
⊎

i∈I pi may be interpreted

as forming a length M vector of results.4 Likewise, nested disjoint unions may be

interpreted as forming matrices or, more generally, tensors of results. Because the

disjoint union losslessly preserves all of its inputs, we do not consider it to be a true

reduction; rather, throughout the below, we understand it more as an explicit means

of annotating nonreduced index sets, the exact representation of how they store their

results being of no great importance.

Notational conventions. We establish a convention of using the symbol I for

nonreduced index sets and the symbol J for reduced index sets. If there are multiple

nonreduced index sets, we write them as Ik for 1 ≤ k ≤ m. Similarly, if there are

multiple reduced index sets, we write them as Jk for 1 ≤ k ≤ n. The number m+ n,

or the total number of index sets, is said to be the order of the GNBP. We further

define capital symbols M = |I| and N = |J | (with subscripted versions intuited as

above); these establish the “N -body problem” as referring to the size of the dataset

while the “n-point correlation” refers to the number of reductions. All index sets are

taken to be subsets of the domain of indices I. Lastly, we sometimes make use of a

shorthand notation to bind an index variable via binary relation with another index

variable, e.g.
⊕

j 6=i, in which case the left-hand side is understood to originate from

4Here and in Definition 1 we are careful not to insist that index sets I and J actually be, e.g.,
the integers from 1 to M because it is notationally useful to allow (xi)i∈I and (xj)j∈J to refer to
distinct query and reference sets (for I ∩ J = ∅). One can instead think of I and J as referring to
disjoint consecutive ranges of memory addresses pertaining to the two datasets.
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the same index set as the (previously bound) right-hand side.

1.3.2 Mapped functions

While, as we shall see, the number of disjoint unions and repetitions of the chosen

reduction have a profound impact on the overall shape of computation, just as im-

portant in problem specification is the mapped function to be evaluated at all visited

combinations of indices. Each nonreduced and reduced index set contributes one in-

dexed input—e.g. xi or xj—to the mapped function. These inputs denote points in a

metric5 space X ; however, some problems also require metadata at each point, such

as class labels, regression targets, or the point’s mass or charge as in the classical N -

body problem. When needed, we indicate these inputs with the appropriate symbols,

but in the general case, we lump them together into a nonmetric set Y . Hence:

Definition 3. Given a metric space X and a (possibly trivial) nonmetric set Y ,

the mapped function of a problem with m nonreduced index sets and n reduced

index sets is a function f of the form6

f : Xm × X n × Ym ×Yn → P.

In our generalized formulation of GNBPs, applications of f are written in terms of

m- and n-tuples of elements of X and Y , exactly as suggested by Definition 3:

f(xi,xj,yi,yj) (9)

5A true metric space may not be strictly necessary. Pseudometrics (relaxed identity: d(a, b) = 0
for a 6= b), quasimetrics (relaxed symmetry: d(a, b) 6= d(b, a)), and perhaps inframetrics (relaxed
triangle inequality: d(a, c) ≤ ρmax{d(a, b), d(b, c)}) may be tolerable with some adaptations, but
are not explored in this thesis.

6It is tempting to entertain the idea that each of the m + n index sets might need to be paired
with a different set Xk; however, we note that spatial comparisons make little sense between points
residing in distinct metric spaces. On the other hand, some problems may require one or either of
xi or xj , etc., to represent bounded regions of space rather than points. This may be achieved with
X ′ = 2X and an appropriately defined pseudometric (e.g. d(a′, b′) = inf{d(a, b) : a ∈ a′, b ∈ b′}).
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for tuples i = (i1, . . . , im) and xi = (xi1 , . . . , xim), etc. A given problem’s particular

instantiation of f may then make use of any arrangement of the contents of these

tuples to compute its result.

Note that we have defined mapped functions in a manner that permits them to

consider spatial properties of data other than distance, such as the inner product or

angle. For example, the Axilrod-Teller potential is a problem that, in part, depends

upon angles induced by triples of points, and recent publications have proposed novel

data structures to accelerate both SVD [36] and maximum inner-product search [61].

Functions of distance are, however, by far the most common in the body of GNBPs

examined thus far.

A final note about mapped functions is that, while their formulation does not

explicitly allow them to consider input indices, it is often convenient for them to be

able to do so. For instance, many methods must not visit index pairs i = j because

doing so would either taint results or cause mathematical singularities. One means of

avoiding this is to have f test whether i = j and, if so, return e⊕ in place of its usual

result.7 Reconciling this practice with Definition 3, we observe that elements yi ∈ Y

can be taken to contain their own index, with for example yi = (i, y′i).

Notational conventions. While, in the general case, mapped functions f are ex-

pressed as functions of four tuples, specific cases of f may be awkward to represent

in exactly that manner. In particular, when either or both of m or n are small or

0, or when either or both of yi or yj are unused, the general formulation may seem

needlessly verbose. Accordingly, we either omit unused or empty function arguments

or explicitly note their lack of use with placeholder ·, as in

f(·,xj, ·, ·), (10)

7While such tests are essential for proper computation, we typically omit them when expressing
specific functions f because they are intuitive and yet overcomplicate the underlying form.
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which happens to be appropriate for the n-point correlation function. Additionally,

if m or n are small, say 1 or 2, we de-tuple the content of the affected inputs into

separate arguments, as in

f(xi, xj1 , xj2), (11)

which is appropriate for the expression of the m = 1, n = 2 Axilrod-Teller potential.

1.3.3 Problem class definition

Combining the reduction, disjoint union, and mapped function from Definitions 1–3,

we arrive at an important and already very broad first class of GNBPs, the GNBPs

of one reduction, which we regard as the basis of all GNBPs:

Definition 4. Given m nonreduced and n reduced index sets, a binary operation

of reduction ⊕, and a mapped function f , a generalized N-body problem of one

reduction (1-GNBP) is a problem Pm,n,⊕,f of the form

Pm,n,⊕,f(I,J;X, Y ) =
⊎

i∈I

⊕

j∈J

f(xi,xj,yi,yj),

where nonreduced indices I and reduced indices J are (possibly trivial) sets of

index tuples formed8

I = I1 × · · · × Im and J = J1 × · · · × Jn;

indexed families X = (xi)i∈I∪J and Y = (yi)i∈I∪J denote metric and nonmetric

input datasets, respectively; function arguments xi, xj, yi, and yj are tuples of

elements of X and Y defined, e.g.,

xi = (xi1 , . . . , xim) for i = (i1, . . . , im);

reduction
⊕

is the iterated form of ⊕; and ⊎
is the disjoint union.

8We further define combined index sets I =
⋃

1≤k≤m Ik and J =
⋃

1≤k≤n Jk, thereby establishing
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Table 1: All problems seen in this thesis so far in terms of 1-GNBP Pm,n,⊕,f .

Problem m n ⊕ f Notes

Barnes-Hut 0 1 + G
mj

d(q,xj)
yj = mj

Appel’s alg. 1 1 + G
mj

d(xi,xj)
yj = mj

NN search 0 1 argmin d(q, xj)

All-NN 1 1 argmin d(xi, xj)

KDE 0 1 + 1
N
Kh(d(q, xj))

LOOCV KDE 1 1 + 1
N−1

Kh(d(xi, xj))

2-point corr. 0 2 + [d(xj1, xj2) ≤ h]

n-point corr. 0 n + [d(xjk , xjl) ≤ h : 1 ≤ k < l ≤ n]

Without further modification, this formulation successfully generalizes all the prob-

lems we have explored in this thesis so far, as shown in Table 1.

Order. As mentioned above, the value m + n, or the combined number of index

sets making up I and J, is said to be the order of the 1-GNBP. For all but one of the

problems explored in Sections 1.1 and 1.2, this is just 1 or 2, specifically with m = 0

and n ∈ {1, 2} or m = n = 1. In such lower-order problems, we borrow from mapped

functions the notational conventions of omitting or de-tupling components that are

either unused or small. For instance, if m = 0 and n = 2, we might write

p0,2,⊕,f(J1, J2;X, Y ) =
⊕

j1∈J1

⊕

j2∈J2

f(xj1, xj2 , yj1, yj2), (12)

which becomes the 2-point correlation if ⊕ = + and f(xj1 , xj2, ·, ·) = [d(xj1, xj2) ≤ h].

Here, we use p instead of P because, without
⊎
, the result is not the usual set of

indexed families X and Y as representative of all involved datasets.
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key-value pairs.9 On the other hand, if m = n = 1, we might write

P1,1,⊕,f(I, J ;X, Y ) =
⊎

i∈I

⊕

j∈J

f(xi, xj, yi, yj), (13)

replacing I = I1 with just I and xi = xi1 with just xi, and likewise for J and y. This

becomes all-nearest-neighbors if we set ⊕ = argmin and f(xi, xj , ·, ·) = d(xi, xj).

Chromaticity. A problem is said to be monochromatic if all of its index sets are

the same—e.g. if I = J or J1 = J2—and is said to be bichromatic or, more generally,

multichromatic if these sets are disjoint.10 In the monochromatic case, it may be nec-

essary to adjust computation so it does not consider points grouped with themselves

or so it only considers unique unordered groupings of points. As suggested above,

we can achieve this by defining f to return identity e⊕ under certain conditions on

i and j. For example, monochromatic all-nearest-neighbors’ f(xi, xj) should return

emin = +∞ if i = j to prevent points from identifying themselves as nearest neigh-

bors.11 Similarly, the 2-point-correlation’s f(xj1 , xj2) should return e+ = 0 if j1 ≥ j2,

which restricts computation to the unique unordered pairs of distinct points.

1.4 Abstract algorithm derivation

The conventional, exhaustive solution approach for all 1-GNBPs follows immediately

from their definition: visit all index combinations, evaluate f at each, and reduce as

appropriate via iteration of ⊕. Assuming f and ⊕ to be constant time operations,

such direct computation requires O(Nm+n) time if all index sets are themselves O(N)

in size. This approach may be tolerable for first-order problems, where m + n = 1,

but—even admitting 1-GNBPs to be embarrassingly parallelizable—quickly becomes

9For m = 0, I is the set containing the empty tuple. Thus, if written,
⊎

would visit a single
(empty) i and package the result into a singleton set P0,n,⊕,f (I,J;X,Y ) = {((), p0,n,⊕,f(J;X,Y ))}.

10The case where index sets are neither equal nor disjoint is not considered. There may, however,
be interesting such cases, such as when one set is a subset of another.

11This is different from defining f(xi, xj) = +∞ for xi = xj : distinct indices i 6= j can nonetheless
yield overlapping points xi = xj , and all-nearest-neighbors should be able to find these.
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infeasible for all higher-order problems as N tends towards infinity.

In contrast to exhaustive computation, we have seen in Sections 1.1 and 1.2 that

basically the same higher-order divide and conquer algorithm efficiently solves a host

of 1-GNBPs, requiring only a minimum of adaptations to each specific problem. In

this section, we develop an abstract algorithm that captures all of the nuances of

Algorithms 1–7 and demonstrate it to be correct for all 1-GNBPs. We then explore

the concept of pruning, by which our abstract algorithm derives all of its speedup,

and enumerate several conditions that can make pruning possible.

1.4.1 Problem decomposition

The successful application of divide and conquer in any algorithm requires the ability

to break larger problems into a handful of smaller problems of the same type. In the

case of 1-GNBPs, properties of
⊎

and
⊕

enable convenient decompositions based on

hierarchical partitionings—i.e. trees—built on the input datasets. Throughout the

following, we consider subproblems Pm,n,⊕,f(I
′,J′;X, Y ) for subsets I′ ⊆ I and J′ ⊆ J

formed

I′ = I ′1 × · · · × I ′m for I ′k ⊆ Ik, 1 ≤ k ≤ m (14)

and similarly for J′. Eventually, we will understand subsets I ′k of individual index

sets Ik to represent nodes in trees built on each Ik; however, for our current purposes,

any subsets formed as partitions of Ik will do.

Our first decomposition is a direct result of the disjoint union being defined in

terms of the usual set union, itself a commutative, associative binary operation:

Lemma 1. Let split {A,B} of I′ be defined such that

A = I ′1 × · · · × A× · · · I ′m and B = I ′1 × · · · × B × · · · I ′m

for some partition A ∪ B = I ′k, A ∩B = ∅, and 1 ≤ k ≤ m. Then,

Pm,n,⊕,f(I
′,J′;X, Y ) = Pm,n,⊕,f(A,J′;X, Y ) ∪ Pm,n,⊕,f(B,J′;X, Y ).
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Proof. Direct consequence of Definitions 2 and 4 in conjunction with the observation

that A and B partition I′.

Our second decomposition is very similar to the first, but focuses on ⊕ instead

of the disjoint union. Before we can proceed, however, we must define a vectorized

equivalent of ⊕ because the decomposition’s operands will be sets of key-value pairs

rather than elements of P:

Definition 5. Given a binary operation of reduction ⊕ : P × P → P , we define

vectorized operation ⊕ : 2I
m×P × 2I

m×P → 2I
m×P such that

P ⊕Q = {(i, p⊕ q) : (i, p) ∈ P, (i, q) ∈ Q}.

Note that we use the same symbol for both vectorized and elemental ⊕ because it is

always clear from context which of the two is intended. Observe that vectorized ⊕ is

still both commutative and associative, and further that it distributes over ∪ because

non-matching indices in either operand are ignored. We can now decompose:

Lemma 2. Let split {A,B} of J′ be defined such that

A = J ′
1 × · · · × A× · · ·J ′

n and B = J ′
1 × · · · × B × · · ·J ′

n

for some partition A ∪ B = J ′
k, A ∩B = ∅, and 1 ≤ k ≤ n. Then,

Pm,n,⊕,f(I
′,J′;X, Y ) = Pm,n,⊕,f(I

′,A;X, Y )⊕ Pm,n,⊕,f(I
′,B;X, Y ).

Proof. Consequence of Definitions 1, 2, 4, and 5 in conjunction with the observation

that A and B partition J′.
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Combined, these two decompositions form the recursive step of the GFMM:

Theorem 3. Consider an algorithm that solves a 1-GNBP Pm,n,⊕,f by recursively

substituting

Pm,n,⊕,f(I
′,J′;X, Y )←





⊎
i∈I′

⊕
j∈J′ f(xi,xj,yi,yj) if I′,J′ are leaves,

Pm,n,⊕,f(A,J′;X, Y )

∪ Pm,n,⊕,f(B,J′;X, Y ) if should split I′,

Pm,n,⊕,f(I
′,A;X, Y )

⊕ Pm,n,⊕,f(I
′,B;X, Y ) otherwise,

(3a)

(3b)

(3c)

where A and B are chosen in accordance with Lemmas 1 and 2 and whether to

split I′ or J′ is decided arbitrarily so long as the splitting index set is not a leaf.

Overall computation of Pm,n,⊕,f(I,J;X, Y ) in this manner has the same result as

direct computation.

Proof. The base case (line 3a) is the definition of a 1-GNBP and so is correct, and

Lemmas 1 and 2 prove the decompositions in lines 3b and 3c to be correct if their

subproblems are themselves correct. Because index sets are finite and thus capable

of at most finitely many decompositions before reaching the base case, we reason by

induction that all subproblems are solved correctly and thus, ultimately, that overall

computation must also be correct.

The above result does not by itself constitute a fast algorithm because, without

pruning, computation will still visit all O(Nm+n) index combinations. Rather, this

algorithm serves as a starting point for the derivation of the GFMM, which recurses

similarly but also curtails work whenever it becomes provably unnecessary.

1.4.2 Subproblem summarization

Pruning is characterized by the substitution of subproblems Pm,n,⊕,f(I
′,J′;X, Y ) with

abbreviated, more easily computed results. Sometimes, these abbreviated results can
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be exact, such as, for example, when f(xi,xj,yi,yj) is provably e⊕ for all i ∈ I′ and

j ∈ J′. In other problems, however, pruning is only possible when results are approx-

imated, and in yet other problems, pruning—either exact or approximate—requires

the knowledge of bounds on results from other parts of computation. We encompass

both of these concepts with a generalized definition of bounding, or summarization,

which the GFMM employs to enable fast computation.

Summary results are derived from cached sufficient statistics computed at each

subset (tree node) I ′k and J ′
k. Such statistics always include a bounding structure,

such as a box or ball, to represent the metric points xik for ik ∈ I ′k, but may also

include other measures such as the points’ mean and covariance as well as measures

on nonmetric data yik . We express these measures as σ(I ′k;X, Y ) ∈ S and similarly

for J ′
k; we also define

σ(I′,J′;X, Y ) = (σ(I ′1;X, Y ), . . . , σ(I ′m;X, Y ), σ(J ′
1;X, Y ), . . . , σ(J ′

n;X, Y )) (16)

for aggregate index sets I′ and J′ as used throughout the above.

