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SUMMARY 

 

With strict environmental regulations, gas turbine emissions have been heavily 

constrained. This requires operating conditions wherein thermo-acoustic flame 

instabilities are prevalent. During this process the combustor acoustics and combustion 

heat release fluctuations are coupled and can cause severe structural damage to engine 

components, reduced operability, and inefficiency that eventually increase emissions. In 

order to develop an engine without these problems, there needs to be a better 

understanding of the physics behind the coupling mechanisms of this instability. Among 

the several coupling mechanisms, the “velocity coupling” process is the main focus of 

this thesis. 

The majority of literature has treated axisymmetric disturbance fields which are 

typical of longitudinal acoustic forcing and axisymmetric excitation of ring vortices. Two 

important non-axisymmetric disturbances are: (1) transverse acoustics, in the case of 

circumferential modes of a multi-nozzle annular combustor and (2) helical flow 

disturbances, seen in the case of swirling flow hydrodynamic instabilities. These 

disturbances have a spatial dependence of the form ˆ exp( )iu imθ′ ∝  where m is (1) the 

asymmetric mode in the case of transverse acoustic forcing, and (2) the helical mode 

number in the case of helical flow disturbances. With significantly less analytical 

treatment of this non-axisymmetric problem, a general framework is developed for three-

dimensional swirl-stabilized flame response to non-axisymmetric disturbances. The 

dynamics are tracked using a level-set based G-equation applicable to infinitely thin 

flame sheets. For specific assumptions in a linear framework, general solution 
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characteristics are obtained. The results are presented separately for axisymmetric and 

non-axisymmetric mean flames. 

The unsteady heat release process leads to an unsteady volume generation at the 

flame front due to the expansion of gases. This unsteady volume generation leads to 

sound generation by the flame as a distributed monopole source. A sound generation 

model is developed where ambient pressure fluctuations are generated by this distributed 

fluctuating heat release source on the flame surface. The flame response framework is 

used to provide this local heat release source input. This study has been specifically 

performed for the helical flow disturbance cases to illustrate the effects different modes 

have on the generated sound. Results show that the effects on global heat release and 

sound generation are significantly different. 

 Finally, the prediction from the analytical models is compared with experimental 

data. First, a two-dimensional bluff-body stabilized flame experiment is used to obtain 

measurements of both the flow and flame position in time. This enables a local flame 

response comparison since the data are spatially resolved along the flame. Next, a three-

dimensional swirl-stabilized lifted flame experiment is considered. The measured flow 

data is used as input to the G-equation model and the global flame response is predicted. 

This is then compared with the corresponding value obtained using global CH* 

chemilumenescence measurements. 
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CHAPTER 1 

INTRODUCTION 

1.1  History and Motivation 

Since the dawn of civilization, the ability to provide energy in its various forms has been 

the primary driver of progress. Specifically, the use of flames to provide heat during 

extreme cold and for cooking by primitive man, to the use of fossil fuels for 

transportation and power in the modern age, energy has been the primary source of 

development for a civilization. However, during the modern age, the demand for energy 

has increased exponentially, both with new technologies as well the increase in human 

population. For this reason, hydrocarbons such as natural gas have been used as a source 

of energy primarily due to their ready availability. However, their use leads to the 

production of pollutant emissions such as Nitrous oxides (NOx) and Carbon monoxide 

(CO). 

 Non-premixed combustion systems, adopt a separate fuel and oxidizer stream that 

mix in the combustion chamber. The combustion occurs at stoichiometry (no amount of 

fuel or oxidizer remains at the end of the combustion process). This unfortunately 

corresponds to an unacceptable level of emissions. Due to health concerns, environmental 

regulations require very strict adherence to the permissible level of pollutants generated 

by a combustion device and its approval for commercial use. Since lean premixed 

operation allows for lower levels of NOx and CO, combustor operation away from the 

stoichiometric condition was required. This has led to a shift from a non-premixed 

combustion operation to a premixed combustion mode. In the premixed mode of 

operation, the fuel and oxidizer are premixed ahead of the combustion zone. With a fuel-
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lean premixed mixture, the emissions levels could be reduced to that accepted by 

environmental standards. 

 
(a)     (b) 

Figure 1 : Combustor components from a burner assembly showing (a) New 
assembly, and (b) Destroyed assembly. Images reproduced from Ref. [1]. 
 

Although, this shift helped reduce emissions considerably, it was not without other 

problems. Significant of this was the problem of combustion instability. During 

combustion instability, self-excited oscillations occur in the combustor volume where the 

natural acoustic modes of this volume couple with the heat release from the combustion 

process. This was first suggested by Lord Raleigh [2]. In this coupling process, the heat 

release oscillations can positively feedback to the pressure oscillations, thereby leading to 

an unbounded growth in amplitude. Apart from gas turbines [9, 10], this has been 

observed in combustion systems of rockets [3-8]. The high amplitudes can cause 

structural damage, and also negate the emissions reduction advantage. Some of the 

damage caused by this phenomenon is shown in Figure 1. This oscillatory combustion 

process can also lead to unsteady thermal stresses that degrade the life-span of 

components such as liners and casings and eventually lead to reduced combustor 

operability. The compounded losses from all of these can easily run into millions of 
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dollars and hence it warrants a study into the underlying mechanisms of such a process 

and how it can be controlled. 

1.2 Combustion Instability 

 In 1896, Lord Rayleigh published “The Theory of Sound” [2], which presented 

the general features of “vibrations maintained by heat” (as they were referred to in the 

1800s). He recognized the crucial phase relationship between the communication of heat 

and the vibration in a resonator. The classical demonstration consisted of a hydrogen 

flame burning inside an open tube. Pressure variations in the tube cause the flow of gas, 

and therefore the heat release, volume expansion, and backpressure on the nozzle to vary 

during the “vibration”. If the product of the fluctuating parts of the backpressure (p’) and 

heat release rate (q’), integrated over a cycle of the vibration, is positive, in the absence 

of damping the vibration will be maintained. In other words, if the fluctuating heat 

release is more in phase than out of phase with the vibration in the resonator, conditions 

are right for feeding energy into the vibration. This was referred to as the “Rayleigh 

criterion” (shown in Eq.(1.1)) and the observed flame behavior was referred to as a 

“singing flame”. This is the earliest observance of the modern combustion instability 

process. 

 ( , ) ( , ) 0
V t

p x t q x t dtdV′ ′ ≥∫ ∫
 



 (1.1) 

Note that the superscript “prime” denotes fluctuations about the mean quantity. As simple 

as this equation may seem, the pressure fluctuations and heat release fluctuations are 

tightly coupled. Their interactions are governed by several processes related to the 

dynamical flow behavior, chemical reactions and the geometry of the combustion 
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volume. For a given point in the combustor, the heat release process adds energy locally 

to the acoustic field when the magnitude of the phase between the pressure and heat 

release oscillations is less than 90 degrees. In situations where the flame region is small 

relative to an acoustic wavelength, the spatially integrated heat release fluctuations, ( )Q t′ , 

is of particular interest for combustion noise and thermoacoustic instability problems.  

This is given by: 

 ( ) ( , )
V

Q t q x t dV′ ′= ∫




 (1.2) 

For this “acoustically compact” case, it is this single quantity, ( )Q t′ , which controls the 

noise generation by flames and/or the thermoacoustic stability of a ducted system, 

regardless of the spatial details, ( , )q x t′  . For this reason, apart from the local response, 

( , )q x t′  , the global response, ( )Q t′ , will also be of focus in this thesis. The instantaneous 

global heat release rate is given by: 

 ( ) u L R
flame

Q t s h dAρ= ∫  (1.3) 

This equation shows that the unburnt density ( uρ ), the flame speed ( Ls ), the heat of 

reaction ( Rh ) and the flame surface area ( A ) affect the heat release rate. Some of the 

mechanisms that affect these quantities are: acoustic velocity fluctuations [11, 12], 

convected/vortical fluctuations [13-17], and equivalence ratio fluctuations [18-22] to 

name a few. They manifest as broadband fluctuations over a continuum of length and 

time scales, as well as very narrowband oscillations [9, 23]. In particular, the lightly 

damped acoustic modes manifest as temporally narrowband oscillations. These upstream 

disturbances perturb the flame leading to fluctuations in the heat release rate. Since this 

oscillating heat release from the flame is a monopole acoustic source [24], it generates 
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sound. This generated sound (acoustic oscillations) could then amplify in accordance 

with the aforementioned Rayleigh criterion (Eq.(1.1)). This completes the feedback loop 

in the mechanism, as shown in Figure 2. Among these mechanisms, this thesis focusses 

on the response due to velocity oscillations, which shall be the focus of the next section. 

 
Figure 2 : Combustion instability feedback loop between disturbance sources and 
heat release oscillations. 

1.3 Velocity Response Mechanism 

The response of a premixed flames to velocity oscillations consists of that due to the 

direct acoustic disturbances [11, 12] and the induced convected vortical disturbances [13-

17, 25]. When the equivalence ratio and unburnt density are constant, the only quantities 

affecting the heat release rate are the flame speed and the flame surface area (Eq.(1.3)). 

For low frequencies, the flame speed remains constant and hence only the surface area 

fluctuations lead to heat release rate fluctuations. However, the oscillating stretch along 

the flame, due to both hydrodynamic straining and curvature, grows in importance with 

frequency, causing oscillations in flame speed. These also lead to perturbations in the 

heat release rate oscillations. The frequency ranges in which these routes become 

important have been shown by Preetham et al. [26] and Wang et al. [27]. The response to 

velocity perturbations has been analyzed by researchers using both experimental and 

theoretical techniques. 

1.3.1 Experiments  

First, consider an overview of important experiments in the literature. Bloxsidge et al. 

[28] experimentally investigated the response of confined flames to weak harmonic 
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sound waves experimentally and showed that the unsteady combustion process was 

driven by velocity fluctuations at an axisymmetric center body that acted as a flame 

holder with the flame stabilized in the wake. They discussed the thermoacoustics of the 

duct using an empirical relationship between the heat release obtained and the specified 

velocity perturbations (also referred to as the transfer function, discussed later). Durox et 

al. [29] studied a flame that was excited by acoustics waves produced by a loudspeaker 

placed upstream of the flame and observed the distortions of the flame front that 

convected downstream with the mean flow. Bourehla and Baillot [30] systematically 

characterized the variety of flame holding behavior and flame shapes for a laminar 

Bunsen flame excited by low frequency high amplitude velocity perturbations. 

Significant experimental work has also been performed by groups from France in this 

regard [12, 23, 29-33]. Since the focus of this thesis is a theoretical and numerical 

analysis, next we summarize the important contributions made by researchers in this 

regard. 

1.3.2 Modeling 

 The theoretical analysis of thin premixed flames has been performed using the G-

equation. This equation is a level-set equation that governs the dynamics of surface 

motion in an ambient velocity field. The use of the G-equation for treating premixed 

flames was first proposed by Markstein [34] and later adapted to turbulent premixed 

flames by Williams [35, 36] as well as Matalon and Matkowsky [37]. Boyer and Quinard 

[38] studied the dynamics of an anchored premixed flame and concluded that the 

temporal evolution of the flame front was due to interference of wrinkles convecting 

along the flame shoulder and wrinkles induced due to the flow. Fleifil et al. [11] studied 

the response of a premixed flame to velocity disturbances and calculated the transfer 

function, which revealed that the heat release is related to the inducing velocity 

disturbances by a time-lag law. Dowling [39] provided the theoretical basis for the 

empirical observations of Bloxsidge et al. [28]. Candel and co-workers [12, 23, 29, 40-
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43] have used the G-equation to develop models with varying fidelities. Most of these 

works have used simplified assumptions of the flame. Preetham and co-workers [26, 44] 

have advanced the modeling efforts by accounting for non-compactness of flame 

geometry, unsteady flame curvature, hydrodynamic strain effects and gas expansion 

across the flame. Specifically, the results from the gas-expansion study [44] showed that 

redefining an effective Strouhal number would enable the use of results from the constant 

density cases. 

 Existing flame response studies have primarily focused on the flame response to 

axisymmetric disturbances, such as ring vortices excited by the flow forcing.  However, 

there are two important instances where the forcing is non-axisymmetric, a feature, which 

excites an additional degree of freedom into the problem.  First, during transverse 

instabilities, the flame may be subjected to transverse acoustic oscillations, which induce 

an intrinsically non-axisymmetric forcing on the flame. In addition, helical modes may be 

excited during both axial and transverse acoustic instabilities due to the nature of 

hydrodynamics in the flow. 

1.4 Thesis Research Focus and Layout 

This thesis focusses on the velocity coupled mechanism of the combustion instability 

process. While prior work by various researchers have focused on axisymmetric flames 

responding to axisymmetric disturbances, the primary focus of this research work is to 

understand the response of three-dimensional premixed flames to non-axisymmetric 

disturbances. In particular, swirling flows are considered with two important sources of 

non-axisymmetric disturbance fields being transverse acoustic waves and helical flow 

disturbances. This first chapter in the thesis has summarized: (i) the importance and 

complications of the combustion instability phenomena, (ii) the velocity coupled 
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mechanism and (iii) the need for theoretical models to better understand the physics of 

the phenomena. 

In Chapter 2, the physics of the dynamical flow features are presented. First, we 

consider swirling flows in general and their hydrodynamic content. Second, the physics 

of the disturbance fields are described in detail, namely that due to (i) transverse acoustic 

instabilities and (ii) helical flow disturbances. 

In Chapter 3, the theoretical formulation based on the G-equation is presented. It 

begins by considering the premixed flame regime in which the model and its assumptions 

are valid. Next, the importance of linear and non-linear analysis is presented. Since the 

G-equation is non-linear and not analytically tractable directly, a linear approach is used. 

This linear analysis illustrates the features of the flame perturbation solution both in 

terms of local flame response and the global heat release fluctuations. Finally, these heat 

release fluctuations lead to sound emissions and a linear acoustic analysis of the sound 

generated is presented. These are then simplified for an axisymmetric mean flame. The 

analysis is then further expanded to consider weakly non-axisymmetric mean flames as 

well. A numerical solver is described that solves the non-linear partial differential 

equation governing the flame position dynamics. This solver can capture non-linearity 

effects due to high amplitude disturbances as well as the effects of strong asymmetries in 

the mean flow and mean flame shape. Finally, a triple decomposition of the disturbance 

field into acoustic, vortical and entropy contributions is presented. This is then used to 

illustrate the analytical form of the acoustic and vortical disturbances used in the example 

problems. 
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In Chapter 4, example calculations are presented for the flame response to transverse 

acoustic disturbances. First, the linear analytical framework for small amplitude 

disturbances is used. It presents both local flame response features as well as global flame 

response characteristics. It also illustrates the comparison of global flame response 

between that due to transverse disturbances and longitudinal disturbances. The relative 

importance of the transverse instability mode with respect to the longitudinal instability 

mode is then understood. 

