

CLASSIFICATION USING RESIDUAL VECTOR QUANTIZATION

A PhD Thesis

Presented to

The Academic Faculty

by

Syed Irteza Ali Khan

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December, 2013

Copyright © 2013 by Syed Irteza Ali Khan

CLASSIFICATION USING RESIDUAL VECTOR QUANTIZATION

Approved by:

Dr. Christopher F. Barnes, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Ayanna MacCalla Howard

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. David V. Anderson, Co-Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Patricio Antonio Vela

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Aaron D. Lanterman

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. David M. Goldsman

School of Industrial and Systems

Engineering

Georgia Institute of Technology

 Date Approved: [07 October ,2013]

iii

ACKNOWLEDGEMENTS

 It is an honor to present this thesis to my PhD committee to mark the completion

of my PhD at Georgia Institute of Technology. It is a great pleasure to thank those who

made this thesis possible. I owe my deepest gratitude to my PhD advisor Dr. Christopher

Barnes and PhD co-advisor Dr. David Anderson for guiding and supporting me every

step of the way in my PhD research. I am also grateful to my PhD proposal committee for

giving me ample time to present my PhD proposal and shape my research to meet the

requirements of PhD. I am thankful to my fellow students in ESP lab who gave me useful

feedback to improve my thesis report. I am especially thankful to Nathan V. Parrish for

his useful instructional discussions with me on some very key fundamental concepts in

my research. This wonderful journey of learning would not have been possible without

valuable support and guidance from the learned faculty in the School of Electrical and

Computer Engineering, Georgia Institute of Technology. I also wish to thank my past

teachers, especially my Kindergarten teacher Ms. Bokhari, my high school teachers Ms.

Shakeela Jalali and Ms.Talat Aziz, and my physical-training instructor Mr. Gul Daraz,

who inculcated the values in me that have helped lay a very solid foundation for my life. I

am grateful to all my instructors in my undergraduate program at the College of

Aeronautical Engineering, NUST Pakistan, who prepared me well to meet further

academic challenges with success. I am especially thankful to Higher Education

Commission of Pakistan for granting me the scholarship to support my PhD program at

Georgia Institute of Technology.

 I am indebted to my father, Syed Murtaza Ali Khan, and mother, Syeda Naseem

Fatima, who have been a source of unwavering support, constant encouragement,

iv

sincerest guidance, and inspiration to me. My father has been a special influence on me.

He has always encouraged me to think outside the box and to keep an open mind. I am

forever thankful to him for strengthening my resolve by always reposing a strong belief

in my abilities. The period of my PhD program has been very testing on me. It has been

especially hard on my wife, Fatima Ali Khan, and my children, Syeda Saher Fatima and

Syed Hayyan Ali Zaidi. I feel very blessed to have a family that have stood steadfastly by

me throughout my PhD program, making it a struggle of their own, and giving me the

strength to persevere and complete my PhD. I am also grateful to my entire family,

especially my elders and my brothers, Syed Mujtaba Ali Khan, Syed Ghazanfer Ali

Khan, and Syed Muzaffer Ali Khan. I am also very thankful to my in-laws - the extended

family members – especially, my father-in-law Dr. S. Iftikhar Ahmed for his calming

counseling during the toughest of times in my PhD program. I dedicate my PhD to all my

family members, who have all along prayed for my success and made it as a matter of

family pride that I was in this PhD program. I am thankful to my friends, well wishers,

and close family friends, especially Mr. and Mrs. Kirmani and Mr. and Mrs. Hashim

Jafri, whose prayers were always with me.

 Lastly, I offer my blessings to Georgia Institute of Technology. This great

institution has provided me with a nurturing environment. Here, I have had enriching

experiences and have learned values that have made a deep and positive impression on

my personality. I will, forever, be obliged to this prestigious institution for playing such a

positive and lasting role in my life.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES ix

SUMMARY xii

CHAPTER

1 CHAPTER 1 INTRODUCTION 1

2 CHAPTER 2 VECTOR QUANTIZATION 6

Introduction 6

Vector Quantization 7

Residual Vector Quantization (RVQ) 13

3 CHAPTER 3 VECTOR QUANTIZATION-BASED CLASSIFICATION 19

Introduction 19

Classified Vector Quantization 20

Learning Vector Quantization 23

Modified Tree-Search Vector Quantization for Classification 25

4 CHAPTER 4 RESIDUAL VECTOR QUANTIZATION 29

Introduction 29

Residual Vector Quantization-Based Classification 33

5 CHAPTER 5 MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSFICAITON: PRELIMINARY RESEARCH 35

Introduction 35

Markov-Bayesian RVQ Classification 36

vi

Proof of Concept: Linearly Separable Synthetic Dataset 42

Proof of Concept: Linearly Non-Separable Synthetic Dataset 43

Proof of Concept: Image Dataset 53

RVQ Classification Performance Benchmark 58

Estimated Markov-Bayesian RVQ Costs 59

6 CHAPTER 6 MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSFICAITON: MAIN RESEARCH 61

Introduction 61

Effects of Varying Values of M and P 62

RV Q Classification Schemes 67

Experiments and Results 69

7 CHAPTER 7 CONCLUSION AND FUTURE RESEARCH 105

Conclusion 105

Future Research 106

APPENDIX A 107

REFERENCES 123

vii

LIST OF TABLES

Page

Table 1: (a) Class-conditional Transition Matrix with Markov order = 0.

(b) Error matrix. 45

Table 2: (a) Class-conditional Transition Matrix with Markov order = 1.

(b) Error matrix. 48

Table 3: Error matrices for (a) M=3 and P=8, (b) M=4 and P=8, (c) M=5 and P=8;

Markov order = 0. 54

Table 4: Class-conditional Probability Matrices for (a) M=3 and P=8, (b) M=4 and

P=8, (c) M=5 and P=8; Markov order = 0. 55

Table 5: RVQ-based classifiers-vs-SVM-based classifier. 57

Table 6: Implementation cost of RVQ classifier. 60

Table 7: Error matrices for M = 2 to M = 11. RVQ has P=8 stages with the zeroth

Markov order for classification. 64

Table 8: Classification performance of 1-NN based classifier versus Markov Bayesian

RVQ classifier with M = 7, P = 8, and Markov Order = 4. 67

Table 9: Class-conditional Probability Matrix for RVQ with M = 2 and P = 16.

Class 1, 2, 3 are Plane, Car, Motorbike, respectively. 71

Table 10: Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ

with CostERoE, and Feature-count Rule with CostERoE. The Markov order

is zero, and RVQ has M=2 codevectors-per-stage and P = 16 stages. 72

Table 11: Class-conditional Probability Matrix for RVQ with M = 4 and P = 8.

Class 1, 2, 3 are Plane, Car, Motorbike, respectively. 74

Table 12: Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ

with CostERoE, and Feature-count Rule with CostERoE. The Markov order

is zero, and RVQ has M = 4 codevectors-per-stage and P = 8 stages. 74

Table 13: Error matrix for SVM classifier with SIFT feature and chi-squared distance

kernel. 77

Table 14: Class-conditional Probability Matrix for RVQ with M=2 and P =16. Class 1,

2, 3 are Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively. 81

viii

Table 15: Error matrix for MBRVQ with RoE, Feature-count Rule with RoE, MBRVQ

with CostERoE, and Feature-count Rule with CostERoE. The Markov order

is zero, and RVQ has M = 2 codevectors-per-stage and P = 16 stages. 82

Table 16: Class-conditional Transition Probability Matrix for RVQ with M = 4 and P = 8.

Class 1, 2, 3 are Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively. 84

Table 17: Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and

RVQ has M = 4 codevectors-per-stage and P = 8 stages. 84

Table 18: Class-conditional Probability Matrix for RVQ with M = 2 and P =16.

Class 1, 2 are Heavy, and Sports motorbikes, respectively. 87

Table 19: Error matrix for MBRVQ with RoE, Feature-count Rule with RoE, MBRVQ

with CostERoE, and Feature-count Rule with CostERoE. The Markov order

is zero, and RVQ has M = 2 codevectors-per-stage and P = 16 stages. 87

Table 20: Class-conditional Probability Matrix for RVQ with M = 4 and P =8.

Class 1, 2 are Heavy, and Sports motorbikes, respectively. 89

Table 21: Error matrix for MBRVQ with RoE, Feature-count Rule with RoE, MBRVQ

with CostERoE, and Feature-count Rule with CostERoE. The Markov order

is zero, and RVQ has M = 4 codevectors-per-stage and P = 8 stages. 89

Table 22: Error matrix and classification performance measures for SVM on Graz

dataset. 97

Table 23: Classification performance of MBRVQ classifier with CostERoE

constraint on handwritten digits dataset RVQ has M = 4 and P = 8,

Markov order=4. 100

Table A.1. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 samples-per-

class, total 600 samples. Test set size = 270 total samples, Input size =

150x250 grayscale pixels, M = 4, P = 8. 107

Table A.2. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 samples-per-

class, total 600 samples, Test set size = 270 total samples, Input size =

150x250 grayscale pixels, M = 2, P = 16. 110

Table A.3 . Error matrix and classification performance measures for SVM on Graz

dataset. 122

ix

LIST OF FIGURES

Page

Figure 1: MSVQ block diagram (Courtesy Barnes, C.F et al. [1]). 12

Figure 2: Comparison of implementation costs of ESVQ, TSVQ, and RVQ. 16

Figure 3: Classified vector quantization. 21

Figure 4: Direct-sum codebook of RVQ with the implicit σ-tree structure. M is

codevector-per-stage and P is the number of RVQ stages. 29

Figure 5: Successive refinement of data and class boundaries using RVQ with M = 3

codevectors-per-stage and P = 8 stages. 32

Figure 6: M
P
 = 4

8
 = 65536 Voronoi regions generated for M=4, P=8 RVQ. 36

Figure 7: Markov structure imposed on the stages of RVQ for classification. 37

Figure 8: Bayesian RVQ classifier. 41

Figure 9: Synthetic dataset of three classes, (a) Training set. (b) Test set. (c) Class-

conditional Transition Probability Matrix of the three classes. 42

Figure 10: Synthetic Swiss roll training dataset of two classes to test and illustrate

Bayesian RVQ classifier. 44

Figure 11: (a) Direct-sum codevector mapped by the training set shown in red, the

remaining direct-sum codebook shown in blue. (b) Test data set. Class1

shown in blue, and Class 2 shown in red. 45

Figure 12: Training dataset: Class1 data is in blue, Class2 data is in red. 49

Figure 13: Classification performance curves for 2-catergory Swiss roll dataset. 50

Figure 14: Training dataset for 4-category classification using Bayesian RVQ. Class-1

data is in blue, Class-2 data is in red, Class-3 is in black, and Class-4 is in

yellow. 52

Figure 15: Classification performance curves for 4-category classification using

Bayesian RVQ. 52

Figure 16: Training dataset for classification using Markov Bayesian RVQ with 0
th

Markov order. 53

x

Figure 17. RVQ codebook for M = 4, P =8. 3-category training set comprises Plane,

Car, and Motorbike classes. 63

Figure 18. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11}, and P=8,

and for Markov orders from 0 to P-1 = 7. 65

Figure 19. Classification performance of 1-NN based classifier versus Markov

Bayesian RVQ classifier with M = 7, P = 8, and Markov Order = 4. 66

Figure 20. RVQ codebook for RVQ with M=2, P=16. The dataset consists of Plane,

Car, and Motorbike classes. 70

Figure 21. RVQ codebook for RVQ with M=4, P=8. The dataset consists of Plane,

Car, and Motorbike classes. 73

Figure 22. Classification performance for different RVQ-based classifiers with M = 2

and P = 16. The dataset consists of Plane, Car, and Motorbike classes from

Caltech101. 75

Figure 23. Classification performance for different RVQ-based classifiers with M = 4

and P = 8. The dataset consists of Plane, Car, and Motorbike classes from

Caltech101. 76

Figure 24. Training dataset for 2-category classification. The classes are Heavy, and

Sports motorbikes. 79

Figure 25. Training dataset for 3-category classification. The classes are Heavy, Heavy-

Sports, and Light-Sports motorbikes. 79

Figure 26. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy,

Heavy-Sports, and Light-Sports motorbike classes. 80

Figure 27. Classification performance for different RVQ-based classifiers with M = 2

and P = 16. The dataset consists of Heavy, Heavy-Sports, and Light-Sports

motorbike classes from Caltech101. 82

Figure 28. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy,

Heavy-Sports, and Light-Sports motorbike classes. 83

Figure 29. Classification performance for different RVQ-based classifiers with M = 4

and P = 8. The dataset consists of Heavy, Heavy-Sports, and Light-Sports

motorbike classes from Caltech101. 85

Figure 30. Classification Performance for different RVQ-based classifiers with M = 2

and P = 16. The dataset consists of Heavy and Sports motorbike classes

from Caltech101. 88

xi

Figure 31. Classification Performance for different RVQ-based classifiers with M = 4

and P = 8. The dataset consists of Heavy and Sports motorbike classes from

Caltech101. 90

Figure 32. RVQ-versus-1NN: (1
st
 Row) 2-category Swiss roll in Figure 13. (2

nd
 Row)

4-category Swiss roll in Figure 15. (3
rd

 Row) 3-category Caltech101 in

Figure 16. 92

Figure 33. RVQ-versus-1NN: (1
st
 Row) 2-category Motorbike dataset from Caltech101

in Figure 23. (2
nd

 Row). 3-category Motorbike dataset from Caltech101 in

Figure 24. 93

Figure 34. (Top): RVQ M = 4 and P = 8. (Bottom): RVQ M = 2 and P = 16. 95

Figure 35: Graz dataset with classes Bicycle, People, and Background. 97

Figure 36: The MNIST database of handwritten digits. 99

Figure 37. Handwritten digit database. RVQ codebook with M = 4 codevectors-per-

stage and P = 8 stages. 100

Figure 38. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11,12}, and

P=8: Mean overall accuracy averaged over Markov orders 0 to 7. 101

Figure 39. RVQ classification performance for M = 7 and P=8: overall accuracy for

Markov order = {0, 1, 2, 3, 4, 5, 6, 7}. 102

Figure 40. RVQ-versus-1NN: (Top) Computational cost. (Bottom) Memory cost. 103

Figure A.1. RVQ codebook with M = 4 and P = 8 for Graz dataset. 122

xii

SUMMARY

Residual vector quantization (RVQ) is a 1-nearest neighbor (1-NN) type of

technique. RVQ is a multi-stage implementation of regular vector quantization. An input

is successively quantized to the nearest codevector in each stage codebook. In

classification, nearest neighbor techniques are very attractive since these techniques very

accurately model the ideal Bayes class boundaries. However, nearest neighbor

classification techniques require a large size of representative dataset. Since in such

techniques a test input is assigned a class membership after an exhaustive search the

entire training set, a reasonably large training set can make the implementation cost of the

nearest neighbor classifier unfeasibly costly. Although, the k-d tree structure offers a far

more efficient implementation of 1-NN search, however, the cost of storing the data

points can become prohibitive, especially in higher dimensionality.

 RVQ also offers a nice solution to a cost-effective implementation of 1-NN-based

classification. Because of the direct-sum structure of the RVQ codebook, the memory and

computational of cost 1-NN-based system is greatly reduced. For example, RVQ

codebook with M = 4 codevectors-per-stage and P = 8 stages can potentially represent M
P

= 65536 training vectors with the cost of only MP = 32 codevectors. Although, as

compared to an equivalent 1-NN system, the multi-stage implementation of the RVQ

codebook compromises the accuracy of the class boundaries, yet the classification error

has been empirically shown to be within 3% to 4% of the performance of an equivalent 1-

NN-based classifier.

1

CHAPTER 1

INTRODUCTION

 Classification of images is perhaps the most important part of digital image

analysis. Classification is the problem of identifying to which of a set of categories a new

observation belongs, on the basis of a training set of data containing observations whose

category membership is known. In images, the intent of a classification process is to

categorize all pixels in a digital image into one of several categories. Classification finds

its application in a wide range of operations in computer vision. Computer vision [2] is a

field that includes methods for acquiring, processing, analyzing, and understanding

images and data from the real world to make decisions about the contents of images.

Broadly speaking, the aim of computer vision is to duplicate the abilities of human vision

by electronically perceiving and understanding images. The classification of images is a

very important field of computer vision. The wide variety of applications of classification

includes pattern recognition, object detection and recognition, and image understanding.

 An important component of a classification of images is the choice of features. A

feature, in general, is a piece of information that is relevant for solving the computational

task related to a certain application. More specifically to images, a feature can refer to a

simple intensity level in an image to a more complex structure like edge, line, texture,

and an object. Even more complex features are manufactured to accomplish robust

classification performances for object recognition. Few examples of such complex

features that are very popular in computer vision applications are Scale-invariant Feature

Transform (SIFT) [3], Rotation-Invariant Feature Transform (RIFT) [4], Speeded-Up

Robust Features (SURF) [5], and Gradient Location and Orientation Histogram (GLOH)

2

[6]. The process of transforming data, such as text or images, into numerical features

usable for various classification applications is called feature selection [7]. Feature

selection has become the focus of much research, especially where huge amount of data

is encountered. The objective of feature selection is three-fold: improving the

classification performance of the classifiers, providing faster and more cost-effective

classifiers, and providing a better understanding of the underlying process that generated

the data.

 An algorithm that implements classification is known as a classifier. The aim of a

classifier is to separate the data in the feature space into regions belonging to each class.

Broadly speaking, classifiers can be divided into two types: Separating hyperplane-based

classifiers, or feature-template-based classifiers. In case of the former, the classifier is

designed such that the data separated into class-specific regions by a plane. If the

dimensionality of data is more than two, the separating plane is generically called a

hyperplane. To achieve the separation between the data of different classes, it may be

required to transform the data. This transformation of data required in the implementation

of classification is called feature extraction. Artificial neural networks (ANN) [8] and

support vector machines (SVM) [9] are one the widely used classifier of this type.

 In feature-template-based classifiers, features are collected into a vector and then

matched for nearness to the collection of exemplar features represented by training data.

The criterion for nearness is called a distance function. All classifiers employ distance

functions. Many types of distance functions are used, of which the most popular is

Euclidean distance. Other well-known distance functions are quadratic, polynomial, chi-

squared, and Earth Mover’s Distance (EMD) distance functions [3]. The choice of a

3

distance depends on the type of features used by the classifier. Image-template matching-

based classification is a special case of feature-template matching-based classification. In

this case, the feature template is composed of the intensity levels of the image.

The scope of this research is the image-template matching-based classification.

Various techniques based on features and image templates have been developed to

achieve the various tasks of classification on a variety of images such as synthetic

aperture radar, optical, satellite and infra-red images ranging from low to high resolution.

In feature-template matching-based techniques the original image is first

transformed from a pixel-intensity value to another set of features. The classification is

then performed on the transformed feature space. Common transformed features are

edges [10], texture [11], invariant color cues [12], and invariant geometric features [13].

Stan Z. Li [14] used Markov random fields (MRF) for object recognition by employing

Bayesian structural-based matching technique on linear features. Similarly, Zhang et al.

[10] also used the Bayesian framework to match line features to perform object

recognition.

Image-template matching-based classification is a very popular method and has

certain advantages over other non-pixel features-based methods [15]. The former method

uses the entire information in the image to make a class decision. Moreover, it does not

involve further computations required for feature extraction. Within the area of

classification based on image-template matching, the research community puts a great

deal of emphasis on the techniques that decompose an image into a series of sub-images,

also called basis vectors. Such decomposition also serves the purpose of image

compression. Examples are principal component analysis (PCA) [16], [17] and

4

independent component analysis (ICA) [16], [18]. Residual Vector quantization (RVQ)

[19] is also such a technique, which decomposes an image through a multi-stage, multiple

codevectors-per-stage system that seeks to improve the image reconstruction through

successive refinement of information. Other than these multi-stage frameworks, K-means

[8] and nearest neighbor classifiers [8] are also widely used.

Classification using RVQ on image templates is the scope of this research. RVQ

employs multi-stage codebooks which give it a significant advantage over the regular

vector quantization VQ [20] and k-NN classifiers in terms of computation and memory

storage requirements. Residual Vector quantization, as designed by Barnes, C.F [19],

[21], [1], employs direct-sum codebook design to achieve a dense covering of the input

space with low computational and memory costs. The direct-sum codebook design

enables the RVQ to densely populate the input space with Voronoi regions at a relatively

low cost.

K-means clustering is also a similar technique that partitions the input space into

K regions [16]. However, the RVQ holds an advantage over K-means clustering and k-

nearest neighbor classifier in terms of computational and memory costs, especially, in a

high-dimensional input space. The multi-stage RVQ can also be held similar to the

techniques like principle component analysis (PCA) [16] and independent component

analysis (ICA) [16] in the sense that RVQ also decomposes an input image into stage-

wise residual images. However, RVQ is, relatively, more suited to the operations of

segmentation and classification since RVQ partitions the input space into Voronoi

regions. RVQ has been used with a great degree of success for image-driven data mining

5

to detect features and objects in digital images [22], [23], and [24]. In these applications,

the class-conditional probabilities are calculated for each codevector in stage codebooks.

A classification decision is then made on each stage using Naive Bayes on the stage

codevectors. In other words, maximum-aposteriori-probability-based (MAP) rule is

locally applied on stage codebooks. Subsequently, the final-class decision is made by

determining the highest class-conditional probability or equivalently the maximum local

(stage) MAP and assigning the corresponding class membership to the input However in

this method, classification performance with optimal rejection of false alarm is not

guaranteed.

 The aim of this research is to explore the Bayesian framework to formulate a

solution for robust RVQ-based classification, optimal in the maximum-aposteriori-

probabilistic (MAP) sense. Moreover, to exploit the efficient direct-sum multi-stage

structure of RVQ, the Markov approach is also explored to make the RVQ-based

classification cost effective.

This thesis report is organized into seven chapters. After the first chapter on

introduction and a brief background of the research presented in this report, Chapter 2

covers a discussion on vector quantization (VQ) including residual vector quantization

(RVQ). The third and fourth chapters discuss the application of VQ and RVQ,

respectively, in the area of classification. The fifth chapter contains the preliminary

research on the proposed RVQ-based classification. Chapter 6 discusses the main

research that is built upon the preliminary findings reported in Chapter 5. The conclusion

and suggestions on future works on RVQ-based classification are presented in Chapter 7.

6

CHAPTER 2

VECTOR QUANTIZATION

Introduction

 In vector quantization (VQ), samples of an input are grouped into a block or

vector and are encoded altogether. On the contrary, the samples are encoded individually

in scalar quantization (SQ). The idea that the encoding a group of samples of an input can

be advantageous over the encoding of individual samples was first put forward by

Shannon in his rate-distortion theory. Rate is the average number of bits per input sample,

and the measures of distortion are generally mean-squared error and signal-to-noise ratio.

Shannon shows that for a given rate, vector quantization results in a lower distortion than

when scalar quantization is used at the same rate. A fundamental result of Shannon’s

rate-distortion theory is that VQ will always achieve better compression than SQ, even if

the source is memoryless, i.e., the source emits a sequence of identically- and-

independently-distributed random variables [25]. The reason for the superior performance

of VQ over SQ is that greater flexibility exists in partitioning the input space using VQ

than using SQ.

 Vector quantization is a generalization of scalar quantization from the

quantization of a scalar to a vector. SQ is used primarily for analog-to-digital conversion.

VQ is used with sophisticated digital signal processing. VQ is usually, but not

exclusively, used for the purpose of data compression. In such cases, the input signal is

already in some form of digital representation of the original signal and the desired output

is a compressed version of the original signal. However, VQ has also become an

7

important technique in speech and image recognition, and its importance and applications

are growing.

 A vector can be used to describe almost any type of pattern. A pattern can be

formed from a segment of a speech waveform or an image, simply by forming an ordered

group of samples extracted from the speech waveform or image. In such settings, VQ can

be viewed as a form of pattern recognition where an input pattern is quantized and

approximated by one of the patterns of a predetermined set, called the codebook. VQ can

also be viewed as a front end to a variety of digital signal processing tasks, including

classification and linear transformation.

 Vector Quantization

 In vector quantization, a quantizer Q (also referred to as a vector quantizer) of

dimension k, codebook C, and size N maps each source symbol or vector x = {x0, x1, ...

xk−1} in R
k
 to a finite set C containing N distinct codevectors, i.e., Q : R

k
 → C R

k
. The

number of bits required to represent each codevector, called the resolution, code rate, or

simply the rate r, is ⁄ bits per vector. This process describes the encoding stage

of the VQ. The second and final stage, i.e., the decoding stage, maps each codevector

obtained in the encoding stage to a vector that is an approximation of the input source

vector. VQ can, therefore, be considered as a pattern-matching technique since each

vector is encoded by comparing it to the codevectors using a suitable distance measure.

For a given set of input symbols or a training set, the principal goal in the

implementation of the VQ is to design a codebook specifying the decoder, and a partition

of the input space specifying the encoder [26], while trying to minimize the average

distortion over the entire training set. Several distortion measures have been proposed in

8

the literature. In image coding, a commonly used distortion measure is the squared-error

criterion, () () , even though it does not always correlate with the human

perception of quality. For an input source that emits symbols and a compression

system that outputs symbols , the average distortion is given by

 ∑ ∑ () () () .