Definition 6. For a 1-GNBP Pm,n,⊕,f(I
′,J′;X, Y ), a summary result is a set of

potential results P̂m,n,⊕,f(I
′,J′;X, Y ) that satisfies the relation12

P̂m,n,⊕,f(I
′,J′;X, Y ) ⊇ {Pm,n,⊕,f(I

′,J′;X ′, Y ′) : σ(I′,J′;X ′, Y ′) = σ(I′,J′;X, Y )}.

Intuitively, P̂m,n,⊕,f is the set of all possible results of Pm,n,⊕,f given what we know

about X and Y in the ranges specified by I′ and J′. However, because the precise set

of all possible results is often costly or impractical to represent, we allow P̂m,n,⊕,f to

be a (preferably tight) superset of this value. In most cases—i.e. when the domain of

12An alternate definition of summary results instead allows them to satisfy the stated relation
with high probability, thereby enabling the computation of results that are probably approximately

correct. This approach tends to achieve even greater speedup than methods with guaranteed error
bounds [42, 35], though we will not discuss it further in this thesis.
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partial results P = R—superset summary results may be expressed

∀P∈P̂ , (i, pi)∈P : loP̂ ≤ pi ≤ hiP̂ (17)

which requires the storage of just two values loP̂ and hiP̂ . We typically compute

such results by considering, for instance, the minimum and maximum values that f

could possibly return for x and y as constrained by σ(I′,J′;X, Y ).

In order to make use of summary results as prunes and as bounds on other parts

of computation, we need the ability to compose the summaries of decomposite sub-

problems into aggregate summaries ultimately representative of overall computation.

This process is basically the reverse of the problem decompositions described above,

and is assisted by a pair of summery composition operations that we define presently:

Definition 7. Given a binary operation of reduction ⊕ : P × P → P , we define

summary composition operation ⊕ : 22
I
m

×P × 22
I
m

×P → 22
I
m

×P

such that

P̂ ⊕ Q̂ ⊇ {P ⊕Q : P ∈ P̂ , Q ∈ Q̂},

where P̂ and Q̂ are summary results and P ⊕ Q refers to the vectorized version

of ⊕. We similarly define a summary composition operation ⊎ such that13

P̂ ⊎ Q̂ ⊇ {P ∪Q : P ∈ P̂ , Q ∈ Q̂}.

Like atomic summary results, composed summary results are sets of possible valua-

tions of subproblems Pm,n,⊕,f(I
′,J′;X, Y ), though they are derived from more precise

understandings of X and Y given the cached sufficient statistics available from these

problems’ decomposed ranges of I′ and J′. We still permit superset relationships be-

tween composed summaries and the true set of all possible composed results in the

13Here, we use the symbol ⊎ instead of overloading ∪ because, unlike ⊕, ∪ can be confused as the
usual set union when applied to summery result operands.
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interest of feasible representation.

Again, when P = R, composed summaries are often given as in (17), and in fact a

host of lemmas support the composition of bounded results for specific operations ⊕:

Lemma 4. Operations ⊕ = +, min, and max may compose summary results by

applying (elemental) ⊕ to the summaries’ respective upper and lower bounds:

(
∀P∈P̂ , (i, pi)∈P : loP̂ ≤ pi ≤ hiP̂

)
,
(
∀Q∈Q̂, (i, qi)∈Q : loQ̂ ≤ qi ≤ hiQ̂

)

=⇒
(
∀P∈P̂⊕Q̂, (i, pi)∈P : loP̂ ⊕ loQ̂ ≤ pi ≤ hiP̂ ⊕ hiQ̂

)
.

Lemma 5. Operation ⊎ may compose summaries by relaxing their bounds:

(
∀P∈P̂ , (i, pi)∈P : loP̂ ≤ pi ≤ hiP̂

)
,
(
∀Q∈Q̂, (i, qi)∈Q : loQ̂ ≤ qi ≤ hiQ̂

)

=⇒
(
∀P∈P̂⊎Q̂, (i, pi)∈P : min{loP̂ , loQ̂} ≤ pi ≤ max{hiP̂ , hiQ̂}

)
.

Proofs. Consequence of Definitions 5 and 7 and the properties of +, min, and max:

Observe that, for all three of these operations, a⊕ b ≤ c⊕d if a ≤ c and b ≤ d. Then,

because loP̂ ≤ pi ≤ hiP̂ and loQ̂ ≤ qi ≤ hiQ̂ for all i and all P ∈ P̂ and Q ∈ Q̂, we

judge that loP̂ ⊕ loQ̂ ≤ pi ⊕ qi ≤ hiP̂ ⊕ hiQ̂ for all possible combinations P ⊕Q.

Regarding ⊎, observe that min{loP̂ , loQ̂} ≤ loP̂ ≤ pi ≤ hiP̂ ≤ max{hiP̂ , hiQ̂}

for all P ∈ P̂ and likewise for qi and all Q ∈ Q̂ and thus also all possible P ∪Q.

As a result of being defined in terms of the usual ⊕ and ∪, summary composition

operations ⊕ and ⊎ are both commutative and associative. Also, similar to how vec-

torized ⊕ distributes over ∪, it can be shown that summary composition operation ⊕

distributes over ⊎.
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Algorithm 8 A batch tree construction algorithm

function BuildTree(I ′k, X, Y, leaf size)
if |I ′k| ≤ leaf size then

3: Compute σ(I ′k;X, Y ) for all xi, yi, i ∈ I ′k
else

children(I ′k)← 〈some partition of I ′k〉
6: for all I ′′k ∈ children(I ′k) do

BuildTree(I ′′k , X, Y, leaf size)
end for

9: Compute σ(I ′k;X, Y ) given all σ(I ′′k ;X, Y ), I ′′k ∈ children(I ′k)
end if

end function

1.4.3 The generalized fast multipole method

The GFMM is the natural combination of the recursive decomposition of Theorem 3

and the computation and maintenance of summary results. Subcomputations formed

by decomposition are then pruned under a number of circumstances that can be

expressed as conditions on the summary results.

At this point, it becomes important to think of subsets I ′k ⊆ Ik as nodes in a tree

built on each index set Ik. Trees may be constructed in advance and reused between

different computations, and—depending on the kind of tree—may be constructed

incrementally or in batch. The particular data structure used does not affect the

correctness of the algorithm,14 though it does play a key role in bounding its asymp-

totic running time, as discussed in Chapter 2. Tree construction is also a convenient

time for the computation of cached sufficient statistics σ(I ′k;X, Y ), as shown in Algo-

rithm 8. As such, we view tree construction as the GFMM’s equivalent of the classical

FMM’s upward pass (FmmUpward in Algorithm 3).15

14Nodes’ children are, however, generally required to partition their parents, i.e. the same index
may not be repeated in multiple child nodes. This requirement is void in the special case that ⊕ is
idempotent (having a⊕ a = a), such as when ⊕ = min or max.

15As suggested by Algorithm 8, we permit non-binary trees. While Lemmas 1 and 2 as well as
Definition 7 expect binary decompositions, it is possible to extend these to the non-binary case
simply by chaining them over multiple splits of the same index set.
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Algorithm 9 The generalized fast multipole method

function GfmmExpansion(m,n,⊕, f, I,J, X, Y )
Push (I,J) onto heap

3: while has next(heap) do
Pop (I′,J′) from heap

if CanPrune(P̂m,n,⊕,f(I
′,J′;X, Y ),Compliment(I, I′)) then

6: postponed(I′)← postponed(I′)⊕ P̂m,n,⊕,f(I
′,J′;X, Y )

else if is leaf(I′) and is leaf(J′) then
for all i ∈ I′ do

9: for all j ∈ J′ do

pi ← pi ⊕ f(xi,xj,yi,yj)
end for

12: end for

else

for all I′′ ∈ children(I′) do
15: for all J′′ ∈ children(J′) do

Push (I′′,J′′) onto heap

end for

18: end for

end if

end while

21: GfmmPostprocess(⊕, I)
end function

function GfmmPostprocess(⊕, I′)
24: if is leaf(I′) then

for all i ∈ I′ do

pi ← pi ⊕ postponed(I′)
27: end for

else

for all I′′ ∈ children(I′) do
30: postponed(I′′)← postponed(I′′)⊕ postponed(I′)

GfmmPostprocess(⊕, I′′)
end for

33: end if

end function
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Algorithm 9’s GfmmExpansion function corresponds to the FMM’s side-to-

side pass (FmmSideToSide). Unlike the classic FMM’s side-to-side pass, however,

GfmmExpansion does not enforce strict depth-first traversal; rather, it uses a heap

to manage the order of subproblem decomposition. The heap priority function is algo-

rithm specific and, like the choice of tree, does not impact correctness but often does

affect the algorithm’s run-time performance. In this thesis, we consider two broadly

applicable heap priority functions, or traversal patterns : depth-first traversal, which

implements the heap as a stack, and hybrid-breadth-first traversal, which implements

the heap as a stack of queues. These two patterns are of particular interest both

because they greatly simplify the maintenance of summary results and because they

feature in bounding various algorithms’ run-time complexities.

Pruning. The pivotal feature of GfmmExpansion that distinguishes it from the

O(Nm+n) recursive decomposition of Theorem 3 is its call to CanPrune in line 5.

This conditional test is the heart of fast computation: it must itself be reasonably

quick, it must be true frequently enough to affect asymptotic running time, and yet it

must only be true when summary result P̂m,n,⊕,f(I
′,J′;X, Y ) captures its represented

subproblem well enough to yield provably tight bounds on the overall result. A general

specification of CanPrune is given

CanPrune(P̂ , Q̂) =
(
∃P̄ : ∀P∈P̂ , Q∈Q̂ : P̄ ⊕Q

R≈ P ⊕Q
)
, (18)

which for candidate prune P̂ and complimentary summary Q̂ (to be defined below)

ensures we can choose some P̄ (usually in P̂ ) that gets us sufficiently close to the true

result, no matter what the rest of computation yields. “Sufficiently close” is defined
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by a relation R, which for example might bound absolute error16

(
P̄

abs≈ P
)
=

(
∀(i, p̄)∈P̄ , (i, p)∈P : |p̄− p| < ǫ

)
, (19)

or relative error

(
P̄

rel≈ P
)
=

(
∀(i, p̄)∈P̄ , (i, p)∈P : |p̄− p| < ǫ · |p|

)
. (20)

Postprocessing. Similar to FmmDownward in Algorithm 3, the final stage of

computation in Algorithm 9, GfmmPostprocess, recursively passes cached prun-

ing information from each node to the leaves of the nonreduced indices, i.e. to each

individual query. Because this ultimately writes O(Nm) unique results—one for each

i ∈ I—its asymptotic running time is itself no better than O(Nm). Alternately, some

algorithms may tolerate non-unique results found for ranges of nonreduced indices,

thereby allowing GfmmPostprocess to shortcut and conceivably leading to asymp-

totic speedup. Regardless, postprocessing is almost always extremely fast compared

to GfmmExpansion, especially considering the fact that m is often 1 or 0; hence,

this thesis does not further consider the finalization of results.

1.4.4 Complimentary summarization

In the case that P = R, CanPrune is often a simple function of the values loP̂

and hiP̂ attributed to candidate prune P̂ , with no dependence upon any other part

of computation. For example, guaranteeing absolute error for ⊕ = + is as easy as

testing

CanPrune(P̂ , ·) =
(
1
2
(hiP̂ − loP̂ ) <

|J′|
|J|

ǫ
)
. (21)

On the other hand, both relative error and operations min and max benefit from the

knowledge of bounds on the results of the rest of computation: in the former case,

16In either of these cases, depending on ⊕, it may be appropriate to scale ǫ to reflect the size of

the candidate prune’s subset of reduced indices. For instance, if ⊕ = +, |J′|
|J| ǫ guarantees at most ǫ

error in the overall result.
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Algorithm 10 A means of computing the complimentary summary of a target sub-
problem P̂m,n,⊕,f(I

∗,J∗;X, Y )

function Compliment(I′, I∗)

let P̂ ← {∅}
3: if is leaf(I′) then

for all i ∈ I′ do

P̂ ← P̂ ⊎ {{(i, pi)}}
6: end for

else

for all I′′ ∈ children(I′), I′′ ∪ I∗ 6= ∅ do
9: P̂ ← P̂ ⊎Compliment(I′′, I∗)

end for

end if

12: for all (I′,J′) ∈ heap do // Note: I′ already bound!

P̂ ← P̂ ⊕ P̂m,n,⊕,f(I
′,J′;X, Y )

end for

15: return P̂ ⊕ postponed(I′)
end function

this provides a larger minimum value for |p| on the right-hand side of (20), and in

the later, it allows for the exact pruning of subcomputations bounded such that they

are entirely greater than or less than the results of computation so far.

The general version of CanPrune embodies these bounds in its second argument,

the complimentary summary Q̂ of P̂m,n,⊕,f(I
′,J′;X, Y )—that is, the composed sum-

mary result pertaining to all computation so far on nonreduced index subset I′ and

the compliment of J′ in J. Algorithm 10 provides a means of computing the compli-

mentary summary that makes no assumptions about how heap is traversed or about

the properties of ⊕. Its two arguments are a working set of nonreduced indices I′—

initially the nonreduced root I—and a target range of nonreduced indices I∗.17 It

works by first recursing to the leaves of I∗ to form bounds on the exact results so far

at each pi. Then, on the backward edge or recursion, it uses summary composition

operation ⊕ to combine these bounds with bounds for any pending work stored in the

heap as well as with any previous prunes stored in postponed(I′). Because recursion

17Note the change of variables between Compliment’s call in line 5 of Alg. 9 and its definition.
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starts from nonreduced index root I, and because all reduced index ranges J′ paired

with all nodes I′ ∩ I∗ 6= ∅ are one of (a) solved exactly, (b) pruned, or (c) represented

by exactly one (I′′,J′′), I′′ ⊇ I′, J′′ ⊆ J′ on the heap,18 the result of Compliment can

be taken to bound all possible results of Pm,n,⊕,f(I
∗,J− J∗;X, Y ) given what we have

learned from the whole of computation so far.

This implementation of Compliment is unfortunately too expensive for practical

use; however, various optimizations are possible for specific traversal patterns and for

special cases of ⊕. In particular, for any ⊕ that has inverse elements for all v ∈ P, we

can maintain partial results for Compliment at each node I′ ⊆ I such that both the

maintenance and finalization of complimentary summaries Q̂ require just O(logN)

time per node visit, which happens to be the same as the worst-case cost of popping

a node from the heap. More importantly, however, both the depth-first and hybrid-

breadth-first traversal patterns allow for the computation of Q̂ in just constant time

per node visit, regardless of the properties of ⊕. In any case, once we have obtained

Q̂, we are free to test, for example,

CanPrune(P̂ , Q̂) =
(
1
2
(hiP̂ − loP̂ ) <

|J′|
|J|

ǫ · (loP̂ + loQ̂)
)
, (22)

for P = R
+, ⊕ = +, and R = rel, or

CanPrune(P̂ , Q̂) =
(
hiQ̂ < loP̂

)
(23)

for ⊕ = min and similarly (with subscripts P̂ and Q̂ transposed) for max.

1.4.5 Traversal patterns

The heap priority function, or traversal pattern, used in GfmmExpansion governs

the order in which node groupings (I′,J′) are discovered, visited, and ultimately dealt

with. This may be a function of node groupings’ cached sufficient statistics, of their

summary results P̂ , or even of the complimentary summary results Q̂ available at the

18Except, of course, for (I∗,J∗), which has just been popped prior to the call of Compliment.
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time of their formation. For instance, an algorithm might elect to visit first those

node groupings with the greatest gap between hiP̂ and loP̂ in an effort to tighten

error bounds as quickly as possible; forced early termination would then tend to

yield minimal error given the allotted computation time. Time-budgeted algorithms

aside, however, empirical [65] and theoretical [6] results favor certain other traversal

patterns that either minimize the overhead cost of expansion (depth-first traversal)

or maximize the availability of information (hybrid-breadth-first traversal).

Depth-first traversal. Given that pruning is the GFMM’s only source of asymp-

totic speedup and, further, that the choice of traversal pattern does not impact the

correctness of computation, we judge that this algorithmic parameter should be se-

lected so as to enable the most frequent and earliest pruning while yet mitigating its

own operational costs. Therefore, in the special case that the traversal pattern has

no impact on the GFMM’s ability to prune—i.e., whenever CanPrune is strictly

a function of its first argument P̂—we should choose the least expensive traversal

pattern possible: depth-first recursion.

