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SUMMARY

Speech is enriched by emotion. Emotion recognition in speech benefits human-

computer interface to build more effective, user-friendly, and intelligent applications.

While the majority of traditional research in emotional speech recognition has fo-

cused on the use of a single database for assessment, it is clear that the lack of large

and diverse enough databases has presented a significant challenge in generalizing

results for the purpose of building an emotion classification system yielding results

for database with varieties. Recently, work has been reported on cross-training e-

motional databases to examine the consistency and reliability of acoustic measures

in performing emotional assessment. However, the acoustic features that have been

studied were limited to prosodic and spectral features, and the examination remained

mainly on attempts on selecting prototypical data. The objective of the research p-

resented in this thesis is to systematically investigate the computational structure for

cross-database emotion recognition. The systematic research consists of evaluating

the stability of acoustic features, particularly the glottal and Teager Energy based

features, and investigating the critical procedures of normalization methods and data

fusion techniques. In cross-database classification, challenge rises from the variation

possessed by different databases, e.g., the naturalness of emotion expressed, and the

recording conditions. To cope with the variation, three normalization methods are

studied to show that normalization can improve the performance of cross-database

classification even to a higher accuracy rate than the self cross-validation without

normalization. Motivated by the lack of large and diverse enough emotional database

to train the classifier, using multiple databases to train poses another challenge of

data fusion. This thesis proposes two data fusion techniques, pre-classification SDS

xi



and post-classification ROVER to study the issue. The systematic computational

structure proposed in this thesis improves the performance of cross-database binary-

emotion recognition by up to 23% for neutral vs. emotional and 10% for positive vs.

negative.
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CHAPTER I

INTRODUCTION

Recognizing the emotional information embedded in speech has drawn much research

effort [62, 13, 86, 45]. The characteristics of emotional databases are affected by

many factors including the recording conditions, the naturalness of emotion expressed

(acted or authentic), the language, and the basic information of speakers (e.g age,

culture, and gender). Additionally, the lack of a single emotional database large and

diverse enough to cover the variety of emotional expressions makes it difficult to train

a system that can be generalized. As the direction of emotion recognition heads

to more realistic use, the evaluation of emotion recognition engines in generalizing

the performance on one data set to another data set is more and more important.

Currently, the widely accepted emotion recognition method is to train the system

on one data set and test it using the same data. However, this makes the system

sensitive to the data’s quality, based on which the system is built. Cross-database

training and testing can contribute on building a generalized emotion recognition

system by training it on one data set and testing it on another one. limited to

prosodic and spectral features, and the examination remains mainly on attempts

on selecting prototypical data. The goal of the research presented in this thesis is

to systematically investigate the computational structure for cross-database emotion

recognition. The systematic research consists of evaluating the stability of acoustic

features, particularly the glottal and Teager Energy based features, and investigating

the critical procedures of normalization methods and data fusion techniques.

Cross-database training and testing has many challenges, three of which are the

main focus of this thesis. First, the features from the training data should possess

1



the similar emotion distinguishing ability for the testing data. Therefore using the

features exhibiting the stable affective conveyance capability across multiple databases

is important for cross-database evaluation, which remains as a challenge. Second,

the variation coming form different databases (e.g., the recording conditions, the

naturalness of emotion, the gender of speaker) leads to the mismatch of features

from different databases even expressing the same emotion. The third challenge rises

from the availability of multiple training databases. The issue of the methodology to

combine the information gained by each training database should be addressed. While

cross-database training and testing has not traditionally been a heavily researched

topic, the challenge of building a practical emotion recognition system from limited

data has prompted several publications addressing some of these challenges. Previous

research efforts focused on reporting the direct comparison between databases using

thousands of prosodic and spectral features in a brute-force way, and the approaches

of selecting the prototypical samples to train the recognition engine. An account of

the past research efforts is presented in Chapter 3.

To address the first challenge of cross-database emotion recognition of the stability

of features, the glottal and Teager energy based features are evaluated using multiple

databases under different experimental conditions. The emotion recognition research

has been conducted in several channels, e.g., facial expression, body gesture, and

speech. From the speech standpoint, the effort of emotion detection was made using

the conversational cues (e.g., lexicon, discourse) [19], and the acoustics (e.g., pitch,

spectral) [8, 64]. In the acoustic channel, large set (more than 4000) of prosodic

and spectral features have been studied [64]. Even using the pitch-related features

solely, research [8] showed fairly good performance in emotion recognition. Research

has shown that the glottal waveform dynamics and Teager energy features can play

an important role in voice characterization [15, 92, 57, 58, 84, 9, 96, 37]. Therefore,

this thesis investigates the stability of the glottal and Teager energy based features

2



in cross-database emotion recognition without the information from other channels.

The extraction and stability evaluation of the glottal and Teager energy features using

multiple databases is presented in Chapter 5.

Another problem of cross-database evaluation comes from the mismatch between

databases in the emotion labeling strategies. Emotion has attracted much psycholo-

gists’ effort on studying the best way to describe. There are two prominent emotion

description methods available and widely used, discrete lexicon of emotional words

(e.g. “sad” and “interest”) or a dimensional scale (e.g. [0.25, 0.75] and [-1,0.5]).

In Chapter 2, the details of basic emotion theory is introduced as the fundamental

knowledge of this thesis. In this thesis, six emotional databases are employed to reach

the purpose of multiple databases study in this thesis and the detailed information

for each database is described in Chapter 4. Each of the six database has its own e-

motion labeling strategy, e.g., in category (different choice of emotional status words)

or in dimension (different resolution, steps, and number of dimensions). To solve the

emotion label problem, the decision of mapping emotion labels to an uniform label is

required. The decision of mapping emotion labels for cross-database experiments is

discussed in Chapter 6.

Facing the variation among multiple databases (e.g., caused by the recording con-

ditions, the naturalness of emotions, the gender of speakers), the necessity of normal-

ization is investigated to address the second challenge of mismatch between databases.

Three normalization methods, Speaker Normalization, Speaker Normalization with

Reference, and the Neutral Reference Model, are evaluated and the performance is

compared in this thesis. Due to the availability of multiple training databases, the

methodology of combining the information gained from each database is investigat-

ed as the study for the third challenge of data fusion. Two data fusion techniques,

Sequential Forward Database Selection (SDS) and Recognizer output voting error

reduction (ROVER) are developed to solve the data fusion problem. In Chapter 7,

3



the methodology and evaluation of normalization and data fusion is presented. The

overall improvement brought by the proposed systematic computational structure

for cross-database emotion recognition using six emotional databases is presented in

Chapter 7. Chapter 8 summarizes the conducted research, draws the conclusion and

suggests the future work.

4



CHAPTER II

EMOTION THEORY

The two most prominent means of emotion characterization have relied on either a

discrete lexicon of emotional words (e.g. “sad” and “interest”) or a dimensional scale

(e.g. [0.25, 0.75] and [-1, 0.5]) for estimating levels of affect generated by a speech. The

discrete lexicon of emotional words convey specific meanings and intent with the most

commonly studied being “happy”, “sad”, “angry”, “disgust”, “surprise” and “fear”.

The advantage of this framework for analysis is that it helps to establish a controlled

vocabulary for creating objective assessments. However, research literature does not

always agree on a set lexicon of emotional words with there being hundreds of potential

emotional labels that can be assigned to a particular human experience. This lack of

agreement has produced conflicting research results and difficulties in comparing one

set of research results to another given differences in emotion labeling strategies [13].

An alternative method of modeling affect is based on using a dimensional scale. The

dimensional approach assumes that humans are in a perpetual affective state that

can be represented along three dimensions:

• Valence- A dimension that represents the degree to which a particular stimulus

is viewed as being pleasant or unpleasant (i.e., positive or negative). Valence

may also be referred to as Evaluation.

• Arousal - A dimension that represents the degree of activity that is generated by

a particular stimulus. It relates to the intensity of an emotional experience and

may range from energized or alert to calm or drowsy (i.e., active or passive).

Arousal may also be referred to as Activation.
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blissful

delighted

exhilarated

disgusted

terrified

furious

despairing

depressed

serene

angry

afraid
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pleased

happy

interested

excited

relaxed
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VERY 
POSITIVE

       VERY 
NEGATIVE

VERY ACTIVE

VERY PASSIVE

Valence

Arousal

Figure 1: Two-dimensional model of emotion proposed in [14].

• Control - A dimension that relates to the degree of power a person feels over

their emotional response to a particular stimulus. It is considered to be helpful

in distinguishing between responses with similar arousal and valence. Control

may also be referred to as Dominance or Power.

It has been shown that a simpler 2-dimensional model of valence and arousal is

able to account for most of the necessary variation in emotional responses [32, 16].

An example of the 2-D valence/arousal (VA) model is shown in Fig. 1 (based on

[14])along with the estimated locations of several discrete emotional words based on

this scale. However, some researchers (for example [52, 34]) still utilize the full 3-

dimensional space to evaluate emotion in speech. The example in Fig. 1 is meant as a

reference and is based on the FEELTRACE model developed by Cowie et al. [14]. In

this study, we utilize a square representation of the 2-dimensional valence and arousal

space where the values are allowed to vary from [-1, +1] in both dimensions as shown

in Fig. 2.

6



Valence

Arousal

(0,0) (1,0)(-1,0)

(0,1)

(0,-1)

Figure 2: Two-dimensional model of emotion in this dissertation.

Both methods have value in creating labels of emotional intent for analysis. The

discrete lexicon has the advantage of providing lexical terms that are commonly used

in communication and generally well understood. However, the number of words in

an emotional lexicon is great enough to cause some difficulty in finding the most

reliably accurate set across all circumstances. The dimensional (VA) approach to

emotion categorization has the advantage of creating a numeric representation that

can track emotional changes over time and give more quantitative metrics regarding

the degree to which an emotional expression is expressed. However, the mapping of

the VA space to a specific set of acoustic cues is still a matter of study. Additionally,

the concepts of arousal and valence are not generally used in public conversation to

describe emotional state. Therefore, the process of collecting data from subjects using

the VA scale requires greater care.
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CHAPTER III

BACKGROUND

While cross-database training has not been a subject of extensive research, there are

several instances of work that offer relevant background for this article. In [78], the

emotion anger from three French databases was studied in terms of the averaged

values of spectral and time domain features. By comparing the acoustics of anger

from three databases, the difference could be observed. This observation motivates

the research of this thesis on models and techniques to reduce the difference between

databases representing the same emotion status, which is discussed in Chapter 7.1.1.

What’s more, the similarity between two databases has been studied in [5]. Sequen-

tial Forward Floating Search (SFFS) was used to select feature from each database.

The selected features from different databases were compared to show the similari-

ty. The similarity between databases is the indicator of possibility of cross-database

classification.

In [25], four emotional databases were used for cross-database classifications (train

on three databases and test on the other one) in four binary-class tasks in valence,

i.e., negative vs. non-negative, positive vs. non-positive, neutral vs. emotional, and

positive vs. negative. Support Vector Machine was used as the classifier and 2832

acoustic features were employed without feature selection. The feature set consists of

prosodic features (pitch, energy), formant, jitter, shimmer, spectral, and MFCCs. The

results showed positive vs. negative gave the best results while neutral vs. emotional

was lower. In Chapter 7 when the cross-database training and testing is evaluated,

we will start from recognizing neutral vs. emotional in cross-database to investigate

the possibility of improving the performance.
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In [66], the Euclidean distance from 6552 features between positive and negative in

valence/arousal provided objective measurements to data. Selecting the prototypical

(with larger Euclidean distance) data samples (a subset data) as the training set

helped improving the accuracy rate to reach the highest accuracy rate of 68% for

arousal and 54% for valence. In this thesis, since the focus is on the investigation

of the stability of acoustic features not the selection of prototypical data, all data

samples will be used without selecting only the prototypical subset. The study of [67]

studied two methods of using multiple databases for training, i.e., uniting and voting,

employing six emotional databases. Uniting is joint training with multiple databases

and voting is the late fusion of classifiers trained on single databases. The results show

that majority voting performs better. In this thesis, the two ideas of joint training

and voting are both considered. Sequential Forward Database Selection (SDS) based

on the joint training and Recognizer output voting error reduction (ROVER) as the

later fusion are developed and presented in Chapter 7.1.2.

To cope with variances among databases (recording conditions, languages, type-

s of observed emotions, etc.), [65] investigated four normalization conditions, the

speaker-level normalization, the database-level normalization, the combination of the

two, and no normalization. Using six databases, the cross-database classification was

conducted in the way to training on single/combination of multiple databases and

testing on another database. Results showed that the speaker-level normalization

produced the highest accuracy rate. And the highest accuracy rate (around 66% for

valence and 78% for arousal) was observed when testing on the GES database [7].

This thesis will keep using the speaker-level normalization but involving a reference

neutral data, i.e., the neutral reference model. The neutral reference model, referred

as NRM, [93, 8] is of interest because a methodology was proposed which may improve

the generalization ability of features by transforming the acoustic features into fitness

measurements using a neutral model trained on the reference neutral data. In [8], the
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pitch-related features was classified to detect neutral vs. emotional samples for four

emotional databases in two ways, cross-validation on the combination of all emotion-

al databases (referred as “joint analysis”) and cross-language tests (trained on one

language and tested on another). The delivered results emphasized the generalization

ability of the neutral reference model in cross-database binary emotion classification

(neutral vs. emotional). In the research of this thesis, the neutral reference model

is employed as one of the normalization methods. Together with the speaker-level

scaling methods (with and without the reference data), three normalization strategies

are evaluated and discussed in Chapter 7.1.1.

The studies completed so far usually suffered from the lack of systematic model to

improve the performance of the cross-database classification. Most of them focus on

reporting experiment results of prototypical sample selection, data agglomeration, and

measuring database by direct comparing the statistics of acoustic features. What’s

more, the acoustic features used so far are limited in the prosodic, spectral, and

voice quality related features (e.g., jitter, shimmer), which have been well studied in

emotion recognition. Therefore, the research of this thesis systematically studies the

elements contributing to improving the performance of cross-database training and

testing, from the emotion labeling strategy to data fusion techniques. The glottal

and Teager energy related features are introduced into the feature sets, which makes

up the lack of study of these two features in this field.
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CHAPTER IV

EMOTIONAL DATABASES

Six emotional speech databases have been collected to be used in this thesis. The

basic information is summarized in Table 1. More details and the work on each

database is provided in this chapter.

Emotional Prosody Speech Transcripts (EPST) [49] (Publicly available):

• English; Acted; 7 speakers (4 female; 3 male); 275-422 utterance/ speaker (Num-

bers and dates)

• 15 Emotions (neutral, disgust, panic, anxiety, hot anger, cold anger, despair,

sadness, elation, happy, interest, boredom, shame, pride, and contempt)

• Perceptual ratings done in our lab using 20 subjects provide discrete Valence/

Arousal data

An acoustic feature study conducted by Bitouk evaluated the combination of

class-level/ utterance-level features and prosodic/ spectral features in emotion recog-

nition using EPST and another acted database in German [4]. The results delivered

showed that class-level MFCC statistics outperformed both prosodic and utterance-

level spectral features in speaker independent emotion recognition. Another study

[43] compared the recognition of negative emotional states using the acted speech in

Table 1: The basic information of six emotional databases.
EPST EMA GES SEMAINE VAM UM

Language English English German English German English
Speakers 7 3 10 7 47 30
Emotions 15c 4c 7c 4-dim 2-dim 7c
Sampling freq. 22.05kHz 16kHz 48kHz 48kHz 16kHz 22.05kHz
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the EPST (using “hot anger” for negative and “neutral” for non-negative) database

and real-world speech collected by attempts to provoke negative user reactions in sev-

eral tasks in a smart home application. The emotional speech was broadly categorized

into “negative” and “non-negative” based on subjective tests. While the classification

results indicated a higher accuracy in distinguishing the acted emotional speech (i.e.,

EPST database), it was also noted that the real-world speech contained less definitive

boundaries in emotional expression and that there was disagreement among listeners

regarding the appropriate emotional labels for the real-world speech. Sethu, et al.

[70] used the EPST to examine the impact of speaker-specific feature warping algo-

rithms for improving accuracy of emotion recognition across multiple speakers and

emotional classes within EPST. Wu, et al.[90] used the EPST database for testing

feature modification strategies in speaker recognition that can compensate for the a-

coustical variations presented by emotional speech. Hirschberg et al. [38] investigated

the completeness of the emotional labels for the EPST database by assigning multiple

sets of emotional labels to a single utterance in the EPST database as opposed to

each utterance having one emotional descriptor.

University of Memphis (UM) [31] (Not currently available publicly)

• English; Induced emotion through computer interaction in AutoTutor system

dialog; 30 speakers (19 female; 11 male); 16-344 utterance / emotional expres-

sion

• 7 basic emotions (boredom, confusion, flow, frustration, delight, surprise, neu-

tral)

• The speakers provide their own word labeling for the emotions they felt during

recording (Fig. 1a)

This database was made available to our lab by the University of Memphis. The

UM database (referred to as UM in this thesis) contains a record of students using a
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computer guided learning system known as Auto Tutor [31]. Work in [21] performed

emotion recognition on subsets of 4 and 5 of the emotion categories using conversa-

tional cues, gross body language, and facial features. The recognition rate in these

experiments was 0.47 and 0.51, respectively. Currently, no acoustic analysis has been

reported.

Vera-Am-Mittag (VAM) [33] (Publicly available)

• German; Speech from TV talk shows; 47 speakers (36 females; 11 males); 947

utterances total

• Perceived evaluation range is [-1,1] for all three dimensions VAD

• Database is split into VAM I (rated by 17 subjects) and VAMII (rated by 6

subjects); perceptual labeling provides VA ratings

Work in [88, 89] proposed a long-term spectro-temporal (ST) representation and

modulation spectral features (MSF) in research designed to correlate acoustic features

with the valence, arousal, and dominance emotion labels in the database. Their results

showed the highest correlations for the arousal and dominance labels based on the

acoustic measures. Work in [34] utilized various machine learning techniques based

on support vector regression, fuzzy k-Nearest Neighbor estimators, and Rule-based

Fuzzy logic estimators to estimate the valence, arousal, and dominance values of the

emotional labeling based on prosody and other spectral based features.

German Emotional Speech (GES) [7] (Publicly Available)

• German; Acted speech using set of sentences; 10 speakers (5 female; 5male);

535 total utterances

• 7 emotions (happy, angry, sad, fearful, bored, disgust, and neutral)

• Perceptual labeling by 20 subjects for emotional authenticity
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Work in [63] used MFCC features extracted from the voiced sections of the speech

to achieve an average recognition rate of 60.57%. Work in [39] combined prosodic,

formant, and MFCC features to achieve recognition rates of 83.17% on this database.

Other work on this database utilized features base on psychoacoustics [91] and empir-

ical model decomposition [48] to achieve recognition rates around 83%. Wu proposed

modulation spectral features (MSFs) combined with prosody to achieve an average

recognition rate of 91.3% [89].

SEMAINE [54] (Publicly available)

• English; Acted and Induced speech where a speaker acts on a specific emotion

in order to induce an emotion from a subject; 7 speakers (4 female, 3 male); 40

sessions (each 5 minutes long)

• Rated by 1-6 subjects for continuous ratings of valence and arousal on a range

from [-1, 1].

As of the time of the writing of this proposal, no specific publications could be found

that directly reference the acoustic analysis of the SEMAINE database in possession.

Electromagnetic Articulography (EMA) [46] (Publicly available)

• English; Acted speech based on set of sentences; 3 speakers (2 females; 1 male);

14 sentences for the male and 10 sentences per female

• 4 emotions (angry, happy, sad, and neutral)

• Perceptual labeling using emotional words by 3 subjects to validate emotion

expressions.

