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SUMMARY 

Residual vector quantization (RVQ) is a 1-nearest neighbor (1-NN) type of 

technique. RVQ is a multi-stage implementation of regular vector quantization. An input 

is successively quantized to the nearest codevector in each stage codebook. In 

classification, nearest neighbor techniques are very attractive since these techniques very 

accurately model the ideal Bayes class boundaries. However, nearest neighbor 

classification techniques require a large size of representative dataset. Since in such 

techniques a test input is assigned a class membership after an exhaustive search the 

entire training set, a reasonably large training set can make the implementation cost of the 

nearest neighbor classifier unfeasibly costly. Although, the k-d tree structure offers a far 

more efficient implementation of 1-NN search, however, the cost of storing the data 

points can become prohibitive, especially in higher dimensionality. 

 RVQ also offers a nice solution to a cost-effective implementation of 1-NN-based 

classification. Because of the direct-sum structure of the RVQ codebook, the memory and 

computational of cost 1-NN-based system is greatly reduced. For example, RVQ 

codebook with M = 4 codevectors-per-stage and P = 8 stages can potentially represent M
P
 

= 65536 training vectors with the cost of only MP = 32 codevectors. Although, as 

compared to an equivalent 1-NN system, the multi-stage implementation of the RVQ 

codebook compromises the accuracy of the class boundaries, yet the classification error 

has been empirically shown to be within 3% to 4% of the performance of an equivalent 1-

NN-based classifier.   



1 

 

CHAPTER 1 

INTRODUCTION 

 Classification of images is perhaps the most important part of digital image 

analysis. Classification is the problem of identifying to which of a set of categories a new 

observation belongs, on the basis of a training set of data containing observations whose 

category membership is known. In images, the intent of a classification process is to 

categorize all pixels in a digital image into one of several categories. Classification finds 

its application in a wide range of operations in computer vision. Computer vision [2] is a 

field that includes methods for acquiring, processing, analyzing, and understanding 

images and data from the real world to make decisions about the contents of images. 

Broadly speaking, the aim of computer vision is to duplicate the abilities of human vision 

by electronically perceiving and understanding images. The classification of images is a 

very important field of computer vision. The wide variety of applications of classification 

includes pattern recognition, object detection and recognition, and image understanding.  

 An important component of a classification of images is the choice of features. A 

feature, in general, is a piece of information that is relevant for solving the computational 

task related to a certain application. More specifically to images, a feature can refer to a 

simple intensity level in an image to a more complex structure like edge, line, texture, 

and an object. Even more complex features are manufactured to accomplish robust 

classification performances for object recognition. Few examples of such complex 

features that are very popular in computer vision applications are Scale-invariant Feature 

Transform (SIFT) [3], Rotation-Invariant Feature Transform (RIFT) [4], Speeded-Up 

Robust Features (SURF) [5], and Gradient Location and Orientation Histogram (GLOH) 



2 

 

[6]. The process of transforming data, such as text or images, into numerical features 

usable for various classification applications is called feature selection [7]. Feature 

selection has become the focus of much research, especially where huge amount of data 

is encountered. The objective of feature selection is three-fold: improving the 

classification performance of the classifiers, providing faster and more cost-effective 

classifiers, and providing a better understanding of the underlying process that generated 

the data.  

 An algorithm that implements classification is known as a classifier. The aim of a 

classifier is to separate the data in the feature space into regions belonging to each class. 

Broadly speaking, classifiers can be divided into two types: Separating hyperplane-based 

classifiers, or feature-template-based classifiers. In case of the former, the classifier is 

designed such that the data separated into class-specific regions by a plane. If the 

dimensionality of data is more than two, the separating plane is generically called a 

hyperplane. To achieve the separation between the data of different classes, it may be 

required to transform the data. This transformation of data required in the implementation 

of classification is called feature extraction. Artificial neural networks (ANN) [8] and 

support vector machines (SVM) [9] are one the widely used classifier of this type.  

 In feature-template-based classifiers, features are collected into a vector and then 

matched for nearness to the collection of exemplar features represented by training data. 

The criterion for nearness is called a distance function. All classifiers employ distance 

functions. Many types of distance functions are used, of which the most popular is 

Euclidean distance. Other well-known distance functions are quadratic, polynomial, chi-

squared, and Earth Mover’s Distance (EMD) distance functions [3]. The choice of a 
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distance depends on the type of features used by the classifier. Image-template matching-

based classification is a special case of feature-template matching-based classification. In 

this case, the feature template is composed of the intensity levels of the image. 

The scope of this research is the image-template matching-based classification. 

Various techniques based on features and image templates have been developed to 

achieve the various tasks of classification on a variety of images such as synthetic 

aperture radar, optical, satellite and infra-red images ranging from low to high resolution.  

In feature-template matching-based techniques the original image is first 

transformed from a pixel-intensity value to another set of features. The classification is 

then performed on the transformed feature space. Common transformed features are 

edges [10], texture [11], invariant color cues [12], and invariant geometric features [13]. 

Stan Z. Li [14] used Markov random fields (MRF) for object recognition by employing 

Bayesian structural-based matching technique on linear features. Similarly, Zhang et al. 

[10] also used the Bayesian framework to match line features to perform object 

recognition.  

Image-template matching-based classification is a very popular method and has 

certain advantages over other non-pixel features-based methods [15]. The former method 

uses the entire information in the image to make a class decision. Moreover, it does not 

involve further computations required for feature extraction. Within the area of 

classification based on image-template matching, the research community puts a great 

deal of emphasis on the techniques that decompose an image into a series of sub-images, 

also called basis vectors. Such decomposition also serves the purpose of image 

compression. Examples are principal component analysis (PCA) [16], [17] and 
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independent component analysis (ICA) [16], [18]. Residual Vector quantization (RVQ) 

[19] is also such a technique, which decomposes an image through a multi-stage, multiple 

codevectors-per-stage system that seeks to improve the image reconstruction through 

successive refinement of information. Other than these multi-stage frameworks, K-means 

[8] and nearest neighbor classifiers [8] are also widely used.  

Classification using RVQ on image templates is the scope of this research. RVQ 

employs multi-stage codebooks which give it a significant advantage over the regular 

vector quantization VQ [20] and k-NN classifiers in terms of computation and memory 

storage requirements. Residual Vector quantization, as designed by Barnes, C.F [19], 

[21], [1], employs direct-sum codebook design to achieve a dense covering of the input 

space with low computational and memory costs. The direct-sum codebook design 

enables the RVQ to densely populate the input space with Voronoi regions at a relatively 

low cost.  

K-means clustering is also a similar technique that partitions the input space into 

K regions [16]. However, the RVQ holds an advantage over K-means clustering and k-

nearest neighbor classifier in terms of computational and memory costs, especially, in a 

high-dimensional input space. The multi-stage RVQ can also be held similar to the 

techniques like principle component analysis (PCA) [16] and independent component 

analysis (ICA) [16] in the sense that RVQ also decomposes an input image into stage-

wise residual images. However, RVQ is, relatively, more suited to the operations of 

segmentation and classification since RVQ partitions the input space into Voronoi 

regions. RVQ has been used with a great degree of success for image-driven data mining 
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to detect features and objects in digital images [22], [23], and [24]. In these applications, 

the class-conditional probabilities are calculated for each codevector in stage codebooks. 

A classification decision is then made on each stage using Naive Bayes on the stage 

codevectors. In other words, maximum-aposteriori-probability-based (MAP) rule is 

locally applied on stage codebooks. Subsequently, the final-class decision is made by 

determining the highest class-conditional probability or equivalently the maximum local 

(stage) MAP and assigning the corresponding class membership to the input However in 

this method, classification performance with optimal rejection of false alarm is not 

guaranteed.  

 The aim of this research is to explore the Bayesian framework to formulate a 

solution for robust RVQ-based classification, optimal in the maximum-aposteriori-

probabilistic (MAP) sense. Moreover, to exploit the efficient direct-sum multi-stage 

structure of RVQ, the Markov approach is also explored to make the RVQ-based 

classification cost effective. 

This thesis report is organized into seven chapters. After the first chapter on 

introduction and a brief background of the research presented in this report, Chapter 2 

covers a discussion on vector quantization (VQ) including residual vector quantization 

(RVQ). The third and fourth chapters discuss the application of VQ and RVQ, 

respectively, in the area of classification. The fifth chapter contains the preliminary 

research on the proposed RVQ-based classification. Chapter 6 discusses the main 

research that is built upon the preliminary findings reported in Chapter 5. The conclusion 

and suggestions on future works on RVQ-based classification are presented in Chapter 7.  
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CHAPTER 2 

VECTOR QUANTIZATION 

Introduction 

 In vector quantization (VQ), samples of an input are grouped into a block or 

vector and are encoded altogether. On the contrary, the samples are encoded individually 

in scalar quantization (SQ). The idea that the encoding a group of samples of an input can 

be advantageous over the encoding of individual samples was first put forward by 

Shannon in his rate-distortion theory. Rate is the average number of bits per input sample, 

and the measures of distortion are generally mean-squared error and signal-to-noise ratio. 

Shannon shows that for a given rate, vector quantization results in a lower distortion than 

when scalar quantization is used at the same rate. A fundamental result of Shannon’s 

rate-distortion theory is that VQ will always achieve better compression than SQ, even if 

the source is memoryless, i.e., the source emits a sequence of identically- and-

independently-distributed random variables [25]. The reason for the superior performance 

of VQ over SQ is that greater flexibility exists in partitioning the input space using VQ 

than using SQ.  

 Vector quantization is a generalization of scalar quantization from the 

quantization of a scalar to a vector. SQ is used primarily for analog-to-digital conversion. 

VQ is used with sophisticated digital signal processing. VQ is usually, but not 

exclusively, used for the purpose of data compression. In such cases, the input signal is 

already in some form of digital representation of the original signal and the desired output 

is a compressed version of the original signal. However, VQ has also become an 
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important technique in speech and image recognition, and its importance and applications 

are growing. 

 A vector can be used to describe almost any type of pattern. A pattern can be 

formed from a segment of a speech waveform or an image, simply by forming an ordered 

group of samples extracted from the speech waveform or image. In such settings, VQ can 

be viewed as a form of pattern recognition where an input pattern is quantized and 

approximated by one of the patterns of a predetermined set, called the codebook. VQ can 

also be viewed as a front end to a variety of digital signal processing tasks, including 

classification and linear transformation.  

 Vector Quantization 

 In vector quantization, a quantizer Q (also referred to as a vector quantizer) of 

dimension k, codebook C, and size N maps each source symbol or vector x = {x0, x1, ... 

xk−1} in R
k
 to a finite set C containing N distinct codevectors, i.e., Q : R

k
 → C  R

k
. The 

number of bits required to represent each codevector, called the resolution, code rate, or 

simply the rate r, is       ⁄  bits per vector. This process describes the encoding stage 

of the VQ. The second and final stage, i.e., the decoding stage, maps each codevector 

obtained in the encoding stage to a vector that is an approximation of the input source 

vector. VQ can, therefore, be considered as a pattern-matching technique since each 

vector is encoded by comparing it to the codevectors using a suitable distance measure.  

For a given set of input symbols or a training set, the principal goal in the 

implementation of the VQ is to design a codebook specifying the decoder, and a partition 

of the input space specifying the encoder [26], while trying to minimize the average 

distortion over the entire training set. Several distortion measures have been proposed in 
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the literature. In image coding, a commonly used distortion measure is the squared-error 

criterion,  (   )  (   ) , even though it does not always correlate with the human 

perception of quality. For an input source that emits symbols    and a compression 

system that outputs symbols   , the average distortion is given by  

   ∑ ∑  (     ) (  ) (     )   .  

The distortion measure  (     ) in the above equation is a measure of closeness of input 

and output symbols, and is generally determined by the particular application [25]. The 

probability  (  ) is the distribution of the source symbols, and the posterior probability 

 (  |  ) determines the compression scheme used. 

VQ Codebook Design Method 

 The design of a VQ codbook is done by an iteration of two steps: 

a) Encoder design: Given a decoder (i.e., codebook), source distribution, and distortion 

measure, the optimal encoder is designed such that the encoder satisfies the nearest-

neighbor condition. 

b) Decoder design: Given a partition (i.e., encoder), and a squared-error criterion, the 

optimal decoder is designed such that the constituent codevectors of the decoder are the 

centroids of every cell that are made out of the given partition [26]. 

Steps a) and b) are repeated until some design objective is met. This formulation is the 

basis of the widely used Generalized Lloyd Algorithm (GLA) for VQ implementation 

[20]. This algorithm is also called the Linde Buzo Gray (LBG) algorithm [20]. 
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Types of VQ Structures  

ESVQ 

 We now discuss the main types of implementations of VQ that appear in the 

literature. The goal of a VQ implementation is that for a given rate the output distortion is 

as close as possible to the optimal distortion given by Shannon in his rate-distortion 

theory. However, in general, optimal coding of source vectors is not possible unless an 

exhaustive search is carried out over all the codevectors, as is done in structurally 

unconstrained exhaustive search vector quantizers (ESVQs) [21]. For a rate r and 

dimension n of the input vector, there are 2
nr

 codevectors. The computational costs of 

ESVQ, CESVQ, and memory requirements MESVQ are ≈ 2
nr

. A solution to this problem is to 

impose constraints on the VQ structure.  

TSVQ 

One possible solution is Tree-Structured VQ (TSVQ) proposed in [27]. A P-level, m-ary 

TSVQ has a search complexity CTSVQ ≈ mP, but double the storage requirements as 

compared to ESVQ, i.e., MTSVQ ≈ 2MESVQ. So, although the TSVQ addresses the search 

complexity problem, it aggravates the storage problem.  

Product Code VQ 

 A method for reducing both computational and storage complexity, especially for 

high-dimensional vectors, is to use product-code VQ. The basic idea in product-code VQ 

is to break a bigger problem into several smaller problems. Examples of product-code 

VQ are partitioned VQ, mean-residual VQ, gain-shape VQ, and mean-gain-shape VQ 

[19].  
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Partitioned VQ 

Partitioned VQ is the simplest and most direct way of to reduce the search and storage 

complexity in coding a high-dimensional vector. In partitioned VQ, a vector is partitioned 

into two or more smaller subvectors. The training set is also partitioned into sub-training 

sets, and separate optimal codebooks are designed for each partitioned sub-training set. 

An input vector is partitioned, and each partitioned subvector of the input vector is 

encoded by the corresponding codebook. A major disadvantage of the partitioned VQ is 

that the resulting codebook fails to capture the correlation between the subvectors in the 

training set [28]. 

Mean-Removed VQ 

In mean-removed VQ, the mean of an input vector is removed, followed by the 

quantization of the mean and the resultant vector, called mean-removed vector, 

separately. The technique is effective when source input vectors are similar to each and 

vary one another mainly in their mean values. For example, mean-removed VQ is used 

for a set of similar images with differing amounts of background illumination. The effect 

of the varying lighting conditions can be effectively reduced by removing the mean of 

each before quantization. The mean and the mean-removed images are, then, quantized 

separately, with one codebook for the mean values and the other codebook for the mean-

removed images, respectively. 

Gain-Shape VQ 

In applications, such as speech, where the dynamic range of the source input is quite 

large, gain-shape VQ is used. For such sources, a very large codebook is needed to 

represent the various vectors from the source. This requirement is reduced through gain-
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shape VQ, in which the source input vectors are normalized by a suitable normalization 

factor. The normalized vector and the normalization factor are, then, quantized 

separately. 

Mean-Removed-Gain-Shape VQ 

Often mean-removed and gain-shape techniques are combined together in one technique 

that is called mean-removed-gain-shape VQ. In this method, the mean of an input vector 

is removed and, then, the mean-removed input is normalized by its gain to obtain a vector 

that is effectively normalized to have zero mean and unit gain. Codebooks designed for 

such mean-removed-gain-shaped vectors tend to be very robust since their dependency 

on an accurate statistical model of the source reduces. Mean-removed-gain-shape VQ has 

been extensively used in image coding.  

Multi-Stage VQ 

Another VQ technique that has proved valuable in a number of speech and image 

coding applications is multi-stage VQ (MSVQ) or cascaded VQ [29]. This technique is 

also referred to as residual VQ (RVQ) [29]. However, in this thesis, the terminology 

residual vector quantization (RVQ) is exclusively reserved for the VQ technique 

developed by Barnes [21], [1] (the details of RVQ will be given later). The other multi-

stage VQ methods are referred to, simply, as MSVQ. Juang and Gray [29] first proposed 

the MSVQ structure, which is shown in Figure 1. 

MSVQ 

The basic idea of MSVQ is to divide the encoding task into successive stages. 

Each stage has its own codebook. The first stage performs a relatively crude quantization 
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of the input vector using its stage-wise codebook. After the quantization step at the first 

stage, an error vector, also called residual, is generated by subtracting the codevector 

 

Figure 1. MSVQ block diagram (Courtesy Barnes, C.F et al. [1]). 

used on the first stage from the input vector. Then, a second stage quantizer operates on 

the residual of the first stage and quantizes the error vector. Like the first stage, the 

second stage also generates the residual between the input vector of the second stage and 

the codevector used at the second stage. The residual after the second stage provides a 

second approximation to the original input vector thereby leading to a refined or more 

accurate representation of the original input. A third stage quantizer may be used to 

quantize the second stage residual to provide a further refinement and so on.  

MSVQ design method constrains the parent codebook to be constructed from the 

direct sum of the smaller constituent stage-wise codebooks. Such codebook is called a 

direct-sum codebook. Direct-sum codebooks are memory efficient, in that if there are P 
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stage-wise constituent codebooks and M codevectors per stage, then the parent codebook 

contains M
P
 code vectors, but requires the storage of only MP constituent code vectors. 

Juang and Gray [29] suggested that MSVQ stages be designed by sequential 

application of the generalized Lloyd algorithm (GLA). Although sequential use of the 

GLA is nearly optimum for two-stage MSVQ with moderated to high output rates (i.e., 

large stage codebook sizes), this design method is increasingly unsatisfactory as the 

number of stages grows beyond two [19]. The main shortcoming of the sequential GLA 

design method is that each stage codebook is generated while considering only the error 

due to previous stages (the causal error); the error due to subsequent stages (the 

anticausal error) is ignored. This prior research demonstrated empirically that sequential 

nearest-neighbor encoding and suboptimal sequential design methods for direct sum 

codebooks generally produce rather poor results when more than two or three VQ stages 

are used. Subsequently, research interest in direct-sum codebooks with many stages 

waned, leaving the limitations of the direct-sum-codebook constraint poorly understood 

and the possibility of other encoding strategies unexplored. Barnes in [21], [1] proposed a 

novel design approach in which the codebook design technique takes into account both 

the causal and anticausal errors of the previous and subsequent stages to reduce the 

overall error. Barnes in [21], [1] refers to this design approach as a joint-optimal method, 

and the MSVQ design with this joint-optimal method is referred to as RVQ in this thesis. 

 RVQ is the focus of the research presented in this thesis. Therefore, the details on 

RVQ are given special attention and are presented as follows. 

Residual Vector Quantization (RVQ) 

RVQ is a type of multi-stage vector quantization. RVQ is implemented with a 
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direct-sum codebook structure. Barnes in [21], [1] used RVQ with direct-sum, and 

causal-anti-causal codebook to demonstrate both low-level segmentation, and high-level 

object recognition.  

Like MSVQ, RVQ decomposes an input vector stage-wise. This successive 

decomposition starts from the first stage, where an input vector is mapped to one of the 

codevectors in the codebook of the first stage. The mapping of the input is done 

according to some distance criterion. Barnes in [21], [1] used the mean-squared-error 

(MSE) distance measure. The mapped codevector of first stage is then subtracted from its 

input to yield a residual vector for the first stage. The residual is fed to the next stage as 

the input. The process continues for every subsequent     stage, and the respective 

residual vector is created by subtracting the mapped codevector    of the     stage from 

the input of that stage. This process stops if either the last stage P is reached, or when the 

MSE between the original input and the reconstructed input at a stage meets a pre-

specified threshold. The reconstructed vector of the original input vector is obtained by 

summing up the corresponding    codevectors of all the used stages. For all the P stages 

of RVQ, the reconstructed image  ̂ of the original image   is given as 

 ̂   ∑   
 
                         .  

The entire operation of RVQ, as mentioned above, can be summarized in the following 

three steps: 

a) A mapping to direct-sum codevectors: This function is a mapping from R
k
 to 

R
k
, where k is the dimensionality of the codevectors and also the input space.   

b) A mapping to P-tuple representation of the direct-sum codevectors: P-tuple is 

a set,                       , where               is the index of one of 
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the M codevectors at the     stage of the RVQ. This mapping is a 

transformation from R
k
 to R

P
. P is the total number of stages of the RVQ, and, 

generally, P << k. 

c) Mapping back from R
P
 to the input space R

k
: The P-tuples are transformed 

back to in the input space to give the reconstructed image of the input image. 

RVQ partitions the input space R
k
 into M

P
 Voronoi cells. The advantage of this 

approach is that in obtaining M
P
 partitions, the partitioning algorithm is run only P times 

and generates M partitions at each stage. In traditional VQ, the partitioning algorithm will 

run once but will create M
P
 partitions. For example, for the binary case (two code-vectors 

per stage, M = 2) and a total of 8 stages (P=8), RVQ only requires 16 searches. However, 

ESVQ will require 256 searches. As a result of the multi-stage implementation of RVQ, 

the exponential complexity in ESVQ is reduced to the linear complexity in RVQ. 

Moreover, even the distortion of ESVQ can be attained. In general, structurally 

constrained quantization cannot provide a performance as good as ESVQ. However, 

since they are able to more efficiently implement codes, larger vector sizes can be used, 

and if carefully designed, can achieve better performance than ESVQ, when compared on 

the basis of implementation costs [21]. The comparison between ESVQ, TSVQ, and 

RVQ is summarized in Figure 2. 

Another question here concerns the optimality of RVQ. RVQ is said to be jointly 

optimal, also referred to as joint encoder-decoder optimal, if a local or global minimum 

value of the average distortion  (   )      (    ( (  )))  is achieved. Here, E is 

the encoder, D is the decoder,  (   ) is a distortion metric, and      is the expectation 

operator. The necessary condition for the joint encoder-decoder optimality is that the 
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Figure 2. Comparison of implementation costs of ESVQ, TSVQ, and RVQ. 

the codevectors   ( ) of the p
th

 stage must satisfy the following condition: 

   
  

   ( )
   . 

This condition is satisfied when the stage codevectors are the centroids of residuals that 

are formed from the encoding decisions of both causal and anti-causal stages [21]. On the 

other hand, if only causal stages are considered, then satisfying the above condition will 

help achieve sequential optimality. For the encoder case, it is not possible to design 

optimal stages. Instead an overall global unconstrained encoder is designed, and then 

individual encoder codebooks are designed for each stage by using nearest-neighbor rules 

that try to match the performance of ESVQ with direct-sum codebook.  

 Because of the multiple-stage structure in RVQ, it is possible to implement RVQ 

with few codevectors per stage. This aspect of RVQ can be useful if the training data is 

limited 
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 Having discussed the optimality conditions, and the general design and 

implementation guidelines of RVQ, we now turn our attention to the application of RVQ 

for classification. It is in this role that we seek to use RVQ in our research. 

RVQ for Classification 

 The use of RVQ in classification was reported in Barnes [22], [23], and in the 

context of image-driven data mining. In this work, a σ-tree is used as a data structure for 

RVQ stage-wise codevectors. The term sigma-tree is used to differentiate the tree 

structure of traditional TSVQs from the “summed” tree structure of RVQ. To better 

understand the σ-tree classifier, we relate it with other well-known areas of information 

theory, pattern recognition, and machine learning: 

a) The σ-tree classifier can be compared to dimensionality reduction methods 

such as Principal Components Analysis (PCA). PCA seeks to reorient the basis 

vectors in R
n
 and achieves compression by ignoring projected data components 

with least variances. A σ-tree RVQ achieves compression by encoding a source 

symbol with a lower dimensional tuple. 

b) The σ-tree classifier partitions the decision space R
n
 [21] like other well known 

classifiers such as neural networks, support vector machines and K-means 

clustering algorithm. Further, note that neural networks partition the decision 

space with hyperplanes or hypersurfaces, depending on whether or not hidden 

layers are used. Support vector machines also partition the decision space, but 

with maximum margin hyperplanes in a higher dimensional space. Like the K-

means clustering scheme, the σ-tree classifier tessellates the decision space R
n
 

with K Voronoi cells.  
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c) As already discussed, the Linde Buzo Gray (LBG) algorithm is widely used to 

design the encoder and decoder of a VQ, including RVQ and the σ-tree classifier. 

This algorithm is similar to the well-known K-means algorithm [21]. However, 

use of LBG design methods limit RVQs to typically only two stages. The greedy 

nature of sequential LBG design techniques prevent larger numbers of stages to 

be designed that give acceptable performance gains with additional stages. 