Depth-first recursion has essentially no overhead time cost per visited node group-

ing and requires at most O(logN) space when operating on balanced trees. Accord-

ingly, even though we motivated the depth-first traversal pattern for the case that

CanPrune ignores the complimentary summary result Q̂, its extreme speed and

simplicity make it desirable even for problems where Q̂ is important. Algorithm 11

shows a means of performing depth-first traversal while maintaining complimentary

summaries throughout computation. In reality, it computes Q̂ similarly to Algo-

rithm 10, but using precomputed upper (unvisited) and lower (cached) portions

that are kept available throughout computation. This is possible because the depth-

first traversal pattern ensures that the “heap” is always very small and is updated in

an extremely predictable manner. If, on the other hand, Q̂ is unused after all, then
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Algorithm 11 A depth-first traversal algorithm for the GFMM

function GfmmDepth(I′,J′, unvisited)

if CanPrune(P̂m,n,⊕,f(I
′,J′;X, Y ), unvisited ⊕ cached(I′)) then

3: postponed(I′)← postponed(I′)⊕ P̂m,n,⊕,f(I
′,J′;X, Y )

cached(I′)← cached(I′)⊕ P̂m,n,⊕,f(I
′,J′;X, Y )

else if is leaf(I′) and is leaf(J′) then
6: cached(I′)← {∅}

for all i ∈ I′ do

for all j ∈ J′ do

9: pi ← pi ⊕ f(xi,xj,yi,yj)
end for

cached(I′)← cached(I′) ⊎ {{(i, pi)}}
12: end for

cached(I′)← cached(I′)⊕ postponed(I′)
else

15: cached(I′)← {∅}
for all I′′ ∈ children(I′) do

let {J(1), . . . ,J(k)} ← children(J′) prioritized by Heur(·)
18: let unvisited(k) ← unvisited ⊕ postponed(I′)

for k′ from k − 1 down to 1 do

unvisited(k′) ← unvisited(k′+1) ⊕ P̂m,n,⊕,f(I
′′,J(k′+1);X, Y )

21: end for

for k′ from 1 to k do

GfmmDepth(I′′,J(k′), unvisited(k′))
24: end for

cached(I′)← cached(I′) ⊎ cached(I′′)
end for

27: cached(I′)← cached(I′)⊕ postponed(I′)
end if

end function
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all lines updating unvisited and cached may be omitted.

One other throwback to heap-based traversal is the use of Heur, the old heap

priority function, in line 17 to prioritize the order in which sibling node groupings are

processed. This is important in, for example, nearest-neighbors search, which must

be sure to explore nearer reference nodes first so as not to waste time traversing more

distant subtrees that otherwise could have been pruned.

Hybrid-breadth-first traversal. The hybrid-breadth-first traversal pattern uses

depth-first recursion when splitting nonreduced (query) nodes, but maintains lists

of reduced (reference) nodes to be processed for each query node. Each recursive

call then considers all reference nodes paired with the query node to see whether

they prune; if so, their postponed pruning information is recorded for the query node

as usual, but if not, their children are added to the next list of reference nodes to

be processed. After all of the reference nodes have been considered, the algorithm

recurses on the query children, each paired with the newly formed list of references.

Please see Section 4.4.2 for a full exposition.

1.5 Affinity propagation

Affinity propagation [22] is a recent clustering technique that chooses exemplars from

a data set X ⊂ X in attempt to maximize the sum of similarities between all points

and their nearest exemplar. Two points xi and xj have similarity Sij, and special

case Sii is set to parameter p, the preference of points to be exemplars. The number

of clusters to find is not explicitly specified, but is positively correlated with p. A

typical value of p is the median of the similarities between all pairs of points. The

algorithm alternatingly updates message matrices R and A with

Rij ← Sij −max
j′ 6=j

(Aij′ + Sij′) and Aij ←
(∑

i′ 6=i

(Ri′j)
+
i′ 6=j

)−

i 6=j
(24)
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where (v)+
cond

is max{0, v} for cond true and v otherwise, and likewise (v)−
cond

for

min{0, v}. To stem oscillations, one customarily mixes computed values of R and A

with their previous values according to a given damping factor λ. Upon convergence,

exemplars are those points with Rii + Aii > 0.

For |X| = N , R and A are of size N×N , but may be represented sparsely if

Sij = −∞ for most combinations of i and j. On the other hand, we observe that

undamped dense affinity propagation can be solved efficiently as a pair of second-order

1-GNBPs α and ρ if we rearrange computation

Rij ← Sij + αi[j], αi[j] ← min
j′ 6=j

(−Aij′ − Sij′), (25)

Aij ← (ρj − (Rij)
+
i 6=j)

−
i 6=j, ρj ←

∑

i′

(Ri′j)
+
i′ 6=j . (26)

Because αi[j] depends on j only for exclusion from min, we achieve its behavior by

finding the first two minima, returning the second if j is the index of the first. We

substitute further to obtain

αi[·] ← min
j

2(((Sij + αi[j])
+
i 6=j − ρj)

+
i 6=j − Sij) and ρj ←

∑

i

(Sij + αi[j])
+
i 6=j . (27)

When X is a metric space and similarity is a monotonically decreasing function of

distance, both α and ρ become 1-GNBPs as per Definition 4. Bounding boxes or balls

in X can then yield bounds on similarity, which—when combined with bounds kept

for the previous results of α and ρ—can in turn produce summary results α̂ and ρ̂.

1.5.1 Fast algorithms for α and ρ

Algorithm 12 details an algorithm for α that prunes when a subcomputation’s results

are bounded such that they are entirely greater than the greatest second minimum

found so far. As computation depends upon the old value of α, we refer to the new

result as α′. Bounds on both values are given, e.g., αlo(I) for the previous least first

minimum over index range I and α′
hi(I) for the current greatest second minimum.
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Algorithm 12 A algorithm to compute α

function Alpha(I ′, J ′)
if α′

hi(I
′) < αlo(I

′)− ρhi(J
′) then return

3: else if is leaf(I ′) and is leaf(J ′) then
for all i ∈ I ′ do

for all j ∈ J ′ do

6: α′
i[·] = min2{α′

i[·], ((Sij + αi[j])
+
i 6=j − ρj)

+
i 6=j − Sij}

end for

end for

9: α′
hi(I

′) = max{α′
i[·] : i ∈ I ′}

else

for all I ′′ ∈ children(I) do
12: for all J ′′ ∈ children(J) prioritized by −ρhi(·) do

Alpha(I ′′, J ′′)
end for

15: end for

α′
hi(I

′) = max{α′
hi(I

′′) : I ′′ ∈ children(I ′)}
end if

18: end function

Mapped function ((Sij+αi[j])
+
i 6=j−ρj)+i 6=j−Sij is bounded below by αlo(I)−ρhi(J).

Similar to (23), if α′
hi(I) < αlo(I)− ρhi(J), then the present subcomputation cannot

affect results and may thus be pruned. Traversal must then maintain α′
hi, a portion of

the complimentary result, and work order should be prioritized by least lower-bound

contribution. Note Algorithm 12’s particular similarity to all-nearest-neighbors in

Algorithm 5 despite this problem’s considerably more complicated mapped function.

This similarity arises from the algorithms’ common choice of traversal pattern (depth-

first) and from their use of the same pruning strategy for ⊕ = min.

Algorithm 13 details an algorithm for ρ that prunes whenever all of a subcompu-

tation’s results are exactly 0. We rename bounds α′
hi(I) computed in Algorithm 12 to

αhi(I) and, to simplify bounds, we initialized ρj ← (Sjj + αj[j])
−
true instead of e+ = 0

and update with ρj ← ρj +
∑

i(Sij + αi[j])
+
true.

Observe then that, if Shi(I, J)+αhi(I) ≤ 0, all pair-wise computations must result

in the identity and thus the represented subproblem may be pruned. This prune

does not depend upon the complimentary summary, so there is no need to maintain
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Algorithm 13 A algorithm to compute ρ

init ∀j∈J : ρj ← (Sjj + αj[j])
−
true

function Rho(I ′, J ′)
3: if Shi(I

′, J ′) + αhi(I
′) ≤ 0 then return

else if is leaf(I ′) and is leaf(J ′) then
for all i ∈ I ′ do

6: for all j ∈ J ′ do

ρj ← ρj + (Sij + αi[j])
+
true

end for

9: end for

else

for all I ′′ ∈ children(I) do
12: for all J ′′ ∈ children(J) do

Rho(I ′′, J ′′)
end for

15: end for

end if

end function

bounds on intermediate results, nor is there need to prioritize the order subproblem

expansion. The resulting algorithm is then similar to all-pairs KDE in Algorithm 6;

however, because pruning occurs only when + is a no-op, results are exact and no

postprocessing is required.

Convergence. Performed in alteration, the above update procedures compute ex-

actly the results on undamped affinity propagation. Unfortunately, without damping,

implicit matrices A and R tend not to converge; we remedy this problem by damping

just ρ. The relationship between this method and standard damping requires fur-

ther investigation, but our experiments yield comparable results in similarly many

iterations.

1.5.2 Experimental results

We implemented algorithms Alpha and Rho in C++ and directly compare them to

Frey and Dueck’s quadratic C implementation. Our dataset is a collection of points

in R
3 generated by a large-scale gravitational N -body particle simulation. We use
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Figure 1: Mean per-iteration (left) and overall (right) running times for affinity
propagation. Although the Frey-Dueck implementation runs out of memory after
10,000 points, we extrapolate their algorithm according to its quadratic run-time
complexity. Settings: gcc 3.4.6 on a NetBurst-class Intel Xeon 3.0GHz with 8GB
RAM running Linux 2.6.9.

the negative Euclidean distance as our similarity function and set preference p to the

median pair distance, as is typical.19 Figure 1 demonstrates asymptotic speedup both

per iteration and overall. Empirically, per-iteration running time scales proportional

to N1.3 and, when we factor in the number of iterations required for convergence, we

observe the overall running time to be O(N1.5). The quadratic algorithm unfortu-

nately does not support large enough datasets to observe its trend in the required

number of iterations; regardless, if we assume its running time to grow exactly pro-

portional to N2, our results suggest an extrapolated three-hundred-fold speedup for

datasets as large as one million points.

1.6 Future work: Beyond 1-GNBPs

While 1-GNBPs can already model many diverse and important computations, there

are yet other problems we would like to include in the full class of GNBPs that we

19The median pair distance is itself found via bisection of the of the 2-point correlation, further
demonstrating the broad applicability of 1-GNBPs.
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cannot immediately express in terms of the above. For example, all-pairs Nadaraya-

Watson regression [53, 77] is written

∀i∈I : ŷ(xi) =

∑
j∈J Kh(xi, xj)yj∑
j∈J Kh(xi, xj)

, (28)

which for each xi predicts target y by way of conditional expectation in conjunction

with the kernel density estimate. Observe that, even though we cannot model this

problem in its entirety as a single 1-GNBP, we can model its component numerators

and denominators as separate 1-GNBPs P1,1,+,Kh(xi,xj)yj and P1,1,+,Kh(xi,xj). Other

examples of non-1-GNBPs include problems with more than one kind of reduction,

such as finding the medoid of a group of points [70]

p = argmin
i∈I

∑

j∈I

d(xi, xj), (29)

as well as problems with functions between repetitions of the same reduction, such

as computing the log-likelihood of a mixture of Gaussians

logL =
∑

i∈I

log
∑

1≤j≤k

πjφ(xi;µj, σj). (30)

Similar to the above, we can model both of these if we treat their inner reductions as

separate 1-GNBPs—in this case P1,1,+,d(xi,xj) and P1,1,+,πjφ(xi;µj ,σj)—and then finalize

computation via subsequent reduction over the results. Hence, we define:

Definition 8. A generalized N-body problem (GNBP) is a function of 1-GNBPs

whose mapped functions may themselves be GNBPs.20

We are forced to distinguish fully general GNBPs from their simpler counterparts,

the 1-GNBPs, because many of the theorems we have presented above do not as

20When the results of multiple 1-GNBPs occur together in the same function, they are said to
be arranged in parallel. Alternately, when one 1-GNBP occurs inside another 1-GNBP’s mapped
function, the two are said to be arranged in series. In this later case, we understand the nested
1-GNBP to inherit the containing 1-GNBP’s index sets as nonreduced index sets, except for those
sets whose indices do not feature at all in the nested 1-GNBP. The overall order of a GNBP is then
the greatest order of any involved 1-GNBP.
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easily apply to the full problem class. Accordingly, except for kernel discriminant

analysis, described thoroughly in Chapter 4, this thesis does not further consider

GNBPs beyond the scope of 1-GNBPs. Nevertheless, asymptotically fast algorithms

are possible for full GNBPs as well; such algorithms can be said to work by solving

all component 1-GNBPs simultaneously.
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CHAPTER II

ASYMPTOTIC RUNNING TIMES OF THE GFMM

While the algorithmic strategy described above has been shown to be fast in numerous

empirical studies, analytical bounds on its running time offer even more convincing

evidence of the method’s inherent scalability. Alas, not every computation that can

be expressed as a GNBP can be proven to have a favorable run-time complexity, and

indeed some problems will fail to attain any kind of speedup due to their inability to

prune. However, in problems where a certain kind of aggressive pruning is possible,

computation can be shown to take only O(logN) or O(N) time.

2.1 Related work

A number of past papers have included proofs of bounded running time for special

cases of the GFMM. Perhaps the most studied of these are nearest-neighbors search

and, in particular, the all-nearest-neighbors problem. Early theoretical results for this

problem include publications by Shamos [67], Dobkin and Lipton [15], and Bentley [5];

however, it was Vaidya [73] who first proved all-nearest-neighbors to be solvable in

(optimal) O(N logN) time even in general-dimensional Euclidean space. Subsequent

work has generalized Vaidya’s result [10] and has also provided new algorithms for

all-nearest-neighbors in non-Euclidean spaces [13, 38, 39, 40, 6].1

Another well-studied GNBP with multiple published theoretical run-time bounds

is the classical N -body simulation problem in physics, as thoroughly discussed in

Section 1.1. For uniformly distributed two- and three-dimensional data, the Barnes-

Hut algorithm can be shown to be O(logN) at a single point [4], while Appel’s

1An excellent review of modern nearest-neighbors search methods is available in [14].
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algorithm and the FMM are O(N) overall [19, 30]. It should be noted, however,

that uniform data distributions cannot be expected even in gravitational particle

simulations, and yet these algorithms continue to perform well for non-uniformly

distributed datasets. This suggests that an even more general run-time bound exists

for these algorithms, and in fact this paper demonstrates such a bound based on the

data’s expansion constant instead of its distribution.

The first method to unify both nearest-neighbors search and N -body simulation

is the well-separated pair decomposition (WSPD) [10], which observes that both

problems are efficiently solved by decomposing work into ranges of queries and ref-

erences paired with one another, not unlike the decompositions described in Sec-

tion 1.4. Callahan and Kosaraju prove a generalization of Bentley’s k-d trees to

be constructable in O(DN logN) time for dimensionality D—an important result

in its own right—and further show that both of the above problems need only visit

O(O(
√
D)DN) subproblems in order to compute their result. While the WSPD’s

treatment of kernel summation is largely the same as Appel’s algorithm, its handling

of exact all-nearest-neighbors algorithm tends towards theory and away from prac-

tice: After (fast) linear-time decomposition, the algorithm must repeatedly partition

and refine size O(O(1)D) sets of neighbor-seeking points, once per node, in a process

that necessarily involves rampant shuffling of points or indices.

To date, the most practical exact nearest-neighbors search algorithm that nonethe-

less offers favorable theoretical run-time bounds is the cover tree algorithm developed

by Beygelzimer, Kakade, and Langford [6]. This algorithm hinges upon its specialized

search index, the cover tree, which is linear in size and can be built in O(c6N logN)

time, where expansion constant c is a property of the dataset related to its intrinsic

dimensionality. Beygelzimer et al. prove that breadth-first traversal on this structure

solves nearest-neighbors search at a single query in O(c12 logN) time and monochro-

matic all-nearest-neighbors in O(c16N) time. Ram [62] revisits these proofs to extend
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them to the bichromatic case as well as to a family of kernel summations. We note,

however, that while the proofs in both of these papers serve general-dimensional as

well as non-Euclidean data, they make certain assumptions about recursive behavior

that ultimately limit their applicability.2

The theorems and proofs contained in this chapter are strongly influenced by [6]

and [62], but they avoid their predecessors’ assumptions while yielding even tighter

bounds on asymptotic run-time. Accordingly, this paper not only represents the

first general proof strategy for bounding the running time of single- and multi-tree

methods, but also the first assumption-free proofs to bound the running times of

all-nearest-neighbors and kernel summation.