The EMA database was created by the SAIL group at USC. While the data is publicly

available, it’s told by USC that this proposed work is the first to request access to it

outside of their lab. Some of the previous studies on the data [34, 8] have focused on

prosodic features as the primary source for distinguishing the emotion types present in
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the data. Work in [34] achieved an overall recognition rate of up to 83.5% on the data

while Busso [8] used EMA in conjunction with other databases to build a recognition

model that separates neutral and non-neutral emotion (i.e. a binary classification).

Kim [42] used MFCCs and measures of the articulatory space in an isometric feature

mapping (Isomap) experiment to compare emotion recognition on a reduced feature

space.
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CHAPTER V

ACOUSTIC FEATURES

The literature shows that previous work used prosodic features such as pitch/energy

as the sole acoustic feature for emotion recognition [8]. In addition to pitch, this study

also extracts features based on Teager energy and the glottal waveform as well as the

Mel-cepstral coefficients. Research has shown that the glottal waveform dynamics

and Teager energy features can play an important role in voice characterization [77,

72, 73, 15, 92, 57, 58, 84]. In this chapter, the extraction and evaluation of glottal and

Teager Energy based features are presented and the emotion distinguishing ability is

investigated using the databases introduced in Chapter 4.

5.1 Glottal Waveform Parameters

5.1.1 Extraction

The glottal waveform is considered as a representation of the volume velocity of

airflow through the vocal folds during voiced speech. In this section (Section 5.1.1),

the extraction of the glottal features is introduced. And in Sections 5.1.2-5.1.4, the

performance of emotion recognition using the glottal features is evaluated on different

databases. Fig. 3 shows an example of the glottal waveform (Fig. 3(b)) and glottal

waveform derivative estimate (Fig. 3(c)) for one cycle of voiced speech (Fig. 3(a)).

One total cycle (TC ) consists of an open phase (O) and closed phase (C ). The open

phase is divided into an opening phase (OP) (i.e., abduction) and closing phase (CP)

(i.e., adduction). The opening phase may sometimes be further divided into the

length of the primary opening (To1, i.e. OP) and a secondary opening (To2). The

distinction between To1 and To2 is marked by a an increase in the slope during the

opening phase (i.e. smaller slope for (To1, larger slope for To2).
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Figure 3: Example of the time-based parameters extracted from the glottal waveform
during a single speech cycle. (a) One-pitch cycle of speech (b) Glottal waveform
estimate (c) Glottal waveform derivative.
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Table 2: Time-based glottal features extracted from the glottal waveform estimations
(see Fig. 3).

Abbr. Equation

OQ1 (open quotient, from primary glottal opening) OQ1 = T01+CP
TC

OQ2 (open quotient, from secondary glottal opening) OQ2 = T02+CP
TC

AQ (amplitude quotient) AQ = Eo
Ed

NAQ (normalized amplitude quotient) NAQ = AQ
TC

ClQ (closing quotient) ClQ = CP
TC

OQa (open quotient based on Liljencrants-Fant model) OQa = Eo

TC
( π
2EI

+ 1
Ed
)

SQ1 (speed quotient, from primary glottal opening) SQ1 =
T01

TC

SQ2 (speech quotient, from secondary glottal opening) SQ2 =
T02

TC

QOQ (quasi-open quotient) [44]

The glottal waveform may be parameterized using time-based features to quantify

the shaping of the signal and spectral features. The extraction of the glottal features

for each speech utterance was processed in four steps: (1) each utterance was divided

into frames 4 pitch periods long (2) glottal closure instants (GCI’s) were obtained

using the DYPSA algorithm [61] on each frame (3) glottal waveform estimates were

obtained for each frame using the Rank-Based Glottal Quality Assessment (RBGQA)

[59], which iterates around approximate locations of GCI’s to find the optimal analysis

window position for deconvolution via the covariance method of linear predictive

analysis (LPA) (an LPA order of 16 was used) (4) for each frame, the 11 glottal

features were extracted using version 0.3.1 of the APARAT [1] program. Table 2

lists nine of the time-based features extracted from the glottal waveform based on

the parameters shown in Fig. 3. In Fig. 3, Eo represents the amplitude of maximum

glottal opening of glottal waveform, Ed is the absolute amplitude of minimum point in

glottal derivative, and El is peak amplitude of glottal derivative. In the time-based

features in Table 2, the Quasi-Open Quotient (QOQ) was calculated in APARAT

using a variation on estimation of the Open Quotient (OQ) based on work in [44].

Spectral-based features calculated by APARAT on the glottal waveform included:

DH12 (the difference in the first and second glottal formants, in dB [83]) and HRF
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(the Harmonic Richness Factor, in dB [11]). These parameters were calculated as

shown in Eq. 1 and Eq. 2, where X(F0) is the spectral amplitude at the fundamental

frequency (F0), X(2*F0) is the amplitude at two times the fundamental frequen-

cy, and X(fi) is the spectral amplitude in the ith harmonics (f1 is the fundamental

frequency F0).

DH12 = 10 log
|X(F0)|2

|X(2 ∗ F0)|2
, (1)

HRF = 10 log

∑
i>1 |X(fi)|2

|X(f1)|2
. (2)

5.1.2 Emotion categories with similar prosody

Fundamentally, automated emotion detection is the attempt to quantify an abstract

interpretation into objectively measured components of recorded human interaction.

A review of the study of emotion for human computer interaction in [14] shows that

prosodics (e.g., pitch, energy, speaking rate, etc.) are the most common form of speech

analysis in literature. Additionally, [14] shows support that the general prosodic

tendencies in distinguishing between different emotion categories can be extremely

qualitative, subtle, and likely speaker dependent. For example, a person who is

happy may tend to raise their prosody (e.g., increased pitch, energy, speaking rate,

etc.) from their neutral state but may also show similar tendencies when expressing

anger or panic. Work on the use of glottal features (i.e., features extracted from

the estimated signal representing the air-flow through the vocal folds) in classifying

emotion [15, 26, 58] has shown that these features can provide valuable insight into

distinguishing different types of emotional expression. The purpose of this section

is to target speaker dependent expressions of emotional pairs that share statistically

similar prosodic information and investigate a set of glottal features for their ability

to find measurable differences in these expressions.
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5.1.2.1 DATABASE

The speech used for this study was provided by the Emotional Prosody Speech and

Transcripts (EPST)[49] database. The EPST database contains recordings of emo-

tional expression on semantically neutral speech from 7 professional actors (4 females

and 3 males) who are native speakers of standard American English. Each actor

reads short (4-syllables) dates and numbers in 15 different emotional categories [2]

(“neutral”, “disgust”, “panic”, “anxiety”, “hot anger”, “cold anger”, “despair”, “sad-

ness”, “elation”, “happy”, “interest”,“boredom”, “shame”, “pride”, “contempt”. The

speech was recorded at a sampling frequency of 22.05 KHz with 2-channel interleaved

16-bit PCM format. The duration of each utterance varied from 1sec to 2sec. While

it is in no way assumed that acted speech provides a complete picture of authentic

emotion, the value of this information is that the actors adjusted their speech pat-

terns to fit their perception of different emotions. These voice changes are objectively

evaluated at this time without the need to explicitly determine the degree to which

each utterance represents the intended emotion to an observer.

5.1.2.2 OBJECTIVE MEASURES

Pitch represents a high-level view of the motion of the vocal folds as it provides in-

formation on the rate at which air from the lungs is allowed into the vocal tract.

The glottal waveform, on the other hand, provides a representation of the volume

velocity of airflow through the vocal folds during voiced speech. While pitch infor-

mation provides the rate, glottal features ideally provide a more detailed look at the

phonatory process. This section used prosodic features of speech based on the mean

pitch and energy. Pitch was obtained using the RAPT pitch estimation algorithm

in VOICEBOX[6] using a 10 ms frame rate. Energy was calculated as the squared

sum of the values within each frame across the voiced sections in each utterance as

indicated by the pitch information. The glottal waveform provides a representation
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of the shaping of the volume velocity of airflow through the vocal folds during voiced

speech. The glottal parameters used in this study is ClQ, NAQ, OQ, OQa, SQ1,

DH12, and HRF from Table 2. The extraction of the glottal features for each speech

utterance was processed in four steps as described in Section 5.1.1. All features were

quantified using only 1st order statistics (i.e, the mean) across all frames of an utter-

ance. The use of higher order statistics was excluded from the study at this time as

the goal was to study the basic discriminatory power of the features themselves and

not to build a complex model for general classification.

5.1.2.3 METHODOLOGY

Because of the high number of discrete emotion categories, most research on emotion

has focused on smaller subsets of emotion (such as happy, anger, fear, etc.). However,

a pairwise comparison is conducted on 14 distinct emotional categories in an effort

to identify which emotional pairs statistically share the same prosody information.

Four actors (2 females (F1, F2) and 2 males (M1, M2)) were chosen from the EPST

database based on the speakers with the highest total number of observations (i.e.,

utterances). Pitch, energy, and glottal features were extracted on a speaker-dependent

basis as described earlier. The feature extraction procedure resulted in 13644 frames

with a 9 dimensional feature vector (i.e., mean pitch, energy, and glottal features).

The average number of frames per speaker was 3411 with an average of 227 frames

per emotion. There were approximately 25 utterances per emotion for each speaker

on average with no emotion allowed to have less than 20 utterances for inclusion in

the study (this resulted in the exclusion of neutral utterances).

The purpose of this study was to evaluate the discrimination power of glottal

features on emotional categories that share statistically similar prosodics. Therefore,

the mean pitch values of each of the pairwise groups of emotions (91 pairs total) was

subjected to a Kruskal-Wallis (KW) significance test. Pairwise groups that showed
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no statistical difference in their pitch distributions at a significance level of p < 0.05

were targeted for further analysis. The discrimination of these emotional pairs was

then evaluated by finding the error rates from using each of the 9 single features

as classifiers and the error rates from using a Sequential Feature Selection (SFS)

algorithm for selecting any combination of features for classification. SFS starts with

an empty feature set and sequentially adds features that have not yet been selected.

Every feature combination set is evaluated 10-fold cross validation until there is no

improvement in the criterion function. For this study, the criterion was set to the error

rate from a quadratic discriminant computed as the number of incorrect classifications

divided by the total number of observations. The SFS algorithm added features in

an effort to reduce the error rate as much as possible.

5.1.2.4 RESULTS

Table 3 shows the emotional pairs that showed no significant difference (p < 0.05) in

their pitch distributions after the Kruskal-Wallis test on a speaker-dependent basis.

Intuitively, many of the emotional pairs reflect an expected similarity in prosodic

tendencies. For example, many of the pairs reflect a confusion between two high

(such as elation and hot anger for speaker F1) or low arousal states (such as pride

and sadness for speaker M1). Additionally, there is very little overlap in the confused

emotional states across actors, which reflects the highly speaker dependent nature of

emotional interpretation and expression. For all of the emotion pairs listed in Table

3, at least one glottal feature showed a statistically significant difference and 19 out of

30 pairs had 4 or more of the 7 glottal features show statistical significance. Further

evaluation was conducted by finding the error rate (ER) for each of the individual

features in discriminating the emotional pairs using 10-Fold cross validation. The

error rate was computed as the number of incorrect classifications divided by the

total number of observations (i.e., utterances). The number of observations was
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approximately equal for each of the emotional pairs, making the chance error rate

roughly equal to 50%. Due to the relatively small number of observations, the 10-

Fold cross validation was repeated 50 times, where each iteration randomized the data

in a way ensure that enough variations on the combinations of data observations for

training and testing were used. Table 3 shows the mean of the error rate computed

across all 50 runs of the 10-fold cross-validation. Only the best performing glottal

feature is shown in the table. A lower error rate is achieved by a glottal feature in

24 out of the 30 pairs. Of the the 6 pairs where a glottal feature is not the best

feature, energy has the lowest error rate in 4 pairs and pitch has the lowest error rate

in 2 pairs. That pitch could have the lowest error rate (though slight) even though

there was no statistically significant difference highlights the reasons for evaluating

the classification performance of each feature.

Table 4 shows the resulting mean error rates from the SFS procedure along with

the percentage change from the lowest error rate achieved for a single feature. The

SFS was run on each subset of the 9 features 50 times using 10-fold cross validation to

ensure enough randomization of training and testing combinations in the data. The

‘%Change’ column indicates the percentage change in the error rate that resulted from

using multiple features over the single feature with the lowest error rate shown in Table

3. Table 4 shows that pitch and energy continue to play an important role in emotion-

al classification even when the emotional pairs are selected based on non-significant

differences in pitch distributions. In only one instance (M1, contempt, sadness) was

neither pitch nor energy selected for the classifier. For the females, ‘hrf’ feature was

among the most prominent glottal features selected while for the males the ‘oqa’,

‘clq’, and ‘naq’ were the most prominent glottal features. The ’dh12’ feature was a

prominent feature across all speakers while the ’sq’ feature showed little impact on

discrimination and was rarely chosen. While the discrimination for most emotional
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Table 3: Minimum error rate (ER) for emotional pairs using single features.

Actor Emotional Pairs Pitch Energy (Glottal, ER)
F1 pride, anxiety 0.46 0.24 (hrf,0.16)

elation, hotanger 0.48 0.49 (hrf,0.21)
boredom, coldanger 0.52 0.33 (oq,0.21)
contempt, coldanger 0.43 0.47 (dh12,0.29)

happy, sadness 0.36 0.38 (oqa,0.40)
interest, sadness 0.20 0.29 (hrf,0.23)
pride, interest 0.51 0.36 (hrf,0.13)

F2 coldanger, disgust 0.32 0.15 (hrf,0.30)
sadness, disgust 0.32 0.23 (hrf,0.32)
despair, panic 0.38 0.20 (oq,0.05)
happy, panic 0.41 0.08 (hrf,0.06)

despair, hotanger 0.40 0.34 (oq,0.21)
elation, hotanger 0.32 0.57 (dh12,0.16)
happy, hotanger 0.35 0.32 (oq,0.23)

sadness, coldanger 0.36 0.39 (hrf,0.30)
elation, despair 0.55 0.31 (oq,0.08)

contempt, sadness 0.40 0.41 (oq,0.30)
happy, elation 0.45 0.26 (hrf,0.08)

contempt, boredom 0.40 0.36 (hrf,0.18)
M1 shame, anxiety 0.38 0.51 (oqa,0.32)

elation, coldanger 0.46 0.38 (clq,0.30)
interest, coldanger 0.46 0.40 (naq,0.31)

pride, sadness 0.70 0.36 (dh12,0.30)
contempt, sadness 0.39 0.60 (naq,0.25)

M2 shame, disgust 0.62 0.16 (oqa,0.34)
happy, panic 0.68 0.47 (naq,0.28)

despair, anxiety 0.40 0.43 (oqa,0.22)
contempt, anxiety 0.51 0.36 (clq,0.37)
interest, coldanger 0.45 0.46 (oqa,0.07)
contempt, despair 0.40 0.42 (oqa,0.17)
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pairs was greatly improved through the multiple feature classifier, the discrimina-

tion for speaker F2 with the emotional pairs (sadness, disgust), (happy, panic) and

(happy, elation) could not be improved over the performance of the single features of

energy and harmonic richness factor, respectively.

Table 4: Minimum error rate (ER) for emotional pairs using SFS and the top five
selected features
Actor Emotional Pair ER %Change (Feature, Selection Percentage(%))
F1 pride, anxiety 0.10 -40% (pitch,94), (hrf,92), (sq,6), (dh12,4)

elation, hotanger 0.19 -7% (hrf,100), (sq,14), (eng,10), (naq,8), (oq,4)
boredom, coldanger 0.20 -3% (oq,100), (eng,20), (dh12,6), (hrf,6)
contempt, coldanger 0.17 -36% (eng,96), (dh12,92), (hrf,34), (oq,8), (sq,8)

happy, sadness 0.16 -54% (pitch,98), (naq,60), (oqa,60), (clq,42), (hrf,38)
interest, sadness 0.08 -59% (pitch,96), (oq,74), (hrf,72), (dh12,28), (clq,16)
pride, interest 0.09 -31% (hrf,98), (pitch,76), (clq,40), (oqa,10), (dh12,4)

F2 coldanger, disgust 0.03 -80% (pitch,100), (eng,100), (oq,44), (naq,30), (hrf,14)
sadness, disgust 0.23 0% (eng,100), (pitch,6), (clq,4), (oq,4), (oqa,4)
despair, panic 0.04 -16% (oq,70), (eng,26), (hrf,26), (dh12,22), (pitch,16)
happy, panic 0.06 0% (hrf,76), (dh12,18), (eng,4), (oqa,2), (sq,2)

despair, hotanger 0.17 -20% (hrf,74), (oqa,36), (oq,32), (eng,24), (pitch,22)
elation, hotanger 0.09 -41% (pitch,100), (dh12,100), (hrf,2), (sq,2)
happy, hotanger 0.18 -23% (oq,92), (naq,60), (oqa,48), (eng,32), (pitch,26)

sadness, coldanger 0.13 -58% (hrf,96), (oq,90), (oqa,70), (naq,70), (eng,46)
elation, despair 0.04 -44% (pitch,64), (clq,60), (dh12,30), (eng,24), (hrf,6)

contempt, sadness 0.12 -60% (oq,100), (oq,76), (eng,68), (hrf,58), (pitch,44)
happy, elation 0.08 0% (hrf,98), (naq,98), (pitch,6), (dh12,2)

contempt, boredom 0.18 -3% (hrf,84), (dh12,18), (sq,10), (oqa,8), (eng,4)
M1 shame, anxiety 0.28 -14% (oqa,84), (pitch,36), (clq,32), (naq24), (hrf,18)

elation, coldanger 0.23 -25% (clq,100), (pitch,90), (eng,40), (sq,26), (hrf,14)
interest, coldanger 0.24 -23% (naq,96), (eng,76), (oq,36), (dh12,24), (oqa,20)

pride, sadness 0.25 -16% (dh12,90), (eng,36), (pitch,28), (hrf,28), (naq,24)
contempt, sadness 0.11 -55% (naq,98), (clq,92), (oqa,76), (oq,62), (dh12,34)

M2 shame, disgust 0.13 -18% (eng,100), (oq,42), (clq,36), (naq,8), (oqa,4)
happy, panic 0.22 -20% (naq,100), (clq,56), (pitch,26), (oqa,16), (dh12,14)

despair, anxiety 0.09 -57% (oqa,100), (pitch,90), (dh12,78), (clq,28), (naq,18)
contempt, anxiety 0.27 -25% (eng,68), (oqa,44), (clq,32), (dh12,22), (pitch,14)
interest, coldanger 0.06 -9% (oqa,54), (hrf,50), (pitch,46)
contempt, despair 0.15 -13% (oqa,98), (oq,54), (hrf,32), (eng,4), (dh12,4)

The results highlight a few critical points about emotion in speech. The first

confirms that there are emotional pairs that carry subtle differences that can be

difficult to express and interpret based on prosody alone. Additionally, while the

types of emotional ambiguities are largely speaker dependent, there are subtleties

that can exploited from features of the glottal flow to help resolve some of them. The

presented work examined the ambiguities present in an actors’ intended emotional

expressions.
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5.1.3 Authentic emotion: Auto Tutor

The interest of researchers in the field of human-computer interaction (HCI) has

been developed to build more effective, user-friendly, and intelligent applications

[51, 21, 28, 13, 20, 19, 54]. Computer tutoring system with user emotion detection is

one of the focuses. Researchers extracted multiple cues to recognize users’ emotion.