 Having introduced RVQ, we now turn to a more comprehensive discussion on the 

applications of VQ for classification and pattern recognition. 
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CHAPTER 3 

VECTOR QUANTIZATION-BASED CLASSIFICATION 

Introduction 

 As discussed in Chapter 2, vector quantization (VQ) is a signal compression 

technique. However, use of VQ for the representation of input vectors in terms of the 

codevectors provides a natural basis for segmentation and classification. VQ partitions 

the input space into Voronoi regions. The inputs are mapped to these Voronoi regions 

with calculable prior and conditional class-conditional probabilities. Therefore, a test 

input can be classified by applying the maximum-a posteriori-probability rule. As a 

result, VQ has become a relevant technique in speech and image recognition, and its 

importance and applications are growing [22], [29]. 

 Vector quantization has been implemented in a variety of ways in the applications 

of classification and pattern recognition [30]. In one implementation, namely classified 

vector quantization (CVQ) [31], a VQ-based classifier is used as pre-processing step for 

improved compression and signal representation. In learning vector quantization (LVQ), 

the codevectors of the VQ are such placed in the input space that the classification 

performance is maximized [30]. In other words, the codebook is designed to approximate 

the Bayes decision boundaries in the input space, and the compression performance is not 

given the top priority. Vector quantization is also implemented by designing stage 

codebooks, called multistage VQ (MSVQ). This implementation significantly reduces the 

computation cost of the VQ. MSVQ is a general design methodology that can be used to 

implement both CVQ and LVQ [30]. The latter is also called modified tree search VQ 
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(MTSVQ). However, MTSVQ are designed to maximize both the compression and 

classification performances of the VQ. 

 After briefly describing the various types of VQ-based classifiers, a more detailed 

explanation of these implementations is discussed one-by-one in the following 

paragraphs. 

Classified Vector Quantization 

 Classified vector quantization (CVQ) [31] is a method for improved data 

compression performance, not for classification. The focus of the improved encoding for 

data compression  is to reduce degradation of certain features in the signals. For example, 

in [31] CVQ is used encode the edges more efficiently than the other features in the 

images. In CVQ, the VQ codebook is composed of sub-codebooks. A sub-codebook or 

equivalently a class-specific VQ encoder is designed by training the VQ on the images 

from that particular class. In CVQ, an input is classified before being fed to the sub-

codebook of that class for class-specific encoding. The encoder has two components: (1) 

classifier, and (2) encoder class-specific codebooks. In [31], CVQ is designed with the 

primary function of edge enhancement in the input images. Firstly, the classifier 

categorizes an input image into one of the pre-specified classes. The pre-classified image 

is, then, encoded by the VQ that is specifically designed for that class. The encoded 

image is decoded by a decoder. The decoder is simply a lookup table that decodes the 

encoded input image to produce the corresponding reconstructed images. Figure 3 

illustrates the generic functional blocks of a CVQ encoder. There are M classes, and if the 

input belongs to class i, the i
th

 sub-codebook Ci of size    is employed to encode the 

input, using a distortion measure  (   ). A distortion measure is a measure of how close 
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an arbitrary input is to the codevectors in the codebook. In general, the distortion 

measures for different classes may be different. The total number of codevectors is 

   ∑   
 
   , with encoding indices ranging from 1 to  . 

 

Figure 3. Classified vector quantization. 

 

The encoding index of the nearest codevector is transmitted to the decoder. The decoder 

simply looks up the corresponding codevector from its codebook of size   and generates 

the reconstructed image of the input. An important factor in the design of the individual 

codebooks is the optimal size of the codebooks for a given average distortion for the 

respective class. It is shown that the optimal average distortion   
  for a given class-

specific codebook and the optimal codebook size   
 for that class, is given as  

    
   

  
  

           

where    is the probability of occurrence of the images from the i
th

 class. So, by trial and 

error   
  and the corresponding   

  can be found that satisfy the above condition. The size 

of the codebook of a particular class implicitly assigns a corresponding weight to that 
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class. The higher the size of the codebook, the higher importance is given to the images 

from that class. 

 CVQ is based on a composite source model for images. This composite source 

model, especially for edge perception [31], has a firm basis in the psychophysics of 

human-vision system. In this model the image source is viewed as a bank of class-

specific image sub-sources. It is assumed that each input image comes from one of these 

class-specific image sub-sources. Therefore, in the design of VQ codebook with this 

model, a separate VQ codebook is designed for each sub-source. In other words, separate 

VQ codebooks are designed for each class of the images using the LBG algorithm. 

 It should be noted that in [31] CVQ is a method for improved encoding 

performance, not for classification. The focus of the improved encoding is to reduce 

degradation of edges in images. The classification is performed once per input vector, 

and its complexity is negligible in comparison with that of the encoding. The encoding 

complexity of the CVQ is greatly reduced as compared with that of a regular VQ with the 

same average distortion measure. Similar applications of edge enhancement using CVQ 

are also reported in [32] and [33]. However, in [32], the sub-codebooks are designed with 

the Fuzzy C-Means method [34], and the CVQ sub-codebooks in [33] are designed the 

same way as in [32], but with a quad-tree pre-classifier. Moreover, in [33], the indices 

generated by CVQ are used for the application of image retrieval. In the image retrieval 

application, the images similar to a query image are retrieved based on a similarity 

measure. 

 Other than the application of edge enhancement, CVQ has also been integrated 

into a system designed for classification. In [35], CVQ sub-codebooks are designed on 
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pre-classified SIFT features [3] of edges and smooth regions in the images in the training 

set to generate bag-of-words (BOW) histogram features [36]. After the CVQ step, SVM 

[9] classifier is trained on the BOW histogram features of the two classes in the training 

set. In [37], CVQ sub-codebooks are designed for four classes: car, van, light truck, and 

bus. Multilayer perceptron (MLP) [38] is used as the pre-classifier before CVQ. For a 

given test image, the class-membership is assigned to that class for which the 

corresponding class-specific CVQ sub-codebook gives the least reconstruction error.   

Learning Vector Quantization 

Learning vector quantization LVQ was invented by Teuvo Kohonen [30]. Is a 

supervised version of vector quantization in which the VQ codebook is designed with the 

training data having known class associations, also called labeled data. The learning 

technique for LVQ uses the class information of the labeled training data to position the 

codevectors such that the quality of the classifier decision boundary improves. 

The training method of learning vector quantization is often called competition 

learning, because it works as follows: For each training data the codevector that is closest 

to it is determined. The direction of the change in the location of the codevector, also 

called adaptation, depends on whether the class of the training data and the class 

assigned to the codevector coincide or not. If they coincide, the codevector is moved 

closer to the training data; otherwise it is moved farther away. This movement of the 

codevector is controlled by a parameter called the learning rate, which is usually made to 

decrease monotonically with time. Since the learning rate is usually decreasing, the initial 

changes in the positions of the codevectors are larger than the changes made in later 
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epochs of the training process. Learning may be terminated when the positions of the 

codevectors hardly change anymore.  

The earlier implementation of LVQ has been carried out with multiple algorithms, 

namely LVQ are LVQ1, LVQ2, and LVQ3 [30]. These three algorithms yield almost 

similar accuracies in most statistical pattern recognition tasks. LVQ1 and LVQ3 offer a 

more robust solution to the optimization of class boundaries. The learning rate can be 

optimized for quick convergence. However, LVQ3 differs from LVQ1 in the number 

codevectors involved in the update of the class boundaries. In LVQ1, only the nearest 

codevector is moved, but in LVQ2, two nearest codevectors, one belonging to the same 

class and the other belonging to a wrong class, are simultaneously updated. This process 

is also called differential shifting. LVQ2 also employs differential shifting. However, 

unlike LVQ3, the update of the class boundaries is not guaranteed to converge, if the 

LVQ2 algorithm is allowed to run over a long period of time. 

Advanced LVQ  

 The original methods for LVQ are based on the Euclidean distance in the 

optimization of class boundaries. The Euclidean distance assumes certain geometric 

properties in the training data, which, at times, may not be realistic. For this reason, 

extensions of the methods to more general distance functions have been proposed that are 

called generalized LVQ (GLVQ) [39], [40], and [41]. In these GLVQ algorithms distance 

function parameters are learned based on the given classification task such that a data-

driven distance function is found. Consequently, the class boundaries are more accurately 

drawn that results in a significant improvement in classification accuracy. Another 
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critical advantage of GLVQ over the regular LVQ is that the increased accuracy in the 

formation of the class boundaries is achieved with lesser number of codevectors.  

 Learning vector quantization has been used for the classification of textual 

documents [42], [43], where LVQ network is used for classifying text documents. In 

general, LVQ require less training examples and are much faster than other classification 

methods. The experimental results show that the LVQ approach outperforms k-NN, and 

is comparable to SVM 

Modified Tree-Searched Vector Quantization for Classification 

Because of the implicit connection between compression and classification, VQ 

can be considered as a framework which can be optimized to both compress and classify. 

Two applications of this concept are shown.  

 In [44], [45] compression and classification are combined in one single process of 

codebook design in vector quantization (VQ). The method is generally referred to as 

modified tree-searched vector quantization (MTSVQ). As the name of the method 

suggests, vector quantization is implemented with tree-searched vector quantization 

(TSVQ). TSVQ is a multi-stage, sigma-tree implementation of VQ. The reason to use 

TSVQ over the regular VQ is greatly reduced computational complexity in TSVQ. 

Furthermore, unbalanced TSVQ, which is a variable-rate coding method, can also be 

employed. Unbalanced TSVQ generally produces lower average distortion than balanced 

TSVQ. Trained data sets are used to design codebooks that achieve both small average 

distortion measure and good classification performance.  

Purely for compression, the codebook of TSVQ is designed by splitting the node 

which reduces the average distortion until the average distortion reaches a pre-specified 
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value. However, in the design of MSTVQ, the optimization of TSVQ codebook is 

modified to achieve good classification along with good compression. As mentioned 

earlier, the efficacy of simultaneous compression and classification has been 

demonstrated through two applications: (1) Classification of the regions-of-interest in the 

compressed images, and (2) Enhancement of certain features in an image that are 

important in some sense. 

In [44], binary classification was carried between man-made or natural structures. 

The training set consisted of five 512 x 512 grayscale images of aerial photography of the 

San Francisco Bay area. These images were provided by ESL, Inc. Each image was 

divided into 16 x 16 sub-blocks. The 16 x 16 sub-blocks were hand-labeled as either 

man-made or natural.  However, to further reduce TSVQ complexity, the codebook 

construction based on the classified training set is done on a coarser resolution scale of 4 

x 4 pixel blocks of the 16 x 16 sub-blocks. This coarse resolution could have affected the 

classification of this classifier.   

For the design of the TSVQ codebook, primarily two separate splitting criteria are 

employed in growing the tree: 1) split the node that provides the largest ratio of decrease 

in distortion to increase in rate. The distortion measure is the mean squared error. 2) Split 

the node that has the greatest percentage of misclassified training vectors. This 

corresponds to measuring the distortion by the hamming distance between the node class 

and the hand-labeled class of the input training vector. 

In general, the first splitting criterion provided the lowest distortion in the 

encoded images at the cost of comparatively poor classification performance. The second 

splitting criterion achieved better classification but poorer reconstruction. The choice 
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between the two splitting criteria involves a trade-off between rate and memory 

requirements. The classification of TSVQ is compared against Classification and 

Regression Trees (CART) [46]. From the results, it is concluded that the two classifiers 

are generally comparable. CART performed better on original images. On the other hand, 

CART performed worse on the compressed images. 

In the application of image enhancement, regions of certain classes are enhanced. 

This is done by introducing weighted distortion measure. The basic idea is to achieve 

better encoding of the regions belonging to certain classes-of-interest assigning them 

higher weights. MSE is used as a distortion measure. Higher weights are assigned to the 

classes that are deemed more imported. Similarly, the classes that are of lesser interest are 

assigned lower weights in the distortion measure. Assigning higher weights to certain 

classes contributes to higher distortion measure for those classes, and, as a result, the tree 

grows deeper for those classes, thus, achieving lower reconstruction errors for those 

classes. 

MSTSVQ have been tested on MRI scans, and textured data with vector 

quantization done on non-overlapping 2x2 and 4x4 sub-blocks, respectively, in the 

images [45]. For MRI scans, bright training vectors are weighted more heavily than dark 

one. On comparison with non-weighted TSVQ, the weighted TSVQ encoded the bright 

regions in the images better. 

For the textured data, the training and test images were taken from USC database 

[45]. Each image was divided into 4 x 4 non-overlapping sub-blocks. Highly textured 

data were assigned lower weights, and highly homogenous vectors were given higher 

weights. The test images showed clouds, a lake, and trees. A comparison of compressed 
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images encoded from the weighted and non-weighted tree showed that the cloud regions 

had less distortion, whereas, the tree areas had high texture and, therefore, had more 

distortion. 

 Another implementation of VQ that also uses multi-stage tree structure of TSVQ 

is called residual vector quantization (RVQ). RVQ has been used in the applications of 

classification and pattern recognition [22] [23]. The focus of this thesis is also RVQ-

based classification. A discussion on RVQ-based classifiers is presented in the next 

chapter. 
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CHAPTER 4 

RESIDUAL VECTOR QUANTIZATION 

Introduction 

 Residual vector quantization (RVQ) is a type of multi-stage vector quantization 

(MSVQ). RVQ is implemented with a direct-sum codebook structure [19]. Barnes in 

[22], [23], and [24] used RVQ with direct-sum, and causal-anti-causal codebook to 

demonstrate both low-level segmentation, and high-level object recognition. As 

mentioned earlier, RVQ is designed with stage codebooks with the direct-sum data 

structure that implicitly implements the RVQ book in a directly summed tree structure, 

also often called σ-tree. The direct-sum codebook of RVQ with its implicit tree structure 

is shown in Figure 4. 

 

Figure 4. Direct-sum codebook of RVQ with the implicit σ-tree structure. M is codevector-per-

stage and P is the number of RVQ stages. 

Like MSVQ, RVQ decomposes an input vector stage-wise. This successive 

decomposition starts from the first stage, where an input vector is mapped to the nearest 

codevector in the codebook of the first stage. The mapping of the input is done according 

to some distance criterion. Barnes in [21] and [1] used the mean-squared-error (MSE) 
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distance measure. The mapped codevector of first stage is then subtracted from its input 

to yield a residual vector for the first stage. The residual is fed to the next stage as the 

input. The process continues for every subsequent     stage, and the respective residual 

vector is created by subtracting the mapped codevector    of the     stage from the input 

of that stage. This process stops if either the last stage P is reached, or when the MSE 

between the original input and the reconstructed input at a stage meets a pre-specified 

threshold [19]. The reconstructed vector of the original input vector is obtained by 

summing up the corresponding    codevectors of all the used stages. For all the P stages 

of RVQ, the reconstructed image  ̂ of the original image   is given as 

 ̂   ∑   
 
                         .  

RVQ partitions the input space R
k
 into M

P
 Voronoi cells. The advantage of this 

approach is that in obtaining M
P
 partitions, the partitioning algorithm is run only P times 

and generates M partitions at each stage. In traditional VQ, the partitioning algorithm 

would run once but created M
P
 partitions. For the binary case (two code-vectors per 

stage, M = 2) and a total of 8 stages (P=8), RVQ only requires 16 searches. However, 

ESVQ will require 256 searches. As a result, the exponential complexity is reduced to the 

linear complexity. In general, structurally constrained quantization cannot provide a 

performance as good as ESVQ. However, since they are able to more efficiently 

implement codes, larger vector sizes can be used, and if carefully designed, can achieve 

better performance than ESVQ with higher RVQ dimensionality and fixed 

implementation costs [15].  

One interesting consequence of RVQ’s process of successive stage refinement of 

data is the progressive evolution of partitioning of the input space into Voronoi regions. 
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RVQ aims at refining the data with each added stage. This process is also equivalent to 

refining the partitioning of the input by adding Voronoi regions with each added stage. 

As a result, the class boundaries between the data of different categories are also refined, 

making the class-specific regions more and more compact, thus provide a potential for 

improved accuracy in the classification of data.  

The effect of the stage-wise refinement of data by RVQ on the Voronoi regions in 

the input space is explained with the example illustrated in Figure 5a. In this example, 

three clusters of linearly separable 2D data points are considered, shown in Figure 5a in 

red, blue, and black. RVQ codebook is designed on the data points with M = 3 

codevectors-per-stage and P = 8 stages. The Voronoi regions, with the direct-sum 

codevectors as the centroids of these regions, are shown for M = 3 and the values of P 

starting 1 to 8. It is to be noted that the number of direct-sum codevectors at a given n
th

 

stage is M
n
, equivalently M

n
 Voronoi regions. It can be seen that for Figure 5b, M = 3 and 

stage n =1, the number of the corresponding direct-sum codevectors, shown as blue dots, 

and the Voronoi regions is M
n
 = 3

1
 = 3. Similarly, for stage n = 2, there are M

n
 = 3

2
 = 9 

direct-sum codevectors and Voronoi regions. Likewise, for the remaining values of                 

             , the number of the direct-sum codevectors and the Voronoi regions 

is M
n
 in Figure 5c. It can also be observed that with each added stage, the representation 

of the data improves. Furthermore, the class boundaries between the three classes are also 

progressively refined after each successive stage. 

It has been shown that the successive refinement of data through the stage-wise 

implementation of RVQ codebook can also aid in progressive improvement in 

classification of the data. Therefore, the intrinsic structure of RVQ codebook holds 
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Figure 5. Successive refinement of data and class boundaries using RVQ with M = 3 codevectors-

per-stage and P = 8 stages.  
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(a) Linearly separable 3-class dataset 

(b) M = 3, n = 1  (f)  M = 3, n = 5 

(g)  M = 3, n = 6 (c)  M = 3, n = 2 

(d)  M = 3, n = 3 (h)  M = 3, n = 7 

(e)  M = 3, n = 4 (i)  M = 3, n = 8 
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immense potential in its use as a classifier. 

Residual Vector Quantization-Based Classification 

 The use of RVQ for segmentation and classification was reported in Barnes [22], 

[23], and [24]. As mentioned earlier, RVQ is designed with stage codebooks with the 

direct-sum data structure that implicitly implement the RVQ book in a tree structure, also 

often called a σ-tree. To better understand the σ-tree classifier, we relate it with other 

well-known areas of information theory, pattern recognition, and machine learning: 

a) The σ-tree classifier can be compared to dimensionality reduction methods 

such as Principal Components Analysis (PCA). PCA seeks to reorient the basis 

vectors in R
k
 and achieves compression by ignoring projected data components 

with least variances. A σ-tree RVQ achieves compression by encoding a source 

symbol with a lower dimensional tuple. 

b) The σ-tree classifier partitions the decision space R
k
 like other well known 

classifiers such as neural networks, support vector machines and K-means 

clustering algorithm. Further, note that neural networks partition the decision 

space with hyperplanes or hypersurfaces, depending on whether or not hidden 

layers are used. Support vector machines also partition the decision space, but 

with maximum margin hyperplanes in a higher dimensional space. Like the K-

means clustering scheme, the σ-tree classifier tessellates the decision space R
k
 

with K Voronoi cells.  

c) As already discussed, the Linde Buzo Gray (LBG) algorithm is widely used to 

design the encoder and decoder of a VQ, including RVQ and the σ-tree classifier. 

This algorithm is similar to the well-known K-means algorithm [20]. 

d) The stage indices, P-tuples, returned by the σ-tree classifier can be used to 
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probabilistically determine class membership. The size of code-book of the RVQ 

can be manipulated to implement effective multi-class classification. The multiple 

stages of the σ-tree classifier suggest a coarse to fine classification route, i.e., 

successive approximations. 

 So far the use of RVQ as a classifier has relied on heuristic methods [22], [23], 

and [24]. The class decisions are made stage-wise by applying maximum-aposteriori-

probability (MAP) rule on the classification results at each stage, thus yielding stage-wise 

MAP class decisions. The final class decision is made by assigning the input to the class 

with the maximum MAP. This method, though heuristic, exhibits the stage-wise 

contributions of RVQ to classification.  

 However in this method, classification performance with optimal rejection of 

false alarm is not guaranteed. If the stage-wise decision making of RVQ is extended to 

include more than one stage considered together, RVQ-based classification can 

expectedly be made more robust with increased performance. The aim of this research is 

to explore the Bayesian framework to formulate a solution for robust RVQ-based 

classification, optimal in the maximum-a posteriori-probabilistic (MAP) sense over 

multiple RVQ stages. Moreover, to exploit the efficient direct-sum multi-stage structure 

of RVQ, the Markov approach is also explored to make the RVQ-based classification 

cost effective. 

 The next step in this research is to design a method that could integrate the stage-

wise contributions of RVQ into a robust solution to classification. This is the topic of this 

research. Bayesian framework provides the capacity to deliver a structure that can model 

the combined stage-wise class decisions of RVQ to give an elegant RVQ-based classifier, 

optimal in the MAP sense in a way that spans all RVQ stages.   
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CHAPTER 5 

MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSIFICATION: PRELIMINARY RESEARCH 

Introduction 

The applications of Residual vector quantization (RVQ) in classification and 

segmentation were first reported in Barnes [22], [23], and [24] on image databases. These 

applications of RVQ have been explained in Chapter 4. The contribution of this research 

is the formulation of a framework for RVQ to combine the individual stage classification 

results together into a joint classification decision rule over all the stages of RVQ using 

multiple stage MAP decision rules. In this thesis, this classification framework is referred 

to as Markov residual vector quantization (MRVQ). 

MRVQ is tested on a variety of standard image datasets such as Caltech101 [47], 

Graz [48], and handwriting [49], [50] datasets. After conducting a number of experiments 

on these datasets, it is empirically noted that the classification of MRVQ is upper 

bounded by 1-NN classifier, with MRVQ typically approaching within XX percent of 1-

NN performance with MRVQ orders of XX. However, RVQ holds a clear advantage over 

1-NN in the implementation cost, typically returning computational costs savings of XX 

orders of magnitude and XX orders of magnitude in memory costs 

MRVQ is implemented with two different schemes: Feature-count rule, and 

Bayesian rule. The latter is also termed as Markov-Bayesian RVQ (MBRVQ). These two 

schemes for implementing RVQ-based classification and the preliminary research that led 

to the development of these two methods are explained next. 
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Markov-Bayesian RVQ Classification 

 As explained in Chapter 4, the encoding process of RVQ is equivalent to 

partitioning the input space into Voronoi regions. The mapping of the training dataset can 

determine the class-conditional probabilities for each class of data in the dataset. In other 

words, for each class, a class-conditional probability can be assigned to each Voronoi 

region, and the Voronoi regions can be labeled with a class decision by applying 

maximum apriori probability (MAP) rule. As a result, any test input, which maps to any 

of the labeled Voronoi regions, or equivalently to a direct-sum RVQ codevector, can be 

classified into one of the classes by applying the MAP rule.  

 However, to apply the MAP rule to RVQ, it entails that all the Voronoi regions be 

labeled. For RVQ with M stages and P codevectors-per-stage, M
P
 Voronoi regions have 

to be labeled. If M=4 and P=8, 4
8
 = 65536, Voronoi regions tessellating over the input 

space have be labeled for the MAP-based classification rule, as shown in Figure 6, below. 

 

 

Figure 6. M
P
 = 4

8
 = 65536 Voronoi regions generated for M=4, P=8 RVQ. 
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The number of Voronoi regions to be labeled exponentially increase for increasing values 

of M and P. Consequently, the memory required to store all the labels can become very 

large.  

 One way to reduce the cost associated with RVQ-based classification is to impose 

Markovianity on the stages of RVQ. By doing so, the total P number of stages of RVQ 

can be divided into groups of N independent stages, where N can be made to vary from 1 

to P. N is called the Markov order of the RVQ classifier. With this formulation, a local 

class decision can be achieved for each group of N independent stages. The local class 

decisions can then be combined together to give the final class decision. The 

classification cost, because of the Markov structure on the RVQ, is expected to be as 

follows: 

Classification Cost = Order(M
N
), where N <  P, & M

N
 << M

P
. 

 The Markov structure imposed on the RVQ is illustrated in Figure 7, below. 

 

Final Class-decision = F(Partial Class-decision _1, Partial Class-decision _2, …, Partial Class-decision _k) 

Figure 7. Markov structure imposed on the stages of RVQ for classification. 
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The mathematical formulation of RVQ-based classification is done using the Bayesian 

framework along with Markovian structure imposed on the stages of RVQ. The 

mathematical treatment to the classification using RVQ is given as follows. 

 According to the Bayes’ theorem, for the random variables A and B, the posterior 

probability  (   ) is 

 (   )  
 (   ) ( )

 ( )
  

Under the Bayesian framework, RVQ-based classification can be modeled as the 

posterior probability 

 (                    )  
 (                    ) (  )

 (                 )
  

   is the class decision with                   , and              . The total 

number of classes is  .     is the stage codebook at the     stage, with              , 

where   is the total number of RVQ stages.         
     

     
       

  , where    
  

is the     codevector in the stage codebook at the     stage, and              , 

where    is the number of codevectors in a stage codebook of RVQ. It is assumed    is 

equiprobable, and  

 (                 )  ∑ (     )

 

   

           

where                       . Therefore, the posterior probability in Equation (1) 

can be reduced as follows: 

 (                    )   (                    ). 

As a result, the class decision    is given as 

           (                    ).  