2.2 A general general-dimensional bound

The general strategy for bounding the running time of the GFMM starts by observing

that work is only performed when some node (or more than one node) in a node

grouping splits. Thus, if we count the number of times any node can split, we can

bound the overall running time of the algorithm. We obtain this value by bounding

the size of any given node’s cover set, or the set of node groupings that the given node

can be member of. Because there are are O(N) total nodes, if the cover set’s size is

bounded by a constant, then the algorithm performs at most O(N) work overall.

We define C(v) to be a data structure’s containment bound, or specifically the

maximum number of disjoint nodes with radius at least r that fit completely inside a

sphere of radius vr for any r > 0. Then, using the above methodology, we claim that

1-GNPBs of order 2 have run-time complexity

O(C(2(s+ 3))N),

where s is the separation constant from WSPD. The 2(s+3) is derived as follows: For

2For further discussion of these assumptions, please see Appendix A.
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pruning radius rprune = sr, all unpruned nodes fit entirely within a sphere of radius

r (radius of first node) + rprune + 2r (diameter of second node)

with center equal to the center of the first node. The factor of 2 comes from looking

for children, assumed to have (outer) radius no less than r/2.

Proof. Choose a traversal pattern that splits all nodes of larger radii first: A split-

ting node can only be paired with nodes that have the same (outer) radii as itself.

Only C(s + 3) such nodes can exist, but some of them might split at the same time.

Regardless, this set can have at most C(2(s + 3)) total children. Thus, each of the

O(N) nodes can only ever be introduced in at most C(2(s+3)) node-pairs as a result

of its parent node splitting. Assuming O(1) cost of split, prune, and base-case, the

algorithm’s overall run-time complexity is thus

O(C(2(s+ 3))N).

For a particular algorithm, it may also be necessary to prove that splits, prunes,

and base-cases are O(1). Also, using the hybrid breadth-first requires heap mainte-

nance of per-node cost

C(s+ 3) log C(s+ 3),

however, as we shall see for the all-nearest-neighbors algorithm, the cost of heap

maintenance may be occluded by other work.

2.2.1 Deriving C

Containment is data-structure dependent. For cover trees it is derived as follows:

The expansion constant is a measure of intrinsic dimension. It is defined for X ⊆ X

as the least value c such that

|BX(p, 2r)| ≤ c · |BX(p, r)|

49



for all p ∈ X and r > 0. Cover trees model “infinite” trees composed of spherical

nodes at all integer depths i. They have several important properties, but notably

among these are:

• Nodes at depth i have radius at most 2i+1.

• Node centers at depth i are at least 2i apart.

[6] shows how to build these as well as other properties of the cover tree.

Balls of radius 2i−1 centered at nodes at depth i are disjoint. ⌈log2 v⌉+3 doublings

of this radius is enough for each ball in a radius of v2i+1 to cover all the balls. There

can thus be at most C(v) = c⌈log2 v⌉+3 such balls.

It is also possible to derive C for quadtrees and octrees. In this case, it can be

shown that C(v) = (v
√
D)D for dimensionality D; when D > 3, we call this data

structure a grid tree. While this bound is indeed large for large D, at smaller D—say,

up to 4—it is often competitive with the equivalent bound for cover trees. In fact,

while c can depend on the distribution of the data, D does not, and thus derived run-

time bounds pertain to arbitrarily distributed data. On the other hand, it is tempting

to think that knowledge of c in high-dimensional Euclidean space can provide a tighter

run-time bound for grid trees; however, this does not appear to be the case.3

The remainder of this chapter assumes the data structure in use is a cover tree.

2.3 Nearest-neighbors search

The first step in bounding the running time of all-nearest-neighbors is bounding the

maximum size of its pruning radius, which is related to its separation constant s:

• At depth i, if the query center’s candidate nearest neighbor distance d is more

than 2i+2, then there can be no reference points nearer than d/2 < d− 2i+1.

3One notable issue is the fact that grid trees can have 2D children per node even for datasets
with low c, as shown in Appendix B.
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• The pruning distance is d′ = d + 2i+2 + 2i+1, where the minimum distance to

the query node (d′−2i+2) becomes greater than the maximum distance between

the query node and its candidate nearest neighbor (d+ 2i+1).

• All descendant points of the cover set are thus contained within d′ + 2i+1 =

d+ 2i+3. This is bigger than the single-tree case.

• Three doublings of d/2 are sufficient to cover everything, so there can be no

more than c3 points left to consider.

The base-case constant is thus slightly larger than that of the single-tree case as shown

in [6], but this does not play into the final run-time bound.

Any query node with d > 2i+2 can shortcut to exhaustive computation, and this

will never incur more than O(c3N) overall. On the other hand, for query nodes with

d ≤ 2i+2:

• The pruning distance is d′ = 2i+3 + 2i+1, which is again where the lower-bound

distance to the query node (d′ − 2i+2) becomes greater than d+ 2i+1.

• Thus all descendant points are within 2i+3 + 2i+2, which has diameter 2i+4 +

2i+3 < 2i+5.

• Each child has minimum distance 2i−1 between their centers, and thus radius

2i−2 balls centered on the children are disjoint. Thus, in 7 doublings of this

disjoint radius, the entire pruning radius is covered by a ball centered at any

child node within it.

This means the run-time coefficient will be c7 for the size of the cover set.

The above was reasoned specifically for the number of reference nodes that can be

paired with a given query node. More specifically, this is how many reference children

can exist beneath a query node’s cover set. We must now look into how much work is

incurred by reference nodes that must split even when query nodes do not. Because
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each reference node can only split once per cover set containing it, an important part

of this bound is bounding how many cover sets can contain it. Further, I can avoid

a factor of c4 (to produce the reference node’s children) if I instead count how many

cover sets can contain a reference node’s parent.

Whatever shallower depth the parent node is at, the number of cover sets it can

be in is bounded the same as for the node itself. Also, we are only interested in

cover sets containing parent nodes that do not immediately prune; pruning does not

incur any cost to create children and the cost of pruning has already been paid in an

amortized sense.

The reference parent cannot be paired with any (explicit) query nodes with shal-

lower implicit depth than it because they would have already split. Also, while paired

query nodes can be implicitly deeper, their parents cannot be, because they would

not have split yet. This means there is a one-to-one correspondence between the set of

explicit query nodes actually paired with the reference parent and the set of implicit

query nodes at the same depth as the reference parent that would have been paired

with it in the implicit algorithm. We are thus able bound the number of interested

query nodes as if they all had the same depth as the reference parent.

If the reference parent is at depth i, then each cover set has pruning radius at

most 2i+3+2i+1 (unless computation is about to terminate). Accordingly, only query

nodes centered within 2i+3+2i+1 of the reference center can still include the reference

parent in their cover sets. Query nodes at depth i are at least 2i apart from one

another, and thus balls of radius 2i−1 centered on the query nodes must be disjoint.

All descendant query points are within 2i+3 + 2i+2 of the reference parent, and the

diameter of that region is less than 2i+5. Thus, in just 6 doublings we count all the

query points. That means that at most c6 nonterminal query nodes can include the

reference parent in their cover sets, where c is properly the expansion constant of the

query set, rather than the references. Rather than distinguish query and reference
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expansion constants, however, we will assume that c is set to the maximum of the

two.

The amount of much work done per reference node per cover set it is born into is

log c: Each created node enqueues itself once and later dequeues itself once, and the

queue will only ever grow to size c6 (because immediately pruned children will not

ever be pushed, which leads to a maximum of c6 parents plus c6 unpruned children).

Note that the c6 log c cost of pushing all unpruned children is occluded by the c7 cost

of visiting all child nodes of the cover set.

It is important that the size of the heap actually does remain bounded by a con-

stant, as suggested above. If permitted to grow to size O(N), cost of heap operation

becomes O(logN), which ultimately introduces a logN term in the final run-time

complexity. A case in which the heap’s size can become large is if, for instance, leaf

nodes accumulate in the heap that ordinarily would prune but never get popped be-

cause they are infinitely deep. It is thus key to eliminate nodes that can prune as

soon as possible. Query splits already do this without additional effort, but the ref-

erence heap needs help. Accordingly, we introduce a second heap, keyed by distance

to the query node center, and maintained alongside the depth heap. Each heap’s

values store pointers into the other heap. Whenever a node pivots in one heap, it

updates the other heap’s return pointer (which the node itself conveniently points

to). Recursive calls thus check to see if the distance heap suggests any nodes that can

immediately prune and, if so, removes said nodes from both heaps. Once no prunable

nodes remain, they split the shallowest nodes in the depth heap, again updating the

distance heap to reflect. Query splits, on the other hand, always rebuild both heaps:

distances will completely change and, thus, so will pointers into the distance heap.

All heap maintenance costs an amortized log c per pop, since heap size is now truly

bounded as O(c6).
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For Nq the size of the queries and N the size of the references, and cq the query

expansion constant and c that of the references, we have O(c3N) work for terminal

nodes, O((c7 + c6 log c)Nq) work for the reference children seen and pushed at each

query split, and O(c6q log cN) work for reference splits in all the cover sets that can

contain them. The log c terms also amortize for when the node may ultimately prune

independent of a split. This is, overall, O(c7Nq + c6q log cN), or just O(c7N) if we

define c and N as the larger respective value of either the queries or references.

2.3.1 The monochromatic case

There is a simple proof to show that the monochromatic case behaves no worse

than the above. Recall that the monochromatic case is when the query set and

reference set are the same, and has the special case behavior that queries must not

identify themselves as nearest neighbors. At first it seems that pruning will be more

complicated than the bichromatic case, but it is actually only barely different.

Consider when a query node contains more than one point, i.e., when it is not

a leaf. The query node will always be a member of the cover set because its lower-

bound distance is zero (even though queries cannot match themselves, other points

in the same node may be arbitrarily close). This node still yields an upper-bound

nearest-neighbor distance of 2i+1, because all points other than the center are within

2i+1 of the center and vice versa, and—by assumption—there are points other than

the center. Thus, pruning is not adversely affected.4

Now consider when the query node is a leaf. Its counterpart in the cover set is

thus also a leaf, and we can eliminate it so as to avoid matching itself. Pruning and

termination then behave exactly the same as in the bichromatic case: either another

node is within the threshold distance d or computation is about to terminate. If a

node is within the threshold distance, we have the same bound on the pruning radius,

4The self-entry in the cover set actually yields an upper-bound distance of only 2i, because all
immediate children are within 2i of the center, and all other points are within 2i of them.
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and thus the number of cover sets per reference node is bounded the same, and thus

overall run time is bounded the same.5

2.4 Kernel density estimation

Assume a kernel function satisfies the following on interval [0,+∞):

• It is continuous, differentiable, nonnegative, and nonincreasing.

• Its result goes to 0 as its input goes to +Inf.

• It is composed of a concave section followed by a convex section, with inflection

point h.

The above covers the Gaussian kernel most directly. This yields:

• The second derivative of the concave section is nonpositive.

• The second derivative of the convex section is nonnegative.

• The first derivative is nonpositive.

• The first derivative at h is the most extreme.

In order to bound the run time, it is at first necessary to bound the number of

reference nodes that can exist in a cover set. In the case of absolute error in an

average, we have ǫ allowable error per reference point. Thus, an entire node is pruned

if the difference between the minimum and maximum kernel contribution is within ǫ.

Every node in the cover set must then have a greater such difference than ǫ.

5Actually, because of the tighter upper-bound distance mentioned in the previous footnote, the
number of nodes that can inhabit the cover set of a nonleaf node is just c5, with a maximum of
c6 children. Leaf nodes, on the other hand, prune just like the single-tree case, with again yields
these same bounds. Thus, we may eliminate precisely one factor of c from the bound for the
monochromatic case: O(c6N).
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Nodes at distance d > h+2i+1 are entirely within the convex section of the kernel.

Their delta is such that

ǫ < K(d− 2i+1)−K(d+ 2i+1) < −2i+2K ′(d− 2i+1). (31)

Nodes at distance d < h − 2i+1 are entirely within the concave section of the kernel

and have delta such that

ǫ < K(d− 2i+1)−K(d+ 2i+1) < −2i+2K ′(d+ 2i+1). (32)

Nodes with d in [h− 2i+1, h+ 2i+1] overlap with the steepest slope and so have delta

bounded

ǫ < −2i+2K ′(h).

From this last statement, [62] derives that

i > lg(−ǫ/K ′(h))− 2 = i1.

Further, it shows

−ǫ/2i+2 > K ′(d+ /− 2i+1) > K ′(h),

keeping mind that the derivatives are all negative. From here, we can again derive

i > lg(−ǫ/K ′(h))− 2.

We can thus prune everything outside K−1(ǫ) + 2i+1. The number of children is

bounded by c to the number of doublings it takes for a 2i−2 ball centered on any of

them to subsume the cover set, which has width 2K−1(ǫ) + 2i+3:

• If K−1(ǫ) ≤ 2i+2, width is less than 2i+4 for c6.

• If K−1(ǫ) > 2i+2, width is less than 4K−1(ǫ) for clg(K
−1(ǫ))−i+4.

Because i must be shallower than i1, we have

c⌈lg(−K ′(h)K−1(ǫ)/ǫ)⌉+6
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[62] visits a few additional cases, but the above is now sufficient to bound the overall

result. This is the maximum number of children a cover set can have at any depth,

and thus O(c⌈lg(−K ′(h)K−1(ǫ)/ǫ)⌉+6N) bounds the overall running time.

2.5 The N-body problem

For other kinds of kernels, we can tolerate relative error on the distances between

points rather than on the resulting kernel sum. This permits more aggressive pruning

at every depth, regardless of h or K−1(ǫ), though error bounds on the result may

ultimately be slightly looser.

The idea is to approximate a node with, say, its midpoint whenever node radius

becomes less than epsilon times the lower-bound distance. Thus, at depth i, the

pruning radius is 2i+1/ǫ and a cover set can have no more than c4−⌊lg ǫ⌋ nodes, provided

that epsilon is at most 1/2. Because pruning is not based upon the kernel at all, this

bound holds for all kernel sums. Using strict depth-first traversal, dual-tree running

time is bounded

O(c⌈lg(1/ǫ)⌉+5N),

which is a considerable improvement over the above.

For the relative error in distance method, it is possible to show that the 1/r kernel

has relative error in its result:

• Kernels are evaluated at d′ in the range [d(1± ǫ)].

• Relative error on each kernel value is thus |1 − d/d′|, which is bounded above

by 1/(1− ǫ)− 1.

• Because relative error propagates through sums, the final result has relative

error at most 1/(1− ǫ)− 1 as well.

If you instead want to specify ǫ′ relative error in your result, then you should set

ǫ = 1− 1/(1 + ǫ′). Bounds for the 1/rp kernel are also possible:
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• Relative error on kernel values is now |1− (d/d′)p|.

• This is still maximized when we set d′ = d− ǫ for feasible p and ǫ, which yields

a new upper-bound relative error of 1/(1− ǫ)p − 1.

• For ǫ′ relative error in the result, instead set

ǫ = 1− 1/(1 + ǫ′)1/p.

The above reasoning applies specifically to positive integer values of p, though it

may also be possible to extend this error bound to real p ≥ 1, and perhaps even to

0 < p < 1 as well.

The binomial approximation suggests that the relationship between ǫ, the error

in the distance, and ǫ′, the error in the result, is approximately a factor of p, meaning

that even large values of p are feasible.

2.6 Range count and the n-point correlation

Although the n-point correlation, the 2-point correlation, and range count (the single-

tree equivalent of the 2-point correlation) are well-modeled as kernel sums, the kernel

they use is discontinuous, rendering K ′(h) infinite or undefined. Accordingly, our

strategy for overcoming this problem is to permit error in distance threshold h instead

of the returned kernel value.

In a nutshell, the fast algorithm for range count prunes when a node is either

entirely inside h+ ǫ or entirely outside h− ǫ; nodes that satisfy both can be handled

arbitrarily. The result that you get is then somewhere in between the true results

computed for radii h ± epsilon. This avoids doing too much work on nodes that

intersect the pruning radius. An alternate, possibly more accurate form is to prune

nodes entirely inside or outside of h (like exact computation), as well as nodes that lie

between h± epsilon, say, by counting them as half, or even by percentage of included

volume. Nodes with width less than epsilon will thus always prune. The previous
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method prunes all nodes with width at most twice epsilon, but does not distinguish

definitely excluded regions from regions that sit on the threshold.