One of the computer tutoring systems is ITSPOKE[51]. The ITSPOKE group collect-

ed features including the acoustic-prosodic (pitch related, energy related, duration,

speaking rate, pause-duration, and number of internal silence) and the lexical (i.e.,

manually transcribed or recognized speech) features to predict three emotion states

(negative, neutral, and positive) of the users. Their result, in general, showed the

lexical features yielded higher predictive utility than acoustic-prosodic features [51].

Another computer tutoring system, Auto Tutor, developed by the University of

Memphis involved multiple channels [21] to detect the learners’ emotion, such as facial

expression, body gesture [20], and speech [19]. In the speech channel, the features

they used were the conversational cues, which consist of five aspects of information:

temporal, response, answer quality, tutor directness, and tutor feedback (more detail-

s in Section 5.1.3.3). However, no work has been reported involving the features of

acoustics from the speech channel. This motivated the study to investigate the per-

formance of acoustic cues from speech in learner’s emotion detection of Auto Tutor.

We use the same speech data and methodology as that in the work using conversa-

tional cues for emotion detection of Auto Tutor [19] and compare the performance of

acoustic cues working in emotion detection with that of the conversational cues. In

addition, Sequential Floating Forward Selection (SFFS) is applied as extra study on

the acoustics for feature selection and the selected features was evaluated and exam-

ined to provide more detailed analysis of the acoustic features in emotion detection

of Auto Tutor HCI.
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Table 5: Number of samples of UM database

Emotion neutral boredom confusion flow frustrationdelight surprise
No.samples 277 268 319 348 204 78 17

5.1.3.1 Data

The speech data used for this study was provided by the Auto Tutor system from

the University of Memphis [31] (UM data). The UM data contains the recordings

of 30 users’ (15 females and 15 males) dialog when they were learning with Auto

Tutor. UM data covers seven emotions including ‘neutral’, ‘boredom’, ‘confusion’,

‘flow’, ‘frustration’, ‘delight’, and ‘surprise’. ‘Neutral’ was defined as no emotion or

feeling. ‘Boredom’ was defined as being weary or restless through lack of interest.

‘Confusion’ was defined as a noticeable lack of understanding. ‘Flow’ was a state

of interest resulting from involvement in an activity. ‘Frustration’ was defined as

dissatisfaction or annoyance. ‘Delight’ was a degree of satisfaction. And ’surprise’ was

wonder or amazement, especially from the unexpected [31]. These emotion categories

were labeled by the user himself/herself (i.e., self-evaluation) through reviewing the

recorded video of their learning interaction procedure after the learning session. The

number of utterances with emotion labels is shown in Table 5.

To make a balanced classification and equivalent comparison, this study excluded

emotions ‘delight’ and ‘surprise’ in the analysis with the following reasons: 1) the

number of samples in emotion categories ‘delight’ and ‘surprise’ is considerably smaller

than that of other emotions, which could cause a bias in classification evaluation; 2)

the comparable work in [19] excluded the two emotions for the same reason. Therefore,

the dataset in this analysis consists of 1416 samples from 30 speakers in five emotion

categories: ‘neutral’, ‘boredom’, ‘confusion’, ‘flow’, and ‘frustration’.
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5.1.3.2 Features

The acoustic cues used in this study consist of two features sets, glottal waveform

features and a feature set including the prosodic, spectral, and other voice related

features (e.g., probability of voicing, jitter, and shimmer). The glottal features are

the parameters shown in Section 5.1.1. Another set of energy related, spectral related,

and other voice related features were extracted using the openSMILE toolkit [23]. The

low-level descriptors (LLD) are listed in Table 6. Up to 39 functionals were applied

to LLD to generate 4368 features [68].

Table 6: openSMILE low-level descriptors (LLD)[68]

Energy Related Spectral Related Other Voice Related
Sum of auditory spectrum RASTA-style spectrum F0
Sum of RASTA-style filtered spectrum MFCC 1-12 Probability of voicing
RMS energy Spectral energy Jitter
Zero-crossing rate Spectral roll off point Shimmer

Spectral statistics

Based on the above, a 4445-dimensional acoustic feature set was created for each

utterance sample for all five emotion categories (excluding delight and surprise) as

listed in Table 5.

5.1.3.3 Methodology

In the comparison work [19], the emotion states of speech data (UM data) were la-

beled by four evaluators: the user himself/herself (i.e., self-evaluation), peer (other

user), and two trained judges. Based on the evaluator, seven sets of emotion labels

were generated: self-evaluation (the user evaluated himself/herself), peer-evaluation

(another user’s evaluation), two trained judges separately, agreement shared between

the two trained judges, agreement shared between more than two evaluators (includ-

ing self, peer, and the two trained judges), and agreement shared between more than

three evaluators (including self, peer, and the two trained judges). Except for the self-

evaluation label, other label sets are not available in this study, so the comparison will
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focus on the experiments using self-evaluation as the emotion label. The features used

in the comparison work [19] are 17 conversational cues from five aspects: temporal

(e.g., duration, number of topics, number of turns, etc.), response (number of words,

number of chars, etc.), answer quality (similarity to an expectation, the change in the

similarity, etc.), tutor directness (hint, prompt, correction, etc.), and tutor feedback

(positive, neutral, negative, etc.). The 17 features was reduced in dimension using

Principle Component Analysis (PCA). The reduced feature set were evaluated by a

list of classifiers in the WEKA environment [35], among which Adaboost.M1 is the

classifier yielded the highest accuracy rate for the self-evaluation label data. The

classification was conducted in two sets of experiments: multiple-emotion classes and

binary-emotion classes. The multiple-emotion classification including 5-classes (all

five emotions) and 4-classes (‘neutral’ excluded); the binary classification is between

two emotions: neutral and one from the other four emotions. For each classification

task, the number of samples in each class was forced to be equal by randomly selecting

N samples from every class (N is the smallest class’s size). The classification for each

experiment was repeated 10 times (trials) using the balanced samples. The averaged

result over 10 trails was the representation of the classification experiment.

For the comparison purpose, this study adopted the methodology in [19]. Di-

mension reduction using PCA was conducted, followed by classification using Ad-

aboost.M1. However, due to the large difference in the dimension of features (17

conversational cues vs. 4445 acoustic cues), additional feature selection (Sequen-

tial Floating Forward Selection - SFFS) was applied to the 4445-dimension acoustic

feature set. The selected features were evaluated by classification tasks using Ad-

aboost.M1 classifier as well. AdaBoost.M1 is a boosting algorithm. It improves the

‘weak’ learning algorithm by repeatedly applying it to different distributions or weigh-

ings of training samples and eventually forming a ‘stronger’ learning algorithm [29].

This classifier was chosen in this additional study because it was one of the classifiers
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yielded best classification result in D’Mello’s work [19], and also it was evaluated in

prior works to show more robust performance compared with other learning methods

[51]. The software WEKA [35] was used for SFFS and Adaboost.M1 classification

and MATLAB executed PCA to create new feature sets with the 95% variation rep-

resented.

It should be noticed that acoustic features are speaker-dependent because they

capture the characteristics of speakers (e.g., gender and culture). To eliminate the a-

coustic difference from factors other than emotion, speaker normalization was applied

to the data first. The equation for speaker normalization is shown in Equation (15):

f̂i,j =
fi,j −mean(fi,j)

std(fi,j)
, (3)

where fi,j is the ith feature descriptor for speaker j across the samples of all emotions

and std refers to the standard deviation.

5.1.3.4 Result

The classification result is shown in Table 7. The classification results using PCA (95%

variation represented) are all approximately equal to the baseline (chance) as shown

in the row of ‘PCA95%variation’. While all classification accuracy rates using SFFS

are above chance (i.e, the baseline). The higher accuracy rate using SFFS than PCA

implies that feature selection is benefit for large dimension feature set. Therefore,

the focus of result expression will be on comparing the results using SFFS (instead of

PCA) with D’Mello’s work [19]. From the multiple-emotion tasks shown in columns

‘5class’ and ‘4class’ of Table 7, the 5-class and 4-class ARs are lower than D’Mello’s

results using conversational cues. However, acoustic cues yielded higher (boredom

and flow) or similar (confusion and frustration) accuracy rate in all binary-emotion

classifications between neutral and emotional states (the rightmost four columns in

Table 7). The statistics significant test was used to help the comparison. In Table 7,
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the one-sided one-sample t test was used to test the null hypothesis that the accuracy

rates variable using acoustic features comes from the population with the mean of the

comparison accuracy rate reported in [19] against the alternative hypothesis that the

mean is greater than the comparison work. T test was chosen because the Jarque-

Bera test results did not reject any of the null hypothesis that the accuracy rates

fit the normal distribution. And one-sided (i.e., right) was chosen because, if the

null hypothesis of the t test was rejected, instead of the general interpretation of not

equaling to, the author was more interested in the detail about whether the mean

is greater or smaller than the comparison work. The significant test showed that

using acoustic features, the classification between neutral vs. boredom, neutral vs.

confusion, and neutral vs. flow produced significantly higher accuracy rates than the

comparison work.

Table 7: Comparison: Classification accuracy rate (AR) in %, (D’Mello: the com-
parison work [19], P: the presented work)

AR 5class 4class neutral neutral neutral neutral
vs. vs. vs. vs.
boredom confusion flow frustration

baseline (chance) 20.0 25.0 50.0 50.0 50.0 50.0
SFFS 24.9 31.6 69.1 61.8 66.6 64.6
PCA95%variation 20.1 24.9 47.3 54.2 50.5 52.6
D’Mello [19] 29.5 35.1 61.3 58.9 52.9 64.1

Following the analysis in [19], the F-measure scores in Table 8 were calculated

by dividing the doubled number of correctly classified samples (i.e., true positive)

belonging to one class by the total number of samples of false positive, false negative,

and doubled true positive from the confusion matrix [87]. For multiple-emotion tasks

(5-class and 4-class), Acoustic cues outperform conversational cues for flow, while con-

versational cues win in confusion and frustration for both 5/4-class tasks(significantly

different tested by t test). Neutral and boredom are distinguished from other emo-

tions with fairly similar scores using conversational cues and acoustics (26%, 25%
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for neutral, and 32%, 32% for boredom) for 5-class. In the 4-class case, acoustics

yield higher score in boredom (significantly different tested by t test). Considering

4 and 5 classes together, flow exhibits the most acoustic separation, while the score

using conversational cues is the lowest. This could be explained that among the five

emotions (including neutral), flow (i.e., interest, engaged) is mostly an arousal related

emotion [13]. Previous work showed that arousal degree (involvement) were captured

more using acoustic cues comparing using the degree valence (pleasant of emotion)

[38]. Therefore, the emotion flow, describing the involvement, has the largest separa-

tion using acoustic cues and is captured by acoustics better than the conversational

cues in this study. The F-measure scores for binary classification (the rightmost four

columns in Table 8) support the accuracy rate results with significant test results (the

rightmost four columns in Table 7). Acoustic cues yield higher (boredom and flow)

or similar (confusion and frustration) scores than conversational cues. And the two

scores in each binary classification is fairly balanced. The observation indicates the

distinguishing capability of acoustic cues working in detecting ‘flow’ and ‘boredom’

of the computer tutoring system.

Table 8: Comparison: F-measure scores in % (D: the comparison work [19], P: the
presented work)

F-measure 5class 4class boredom confusion flow frustration
D P D P D P D P D P D P

neutral 26 25 na na 57 71 63 63 59 66 66 63
boredom 32 32 35 51 67 68
confusion 35 11 43 11 57 62
flow 13 48 33 66 54 67
frustration 35 6 41 0 63 66

To have a closer investigation on the performance of acoustic cues in distinguishing

emotions, the binary classification between two emotional states was also conducted

and the result is shown in Table 9. The best performance is from the pair of boredom

and flow with the AR 71.4% while the lowest AR is 61.8% from the pair of confusion

and frustration. This is possibly caused by the fact that the largest involvement
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separation is between the pair flow (i.e., interest) and boredom (i.e., lack of interest)

and the involvement, as described above, is highly related with acoustics. The result

in Table 9 shows that although confusion and frustration failed in multiple-emotions

classification (i.e., all 5-class and 4-class), they can be recognized with a over 61.8%

AR in pair-wise classification tasks. Confusion and frustration exhibit discriminant

ability in acoustics.

Table 9: Binary classification accuracy rate (AR) between Emotional States using
UM data(%)

AR boredom confusion flow
confusion 67.7
flow 71.4 65.8
frustration 63.4 61.8 68.5

Examining the selected acoustic features provides the details of which aspect of

acoustics works for emotion recognition in this study. The features selected in all 10

trials for each experiment are listed in Table 10. Pitch (i.e., F0) related feature was

selected in all experiments. Comparing emotions boredom and flow with the other

two, more shimmer and spectral related features were selected. The larger number

of features selected for boredom and flow (mostly from shimmer and spectral) can

contribute to the better performance of the binary classification of the two emotions.

Table 10: Features Selected using SFFS in All 10 Trials for UM data

5class 4class boredom confusion flow frustration
F0 1 1 1 1 1 1
jitter 1 1 1
shimmer 5 1
spectral 4 1 4
mfcc 1 1 1 1
energy 2
voicing 1 1
total 1 2 13 5 9 2

This section examined the acoustic cues in detecting learner’s emotion of Auto Tu-

tor system and compare the results with available work using conversational cues [19]
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from the same dataset. The binary-emotion classification result is better (for emo-

tion boredom and flow) or comparable (confusion and frustration) to the comparison

work in [19]. This result reveals that the emotions: flow and boredom are better

captured in acoustics than conversational cues while conversational cues play a more

important role in multiple-emotion classification. These results are related with the

results delivered by the ITSPOKE group. Their group studied the acoustic-prosodic

features (part of the acoustic cues in the present study) and lexical cues (part of the

conversational cues in [19]) from the user’s speech in the computer tutoring system

ITSPOKE. Their results showed lexical cues outperformed acoustic-prosodic cues in

distinguishing negative, neutral, and positive emotions of users [51]. The emotion

states in their research are more distributed along the valence dimension (pleasant or

unpleasant) than the arousal (active or passive). While in the present study, boredom

and flow are emotions with extremely opposite degrees along the arousal dimension,

for which the acoustic cues yield higher accuracy rate (AR).

The comparison work used Principle Component Analysis (PCA) for feature se-

lection and extraction on their 17 conversational cues. However, the PCA did not

work well on the 4445-dimension features set in this study (the AR was close to the

rate by chance). This could be possibly explained that the new dimensions created

by PCA representing the largest diversity of data, however, this diversity may come

from the inner-class of emotion itself instead of between-classes. Also, the 95% vari-

ation PCA applied on 4445-dimension feature set still resulted in a large dimension

of subset comparing with the size of sample, which is not suitable for classification.

Therefore, the feature selection SFFS was required in this study and was the focus

in the comparison result. What’s more, the comparison between acoustic cues and

conversational cues is available only using the self-judgement of emotion labels.
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Table 11: Summary of three acted emotional databases and the number of samples
for emotion categories.

EPST EMA GES
Language English English German
Speakers 7 3 10
Emotions 15 4 7
Sampling frequency 22.05kHz 16kHz 48kHz
duration/sample 1-2s 1-4.5s 1-9s
total samples 543 568 339
neutral 80 146 79
angry 139 141 127
sad 159 157 62
happy 165 124 71

5.1.4 Cross-Databases Emotion Recognition

Being unaware of any attempt to evaluate glottal features on a cross-database train-

ing platform as has been shown in the previous work in introduced as the background

in Chapter 3, the goal of this section is present a preliminary report on the consis-

tency of glottal-based features for cross-emotion database training. For comparison,

an equivalent study on pitch-related features is additionally included. This section

reports the performance of cross-databases 4-emotion recognition using the glottal-

based features and compares it with the pitch-related features. Three databases are

studied, two are spoken in English and one in German.

5.1.4.1 Data

The emotional speech data in this study involves three databases, the Emotional

Prosody Speech and Transcripts database (EPST), the Electromagnetic Articulogra-

phy database (EMA), and the German Emotional Speech database (GES). Details of

the three databases are shown in Table 11. The EPST database [49] contains record-

ings of emotional and semantically neutral utterances of dates and numbers (e.g. “five

hundred one”). The EMA database [46] consists of recordings of 14 sentences, most

of which are semantically neutral (e.g.,“Your grandmother is on the phone”). The
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speech material of GES [7] is a set of 10 sentences with no semantically emotional

bias covering everyday life content (e.g., “The cloth is lying on the fridge”). The

sampling rates of the three databases are different, as shown in Table 11, “fs”. The

three databases are all down sampled to 16 kHz for this study. All databases are acted

emotional speech with target emotion status varies from 4 to 15 in number. To pro-

vide better comparability among databases for cross-databases emotion recognition,

the four emotion categories (neutral, angry, sad, and happy) consistently presenting

in all three databases are investigated. The number of sample units for each emotion

is shown in Table 11.

5.1.4.2 Feature

The extraction of the glottal features for each speech utterance was processed in four

steps as described in Section 5.1.1. Seven statistics (i.e, the mean, median, minimum,

maximum, standard deviation, range, and inter-quartile) were applied over frames

to represent one speech sample, i.e., 77 glottal features in total. For comparison,

the pitch-related features were included in this study. 84 pitch-related features were

extracted using openSMILE toolkit [24] at the 25ms frame with the step of 10ms.

Instead of seven, 14 statistics were applied on six the frame-level base pitch features

(i.e., pitch, pitch envelop and their 1st and 2nd derivatives) for the following reasons:

1) to make the comparison between glottal and pitch features more equivalent using

more balanced size of features, and 2) to represent more information about pitch

contour.

5.1.4.3 Methodology

To eliminate the acoustic difference from factors other than emotion (e.g., gender,

language, culture), speaker normalization was applied to the extracted features first.
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DB-a f1 DB-a{f1}

DB-a{f1} DB-b{f1}

DB-c{f1}

Feature Selection Training Self-Testing Cross-Testing

Figure 4: The block diagram of the self-evaluation and the cross-database training
and testing methodology.

The processing of speaker normalization is shown in Eq. 15:

f̂i,j =
fi,j −mean(fi,j)

std(fi,j)
, (4)

where fi,j is the ith feature descriptor for speaker j across the samples of all four

emotions and std refers to the standard deviation. The normalization was conducted

within database.

Given the normalized features, as shown in Fig. 4, the analysis in this study con-

sists of feature selection, self-testing and cross-testing. Feature selection was applied

to the normalized data using Sequential Floating Forward Selection (SFFS) for each

database by 10-fold cross-validation, individually. The evaluator of SFFS was the

consideration of the predictive ability along with the degree of redundancy. Wrap-

per was not utilized for the purpose of eliminating the effect of classifier-dependence.

Features selected at least in one fold were considered as the selected feature for the

database. In Fig 4, f1 represents the feature subset selected from Database-a(“DB-

a”). Then, the selected features were first used to build a 10-fold cross-validation

classification trained on the database (e.g., DB − a{f1} in Fig. 4) and tested on the

same database (e.g., DB − a{f1}), referred to as “self-testing”. The features select-

ed using one database were then trained on this database (e.g., DB − a{f1} ) and

tested on the other two databases (e.g., DB − b{f1} and DB − c{f1} ), referred to

as “cross-testing”. The procedure was repeated by starting from all three databases.

The software WEKA [35] was used for SFFS and the 4-emotion classifiers were built

using LibSVM [10] with the RBF kernel.
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5.1.4.4 Results

The results are shown in Table 12. It could be read in this way: the first block

“Feature Selection” reports the number of the selected feature for each database.

The following three blocks represent the 4-emotion classification trained using the

selected features for three databases, individually. Inside each block, the sub-block

with ∗ in bold represent “self-testing” results by 10-fold cross-validation while other

entry is the result of “cross-testing” tested on the other two databases. The results are

shown in accuracy rate (“AR”), precision (“prec”), and recall(“reca”) using glottal

(“GLO”) and pitch (“PCH”) features, separately.