The distortion measure () in the above equation is a measure of closeness of input

and output symbols, and is generally determined by the particular application [25]. The

probability () is the distribution of the source symbols, and the posterior probability

 (|) determines the compression scheme used.

VQ Codebook Design Method

 The design of a VQ codbook is done by an iteration of two steps:

a) Encoder design: Given a decoder (i.e., codebook), source distribution, and distortion

measure, the optimal encoder is designed such that the encoder satisfies the nearest-

neighbor condition.

b) Decoder design: Given a partition (i.e., encoder), and a squared-error criterion, the

optimal decoder is designed such that the constituent codevectors of the decoder are the

centroids of every cell that are made out of the given partition [26].

Steps a) and b) are repeated until some design objective is met. This formulation is the

basis of the widely used Generalized Lloyd Algorithm (GLA) for VQ implementation

[20]. This algorithm is also called the Linde Buzo Gray (LBG) algorithm [20].

9

Types of VQ Structures

ESVQ

 We now discuss the main types of implementations of VQ that appear in the

literature. The goal of a VQ implementation is that for a given rate the output distortion is

as close as possible to the optimal distortion given by Shannon in his rate-distortion

theory. However, in general, optimal coding of source vectors is not possible unless an

exhaustive search is carried out over all the codevectors, as is done in structurally

unconstrained exhaustive search vector quantizers (ESVQs) [21]. For a rate r and

dimension n of the input vector, there are 2
nr

 codevectors. The computational costs of

ESVQ, CESVQ, and memory requirements MESVQ are ≈ 2
nr

. A solution to this problem is to

impose constraints on the VQ structure.

TSVQ

One possible solution is Tree-Structured VQ (TSVQ) proposed in [27]. A P-level, m-ary

TSVQ has a search complexity CTSVQ ≈ mP, but double the storage requirements as

compared to ESVQ, i.e., MTSVQ ≈ 2MESVQ. So, although the TSVQ addresses the search

complexity problem, it aggravates the storage problem.

Product Code VQ

 A method for reducing both computational and storage complexity, especially for

high-dimensional vectors, is to use product-code VQ. The basic idea in product-code VQ

is to break a bigger problem into several smaller problems. Examples of product-code

VQ are partitioned VQ, mean-residual VQ, gain-shape VQ, and mean-gain-shape VQ

[19].

10

Partitioned VQ

Partitioned VQ is the simplest and most direct way of to reduce the search and storage

complexity in coding a high-dimensional vector. In partitioned VQ, a vector is partitioned

into two or more smaller subvectors. The training set is also partitioned into sub-training

sets, and separate optimal codebooks are designed for each partitioned sub-training set.

An input vector is partitioned, and each partitioned subvector of the input vector is

encoded by the corresponding codebook. A major disadvantage of the partitioned VQ is

that the resulting codebook fails to capture the correlation between the subvectors in the

training set [28].

Mean-Removed VQ

In mean-removed VQ, the mean of an input vector is removed, followed by the

quantization of the mean and the resultant vector, called mean-removed vector,

separately. The technique is effective when source input vectors are similar to each and

vary one another mainly in their mean values. For example, mean-removed VQ is used

for a set of similar images with differing amounts of background illumination. The effect

of the varying lighting conditions can be effectively reduced by removing the mean of

each before quantization. The mean and the mean-removed images are, then, quantized

separately, with one codebook for the mean values and the other codebook for the mean-

removed images, respectively.

Gain-Shape VQ

In applications, such as speech, where the dynamic range of the source input is quite

large, gain-shape VQ is used. For such sources, a very large codebook is needed to

represent the various vectors from the source. This requirement is reduced through gain-

11

shape VQ, in which the source input vectors are normalized by a suitable normalization

factor. The normalized vector and the normalization factor are, then, quantized

separately.

Mean-Removed-Gain-Shape VQ

Often mean-removed and gain-shape techniques are combined together in one technique

that is called mean-removed-gain-shape VQ. In this method, the mean of an input vector

is removed and, then, the mean-removed input is normalized by its gain to obtain a vector

that is effectively normalized to have zero mean and unit gain. Codebooks designed for

such mean-removed-gain-shaped vectors tend to be very robust since their dependency

on an accurate statistical model of the source reduces. Mean-removed-gain-shape VQ has

been extensively used in image coding.

Multi-Stage VQ

Another VQ technique that has proved valuable in a number of speech and image

coding applications is multi-stage VQ (MSVQ) or cascaded VQ [29]. This technique is

also referred to as residual VQ (RVQ) [29]. However, in this thesis, the terminology

residual vector quantization (RVQ) is exclusively reserved for the VQ technique

developed by Barnes [21], [1] (the details of RVQ will be given later). The other multi-

stage VQ methods are referred to, simply, as MSVQ. Juang and Gray [29] first proposed

the MSVQ structure, which is shown in Figure 1.

MSVQ

The basic idea of MSVQ is to divide the encoding task into successive stages.

Each stage has its own codebook. The first stage performs a relatively crude quantization

12

of the input vector using its stage-wise codebook. After the quantization step at the first

stage, an error vector, also called residual, is generated by subtracting the codevector

Figure 1. MSVQ block diagram (Courtesy Barnes, C.F et al. [1]).

used on the first stage from the input vector. Then, a second stage quantizer operates on

the residual of the first stage and quantizes the error vector. Like the first stage, the

second stage also generates the residual between the input vector of the second stage and

the codevector used at the second stage. The residual after the second stage provides a

second approximation to the original input vector thereby leading to a refined or more

accurate representation of the original input. A third stage quantizer may be used to

quantize the second stage residual to provide a further refinement and so on.

MSVQ design method constrains the parent codebook to be constructed from the

direct sum of the smaller constituent stage-wise codebooks. Such codebook is called a

direct-sum codebook. Direct-sum codebooks are memory efficient, in that if there are P

13

stage-wise constituent codebooks and M codevectors per stage, then the parent codebook

contains M
P
 code vectors, but requires the storage of only MP constituent code vectors.

Juang and Gray [29] suggested that MSVQ stages be designed by sequential

application of the generalized Lloyd algorithm (GLA). Although sequential use of the

GLA is nearly optimum for two-stage MSVQ with moderated to high output rates (i.e.,

large stage codebook sizes), this design method is increasingly unsatisfactory as the

number of stages grows beyond two [19]. The main shortcoming of the sequential GLA

design method is that each stage codebook is generated while considering only the error

due to previous stages (the causal error); the error due to subsequent stages (the

anticausal error) is ignored. This prior research demonstrated empirically that sequential

nearest-neighbor encoding and suboptimal sequential design methods for direct sum

codebooks generally produce rather poor results when more than two or three VQ stages

are used. Subsequently, research interest in direct-sum codebooks with many stages

waned, leaving the limitations of the direct-sum-codebook constraint poorly understood

and the possibility of other encoding strategies unexplored. Barnes in [21], [1] proposed a

novel design approach in which the codebook design technique takes into account both

the causal and anticausal errors of the previous and subsequent stages to reduce the

overall error. Barnes in [21], [1] refers to this design approach as a joint-optimal method,

and the MSVQ design with this joint-optimal method is referred to as RVQ in this thesis.

 RVQ is the focus of the research presented in this thesis. Therefore, the details on

RVQ are given special attention and are presented as follows.

Residual Vector Quantization (RVQ)

RVQ is a type of multi-stage vector quantization. RVQ is implemented with a

14

direct-sum codebook structure. Barnes in [21], [1] used RVQ with direct-sum, and

causal-anti-causal codebook to demonstrate both low-level segmentation, and high-level

object recognition.

Like MSVQ, RVQ decomposes an input vector stage-wise. This successive

decomposition starts from the first stage, where an input vector is mapped to one of the

codevectors in the codebook of the first stage. The mapping of the input is done

according to some distance criterion. Barnes in [21], [1] used the mean-squared-error

(MSE) distance measure. The mapped codevector of first stage is then subtracted from its

input to yield a residual vector for the first stage. The residual is fed to the next stage as

the input. The process continues for every subsequent stage, and the respective

residual vector is created by subtracting the mapped codevector of the stage from

the input of that stage. This process stops if either the last stage P is reached, or when the

MSE between the original input and the reconstructed input at a stage meets a pre-

specified threshold. The reconstructed vector of the original input vector is obtained by

summing up the corresponding codevectors of all the used stages. For all the P stages

of RVQ, the reconstructed image ̂ of the original image is given as

 ̂ ∑

 .

The entire operation of RVQ, as mentioned above, can be summarized in the following

three steps:

a) A mapping to direct-sum codevectors: This function is a mapping from R
k
 to

R
k
, where k is the dimensionality of the codevectors and also the input space.

b) A mapping to P-tuple representation of the direct-sum codevectors: P-tuple is

a set, , where is the index of one of

15

the M codevectors at the stage of the RVQ. This mapping is a

transformation from R
k
 to R

P
. P is the total number of stages of the RVQ, and,

generally, P << k.

c) Mapping back from R
P
 to the input space R

k
: The P-tuples are transformed

back to in the input space to give the reconstructed image of the input image.

RVQ partitions the input space R
k
 into M

P
 Voronoi cells. The advantage of this

approach is that in obtaining M
P
 partitions, the partitioning algorithm is run only P times

and generates M partitions at each stage. In traditional VQ, the partitioning algorithm will

run once but will create M
P
 partitions. For example, for the binary case (two code-vectors

per stage, M = 2) and a total of 8 stages (P=8), RVQ only requires 16 searches. However,

ESVQ will require 256 searches. As a result of the multi-stage implementation of RVQ,

the exponential complexity in ESVQ is reduced to the linear complexity in RVQ.

Moreover, even the distortion of ESVQ can be attained. In general, structurally

constrained quantization cannot provide a performance as good as ESVQ. However,

since they are able to more efficiently implement codes, larger vector sizes can be used,

and if carefully designed, can achieve better performance than ESVQ, when compared on

the basis of implementation costs [21]. The comparison between ESVQ, TSVQ, and

RVQ is summarized in Figure 2.

Another question here concerns the optimality of RVQ. RVQ is said to be jointly

optimal, also referred to as joint encoder-decoder optimal, if a local or global minimum

value of the average distortion () ((())) is achieved. Here, E is

the encoder, D is the decoder, () is a distortion metric, and is the expectation

operator. The necessary condition for the joint encoder-decoder optimality is that the

16

Figure 2. Comparison of implementation costs of ESVQ, TSVQ, and RVQ.

the codevectors () of the p
th

 stage must satisfy the following condition:

 ()
 .

This condition is satisfied when the stage codevectors are the centroids of residuals that

are formed from the encoding decisions of both causal and anti-causal stages [21]. On the

other hand, if only causal stages are considered, then satisfying the above condition will

help achieve sequential optimality. For the encoder case, it is not possible to design

optimal stages. Instead an overall global unconstrained encoder is designed, and then

individual encoder codebooks are designed for each stage by using nearest-neighbor rules

that try to match the performance of ESVQ with direct-sum codebook.

 Because of the multiple-stage structure in RVQ, it is possible to implement RVQ

with few codevectors per stage. This aspect of RVQ can be useful if the training data is

limited

17

 Having discussed the optimality conditions, and the general design and

implementation guidelines of RVQ, we now turn our attention to the application of RVQ

for classification. It is in this role that we seek to use RVQ in our research.

RVQ for Classification

 The use of RVQ in classification was reported in Barnes [22], [23], and in the

context of image-driven data mining. In this work, a σ-tree is used as a data structure for

RVQ stage-wise codevectors. The term sigma-tree is used to differentiate the tree

structure of traditional TSVQs from the “summed” tree structure of RVQ. To better

understand the σ-tree classifier, we relate it with other well-known areas of information

theory, pattern recognition, and machine learning:

a) The σ-tree classifier can be compared to dimensionality reduction methods

such as Principal Components Analysis (PCA). PCA seeks to reorient the basis

vectors in R
n
 and achieves compression by ignoring projected data components

with least variances. A σ-tree RVQ achieves compression by encoding a source

symbol with a lower dimensional tuple.

b) The σ-tree classifier partitions the decision space R
n
 [21] like other well known

classifiers such as neural networks, support vector machines and K-means

clustering algorithm. Further, note that neural networks partition the decision

space with hyperplanes or hypersurfaces, depending on whether or not hidden

layers are used. Support vector machines also partition the decision space, but

with maximum margin hyperplanes in a higher dimensional space. Like the K-

means clustering scheme, the σ-tree classifier tessellates the decision space R
n

with K Voronoi cells.

18

c) As already discussed, the Linde Buzo Gray (LBG) algorithm is widely used to

design the encoder and decoder of a VQ, including RVQ and the σ-tree classifier.

This algorithm is similar to the well-known K-means algorithm [21]. However,

use of LBG design methods limit RVQs to typically only two stages. The greedy

nature of sequential LBG design techniques prevent larger numbers of stages to

be designed that give acceptable performance gains with additional stages.

 Having introduced RVQ, we now turn to a more comprehensive discussion on the

applications of VQ for classification and pattern recognition.

19

CHAPTER 3

VECTOR QUANTIZATION-BASED CLASSIFICATION

Introduction

 As discussed in Chapter 2, vector quantization (VQ) is a signal compression

technique. However, use of VQ for the representation of input vectors in terms of the

codevectors provides a natural basis for segmentation and classification. VQ partitions

the input space into Voronoi regions. The inputs are mapped to these Voronoi regions

with calculable prior and conditional class-conditional probabilities. Therefore, a test

input can be classified by applying the maximum-a posteriori-probability rule. As a

result, VQ has become a relevant technique in speech and image recognition, and its

importance and applications are growing [22], [29].

 Vector quantization has been implemented in a variety of ways in the applications

of classification and pattern recognition [30]. In one implementation, namely classified

vector quantization (CVQ) [31], a VQ-based classifier is used as pre-processing step for

improved compression and signal representation. In learning vector quantization (LVQ),

the codevectors of the VQ are such placed in the input space that the classification

performance is maximized [30]. In other words, the codebook is designed to approximate

the Bayes decision boundaries in the input space, and the compression performance is not

given the top priority. Vector quantization is also implemented by designing stage

codebooks, called multistage VQ (MSVQ). This implementation significantly reduces the

computation cost of the VQ. MSVQ is a general design methodology that can be used to

implement both CVQ and LVQ [30]. The latter is also called modified tree search VQ

20

(MTSVQ). However, MTSVQ are designed to maximize both the compression and

classification performances of the VQ.

 After briefly describing the various types of VQ-based classifiers, a more detailed

explanation of these implementations is discussed one-by-one in the following

paragraphs.

Classified Vector Quantization

 Classified vector quantization (CVQ) [31] is a method for improved data

compression performance, not for classification. The focus of the improved encoding for

data compression is to reduce degradation of certain features in the signals. For example,

in [31] CVQ is used encode the edges more efficiently than the other features in the

images. In CVQ, the VQ codebook is composed of sub-codebooks. A sub-codebook or

equivalently a class-specific VQ encoder is designed by training the VQ on the images

from that particular class. In CVQ, an input is classified before being fed to the sub-

codebook of that class for class-specific encoding. The encoder has two components: (1)

classifier, and (2) encoder class-specific codebooks. In [31], CVQ is designed with the

primary function of edge enhancement in the input images. Firstly, the classifier

categorizes an input image into one of the pre-specified classes. The pre-classified image

is, then, encoded by the VQ that is specifically designed for that class. The encoded

image is decoded by a decoder. The decoder is simply a lookup table that decodes the

encoded input image to produce the corresponding reconstructed images. Figure 3

illustrates the generic functional blocks of a CVQ encoder. There are M classes, and if the

input belongs to class i, the i
th

 sub-codebook Ci of size is employed to encode the

input, using a distortion measure (). A distortion measure is a measure of how close

21

an arbitrary input is to the codevectors in the codebook. In general, the distortion

measures for different classes may be different. The total number of codevectors is

 ∑

 , with encoding indices ranging from 1 to .

Figure 3. Classified vector quantization.

The encoding index of the nearest codevector is transmitted to the decoder. The decoder

simply looks up the corresponding codevector from its codebook of size and generates

the reconstructed image of the input. An important factor in the design of the individual

codebooks is the optimal size of the codebooks for a given average distortion for the

respective class. It is shown that the optimal average distortion
 for a given class-

specific codebook and the optimal codebook size
 for that class, is given as

where is the probability of occurrence of the images from the i
th

 class. So, by trial and

error
 and the corresponding

 can be found that satisfy the above condition. The size

of the codebook of a particular class implicitly assigns a corresponding weight to that

Class-1 VQ

Class-2 VQ

Class-N VQ

.

.

.

C
lassificatio

n

n

En
gin

e

.

.

.

Q
u

an
tized

 O
u

tp
u

t

Input
Vector

22

class. The higher the size of the codebook, the higher importance is given to the images

from that class.

 CVQ is based on a composite source model for images. This composite source

model, especially for edge perception [31], has a firm basis in the psychophysics of

human-vision system. In this model the image source is viewed as a bank of class-

specific image sub-sources. It is assumed that each input image comes from one of these

class-specific image sub-sources. Therefore, in the design of VQ codebook with this

model, a separate VQ codebook is designed for each sub-source. In other words, separate

VQ codebooks are designed for each class of the images using the LBG algorithm.

 It should be noted that in [31] CVQ is a method for improved encoding

performance, not for classification. The focus of the improved encoding is to reduce

degradation of edges in images. The classification is performed once per input vector,

and its complexity is negligible in comparison with that of the encoding. The encoding

complexity of the CVQ is greatly reduced as compared with that of a regular VQ with the

same average distortion measure. Similar applications of edge enhancement using CVQ

are also reported in [32] and [33]. However, in [32], the sub-codebooks are designed with

the Fuzzy C-Means method [34], and the CVQ sub-codebooks in [33] are designed the

same way as in [32], but with a quad-tree pre-classifier. Moreover, in [33], the indices

generated by CVQ are used for the application of image retrieval. In the image retrieval

application, the images similar to a query image are retrieved based on a similarity

measure.

 Other than the application of edge enhancement, CVQ has also been integrated

into a system designed for classification. In [35], CVQ sub-codebooks are designed on

23

pre-classified SIFT features [3] of edges and smooth regions in the images in the training

set to generate bag-of-words (BOW) histogram features [36]. After the CVQ step, SVM

[9] classifier is trained on the BOW histogram features of the two classes in the training

set. In [37], CVQ sub-codebooks are designed for four classes: car, van, light truck, and

bus. Multilayer perceptron (MLP) [38] is used as the pre-classifier before CVQ. For a

given test image, the class-membership is assigned to that class for which the

corresponding class-specific CVQ sub-codebook gives the least reconstruction error.

Learning Vector Quantization

Learning vector quantization LVQ was invented by Teuvo Kohonen [30]. Is a

supervised version of vector quantization in which the VQ codebook is designed with the

training data having known class associations, also called labeled data. The learning

technique for LVQ uses the class information of the labeled training data to position the

codevectors such that the quality of the classifier decision boundary improves.

The training method of learning vector quantization is often called competition

learning, because it works as follows: For each training data the codevector that is closest

to it is determined. The direction of the change in the location of the codevector, also

called adaptation, depends on whether the class of the training data and the class

assigned to the codevector coincide or not. If they coincide, the codevector is moved

closer to the training data; otherwise it is moved farther away. This movement of the

codevector is controlled by a parameter called the learning rate, which is usually made to

decrease monotonically with time. Since the learning rate is usually decreasing, the initial

changes in the positions of the codevectors are larger than the changes made in later

24

epochs of the training process. Learning may be terminated when the positions of the

codevectors hardly change anymore.

The earlier implementation of LVQ has been carried out with multiple algorithms,

namely LVQ are LVQ1, LVQ2, and LVQ3 [30]. These three algorithms yield almost

similar accuracies in most statistical pattern recognition tasks. LVQ1 and LVQ3 offer a

more robust solution to the optimization of class boundaries. The learning rate can be

optimized for quick convergence. However, LVQ3 differs from LVQ1 in the number

codevectors involved in the update of the class boundaries. In LVQ1, only the nearest

codevector is moved, but in LVQ2, two nearest codevectors, one belonging to the same

class and the other belonging to a wrong class, are simultaneously updated. This process

is also called differential shifting. LVQ2 also employs differential shifting. However,

unlike LVQ3, the update of the class boundaries is not guaranteed to converge, if the

LVQ2 algorithm is allowed to run over a long period of time.

Advanced LVQ

 The original methods for LVQ are based on the Euclidean distance in the

optimization of class boundaries. The Euclidean distance assumes certain geometric

properties in the training data, which, at times, may not be realistic. For this reason,

extensions of the methods to more general distance functions have been proposed that are

called generalized LVQ (GLVQ) [39], [40], and [41]. In these GLVQ algorithms distance

function parameters are learned based on the given classification task such that a data-

driven distance function is found. Consequently, the class boundaries are more accurately

drawn that results in a significant improvement in classification accuracy. Another

25

critical advantage of GLVQ over the regular LVQ is that the increased accuracy in the

formation of the class boundaries is achieved with lesser number of codevectors.

 Learning vector quantization has been used for the classification of textual

documents [42], [43], where LVQ network is used for classifying text documents. In

general, LVQ require less training examples and are much faster than other classification

methods. The experimental results show that the LVQ approach outperforms k-NN, and

is comparable to SVM

Modified Tree-Searched Vector Quantization for Classification

Because of the implicit connection between compression and classification, VQ

can be considered as a framework which can be optimized to both compress and classify.

Two applications of this concept are shown.

 In [44], [45] compression and classification are combined in one single process of

codebook design in vector quantization (VQ). The method is generally referred to as

modified tree-searched vector quantization (MTSVQ). As the name of the method

suggests, vector quantization is implemented with tree-searched vector quantization

(TSVQ). TSVQ is a multi-stage, sigma-tree implementation of VQ. The reason to use

TSVQ over the regular VQ is greatly reduced computational complexity in TSVQ.

Furthermore, unbalanced TSVQ, which is a variable-rate coding method, can also be

employed. Unbalanced TSVQ generally produces lower average distortion than balanced

TSVQ. Trained data sets are used to design codebooks that achieve both small average

distortion measure and good classification performance.

Purely for compression, the codebook of TSVQ is designed by splitting the node

which reduces the average distortion until the average distortion reaches a pre-specified

26

value. However, in the design of MSTVQ, the optimization of TSVQ codebook is

modified to achieve good classification along with good compression. As mentioned

earlier, the efficacy of simultaneous compression and classification has been

demonstrated through two applications: (1) Classification of the regions-of-interest in the

compressed images, and (2) Enhancement of certain features in an image that are

important in some sense.

In [44], binary classification was carried between man-made or natural structures.

The training set consisted of five 512 x 512 grayscale images of aerial photography of the

San Francisco Bay area. These images were provided by ESL, Inc. Each image was

divided into 16 x 16 sub-blocks. The 16 x 16 sub-blocks were hand-labeled as either

man-made or natural. However, to further reduce TSVQ complexity, the codebook

construction based on the classified training set is done on a coarser resolution scale of 4

x 4 pixel blocks of the 16 x 16 sub-blocks. This coarse resolution could have affected the

classification of this classifier.

For the design of the TSVQ codebook, primarily two separate splitting criteria are

employed in growing the tree: 1) split the node that provides the largest ratio of decrease

in distortion to increase in rate. The distortion measure is the mean squared error. 2) Split

the node that has the greatest percentage of misclassified training vectors. This

corresponds to measuring the distortion by the hamming distance between the node class

and the hand-labeled class of the input training vector.

In general, the first splitting criterion provided the lowest distortion in the

encoded images at the cost of comparatively poor classification performance. The second

splitting criterion achieved better classification but poorer reconstruction. The choice

27

between the two splitting criteria involves a trade-off between rate and memory

requirements. The classification of TSVQ is compared against Classification and

Regression Trees (CART) [46]. From the results, it is concluded that the two classifiers

are generally comparable. CART performed better on original images. On the other hand,

CART performed worse on the compressed images.

In the application of image enhancement, regions of certain classes are enhanced.

This is done by introducing weighted distortion measure. The basic idea is to achieve

better encoding of the regions belonging to certain classes-of-interest assigning them

higher weights. MSE is used as a distortion measure. Higher weights are assigned to the

classes that are deemed more imported. Similarly, the classes that are of lesser interest are

assigned lower weights in the distortion measure. Assigning higher weights to certain

classes contributes to higher distortion measure for those classes, and, as a result, the tree

grows deeper for those classes, thus, achieving lower reconstruction errors for those

classes.

MSTSVQ have been tested on MRI scans, and textured data with vector

quantization done on non-overlapping 2x2 and 4x4 sub-blocks, respectively, in the

images [45]. For MRI scans, bright training vectors are weighted more heavily than dark

one. On comparison with non-weighted TSVQ, the weighted TSVQ encoded the bright

regions in the images better.

For the textured data, the training and test images were taken from USC database

[45]. Each image was divided into 4 x 4 non-overlapping sub-blocks. Highly textured

data were assigned lower weights, and highly homogenous vectors were given higher

weights. The test images showed clouds, a lake, and trees. A comparison of compressed

28

images encoded from the weighted and non-weighted tree showed that the cloud regions

had less distortion, whereas, the tree areas had high texture and, therefore, had more

distortion.

 Another implementation of VQ that also uses multi-stage tree structure of TSVQ

is called residual vector quantization (RVQ). RVQ has been used in the applications of

classification and pattern recognition [22] [23]. The focus of this thesis is also RVQ-

based classification. A discussion on RVQ-based classifiers is presented in the next

chapter.