Analysis now seems to be similar to the kernel sums above. We have a depth

below which everything prunes and, similarly, a radius outside of which everything

prunes. This should be able to bound the size of the cover set:

• Observe that the entire content of the cover set is contained by a ball of radius

h+2i+2 centered on the query. (Note that we could use h− ǫ+2i+2 for the less

accurate method, but this does not help with analysis.)

• Disjoint balls of radius 2i−2 centered on immediate children of the cover set

must then double enough times to cover the entire cover set, i.e. twice the

above radius.

• If 2i+2 ≥ h, then the radius to cover is 2i+4, for 6 total doublings and the number

of immediate children bounded by c6.

• Otherwise, the target radius is 4h, for a number of doublings equal to ⌈lg h −

i+ 4⌉.

• Because all nodes prune when their widths drop below epsilon, we have 2i+2 ≥ ǫ,

or i ≥ lg ǫ− 2.

• We thus need at most ⌈lg(h/ǫ)⌉ + 6 doublings, for at most c⌈lg(h/ǫ)⌉+6 children

overall.

This is similar to the other bound on kernel sums because both work from the facts

that iteration must stop once it reaches a certain node width and that nodes provably

prune at a given depth-dependent radius. In both cases, running time depends as

much on bandwidth and error tolerance as it does on the number of points.

We now separately bound the size of the cover set for these the upper and lower

portions of computation. We have lg(h/ǫ) terminal iterations for a grand total of
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c⌈lg(h/ǫ)⌉+6 node visits6 and c2 logN leading iterations times the smaller cover set size

of c6. Hence, range count’s running time is overall

O(c⌈lg(h/ǫ)⌉+6 + c8 logN).

Note that bandwidth and error tolerance have no multiplicative relationship to dataset

size. This works for absolute error on Lipschitz continuous kernels as well by replacing

lg(h/ǫ) with lg(−K ′(h)K−1(ǫ)/ǫ) throughout.

Separately counting the upper and lower portions of computation unfortunately

does not help the dual-tree algorithm solving the 2-point correlation. As many as

O(N) nodes may exist even at the deepest level; therefore, if we again use depth-first

traversal, O(N) times the maximum cover set size at any depth gives the algorithms

overall run-time complexity of

O(c⌈lg(h/ǫ)⌉+6N).

2.7 The Axilrod-Teller potential

The Axilrod-Teller potential is a three-body potential that largely depends on the

1/rp kernel applied to each pair of points in a triple of points as well as on the angles

between the three points. Accordingly, its fast algorithm is similar to that of the

N -body problem, but operating on node triples rather than node pairs. Pruning is

strictly based on relative error in distance. This ends up translating to reasonable

error bounds on the final result; however, those bounds are not quite relative nor

absolute. Specifically, the numerator has absolute error (relative error is unreasonable

as the numerator can be 0) and the denominator (or its inverse, rather) has relative

error. The final result is then a sum over values with these mixed error bounds.

Recursion, for the most part, chooses to split the shallowest node(s) in the triple.

6The deepest iteration has a number of nodes bounded by the given maximum, but each next
deepest level’s bound is a factor of c less, and c is at least 2. This means that the sum of nodes over
all of these levels is at most twice the number of nodes at the deepest level.
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The exception is when one “far” node has less than the tolerated error in both of its

distances to the other nodes. This far node is then never split again, even though the

other two nodes may continue to split. In other words, the far node is pruned, even

though the full node-triple is not. It is easy to see that once a node becomes a far

node, its relative error in distance will always remain bounded. From here, the proof

works by first observing that all visited node-triples result from splitting some node

in a node-triple, and further that the splitting node cannot have been a far node.

The splitting node must have been paired with at least one other node that is not a

far node (otherwise the whole node-triple would have pruned), and that other node

must be contained within some radius based on the error tolerance.

• The expansion constant then bounds the number of nodes that can fit in such a

radius to below c⌈lg(
2
ǫ
+3)⌉+4. This quantity squared is the maximum number of

node-triples that can contain any given node in which no nodes are far nodes.

• This quantity by itself is also the maximum number of distinct (near) nodes

that can occur with any given node in node-pairs also containing a far node.

The task is then to determine how many far nodes can be paired with any given

pair of near nodes.

• From here, the proof observes that a far node at a given depth i must be outside

some radius dependent on i because it “pruned” at some point, but must also

be inside some radius dependent on i because its parent did not prune. These

radii end up defining disjoint nonempty annuli of the same sort as feature in the

nearest-neighbors proofs, and thus there are only logarithmically many of them.

Further each such shell can only contain a number of nodes again bounded by

the quantity above.
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• Thus, the running time of Axilrod-Teller is bounded by O(cO(1)N logN), be-

cause each node can be grouped with constantly many near nodes and logarith-

mically many far nodes.
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CHAPTER III

FAST DATABASE-RESIDENT MULTIVARIATE

STATISTICS

We develop for the first time fast DBMS-resident algorithms for multivariate statis-

tical operations—including all-nearest-neighbors, kernel density estimation, and the

2-point correlation—based on efficient multi-tree traversals. We implement these

methods within a commercial DBMS, Microsoft SQL Server, and demonstrate their

performance on real scientific data, the Sloan Digital Sky Survey. Empirical results

suggest dramatic asymptotic speed-up over naive SQL implementations, with many

orders of magnitude improvement for datasets containing millions of rows. This work

demonstrates the scalability of multi-tree methods to datasets that cannot fit in RAM.

3.1 Introduction

The Sloan Digital Sky Survey (SDSS) [79] Catalog Archive Server (CAS) is a pio-

neering example of the use of modern database management systems (DBMS) for

large scale scientific applications [72]. The SDSS is the largest archive of wide-area

astronomical observations, detailing hundreds of measurements for each of 933 million

unique sky objects. CAS makes 58TB of this data available over the web, permit-

ting web users to perform simple searches and analyses via standard SQL queries.

Further, CAS provides a number of rudimentary spatial queries, including nearest-

neighbors search with regard to apparent sky position. CAS, however, lacks support

for many other operations critical to machine learning and statistics, such as comput-

ing probability densities or simultaneously finding nearest neighbors for all objects in

the database.
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Until very recently, multivariate techniques such as kernel density estimation were

not even feasible in the large-scale setting. Unlike the fast univariate analyses that

have been possible in databases for years, the best performing multivariate machine

learning methods are conventionally O(N2) or worse. However, recent breakthroughs

using spatial data structures offer new hope for the computation of these measures

in just O(N) time [25]. These data structures and the multi-tree methods that use

them find either exact results or results with guaranteed error bounds, can operate on

high-dimensional data, and are broadly applicable to domains ranging from protein

folding to market prediction to stellar redshift estimation. Their general strategy

is to use divide-and-conquer, cached sufficient statistics, and bounds on partial re-

sults to eliminate unnecessary or repeated work whenever possible. Spatial join is a

high-profile example of a multi-tree algorithm in DBMS literature, and many other

examples exist in the field of machine learning, as discussed below.

Mainstream database management systems—including Microsoft SQL Server—

have begun to support certain fast spatial analyses such as multivariate range queries.

So far, however, these features have focused on two-dimensional data and only offer

a limited, non-extensible selection of algorithms. For other multivariate analyses,

including most multi-tree methods, scientists must currently use external programs or

specialized databases. Alternatively, our work is a step towards the goal of embedding

machine learning in existing database products. We introduce the most successful

spatial data structures and algorithms in literature as direct extensions to Microsoft

SQL Server. Our library is extensible and works in-place, sidestepping the cost of data

transfer and transformation. Our implementation also avoids the need for complicated

installation procedures; because our library runs within SQL Common Language

Runtime (CLR), it is immediately available to all existing SQL Server users. The

work presented in this chapter demonstrates a number of firsts:

• We develop the first library for general-purpose multi-tree computation that
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can work on DBMS-resident data and, by extension, out-of-core data.

• Our code implements the first general-dimensional spatial data structure in a

commercial DBMS.

• Our data structures exhibit the first use of cached sufficient statistics to accel-

erate machine learning methods in a DBMS.

• Our library makes available for the first time scalable algorithms for all-nearest-

neighbors, kernel density estimation, and the 2-point correlation in a DBMS

setting.

• Lastly, we obtain the first results of these three methods for a dataset with as

many as 40 million rows.

An important note about the computational problems we treat is that they are batch

data analyses, which emit results given the whole of the data and cannot operate by

visiting each row, one at a time. Accordingly, we assume that the data is fixed for

the duration of our analyses; this differs from the usual regime considered in DBMS

literature and thus calls for different data management strategies.

3.2 Related work

A considerable amount of research has been put into the development of efficient

indices for spatial data [24], ranging from the grid file to the R*-tree to the Bkd-

tree [60]. These structures must strike a balance between fast spatial queries and

fast inserts, updates, and deletes, usually obtaining similar asymptotic properties to

the B+ tree. The spatial queries they serve often include the window query, which

finds all objects within a given bounding box, and the distance query, which finds

all objects within some distance of a given location. These queries are corollary to

finding all entries within a given range of keys in a B+ tree, and when paired with the
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appropriate index, they can exhibit run time performances within 20% of the optimal

O(logN) lookup time for a database of N objects [55].

Another treated operation—one that is more closely related to the multi-tree

methods presented in this thesis—is the spatial join. This finds all pairs of objects

that overlap or that are within a given distance of each other. One can compute a

spatial join in terms of other spatial queries by, for example, iterating over all M

query objects and issuing a window query for each one. This at best O(M logN)

approach is, however, inferior to even faster algorithms that exploit the tree structure

both to answer individual queries and to share work between queries [9].

Yet another operation of significant interest to research and business communities

alike is nearest-neighbors search. This query finds the object or objects in a database

with the least distance to a given location. Nearest-neighbors search is often imple-

mented as an extension of the distance query by shrinking the queried distance as

objects are found until only the desired number of neighbors remain. Under certain

conditions, this technique can be shown to be O(logN) for data stored in a cover

tree [6]. Accordingly, the problem of finding nearest neighbors for a large number

of queries can be solved in O(M logN) time again by iterating over each of the M

queries, either one at a time or in small batches [80]. In this thesis, however, we show

an even faster all-nearest-neighbors algorithm similar in concept to the faster spatial

join algorithms [25].

Lastly, and while still on the topic of related work, we feel it important to

note that, even though spatial data structures have been discussed in DBMS lit-

erature for decades, only a few have been implemented in mainstream database

products. MySQL offers two-dimensional R-trees; Oracle offers two-, three-, and

four-dimensional R-trees as well as quadtrees; R-trees are available in PostgreSQL’s

extensible GiST structure; and SQL Server employs a 4-layer hierarchical grid file.

Each of these structures support many useful spatial queries and analyses, but none
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of them permit the algorithms described in Sections 1.1 and 1.2.

3.3 DBMS-resident kd-tree construction

The first challenge of implementing any of these algorithms in a relational DBMS is

constructing and storing the spatial data structure. Throughout this effort, we have

assumed that the data is available in total at the time of tree construction, and thus

we have focused on efficient bulk loading methods. The best such methods result

in trees that are adaptive to the distribution of the data, e.g. kd-trees. However,

this adaptivity inherently requires consideration and manipulation of a large amount

of the data, if not all of it, even in the early stages of tree construction. We do

not ordinarily have sufficient resources to perform these tasks in memory; thus, tree

construction must be achieved via fast SQL queries.

A first attempt at SQL-based out-of-core tree construction directly adheres to the

definition of a midpoint splitting kd-tree. The algorithm issues a query to obtain

the data’s overall minimum bounding box, an O(N) computation because no spatial

index already exists on the data. It then divides this box along the midpoint of

its widest dimension and recurses to form subtrees for either of the node’s newly

formed children. Each recursive call again queries for the minimum bounding box

of a portion of the dataset, but these subsequent queries are each still O(N). This

is because, although these queries represent constricted regions of space, SQL has

no means of using the data structure we are presently forming and so must search

through the entire dataset to find the queried points. This practice of re-querying

must be carried out until the contents of nodes become small enough to fit in memory,

allowing for more efficient completion of the bottom sections of the tree. For system

memory capable of tree construction onM rows, the overall run time of this procedure

is 2N
M
O(N) = O(N2), thereby defeating the purpose of forming the spatial index.

Thus, even before we finish constructing our data structure, we must be able
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to perform fast, spatially local queries. We achieve this by building a hybrid tree

structure, where upper portions are formed via fast but spatially nonadaptive SQL

operations and lower portions are formed both efficiently and adaptively in mem-

ory. Specifically, we employ a Morton Z-ordering to quickly construct a quadtree-like

structure, and then revise the lower portions of this structure by replacing them with

kd-trees.

The Morton Z-ordering is a space-filling curve that is particularly easy to compute

even in high dimensionalities while still affording good spatial locality properties. In

two dimensions, each pair of bits in a point’s z-value indicates which hierarchical

quadrant the point lies within. As a result, z-values may be found directly from

points’ positions within their dataset’s minimum bounding box. We exploit this

property to quickly compute and index z-values for all rows. Afterwards, we are

able to select ranges of z-values much more efficiently than we could the contents of

arbitrary bounding boxes.

Maximal ranges of z-values sharing a common bit prefix correspond to partition-

ing hyper-rectangles in the data space. We select the largest such ranges—i.e., ranges

with the shortest common prefixes—that can nonetheless still fit in system memory

and form kd-trees on their contents. Because the ranges we select correspond to par-

titioning hyper-rectangles, the formed kd-trees have no overlapping bounding boxes.

We proceed to recursively link adjacent kd-trees, adding parent nodes that unite the

pair as siblings, until a single over-arching tree structure is formed. The only differ-

ence this structure has from a pure kd-tree is that, near the root, splits are chosen to

bisect the full data space rather than the data’s minimum bounding boxes.

We store formed kd-nodes in their own table, each row detailing a node’s ID,

child IDs, bounding box, and other useful statistics such as the amount of points

it represents. Node IDs form a pre-order sorting of the tree. In addition, points

are augmented with unique IDs which increment such that points may be sorted in
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the same order as the leaves that contain them. Clustered indices are built on both

of these keys for the purpose of rapid sequential access of spatially local nodes and

data. Note that our arrangement of nodes on disk does not attempt to minimize

the average number of pages visited on root-to-leaf traversals, but instead focuses

on filling pages with spatially local leaves. In our experience, this practice assists

dual-tree computation more so than careful attention to page height balance.

This tree construction procedure involves a total of three passes over the data and

the formation of two clustered indices. Forming the clustered indices matches the

kd-trees’ construction time complexity at O(N logN), though this indexing process

is heavily optimized by SQL Server.

3.4 DBMS-resident kd-tree interface

Our trees are somewhat specialized for multi-tree computation, but we have nonethe-

less abstracted their inner workings from the algorithms that might make use of them.

The tree manages its own memory for its nodes and the data beneath them. This

abstraction helps facilitate rapid algorithmic prototyping and development.

Our kd-tree interface and back-end utilities are coded in managed C# with the

intention of being used in SQL CLR to perform complex computations directly on

the database server. With as little hassle as possible, the tree provides developers

a means of accessing nodes’ bounding boxes, children, and represented data as if it

were an in-memory structure. Under the hood, the tree uses a set associative cache

to manage both its nodes and data. These caches have tunable parameters including

page size and the number of sets, and rely on their corresponding tables’ clustered

indices to help reduce the cost of cache misses.

It is still the developer’s responsibility to ensure their code does not run out of

memory for other reasons. For instance, both all-nearest-neighbors and KDE require

the maintenance of intermediate results at nodes in the query tree. It would be
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Table 2: Run times for tree construction. The SQL clustered index is a component
of forming the kd-tree, and TPIE additionally requires data to be exported from the
database (not timed). Extrapolated results are italicized.

Rows SQL index SQL kd-tree TPIE Bkd-tree

10m 114s 760s 325s
20m 229s 1471s 690s
30m 339s 2443s 1050s
40m 450s 4824s 1430s

too expensive to persist this frequently updated data to disk, so developers must

instead keep it in their own buffers and be careful to segment the query tree into

more manageable pieces before starting dual-tree recursion. Once computation has

finished on a portion of the query tree, the final results may be written to a table.

3.5 Experiments

We perform a series of experiments using a dataset from the SDSS detailing 4D

photometric data for 40 million observed sky objects. All of our experiments op-

erate on dual-core 2GHz Athlon workstations with 1GB of RAM running Windows

XP and Microsoft SQL Server 2008. We aim to show that our algorithms are vast

improvements over even the best exhaustive implementations and, further, that they

are competitive with more specialized libraries that incidentally incur significant data

transfer and transformation costs.