From the block of “Feature Selection” of Table 12, the number of selected features

of glottal and pitch are approximately equivalent for three databases. The acknowl-

edged by this is that the difference between the following classification results using

glottal and using pitch features is not caused by the different the numbers of the

selected features. From the “AR” rows of Table 12, overall, the observations are

that 1) the ARs of “self-testing” are higher than “cross-testing”, 2) the ARs using

glottal features (“GLO”) are higher than pitch features (“PCH”). For “self-testing”,

comparing the three databases, both glottal and pitch features exhibit higher ARs

for EMA (79.7%G, 66.4%P) and GES (82.6%G, 70.5%P) while relatively lower for

EPST (64.3%G, 44.0%P) in the 4-emotion classification.

For “cross-testing”, training using EPST produced up to 26.8% AR (i.e., tested

on GES using glottal features). These ARs are around or lower than the rate by

chance. This indicates the model trained using EPST has difficulty in working on

EMA and GES, which also reveals the difference of both glottal and pitch features

between EPST and the other two databases in emotion expression. From the block of

“train:EMA” of Table 12, the model trained on EMA performed better when tested on

GES than EPST. Although EMA and EPST are in English, while GES is in German,

the language is not the issue to affect cross-testing in glottal and pitch features for
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Table 12: The results of accuracy rate (AR), precision, and recall for four emotions,
(“*” indicates the self-tested experiments using 10-fold cross validation, the self-tested
accuracy rates are in bold).

Feature Selection
No.feat EPST EMA GES

GLO PCH GLO PCH GLO PCH
23 27 30 24 28 37

train: EPST
test: *EPST* EMA GES

GLO PCH GLO PCH GLO PCH
accuracy rate 64.3 44.0 24.6 19.7 26.8 14.7
precision Happy 0.61 0.44 0.30 0.22 0.36 0.19

Angry 0.71 0.39 0.16 0.13 0.36 0.15
Sad 0.57 0.51 0.26 0.06 0.15 0.02
Neutral 0.80 0.47 0.24 0.44 0.19 0.53

recall Happy 0.65 0.70 0.40 0.66 0.39 0.35
Angry 0.57 0.38 0.14 0.11 0.31 0.11
Sad 0.66 0.35 0.33 0.02 0.31 0.03
Neutral 0.73 0.19 0.14 0.08 0.06 0.11

train: EMA
test: EPST *EMA* GES

GLO PCH GLO PCH GLO PCH
AR 26.0 20.1 79.7 66.4 64.9 49.3
precision Happy 0.37 0.27 0.74 0.68 0.52 0.39

Angry 0.20 0.13 0.72 0.64 0.76 0.64
Sad 0.25 0.17 0.84 0.62 0.57 0.41
Neutral 0.22 0.21 0.88 0.72 0.75 0.60

recall Happy 0.32 0.26 0.72 0.78 0.56 0.55
Angry 0.22 0.11 0.72 0.45 0.66 0.39
Sad 0.20 0.18 0.89 0.64 0.89 0.61
Neutral 0.34 0.30 0.84 0.80 0.52 0.51

train: GES
test: EPST EMA *GES*

GLO PCH GLO PCH GLO PCH
AR 28.2 20.4 56.9 33.3 82.6 70.5
precision Happy 0.40 0.12 0.55 0.47 0.74 0.71

Angry 0.25 0.22 0.52 0.31 0.79 0.66
Sad 0.08 0.15 0.76 0.19 0.92 0.84
Neutral 0.26 0.21 0.56 0.41 0.89 0.71

recall Happy 0.42 0.01 0.64 0.06 0.55 0.07
Angry 0.34 0.48 0.70 0.72 0.90 0.94
Sad 0.03 0.05 0.34 0.07 0.90 0.74
Neutral 0.40 0.44 0.63 0.48 0.90 0.87
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this study. It can be further observed from the block of “train:GES” since the AR

results tested on EMA are higher than EPST, too. Based on the above observation,

glottal features, in the cross-databases way, could be trained and tested better using

the pair of EMA and GES (with AR up to 64.9%) than other combinations involving

EPST. This pattern can also be observed in pitch features, but with lower ARs.

Table 13: The demonstration of precision and recall.

actual class
positive negative

predicted positive tp (true positive) fp (false positive)
class negative fn (false negative) tn (true negative)

More details of the classification results are shown in Table 12 in terms of precision

and recall, given by Eqs.( 5) and( 6),

precision =
tp

tp+ fp
, (5)

recall =
tp

tp+ fn
, (6)

where tp, fp, and fn are shown in Table 13. Examining the precision and recall

provides the details of performance of single emotion for “cross-testing”. Due to

the low values of EPST, the focus will be on EMA and GES in this discussion.

When trained on EMA and tested on GES (block “train:EMA”, column “GES”),

the smaller precision (0.57) and larger recall (0.89) of “sad” using glottal features

indicate that other three emotions are likely to be classified as “sad”. “Sad” is also the

reason for the performance of the model with the training and testing sets exchanged

(block “train:GES”, column “EMA”). “Sad” is classified as other emotions than itself

from the larger precision (0.76) and smaller recall (0.34). However, for pitch, the

distribution of the error of classification is widely spread.

It should be pointed out that the results show better performance for both “self-

testing” and “cross-testing” in all databases using glottal than pitch. However, the
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conclusion should be drawn with caution because glottal features include the acoustic

information not only in the time-domain but also the spectral while pitch features

capture mainly the time-domain of speech. From the results, up to 64.9% could be

achieved using glottal features only. More similarity are shared by EMA and GES in

terms of emotion expression in glottal features than EPST. And this pattern could

be observed by pitch features as well. This serves the goal of investigating the glottal

features in cross-database emotion recognition of this study.

This section reports the study of cross-databases emotion recognition in four emo-

tion states (neutral, angry, happy, sad) using glottal-based features and compares it

with pitch-related features. Three acted databases (two in English, one in German)

are studied from the perspective of “self-testing” (i.e, trained on one database and

tested on the same one) and “cross-testing” (i.e., trained on one database and tested

on others) for 4-emotion recognition. In the results, Using glottal features only, up

to 64.9% could be achieved for cross-database emotion recognition. Difference in per-

formance between training/testing database pairs could be observed and the baseline

of multiple database emotion recognition is provided for future work.

In this study, all the databases were recorded in the lab environment at last

16kHz. Considering the potential application of detecting emotions in recordings at

the telephone quality level, e.g., Call Center speech, the challenge arose that the

glottal features may fail in the emotion recognition tests in the telephone quality

speech (with the sampling frequency of 8kHz). To study the emotion distinguishing

ability of the glottal features extracted form the telephone quality speech in the cross-

database experiments, comparable study was conducted and presented in ChapterA.
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Figure 5: Example of the TEO derived from one frame of speech signal. (a) One
frame of speech signal, (b) The TEO derived from (a) signal.

5.2 Teager Energy Operator (TEO)

5.2.1 Extraction

Another domain of acoustic features in this thesis is Teager Energy Operator (TEO)

based features. TEO was motivated by the experiments in speech and hearing by

Teager and Teager [79, 80, 81]. The results of the experiments showed that the vocal

fold model is nonlinear, under the effect of vortex action. The vortex action caused the

modulation in speech signal. Teager developed the energy measurement motivated

by the experiments based on the modulation pattern. Then the calculation of TEO

Ψ[x(n)] of discrete-time speech signal x(n) was formulated by by Kaiser [41] as shown

in Eq. 7.

Ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1). (7)

Given the TEO, three sets of measurements of TEO [96] were calculated as the

Low-level Descriptors in the feature set:

(1) Variation of FM component (TEO-FM-Var), the FM demodulation
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Figure 6: Example of one frame of FM component of TEO.

component was obtained by Eq. 8 [53, 36], and eight statistics (mean, minimum,

maximum, range, log-range, standard deviation, median, and inter-quartile) were

calculated for each frame to form FM-Var feature set,

ω(n) = arcsin

√
Ψ[x(n+ 1)]−Ψ[x(n− 1)]

4 ∗Ψ[x(n)]
. (8)

(2) Normalized TEO autocorrelation envelope area (TEO-Auto-Env),

TEO was applied on each of the four-band filtered (0-2kHz, 2-4kHz, 4-6kHz, 6-8kHz)

speech and the normalized area under envelope of TEO autocorrelation was computed

for each band, respectively, as shown in Fig. 7(a). The four band was chosen by equally

dividing half of the sampling frequency of the speech (i.e., 16Hz);

(3) Critical band based TEO autocorrelation envelope (TEO-CB-Auto-

Env), 16-critical band filterbank [50] was applied to the voiced speech and TEO was

calculated in each of the band. The normalized area under the envelope of TEO

autocorrelation was computed for each band, respectively, as shown in Fig. 7(b).

Besides the above measurements of TEO, Teager Energy Cepstrum Coefficient

(TECC) was calculated as another TEO based feature set. TECC was proposed with

the motivation of the processing of MFCC feature and TEO [18]. The extraction

procedure of TECC was similar to MFCC but using Teager Energy TEO[x(n)] instead

of the squared energy [x(n)]2 as the primary difference (as shown in Eq. 7). The

voiced speech was segmented into frame with length approximating four times of
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Figure 7: The block diagram of the extraction of (a)the normalized TEO autocorre-
lation envelope area (TEO-Auto-Env) and (b) the critical band based TEO autocor-
relation envelope (TEO-CB-Auto-Env).

the pitch period with a step size of 10ms. The extraction on one frame of signal

was demonstrated in Figure 8. The Gammatone filter is given by Eq. 9 in the time

domain,

g(t) = Atn−1exp(−2πERB(fc)t)cos(2πfct), (9)

where A, b, and n are Gammatone filter design parameters and fc is the center

frequency. According to [40, 18], the parameters are set as b = 1.019 and n = 4.

Equivalent Rectangular Bandwidth (ERB) represents the bandwidth of filters, which

is given by Eq. 10,

ERB(f) = 6.23(f/1000)2 + 93.39(f/1000) + 28.52. (10)

where f is the center frequency in Hz. And the filter gain A is set under the consid-

eration that the frequency response at the center frequency equals to one. The filter

placing is in Bark-scale (critical filterbank) [97] and the number of filterbank in this

study is 25. More details of the extraction of TECC and the evaluation compared

with MFCC is presented in the following section. The motivation and evaluation of

TECC is presented in Section 5.2.2.
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Figure 8: The block diagram of TECC extraction algorithm on one frame.

5.2.2 The noise analysis of TECC compared with MFCC

Automated emotion detection is the attempt to quantify an abstract interpreta-

tion into objectively measured components of recorded human interaction. Emo-

tion recognition in a noisy condition remains a challenging problem. The litera-

ture shows that Mel-Frequency Cepstrum Coefficients (MFCCs) exhibit robust per-

formance in speech analysis in noisy environment, especially for speech recognition

[71, 18, 56, 60, 95, 94, 12, 47, 85, 55]. On the other hand, work on the use of Teager

Energy Operator (TEO) [9, 96, 37, 72] in classifying emotion has shown that these

features can provide valuable insight into distinguishing different types of emotional

expression. This motivates the study of emotion recognition using features combin-

ing the advantage of both MFCC and TEO, which has not been reported much yet.

Teager Energy Cepstrum Coefficient (TECC) was first proposed by Dimitriadis and

his colleges and studied to show its robust performance in speech recognition [18, 17].

In this section, the robustness of TECC in emotion recognition was investigated and

compared with MFCC at different noise levels for three databases, two of which are

English emotional databases and one is in German.

5.2.2.1 Data

The emotional speech data in this study involves three databases, the Emotional

Prosody Speech and Transcripts database (EPST), the Electromagnetic Articulogra-

phy database (EMA), and the German Emotional Speech database (GES). To provide

better comparability among databases, the four emotion categories (neutral, angry,
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sad, and happy) consistently presenting in all three databases are investigated. The

number of sample units for each is shown in Table 11.

5.2.2.2 Feature

The statistics of MFCC and TECC features and their derivatives (∆MFCC and

∆TECC) were extracted and calculated to form the feature set in this study.

MFCCs were computed from the log-squared-energy in frequency bands distribut-

ed over a Mel-scale. The extraction of MFCC features for each speech sample was

processed in five steps: (1) marked the voiced section of speech, (2) divided the voiced

section into frames approximating four pitch periods in length with a 10ms step, (3)

took the Fourier Transform on each frame, (4) mapped the power spectrums on to a

Mel-scale, (5) took the log of the power at each Mel-scale band, (6) took the Discrete

Cosine Transform (DCT) of Mel-log powers. The amplitude of the resulting spectrum

was MFCC. The ∆MFCC feature was calculated by Eq. 11,

∆MFCCj(i) = MFCCj(i+ 1)−MFCCj(i), (11)

where MFCCj(i) is the jth coefficient of MFCC from the ith frame. The number of

coefficients of MFCC used in this study is 12.

TECC was proposed with the motivation of the processing of MFCC feature and

Teager Energy Operator [18]. Teager Energy was proposed by Teager based on his

nonlinear model of the true source of sound production, which is actually the vortex-

flow interactions [79, 82]. He developed the Teager Energy Operator supporting the

observation that hearing is the process of detecting the energy. The TEO of discrete-

time speech signal x(n) can be calculated following Eq. 7 derived by Kaiser [41] as

shown in Section 5.2.1. The ∆TECC feature is calculated by Eq. 12,

∆TECCj(i) = TECCj(i+ 1)− TECCj(i), (12)
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where TECCj(i) is the jth coefficient of TECC from the ith frame. All features

were quantified using seven statistics (i.e, the mean, median, minimum, maximum,

standard deviation, range, and inter-quartile) across all frames of a sample to form the

representation of an utterance. The feature extraction produced 168 MFCC features

and 350 TECC features.

5.2.2.3 Methodology

The purpose of this study was to evaluate the robustness of the discrimination ability

of TECC features in noisy conditions. Investigating the relationship between the

robustness of features and the noise degree of speech requires emotional speech whose

noise level is quantified and measurable. Therefore, five sets of data were created by

adding White Gaussian noise to the “clean” speech dataset at five Signal Noise Ratio

(SNR) levels from 20dB to 0dB with the step of 5dB. In total, six datasets (including

the clean data) were available for each database (i.e.,five noisy and one clean). The

White Gaussian noise was chosen as the additive noise because based on the research

of [18], the White Gaussian noise produced the largest difference between the features

extracted from the clean speech and the noisy speech, comparing with Babble, Pink,

and Car noise.

It has been shown that acoustic features are speaker-dependent because they cap-

ture the characteristics of speakers (e.g., gender, language, culture) [22]. To eliminate

the acoustic difference from factors other than emotion, speaker normalization was

applied to the extracted features first. The processing of speaker normalization is

shown in Eq. (15):

f̂i,j =
fi,j −mean(fi,j)

std(fi,j)
, (13)

where fi,j is the ith feature descriptor for speaker j across the samples of all four

emotions and std refers to the standard deviation. The normalization was conducted
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within database.

Given the normalized features, the normalized mean squared error (NSME) [18, 94]

for MFCC and TECC was calculated at each noise level and compared. NSME is the

measurement on the distance between feature of the noisy and clean speech from the

same signal segment. The calculation of NMSE is shown in Eq. (14). It’s defined as

the average Euclidean distance between the “clean” and “noisy” features divided by

the mean of “clean” feature vector norm [18],

NMSE =
mean(D(fi,clean, fi,noisy)

mean(|fi,clean|)
, (14)

where D(fi,clean, fi,noisy) is the Euclidean distance between the ith feature in feature

set of the clean speech and the noisy speech, and |fi,clean| is the vector norm of the

ith feature of the clean speech . The interpretation of NSME is that a smaller NSME

value implies more robustness the feature possesses (i.e., NSME value is zero for the

clean speech).

The robustness of the discrimination ability of features were evaluated in emotion

recognition experiments. Using 5-fold cross-validation, the experiment built a four-

class classifier on four subsets of data using a Support Vector Machine (SVM) and

tested it on the other subset(using LibSVM tool [10] in MATLAB, linear kernel).

This procedure was repeated using another choice of training and testing sets till all

sets has been tested. This classification was repeated 10 times for randomization.

The further study was carried out as the discrimination ability in pair-wise emotion

classification task. Four emotion categories formed six emotion pairs. One classifier

was built for each pair using the liner kernel SVM with 5-fold cross-validation and

the whole analysis was repeated 10 time as well.

5.2.2.4 Results

In this section, the normalized mean squared errors of MFCC and TECC on six

datasets are reported. Then the classification results of multi-emotion and pair-wise

48



emotion tasks are presented.

Mean Squared Error Analysis

Table 14: The normalized mean squared error (NSME) of MFCC/TECC at five SNR
levels for three databases. The smaller value between MFCC and TECC under the
same noisy condition using the same data is shown in bold.

SNR EPST EMA GES
MFCC TECC MFCC TECC MFCC TECC

0 0.58 0.39 0.52 0.24 0.56 0.33
5 0.50 0.33 0.44 0.20 0.47 0.29
10 0.41 0.28 0.35 0.16 0.38 0.25
15 0.32 0.24 0.27 0.12 0.30 0.21
20 0.24 0.20 0.20 0.09 0.22 0.17

Table 14 lists the NSME values at five SNR levels for three databases. It could

be observed that, for all three databases, the values of MFCC and TECC decreases

while the noise is reduced. It indicates the reliability of values in Table 14 accord-

ing to the interpretation of NSME. It should be noticed that, at all noise levels of

all three databases, the value of TECC is smaller than MFCC (value in bold). Es-

pecially for EMA, the all-level TECC values are less than half of MFCC. Based on

the observation, the conclusion could be reached that TECC is more robust than

MFCC facing additive noise in emotional speech. To further investigate the robust-

ness of emotion-distinguishing ability of TECC, multi-emotion and pairwise-emotion

classification experiments were conducted.

Emotion Recognition experiments

In emotion recognition experiment, both TECC and MFCC features were applied

in the multi-emotion classification (four-emotion) task first. The four-emotion clas-

sifier was built using LibSVM [10] with the liner kernel. The accuracy rate (AR)

was calculated as the average of those from 10 repetitions of classifications (5-fold

cross-validation).

The accuracy rates at different noise levels are shown in Figure 9. From Figure 9

it’s clear that the accuracy rates at all noise level using TECC are equal to or higher
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than MFCC for all three databases (i.e., AR using TECC is up to 71% in EPST, up

to 89% in EMA, and up to 85% in GES for the four-emotion classification). When

SNR equals to zero, TECC and MFCC performed equally. As the noise is reduced,

using TECC improved the AR up to 38% for EPST, 9% for EMA, and 8% for GES.

Overall, the ARs of EPST are relatively lower than EMA and GES. The possible

explanation is that EPST contains 15 emotion categories while EMA has 4, and

GES covers 7. The wider variety of emotion categories led to less acoustic difference

between emotions for speech in EPST than the other two. Moreover, the robustness

of emotion-distinguishing ability of TECC and MFCC is shown in the relationship

between the variation of ARs with the change of noise levels.

For a better evaluation of the variation of ARs,the standard deviation of ARs

at six noisy conditions using MFCC/TECC for each database is shown in Table 15.

From Table 15, the standard deviation of MFCC and TECC is approximating equal.