In Chapter 5, example calculations are presented for the flame response to helical 

flow disturbances, The linear analytical model is used to illustrate the difference in local 

and global flame response to different helical modes and hence the important flow field 

modes affecting flame response. These solutions are then used to explicitly calculate the 

far-field sound generation. Finally, an example illustration of the effect of weakly non-

axisymmetric flames is presented by adding a small asymmetry to the mean flow in the 

above example flow-field. The resulting changes in global flame response due to helical 

modes are described. Finally, the numerical solver is used to illustrate the effects of 

strong asymmetry in the mean flame/flow. 

In Chapter 6, the linear model is used in conjunction with experimental. For this, a 

two-dimensional bluff-body stabilized flame in a high Reynolds number flow is 

considered. Due to the two-dimensional nature of the flame and flow, flow and flame 

data are available that are resolved both spatially and temporally. Using these, local flame 

response predictions are made and compared with measurements.  

In Chapter 7, the linear model is used in conjunction with data from a swirling lifted 

flame. In this case, due to the three-dimensional nature of the flow and flame, local 
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measurements are not possible. However, global flame response measurements are made 

using line of sight integrated CH* chemiluminescence. Particle Image Velocimetry (PIV) 

is used for flow measurements in an axial plane (plane along the flow direction) and a 

few discrete transverse planes (perpendicular to the flow). These are used to obtain the 

helical mode nature of the flow-field which is input to the model. The model is then used 

to predict the global flame response from the model and then compare with that measured 

from the experiment. 

The final chapter of this thesis presents recommendations and suggestions for future 

work. 
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CHAPTER 2 

FLOW FIELD PHYSICS 

 

This chapter describes the key flow features of swirling flows and the disturbance flow 

field for the non-axisymmetric disturbances namely: (i) transverse acoustic disturbances 

and (ii) helical flow disturbances. 

 
Figure 3 : Flow structure of an annular swirling jet showing the Kelvin-Helmholtz 
instability in the shear layers as well as the Vortex Breakdown region. CI: 
Convective Instability, AI: Absolute Instability. Reproduced from Ref. [45]. 

2.1 Swirling Flows 

Consider an annular swirling reacting flow as pictured in Figure 3. The flame is 

stabilized on the center-body.  Two important hydrodynamic features are: (1) the two 

shear layers (three-dimensional) that begin at the inner and outer edges of the annular 

nozzle exit, and (2) the central recirculation zone above the center-body. The shear layers 

are subject to the Kelvin-Helmholtz (K-H) instability in both the axial and azimuthal 

direction, leading to the vortical roll up of the fluid in the separating boundary layer into 

tightly concentrated regions of vorticity [45-49]. The convectively unstable nature of 
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these shear layers makes them particularly sensitive to acoustic forcing [45, 46, 50-52]. 

This leads to the vortex shedding frequency locking on to the acoustic frequency [45, 46, 

53-59]. The flame wrinkling and heat release response of center-body stabilized flames to 

flow forcing is dominated by these flow structures disturbing the flame. 

The vortex breakdown phenomenon is common to high swirl number cases that 

are typical of gas turbine flows. When radial and axial vorticity is converted to azimuthal 

vorticity, an absolute instability is created leading to this vortex breakdown. However, at 

high swirl numbers, the breakdown is a vortex breakdown bubble. The main feature of 

the bubble is its ability to channel flow around it and hence leading to an annular jet like 

flow. For reacting flow, the gas expansion due to heat release causes an axial flow 

acceleration that then decreases the swirl number and increases axial velocity gradients 

and shear. In the case of the absolutely unstable vortex breakdown bubble, the effect of 

acoustics is dependent on the shape and strength of the bubble. An attached bubble lacks 

the vertical degree of freedom, as compared to the lifted bubble. This leads to a 

significant effect of the upstream stagnation point moving. The effect of acoustics on the 

stagnation bubble and the resultant effect on unsteady combustion have been documented 

[60, 61].  

Swirling flows also exhibit narrowband oscillations due to the precession of the 

vortex core, referred to as the PVC [60]. Depending upon the frequency of excitation, the 

oscillations of the PVC can be diminished or amplified [62]. Specifically, if the acoustic 

frequency and the narrowband oscillations match, it leads to amplification [63]. Others 

have seen a system response at the difference of the PVC frequency and forcing 

frequency [64, 65]. Very high amplitudes of acoustic excitation can lead to changes in 

 12 



time-average flow behavior and hence the hydrodynamics as well. In this situation, the 

entire system locks-in on the acoustic frequency. These swirl flow instabilities play a 

significant role in determining the flame response. 

Swirling flow dynamics control flow recirculation, flame stabilization, flame 

shape, dynamic stability limits, as well as a number of other critical combustion 

parameters. Because of the profound influences of the swirling flow field upon the flame 

shape, such as flame angle, swirl has important influences upon unsteady flame 

dynamics. For example, it is known that the Strouhal number, St, is an important 

parameter describing flame transfer functions. Changes in flame length because of 

modifications in swirl number exercise significant influences on the flame response to 

harmonic perturbations. This effect is implicit, however, in that swirl does not explicitly 

enter the dynamical equations for the flame dynamics, but rather through its influence 

upon parameters such as flame angle or flame length. 

Swirl has explicit effects on the dynamics of the flame as well. For example, 

Palies et al. [66] studied longitudinally forced swirl flames and showed two distinct 

velocity coupled  mechanisms which controlled the flame response.  The first mechanism 

was the "direct excitation" of the flame by the flow disturbances, a mechanism common 

to non-swirling flows that has previously been treated in detail [12, 23, 67, 68].  This first 

mechanism has been very successfully analyzed using level set approaches, see Dowling 

et al. [69], Schuller et al. [43],  and Preetham [44]. In addition, Palies et al. [66] and 

others [51, 70-73] have showed that an additional, "indirect" mechanism occurs that is 

unique to swirl flows and is of comparable influence on the flame response to that of the 

"direct" mechanism.  Specifically, acoustic waves propagating through swirlers excite 
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axial vortical disturbances, leading to modulations in swirl number. It has been postulated 

that these swirl number modulations, in turn, lead to oscillations in flame angle, a 

parameter with a well-known influence upon flame dynamics. 

This thesis considers an additional mechanism through which swirl explicitly 

influences flame dynamics in cases where the flame or excitation is non-axisymmetric.  

This is a "direct excitation" mechanism and is closely linked to the coupling of 

flame/flow non-axisymmetries and the propagation of flame wrinkles in the azimuthal 

direction.  While a number of prior studies have noted the propagation of wrinkles by the 

time averaged flow, including the azimuthal component [74], there are no explicit 

calculations of these swirl effects on the flame dynamics.  However, these swirl effects 

can introduce rather substantial qualitative impacts on the flame response. These are seen 

particularly in its local dynamics and in planar visualizations of the flame. 

2.2 Transverse Acoustic Excitation Sources 

The different possibilities for acoustic mode excitation in combustion chambers 

are shown in Figure 4. Longitudinal mode instabilities are along the main flow direction, 

radial modes are transverse in the radial direction and circumferential modes are 

transverse along the circumferential direction such as is typically seen in multi-nozzle 

annular combustor configurations. 

A variety of combustion systems have been plagued by longitudinal mode 

instabilities [9, 46, 75-80] while transverse instabilities have been a key instability 

concern in rockets and afterburners for decades [8, 81-91]. More recently, transverse 

oscillations have grown problematic in low NOx gas turbines, both in ground-based and 

aero-engine applications [80, 92-96]. Due to the differences in the length scales involved, 
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these transverse oscillations generally occur at lower frequencies (i.e., 100’s of Hz) in 

annular combustion chambers [94, 97-101] and at higher frequencies (i.e., 1000’s of Hz) 

in can combustion chambers [98, 102]. 

 
(a)      (b) 

Figure 4 : Acoustics modes for (a) can combustor, and, (b) annular combustor, 
showing (1) longitudinal mode, (2) radial mode, and, (3) circumferential/azimuthal 
mode. Reproduced from Ref. [45]. 
 

In the case of annular combustion chambers, the length scale of the acoustic mode 

is along the circumference and each nozzle is subjected to a different field depending on 

its location relative to this acoustic mode. In comparison, longitudinal mode oscillations 

are along the main flow direction and hence affect each nozzle equally. This effect is also 

compounded by the nature of the acoustic mode, which could either be a standing wave 

or a traveling wave. In the case of a standing wave, certain nozzles experience velocity 

nodes while certain others experience pressure nodes and these two contrasting acoustic 

forcing conditions lead to significant differences in the flame response as well. In the 

case of traveling wave instability, the mode shape spins around the circumference and the 

differences between nozzles is a function of the acoustic frequency and the flame 

temperature (acoustic speed). 

 15 



The Rayleigh criterion mentioned in Eq.(1.1) showed the importance of the 

relationship between ( )p t′  and ( )q t′  for the growth or decay of an instability. If the 

absolute value of the phase between the pressure and heat release oscillations is less than 

2π , then the instability will amplify and vice versa. The pressure fluctuations are 

dependent on the acoustic modes of the combustion chamber, its geometry and the 

properties of combustion (such as post flame temperature), and the heat release 

fluctuations are in turn a function of these pressure fluctuations and complicated flow 

phenomena. These flame-flow dynamics are described using a transfer function approach. 

Since the focus of this thesis is the velocity coupled mechanism, the form of the transfer 

function is to relate velocity disturbances to disturbances in the heat release: 

 

ˆ ˆrefuQ FTF
Q u

′′
=  (2.1) 

Here, Q̂′  is the heat release fluctuation in frequency space, ˆrefu′  is a reference fluctuating 

velocity in frequency space that is dependent on the spatial nature of the velocity 

disturbance and FTF  is the Flame Transfer Function in frequency domain. 

In the case of longitudinal mode oscillations, the acoustic disturbance directly 

affects the flame response, which is the “root wave” effect [12, 44]. This acoustic 

disturbance also excites vortical flow oscillations. Swirling flows possess hydrodynamic 

flow instabilities that are excited by the prevalent acoustic modes. These disturbance 

pathways are shown in Figure 5(a). 
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(a)      (b) 

Figure 5 : Velocity disturbance pathways that lead to flame response for (a) 
longitudinally forced flame, (b) transversely forced flame. The quantities indicated 
by F denote the transfer functions along those pathways. Reproduced from Ref. 
[45]. 
 

However, transverse velocity disturbances are different. In addition to the vortical 

flow excitation, the transverse acoustic modes also cause an oscillating pressure drop 

across the nozzle and this leads to longitudinal oscillations [103-105]. These longitudinal 

oscillations, when traversing the swirler, can then lead to swirl flow fluctuations or swirl 

number fluctuations [51, 66, 70-73]. Large Eddy Simulations of a full annular combustor 

configuration by Staffelbach et al. [93] have shown that the longitudinal oscillations are 

the significant contributor to flame response, even though their initial source was the 

transverse oscillations. These have also been reported experimentally by O’Connor [45]. 

These pathways are shown in Figure 5(b). The transverse acoustic disturbances excite 

longitudinal mass flow fluctuations in the nozzle, which then further excite vortical 

disturbances. These vortical disturbances may also play an important, though indirect 

role, in the flame response as indicated by LF ω  in Figure 5(b). Thus the initial transverse 

disturbance field leads to a complex three dimensional disturbance field at the flame that, 

in reality, is hard to separate [45]. 

Although not a focus of this thesis, consider the transfer function TLF  shown in 

Figure 5(b). This transfer function describes the resulting axial velocity fluctuation at the 
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nozzle, relative to the incident transverse velocity fluctuation. If the gain of this transfer 

function is significantly greater than unity, the flame response may be largely a result of 

the longitudinally driven pathways.  Conversely, if the amplitude of the transfer function 

is significantly less than unity, the dominant acoustic velocity fluctuation would be in the 

transverse direction and would drive both the vorticity generation, through FT,ω, and the 

flame response. Hence, a separate transverse to longitudinal velocity transfer function for 

different transverse acoustic field symmetries is important. This has been done 

experimentally by O’Connor [45, 106] and computationally by Blimbaum et al. [105]. 

The behavior of this velocity transfer function may be different for a nozzle located at a 

pressure node versus a pressure anti-node, and different still if there is a traveling 

component to the transverse acoustic field. The nozzle impedance had a large effect on 

the transverse to axial coupling at a pressure anti-node and in the case of traveling-wave 

acoustic excitation. The results from Blimbaum et al. [105] showed that the spatially-

averaged pressure to axial velocity relationship was quite close to the one-dimensional, 

translated impedance value at the end of the side branch (nozzle). The notable exception 

to this result was when the nozzle was located at a pressure node, where the axial velocity 

characteristics are independent of the nozzle impedance. The importance of this acoustic 

coupling implies that the flame transfer function, in the case of transverse forcing, will be 

neither decoupled from the hydrodynamic fluctuations nor the system acoustics. 

This thesis focuses specifically on swirling premixed flames subjected to 

transverse flow oscillations. Transverse excitation in the presence of swirl introduces new 

degrees of freedom because of its intrinsically non-axisymmetric nature, a point that is 

explicitly illustrated in Chapter 4 using example calculations. Transverse excitation is 

fundamentally different from longitudinal excitation in several key ways. First, while 

longitudinal disturbances are generally axisymmetric, or at least approximately so, 

transverse disturbances excite the flame in an intrinsically non-axisymmetric manner, as 
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shown in Figure 6(a). This causes significant azimuthal variations in local disturbance 

field at the flame sheet. 

 
   (a)    (b)    (c) 
Figure 6 : (a) Flame interactions with transverse excitations; (b) Longitudinal 
forcing; (c) Transverse forcing. 
 

  Second, the volumetric flow rate through the flame, which is directly related to 

the  spatially integrated low Strouhal number flame response, has the same sign at all 

azimuthal locations for longitudinal forcing, as shown in Figure 6(b), but of opposite sign 

in the case of transverse forcing, as shown in Figure 6(c). In Chapter 4, example 

calculations for both TF  and LF  are used to understand the relative importance of these 

transfer functions, but these shall assume disturbances of equal amplitudes for both cases 

( 1TLF ≡ ).  

2.3 Helical Flow Disturbances 

While acoustic waves often serve as the "clock" that controls the natural 

frequency of the self-excited system, it is generally the acoustically excited fluid 

mechanic instabilities that are the dominant source of flow oscillations.  