29

CHAPTER 4

RESIDUAL VECTOR QUANTIZATION

Introduction

 Residual vector quantization (RVQ) is a type of multi-stage vector quantization

(MSVQ). RVQ is implemented with a direct-sum codebook structure [19]. Barnes in

[22], [23], and [24] used RVQ with direct-sum, and causal-anti-causal codebook to

demonstrate both low-level segmentation, and high-level object recognition. As

mentioned earlier, RVQ is designed with stage codebooks with the direct-sum data

structure that implicitly implements the RVQ book in a directly summed tree structure,

also often called σ-tree. The direct-sum codebook of RVQ with its implicit tree structure

is shown in Figure 4.

Figure 4. Direct-sum codebook of RVQ with the implicit σ-tree structure. M is codevector-per-

stage and P is the number of RVQ stages.

Like MSVQ, RVQ decomposes an input vector stage-wise. This successive

decomposition starts from the first stage, where an input vector is mapped to the nearest

codevector in the codebook of the first stage. The mapping of the input is done according

to some distance criterion. Barnes in [21] and [1] used the mean-squared-error (MSE)

30

distance measure. The mapped codevector of first stage is then subtracted from its input

to yield a residual vector for the first stage. The residual is fed to the next stage as the

input. The process continues for every subsequent stage, and the respective residual

vector is created by subtracting the mapped codevector of the stage from the input

of that stage. This process stops if either the last stage P is reached, or when the MSE

between the original input and the reconstructed input at a stage meets a pre-specified

threshold [19]. The reconstructed vector of the original input vector is obtained by

summing up the corresponding codevectors of all the used stages. For all the P stages

of RVQ, the reconstructed image ̂ of the original image is given as

 ̂ ∑

 .

RVQ partitions the input space R
k
 into M

P
 Voronoi cells. The advantage of this

approach is that in obtaining M
P
 partitions, the partitioning algorithm is run only P times

and generates M partitions at each stage. In traditional VQ, the partitioning algorithm

would run once but created M
P
 partitions. For the binary case (two code-vectors per

stage, M = 2) and a total of 8 stages (P=8), RVQ only requires 16 searches. However,

ESVQ will require 256 searches. As a result, the exponential complexity is reduced to the

linear complexity. In general, structurally constrained quantization cannot provide a

performance as good as ESVQ. However, since they are able to more efficiently

implement codes, larger vector sizes can be used, and if carefully designed, can achieve

better performance than ESVQ with higher RVQ dimensionality and fixed

implementation costs [15].

One interesting consequence of RVQ’s process of successive stage refinement of

data is the progressive evolution of partitioning of the input space into Voronoi regions.

31

RVQ aims at refining the data with each added stage. This process is also equivalent to

refining the partitioning of the input by adding Voronoi regions with each added stage.

As a result, the class boundaries between the data of different categories are also refined,

making the class-specific regions more and more compact, thus provide a potential for

improved accuracy in the classification of data.

The effect of the stage-wise refinement of data by RVQ on the Voronoi regions in

the input space is explained with the example illustrated in Figure 5a. In this example,

three clusters of linearly separable 2D data points are considered, shown in Figure 5a in

red, blue, and black. RVQ codebook is designed on the data points with M = 3

codevectors-per-stage and P = 8 stages. The Voronoi regions, with the direct-sum

codevectors as the centroids of these regions, are shown for M = 3 and the values of P

starting 1 to 8. It is to be noted that the number of direct-sum codevectors at a given n
th

stage is M
n
, equivalently M

n
 Voronoi regions. It can be seen that for Figure 5b, M = 3 and

stage n =1, the number of the corresponding direct-sum codevectors, shown as blue dots,

and the Voronoi regions is M
n
 = 3

1
 = 3. Similarly, for stage n = 2, there are M

n
 = 3

2
 = 9

direct-sum codevectors and Voronoi regions. Likewise, for the remaining values of

 , the number of the direct-sum codevectors and the Voronoi regions

is M
n
 in Figure 5c. It can also be observed that with each added stage, the representation

of the data improves. Furthermore, the class boundaries between the three classes are also

progressively refined after each successive stage.

It has been shown that the successive refinement of data through the stage-wise

implementation of RVQ codebook can also aid in progressive improvement in

classification of the data. Therefore, the intrinsic structure of RVQ codebook holds

32

Figure 5. Successive refinement of data and class boundaries using RVQ with M = 3 codevectors-

per-stage and P = 8 stages.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

(a) Linearly separable 3-class dataset

(b) M = 3, n = 1 (f) M = 3, n = 5

(g) M = 3, n = 6 (c) M = 3, n = 2

(d) M = 3, n = 3 (h) M = 3, n = 7

(e) M = 3, n = 4 (i) M = 3, n = 8

33

immense potential in its use as a classifier.

Residual Vector Quantization-Based Classification

 The use of RVQ for segmentation and classification was reported in Barnes [22],

[23], and [24]. As mentioned earlier, RVQ is designed with stage codebooks with the

direct-sum data structure that implicitly implement the RVQ book in a tree structure, also

often called a σ-tree. To better understand the σ-tree classifier, we relate it with other

well-known areas of information theory, pattern recognition, and machine learning:

a) The σ-tree classifier can be compared to dimensionality reduction methods

such as Principal Components Analysis (PCA). PCA seeks to reorient the basis

vectors in R
k
 and achieves compression by ignoring projected data components

with least variances. A σ-tree RVQ achieves compression by encoding a source

symbol with a lower dimensional tuple.

b) The σ-tree classifier partitions the decision space R
k
 like other well known

classifiers such as neural networks, support vector machines and K-means

clustering algorithm. Further, note that neural networks partition the decision

space with hyperplanes or hypersurfaces, depending on whether or not hidden

layers are used. Support vector machines also partition the decision space, but

with maximum margin hyperplanes in a higher dimensional space. Like the K-

means clustering scheme, the σ-tree classifier tessellates the decision space R
k

with K Voronoi cells.

c) As already discussed, the Linde Buzo Gray (LBG) algorithm is widely used to

design the encoder and decoder of a VQ, including RVQ and the σ-tree classifier.

This algorithm is similar to the well-known K-means algorithm [20].

d) The stage indices, P-tuples, returned by the σ-tree classifier can be used to

34

probabilistically determine class membership. The size of code-book of the RVQ

can be manipulated to implement effective multi-class classification. The multiple

stages of the σ-tree classifier suggest a coarse to fine classification route, i.e.,

successive approximations.

 So far the use of RVQ as a classifier has relied on heuristic methods [22], [23],

and [24]. The class decisions are made stage-wise by applying maximum-aposteriori-

probability (MAP) rule on the classification results at each stage, thus yielding stage-wise

MAP class decisions. The final class decision is made by assigning the input to the class

with the maximum MAP. This method, though heuristic, exhibits the stage-wise

contributions of RVQ to classification.

 However in this method, classification performance with optimal rejection of

false alarm is not guaranteed. If the stage-wise decision making of RVQ is extended to

include more than one stage considered together, RVQ-based classification can

expectedly be made more robust with increased performance. The aim of this research is

to explore the Bayesian framework to formulate a solution for robust RVQ-based

classification, optimal in the maximum-a posteriori-probabilistic (MAP) sense over

multiple RVQ stages. Moreover, to exploit the efficient direct-sum multi-stage structure

of RVQ, the Markov approach is also explored to make the RVQ-based classification

cost effective.

 The next step in this research is to design a method that could integrate the stage-

wise contributions of RVQ into a robust solution to classification. This is the topic of this

research. Bayesian framework provides the capacity to deliver a structure that can model

the combined stage-wise class decisions of RVQ to give an elegant RVQ-based classifier,

optimal in the MAP sense in a way that spans all RVQ stages.

35

CHAPTER 5

MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSIFICATION: PRELIMINARY RESEARCH

Introduction

The applications of Residual vector quantization (RVQ) in classification and

segmentation were first reported in Barnes [22], [23], and [24] on image databases. These

applications of RVQ have been explained in Chapter 4. The contribution of this research

is the formulation of a framework for RVQ to combine the individual stage classification

results together into a joint classification decision rule over all the stages of RVQ using

multiple stage MAP decision rules. In this thesis, this classification framework is referred

to as Markov residual vector quantization (MRVQ).

MRVQ is tested on a variety of standard image datasets such as Caltech101 [47],

Graz [48], and handwriting [49], [50] datasets. After conducting a number of experiments

on these datasets, it is empirically noted that the classification of MRVQ is upper

bounded by 1-NN classifier, with MRVQ typically approaching within XX percent of 1-

NN performance with MRVQ orders of XX. However, RVQ holds a clear advantage over

1-NN in the implementation cost, typically returning computational costs savings of XX

orders of magnitude and XX orders of magnitude in memory costs

MRVQ is implemented with two different schemes: Feature-count rule, and

Bayesian rule. The latter is also termed as Markov-Bayesian RVQ (MBRVQ). These two

schemes for implementing RVQ-based classification and the preliminary research that led

to the development of these two methods are explained next.

36

Markov-Bayesian RVQ Classification

 As explained in Chapter 4, the encoding process of RVQ is equivalent to

partitioning the input space into Voronoi regions. The mapping of the training dataset can

determine the class-conditional probabilities for each class of data in the dataset. In other

words, for each class, a class-conditional probability can be assigned to each Voronoi

region, and the Voronoi regions can be labeled with a class decision by applying

maximum apriori probability (MAP) rule. As a result, any test input, which maps to any

of the labeled Voronoi regions, or equivalently to a direct-sum RVQ codevector, can be

classified into one of the classes by applying the MAP rule.

 However, to apply the MAP rule to RVQ, it entails that all the Voronoi regions be

labeled. For RVQ with M stages and P codevectors-per-stage, M
P
 Voronoi regions have

to be labeled. If M=4 and P=8, 4
8
 = 65536, Voronoi regions tessellating over the input

space have be labeled for the MAP-based classification rule, as shown in Figure 6, below.

Figure 6. M
P
 = 4

8
 = 65536 Voronoi regions generated for M=4, P=8 RVQ.

37

The number of Voronoi regions to be labeled exponentially increase for increasing values

of M and P. Consequently, the memory required to store all the labels can become very

large.

 One way to reduce the cost associated with RVQ-based classification is to impose

Markovianity on the stages of RVQ. By doing so, the total P number of stages of RVQ

can be divided into groups of N independent stages, where N can be made to vary from 1

to P. N is called the Markov order of the RVQ classifier. With this formulation, a local

class decision can be achieved for each group of N independent stages. The local class

decisions can then be combined together to give the final class decision. The

classification cost, because of the Markov structure on the RVQ, is expected to be as

follows:

Classification Cost = Order(M
N
), where N < P, & M

N
 << M

P
.

 The Markov structure imposed on the RVQ is illustrated in Figure 7, below.

Final Class-decision = F(Partial Class-decision _1, Partial Class-decision _2, …, Partial Class-decision _k)

Figure 7. Markov structure imposed on the stages of RVQ for classification.

38

The mathematical formulation of RVQ-based classification is done using the Bayesian

framework along with Markovian structure imposed on the stages of RVQ. The

mathematical treatment to the classification using RVQ is given as follows.

 According to the Bayes’ theorem, for the random variables A and B, the posterior

probability () is

 ()
 () ()

 ()

Under the Bayesian framework, RVQ-based classification can be modeled as the

posterior probability

 ()
 () ()

 ()

 is the class decision with , and . The total

number of classes is . is the stage codebook at the stage, with ,

where is the total number of RVQ stages.

 , where

is the codevector in the stage codebook at the stage, and ,

where is the number of codevectors in a stage codebook of RVQ. It is assumed is

equiprobable, and

 () ∑ ()

where . Therefore, the posterior probability in Equation (1)

can be reduced as follows:

 () ().

As a result, the class decision is given as

 ().

(1)

(2)

39

 As mentioned before, Markov structure if imposed on the RVQ classifier,

modeled with the Bayesian framework of Equation (2), can reduce the implementation

cost of the RVQ classifier. When Markov condition is imposed on the stages of RVQ, it

is based on an assumption that the classification at given RVQ stage is dependent on the

classification results of a certain number of previous RVQ stages. The Markov order

determines the number of dependent RVQ stages. If Markov order is zero, the

classification results of every stage are independent of each other. Similarly, for Markov

order equal to one, the classification at a given stage is dependent only on the

classification at the previous stage. A useful consequence of the Markov condition is that

a given dependent on the corresponding previous stages becomes independent of the

higher stages of RVQ. Therefore, to get the final class decision, the independent

classification results are simply multiplied together to get the solution.

To explain the formulation of Markov structure on Equation (2), the mathematical

development is shown on (), and it will be extended to the

likelihood function () in Equation (2). The Markov model is

shown as follows:

According to the Markov chain rule,

 () () () () ()

 ()

0
th
 Markov order,

 () () () () () () () (), and

 () () () () () ()

 () ().

The 0
th

 Markov order in Equation (3) means that it is assumed that the class decisions

made at each stage are independent of each other.

(3)

40

1
st
 Markov Order,

 () () () () () ()

 (), and

 () () () () ()

 () ().

By merging the first two shaded probabilities into the respective joint probability, the

above equation can equivalently be written as

 () () () () ()

 ().

The 1
st
 order Markov in equation (4) implies that each stage codevector is assumed to be

dependent only on the previous stage.

 2
nd

 Markov Order

 () () () () ()

 ()

By merging the first three shaded probabilities into the respective joint probability, the above

equation becomes

 () () () ()

q
th
 Markov order

The class-conditional probability () can be generalized for an

arbitrary Markov order as follows:

 () () ∏ (|)

and the class-conditional probability () for the q
th
 Markov order is

 () (|) ∏ (|)

 ()

41

For a given Markov order q, there are q+1 consecutive RVQ stages involved in the

calculation of independent class condition probabilities. These q+1 stages are shaded in

Equation (4), above. The direct-sum codevectors formed out of these q+1 stage

codevectors are termed as Markov direct-sum sub-codevectors, and the corresponding

indices are called Markov sub-tupples. The Markov order cannot be greater than P-1. The

Bayesian classification rule, in Equation (2), together with the Markov condition, in

Equation (4), is termed as Markov-Bayesian RVQ classifier.

A functional block diagram of RVQ-based classifier using the MAP rule, also

termed as Bayesian RVQ classifier, is shown in Figure 8, below.

Figure 8. Bayesian RVQ classifier.

42

Proof of Concept: Linearly Separable Synthetic Dataset

 The algorithm for the Markov-Bayesian RVQ classification is tested and

illustrated on a test dataset consisting of three classes; namely Class 1, Class 2, and Class

3, as shown in Figure 9. RVQ has M = 2 codevectors-per-stage and P=8 stages. Markov

order is zero. In the zeroth-order Markov RVQ, the stage class decisions of RVQ are

assumed to be independent of each other. The test and training datasets for each class are

drawn from the same Gaussian distribution. The number of training data points for each

class is 1000, and the number of test data points per class is 10000.

 (a) (b)

Class 1 Class 2 Class 3

Stage

index
CV

1
 CV

2
 CV

1
 CV

2
 CV

1
 CV

2

p=1 1 0 0.98 0.02 0.002 0.998 1

p=2 0 1 1 0 0.006 0.994 2

p=3 0.69 0.31 0.138 0.862 0.538 0.462 1

p=4 0.544 0.456 0.508 0.492 0.374 0.626 1

p=5 0.46 0.54 0.494 0.506 0.496 0.504 2

p=6 0.524 0.476 0.556 0.444 0.542 0.458 2

p=7 0.488 0.512 0.462 0.538 0.494 0.506 1

p=8 0.532 0.468 0.532 0.468 0.51 0.49 2

(

(c)

Figure 9. Synthetic dataset of three classes, (a) Training set. (b) Test set. (c) Class-conditional

Transition Probability Matrix of the three classes.

Test P-tupple

 P(CV | Class 1)

=

0.022

P(CV | Class 2)

=

0.000

P(CV | Class 3)

=

2.2 e
-5

43

 It can be seen in Figure 10a that the training data points of the three classes are

not overlapping. However, the test dataset of these classes is overlapping, as shown in

Figure 10b. For each class, the class-conditional probabilities of the data points mapping

to each codevector in the RVQ codebook are calculated by determining the frequency of

mapping of the class-specific training data points to each codevector at every stage. It is

to be noted that the RVQ stages are assumed to be independent; hence the Markov order

is zero. The class-conditional probabilities are tabulated into a table called Class-

conditional Transition Probability Matrix, as shown in Figure 10c, and in general the

table is referred as transition probability matrix.

 For the test P-tuple of an encoded test data point, shown on the right side of

Figure 10c, the corresponding class-conditional probabilities in the transition probability

matrix are highlighted for each class. As per the condition of the zeroth Markov order,

the posterior probability for each class () is calculated by

multiplying together the highlighted individual class-conditional probabilities. As per

Equation (2), the class decision is made by applying MAP on these class-conditional

posterior probabilities. In this example, the MAP rule yields Class 1 as the class

membership of the test input. The overall accuracy for this synthetic test dataset is 99%.

Proof of Concept: Linearly Non-Separable Synthetic Dataset

 In a series of experiments, Bayesian RVQ classifier is also tested on linearly non-

separable synthetic data to see how it performs on a more complex dataset. Linearly non-

separable Swiss roll dataset, as shown in Figure 10, 12, and 14, is formulated to test the

classifier. In this dataset the two-dimensional data points belonging to different classes

are arranged in concentric spirals. The experiments on these datasets are divided into two

44

Figure 10. Synthetic Swiss roll training dataset of two classes to test and illustrate Bayesian RVQ

classifier.

separate cases. In the first case, binary classification is performed on the dataset shown in

Figure 10. The data of the two classes are marked Class 1 and Class 2 on the figure. It

can be seen that the data from the two classes are spaced apart with no overlapping

between each other. On the other hand in the second case, the Markov-Bayesian RVQ

classifier is trained and tested on the Swiss roll dataset shown in Figure 12 and 14. The

main difference between the datasets of the two cases is that in the second experiment the

data from the multiple classes is not spaced apart as in the first case. Moreover, apart

from the binary dataset (Figure 12) in the second case, the classifier is also tested on the

Swiss roll dataset drawn from four classes, as shown in Figure 14. The value of these data

points ranges between 0 and 255, and the number of training and test data points is 1600

data points for each class. These points are drawn from Gaussian distribution with means

on the spirals of the Swiss roll. The two cases are discussed one-by-one as follows.

 In the first case, RVQ codebook with M = 4 and P = 8 is designed and trained on

the training data shown in Figure 10. The training is complete when all the class-

45

conditional probabilities in the Class-conditional Transition Probability Matrix are

calculated for the zeroth Markov order, as shown in Table 1. For the given training set,

the distribution of the direct-sum RVQ codebook is shown in Figure 11a. The direct-sum

codevectors the training points mapped to are shown in red and the rest of the direct-sum

codevectors are marked in blue. The test dataset drawn for the two classes is shown in

Figure 11b.

Table 1. (a) Class-conditional Transition Matrix with Markov order = 0. (b) Error matrix.

Stage Class1 Class2

1 [0.25 ,0.27,0.20,0.28] [0.28,0.28,0.19,0.26]

2 [0.12 ,0.31,0.28,0.29] [0.16,0.31,0.26,0.27]

3 [0.28 ,0.06,0.38,0.29] [0.23,0.29,0.23,0.25]

4 [0.18 ,0.28,0.24,0.30] [0.22,0.21,0.31,0.26]

5 [0.31 ,0.18,0.24,0.26] [0.24,0.25,0.27,0.23]

6 [0.001,0.35,0.29,0.4] [0.02,0.34,0.31,0.34]

7 [0.39 ,0.23,0.00,0.38] [0.36,0.29,0.00,0.36]

8 [0.002,0.34,0.26,0.4] [0.04,0.29,0.36,0.31]

(a)

 Class 1 Class 2

Class 1 1250 770 2020

Class 2 350 830 1180

 1600 1600 3200

 (b)

(a) (b)

Figure 11. (a) Direct-sum codevector mapped by the training set shown in red, the remaining

direct-sum codebook shown in blue. (b) Test data set. Class1 shown in blue, and Class 2 shown in

red.

46

For the zeroth Markov order, the classification performance of the Bayesian RVQ

classifier is shown in the error matrix [51] in Table 1b. Error matrix is also often called

confusion matrix or a contingency table. To assess the accuracy of an image

classification, it is common practice to create a confusion matrix. In a confusion matrix,

the classification results are compared to additional ground truth information. The

strength of a confusion matrix is that it identifies the nature of the classification errors, as

well as their quantities. Performance of such systems is commonly evaluated using the

data in the matrix. Commonly, the class names appear in the first column and the first in

same order. The rest of the numerical entries in the matrix, except the entries in the last

row and the last column are the classification results for each class. The diagonal

classification results are the correctly classified test images, also called true-positive test

images for the corresponding class. The true-positive entries in the matrix add up to the

total number of test images. The performance measures that are calculated from the error

matrix are user accuracy, producer’s accuracy, and overall accuracy. User accuracy of the

classification of a certain category is the ratio between the true-positive classification and

the total number test images assigned to that class. Producer’s accuracy for a certain class

is the ratio between the true-positive for that class and the total number of actual test

images from that class. Overall accuracy of classification is the total number or true-

positive classification divided by the total number of test images. These three

performance measures are commonly shown in percentages.

The user’s, producer’s, and overall accuracies for the test data shown in Figure 10

are calculated as follows:

Class-1 User’s Accuracy = 1250/2020 = 61.88%

47

Class-2 User’s Accuracy = 830/1180 = 70.34%

Class-1 Producer’s Accuracy = 1250/1600 = 78.12%

Class-2 Producer’s Accuracy = 830/1600 = 51.88%

Over all Accuracy = (1250 + 830)/3200 = 65.00%

 The same training and test datasets are also used to evaluate the classification

performance of RVQ for Markov order equal to one. The corresponding Class-

conditional Transition Probability Matrix and error matrix are shown in Table 2. The

classification performance measures calculated from the error matrix are as follows:

Class-1 User’s Accuracy = 1243 /1833 = 67.81%

Class-2 User’s Accuracy = 1010 /1367 = 73.88%

Class-1 Producer’s Accuracy = 1243/1600 = 77.69%

Class-2 Producer’s Accuracy = 1010/1600 = 63.12%

Over all Accuracy = (1243+1010)/3200 = 70.41%

From Table 2, it can be seen that at Stage-1 there is only one class-conditional

probability associated to each codevector at this stage. Each probability is the probability

of an input mapping to the respective codevector at Stage-1. However, from Stage-2 to

Stage-8 four probabilities are associated to each codevector at a stage. The probability

distribution in the table above is illustrated with the following example. For Class-1,

Stage-1, Column-1 (shown in blue in Table 2); the first topmost probability is the

probability of input mapping to Codevectors-1 and 1 of Stage-1 and

Stage-2, respectively. Similarly, the second probability is the probability of the input that

48

Table 2. (a) Class-conditional Transition Matrix with Markov order = 1. (b) Error matrix.

Stages Class1 Class2

1 [0.2533] [0.2651] [0.2034] [0.2782] [0.2777] [0.2756] [0.1863] [0.2605]

2

0.0486

0.0177

0.0039
0.0512

0.0505

0.0577

0.0919
0.1115

0.0735

0.0584

0.1037
0.0420

0.0807

0.1312

0.0039
0.0735

0

0.1017

0
0.0529

0.0660

0.0887

0.0825
0.0763

0.0639

0.0419

0.0330
0.1189

0.0880

0.0454

0.0976
0.0433

3

0.0696

0.1070
0.0413

0.0604

0

0.0433
0.0112

0.0046

0.0269

0.1024
0.1115

0.1365

0.0249

0.0591
0.1135

0.0879

0.0110

0.0529
0.0344

0.1326

0.0598

0.0770
0.0687

0.0866

0.0275

0.0570
0.1141

0.0302

0.0289

0.1010
0.0735

0.0447

4

0.0217
0.0020

0.0932

0.0636

0.0906
0.0157

0.1017

0.0735

0.0623
0.0203

0.0525

0.1063

0.1037
0.0210

0.1299

0.0420

0.0804
0.0076

0.0770

0.0515

0.0612
0.0131

0.0852

0.0495

0.0557
0.0137

0.1347

0.1072

0.0674
0.0275

0.0866

0.0818

5

0.0564

0.0873

0.0787
0.0912

0.0472

0.0289

0.0413
0.0617

0.0466

0.0781

0.0499
0.0696

0.0302

0.0873

0.0715
0.0741

0.0522

0.0515

0.0591
0.0790

0.0440

0.0866

0.0543
0.0687

0.0351

0.0859

0.0694
0.0818

0.0488

0.0460

0.0577
0.0797

6

0.001
0

0

0

0.0866
0.0308

0.1030

0.1299

0.1299
0.0571

0.0348

0.0715

0.0965
0.0912

0.1063

0.0617

0.0027
0.0096

0.0048

0.0007

0.0997
0.0619

0.0825

0.0921

0.1107
0.0515

0.0687

0.0742

0.1072
0.0605

0.0900

0.0832

7

0

0.1181

0.1483
0.1260

0.0007

0.1017

0.0374
0.0886

0

0

0
0

0 0.1306
0.1076

0.1411

0.0007

0.1395

0.0969
0.1216

0

0.0948

0.0845
0.1065

0

0

0
0

0

0.1175

0.1141
0.1237

8

0

0.0020
0

0

0.1529

0.0374
0

0.1437

0.1004

0.0735
0

0.0807

0.1391

0.1155
0

0.1549

0.0144

0.0076
0

0.0124

0.1230

0.0639
0

0.1065

0.1258

0.0955
0

0.1368

0.1271

0.0653
0

0.1216

(a)

 Class 1 Class 2

Class 1 1243 590 1833

Class 2 357 1010 1367

 1600 1600 3200

(b)

49

maps to Codevectors-2 and 1 of Stage-1 and Stage-2, respectively.