In our first experiment, we consider the time it takes to build the trees used by

our algorithms. For a point of reference, we break out the time SQL Server spends

to create the clustered indices involved in our trees. We also compare to Bkd-tree

construction in the Transparent Parallel I/O Environment (TPIE) [75] testbed, which

implements a host of advanced spatial indices. Table 2 shows that spatial index

creation is close to 10% of the cost of our tree construction, suggesting there may be

some potential for further code optimization, but certainly no more than an order of

magnitude. Also, we demonstrate that we are only around half the speed of TPIE
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Table 3: Run times for all-nearest-neighbors. Naive is exhaustive all-pairs com-
putation and Batched is a variation of Naive that amortizes access to the DBMS.
Extrapolated results are italicized.

Rows Naive Batched Single Dual TPIE

40k 2754s 159s 11s 4s 1.5s
200k 66700s 3850s 69s 29s 7.0s
2m 6620000s 383000s 2594s 488s 71s
10m 5 years 0.3 years 19600s 2652s 360s
20m 20 years 1.2 years 44900s 5872s 730s
30m 45 years 2.7 years 72400s 7423s 1100s
40m 80 years 4.8 years 101000s 13677s 1500s

Table 4: Run times for KDE and the 2-point correlation with bandwidth/radius set
equal to 0.05.

KDE Two point
Rows Naive Dual Naive Dual

10k 14s 16s 2s 1s
20k 62s 30s 8s 3s
30k 155s 51s 19s 4s
40k 279s 84s 34s 4s
50k 429s 136s 54s 6s
100k 1744s 350s 223s 12s

despite laking a similarly high degree of control over the system’s disk storage.

In our second experiment, we demonstrate the capability of these trees to per-

form fast all-nearest-neighbors computation. We compare against the most obvious

exhaustive SQL implementation, a blocked exhaustive implementation, the single-

tree method of all-nearest-neighbors (using our trees), and the single-tree method

as implemented in TPIE. Table 3 shows that all exhaustive implementations quickly

become infeasible and that the dual-tree algorithm handily outpaces single-tree com-

putation. Here, TPIE reaps the benefits of better control over its memory, but it

should be noted that, due to design choices, TPIE cannot be easily extended to

support dual-tree all-nearest-neighbors, let alone general multi-tree computation.

Next, we consider KDE. Table 4 shows a clear distinction between the quadratic
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scaling of the naive exhaustive implementation and the linear scaling of the dual-tree

algorithm.

Lastly, we examine the 2-point correlation. Table 4 again shows a clear asymptotic

improvement over the naive algorithm.

3.6 Conclusion

We have demonstrated a sophisticated spatial data structure that works by piggy-

backing on top of the native B+ trees present in a relational DBMS. Using this,

we have shown that it is possible to incorporate advanced algorithms for the best

performing machine learning analyses in existing DBMS installations. Among other

things, the work illustrates the use of cached sufficient statistics, which has potentially

even broader applicability to databases.

This library points the way to do many other statistical and machine learning

computations in the DBMS setting that have already been shown in the in-memory

case. Some examples on the horizon include the fast multipole method for KDE,

nonparametric Bayes classification, and hierarchical clustering via the fast Euclidean

minimum spanning tree algorithm. While our spatial trees are general purpose, some

of these other techniques require more flexibility than they can currently offer. In

particular, a direction we would like to take this work in the future is to permit

incremental construction of the trees, perhaps in the style of Bkd-trees, as well as the

ability to modify their contents.

Through continued development of our spatial tree infrastructure and the algo-

rithms that it supports, we hope to make advanced machine learning analyses a

familiar task among the database community.
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CHAPTER IV

MASSIVE-SCALE KERNEL DISCRIMINANT ANALYSIS

In this chapter we take a deep look at a specific GNBP, and in doing so we shift to a

different notation.

We describe a fast algorithm for kernel discriminant analysis, empirically demon-

strating asymptotic speed-up over the previous best approach. We achieve this with a

new pattern of processing data stored in hierarchical trees, which incurs low overhead

while helping to prune unnecessary work once classification results can be shown, and

the use of the Epanechnikov kernel, which allows additional pruning between portions

of data shown to be far apart or very near each other. Further, our algorithm may

share work between multiple simultaneous bandwidth computations, thus facilitating

a rudimentary but nonetheless quick and effective means of bandwidth optimization.

We apply a parallelized implementation of our algorithm to a large data set (40

million points in 4D) from the Sloan Digital Sky Survey, identifying approximately

one million quasars with high accuracy. This exceeds the previous largest catalog of

quasars in size by a factor of ten.

4.1 Classification Via Density Estimation

Kernel discriminant analysis (KDA) [21], also called kernel density classification [33]

or nonparametric Bayes classification, is a nonparametric method for predicting the

class of query observations given a set of labeled reference observations. It is partic-

ularly useful in scientific applications due to its balance of properties:

1. It is highly accurate, owing to its nonparametric form.
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2. It is easy to use in that it requires little understanding of the problem’s under-

lying model but still offers an intuitive means of incorporating prior knowledge.

3. If desired, its classifications are also accompanied by highly accurate probabili-

ties of inclusion in each class, which can be useful in their own right.

We are motivated by a high-profile application in astrophysics pertaining to the

identification of quasars. Believed to be active galactic nuclei, quasars are the bright-

est objects in the universe, typically out-shining their entire host galaxy by several

orders of magnitude. As a result, they are the most distant and thus oldest objects

we can see, making knowledge of their locations invaluable to the verification of the-

ories such as dark energy. Prior to work with our astrophysicist collaborators [64],

the largest available catalog of quasars listed fewer than one hundred thousand ex-

amples; massive sky surveys such as the Sloan Digital Sky Survey (SDSS), on the

other hand, are expected to contain millions. Our goal is then to predict which of

the unlabeled objects in the survey are quasars given a comparatively small (though

still prohibitively large) sample of hand-identified objects.

Until recently, there was no feasible means of performing exact KDA when both

the number of queries and number of references were large; traditionally, KDA is

O(N2) when there are O(N) queries and O(N) references. Further, existing approx-

imate methods do not provide hard bounds on introduced error. A new algorithmic

approach presented in [29], however, offers marked improvement to running-time with

no introduction of error. In this chapter, we describe a new algorithm similar to that

of [29] which achieves dramatic asymptotic speed-up.

The remainder of this section details the mathematics of KDA. Following that,

we examine what it takes to make a fast algorithm for KDA, juxtaposing previous

work with the primary contributions of this paper. Sections 4.3 and 4.4 establish a

framework for our algorithm and subsequently fill in the details. Section 4.5 then
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considers accelerations to KDA’s learning phase and Section 4.6 discusses the pos-

sibility of parallelization. In Section 4.7, we demonstrate our algorithm’s superior

performance on two data sets.

4.1.1 Bayes’ Rule in Classification.

The optimal classifier on M classes assigns observation x ∈ X to the class Ck, 1 ≤

k ≤ M , that has the greatest posterior probability P (Ck|x) [63]. Applying Bayes’

rule,

P (A|B) =
P (B|A)P (A)

P (B)
, (33)

we assign x to Ck if, for all l 6= k, 1 ≤ l ≤M , we have

f(x|Ck)P (Ck) > f(x|Cl)P (Cl), (34)

where f(x|C) denotes the probability density of data sampled from C and P (C) is the

prior probability of C. (Note that Bayes’ rule’s denominator f(x) cancels from either

side.) It is typically given that
∑M

k=1 P (Ck) = 1, i.e. that there are no unexplained

classes, and accordingly, that f(x) =
∑M

k=1 f(x|Ck)P (Ck). In the case that M = 2,

this implies that it is equivalent to classify x as C1 when P (C1|x) =

f(x|C1)P (C1)

f(x|C1)P (C1) + f(x|C2)P (C2)
> 0.5. (35)

4.1.2 Kernel Discriminant Analysis.

In place of the typically unknown values of f(x|C), KDA uses kernel density estimates

of the form

f̂h(x|C) =
1

N

N∑

i=1

Kh(x, zi), (36)

trained with bandwidth h on a size N set of reference observations zi ∈ X of class C.

Kernel Kh may take many forms but must be non-negative and have

∫

X

Kh(x, z)dx = 1 (37)
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for all z, i.e. it must be a probability density function. For X = R
D, a popular choice

of kernel is the Gaussian,

Kh(x, z) =
1

(
h
√
2π

)D exp

(−‖x− z‖2
2h2

)
, (38)

though the optimal kernel for density estimation is in fact the Epanechnikov kernel

[68],

Kh(x, z) = max

{
D + 2

2VD(h)

(
1− ‖x− z‖2

h2

)
, 0

}
, (39)

where VD(h) is the volume of a D-dimensional sphere with radius h. Observe that

the Epanechnikov kernel is a parabolic function of distance for ‖x− z‖ < h and zero

otherwise; we will later exploit this property to accelerate computation. Also, note

that many kernels are actually functions of distance d(x, z) = ‖x − z‖; later in this

chapter, Kh of one argument is understood to work on the distance term directly.

Proper selection of bandwidths hk, 1 ≤ k ≤M , is critical for accurate classification

results. Theory suggests that the optimal bandwidth for density estimation is related

to a data set’s variance and the inverse fifth-root of its size [68], but in practice, it

is most effective to choose bandwidths that minimize KDA’s cross-validation error or

some other measure of loss.

4.1.3 Extensions to the Classifier.

It is not uncommon to have additional information y ∈ Y available for each observa-

tion x that is nonetheless difficult to incorporate into density estimates f̂h(x|C). For

instance, corresponding information in Y may not be available for all of the refer-

ences, or Y may not be favorable to kernels (e.g. may have no workable interpretation

as RD). If it is reasonable to assume that y has negligible effect on class-conditional

densities, we may still capture its effect in the class’ priors with

P (C|x, y) ∝ f(x|C, y)P (C|y)≈ f(x|C)P (C|y). (40)
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Similarly, for fine-tuned control over density estimates, we may provide weight wi

with each reference zi, giving

f̂h(x|C) =

N∑

i=1

wiKh(x, zi), (41)

where
∑N

i=1wi = 1.

Another modification possible in the M = 2 case replaces the 0.5 in (35) with an

alternate confidence threshold t. Rather than performing optimal classification, this

has the effect of identifying points with very high (or low) probability of being in C1,

which can be a useful surrogate for fully computed class probabilities. Simple algebra

and incorporation of the above gives us

(1− t)f̂h1(x|C1)P (C1|y) > tf̂h2(x|C2)P (C2|y); (42)

we will use this as our classification test for the remainder of this paper. This modifi-

cation may seem trivial from the mindset of exhaustive computation, which provides

fully computed class probabilities for each query, but it is useful under the new al-

gorithmic approach. Our algorithm deals only in bounds on probabilities and aims

to terminate computation on a query as soon as it is possible to demonstrate (42) or

its converse. While we will know that the query’s probability is definitely above or

below the threshold, we have no guarantee of being able to show by how far.

4.2 Computational Considerations

An obvious means of performing KDA is to compute the full kernel summation for

each query. For O(N) queries and O(N) references, this naive algorithm is O(N2)

overall. While this approach is trivial to implement even in parallel, it does not scale

to large N . In the best of conditions, a compute cluster with ten thousand nodes

would only be able to handle a problem two orders of magnitude larger than is feasible

on a single machine.
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In order to make asymptotic improvement to running time, it is necessary to avoid

a great deal of the explicit kernel evaluations. A new computational approach devel-

oped in [29] achieves this by rearranging work in a manner that permits consideration

of subsets of queries and references at an abstract level. It is then hoped that bounds

on results obtained at abstract levels can demonstrate that further work is unneces-

sary and can thus be pruned. For example, as suggested above, we may prune all

remaining work on a subset of queries if density bounds prove (42) or its converse for

each of the queries.

4.2.1 Previous Work.

The algorithm presented in [29] is best described as a high-order divide-and-conquer

method for the M = 2 case of KDA. In a nutshell, it constructs two binary spatial

trees, one on the query data and one on the reference data, with pairs of nodes from

either tree representing abstracted computations. It then iteratively refines bounds

on class-conditional density estimates f̂h1(x|C1) and f̂h2(x|C2) until each query’s clas-

sification can be shown. Given bounding boxes for either node in a pair, bounds on

the pair’s contribution to densities are computed using kernel evaluations at the pair’s

minimum and maximum distances. Bounds are refined by, at each iteration, heuris-

tically selecting an unrefined pair and replacing its contribution with the combined

contributions of its four child pairs. If (42) becomes provably true or false for a

query node, i.e. one class’ lower-bound probability becomes greater than the other’s

upper-bound probability, then the queries represented by the node are appropriately

labeled and further work on those queries is removed from consideration. Ideally,

bounds give a query’s classification long before all references are visited exhaustively,

thereby abbreviating computation while still yielding the exact result.
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4.2.2 This Thesis.

In this chapter, we directly extend the work done in [29]. Our new algorithm is the

same in spirit as the old one and is also implemented specifically for the M = 2 case1,

but it benefits from several key differences:

• It uses an improved work order that better favors pruning and is implemented

with reduced overhead and improved numerical stability.

• It uses the Epanechnikov kernel, which enables a new kind of pruning based on

bounded distances between node pairs.

• It can compute results for multiple bandwidth combinations simultaneously,

sharing work to accelerate bandwidth optimization.

• It can parallelize computation over the queries, making use of spatial informa-

tion to reduce each processor’s overall workload.

We achieve empirically asymptotic improvement over the previous best algorithm,

met with multiple orders of magnitude improvement on the data sets we examined.

4.3 Foundations

Previous work [29] does not formalize the manner of rearranging work it uses to make

efficient computation possible. We include the underlying mathematics here for the

purposes of rigor and helping to clarify how the algorithm presented in this chapter

works.

In all of the following, X is a subset of the full query set Xroot ⊂ X ×R. Queries

are given by pairs (x, π), where x is used in density estimation and π = P (C1|y).

Symbol Zk represents a subset of the weighted references Zroot
k ⊂ Z ×R available for

1Note, however, that no inherent properties of the algorithm prevent it from being extended to
M > 2.
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for class Ck. References are pairs (z, w), where z is used in kernel computations and

w is the weight. Note that the sum of weights of Zroot
k equals 1, but the same of Zk

generally does not. We use “root” to denote full sets because they are semantically

equivalent to the roots of trees used by our algorithm.

4.3.1 Recursive Formulation.

We represent density estimation with a set of key-value pairs φk(X,Zk), where

φk(X,Zk) =






x,

∑

(z,w)∈Zk

wKhk
(x, z)



∣∣∣∣∣∣
(x, π) ∈ X



 . (43)

Classification is then a task of comparing density estimates for matching keys in

φ1(X,Z1) and φ2(X,Z2) in accordance with (42).

For partitions XL ∪XR = X and ZL
k ∪ ZR

k = Zk, observe that

φk(X,Zk) = φk(X
L, Zk) ∪ φk(X

R, Zk) (44)

= φk(X,ZL
k) + φk(X,ZR

k ), (45)

where addition on sets of key-value pairs is understood to add values for matching

keys. This immediately suggests a recursive alternative to the naive algorithm in

which the query set and reference sets are repeatedly split until they become singleton,

whereupon φk may be computed directly. Note that this reformulation by itself does

nothing to help asymptotic running time because, without pruning, each of the O(N2)

kernel evaluations will ultimately occur. What it does offer is the occurrence of

φk(X,Zk) for nontrivial subsets X ⊆ Xroot and Zk ⊆ Zroot
k , instrumental to bounds

computation and pruning.

Our algorithm cannot afford to spend much time deciding splits XL ∪ XR = X ,

etc., so we use space partitioning trees to decide these splits in advance. This has the

effect of forcing the same partitions to occur throughout computation, though this is

not necessary in the underlying math.
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4.3.2 Bounds Computation.

It is typically possible to bound kernel results between points in X and Zk if we

know bounding boxes or bounding radii for these sets. In the case of the Gaussian

and Epanechnikov kernels, bounds are functions of upper- and lower-bound distances

du(X,Zk) and d l(X,Zk) between the regions containing X and Zk, with

Ku
hk
(X,Zk) = Khk

(d l(X,Zk)) (46)

and vice versa. Bounded contributions to density then assume that all references are

either maximally near to or maximally far from the queries, and are given by

φu
k(X,Zk) = W (Zk)K

u
hk
(X,Zk) (47)

and similarly for φ l
k(X,Zk), where

W (Zk) =
∑

(z,w)∈Zk

w. (48)

Note that bounds have zero width when X and Zk are singleton and are thus equiv-

alent to exact computation.