(1) 

(2) 
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 As mentioned before, Markov structure if imposed on the RVQ classifier, 

modeled with the Bayesian framework of Equation (2), can reduce the implementation 

cost of the RVQ classifier. When Markov condition is imposed on the stages of RVQ, it 

is based on an assumption that the classification at given RVQ stage is dependent on the 

classification results of a certain number of previous RVQ stages. The Markov order 

determines the number of dependent RVQ stages. If Markov order is zero, the 

classification results of every stage are independent of each other. Similarly, for Markov 

order equal to one, the classification at a given stage is dependent only on the 

classification at the previous stage. A useful consequence of the Markov condition is that 

a given dependent on the corresponding previous stages becomes independent of the 

higher stages of RVQ. Therefore, to get the final class decision, the independent 

classification results are simply multiplied together to get the solution.  

To explain the formulation of Markov structure on Equation (2), the mathematical 

development is shown on  (                 ), and it will be extended to the 

likelihood function  (                    ) in Equation (2). The Markov model is 

shown as follows:  

According to the Markov chain rule, 

  (                  )    (   ) (       ) (           ) (               )  

 (                     )  

0
th
 Markov order, 

 (                 )       (   ) (   ) (   ) (   ) (   ) (   )  (   ), and 

 (                    )   (      ) (      ) (      ) (      ) (      )  

 (      )  (      ). 

The 0
th

 Markov order in Equation (3) means that it is assumed that the class decisions 

made at each stage are independent of each other.  

(3) 



40 

 

1
st
 Markov Order, 

 (                 )        (   ) (       ) (       ) (       ) (       )  

                                                          (         ), and  

 (                    )   (      ) (          ) (          ) (          )  

                                                          (          )  (            ). 

By merging the first two shaded probabilities into the respective joint probability, the 

above equation can equivalently be written as  

 (                    )   (          ) (          ) (          ) (          )  

                                                           (            ). 

The 1
st
 order Markov in equation (4) implies that each stage codevector is assumed to be 

dependent only on the previous stage. 

 2
nd

 Markov Order 

 (                  )   (   ) (       ) (           ) (           )  

                                                       (               )   

By merging the first three shaded probabilities into the respective joint probability, the above 

equation becomes 

 (                  )   (           ) (           )   (               )  

q
th
 Markov order 

The class-conditional probability  (                    ) can be generalized for an 

arbitrary Markov order   as follows: 

 (                  )   (               ) ∏  (   |                    )

 

     

  

and the class-conditional probability  (                     )  for the q
th
 Markov order is 

 (                    )   (               |  ) ∏  (   |                       ) 

 

     

         ( ) 
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For a given Markov order q, there are q+1 consecutive RVQ stages involved in the 

calculation of independent class condition probabilities. These q+1 stages are shaded in 

Equation (4), above. The direct-sum codevectors formed out of these q+1 stage 

codevectors are termed as Markov direct-sum sub-codevectors, and the corresponding 

indices are called Markov sub-tupples. The Markov order cannot be greater than P-1. The 

Bayesian classification rule, in Equation (2), together with the Markov condition, in 

Equation (4), is termed as Markov-Bayesian RVQ classifier. 

A functional block diagram of RVQ-based classifier using the MAP rule, also 

termed as Bayesian RVQ classifier, is shown in Figure 8, below. 

 

 

 

 

 

 

  

Figure 8. Bayesian RVQ classifier. 
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Proof of Concept: Linearly Separable Synthetic Dataset 

 The algorithm for the Markov-Bayesian RVQ classification is tested and 

illustrated on a test dataset consisting of three classes; namely Class 1, Class 2, and Class 

3, as shown in Figure 9. RVQ has M = 2 codevectors-per-stage and P=8 stages. Markov 

order is zero. In the zeroth-order Markov RVQ, the stage class decisions of RVQ are 

assumed to be independent of each other. The test and training datasets for each class are 

drawn from the same Gaussian distribution. The number of training data points for each 

class is 1000, and the number of test data points per class is 10000.  

                 
   (a)      (b) 

 
Class 1 Class 2 Class 3 

 

 

Stage 

index 
CV

1
 CV

2
 CV

1
 CV

2
 CV

1
 CV

2
 

p=1 1 0 0.98 0.02 0.002 0.998 1 

p=2 0 1 1 0 0.006 0.994 2 

p=3 0.69 0.31 0.138 0.862 0.538 0.462 1 

p=4 0.544 0.456 0.508 0.492 0.374 0.626 1 

p=5 0.46 0.54 0.494 0.506 0.496 0.504 2 

p=6 0.524 0.476 0.556 0.444 0.542 0.458 2 

p=7 0.488 0.512 0.462 0.538 0.494 0.506 1 

p=8 0.532 0.468 0.532 0.468 0.51 0.49 2 

 

( 

(c) 

Figure 9. Synthetic dataset of three classes, (a) Training set. (b) Test set. (c) Class-conditional 

Transition Probability Matrix of the three classes. 

Test P-tupple 

 P(CV | Class 1) 

= 

0.022 

P(CV | Class 2) 

= 

0.000 

P(CV | Class 3) 

= 

2.2 e
-5 
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 It can be seen in Figure 10a that the training data points of the three classes are 

not overlapping. However, the test dataset of these classes is overlapping, as shown in 

Figure 10b. For each class, the class-conditional probabilities of the data points mapping 

to each codevector in the RVQ codebook are calculated by determining the frequency of 

mapping of the class-specific training data points to each codevector at every stage. It is 

to be noted that the RVQ stages are assumed to be independent; hence the Markov order 

is zero. The class-conditional probabilities are tabulated into a table called Class-

conditional Transition Probability Matrix, as shown in Figure 10c, and in general the 

table is referred as transition probability matrix. 

 For the test P-tuple of an encoded test data point, shown on the right side of 

Figure 10c, the corresponding class-conditional probabilities in the transition probability 

matrix are highlighted for each class. As per the condition of the zeroth Markov order, 

the posterior probability for each class  (                     ) is calculated by 

multiplying together the highlighted individual class-conditional probabilities. As per 

Equation (2), the class decision is made by applying MAP on these class-conditional 

posterior probabilities. In this example, the MAP rule yields Class 1 as the class 

membership of the test input. The overall accuracy for this synthetic test dataset is 99%. 

Proof of Concept: Linearly Non-Separable Synthetic Dataset 

 In a series of experiments, Bayesian RVQ classifier is also tested on linearly non-

separable synthetic data to see how it performs on a more complex dataset. Linearly non-

separable Swiss roll dataset, as shown in Figure 10, 12, and 14, is formulated to test the 

classifier. In this dataset the two-dimensional data points belonging to different classes 

are arranged in concentric spirals. The experiments on these datasets are divided into two  
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Figure 10. Synthetic Swiss roll training dataset of two classes to test and illustrate Bayesian RVQ 

classifier.  

 

separate cases. In the first case, binary classification is performed on the dataset shown in 

Figure 10. The data of the two classes are marked Class 1 and Class 2 on the figure. It 

can be seen that the data from the two classes are spaced apart with no overlapping 

between each other. On the other hand in the second case, the Markov-Bayesian RVQ 

classifier is trained and tested on the Swiss roll dataset shown in Figure 12 and 14. The 

main difference between the datasets of the two cases is that in the second experiment the 

data from the multiple classes is not spaced apart as in the first case. Moreover, apart 

from the binary dataset (Figure 12) in the second case, the classifier is also tested on the 

Swiss roll dataset drawn from four classes, as shown in Figure 14. The value of these data 

points ranges between 0 and 255, and the number of training and test data points is 1600 

data points for each class. These points are drawn from Gaussian distribution with means 

on the spirals of the Swiss roll.  The two cases are discussed one-by-one as follows. 

 In the first case, RVQ codebook with M = 4 and P = 8 is designed and trained on 

the training data shown in Figure 10. The training is complete when all the class-
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conditional probabilities in the Class-conditional Transition Probability Matrix are 

calculated for the zeroth Markov order, as shown in Table 1. For the given training set, 

the distribution of the direct-sum RVQ codebook is shown in Figure 11a. The direct-sum 

codevectors the training points mapped to are shown in red and the rest of the direct-sum 

codevectors are marked in blue. The test dataset drawn for the two classes is shown in 

Figure 11b. 

Table 1. (a) Class-conditional Transition Matrix with Markov order = 0. (b) Error matrix. 

Stage Class1 Class2 

1 [0.25  ,0.27,0.20,0.28] [0.28,0.28,0.19,0.26] 

2 [0.12  ,0.31,0.28,0.29] [0.16,0.31,0.26,0.27] 

3 [0.28  ,0.06,0.38,0.29] [0.23,0.29,0.23,0.25] 

4 [0.18  ,0.28,0.24,0.30] [0.22,0.21,0.31,0.26] 

5 [0.31  ,0.18,0.24,0.26] [0.24,0.25,0.27,0.23] 

6 [0.001,0.35,0.29,0.4  ] [0.02,0.34,0.31,0.34] 

7 [0.39  ,0.23,0.00,0.38] [0.36,0.29,0.00,0.36] 

8 [0.002,0.34,0.26,0.4  ] [0.04,0.29,0.36,0.31] 

(a) 

 Class 1 Class 2  

Class 1 1250 770 2020  

Class 2 350 830 1180 

 1600 1600 3200 

          (b) 

 

  
(a)        (b) 

Figure 11. (a) Direct-sum codevector mapped by the training set shown in red, the remaining 

direct-sum codebook shown in blue. (b) Test data set. Class1 shown in blue, and Class 2 shown in 

red. 
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For the zeroth Markov order, the classification performance of the Bayesian RVQ 

classifier is shown in the error matrix [51] in Table 1b. Error matrix is also often called 

confusion matrix or a contingency table. To assess the accuracy of an image 

classification, it is common practice to create a confusion matrix. In a confusion matrix, 

the classification results are compared to additional ground truth information. The 

strength of a confusion matrix is that it identifies the nature of the classification errors, as 

well as their quantities. Performance of such systems is commonly evaluated using the 

data in the matrix. Commonly, the class names appear in the first column and the first in 

same order. The rest of the numerical entries in the matrix, except the entries in the last 

row and the last column are the classification results for each class. The diagonal 

classification results are the correctly classified test images, also called true-positive test 

images for the corresponding class. The true-positive entries in the matrix add up to the 

total number of test images. The performance measures that are calculated from the error 

matrix are user accuracy, producer’s accuracy, and overall accuracy. User accuracy of the 

classification of a certain category is the ratio between the true-positive classification and 

the total number test images assigned to that class. Producer’s accuracy for a certain class 

is the ratio between the true-positive for that class and the total number of actual test 

images from that class. Overall accuracy of classification is the total number or true-

positive classification divided by the total number of test images. These three 

performance measures are commonly shown in percentages.  

The user’s, producer’s, and overall accuracies for the test data shown in Figure 10 

are calculated as follows: 

Class-1 User’s Accuracy   = 1250/2020   = 61.88%  



47 

 

Class-2 User’s Accuracy   =   830/1180  = 70.34% 

Class-1 Producer’s Accuracy   = 1250/1600   = 78.12%  

Class-2 Producer’s Accuracy   =   830/1600  = 51.88% 

Over all Accuracy                    = (1250 + 830)/3200   = 65.00% 

 

 The same training and test datasets are also used to evaluate the classification 

performance of RVQ for Markov order equal to one. The corresponding Class-

conditional Transition Probability Matrix and error matrix are shown in Table 2. The 

classification performance measures calculated from the error matrix are as follows: 

 

Class-1 User’s Accuracy  = 1243 /1833   = 67.81%  

Class-2 User’s Accuracy  = 1010 /1367    = 73.88% 

Class-1 Producer’s Accuracy = 1243/1600   = 77.69%  

Class-2 Producer’s Accuracy = 1010/1600     = 63.12% 

Over all Accuracy                   = (1243+1010)/3200   = 70.41% 

 

From Table 2, it can be seen that at Stage-1 there is only one class-conditional 

probability associated to each codevector at this stage. Each probability is the probability 

of an input mapping to the respective codevector at Stage-1. However, from Stage-2 to 

Stage-8 four probabilities are associated to each codevector at a stage. The probability 

distribution in the table above is illustrated with the following example. For Class-1, 

Stage-1, Column-1 (shown in blue in Table 2); the first topmost probability is the 

probability of input mapping to Codevectors-1 and 1 of Stage-1 and 

Stage-2, respectively. Similarly, the second probability is the probability of the input that  
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Table 2. (a) Class-conditional Transition Matrix with Markov order = 1. (b) Error matrix. 

Stages Class1 Class2 

1 [0.2533] [0.2651] [  0.2034] [ 0.2782] [ 0.2777] [ 0.2756] [ 0.1863] [0.2605] 

2 

0.0486    

0.0177    

0.0039    
0.0512 

0.0505    

0.0577    

0.0919    
0.1115 

0.0735    

0.0584    

0.1037    
0.0420 

0.0807    

0.1312    

0.0039    
0.0735 

0 

0.1017         

0 
0.0529 

0.0660    

0.0887    

0.0825    
0.0763 

0.0639    

0.0419    

0.0330    
0.1189 

0.0880    

0.0454    

0.0976    
0.0433 

3 

0.0696    

0.1070    
0.0413    

0.0604 

0     

0.0433    
0.0112    

0.0046 

0.0269    

0.1024    
0.1115    

0.1365 

0.0249    

0.0591    
0.1135    

0.0879 

0.0110    

0.0529    
0.0344    

0.1326 

0.0598    

0.0770    
0.0687    

0.0866 

0.0275    

0.0570    
0.1141    

0.0302 

0.0289    

0.1010    
0.0735    

0.0447 

4 

0.0217    
0.0020    

0.0932    

0.0636 

0.0906    
0.0157    

0.1017    

0.0735 

0.0623    
0.0203    

0.0525    

0.1063 

0.1037    
0.0210    

0.1299    

0.0420 

0.0804    
0.0076    

0.0770    

0.0515 

0.0612    
0.0131    

0.0852    

0.0495 

0.0557    
0.0137    

0.1347    

0.1072 

0.0674    
0.0275    

0.0866    

0.0818 

5 

0.0564    

0.0873    

0.0787    
0.0912 

0.0472    

0.0289    

0.0413    
0.0617 

0.0466    

0.0781    

0.0499    
0.0696 

0.0302    

0.0873    

0.0715    
0.0741 

0.0522    

0.0515    

0.0591    
0.0790 

0.0440    

0.0866    

0.0543    
0.0687 

0.0351    

0.0859    

0.0694    
0.0818 

0.0488    

0.0460    

0.0577    
0.0797 

6 

0.001          
0 

0 

0 

0.0866    
0.0308    

0.1030    

0.1299 

0.1299    
0.0571    

0.0348    

0.0715 

0.0965    
0.0912    

0.1063    

0.0617 

0.0027    
0.0096    

0.0048    

0.0007 

0.0997    
0.0619    

0.0825    

0.0921 

0.1107    
0.0515    

0.0687    

0.0742 

0.1072    
0.0605    

0.0900    

0.0832 

7 

0     

0.1181    

0.1483    
0.1260 

0.0007    

0.1017    

0.0374    
0.0886 

0 

0 

0 
0 

0    0.1306    
0.1076    

0.1411 

0.0007    

0.1395    

0.0969    
0.1216 

0 

0.0948    

0.0845    
0.1065 

0 

0 

0 
0 

0 

0.1175    

0.1141    
0.1237 

8 

0     

0.0020         
0 

0 

0.1529    

0.0374         
0     

0.1437 

0.1004    

0.0735         
0     

0.0807 

0.1391    

0.1155         
0     

0.1549 

0.0144    

0.0076         
0 

0.0124 

0.1230    

0.0639         
0 

0.1065 

0.1258    

0.0955         
0 

0.1368 

0.1271    

0.0653         
0 

0.1216 

(a) 

 Class 1 Class 2  

Class 1 1243 590 1833 

Class 2 357 1010 1367 

 1600 1600 3200 

(b) 
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maps to Codevectors-2 and 1 of Stage-1 and Stage-2, respectively. 

Similarly, for Class-1, Stage-8, Column-1 (shown in green in Table 2); the first 

topmost probability is the probability of input mapping to Codevectors-1 and 1 of Stage-7 

and Stage-8, respectively. The second probability is the probability of the input mapping 

to Codevectors-2 and 1 of Stage-7 and Stage-8, respectively.  

For a given class, the probabilities across all the codevectors at a stage add to one. 

For examples, the probabilities shaded orange in the Transition Probability Matrix above 

add to one. 

Moreover, the probabilities at stage 7 that are shaded red indicate that there is no 

mapping of any data, belonging to either of the two classes, from any codevector from 

Stage-6 to Codevector-3 of Stage-7.  

As mentioned earlier, in the second case the Markov-Bayesian RVQ classifier is 

trained and tested on a Swiss roll dataset where the data drawn from multiple classes are 

not spaces apart. They overlap with each other to some degree, as shown in Figure 12 and 

Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Training dataset: Class1 data is in blue, Class2 data is in red.  
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 RVQ with M=4 and P=8 is trained on the dataset shown in Figure 12, and the 

corresponding Class-conditional Probability Matrix for Markov order ranging from 0 to 

P-1 = 7 is also calculated. The data from the first class, namely Class-1, is shown in blue, 

the data from the second class, called Class-2, is shown red in the figure. The Markov-

Bayesian RVQ classifier is tested on the binary data drawn for the same distribution as 

for the training data. The number of test data points is 1600 samples for each class. For 

this setup, the Overall and Producer’s accuracies are plotted in Figure 13. The Markov 

order varies from 0 to P-1=7. The classification performance of this RVQ classifier is 

benchmarked against the performance of 1-Nearest-Neighbor (1-NN) classifier, also 

shown in Figure 13. In 1-NN classification, the class membership of a test data point is 

determined by the class membership of the nearest training data. Like in RVQ, Euclidean 

distance is the measure of nearness used in 1-NN. It can be seen that the performance of 

the Markov-Bayesian RVQ classifier begins to approach the 1-NN classifier performance 

from the fourth Markov order onwards. 

 

 

Figure 13. Classification performance curves for 2-catergory Swiss roll dataset. 
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 In this experiment, it was noted that as the Markov order increased, test inputs 

started mapping to unused Markov direct-sum sub-codevectors. Equivalently, the test 

inputs were mapping to unused direct-sum codevectors. Figure 6, in Chapter 5, illustrates 

the distribution of a direct-sum RVQ codebook. The unused direct-sum codevectors after 

the training phase are shown in blue in the figure. An adverse implication of the test 

inputs mapping to unused is that the corresponding Voronoi regions are un-labeled. 

Therefore, MAP rule fails to yield a class-membership decision in such cases. To avoid 

this scenario, the encoding of a test input is subjected to the realm-of-experience (RoE) 

constraint. RoE constraint ensures that a test input is always assigned to the Markov 

direct-sum sub-codevector that is used by the training set. This assignment is made by 

searching over the nearest Markov direct-sum sub-codevector used by the training set. 

However, this RoE constraint adds an extra computational cost to the RVQ-based 

classification. If |T| is the size of the training set, k is the dimensionality of the input 

space, and O is the Markov order; then the computational cost by the RoE constraint is 

(P-O)k|T| in the worst case scenario, where the search for the nearest Markov direct-sum 

sub-codevector has to be carried out for all test Markov sub-tuples. 

The Markov-Bayesian RVQ classifier is also tested on a Swiss-roll dataset 

comprising four classes. The training dataset is shown in Figure 14. Similar to the 

previous dataset, the data from the four classes, namely Class-1, Class-2, Class-3, and 

Class-4; are shown in blue, red, black, and yellow; respectively. The classification 

performance of the Markov-Bayesian RVQ classifier is plotted and benchmarked against 

1-NN classifier in Figure 15. The classification performance is plotted for Markov order 

ranging from 1 to P-1 = 7. Again, it can be observed that the classification performance  
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Figure 14. Training dataset for 4-category classification using Bayesian RVQ. Class-1 data is in 

blue, Class-2 data is in red, Class-3 is in black, and Class-4 is in yellow. 

 

Figure 15. Classification performance curves for 4-category classification using Bayesian RVQ.  

of the Bayesian RVQ classifier begins to converge to the performance of 1-NN classifier 

from fourth Markov order onwards. 
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Proof of Concept: Image Dataset 

 After testing on synthetic data, image dataset is used to evaluate the performance 

of Markov-Bayesian RVQ classifier. Images of three different categories from 

Caltech101 image database [47] are used for the evaluation purpose. In this 3-category 

case, the classes are Plane, Car, and Motorbike. The size of the images in this database 

varies from approximately 150x350 pixels to 200x400 pixels. All the images are resized 

to 150x250 pixels for the RVQ classifier. The typical images from these data sets are 

shown in Figure 16. RVQ codebook is designed using the training dataset having 100 

images for each class. In the test dataset, Plane, Car, and Motobike classes have 148, 87, 

and 256 images; respectively. To see the effect of varying number of codevectors-per-

stage on the classification performance of Markov Bayesian RVQ classifier, M is varied  

 

  

 

 

 

 

 

 

Figure 16. Training dataset for classification using Markov Bayesian RVQ with 0
th
 Markov order. 
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from 3 to 5 codevectors-per-stage. The number of RVQ stages is P = 8, and the error 

matrices and Class-conditional Probability Transition Matrix for M = 3, M = 4, and M = 5 

are shown in Table 3 and Table 4, respectively. 

Table 3. Error matrices for (a) M=3 and P=8, (b) M=4 and P=8, (c) M=5 and P=8; Markov order = 0. 

Class Plane Car M’bike  

Plane 110 6 8 124 

Car 34 81 1 116 

M’bike 4 0 247 251 

 148 87 256 491 

(a) 

Class Plane Car M’bike  

Plane 126 15 4 145 

Car 22 72 2 96 

M’bike 0 0 250 250 

 148 87 256 491 

(b) 

Class Plane Car M’bike  

Plane 110 11 6 127 

Car 30 76 0 106 

M’bike 8 0 250 258 

 148 87 256 491 

(c) 

The overall accuracy calculated from the error matrix for M = 3 is 89.2%. It peaks 

to 91.2% for M=4 before decreasing to 88.8% for M=5. It suggests that the RVQ 

classifier yields the best fit for M = 4, and begins to overfit for M = 5 codevectors-per-

stage. 

More preliminary experiments are also conducted to guage the classification 

performance of RVQ as a binary classifier. The Caltech 101 dataset, as shown in Figure 

17, is used. For the purpose of binary classification, the following three separate RVQ 

classifiers were designed each with its own codebook:  
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Table 4. Class-conditional Probability Matrices for (a) M=3 and P=8, (b) M=4 and P=8, 

(c) M=5 and P=8; Markov order = 0. 

 Plane 
 

Car 
 

Motorbike 

Stage CV
1
 CV

2
 CV

3
 

 
CV

1
 CV

2
 CV

3
 

 
CV

1
 CV

2
 CV

3
 

p=1 0.06 0.5 0.44 
 

0 1 0 
 

0.91 0.03 0.06 

p=2 0 0.74 0.26 
 

0 0.361 0.639 
 

0.22 0.38 0.4 

p=3 0.46 0.53 0.01 
 

0.639 0.028 0.33 
 

0.32 0.55 0.13 

p=4 0.26 0.29 0.45 
 

0.33 0.472 0.194 
 

0.04 0.35 0.61 

p=5 0.3 0.18 0.52 
 

0.139 0.417 0.44 
 

0.35 0.38 0.27 

p=6 0.3 0.18 0.52 
 

0.33 0.417 0.25 
 

0.29 0.38 0.33 

p=7 0.3 0.24 0.46 
 

0.33 0.278 0.389 
 

0.27 0.27 0.46 

p=8 0.29 0.37 0.34 
 

0.167 0.25 0.583 
 

0.09 0.49 0.42 

(a) 

 
Plane 

 
Car 

 
Motorbike 

Stage CV
1
 CV

2
 CV

3
 CV

4
 

 
CV

1
 CV

2
 CV

3
 CV

4
 

 
CV

1
 CV

2
 CV

3
 CV

4
 

p=1 0.08 0.27 0 0.65 
 

0 1 0 0 
 

0.86 0.03 0.1 0.01 

p=2 0.15 0.17 0.55 0.13 
 

0 0.44 0.361 0.194 
 

0.16 0.36 0.18 0.3 

p=3 0 0.3 0.3 0.4 
 

0.139 0.167 0.22 0.472 
 

0 0.4 0.29 0.31 

p=4 0.23 0.02 0.31 0.44 
 

0.139 0.22 0.33 0.306 
 

0.17 0.18 0.34 0.31 

p=5 0.19 0.11 0.42 0.28 
 

0.389 0.361 0.083 0.167 
 

0.08 0.31 0.12 0.49 

p=6 0.24 0.26 0.29 0.21 
 

0.22 0.25 0.167 0.361 
 

0.17 0.13 0.27 0.43 

p=7 0.16 0.26 0.37 0.21 
 

0.22 0.167 0.194 0.417 
 

0.26 0.18 0.25 0.31 

p=8 0.14 0.29 0.16 0.41 
 

0.167 0.25 0.278 0.306 
 

0.31 0.17 0.24 0.28 

(b) 

 
Plane 

 
Car 

 
Motorbike 

Stage CV1 CV2 CV3 CV4 CV5 
 

CV1 CV2 CV3 CV4 CV5 
 

CV1 CV2 CV3 CV4 CV5 

p=1 0.08 0.31 0 0 0.61 
 

0 0.583 0 0.417 0 
 

0.86 0.02 0.1 0 0.02 

p=2 0.06 0.06 0.06 0.49 0.33 
 

0 0.33 0.22 0.056 0.389 
 

0.16 0.17 0.19 0.05 0.43 

p=3 0.16 0.14 0.25 0.16 0.29 
 

0.028 0.167 0.25 0.33 0.22 
 

0.04 0.2 0.22 0.23 0.31 

p=4 0.18 0.12 0.34 0.14 0.22 
 

0.278 0.25 0.167 0.167 0.139 
 

0.12 0.25 0.34 0.18 0.11 

p=5 0.24 0.06 0.16 0.22 0.32 
 

0.25 0.139 0.194 0.194 0.22 
 

0.25 0.18 0.15 0.24 0.18 

p=6 0.17 0.14 0.11 0.35 0.23 
 

0.22 0.25 0.194 0.22 0.11 
 

0.21 0.19 0.09 0.23 0.28 

p=7 0.06 0.18 0.15 0.31 0.3 
 

0.083 0.22 0.11 0.25 0.33 
 

0.02 0.19 0.22 0.27 0.3 

p=8 0.19 0.25 0.18 0.13 0.25 
 

0.25 0.083 0.139 0.306 0.22 
 

0.15 0.26 0.12 0.18 0.29 

(c) 
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 (a)   Plane-vs-Rest. 