 Previous studies have detailed the dynamics of swirling flow instabilities in 

response to variations in longitudinal forcing for both non-reacting and reacting 

conditions. These studies have shown the development of helical instabilities in unforced 
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swirling flows, but most suggest that longitudinally forced flames are dominated by 

symmetric ring vortices [46, 64, 107]. Studies of transversely forced flames have shown 

that the nearfield flame wrinkling is dominated by ring or helical vortices, depending 

upon whether the flame is located at a pressure anti-node or node, respectively. These 

helical modes may be excited during both axial and transverse acoustic instabilities. 

 For example, Figure 7 shows a simulation by Huang and Yang [108], clearly 

indicating the helical flow disturbances in the combustor. Note that large swirl numbers 

lead to a significant breakdown of the helical flow features. Similarly, Figure 8 shows 

flame luminescence from O’Connor [45] indicating the presence of helical flow 

disturbances on a line of sight image of the flame. 

 
(a)      (b) 

Figure 7 : Snapshots from LES-level-set computations of (a) vorticity field 
magnitude and (b) iso-vorticity surfaces (75000 1/s) for a swirl number, S = 0.44, 
reproduced from Huang and Yang [108]. 
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Figure 8 : Line of sight integrated flame luminosity for asymmetric forcing showing 
presence of helical flame disturbance, reproduced from O’Connor [45]. 
 
In order to fix some notation, consider the following azimuthal decomposition of the 

fluctuating flow field into helical modes as: 
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where ˆiu′ is the Fourier transform of the fluctuating velocity field in the i-coordinate 

direction and ,
ˆ

i mB  is the amplitude of its helical mode number m. Note that, 0m =  is the 

axisymmetric mode. The phase function of the disturbance at a fixed time is defined as 

( )kz mθ+ , where z is the axial flow direction and θ  increases in the swirl direction. 

Hence, a positive mode (+m) has a line of constant phase with a sense of winding in the 

opposite direction to swirl. Conversely, a negative mode (-m) is co-rotating with the 

swirl. Hence, 0m <  and m>0 denote the co-swirling (counter-clockwise) and counter-

swirling (clockwise) modes, respectively. 

Helical modes are present in both swirling and non-swirling jets and wake flows.  

In non-swirling jets, the relative strengths of the axisymmetric, 0m =  mode and low 

order helical modes is a function of the separating boundary layer thickness very near the 

jet exit, while helical modes dominate downstream of the potential core [109-111].  
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Similarly, the dominant instability mode in non-swirling, axisymmetric wakes is the 

helical, 1m = ±  modes [112, 113]. 

The presence of swirl further influences the hydrodynamic stability tendencies of 

the flow, and biases the strength of the positive and negative mode numbers.  Depending 

upon the flow configuration and specific instability leading to the helical disturbances, 

they may either wind co- or counter-to the direction of swirl.  For example, stability 

calculations were performed by Loiseleux et al. [114] for a Rankine vortex model with 

the following velocity profiles: 

 0
2

0

:              ( ) ,       ( ) 0,         ( )

:              ( ) ,                ( ) 0,         ( )
z r

z r

r R U r U U U r U r r
r R U r U U r U r R r
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 (2.3) 

They show that increasing swirl number decreases the temporal instability growth rate of 

the axisymmetric, m=0 mode.  Impacts of swirl on helical modes are more complex, 

generally showing non-monotonic behavior.  For example, the 1m = −  is influenced 

differently by swirl in two ranges 0 cS S≤ ≤  and cS S≥ , where S R U= Ω ∆  is the swirl 

number and ( 1) 0.46cS m = − = . In the range, cS S≥ , increasing S decreases the temporal 

growth rate of all axial wave numbers, which, nonetheless, remain unstable for all S. For 

cS S≤ , increasing S has a stabilizing and destabilizing impact on low and high wave 

number disturbances, respectively. 

  Having considered some basic issues associated with hydrodynamic stability that 

explains why helical disturbances are present in swirl flows, we next consider the flame 

response problem. A number of observations of forced flames or flames during 

instabilities have noted the strong presence of helical disturbances along the flame [46].  

In non-swirling flows, it is well known that important interference effects control the 
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axial flame wrinkling character, as vortices disturbing the flame, and the flame wrinkles 

excited by these convecting vortices, do not generally travel at the same speed.  In 

swirling flows, the simultaneous presence of swirl and helical disturbances introduces 

important physics because of the simultaneous azimuthal and axial propagation of 

wrinkles by the flow [61].  As such, interference processes influence both the axial and 

azimuthal distribution of flame wrinkling and the distribution of the unsteady heat 

release.  These flame wrinkle propagation processes cause the flame to respond 

differently to helical modes winding co- and counter- to the swirl direction. 

  Recent experimental work by Moeck et al. [64] studied the interaction of a helical 

flow mode with the heat release of a swirl-stabilized, premixed flame. Their results 

indicated that the helical mode excites azimuthally rotating heat release oscillations on 

the flame. They showed that these heat release oscillations cancel each other on opposite 

sides of the flame, an observation that is consistent with the analysis of axisymmetric 

flames presented later in this thesis. They also inferred that phase averaged images of the 

vertical cuts of the flame were different view angles of the same stationary structure. In 

addition, they presented a second order analysis of the G-equation to illustrate the sources 

of non-linear interactions between flame wrinkles excited by acoustic and vortical 

disturbances; e.g., the excitation of sum and difference frequencies in flame response. 

Additionally, experiments performed by Stohr et al. [65] characterized the phase-

averaged, three-dimensional structure of the reaction zone, drawing similar conclusions 

as Moeck et al.  [64].  Finally, recent experiments by Worth and Dawson [115] analyzed 

the global heat release dynamics due to self-excited circumferential instabilities in an 

annular combustor. Depending upon azimuthal location of the nozzle in the standing 
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wave, they showed that significantly different helical disturbances were excited in the 

flame, consistent with observations of O’Connor and Lieuwen [116].  They also showed 

that flames excited by helical disturbances, as opposed to axisymmetric structures, had 

much smaller amplitude of heat release oscillations, also consistent with the above 

observations. 

  In order to explicitly understand the behavior of helical modes in swirling flows, 

consider the experimental data from Malanoski et al. [117, 118]. In these experiments, 

PIV (Particle Image Velocimetry) measurements in different horizontal planes that are 

transverse to the axial flow are used to obtain the radial and azimuthal velocity field 

fluctuations. The helical mode decomposition was performed numerically on the 

measured data, using Eq.(2.2). They shed light on the mode strengths and their spatial 

evolution in reacting flows under both unforced and transverse acoustically forced 

conditions. These flow field results along with global chemiluminescence measurements 

are used in Chapter 7 for a model validation study. The experimental setup and 

diagnostics are detailed in Refs. [117, 118]. 

 
(a)     (b) 

Figure 9 : RMS modal energy integrated from 0-1500 Hz for unforced radial 
velocity fluctuations as a function of mode number for 3 radii at two different axial 
planes (a) and (b). Plane (b) is downstream of (a). Data reproduced from Ref. [117]. 
 

 24 



First consider the case of an unforced flow by means of a power spectrum of each 

modal coefficient integrated over a frequency range ( 1 2f f f< < ). This is indicated by: 

 
2

1

*
, , ,

1ˆ ˆ ˆ( , )
f

m m mInt ffo
B r z B B df= ∫i i i  (2.4) 

where ,
ˆ

mBi  has been defined in Eq.(2.2) and 0 0 155Hzf U S Dπ= = . Note that πD 

and S•u0 denote the circumference of the nozzle exit and a characteristic azimuthal 

velocity, respectively.  Thus St=1 represents a disturbance that propagates around the 

nozzle exit at the azimuthal reference velocity in one period and corresponds to 155 Hz. 

The RMS power spectra contribution from each mode is plotted in Figure 9 for 3 radial 

locations.  It shows the dominance of the positive azimuthal modes, particularly the 

1m = +  helical mode. Data in Figure 10 show the radial distribution of the modal energy 

at the two axial planes, confirming the behavior of these modes for additional radial 

locations. 

 
(a)     (b) 

Figure 10 : RMS modal energy integrated from 0-1500 Hz for unforced radial 
velocity fluctuations as a function of radial location for 7 mode numbers at two 
different axial planes (a) and (b). Plane (b) is downstream of (a). Data reproduced 
from Ref. [117]. 
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As mentioned earlier in Section 2.2, the nozzle frequency is an important factor in 

determining the role of excited longitudinal disturbances when the original disturbance 

source is transverse acoustics [45, 105]. For example, consider the modal spectra for the 

(a) symmetric and (b) asymmetric forcing case shown in Figure 11. The 0m =  mode is 

the most excited mode during the symmetric forcing case as shown in Figure 11(a, top) 

where the peak is plotted at 1extf f = f/fext=1. There are additional narrowband responses 

at the harmonic of the forcing frequency at 2extf f = , as well as at 0.375extf f = , or 

1.0St =  for the 0m =  mode. The 1m = ±  modes also exhibit narrowband responses at 

1extf f =  with amplitudes that are 5 and 3 times lower, respectively, than the magnitude 

for the 0m =  mode. These amplitudes are re-plotted only at the forcing frequency in 

Figure 11(a, bottom). At the upper axial plane, the response at 1extf f =  is a factor of 2 

less than the response at the lower plane. The tangential velocity helical mode spectra 

also has a narrowband response at 1extf f =  and 2extf f = , though the amplitudes are a 

factor of 2 less than the comparable magnitudes for the radial velocity. The dominant 

axisymmetric mode at the lower plane is consistent with results from experiments by 

O'Connor [45], indicative of the roll up of a vortex ring in the outer-shear layer.  

However, in that same study, they found that a helical mode quickly dominated the flow 

field farther downstream, while the 0m =  mode is still dominant at the downstream 

plane. 

The out-of-phase forcing radial helical mode spectra still shows significant 

strength of the 0m =  mode, although the 1m = ±  modes are of comparable strength as 

shown in the spectral plots in Figure 11(b, top) and the amplitude at 400 Hz in Figure 
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11(b, bottom).  This result differs from O'Connor [45] which shows that the helical mode 

dominated the flow in the out-of-phase forcing case.  This difference is due to differences 

in the acoustic sensitivity of the nozzles used in the two experiments. 

 

(a)      (b) 

Figure 11 : (top) Ensemble averaged modal spectra for symmetric (in-phase) 
transverse acoustic excitation and (bottom) modal spectra amplitude at 400 Hz for 
each mode at two axial locations (z/D) for radial location r/D=0.75. (a) 
Symmetric/in-phase forcing and (b) Asymmetric/out-of-phase forcing. Data 
reproduced from Ref. [117]. 
 
 Finally, consider the radial evolution of the different modes for different axial 

locations, as shown in Figure 12. The axisymmetric mode during symmetric forcing 

dominates across the burner radius, as indicated in the radial variation of the helical 

modes in Figure 12(a, b). The dominant response at 0.75r D=  is a direct result of the 
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convective instability of the shear layers becoming excited by the external acoustic 

forcing of the vortex ring. 

The amplitude of the axisymmetric mode reduces to the magnitude of the 1m = ±  during 

asymmetric forcing at the lower plane (a) and actually falls below the helical mode 

amplitudes at the downstream plane (b). This is shown in Figure 12(c, d). The axial 

evolution of the 0m =  mode described above is particularly significant for predicting the 

global unsteady heat release in Chapter 7.  There these results are used as inputs to the 

unsteady flame response model described in Chapter 3, to predict the unsteady heat 

release from the flame and hence the global FTF. This predicted FTF is then compared 

with a measured FTF that is obtained from global chemiluminescence measurements. 

 
Figure 12 : Helical mode decomposition of radial velocity fluctuations for 400 Hz in-
phase (a,b) and 400 Hz out-of-phase (c,d) acoustic excitation at two different axial 
planes (a) and (b). Plane (b) is downstream of (a). Data reproduced from Ref. [117]. 
 

(a) 

(c) 

(b) 

(d) 
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 Using the theoretical treatment of non-axisymmetric disturbance fields in Chapter 

3, the thesis presents an analytical treatment for the response to helical flow disturbances. 

In particular, it focuses on flame wrinkling, spatially integrated heat release and sound 

emissions. It first focuses on results for a general three dimensional flame and then 

simplifies it for an axisymmetric flame. These general analyses are followed by explicit 

calculations in Chapter 5, for a solid body swirling flow showing the dependence of the 

induced fluctuations upon helical mode number, dimensionless swirl number, disturbance 

phase velocity, and dimensionless frequency. Furthermore, an analysis for non-

axisymmetric flames is presented for both weak non-axisymmetries and strong non-

axisymmetries. 
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CHAPTER 3 

THEORETICAL FORMULATION 

 

This chapter presents the modeling approaches used to study the dynamics of premixed 

flames to an imposed disturbance field, specifically velocity disturbances. The response 

of premixed flames to disturbances that are symmetric on either the two flame branches 

(for 2-D) or axisymmetric (for axisymmetric flames) has been extensively considered 

from a theoretical modeling perspective [11, 12, 29, 44]. In reality, no geometry or 

excitation field is perfectly axisymmetric. This inherent lack of symmetry does not 

introduce substantive changes to non-swirling flame dynamics, as we detail later. In a 

swirling flow, however, non-axisymmetric disturbances excite waves with an azimuthal 

dependence that propagates along a helical path. While numerous experimental studies of 

forced swirl flames have been published, they have primarily focused on the axial 

distribution of flame wrinkling [61, 76, 119-123] and have not discussed the azimuthal 

distribution.  

First, the combustion regime diagram is presented to illustrate the region of validity for a 

level-set based thin flame analysis. Following this a comparison of linear and non-linear 

analysis is presented to illustrate the usefulness of a linear analysis. Next, the theory 

behind premixed flame front kinematics and the features of its governing equation are 

presented. Following this, a general solution procedure is shown along with its 

assumptions and limitations. This general solution is then used to compute the induced 

heat release fluctuations and finally, those induced heat release fluctuations are used to 
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evaluate the sound emissions. The analysis is presented in a general framework without 

any explicit functional forms for the model inputs. 

3.1   Premixed Flame Combustion Regimes 

 Practical systems are comprised of complicated geometries that lead to the 

prevalence of turbulence in the flow and, hence, in the combustion process. Before 

discussing the flame front kinematics equation, the different regimes of combustion must 

be considered. This is done for premixed flames using the Borghi diagram [124] shown 

in Figure 13.  

 
Figure 13 : Borghi diagram for different premixed combustion regimes depending 
on the values of rms Lu s′  and 11 fL δ . Reproduced from Ref. [124]. 
 