To make use of these bounds in classification, we must compose them to form

bounds on the full density estimate, i.e. such that they bound a kernel summation

over the full reference set. For a query (x, π) ∈ X , this is achieved by combining the

bounds of P components of computation with

Φu
k(x)←

P∑

p=i

φu
k(X

p, Zp
k) (49)

and similarly for Φ l
k(x), where Zp

k , 1 ≤ p ≤ P , forms a partition of Zroot
k and (x, π) ∈

Xp for each p. We further define

Φu
k(X)← max

(x,π)∈X

Φu
k(x), Φ l

k(X)← min
(x,π)∈X

Φ l
k(x), (50)

which can be computed directly if X ⊆ Xp for all p.
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4.3.3 Iterative Refinement.

Computation under the new algorithmic approach implicitly constructs two binary

expression trees, one for either class, in accordance with the recursive formulation

given in (44) and (45). The nodes of these trees represent partial density estima-

tions φk(X,Zk), with interior nodes symbolically composing their children via ∪ or

+. Operation begins with trees initialized to single nodes for φ1(X
root, Zroot

1 ) and

φ2(X
root, Zroot

2 ), and at each iteration expands a selected, non-singleton leaf into two

children reflecting having split either its queries or references. After expansion, the

algorithm reassesses bounds on the full density estimates for the involved queries as

in (49), using bounded results computed for the newly created leaves in conjunction

with bounds already available from other leaves.2 We stop expanding nodes φk(X,Zk)

for which we can show either of

(1− t)Φ l
1(X)Π l(X) > tΦu

2(X)(1− Π l(X)), (51)

tΦ l
2(X)(1−Πu(X)) > (1− t)Φu

1(X)Πu(X), (52)

where

Πu(X) = max
(x,π)∈X

π, Π l(X) = min
(x,π)∈X

π, (53)

which decides (42) for all queries in X .

It is easy to see that this procedure terminates. For finite X and Zk, recursion

will ultimately reach singleton sets X = {(x, π)} and Zk = {(z, w)}, where upon

contribution bounds computations become exact, i.e. the upper and lower bound

become equal, and recursion along that branch ceases. If all branches for some x

reach singleton leaves, then bounds on the full density estimate are also exact and

thus one of (51) or (52) must be true3 for each singleton X . If branches do not reach

2It is easy to prove by induction that, for any (x, π) ∈ X , we can find leaves that satisfy the
requirements of (49).

3Or either side is exactly equal, but this is degenerate and may be thought of as a third, non-
classifying prune.
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leaves then it is only because x has already been pruned. Thus, all queries x will

eventually prune and iterative refinement will stop. Correctness is more difficult to

show rigorously; we omit the proof because it is nonetheless fairly intuitive.

4.4 The Algorithm

In the previous section, we did not impose any requirements on how one chooses

partitions XL ∪ XR = X , etc., or on the order of leaves expanded during computa-

tion. These details have no impact upon correctness but are nonetheless critical with

regards to running time. An additional concern is the practical storage of computed

bounds in a manner that assists with finding bounds on the full density estimate.

Addressing these issues, we also describe a new pruning opportunity and the book-

keeping that facilitates it, ultimately arriving at the algorithm in Figure 14.

4.4.1 Spatial Trees.

Both the algorithm in [29] and the one presented in this chapter use kd-trees [59],

a kind of spatially-informed tree, to facilitate the splitting of query and reference

sets. We construct two trees, one for Xroot and one for the combined4 references Zroot
1

and Zroot
2 , in which each interior node represents a partitioning XL ∪XR = X , etc.;

we will reuse these partitions any time we need to split data later in computation.

Points stored beneath each node are represented by their bounding box and child

nodes are formed by splitting the widest dimension of the parent’s bounding box

along its midpoint. Leaves are formed when the number of represented points drops

below a specified threshold; the algorithm stops partitioning a set once it reaches

a leaf and computes φk(X,Zk) exhaustively if both X and Zk are leaves. Trees

also store useful statistics on represented queries and references, such as bounds on

prior probability
[
Π l(X),Πu(X)

]
and summed reference weight W (Zk), which may

4Alternately, separate trees could be used for each class.
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be computed rapidly in a bottom-up manner. Lastly, the query tree provides a

convenient location to store sums of computed bounds; [29] makes heavy use of this,

but the algorithm we propose does not.

The primary motivation for spatial trees is that they tend to tighten bounds

rapidly as we expand φk(X,Zk) even though splits are made without any knowledge

of interaction between X and Zk. In other words, we would not expect to see gigantic

improvement in bounds from choosing custom partitions for each expansion, a com-

paratively expensive procedure. Tree building incurs O(N logN) computations, but

the cost of this step is small compared to the rest of the algorithm except for very

large data sets. It is also possible to reuse existing spatial trees on the data, perhaps

computed because some prior algorithm needed them as well.

Due to the conjoined nature of our reference tree, matching simultaneous expan-

sions are made to φ1(X,Z1) and φ2(X,Z2). Bounds and pruning on these computa-

tions are informed by separate bounding boxes and statistics stored for either class;

if ever a reference node ceases to contain points from one of the classes, the node is

removed from consideration when bounding that class’ kernel summation. We will use

Z1,2 to denote nodes of the combined tree, from which both Z1 and Z2 are available.

Because sets X and Zk occurring in computation constitute nodes from kd-trees,

we will henceforth refer to components of computation φk(X,Zk) as node-pairs.

4.4.2 Expansion Pattern.

To guide computation, [29] uses a heuristic favoring the expansion of node-pairs that

provide the most bounds tightening over the contribution of their parents. This may

sound desirable with regards to testing (51) and (52), but it does not guarantee

that further expansion will provide much improvement and is prone to missing node-

pairs that are just about to make a “breakthrough.” A further problem of this

kind of expansion is its dependence upon priority queues (implemented, for instance,
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as a heap), which in our experience impose significant computational overhead and

cache inefficiency. Also, because potentially any query node may follow the present

computation, it is necessary to propagate and later undo all computed bounds to all

levels of the query tree to which they apply, possibly impacting numerical stability.

Our algorithm uses a non-heuristic expansion pattern best thought of as a hybrid

between depth- and breadth-first. In short, queries are handled depth-first while

references are handled breadth-first. This pattern’s associated data structure is a

stack of lists of node-pairs, where each list pertains to one query node X and all

references nodes Zp
1,2, 1 ≤ p ≤ P , at some level of the reference tree, i.e. with

⋃P
p=1Z

p
1,2 = Zroot

1,2 . Bounds computation over a list consists of accumulating the

partial bounds found for all node-pairs φ1(X,Zp
1 ) and φ2(X,Zp

2 ) as per (49). Query

splits are performed by replacing the list at the top of the stack with two equal-length

lists pertaining to either child of X and the same nodes Zp
1,2. Reference splits instead

replace the list with an at most double-length list pertaining to the same X and all

of the children of nodes Zp
1,2. Leaf nodes Zp

1,2 are left unsplit until X becomes a

leaf, at which point they are processed exhaustively and removed, their contribution

added to exact results stored for each query point. In practice, we always split queries

and references simultaneously if possible. Processing lists in this manner results in

a logarithmically deep stack containing lists of sizes doubling from 1 to O(N), thus

consuming O(N) space overall. This is more overhead than depth-first’s O(logN)

space, but significantly less than breadth-first’s O(N2) (pessimistically assuming that

no prunes occur).

Because bounds computed for one set of queries do not influence the results of

another, the order in which nodes are processed from the query tree does not have any

effect on pruning. The new expansion pattern exploits this to minimize overhead while

still offering tightened bounds from all parts of the reference tree, crucial in demon-

strating queries’ classifications. Further, each list in the new expansion pattern offers
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sufficient information to find the most current bounds on X ’s full kernel summation:

the respective sums of upper and lower bounds obtained for the represented node-

pairs. This eliminates any need to propagate or undo bound contributions throughout

the query tree, saving time as well as minimizing the effect of limited floating-point

precision.

4.4.3 Pruning.

We have already motivated classification pruning, where one class’ lower-bound prob-

ability exceeds the other’s upper-bound probability. Each time the hybrid expansion

pattern forms a new work list, it finds bounds on the full density estimates and tests

(51) and (52); if either of these are true, it labels the represented queries appropriately

and pops the list from the stack.

The Epanechnikov kernel makes possible two other very important pruning op-

portunities. As mentioned before, this kernel is parabolic for distances smaller than

bandwidth h and zero otherwise. Thus, if the lower-bound distance between X and

Zk is greater than the bandwidth, those points’ contribution to the kernel sum will be

exactly zero. This makes for a convenient exclusion prune: node-pairs φ1,2(X,Z1,2)

with d l(X,Z1,2) ≥ max{h1, h2} may be removed from the hybrid expansion pattern’s

work lists.

Similarly, the Epanechnikov kernel’s parabolic interior enables inclusion pruning,

though this is somewhat more involved. Because a sum of parabolas is a parabola,

we may compute the exact kernel summation over a set of references Zk at once if

we can prove it is entirely within bandwidth h of some query x. By extension, if

du(X,Z1,2) ≤ min{h1, h2}, we may exactly compute φ1,2(X,Z1,2) in O(N) or find

tighter than normal bounds in constant time. The derivation of this prune observes

that square distance may be computed

(x− z) · (x− z) = x · x− 2x · z + z · z, (54)
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ultimately yielding the expression

W (Zk)
D + 2

2VD(hk)

(
1− δ(x, Zk)

h2
k

)
(55)

in place of the original kernel summation, where

δ(x, Zk) = x · x− 2x · S(Zk)
W (Zk)

+ T (Zk)
W (Zk)

, (56)

S(Zk) =
∑

(z,w)∈Zk

wz, T (Zk) =
∑

(z,w)∈Zk

wz · z; (57)

note that S(Zk) and T (Zk) may be precomputed at the same time as W (Zk). This

constitutes a parabola centered at S(Zk)
W (Zk)

. To employ this in pruning, each work list

must record respective sums Wk, Sk, and Tk of W (Zk), S(Zk), and T (Zk) for pruned

nodes Zk, replicating these sums into future lists formed via expansion. These terms

will eventually provide exact density contributions to individual queries once X is a

leaf, but before expansion reaches that point, we compute tighter than normal bounds

with

WkKhk
(δ l(X,Wk, Sk, Tk)) (58)

and vice versa, where

δu(X,Wk, Sk, Tk) = du
(
X, Sk

Wk

)
− Sk

Wk
· Sk

Wk
+ Tk

Wk
(59)

and similarly for δ l(X,Wk, Sk, Tk).

4.5 Bandwidth Learning

Class-dependent bandwidths hk have a significant impact on classification accuracy,

making the determination of optimal bandwidths a critical phase in any applica-

tion of KDA. In practice, the best approach to bandwidth optimization is minimiz-

ing cross-validation classification error. Our algorithm is capable of leave-one-out

cross-validation (LOO CV) at negligible additional cost. Further, a specialized multi-

bandwidth version of our algorithm shares work between multiple bandwidth com-

binations, greatly reducing the time necessary to explore the space of bandwidth

settings.
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Algorithm 14 Pseudocode for kernel discriminant analysis. Each recursion begins
by testing all nodes from a level of the reference tree against the query node, pruning
those it can while simultaneously accumulating the contributions of others and build-
ing the next level’s work list. Pruned contributions are then applied to computed
density bounds and bounds are tested to see if they demonstrate a classification.
Handling of base-case omitted.

init X = Xroot, work = {Zroot
1,2 }

init W1,2 = 0, S1,2 = 0, T1,2 = 0
function Kda(X,work,W1,2, S1,2, T1,2)

init Φ l
1 = 0, Φu

1 = 0, Φ l
2 = 0, Φu

2 = 0
init next work = {} // filled below
for all Z1,2 ∈ work do

if du(X,Z1,2) ≤ min{h1, h2} then
// Inclusion prune; add to parabola
W1 +=W (Z1); W2 +=W (Z2)
... // Similar for S1,2 and T1,2

else if d l(X,Z1,2) < max{h1, h2} then
// No prune; record contribution
Φ l

1 +=W (Z1)Kh1(d
u(X,Z1))

... // Similar for Φu
1 , Φ

l
2, and Φu

2

add ZL and ZR to next work
else// Exclusion prune; do nothing
end if

end for

// Account for inclusion prunes
Φ l

1 +=W1Kh1(δ
u(X,W1, S1, T1))

... // Similar for Φu
1 , Φ

l
2, and Φu

2

if (1− t)Φ l
1Π

l(X) > tΦu
2(1−Π l(X)) then

label X as C1; return
else if tΦ l

2(1− Πu(X)) > (1− t)Φu
1Π

u(X) then
label X as C2; return

end if

Kda(XL, next work,W1,2, S1,2, T1,2)
Kda(XR, next work,W1,2, S1,2, T1,2)

end function
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Fast bandwidth optimization is arguably the most significant contribution of this

chapter. Often times, full density estimates are more useful than just classifications

and existing fast algorithms can approximate these with high accuracy [25, 27, 43, 41].

Regardless, these estimators must undergo the same learning as KDA before their

results can be trusted. Classification pruning, available in KDA but not regular

kernel density estimation, can greatly accelerate this preliminary phase. Further, the

results of the KDA learning phase may be used to restrict computations of full density

estimates to just those points identified as members of some class of interest.

4.5.1 Leave-one-out Cross-validation.

In cross-validation situations, queries Xroot and references Zroot
1,2 represent the same

data. It is handy to denote data as a set X1,2 ⊂ X ×R×R, separable into sets X1 and

X2 for either class and with elements (x, π, w): the observation, its data-dependent

prior, and its reference weight.

Our goal is to find the results for each (x, π, w) that would be obtained from

normal computation if Z1,2 = X1,2 \ (x, π, w). It is sufficient and safe to relax density

bounds computed for X1,2 to reflect having left out one point from the appropriate

classes. In the case of the Gaussian and Epanechnikov kernels, a point certainly

contributes the maximum kernel value to itself. Leaving a point out then results in

subtracting the maximum kernel value at that point’s weight from both the upper

and lower bounds for its class, renormalizing bounds such that weights again sum to

one. Because any changes we make to bounds must apply to all points represented

by X1,2, we must find a lower bound on changes made to the lower bounds and an

upper bound on changes made to the upper bounds. If X1,2 contains points of either

class, then a suitable modification to the lower bounds is to subtract the maximum

kernel value at the maximum represented weight but not renormalize, and a suitable

change to the upper bounds is to renormalize without having subtracted anything.
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The new bounds are then

Φ l
k(X1,2)− wu(Xk)Khk

(0),
Φu

k(X1,2)

1− wu(Xk)
, (60)

where

wu(Xk) = max
(x,π,w)∈Xk

w. (61)

Clearly, if X1,2 contains only points from one class (i.e. one of X1 or X2 is empty),

then tighter modifications can be made. This is imperative in the base-case because

a classification may never be found otherwise.

4.5.2 Multi-bandwidth Computation.

Classification accuracy is nondifferentiable, preventing the use of most rapidly con-

verging optimization techniques to find favorable bandwidths. Indeed, it is not un-

common for researchers to test bandwidths by hand until accuracy seems to have

peaked, a time-consuming process prone to error and wasted effort. Here, we de-

scribe an extension to our algorithm that swiftly and systematically considers all

pairs of two sets of bandwidths.

Given sorted lists of bandwidths hi
1, 1 ≤ i ≤ I, and hj

2, 1 ≤ j ≤ J , we modify

the standard algorithm such that it maintains vectors of corresponding length for

computed density bounds ~Φl,u
k and pruning information ~Wk, ~Sk, and ~Tk. The modified

algorithm iterates over the bandwidths from largest to smallest when considering each

item from the work list, reusing distance computations and shortcutting computation

on smaller bandwidths when a larger one prunes via exclusion. We annotate work

items Zk with lo(Zk) and hi(Zk), the lowest and highest indices of bandwidths not yet

pruned via inclusion or exclusion. Iteration is constrained to between these indices,

and the work item is removed from future lists if no unpruned bandwidths remain.

The algorithm then considers all pairs of bandwidths for classification pruning. We

also annotate query nodes X with lok(X) and hik(X) for either class, the lowest and
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highest indices of bandwidths for which classifications are yet to be made. Iteration

for both density computation and classification is constrained to within these indices,

and the entire work list is popped when the query node has been classified for all

bandwidth pairs. Pseudocode for this algorithm is shown in Figure 15.

There is only a factor of O(I + J) more work needed to compute the bandwidths’

associated densities, but there are O(IJ) classification tests to perform at each level

of recursion. The classification test is, however, very fast in comparison to density

estimation. We should then expect to see running time grow roughly linearly for

bounded values of I and J . The sharing of tree building, distance computations, and

exclusion pruning also provide speed-up over running the standard algorithm on all

of the bandwidth combinations.