But for EPST, the variation of TECC is larger than MFCC. The reason for the larger

variation of TECC is the increase in Figure 9(a). The conclusion could be reached

that, both MFCC and TECC exhibit robustness in emotion recognition in noisy

conditions while the overall AR of TECC is relatively higher. The larger variation of

AR using TECC (in EPST) is caused by the performance improvement of ARs with

the reduction of noise than MFCC. The significance of the difference between the

accuracy rates using TECC and MFCC was tested by the Kruskal-Wallis test. The

reason for choose this test was because using Jarque-Bera test, the accuracy rates of

the classification using the MFCC from the “clean” (no additive noise) EPST data did

not fit the normal distribution. Using the speech of three databases (EPST, EMA,

GES) at six noise levels (lab-quality/clean, SNR=0, 5, 10, 15, 20), 18 experiments

were conducted. The significant test showed that, in four-emotion recognition, expect

for SNR equaling to zero for EPST and GES, the classification results (the other 16

experiments) at all six different noise levels for three databases exhibit statistically
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significant difference between using TECC and MFCC.

Table 15: The mean and standard deviation (std) of ARs over six noise levels for
4-emotion classification using MFCC and TECC separately for three databases.

EPST EMA GES
MFCC TECC MFCC TECC MFCC TECC

mean 52.3 61.1 79.1 84.3 79.6 84.1
std 1.11 7.69 3.97 4.01 1.55 2.05

The hypothesis is that the performance of TECC and MFCC is not the same to

all emotion categories. To test it, a pair-wise emotion classification experiment was

conducted and tested by the Kruskal-Wallis test. The results are shown in Table 16.

Since this experiment contains six emotion pairs at six noise levels for three databases.

The resulting number of classification will be 108. Similar as the multi-classification

task, for each classification, the accuracy rate was obtained as the average from 10

repetitions of 5-fold cross-validation classifications.

From the mean ARs row of Table 16, the AR using TECC only reaches 74-85%

for EPST, 86-99% for EMA, and 94-99% for GES in pair-wise emotion classification.

From the standard deviation row of Table 16, the variation of ARs is quite small

comparing with their mean values (up to 5% for EPST, 5% for EMA, and 4% for

GES). This indicates the little effect from noise on the distinguishing ability of both

TECC and MFCC. Comparing TECC with MFCC, the AR of TECC is increased

by up to 15% for EPST (neutral-angry), 8% for EMA (angry-happy), and 5% for

GES (angry-happy) than MFCC. In pair-wise emotion recognition, 108 experiments

were conducted using TECC and MFCC separately. The significant test shows that

for 80.6% of EPST and 86.1% of EMA experiments exhibit the significant difference

between the accuracy rates using TECC and MFCC. For GES, only 33.3% of the

experiments exhibit the significant difference, most of which are from the classification

of neutral vs. angry, neutral vs. sad, angry vs. sad, and sad vs. happy, the accuracy

rates of which are relatively higher for both TECC and MFCC.
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Figure 9: The accuracy rate (AR in %) of 4-emotion classification using MFCC and
TECC separately for three databases, (a)EPST, (b)EMA, and (c)GES.
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Table 16: The mean, and standard deviation (std) of accuracy rate from the pair-
wise emotion (N:nutral, A:angry, S:sad, H:happy) classification of six noise levels
using MFCC and TECC features for three databases.

N-A N-S N-H A-S A-H S-H
MFCCTECCMFCCTECCMFCCTECCMFCCTECCMFCCTECCMFCCTECC

EPST mean 69.9 80.3 76.8 84.4 79.4 86.1 67.5 74.2 72.0 77.5 71.7 74.0
std 2.1 4.3 2.5 4.4 1.4 4.6 3.3 2.6 1.4 3.1 1.8 6.8

EMA mean 96.6 98.6 85.6 88.1 96.0 97.5 97.9 98.5 79.6 85.9 94.3 97.9
std 1.5 0.4 2.3 3.9 0.9 0.3 0.9 0.7 3.1 4.1 2.1 1.0

GES mean 97.8 98.5 94.2 94.2 93.0 96.4 99.3 99.1 75.6 78.8 99.3 99.4
std 0.8 0.2 1.1 1.4 2.9 1.0 0.3 0.2 2.1 3.0 0.5 0.2

Overall, the ARs from EPST are lower than EMA and GES, which has been ob-

served and explained in the multi-emotion task. Even though, the ARs for all three

databases using TECC are fairly high, especially for EMA and GES (up tp 99%).

Among six emotion pairs, the pair angry and happy possesses relatively lower ARs

than other pairs for EMA and GES of both features. This observation could be ex-

plained by the conclusion that emotions with valence difference could be less captured

by acoustics than arousal difference, which has been studied. This observation is not

obvious in EPST data. The reason for this is that we chose “hot anger” in EPST,

in which “cold anger” also uttered. Therefore, the angry in EPST was supposed to

exhibit more difference in arousal than angry in other databases. As discussed with

Table 16, the highest improvement of TECC than MFCC happens in the neutral and

angry pair for EMA and GES. This emphasized the performance of TECC when less

acoustic difference exists.

This study investigates the robustness of TECC in emotion recognition facing

additive noise at different levels. The results from three databases (two in English,

one in German) highlight the robust emotion-discrimination ability of both TECC

and MFCC. But the higher accuracy rate is achieved by TECC than MFCC. For the

condition when SNR equals to zeros, TECC and MFCC performed similarly. While

the noise level is reduced (SNR = 5 ∼ +∞), TECC outperformed MFCC in all

emotion recognition tasks. Overall, using TECC features only, the up to 89% for
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four-emotion classification and 99% for pair-wise emotion classification accuracy rate

could be achieved. Future work will involve the study using the real-life authentic

emotional speech data in different speech quality conditions.

5.3 Emotion Distinguishing Capability of Glottal and TEO

5.3.1 Continuous Emotion labels with Glottal and TEO

Real-life application is the goal of emotion research. Therefore, it’s interesting to

examine the discrimination ability of glottal parameters and TEO using real emotional

speech data in more dimensions. The purpose of the study in this section is to evaluate

the performance of glottal waveform parameters and TEO in distinguishing binary

classes in four emotion dimensions (activation, expectation, power, and valence) using

the authentic emotional speech from SEMAINE corpus.

5.3.1.1 Data and Feature

The speech data used in this study is from the SEMAINE corpus [54]. The speech is

the recording of conversations between humans (the user) and artificially intelligent

agents (the operators). The emotion labels of the speech are provided in four emotion

dimensions: activation, expectation, power, and valence. In each dimension, a binary

label 1/0 represents the emotion possessing a higher/lower degree than the averaged.

The provided corpus is divided into three parts: the training (for train model), the

development (to test model), and the test (the challenge data, see [69]). More in-

formation about this data is available in [69]. Because of the large size of data, the

speech data was down-sampled from 48kHz to 16kHz in this study.

This section studied three sets of acoustic features, the given openSMILE feature

set [23, 24], glottal waveform parameters, and Teager Energy Operators (TEO). The

given openSMILE features consist of prosodic related, spectral related, and other voice

related (e.g., probability of voicing, jitter, and shimmer) features extracted using the

openSMILE toolkit [23, 24] and provided with the speech data. The 1941-dimensional
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Table 17: Number of words in the training dataset (‘Train’) and the development
dataset (‘Develop’) in total and in each binary class (‘class-1/0’).

Train Develop
activate expect power valence activate expect power valence

total 15307 15307 15307 15307 12663 12663 12663 12663
class-1 7695 6253 8611 8357 7275 4240 8595 8131
class-0 7612 9054 6696 6950 5388 8423 4068 4532

acoustic feature set was created at the word-level (more information in [69]).

The second acoustic set used in this study is the glottal waveform parameter.

The feature extraction following the instruction in Section 5.1.1 produced 77 glottal

waveform features. The third domain of acoustic features in this study is the mea-

surements of Teager Energy Operator (TEO) [9] in Section 5.2.1. All TEO features

were quantified using seven statistics (i.e, the mean, median, minimum, maximum,

standard deviation, range, and inter-quartile) across all frames of a word to obtain

196 TEO features. Together with the first two sets, 2214-dimension acoustic features

were extracted at the word-level. Due to the algorithm for feature extraction, some

words did not produce valid glottal parameters or TEO (e.g., impulsive phoneme).

Therefore, the number of words with all three features sets available is smaller than

the given speech data. The number of words in the training dataset and development

dataset is summarized in Tabel 17. These datasets were used in the following analysis

including the recalculated baseline of openSMILE (instead of the baseline given in

[69]).

5.3.1.2 Methodology

The purpose of this study was to evaluate the discrimination ability of glottal and

TEO features on binary categories in four emotion dimensions using authentic emo-

tion speech SEMAINE corpus.

First, the feature was subjected to a Kruskal-Wallis (KW) significance test in-

dividually for a fundamental sight of the distinguishing possibility. The significant
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test was conducted using the combination of the training data and the test data.

Number of features showing statistically significant difference (i.e., p < 0.01) in each

feature set was counted and the percentage of feature showing significant difference

was calculated. The purpose of this test was to assess the individual discrimination

ability of features in each feature set.

Although features showing statistically significant difference individually have

been selected in the above test, features in subset may exhibit more discrimination

ability than individually. To compare the classification results between three feature

sets in subset, this experiment built a model on training data using a Support Vector

Machine (SVM) and tested it on the development data using one set of features at a

time (using LibSVM tool [10] in WEKA [35]). Due to the large number of features in

each feature set, feature selection using Sequential Forward Floating Selection (SFFS)

was applied to each feature set using WEKA [35] before classification. The evaluator

of SFFS was to select the features possessing higher correlation with the emotion

labels and lower intercorrelation (‘CfsSubsetEval’ option in WEKA), which was not

classifier related.

Finally, the discrimination ability of feature sets was compared by using a Sequen-

tial Feature Selection (SFS) algorithm for selecting any subset of features out of the

combination of three feature sets together. SFS starts with an empty feature set and

sequentially adds features that have not yet been selected. Every feature combination

set is evaluated until there is no improvement in the criterion function. For this study,

the criterion was set to the accuracy rate from a quadratic discriminant computed as

the number of correct classifications divided by the total number of observations (i.e.,

words). The SFS algorithm added features in an effort to increase the accuracy rate

as much as possible. Due to the large size of feature dimension (2214), this study 1)

chose SFS instead of SFFS for feature selection, and 2) SFS was applied onto features

showing statistically significant difference obtained in the Kruskal-Wallis test instead
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Figure 10: Percentage of features with statistically significant difference between two
classes in each feature set for SEMAINE.

of the full set (2214 dimensions). The SFS was run on the feature subset 20 times

(20 trials) to ensure enough randomization.

5.3.1.3 Result

The percentage of features with statistically significant difference between the binary

classes for four dimensions is shown in Fig. 10. Considering the percentage for each

feature set across the four dimensions, the percentage of openSMILE is fairly similar

across all dimensions. TEO possesses a much higher percentage in expectation and

power than activation. For glottal parameters, the percentage for expectation is high-

est followed by valence. This observation indicates the discrimination power of TEO

in expectation and power and glottal parameters in expectation. This discrimination

power is further evaluated by classification experiments using the three feature sets

individually.

The binary classification experiments were conducted using one feature set at a

time. The accuracy rate (AR) and F-measure [3] of binary classification is calculated

and shown in Table 18. The highest AR (in bold) is from TEO in activation and
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Table 18: The accuracy rate (AR) and F-measure (F-1/0) of classification using
three sets of features separately (%) (op: openSMILE as the baseline, glo: glottal
parameters, F-1/0: F-measure for class 1/0).

activation expectation power valence
op TEO glo op TEO glo op TEO glo op TEO glo

AR 55.0 59.3 56.5 66.0 66.3 66.3 66.3 67.4 66.8 62.9 63.7 64.1
F-1 51.2 46.4 56.8 79.3 79.7 79.7 8.5 17.2 8.8 9.3 4.0 0.2
F-0 58.3 67.2 56.2 5.3 1.0 1.3 79.4 79.7 79.7 76.7 77.6 78.1

power, and glottal parameters in valence, while TEO and glottal features yielded

equal ARs in expectation. This result is reasonable for the higher percentage of TEO

showing significant difference in expectation and power and glottal in expectation and

valence than other dimensions (in Fig. 10). Except for activation, the F-measures of

other dimensions show the bias of classification results (i.e., expectation-1, power and

valence-0). This could be the reason to cause the AR of activation lower than other

three dimensions.

To get a closer look at the performance of glottal parameters and TEO comparing

with openSMILE, the feature selection result using SFS on the combination of three

feature sets was conducted. Because of the large dimension of feature set, the original

2241 features were represented by a subset consisting of features showing significant

difference in the KW test. Table 19 shows the resulting mean accuracy rates from

the SFS procedure along with the number of features selected over 20 trials. From

Table 19, fewer features were selected in valence than others. This result supports

the previous work that valence is less captured by acoustics than other dimensions

(e.g., arousal [38]). Comparing the three sets, more TEO features were selected for

activation and power, and more glottal parameters were selected for expectation and

valence. This indicates the stronger discrimination ability of TEO in activation and

power, and of glottal parameters in expectation and valence. This also explains the

highest AR in Table 18 achieved by TEO in activation and power and by glottal in

expectation and valence. The AR by using SFS shows that combining three feature
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Table 19: The feature selection result: the averaged accuracy rate (AR %) over 20
trials and the number of features selected in all 20 trials.

activation expectationpower valence
AR 64.3 62.3 61.2 58.6
No. OpenSMILE 4 5 2 1
No. TEO 0 3 2 0
No. glottal 0 1 0 1

sets, the accuracy rate of activation is increased. The AR of other three dimensions

is lower. This could be explained that the bias of classification results is reduced for

the other three dimensions.

This section (Section 5.3.1) examined the performance of glottal waveform param-

eters and TEO in distinguishing binary classes in four emotion dimensions (activation,

expectation, power, and valence) using authentic emotional speech SEMAINE corpus.

The result highlights the discrimination ability of TEO in emotion dimensions activa-

tion and power, and glottal parameters in expectation and valence for the authentic

speech data. In the same classification experiment, TEO and glottal parameter out-

performed or performed similarly to the prosodic, spectral and other voicing related

features (i.e., the feature set obtained using openSMILE).
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CHAPTER VI

PRE-PROCESSING OF SIX DATABASES

In the effort to perform cross-database training and testing, one challenge is about the

emotion labels. Each of the six databases investigated in this thesis has its own emo-

tion labeling strategy, e.g., in category (different choice of emotional status words) or

in dimension (different resolution, steps, and number of dimensions). To solve the e-

motion label problem, Section 6.1 describes the methodology of mapping all the labels

from different databases to three categories in valence/arousal, i.e., positive, neutral,

and negative in valence/arousal. In the following chapters, the emotion recognition

is conducted in binary-class between neutral vs. emotional (positive and negative),

and positive vs. negative (neutral excluded) in valence and arousal. Having studied

different sets of acoustic features, especially the glottal and TEO based features, Sec-

tion 6.2 summarizes the acoustic feature sets used in the following chapters. Features

were selected by Sequential Forward Floating Selection (SFFS) for each database to

provide a preliminary similarity comparison between databases in terms of acoustic

features. The features shared by two or more databases are presented in Section 6.2

while the detailed feature selection results are shown in Appendix C.

6.1 Emotion Labeling Decision

Among the six emotional databases studied, four (EPST, EMA, GES, and UM) are

labeled with categories and two (SEMAINE and VAM) are in dimensions. Since there

is no widely accepted method to map emotion categories onto dimensions, to reach

generalized result, no assumption was made to assign each category the dimension

values. Instead, three classes of emotions (valence/arousal) are decided to represent

emotion status in this study, positive/high, neutral, and negative/low. The emotion
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Table 20: Emotion labeling strategy of emotional databases.

DBs Valence+ Valence0 Valence- Arousal+ Arousal0 Arousal-
EPST Elation,

happy,
interest,
pride

Neutral Hot anger,
panic,
anxiety,
disgust,
contempt,
cold anger,
sadness,
shame,
despair,
boredom

Hot anger,
elation,
happy,
interest,
pride,
panic,
anxiety,
disgust,
contempt,
cold anger

Neutral Sadness,
shame,
despair,
boredom

EMA Happy Neutral Angry, sad Happy,
angry

Neutral Sad

GES Happy Neutral Angry, dis-
gust, bore-
dom, sad,
fear

Happy,
angry,
fear,
disgust

Neutral Sad,
boredom

semaine (0.2, 1] [-0.2, 0.2] [-1, -0.2) (0.2, 1] [-0.2, 0.2] [-1, -0.2)
VAM 0.5, 1 0 -0.5, -1 0.5, 1 0 -0.5, -1
UM Delight,

flow,
surprise

Neutral frustration,
confusion,
boredom

frustration,
surprise,
delight,
confusion,
flow

Neutral Boredom

labeling strategy in this study is shown in Table 20.

In Table 20, the four databases with categorical labels are classed into the three

classes along valence and arousal based on the study of [14] (and common sense).

The labels of VAM are numeric values [-1, -0.5, 0, 0.5, 1]. Therefore, 0 is consid-

ered as neutral, positive values are positive/high in valence/arousal, and negative a

negative/low.

The process of emotion labels of SEMAINE is described as follows. The speech

sample unit of SEMAINE is “turn”. One example of two turns is given below.

00:00:100 00:02:800 User "Oh, I’d like to speak to Poppy please".

00:02:900 00:06:100 Poppy "Hi. I’m poppy. Have we met before?"
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Table 21: Sample selection strategy for SEMAINE.

Number of rators The least number of rators with agreement (N)
2 2
3 2
5 3
6 4
7 5
8 6

The time stamp shown at the beginning of each turn is used to segment the speech

into turns. The “user” speech was selected to analyze. Each emotional speech was

evaluated by multiple raters. The number of raters vary from two to eight as shown

in Table 21. The decision was made to select samples with N raters agreed, which is

shown in Table 21 as well. The emotional labels of SEMAINE was continuous ( with

the step of 0.002). Therefore, the mapping procedure from values to three classes is:

1. Set up a threshold value, within which the VA values are considered as “neu-

tral”.

2. Along each dimension (valence/arousal), values larger than the threshold is

considered as positive/high and the lower is negative/low.

3. Account the resulted number of samples in each classes, if the portion of neutral

samples is smaller than 20% or larger than 40% (much unbalanced data), repeat

from step one.

Finally, the threshold was set as 0.02 considering balancing the number of samples in

each category.

Following the emotion mapping decision in Table 20, the number of samples for

each category and database is shown in Table 22. The column of “Intersect neutral”

is the number of samples labelled as neutral in both valence and arousal. Although

valence and arousal are orthogonal as shown in Fig. 1 and 2, the samples considered

as neutral in one dimension are regarded as neutral in another one. The categories are
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Table 22: Number of samples for each emotional category.

DBs Valence Arousal Intersect
+ 0 - total + 0 - total neutral

EPST 653 80 1630 2363 1624 80 659 2363 80
EMA 124 146 298 568 265 146 157 568 146
GES 71 79 385 535 313 79 143 535 79
SEMAINE 2361 1022 950 4333 2529 1023 781 4333 1022
VAM 19 522 364 905 256 472 177 905 349
UM 420 267 774 1461 927 267 267 1461 267

not balanced in either dimension with much less neutral samples. The number of the

positive and negative categories in valence is more bias than arousal. This unbalance

issue in binary classification is addressed by randomly selecting equal number of

samples from each category and repeating the classification to gain the averaged

output as the result.

6.2 Feature selection for each database

Five sets of features are used in the evaluation section, glottal, TEO, TECC, MFC-

C, and pitch related features. The glottal and TEO, TECC, and MFCC features

were introduced in Chapter 5. The pitch features were obtained using the voicebox

library[6]. The frame length is four times of the length of the averaged pitch cy-

cle with a 10ms update step. As shown in Table 23, the 21 statistics including the

derivative were applied to the features to generate a 1596-dimension feature set.