Here, the regimes are identified by the parameters rms Lu s′  and 11 fL δ . Here, rmsu′  is the 

representative turbulence intensity, Ls  is the laminar flame speed, 11L  is the integral 

length scale and fδ  is the flame thickness. The first ratio denotes the competing effects 

of flame burning and flow turbulence and the second ratio denotes the relative thickness 
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of the flame combustion zone and the length scale of the combustor. Most practical 

systems operate in the quasi-steady flamelet regime [69] and thus the velocity coupled 

dynamics presented in this thesis is applied in this regime. In this regime, the combustion 

process is restricted to a very thin zone relative to other relevant length scales. Therefore, 

the flame is considered to be a front of essentially zero thickness, which separates 

reactants and products. 

 

3.2 Linear and Non-Linear Flame Response 

 For small perturbations, the use of a linear analysis is sufficient. These analyses 

provide useful information such as frequency and growth rate of oscillations, as well as 

the operating conditions that could lead to a linearly unstable condition. When the 

perturbations are no longer small enough in the linear limit, non-linear processes can lead 

to a limit cycle. The amplitude of these limit cycle oscillations as well as the instability 

frequencies are equally important for operation.  

 
Figure 14 : Variation of Driving (red) and Damping (blue) as a function of excitation 
amplitude (ε ). Reproduced from Ref. [124]. 
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In order to predict limit cycle behavior, non-linear analysis is required. A typical example 

is shown in Figure 14. The balance between driving and damping processes at low 

oscillation amplitudes is generally controlled by linear processes. Hence, a linear analysis 

is sufficient to determine the growth rate of inherent disturbances in the combustor. But, 

as the amplitude of oscillation increases, nonlinear processes become increasingly 

important and they control the finite amplitude dynamics of the oscillations. Note, that at 

least one of the processes must be non-linear in order to reach limit cycle operation. 

Hence, a nonlinear analysis is always required to obtain and understand limit cycle 

behavior. The primary focus of this thesis is the linear response to velocity disturbances. 

In the next section, the dynamics of the flame front is presented using the level-set 

framework. 

3.3  Flame Front Evolution 

In this section, the mathematical nature of the equation governing the dynamics of 

moving fronts is discussed. Consider a field denoted by the variable ( , )G x t  where the 

position vector in three dimensions is x . A given iso-surface (iso-contour in two 

dimensions) of value 0G  can be denoted in general by: 

 0( , )G x t G=
  (3.1) 

Historically, this function is denoted as the level-set function, since it denotes the set of 

locations in space and time of a particular level. While mathematically an iso-contour 

denotes regions of the same property, this translates to the region of combustion or 

specifically, the locations of the premixed flame front. In a Lagrangian frame of reference 

that is fixed to the front, the differential representation of Eq.(3.1) is given by: 
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0

( , ) 0
G G

DG x t
Dt =

=


 (3.2) 

This states that the material derivative of the premixed flame front does not change as the 

front evolves. Translating this to an Eulerian frame of reference, the equation becomes: 

 0f
G u G
t

∂
+ ⋅∇ =

∂
  (3.3) 

Here fu  is the velocity of the premixed flame front. Note that while G is a field variable, 

the equation above does not denote a field equation, but rather governs the locations of 

the iso-contour given by 0G G= . In other words, it defines the implicit location of the 

premixed flame. 

Products
G>0

Reactants
G<0

Flame surface
G=0

n

n

n

n

 
Figure 15 : Snapshot of the premixed flame front whose position is given by 0G = . 
Adapted from Ref. [124]. 
 

In case of premixed flames, the heat release from the combustion process is used to burn 

the reactant mass just upstream of the front. This leads to a normal propagating speed of 

the front or, the laminar flame speed, Ls . Hence, the velocity of the front fu  can be 

decomposed as: f Lu u s n= −
   . Here, u  is the ambient flow velocity of the reactants just 

upstream of the flame front and n  is the local normal vector, as shown in Figure 15. 
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Since, this is a normal vector to an iso-contour, it is given by: n G G= ∇ ∇
 . Thus 

Eq.(3.3) can be further expanded to obtain: 

 L
G u G s G
t

∂
+ ⋅∇ = ∇

∂
  (3.4) 

This equation in its presented form was first mentioned by Markstein [34] for use with 

dynamical flame propagation. It was later adapted more formally for use with turbulent 

flames by Williams [36]. Since then, several researchers [10, 11, 35, 37, 38, 44, 125-127] 

have used this so-called G-equation for premixed flame front dynamics in both analytical 

and numerical studies. The flame surface disturbances can also be affected by processes 

that control the local internal flame structure [128]. While we have considered the 

premixed flame to be a thin front, not accounting for the combustion process, these are 

still included in the laminar flame speed term. The reaction and diffusion processes that 

are internal to the thin flame structure are contained in this flame speed, Ls .  

As mentioned earlier, this equation is valid only at points where 0G G= . 

However, for those points not on the flame surface, we may define 0G G<  for the 

reactants and 0G G>  for the products. This choice is also consistent with the direction of 

the normal vector as shown in Figure 15. Note that the value of 0G  is not important or of 

physical relevance, as seen from Eq.(3.4). This is a general scaling symmetry property of 

the equation [129]. However, no matter the choice of 0G  (which is conventionally chosen 

to be zero), the requirement for Eq.(3.4) is that the G field must be continuous and 

differentiable at the flame surface.  

Since Eq.(3.4) represents an implicit location for the flame front it cannot be 

directly solved analytically. However, it can be solved explicitly by specifying a form for 
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the level-set function. For this, consider the center-body stabilized premixed flame shown 

in Figure 16, which is represented in the cylindrical coordinate system. The time 

averaged flame position is shown by the dashed curves, and the perturbed flame by the 

solid curves. For the flame front location denoted by ( , , , ) 0G r z tθ = , this is given by: 

 ( , , , ) ( , , )G r z t z r tθ ξ θ= −  (3.5) 

Here, ( , , )r tξ θ  denotes the explicit position of the flame front in both space and time, 

measured vertically as shown in Figure 16. Note, however that this transformation to an 

explicit form limits the flame position to be a single-valued function.  

 
Figure 16 : Schematic of a center-body stabilized premixed flame. 

 

Using a characteristic length scale, fL  (representative of the flame height), a 

characteristic velocity scale, 0U  (representative of the spatial axial flow field) and a 

characteristic time scale, 0fL U , and applying Eq.(3.5) to Eq.(3.4), leads to: 

 

1
2 2 2

2

1 1r L z
uu s u

t r r r r
θξ ξ ξ ξ ξ

θ θ
 ∂ ∂ ∂ ∂ ∂   + + + + + =    ∂ ∂ ∂ ∂ ∂     

 (3.6) 

Assuming that the flame is stabilized on the center-body, it leads to the following 

boundary condition for ξ:  
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 ( , , ) 0
flame holder

r R tξ θ
−

= =  (3.7) 

The effects of flame base motion are not a focus in thesis, however a theoretical 

framework has been shown in Appendix A. 

3.4  Linear Perturbation Analysis 

In this section, a linear perturbation analysis of Eq.(3.6) is presented. The flame 

position and flow components can be decomposed into a steady mean (overbar) and a 

spatio-temporally varying disturbance (superscript prime), as: 

 
( , , ) ( , ) ( , , )
( , , ) ( , ) ( , , )i i i

r t r r t
u r t U r u r t
ξ θ ξ θ εξ θ

θ θ ε θ

′= +

′= +
 (3.8) 

where i denotes the r, θ , or z coordinate.  Note that while the velocity field is a function 

of all three spatial components, we are only interested in its value at the mean flame 

locations, ( ),z rξ θ= , for this linear analysis. The linear analysis is performed with 

respect to the small parameter ε . Substituting Eq.(3.8) into Eq.(3.6) results in terms of 

(1), ( )O O ε  etc. Under the linear assumption, only the zeroth-order and first-order 

equations are taken into consideration. Following this standard linearization procedure 

[130], the evolution equations for the mean and linear perturbation in flame position may 

then be written as: 

 

1
2 2 2

1 1r z L
UU U s

r r r r
θξ ξ ξ ξ

θ θ

    ∂ ∂ ∂ ∂
+ = − + +    ∂ ∂ ∂ ∂     

 (3.9) 

 1
t z ru u u u

t r rθ
ξ ξ ξξ

θ
′  ∂ ∂ ∂′ ′ ′ ′+ ⋅∇ = − − ∂ ∂ ∂ 




 (3.10) 

where 
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 cot ( , )r
r
ξ ψ θ∂
=

∂
 (3.11) 

and the net tangential velocity vector along the flame surface, due to both the azimuthal 

and axial velocity components, is given by: 

 t Lu U s n= −




  (3.12) 

The Right Hand Side (RHS) forcing term in Eq.(3.10) can also be expressed as: 

 
0

1
z r n G

u u u u G
r rθ
ξ ξ

θ =

 ∂ ∂′ ′ ′ ′− − = ∇ ∂ ∂ 
 (3.13) 

The above equations have been derived assuming that the laminar flame speed is constant 

in time and can vary spatially. This is a good assumption at low frequencies, however as 

shown by Preetham et al. [26] and Wang et al. [27], oscillatory curvature and/or 

hydrodynamic stretch can lead to modulation of the burning velocity, an effect that 

becomes important at high frequencies when the convective wavelength of the 

disturbance is of the same order of magnitude as the Markstein length. The time-averaged 

behavior governed by Eq.(3.9) states that the local normal component of the time-

averaged velocity must match the local flame speed to obtain a steady flame. The linear 

perturbation equation shown in Eq.(3.10) is akin to wave transport phenomena. It 

indicates that perturbations in the flame position are generated by the local normal 

component of the flow disturbances (Eq.(3.13)) and that these are transported along the 

mean flame surface by the mean tangential velocity (Eq.(3.12)). 

3.4.1 Local Flame Response 

Since Eq.(3.10), follows that of wave transport phenomena, the method of 

characteristics [131-133] can be applied. In this method, the partial differential equation 

is transformed to an ordinary differential equation in characteristic space. The general 
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characteristic equations in characteristic space coordinates s, is expressed invariantly by 

the Lagrange-Charpit equations [132]: 

 

( ) ( )

( )

( )

1

ˆ( , ) ( , , )
( , )

( , , )
ˆ( , )

r L r L

r L r p p
p p p p

p p

L

dt dr rdds
U s n e U s n e

drds
U r s n e r r r s

s s r
r srdds

U r s n e

θ θ

θ θ

θ

θ θ
θ

θ θ θθ
θ

= = =
− ⋅ − ⋅

= − ⋅ = ⇒ ⇒ = = =
− ⋅ 

   





 (3.14) 

Here, re  and eθ
  are the unit vectors in the radial and azimuthal directions, respectively. 

Note that pr  and pθ  are the spatial coordinates corresponding to a characteristic 

coordinate ps s= . The motion of disturbances along the flame is then given by: 

 
( )
( ) lnL

r L r

U s n e
d r d

U s n e
θ θ θ
− ⋅

=
− ⋅

 

 

 (3.15) 

This equation shows the spiral flame surface wrinkle motion, whose specific trajectory 

depends on the local mean tangential velocity vector. The surface wrinkle motion is 

critically important in controlling the flame response. 

The frequency domain representation of Eq.(3.10) is: 

 ( ) ( )
ˆ ˆ1 1ˆ ˆ ˆ ˆ2 r L r L z ri St U s n e U s n e u u u
r r r rθ θ θ
ξ ξ ξ ξπ ξ

θ θ
 ′ ′  ∂ ∂ ∂ ∂′ ′ ′ ′+ − ⋅ + − ⋅ = − −   ∂ ∂ ∂ ∂  

     (3.16) 

where the ‘overhats’ denote corresponding quantities in frequency domain. Here the non-

dimensional frequency is denoted by the Strouhal number St  which is defined as: 

 
0

ffL
St

U
=  (3.17) 

It is the ratio of the characteristic flow time scale ( 0fL U ) and the acoustic time period, 

1 f .  
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In order to solve Eq.(3.16), the mean flow field, the laminar flame speed and 

fluctuating velocity field need to be specified at the flame. If we assume the density dump 

across the flame to be negligible, this assumption allows for prescribing a velocity field at 

the flame. In reality, the density jump across the flame alters the disturbance flow field, 

as discussed extensively in the literature [37, 134-137]. In general, flames have finite 

density jumps, although the weak density jump across flames is an important limit in its 

own right, as many practical applications utilizing highly compressed or vitiated flows 

have small density jumps.  An important qualitative effect introduced by the density jump 

is to introduce the Darrieus-Landau flame instability, where the approach flow field is 

altered in such a way as to cause amplification of flame wrinkles [37]. The character of 

this hydrodynamic instability is altered by harmonic forcing as well.  For example, low 

amplitude harmonic excitation leads to stabilization of the hydrodynamic instability, 

while large amplitude forcing introduces a new parametric instability, resulting in 

oscillation of flame sheet at the sub-harmonic of the forcing frequency [138]. 

A general non-axisymmetric disturbance field for the velocity components was 

presented in Eq.(2.2) and using this as the prescribed field at the flame, the solution to 

Eq.(3.16) in characteristic space is obtained as: 

( )( )

( , )
2 ( , ) ( , , ) 2

, , ,
0

, ,

1ˆ ˆ ˆ ˆ( )

where
ˆ ˆ ( , , ), ( , , ), ( , , ) ,

p p p

p p p p p

s s r
i Sts r im r s i Sts

p z m r m m
m s

i m i m p p p p p p

s e e B B B ds
r r

B B r r s r r s r s St

θ
π θ θ θ π

θ
ξ ξξ

θ

θ ξ θ θ θ

=∞
+

=−∞ =

  ∂ ∂′ = − −  ∂ ∂  

=

∑ ∫
 (3.18) 

Here, ˆ ˆ( ) ( , )p p ps rξ ξ θ′ ′≡ . The flame response can be decomposed azimuthally as: 

 ˆ ˆ( , , ) ( , )ij
j

j
r St e r Stθξ θ ξ

∞

=−∞

′ ′= ∑  (3.19) 
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This equation indicates the non-axisymmetric response of the flame to non-

axisymmetries in the fluctuating flow field. In the next two sub-sections, the expressions 

for the induced heat release fluctuations and the sound generated are presented. 

 

3.4.2 Induced Heat Release Fluctuations 

The unsteady heat release per unit area of a premixed flame is given by L Rs hρ , where 

ρ  is the fluid density, Ls  is the laminar consumption speed and Rh  is the heat of 

reaction.  Thus, in a flame consuming homogeneous reactants and with a constant 

burning velocity, Ls , the heat release is directly proportional to the local surface area. 

This can also be seen from Eq.(1.3).  Stretch sensitive flames that are wrinkled also 

introduce additional heat release fluctuations through flame speed oscillations [27, 125]. 