(b)   Car-vs-Rest. 

(c)   Motorbike-vs-Rest. 

Support vector machines (SVM) based classification was also done using the 

same training and test datasets to compare its classification performance against the 

binary and multi-class Markov-Bayesian RVQ classifiers. 1-vs-rest scheme was used to 

implement the SVM classifier with the quadratic kernel. In Table 5, the producer 

accuracies for each classifier are shown as their classification performance measures. 

It is observed in the preliminary results, shown in Table 5, that overall multi-class 

Markov-Bayesian RVQ classifier performs better than its binary version. On the average, 

the performance of multi-class MBRVQ is approximately 5% better than the binary-class 

MBRVQ. Furthermore, when compared with the SVM classifier, the proposed multi-

class RVQ classifier performance is promising, even at a Markov order as low as zero. 

The performance of SVM classifier is better than the multi-class MBRVQ by only 4%, 

approximately. It is expected that by increasing the Markov order, the proposed multi-

class RVQ classifier will improve in its performance. 

Conclusion of Preliminary Research  

 For effective RVQ classification it is imperative that the training dataset is chosen 

so that it is a good representation of the source, and the direct-sum codevectors of the 

RVQ provide a dense covering, which will ensure that a test input is quantized with a low 

reconstruction error. However, with a dense covering we are faced with the challenges of 

high memory and computation costs for performing the classification task. We will 

discuss these challenges in more detail in the following paragraphs. 
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Table 5. RVQ-based classifiers-vs-SVM-based classifier. 

With RVQ providing a dense covering of the input space, a classification operation will 

require to label all the regions associated with dense covering of the RVQ. This scenario 

can pose serious problems when for the values of M (number of codevectors per stage) 

and P (number of stages) the number of regions-to-be-labeled is very high i.e., M
P
. As 

discussed earlier, to address the cost issue, a Markov Bayesian structure on the stages of 

the RVQ can be imposed, where the aim is to combine class-membership decisions stage-

wise. As a result, the cost of the classification is expected to reduce from M
p
 to the order-

of MP. The Markovian order determines the number of stages in the RVQ that form a 

dependent neighborhood. The higher the Markovian order, the higher is the cost of the 

classification. The results of the preliminary experiments on the Swiss roll datasets, 

Figure 10, 12, 14; and Caltech101 dataset, Figure 16, also indicate the efficacy of the 

Markov structure on the Bayesian RVQ classifier. 

RVQ Settings Classes 

Binary Classification 

Multi-Class RVQ 
Binary 
RVQ 

SVM  
Quadratic 

M= 3, P=8 

Plane 76.87 70.19 88.71 

Car 65.87 100 70 

M’bike 98.43 99.59 98.41 

M= 4, P=8 

Plane 81.2 70.19 86.9 

Car 66.67 100 75 

M’bike 99.6 99.59 100 

M= 5, P=8 

Plane 74.14 70.19 86.6 

Car 70.25 100 71.7 

M’bike 98.43 99.59 96.9 
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However, before further experiments are carried to explore the feasibility of 

Markov Bayesian RVQ classifier, an analysis is made to explore whether the similar P-

tuples of the encoded data points also correspond to similar data points. If this is so, then  

RVQ-based classification can become feasible in the P-tuple space, which will result in  

reducing significantly the overall operational cost of the proposed RVQ-based classifier. 

RVQ Classification Performance Benchmark 

The classification performed by jointly considering all the P stages of the RVQ is 

the benchmark classification performance of the RVQ classifier. Therefore, a simple joint 

P-stage RVQ classifier is implemented. For all the classification experiments, the 2D 

Swiss Roll dataset is used in which two datasets corresponding to two different classes 

are mixed together in the Swill Roll format, as shown in Figure 12.  

  

Joint P-Stage RVQ Classifier 

 The joint P-stage, also referred to as full P-tupple, classification is implemented 

in the following ways. 

Full P-tupple matching-based Classification 

  In this method, the full P-tuples of test inputs are matched to the full P-tuples of 

the training inputs using two different distance criteria: Euclidean and Hamming distance 

criteria. Following are the results for the two criteria: 

Euclidean Distance Criterion 

 Class 1 Class 2  

Class 1 1542 311 1853 

Class 2 58 1289 1347 

 1600 1600 3200 

       Over all Accuracy = (1542+1289)/3200 = 88.5% 
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Hamming Distance Criterion 

 Class 1 Class 2  

Class 1 1581 388 1969 

Class 2 19 1212 1231 

 1600 1600 3200 

       Over all Accuracy = (1542+1289)/3200 = 87.3% 

Direct-sum Codevector matching-based Classification 

 In this method, the decoded test inputs are matched according to 1-NN rule to the 

decoded training set. The matching between the decoded test input and the training set is 

done using the Euclidean distance criterion. Following is the result for this method: 

Euclidean Distance Criterion 

 Class 1 Class 2  

Class 1 1600 0 1600 

Class 2 0 1600 1600 

 1600 1600 3200 

       Over all Accuracy = (1600+1600)/3200 = 100% 

Conclusion 

 From the results above, it is concluded that RVQ P-tuple labeling using a 

Euclidean or Hamming distance metric do not correspond to Euclidean distance using 

values of the decoded inputs. It can be generalized that in images similar P-tuples are not 

guaranteed to map to similar images. 

Estimated Markov-Bayesian RVQ Costs 

 The cost of implementing Markov Bayesian RVQ classifier is dependent on the 

Markov order O, number of RVQ stages P, number of codevectors-per-stage M, and the 

number of classes C in the training dataset. It is desired that the Markov order is as low as 
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possible, somewhere in the middle of 0
th

 and P
th

 Markov order, so that the associated 

costs are also kept low.  

 For given values of M, P, and C, the costs of implementation for Markov order O 

from zero to P are given in Table 6. It can be seen in the table that the memory for storing 

the codebook and the cost of the search through the codebook remain kMP for any value 

of Markov order. However, the memory cost of storing the Class-conditional Transition 

Probability Matrix increases in the order of M
O+1

C. The equation that expresses the 

relationship between Markov order and the memory cost of storing the probabilities is (P-

O) M
O+1

C. It is to be noted that the search cost of 1-NN classifier is |T|, where |T| is the 

size of the training set. Moreover, the memory cost associated with 1-NN classification is 

in the order of |T|. It is expected that the RVQ-based classifier will offer cost savings over 

the 1-NN classifier. 

Table 6. Implementation cost of RVQ classifier. 

Markov 

Order 

Memory Cost Search 

Cost Codebook Probabilities 

0
th

 MP 8MC MP 

1
st

 MP 7M
2

C MP 

2
nd

 MP 6M
3

C MP 

3
rd

 MP 5M
4

C MP 

4
th

 MP 4M
5

C MP 

5
th

 MP 3M
6

C MP 

6
th

 MP 2M
7

C MP 

7
th

 MP M
8

C MP 

     (P-O) M
O+1

C  
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CHAPTER 6 

MARKOV-BAYESIAN RESIDUAL VECTOR QUANTIZATION-

BASED CLASSIFICATION: MAIN RESEARCH 

 

Introduction 

 

 The number of codevectors M and stages P of RVQ are essential RVQ parameters 

that control the density of the covering of the input space. Equivalently, M and P control 

the size of the codebook of RVQ. Since the number of Voronoi regions generated in the 

input space is directly related to these two RVQ parameters, the classification 

performance of RVQ will be investigated for different values of M and P. 

 The focus of the preliminary research was to propose a method to make RVQ-

based classification feasible by imposing a Markov structure on the stages of RVQ. It 

was also noted that classification performance showed improvement when Markov order 

was increased from zero to one. With the Markov structure, the operational cost of RVQ-

bases classifier can be reduced from M
P
 to the order of MP. However, with increase the 

Markov order, the cost of RVQ classification also increases. Therefore, the effect of 

different Markov orders on RVQ-based classification is also explored in-depth to analyze 

the underlying issues. 

 Lastly, since RVQ is a template-matching-based technique, the characteristics of a 

dataset will heavily bear on the performance of the RVQ-based classifier. Therefore, 

datasets with differing characteristics will be investigated for RVQ classification. 

Caltech101 [47], Graz [48], and the MNIST database of handwritten digits [50] used to 

test Markov RVQ classifier for Markov order ranging from zero to P-1. The zeroth 
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Markov order means that all the RVQ stages are assumed independent of each other. 

Whereas, Markov order P-1 implies that all the P stages of RVQ are assumed dependent 

on each other. The datasets vary from each other in the amount of variability in the 

images.  

 In short, RVQ –based classification is investigated for the following three factors: 

 (a)  Different values of M codevectors-per-stage of RVQ. 

 (b) Varying Markov order on the stages of RVQ. 

 (c) Image datasets with different characteristics. 

 The classification results obtained from this investigation provides insightful 

analysis into the working of RVQ as a classifier, and it guides the research to understand 

the parameters needed to extract improved classification results out of RVQ. 

 The proposed RVQ classification is also compared to SVM-based classification 

involving feature vectors consisting of image intensity levels, and scale invariant feature 

transform (SIFT) [3]. It is shown how the proposed RVQ classifier fares with SIFT 

feature vectors. 

Effects of Varying values of M  

 For the Caltech101 dataset used in the preliminary research, Markov Bayesian 

RVQ classifier is investigated for varying number of codevectors-per-stage M. It is 

reminded that the training and test data are the same as used in the preliminary research, 

as shown earlier in Figure 17. The categories are Plane, Car, and Motorbike, and Markov 

order for classification varies from 0 to P-1 = 7. The number of RVQ stages P is 8, and 

the number of codevectors-per-stage is varied from M = 2 to M = 11. The chosen range of 

M is enough to see the trend in the performance of RVQ classification. The RVQ 
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codebook with M=4 and P = 8, and trained on the dataset shown in Figure 16, is shown in 

Figure 17. The error matrices for the different values of M and a Markov order of 0 are 

shown in Table 7. The overall classification accuracy for M = {2,3,4,5,..,11} and the 

values of Markov order ranging from 0 to P-1 = 7 is plotted in Figure 18.  

 

 

 

 

Figure 17. RVQ codebook for M = 4, P =8. 3-category training set comprises Plane, Car, and 

Motorbike classes.  
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Table 7. Error matrices for M = 2 to M = 11. RVQ has P=8 stages with zeroth Markov order for 

classification. 

 It can be seen in Figure 18 that for the given 3-catergory dataset, the classification 

performance tends to improve until M =7, after which it decreases. This trend suggests 

that Markov Bayesian RVQ classifier begins to over-fit after M = 7. It is also noted that 

for all the values of M the classification performance begins to converge to the best 

classification performance of MBRVQ classifier from the 3
rd

 Markov order onwards. It is 

reminded that the value of Markov order is also very critical to the success of the RVQ-

based classifier. The higher the Markov order, the higher the memory cost of the RVQ 

classifier. In this experiment, it is further observed that as the Markov order increased, 

test inputs started mapping to unused Markov direct-sum sub-codevectors. Equivalently, 

the test inputs were mapping to unused direct-sum codevecotors. Figure 6, in Chapter 5, 

illustrates the distribution of a direct-sum RVQ codebook. The unused direct-sum 

codevectors after the training phase are shown in blue in the figure. An adverse 

M = 2 M = 3 M = 4 

Classes Plane Car M’bike  Classes Plane Car M’bike  Classes Plane Car M’bike  

Plane 110 16 6 132 Plane 132 9 3 144 Plane 122 3 30 155 

Car 18 61 2 81 Car 12 78 2 92 Car 21 84 1 106 

M’bike 20 10 248 278 M’bike 4 0 251 255 M’bike 5 0 225 230 

 148 87 256 491  148 87 256 491  148 87 256 491 

   

M = 5 M = 6 M = 7 

Classes Plane Car M’bike  Classes Plane Car M’bike  Classes Plane Car M’bike  

Plane 131 5 31 167 Plane 124 1 8 133 Plane 139 5 4 148 

Car 8 82 2 92 Car 19 85 1 105 Car 7 82 2 91 

M’bike 9 0 223 232 M’bike 5 1 247 253 M’bike 2 0 250 252 

 148 87 256 491  148 87 256 491  148 87 256 491 

   

M = 8 M = 9 M = 10 

Classes Plane Car M’bike  Classes Plane Car M’bike  Classes Plane Car M’bike  

Plane 136 3 10 149 Plane 128 3 4 135 Plane 134 0 18 152 

Car 10 84 1 95 Car 16 84 1 101 Car 9 87 1 97 

M’bike 2 0 245 247 M’bike 4 0 251 255 M’bike 5 0 237 242 

 148 87 256 491  148 87 256 491  148 87 256 491 
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implication of the test inputs mapping to unused is that the corresponding Voronoi 

regions are un-labeled. Therefore, MAP rule fails to yield a class-membership decision in 

such cases. To avoid this scenario, the encoding of a test input is subjected to the realm-

of-experience (RoE) constraint. RoE constraint ensures that a test input is always 

assigned to the Markov direct-sum sub-codevectors that are used by the training set. This 

assignment is made by searching over the nearest Markov direct-sum sub-codevector 

used by the training set. However, this RoE constraint adds an extra search cost to the 

RVQ-based classification. 

 

Figure 18. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11}, and P=8, and for 

Markov orders from 0 to P-1 = 7. 

 Since in the figure above the performance of the RVQ-based classifier peaks at 

M=7, its classification performance at M = 7 is also calculated over a range of Markov 
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order from 0 to P-1 = 7, where P = 8 stages. The classification performance in terms of 

the overall accuracy is shown in Figure 19, along with the error matrix and the related 

classification performance measures derived from the error matrix shown in Table 8. The 

performance of the RVQ-based classifier is also compared with 1-NN classifier, also 

shown in Figure 19. It can also be seen that the RVQ classifier converges to 1-NN from 

the third Markov order onwards. Expectedly, the classification performance of MBRVQ 

classifier improves with the increase in the Markov order. It is desired that the Markov 

order is as low as possible.  

 

Figure 19. Classification performance of 1-NN based classifier versus Markov Bayesian RVQ 

classifier with M = 7, P = 8, and Markov Order = 4.  
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Table 8. Classification performance of 1-NN based classifier versus Markov Bayesian RVQ 

classifier with M = 7, P = 8, and Markov Order = 4. 

Error Matrix 

RVQ, M=7, P=8, and Markov Order = 4    1-NN Classifier 

 

      

 

 

 

 

 

 

    

  

 

 

RVQ Classification Schemes 

As mentioned earlier, the Markov order plays a critical role in the RVQ-based 

classification. The higher the Markov order, the higher the overall cost of implementing 

the RVQ-based classifier. Up to now, RVQ-based classification with the Bayesian 

framework has been discussed. At this point, another framework, called feature-count 

rule is introduced as a different method to implement the RVQ-based classification. It is 

emphasized for clarity, that feature-count rule is different from the earlier proposed 

Markov Bayesian RVQ (MBRVQ) classification. While both the methods impose the 

Markov structure on its RVQ stages, the Bayesian framework is not employed in feature-

count rule. The implementation of these two methods is explained next. 

The description of the two different schemes along with their implementation 

details are explained as follows:  

Classes Plane Car M’bike  

Plane 136 3 10 149 

Car 10 84 1 95 

M’bike 2 0 245 247 

 148 87 256 491 

Classes Plane Car M’bike  

Plane 148 11 12 171 

Car 0 76 0 76 

M’bike 0 0 244 244 

 148 87 256 491 

 Producer’s 

Accuracy 
User’s Accuracy 

Plane 136/149   = 91.3% 136/148   = 91.9% 

Car 84/95        = 88.4% 84/87        = 96.6% 

M’bike 245/247   = 99.2% 245/256   = 95.7% 

  Producer’s 

Accuracy 
User’s Accuracy 

Plane 148/171   = 86.6% 148/148   = 100 % 

Car 76/76        = 100 % 76/87        = 87.4% 

M’bike 244/244   = 100 % 244/256   = 95.3% 

Overall Accuracy 

(136+84+245)/491 

             = 

         94.71% 

Overall Accuracy 

(148+76+244)/491 

             = 

         95.32% 
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Feature-count Rule: The Markov direct-sum sub-codevectors of the RVQ can be viewed 

as clustering the data in a causal-anti-causal (CAC) residual sub-space.  Intuitively, a 

cluster in a CAC residual sub-space can be thought of as a feature of the class. For a 

given test input, these features can be counted and attributed to a class according to the 

class-conditional probability of the CAC cluster or the corresponding Markov sub-tuple.  

Markov Bayesian RVQ (MBRVQ): This method is not different from the Bayesian 

RVQ classification method as described before. 

CostERoE: As mentioned earlier, the RoE constraint incurs an additional search cost. 

Therefore, a cost-effective method for implementing the RoE constraint is tested. This 

new method is termed as CostERoE, whereas, the earlier method will be referred to as 

RoE in this report. CostERoE method of implanting the realm-of-experience constraint is 

used by Barnes in [22]. CostERoE ensures that the encoding of a test input stops at the 

stage when the input maps to the direct-sum codevector not used by the training set. 

Consequently, the situation where a test input maps to an un-labeled Voronoi region is 

avoided. The advantage of implementing the CostERoE constraint over the RoE 

constraint is that the former adds no further computational cost to the RVQ-based 

classification. However, it adds |T| bytes to the overall memory cost of the RVQ-based 

classification method, where |T| is the size of the training set. 

Thresholds: Different thresholds Th on the class-conditional probabilities associated with 

the Markov sub-tuples will be applied to see their effects on the classification 

performance of the two schemes. Intuitively, the threshold Th can be thought as a means 

to weight CAC-clusters in reaching a classification decision. Therefore, with a suitable 
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Th, only those CAC clusters can be isolated those contribute most significantly towards 

reaching the class-membership decision. 

The two schemes for RVQ-based classification i.e., Feature-count Rule and 

MBRVQ, will be tested on Caltech101 [47] and Graz [48] image databases. These 

experiments will help to understand the dynamics of RVQ-based classifier. Two different 

settings of RVQ are used: M=4 and P=8, and M=2 and P=16. The two RVQ settings 

generate the same size of the direct sum codebook, thus have the same number of degrees 

of freedom (DoF). However, the degrees of freedom at the RVQ stage level is different 

i.e., stage DoF for M = 2 is two, and stage DoF for M = 4 is four.  

These tests serve as a guide to understanding the RVQ-based classification to 

determine how best to use RVQ for classification, and what are the suitable conditions 

and datasets to use RVQ as a classifier. 

Experiments and Results 

Experiments: Set 1 

 In this first set of experiments, the Markov order is kept to zero to establish a 

performance base-line. The first data set that is used is a 3-category dataset consisting of 

the classes Plane, Car, and Motorbike from Caltech101 database [47]. Each class has 

hundred training images, the training set consists of 148, 87,and 256 images from the 

classes Plane, Car, and Motorbike ; respectively. They typical images of this dataset are 

shown in Figure 16. The RVQ codebook, Class-conditional Probability Matrix, and the 

error matrix for RVQ with M=2 and P=16 are shown in Figure 20, Table 9, and Table 10, 

respectively. Whereas, Figure 21, Table 11, and Table 12 show the Class-conditional 
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Transition Probability Matrix, and the error matrix for RVQ with M=4 and P=8, 

respectively.  

The RVQ-based classification is carried on this dataset with the following four 

techniques: 

(a) MBRVQ with RoE constraint. 

(b) Feature-count Rule with RoE constraint. 

(c) MBRVQ with CostERoE constraint. 

(d) Feature-count Rule with CostERoE constraint. 

The classification performance of the above four methods for RVQ with M = 2 and P = 

16 are tabulate in the error matrix, shown in Table 10, It can be seen that the MBRVQ-

based methods are far superior to Feature-count Rule-bases methods. 

                               

Figure 20. RVQ codebook for RVQ with M=2, P=16. The dataset consists of Plane, Car, and 

Motorbike classes.  
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Table 9. Class-conditional Probability Matrix for RVQ with M = 2 and P = 16. Class 1, 2, 3 are 

Plane, Car, Motorbike, respectively. 

Stage  Class CV1 CV2  Stage  Class CV1 CV2 

1 

1 0.10 0.45  

9 

1 0.36 0.33 

2 0.00 0.50  2 0.34 0.33 

3 0.90 0.05  3 0.30 0.34 

2 

1 0.91 0.16  

10 

1 0.33 0.33 

2 0.00 0.43  2 0.28 0.37 

3 0.09 0.41  3 0.39 0.29 

3 

1 0.00 0.36  

11 

1 0.38 0.30 

2 0.12 0.35  2 0.33 0.34 

3 0.88 0.28  3 0.29 0.36 

4 

1 0.46 0.19  

12 

1 0.41 0.29 

2 0.36 0.31  2 0.28 0.37 

3 0.19 0.5  3 0.31 0.35 

5 

1 0.46 0.13  

13 

1 0.32 0.35 

2 0.26 0.45  2 0.35 0.32 

3 0.28 0.42  3 0.33 0.34 

6 

1 0.31 0.35  

14 

1 0.28 0.38 

2 0.38 0.31  2 0.35 0.32 

3 0.32 0.34  3 0.38 0.30 

7 

1 0.26 0.38  

15 

1 0.24 0.41 

2 0.44 0.27  2 0.38 0.30 

3 0.30 0.35  3 0.38 0.29 

8 

1 0.29 0.37  

16 

1 0.35 0.32 

2 0.35 0.32  2 0.35 0.32 

3 0.36 0.31  3 0.31 0.35 
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Table 10. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has 

M=2 codevectors-per-stage and P = 16 stages. 

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE 

Classes 1 2 3  1 2 3  1 2 3  1 2 3  

1 97 4 1 102 142 65 154 361 97 4 1 102 134 55 141 330 

2 30 83 3 116 3 21 25 49 30 83 3 116 11 31 46 88 

3 21 0 252 273 3 1 77 81 21 0 252 273 3 1 69 73 

 148 87 256 491 148 87 256 491 148 87 256 491 148 87 256 491 

Prod 

Acc % 
95.1 71.6 92.3 

 

39.3 42.9 95.1 

 

95.1 71.6 92.3 

 

40.6 35.2 94.5 

 
User 

Acc % 
65.5 95.4 98.4 95.9 24.2 30.1 65.5 95.4 98.4 90.5 35.6 27.0 

Overall 

Acc % 
87.98 48.88 87.98 47.7 

 

The same experiment on the 3-category dataset is repeated for RVQ with M = 4 

codevectors-per-stage and P = 8 stages. The corresponding RVQ codebook, Class-

conditional Probability Matrix, and the Error matrix for MBRVQ-based method and 

Feature-cont Rule-based methods are shown in Figure 21, Table 11, and Table 12; 

respectively. 

It can be seen in Table 12 that the MBRVQ-based methods are far superior to 

Feature-count Rule-bases methods. Moreover, as compared to the RVQ with M = 2 and  

P = 16, the classification performance of the RVQ-based classifier for M = 4 and P = 4 is 

superior. For example, in case the latter the MBRVQ-based classifiers have an overall 

accuracy of over 90 %, as shown in Table 12; whereas, it can be seen in Table 10 that the 

overall accuracy of the MBRVQ-based classifiers for M = 2 and P = 16 is 88%, 

approximately. The same trend can be seen for the Feature-count Rule-based 

classification. 

The classification performances of the four RVQ-based classifiers are also 

calculated for all the values of Markov order from 0 to P-1. For M=2 and P=16, the over- 
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Figure 21. RVQ codebook for RVQ with M=4, P=8. The dataset consists of Plane, Car, and 

Motorbike classes. 
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Table 11. Class-conditional Probability Matrix for RVQ with M = 4 and P = 8. Class 1, 2, 3 are 

Plane, Car, Motorbike, respectively. 