Feature selection was conducted for each database not only because it can reduce

the dimension size, but also the selected features are of interest to examine. The

features selected by each database could be considered as the acoustic representation

of that database. The comparison between databases using the selected features

is one means to show the similarity between databases. The feature selection was

implemented by Sequential Forward Floating Selection (SFFS) of WEKA [35] for

each database by 10-fold cross-validation self-training and testing. The evaluator of

SFFS was to select the features possessing higher correlation with the emotion labels

63



Table 23: Summary of acoustic features, Low-Level Descriptors (LLDs) and statistics
applied in hte evaluation of normalization with reference.

Feature
Group LLD Abbr. No.
glottal time-based see Table 2 189

freq-based 42
TEO (1)FM fm1(mean),fm2(min), fm3(max),

fm4(range),fm5(log-range), fm6(std),
fm7(median), fm8(irq)

168

(2)Env evn1(0-2kHz),evn2(2-4kHz), evn3(4-6kHz),
env4(6-8kHz)

84

(3)CB-Env cbi (the ith critical band) 336
TECC 24 coefficients i (the ith coefficient) 504
MFCC 12 coefficients i (the ith coefficient) 252
pitch 21

Statistics
mean, median, min(minimum), max(maximum), range
std(standard deviation), irq(inter-quartile), q25(25%-quartile),
q75(75%-quartile), fit1(slope), fit2(curvature), fit3(inflexion),
∆mean, ∆std, ∆max, ∆min, ∆range, ∆median, ∆iqr,
∆q25(∆25%-quartile, ∆q75(∆75%-quartile)

and lower inter-correlation, which was not classifier related. The feature selection

was conducted for each database by self-evaluation using 10-fold cross-validation.

In the cross-validation, selecting features which were selected in more than 80% of

the tests of 10-fold cross-validation were considered as the feature selection criterion

used here and in the following chapters. In the following chapters, the same feature

selection methodology was applied to each database after specific processing, e.g.,

after normalization in Chapter 7 Section 7.2.1. The detailed feature selection results

are provided in Appendix C.
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CHAPTER VII

CROSS-TRAINING AND TESTING WITH

NORMALIZATION METHODS AND DATA FUSION

TECHNIQUES

7.1 Methodology

7.1.1 Normalization Methods

Combining multiple databases can pose significant challenges for classifiers depen-

dent on statistical training. Recording mismatches can make it difficult to deter-

mine whether observed statistical differences are caused by the variable of interest or

anomalies of the environmental differences. Additionally, acoustic features capture

the natural characteristics of speakers related to differences in gender, language, and

culture [65, 22]. All of these factors make speaker normalization an important and

necessary element of any cross-corpus study. Three methods of normalization are

employed in two groups: the scaling, i.e., speaker normalization (SN), and normal-

ization with the reference, i.e., the speaker normalization with reference (SR), and

the neutral reference model (NRM). The flowchart of the three methods is shown in

Fig. 11.

7.1.1.1 Scaling: Speaker Normalization

The processing of speaker normalization (SN) is shown in Eq. (15):

f̂ i
j =

f i
j −mean(f i

j)

std(f i
j)

, (15)

where f i
j is the jth feature descriptor for speaker i across the samples of all four

emotions and std refers to the standard deviation. The normalization was conducted

within database. In this way, features from the same speaker will have the mean of
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Figure 11: The framework of (a) speaker normalization, (b) speaker normalization
with reference, and (c) the neutral reference model.

zero and standard deviation of one. This normalization method has been used in

previous chapters in this thesis and widely used in the literature [65, 77, 72, 73].

7.1.1.2 speaker normalization with reference

The equation of speaker normalization with reference (SR) is shown in Eq. (16):

f̂ i
j =

mean(fref,j)

mean(f i
neu,j)

· f i
j , (16)

where f i
j is the j

th feature vector for speaker i across the samples of all emotions, f i
neu,j

refers to the neutral samples of this speaker, fref,j is the feature j of the reference

neutral samples, and mean represents the mean value. The goal of normalization

process is to have the neutral samples of emotional data set scaled as the equal mean

value as the reference data. This method was used in the work of [8]. It’s still based

on scaling at the speaker-level but involving the reference data.
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As shown in Fig.11(b), the SR method of emotional recognition is to first extract

and select the acoustic features from the same speaker in the emotional database,

then scale the data from this speaker to make the neutral samples of the same speaker

have the equal value to the mean of the reference neutral data. The scaling method

introduced in Section 7.1.1.1 does not employ the reference data. The features are

scaled to a mean of zero and standard deviation of one [65] just as described in

Section 7.1.1.1. The SR method is considered as the intermediate stage between SN

and the neutral reference model (NRM).

7.1.1.3 Neutral reference model

The neutral reference model (NRM) investigated in this study was originally proposed

in [93] to analyze the emotional modulation observed in expressive speech. As shown

in Fig. 11(c), first of all, the acoustic feature extracted from the emotional data was

scaled by speaker normalization with reference (SR) as described in Section 7.1.1.2.

For each speaker, the mean value of the neutral samples from this speaker was scaled

to equal to the mean value of the neutral reference data. Then the neutral model

(based on GMM in [8]) was trained with the neutral reference data set as the core of

this methodology. The normalized acoustic feature from the emotional database was

transformed to fitness measurement by calculating the likelihood score when applied

to the trained neutral model. Finally, the fitness measurements calculated using the

original features individually were classified instead of the acoustic features. In their

follow-up studies involving this framework [8], GMM with two mixtures was set as

the neutral model after the experimental comparison. In this thesis, the GMM with

two mixtures are used, too.

7.1.2 Data Fusion Techniques

The methodology of data fusion could be considered in two directions: pre-fusion, i.e.,

before the classification, and post-fusion, i.e., after the classification. The difficulty
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of cross-database training and testing is the availability of “perfect” training data,

which has enough diversity to represent all possible emotions in the testing data.

Using as many as possible databases on hand to train the classifier may address the

issue, however, will introduce another problem: data redundancy and unnecessary

computation load. Therefore, an algorithm to select the “necessary” databases as

the training data is proposed, named as Sequential Database Selection (SDS). In this

way, a subset of databases from all candidates will be selected by SDS to train one

classifier for the testing data, which will achieve the highest accuracy rate compared

other combination of training sets. On the other way, one classifier was trained using

each of the available training database. The final classification result is determined

by all the outputs using each of the training data. The methodology to deal with

the multiple output is developed from ROVER (Recognizer output voting error re-

duction). Other than simply majority voting, ROVER considers more factors such as

confidence measurement of each classification and weights of each training databases

together.

7.1.2.1 Pre-fusion: SDS

The algorithm of Sequential Database Selection (SDS) is similar to the Sequential

forward feature selection (SFS). Starting with an empty set, SDS adds one database

at a time after evaluating all candidate databases. The evaluator is the accuracy

rate of Support vector machine (SVM) as the classifier. The database, by adding

which can produce the highest accuracy rate, is added into the selected set. It’s

repeated till 1) all candidates are added into the selected set, or 2) the accuracy rate

is not increased by adding any of the candidate. It’s noticeable that the choice of

the starting candidate could affect the selection results. Therefore, for each testing

data, the SDS was conducted by starting with all candidate, respectively, to search

the best selected training set.

68



1. Start with empty database set Di = ∅, i = 0,

2. Select the additional database dn which can maximize the criterion of Γ(Di),

where Di = {Di−1, dn},

3. Update Di = {Di−1, dn}, i = i+ 1,

4. If (criterion is not increased) or (i == the number of candidate databases),

End; else go to 2.

7.1.2.2 Post-fusion: ROVER

The method used to combine the different classification results from different training

databases is based on the ROVER “Recognizer output voting error reduction” tech-

nique used in automatic speech recognition (ASR). ROVER [27] is used to combine

the independent word results from different engines to reach a composite output in

ASR. First, ROVER performed word alignment over different word recognized from

different ASR engines. Then the final decision was made based on the combination

of the frequency of the word recognized and the confidence of this word. In this

paper, the word alignment processing can be skipped, and the score of each emotion

candidate is calculated by Eq. 17,

Score(en) = α
N(en)

Ns
+ (1− α)Conf(en), (17)

givenNs outputs of emotions and the corresponding confidence scores (i.e., the proba-

bility of the output class) from Ns classifications, N(en)/Ns represents the frequency

of candidate emotion en from all Ns outputs and Conf(en) is the confidence mea-

surement of the emotion candidate en. The mean value of all confidence scores of

emotion (en) is used as the confidence measurement. The confidence score from each

classifier is the probability estimation in support vector machine (SVM), which varies

from 0 to 1. The parameter α is the weight to balance the frequency (i.e., majority

voting) and the confidence. It’s obtained by exhaustively searching from 0.1 to 0.9
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with the step of 0.1. Finally, the emotion candidate en with the highest Score(en) is

decided as the label.

7.2 Evaluation

This section evaluates the normalization methods and data fusion techniques pro-

posed in Section 7.1.1 and 7.1.2. The acoustic feature sets consist of pitch, glottal,

TEO, TECC, and MFCC features as introduced in Section 6.2. Because the testing

data in the “real-world” will be “blind”, the feature set selected by the training data

(the combination feature set if more than one training database) was used as the

feature set for all the classifications. Section 7.2.1 presents the classification results

from the use of the three normalization methods described in Section 7.1.1 (with the

addition of classification results without the use of normalization) on cross-validation

studies involving training/testing with a single database as well as pairwise training

and testing (i.e., training performed on a different database than the one tested). In

Section 7.2.2, the improvement of performance in cross-database emotion recognition

brought by the systematic computational structure studied in this thesis will be pre-

sented. All the training and testing data in this evaluation section (Section 7.2) was

randomly selected to have equal number of samples (i.e., rate by chance is 50%). The

classification using randomly selected samples was repeated 50 times and the average

value was the value listed in the tables in this section. A Kruskal-Wallis (K-W) test

was conducted on every combination of classification results to highlight differences

with a significance level of 5% (p < 0.05). The K-W test was chosen over ANOVA

because a Jarque-Bera test at a significance level of 5% (p < 0.05) indicated the clas-

sification results did not follow a normal distribution. The results of the Jarque-Bera

tests for normality are shown in Table 24. Bonferroni correction was used for all K-W

tests involving more than two factors.
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Table 24: The classifications whose accuracy rate variables reject the null hypothesis
of Jarque-Bera test with the significant level of 5% (p < 0.05)(i.e., not fit the normal
distribution).
Emotions Dim training data type testing data normalization p-value
neutral vs. emotional VA self-testing EMA SR 0.0480

V best other EPST NA 0.0136
A best other EPST SR 0.0001

positive vs. negative V best other GES SR 0.0174
A best other VAM SN 0.0235
A best other UM SR 0.0301

7.2.1 Normalization methods

The goal of this section is to evaluate the three normalization methods by comparing

with no-normalization. By the results from this section, the question of why cross-

database emotion recognition can benefit from normalization will be answered. Also,

comparing the results using the three methods described in Section 7.1.1 will show

the performance of each method in particular application (i.e., emotion choice and

database choice). The experiments were conducted in binary classification of neutral

vs. emotional (in valence and arousal) and positive vs. negative (in valence and

arousal). All the training and testing data was randomly selected to have equal

number of samples (i.e., rate by chance is 50%). The classification using randomly

selected samples was repeated 50 times and the average value was the value listed

in the tables in this section. In this section, the TIMIT database was used as the

neutral reference data for (b) SR and (c) NRM in Fig. 11. TIMIT [30] is the widely

used read-speech database in English. It recorded 4620 sentences from 460 speakers

with the sampling frequency 16kHz.

Tables 25-28 shows the results of recognizing neutral vs. emotional and positive vs.

negative in two experiments: “self” and “best other”. “Self” represents training and

testing on the same database by 10-fold cross-validation. “Best other” lists the highest

accuracy rate for each testing database that could be achieved by training another

database. More details of the “best other” training data are presented in Appendix B.
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Table 25: The accuracy rate of neutral vs. emotional (Valence) classification
using four normalization methods (NA represents no normalization). For each testing
database, the bold values are the highest values with statistically significant difference
(p < 0.05) from the un-bold values in “self” and “best other” experiments separately.

TEST: EPST EMA GES SEMAINE VAM UM
self : train and test on the same data by 10-fold cross-validation
NA 83.4 92.3 84.8 64.8 62.5 57.4
SN 84.8 95.0 89.0 58.7 61.6 60.3
SR 86.6 96.2 92.7 71.0 67.9 63.6
NRM 88.4 96.1 96.2 76.1 69.4 62.1
best other: the highest AR when train on another database

NA 66.9 70.9 73.3 58.6 56.1 50.5
SN 67.1 73.5 82.5 52.5 55.4 51.5
SR 73.2 72.9 78.4 54.7 54.3 57.2
NRM 83.7 76.7 90.2 57.3 57.4 59.6

The entry in bold represents the highest rate that is statistically significant from the

others utilizing the K-W test at a significant level of p < 0.05. For each testing

database, the comparison includes four accuracy rates. The null hypothesis for the

significance test (K-W test, 5% significant level) is there is no difference among the

four accuracy rates (the three normalization methods + no-normalization), however,

if the null hypothesis is rejected, the interpretation is too general. Therefore, a post

hoc test were used. With Bonferroni correction, the multiple comparison results were

given in a pair-wise manner. And the significant test results were interpreted in the

following way. In Tables 25-28, among the four accuracy rates, the bold values inside

one column are the highest values with the statistically significant difference with the

un-bold values. When more than one values are bold in one column, it means all

the bold values are statistically the highest accuracy rates (no significant difference

between the bold values). Between the un-bold values, the significant different may

or may not exhibit, which is not the focus of this thesis because they are not the

higher accuracy rates.

When differentiating emotional status from neutral, most entries in Table 25 and

26 are the same. The reason for this is that the samples labeled as neutral/emotional
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Table 26: The accuracy rate of neutral vs. emotional (Arousal) classification
using four normalization methods (NA represents no normalization). For each testing
database, the bold values are the highest values with statistically significant difference
(p < 0.05) from the un-bold values in “self” and “best other” experiments separately.

TEST: EPST EMA GES SEMAINE VAM UM
self : train and test on the same data by 10-fold cross-validation
NA 83.5 93.4 86.5 64.5 64.8 57.4
SN 85.3 93.1 90.9 58.7 64.6 60.1
SR 86.7 96.6 91.3 71.1 73.0 63.7
NRM 87.9 96.8 96.1 76.4 73.5 62.2
best other: the highest AR when train on another database

NA 65.5 67.9 72.0 57.7 53.7 50.8
SN 67.5 73.9 81.7 52.5 55.2 51.2
SR 73.3 72.2 77.9 53.3 56.3 55.0
NRM 83.8 77.3 89.7 59.0 61.4 58.0

in valence is also neutral/emotional in arousal (refer to Table 20 and 22). From Ta-

bles 25-26, NRM gives the highest accuracy rates for at least five out of six databas-

es in both “self” and “best other” tests. Especially when the training and testing

databases are different (i.e., “best other”), using NRM improves the accuracy rate

significantly than no-normalization (NA).

Tables 27-28 shows the accuracy rate of classification between positive and neg-

ative emotions in valence and arousal. Different from neutral vs. emotional, the

normalization method achieving the highest accuracy rate depends on the testing

database. Comparing using the results with and without normalization, in most cas-

es, classification using at least one normalization method can produce statistically

significant higher accuracy rates than without normalization.

Based on the results comparing normalization methods with no-normalization,

both the self-testing and the cross-database training and testing can achieve signifi-

cantly higher accuracy rate using at least one normalization method for most testing

databases. In cross-database test, when the accuracy rate is lower than self-testing,

using normalization can improve the performance to as good as that of self-testing
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Table 27: The accuracy rate of positive vs. negative (Valence) classification
using four normalization methods (NA represents no normalization). For each testing
database, the bold values are the highest values with statistically significant difference
(p < 0.05) from the un-bold values in “self” and “best other” experiments separately.

TEST: EPST EMA GES SEMAINE VAM UM
self : train and test on the same data by 10-fold cross-validation
NA 67.4 91.7 78.7 77.8 70.3 59.6
SN 67.5 92.5 82.1 67.7 66.4 61.8
SR 67.2 90.2 77.7 86.9 73.7 65.4
NRM 66.7 91.3 78.5 90.7 80.2 66.7
best other: the highest AR when train on another database

NA 59.6 72.5 72.9 60.7 55.8 48.2
SN 61.3 75.7 76.5 51.6 59.6 52.7
SR 59.8 70.0 70.7 55.7 58.8 53.8
NRM 56.2 71.7 70.1 53.7 58.3 51.6

Table 28: The accuracy rate of positive vs. negative (Arousal) classification
using four normalization methods (NA represents no normalization). For each testing
database, the bold values are the highest values with statistically significant difference
(p < 0.05) from the un-bold values in “self” and “best other” experiments separately.

TEST: EPST EMA GES SEMAINE VAM UM
self : train and test on the same data by 10-fold cross-validation
NA 75.5 98.9 97.7 66.7 92.5 55.6
SN 76.6 96.8 98.7 56.1 88.2 60.8
SR 75.1 99.7 97.5 76.5 92.2 62.8
NRM 71.8 97.8 96.8 81.0 88.8 67.4
best other: the highest AR when train on another database

NA 69.5 92.2 90.5 53.6 79.9 50.8
SN 68.8 91.0 92.4 51.3 76.4 55.0
SR 69.9 85.8 90.8 55.5 74.5 50.0
NRM 64.2 82.9 89.7 53.7 74.6 52.2
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(no-normalization) for some databases (e.g., EPST in Table 29 and 30, UM in Ta-

ble 32) or even higher (e.g., GES and UM in Table 29 and 30). This results indicate

the importance of normalization in cross-database emotion recognition. Compar-

ing the three normalization methods, NRM helps improve the accuracy rate for both

self-testing and cross-database classification when differentiating between neutral and

emotional. To detect positive and negative motions, SN was highlighted based on the

frequency to provide the highest accuracy rates for each testing database.

7.2.2 Improvement by combining normalization and data fusion

In this section, the two data fusion techniques are included to evaluate the system

using acoustic features summarized in Section 6.2 as well as the three normalization

methods discussed in Section 7.2.1. Combining all the efforts (i.e., acoustic features,

normalization and data fusion), the highest accuracy rate the system can achieve will

be compared with the baseline (the “best other” without normalization) and shown in

Tables 29-32. Same as the evaluation of the normalization methods, the experiments

in this section are conducted in binary classification of neutral vs. emotional (in

valence and arousal) and positive vs. negative (in valence and arousal). The Kruskal-

Wallis test (p < 0.05) is used to test the statistically significance of the differences in

classification methods.

Three data fusion techniques were evaluated in this section, ROVER with database

(Rover-db), ROVER with database and feature set (Rover-db*f), and SDS. “Rover-

db” represents the results using ROVER based on databases using all feature sets

together. “Rover-db*feat” is calculated using ROVER based on the combination of

databases and each of the five feature sets. For example, for one test set, “Rover-db”

evaluates five recognition engines from the other five databases, and “Rover-db*feat”

evaluates 30 engines resulted from the combination of five other databases and six

feature sets (five sets + all five together). “SDS” means the results using SDS as
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Table 29: The improvement of the accuracy rate for neutral vs. emotional (Va-
lence) classification combining normalization methods and data fusion techniques.
All ∆s are statistically significant by p < 0.05.

TEST: EPST EMA GES SEMAINE VAM UM
baseline 65.5 67.9 72.0 57.7 53.7 50.8
highest AR 89.2 91.3 92.8 62.1 64.7 60.9
normalization NRM NRM NRM SN NRM NRM
datafusion R-db*f R-db*f R-db*f R-db*f R-db*f R-db*f
∆ 23.7 23.4 20.8 4.4 11.0 10.1

Table 30: The improvement of the accuracy rate for neutral vs. emotional
(Arousal) classification combining normalization methods and data fusion tech-
niques. All ∆s are statistically significant by p < 0.05.