This effect becomes significant when the radius of wrinkling and/or scale of the velocity 

gradient is of the same order of magnitude as the Markstein length and is not considered 

further in this thesis. The differential surface area is given by: 

 
2 211dA rd dr

r r
ξ ξθ

θ
∂ ∂   = + +   ∂ ∂   

 (3.20) 

The global flame surface area, directly proportional to global heat release for constant 

burning velocity flames, is given by, 

 
2 2

,

11
r

A rd dr
r rθ

ξ ξθ
θ

∂ ∂   = + +   ∂ ∂   ∫∫  (3.21) 

Linearization of this equation yields the following decomposition for the global flame 

area: 
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( ) ( )

( ) ( )

2 2

,

2

2 2
,

1

1ˆ ˆ
ˆ

1

r
r

r r

r
r

A rdrd r

rA rd dr
r

θ
θ

θ θ

θ
θ

θ ξ ξ

ξ ξ ξ ξ
θ

ξ ξ

= + +

  ′ ′+    ′ =  
 + +
  

∫∫

∫∫
 (3.22) 

Where rξ  and θξ  denote derivatives with respect to r  and θ  respectively. Thus, the 

fluctuations in local and global heat release can be calculated for a given problem by 

substituting the solutions for flame position in Eq.(3.18) into Eq.(3.22). 

3.4.3  Sound Generation 

 In order to completely understand and control the behavior of oscillatory 

combustion, an understanding of the feedback from the unsteady heat release back to the 

acoustic pressure oscillations is required. The dynamical flow processes described in the 

previous sub-sections lead to an unsteady heat release from the flame surface. 

Specifically the unsteady expansion of gases at the flame front appears as an unsteady 

creation of volume locally and hence serves as a distributed monopole source [139]. 

Lieuwen et al. [140] used the G-equation to obtain heat release fluctuations from flow 

fluctuations and then used them as input to a wave equation model derived by Dowling 

(in Crighton et al. [141]). This wave equation describes noise production in a reacting 

flow that includes a variety of source terms associated with the direct flow noise itself, 

diffusive effects and direct and indirect combustion noise. The direct combustion noise 

was shown to be most dominant in most cases, leading to a linear wave equation of the 

form:  

 ( )2
2

2 2 2

11 qp p
c t t c

γ ′− ′∂ ∂′−∇ = −  ∂ ∂  



 (3.23) 

whose formal, frequency domain solution is: 
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 ( ) ( ) ( )0
0 2

0

exp1 ˆˆ , ( , )
4

s
s

sV

ik x xi
p x q x dV

c x x
ω γ

ω ω
π

 −− −
′ ′=  

−  
∫

 

 



 



 (3.24) 

Where p̂′ , c ,γ  and q̂′  refers to the unsteady pressure, sound speed, ratio of specific 

heats, and unsteady rate of heat release per unit volume, respectively. Note that the 

unsteady heat release rate per unit volume is denoted by q  (as used in the acoustic wave 

equation shown in Eq.(3.23)) and the unsteady heat release rate per unit area is denoted 

by q (when used in evaluating the unsteady global heat release rate from the flame).  

 
Figure 17 : Schematic showing source and observer coordinate systems for sound 
generation calculations.  Note that the flame is described using cylindrical 
coordinates ( , ,r zθ ) while the observer position is given in spherical coordinates 
( 0 0 0, ,R θ φ ). 
 

The coordinate system that is used in the solution is illustrated in Figure 17, where the 

points ( , , ( , ))sx r z rθ ξ θ=
  describe the vector locations on the mean flame surface (in 

cylindrical polar coordinates with respect to origin O) and 0 0 0 0( , , )x R θ φ  denotes the 

measurement point (in spherical coordinates with respect to origin O).  For situations 

where the number of reactant and product moles differ, an additional source term is also 
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present, which is of much smaller magnitude for hydrocarbon-air flames [142] and is not 

considered in this thesis.  

The heat release fluctuations are directly proportional to area fluctuations through the 

relationship: 

 
ˆ ˆˆq q dA
q q dA
′ ′ ′
= =





 (3.25) 

Note that this is true for a constant flame thickness, as is the case in this thesis. When 

substituted into Eq.(3.24), this yields: 

 ( ) ( ) ( )0
0 2

0

exp1 ˆˆ ,
4

s

sA

ik x xi
p x q dA

c x x
ω γ

ω
π

 −− −
′ ′=  

−  
∫

 



 



 (3.26) 

For convenience of notation, we define the following: 

 ( ) ( ) ( )
2

0 0
4ˆ ˆ, ,

1
i cx p x

q
πω ω

ω γ
′ ′=

−
 p  (3.27) 

For acoustically compact sources (i.e., for 1fkL  , where fL  is the flame length and k  

is the acoustic wavenumber), it is useful to decompose the far-field sound as an 

expansion in powers of fkL , where the terms then describe the lumped element source 

strength associated with the effective monopole, dipole, quadrupole, and so forth, source 

strengths.  This multipole expansion method has been previously employed by Lieuwen 

and Zinn [143] for analyzing noise generated by unsteady combustion processes. 

Following Pierce [144], the pressure field from a compact flame can then be expressed as 

the following convergent series, referred to as a multi-pole expansion:  

( ) ( ) ( )

0 0 0 0

2
0 00

0 , ,
0 0 0

exp expexp( )ˆ ˆ ˆˆ , M D i Q ij
i i jr R r R

ikr ikrikRx F F F
R x r x x r

ω
= =

   ∂ ∂′ = − + +   ∂ ∂ ∂   



p (3.28) 
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Note that this equation is presented using Einstein’s tensor notation ( , , ,i j x y z≡ ), where 

ˆ
MF , ,

ˆ
D iF  and ,Q̂ ijF  denote the scalar monopole, vector dipole, and tensor quadrupole 

contributions, respectively. Each of these components are given by: 

 ( )

( )

, ,

, , ,

ˆˆ

ˆˆ , , ( , )

1 ˆˆ
2

M
A

D i s i
A

Q ij s i s j
A

F dA

F x r z r dA

F x x dA

θ ξ θ

′=

′= =

′=

∫

∫

∫







 (3.29) 

where ˆ ~ (1)MF O , ,
ˆ ~ ( )D i fF O kL  and 2

,
ˆ ~ ( )Q ij fF O kL , and so forth.  Note that the vector 

and tensor integrals can be calculated by using the Cartesian representation of 

cos sin ( , )s x y zx r e r e r eθ θ ξ θ= + +
    . Note that the tensor ,Q̂ ijF  is symmetric, i.e. 

, ,
ˆ ˆ
Q ij Q jiF F= . Thus, the monopole component is directly proportional to the flame surface 

area, the dipole contribution to the first moment of the surface area distribution, and so 

on. The transformation between the spherical coordinate system and the Cartesian system 

is useful in obtaining the derivatives, and is given by: 

 0 0 0 0 0
0 0 0

sin cos ; sin sin ; cosx y z
r r r

φ θ φ θ φ= = =  (3.30) 

The components of the derivative vector shown in Eq.(3.28) which contribute to the 

dipole source term are: 

 ( )0 00
2

0 0 0

1 exp( )exp( ) ikr ikrikr x
x r r r

− ∂
= ∂  

 (3.31) 

The other derivatives are obtained by cyclically changing x, y, and z. The components of 

the derivative tensor that contributes to the quadrupole source term in Eq.(3.28) are: 
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( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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ikr ikr ikr ikr krx y
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  −     ∂   ∂ = = − +      ∂ −         
 −      ∂  ∂ = = − +       ∂ ∂ −        

 (3.32) 

Note that the other double-derivatives and cross-derivatives can be obtained by cyclically 

changing x, y, and z. These can then be transformed back to spherical coordinates using 

Eq.(3.30). 

Finally, the total sound power radiated by the flame is given by: 
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0 0 0 0 0 0
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= =

  ′=   
   

 −   ′=     
     

∫ ∫

∫ ∫



p

 (3.33) 

The analysis so far has presented general expressions for the flame response, induced 

heat release fluctuations and sound generation. However, useful insights can be obtained 

by considering time-averaged flames that are axisymmetric. 

3.5 Axisymmetric Mean Flames 

3.5.1 Local Flame Response 

While the above results are quite general, important simplifications can be made 

for axisymmetric flames.  Single nozzle swirl flames often have shapes that are quite 

close to axisymmetric, and so this approximation is an important one.  Assuming an 

axisymmetric flow field, Eqs.(3.9) and (3.16) take the form: 

 ( )
1

2 2cot ( ) cot ( ) 1r z LU r U s rψ ψ = − +   (3.34) 
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 ( ) ( )
ˆ ˆ( )ˆ ˆ ˆ2 ( ) cos ( ) cot ( )r L z r

U ri St U r s r u u r
r r

θξ ξπ ξ ψ ψ
θ

 ′ ′∂ ∂′ ′ ′+ + + = − ∂ ∂ 
 (3.35) 

This expression shows that fluctuations in the azimuthal velocity have no direct influence 

on the flame response. However, there is an indirect mechanism of influence by which 

azimuthal flow fluctuations can affect the flame response [50, 51, 66, 71, 72, 108] but 

this is not a focus in this thesis. Following Eq.(3.14), the Lagrange-Charpit equations for 

the characteristics are: 

 

( , )
( ) cos ( )

( , ) ( ( , ), )
( ( , ), ) ( , )

( , , ) ( , , )

p
r L

p p

p p

p p p p

drds r f r s
U r s r

f r s d U f r s St ds
ds d

U f r s St f r s
g r s St g r s St

θ

θ

ψ

θ
θ

θ θ

Ω

Ω

Ω Ω

= ⇒ =
+

= ⇒ =

⇒ − = −

 (3.36) 

Here, StΩ  is the Strouhal number based on the axial and azimuthal time-scales of the 

flow. Note that the radial characteristic function f is independent of the azimuthal 

characteristic function g, while the converse is not true. This implies that the radial 

characteristic function is independent of swirl parameter StΩ . The characteristic 

coordinate sp is obtained from solving for r=rp. Also, unlike the general case, θp can be 

separated from the function g. These observations are specific to axisymmetric flow 

fields. The final solution, obtained from Eq.(3.18), can now be written as: 

 

( )

( )( )

( )
( , )2 ( ) ( , , ) 2

, ,
0

, ,

ˆ ˆ ˆ( )

where
ˆ ˆ ( , ), ( , ) ,

p p

p pp p p

s s r
im g r Sti Sts r img r St s i Sts

p z m r m
m s

i m i m p p

s e e e B B ds
r

B B f r s f r s St

θπ π ξξ

ξ

Ω Ω

=∞
− +

=−∞ =

  ∂′ = −  ∂  

=

∑ ∫
 (3.37) 

An important observation from this result is that, for axisymmetric mean flows, helical 

modes in the flow, m, excite a corresponding helical motion in the flame, which is not 
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generally true as pointed out earlier.  As such, using the helical mode decomposition of 

the flame in Eq.(3.19) we get: 

 
( )

2 ( ) ( , ) ( , , ) 2
, ,

0

ˆ ˆ ˆ( , )
p

p

s s r
i Sts r img r St img r St s i Sts

j m z m r m
s

r St e e e B B ds
r

π π ξξ Ω Ω

=
− +

=
=

  ∂′ = −  ∂  
∫  (3.38) 

Note that the swirl parameter StΩ  always occurs along with the mode m , i.e. it always 

appears as ( ), ,mg r St sΩ . This, again, is true only for axisymmetric flow fields and has 

important implications for the impact of swirl on the sensitivity of the flame to different 

helical modes.  

Rewrite the right side of Eq.(3.38) as: 

( )( )

( )( )
( ) ( )( )

,

,

,

ˆ ( , ), ( , ) ,
ˆsin ( , ) ( , ), ( , ) ,

ˆ ( , ), ( , ) ,

z m

n m

r m

B f r s f r s St
f r s B f r s f r s St

B f r s f r s St
r

ξ
ψ ξξ ξ


 =    ∂

− 
∂ 

 (3.39) 

where the subscript n refers to the normal component to the local time-averaged 

axisymmetric flame surface. Consider the general representation of this term, given by: 

( ) ( )( ) ( ) ( )( ),
ˆsin ( , ) ( , ), ( , ) , ( , ) exp 2 ( , ),n m cf r s B f r s f r s St D f r s i f r s Stψ ξ πϕ= −    (3.40) 

where ( )( ),D f r s  is a real amplitude, ( )( )2 ,f r sπϕ  denotes the real spatial phase 

variation of the imposed flow fluctuation, and cSt  is a Strouhal number based on the 

propagation speed of the imposed flow fluctuation. Substituting this in Eq.(3.38), we 

have: 

( )( ) ( )( ){ }

2 ( )

( )
( , )

0

ˆ ( , )

, , exp ( , , ) 2 2 , ,

p

p

i Sts r
j m

s s r
img r St

c
s

r St e

e D f r s St img r St s i Sts i f r s St ds

πξ

π πϕΩ

=

=
−

Ω
=

′

= + −∫
 (3.41) 
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In general, the oscillatory function in the integrand leads to an integral that has finite 

bounds depending on ( )( ),D f r s .  When the “frequency” associated with this oscillatory 

term is zero, the integral does not oscillate and can potential grow monotonically with s, 

depending on the nature of ( )( ),D f r s . This would lead to particularly large amplitudes 

of flame wrinkling.  This “frequency” condition is given by: 

 ( )( )0 ( , , ) 2 2 , , 0cm g r St s Sts f r s Stπ πϕΩ + − =  (3.42) 

As we will discuss in Chapter 5, the helical mode number 0m m=  that best satisfies this 

condition leads to the largest amplitudes of flame wrinkling. 

3.5.2 Heat Release Fluctuations 

The global flame surface area can be simplified from Eq.(3.22), which leads to: 

 2

0

12
sin ( )

ˆ ( , )ˆ cos ( )

r

im m

m r

A rdr
r

r StA e d rdr r
r

θ π
θ

θ

π
ψ

ξθ ψ
=∞

=−∞ =

=

′∂′ =
∂

∫

∑ ∫ ∫
 (3.43) 

We can derive a very significant result for a general, axisymmetric flame shape from this 

expression.  For non-axisymmetric modes ( 0m ≠ ), the integral over θ  is zero, which 

implies that only the axisymmetric 0m =  mode contributes to the global flame area. This 

also implies that the global flame area is independent of the swirl parameter StΩ , as can 

be seen from Eq.(3.38) for 0m = . The fluctuating flame area is then given by: 

 
( )

( )

( ) ,0
2 ( ) 2

0
0 ,0

ˆ , ,
ˆ 2 cos ( )

ˆ , ,

p

p

s s r z
i Sts r i Sts

m
r s r

B r St s
A r r e e ds dr

r B r St s
r

π ππ ψ ξ

=
−

=
=

    
  ∂   ′ =     ∂ ∂ −     ∂    

∫ ∫  (3.44) 
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An important implication of these results is that helical modes, while introducing 

substantial wrinkling of the flame front, actually lead to no fluctuations in flame surface 

area in axisymmetric flows, a result that has also been experimentally verified by Moeck 

et al. [64]. Next, consider the far-field sound radiated by axisymmetric flames.  