 
Plane 

 
Car 

 
Motorbike 

Stage CV
1
 CV

2
 CV

3
 CV

4
 

 
CV

1
 CV

2
 CV

3
 CV

4
 

 
CV

1
 CV

2
 CV

3
 CV

4
 

p=1 0.08 0.27 0 0.65 
 

0 1 0 0 
 

0.86 0.03 0.1 0.01 

p=2 0.15 0.17 0.55 0.13 
 

0 0.44 0.361 0.194 
 

0.16 0.36 0.18 0.3 

p=3 0 0.3 0.3 0.4 
 

0.139 0.167 0.22 0.472 
 

0 0.4 0.29 0.31 

p=4 0.23 0.02 0.31 0.44 
 

0.139 0.22 0.33 0.306 
 

0.17 0.18 0.34 0.31 

p=5 0.19 0.11 0.42 0.28 
 

0.389 0.361 0.083 0.167 
 

0.08 0.31 0.12 0.49 

p=6 0.24 0.26 0.29 0.21 
 

0.22 0.25 0.167 0.361 
 

0.17 0.13 0.27 0.43 

p=7 0.16 0.26 0.37 0.21 
 

0.22 0.167 0.194 0.417 
 

0.26 0.18 0.25 0.31 

p=8 0.14 0.29 0.16 0.41 
 

0.167 0.25 0.278 0.306 
 

0.31 0.17 0.24 0.28 

 

 

 

Table 12. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has     

M = 4 codevectors-per-stage and P = 8 stages. 

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE 

Classes 1 2 3  1 2 3  1 2 3  1 2 3  

1 126 15 4 145 146 61 151 358 127 13 4 144 147 58 134 339 

2 22 72 2 96 0 25 25 50 21 74 1 96 0 28 40 68 

3 0 0 250 250 2 1 80 83 0 0 251 251 1 1 82 84 

 148 87 256 491 148 87 256 491 148 87 256 491 148 87 256 491 

Prod 

Acc % 
85.1 82.8 97.7 

 

98.6 28.7 31.3 
 

85.8 85.1 98 
 

99.3 32.2 32 
 

User 

Acc % 
86.9 75 100 40.8 50 96.4 88.2 77.1 100 43.4 41.2 97.6 

Overall 

Acc % 
91.24 51.12 92.06 52.34 
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Figure 22. Classification performance for different RVQ-based classifiers with M = 2 and P = 16. 

The dataset consists of Plane, Car, and Motorbike classes from Caltech101. 

all accuracies are plotted for these four methods in Figure 22. Similarly, the classification 

performances of the RVQ-based classifiers are also plotted in Figure 23 for RVQ with 

M=4 codevectors-per-stage and P = 8 stages. It can be seen in Figure 22 and Figure 23 

that MBRVQ classifier with CostERoE constraint outperforms the other RVQ-based 

schemes tested on this dataset. 

Support Vector Machine (SVM) Classifier with the SIFT Feature 

 A support vector machine (SVM) [9] constructs a hyperplane or set of 

hyperplanes in a high or infinite-dimensional space, which can be used for classification, 

regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane 
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Figure 23. Classification performance for different RVQ-based classifiers with M = 4 and P = 8. 

The dataset consists of Plane, Car, and Motorbike classes from Caltech101. 

that has the largest distance to the nearest training data point of any class, since in general 

the larger the margin the lower the generalization error of the classifier. The training 

points are called support vectors. 

 As a classifier, SVM is a binary classifier. For the applications of multi-

classification, SVM has popularly been used in two ways: one-versus-one, and one-

versus-all. In one-versus-one, binary SVM classifiers are built that distinguish between 

every pair of classes. In this method, classification is done by a max-wins voting strategy, 

in which every classifier assigns a test input to one of the two classes, then the vote for 

the assigned class is increased by one vote, and finally the class with the most votes 

determines the instance classification. In one-versus-all strategy, binary SVM classifiers 



77 

 

are constructed to classify between one of the classes and the rest of the classes. 

Classification of a test input for the one-versus-all case is done by a winner-takes-all 

strategy, in which the classifier with the highest output function assigns the class to the 

test input. 

 In this experiment, one-versus-one strategy has been used to perform the SVM-

based classification. The choice of the features for the SVM classification is SIFT with 

chi-squared distance kernel. SIFT stands of scale-invariant feature transform. SIFT were 

first designed and used for SVM-based classification by David Lowe [3]. SIFT feature is 

invariant to uniform scaling, orientation, and partially invariant to affine distortion and 

illumination changes. Because of the invariance properties of the SIFT feature, it is 

widely used with SVM in the applications of high-level classification, such as recognition 

of objects-of-interest in images and videos.  

The classification results of the SVM classifier are shown in Table 13. The SIFT 

feature extracted from each image of the 3-category dataset is a 128x20 vector. It can be 

seen from Table 12 and Table 13, that SVM classification performed with SIFT feature is 

almost as good as the MBRVQ-based classifiers. 

Table 13. Error matrix for SVM classifier with SIFT feature and chi-squared distance kernel. 

Classes 1 2 3  

1 126 11 3 140 

2 21 75 1 97 

3 1 1 252 254 

 148 87 256 491 

Prod 

Acc % 
85.1 86.2 98.4 

 
User 

Acc % 
90 77.3 99.2 

Overall 

Acc % 
92.26 
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Experiments: Set 2 

 In this second set of experiments, the RVQ settings remain the same as in the first 

set of experiments. The only difference is the dataset. In this case, the dataset solely 

consists of the images of motorbikes from Caltech101. The Motorbike dataset is sub-

classified into two to three distinct categories. The two-category Motorbike dataset 

comprises the classes Heavy, and Sports. Class Heavy refers to heavy motorbikes, and 

the class Sports refers to sports motorbikes. This 2-category dataset is termed as HS-

Motorbike. The typical images of the two sub-classes are shown in Figure 24. Similarly, 

the 3-category Motorbike dataset contains the classes Heavy, Heavy-Sports, and Light-

Sports. This dataset is termed HHSL-Motorbike. The typical images of the 3-category 

Motorbike dataset are shown in Figure 25. 

 The results for the 3-category HHSL-Motorbike dataset are presented first. The 

RVQ codebook for M = 2 and P =16, the corresponding Class-conditional Transition 

Probability Matrix, and the classification results are shown in Figure 26, Table 14, and 

Table 15; respectively. Similarly, for RVQ with M = 2 and P = 16, the classification 

performance for Markov order ranging from 0 to P-1 = 15 is shown in Figure 27. 

 The same experiment on the 3-category HHSLS-Motorbike dataset is repeated for 

RVQ with M = 4 codevectors-per-stage and P = 8 stages. The corresponding RVQ 

codebook, Class-conditional Transitional Probability Matrix, and the error matrix for 

MBRVQ-based method and Feature-count Rule-based methods are shown in Figure 28, 

Table 16, and Table 17; respectively. Similarly, for RVQ with M = 4 and P = 8, the 

classification performance for Markov order ranging from 0 to P-1 = 7 is shown in  

Figure 29.  
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Figure 24. Training dataset for 2-category classification. The classes are Heavy, and Sports 

motorbikes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Training dataset for 3-category classification. The classes are Heavy, Heavy-Sports, 

and Light-Sports motorbikes.  
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Figure 26. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy, Heavy-

Sports, and Light-Sports motorbike classes. 
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Table 14. Class-conditional Probability Matrix for RVQ with M=2 and P =16. Class 1, 2, 3 are 

Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively. 

Stage Class [ CV1 , CV2] 
 

Stage Class [ CV1 , CV2] 

1 

1 [0.23, 0.45] 
[0.35, 0.31] 
[0.42, 0.23] 

 

9 

1 [0.26, 0.39] 
[0.46, 0.24] 
[0.28, 0.37] 

2 2 

3 3 

2 

1 [0.29, 0.34] 
[0.54, 0.29]  
[0.17, 0.37] 

 

10 

1 [0.24, 0.44] 
[0.39, 0.27] 
[0.37, 0.29] 

2 2 

3 3 

3 

1 [0.32, 0.36] 
[0.39, 0.22]  
[0.29, 0.42] 

 

11 

1 [0.53, 0.20] 
[0.20, 0.42] 
[0.27, 0.38] 

2 2 

3 3 

4 

1 [0.16, 0.48] 
[0.37, 0.30] 
[0.47, 0.22] 

 

12 

1 [0.34, 0.33] 
[0.39, 0.30] 
[0.27, 0.37] 

2 2 

3 3 

5 

1 [0.29, 0.38] 
[0.18, 0.49] 
[0.53, 0.13] 

 

13 

1 [0.18, 0.34] 
[0.45, 0.33] 
[0.36, 0.33] 

2 2 

3 3 

6 

1 [0.56, 0.22] 
[0.40, 0.30] 
[0.03, 0.48] 

 

14 

1 [0.37, 0.29] 
[0.31, 0.36] 
[0.32, 0.35] 

2 2 

3 3 

7 

1 [0.43, 0.24] 
[0.07, 0.59] 
[0.50, 0.17] 

 

15 

1 [0.28, 0.40] 
[0.34, 0.33] 
[0.39, 0.27] 

2 2 

3 3 

8 

1 [0.39, 0.26] 
[0.31, 0.36] 
[0.30, 0.38] 

 

16 

1 [0.38, 0.31] 
[0.35, 0.31] 
[0.35, 0.32] 

2 2 

3 3 
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Table 15. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M = 

2 codevectors-per-stage and P = 16 stages. 

 MBRVQ, RoE Feature-count Rule, RoE MBRVQ, CostERoE Feature-count, CostERoE 

Class 1 2 3  1 2 3  1 2 3  1 2 3  

1 229 92 21 342 148 59 12 219 230 92 13 335 154 80 20 254 

2 21 89 7 117 88 121 4 213 20 88 5 113 41 95 5 141 

3 44 37 79 160 58 38 91 187 44 38 89 171 99 43 82 224 

 294 218 107 619 294 218 107 619 294 218 107 619 294 218 107 619 

Prod 

Acc % 
77.9 40.8 73.8 

 

50.3 55.5 85 
 

78.2 40.4 83.2 
 

52.4 43.6 76.6 
 

User 

Acc % 
67 76.1 49.4 67.6 56.8 48.7 68.7 77.9 52 60.6 67.4 36.6 

Overall 

Acc % 
64.14 58.16 65.75 53.47 

 

  

 

 

 

 

Figure 27. Classification performance for different RVQ-based classifiers with M = 2 and P = 16. 

The dataset consists of Heavy, Heavy-Sports, and Light-Sports motorbike classes from 

Caltech101.  
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Figure 28. RVQ codebook for RVQ with M = 2, P = 16. The dataset consists of Heavy, Heavy-

Sports, and Light-Sports motorbike classes. 
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Table 16. Class-conditional Probability Matrix for RVQ with M = 4 and P = 8. Class 1, 2, 3 are 

Heavy, Heavy-Sports, and Light-Sports motorbikes, respectively. 

Stage  Class CV1 CV2 CV3 CV4 

1 

1 0.21 0.47 0.27 0.51 

2 0.37 0.16 0.51 0.27 

3 0.41 0.37 0.22 0.22 

2 

1 0.18 0.78 0.50 0.06 

2 0.19 0.11 0.14 0.89 

3 0.63 0.11 0.36 0.05 

3 

1 0.6 0.39 0.23 0.31 

2 0.4 0.52 0.23 0.15 

3 0 0.09 0.54 0.54 

4 

1 0.83 0.25 0.29 0.29 

2 0.13 0.38 0.33 0.37 

3 0.04 0.38 0.38 0.35 

5 

1 0.38 0.46 0.19 0.34 

2 0.38 0.25 0.47 0.30 

3 0.25 0.29 0.35 0.36 

6 

1 0.33 0.38 0.30 0.32 

2 0.54 0.31 0.22 0.34 

3 0.13 0.31 0.48 0.33 

7 

1 0.20 0.42 0.32 0.40 

2 0.21 0.44 0.52 0.23 

3 0.59 0.14 0.16 0.37 

8 

1 0.28 0.30 0.28 0.44 

2 0.35 0.17 0.45 0.36 

3 0.38 0.53 0.26 0.20 

 

 

 
Table 17. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M = 

4 codevectors-per-stage and P = 8 stages. 

 

 MBRVQ, RoE 
Feature-count Rule, 

 RoE 
MBRVQ, CostERoE 

Feature-count Rule, 

CostERoE 

Class 1 2 3  1 2 3  1 2 3  1 2 3  

1 232 90 18 340 151 56 11 218 233 85 13 331 155 51 10 216 

2 20 93 6 119 87 125 3 215 19 97 5 121 41 127 5 173 

3 42 35 83 160 56 37 93 186 42 36 89 167 98 40 92 230 

 294 218 107 619 294 218 107 619 294 218 107 619 294 218 107 619 

Prod 

Acc % 
78.9 42.7 77.6 

 

51.4 57.3 86.9 

 

79.3 44.5 83.2 

 

52.7 58.3 86 

 
User 

Acc % 
68.2 78.2 51.9 69.3 58.1 50 70.4 80.2 53.3 71.8 73.4 40 

Overall 

Acc % 
65.91 59.61 67.69 60.42 
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Figure 29. Classification performance for different RVQ-based classifiers with M = 4 and P = 8. 

The dataset consists of Heavy, Heavy-Sports, and Light-Sports motorbike classes from 

Caltech101. 

It can be seen in Table 15 and Table 17 that the MBRVQ-based methods are far superior 

to Feature-count Rule-bases methods. Moreover, as compared to the RVQ with M = 2 

and P = 16, the classification performance of the RVQ-based classifier for M = 4 and P = 

4 is slightly better for this dataset. For example, in case of the latter, the MBRVQ-based 

classifiers have an overall accuracy of over 65 %, as shown in Table 17; whereas, it can 

be seen in Table 15 that the overall accuracy of the MBRVQ-based classifiers for M = 2 

and P = 16 is approximately 1% lower, comparatively. The same trend can be seen for 

the Feature-count Rule-based classification. Moreover, in both RVQ settings,  CostERoE 

constraint yielded better classification results for MBRVQ as compared to RoE 

constraint. Similarly, it can be seen in Figure 27 and Figure 28 that MBRVQ classifier 
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with CostERoE constraint outperforms the other RVQ-based schemes tested on this 

dataset. 

 After investigating the MRVQ classifier for the 3-category Motorbike dataset 

shown in Figure 24, the classifier is studied for the 2-category Motorbike dataset (Figure 

23), which is formed by combining the Heavy-Sports and Light-Sports motorbikes 

categories into one category of motorbikes named Sports. The training set size is 600 

images, with 300 images in each class. There are 270 images in the test set, with 90 and 

180 images in Heavy and Sports motorbike classes, respectively. The images are resized 

to 150 x 250 and are converted to grayscale. 

 Similar to the 3-category case, the experiments on the 2-category HS-Motorbike 

dataset are carried out for two settings of RVQ: M = 2 and P = 16, and M = 4 and P = 8. 

The RVQ codebooks for both the settings look similar to the corresponding RVQ 

codebooks of the 3-category HHSLS-Motorbike dataset. For M = 2 and P = 16, Class-

conditional Transition Probability Matrix, and the classification results are shown in 

Table 18, and Table 19; respectively. The corresponding Class-conditional Transitional 

Probability Matrix, and the error matrix for M = 4 and P = 8 are shown in Table 20, and 

Table 21; respectively. The Markov order is 0 in these results. It can be seen in Table 19 

and Table 20 that the MBRVQ-based methods are far superior to Feature-count Rule-

bases methods. Moreover, as compared to the RVQ with M = 2 and P = 16, the 

classification performance of the RVQ-based classifier for M = 4 and P = 8 is slightly 

better. The same trend can be seen for the Feature-count Rule-based classification. 

Moreover, in both RVQ settings, compared to RoE constraint, CostERoE constraint 

yielded better classification results for MBRVQ classifier. The classification 
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performances of the four RVQ-based classifiers are also calculated for all the values of 

Markov order from 0 to P-1. For M=2 and P=16, the overall accuracies are plotted for 

these four methods in Figure 30. Similarly, the classification performances of the RVQ-

based classifiers are also plotted in Figure 31 for RVQ with M=4 codevectors-per-stage 

and P = 8 stages. It can be seen in Figure 30 and Figure 31 that MBRVQ classifier with 

CostERoE constraint outperforms the other RVQ-based schemes tested on this dataset. 

Table 18. Class-conditional Probability Matrix for RVQ with M = 2 and P =16. Class 1, 2 are 

Heavy, and Sports motorbikes, respectively. 

Stage  Class CV1 CV2 Stage  Class CV1 CV2 

1 
1 0.45 0.56 

9 
1 0.52 0.48 

2 0.55 0.44 2 0.48 0.52 

2 
1 0.65 0.46 

10 
1 0.49 0.51 

2 0.35 0.54 2 0.51 0.49 

3 
1 0.65 0.46 

11 
1 0.56 0.44 

2 0.35 0.54 2 0.44 0.56 

4 
1 0.37 0.65 

12 
1 0.51 0.49 

2 0.63 0.35 2 0.49 0.51 

5 
1 0.73 0.42 

13 
1 0.60 0.40 

2 0.27 0.58 2 0.40 0.60 

6 
1 0.74 0.46 

14 
1 0.48 0.51 

2 0.26 0.54 2 0.52 0.49 

7 
1 0.55 0.45 

15 
1 0.62 0.41 

2 0.45 0.55 2 0.38 0.59 

8 
1 0.51 0.48 

16 
1 0.49 0.50 

2 0.49 0.52 2 0.51 0.50 

Table 19. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has     

M = 2 codevectors-per-stage and P = 16 stages. 

 MBRVQ, RoE 
Feature-count Rule, 

 RoE 
MBRVQ, CostERoE 

Feature-count Rule,  

CostERoE 

Classes 1 2  1 2  1 2  1 2  

1 74 55 129 44 76 120 75 56 131 49 91 140 

2 16 125 141 46 104 150 15 124 139 41 89 130 

 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
82.2 69.4 75.8 48.9 57.8 53.4 83.3 68.9 76.1 54.4 49.4 51.9 

User 

Acc % 
57.4 88.7 73.1 36.7 69.3 53 57.3 89.2 73.3 35 68.5 51.8 

Overall 

Acc % 
73.70 54.81 73.70 51.11 
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Figure 30. Classification Performance for different RVQ-based classifiers with M = 2 and P = 16. 

The dataset consists of Heavy and Sports motorbike classes from Caltech101. 
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Table 20. Class-conditional Probability Matrix for RVQ with M = 4 and P =8. Class 1, 2 are 

Heavy, and Sports motorbikes, respectively. 

Stage  Class CV1 CV2 CV3 CV4 

1 
1 0.42 0.69 0.45 0.65 

2 0.58 0.31 0.55 0.35 

2 
1 0.55 0.61 0.67 0.33 

2 0.45 0.39 0.33 0.67 

3 
1 0.57 0.47 0.72 0.16 

2 0.43 0.53 0.28 0.84 

4 
1 0.61 0.58 0.31 0.56 

2 0.39 0.42 0.69 0.44 

5 
1 0.36 0.59 0.45 0.57 

2 0.64 0.41 0.55 0.43 

6 
1 0.60 0.57 0.54 0.40 

2 0.40 0.43 0.46 0.60 

7 
1 0.40 0.71 0.45 0.50 

2 0.60 0.29 0.55 0.50 

8 
1 0.61 0.30 0.51 0.59 

2 0.39 0.70 0.49 0.41 

 

 

Table 21. Error matrix for MBRVQ with RoE, Feature-cout Rule with RoE, MBRVQ with 

CostERoE, and Feature-count Rule with CostERoE. The Markov order is zero, and RVQ has M = 

4 codevectors-per-stage and P = 8 stages. 

 MBRVQ, RoE 
Feature-count Rule, 

 RoE 
MBRVQ, CostERoE 

Feature-count Rule,  

CostERoE 

Classes 1 2  1 2  1 2  1 2  

1 71 52 123 39 96 135 72 52 124 43 89 132 

2 19 128 147 51 84 135 18 128 146 47 91 138 

 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
78.9 71.1 75 43.3 46.7 45 80 71.1 75.6 47.8 50.6 49.2 

User 

Acc % 
57.7 87.1 72.4 28.9 62.2 45.6 58.1 87.7 72.9 32.6 65.9 49.3 

Overall 

Acc % 
73.70 45.56 74.07 49.63 
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Figure 31. Classification Performance  for different RVQ-based classifiers with M = 4 and P = 8. 

The dataset consists of Heavy and Sports motorbike classes from Caltech101. 
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Computational and Memory Cost Analysis 

The computational and memory costs of MBRVQ classifier with CostERoE 

constraint are given as follows: 

Computational Cost = kMP multiplications and additions. 

Memory cost = kMP + C(P-O)M
(O+1)

 + |T| bytes,  

where k is the dimensionality of the input space, C is the number of classes, O is the Markov 

order and |T| is the size of the training set. The first, second, and the third terms of the memory 

cost are storage costs of the RVQ codebook, labels, and CostERoE constraint. At this point, it is 

pertinent to emphasize the cost effectiveness of MBRVQ classification over the 1-NN-based 

classification. The computational cost of 1-NN classification is k|T| multiplications and additions, 

and the associated memory cost is k|T| + T bytes, where k|T| is the cost for the storage of the 

training set, and |T| is the cost for storing the class labels. The costs of MBRVQ classification on 

the datasets shown in Figure 12, 14, 16, 24, and 25  with CostERoE are shown and compared in 

Figure 32 and Figure 33. 

Experiments: Set 3 

Different thresholds Th on the class-conditional probabilities associated with the 

Markov sub-tuples will be applied to see their effects on the classification performance of 

MRVQ classifier. Intuitively, the threshold Th can be thought as a means to weight CAC-

clusters in reaching a classification decision. Therefore, with a suitable Th, only those 

CAC clusters can be isolated that contributes most significantly towards reaching the 

class-membership decision. The value of Th is varied from 0 to 0.9. The 2-category HS-

Motorbike dataset, Figure 22, is chosen for this set of experiments. MBRVQ scheme is 

used with CostERoE. In the previous experiments, MBRVQ scheme has been shown to 

perform better Feature-count rule for MRVQ classification. Moreover, CostERoE is   
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                                           Computational Cost                Memory Cost 

Figure 32. RVQ-versus-1NN: (1
st
 Row) 2-category Swiss roll in Figure 13. (2

nd
 Row) 4-category Swiss roll in Figure 15. (3

rd
 Row) 3-category 

Caltech101 in Figure 16. 
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Figure 33. RVQ-versus-1NN: (1
st
 Row) 2-category Motorbike dataset from Caltech101 in Figure 23. (2

nd
 Row). 3-category Motorbike dataset 

from Caltech101 in Figure 24.
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preferred over RoE because compared to RoE constraint, CostERoE constraint yields 

comparable classification performance at a better cost. 

 The experimental results for M = 2 and P = 16, and M = 4 and P = 8 are shown in 

Figure 34, where the classification results are measured as the overall accuracy. The 

results are shown for thresholds                   . The detailed classification results 

are presented in Table A1 and Table A2 in Appendix A, respectively, for RVQ settings 

M=2 and P = 16, and M = 4 and P = 8. In Figure 27, the overall accuracies for Markov 

order ranging from 0 to P-1 are depicted as bars centered at each threshold value of Th. 

Therefore, for P = 8, the total number of bars for each value of Th is eight. Likewise, for   

P = 16, there are sixteen bars for each value of Th. Moreover, for P = 16, some values of 

overall accuracy are capped off at 10 %. This value is to indicate that no class-conditional 

probabilities of some test inputs were greater than the value of threshold Th. As a result, 

those test inputs were assigned to any of the three categories. Such class assignments are 

termed as Unknown. In Figure 34, it can be seen that for P = 16 test inputs start to get 

assigned to Unknown from         for different values of Markov orders. For 

      , all the test inputs for all Markov orders are assigned to the class Unknown.  

 In the context of the threshold Th, it can be seen from the results that the 

classification performance is upper-bounded by Th = 0. It implies that Th > 0 gives no 

significant advantage over the case when Th = 0. The idea of applying the different values 

of Th is to check if the stage class decision of RVQ can be weighted so that the final class 

decision is improved. However, the results suggest that under the Markov-Bayesian 

framework, the class-conditional probabilities associated with each Markov sub-tuples 

appropriately weight the corresponding stage class decisions to give the final class 
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Figure 34. (Top): RVQ M = 4 and P = 8. (Bottom): RVQ M = 2 and P = 16. 
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decision on a test input. Therefore, assigning weights to the stage class decision through 

different values of Th is redundant. 

More Datasets: Graz 

So far, the test images from Caltech101 database, shown in Figure 16, 24, and 25, 

largely have very consistent characteristics. The objects in these images are centered with 

no significant variation in scale, localization and pose. The lighting variations across 

these images are minimal. Such well-behaved images are very suitable for template 

matching-based techniques. However, it is felt that more challenging images with 

objects-of-interest varying in pose, scale, and localization; and variation in overall 

lighting conditions be considered for the analysis of the proposed RVQ-based 

classification. Graz dataset [48] has the images with such challenging characteristics. 