Similarly, for Class-1, Stage-8, Column-1 (shown in green in Table 2); the first

topmost probability is the probability of input mapping to Codevectors-1 and 1 of Stage-7

and Stage-8, respectively. The second probability is the probability of the input mapping

to Codevectors-2 and 1 of Stage-7 and Stage-8, respectively.

For a given class, the probabilities across all the codevectors at a stage add to one.

For examples, the probabilities shaded orange in the Transition Probability Matrix above

add to one.

Moreover, the probabilities at stage 7 that are shaded red indicate that there is no

mapping of any data, belonging to either of the two classes, from any codevector from

Stage-6 to Codevector-3 of Stage-7.

As mentioned earlier, in the second case the Markov-Bayesian RVQ classifier is

trained and tested on a Swiss roll dataset where the data drawn from multiple classes are

not spaces apart. They overlap with each other to some degree, as shown in Figure 12 and

Figure 14.

Figure 12. Training dataset: Class1 data is in blue, Class2 data is in red.

0 50 100 150 200 250
0

50

100

150

200

250

300

50

 RVQ with M=4 and P=8 is trained on the dataset shown in Figure 12, and the

corresponding Class-conditional Probability Matrix for Markov order ranging from 0 to

P-1 = 7 is also calculated. The data from the first class, namely Class-1, is shown in blue,

the data from the second class, called Class-2, is shown red in the figure. The Markov-

Bayesian RVQ classifier is tested on the binary data drawn for the same distribution as

for the training data. The number of test data points is 1600 samples for each class. For

this setup, the Overall and Producer’s accuracies are plotted in Figure 13. The Markov

order varies from 0 to P-1=7. The classification performance of this RVQ classifier is

benchmarked against the performance of 1-Nearest-Neighbor (1-NN) classifier, also

shown in Figure 13. In 1-NN classification, the class membership of a test data point is

determined by the class membership of the nearest training data. Like in RVQ, Euclidean

distance is the measure of nearness used in 1-NN. It can be seen that the performance of

the Markov-Bayesian RVQ classifier begins to approach the 1-NN classifier performance

from the fourth Markov order onwards.

Figure 13. Classification performance curves for 2-catergory Swiss roll dataset.

51

 In this experiment, it was noted that as the Markov order increased, test inputs

started mapping to unused Markov direct-sum sub-codevectors. Equivalently, the test

inputs were mapping to unused direct-sum codevectors. Figure 6, in Chapter 5, illustrates

the distribution of a direct-sum RVQ codebook. The unused direct-sum codevectors after

the training phase are shown in blue in the figure. An adverse implication of the test

inputs mapping to unused is that the corresponding Voronoi regions are un-labeled.

Therefore, MAP rule fails to yield a class-membership decision in such cases. To avoid

this scenario, the encoding of a test input is subjected to the realm-of-experience (RoE)

constraint. RoE constraint ensures that a test input is always assigned to the Markov

direct-sum sub-codevector that is used by the training set. This assignment is made by

searching over the nearest Markov direct-sum sub-codevector used by the training set.

However, this RoE constraint adds an extra computational cost to the RVQ-based

classification. If |T| is the size of the training set, k is the dimensionality of the input

space, and O is the Markov order; then the computational cost by the RoE constraint is

(P-O)k|T| in the worst case scenario, where the search for the nearest Markov direct-sum

sub-codevector has to be carried out for all test Markov sub-tuples.

The Markov-Bayesian RVQ classifier is also tested on a Swiss-roll dataset

comprising four classes. The training dataset is shown in Figure 14. Similar to the

previous dataset, the data from the four classes, namely Class-1, Class-2, Class-3, and

Class-4; are shown in blue, red, black, and yellow; respectively. The classification

performance of the Markov-Bayesian RVQ classifier is plotted and benchmarked against

1-NN classifier in Figure 15. The classification performance is plotted for Markov order

ranging from 1 to P-1 = 7. Again, it can be observed that the classification performance

52

Figure 14. Training dataset for 4-category classification using Bayesian RVQ. Class-1 data is in

blue, Class-2 data is in red, Class-3 is in black, and Class-4 is in yellow.

Figure 15. Classification performance curves for 4-category classification using Bayesian RVQ.

of the Bayesian RVQ classifier begins to converge to the performance of 1-NN classifier

from fourth Markov order onwards.

0 50 100 150 200 250
0

50

100

150

200

250

300

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Markov Order

C
la

s
s
if

ic
a
ti

o
n

 P
e
rf

o
rm

a
n

c
e
 i
n

 %

Overall Accuracy

Producer's Accuracy Class1

Producer's Accuracy Class2

Producer's Accuracy Class3

Producer's Accuracy Class4

1-NN Overall Accuracy

53

Proof of Concept: Image Dataset

 After testing on synthetic data, image dataset is used to evaluate the performance

of Markov-Bayesian RVQ classifier. Images of three different categories from

Caltech101 image database [47] are used for the evaluation purpose. In this 3-category

case, the classes are Plane, Car, and Motorbike. The size of the images in this database

varies from approximately 150x350 pixels to 200x400 pixels. All the images are resized

to 150x250 pixels for the RVQ classifier. The typical images from these data sets are

shown in Figure 16. RVQ codebook is designed using the training dataset having 100

images for each class. In the test dataset, Plane, Car, and Motobike classes have 148, 87,

and 256 images; respectively. To see the effect of varying number of codevectors-per-

stage on the classification performance of Markov Bayesian RVQ classifier, M is varied

Figure 16. Training dataset for classification using Markov Bayesian RVQ with 0
th
 Markov order.

Plane Car Motorbike

54

from 3 to 5 codevectors-per-stage. The number of RVQ stages is P = 8, and the error

matrices and Class-conditional Probability Transition Matrix for M = 3, M = 4, and M = 5

are shown in Table 3 and Table 4, respectively.

Table 3. Error matrices for (a) M=3 and P=8, (b) M=4 and P=8, (c) M=5 and P=8; Markov order = 0.

Class Plane Car M’bike

Plane 110 6 8 124

Car 34 81 1 116

M’bike 4 0 247 251

 148 87 256 491

(a)

Class Plane Car M’bike

Plane 126 15 4 145

Car 22 72 2 96

M’bike 0 0 250 250

 148 87 256 491

(b)

Class Plane Car M’bike

Plane 110 11 6 127

Car 30 76 0 106

M’bike 8 0 250 258

 148 87 256 491

(c)

The overall accuracy calculated from the error matrix for M = 3 is 89.2%. It peaks

to 91.2% for M=4 before decreasing to 88.8% for M=5. It suggests that the RVQ

classifier yields the best fit for M = 4, and begins to overfit for M = 5 codevectors-per-

stage.

More preliminary experiments are also conducted to guage the classification

performance of RVQ as a binary classifier. The Caltech 101 dataset, as shown in Figure

17, is used. For the purpose of binary classification, the following three separate RVQ

classifiers were designed each with its own codebook:

55

Table 4. Class-conditional Probability Matrices for (a) M=3 and P=8, (b) M=4 and P=8,

(c) M=5 and P=8; Markov order = 0.

 Plane

Car

Motorbike

Stage CV
1
 CV

2
 CV

3

CV

1
 CV

2
 CV

3

CV

1
 CV

2
 CV

3

p=1 0.06 0.5 0.44

0 1 0

0.91 0.03 0.06

p=2 0 0.74 0.26

0 0.361 0.639

0.22 0.38 0.4

p=3 0.46 0.53 0.01

0.639 0.028 0.33

0.32 0.55 0.13

p=4 0.26 0.29 0.45

0.33 0.472 0.194

0.04 0.35 0.61

p=5 0.3 0.18 0.52

0.139 0.417 0.44

0.35 0.38 0.27

p=6 0.3 0.18 0.52

0.33 0.417 0.25

0.29 0.38 0.33

p=7 0.3 0.24 0.46

0.33 0.278 0.389

0.27 0.27 0.46

p=8 0.29 0.37 0.34

0.167 0.25 0.583

0.09 0.49 0.42

(a)

Plane

Car

Motorbike

Stage CV
1
 CV

2
 CV

3
 CV

4

CV

1
 CV

2
 CV

3
 CV

4

CV

1
 CV

2
 CV

3
 CV

4

p=1 0.08 0.27 0 0.65

0 1 0 0

0.86 0.03 0.1 0.01

p=2 0.15 0.17 0.55 0.13

0 0.44 0.361 0.194

0.16 0.36 0.18 0.3

p=3 0 0.3 0.3 0.4

0.139 0.167 0.22 0.472

0 0.4 0.29 0.31

p=4 0.23 0.02 0.31 0.44

0.139 0.22 0.33 0.306

0.17 0.18 0.34 0.31

p=5 0.19 0.11 0.42 0.28

0.389 0.361 0.083 0.167

0.08 0.31 0.12 0.49

p=6 0.24 0.26 0.29 0.21

0.22 0.25 0.167 0.361

0.17 0.13 0.27 0.43

p=7 0.16 0.26 0.37 0.21

0.22 0.167 0.194 0.417

0.26 0.18 0.25 0.31

p=8 0.14 0.29 0.16 0.41

0.167 0.25 0.278 0.306

0.31 0.17 0.24 0.28

(b)

Plane

Car

Motorbike

Stage CV1 CV2 CV3 CV4 CV5

CV1 CV2 CV3 CV4 CV5

CV1 CV2 CV3 CV4 CV5

p=1 0.08 0.31 0 0 0.61

0 0.583 0 0.417 0

0.86 0.02 0.1 0 0.02

p=2 0.06 0.06 0.06 0.49 0.33

0 0.33 0.22 0.056 0.389

0.16 0.17 0.19 0.05 0.43

p=3 0.16 0.14 0.25 0.16 0.29

0.028 0.167 0.25 0.33 0.22

0.04 0.2 0.22 0.23 0.31

p=4 0.18 0.12 0.34 0.14 0.22

0.278 0.25 0.167 0.167 0.139

0.12 0.25 0.34 0.18 0.11

p=5 0.24 0.06 0.16 0.22 0.32

0.25 0.139 0.194 0.194 0.22

0.25 0.18 0.15 0.24 0.18

p=6 0.17 0.14 0.11 0.35 0.23

0.22 0.25 0.194 0.22 0.11

0.21 0.19 0.09 0.23 0.28

p=7 0.06 0.18 0.15 0.31 0.3

0.083 0.22 0.11 0.25 0.33

0.02 0.19 0.22 0.27 0.3

p=8 0.19 0.25 0.18 0.13 0.25

0.25 0.083 0.139 0.306 0.22

0.15 0.26 0.12 0.18 0.29

(c)

56

 (a) Plane-vs-Rest.

(b) Car-vs-Rest.

(c) Motorbike-vs-Rest.

Support vector machines (SVM) based classification was also done using the

same training and test datasets to compare its classification performance against the

binary and multi-class Markov-Bayesian RVQ classifiers. 1-vs-rest scheme was used to

implement the SVM classifier with the quadratic kernel. In Table 5, the producer

accuracies for each classifier are shown as their classification performance measures.

It is observed in the preliminary results, shown in Table 5, that overall multi-class

Markov-Bayesian RVQ classifier performs better than its binary version. On the average,

the performance of multi-class MBRVQ is approximately 5% better than the binary-class

MBRVQ. Furthermore, when compared with the SVM classifier, the proposed multi-

class RVQ classifier performance is promising, even at a Markov order as low as zero.

The performance of SVM classifier is better than the multi-class MBRVQ by only 4%,

approximately. It is expected that by increasing the Markov order, the proposed multi-

class RVQ classifier will improve in its performance.

Conclusion of Preliminary Research

 For effective RVQ classification it is imperative that the training dataset is chosen

so that it is a good representation of the source, and the direct-sum codevectors of the

RVQ provide a dense covering, which will ensure that a test input is quantized with a low

reconstruction error. However, with a dense covering we are faced with the challenges of

high memory and computation costs for performing the classification task. We will

discuss these challenges in more detail in the following paragraphs.

57

Table 5. RVQ-based classifiers-vs-SVM-based classifier.

With RVQ providing a dense covering of the input space, a classification operation will

require to label all the regions associated with dense covering of the RVQ. This scenario

can pose serious problems when for the values of M (number of codevectors per stage)

and P (number of stages) the number of regions-to-be-labeled is very high i.e., M
P
. As

discussed earlier, to address the cost issue, a Markov Bayesian structure on the stages of

the RVQ can be imposed, where the aim is to combine class-membership decisions stage-

wise. As a result, the cost of the classification is expected to reduce from M
p
 to the order-

of MP. The Markovian order determines the number of stages in the RVQ that form a

dependent neighborhood. The higher the Markovian order, the higher is the cost of the

classification. The results of the preliminary experiments on the Swiss roll datasets,

Figure 10, 12, 14; and Caltech101 dataset, Figure 16, also indicate the efficacy of the

Markov structure on the Bayesian RVQ classifier.

RVQ Settings Classes

Binary Classification

Multi-Class RVQ
Binary
RVQ

SVM
Quadratic

M= 3, P=8

Plane 76.87 70.19 88.71

Car 65.87 100 70

M’bike 98.43 99.59 98.41

M= 4, P=8

Plane 81.2 70.19 86.9

Car 66.67 100 75

M’bike 99.6 99.59 100

M= 5, P=8

Plane 74.14 70.19 86.6

Car 70.25 100 71.7

M’bike 98.43 99.59 96.9

58

However, before further experiments are carried to explore the feasibility of

Markov Bayesian RVQ classifier, an analysis is made to explore whether the similar P-

tuples of the encoded data points also correspond to similar data points. If this is so, then

RVQ-based classification can become feasible in the P-tuple space, which will result in

reducing significantly the overall operational cost of the proposed RVQ-based classifier.

RVQ Classification Performance Benchmark

The classification performed by jointly considering all the P stages of the RVQ is

the benchmark classification performance of the RVQ classifier. Therefore, a simple joint

P-stage RVQ classifier is implemented. For all the classification experiments, the 2D

Swiss Roll dataset is used in which two datasets corresponding to two different classes

are mixed together in the Swill Roll format, as shown in Figure 12.

Joint P-Stage RVQ Classifier

 The joint P-stage, also referred to as full P-tupple, classification is implemented

in the following ways.

Full P-tupple matching-based Classification

 In this method, the full P-tuples of test inputs are matched to the full P-tuples of

the training inputs using two different distance criteria: Euclidean and Hamming distance

criteria. Following are the results for the two criteria:

Euclidean Distance Criterion

 Class 1 Class 2

Class 1 1542 311 1853

Class 2 58 1289 1347

 1600 1600 3200

 Over all Accuracy = (1542+1289)/3200 = 88.5%

59

Hamming Distance Criterion

 Class 1 Class 2

Class 1 1581 388 1969

Class 2 19 1212 1231

 1600 1600 3200

 Over all Accuracy = (1542+1289)/3200 = 87.3%

Direct-sum Codevector matching-based Classification

 In this method, the decoded test inputs are matched according to 1-NN rule to the

decoded training set. The matching between the decoded test input and the training set is

done using the Euclidean distance criterion. Following is the result for this method:

Euclidean Distance Criterion

 Class 1 Class 2

Class 1 1600 0 1600

Class 2 0 1600 1600

 1600 1600 3200

 Over all Accuracy = (1600+1600)/3200 = 100%

Conclusion

 From the results above, it is concluded that RVQ P-tuple labeling using a

Euclidean or Hamming distance metric do not correspond to Euclidean distance using

values of the decoded inputs. It can be generalized that in images similar P-tuples are not

guaranteed to map to similar images.

Estimated Markov-Bayesian RVQ Costs

 The cost of implementing Markov Bayesian RVQ classifier is dependent on the

Markov order O, number of RVQ stages P, number of codevectors-per-stage M, and the

number of classes C in the training dataset. It is desired that the Markov order is as low as

60

possible, somewhere in the middle of 0
th

 and P
th

 Markov order, so that the associated

costs are also kept low.

 For given values of M, P, and C, the costs of implementation for Markov order O

from zero to P are given in Table 6. It can be seen in the table that the memory for storing

the codebook and the cost of the search through the codebook remain kMP for any value

of Markov order. However, the memory cost of storing the Class-conditional Transition

Probability Matrix increases in the order of M
O+1

C. The equation that expresses the

relationship between Markov order and the memory cost of storing the probabilities is (P-

O) M
O+1

C. It is to be noted that the search cost of 1-NN classifier is |T|, where |T| is the

size of the training set. Moreover, the memory cost associated with 1-NN classification is

in the order of |T|. It is expected that the RVQ-based classifier will offer cost savings over

the 1-NN classifier.

Table 6. Implementation cost of RVQ classifier.

Markov

Order

Memory Cost Search

Cost Codebook Probabilities

0
th

 MP 8MC MP

1
st

 MP 7M
2

C MP

2
nd

 MP 6M
3

C MP

3
rd

 MP 5M
4

C MP

4
th

 MP 4M
5

C MP

5
th

 MP 3M
6

C MP

6
th

 MP 2M
7

C MP

7
th

 MP M
8

C MP

 (P-O) M
O+1

C

61

CHAPTER 6

MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSIFICATION: MAIN RESEARCH

Introduction

 The number of codevectors M and stages P of RVQ are essential RVQ parameters

that control the density of the covering of the input space. Equivalently, M and P control

the size of the codebook of RVQ. Since the number of Voronoi regions generated in the

input space is directly related to these two RVQ parameters, the classification

performance of RVQ will be investigated for different values of M and P.

 The focus of the preliminary research was to propose a method to make RVQ-

based classification feasible by imposing a Markov structure on the stages of RVQ. It

was also noted that classification performance showed improvement when Markov order

was increased from zero to one. With the Markov structure, the operational cost of RVQ-

bases classifier can be reduced from M
P
 to the order of MP. However, with increase the

Markov order, the cost of RVQ classification also increases. Therefore, the effect of

different Markov orders on RVQ-based classification is also explored in-depth to analyze

the underlying issues.

 Lastly, since RVQ is a template-matching-based technique, the characteristics of a

dataset will heavily bear on the performance of the RVQ-based classifier. Therefore,

datasets with differing characteristics will be investigated for RVQ classification.

Caltech101 [47], Graz [48], and the MNIST database of handwritten digits [50] used to

test Markov RVQ classifier for Markov order ranging from zero to P-1. The zeroth

62

Markov order means that all the RVQ stages are assumed independent of each other.

Whereas, Markov order P-1 implies that all the P stages of RVQ are assumed dependent

on each other. The datasets vary from each other in the amount of variability in the

images.

 In short, RVQ –based classification is investigated for the following three factors:

 (a) Different values of M codevectors-per-stage of RVQ.

 (b) Varying Markov order on the stages of RVQ.

 (c) Image datasets with different characteristics.

 The classification results obtained from this investigation provides insightful

analysis into the working of RVQ as a classifier, and it guides the research to understand

the parameters needed to extract improved classification results out of RVQ.

 The proposed RVQ classification is also compared to SVM-based classification

involving feature vectors consisting of image intensity levels, and scale invariant feature

transform (SIFT) [3]. It is shown how the proposed RVQ classifier fares with SIFT

feature vectors.

Effects of Varying values of M

 For the Caltech101 dataset used in the preliminary research, Markov Bayesian

RVQ classifier is investigated for varying number of codevectors-per-stage M. It is

reminded that the training and test data are the same as used in the preliminary research,

as shown earlier in Figure 17. The categories are Plane, Car, and Motorbike, and Markov

order for classification varies from 0 to P-1 = 7. The number of RVQ stages P is 8, and

the number of codevectors-per-stage is varied from M = 2 to M = 11. The chosen range of

M is enough to see the trend in the performance of RVQ classification. The RVQ

63

codebook with M=4 and P = 8, and trained on the dataset shown in Figure 16, is shown in

Figure 17. The error matrices for the different values of M and a Markov order of 0 are

shown in Table 7. The overall classification accuracy for M = {2,3,4,5,..,11} and the

values of Markov order ranging from 0 to P-1 = 7 is plotted in Figure 18.

Figure 17. RVQ codebook for M = 4, P =8. 3-category training set comprises Plane, Car, and

Motorbike classes.

64

Table 7. Error matrices for M = 2 to M = 11. RVQ has P=8 stages with zeroth Markov order for

classification.

 It can be seen in Figure 18 that for the given 3-catergory dataset, the classification

performance tends to improve until M =7, after which it decreases. This trend suggests

that Markov Bayesian RVQ classifier begins to over-fit after M = 7. It is also noted that

for all the values of M the classification performance begins to converge to the best

classification performance of MBRVQ classifier from the 3
rd

 Markov order onwards. It is

reminded that the value of Markov order is also very critical to the success of the RVQ-

based classifier. The higher the Markov order, the higher the memory cost of the RVQ

classifier. In this experiment, it is further observed that as the Markov order increased,

test inputs started mapping to unused Markov direct-sum sub-codevectors. Equivalently,

the test inputs were mapping to unused direct-sum codevecotors. Figure 6, in Chapter 5,

illustrates the distribution of a direct-sum RVQ codebook. The unused direct-sum

codevectors after the training phase are shown in blue in the figure. An adverse

M = 2 M = 3 M = 4

Classes Plane Car M’bike Classes Plane Car M’bike Classes Plane Car M’bike

Plane 110 16 6 132 Plane 132 9 3 144 Plane 122 3 30 155

Car 18 61 2 81 Car 12 78 2 92 Car 21 84 1 106

M’bike 20 10 248 278 M’bike 4 0 251 255 M’bike 5 0 225 230

 148 87 256 491 148 87 256 491 148 87 256 491

M = 5 M = 6 M = 7

Classes Plane Car M’bike Classes Plane Car M’bike Classes Plane Car M’bike

Plane 131 5 31 167 Plane 124 1 8 133 Plane 139 5 4 148

Car 8 82 2 92 Car 19 85 1 105 Car 7 82 2 91

M’bike 9 0 223 232 M’bike 5 1 247 253 M’bike 2 0 250 252

 148 87 256 491 148 87 256 491 148 87 256 491

M = 8 M = 9 M = 10

Classes Plane Car M’bike Classes Plane Car M’bike Classes Plane Car M’bike

Plane 136 3 10 149 Plane 128 3 4 135 Plane 134 0 18 152

Car 10 84 1 95 Car 16 84 1 101 Car 9 87 1 97

M’bike 2 0 245 247 M’bike 4 0 251 255 M’bike 5 0 237 242

 148 87 256 491 148 87 256 491 148 87 256 491

65

implication of the test inputs mapping to unused is that the corresponding Voronoi

regions are un-labeled. Therefore, MAP rule fails to yield a class-membership decision in

such cases. To avoid this scenario, the encoding of a test input is subjected to the realm-

of-experience (RoE) constraint. RoE constraint ensures that a test input is always

assigned to the Markov direct-sum sub-codevectors that are used by the training set. This

assignment is made by searching over the nearest Markov direct-sum sub-codevector

used by the training set. However, this RoE constraint adds an extra search cost to the

RVQ-based classification.

Figure 18. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11}, and P=8, and for

Markov orders from 0 to P-1 = 7.

 Since in the figure above the performance of the RVQ-based classifier peaks at

M=7, its classification performance at M = 7 is also calculated over a range of Markov

66

order from 0 to P-1 = 7, where P = 8 stages. The classification performance in terms of

the overall accuracy is shown in Figure 19, along with the error matrix and the related

classification performance measures derived from the error matrix shown in Table 8. The

performance of the RVQ-based classifier is also compared with 1-NN classifier, also

shown in Figure 19. It can also be seen that the RVQ classifier converges to 1-NN from

the third Markov order onwards. Expectedly, the classification performance of MBRVQ

classifier improves with the increase in the Markov order. It is desired that the Markov

order is as low as possible.

Figure 19. Classification performance of 1-NN based classifier versus Markov Bayesian RVQ

classifier with M = 7, P = 8, and Markov Order = 4.

67

Table 8. Classification performance of 1-NN based classifier versus Markov Bayesian RVQ

classifier with M = 7, P = 8, and Markov Order = 4.

Error Matrix

RVQ, M=7, P=8, and Markov Order = 4 1-NN Classifier

RVQ Classification Schemes

As mentioned earlier, the Markov order plays a critical role in the RVQ-based

classification. The higher the Markov order, the higher the overall cost of implementing

the RVQ-based classifier. Up to now, RVQ-based classification with the Bayesian

framework has been discussed. At this point, another framework, called feature-count

rule is introduced as a different method to implement the RVQ-based classification. It is

emphasized for clarity, that feature-count rule is different from the earlier proposed

Markov Bayesian RVQ (MBRVQ) classification. While both the methods impose the

Markov structure on its RVQ stages, the Bayesian framework is not employed in feature-

count rule. The implementation of these two methods is explained next.