We may use this multi-bandwidth version of the algorithm in a rudimentary but

effective means of bandwidth optimization. Starting from theoretic approximations of

the optimal bandwidths [68] or some simpler measure such as the average kth-nearest-

neighbor distance5, test ten or so bandwidths ranging from an order of magnitude

larger to an order of magnitude smaller. Then, iteratively narrow ranges to contain

just the few bandwidths found to yield the greatest accuracy, or extend the range if

the greatest accuracy bandwidths lie on the edge. This can only hope to offer linear

convergence upon a local optimum, but it is conceptually similar to the well-known

Nelder-Mead method of optimization and in practice finds reasonable bandwidths in

just a few iterations. It is also possible to reuse trees between iterations.

4.6 Parallelization

The naive algorithm for KDA is highly parallelizable, but parallelized implementa-

tions still suffer from the method’s inherent poor scalability. Even assuming commu-

nication cost to be negligible, it is likely uneconomical to purchase one-hundred-fold

5A fast algorithm for this problem is suggested in [25].
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more processors to tackle a problem just one order of magnitude larger than was

previously feasible.

The algorithm we propose is also parallelizable. There are no read/write depen-

dencies between sibling recursions; thus, it is safe for these tasks to be handled by

different processors. For P processors and grain size parameter G, we perform me-

dian (rather than midpoint) splits in the query tree up to depth ⌈logPG⌉, enqueuing

each node at that depth in a global work list. This ensures that there are at least

G grains per processor and that grains are all about the same size. As they become

available, processors are assigned computations φ1,2(X,Zroot
1,2 ) for successive nodes X

in the global work list. The use of multiple grains per processor helps alleviate in-

evitable irregularities in the amount of time it takes to classify different regions of the

queries; using too many grains, however, both incurs communication overhead and

reduces the degree to which work can be shared between queries.

This method of parallelization should be more advantageous than simply breaking

the queries into chunks before forming trees. The initial query nodes assigned to

processors are more compact than they would otherwise be, thus encouraging the

earlier pruning of much of the reference set. This has the effect of restricting the

amount of the reference tree needed by individual processors, which can be exploited

by an advanced data distribution system to reduce overall communication. We must

note, however, that this method presupposes the formation of the query tree before

parallelization can begin. At present, tree building is performed in serial, but future

work aims to address whether that step can also be parallelized.

4.7 Results

We applied our algorithms to two data sets: a large selection of quasars and stars

from the SDSS and the Cover Type data set available from the UCI Machine Learning

Repository [3].
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Algorithm 15 Pseudocode for the multi-bandwidth algorithm. For either class, the
algorithm checks for inclusion prunes at each h and then computes normal bounds
until the first exclusion prune. Pruned contributions are then applied for each band-
width and bandwidth combinations are tested for classification. Base-case omitted.

init X = Xroot, work = {Zroot
1,2 }, ~W1,2 = 0, ~S1,2 = 0, ~T1,2 = 0

function multi(X,work, ~W1,2, ~S1,2, ~T1,2)

init ~Φ l
1 = 0, ~Φu

1 = 0, ~Φ l
2 = 0, ~Φu

2 = 0, next work = {} // filled below
for all Z1,2 ∈ work do

for i from hi(Z1) to lo(Z1) do
if du(X,Z1) > hi

1 break

// Inclusion prune; add to parabolas
~W1(i) +=W (Z1); . . . // Similar for ~S1 and ~T1

end for

for i continuing to lo(Z1) do
if d l(X,Z1) ≥ hi

1 break

// No prune; record contributions
~Φ l

1(i) +=W (Z1)Khi
1
(du(X,Z1))

~Φu
1(i) +=W (Z1)Khi

1
(d l(X,Z1))

end for

// No work for exclusion prunes
update lo(Z1) and hi(Z1); . . . // Similar for Z2

if lo(Z1) ≤ hi(Z1) or lo(Z2) ≤ hi(Z2) then
add ZL and ZR to next work

end if

end for

for i from lo1(X) to hi1(X) do // Account for inclusion prunes
~Φ l

1(i) += ~W1(i)Khi
1
(δu(X, ~W1(i), ~S1(i), ~T1(i)))

~Φu
1(i) +=W1(i)Khi

1
(δ l(X,W1(i), S1(i), T1(i)))

end for

. . . // Similar for ~Φ l
2 and ~Φu

2

for i from lo1(X) to hi1(X), j from lo2(X) to hi2(X) do

if (1− t)~Φ l
1(i)Π

l(X) > t~Φu
2(j)(1−Π l(X)) then

label X as C1 for (i, j)

else if t~Φ l
2(j)(1− Πu(X)) > (1− t)~Φu

1(i)Π
u(X) then

label X as C2 for (i, j)
end if

end for

update lo1(X), hi1(X), lo2(X), and hi2(X)
if lo1(X) ≤ hi1(X) and lo2(X) ≤ hi2(X) then

Multi(XL, next work, ~W1,2, ~S1,2, ~T1,2)

Multi(XR, next work, ~W1,2, ~S1,2, ~T1,2)
end if

end function
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1
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All experiments are conducted on code compiled by gcc 3.4.6 in Linux 2.6.9 on

dual NetBurst-class Intel Xeon 3.0GHz computers with 8GB RAM.

4.7.1 Quasar Identification.

We demonstrate timing results for KDA classifiers on 4D color spectra data pertaining

to deep-space objects. The largest reference set we use contains 80k known quasars

and 400k non-quasars; our query set consists of 40m unidentified objects. In Figure 2,

it is apparent that both the hybrid expansion pattern and inclusion/exclusion pruning

are crucial to asymptotic performance. Our new algorithm empirically scales at about

O(N1.1) and has an extremely low cross-over point with the naive algorithm.

Three multi-bandwidth runs with 10 bandwidths per class, successively narrowing

the tested bandwidth ranges about the optimum, take 334, 127, and 86 seconds when

parallelized over two processors. Decreasing running time is expected both because

bandwidths are easier to prune together if they are more similar to each other and

because larger bandwidths, which diminish as ranges tighten, tend to prune the least.

Figure 3 demonstrates that the multi-bandwidth algorithm is indeed much faster for

a bounded number of bandwidths, which is all that is necessary for optimization. In

comparison, the estimated naive running time for the above procedure is 140 hours

even if the algorithm utilizes the same density-sharing technique employed by the

multi-bandwidth algorithm. Optimal bandwidths yield within-class of accuracies of

95% for quasars and 98% for stars.

Finally, we parallelize over multiple computers to tackle classification of the full

data set. Using the a cosmologically informed prior of 4% for the quasar class, three

dual-processor machines discover just shy of one million quasars in 456 seconds. Un-

fortunately, our parallelization methods see poor speed-up due to serial data access

and tree building, as shown in Figure 4. These steps alone take about 310 seconds, the

better portion of computation; the whole serial computation takes only 640 seconds.
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An important future avenue of research is parallelizing tree building, but at current

we are forced to conclude that parallelization is not worthwhile at this scale. In any

case, we far improve upon both the estimated naive running time of 380 hours, not

to mention classifying the entire unknown data in a tenth the time it takes the old

algorithm to test one bandwidth combination.

Using careful tuning of parameters and separate classifiers for separate regions

of data, our collaborators have extracted more than one million quasars from the

SDSS data. Hand-verification of subsets of this data predicts that identified quasars

are 85.6% accurate and, further, that we have identified 93.4% of the quasars to be

found.

4.7.2 Forest Cover-Type Data.

Originally used in [7], the forest cover-type data is a 55-dimensional (10 continuous,

44 binary, 1 nominal classification) data set with 580k observations describing the

relationship between cartographic variables and seven classes of forest cover-type,

i.e. what kind of trees grow there. Because KDA is not particularly good at qualitative

96



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
pe

ed
−

up

Processors Used

Classification of Full SDSS Data Set

Baseline
KDA only
KDA and serial work

Figure 4: Speed-up for parallelized classification of the full 40m SDSS data set.
Excluding data access and tree building shows that the underlying computation has
workable speed-up. Future parallelization of tree building may then make this feasible.

features (these would require scaling or a specialized kernel), some preprocessing is

required. We normalize each dimension to have unit variance and then perform

PCA to reduce the dimensionality to 8. Further, as implemented, our algorithm

only supports two-class problems, so we will train our classifiers to distinguish one

class from the rest of the data; results are shown for distinguishing the largest class,

lodgepole pines, which constitutes nearly half of the data, and the smallest class,

cottonwoods and willows, which constitutes only 0.5% of the data.

For lodgepole pines, we optimized bandwidths with three 10-by-10 runs of the

multi-bandwidth algorithm, taking 609, 135, and 92 seconds when parallelized over

two-processors. The resulting classification accuracy is 90% both within and outside

the class. For cottonwoods and willows, the same optimization procedure takes 1037,

248, and 213 seconds and results in a within-class accuracy of 99.4% and 97.7%

outside. The estimated running time of the naive algorithm for a single bandwidth

combination for the identification of either class is 10.6 hours, suggesting an overall

time commitment of 320 hours for the above work, around seven orders of magnitude

slower.
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Figure 5: Speed-up for parallelized classification of LOO CV with the multi-
bandwidth algorithm. This is more favorable because the multi-bandwidth algorithm
performs a larger proportion of parallelizable work than does single-bandwidth clas-
sification.

Parallelization of LOO CV with the multi-bandwidth algorithm was much more

favorable than with the large SDSS query set. This makes sense given Amdahl’s law

because the ratio of serial work to parallel work is significantly reduced: more parallel

kernel summations and classification tests are performed for the serial act of tree-

building. Figure 5 shows workable speed-up, suggesting that iterations of the multi-

bandwidth algorithm, especially the long-running ones seen at higher dimensions, still

benefit greatly from parallelization.

4.8 Conclusion

We have demonstrated numerous enhancements to the previous best algorithm for

KDA. The hybrid expansion pattern and inclusion/exclusion pruning have resulted

in very clear gains in asymptotic running time. Further, the multi-bandwidth ver-

sion of the algorithm and parallelization enables rapid bandwidth learning for use in

classification or determination of accurate class probabilities. We have significantly

extended the size of problems now tractable under this analysis, arriving at results
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in minutes where previously it would have taken weeks.

Our algorithm’s orders of magnitude speed-up is obtained with a minimal degree

of parallelization. Through the use of a more advanced data distribution and tree

building method, we can expect parallelization to yield even more impressive gains.

Also, for higher-dimensional problems, techniques such as logistic regression may be

used in combination with KDA [26].

Already, an earlier rendition of our quasar catalog has been used to confirm the

cosmic magnification effect predicted by the theory of relativity [58]. The new, larger

catalog that we have found will undoubtedly lead to many other impressive discov-

eries. Nonetheless, these are results from one data set in one scientific application.

KDA has no special dependence upon quasar identification, and in fact, the general

ideas behind our fast algorithm have no special dependence on KDA [25]. Methods

like those demonstrated in this chapter have potential to accelerate a wide variety of

computations across science and data mining.

Table 5: Running times in seconds of LOO CV on one bandwidth combination for
the various algorithms. Plotted on log-log axes in Figure 2.

N Naive Heap Hp.Ep. Hybrid Hy.Ep.

1875 0.344 0.153 0.113 0.088 0.043

3750 1.11 0.408 0.250 0.115 0.055

7500 4.17 1.17 0.603 0.283 0.111

15k 16.3 4.75 1.74 0.884 0.236

30k 65.5 19.3 4.68 3.32 0.540

60k 264 78.4 17.9 13.6 1.13

120k 1050 199 63.2 54.5 2.38

240k 4200 1340 230 202 5.15

480k — 5900 2690 716 10.8
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APPENDIX A

ERRORS IN THE COVER-TREE PAPER

The single-tree proof assumes that every iteration splits an ancestor of the final set,

but this is false because iterations might just work on nodes that ultimately prune

before the final set. Thus, the depth-bound on the tree does not (directly) bound the

number of iterations.

The extended version of [6] describes the same fast dual-tree algorithm used in

this thesis. It gives a proof that its run time is O(c16N), though it elides most detail

and makes claims that seem wrong. The 16 is the single-tree proof’s c12 with four

more factors of c derived from a bounds-loosening argument. Specifically, the pruning

radius is increased by the radius of the query node, which means that the cover set

can be c2 larger, and the single-tree proof uses the size of the cover set squared. The

transition from O(logN) to O(N) is a bit more hand-wavy, but it seems to stem

from the fact that there are only O(N) explicit query nodes in the query tree. This,

however, does not appear to count all the work the algorithm might ultimately have

to do: the proof follows up with a claim that expanding the cover set to the next

deeper level happens just once for each explicit query node, but this is false. It does

happen just once for each implicit query node, but there is no bound on the number

of those. It can happen more than once for an explicit query node if ever the query

node does not split for a number of depths but its cover set still does, and this is most

easily seen in the case of a shallow query leaf. That the cover set contains the query

node in the monochromatic case does not matter; other reference nodes can still split

when the query node and its counterpart do not.
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A.1 Cover-trees can have shallow leaves

Consider a 1D tree with its first point at the origin. The second point (our leaf) is

at just less than 1, so it becomes an immediate child of root at depth 0, with its own

first depth being -1. The self-child of root at depth -1 can have immediate children

all the way out to 0.5, and the leaf can have immediate children starting from just

below 0.5 and up. Now imagine adding a third point, at just less than 0.5, outside

the reach of our leaf. This must then be assigned as a child of root’s self-child. We

can now add a point at just less than 0.75, which while it could be a descendant of

the leaf (and would have to be if it was not for the other point), it must be assigned

as the third point’s child. The new point does have to lie outside the leaf’s position

minus 2−2, lest the point could be assigned as the leaf’s self-child’s child. Regardless,

we can repeat this process as long as we want, with each next point just beyond the

leaf’s self-decedent’s reach but within reach of the previous point. The epsilons we

use to force decisions can of course be as small as we want, which means we can place

a point arbitrarily close to a leaf in an ordinarily constructed cover-tree. Without

additional points, this dataset has an unfavorable expansion constant, but we can

add more to the non-leaf branch to help balance things out.

So, there is no minimum distance between leaves and other nodes in a cover-tree.

Further, it is entirely possible for a non-leaf to skip many implicit depths before it

splits again. The reference tree (even if equal to the query tree) may then have to

perform numerous iterations before the next query split and vice versa.
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APPENDIX B

GRID TREE LIMITATIONS

The expansion constant does not bound grid tree branching factors. The reasoning

is that you can construct a dataset with small expansion constant for arbitrary di-

mension that nonetheless produces grid tree nodes with 2D children. The dataset is

constructed:

• Choose some 0 < ǫ ≪ 2−D. We will use doublings of ǫ (i.e. 2iǫ) for distances

between various groups of points.

• We will place three groups of points: one near the origin, one near vector 1, and

one near vector 2, where vector x is defined as the point with all values equal

to x.

• Each group of points has 2D members which form all combinations of high and

low values for each dimension as given:

– Near the origin, low is vector 0 (the origin) and high is given by 2iǫ for

dimensions enumerated i from 0 to D − 1.

– Near vector 2, low is 2− 2iǫ and high is vector 2.

– Near vector 1, low and high are 1∓ 2i−1ǫ, respectively.

• This forces the grid tree to range from the origin to vector 2, which will center

its first split at vector 1.1

1Technically, the tree could choose its root node arbitrarily, but often they are defined as exactly
bounding the data. This proof is engineered to show that this common bounding technique fails
miserably; further, it is enough to show that even one choice of bounds can fail, as the described
groups of points can occur anywhere in the dataset.
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• Observe that every single point in the group near vector 1 will go into a distinct

child of the root node, and thus all 2D possible children are formed.

• Further, points are arranged with the expansion constant in mind:

– Any ball with radius at least 2iǫ centered on a point contains all points

in the same group with matching values at all dimensions i and up, for

a minimum of 2i included points. This is easily shown via the triangle

inequality.

– Any ball with radius less than 2iǫ centered on a point contains no points

with values that disagree at dimension i or higher, for a maximum of 2i

included points.

– Thus, any radius in the range [2iǫ, 2i+1ǫ), for i from 0 to D − 1 has at at

least 2i points and doubling it yields at most 2i+2, and thus the expansion

constant in this range of radius is bounded by 4.

– For smaller radii, balls can only contain their central point and doubling

them can only add one more, for maximum expansion constant of 2.

– For larger radii, balls always contain the entire group and doubling them

adds at most both other groups, for a maximum expansion constant of 3.

• Thus, the expansion constant is at most 4 for this dataset, and yet the grid tree

is forced to expand a node into all 2D of its possible children.

Further, we can go on to construct an arbitrarily complex dataset by replacing each

point in the above with a similar group of 2D points for ǫ′ ≪ 2−Dǫ. This creates trees

with endless streams of monster splits.
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