Graz dataset consists of images from three classes: Bicycle, People, and Background. The 

typical images of each class are shown in Figure 35. The size of each image is 480-by-

640 pixels. The training set consists of 200, 200, and 112 images; and the test set 

comprises 260, 165, and 54 images from Bicycle, People, and Background classes, 

respectively. 

The images in Graz dataset contain objects with varying pose, scale, and 

localization. Furthermore, multiple objects are also present in many of the images in the 

dataset. Because of the nature of these variations in Graz dataset, such methods are 

required that are invariant to these variations. RVQ Being an image-template matching 

method, classification of objects in Graz dataset using MBRVQ classifier becomes an ill-

posed problem.  

SVM classifier with SIFT [3] features is a suitable classification method on Graz 
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Bicycle People Background 

   

   

   

   

Figure 35. Graz dataset with classes Bicycle, People, and Background. 

dataset. SIFT features are largely invariant to the variations present in the images of the 

Graz dataset. The classification results of the SVM classifier are shown in Table 22, 

respectively. The overall accuracy of the SVM classifier is 93.95%. 

Table 22. Error matrix and classification performance measures for SVM on Graz dataset. 

Classes Bicycle People Background  

Bicycle 245 10 0 255 

People 7 153 2 162 

Background 8 2 52 62 

 260 165 54 479 

Prod 

Acc % 
94.2 92.7 96.3 

 

User 

Acc % 
96.1 94.4 83.9 

Overall 

Acc % 
93.95 
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 As mentioned before, Graz dataset has a great deal of variations in scale, lighting, 

pose, location of objects, and number of the objects in an image. In the class People in 

particular, the image varies from just one person to a group of persons at a small scale. 

The huge range of variations in Graz dataset does not seem to go well with the image 

pixel-based template matching of RVQ. At this point, two suggestions are proposed to 

improve the classification performance of MBRVQ classifier: (1) Modify the design 

method of RVQ codebook suited to SIFT features so that the proposed RVQ classifier 

can become a robust classifier on a variety of images. Chi-squared distance function is 

the one of the most suitable distance criterion for SIFT features. Incorporate chi-squared 

distance function in the design process of RVQ codebook. (2) Employ a sliding window 

approach where a window is made to slide across a test image and a class decision is 

made for the image snippet in the window. However, adapting the window to the varying 

scale of the objects-of-interest in an image will pose a big challenge.  

 Both the approaches, discussed above, are outside the scope of this research. 

These methods are left to be investigated in future works of this research. 

Handwritten-Digits Dataset 

 The MNIST database of handwritten digits [49], [50] consists of images of 

handwritten digits from zero to nine. All the images are centered and nearly uniformly 

scaled, and have the same size of 28-by-28 pixels in binary scale. The lighting variations 

are minimal, if any. They typical images in the handwriting database are shown in Figure 

36. This database holds another major advantage over the previously used datasets. The 

size of the handwritten-digits dataset is very large, relatively. The total number of images 

is 70,000, with 60,000 images in the training set and 10,000 images in the test set. 
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Figure 36. The MNIST database of handwritten digits. 

 Yann Lecun et al [49] report comprehensive results on the classification of the 

handwriting database for the digits from zero to nine. The results reported in [49] also 

serve as a collection of benchmark performances to compare the performance of 

MBRVQ classifier with. For an initial test on this dataset, MBRVQ classifier is first 

realized by designing RVQ codebook with M = 4 codevectors-per-stage and P = 8 stages. 

Markov order is four. The training set consists of 60,000 images for the handwritten 

digits ranging from zero to nine. The test set comprises 10,000 images. The aim of 

classification on this dataset is to recognize between each of the ten digits. As a result, the 

RVQ classifier is designed with one codebook for 10-category classification. The 

codebook is shown in Figure 37. CostERoE constraint is used to implement the RVQ-

based classifier. The classification results are shown in the error matrix in Table 23.  

 To see the effect of the varying codevectors-per-stage, the classification on  
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Table 23. Classification performance of MBRVQ classifier with CostERoE constraint on 

handwritten digits dataset. RVQ has M = 4 and P = 8, Markov order = 4. 

Classes 0 1 2 3 4 5 6 7 8 9  

0 917 0 18 8 2 24 21 3 16 10 1019 

1 1 1099 14 5 3 4 6 17 7 6 1162 

2 4 2 860 33 15 9 10 28 39 6 1006 

3 7 4 32 819 4 52 3 4 61 9 995 

4 1 2 23 3 739 10 10 10 15 109 922 

5 24 0 5 58 13 723 21 10 44 19 917 

6 14 5 22 3 26 25 869 2 21 3 990 

7 2 2 20 12 19 8 1 879 18 46 1007 

8 8 17 34 54 11 23 15 13 727 19 921 

9 2 4 4 15 150 14 2 62 26 782 1061 

 980 1135 1032 1010 982 892 958 1028 974 1009 10000 

Producer 

Accuracy 

% 

93.57 96.82 83.33 81.1 75.26 81.1 90.71 85.51 74.64 77.5 

 
User 

Accuracy 

% 

90.00 94.58 85.5 82.31 80.15 78.84 87.78 87.3 78.94 73.71 

Overall 

Accuracy 

% 

84.14 

 

 

 

 

Figure 37. Handwritten digit database. RVQ codebook with M = 4 codevectors-per-stage and    

P = 8 stages.  
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dataset is also done for M = {2,3,4,5,6,7,8,9,10,11,12} and P = 8. The classification 

performance of MBRVQ classifier is shown in Figure 37, in which the overall accuracies 

are plotted for all the values of M and Markov order varying from 0 to P-1 = 7. It can be 

seen that the mean overall accuracy peaks at 91.32 % for M = 7 before it starts to 

decrease. The results suggest that the MBRVQ classifier begins to over-fit for M > 7.  

Since in the performance of the MBRVQ classifier peaks at M=7 (shown in 

Figure 38), its classification performance at M = 7 is also calculated over a range of 

Markov order from 0 to P-1 = 7, where P = 8 stages. The classification performance in 

terms of the overall accuracy is shown in Figure 39. The overall accuracy for 1-NN 

classifier, which is 94.12 %, is also shown for comparison. It can be seen that MBRVQ 

classifier tends to converge from the fourth Markov order, when the overall accuracy is  

 

 

Figure 38. RVQ classification performance for M = {2,3,4,5,6,7,8,9,10,11,12}, and P=8: Mean 

overall accuracy averaged over Markov orders 0 to 7. 
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Figure 39. RVQ classification performance for M = 7 and P=8: overall accuracy for Markov 

order = {0, 1, 2, 3, 4, 5, 6, 7}. 

92.11 %. The overall accuracy of MBRVQ classifier stabilizes to its apparent limit value 

of 92.5 % for sixth and seventh Markov orders. For this experiment, the best 

classification performance of the MBRVQ classifier is within 3% of the performance of 

1-NN classifier. This performance measure of MBRVQ is in line with results of different 

classifiers reported in [49]. 

 The comparison of computational and memory costs between 1-NN and MBRVQ 

classifiers are shown in Figure 40. MBRVQ classifier offers a great deal of cost savings. 

It can be observed in Figure 40 that MBRVQ classifier, with M=7 and P=8, approaches 

its best performance from the 4
th

 Markov order. The overall classification accuracy is 

92.11%, which is within 3% of the performance of 1-NN classifier. For the 

dimensionality k = 28x28 of the handwritten digit image, the memory cost of the 

MBRVQ classifier is 0.74 MB, approximately, as compared to 1-NN classifier’s memory 

cost that is 45 MB, approximately. Similarly, for Euclidean distance used as the measure  
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Figure 40. RVQ-versus-1NN: (Top) Computational cost. (Bottom) Memory cost. 
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of nearness, the computational cost of MBRVQ classifier is kMP = 43904 multiplications 

and additions, as compared to the computational cost of 1-NN classifier that is             

k|T| + |T| = 47,040,000 multiplications and additions, where |T| is the size of the training 

set. In other words, for the given dimensionality of the input vector of a handwritten digit 

k = 28x28 = 784, the number of searches from MBRVQ classifier is MP = 56, whereas 

the number of searches for the    1-NN classifier is |T| = 60,000.  
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

Conclusion 

Residual vector quantization (RVQ) is a 1-nearest neighbor (1-NN) type of 

technique. RVQ is a multi-stage implementation of regular vector quantization. An input 

is successively quantized to the nearest codevector in each stage codebook. In 

classification, nearest neighbor techniques are very attractive since these techniques very 

accurately model the ideal Bayes class boundaries. However, nearest neighbor 

classification techniques require a large size of representative dataset. Since in such 

techniques a test input is assigned a class membership after an exhaustive search the 

entire training set, a reasonably large training set can make the implementation cost of the 

nearest neighbor classifier unfeasibly costly. Although, the k-d tree structure [52] offers a 

far more efficient implementation of 1-NN search, however, the cost of storing the data 

points can become prohibitive, especially in higher dimensionality. 

 However, RVQ also offers a nice solution to a cost-effective implementation of 1-

NN-based classification. Because of the direct-sum structure of the RVQ codebook, the 

memory and computational of cost 1-NN-based system is greatly reduced. For example, 

RVQ codebook with M = 4 codevectors-per-stage and P = 8 stages can potentially 

represent M
P
 = 65536 training vectors with the cost of only MP = 32 codevectors. 

Although, as compared to an equivalent 1-NN system, the multi-stage implementation of 

the RVQ codebook compromises the accuracy of the class boundaries, yet the 

classification error has been empirically shown to be within 3% to 4% of the performance 

of an equivalent 1-NN-based classifier.  
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RVQ is an image template-based matching technique. Therefore, it uses 

Euclidean distance as a nearness measure for matching an input to the nearest codevector. 

As a result, the images RVQ can be applied on have to be very controlled with minimal 

variations. Moreover, since RVQ is a 1-NN-based technique, the size of the training set is 

recommended to be large so that the codebook is a good representation of the data. 

Subsequently, the class boundaries between the data points of different classes will also 

accurately defined by the RVQ.  

Future Research 

As pointed out earlier, RVQ is currently constrained to use only Euclidean 

distance measure. As a result, RVQ-based classification is not robust to variations in 

images. To address this issue, it is proposed that RVQ codebook design be investigated 

for other distance functions so that RVQ can be used on feature templates composed of 

more robust features like scale-invariant feature transform (SIFT). As a result, a RVQ-

based classifier will become more robust and will become suited to applications of 

classification, such as object detection and recognition, on a wide variety of images.  
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Appendix A 

Table A.1. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples. Test set size = 270 total 

samples, Input size = 150x250 grayscale pixels, M = 4, P = 8. 

MBRVQ , CostERoE 

Threshold 

= 0.0 

Markov 0th  1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 74 54 128 80 45 125 82 33 115 80 21 101 80 11 91 80 13 93 83 15 98 82 18 100 

2 16 126 142 10 135 145 8 147 155 10 159 169 10 169 179 10 167 177 7 165 172 8 162 170 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
82.2 70 70 88.9 75 76.5 

91.
1 

81.7 81.2 88.9 88.3 84.1 88.9 94 88.4 88.9 92.8 87.5 92.2 91.7 88.5 91.1 90 86.6 

User 

Acc % 
57.8 88.7 73.3 64 93.1 78.6 

71.
3 

94.8 83.1 79.2 94.1 86.7 87.9 94 91.2 86 94.4 90.2 84.7 95.9 90.3 82 95.3 88.7 

Overall 

Acc % 
74.07 79.63 84.81 88.52 92.22 91.48 91.85 90.37 

Threshold 

= 0.1 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 55 83 138 43 83 126 60 66 126 80 22 102 82 14 96 78 14 92 80 13 93 79 16 95 

2 35 97 132 47 97 144 30 114 144 10 158 168 8 166 174 12 166 178 10 167 177 11 164 175 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
61.1 53.9 50.5 47.8 53.9 41 

66.
7 

63.3 57.2 88.9 87.8 83.7 91.1 92.2 88.3 86.7 92.2 85.8 88.9 92.8 87.5 87.8 91.1 85.5 

User 

Acc % 
39.9 73.5 56.7 34.1 67.4 50.8 

47.
6 

79.2 63.4 78.4 94 86.2 85.4 95.4 90.4 84.8 93.3 89.1 86 94.4 90.2 83.2 93.7 88.5 

Overall 

Acc % 
56.3 51.85 64.44 88.15 91.85 90.37 91.48 90.00 

Threshold 

= 0.2 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 75 53 128 80 44 124 82 32 114 80 18 98 82 13 95 82 14 96 83 15 98 83 15 98 

2 15 127 142 10 136 146 8 148 156 10 162 172 8 167 175 8 166 174 7 165 172 7 165 172 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
83.3 70.6 71 88.9 75.6 77 

91.
1 

82.2 81.5 88.9 90 85.3 91.1 93 88.7 91.1 92.2 88.3 92.2 91.7 88.5 92.2 91.7 88.5 

User 

Acc % 
58.6 89.4 74 64.5 93.2 79 

71.
9 

94.9 83.4 81.6 94.2 87.9 86.3 95 90.9 85.4 95.4 90.4 84.7 95.9 90.3 84.7 95.9 90.3 

Overall 

Acc % 
74.81 80.00 85.19 89.63 92.22 91.85 91.85 91.85 

Threshold 

= 0.3 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89 

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
44.4 43.9 36.4 47.8 50.6 40.2 

72.
2 

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1 

User 

Acc % 
28.4 61.2 44.8 32.6 65.9 49.3 

54.
6 

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7 

Overall 

Acc % 
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74 
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Threshold 

= 0.4 

 Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89 

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
44.4 43.9 36.4 47.8 50.6 40.2 

72.
2 

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1 

User 

Acc % 
28.4 61.2 44.8 32.6 65.9 49.3 

54.
6 

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7 

Overall 

Acc % 
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74 

Threshold 

= 0.5 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89 

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
44.4 43.9 36.4 47.8 50.6 40.2 

72.
2 

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1 

User 

Acc % 
28.4 61.2 44.8 32.6 65.9 49.3 

54.
6 

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7 

Overall 

Acc % 
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74 

 

 

 Markov 0th  1st 2nd 3rd 4th 5th 6th 7th  

Threshold 

= 0.6 

 Prod Rule, *My RoE Prod Rule, *My RoE 
Prod Rule, *My 

RoE 
Prod Rule, *My RoE Prod Rule, *My RoE Prod Rule, *My RoE Prod Rule, *My RoE 

Prod Rule, *My RoE 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 74 54 128 80 45 125 82 33 115 80 21 101 80 11 91 80 13 93 83 15 98 82 18 100 

2 16 126 142 10 135 145 8 147 155 10 159 169 10 169 179 10 167 177 7 165 172 8 162 170 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
82.2 70 70 88.9 75 76.5 

91.
1 

81.7 81.2 88.9 88.3 84.1 88.9 94 88.4 88.9 92.8 87.5 92.2 91.7 88.5 91.1 90 86.6 

User 

Acc % 
57.8 88.7 73.3 64 93.1 78.6 

71.
3 

94.8 83.1 79.2 94.1 86.7 87.9 94 91.2 86 94.4 90.2 84.7 95.9 90.3 82 95.3 88.7 

Overall 

Acc % 
74.07 79.63 84.81 88.52 92.22 91.48 91.85 90.37 

Threshold 

= 0.7 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 55 83 138 43 83 126 60 66 126 80 22 102 82 14 96 78 14 92 80 13 93 79 16 95 

2 35 97 132 47 97 144 30 114 144 10 158 168 8 166 174 12 166 178 10 167 177 11 164 175 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
61.1 53.9 50.5 47.8 53.9 41 

66.
7 

63.3 57.2 88.9 87.8 83.7 91.1 92.2 88.3 86.7 92.2 85.8 88.9 92.8 87.5 87.8 91.1 85.5 

User 

Acc % 
39.9 73.5 56.7 34.1 67.4 50.8 

47.
6 

79.2 63.4 78.4 94 86.2 85.4 95.4 90.4 84.8 93.3 89.1 86 94.4 90.2 83.2 93.7 88.5 

Overall 

Acc % 
56.3 51.85 64.44 88.15 91.85 90.37 91.48 90.00 

Threshold 

= 0.8 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 75 53 128 80 44 124 82 32 114 80 18 98 82 13 95 82 14 96 83 15 98 83 15 98 

2 15 127 142 10 136 146 8 148 156 10 162 172 8 167 175 8 166 174 7 165 172 7 165 172 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 83.3 70.6 71 88.9 75.6 77 91. 82.2 81.5 88.9 90 85.3 91.1 93 88.7 91.1 92.2 88.3 92.2 91.7 88.5 92.2 91.7 88.5 
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Acc % 1 

User 

Acc % 
58.6 89.4 74 64.5 93.2 79 

71.
9 

94.9 83.4 81.6 94.2 87.9 86.3 95 90.9 85.4 95.4 90.4 84.7 95.9 90.3 84.7 95.9 90.3 

Overall 

Acc % 
74.81 80.00 85.19 89.63 92.22 91.85 91.85 91.85 

Threshold 

= 0.9 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 40 101 141 43 89 132 65 54 119 81 25 106 80 16 96 78 11 89 79 12 91 77 12 89 

2 50 79 129 47 91 138 25 126 151 9 155 164 10 164 174 12 169 181 11 168 179 13 168 181 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
44.4 43.9 36.4 47.8 50.6 40.2 

72.
2 

70 63.4 90 86.1 83.2 88.9 91.1 86.1 86.7 93.9 87.2 87.8 93.3 87.3 85.6 93.3 86.1 

User 

Acc % 
28.4 61.2 44.8 32.6 65.9 49.3 

54.
6 

83.4 69 76.4 94.5 85.5 83.3 94.3 88.8 87.6 93.4 90.5 86.8 93.9 90.4 86.5 92.8 89.7 

Overall 

Acc % 
44.07 49.63 70.74 87.41 90.37 91.48 91.48 90.74 
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Table A.2. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples 

Test set size = 270 total samples, Input size = 71x101 grayscale pixels, M = 2, P = 16. 
 MBRVQ , CostERoE 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Threshold 

= 0.0 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 79 57 136 79 62 141 80 53 133 82 51 133 72 33 105 73 27 100 81 19 100 82 17 99 

2 11 123 134 11 118 129 10 127 137 8 129 137 18 147 165 17 153 170 9 161 170 8 163 171 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
87.8 68.3 78.1 87.8 65.6 76.7 

88.
9 

70.6 79.8 91.1 71.7 81.4 80 81.7 80.9 81.1 85 83.1 90 89.4 89.7 91.1 90.6 90.9 

User 

Acc % 
58.1 91.8 75 56 91.5 73.8 

60.
2 

92.7 76.5 61.7 94.2 78 68.6 89.1 78.9 73 90 81.5 81 94.7 87.9 82.8 95.3 89.1 

Overall 

Acc % 
74.81 72.96 76.67 78.15 81.11 83.7 89.63 90.74 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 83 14 97 85 13 98 83 13 96 85 14 99 86 14 100 86 14 100 86 14 100 86 14 100 

2 7 166 173 5 167 172 7 167 174 5 166 171 4 166 170 4 166 170 4 166 170 4 166 170 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
92.2 92.2 92.2 94.4 92.8 93.6 

92.
2 

92.8 92.5 94.4 92.2 93.3 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 

User 

Acc % 
85.6 96 90.8 86.7 97.1 91.9 

86.
5 

96 91.3 85.9 97.1 91.5 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 

Overall 

Acc % 
92.22 93.33 92.59 92.96 93.33 93.33 93.33 93.33 

Threshold 

= 0.3 to 

0.5 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 79 57 136 79 62 141 80 53 133 82 51 133 72 33 105 73 27 100 81 19 100 82 17 99 

2 11 123 134 11 118 129 10 127 137 8 129 137 18 147 165 17 153 170 9 161 170 8 163 171 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
87.8 68.3 78.1 87.8 65.6 76.7 

88.
9 

70.6 79.8 91.1 71.7 81.4 80 81.7 80.9 81.1 85 83.1 90 89.4 89.7 91.1 90.6 90.9 

User 

Acc % 
58.1 91.8 75 56 91.5 73.8 

60.
2 

92.7 76.5 61.7 94.2 78 68.6 89.1 78.9 73 90 81.5 81 94.7 87.9 82.8 95.3 89.1 

Overall 

Acc % 
74.81 72.96 76.67 78.15 81.11 83.7 89.63 90.74 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 83 14 97 85 13 98 83 13 96 85 14 99 86 14 100 86 14 100 86 14 100 86 14 100 

2 7 166 173 5 167 172 7 167 174 5 166 171 4 166 170 4 166 170 4 166 170 4 166 170 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
92.2 92.2 92.2 94.4 92.8 93.6 

92.
2 

92.8 92.5 94.4 92.2 93.3 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 95.6 92.2 93.9 

User 

Acc % 
85.6 96 90.8 86.7 97.1 91.9 

86.
5 

96 91.3 85.9 97.1 91.5 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 86 97.6 91.8 

Overall 

Acc % 
92.22 93.33 92.59 92.96 93.33 93.33 93.33 93.33 
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 MBRVQ, CostERoE RoE 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Threshold 

= 0.55 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 83 69 152 77 57 134 79 56 135 81 48 129 81 36 117 76 33 109 83 24 107 84 16 100 

2 7 111 118 13 123 136 11 124 135 9 132 141 9 144 153 14 147 161 7 156 163 6 164 170 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
92.2 61.7 77 85.6 68.3 77 

87.
8 

68.9 78.4 90 73.3 81.7 90 80 85 84.4 81.7 83.1 92.2 86.7 89.5 93.3 91.1 92.2 

User 

Acc % 
54.6 94.1 74.4 57.5 90.4 74 

58.
5 

91.9 75.2 62.8 93.6 78.2 69.2 94.1 81.7 69.7 91.3 80.5 77.6 95.7 86.7 84 96.5 90.3 

Overall 

Acc % 
71.85 74.07 75.19 78.89 83.33 82.59 88.52 91.85 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 84 13 97 85 15 100 84 12 96 80 11 91 80 11 91 80 9 89 79 8 87 79 7 86 

2 5 166 171 5 165 170 4 166 170 4 165 169 4 165 169 4 167 171 4 167 171 4 166 170 

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256 

Prod 

Acc % 
   94.4 91.7 93.1                   

User 

Acc % 
   85 97.1 91.1                   

Overall 

Acc % 
---- 92.59 ---- ---- ---- ---- ---- ---- 

Threshold 

= 0.6 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 82 76 158 80 65 145 74 50 124 78 44 122 80 32 112 75 30 105 83 19 102 84 17 101 

2 8 104 112 10 115 125 16 130 146 12 136 148 10 148 158 15 148 163 7 161 168 6 162 168 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 178 268 90 180 270 90 179 269 

Prod 

Acc % 
91.1 57.8 74.5 88.9 63.9 76.4 

82.
2 

72.2 77.2 86.7 75.6 81.2 88.9 82.2 85.6 83.3 83.1 83.2 92.2 89.4 90.8 93.3 90.5 91.9 

User 

Acc % 
51.9 92.9 72.4 55.2 92 73.6 

59.
7 

89 74.4 63.9 91.9 77.9 71.4 93.7 82.6 71.4 90.8 81.1 81.4 95.8 88.6 83.2 96.4 89.8 

Overall 

Acc % 
68.89 72.22 75.56 79.26 84.44 83.21 90.37 91.45 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 84 13 97 86 16 102 84 12 96 80 10 90 80 11 91 80 10 90 79 8 87 79 7 86 

2 5 166 171 4 164 168 4 166 170 4 166 170 4 165 169 4 166 170 4 167 171 4 166 170 

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256 

Prod 

Acc % 
94.4 92.7 93.6 95.6 91.1 93.4 

95.
5 

93.3 94.4 95.2 94.3 94.8 95.2 93.8 94.5 95.2 94.3 94.8 95.2 95.4 95.3 95.2 96 95.6 

User 

Acc % 
86.6 97.1 91.9 84.3 97.6 91 

87.
5 

97.6 92.6 88.9 97.6 93.3 87.9 97.6 92.8 88.9 97.6 93.3 90.8 97.7 94.3 91.9 97.6 94.8 

Overall 

Acc % 
93.28 92.59 93.98 94.62 94.23 94.62 95.35 95.7 

 MBRVQ, CostERoE RoE 

 Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Threshold  
Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 68 38 106 58 38 96 67 33 100 80 45 125 76 28 104 75 28 103 79 19 98 79 15 94 
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= 0.7 2 0 0 0 20 111 131 17 132 149 9 132 141 13 146 159 8 146 154 7 157 164 5 160 165 

 68 38 106 78 149 227 84 165 249 89 177 266 89 174 263 83 174 257 86 176 262 84 175 259 

Prod 

Acc % 
   74.4 74.5 74.5 

79.
8 

80 79.9 89.9 74.6 82.3 85.4 83.9 84.7 90.4 83.9 87.2 91.9 89.2 90.6 94 91.4 92.7 

User 

Acc % 
   60.4 84.7 72.6 67 88.6 77.8 64 93.6 78.8 73.1 91.8 82.5 72.8 94.8 83.8 80.6 95.7 88.2 84 97 90.5 