The description of the two different schemes along with their implementation

details are explained as follows:

Classes Plane Car M’bike

Plane 136 3 10 149

Car 10 84 1 95

M’bike 2 0 245 247

 148 87 256 491

Classes Plane Car M’bike

Plane 148 11 12 171

Car 0 76 0 76

M’bike 0 0 244 244

 148 87 256 491

 Producer’s

Accuracy
User’s Accuracy

Plane 136/149 = 91.3% 136/148 = 91.9%

Car 84/95 = 88.4% 84/87 = 96.6%

M’bike 245/247 = 99.2% 245/256 = 95.7%

 Producer’s

Accuracy
User’s Accuracy

Plane 148/171 = 86.6% 148/148 = 100 %

Car 76/76 = 100 % 76/87 = 87.4%

M’bike 244/244 = 100 % 244/256 = 95.3%

Overall Accuracy

(136+84+245)/491

 =

 94.71%

Overall Accuracy

(148+76+244)/491

 =

 95.32%

68

Feature-count Rule: The Markov direct-sum sub-codevectors of the RVQ can be viewed

as clustering the data in a causal-anti-causal (CAC) residual sub-space. Intuitively, a

cluster in a CAC residual sub-space can be thought of as a feature of the class. For a

given test input, these features can be counted and attributed to a class according to the

class-conditional probability of the CAC cluster or the corresponding Markov sub-tuple.

Markov Bayesian RVQ (MBRVQ): This method is not different from the Bayesian

RVQ classification method as described before.

CostERoE: As mentioned earlier, the RoE constraint incurs an additional search cost.

Therefore, a cost-effective method for implementing the RoE constraint is tested. This

new method is termed as CostERoE, whereas, the earlier method will be referred to as

RoE in this report. CostERoE method of implanting the realm-of-experience constraint is

used by Barnes in [22]. CostERoE ensures that the encoding of a test input stops at the

stage when the input maps to the direct-sum codevector not used by the training set.

Consequently, the situation where a test input maps to an un-labeled Voronoi region is

avoided. The advantage of implementing the CostERoE constraint over the RoE

constraint is that the former adds no further computational cost to the RVQ-based

classification. However, it adds |T| bytes to the overall memory cost of the RVQ-based

classification method, where |T| is the size of the training set.

Thresholds: Different thresholds Th on the class-conditional probabilities associated with

the Markov sub-tuples will be applied to see their effects on the classification

performance of the two schemes. Intuitively, the threshold Th can be thought as a means

to weight CAC-clusters in reaching a classification decision. Therefore, with a suitable

69

Th, only those CAC clusters can be isolated those contribute most significantly towards

reaching the class-membership decision.

The two schemes for RVQ-based classification i.e., Feature-count Rule and

MBRVQ, will be tested on Caltech101 [47] and Graz [48] image databases. These

experiments will help to understand the dynamics of RVQ-based classifier. Two different

settings of RVQ are used: M=4 and P=8, and M=2 and P=16. The two RVQ settings

generate the same size of the direct sum codebook, thus have the same number of degrees

of freedom (DoF). However, the degrees of freedom at the RVQ stage level is different

i.e., stage DoF for M = 2 is two, and stage DoF for M = 4 is four.

These tests serve as a guide to understanding the RVQ-based classification to

determine how best to use RVQ for classification, and what are the suitable conditions

and datasets to use RVQ as a classifier.

Experiments and Results

Experiments: Set 1

 In this first set of experiments, the Markov order is kept to zero to establish a

performance base-line. The first data set that is used is a 3-category dataset consisting of

the classes Plane, Car, and Motorbike from Caltech101 database [47]. Each class has

hundred training images, the training set consists of 148, 87,and 256 images from the

classes Plane, Car, and Motorbike ; respectively. They typical images of this dataset are

shown in Figure 16. The RVQ codebook, Class-conditional Probability Matrix, and the

error matrix for RVQ with M=2 and P=16 are shown in Figure 20, Table 9, and Table 10,

respectively. Whereas, Figure 21, Table 11, and Table 12 show the Class-conditional

70

Transition Probability Matrix, and the error matrix for RVQ with M=4 and P=8,

respectively.

The RVQ-based classification is carried on this dataset with the following four

techniques:

(a) MBRVQ with RoE constraint.

(b) Feature-count Rule with RoE constraint.

(c) MBRVQ with CostERoE constraint.

(d) Feature-count Rule with CostERoE constraint.

The classification performance of the above four methods for RVQ with M = 2 and P =

16 are tabulate in the error matrix, shown in Table 10, It can be seen that the MBRVQ-

based methods are far superior to Feature-count Rule-bases methods.

Figure 20. RVQ codebook for RVQ with M=2, P=16. The dataset consists of Plane, Car, and

Motorbike classes.

71

Table 9. Class-conditional Probability Matrix for RVQ with M = 2 and P = 16. Class 1, 2, 3 are

Plane, Car, Motorbike, respectively.

Stage Class CV1 CV2 Stage Class CV1 CV2

1

1 0.10 0.45

9

1 0.36 0.33

2 0.00 0.50 2 0.34 0.33

3 0.90 0.05 3 0.30 0.34

2

1 0.91 0.16

10

1 0.33 0.33

2 0.00 0.43 2 0.28 0.37

3 0.09 0.41 3 0.39 0.29

3

1 0.00 0.36

11

1 0.38 0.30

2 0.12 0.35 2 0.33 0.34

3 0.88 0.28 3 0.29 0.36

4

1 0.46 0.19

12

1 0.41 0.29

2 0.36 0.31 2 0.28 0.37

3 0.19 0.5 3 0.31 0.35

5

1 0.46 0.13

13

1 0.32 0.35

2 0.26 0.45 2 0.35 0.32

3 0.28 0.42 3 0.33 0.34

6

1 0.31 0.35

14

1 0.28 0.38

2 0.38 0.31 2 0.35 0.32

3 0.32 0.34 3 0.38 0.30

7

1 0.26 0.38

15

1 0.24 0.41

2 0.44 0.27 2 0.38 0.30

3 0.30 0.35 3 0.38 0.29

8

1 0.29 0.37

16

1 0.35 0.32

2 0.35 0.32 2 0.35 0.32

3 0.36 0.31 3 0.31 0.35

72

Table 10. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has

M=2 codevectors-per-stage and P = 16 stages.

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE

Classes 1 2 3 1 2 3 1 2 3 1 2 3

1 97 4 1 102 142 65 154 361 97 4 1 102 134 55 141 330

2 30 83 3 116 3 21 25 49 30 83 3 116 11 31 46 88

3 21 0 252 273 3 1 77 81 21 0 252 273 3 1 69 73

 148 87 256 491 148 87 256 491 148 87 256 491 148 87 256 491

Prod

Acc %
95.1 71.6 92.3

39.3 42.9 95.1

95.1 71.6 92.3

40.6 35.2 94.5

User

Acc %
65.5 95.4 98.4 95.9 24.2 30.1 65.5 95.4 98.4 90.5 35.6 27.0

Overall

Acc %
87.98 48.88 87.98 47.7

The same experiment on the 3-category dataset is repeated for RVQ with M = 4

codevectors-per-stage and P = 8 stages. The corresponding RVQ codebook, Class-

conditional Probability Matrix, and the Error matrix for MBRVQ-based method and

Feature-cont Rule-based methods are shown in Figure 21, Table 11, and Table 12;

respectively.

It can be seen in Table 12 that the MBRVQ-based methods are far superior to

Feature-count Rule-bases methods. Moreover, as compared to the RVQ with M = 2 and

P = 16, the classification performance of the RVQ-based classifier for M = 4 and P = 4 is

superior. For example, in case the latter the MBRVQ-based classifiers have an overall

accuracy of over 90 %, as shown in Table 12; whereas, it can be seen in Table 10 that the

overall accuracy of the MBRVQ-based classifiers for M = 2 and P = 16 is 88%,

approximately. The same trend can be seen for the Feature-count Rule-based

classification.

The classification performances of the four RVQ-based classifiers are also

calculated for all the values of Markov order from 0 to P-1. For M=2 and P=16, the over-

73

Figure 21. RVQ codebook for RVQ with M=4, P=8. The dataset consists of Plane, Car, and

Motorbike classes.

74

Table 11. Class-conditional Probability Matrix for RVQ with M = 4 and P = 8. Class 1, 2, 3 are

Plane, Car, Motorbike, respectively.

Plane

Car

Motorbike

Stage CV
1
 CV

2
 CV

3
 CV

4

CV

1
 CV

2
 CV

3
 CV

4

CV

1
 CV

2
 CV

3
 CV

4

p=1 0.08 0.27 0 0.65

0 1 0 0

0.86 0.03 0.1 0.01

p=2 0.15 0.17 0.55 0.13

0 0.44 0.361 0.194

0.16 0.36 0.18 0.3

p=3 0 0.3 0.3 0.4

0.139 0.167 0.22 0.472

0 0.4 0.29 0.31

p=4 0.23 0.02 0.31 0.44

0.139 0.22 0.33 0.306

0.17 0.18 0.34 0.31

p=5 0.19 0.11 0.42 0.28

0.389 0.361 0.083 0.167

0.08 0.31 0.12 0.49

p=6 0.24 0.26 0.29 0.21

0.22 0.25 0.167 0.361

0.17 0.13 0.27 0.43

p=7 0.16 0.26 0.37 0.21

0.22 0.167 0.194 0.417

0.26 0.18 0.25 0.31

p=8 0.14 0.29 0.16 0.41

0.167 0.25 0.278 0.306

0.31 0.17 0.24 0.28

Table 12. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has

M = 4 codevectors-per-stage and P = 8 stages.

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE

Classes 1 2 3 1 2 3 1 2 3 1 2 3

1 126 15 4 145 146 61 151 358 127 13 4 144 147 58 134 339

2 22 72 2 96 0 25 25 50 21 74 1 96 0 28 40 68

3 0 0 250 250 2 1 80 83 0 0 251 251 1 1 82 84

 148 87 256 491 148 87 256 491 148 87 256 491 148 87 256 491

Prod

Acc %
85.1 82.8 97.7

98.6 28.7 31.3

85.8 85.1 98

99.3 32.2 32

User

Acc %
86.9 75 100 40.8 50 96.4 88.2 77.1 100 43.4 41.2 97.6

Overall

Acc %
91.24 51.12 92.06 52.34

75

Figure 22. Classification performance for different RVQ-based classifiers with M = 2 and P = 16.

The dataset consists of Plane, Car, and Motorbike classes from Caltech101.

all accuracies are plotted for these four methods in Figure 22. Similarly, the classification

performances of the RVQ-based classifiers are also plotted in Figure 23 for RVQ with

M=4 codevectors-per-stage and P = 8 stages. It can be seen in Figure 22 and Figure 23

that MBRVQ classifier with CostERoE constraint outperforms the other RVQ-based

schemes tested on this dataset.

Support Vector Machine (SVM) Classifier with the SIFT Feature

 A support vector machine (SVM) [9] constructs a hyperplane or set of

hyperplanes in a high or infinite-dimensional space, which can be used for classification,

regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane

76

Figure 23. Classification performance for different RVQ-based classifiers with M = 4 and P = 8.

The dataset consists of Plane, Car, and Motorbike classes from Caltech101.

that has the largest distance to the nearest training data point of any class, since in general

the larger the margin the lower the generalization error of the classifier. The training

points are called support vectors.

 As a classifier, SVM is a binary classifier. For the applications of multi-

classification, SVM has popularly been used in two ways: one-versus-one, and one-

versus-all. In one-versus-one, binary SVM classifiers are built that distinguish between

every pair of classes. In this method, classification is done by a max-wins voting strategy,

in which every classifier assigns a test input to one of the two classes, then the vote for

the assigned class is increased by one vote, and finally the class with the most votes

determines the instance classification. In one-versus-all strategy, binary SVM classifiers

77

are constructed to classify between one of the classes and the rest of the classes.

Classification of a test input for the one-versus-all case is done by a winner-takes-all

strategy, in which the classifier with the highest output function assigns the class to the

test input.

 In this experiment, one-versus-one strategy has been used to perform the SVM-

based classification. The choice of the features for the SVM classification is SIFT with

chi-squared distance kernel. SIFT stands of scale-invariant feature transform. SIFT were

first designed and used for SVM-based classification by David Lowe [3]. SIFT feature is

invariant to uniform scaling, orientation, and partially invariant to affine distortion and

illumination changes. Because of the invariance properties of the SIFT feature, it is

widely used with SVM in the applications of high-level classification, such as recognition

of objects-of-interest in images and videos.

The classification results of the SVM classifier are shown in Table 13. The SIFT

feature extracted from each image of the 3-category dataset is a 128x20 vector. It can be

seen from Table 12 and Table 13, that SVM classification performed with SIFT feature is

almost as good as the MBRVQ-based classifiers.

Table 13. Error matrix for SVM classifier with SIFT feature and chi-squared distance kernel.

Classes 1 2 3

1 126 11 3 140

2 21 75 1 97

3 1 1 252 254

 148 87 256 491

Prod

Acc %
85.1 86.2 98.4

User

Acc %
90 77.3 99.2

Overall

Acc %
92.26

78

Experiments: Set 2

 In this second set of experiments, the RVQ settings remain the same as in the first

set of experiments. The only difference is the dataset. In this case, the dataset solely

consists of the images of motorbikes from Caltech101. The Motorbike dataset is sub-

classified into two to three distinct categories. The two-category Motorbike dataset

comprises the classes Heavy, and Sports. Class Heavy refers to heavy motorbikes, and

the class Sports refers to sports motorbikes. This 2-category dataset is termed as HS-

Motorbike. The typical images of the two sub-classes are shown in Figure 24. Similarly,

the 3-category Motorbike dataset contains the classes Heavy, Heavy-Sports, and Light-

Sports. This dataset is termed HHSL-Motorbike. The typical images of the 3-category

Motorbike dataset are shown in Figure 25.

 The results for the 3-category HHSL-Motorbike dataset are presented first. The

RVQ codebook for M = 2 and P =16, the corresponding Class-conditional Transition

Probability Matrix, and the classification results are shown in Figure 26, Table 14, and

Table 15; respectively. Similarly, for RVQ with M = 2 and P = 16, the classification

performance for Markov order ranging from 0 to P-1 = 15 is shown in Figure 27.

 The same experiment on the 3-category HHSLS-Motorbike dataset is repeated for

RVQ with M = 4 codevectors-per-stage and P = 8 stages. The corresponding RVQ

codebook, Class-conditional Transitional Probability Matrix, and the error matrix for

MBRVQ-based method and Feature-count Rule-based methods are shown in Figure 28,

Table 16, and Table 17; respectively. Similarly, for RVQ with M = 4 and P = 8, the

classification performance for Markov order ranging from 0 to P-1 = 7 is shown in

Figure 29.

79

Figure 24. Training dataset for 2-category classification. The classes are Heavy, and Sports

motorbikes.

Figure 25. Training dataset for 3-category classification. The classes are Heavy, Heavy-Sports,

and Light-Sports motorbikes.

Heavy Sports

Heavy Heavy-Sports Light-Sports

80

Figure 26. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy, Heavy-

Sports, and Light-Sports motorbike classes.

81

Table 14. Class-conditional Probability Matrix for RVQ with M=2 and P =16. Class 1, 2, 3 are

Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively.

Stage Class [CV1 , CV2]

Stage Class [CV1 , CV2]

1

1 [0.23, 0.45]
[0.35, 0.31]
[0.42, 0.23]

9

1 [0.26, 0.39]
[0.46, 0.24]
[0.28, 0.37]

2 2

3 3

2

1 [0.29, 0.34]
[0.54, 0.29]
[0.17, 0.37]

10

1 [0.24, 0.44]
[0.39, 0.27]
[0.37, 0.29]

2 2

3 3

3

1 [0.32, 0.36]
[0.39, 0.22]
[0.29, 0.42]

11

1 [0.53, 0.20]
[0.20, 0.42]
[0.27, 0.38]

2 2

3 3

4

1 [0.16, 0.48]
[0.37, 0.30]
[0.47, 0.22]

12

1 [0.34, 0.33]
[0.39, 0.30]
[0.27, 0.37]

2 2

3 3

5

1 [0.29, 0.38]
[0.18, 0.49]
[0.53, 0.13]

13

1 [0.18, 0.34]
[0.45, 0.33]
[0.36, 0.33]

2 2

3 3

6

1 [0.56, 0.22]
[0.40, 0.30]
[0.03, 0.48]

14

1 [0.37, 0.29]
[0.31, 0.36]
[0.32, 0.35]

2 2

3 3

7

1 [0.43, 0.24]
[0.07, 0.59]
[0.50, 0.17]

15

1 [0.28, 0.40]
[0.34, 0.33]
[0.39, 0.27]

2 2

3 3

8

1 [0.39, 0.26]
[0.31, 0.36]
[0.30, 0.38]

16

1 [0.38, 0.31]
[0.35, 0.31]
[0.35, 0.32]

2 2

3 3

82

Table 15. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M =

2 codevectors-per-stage and P = 16 stages.

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE

Class 1 2 3 1 2 3 1 2 3 1 2 3

1 229 92 21 342 148 59 12 219 230 92 13 335 154 80 20 254

2 21 89 7 117 88 121 4 213 20 88 5 113 41 95 5 141

3 44 37 79 160 58 38 91 187 44 38 89 171 99 43 82 224

 294 218 107 619 294 218 107 619 294 218 107 619 294 218 107 619

Prod

Acc %
77.9 40.8 73.8

50.3 55.5 85

78.2 40.4 83.2

52.4 43.6 76.6

User

Acc %
67 76.1 49.4 67.6 56.8 48.7 68.7 77.9 52 60.6 67.4 36.6

Overall

Acc %
64.14 58.16 65.75 53.47

Figure 27. Classification performance for different RVQ-based classifiers with M = 2 and P = 16.

The dataset consists of Heavy, Heavy-Sports, and Light-Sports motorbike classes from

Caltech101.

83

Figure 28. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy, Heavy-

Sports, and Light-Sports motorbike classes.

84

Table 16. Class-conditional Probability Matrix for RVQ with M = 4 and P = 8. Class 1, 2, 3 are

Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively.

Stage Class CV1 CV2 CV3 CV4

1

1 0.21 0.47 0.27 0.51

2 0.37 0.16 0.51 0.27

3 0.41 0.37 0.22 0.22

2

1 0.18 0.78 0.50 0.06

2 0.19 0.11 0.14 0.89

3 0.63 0.11 0.36 0.05

3

1 0.6 0.39 0.23 0.31

2 0.4 0.52 0.23 0.15

3 0 0.09 0.54 0.54

4

1 0.83 0.25 0.29 0.29

2 0.13 0.38 0.33 0.37

3 0.04 0.38 0.38 0.35

5

1 0.38 0.46 0.19 0.34

2 0.38 0.25 0.47 0.30

3 0.25 0.29 0.35 0.36

6

1 0.33 0.38 0.30 0.32

2 0.54 0.31 0.22 0.34

3 0.13 0.31 0.48 0.33

7

1 0.20 0.42 0.32 0.40

2 0.21 0.44 0.52 0.23

3 0.59 0.14 0.16 0.37

8

1 0.28 0.30 0.28 0.44

2 0.35 0.17 0.45 0.36

3 0.38 0.53 0.26 0.20

Table 17. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M =

4 codevectors-per-stage and P = 8 stages.

 MBRVQ, RoE
Feature-count Rule,

 RoE
MBRVQ, CostERoE

Feature-count Rule,

CostERoE

Class 1 2 3 1 2 3 1 2 3 1 2 3

1 232 90 18 340 151 56 11 218 233 85 13 331 155 51 10 216

2 20 93 6 119 87 125 3 215 19 97 5 121 41 127 5 173

3 42 35 83 160 56 37 93 186 42 36 89 167 98 40 92 230

 294 218 107 619 294 218 107 619 294 218 107 619 294 218 107 619

Prod

Acc %
78.9 42.7 77.6

51.4 57.3 86.9

79.3 44.5 83.2

52.7 58.3 86

User

Acc %
68.2 78.2 51.9 69.3 58.1 50 70.4 80.2 53.3 71.8 73.4 40

Overall

Acc %
65.91 59.61 67.69 60.42

85

Figure 29. Classification performance for different RVQ-based classifiers with M = 4 and P = 8.

The dataset consists of Heavy, Heavy-Sports, and Light-Sports motorbike classes from

Caltech101.

It can be seen in Table 15 and Table 17 that the MBRVQ-based methods are far superior

to Feature-count Rule-bases methods. Moreover, as compared to the RVQ with M = 2

and P = 16, the classification performance of the RVQ-based classifier for M = 4 and P =

4 is slightly better for this dataset. For example, in case of the latter, the MBRVQ-based

classifiers have an overall accuracy of over 65 %, as shown in Table 17; whereas, it can

be seen in Table 15 that the overall accuracy of the MBRVQ-based classifiers for M = 2

and P = 16 is approximately 1% lower, comparatively. The same trend can be seen for

the Feature-count Rule-based classification. Moreover, in both RVQ settings, CostERoE

constraint yielded better classification results for MBRVQ as compared to RoE

constraint. Similarly, it can be seen in Figure 27 and Figure 28 that MBRVQ classifier

86

with CostERoE constraint outperforms the other RVQ-based schemes tested on this

dataset.

 After investigating the MRVQ classifier for the 3-category Motorbike dataset

shown in Figure 24, the classifier is studied for the 2-category Motorbike dataset (Figure

23), which is formed by combining the Heavy-Sports and Light-Sports motorbikes

categories into one category of motorbikes named Sports. The training set size is 600

images, with 300 images in each class. There are 270 images in the test set, with 90 and

180 images in Heavy and Sports motorbike classes, respectively. The images are resized

to 150 x 250 and are converted to grayscale.

 Similar to the 3-category case, the experiments on the 2-category HS-Motorbike

dataset are carried out for two settings of RVQ: M = 2 and P = 16, and M = 4 and P = 8.

The RVQ codebooks for both the settings look similar to the corresponding RVQ

codebooks of the 3-category HHSLS-Motorbike dataset. For M = 2 and P = 16, Class-

conditional Transition Probability Matrix, and the classification results are shown in

Table 18, and Table 19; respectively. The corresponding Class-conditional Transitional

Probability Matrix, and the error matrix for M = 4 and P = 8 are shown in Table 20, and

Table 21; respectively. The Markov order is 0 in these results. It can be seen in Table 19

and Table 20 that the MBRVQ-based methods are far superior to Feature-count Rule-

bases methods. Moreover, as compared to the RVQ with M = 2 and P = 16, the

classification performance of the RVQ-based classifier for M = 4 and P = 8 is slightly

better. The same trend can be seen for the Feature-count Rule-based classification.

Moreover, in both RVQ settings, compared to RoE constraint, CostERoE constraint

yielded better classification results for MBRVQ classifier. The classification

87

performances of the four RVQ-based classifiers are also calculated for all the values of

Markov order from 0 to P-1. For M=2 and P=16, the overall accuracies are plotted for

these four methods in Figure 30. Similarly, the classification performances of the RVQ-

based classifiers are also plotted in Figure 31 for RVQ with M=4 codevectors-per-stage

and P = 8 stages. It can be seen in Figure 30 and Figure 31 that MBRVQ classifier with

CostERoE constraint outperforms the other RVQ-based schemes tested on this dataset.

Table 18. Class-conditional Probability Matrix for RVQ with M = 2 and P =16. Class 1, 2 are

Heavy, and Sports motorbikes, respectively.

Stage Class CV1 CV2 Stage Class CV1 CV2

1
1 0.45 0.56

9
1 0.52 0.48

2 0.55 0.44 2 0.48 0.52

2
1 0.65 0.46

10
1 0.49 0.51

2 0.35 0.54 2 0.51 0.49

3
1 0.65 0.46

11
1 0.56 0.44

2 0.35 0.54 2 0.44 0.56

4
1 0.37 0.65

12
1 0.51 0.49

2 0.63 0.35 2 0.49 0.51

5
1 0.73 0.42

13
1 0.60 0.40

2 0.27 0.58 2 0.40 0.60

6
1 0.74 0.46

14
1 0.48 0.51

2 0.26 0.54 2 0.52 0.49

7
1 0.55 0.45

15
1 0.62 0.41

2 0.45 0.55 2 0.38 0.59

8
1 0.51 0.48

16
1 0.49 0.50

2 0.49 0.52 2 0.51 0.50

Table 19. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has

M = 2 codevectors-per-stage and P = 16 stages.

 MBRVQ, RoE
Feature-count Rule,

 RoE
MBRVQ, CostERoE

Feature-count Rule,

CostERoE

Classes 1 2 1 2 1 2 1 2

1 74 55 129 44 76 120 75 56 131 49 91 140

2 16 125 141 46 104 150 15 124 139 41 89 130

 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
82.2 69.4 75.8 48.9 57.8 53.4 83.3 68.9 76.1 54.4 49.4 51.9

User

Acc %
57.4 88.7 73.1 36.7 69.3 53 57.3 89.2 73.3 35 68.5 51.8

Overall

Acc %
73.70 54.81 73.70 51.11

88

Figure 30. Classification Performance for different RVQ-based classifiers with M = 2 and P = 16.

The dataset consists of Heavy and Sports motorbike classes from Caltech101.

89

Table 20. Class-conditional Probability Matrix for RVQ with M = 4 and P =8. Class 1, 2 are

Heavy, and Sports motorbikes, respectively.