TEST: EPST EMA GES SEMAINE VAM UM
baseline 66.9 70.9 73.3 58.6 56.1 50.5
highest AR 89.2 91.3 92.8 62.1 64.7 60.9
normalization NRM NRM NRM SN NRM NRM
datafusion R-db*f R-db*f R-db*f R-db*f R-db*f R-db*f
∆ 22.3 20.4 19.5 3.5 8.6 10.4

the data fusion method. The bottom row of “∆” is the increase of accuracy rate

from the baseline “best other” in “NA” to the highest accuracy rate achieved. The

detailed classification results with fully combination of normalization and data fusion

techniques are available in Appendix B. In this section, the baseline and the best

performance information is abstracted from Appendix B to make the explicit present

of the improvement brought by the proposed systematic computational structure.

Table 31: The improvement of the accuracy rate for positive vs. negative (Va-
lence) classification combining normalization methods and data fusion techniques.
All ∆s are statistically significant by p < 0.05.

TEST: EPST EMA GES SEMAINE VAM UM
baseline 59.6 72.5 72.9 60.7 55.8 48.2
highest AR 65.1 77.8 77.7 62.2 66.1 56.4
normalization SN SN SN NA SN SN
datafusion R-db*f SDS R-db*f SDS SDS SDS
∆ 5.5 5.3 4.8 1.5 10.3 8.2
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Table 32: The improvement of the accuracy rate for positive vs. negative
(Arousal) classification combining normalization methods and data fusion tech-
niques. All ∆s are statistically significant by p < 0.05.

TEST: EPST EMA GES SEMAINE VAM UM
baseline 69.5 92.2 90.5 53.6 79.9 50.8
highest AR 71.5 93.0 94.2 56.1 84.9 54.6
normalization SN SN SN SR SR SN
datafusion SDS SDS R-db*f R-db*f R-db*f SDS
∆ 2.0 0.8 3.7 2.5 5.0 3.8

In Table 29-30, the highest accuracy rates are achieved by ROVER with the com-

bination of database and feature (“Rover-db*f”) for the EPST, EMA, GES, VAM,

and UM databases with NRM. The increase of accuracy rates ranges from 4.4% to

23.7% for valence and 3.5% to 22.3% for arousal, which is all statistically significant

by Kruskal-Wallis test(p < 0.05). This observation highlights the improvement in-

troduced by ROVER for all databases and the neutral reference model normalization

for most databases in neutral vs. emotional recognition.

When the two categories are positive and negative (i.e., no neutral involved), the

results are shown in Table 31 for valence and Table 32 for arousal. By acoustic

features only, valence is more difficult than arousal to recognize. Examining the

values in Table 31 for valence. The overall accuracy rates for valence are relatively

lower than arousal in Table 32. The highest values are achieved by using SN for five

databases and using SDS for four databases. The improvement of accuracy rate is up

to 10.3%.

Comparing with valence, the accuracy rates of arousal shown in Table 32 are

higher. Although the values are higher, the pattern is similar. The best performance

is obtained by speaker normalization (SN) for four databases except for SEMAINE

and VAM, which exhibit the best performance by the speaker normalization with

reference (SR). Using SDS, half databases gain the highest accuracy rates with SN.
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Another half benefit from the ROVER with database and feature method to combi-

nation information from multiple training data sets. The increase of accuracy rate

ranges from 0.8%-5.0%. One reason for this is that the baseline rate is fairly high

(EMA and GES are over 90%, VAM is close to 80%) so less space left for the im-

provement. Another reason can be detected from the comparison of the evaluation

between the normalization methods in Section 7.2.1. Unlike the experiments of neu-

tral vs. emotional, the NRM method does not increase the results much for positive

vs. negative. This indicates NRM, which gained much improvement in neutral vs.

emotional, can hardly represent the acoustic difference between positive and negative

status as well as in neutral vs. emotional.

To sum up, ROVER with the combination of databases and feature sets improved

the performance of cross-database training and testing when detecting the emotional

samples from neutral by up to 23.7% for valence and 22.3% for arousal. Using SDS,

the higher accuracy rate than training on any single database (“best other”) could be

guaranteed. SDS only outperformed ROVER in the recognition between the positive

and negative emotions for a set of databases. When detecting the emotional from the

neutral, NRM gained much improvement by transferring the features into the fitness

measurements based on the neutral GMM. However, the advantage of NRM did

not exhibit in the classification between positive and negative. Although the fitness

measurement also represented the distance from one emotional sample to neutral,

the category inside the emotional group (i.e., positive and negative) could not be

captured by the measurements obtained by NRM using the neutral reference data.

For detecting positive and negative, the normalization method producing highest

accuracy rates for the most testing databases was scaling the samples from one speaker

to have zero mean and the standard deviation of one (SN).
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CHAPTER VIII

CONCLUSION

8.1 Research Summary

The objective of the research presented in this thesis was to systematically investigate

the computational structure for cross-database emotion recognition. The research

consisted of evaluating the stability of acoustic features, particularly the glottal and

Teager Energy based features, and investigating three normalization methods and two

data fusion techniques. One of the challenges of cross-database training and testing

is accounting for the potential variation in the types of emotions expressed as well

as the recording conditions. In an attempt to alleviate the impact of these types

of variations, three normalization methods on the acoustic data were studied. The

results showed that in cross-database test, using normalization improved the perfor-

mance to as good as that of self-testing (no-normalization) for some databases or

even higher. Comparing the three normalization methods, NRM helped improving

the accuracy rate when differentiating between neutral and emotional and SN was

highlighted for positive vs. negative classification based on the frequency to provide

the highest accuracy rates for each testing database. Motivated by the lack of large

and diverse enough emotional database to train the classifier, using multiple databas-

es to train posed another challenge: data fusion. This thesis proposed two data

fusion techniques, pre-classification SDS and post-classification ROVER to study the

issue. Using the glottal, TEO and TECC features, of which the stability of emo-

tion distinguishing ability has been highlighted on multiple databases, the systematic

computational structure proposed in this thesis could improve the performance of

cross-database binary-emotion recognition by up to 23% for neutral vs. emotional
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and 10% for positive vs. negative. The details of research conducted were discussed

as follows.

Unlike the glottal and Teager Energy based features, the prosodic features (i.e.,

pitch, energy, etc.) are the widly used cues of speech analysis in literature [14, 8].

However, certain pairs of emotions remain difficult to discriminate due to the similar

displayed tendencies in prosodic statistics. Thirty emotion pairs showing no statisti-

cally significant difference by prosodics from the EPST database (15 acted emotions

in total) was targeted by the Kruskal-Wallis test [77]. The statistically significant

difference could be observed from at least one glottal feature for all 30 emotion pairs

and 19 out of 30 pairs had four or more of the seven glottal features (i.e., ClQ, NAQ,

OQ, OQa, SQ, HRF, and DH12). Evaluation involving classification between emo-

tion pairs using the quadratic classifier and one feature per classification showed a

lower error rate could be achieved by a glottal feature in 24 out of 30 pairs. Combin-

ing the prosodic and glottal features together, a further study using SFS (Sequential

Forward Selection) with the same quadratic classifier as the evaluator listed the top

five features for each emotion pair based on the frequency of selection in 10-fold

cross-validation. It was found that HRF was the most prominent feature for female

speakers while for the male OQa, ClQ, and NAQ were the most prominent glottal

features.

While it’s not assumed that acted speech provides a complete picture of authentic

emotion, the aforementioned study using the EPST database represents the emotions

which the actors adjust to fit their own perception of emotions. The emotion dis-

tinguishing ability of the glottal features was evaluated using authentic emotional

data recorded when students were interacting with an automatic computer tutoring

system, named Auto Tutor (referred to as UM database in this thesis). Multimodal

emotion recognition study has been taken about Auto Tutor system, e.g., facial ex-

pression, body gesture, and speech. However, in the speech channel, the features for
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emotion detection is conversational cues, which consisted of five aspects of informa-

tion: temporal, response, answer quality, tutor directness, and tutor feedback. The

lack of examining acoustic cues motivated the study of [72]. More glottal measure-

ments (AQ, OQ2, SQ2, and QOQ) were added to make 11 glottal features in total.

Another acoustic set was obtained by openSMILE [24], which consisted of energy,

spectral, and voice quality related features. To detect five emotions in UM database,

the comparison showed that flow and boredom were better captured in acoustics than

conversational cues.

As introduced in Chapter 2, emotion categories (e.g., happy, sad) and emotion

dimensions (e.g., 0.5 in valence/arousal) are the two emotion description methods

mainly used. The aforementioned study of the EPST and UM data focused on e-

motion categories, emotions in dimensions were examined using SEMAINE data in

four dimensions: valence, arousal, expectation, and power [73]. The acoustic feature

set consisted of the Teager Energy Operator (TEO) based features as well as the

glottal measurements and the features by openSMILE. Three sets of features were

derived based on TEO: the variation of FM (Frequency Modulation) component, the

normalized autocorrelation envelope area, and the critical band based autocorrelation

envelope area. Using the three sets of TEO, glottal, and openSMILE features sepa-

rately, the binary-classification was conducted in four emotion dimensions by SVM

(linear kernel) and the output accuracy rates were compared. The comparison result-

s showed that using the same classification methodology, TEO and glottal features

outperformed or performed similarly to the openSMILE set. The result also high-

lighted the discrimination ability of TEO in emotion dimensions arousal and power

comparing with the other two dimensions.

An additional study was conducted to investigate the acoustic features from the

speech with noise. Motivated by the robust performance of Mel-Frequency Cepstrum
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Coefficients (MFCCs) in speech analysis under noisy condition, Teager Energy Cep-

strum Coefficients (TECCs) were developed combining the concepts of TEO and

MFCCs [74]. The extraction of TECC was similar to MFCC but using TEO instead

of the squared energy as the primary difference. The experiments involved three

databases, EPST, EMA, and GES, all of which were recorded in a lab environment

to minimize noise (referred to as “clean” speech). The four emotions consistently

presented in all three databases were studied, i.e., neutral, happy, sad, and angry.

The noisy speech was obtained by adding white Gaussian noise to the“clean” speech

at five Signal Noise Ratio (SNR) levels from 20dB to 0dB with the step of 5dB, which

leaded to six data set with different noise levels including the “clean” set from each

emotional database. TECCs were extracted from all data sets, individually. The

performance of TECC was evaluated and compared with MFCC in two ways: the

Normalized mean square error (NMSE) and recognizing four emotion status. NMSE

measures the average difference between the feature from noisy speech to from the

clean speech. The smaller the value of NMSE is, the more robust the feature possess.

The results showed that almost at all noisy levels, the NMSE value of TECC was only

half of the corresponding MFCC. The conclusion was reached that TECC was more

robust than MFCC facing additive noise in emotional speech. Furthermore, to eval-

uate the emotion distinguishing ability of TECC, emotion recognition experiments

were conducted. In the four-emotion classification using SVM (linear kernel), TECC

achieved higher averaged accuracy rate (across different noise levels) than MFCC for

all three databases. The averaged accuracy rates of TECC were 61.1% for EPST

(52.3%-MFCC), 84.3% for EMA (79.1%-MFCC), and 84.1% for GES (79.6%-MFCC)

in four-emotion classification. In the pair-wise classification, the average accuracy

rate could reach 99% using TECC only (angry-sad, and happy-sad in GES).

In the interest of the knowledge of how much difference in accuracy rate could be

observed between cross-database and self-cross-validation, a preliminary study [75]
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involving three emotional databases (EPST, EMA, and GES) was conducted using

glottal and also pitch-related features for the comparison purpose. Four-emotion clas-

sification was implemented in two ways: training on one database and test on another

one (referred to as “cross-testing”), and train and test on the same data by cross-

validation (referred to as “self”). The results [75] suggested that the glottal features

were more stable in the 4-emotion classification system over three databases and were

able to perform well above chance for several of the cross-testing experiments. Over-

all, the difference in the accuracy rates between cross-testing (lower) and self-testing

(higher) was observed using both the glottal and pitch features. However, when the

cross-testing occurred between EMA and GES, the accuracy rate was higher ( 0.60)

than other cases (i.e., close to the rate by chance in most cases, 0.30).

In the effort to perform cross-database training and testing, one problem is about

the emotion labels. Six emotional databases are employed for cross-database emotion

study, each of which has its own emotion labeling strategy, in categories (different

choice of emotional status words) or in dimensions (different resolution, steps, and

number of dimensions). To solve the emotion label problem, the decision was made

to map all labels to a three-class way in valence/arousal, i.e., positive, neutral, and

negative in valence/arousal.

To establish the generalized result involving multiple databases, the fact should be

faced that the speech recordings are affected by many factors, such as the recording

conditions, the naturalness of emotion expressed (acted or authentic), the language,

and the basic information of speakers (e.g. age, culture, and gender). Recording mis-

matches can make it difficult to determine whether observed statistical differences are

caused by the variable of interest or anomalies of the environmental and speaker dif-

ferences. All of these factors make speaker normalization an important and necessary

element of any cross-corpus study. Three methods of normalization were employed in

this study: speaker normalization (SN) (i.e.,scaling to make the samples belonging to
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one speaker have zero mean and one standard deviation), the speaker normalization

with neutral reference (SR) (scaling to make the neutral samples have the same mean

value as the reference neutral samples from another database), and the neutral ref-

erence model (NRM)[76] . The neutral model was trained with the neutral reference

data set. The pre-normalized acoustic features from emotional databases were trans-

formed to fitness measurements by calculating the likelihood score when applied to

the trained neutral model. Finally, the fitness measurements were classified instead

of the acoustic features. Gaussian Mixture Model (GMM) with two mixtures was

chosen as the neutral model. Acoustic feature sets consisted of pitch, MFCC, TECC,

TEO, and glottal based features. Results showed that, in most cases of comparing

the acoustic feature sets, the NRM outperformed SN and SR for classification be-

tween neutral vs. emotional. However, for recognizing status between positive vs.

negative, SN showed the best results when tested on most databases. Overall, us-

ing normalization improved the performance of cross-database classification even to a

higher accuracy rate than the self cross-validation without normalization. This results

indicated the importance of normalization in cross-database emotion recognition.

The final phase of this research was to investigate the methodology of how to

combine the information obtained from different training sets, referred to as the da-

ta fusion techniques. The methodology of data fusion could be considered in two

directions: pre-fusion, i.e., before the classification, and post-fusion, i.e., after the

classification. The difficulty of cross-database training and testing is the availability

of a large enough training data, which has enough diversity to represent all possi-

ble emotions in the testing data. Using as many as possible databases on hand to

train the classifier may address the issue, however, introduces another problem: data

redundancy and unnecessary computation load. Therefore, an algorithm to selec-

t the “necessary” databases as the training data was developed, named Sequential

Database Selection (SDS). In this way, a subset of databases from all candidates was
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selected by SDS to train one classifier for the testing data, which achieved the high-

est accuracy rate compared with any other combination of the training sets. The

pre-fusion reduced the data redundancy and the computational load by reducing the

data size. One possible issue caused by the reduction was that the loss of data might

lower the highest accuracy rate which could be possibly reached with all the available

data. To avoid the data loss, the post-fusion technique ROVER was developed to

combine the information gained from each database. For post-fusion, the final clas-

sification result was determined by all the outputs of classifications using each of the

training data (and feature sets). The methodology to deal with the multiple clas-

sification outputs was ROVER. ROVER (Recognizer output voting error reduction)

considered more factors such as confidence measurement of each classification and

weights of each training databases. For the binary classification between neutral and

emotional, comparing all the normalization methods and data fusion techniques, the

highest accuracy rates were achieved by ROVER with NRM for EPST, EMA, VAM,

and UM databases, ROVER with SR for GES, and ROVER without normalization

for SEMAINE. This observation showed the improvement caused by ROVER for all

databases and the neutral reference model normalization in most cases. Examining

the values in positive vs. negative, the highest values were achieved by both ROVER

(for 2 testing databases in valence and 3 testing databases in arousal) and SDS (for 4

testing databases in valence and 3 in arousal). However, speaker normalization (SN)

produced the highest accuracy rates for in most cases. Overall, combining the effort

from normalization and data fusion techniques, the accuracy rate of cross-database

training and testing was improved 3-23% (absolute value here and in the following

text) for neutral vs. emotional in valence and arousal (varies based on the tested

database), up to 10% for positive vs. negative in valence, and up to 5% for positive

vs. negative in arousal.
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8.2 Contributions and Future Work

The available publication on the cross-database emotion recognition research focuses

on comparing the statistics of acoustic features between databases directly, reporting

the benchmark results of cross-database classification, or selecting the prototypical

data samples as the training data. This thesis systematically studied the computa-

tional structure of cross-database emotion recognition focusing on investigating three

main challenges, the stability of acoustic features, the normalization methods, and

the data fusion techniques. The contribution of this thesis consists of the following:

• Evaluating the stability of emotion distinguishing ability of the glottal and Teager

Energy based features using multiple databases. The report of the glottal and

Teager energy features in the field of cross-database evaluation was very limited.

This thesis studied the stability of the two sets of features and showed the

stable emotion distinguishing performance across multiple databases in multiple

emotion recognition experiments.

• The investigation of three normalization methodologies at the speaker-level. In

emotion recognition using multiple databases, normalization was considered of

interest and has been studied in the manner of self-scaling at different levels,

e.g., speaker-level, database-level. This thesis investigated three normalization

methods, two of which involving a reference neutral data. The comparison

results showed that using normalization could significantly improve the cross-

database classification performance.

• The development of two data fusion techniques. This thesis proposed the Se-

quential Forward Database Selection (SDS) and developed the Recognizer out-

put voting error reduction (ROVER) approaches to combine information gained

from different training databases due to the lack of large and diverse enough

emotional database for training. Using SDS as the pre-classification technique
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to choose the combination of training databases can guarantee the same or

better performance than training on any single database. Using ROVER as

the post-classification technique to efficiently combine the classification results

using multiple training databases can achieve better performance than simply

majority voting (the most commonly used method for data fusion).

• The improvement on cross-database classification performance. Combining all

the efforts made in this thesis to investigate the challenges, the systematic

computational structure proposed in this thesis could improve the accuracy

rates of the cross-database classification significantly by up to 23% in detecting

neutral vs. emotional and up to 10% in positive vs. negative. When testing

the GES database, the similar research results could be found in [66] of 68% for

arousal and 54% for valence in positive vs. negative classification. The accuracy

rates using the systematic structure in this thesis are 93% for arousal and 78%

for valence. And when GES was tested for neutral vs. emotional, [8] reported

the accuracy rate of 80.2%, while the performance of the systematic structure

in this thesis is 92.8%.

Future work will include the development of normalization in a speaker-independent

way because the it will require less information from the speech data and make the

emotion recognition engine have more generalized real-life applications. Furthermore,

the normalization model to process positive vs. negative emotion need to be studied

since the current neutral reference model works much better for detecting the emo-

tional samples from the neutral. Training the GMM using emotional data instead

of the neutral data could be a direction to address this issue. However, the lack of

emotional database with the emotion at the controlled degree arises as the challenge

for it.
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APPENDIX A

THE GLOTTAL FEATURES FROM TELEPHONE

QUALITY SPEECH WITH CODEC G.729

The glottal features were investigated in Chapter 5.1.4 to show better performance

in cross-database emotion recognition compared with the pitch-related features. The

three databases used were EPST, EMA, and GES. Results showed that EMA and

GES possessed higher accuracy rates. However, all the databases were recorded in

the lab environment at last 16kHz. Considering the potential application of detecting

emotions in recordings at the telephone quality level, e.g., Call Center Speech, the

study of the emotion distinguishing ability of the glottal features was extended to

conduct the cross-database experiments using the telephone quality speech.