3.5.3 Sound Generation 

The area fluctuation associated with the m-th mode response is given by: 

 
( )2

cos ( )

ˆ ( , )( )ˆ
1 ( )

immr
m

r

r

rrdA e rdrd
rr

θ

ψ

ξ ωξ θ
ξ

′∂′ =
∂+



 (3.45) 

Hence, Eq.(3.26) becomes: 

 ( ) ( )2
0

0
00

ˆ exp( , )ˆ , cos ( ) sim m
m

sr

ik x xd rx e d r rdr
dr x x

π
θ

θ

ξ ωω θ ψ
=

 −′
′ =  

−  
∫ ∫

 



 

p  (3.46) 

This can be simplified further in the far-field ( 0R  is very large compared to any spatial 

length quantity) to : 

 ( )
( )

( )
0 0

0( )cos
0 0

0

ˆ ( , )2ˆ , sin cos ( )
ikR imm

ik rm
m m

r

d ri ex J kr r e rdr
R dr

θ π
ξ φξ ωπω φ ψ

+ +
− ′

′ =  
 
∫

p (3.47) 

This equation clearly shows that directivity only exists in the 0φ  direction, and not the 0θ  

direction, as would be anticipated for this axisymmetric geometry. Also of note is the fact 

that only the symmetric, 0m =  mode contributes to the sound radiation in the forward, 

0 0φ =  direction.   

Further insight into the far-field sound radiation characteristics can be obtained for low 

and high frequency limits or more precisely, for fkL  <<1 and >>1, respectively.  The 
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fkL  <<1 compact flame limit is most readily analyzed using the multi-pole expansion of 

Eq.(3.28). We define the following integrals for ease of notation in subsequent equations: 

 
( ), ,

2

,
0

ˆ
( ) cos ( ) n

r n
r

in
n

I r r r dr
r

I e d

βα
αβ

π
θ

θ
θ

ξξ ψ

θ
=

′∂
=

∂

=

∫

∫
 (3.48) 

Note that only , 0 2nIθ π= =  is non-zero and that , 0 0nIθ ≠ = . The scalar monopole source is 

given by:  

 , ,00,
ˆ
M m r mF I Iθ=  (3.49) 

The axisymmetric mode, 0m = , is the only mode that contributes to the monopole source 

strength. This implies that, to leading order in fkL , the non-axisymmetric helical modes 

excite no far-field sound, or influence stability limits of ducted systems, from 

axisymmetric, compact flames. Hence, we have: 

 ,00, 0
ˆ0 : 2
ˆ0 : 0
M r m

M

m F I

m F

π == =

≠ =
 (3.50)  

and, thus the leading order contribution to the pressure field becomes: 

 
( ) ( )

( )

0
0 ,00, 0

0

0

expˆ0 : , 2

ˆ0 : , 0

M r m

M

ikR
m x I

R
m x

ω π

ω

=′= =

′≠ =





p

p
 (3.51) 

Where the subscript M refers to monopole. In reality, however, all flames have finite size 

which modifies this result. Thus, if the flame is non-compact, or the symmetric mode is 

weak, then helical modes still influence the sound generation by the flame, but the effect 

is of ( )fO kL  or higher. The dipole source vector is given by: 
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, , 1 , 1 ,20,

, , 1 , 1 ,20,

, , ,11,

1ˆ
2

ˆ
2

ˆ

D x m m r m

D y m m r m

D z m r m

F I I I

iF I I I

F I I

θ θ

θ θ

θ

+ −

+ −

 = + 

−
 = − 

=

 (3.52) 

Note, that only the axisymmetric and first helical modes, 0,1m = , contribute to the 

dipole source.  The axisymmetric mode admits a vector component for the dipole in the z-

direction only. The non-axisymmetric 1m =  lead to vector components in the x and y 

directions only. Equation (3.52) may be written as: 

 
, ,11, 0 , ,

, ,20, 0 , , ,

0 : 2 ; 0
ˆ ˆ ˆ1: ; ; 0

D z r m D x D y

D x r m D y D x D z

m F I F F

m F I F iF F

π

π
=

=

= = = =

= ± = = ± =
 (3.53) 

The contribution to the pressure field is: 

 
( ) ( )

( ) ( )

0 0 ,11, 0 0
0

0

0 0 0 ,20, 0 0
0

0

2 1 exp( ) cosˆ0 : ,

1 exp( ) sinˆ1: ,

r m
D

r m
D

ikR ikR I
m x

R
ikR ikR i I

m x
R

π φ
ω

π θ φ
ω

=

=

−
′= = −

− ±
′= ± = −





p

p
 (3.54) 

Note that the dipole contribution magnitudes have no directivity in 0θ  but only a 

directivity in 0φ . The 0θ  dependence occurs only in the phase of the pressure field for the 

1m =  modes. Also, note that the directivities are different for the different modes. The 

axisymmetric 0m =  has a directivity that peaks at 0 0,φ π=  and radiates no contribution 

along 0 2,3 2φ π π= . In contrast, the directivity is inverted for the for the non-

axisymmetric 1m =  modes- i.e., it peaks in the direction orthogonal to the flow and 

emits no sound in the forward direction.  .  

The 6 components (for a symmetric tensor) of the quadrupole tensor are given by: 

 52 



 { },30,
, , 2 , 2,

1ˆ
4 2

r m
m m mQ xx

I
F I I Iθ θ θ+ −

 = + + 
 

 (3.55) 

 ( ),30,
, 2 , 2,

ˆ
8

r m
m mQ xy

I
F I I

i θ θ+ −= −  (3.56) 

 ( ),21,
, 1 , 1,

ˆ
4

r m
m mQ xz

I
F I Iθ θ+ −= +  (3.57) 

 { },30,
, , 2 , 2,

1ˆ
4 2

r m
m m mQ yy

I
F I I Iθ θ θ+ −

 = − + 
 

 (3.58) 

 ( ),21,
, 1 , 1,

ˆ
4

r m
m mQ yz

I
F I I

i θ θ+ −= −  (3.59) 

 ,12, ,
,

ˆ
2

r m m
Q zz

I I
F θ=  (3.60)  

Here, the 0m =  mode contributes to the , , ,
ˆ ˆ ˆ, ,Q xx Q yy Q zzF F F  components of the tensor only. 

The 1m =  modes contribute to the , ,
ˆ ˆ,Q xz Q yzF F  components only. The 2m =  mode 

contributes to the 
, , ,

ˆ ˆ ˆ, ,
Q xx Q yy Q xy

F F F components.  Modes where |m|>2 do not contribute to 

the quadrupole moment.  Thus, higher order helical modes become increasingly 

inefficient at causing sound radiation from compact flames, because of phase cancellation 

effects. Eqs.(3.55)-(3.60) can be further simplified depending on the mode numbers. 

For 
,

ˆ
Q xx

F  we have only 0,2m =  contributing, leading to: 

 

,30, 0
, , 0

,30, 2
, , 2

ˆ
2

ˆ
4

r m
Q xx m

r m
Q xx m

I
F

I
F

π

π

=

=

=±

=±

=

=
 (3.61) 

For 
,

ˆ
Q xy

F  we have only 2m =  contributing, leading to: 
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 ,30, 2
, , 2

ˆ
4

r m
Q xy m

I
F i

π =±

=±
= ±  (3.62) 

For 
,

ˆ
Q xz

F  we have only 1m =  contributing, leading to: 

 ,21, 1
, , 1

ˆ
2

r m
Q xz m

I
F

π =±

=±
=  (3.63) 

For 
,

ˆ
Q yy

F  we have only 0,2m =  contributing, leading to: 
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I
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I
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 (3.64) 

For 
,

ˆ
Q yz

F  we have only 1m =  contributing, leading to: 

 ,21, 1
, , 1

ˆ
2
r m

Q yz m

i I
F

π =±

=±

±
=  (3.65) 

For 
,

ˆ
Q zz

F  we have only 0m =  contributing, leading to: 

 ,12, 0, , 0
ˆ

r mQ zz m
F Iπ ==

=  (3.66) 

Using Eqs.(3.61)-(3.66) along with Eq.(3.32) and Eq.(3.28), we have: 

( ) ( ) ( )
( )
( )

( )
( )

2
,30, 0 0 2

0
0

0 0
, 0 0 3 2
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0 2
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x
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      − +  −  −    ′ =
      + − +  −     

p  (3.67) 
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R ikR
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p  (3.69) 
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Finally, the net contributions of each mode to the far-field sound, from just its monopole, 

dipole and quadrupole components are given by: 

( ) ( )

( )

( )
( )
( )

( )
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=

=
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 
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        + − +   −      

p  (3.70) 
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1 exp( )ˆ , sin 2

3
1

r m

m r m
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R ikR
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ω φ

=

=± =±

 
 − ±   ′ = −   − +  −    

p  (3.71) 

To summarize, the flame’s monopole contribution comes from the 0m =  mode only, the 

dipole contribution is influenced by the 0,1m =  modes, while the quadrupole moment is 

influence by the 0,1,2m =  modes. Higher order helical modes influence higher order 

multipoles, but not the monopole, dipole, or quadrupole components. 

3.6 Non-Axisymmetric Mean Flames 

In the previous section, the results indicated that asymmetric modes in the 

disturbance field have no effect or role in the global flame response of axisymmetric 

mean flames. An important observation from this result relates to comparisons of the 

forced response sensitivities of axisymmetric and non-axisymmetric flames.  For 

example, single flames are nearly axisymmetric when placed in circular geometries.  

However, a single flame becomes non-axisymmetric when placed in a non-circular 

geometry, such as a square or sector combustor.  In addition, multiple nozzles 
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configurations generally lead to strong flame-flame interactions, whose shapes are 

decidedly not axisymmetric [115].  An illustrative example of this point is shown in 

Figure 18, showing a side view and end-on visualization of a 5-flame configuration 

housed in a circular combustor [145].  Note the nearly square shape of the central flame.  

Thus, the sensitivity of the flame to helical modes is fundamentally different in 

axisymmetric or non-axisymmetric environments. In this section we consider the effects 

of mean flame non-axisymmetry and hence how asymmetric modes in the disturbance 

field affect global flame response. 

 
Figure 18 : Side and end-on view of a combustor with five swirling nozzles, showing 
the non-circular shape taken by the flames.  Images reproduced from Ref. [145].  

 

3.6.1 Weak Asymmetry 

In this sub-section, we consider mean flame/flow with a weak non-axsiymmetry 

controlled by the small parameter η . Using Eq.(3.8) we have: 

 ( ) ( ),, , ( ) ( , ) , ,i i i iu t r U r U r u r tηθ η θ ε θ′= + +  (3.72) 

 ( ) 0, ( ) ( , ) ( , , )r r r r tηξ θ ξ ηξ θ εξ θ′= + +  (3.73) 

The flame position fluctuations (in frequency domain) are then decomposed as: 

 ( ) ( ) ( )0
ˆ ˆ ˆ, , , , , ,r r rηξ ω θ ξ ω θ ηξ ω θ′ ′ ′= +  (3.74) 

 56 



Note that the axial coordinate z is not included in Eq.(3.72) since it is considered at the 

flame location given by ( , )z rξ θ= . The strictly axisymmetric mean flame surface is 

governed by the equation (from Eq.(3.34)): 

 

( )( )

2

0 0

0

1

( ) cot

z r L
d dU U s
dr dr

d r r
dr

ξ ξ

ξ ψ

 
− = +  

 

=

 (3.75) 

The non-axisymmetric correction to the mean flame is governed by: 

 ( ) ( ) ( ),0
, ,

,
sin ( )

n
t z r

U rr
U U U

r r
η

η η η

θξ
ξ

ψ
∂

⋅∇ = − =
∂





 (3.76) 

Where the subscript n corresponds to the normal component to the axisymmetric mean 

flame. This equation indicates that the asymmetries in the mean flame surface are 

governed by the normal component of the asymmetric part of the mean flow. Similarly, 

the flame wrinkling can be decomposed into its respective governing equations as: 

 ( ) ( )
( )( )

0
0 0

ˆˆ ˆ ˆ ˆ2
sin

n
t z r

r ui St U u u
r r

ξ
π ξ ξ

ψ
∂ ′

′ ′ ′ ′+ ⋅∇ = − =
∂





 (3.77) 

 ( ) ( ) ( ) ( )( )0 0
ˆ ˆ ˆ ˆˆ2 sint Li St U u U s rη η η η ηπ ξ ξ ξ ξ ψ ξ ξ ′ ′ ′ ′ ′+ ⋅∇ = − ⋅∇ − ⋅∇ − ∇ ⋅∇ 





     

 (3.78) 

As seen earlier, Eq.(3.77) indicates that the leading order flame wrinkling is generated by 

the normal component of the flow fluctuations. However, in the case of Eq.(3.78) there 

are multiple sources of disturbances in the RHS. The first term on the right hand side 

indicates the interaction of mean flame asymmetries with flow disturbances. The second 

term indicates the interaction of mean flow asymmetries with the leading order local 

flame wrinkling. The third term is due to normal propagation at the mean flame 

asymmetries interacting with the leading order local flame wrinkling. Note that all three 
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terms contribute to the interaction of helical modes in the disturbance flow with the 

asymmetries in the mean flame. This is better explained using an example problem 

presented in Chapter 5. 

3.6.2 Strong Asymmetry 

In order to consider this case, the general solution to Eq.(3.6) is required. This requires 

the use of numerical methods. The spatial derivatives are discretized using a Weighted 

Essentially Non-Oscillatory (WENO) [146] scheme designed for Hamilton-Jacobi 

equations.  This scheme is uniformly fifth order accurate in regions where the spatial 

gradients are smooth and third order accurate in discontinuous regions.  Derivatives at the 

boundary nodes are calculated using fifth order accurate upwind-differencing schemes so 

that only the nodes inside the computational domain were utilized.  A Total Variation 

Diminishing (TVD) Runge-Kutta scheme [147], up to third order accurate, was used for 

time integration and Local Lax-Friedrich (LLF) scheme, was used for improved stability 

[146]. These are detailed in Appendix B. 

The spatial grid is chosen based on resolving 1/100th of the smallest length scale 

and the time-step is chosen to capture atleast 1/1000th of the forcing frequency. Note that 

the spatial grid is two-dimensional with both the radial and azimuthal directions. A 

typical grid (radial x azimuthal) ranges between 500x1000 to 1000x1000 grid points. The 

numerical solver was developed in the C language using OpenMP for parallel computing. 