Stage Class CV1 CV2 CV3 CV4

1
1 0.42 0.69 0.45 0.65

2 0.58 0.31 0.55 0.35

2
1 0.55 0.61 0.67 0.33

2 0.45 0.39 0.33 0.67

3
1 0.57 0.47 0.72 0.16

2 0.43 0.53 0.28 0.84

4
1 0.61 0.58 0.31 0.56

2 0.39 0.42 0.69 0.44

5
1 0.36 0.59 0.45 0.57

2 0.64 0.41 0.55 0.43

6
1 0.60 0.57 0.54 0.40

2 0.40 0.43 0.46 0.60

7
1 0.40 0.71 0.45 0.50

2 0.60 0.29 0.55 0.50

8
1 0.61 0.30 0.51 0.59

2 0.39 0.70 0.49 0.41

Table 21. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M =

4 codevectors-per-stage and P = 8 stages.

 MBRVQ, RoE
Feature-count Rule,

 RoE
MBRVQ, CostERoE

Feature-count Rule,

CostERoE

Classes 1 2 1 2 1 2 1 2

1 71 52 123 39 96 135 72 52 124 43 89 132

2 19 128 147 51 84 135 18 128 146 47 91 138

 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
78.9 71.1 75 43.3 46.7 45 80 71.1 75.6 47.8 50.6 49.2

User

Acc %
57.7 87.1 72.4 28.9 62.2 45.6 58.1 87.7 72.9 32.6 65.9 49.3

Overall

Acc %
73.70 45.56 74.07 49.63

90

Figure 31. Classification Performance for different RVQ-based classifiers with M = 4 and P = 8.

The dataset consists of Heavy and Sports motorbike classes from Caltech101.

91

Computational and Memory Cost Analysis

The computational and memory costs of MBRVQ classifier with CostERoE

constraint are given as follows:

Computational Cost = kMP multiplications and additions.

Memory cost = kMP + C(P-O)M
(O+1)

 + |T| bytes,

where k is the dimensionality of the input space, C is the number of classes, O is the Markov

order and |T| is the size of the training set. The first, second, and the third terms of the memory

cost are storage costs of the RVQ codebook, labels, and CostERoE constraint. At this point, it is

pertinent to emphasize the cost effectiveness of MBRVQ classification over the 1-NN-based

classification. The computational cost of 1-NN classification is k|T| multiplications and additions,

and the associated memory cost is k|T| + T bytes, where k|T| is the cost for the storage of the

training set, and |T| is the cost for storing the class labels. The costs of MBRVQ classification on

the datasets shown in Figure 12, 14, 16, 24, and 25 with CostERoE are shown and compared in

Figure 32 and Figure 33.

Experiments: Set 3

Different thresholds Th on the class-conditional probabilities associated with the

Markov sub-tuples will be applied to see their effects on the classification performance of

MRVQ classifier. Intuitively, the threshold Th can be thought as a means to weight CAC-

clusters in reaching a classification decision. Therefore, with a suitable Th, only those

CAC clusters can be isolated that contributes most significantly towards reaching the

class-membership decision. The value of Th is varied from 0 to 0.9. The 2-category HS-

Motorbike dataset, Figure 22, is chosen for this set of experiments. MBRVQ scheme is

used with CostERoE. In the previous experiments, MBRVQ scheme has been shown to

perform better Feature-count rule for MRVQ classification. Moreover, CostERoE is

92

 Computational Cost Memory Cost

Figure 32. RVQ-versus-1NN: (1
st
 Row) 2-category Swiss roll in Figure 13. (2

nd
 Row) 4-category Swiss roll in Figure 15. (3

rd
 Row) 3-category

Caltech101 in Figure 16.

93

Figure 33. RVQ-versus-1NN: (1
st
 Row) 2-category Motorbike dataset from Caltech101 in Figure 23. (2

nd
 Row). 3-category Motorbike dataset

from Caltech101 in Figure 24.

94

preferred over RoE because compared to RoE constraint, CostERoE constraint yields

comparable classification performance at a better cost.

 The experimental results for M = 2 and P = 16, and M = 4 and P = 8 are shown in

Figure 34, where the classification results are measured as the overall accuracy. The

results are shown for thresholds . The detailed classification results

are presented in Table A1 and Table A2 in Appendix A, respectively, for RVQ settings

M=2 and P = 16, and M = 4 and P = 8. In Figure 27, the overall accuracies for Markov

order ranging from 0 to P-1 are depicted as bars centered at each threshold value of Th.

Therefore, for P = 8, the total number of bars for each value of Th is eight. Likewise, for

P = 16, there are sixteen bars for each value of Th. Moreover, for P = 16, some values of

overall accuracy are capped off at 10 %. This value is to indicate that no class-conditional

probabilities of some test inputs were greater than the value of threshold Th. As a result,

those test inputs were assigned to any of the three categories. Such class assignments are

termed as Unknown. In Figure 34, it can be seen that for P = 16 test inputs start to get

assigned to Unknown from for different values of Markov orders. For

 , all the test inputs for all Markov orders are assigned to the class Unknown.

 In the context of the threshold Th, it can be seen from the results that the

classification performance is upper-bounded by Th = 0. It implies that Th > 0 gives no

significant advantage over the case when Th = 0. The idea of applying the different values

of Th is to check if the stage class decision of RVQ can be weighted so that the final class

decision is improved. However, the results suggest that under the Markov-Bayesian

framework, the class-conditional probabilities associated with each Markov sub-tuples

appropriately weight the corresponding stage class decisions to give the final class

 95

Figure 34. (Top): RVQ M = 4 and P = 8. (Bottom): RVQ M = 2 and P = 16.

 96

decision on a test input. Therefore, assigning weights to the stage class decision through

different values of Th is redundant.

More Datasets: Graz

So far, the test images from Caltech101 database, shown in Figure 16, 24, and 25,

largely have very consistent characteristics. The objects in these images are centered with

no significant variation in scale, localization and pose. The lighting variations across

these images are minimal. Such well-behaved images are very suitable for template

matching-based techniques. However, it is felt that more challenging images with

objects-of-interest varying in pose, scale, and localization; and variation in overall

lighting conditions be considered for the analysis of the proposed RVQ-based

classification. Graz dataset [48] has the images with such challenging characteristics.

Graz dataset consists of images from three classes: Bicycle, People, and Background. The

typical images of each class are shown in Figure 35. The size of each image is 480-by-

640 pixels. The training set consists of 200, 200, and 112 images; and the test set

comprises 260, 165, and 54 images from Bicycle, People, and Background classes,

respectively.

The images in Graz dataset contain objects with varying pose, scale, and

localization. Furthermore, multiple objects are also present in many of the images in the

dataset. Because of the nature of these variations in Graz dataset, such methods are

required that are invariant to these variations. RVQ Being an image-template matching

method, classification of objects in Graz dataset using MBRVQ classifier becomes an ill-

posed problem.

SVM classifier with SIFT [3] features is a suitable classification method on Graz

 97

Bicycle People Background

Figure 35. Graz dataset with classes Bicycle, People, and Background.

dataset. SIFT features are largely invariant to the variations present in the images of the

Graz dataset. The classification results of the SVM classifier are shown in Table 22,

respectively. The overall accuracy of the SVM classifier is 93.95%.

Table 22. Error matrix and classification performance measures for SVM on Graz dataset.

Classes Bicycle People Background

Bicycle 245 10 0 255

People 7 153 2 162

Background 8 2 52 62

 260 165 54 479

Prod

Acc %
94.2 92.7 96.3

User

Acc %
96.1 94.4 83.9

Overall

Acc %
93.95

 98

 As mentioned before, Graz dataset has a great deal of variations in scale, lighting,

pose, location of objects, and number of the objects in an image. In the class People in

particular, the image varies from just one person to a group of persons at a small scale.

The huge range of variations in Graz dataset does not seem to go well with the image

pixel-based template matching of RVQ. At this point, two suggestions are proposed to

improve the classification performance of MBRVQ classifier: (1) Modify the design

method of RVQ codebook suited to SIFT features so that the proposed RVQ classifier

can become a robust classifier on a variety of images. Chi-squared distance function is

the one of the most suitable distance criterion for SIFT features. Incorporate chi-squared

distance function in the design process of RVQ codebook. (2) Employ a sliding window

approach where a window is made to slide across a test image and a class decision is

made for the image snippet in the window. However, adapting the window to the varying

scale of the objects-of-interest in an image will pose a big challenge.

 Both the approaches, discussed above, are outside the scope of this research.

These methods are left to be investigated in future works of this research.

Handwritten-Digits Dataset

 The MNIST database of handwritten digits [49], [50] consists of images of

handwritten digits from zero to nine. All the images are centered and nearly uniformly

scaled, and have the same size of 28-by-28 pixels in binary scale. The lighting variations

are minimal, if any. They typical images in the handwriting database are shown in Figure

36. This database holds another major advantage over the previously used datasets. The

size of the handwritten-digits dataset is very large, relatively. The total number of images

is 70,000, with 60,000 images in the training set and 10,000 images in the test set.

 99

Figure 36. The MNIST database of handwritten digits.

 Yann Lecun et al [49] report comprehensive results on the classification of the

handwriting database for the digits from zero to nine. The results reported in [49] also

serve as a collection of benchmark performances to compare the performance of

MBRVQ classifier with. For an initial test on this dataset, MBRVQ classifier is first

realized by designing RVQ codebook with M = 4 codevectors-per-stage and P = 8 stages.

Markov order is four. The training set consists of 60,000 images for the handwritten

digits ranging from zero to nine. The test set comprises 10,000 images. The aim of

classification on this dataset is to recognize between each of the ten digits. As a result, the

RVQ classifier is designed with one codebook for 10-category classification. The

codebook is shown in Figure 37. CostERoE constraint is used to implement the RVQ-

based classifier. The classification results are shown in the error matrix in Table 23.

 To see the effect of the varying codevectors-per-stage, the classification on

 100

Table 23. Classification performance of MBRVQ classifier with CostERoE constraint on

handwritten digits dataset. RVQ has M = 4 and P = 8, Markov order = 4.

Classes 0 1 2 3 4 5 6 7 8 9

0 917 0 18 8 2 24 21 3 16 10 1019

1 1 1099 14 5 3 4 6 17 7 6 1162

2 4 2 860 33 15 9 10 28 39 6 1006

3 7 4 32 819 4 52 3 4 61 9 995

4 1 2 23 3 739 10 10 10 15 109 922

5 24 0 5 58 13 723 21 10 44 19 917

6 14 5 22 3 26 25 869 2 21 3 990

7 2 2 20 12 19 8 1 879 18 46 1007

8 8 17 34 54 11 23 15 13 727 19 921

9 2 4 4 15 150 14 2 62 26 782 1061

 980 1135 1032 1010 982 892 958 1028 974 1009 10000

Producer

Accuracy

%

93.57 96.82 83.33 81.1 75.26 81.1 90.71 85.51 74.64 77.5

User

Accuracy

%

90.00 94.58 85.5 82.31 80.15 78.84 87.78 87.3 78.94 73.71

Overall

Accuracy

%

84.14

Figure 37. Handwritten digit database. RVQ codebook with M = 4 codevectors-per-stage and

P = 8 stages.

 101

dataset is also done for M = {2,3,4,5,6,7,8,9,10,11,12} and P = 8. The classification

performance of MBRVQ classifier is shown in Figure 37, in which the overall accuracies

are plotted for all the values of M and Markov order varying from 0 to P-1 = 7. It can be

seen that the mean overall accuracy peaks at 91.32 % for M = 7 before it starts to

decrease. The results suggest that the MBRVQ classifier begins to over-fit for M > 7.

Since in the performance of the MBRVQ classifier peaks at M=7 (shown in

Figure 38), its classification performance at M = 7 is also calculated over a range of

Markov order from 0 to P-1 = 7, where P = 8 stages. The classification performance in

terms of the overall accuracy is shown in Figure 39. The overall accuracy for 1-NN

classifier, which is 94.12 %, is also shown for comparison. It can be seen that MBRVQ

classifier tends to converge from the fourth Markov order, when the overall accuracy is

Figure 38. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11,12}, and P=8: Mean

overall accuracy averaged over Markov orders 0 to 7.

 102

Figure 39. RVQ classification performance for M = 7 and P=8: overall accuracy for Markov

order = {0, 1, 2, 3, 4, 5, 6, 7}.

92.11 %. The overall accuracy of MBRVQ classifier stabilizes to its apparent limit value

of 92.5 % for sixth and seventh Markov orders. For this experiment, the best

classification performance of the MBRVQ classifier is within 3% of the performance of

1-NN classifier. This performance measure of MBRVQ is in line with results of different

classifiers reported in [49].

 The comparison of computational and memory costs between 1-NN and MBRVQ

classifiers are shown in Figure 40. MBRVQ classifier offers a great deal of cost savings.

It can be observed in Figure 40 that MBRVQ classifier, with M=7 and P=8, approaches

its best performance from the 4
th

 Markov order. The overall classification accuracy is

92.11%, which is within 3% of the performance of 1-NN classifier. For the

dimensionality k = 28x28 of the handwritten digit image, the memory cost of the

MBRVQ classifier is 0.74 MB, approximately, as compared to 1-NN classifier’s memory

cost that is 45 MB, approximately. Similarly, for Euclidean distance used as the measure

 103

Figure 40. RVQ-versus-1NN: (Top) Computational cost. (Bottom) Memory cost.

 104

of nearness, the computational cost of MBRVQ classifier is kMP = 43904 multiplications

and additions, as compared to the computational cost of 1-NN classifier that is

k|T| + |T| = 47,040,000 multiplications and additions, where |T| is the size of the training

set. In other words, for the given dimensionality of the input vector of a handwritten digit

k = 28x28 = 784, the number of searches from MBRVQ classifier is MP = 56, whereas

the number of searches for the 1-NN classifier is |T| = 60,000.

 105

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

Conclusion

Residual vector quantization (RVQ) is a 1-nearest neighbor (1-NN) type of

technique. RVQ is a multi-stage implementation of regular vector quantization. An input

is successively quantized to the nearest codevector in each stage codebook. In

classification, nearest neighbor techniques are very attractive since these techniques very

accurately model the ideal Bayes class boundaries. However, nearest neighbor

classification techniques require a large size of representative dataset. Since in such

techniques a test input is assigned a class membership after an exhaustive search the

entire training set, a reasonably large training set can make the implementation cost of the

nearest neighbor classifier unfeasibly costly. Although, the k-d tree structure [52] offers a

far more efficient implementation of 1-NN search, however, the cost of storing the data

points can become prohibitive, especially in higher dimensionality.

 However, RVQ also offers a nice solution to a cost-effective implementation of 1-

NN-based classification. Because of the direct-sum structure of the RVQ codebook, the

memory and computational of cost 1-NN-based system is greatly reduced. For example,

RVQ codebook with M = 4 codevectors-per-stage and P = 8 stages can potentially

represent M
P
 = 65536 training vectors with the cost of only MP = 32 codevectors.

Although, as compared to an equivalent 1-NN system, the multi-stage implementation of

the RVQ codebook compromises the accuracy of the class boundaries, yet the

classification error has been empirically shown to be within 3% to 4% of the performance

of an equivalent 1-NN-based classifier.

 106

RVQ is an image template-based matching technique. Therefore, it uses

Euclidean distance as a nearness measure for matching an input to the nearest codevector.

As a result, the images RVQ can be applied on have to be very controlled with minimal

variations. Moreover, since RVQ is a 1-NN-based technique, the size of the training set is

recommended to be large so that the codebook is a good representation of the data.

Subsequently, the class boundaries between the data points of different classes will also

accurately defined by the RVQ.

Future Research

As pointed out earlier, RVQ is currently constrained to use only Euclidean

distance measure. As a result, RVQ-based classification is not robust to variations in

images. To address this issue, it is proposed that RVQ codebook design be investigated

for other distance functions so that RVQ can be used on feature templates composed of

more robust features like scale-invariant feature transform (SIFT). As a result, a RVQ-

based classifier will become more robust and will become suited to applications of

classification, such as object detection and recognition, on a wide variety of images.

107

Appendix A

Table A.1. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples. Test set size = 270 total

samples, Input size = 150x250 grayscale pixels, M = 4, P = 8.

MBRVQ , CostERoE

Threshold

= 0.0

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 74 54 128 80 45 125 82 33 115 80 21 101 80 11 91 80 13 93 83 15 98 82 18 100

2 16 126 142 10 135 145 8 147 155 10 159 169 10 169 179 10 167 177 7 165 172 8 162 170

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
82.2 70 70 88.9 75 76.5

91.
1

81.7 81.2 88.9 88.3 84.1 88.9 94 88.4 88.9 92.8 87.5 92.2 91.7 88.5 91.1 90 86.6

User

Acc %
57.8 88.7 73.3 64 93.1 78.6

71.
3

94.8 83.1 79.2 94.1 86.7 87.9 94 91.2 86 94.4 90.2 84.7 95.9 90.3 82 95.3 88.7

Overall

Acc %
74.07 79.63 84.81 88.52 92.22 91.48 91.85 90.37

Threshold

= 0.1

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 55 83 138 43 83 126 60 66 126 80 22 102 82 14 96 78 14 92 80 13 93 79 16 95

2 35 97 132 47 97 144 30 114 144 10 158 168 8 166 174 12 166 178 10 167 177 11 164 175

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
61.1 53.9 50.5 47.8 53.9 41

66.
7

63.3 57.2 88.9 87.8 83.7 91.1 92.2 88.3 86.7 92.2 85.8 88.9 92.8 87.5 87.8 91.1 85.5

User

Acc %
39.9 73.5 56.7 34.1 67.4 50.8

47.
6

79.2 63.4 78.4 94 86.2 85.4 95.4 90.4 84.8 93.3 89.1 86 94.4 90.2 83.2 93.7 88.5

Overall

Acc %
56.3 51.85 64.44 88.15 91.85 90.37 91.48 90.00

Threshold

= 0.2

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 75 53 128 80 44 124 82 32 114 80 18 98 82 13 95 82 14 96 83 15 98 83 15 98

2 15 127 142 10 136 146 8 148 156 10 162 172 8 167 175 8 166 174 7 165 172 7 165 172

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
83.3 70.6 71 88.9 75.6 77

91.
1

82.2 81.5 88.9 90 85.3 91.1 93 88.7 91.1 92.2 88.3 92.2 91.7 88.5 92.2 91.7 88.5

User

Acc %
58.6 89.4 74 64.5 93.2 79

71.
9

94.9 83.4 81.6 94.2 87.9 86.3 95 90.9 85.4 95.4 90.4 84.7 95.9 90.3 84.7 95.9 90.3

Overall

Acc %
74.81 80.00 85.19 89.63 92.22 91.85 91.85 91.85

Threshold

= 0.3

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
44.4 43.9 36.4 47.8 50.6 40.2

72.
2

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1

User

Acc %
28.4 61.2 44.8 32.6 65.9 49.3

54.
6

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7

Overall

Acc %
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74

 108

Threshold

= 0.4

 Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
44.4 43.9 36.4 47.8 50.6 40.2

72.
2

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1

User

Acc %
28.4 61.2 44.8 32.6 65.9 49.3

54.
6

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7

Overall

Acc %
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74

Threshold

= 0.5

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
44.4 43.9 36.4 47.8 50.6 40.2

72.
2

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1

User

Acc %
28.4 61.2 44.8 32.6 65.9 49.3

54.
6

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7

Overall

Acc %
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74

 Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Threshold

= 0.6

 Prod Rule, *My RoE Prod Rule, *My RoE
Prod Rule, *My

RoE
Prod Rule, *My RoE Prod Rule, *My RoE Prod Rule, *My RoE Prod Rule, *My RoE

Prod Rule, *My RoE

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 74 54 128 80 45 125 82 33 115 80 21 101 80 11 91 80 13 93 83 15 98 82 18 100

2 16 126 142 10 135 145 8 147 155 10 159 169 10 169 179 10 167 177 7 165 172 8 162 170

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
82.2 70 70 88.9 75 76.5

91.
1

81.7 81.2 88.9 88.3 84.1 88.9 94 88.4 88.9 92.8 87.5 92.2 91.7 88.5 91.1 90 86.6

User

Acc %
57.8 88.7 73.3 64 93.1 78.6

71.
3

94.8 83.1 79.2 94.1 86.7 87.9 94 91.2 86 94.4 90.2 84.7 95.9 90.3 82 95.3 88.7

Overall

Acc %
74.07 79.63 84.81 88.52 92.22 91.48 91.85 90.37

Threshold

= 0.7

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 55 83 138 43 83 126 60 66 126 80 22 102 82 14 96 78 14 92 80 13 93 79 16 95

2 35 97 132 47 97 144 30 114 144 10 158 168 8 166 174 12 166 178 10 167 177 11 164 175

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
61.1 53.9 50.5 47.8 53.9 41

66.
7

63.3 57.2 88.9 87.8 83.7 91.1 92.2 88.3 86.7 92.2 85.8 88.9 92.8 87.5 87.8 91.1 85.5

User

Acc %
39.9 73.5 56.7 34.1 67.4 50.8

47.
6

79.2 63.4 78.4 94 86.2 85.4 95.4 90.4 84.8 93.3 89.1 86 94.4 90.2 83.2 93.7 88.5

Overall

Acc %
56.3 51.85 64.44 88.15 91.85 90.37 91.48 90.00

Threshold

= 0.8

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 75 53 128 80 44 124 82 32 114 80 18 98 82 13 95 82 14 96 83 15 98 83 15 98

2 15 127 142 10 136 146 8 148 156 10 162 172 8 167 175 8 166 174 7 165 172 7 165 172

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod 83.3 70.6 71 88.9 75.6 77 91. 82.2 81.5 88.9 90 85.3 91.1 93 88.7 91.1 92.2 88.3 92.2 91.7 88.5 92.2 91.7 88.5

 109

Acc % 1

User

Acc %
58.6 89.4 74 64.5 93.2 79

71.
9

94.9 83.4 81.6 94.2 87.9 86.3 95 90.9 85.4 95.4 90.4 84.7 95.9 90.3 84.7 95.9 90.3

Overall

Acc %
74.81 80.00 85.19 89.63 92.22 91.85 91.85 91.85

Threshold

= 0.9

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
44.4 43.9 36.4 47.8 50.6 40.2

72.
2

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1

User

Acc %
28.4 61.2 44.8 32.6 65.9 49.3

54.
6

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7

Overall

Acc %
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74

 110

Table A.2. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples

Test set size = 270 total samples, Input size = 71x101 grayscale pixels, M = 2, P = 16.
 MBRVQ , CostERoE

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Threshold

= 0.0

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 79 57 136 79 62 141 80 53 133 82 51 133 72 33 105 73 27 100 81 19 100 82 17 99

2 11 123 134 11 118 129 10 127 137 8 129 137 18 147 165 17 153 170 9 161 170 8 163 171

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
87.8 68.3 78.1 87.8 65.6 76.7

88.
9

70.6 79.8 91.1 71.7 81.4 80 81.7 80.9 81.1 85 83.1 90 89.4 89.7 91.1 90.6 90.9

User

Acc %
58.1 91.8 75 56 91.5 73.8

60.
2

92.7 76.5 61.7 94.2 78 68.6 89.1 78.9 73 90 81.5 81 94.7 87.9 82.8 95.3 89.1

Overall

Acc %
74.81 72.96 76.67 78.15 81.11 83.7 89.63 90.74

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 83 14 97 85 13 98 83 13 96 85 14 99 86 14 100 86 14 100 86 14 100 86 14 100

2 7 166 173 5 167 172 7 167 174 5 166 171 4 166 170 4 166 170 4 166 170 4 166 170

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
92.2 92.2 92.2 94.4 92.8 93.6

92.
2

92.8 92.5 94.4 92.2 93.3 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9

User

Acc %
85.6 96 90.8 86.7 97.1 91.9

86.
5

96 91.3 85.9 97.1 91.5 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8

Overall

Acc %
92.22 93.33 92.59 92.96 93.33 93.33 93.33 93.33

Threshold

= 0.3 to

0.5

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 79 57 136 79 62 141 80 53 133 82 51 133 72 33 105 73 27 100 81 19 100 82 17 99

2 11 123 134 11 118 129 10 127 137 8 129 137 18 147 165 17 153 170 9 161 170 8 163 171

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
87.8 68.3 78.1 87.8 65.6 76.7

88.
9

70.6 79.8 91.1 71.7 81.4 80 81.7 80.9 81.1 85 83.1 90 89.4 89.7 91.1 90.6 90.9

User

Acc %
58.1 91.8 75 56 91.5 73.8

60.
2

92.7 76.5 61.7 94.2 78 68.6 89.1 78.9 73 90 81.5 81 94.7 87.9 82.8 95.3 89.1

Overall

Acc %
74.81 72.96 76.67 78.15 81.11 83.7 89.63 90.74

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 83 14 97 85 13 98 83 13 96 85 14 99 86 14 100 86 14 100 86 14 100 86 14 100

2 7 166 173 5 167 172 7 167 174 5 166 171 4 166 170 4 166 170 4 166 170 4 166 170

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
92.2 92.2 92.2 94.4 92.8 93.6

92.
2

92.8 92.5 94.4 92.2 93.3 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9

User

Acc %
85.6 96 90.8 86.7 97.1 91.9

86.
5

96 91.3 85.9 97.1 91.5 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8

Overall

Acc %
92.22 93.33 92.59 92.96 93.33 93.33 93.33 93.33

 111

 MBRVQ, CostERoE RoE

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Threshold

= 0.55

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 83 69 152 77 57 134 79 56 135 81 48 129 81 36 117 76 33 109 83 24 107 84 16 100