Overall 

Acc % 
--- 74.45 79.92 79.7 84.41 85.99 90.08 92.28 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 79 15 94 77 12 89 77 10 87 77 10 87 77 9 86 77 7 84 76 7 83 76 7 83 

2 5 160 165 4 163 167 4 164 168 4 162 166 4 160 164 4 161 165 4 161 165 4 161 165 

 84 175 259 81 175 256 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248 

Prod 

Acc % 
94 91.4 92.7 95.1 93.1 94.1 

95.
1 

94.3 94.7 95.1 94.2 94.7 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4 

User 

Acc % 
84 97 90.5 86.5 97.6 92.1 

88.
5 

97.6 93.1 88.5 97.6 93.1 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6 

Overall 

Acc % 
92.28 93.75 94.51 94.47 94.8 95.58 95.56 95.56 

Threshold 

= 0.8 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 18 11 29 75 30 105 75 29 104 74 24 98 75 14 89 77 11 88 

2 0 0 0 0 0 0 0 0 0 8 108 116 10 117 127 6 140 146 7 159 166 6 160 166 

 0 0 0 0 0 0 18 11 29 83 138 221 85 146 231 80 164 244 82 173 255 83 171 254 

Prod 

Acc % 
         90.4 78.3 84.4 88.2 80.1 84.2 92.5 85.4 89 91.5 91.9 91.7 92.8 93.6 93.2 

User 

Acc % 
         71.4 93.1 82.3 72.1 92.1 82.1 75.5 95.9 85.7 84.3 95.8 90.1 87.5 96.4 92 

Overall 

Acc % 
   82.81 83.12 87.7 91.76 93.31 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 11 88 77 10 87 76 9 85 76 8 84 76 8 84 76 8 84 76 8 84 76 8 84 

2 3 157 160 4 159 163 5 161 166 4 160 164 4 160 164 4 160 164 4 160 164 4 160 164 

 80 168 248 81 169 250 81 170 251 80 168 248 80 168 248 80 168 248 80 168 248 80 168 248 

Prod 

Acc % 
96.3 93.5 94.9 95.1 94.1 94.6 

93.
8 

94.7 94.3 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1 95 95.2 95.1 

User 

Acc % 
87.5 98.1 92.8 88.5 97.5 93 

89.
4 

97 93.2 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1 90.5 97.6 94.1 

Overall 

Acc % 
94.35 94.4 94.42 95.16 95.16 95.16 95.16 95.16 

 MBRVQ, CostERoE RoE 

Threshold 

= 0.9 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 0 0 0 12 1 13 44 5 49 60 9 69 66 7 73 69 7 76 

2 0 0 0 0 0 0 0 0 0 0 0 0 4 78 82 6 105 111 5 127 132 5 147 152 

 0 0 0 0 0 0 0 0 0 12 1 13 48 83 131 66 114 180 71 134 205 74 154 228 

Prod 

Acc % 
            91.7 94 92.9 90.9 92.1 91.5 93 94.8 93.9 93.2 95.5 94.4 

User 

Acc % 
            89.8 95.1 92.5 87 94.6 90.8 90.4 96.2 93.3 90.8 96.7 93.8 
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Overall 

Acc % 
---- ---- ---- ---- 93.13 91.67 94.15 94.74 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 74 7 81 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80 

2 3 152 155 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165 

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245 

Prod 

Acc % 
96.1 95.6 95.9 94.9 95.7 95.3 

94.
9 

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3 

User 

Acc % 
91.4 98.1 94.8 91.5 97.5 94.5 

91.
5 

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5 

Overall 

Acc % 
95.76 95.47 95.49 95.49 95.53 95.51 95.51 95.51 

Threshold 

= 1 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 0 0 0 5 0 5 14 2 16 44 7 51 62 7 69 65 7 72 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 26 26 2 99 101 3 145 148 

 0 0 0 0 0 0 0 0 0 5 0 5 14 5 19 44 33 77 64 106 170 68 152 220 

Prod 

Acc % 
            100 60 80 100 78.8 89.4 96.9 93.4 95.2 95.6 95.4 95.5 

User 

Acc % 
            87.5 100 93.8 86.3 100 93.2 89.9 98 94 90.3 98 94.2 

Overall 

Acc % 
---- ---- ---- ---- 89.47 90.91 94.71 95.45 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 70 7 77 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 

2 3 152 155 4 157 161 4 158 162 4 158 162 4 161 165 4 161 165 4 161 165 4 161 165 

 73 159 232 76 164 240 76 165 241 76 165 241 76 168 244 76 168 244 76 168 244 76 168 244 

Prod 

Acc % 
95.9 95.6 95.8 94.7 95.7 95.2 

94.
7 

95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 

User 

Acc % 
90.9 98.1 94.5 91.1 97.5 94.3 

91.
1 

97.5 94.3 91.1 97.5 94.3 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 

Overall 

Acc % 
95.69 95.42 95.44 95.44 95.49 95.49 95.49 95.49 

 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.0 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 40 101 141 43 89 132 40 96 136 57 86 143 51 77 128 69 80 149 76 44 120 80 18 98 

2 50 79 129 47 91 138 50 84 134 33 94 127 39 103 142 21 100 121 14 136 150 10 162 172 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
44.4 43.9 44.2 47.8 50.6 49.2 

44.
4 

46.7 45.6 63.3 52.2 57.8 56.7 57.2 57 76.7 55.6 66.2 84.4 75.6 80 88.9 90 89.5 

User 

Acc % 
28.4 61.2 44.8 32.6 65.9 49.3 

29.
4 

62.7 46.1 39.9 74 57 39.8 72.5 56.2 46.3 82.6 64.5 63.3 90.7 77 81.6 94.2 87.9 

Overall 

Acc % 
44.07 49.63 45.93 55.93 57.04 62.59 78.52 89.63 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 16 93 81 14 95 79 14 93 76 14 90 79 15 94 80 17 97 79 12 91 80 12 92 
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2 13 164 177 9 166 175 11 166 177 14 166 180 11 165 176 10 163 173 11 168 179 10 168 178 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
85.6 91.1 88.4 90 92.2 91.1 

87.
8 

92.2 90 84.4 92.2 88.3 87.8 91.7 89.8 88.9 90.6 89.8 87.8 93.3 90.6 88.9 93.3 91.1 

User 

Acc % 
82.8 92.7 87.8 85.3 94.9 90.1 

84.
9 

93.8 89.4 84.4 92.2 88.3 84 93.8 88.9 82.5 94.2 88.4 86.8 93.9 90.4 87 94.4 90.7 

Overall 

Acc % 
89.26 91.48 90.74 89.63 90.37 90.00 91.48 91.85 

Threshold 

= 0.3 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 109 186 75 58 133 78 47 125 78 37 115 78 41 119 76 37 113 79 26 105 80 21 101 

2 13 71 84 15 122 137 12 133 145 12 143 155 12 139 151 14 143 157 11 154 165 10 159 169 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
85.6 39.4 62.5 83.3 67.8 75.6 

86.
7 

73.9 80.3 86.7 79.4 83.1 86.7 77.2 82 84.4 79.4 81.9 87.8 85.6 86.7 88.9 88.3 88.6 

User 

Acc % 
41.4 84.5 63 56.4 89.1 72.8 

62.
4 

91.7 77.1 67.8 92.3 80.1 65.5 92.1 78.8 67.3 91.1 79.2 75.2 93.3 84.3 79.2 94.1 86.7 

Overall 

Acc % 
54.81 72.96 78.15 81.85 80.37 81.11 86.3 88.52 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 18 95 80 15 95 83 14 97 80 15 95 79 14 93 80 14 94 81 11 92 80 12 92 

2 13 162 175 10 165 175 7 166 173 10 165 175 11 166 177 10 166 176 9 169 178 10 168 178 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
85.6 90 87.8 88.9 91.7 90.3 

92.
2 

92.2 92.2 88.9 91.7 90.3 87.8 92.2 90 88.9 92.2 90.6 90 93.9 92 88.9 93.3 91.1 

User 

Acc % 
81.1 92.6 86.9 84.2 94.3 89.3 

85.
6 

96 90.8 84.2 94.3 89.3 84.9 93.8 89.4 85.1 94.3 89.7 88 94.9 91.5 87 94.4 90.7 

Overall 

Acc % 
88.52 90.74 92.22 90.74 90.74 91.11 92.59 91.85 
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 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.35 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 86 131 217 79 75 154 76 47 123 76 46 122 78 38 116 81 39 120 80 31 111 82 25 107 

2 4 49 53 11 105 116 14 133 147 14 134 148 12 142 154 9 141 150 10 149 159 8 155 163 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
95.6 27.2 61.4 87.8 58.3 73.1 

84.
4 

73.9 79.2 84.4 74.4 79.4 86.7 78.9 82.8 90 78.3 84.2 88.9 82.8 85.9 91.1 86.1 88.6 

User 

Acc % 
39.6 92.5 66.1 51.3 90.5 70.9 

61.
8 

90.5 76.2 62.3 90.5 76.4 67.2 92.2 79.7 67.5 94 80.8 72.1 93.7 82.9 76.6 95.1 85.9 

Overall 

Acc % 
50.00 68.15 77.41 77.78 81.48 82.22 84.81 87.78 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 81 21 102 80 18 98 81 17 98 81 11 92 81 15 96 82 13 95 83 11 94 83 13 96 

2 9 159 168 10 162 172 9 163 172 9 169 178 9 165 174 8 167 175 7 169 176 7 167 174 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
90 88.3 89.2 88.9 90 89.5 90 90.6 90.3 90 93.9 92 90 91.7 90.9 91.1 92.8 92 92.2 93.9 93.1 92.2 92.8 92.5 

User 

Acc % 
79.4 94.6 87 81.6 94.2 87.9 

82.
7 

94.8 88.8 88 94.9 91.5 84.4 94.8 89.6 86.3 95.4 90.9 88.3 96 92.2 86.5 96 91.3 

Overall 

Acc % 
88.89 89.63 90.37 92.59 91.11 92.22 93.33 92.59 

Threshold 

= 0.4 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 84 84 168 81 60 141 78 58 136 78 46 124 79 52 131 82 38 120 81 32 113 82 27 109 

2 6 96 102 9 120 129 12 122 134 12 134 146 11 128 139 8 142 150 9 148 157 8 153 161 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
93.3 53.3 73.3 90 66.7 78.4 

86.
7 

67.8 77.3 86.7 74.4 80.6 87.8 71.1 79.5 91.1 78.9 85 90 82.2 86.1 91.1 85 88.1 

User 

Acc % 
50 94.1 72.1 57.4 93 75.2 

57.
4 

91 74.2 62.9 91.8 77.4 60.3 92.1 76.2 68.3 94.7 81.5 71.7 94.3 83 75.2 95 85.1 

Overall 

Acc % 
66.67 74.44 74.07 78.52 76.67 82.96 84.81 87.04 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 84 22 106 85 19 104 83 20 103 82 16 98 85 14 99 83 13 96 83 12 95 82 10 92 

2 6 158 164 5 161 166 7 160 167 8 164 172 5 166 171 7 167 174 7 168 175 8 170 178 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
93.3 87.8 90.6 94.4 89.4 91.9 

92.
2 

88.9 90.6 91.1 91.1 91.1 94.4 92.2 93.3 92.2 92.8 92.5 92.2 93.3 92.8 91.1 94.4 92.8 

User 

Acc % 
79.2 96.3 87.8 81.7 97 89.4 

80.
6 

95.8 88.2 83.7 95.3 89.5 85.9 97.1 91.5 86.5 96 91.3 87.4 96 91.7 89.1 95.5 92.3 

Overall 

Acc % 
89.63 91.11 90.00 91.11 92.96 92.59 92.96 93.33 

 

  



 116 

 

 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.45 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 52 129 70 38 108 80 60 140 81 61 142 81 52 133 83 39 122 80 35 115 81 31 112 

2 13 128 141 20 142 162 10 120 130 9 119 128 9 128 137 7 141 148 10 145 155 9 149 158 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
85.6 71.1 78.4 77.8 78.9 78.4 

88.
9 

66.7 77.8 90 66.1 78.1 90 71.1 80.6 92.2 78.3 85.3 88.9 80.6 84.8 90 82.8 86.4 

User 

Acc % 
59.7 90.8 75.3 64.8 87.7 76.3 

57.
1 

92.3 74.7 57 93 75 60.9 93.4 77.2 68 95.3 81.7 69.6 93.5 81.6 72.3 94.3 83.3 

Overall 

Acc % 
75.93 78.52 74.07 74.07 77.41 82.96 83.33 85.19 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 84 23 107 84 20 104 82 16 98 83 13 96 82 13 95 81 13 94 82 12 94 83 11 94 

2 6 157 163 6 160 166 8 164 172 7 167 174 8 167 175 9 167 176 8 168 176 7 169 176 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
93.3 87.2 90.3 93.3 88.9 91.1 

91.
1 

91.1 91.1 92.2 92.8 92.5 91.1 92.8 92 90 92.8 91.4 91.1 93.3 92.2 92.2 93.9 93.1 

User 

Acc % 
78.5 96.3 87.4 80.8 96.4 88.6 

83.
7 

95.3 89.5 86.5 96 91.3 86.3 95.4 90.9 86.2 94.9 90.6 87.2 95.5 91.4 88.3 96 92.2 

Overall 

Acc % 
89.26 90.37 91.11 92.59 92.22 91.85 92.59 93.33 

Threshold 

= 0.5 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 21 17 38 74 52 126 77 55 132 82 67 149 81 53 134 83 48 131 81 34 115 81 32 113 

2 69 163 232 16 128 144 13 125 138 8 113 121 9 127 136 7 132 139 9 146 155 9 148 157 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
23.3 90.6 57 82.2 71.1 76.7 

85.
6 

69.4 77.5 91.1 62.8 77 90 70.6 80.3 92.2 73.3 82.8 90 81.1 85.6 90 82.2 86.1 

User 

Acc % 
55.3 70.3 62.8 58.7 88.9 73.8 

58.
3 

90.6 74.5 55 93.4 74.2 60.4 93.4 76.9 63.4 95 79.2 70.4 94.2 82.3 71.7 94.3 83 

Overall 

Acc % 
68.15 74.81 74.81 72.22 77.04 79.63 84.07 84.81 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 83 24 107 84 19 103 81 20 101 84 15 99 84 15 99 83 11 94 81 10 91 82 10 92 

2 7 156 163 6 161 167 9 160 169 6 165 171 6 165 171 7 169 176 9 170 179 8 170 178 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
92.2 86.7 89.5 93.3 89.4 91.4 90 88.9 89.5 93.3 91.7 92.5 93.3 91.7 92.5 92.2 93.9 93.1 90 94.4 92.2 91.1 94.4 92.8 

User 

Acc % 
77.6 95.7 86.7 81.6 96.4 89 

80.
2 

94.7 87.5 84.8 96.5 90.7 84.8 96.5 90.7 88.3 96 92.2 89 95 92 89.1 95.5 92.3 

Overall 

Acc % 
88.52 90.74 89.26 92.22 92.22 93.33 92.96 93.33 
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 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.55 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 58 32 90 70 42 112 79 56 135 82 61 143 81 54 135 83 46 129 80 35 115 81 30 111 

2 32 148 180 20 138 158 11 124 135 8 119 127 9 126 135 7 134 141 10 145 155 9 150 159 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 

Prod 

Acc % 
64.4 82.2 73.3 77.8 76.7 77.3 

87.
8 

68.9 78.4 91.1 66.1 78.6 90 70 80 92.2 74.4 83.3 88.9 80.6 84.8 90 83.3 86.7 

User 

Acc % 
64.4 82.2 73.3 62.5 87.3 74.9 

58.
5 

91.9 75.2 57.3 93.7 75.5 60 93.3 76.7 64.3 95 79.7 69.6 93.5 81.6 73 94.3 83.7 

Overall 

Acc % 
76.3 77.04 75.19 74.44 76.67 80.37 83.33 85.56 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 82 24 106 83 20 103 82 16 98 80 11 91 80 12 92 80 11 91 79 10 89 79 7 86 

2 7 155 162 7 160 167 6 162 168 4 165 169 4 164 168 4 165 169 4 165 169 4 166 170 

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256 

Prod 

Acc % 
92.1 86.6 89.4 92.2 88.9 90.6 

93.
2 

91 92.1 95.2 93.8 94.5 95.2 93.2 94.2 95.2 93.8 94.5 95.2 94.3 94.8 95.2 96 95.6 

User 

Acc % 
77.4 95.7 86.6 80.6 95.8 88.2 

83.
7 

96.4 90.1 87.9 97.6 92.8 87 97.6 92.3 87.9 97.6 92.8 88.8 97.6 93.2 91.9 97.6 94.8 

Overall 

Acc % 
88.43 90.00 91.73 94.23 93.85 94.23 94.57 95.7 

Threshold 

= 0.6 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 72 55 127 79 61 140 78 56 134 80 54 134 80 54 134 82 36 118 81 33 114 82 27 109 

2 18 125 143 11 119 130 12 124 136 10 126 136 10 126 136 8 142 150 9 147 156 8 152 160 

 90 180 270 90 180 270 90 180 270 90 180 270 90 180 270 90 178 268 90 180 270 90 179 269 

Prod 

Acc % 
80 69.4 74.7 87.8 66.1 77 

86.
7 

68.9 77.8 88.9 70 79.5 88.9 70 79.5 91.1 79.8 85.5 90 81.7 85.9 91.1 84.9 88 

User 

Acc % 
56.7 87.4 72.1 56.4 91.5 74 

58.
2 

91.2 74.7 59.7 92.6 76.2 59.7 92.6 76.2 69.5 94.7 82.1 71.1 94.2 82.7 75.2 95 85.1 

Overall 

Acc % 
72.96 73.33 74.81 76.3 76.3 83.58 84.44 86.99 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 83 20 103 85 20 105 83 17 100 80 13 93 80 12 92 80 11 91 79 10 89 79 7 86 

2 6 159 165 5 160 165 5 161 166 4 163 167 4 164 168 4 165 169 4 165 169 4 166 170 

 89 179 268 90 180 270 88 178 266 84 176 260 84 176 260 84 176 260 83 175 258 83 173 256 

Prod 

Acc % 
93.3 88.8 91.1 94.4 88.9 91.7 

94.
3 

90.4 92.4 95.2 92.6 93.9 95.2 93.2 94.2 95.2 93.8 94.5 95.2 94.3 94.8 95.2 96 95.6 

User 

Acc % 
80.6 96.4 88.5 81 97 89 83 97 90 86 97.6 91.8 87 97.6 92.3 87.9 97.6 92.8 88.8 97.6 93.2 91.9 97.6 94.8 

Overall 

Acc % 
90.3 90.74 91.73 93.46 93.85 94.23 94.57 95.7 
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 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.65 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 82 76 158 78 62 140 75 50 125 76 45 121 79 40 119 81 36 117 80 31 111 82 25 107 

2 0 0 0 9 115 124 15 130 145 13 134 147 10 138 148 9 139 148 10 149 159 8 154 162 

 82 76 158 87 177 264 90 180 270 89 179 268 89 178 267 90 175 265 90 180 270 90 179 269 

Prod 

Acc % 
   89.7 65 77.4 

83.
3 

72.2 77.8 85.4 74.9 80.2 88.8 77.5 83.2 90 79.4 84.7 88.9 82.8 85.9 91.1 86 88.6 

User 

Acc % 
   55.7 92.7 74.2 60 89.7 74.9 62.8 91.2 77 66.4 93.2 79.8 69.2 93.9 81.6 72.1 93.7 82.9 76.6 95.1 85.9 

Overall 

Acc % 
 73.11 75.93 78.36 81.27 83.02 84.81 87.73 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 78 20 98 80 21 101 80 16 96 77 12 89 77 11 88 77 10 87 76 9 85 76 7 83 

2 7 159 166 5 159 164 4 162 166 4 164 168 4 162 166 4 163 167 4 163 167 4 164 168 

 85 179 264 85 180 265 84 178 262 81 176 257 81 173 254 81 173 254 80 172 252 80 171 251 

Prod 

Acc % 
91.8 88.8 90.3 94.1 88.3 91.2 

95.
2 

91 93.1 95.1 93.2 94.2 95.1 93.6 94.4 95.1 94.2 94.7 95 94.8 94.9 95 95.9 95.5 

User 

Acc % 
79.6 95.8 87.7 79.2 97 88.1 

83.
3 

97.6 90.5 86.5 97.6 92.1 87.5 97.6 92.6 88.5 97.6 93.1 89.4 97.6 93.5 91.6 97.6 94.6 

Overall 

Acc % 
89.77 90.19 92.37 93.77 94.09 94.49 94.84 95.62 

Threshold 

= 0.7 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 68 38 106 69 39 108 75 48 123 78 43 121 76 41 117 71 30 101 77 25 102 77 18 95 

2 0 0 0 9 110 119 13 122 135 11 134 145 13 134 147 12 144 156 9 152 161 8 159 167 

 68 38 106 78 149 227 88 170 258 89 177 266 89 175 264 83 174 257 86 177 263 85 177 262 

Prod 

Acc % 
   88.5 73.8 81.2 

85.
2 

71.8 78.5 87.6 75.7 81.7 85.4 76.6 81 85.5 82.8 84.2 89.5 85.9 87.7 90.6 89.8 90.2 

User 

Acc % 
   63.9 92.4 78.2 61 90.4 75.7 64.5 92.4 78.5 65 91.2 78.1 70.3 92.3 81.3 75.5 94.4 85 81.1 95.2 88.2 

Overall 

Acc % 
 78.85 76.36 79.7 79.55 83.66 87.07 90.08 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 76 18 94 76 14 90 77 11 88 77 10 87 77 9 86 77 7 84 76 7 83 76 7 83 

2 8 157 165 5 161 166 4 163 167 4 162 166 4 160 164 4 161 165 4 161 165 4 161 165 

 84 175 259 81 175 256 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248 

Prod 

Acc % 
90.5 89.7 90.1 93.8 92 92.9 

95.
1 

93.7 94.4 95.1 94.2 94.7 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4 

User 

Acc % 
80.9 95.2 88.1 84.4 97 90.7 

87.
5 

97.6 92.6 88.5 97.6 93.1 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6 

Overall 

Acc % 
89.96 92.58 94.12 94.47 94.8 95.58 95.56 95.56 
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 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.75 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 23 16 39 57 34 91 63 30 93 76 41 117 79 32 111 76 28 104 78 22 100 76 15 91 

2 0 0 0 0 0 0 16 129 145 11 121 132 7 134 141 6 143 149 8 154 162 9 162 171 

 23 16 39 57 34 91 79 159 238 87 162 249 86 166 252 82 171 253 86 176 262 85 177 262 

Prod 

Acc % 
      

79.
7 

81.1 80.4 87.4 74.7 81.1 91.9 80.7 86.3 92.7 83.6 88.2 90.7 87.5 89.1 89.4 91.5 90.5 

User 

Acc % 
      

67.
7 

89 78.4 65 91.7 78.4 71.2 95 83.1 73.1 96 84.6 78 95.1 86.6 83.5 94.7 89.1 

Overall 

Acc % 
  80.67 79.12 84.52 86.56 88.55 90.84 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 77 18 95 77 12 89 77 11 88 77 9 86 77 9 86 77 7 84 76 7 83 76 7 83 

2 6 156 162 4 162 166 4 163 167 4 163 167 4 160 164 4 161 165 4 161 165 4 161 165 

 83 174 257 81 174 255 81 174 255 81 172 253 81 169 250 81 168 249 80 168 248 80 168 248 

Prod 

Acc % 
92.8 89.7 91.3 95.1 93.1 94.1 

95.
1 

93.7 94.4 95.1 94.8 95 95.1 94.7 94.9 95.1 95.8 95.5 95 95.8 95.4 95 95.8 95.4 

User 

Acc % 
81.1 96.3 88.7 86.5 97.6 92.1 

87.
5 

97.6 92.6 89.5 97.6 93.6 89.5 97.6 93.6 91.7 97.6 94.7 91.6 97.6 94.6 91.6 97.6 94.6 

Overall 

Acc % 
90.66 93.73 94.12 94.86 94.8 95.58 95.56 95.56 

Threshold 

= 0.8 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 5 9 14 16 12 28 74 26 100 77 29 106 72 21 93 75 20 95 76 15 91 

2 0 0 0 0 0 0 14 111 125 12 123 135 8 118 126 8 143 151 8 154 162 7 156 163 

 0 0 0 5 9 14 30 123 153 86 149 235 85 147 232 80 164 244 83 174 257 83 171 254 

Prod 

Acc % 
      

53.
3 

90.2 71.8 86 82.6 84.3 90.6 80.3 85.5 90 87.2 88.6 90.4 88.5 89.5 91.6 91.2 91.4 

User 

Acc % 
      

57.
1 

88.8 73 74 91.1 82.6 72.6 93.7 83.2 77.4 94.7 86.1 78.9 95.1 87 83.5 95.7 89.6 

Overall 

Acc % 
  83.01 83.83 84.05 88.11 89.11 91.34 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 76 13 89 77 13 90 77 9 86 76 9 85 76 8 84 76 7 83 76 7 83 76 7 83 

2 4 155 159 4 156 160 4 161 165 4 159 163 4 160 164 4 161 165 4 161 165 4 161 165 