Results using this numerical solver for example calculations are presented in Chapter 5. 

3.7 Disturbance Field Decomposition 

The analytical form of the disturbance field used as input to the flame response model is 

an integral piece in both deriving the flame wrinkling behavior as well as the global heat 
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release fluctuations. A small amplitude disturbance field can be decomposed into three 

canonical types – (i) acoustic, (ii) vortical, and (iii) entropy [148, 149]. The disturbances 

in may be expanded as: 

 
A V S

A V S

A V S

p p p p
S S S S

′ ′ ′ ′Ω = Ω +Ω +Ω
′ ′ ′ ′= + +
′ ′ ′ ′= + +

   

 (3.79) 

Here, ′Ω


 is the vorticity vector disturbance, p′  is the pressure disturbance and s′  is the 

entropy disturbance. The subscripts , ,A V S  denote acoustic, vortical and entropy 

contributions. In the linear approximation, for uniform and homogeneous mean 

quantities, these three disturbances propagate independent of each other and are 

decoupled [148]. This implies: 

 
V

A

S

p p
S S

′ ′Ω = Ω
′ ′=
′ ′=

 

 (3.80) 

Hence, this implies that the velocity fluctuations due to acoustic disturbances and 

vorticity disturbances will propagate independently and hence independently lead to 

flame response. The acoustic disturbances propagate at the speed of sound ( c ) while 

vortical disturbances propagate on the order of the local flow velocity ( , 0c vU U ). Here, 

0U  is a characteristic flow velocity. This leads to a significant difference in the acoustic 

and vortical disturbance length scales for low Mach number flows ( 0M U c= ). In this 

thesis, we consider low Mach number flows where the disturbance field is imposed on 

the flame and that the effect of the flame on the disturbance field is not considered. 

Using the linearized governing equations for wave phenomena and momentum, 

the following form of the velocity disturbances is obtained: 
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( )

0

0 ,

( , ) Re exp

( , ) Re exp exp

A
A

V
V

c v

u x t xi t
U c

u x t xx i t
U U

ε ω

ε α ω

 ′   = −      
   ′

= − −         

 (3.81) 

Here, the acoustic and vortical amplitude are in general different, and the parameters α  

and ,c vU  are typically functions of the frequency ω : 

 

( )

( )( )

1 22
0

0
, 1 22

1 1
1

2 2

2 1 1

V

V
c v

V

U

UU

α
ν

 + Γ + = −  
 

Γ
=

+Γ −

 (3.82) 

Here, 2
04V UωνΓ =  and ν  is the kinematic viscosity. In the low frequency limit, the 

disturbances can be reduced to the form: 

 
0

0 ,

ˆ
Re exp

ˆ
Re exp

A
A

V
V

c v

u xi t
U c

u xi t
U U

ε ω

ε ω

 ′   = −      
   ′

= −         

 (3.83) 

Using the analytical forms of the disturbance fields presented here, the example 

calculations can be performed for the two non-axisymmetric fields. These example 

calculations are described in detail in the next two chapters. 

 

 60 



CHAPTER 4 

EXAMPLE CALCULATIONS: TRANSVERSE ACOUSTIC 

DISTURBANCES 

  

This chapter utilizes the formulation from Chapter 3 to specifically consider the response 

of premixed flames to transverse acoustic disturbances. 

4.1 Mean Flow and Mean Flame 

In order to show explicit results, consider an axially uniform mean velocity field 0U , and 

a solid body azimuthal field, given by 

 0; 2 ( ) 2 ; 1r zU U St r St r Uθ π ω π σ= = Ω = =  (4.1) 

While a variety of different swirl profiles are experimentally observed, such as Rankine, 

Oseen, solid body, and so forth, we particularly focus on a solid body flow field, as this 

result is analytically tractable and enables relatively simple analytical expressions which 

provide insight into the more general results described in Chapter 3. Note that the 

velocity field here has been normalized by the characteristic velocity 0U . The Strouhal 

number St  is as defined in Eq.(3.17). The angular rotation rate of the mean flow field is 

then given by Ω and the dimensionless rotation rate by σ ω= Ω . The mean flame shape 

from solving Eq.(3.34) is then given by: 

 ( ) ( ) cotr r Rξ ψ= −  (4.2) 

Using Eq. (4.1) in Eq.(3.36), we obtain the following expressions for the linear spiral 

propagation path of disturbances from the flame base: 

 cos
2
Lsr

St
ψ θ

π σ
 =  
 

 (4.3) 
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4.2 Flame Wrinkling and Global Flame Response 

Based on Eq.(3.83), the general transverse acoustic disturbance field is chosen as: 

 ( )ˆ exp 2 exp( 2 )x f bu D i x D i xπχ πχ′ = − +  (4.4) 

The transverse velocity is along the x-coordinate direction which is a one-dimensional 

transverse direction to the main axial flow for the swirl-stabilized flame (see Figure 16). 

Here, the amplitudes fD  and bD  are the amplitudes of the forward traveling and 

backward traveling wave. Their relative values are used to control the nature of 

disturbance as (i) pure traveling wave for 1, 0f bD D= = and (ii) pure standing wave for 

1f bD D= = . The parameter χ  controls the compactness of the flame length scale 

relative to the acoustic wavelength, and is defined as: 

 .f

a

L
St Mχ

λ
= =  (4.5) 

Where 0M U c=  is the Mach number of the flow. First consider the case of a compact 

flame, in the limit of 0χ → . Essentially the acoustic field becomes a spatially uniform 

bulk transverse forcing. The cylindrical coordinate velocity components are given by: 

 
ˆ cos
ˆ sin

ru
uθ

θ
θ

′ =
′ =

 (4.6) 

Without any loss of generality, we can omit the constants ,f bD D . Note that for the 

axisymmetric mean flow/flame assumed here, the ûθ′  component has no influence, as 

seen from Eq.(3.35). The azimuthal mode representation of Eq.(4.6) is given by: 

 
, 1

, 1

ˆ 0
1ˆ
2

r m

r m

B

B

≠±

±

=

=
 (4.7) 
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Applying this to Eq.(3.38) leads to the solution: 

 
( )

{ }
{ }

2

2

2
,2 ,2

2 2
,2 ,2

cos cos(2 ) sin(2 )cotˆ ( , )
2 1 sin sin(2 ) cos(2 )

i St r

i St r

i e i St r St rir
St e i St r St r

π

π

θ π σ πψξ θ
π σ θ σ π σ π

−
Ω Ω

−
Ω Ω

  − −  ′ =
 −  + − +  





 



 

(4.8) 

Where 

 2 2

,2 2

cos
StSt

St St
ψ
σΩ

=

=
 (4.9) 

And 

 
tan
r Rr

ψ
 −

=  
 

  (4.10) 

As seen from Eq.(3.43) and Eq.(3.44), only the symmetric mode 0m =  contributes to the 

global flame response. Since the amplitude of the symmetric mode is zero, the global 

flame response in zero for the compact flame case. This is despite non-zero local flame 

wrinkling and regardless of the swirl parameter σ , flame angle ψ  or Strouhal number 

St . This can also be directly seen from the nature of the spatial dependence of the forcing 

function in Eq.(4.6). The spatial distribution shows that opposite halves of the flame 

always have equal normal component of velocity fluctuation at any instant of time, but of 

opposite sign. This implies that the change in area at a point in one half is cancelled by 

the change in area in the opposite half, leading to no net change in area. Note that, as 

mentioned earlier, this argument applies only to axisymmetric flames. 

The solution in Eq.(4.8) may also be written as: 

 ( )ˆ ( , ) ( , ) exp ( , )r r i rξ θ θ ϕ θ′ =  W  (4.11) 

Where 
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1

2
2 2

2 2

1 1 2( , ) cot sin sin sin sin cos(2 2 )
2 2 2 2
r r r rr rτ τ τ τθ ψ θ πσ

τ τ τ τ
+ − + −

+ − + −

 
= + + − 

 

   

 W (4.12) 

 [ ]

1 1cos sin cos sin
2 2 2 2tan ( , )

1 1sin sin sin sin
2 2 2 2

r r r r

r
r r r r

τ τ τ τθ θ
τ τϕ θ

τ τ τ τθ θ
τ τ

+ + − −

+ −

+ + − −

+ −

       − + +       
       =
       − − +       
       

   



   

 (4.13) 

Here, ( )22 1Stτ π σ± = ± . 

 
(a)                                                                   (b) 

 
(c) 

Figure 19 : Amplitude variation W  along the flame for different values of 
σ ω= Ω , with downstream radial distance at (a) 0θ = , (b) 2θ π= ; (c) Phase 
variation (ϕ ) for different values of σ ω= Ω . 
 

 64 



The apparent convection speed of wrinkles measured at a fixed azimuthal position, θ, is 

modified due to the interference patterns created by the swirl transport component. This 

apparent convection speed is obtained from the slope of the phase dependence upon 

frequency, shown later. 

The presence of transverse excitation introduces non-axisymmetric wrinkling on the 

flame surface, as illustrated in Figure 19(a). In the absence of swirl, these non-

axisymmetric wrinkles convect axially downstream; they are simply not axisymmetric.  

The superposition of swirl onto a non-axisymmetric problem introduces fundamentally 

new features for the flame response. 

(a)       (b) 

 

Figure 20 : Instantaneous flame shape visualization for ψ = 14o, σ = Ω/ω = 0.00 

showing; (a) flame surface, (b) flame branches at θ = 0,π.  

We start first with the no swirl case, σ=0, as a baseline.  Figure 20(a) illustrates a three 

dimensional view of the instantaneous flame surface, as well as a slice of the flame 

surface at θ =0 and π. Notice that that even in the absence of swirl, the flame wrinkling is 

non-axisymmetric.  There is no wrinkling at the “grazing” angles θ=π/2 and 3π/2, and the 

wrinkles are out of phase at θ =0 and π.  The latter can be seen from Figure 20(b).  The 

phase of the flame wrinkling is given by Eq.(4.13) for θ=0 and π, is shown in Figure 19 

(c).  Note that since the phase decreases with downstream distance, it corresponds to 
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downstream motion of the wrinkles. The spatial dependence of the amplitude of flame 

wrinkling, W, is shown in Figure 19(a) and Figure 19(b).  Note the spatially modulated 

character of the flame wrinkling amplitude which is due to interference between wrinkles 

excited at the flame attachment point and by the local disturbance field.  

(a)       (b) 

 

Figure 21 : Instantaneous flame shape visualizations for ψ = 14o, σ = Ω/ω = 0.60 

showing; (a) flame surface, (b) flame branches at θ = 0, π; black : σ = 0.60, red : σ = 

0.00. 

We next consider a higher swirl case, σ=0.6.  An image of the computed flame surface 

is shown in Figure 21(a), which shows that the flame is wrinkled at the grazing incidence 

angles, θ=π/2 and 3π/2, even though the normal perturbation field is zero. This occurs 

because swirl convects wrinkles created at other azimuthal angles into these planes.  This 

image clearly shows a more complex interference pattern along the flame sheet. This can 

also be seen from the flame wrinkling amplitude, W, shown in Figure 19(a) and Figure 

19(b).   Note also the change in periodicity of the nodes in flame response from this 

figure.  The axial cut of flame wrinkling is shown in Figure 21(b).  For reference, the red 

curve shows the baseline σ=0 case at the same instant of time.  Note that there are 

multiple scales of wrinkling and that the effective wrinkling wavelength has increased 
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relative to the σ=0.6 case.  Furthermore, Figure 19(c) shows that the rate of axial phase 

roll-off is shallower than that of the baseline case, indicating a faster “effective” axial 

convection speed of this cut.  It is important to emphasize, however, that the rate of phase 

roll-off corresponds to a trace velocity, not a group velocity, since it is obtained from an 

azimuthal cut in which wrinkles are rotating into and out of.  Recall that the trace velocity 

does not correspond to the propagation speed of a disturbance and can be positive, 

negative, and even have infinite values for finite propagation speed disturbances.  This 

result has important implications on interpretations of sheet imaging of swirling flames, 

such as Mie scattering or planar laser induced fluorescence (PLIF), as it shows that the 

axial phase speed of disturbances along these cuts should not always be interpreted as 

physical convection velocities. 

 (a)       (b) 

 

Figure 22 : Instantaneous flame shape visualizations for ψ = 14o, σ = Ω/ω = 0.95 

showing; (a) flame surface, (b) flame branches at θ = 0, π; black : σ = 0.95, red : σ = 

0.00. 

We next consider σ=0.95, a value less than unity but very close, corresponding to near 

frequency matching. As shown in Figure 22(a), the flame surface exhibits a much larger 

scale helical motion.  This longer wrinkling wavelength can also be seen in Figure 22(b), 
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by comparing this case to the no swirl result. Moreover, Figure 19(c) shows that the 

phase roll-off rate is nearly flat, corresponding to a very high axial trace velocity of the 

wrinkle. 

(a)       (b) 

 

Figure 23 : Instantaneous flame shape visualizations for ψ = 14o, σ = Ω/ω = 1.00 

showing; (a) flame surface, (b) flame branches at θ = 0, π; black : σ = 1.00, red : σ = 

0.00. 

We next consider the frequency matching case, σ=1.0.  As shown in Figure 23(a), 

there is no periodic wrinkling on the flame surface. Rather the flame exhibits a solid body 

rotation of the tilted conical flame surface. The degree of off-axis rotation is controlled 

by the excitation amplitude. As shown in Figure 23(b), the phase-axial dependence is flat. 

These results show that as the swirl velocity is increased, or the excitation frequency 

decreased, that the scale of flame wrinkling increases up to an infinite value. This is also 

manifested through the phase of the wrinkles in the axial cuts, which as shown in Figure 

19(c), monotonically decrease toward zero. The amplitude of wrinkling, W, does not 

oscillate but grows monotonically with downstream distance, as illustrated in Figure 

19(a) and Figure 19(b). 
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(a)       (b) 

 

Figure 24 : Instantaneous flame shape visualizations for ψ = 14o, σ = Ω/ω = 1.10 

showing; (a) flame surface, (b) flame branches at θ = 0, π; black : σ = 1.10, red : σ = 

0.00. 

We next consider a dimensionless rotation rate which is greater than unity, σ=1.1, see 

Figure 24(a).  Note that finite-scale flame wrinkling is present again.  However, as shown 

in Figure 19(c), the phase now increases with downstream distance; i.e., the apparent 

direction of motion of wrinkles is now upstream.  It is important to note that the flame 

wrinkles are not actually moving backward.  Rather, they are moving along the 

characteristic curves given by at a velocity of tu


. As discussed earlier, wrinkle motion 

along these axial cuts of the flame should be interpreted as trace velocities, not as 

convection speeds of actual flame wrinkles.  Returning to Figure 19(c), this positive 

phase-axial distance behavior is analogous to the phenomenon of aliasing in spectral 

analysis, where the wrinkle is rotating through the axial cut faster than the period of 

oscillation.  A familiar example is that of the apparent backward rotation rate of a 

vehicle’s tire rims (as seen in films), despite the vehicle’s forward motion.  