2 7 111 118 13 123 136 11 124 135 9 132 141 9 144 153 14 147 161 7 156 163 6 164 170

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
92.2 61.7 77 85.6 68.3 77

87.
8

68.9 78.4 90 73.3 81.7 90 80 85 84.4 81.7 83.1 92.2 86.7 89.5 93.3 91.1 92.2

User

Acc %
54.6 94.1 74.4 57.5 90.4 74

58.
5

91.9 75.2 62.8 93.6 78.2 69.2 94.1 81.7 69.7 91.3 80.5 77.6 95.7 86.7 84 96.5 90.3

Overall

Acc %
71.85 74.07 75.19 78.89 83.33 82.59 88.52 91.85

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 84 13 97 85 15 100 84 12 96 80 11 91 80 11 91 80 9 89 79 8 87 79 7 86

2 5 166 171 5 165 170 4 166 170 4 165 169 4 165 169 4 167 171 4 167 171 4 166 170

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256

Prod

Acc %
 94.4 91.7 93.1

User

Acc %
 85 97.1 91.1

Overall

Acc %
---- 92.59 ---- ---- ---- ---- ---- ----

Threshold

= 0.6

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 82 76 158 80 65 145 74 50 124 78 44 122 80 32 112 75 30 105 83 19 102 84 17 101

2 8 104 112 10 115 125 16 130 146 12 136 148 10 148 158 15 148 163 7 161 168 6 162 168

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 178 268 90 180 270 90 179 269

Prod

Acc %
91.1 57.8 74.5 88.9 63.9 76.4

82.
2

72.2 77.2 86.7 75.6 81.2 88.9 82.2 85.6 83.3 83.1 83.2 92.2 89.4 90.8 93.3 90.5 91.9

User

Acc %
51.9 92.9 72.4 55.2 92 73.6

59.
7

89 74.4 63.9 91.9 77.9 71.4 93.7 82.6 71.4 90.8 81.1 81.4 95.8 88.6 83.2 96.4 89.8

Overall

Acc %
68.89 72.22 75.56 79.26 84.44 83.21 90.37 91.45

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 84 13 97 86 16 102 84 12 96 80 10 90 80 11 91 80 10 90 79 8 87 79 7 86

2 5 166 171 4 164 168 4 166 170 4 166 170 4 165 169 4 166 170 4 167 171 4 166 170

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256

Prod

Acc %
94.4 92.7 93.6 95.6 91.1 93.4

95.
5

93.3 94.4 95.2 94.3 94.8 95.2 93.8 94.5 95.2 94.3 94.8 95.2 95.4 95.3 95.2 96 95.6

User

Acc %
86.6 97.1 91.9 84.3 97.6 91

87.
5

97.6 92.6 88.9 97.6 93.3 87.9 97.6 92.8 88.9 97.6 93.3 90.8 97.7 94.3 91.9 97.6 94.8

Overall

Acc %
93.28 92.59 93.98 94.62 94.23 94.62 95.35 95.7

 MBRVQ, CostERoE RoE

 Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Threshold
Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 68 38 106 58 38 96 67 33 100 80 45 125 76 28 104 75 28 103 79 19 98 79 15 94

 112

= 0.7 2 0 0 0 20 111 131 17 132 149 9 132 141 13 146 159 8 146 154 7 157 164 5 160 165

 68 38 106 78 149 227 84 165 249 89 177 266 89 174 263 83 174 257 86 176 262 84 175 259

Prod

Acc %
 74.4 74.5 74.5

79.
8

80 79.9 89.9 74.6 82.3 85.4 83.9 84.7 90.4 83.9 87.2 91.9 89.2 90.6 94 91.4 92.7

User

Acc %
 60.4 84.7 72.6 67 88.6 77.8 64 93.6 78.8 73.1 91.8 82.5 72.8 94.8 83.8 80.6 95.7 88.2 84 97 90.5

Overall

Acc %
--- 74.45 79.92 79.7 84.41 85.99 90.08 92.28

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 79 15 94 77 12 89 77 10 87 77 10 87 77 9 86 77 7 84 76 7 83 76 7 83

2 5 160 165 4 163 167 4 164 168 4 162 166 4 160 164 4 161 165 4 161 165 4 161 165

 84 175 259 81 175 256 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248

Prod

Acc %
94 91.4 92.7 95.1 93.1 94.1

95.
1

94.3 94.7 95.1 94.2 94.7 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4

User

Acc %
84 97 90.5 86.5 97.6 92.1

88.
5

97.6 93.1 88.5 97.6 93.1 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6

Overall

Acc %
92.28 93.75 94.51 94.47 94.8 95.58 95.56 95.56

Threshold

= 0.8

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 18 11 29 75 30 105 75 29 104 74 24 98 75 14 89 77 11 88

2 0 0 0 0 0 0 0 0 0 8 108 116 10 117 127 6 140 146 7 159 166 6 160 166

 0 0 0 0 0 0 18 11 29 83 138 221 85 146 231 80 164 244 82 173 255 83 171 254

Prod

Acc %
 90.4 78.3 84.4 88.2 80.1 84.2 92.5 85.4 89 91.5 91.9 91.7 92.8 93.6 93.2

User

Acc %
 71.4 93.1 82.3 72.1 92.1 82.1 75.5 95.9 85.7 84.3 95.8 90.1 87.5 96.4 92

Overall

Acc %
 82.81 83.12 87.7 91.76 93.31

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 11 88 77 10 87 76 9 85 76 8 84 76 8 84 76 8 84 76 8 84 76 8 84

2 3 157 160 4 159 163 5 161 166 4 160 164 4 160 164 4 160 164 4 160 164 4 160 164

 80 168 248 81 169 250 81 170 251 80 168 248 80 168 248 80 168 248 80 168 248 80 168 248

Prod

Acc %
96.3 93.5 94.9 95.1 94.1 94.6

93.
8

94.7 94.3 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1

User

Acc %
87.5 98.1 92.8 88.5 97.5 93

89.
4

97 93.2 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1

Overall

Acc %
94.35 94.4 94.42 95.16 95.16 95.16 95.16 95.16

 MBRVQ, CostERoE RoE

Threshold

= 0.9

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 12 1 13 44 5 49 60 9 69 66 7 73 69 7 76

2 0 0 0 0 0 0 0 0 0 0 0 0 4 78 82 6 105 111 5 127 132 5 147 152

 0 0 0 0 0 0 0 0 0 12 1 13 48 83 131 66 114 180 71 134 205 74 154 228

Prod

Acc %
 91.7 94 92.9 90.9 92.1 91.5 93 94.8 93.9 93.2 95.5 94.4

User

Acc %
 89.8 95.1 92.5 87 94.6 90.8 90.4 96.2 93.3 90.8 96.7 93.8

 113

Overall

Acc %
---- ---- ---- ---- 93.13 91.67 94.15 94.74

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 74 7 81 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80

2 3 152 155 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245

Prod

Acc %
96.1 95.6 95.9 94.9 95.7 95.3

94.
9

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3

User

Acc %
91.4 98.1 94.8 91.5 97.5 94.5

91.
5

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5

Overall

Acc %
95.76 95.47 95.49 95.49 95.53 95.51 95.51 95.51

Threshold

= 1

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 5 0 5 14 2 16 44 7 51 62 7 69 65 7 72

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 26 26 2 99 101 3 145 148

 0 0 0 0 0 0 0 0 0 5 0 5 14 5 19 44 33 77 64 106 170 68 152 220

Prod

Acc %
 100 60 80 100 78.8 89.4 96.9 93.4 95.2 95.6 95.4 95.5

User

Acc %
 87.5 100 93.8 86.3 100 93.2 89.9 98 94 90.3 98 94.2

Overall

Acc %
---- ---- ---- ---- 89.47 90.91 94.71 95.45

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 70 7 77 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79

2 3 152 155 4 157 161 4 158 162 4 158 162 4 161 165 4 161 165 4 161 165 4 161 165

 73 159 232 76 164 240 76 165 241 76 165 241 76 168 244 76 168 244 76 168 244 76 168 244

Prod

Acc %
95.9 95.6 95.8 94.7 95.7 95.2

94.
7

95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3

User

Acc %
90.9 98.1 94.5 91.1 97.5 94.3

91.
1

97.5 94.3 91.1 97.5 94.3 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4

Overall

Acc %
95.69 95.42 95.44 95.44 95.49 95.49 95.49 95.49

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.0

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 40 101 141 43 89 132 40 96 136 57 86 143 51 77 128 69 80 149 76 44 120 80 18 98

2 50 79 129 47 91 138 50 84 134 33 94 127 39 103 142 21 100 121 14 136 150 10 162 172

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
44.4 43.9 44.2 47.8 50.6 49.2

44.
4

46.7 45.6 63.3 52.2 57.8 56.7 57.2 57 76.7 55.6 66.2 84.4 75.6 80 88.9 90 89.5

User

Acc %
28.4 61.2 44.8 32.6 65.9 49.3

29.
4

62.7 46.1 39.9 74 57 39.8 72.5 56.2 46.3 82.6 64.5 63.3 90.7 77 81.6 94.2 87.9

Overall

Acc %
44.07 49.63 45.93 55.93 57.04 62.59 78.52 89.63

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 16 93 81 14 95 79 14 93 76 14 90 79 15 94 80 17 97 79 12 91 80 12 92

 114

2 13 164 177 9 166 175 11 166 177 14 166 180 11 165 176 10 163 173 11 168 179 10 168 178

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
85.6 91.1 88.4 90 92.2 91.1

87.
8

92.2 90 84.4 92.2 88.3 87.8 91.7 89.8 88.9 90.6 89.8 87.8 93.3 90.6 88.9 93.3 91.1

User

Acc %
82.8 92.7 87.8 85.3 94.9 90.1

84.
9

93.8 89.4 84.4 92.2 88.3 84 93.8 88.9 82.5 94.2 88.4 86.8 93.9 90.4 87 94.4 90.7

Overall

Acc %
89.26 91.48 90.74 89.63 90.37 90.00 91.48 91.85

Threshold

= 0.3

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 109 186 75 58 133 78 47 125 78 37 115 78 41 119 76 37 113 79 26 105 80 21 101

2 13 71 84 15 122 137 12 133 145 12 143 155 12 139 151 14 143 157 11 154 165 10 159 169

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
85.6 39.4 62.5 83.3 67.8 75.6

86.
7

73.9 80.3 86.7 79.4 83.1 86.7 77.2 82 84.4 79.4 81.9 87.8 85.6 86.7 88.9 88.3 88.6

User

Acc %
41.4 84.5 63 56.4 89.1 72.8

62.
4

91.7 77.1 67.8 92.3 80.1 65.5 92.1 78.8 67.3 91.1 79.2 75.2 93.3 84.3 79.2 94.1 86.7

Overall

Acc %
54.81 72.96 78.15 81.85 80.37 81.11 86.3 88.52

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 18 95 80 15 95 83 14 97 80 15 95 79 14 93 80 14 94 81 11 92 80 12 92

2 13 162 175 10 165 175 7 166 173 10 165 175 11 166 177 10 166 176 9 169 178 10 168 178

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
85.6 90 87.8 88.9 91.7 90.3

92.
2

92.2 92.2 88.9 91.7 90.3 87.8 92.2 90 88.9 92.2 90.6 90 93.9 92 88.9 93.3 91.1

User

Acc %
81.1 92.6 86.9 84.2 94.3 89.3

85.
6

96 90.8 84.2 94.3 89.3 84.9 93.8 89.4 85.1 94.3 89.7 88 94.9 91.5 87 94.4 90.7

Overall

Acc %
88.52 90.74 92.22 90.74 90.74 91.11 92.59 91.85

 115

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.35

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 86 131 217 79 75 154 76 47 123 76 46 122 78 38 116 81 39 120 80 31 111 82 25 107

2 4 49 53 11 105 116 14 133 147 14 134 148 12 142 154 9 141 150 10 149 159 8 155 163

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
95.6 27.2 61.4 87.8 58.3 73.1

84.
4

73.9 79.2 84.4 74.4 79.4 86.7 78.9 82.8 90 78.3 84.2 88.9 82.8 85.9 91.1 86.1 88.6

User

Acc %
39.6 92.5 66.1 51.3 90.5 70.9

61.
8

90.5 76.2 62.3 90.5 76.4 67.2 92.2 79.7 67.5 94 80.8 72.1 93.7 82.9 76.6 95.1 85.9

Overall

Acc %
50.00 68.15 77.41 77.78 81.48 82.22 84.81 87.78

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 81 21 102 80 18 98 81 17 98 81 11 92 81 15 96 82 13 95 83 11 94 83 13 96

2 9 159 168 10 162 172 9 163 172 9 169 178 9 165 174 8 167 175 7 169 176 7 167 174

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
90 88.3 89.2 88.9 90 89.5 90 90.6 90.3 90 93.9 92 90 91.7 90.9 91.1 92.8 92 92.2 93.9 93.1 92.2 92.8 92.5

User

Acc %
79.4 94.6 87 81.6 94.2 87.9

82.
7

94.8 88.8 88 94.9 91.5 84.4 94.8 89.6 86.3 95.4 90.9 88.3 96 92.2 86.5 96 91.3

Overall

Acc %
88.89 89.63 90.37 92.59 91.11 92.22 93.33 92.59

Threshold

= 0.4

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 84 84 168 81 60 141 78 58 136 78 46 124 79 52 131 82 38 120 81 32 113 82 27 109

2 6 96 102 9 120 129 12 122 134 12 134 146 11 128 139 8 142 150 9 148 157 8 153 161

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
93.3 53.3 73.3 90 66.7 78.4

86.
7

67.8 77.3 86.7 74.4 80.6 87.8 71.1 79.5 91.1 78.9 85 90 82.2 86.1 91.1 85 88.1

User

Acc %
50 94.1 72.1 57.4 93 75.2

57.
4

91 74.2 62.9 91.8 77.4 60.3 92.1 76.2 68.3 94.7 81.5 71.7 94.3 83 75.2 95 85.1

Overall

Acc %
66.67 74.44 74.07 78.52 76.67 82.96 84.81 87.04

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 84 22 106 85 19 104 83 20 103 82 16 98 85 14 99 83 13 96 83 12 95 82 10 92

2 6 158 164 5 161 166 7 160 167 8 164 172 5 166 171 7 167 174 7 168 175 8 170 178

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
93.3 87.8 90.6 94.4 89.4 91.9

92.
2

88.9 90.6 91.1 91.1 91.1 94.4 92.2 93.3 92.2 92.8 92.5 92.2 93.3 92.8 91.1 94.4 92.8

User

Acc %
79.2 96.3 87.8 81.7 97 89.4

80.
6

95.8 88.2 83.7 95.3 89.5 85.9 97.1 91.5 86.5 96 91.3 87.4 96 91.7 89.1 95.5 92.3

Overall

Acc %
89.63 91.11 90.00 91.11 92.96 92.59 92.96 93.33

 116

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.45

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 52 129 70 38 108 80 60 140 81 61 142 81 52 133 83 39 122 80 35 115 81 31 112

2 13 128 141 20 142 162 10 120 130 9 119 128 9 128 137 7 141 148 10 145 155 9 149 158

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
85.6 71.1 78.4 77.8 78.9 78.4

88.
9

66.7 77.8 90 66.1 78.1 90 71.1 80.6 92.2 78.3 85.3 88.9 80.6 84.8 90 82.8 86.4

User

Acc %
59.7 90.8 75.3 64.8 87.7 76.3

57.
1

92.3 74.7 57 93 75 60.9 93.4 77.2 68 95.3 81.7 69.6 93.5 81.6 72.3 94.3 83.3

Overall

Acc %
75.93 78.52 74.07 74.07 77.41 82.96 83.33 85.19

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 84 23 107 84 20 104 82 16 98 83 13 96 82 13 95 81 13 94 82 12 94 83 11 94

2 6 157 163 6 160 166 8 164 172 7 167 174 8 167 175 9 167 176 8 168 176 7 169 176

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
93.3 87.2 90.3 93.3 88.9 91.1

91.
1

91.1 91.1 92.2 92.8 92.5 91.1 92.8 92 90 92.8 91.4 91.1 93.3 92.2 92.2 93.9 93.1

User

Acc %
78.5 96.3 87.4 80.8 96.4 88.6

83.
7

95.3 89.5 86.5 96 91.3 86.3 95.4 90.9 86.2 94.9 90.6 87.2 95.5 91.4 88.3 96 92.2

Overall

Acc %
89.26 90.37 91.11 92.59 92.22 91.85 92.59 93.33

Threshold

= 0.5

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 21 17 38 74 52 126 77 55 132 82 67 149 81 53 134 83 48 131 81 34 115 81 32 113

2 69 163 232 16 128 144 13 125 138 8 113 121 9 127 136 7 132 139 9 146 155 9 148 157

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
23.3 90.6 57 82.2 71.1 76.7

85.
6

69.4 77.5 91.1 62.8 77 90 70.6 80.3 92.2 73.3 82.8 90 81.1 85.6 90 82.2 86.1

User

Acc %
55.3 70.3 62.8 58.7 88.9 73.8

58.
3

90.6 74.5 55 93.4 74.2 60.4 93.4 76.9 63.4 95 79.2 70.4 94.2 82.3 71.7 94.3 83

Overall

Acc %
68.15 74.81 74.81 72.22 77.04 79.63 84.07 84.81

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 83 24 107 84 19 103 81 20 101 84 15 99 84 15 99 83 11 94 81 10 91 82 10 92

2 7 156 163 6 161 167 9 160 169 6 165 171 6 165 171 7 169 176 9 170 179 8 170 178

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
92.2 86.7 89.5 93.3 89.4 91.4 90 88.9 89.5 93.3 91.7 92.5 93.3 91.7 92.5 92.2 93.9 93.1 90 94.4 92.2 91.1 94.4 92.8

User

Acc %
77.6 95.7 86.7 81.6 96.4 89

80.
2

94.7 87.5 84.8 96.5 90.7 84.8 96.5 90.7 88.3 96 92.2 89 95 92 89.1 95.5 92.3

Overall

Acc %
88.52 90.74 89.26 92.22 92.22 93.33 92.96 93.33

 117

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.55

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 58 32 90 70 42 112 79 56 135 82 61 143 81 54 135 83 46 129 80 35 115 81 30 111

2 32 148 180 20 138 158 11 124 135 8 119 127 9 126 135 7 134 141 10 145 155 9 150 159

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270

Prod

Acc %
64.4 82.2 73.3 77.8 76.7 77.3

87.
8

68.9 78.4 91.1 66.1 78.6 90 70 80 92.2 74.4 83.3 88.9 80.6 84.8 90 83.3 86.7

User

Acc %
64.4 82.2 73.3 62.5 87.3 74.9

58.
5

91.9 75.2 57.3 93.7 75.5 60 93.3 76.7 64.3 95 79.7 69.6 93.5 81.6 73 94.3 83.7

Overall

Acc %
76.3 77.04 75.19 74.44 76.67 80.37 83.33 85.56

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 82 24 106 83 20 103 82 16 98 80 11 91 80 12 92 80 11 91 79 10 89 79 7 86

2 7 155 162 7 160 167 6 162 168 4 165 169 4 164 168 4 165 169 4 165 169 4 166 170

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256

Prod

Acc %
92.1 86.6 89.4 92.2 88.9 90.6

93.
2

91 92.1 95.2 93.8 94.5 95.2 93.2 94.2 95.2 93.8 94.5 95.2 94.3 94.8 95.2 96 95.6

User

Acc %
77.4 95.7 86.6 80.6 95.8 88.2

83.
7

96.4 90.1 87.9 97.6 92.8 87 97.6 92.3 87.9 97.6 92.8 88.8 97.6 93.2 91.9 97.6 94.8

Overall

Acc %
88.43 90.00 91.73 94.23 93.85 94.23 94.57 95.7

Threshold

= 0.6

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 72 55 127 79 61 140 78 56 134 80 54 134 80 54 134 82 36 118 81 33 114 82 27 109

2 18 125 143 11 119 130 12 124 136 10 126 136 10 126 136 8 142 150 9 147 156 8 152 160

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 178 268 90 180 270 90 179 269

Prod

Acc %
80 69.4 74.7 87.8 66.1 77

86.
7

68.9 77.8 88.9 70 79.5 88.9 70 79.5 91.1 79.8 85.5 90 81.7 85.9 91.1 84.9 88

User

Acc %
56.7 87.4 72.1 56.4 91.5 74

58.
2

91.2 74.7 59.7 92.6 76.2 59.7 92.6 76.2 69.5 94.7 82.1 71.1 94.2 82.7 75.2 95 85.1

Overall

Acc %
72.96 73.33 74.81 76.3 76.3 83.58 84.44 86.99

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 83 20 103 85 20 105 83 17 100 80 13 93 80 12 92 80 11 91 79 10 89 79 7 86

2 6 159 165 5 160 165 5 161 166 4 163 167 4 164 168 4 165 169 4 165 169 4 166 170

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256

Prod

Acc %
93.3 88.8 91.1 94.4 88.9 91.7

94.
3

90.4 92.4 95.2 92.6 93.9 95.2 93.2 94.2 95.2 93.8 94.5 95.2 94.3 94.8 95.2 96 95.6

User

Acc %
80.6 96.4 88.5 81 97 89 83 97 90 86 97.6 91.8 87 97.6 92.3 87.9 97.6 92.8 88.8 97.6 93.2 91.9 97.6 94.8

Overall

Acc %
90.3 90.74 91.73 93.46 93.85 94.23 94.57 95.7

 118

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.65

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 82 76 158 78 62 140 75 50 125 76 45 121 79 40 119 81 36 117 80 31 111 82 25 107

2 0 0 0 9 115 124 15 130 145 13 134 147 10 138 148 9 139 148 10 149 159 8 154 162

 82 76 158 87 177 264 90 180 270 89 179 268 89 178 267 90 175 265 90 180 270 90 179 269

Prod

Acc %
 89.7 65 77.4

83.
3

72.2 77.8 85.4 74.9 80.2 88.8 77.5 83.2 90 79.4 84.7 88.9 82.8 85.9 91.1 86 88.6

User

Acc %
 55.7 92.7 74.2 60 89.7 74.9 62.8 91.2 77 66.4 93.2 79.8 69.2 93.9 81.6 72.1 93.7 82.9 76.6 95.1 85.9

Overall

Acc %
 73.11 75.93 78.36 81.27 83.02 84.81 87.73

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 78 20 98 80 21 101 80 16 96 77 12 89 77 11 88 77 10 87 76 9 85 76 7 83

2 7 159 166 5 159 164 4 162 166 4 164 168 4 162 166 4 163 167 4 163 167 4 164 168

 85 179 264 85 180 265 84 178 262 81 176 257 81 173 254 81 173 254 80 172 252 80 171 251

Prod

Acc %
91.8 88.8 90.3 94.1 88.3 91.2

95.
2

91 93.1 95.1 93.2 94.2 95.1 93.6 94.4 95.1 94.2 94.7 95 94.8 94.9 95 95.9 95.5

User

Acc %
79.6 95.8 87.7 79.2 97 88.1

83.
3

97.6 90.5 86.5 97.6 92.1 87.5 97.6 92.6 88.5 97.6 93.1 89.4 97.6 93.5 91.6 97.6 94.6

Overall

Acc %
89.77 90.19 92.37 93.77 94.09 94.49 94.84 95.62

Threshold

= 0.7

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 68 38 106 69 39 108 75 48 123 78 43 121 76 41 117 71 30 101 77 25 102 77 18 95

2 0 0 0 9 110 119 13 122 135 11 134 145 13 134 147 12 144 156 9 152 161 8 159 167

 68 38 106 78 149 227 88 170 258 89 177 266 89 175 264 83 174 257 86 177 263 85 177 262

Prod

Acc %
 88.5 73.8 81.2

85.
2

71.8 78.5 87.6 75.7 81.7 85.4 76.6 81 85.5 82.8 84.2 89.5 85.9 87.7 90.6 89.8 90.2

User

Acc %
 63.9 92.4 78.2 61 90.4 75.7 64.5 92.4 78.5 65 91.2 78.1 70.3 92.3 81.3 75.5 94.4 85 81.1 95.2 88.2

Overall

Acc %
 78.85 76.36 79.7 79.55 83.66 87.07 90.08

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 76 18 94 76 14 90 77 11 88 77 10 87 77 9 86 77 7 84 76 7 83 76 7 83

2 8 157 165 5 161 166 4 163 167 4 162 166 4 160 164 4 161 165 4 161 165 4 161 165

 84 175 259 81 175 256 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248

Prod

Acc %
90.5 89.7 90.1 93.8 92 92.9

95.
1

93.7 94.4 95.1 94.2 94.7 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4

User

Acc %
80.9 95.2 88.1 84.4 97 90.7

87.
5

97.6 92.6 88.5 97.6 93.1 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6

Overall

Acc %
89.96 92.58 94.12 94.47 94.8 95.58 95.56 95.56

 119

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.75

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 23 16 39 57 34 91 63 30 93 76 41 117 79 32 111 76 28 104 78 22 100 76 15 91

2 0 0 0 0 0 0 16 129 145 11 121 132 7 134 141 6 143 149 8 154 162 9 162 171

 23 16 39 57 34 91 79 159 238 87 162 249 86 166 252 82 171 253 86 176 262 85 177 262