For comparison reason, EMA and GES were employed in this study (EPST was

excluded due to its relatively lower accuracy rate). The telephone quality speech was

obtained by encoding the original speech to bitstream and then decoding the bit-

stream to the speech. The codec to generate the telephone quality speech was G.729.

Given the telephone quality speech, following the same methodology introduced in

Chapter 5.1.4, 4-emotion classification was conducted using the glottal features ex-

tracted form the telephone quality speech and the results are shown in Table 33.

In Table 33, comparing the performance of the glottal features extracted from

the telephone quality speech (“G729-GLO”) and the original speech (“GLO”), the

accuracy rate of G729 speech is slightly lower than the original. The accuracy rates are

fairly close for the cross-database experiments. The patterns observed from precision

and recall are similar as well. Comparing “G729-GLO” with the pitch-related features

extracted from the original speech (“PCH”), the accuracy rates using the glottal
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Table 33: The results of 4-class emotion categorization using the glottal features
extracted from the telephone quality speech (“G729-GLO”), and the glottal(“GLO”)
and pitch (“PCH”) features from the original speech (as seen in Table 12).(“*” indi-
cates the self-tested experiments using 10-fold cross validation, the self-tested accu-
racy rates are in bold).

Train: EMA
Test: *EMA* GES

G729-GLO GLO PCH G729-GLO GLO PCH
accuracy rate 0.73 0.80 0.66 0.63 0.65 0.49
precision Happy 0.70 0.74 0.68 0.44 0.52 0.39

Angry 0.65 0.72 0.64 0.72 0.76 0.64
Sad 0.77 0.84 0.62 0.58 0.57 0.41
Neutral 0.78 0.88 0.72 0.73 0.75 0.60

recall Happy 0.62 0.72 0.78 0.49 0.56 0.55
Angry 0.63 0.72 0.45 0.63 0.66 0.39
Sad 0.89 0.89 0.64 0.78 0.89 0.61
Neutral 0.74 0.84 0.80 0.64 0.52 0.51

Train: GES
Test: *GES* EMA

G729-GLO GLO PCH G729-GLO GLO PCH
accuracy rate 0.79 0.83 0.71 0.58 0.57 0.33
precision Happy 0.63 0.74 0.71 0.55 0.55 0.47

Angry 0.75 0.79 0.66 0.52 0.52 0.31
Sad 0.95 0.92 0.84 0.83 0.76 0.19
Neutral 0.84 0.89 0.71 0.57 0.56 0.41

recall Happy 0.46 0.55 0.07 0.49 0.64 0.06
Angry 0.85 0.90 0.94 0.74 0.70 0.72
Sad 0.88 0.90 0.74 0.38 0.34 0.07
Neutral 0.92 0.90 0.87 0.73 0.63 0.48
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Table 34: The correlation coefficients of features extracted from speech and from the
corresponding telephone quality speech with codec G.729.

pitch TEO TECC MFCC glottal
EMA 0.961 0.963 0.931 0.944 0.961
GES 0.970 0.955 0.917 0.928 0.953

features from the telephone quality speech is higher than using the pitch features

from the original speech, for both self-test and cross-database cases. The observation

form Table 33 strengthens the emotion distinguishing ability of the glottal features

extracted from the telephone quality speech. It indicates that the application of

detecting emotion in telephone recordings using the glottal features is feasible.

As a slight extension of the aforementioned study, the correlation coefficients

between the acoustic features extracted from the telephone quality speech and the

original speech were calculated and listed in Table 34. The correlation coefficients

were calculated using Eq. 18,

ρ(ν1, ν2) =
cov(ν1, ν2)√

cov(ν1, ν1) · cov(ν2, ν2)
. (18)

where v1, v2 represent feature sets from the original sample and the corresponding

telephone quality speech sample. cov(v1, v2) is the covariance between the two. For

each database, the averaged value across all the samples was listed in Table 34.

In Table 34, among the five feature sets, the pitch, TEO, and glottal features ex-

hibit the larger correlation coefficients while TECC has the lowest for both databases.

Even though, the correlation coefficients are all above 0.90, which indicates that the

two sets are strongly correlated.
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APPENDIX B

THE DETAILED RESULTS FOR CROSS-DATABASE

TRAINING AND TESTING

The classification results using data without any normalization or data fusion tech-

niques are the baseline to compare the performance of the proposed system (marked

as “best other” in the block of “NA” in Tables 35 to 38). Each table contains three

blocks, “NA”, “SN”, “SR”, and “NRM”, representing normalization processing of

none, speaker normalization, speaker normalization with reference, and neutral refer-

ence model, in order. Inside each block, “self” is the classification trained and tested

on the same data by 10-fold cross-validation. “Best other” represents the highest ac-

curacy rate achieved by training the classifier on another database, the ID of which is

listed in “best db”. “Rover-db” shows the results using ROVER based on databases

and all features together and “Rover-db*feat” is calculated using ROVER based on

the combination of databases and each of the five feature sets. For example, for one

test set, “Rover-db” evaluates five recognition engines from the other five databases,

and “Rover-db*feat” evaluates 30 engines resulted from the combination of five other

databases and six feature sets (five sets + all five together). “SDS” shows the results

using SDS as the data fusion method, and “dbs” is the ID of databases selected by

SDS to train the classifier. The last row of “∆” is the increase of accuracy rate from

the baseline “best other” in “NA” to the highest accuracy rate achieved. Tables 35 to

38 represents the binary emotion recognition in valence and arousal between neutral

vs. emotional (Tables 35 for valence, Table 36 for arousal) and between positive vs.

negative (Tables 37 for valence and Table 38 for arousal). In each table, the high-

est accuracy rate is marked in bold and the baseline to compare the performance is
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underlined. The classifier to implement all the experiments is SVM with liner kernel

and the two classes in each binary classification was randomly chosen to have equal

number of samples to make the accuracy rate 50% by chance. The values shown in

tables are the mean values over 100 repeated classifications.
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Table 35: Accuracy rates of binary classifications (neutral vs. emotional in
valence) tested on each emotional database when the training data is the test data
itself (“self”), one of the other database producing the highest accuracy rate (“best
other”), and combing all other databases by ROVER and SDS. Three normalization
methods are included. The baseline performance to compare with is underlined.

neutral vs. emotional in valence
NA 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 83.4 92.3 84.8 64.8 62.5 57.4
best other 66.9 70.9 73.3 58.6 56.1 50.5
best db 4 4 2 5 1 3
Rover-db 67.9 78.0 74.8 60.8 59.3 46.0
Rover-db*feat 71.4 72.9 75.3 62.1 60.0 44.2
SDS 67.3 72.9 72.8 58.7 61.1 50.6
dbs [2,5] [4,5] [2] [5] [4,6,1] [3]

SN 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 84.8 95.0 89.0 58.7 61.6 60.3
best other 67.1 73.5 82.5 52.5 55.4 51.5
best db 2 3 2 2 2 2
Rover-db 73.1 78.2 82.5 53.0 59.3 50.0
Rover-db*feat 77.2 79.1 83.5 54.0 59.0 50.2
SDS 71.7 75.9 82.1 53.8 59.0 52.3
dbs [3,2] [3,1] [2] [5,2,6,3] [4,6,3,2] [1,2]

SR 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 86.6 96.2 92.7 71.0 67.9 63.6
best other 73.2 72.9 78.4 54.7 54.3 57.2
best db 3 3 2 5 6 5
Rover-db 78.7 81.1 88.6 54.7 61.6 55.5
Rover-db*feat 87.6 87.7 92.7 57.9 63.2 59.5
SDS 79.1 76.6 82.4 55.8 63.4 57.2
dbs [3,2] [5,3] [2,6] [2,6] [2,6] [5]

NRM 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 88.4 96.1 96.2 76.1 69.4 62.1
best other 83.7 76.7 90.2 57.3 57.4 59.6
best db 2 3 2 2 2 5
Rover-db 87.5 88.9 90.8 61.4 64.1 60.0
Rover-db*feat 89.2 91.3 92.8 60.7 64.7 60.9
SDS 83.8 82.2 89.9 61.3 60.1 59.7
dbs [3,2] [3,1] [2] [2,6] [1,6] [5]

∆ 22.3 20.4 19.5 3.5 8.6 10.4
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Table 36: Accuracy rates of binary classifications (neutral vs. emotional in
arousal) tested on each emotional database when the training data is the test data
itself (“self”), one of the other database producing the highest accuracy rate (“best
other”), and combing all other databases by ROVER and SDS. Three normalization
methods are included. The baseline performance to compare with is underlined.

neutral vs. emotional in arousal
NA 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 83.5 93.4 86.5 64.5 64.8 57.4
best other 65.5 67.9 72.0 57.7 53.7 50.8
best db 4 4 2 1 3 3
Rover-db 67.9 78.0 74.8 60.8 59.3 46.0
Rover-db*feat 71.4 72.9 75.3 62.1 60.0 44.2
SDS 67.4 73.3 73.8 58.5 55.9 50.4
dbs [2,5] [4,5] [5,4,2] [1,3] [6,3] [3]

SN 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 85.3 93.1 90.9 58.7 64.6 60.1
best other 67.5 73.9 81.7 52.5 55.2 51.2
best db 2 3 2 2 3 2
Rover-db 73.1 78.2 82.5 53.0 59.3 50.0
Rover-db*feat 77.2 79.1 83.5 54.0 59.0 50.2
SDS 72.4 75.7 82.1 53.5 58.4 51.4
dbs [3,2] [3,1] [2] [2,6,5,3] [3,4] [2]

SR 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 86.7 96.6 91.3 71.1 73.0 63.7
best other 73.3 72.2 77.9 53.3 56.3 55.0
best db 3 3 2 5 3 5
Rover-db 78.7 81.1 88.6 54.7 61.6 55.5
Rover-db*feat 87.6 87.7 92.7 57.9 63.2 59.5
SDS 79.2 76.7 83.2 55.3 65.6 56.5
dbs [3,2] [5,3] [2,6] [2,6] [2,6] [5,4,2]

NRM 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 87.9 96.8 96.1 76.4 73.5 62.2
best other 83.8 77.3 89.7 59.0 61.4 58.0
best db 2 3 2 5 2 5
Rover-db 87.5 88.9 90.8 61.4 64.1 60.0
Rover-db*feat 89.2 91.3 92.8 60.7 64.7 60.9
SDS 84.3 85.5 90.4 61.0 64.4 58.1
dbs [2] [5,3] [2] [2,6] [1,6,2] [5,2]

∆ 23.7 23.4 20.8 4.4 11.0 10.1
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Table 37: Accuracy rates of binary classifications (positive vs. negative in va-
lence) tested on each emotional database when the training data is the test data
itself (“self”), one of the other database producing the highest accuracy rate (“best
other”), and combing all other databases by ROVER and SDS. Three normalization
methods are included. The baseline performance to compare with is underlined.

positive vs. negative in valence
NA 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 67.4 91.7 78.7 77.8 70.3 59.6
best other 59.6 72.5 72.9 60.7 55.8 48.2
best db 3 1 2 1 4 2
Rover-db 61.2 72.6 72.7 50.8 42.1 43.6
Rover-db*feat 64.4 70.6 74.6 59.3 36.8 46.1
SDS 59.8 72.6 73.0 62.2 58.8 54.9
dbs [3] [1] [1,2] [3,2] [6,4] [3,5]

SN 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 67.5 92.5 82.1 67.7 66.4 61.8
best other 61.3 75.7 76.5 51.6 59.6 52.7
best db 2 1 2 3 2 4
Rover-db 63.5 68.4 74.1 50.7 58.0 50.5
Rover-db*feat 65.1 77.3 77.7 50.3 50.7 51.7
SDS 61.2 77.8 76.5 51.9 66.1 56.4
dbs [2] [1,3] [2] [1,5] [4,2,1] [4,1]

SR 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 67.2 90.2 77.7 86.9 73.7 65.4
best other 59.8 70.0 70.7 55.7 58.8 53.8
best db 2 3 1 3 6 2
Rover-db 57.1 61.7 62.9 52.2 51.7 52.9
Rover-db*feat 60.0 70.0 72.0 51.8 49.6 52.0
SDS 60.1 70.9 70.5 54.8 61.8 55.0
dbs [2,3] [1,3] [1,2] [3] [3,4,2] [5,3]

NRM 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 66.7 91.3 78.5 90.7 80.2 66.7
best other 56.2 71.7 70.1 53.7 58.3 51.6
best db 2 1 1 2 1 5
Rover-db 55.9 57.2 66.5 55.9 54.1 48.0
Rover-db*feat 56.9 66.4 69.1 55.8 48.0 49.1
SDS 60.1 70.9 70.5 54.8 61.8 55.0
dbs [2,3] [1,3] [1,2] [3] [3,4,2] [5,3]

∆ 5.5 5.3 4.8 1.5 10.3 8.2
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Table 38: Accuracy rates of binary classifications (neutral vs. emotional in
arousal) tested on each emotional database when the training data is the test data
itself (“self”), one of the other database producing the highest accuracy rate (“best
other”), and combing all other databases by ROVER and SDS. Three normalization
methods are included. The baseline performance to compare with is underlined.

positive vs. negative in arousal
NA 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 75.5 98.9 97.7 66.7 92.5 55.6
best other 69.5 92.2 90.5 53.6 79.9 50.8
best db 2 5 1 1 2 3
Rover-db 67.9 89.6 90.6 52.1 81.0 51.0
Rover-db*feat 68.3 91.9 92.3 51.5 83.1 48.5
SDS 69.6 92.2 90.3 55.0 81.5 52.1
dbs [2] [5] [5] [3,1] [2,3] [5,4]

SN 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 76.6 96.8 98.7 56.1 88.2 60.8
best other 68.8 91.0 92.4 51.3 76.4 55.0
best db 2 5 1 6 2 4
Rover-db 69.4 91.7 94.0 50.5 78.9 51.5
Rover-db*feat 71.3 92.9 94.2 50.2 81.2 50.8
SDS 71.5 93.0 92.5 51.5 78.1 54.6
dbs [3,2] [5,1] [1] [5,6,3,1] [3,2] [4,1]

SR 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 75.1 99.7 97.5 76.5 92.2 62.8
best other 69.9 85.8 90.8 55.5 74.5 50.0
best db 5 1 5 1 3 2
Rover-db 69.3 83.3 91.3 55.5 83.2 50.3
Rover-db*feat 68.5 82.3 93.0 56.1 84.9 50.9
SDS 70.1 86.0 90.5 55.7 81.9 52.2
dbs [5] [1] [5,2] [1,2] [3,2] [2,1]

NRM 1.EPST 2.EMA 3.GES 4.SEMAINE 5.VAM 6.UM
self 71.8 97.8 96.8 81.0 88.8 67.4
best other 64.2 82.9 89.7 53.7 74.6 52.2
best db 5 1 5 2 3 5
Rover-db 64.1 84.7 90.3 51.0 79.5 50.5
Rover-db*feat 64.7 86.7 93.0 50.7 78.9 49.3
SDS 70.1 86.0 90.5 55.7 81.9 52.2
dbs [5] [1] [5,2] [1,2] [3,2] [2,1]

∆ 2.0 0.8 3.7 2.5 5.0 3.8
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APPENDIX C

FEATURE SELECTION RESULT FOR EACH DATABASE

Due to the limitation of space, only features selected by all 10 tests of the 10-fold

cross-validation are listed.

Table 39: the features selected by all the 10 folds in self-testing by 10-fold cross
validation in neutral vs. emotional.
EPST EMA GES SEMAINE VAM UM

neutral vs. emotional in valence
TECC6-∆mean pch-fit3 TEOcb1-fit2 pch-q75 TEOevn1-mean TEOcb14-std
TECC11-mean TEOfm2-range TEOcb11-median TEOfm4-median TEOcb13-q75 TECC13-mean
HRF-std TEOcb2-fit1 TEOcb11-q75 TEOevn4-median HRF-std TECC13-q75
HRF-iqr TEOcb16-fit2 TEOcb14-q75 TEOevn4-q25 TECC14-∆mean

TECC1-mean MFCC2-fit3 TECC15-min
TECC22-∆q75 TECC15-max
MFCC12-std TECC18-max
MFCC12-range
QOQ-fit1
SQ2-median

neutral vs. emotional in arousal
TECC6-∆mean pch-fit3 TEOcb1-fit2 pch-q75 pch-∆iqr TEOcb14-std
TECC11-mean TEOfm2-range TEOcb11-median TEOfm4-median TEOcb13-∆std TECC13-mean
HRF-std TEOcb2-fit1 TEOcb11-q75 TEOevn4-median TEOcb16-q75 TECC13-q75
HRF-iqr TEOcb16-fit2 TEOcb14-q75 TEOevn4-q25 TECC14-∆mean

TECC1-mean MFCC2-fit3 TECC15-min
TECC22-∆q75 TECC15-max
MFCC12-std
MFCC12-range
QOQ-fit1
SQ2-median
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Table 40: the features selected by all the 10 folds in self-testing by 10-fold cross
validation in positive vs. negative.
EPST EMA GES SEMAINE VAM UM

positive vs. negative in valence
pch-∆std pch-std TEOcb9-iqr TECC13-q25 TEOcb12-∆q25 TECC10-max
pch-∆q75 pch-iqr TECC15-mean TEOcb16-∆median TECC10-∆max
pch-∆iqr TEOfm2-iqr TECC15-max TECC4-range TECC18-min
TEOcb4-std TEOcb9-q75 TECC15-q75 MFCC3-∆std
MFCC9-∆std TECC8-q25 TECC18-max
MFCC11-∆std MFCC3-iqr TECC20-max
MFCC12-std MFCC12-max QOQ-max
DH12-∆std ClQ-iqr
DH12-∆q75

positive vs. negative in arousal
pch-∆iqr pch-iqr pch-fit2 TEOfm1-q25 pch-∆q25 TECC8-fit2
TEOcb8-fit2 pch-∆median pch-∆median TEOfm4-min pch-∆iqr
TEOcb8-∆max pch-∆iqr pch-∆q25 TEOevn4-q25 TEOevn1-iqr
TECC1-std TEOfm2-iqr pch-∆q75 TEOcb16-min TEOcb11-q75
TECC1-∆std TEOcb8-std pch-∆iqr TECC1-max TECC1-q75
TECC2-std TECC1-range TEOfm2-∆std TECC1-q75 TECC2-std
TECC2-∆q75 TECC1-∆iqr TEOcb5-fit1 TECC4-q25 TECC2-q25
TECC4-∆iqr TECC2-∆q75 TEOcb10-∆iqr TECC9-min TECC2-iqr
MFCC1-q25 TECC6-std TEOcb15-∆median TECC9-q25 TECC10-q75
MFCC5-min TECC8-max TECC2-mean TECC14-std

TECC8-∆std TECC2-q25 TECC17-std
TECC11-∆std TECC2-∆q75 TECC18-std
TECC15-∆std TECC5-fit1 TECC18-∆std
TECC16-std TECC5-∆iqr MFCC1-∆q75
TECC18-std TECC6-∆std MFCC8-std
TECC22-∆std TECC7-∆std MFCC8-q75
MFCC3-std TECC8-∆std MFCC11-std
MFCC3-iqr TECC10-q75 OQ1-∆q75
MFCC5-mean TECC11-∆std OQa-std
MFCC5-min TECC15-fit2 QOQ-q25
MFCC5-q25 TECC16-std
MFCC9-min TECC16-∆std
MFCC12-std TECC17-∆std
OQ1-median MFCC2-∆iqr
AQ-q25 MFCC3-∆mean
ClQ-iqr MFCC12-fit1

OQ1-median
AQ-fit1
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