 80 168 248 81 169 250 81 170 251 80 168 248 80 168 248 80 168 248 80 168 248 80 168 248 

Prod 

Acc % 
95 92.3 93.7 95.1 92.3 93.7 

95.
1 

94.7 94.9 95 94.6 94.8 95 95.2 95.1 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 

User 

Acc % 
85.4 97.5 91.5 85.6 97.5 91.6 

89.
5 

97.6 93.6 89.4 97.5 93.5 90.5 97.6 94.1 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6 

Overall 

Acc % 
93.15 93.2 94.82 94.76 95.16 95.56 95.56 95.56 

 

  



 120 

 

 

 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.85 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 8 1 9 58 19 77 66 20 86 70 14 84 71 13 84 72 9 81 

2 0 0 0 0 0 0 0 0 0 6 99 105 6 116 122 7 142 149 5 148 153 5 153 158 

 0 0 0 0 0 0 8 1 9 64 118 182 72 136 208 77 156 233 76 161 237 77 162 239 

Prod 

Acc % 
         90.6 83.9 87.3 91.7 85.3 88.5 90.9 91 91 93.4 91.9 92.7 93.5 94.4 94 

User 

Acc % 
         75.3 94.3 84.8 76.7 95.1 85.9 83.3 95.3 89.3 84.5 96.7 90.6 88.9 96.8 92.9 

Overall 

Acc % 
   86.26 87.5 90.99 92.41 94.14 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 74 9 83 76 9 85 76 7 83 76 7 83 76 7 83 76 7 83 76 7 83 76 7 83 

2 5 153 158 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165 

 79 162 241 80 166 246 80 165 245 80 165 245 80 167 247 80 168 248 80 168 248 80 168 248 

Prod 

Acc % 
93.7 94.4 94.1 95 94.6 94.8 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 95 95.8 95.4 

User 

Acc % 
89.2 96.8 93 89.4 97.5 93.5 

91.
6 

97.5 94.6 91.6 97.5 94.6 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6 91.6 97.6 94.6 

Overall 

Acc % 
94.19 94.72 95.51 95.51 95.55 95.56 95.56 95.56 

Threshold 

= 0.9 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 0 0 0 32 3 35 46 6 52 61 10 71 66 6 72 69 6 75 

2 0 0 0 0 0 0 0 0 0 0 0 0 6 110 116 6 126 132 5 130 135 5 148 153 

 0 0 0 0 0 0 0 0 0 32 3 35 52 116 168 67 136 203 71 136 207 74 154 228 

Prod 

Acc % 
            88.5 94.8 91.7 91 92.6 91.8 93 95.6 94.3 93.2 96.1 94.7 

User 

Acc % 
            88.5 94.8 91.7 85.9 95.5 90.7 91.7 96.3 94 92 96.7 94.4 

Overall 

Acc % 
    92.86 92.12 94.69 95.18 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 73 7 80 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80 

2 4 152 156 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165 

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245 

Prod 

Acc % 
94.8 95.6 95.2 94.9 95.7 95.3 

94.
9 

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3 

User 

Acc % 
91.3 97.4 94.4 91.5 97.5 94.5 

91.
5 

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5 

Overall 

Acc % 
95.34 95.47 95.49 95.49 95.53 95.51 95.51 95.51 

 

  



 121 

 

 Feature-Count Rule, CostERoE RoE 

Threshold 

= 0.95 

Markov 0th 1st 2nd 3rd 4th 5th 6th 7th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 0 0 0 5 0 5 32 2 34 58 6 64 66 6 72 69 6 75 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 4 70 74 5 126 131 5 148 153 

 0 0 0 0 0 0 0 0 0 5 0 5 32 5 37 62 76 138 71 132 203 74 154 228 

Prod 

Acc % 
            100 60 80 93.5 92.1 92.8 93 95.5 94.3 93.2 96.1 94.7 

User 

Acc % 
            94.1 100 97.1 90.6 94.6 92.6 91.7 96.2 94 92 96.7 94.4 

Overall 

Acc % 
    94.59 92.75 94.58 95.18 

Markov 8th 9th 10th 11th 12th 13th 14th 15th 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 73 7 80 75 7 82 75 7 82 75 7 82 75 7 82 73 7 80 73 7 80 73 7 80 

2 4 152 156 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165 

 77 159 236 79 164 243 79 165 244 79 165 244 79 167 246 77 168 245 77 168 245 77 168 245 

Prod 

Acc % 
94.8 95.6 95.2 94.9 95.7 95.3 

94.
9 

95.8 95.4 94.9 95.8 95.4 94.9 95.8 95.4 94.8 95.8 95.3 94.8 95.8 95.3 94.8 95.8 95.3 

User 

Acc % 
91.3 97.4 94.4 91.5 97.5 94.5 

91.
5 

97.5 94.5 91.5 97.5 94.5 91.5 97.6 94.6 91.3 97.6 94.5 91.3 97.6 94.5 91.3 97.6 94.5 

Overall 

Acc % 
95.34 95.47 95.49 95.49 95.53 95.51 95.51 95.51 

Threshold 

= 1 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 0 0 0 0 0 0 0 0 0 5 0 5 14 2 16 44 7 51 62 7 69 65 7 72 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 26 26 2 99 101 3 145 148 

 0 0 0 0 0 0 0 0 0 5 0 5 14 5 19 44 33 77 64 106 170 68 152 220 

Prod 

Acc % 
            100 60 80 100 78.8 89.4 96.9 93.4 95.2 95.6 95.4 95.5 

User 

Acc % 
            87.5 100 93.8 86.3 100 93.2 89.9 98 94 90.3 98 94.2 

Overall 

Acc % 
    89.47 90.91 94.71 95.45 

Classes 1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  

1 70 7 77 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 72 7 79 

2 3 152 155 4 157 161 4 158 162 4 158 162 4 160 164 4 161 165 4 161 165 4 161 165 

 73 159 232 76 164 240 76 165 241 76 165 241 76 167 243 76 168 244 76 168 244 76 168 244 

Prod 

Acc % 
95.9 95.6 95.8 94.7 95.7 95.2 

94.
7 

95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 94.7 95.8 95.3 

User 

Acc % 
90.9 98.1 94.5 91.1 97.5 94.3 

91.
1 

97.5 94.3 91.1 97.5 94.3 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 91.1 97.6 94.4 

Overall 

Acc % 
95.69 95.42 95.44 95.44 95.47 95.49 95.49 95.49 
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Figure A.1. RVQ codebook with M = 4 and P = 8 for Graz dataset. 

 

Table A.3 . Error matrix and classification performance measures for SVM on Graz dataset 

Classes Bicycle People Background  

Bicycle 245 10 0 255 

People 7 153 2 162 

Background 8 2 52 62 

 260 165 54 479 

Prod 

Acc % 
94.2 92.7 96.3 

 

User 

Acc % 
96.1 94.4 83.9 

Overall 

Acc % 
93.95 

 

  



 123 

REFERENCES 

[1]  C. Barnes and R. Frost, "Vector Quantizers with Direct Sum Codebooks," IEEE 

Transactions on Information Theory, vol. 39, no. 2, March 1993.  

[2]  T. Morris, Computer Vision and Image Processing, Palgrave Macmillan, 2004.  

[3]  D. G. Lowe, "Object recognition from local scale-invariant features," in Proceedings 

of the Seventh IEEE International Conference on Computer Vision, 1999.  

[4]  S. Lazebnit, C. Schmid and J. Ponce, "Semi-Local Affine Parts for Object 

Recognition," in Proceedings of the British Machine Vision Conference, 2004.  

[5]  H. Bay, T. Tuytelaars and L.V. Gool, "SURF: Speeded Up Robust Features," in 

Proceedings of the ninth European Conference on Computer Vision, 2006.  

[6]  K. Mikolajczyk and C. Schmid, "a performance evaluation of local descriptors," 

IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 10, pp. 

1615-1630, October 2005.  

[7]  I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," 

Journal of Machine Learning Research 3 (2003) 1157-1182, vol. 3, pp. 1157-1182, 

2003.  

[8]  C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.  

[9]  C. Cortes and V. N.Vapnik, "Support-Vector Networks," Machine Learning, vol. 20, 

1995.  

[10]  C. Zhang and E. Baltsavias, "Knowledge-Based Image Analysis for 3D Edge 

Extraction and Road Reconstruction," International Archives of Photogrammetry 

and Remote Sensing, vol. XXXIII, 2000.  

[11]  P. Zimmermann, "A New Framework for Automatic Building Detection Analysing 

Multiple Cue Data," International Archive of Photogrammetry and Remote Sensing, 

vol. XXXIII, no. B3, 2000.  

[12]  B. Sirmacek and C. Unsalan, "Building Detection from Aerial Images Using 

Invariant Color Features and Shadow Information," in 23rd International 

Symposium on Computer and Information Sciences, 2008.  

[13]  M. Rizon, H. Yazid, P. Saad and A. Y. M. Shakkaf, "Object Detection Using 

Geometric Invariant Moment," American Journal of Applied Sciences, vol. 2, no. 6, 

pp. 1876-1878, 2006.  

[14]  S. Z. Li, "A Markov Random Field Model for Object Matching under Contextual 

Constraints”, Proceeding of IEEE CVPR’94, pp. 866-869, 1995," in Proceedings of 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 

1995.  

[15]  R. Brunelli and T. Poggio, "Face Recognition: Features versus Templates," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 

1042-1052, October 1993.  

[16]  Theodoridis.S. and K. Koutroumbas, Pattern Recognition, 3 ed., San Diego, CA: 

Academic Press, c2006.  

[17]  B. Draper, K. Baek, M. Bartlett and J. R. Beveridge, “Recognizing Faces with PCA 

and ICA,” Computer vision and image understanding, Special issue of face 



 124 

recognition, vol. 91, no. (1/2), pp. 115-137, 2003.  

[18]  M. Bartlett, J. R. Movellan and T. J. Sejnowski, “Face Recognition by Independent 

Component Analysis,” IEEE Transactions on Neural Networks, vol. 13, no. 6, 2002.  

[19]  C. Barnes and S. Rizvi, "Advances in Residual Vector Quantization: A Review," 

IEEE Transactions on Image Processing, vol. 5, no. 2, February 1996.  

[20]  Y. Linde, A. Buzo and R. Gray, "An Algorithm for Vector Quantization Design," 

IEEE Transactions on Communications, Vols. Com-28, no. 1, p. 1980.  

[21]  C. F. Barnes and R. L. Frost, "Residual Vector Quantizers with Jointly Optimized 

Code Books," in Advances in Electronics and Electron Physics, 1992.  

[22]  C. F. Barnes, "Image-Driven Data Mining for Image Content Segmentation, 

Classification and Attribution , Vol. 45, No.9. 2007," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 45, no. 9, September 2007.  

[23]  C. Barnes, "Hurricane Disaster Assessments with Image-Driven Data Mining in 

High-Resolution Satelite Imagery," IEEE Transactions on Geoscience and Remote 

Sensing, vol. 45, no. 6, June 2007.  

[24]  C. F. Barnes and J. Burki, "Late-Season Rural Land-Cover Estimation With 

Polarimetric-SAR Intensity Pixel Blocks and σ-Tree-Structured Near-Neighbor 

Classifiers," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, 

2009.  

[25]  K. Sayood, Introduction to Data Compression, 3 ed., Morgan Kaufmann, 2005.  

[26]  A. Gersho and R. Gray, Vector Quantization and Signal Compression, Springer, 

1991.  

[27]  A. G. A. Buzo, R. M. Gray and J. Markell, ", “Speech coding based upon vector 

quantization,”, vol. 28, pp. 562 – 574, Oct 1980.," IEEE Transactions on Acoustics, 

Speech and Signal Processing, vol. 28, pp. 562-574, October 1980.  

[28]  G. Motta, F. Rizzo and J. Storer, "Partitioned Vector Quantization: Application to 

Lossless Compression of Hyperspectral Images," in IEEE International Conference 

on Acoustics, Speech, and Signal Processing, 2003.  

[29]  B. H. Juang and A. H. Gray, "Multiple Stage Vector Quantization for Speech 

Coding," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 1982.  

[30]  T. Kohonen, Self-Organizing Maps, Berlin: Springer, 1997.  

[31]  B. Ramamurthi and A. Gresho, "Classified Vector Quantization of Images," IEEE 

Transactions on Communications, Vols. com-34, no. 11, November 1986.  

[32]  S. Supot and S. Manas, "Codebook Design Algorithm for Classified Vector 

Quantization Based on Fuzzy Clustering," in IEEE International Conference on 

Industrial Technology, 2002.  

[33]  H.-H. Chen, H.-T. Sheu and J.-J. Ding, "Quadtree Classified Vector Quantization 

Based Image Retrieval Scheme," in Eighteenth IEEE International Conference on 

Image Processing, 2011.  

[34]  N. R. Pal and J. C. Bezdek, "On Cluster Validity for the Fuzzy C-Means Model," 

IEEE Transactions on Fuzzy System, vol. 3, pp. 370-372, 1995.  

[35]  X. Yang, D. Xu and Y.-J. Qi, "Bag-of-words Image Representation Based on 



 125 

Classified Vector Quantization," in Proceedings of the Ninth International 

Conference on Machine Learning and Cybernetics, Qingdoa, 2010.  

[36]  L. Fei-Fei, R. Fergus and A. Torralba, "Recognizing and Learning Object 

Categories: A Short Course," in IEEE Conference on Computer Vision and Pattern 

Recognition, 2007.  

[37]  B. Zhang and Y. Zhou, "Reliable Vehicle Type Classification by Classified Vector 

Quantization," in IEEE Fifth International Congress on Image and Signal 

Processing, 2012.  

[38]  S. Haykin, Neural Networks: A Comprehensive Foundation, 2 ed., Prentice Hall, 

1998.  

[39]  N. Pal, J. Bezdek and E.-K. Tsao, "Generalized Clustering Networks and Kohonen's 

Self-Organizing Scheme," IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 

549-557, 1993.  

[40]  S. Hotta, "Learning Vector Quantization with Local Subspace Classifier," in The 

19th IEEE International Conference on Pattern Recognition, 2008.  

[41]  P. Schneider, M. Biehl and B. Hammer, "Distance Learning in Discriminative 

Vector Quantization," Neural Computation, vol. 21, no. 10, pp. 2942-2969, October 

2009.  

[42]  Fahad and Sikander, "Classification of Textual documents Using Learning Vector 

Quantization," Information Technology Journal, vol. 6, no. 1, 2007.  

[43]  M. Pilevar, H. Feili and M. Soltani, "Classification of Persian textual documents 

using learning vector quantization," in Natural Language Processing and 

Knowledge Engineering, 2009.  

[44]  P. C. C. R. M. G. a. J. M. K. L. Oehler, "Classification Using Vector Quantization," 

in Conference Record of the Twenty Fifth Asilomar Conference on Signals, Systems 

and Computers, 1991.  

[45]  K. L. Oehler and R. M. Gray, "Combining Image Compression and Classification 

Using Vector Quantization," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 17, no. 5, pp. 461-473, 1995.  

[46]  L. Rokach and O. Maimon, Data Mining with Decision Trees: Theory and 

Applications, World Scientific Pub Co Inc, 2008.  

[47]  M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The 

PASCAL Visual Object Classes (VOC) Challenge," International Journal of 

Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.  

[48]  A. Opelt, A. Pinz, M. Fussenegger and P. Auer, "Generic object recognition with 

boosting," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

28, no. 3, pp. 416-431 , 2006.  

[49]  Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based Learning Applied 

to Document Recognition," in Proceedings of the IEEE, 1998.  

[50]  Y. LeCun, C. Cortes and C. J. Burges, "The MNIST Database of Handwritten 

Database," [Online].  

[51]  R. G. .. Congalton, Assessing the Accuracy of Remotely Sensed Data: Principles and 

Practices, 2 ed., Boca Raton: CRC Press, 2008.  



 126 

[52]  J. H. Friedman, J. Bentely and R. A. and Finkel, "An Algorithm for Finding Best 

Matches in Logarithmic Expected Time," ACM Transactions on Mathematical 

Software 3, 209, 1977.  

[53]  F. Kossentini, M. Smith and C. Barnes, "Image Coding Using Entropy-Constrained 

Residual Vector Quantization," IEEE Transactions on Image Processing, vol. 4, no. 

10, pp. 1349-1357, 1995.  

 

 


	Chapter 5
	Introduction
	Markov-Bayesian RVQ Classification
	Figure 6. MP = 48 = 65536 Voronoi regions generated for M=4, P=8 RVQ.
	As mentioned before, Markov structure if imposed on the RVQ classifier, modeled with the Bayesian framework of Equation (2), can reduce the implementation cost of the RVQ classifier. When Markov condition is imposed on the stages of RVQ, it is based ...
	To explain the formulation of Markov structure on Equation (2), the mathematical development is shown on 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.., and it will be extended to the likelihood function 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.-,𝑐-𝑖.. ...
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.|,𝑐-𝑖..=𝑃,,𝐶𝑉-1.|,𝑐-𝑖..𝑃,,𝐶𝑉-2.|,𝑐-𝑖..𝑃,,𝐶𝑉-3.|,𝑐-𝑖..𝑃,,𝐶𝑉-4.|,𝑐-𝑖..𝑃,,𝐶𝑉-5.|,𝑐-𝑖..⋯
	𝑃,,𝐶𝑉-6.|,𝑐-𝑖..⋯𝑃,,𝐶𝑉-𝑃.|,𝑐-𝑖...
	The 0th Markov order in Equation (3) means that it is assumed that the class decisions made at each stage are independent of each other.
	1st Markov Order,
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,⋯,,𝐶𝑉-𝑃.|,𝑐-𝑖..=𝑃,,𝐶𝑉-1.|,𝑐-𝑖..𝑃,,𝐶𝑉-2.-,𝐶𝑉-1.,,𝑐-𝑖..𝑃,,𝐶𝑉-3.-,𝐶𝑉-2.,,𝑐-𝑖..𝑃,,𝐶𝑉-4.-,𝐶𝑉-3.,,𝑐-𝑖..…
	𝑃,,𝐶𝑉-5.-,𝐶𝑉-4.,,𝑐-𝑖..⋯𝑃,,𝐶𝑉-𝑃.-,𝐶𝑉-𝑃−1.,,𝑐-𝑖...
	By merging the first two shaded probabilities into the respective joint probability, the above equation can equivalently be written as
	The 1st order Markov in equation (4) implies that each stage codevector is assumed to be dependent only on the previous stage.
	2nd Markov Order
	qth Markov order
	The class-conditional probability 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,…,,𝐶𝑉-𝑃.-,𝑐-𝑖.. can be generalized for an arbitrary Markov order 𝑞 as follows:
	𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,….,,𝐶𝑉-𝑃..=𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,…,,𝐶𝑉-𝑞+1..,𝑝=𝑞+2-𝑃-𝑃,,𝐶𝑉-𝑝.-,,𝐶𝑉-𝑝−1.,𝐶𝑉-𝑝−2.,,..,𝐶𝑉-𝑝−𝑞...,  and the class-conditional probability 𝑃,,𝐶𝑉-1.,,𝐶𝑉-2.,,𝐶𝑉-3.,….,,𝐶𝑉-𝑃.-,𝑐-𝑖..  for the qth ...
	Proof of Concept: Linearly Separable Synthetic Dataset
	Proof of Concept: Linearly Non-Separable Synthetic Dataset
	In a series of experiments, Bayesian RVQ classifier is also tested on linearly non-separable synthetic data to see how it performs on a more complex dataset. Linearly non-separable Swiss roll dataset, as shown in Figure 10, 12, and 14, is formulated ...
	separate cases. In the first case, binary classification is performed on the dataset shown in Figure 10. The data of the two classes are marked Class 1 and Class 2 on the figure. It can be seen that the data from the two classes are spaced apart with ...
	In the first case, RVQ codebook with M = 4 and P = 8 is designed and trained on the training data shown in Figure 10. The training is complete when all the class-conditional probabilities in the Class-conditional Transition Probability Matrix are cal...
	Figure 12. Training dataset: Class1 data is in blue, Class2 data is in red.
	In this experiment, it was noted that as the Markov order increased, test inputs started mapping to unused Markov direct-sum sub-codevectors. Equivalently, the test inputs were mapping to unused direct-sum codevectors. Figure 6, in Chapter 5, illustr...
	RVQ Classification Performance Benchmark
	Joint P-Stage RVQ Classifier
	Euclidean Distance Criterion
	Hamming Distance Criterion
	Euclidean Distance Criterion
	Conclusion
	Estimated Markov-Bayesian RVQ Costs
	The cost of implementing Markov Bayesian RVQ classifier is dependent on the Markov order O, number of RVQ stages P, number of codevectors-per-stage M, and the number of classes C in the training dataset. It is desired that the Markov order is as low ...
	For given values of M, P, and C, the costs of implementation for Markov order O from zero to P are given in Table 6. It can be seen in the table that the memory for storing the codebook and the cost of the search through the codebook remain kMP for a...
	Table 6. Implementation cost of RVQ classifier.
	Chapter 6
	The number of codevectors M and stages P of RVQ are essential RVQ parameters that control the density of the covering of the input space. Equivalently, M and P control the size of the codebook of RVQ. Since the number of Voronoi regions generated in ...
	The focus of the preliminary research was to propose a method to make RVQ-based classification feasible by imposing a Markov structure on the stages of RVQ. It was also noted that classification performance showed improvement when Markov order was in...
	Lastly, since RVQ is a template-matching-based technique, the characteristics of a dataset will heavily bear on the performance of the RVQ-based classifier. Therefore, datasets with differing characteristics will be investigated for RVQ classificatio...
	In short, RVQ –based classification is investigated for the following three factors:
	(a)  Different values of M codevectors-per-stage of RVQ.
	(b) Varying Markov order on the stages of RVQ.
	(c) Image datasets with different characteristics.
	The classification results obtained from this investigation provides insightful analysis into the working of RVQ as a classifier, and it guides the research to understand the parameters needed to extract improved classification results out of RVQ.
	The proposed RVQ classification is also compared to SVM-based classification involving feature vectors consisting of image intensity levels, and scale invariant feature transform (SIFT) [3]. It is shown how the proposed RVQ classifier fares with SIFT...
	Effects of Varying values of M
	For the Caltech101 dataset used in the preliminary research, Markov Bayesian RVQ classifier is investigated for varying number of codevectors-per-stage M. It is reminded that the training and test data are the same as used in the preliminary research...
	Table 7. Error matrices for M = 2 to M = 11. RVQ has P=8 stages with zeroth Markov order for classification.
	It can be seen in Figure 18 that for the given 3-catergory dataset, the classification performance tends to improve until M =7, after which it decreases. This trend suggests that Markov Bayesian RVQ classifier begins to over-fit after M = 7. It is al...
	Since in the figure above the performance of the RVQ-based classifier peaks at M=7, its classification performance at M = 7 is also calculated over a range of Markov order from 0 to P-1 = 7, where P = 8 stages. The classification performance in terms...
	Markov Bayesian RVQ (MBRVQ): This method is not different from the Bayesian RVQ classification method as described before.
	CostERoE: As mentioned earlier, the RoE constraint incurs an additional search cost. Therefore, a cost-effective method for implementing the RoE constraint is tested. This new method is termed as CostERoE, whereas, the earlier method will be referred ...
	Thresholds: Different thresholds Th on the class-conditional probabilities associated with the Markov sub-tuples will be applied to see their effects on the classification performance of the two schemes. Intuitively, the threshold Th can be thought as...
	The two schemes for RVQ-based classification i.e., Feature-count Rule and MBRVQ, will be tested on Caltech101 [47] and Graz [48] image databases. These experiments will help to understand the dynamics of RVQ-based classifier. Two different settings of...
	These tests serve as a guide to understanding the RVQ-based classification to determine how best to use RVQ for classification, and what are the suitable conditions and datasets to use RVQ as a classifier.
	Different thresholds Th on the class-conditional probabilities associated with the Markov sub-tuples will be applied to see their effects on the classification performance of MRVQ classifier. Intuitively, the threshold Th can be thought as a means to ...
	preferred over RoE because compared to RoE constraint, CostERoE constraint yields comparable classification performance at a better cost.
	Handwritten-Digits Dataset
	The MNIST database of handwritten digits [49], [50] consists of images of handwritten digits from zero to nine. All the images are centered and nearly uniformly scaled, and have the same size of 28-by-28 pixels in binary scale. The lighting variation...
	Yann Lecun et al [49] report comprehensive results on the classification of the handwriting database for the digits from zero to nine. The results reported in [49] also serve as a collection of benchmark performances to compare the performance of MBR...
	To see the effect of the varying codevectors-per-stage, the classification on
	Figure 37. Handwritten digit database. RVQ codebook with M = 4 codevectors-per-stage and    P = 8 stages.
	Appendix A
	Table A.1. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples. Test set size = 270 total samples, Input size = 150x250 grayscale pixels, M = 4, P = 8.
	Table A.2. Class 1 = Heavy ; Class 2 = Sports, Training set size = 300 sample-per-class, total 600 samples
	Test set size = 270 total samples, Input size = 71x101 grayscale pixels, M = 2, P = 16.