Prod

Acc %

79.
7

81.1 80.4 87.4 74.7 81.1 91.9 80.7 86.3 92.7 83.6 88.2 90.7 87.5 89.1 89.4 91.5 90.5

User

Acc %

67.
7

89 78.4 65 91.7 78.4 71.2 95 83.1 73.1 96 84.6 78 95.1 86.6 83.5 94.7 89.1

Overall

Acc %
 80.67 79.12 84.52 86.56 88.55 90.84

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 77 18 95 77 12 89 77 11 88 77 9 86 77 9 86 77 7 84 76 7 83 76 7 83

2 6 156 162 4 162 166 4 163 167 4 163 167 4 160 164 4 161 165 4 161 165 4 161 165

 83 174 257 81 174 255 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248

Prod

Acc %
92.8 89.7 91.3 95.1 93.1 94.1

95.
1

93.7 94.4 95.1 94.8 95 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4

User

Acc %
81.1 96.3 88.7 86.5 97.6 92.1

87.
5

97.6 92.6 89.5 97.6 93.6 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6

Overall

Acc %
90.66 93.73 94.12 94.86 94.8 95.58 95.56 95.56

Threshold

= 0.8

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 5 9 14 16 12 28 74 26 100 77 29 106 72 21 93 75 20 95 76 15 91

2 0 0 0 0 0 0 14 111 125 12 123 135 8 118 126 8 143 151 8 154 162 7 156 163

 0 0 0 5 9 14 30 123 153 86 149 235 85 147 232 80 164 244 83 174 257 83 171 254

Prod

Acc %

53.
3

90.2 71.8 86 82.6 84.3 90.6 80.3 85.5 90 87.2 88.6 90.4 88.5 89.5 91.6 91.2 91.4

User

Acc %

57.
1

88.8 73 74 91.1 82.6 72.6 93.7 83.2 77.4 94.7 86.1 78.9 95.1 87 83.5 95.7 89.6

Overall

Acc %
 83.01 83.83 84.05 88.11 89.11 91.34

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 76 13 89 77 13 90 77 9 86 76 9 85 76 8 84 76 7 83 76 7 83 76 7 83

2 4 155 159 4 156 160 4 161 165 4 159 163 4 160 164 4 161 165 4 161 165 4 161 165

 80 168 248 81 169 250 81 170 251 80 168 248 80 168 248 80 168 248 80 168 248 80 168 248

Prod

Acc %
95 92.3 93.7 95.1 92.3 93.7

95.
1

94.7 94.9 95 94.6 94.8 95 95.2 95.1 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4

User

Acc %
85.4 97.5 91.5 85.6 97.5 91.6

89.
5

97.6 93.6 89.4 97.5 93.5 90.5 97.6 94.1 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6

Overall

Acc %
93.15 93.2 94.82 94.76 95.16 95.56 95.56 95.56

 120

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.85

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 8 1 9 58 19 77 66 20 86 70 14 84 71 13 84 72 9 81

2 0 0 0 0 0 0 0 0 0 6 99 105 6 116 122 7 142 149 5 148 153 5 153 158

 0 0 0 0 0 0 8 1 9 64 118 182 72 136 208 77 156 233 76 161 237 77 162 239

Prod

Acc %
 90.6 83.9 87.3 91.7 85.3 88.5 90.9 91 91 93.4 91.9 92.7 93.5 94.4 94

User

Acc %
 75.3 94.3 84.8 76.7 95.1 85.9 83.3 95.3 89.3 84.5 96.7 90.6 88.9 96.8 92.9

Overall

Acc %
 86.26 87.5 90.99 92.41 94.14

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 74 9 83 76 9 85 76 7 83 76 7 83 76 7 83 76 7 83 76 7 83 76 7 83

2 5 153 158 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165

 79 162 241 80 166 246 80 165 245 80 165 245 80 167 247 80 168 248 80 168 248 80 168 248

Prod

Acc %
93.7 94.4 94.1 95 94.6 94.8 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4

User

Acc %
89.2 96.8 93 89.4 97.5 93.5

91.
6

97.5 94.6 91.6 97.5 94.6 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6

Overall

Acc %
94.19 94.72 95.51 95.51 95.55 95.56 95.56 95.56

Threshold

= 0.9

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 32 3 35 46 6 52 61 10 71 66 6 72 69 6 75

2 0 0 0 0 0 0 0 0 0 0 0 0 6 110 116 6 126 132 5 130 135 5 148 153

 0 0 0 0 0 0 0 0 0 32 3 35 52 116 168 67 136 203 71 136 207 74 154 228

Prod

Acc %
 88.5 94.8 91.7 91 92.6 91.8 93 95.6 94.3 93.2 96.1 94.7

User

Acc %
 88.5 94.8 91.7 85.9 95.5 90.7 91.7 96.3 94 92 96.7 94.4

Overall

Acc %
 92.86 92.12 94.69 95.18

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 73 7 80 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80

2 4 152 156 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245

Prod

Acc %
94.8 95.6 95.2 94.9 95.7 95.3

94.
9

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3

User

Acc %
91.3 97.4 94.4 91.5 97.5 94.5

91.
5

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5

Overall

Acc %
95.34 95.47 95.49 95.49 95.53 95.51 95.51 95.51

 121

 Feature-Count Rule, CostERoE RoE

Threshold

= 0.95

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 5 0 5 32 2 34 58 6 64 66 6 72 69 6 75

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 4 70 74 5 126 131 5 148 153

 0 0 0 0 0 0 0 0 0 5 0 5 32 5 37 62 76 138 71 132 203 74 154 228

Prod

Acc %
 100 60 80 93.5 92.1 92.8 93 95.5 94.3 93.2 96.1 94.7

User

Acc %
 94.1 100 97.1 90.6 94.6 92.6 91.7 96.2 94 92 96.7 94.4

Overall

Acc %
 94.59 92.75 94.58 95.18

Markov 8th 9th 10th 11th 12th 13th 14th 15th

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 73 7 80 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80

2 4 152 156 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245

Prod

Acc %
94.8 95.6 95.2 94.9 95.7 95.3

94.
9

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3

User

Acc %
91.3 97.4 94.4 91.5 97.5 94.5

91.
5

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5

Overall

Acc %
95.34 95.47 95.49 95.49 95.53 95.51 95.51 95.51

Threshold

= 1

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 0 0 0 0 0 0 0 0 5 0 5 14 2 16 44 7 51 62 7 69 65 7 72

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 26 26 2 99 101 3 145 148

 0 0 0 0 0 0 0 0 0 5 0 5 14 5 19 44 33 77 64 106 170 68 152 220

Prod

Acc %
 100 60 80 100 78.8 89.4 96.9 93.4 95.2 95.6 95.4 95.5

User

Acc %
 87.5 100 93.8 86.3 100 93.2 89.9 98 94 90.3 98 94.2

Overall

Acc %
 89.47 90.91 94.71 95.45

Classes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 70 7 77 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79

2 3 152 155 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165

 73 159 232 76 164 240 76 165 241 76 165 241 76 167 243 76 168 244 76 168 244 76 168 244

Prod

Acc %
95.9 95.6 95.8 94.7 95.7 95.2

94.
7

95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3

User

Acc %
90.9 98.1 94.5 91.1 97.5 94.3

91.
1

97.5 94.3 91.1 97.5 94.3 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4

Overall

Acc %
95.69 95.42 95.44 95.44 95.47 95.49 95.49 95.49

122

Figure A.1. RVQ codebook with M = 4 and P = 8 for Graz dataset.

Table A.3 . Error matrix and classification performance measures for SVM on Graz dataset

Classes Bicycle People Background

Bicycle 245 10 0 255

People 7 153 2 162

Background 8 2 52 62

 260 165 54 479

Prod

Acc %
94.2 92.7 96.3

User

Acc %
96.1 94.4 83.9

Overall

Acc %
93.95

 123

REFERENCES

[1] C. Barnes and R. Frost, "Vector Quantizers with Direct Sum Codebooks," IEEE

Transactions on Information Theory, vol. 39, no. 2, March 1993.

[2] T. Morris, Computer Vision and Image Processing, Palgrave Macmillan, 2004.

[3] D. G. Lowe, "Object recognition from local scale-invariant features," in Proceedings

of the Seventh IEEE International Conference on Computer Vision, 1999.

[4] S. Lazebnit, C. Schmid and J. Ponce, "Semi-Local Affine Parts for Object

Recognition," in Proceedings of the British Machine Vision Conference, 2004.

[5] H. Bay, T. Tuytelaars and L.V. Gool, "SURF: Speeded Up Robust Features," in

Proceedings of the ninth European Conference on Computer Vision, 2006.

[6] K. Mikolajczyk and C. Schmid, "a performance evaluation of local descriptors,"

IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 10, pp.

1615-1630, October 2005.

[7] I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection,"

Journal of Machine Learning Research 3 (2003) 1157-1182, vol. 3, pp. 1157-1182,

2003.

[8] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[9] C. Cortes and V. N.Vapnik, "Support-Vector Networks," Machine Learning, vol. 20,

1995.

[10] C. Zhang and E. Baltsavias, "Knowledge-Based Image Analysis for 3D Edge

Extraction and Road Reconstruction," International Archives of Photogrammetry

and Remote Sensing, vol. XXXIII, 2000.

[11] P. Zimmermann, "A New Framework for Automatic Building Detection Analysing

Multiple Cue Data," International Archive of Photogrammetry and Remote Sensing,

vol. XXXIII, no. B3, 2000.

[12] B. Sirmacek and C. Unsalan, "Building Detection from Aerial Images Using

Invariant Color Features and Shadow Information," in 23rd International

Symposium on Computer and Information Sciences, 2008.

[13] M. Rizon, H. Yazid, P. Saad and A. Y. M. Shakkaf, "Object Detection Using

Geometric Invariant Moment," American Journal of Applied Sciences, vol. 2, no. 6,

pp. 1876-1878, 2006.

[14] S. Z. Li, "A Markov Random Field Model for Object Matching under Contextual

Constraints”, Proceeding of IEEE CVPR’94, pp. 866-869, 1995," in Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

1995.

[15] R. Brunelli and T. Poggio, "Face Recognition: Features versus Templates," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp.

1042-1052, October 1993.

[16] Theodoridis.S. and K. Koutroumbas, Pattern Recognition, 3 ed., San Diego, CA:

Academic Press, c2006.

[17] B. Draper, K. Baek, M. Bartlett and J. R. Beveridge, “Recognizing Faces with PCA

and ICA,” Computer vision and image understanding, Special issue of face

 124

recognition, vol. 91, no. (1/2), pp. 115-137, 2003.

[18] M. Bartlett, J. R. Movellan and T. J. Sejnowski, “Face Recognition by Independent

Component Analysis,” IEEE Transactions on Neural Networks, vol. 13, no. 6, 2002.

[19] C. Barnes and S. Rizvi, "Advances in Residual Vector Quantization: A Review,"

IEEE Transactions on Image Processing, vol. 5, no. 2, February 1996.

[20] Y. Linde, A. Buzo and R. Gray, "An Algorithm for Vector Quantization Design,"

IEEE Transactions on Communications, Vols. Com-28, no. 1, p. 1980.

[21] C. F. Barnes and R. L. Frost, "Residual Vector Quantizers with Jointly Optimized

Code Books," in Advances in Electronics and Electron Physics, 1992.

[22] C. F. Barnes, "Image-Driven Data Mining for Image Content Segmentation,

Classification and Attribution , Vol. 45, No.9. 2007," IEEE Transactions on

Geoscience and Remote Sensing, vol. 45, no. 9, September 2007.

[23] C. Barnes, "Hurricane Disaster Assessments with Image-Driven Data Mining in

High-Resolution Satelite Imagery," IEEE Transactions on Geoscience and Remote

Sensing, vol. 45, no. 6, June 2007.

[24] C. F. Barnes and J. Burki, "Late-Season Rural Land-Cover Estimation With

Polarimetric-SAR Intensity Pixel Blocks and σ-Tree-Structured Near-Neighbor

Classifiers," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9,

2009.

[25] K. Sayood, Introduction to Data Compression, 3 ed., Morgan Kaufmann, 2005.

[26] A. Gersho and R. Gray, Vector Quantization and Signal Compression, Springer,

1991.

[27] A. G. A. Buzo, R. M. Gray and J. Markell, ", “Speech coding based upon vector

quantization,”, vol. 28, pp. 562 – 574, Oct 1980.," IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 28, pp. 562-574, October 1980.

[28] G. Motta, F. Rizzo and J. Storer, "Partitioned Vector Quantization: Application to

Lossless Compression of Hyperspectral Images," in IEEE International Conference

on Acoustics, Speech, and Signal Processing, 2003.

[29] B. H. Juang and A. H. Gray, "Multiple Stage Vector Quantization for Speech

Coding," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 1982.

[30] T. Kohonen, Self-Organizing Maps, Berlin: Springer, 1997.

[31] B. Ramamurthi and A. Gresho, "Classified Vector Quantization of Images," IEEE

Transactions on Communications, Vols. com-34, no. 11, November 1986.

[32] S. Supot and S. Manas, "Codebook Design Algorithm for Classified Vector

Quantization Based on Fuzzy Clustering," in IEEE International Conference on

Industrial Technology, 2002.

[33] H.-H. Chen, H.-T. Sheu and J.-J. Ding, "Quadtree Classified Vector Quantization

Based Image Retrieval Scheme," in Eighteenth IEEE International Conference on

Image Processing, 2011.

[34] N. R. Pal and J. C. Bezdek, "On Cluster Validity for the Fuzzy C-Means Model,"

IEEE Transactions on Fuzzy System, vol. 3, pp. 370-372, 1995.

[35] X. Yang, D. Xu and Y.-J. Qi, "Bag-of-words Image Representation Based on

 125

Classified Vector Quantization," in Proceedings of the Ninth International

Conference on Machine Learning and Cybernetics, Qingdoa, 2010.

[36] L. Fei-Fei, R. Fergus and A. Torralba, "Recognizing and Learning Object

Categories: A Short Course," in IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

[37] B. Zhang and Y. Zhou, "Reliable Vehicle Type Classification by Classified Vector

Quantization," in IEEE Fifth International Congress on Image and Signal

Processing, 2012.

[38] S. Haykin, Neural Networks: A Comprehensive Foundation, 2 ed., Prentice Hall,

1998.

[39] N. Pal, J. Bezdek and E.-K. Tsao, "Generalized Clustering Networks and Kohonen's

Self-Organizing Scheme," IEEE Transactions on Neural Networks, vol. 4, no. 4, pp.

549-557, 1993.

[40] S. Hotta, "Learning Vector Quantization with Local Subspace Classifier," in The

19th IEEE International Conference on Pattern Recognition, 2008.

[41] P. Schneider, M. Biehl and B. Hammer, "Distance Learning in Discriminative

Vector Quantization," Neural Computation, vol. 21, no. 10, pp. 2942-2969, October

2009.

[42] Fahad and Sikander, "Classification of Textual documents Using Learning Vector

Quantization," Information Technology Journal, vol. 6, no. 1, 2007.

[43] M. Pilevar, H. Feili and M. Soltani, "Classification of Persian textual documents

using learning vector quantization," in Natural Language Processing and

Knowledge Engineering, 2009.

[44] P. C. C. R. M. G. a. J. M. K. L. Oehler, "Classification Using Vector Quantization,"

in Conference Record of the Twenty Fifth Asilomar Conference on Signals, Systems

and Computers, 1991.

[45] K. L. Oehler and R. M. Gray, "Combining Image Compression and Classification

Using Vector Quantization," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 17, no. 5, pp. 461-473, 1995.

[46] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theory and

Applications, World Scientific Pub Co Inc, 2008.

[47] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The

PASCAL Visual Object Classes (VOC) Challenge," International Journal of

Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.

[48] A. Opelt, A. Pinz, M. Fussenegger and P. Auer, "Generic object recognition with

boosting," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

28, no. 3, pp. 416-431 , 2006.

[49] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based Learning Applied

to Document Recognition," in Proceedings of the IEEE, 1998.

[50] Y. LeCun, C. Cortes and C. J. Burges, "The MNIST Database of Handwritten

Database," [Online].

[51] R. G. .. Congalton, Assessing the Accuracy of Remotely Sensed Data: Principles and

Practices, 2 ed., Boca Raton: CRC Press, 2008.

 126

[52] J. H. Friedman, J. Bentely and R. A. and Finkel, "An Algorithm for Finding Best

Matches in Logarithmic Expected Time," ACM Transactions on Mathematical

Software 3, 209, 1977.

[53] F. Kossentini, M. Smith and C. Barnes, "Image Coding Using Entropy-Constrained

Residual Vector Quantization," IEEE Transactions on Image Processing, vol. 4, no.

10, pp. 1349-1357, 1995.

	Chapter 5
	Introduction
	Markov-Bayesian RVQ Classification
	Figure 6. MP = 48 = 65536 Voronoi regions generated for M=4, P=8 RVQ.
	As mentioned before, Markov structure if imposed on the RVQ classifier, modeled with the Bayesian framework of Equation (2), can reduce the implementation cost of the RVQ classifier. When Markov condition is imposed on the stages of RVQ, it is based ...
	To explain the formulation of Markov structure on Equation (2), the mathematical development is shown on 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.., and it will be extended to the likelihood function 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.-,𝑐-𝑖.. ...
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.|,𝑐-𝑖..=𝑃,,𝐶𝑉-1.|,𝑐-𝑖..𝑃,,𝐶𝑉-2.|,𝑐-𝑖..𝑃,,𝐶𝑉-3.|,𝑐-𝑖..𝑃,,𝐶𝑉-4.|,𝑐-𝑖..𝑃,,𝐶𝑉-5.|,𝑐-𝑖..⋯
	𝑃,,𝐶𝑉-6.|,𝑐-𝑖..⋯𝑃,,𝐶𝑉-𝑃.|,𝑐-𝑖...
	The 0th Markov order in Equation (3) means that it is assumed that the class decisions made at each stage are independent of each other.
	1st Markov Order,
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.|,𝑐-𝑖..=𝑃,,𝐶𝑉-1.|,𝑐-𝑖..𝑃,,𝐶𝑉-2.-,𝐶𝑉-1.,,𝑐-𝑖..𝑃,,𝐶𝑉-3.-,𝐶𝑉-2.,,𝑐-𝑖..𝑃,,𝐶𝑉-4.-,𝐶𝑉-3.,,𝑐-𝑖..…
	𝑃,,𝐶𝑉-5.-,𝐶𝑉-4.,,𝑐-𝑖..⋯𝑃,,𝐶𝑉-𝑃.-,𝐶𝑉-𝑃−1.,,𝑐-𝑖...
	By merging the first two shaded probabilities into the respective joint probability, the above equation can equivalently be written as
	The 1st order Markov in equation (4) implies that each stage codevector is assumed to be dependent only on the previous stage.
	2nd Markov Order
	qth Markov order
	The class-conditional probability 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,…,,𝐶𝑉-𝑃.-,𝑐-𝑖.. can be generalized for an arbitrary Markov order 𝑞 as follows:
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,….,,𝐶𝑉-𝑃..=𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,…,,𝐶𝑉-𝑞+1..,𝑝=𝑞+2-𝑃-𝑃,,𝐶𝑉-𝑝.-,,𝐶𝑉-𝑝−1.,𝐶𝑉-𝑝−2.,,..,𝐶𝑉-𝑝−𝑞..., and the class-conditional probability 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,….,,𝐶𝑉-𝑃.-,𝑐-𝑖.. for the qth ...
	Proof of Concept: Linearly Separable Synthetic Dataset
	Proof of Concept: Linearly Non-Separable Synthetic Dataset
	In a series of experiments, Bayesian RVQ classifier is also tested on linearly non-separable synthetic data to see how it performs on a more complex dataset. Linearly non-separable Swiss roll dataset, as shown in Figure 10, 12, and 14, is formulated ...
	separate cases. In the first case, binary classification is performed on the dataset shown in Figure 10. The data of the two classes are marked Class 1 and Class 2 on the figure. It can be seen that the data from the two classes are spaced apart with ...
	In the first case, RVQ codebook with M = 4 and P = 8 is designed and trained on the training data shown in Figure 10. The training is complete when all the class-conditional probabilities in the Class-conditional Transition Probability Matrix are cal...
	Figure 12. Training dataset: Class1 data is in blue, Class2 data is in red.
	In this experiment, it was noted that as the Markov order increased, test inputs started mapping to unused Markov direct-sum sub-codevectors. Equivalently, the test inputs were mapping to unused direct-sum codevectors. Figure 6, in Chapter 5, illustr...
	RVQ Classification Performance Benchmark
	Joint P-Stage RVQ Classifier
	Euclidean Distance Criterion
	Hamming Distance Criterion
	Euclidean Distance Criterion
	Conclusion
	Estimated Markov-Bayesian RVQ Costs
	The cost of implementing Markov Bayesian RVQ classifier is dependent on the Markov order O, number of RVQ stages P, number of codevectors-per-stage M, and the number of classes C in the training dataset. It is desired that the Markov order is as low ...
	For given values of M, P, and C, the costs of implementation for Markov order O from zero to P are given in Table 6. It can be seen in the table that the memory for storing the codebook and the cost of the search through the codebook remain kMP for a...
	Table 6. Implementation cost of RVQ classifier.
	Chapter 6
	The number of codevectors M and stages P of RVQ are essential RVQ parameters that control the density of the covering of the input space. Equivalently, M and P control the size of the codebook of RVQ. Since the number of Voronoi regions generated in ...
	The focus of the preliminary research was to propose a method to make RVQ-based classification feasible by imposing a Markov structure on the stages of RVQ. It was also noted that classification performance showed improvement when Markov order was in...
	Lastly, since RVQ is a template-matching-based technique, the characteristics of a dataset will heavily bear on the performance of the RVQ-based classifier. Therefore, datasets with differing characteristics will be investigated for RVQ classificatio...
	In short, RVQ –based classification is investigated for the following three factors:
	(a) Different values of M codevectors-per-stage of RVQ.
	(b) Varying Markov order on the stages of RVQ.
	(c) Image datasets with different characteristics.
	The classification results obtained from this investigation provides insightful analysis into the working of RVQ as a classifier, and it guides the research to understand the parameters needed to extract improved classification results out of RVQ.
	The proposed RVQ classification is also compared to SVM-based classification involving feature vectors consisting of image intensity levels, and scale invariant feature transform (SIFT) [3]. It is shown how the proposed RVQ classifier fares with SIFT...
	Effects of Varying values of M
	For the Caltech101 dataset used in the preliminary research, Markov Bayesian RVQ classifier is investigated for varying number of codevectors-per-stage M. It is reminded that the training and test data are the same as used in the preliminary research...
	Table 7. Error matrices for M = 2 to M = 11. RVQ has P=8 stages with zeroth Markov order for classification.
	It can be seen in Figure 18 that for the given 3-catergory dataset, the classification performance tends to improve until M =7, after which it decreases. This trend suggests that Markov Bayesian RVQ classifier begins to over-fit after M = 7. It is al...
	Since in the figure above the performance of the RVQ-based classifier peaks at M=7, its classification performance at M = 7 is also calculated over a range of Markov order from 0 to P-1 = 7, where P = 8 stages. The classification performance in terms...
	Markov Bayesian RVQ (MBRVQ): This method is not different from the Bayesian RVQ classification method as described before.
	CostERoE: As mentioned earlier, the RoE constraint incurs an additional search cost. Therefore, a cost-effective method for implementing the RoE constraint is tested. This new method is termed as CostERoE, whereas, the earlier method will be referred ...
	Thresholds: Different thresholds Th on the class-conditional probabilities associated with the Markov sub-tuples will be applied to see their effects on the classification performance of the two schemes. Intuitively, the threshold Th can be thought as...
	The two schemes for RVQ-based classification i.e., Feature-count Rule and MBRVQ, will be tested on Caltech101 [47] and Graz [48] image databases. These experiments will help to understand the dynamics of RVQ-based classifier. Two different settings of...
	These tests serve as a guide to understanding the RVQ-based classification to determine how best to use RVQ for classification, and what are the suitable conditions and datasets to use RVQ as a classifier.
	Different thresholds Th on the class-conditional probabilities associated with the Markov sub-tuples will be applied to see their effects on the classification performance of MRVQ classifier. Intuitively, the threshold Th can be thought as a means to ...
	preferred over RoE because compared to RoE constraint, CostERoE constraint yields comparable classification performance at a better cost.
	Handwritten-Digits Dataset
	The MNIST database of handwritten digits [49], [50] consists of images of handwritten digits from zero to nine. All the images are centered and nearly uniformly scaled, and have the same size of 28-by-28 pixels in binary scale. The lighting variation...
	Yann Lecun et al [49] report comprehensive results on the classification of the handwriting database for the digits from zero to nine. The results reported in [49] also serve as a collection of benchmark performances to compare the performance of MBR...
	To see the effect of the varying codevectors-per-stage, the classification on
	Figure 37. Handwritten digit database. RVQ codebook with M = 4 codevectors-per-stage and P = 8 stages.
	Appendix A
	Table A.1. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples. Test set size = 270 total samples, Input size = 150x250 grayscale pixels, M = 4, P = 8.
	Table A.2. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples
	Test set size = 270 total samples, Input size = 71x101 grayscale pixels, M = 2, P = 16.