We last consider an even faster rotation rate, σ=2.1.  As shown in Figure 25(a), the 

wrinkling wavelength has further decreased.  Figure 19(c) shows that the slope of the 
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phase continues to increase. Thus, we can see that beyond the frequency matching 

condition, the wrinkling wavelength decreases monotonically. 

(a)       (b) 

 

Figure 25 : Instantaneous flame shape visualizations for ψ = 14o, σ = Ω/ω = 2.10 

showing; (a) flame surface, (b) flame branches at θ = 0, π; black : σ = 2.10, red : σ = 

0.00.  

 Having considered the local flame wrinkling features for the compact flame case, 

we next consider the non-compact flame case. The transverse forcing expressed in 

Eq.(4.4) must be transformed from Cartesian coordinates to cylindrical coordinates for 

use with the model: 

 
( ) ( )
( ) ( )

ˆ cos exp 2 cos exp 2 cos

ˆ sin exp 2 cos exp 2 cos

r f b

f b

u D i r D i r

u D i r D i rθ

θ πχ θ πχ θ

θ πχ θ πχ θ

′  = − + 
′  = − + 

 (4.14) 

Note that for the axisymmetric mean flow/flame assumed here, the ûθ′  component has no 

influence, as seen from Eq.(3.35). Before we proceed to apply the model, the analytical 

form of ˆru′  needs to expressed in terms of its helical modes as described by Eq.(2.2). This 

is facilitated by the use of the Jacobi-Anger expansion [132]: 

 cos ( )i m im
m

m
e i J eκ θ θκ

∞

=−∞

= ∑  (4.15) 
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Consider only the forward wave component with 1, 0f bD D= =  (derivation for the 

backward wave component is similar). Applying the expansion to ˆru′  in Eq.(4.14) leads 

to: 

 ( ) ( ) ( )1 1 12 2
ˆ cos 2

2
m mm im m im

r m
m m

J r J r
u i J r e i eθ θπχ πχ

θ πχ
∞ ∞

− + −

=−∞ =−∞

− − − 
′ = − =  

 
∑ ∑  (4.16) 

This leads to the following coefficients: 
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1 1 1
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1 1 1
,
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− − − 
= = − 
 

− − − 
=  
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 (4.17) 

 Applying this to Eq.(3.38) leads to the solution: 

 ( )2

,
2 122

, 2
,

2 2 2
1ˆ ( )

cos 2

m T m m imif f i St r m
r m

T m

R RJ r JL L
r e e e

ππ
π σ

πχ πχ πχ
ξ

ψ πχ

 
  − + 

    − − − −        ′ =
 
  





 (4.18) 

where R  is the center-body radius, fL  is the flame height and the parameters are defined 

as:  

 , 2 ,2tanT m St mStχ χ ψ Ω= − −  (4.19) 

The Strouhal numbers 2St  and ,2StΩ  have been defined earlier in Eq.(4.9). The parameter 

,T mχ  relates these Strouhal numbers to the asymmetry mode m  and the non-compactness 

parameter χ . Note that, for the case of the transverse one-dimensional forcing, the modal 

amplitudes ,
ˆ

r mB  is non-zero for all mode numbers m . This indicates the local flame 

wrinkles occurs due to all mode numbers. An important special case occurs in the limit of 

, 0T Mχ → , which results in the flame wrinkling that grows linearly, given by: 
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 (4.20) 

The limiting condition is obtained when the parameters satisfy the condition given by: 

 sin cos (1 )M mψ ψ σ= +  (4.21) 

Despite the presence of all helical modes, only the symmetric mode 0m =  contributes to 

the global flame response (as seen from Eq.(3.43) and Eq.(3.44)). For the transverse 

transfer function defined as: 

 ( )
0

ˆˆ ref
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uAF UA
′ ′=  

 
 (4.22) 

We obtain: 
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  

A

A

 (4.23) 

Note that the only controlling parameters for the global flame response are the non-

compactness parameter χ , the Strouhal number 2St  and the flame angle ψ . The 

expression also indicates the presence of two different scales of interference in the 

Strouhal number space, one due to the exponential term and the other due to the Bessel 

term. This is primarily due to the unique spatial distribution of the non-compact 

transverse forcing as seen by the conical flame surface. These aspects are depicted in 

Figure 26. 
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Figure 26 : Flame transfer function gain for a nominally axisymmetric flame in a 
non-compact transverse disturbance field. The non-compactness is controlled by the 
Mach number, but also varies along the x-axis with Strouhal number. 
 

Note how all the curves start at zero for 0St = , for the reasons discussed earlier. 

They then rise and oscillate with the two scales mentioned above. Note also that larger 

transfer function gains are achieved for shorter length scale disturbances, parameterized 

here by M. 

These results have important implications for our understanding of flame response 

mechanisms during transverse instabilities.  Consider the potential pathways through 

which transverse acoustic waves excite the flame (Figure 5(b)). Two of these pathways 

are directly acoustic in origin - transverse acoustic motions associated with the natural 

frequencies/mode shapes of the combustion system, and longitudinal oscillations in the 

nozzle due to the oscillating pressure difference across the nozzle.  These longitudinal 

fluctuations should not be confused with longitudinal modes of the combustor but, rather, 

are longitudinal motions associated with the dominantly transverse modes. In addition, 

these transverse and longitudinal acoustic disturbances also excite vortical flow 

disturbances.  These include excitation of the shear layers, swirl number fluctuations, and 
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oscillations in the vortex breakdown bubble [51, 74, 108]. As such, the receptivity of 

these flow instabilities to both transverse and longitudinal acoustic oscillations must be 

considered. 

These disturbance pathways all play a role in exciting the flame, but are difficult to 

separate in real systems.  However, the results of this study provide insight into the role 

of "direct" transverse excitation path on the local and global response of the flame.  

Assume for the moment that the velocity fluctuations induced by all the pathways are of 

similar magnitude (e.g., see measurements by O'Connor [45]). These results suggest, 

then, that this direct path leads to flame fluctuations that are locally comparable to the 

other pathways.  This implies that the influence of transverse sound waves should be 

clearly present in measurements of flame front fluctuations.  It also shows, however, that 

interpretation of local flame wrinkle dynamics using planar sheet imaging approaches is 

problematic. In order to better understand these, the next subsection presents a 

comparison between the transverse flame transfer function and longitudinal flame 

transfer function. 

4.3 Relative Importance of Transverse and Longitudinal Flame Transfer 

Functions 

 In addition to the transverse forcing transfer function presented in the previous 

section, consider the longitudinal transfer function introduced by the following axially 

convecting longitudinal disturbance field: 

 ( )ˆ sin exp 2zu i rψ πχ′ = −   (4.24) 

Using similar procedure outlines in the previous section, the longitudinal flame transfer 

function is obtained as: 
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Here, 21 cosMk M ψ=  and 2St  is as defined earlier in Eq.(4.9). Before we proceed to 

compare the transfer functions, let us consider the low and high frequency limits. 

In the limit of 0St → , we have: 

 
1

0
L

T

F

F

→

→
 (4.26) 

In the limit of St →∞ , for the longitudinal transfer function, we have 

 
( )

2

22

1 2cos 1sin
cos1 cosL

StF StM O
St StM

ψ ππ
ψπ ψ

   → −   −   
  (4.27) 

For the case of constant Mach number, the corresponding limit for the transverse transfer 

function can also be evaluated as: 
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1 1 cot cos 3 1cos 2 tan
4tanTF O

St St M St St
ψ ψ ππχ ψ

π ψ
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  (4.28) 

Now, consider the limit where St →∞ but the compactness parameter StMχ =  is kept 

constant. Therefore, 
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(4.29) 

Now, let us consider comparison plots for the two transfer functions. An important 

parameter in making this comparison is the Mach number of the flow. Shown in Figure 

27 is the comparison between TF  and LF  for (a) 0.1M =  and (b) 0.3M = . Note that 

for low Strouhal number, LF  is greater than TF . This can be attributed to the limit 
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shown in Eq.(4.26). However, as the Strouhal number is increased, the envelope of TF  

increases and remains constant while that of LF  decreases. At an intermediate Strouhal 

number, the TF  and LF  values are comparable. As can be seen from Figure 27(a) and 

Figure 27(b), this intermediate St value is different and hence dependent on Mach 

number. Beyond this intermediate value, both transfer functions decrease with St. 

However, TF  decreases faster than LF  as can be seen from Eq.(4.28)  and Eq.(4.27), 

respectively. This indicates that TF  can be neglected for large St when compared to LF .  

 
(a)     (b) 

Figure 27 : Comparison of TF  (blue) and LF  (pink) for (a) 0.1M =  and (b) 

0.3M = . Asymptotic behavior is shown in yellow (1/ St ) for LF  and green ( 1.51/ St ) 

for TF . 
 

Next, consider the comparison between TF  and LF  for constant values of the 

compactness parameter, χ . Figure 28(a) shows the comparison for a very compact 

flame, 0.1χ = . This indicates the TF  is always lower than LF  for all values of St. The 

asymptotic behavior for both curves is seen to be 1/ St , as also shown earlier in Eq.(4.27) 

and Eq.(4.29). For the case of 1.0χ =  shown in Figure 28(b), TF  is greater than LF  for 

low values of St. Note however that for values of St close to zero, LF  is still greater than 
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TF , due to differences in their low-St limit. As the flame becomes highly non-compact, 

TF  is greater than LF  over a much larger St range. This can be seen in Figure 28(c) for 

the case of 10.0χ = . This indicates that the importance of TF  increases with increasing 

Mach number. 

 
(a)      (b) 

 
(c) 

Figure 28 : Variation of TF  (blue) and LF  (pink) for constant values of the 
compactness parameter, where (a) 0.1χ = , (b) 1.0χ =  and (c) 10.0χ = . Yellow line 
indicates asymptotic behavior 1/St. 
 

An important feature of the TF  curves is the “kneeing” behavior of the envelope. 

The LF  transfer function envelope is seen to decrease continuously from low values of 

St, however in contrast, the TF  transfer function shows 2 distinct regions: one with a 

constant envelope and one with a decreasing envelope. The demarcating St at which this 

happens is the “kneeing” Strouhal number. This St value also corresponds to the region 
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where the two transfer functions are comparable and hence it is important to understand 

its dependence on Mach number. Figure 29(a) shows the variation of TF  for different 

Mach numbers and hence the variation of the “kneeing” St. This St is plotted as a 

function of Mach number in Figure 29(b). This plot indicates that the kneeing St varies 

inversely as the Mach number. In other words, for higher Mach number flows, both TF  

and LF  are comparable at decreasing St values. 

 
(a)      (b) 

Figure 29 : (a) Variation of TF  for different Mach numbers, Violet: 0.01, Pink: 
0.05, Yellow: 0.1, Green: 0.15, Blue: 0.2. (b) Variation of “kneeing” St with Mach 
number. Best fit indicates 10.5St M −

 . 
 

In this Chapter, the example calculations for transverse acoustic disturbances 

illustrated the non-axisymmetric nature of the local flame wrinkling features and the 

cancellation effects seen for global flame response. This begged the question as to 

whether transverse acoustic disturbances have any relative importance with reference to 

longitudinal disturbances. This question was answered with an example comparison 

between the two transfer functions indicating that both Strouhal number and mean flow 

Mach number were important control parameters. 
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CHAPTER 5 

EXAMPLE CALCULATIONS: HELICAL FLOW DISTURBANCES 

  

In this chapter we consider example calculations for the helical flow disturbances. The 

same mean flow and flame shape from Chapter 4 has been used. 

5.1 Local Flame Response 

 Helical disturbances in the flow are vortical and hence, we consider an axially 

convecting disturbance whose variation along the flame surface is given by (from 

Eq.(3.81)): 

 ( ) ( )( ),
1ˆ ( , ) exp exp 2 St exp 2 Stz m cflame

c

u r r i r im i i r im
k

θ α π θ π α θ
 

′ = − + = − + + 
 

      (5.1) 

Where 0c ck U U=  equals the phase speed of the disturbance normalized by the axial 

flow velocity and c f cSt fL U=  is a Strouhal number based on this speed.  

 
(a)       (b) 

Figure 30 : Dependence of the spatial instability (a) growth rate and (b) phase speed 
upon the dimensionless frequency of excitation for a non-swirling jet, where R δ  
denotes the ratio of burner radius to boundary layer thickness. Adapted from 
Michalke [109]. 
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The parameter α  is the non-dimensional growth/decay rate of the disturbance amplitude 

projected along the flame, where fLα α= . Hydrodynamic stability calculations show 

that both α  and ck  are a function of mode number, boundary layer thickness, and 

frequency. For example, results from Michalke's calculations [109] for a non-swirling jet 

are reproduced in Figure 30. 

The flame shape solution is obtained from Eq.(3.38) as, 
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

 (5.2) 

Where 

 2
2

1 cos 1L
c

St m
k

χ ψ σ
 

= − − 
 

 (5.3) 

The parameter 2St  is the Strouhal number based on the component of tangential flame 

wrinkle propagation speed along the forcing direction, given by 2
, 0 cost zU U ψ=  , similar 

to results from Preetham et al. [44]. Note that the flame response amplitude in Eq.(5.2) 

depends upon the parameter Lχ . The parameter can be expressed in the form: 

 2 2 ,2
,

1 1L c
c L

St m St St mSt
k

χ σ Ω

 
= − − = − −  

 
 (5.4) 

where ,c Lk , is the phase speed of forcing normalized by the component of the wrinkle 

propagation speed along the wave propagation direction. 

Note that the parameter Lχ  is a function of the three different Strouhal numbers involved. 

These three Strouhal number ( 2 ,2, ,cSt St StΩ ) relate the four relevant time-scales, which 

are due to swirl (Ω ), phase speed of forcing ( cU ), axial wave propagation along the 
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flame surface ( ,t zU ) and forcing frequency (ω ). The Strouhal number from swirling is 

combined with the mode number m  and occurs as ,2mStΩ , which indicates that swirl 

only influences the flame response through helical modes.  

The above expressions show that the flame response to a given velocity fluctuation is a 

strong function of its azimuthal distribution.  For a given α , the mode leading to the 

largest flame wrinkling magnitude corresponds to the one that minimizes Lχ . The mode 

associated with the Lχ =0 condition is: 

 2
0

,2

cSt Stm
StΩ

−
=  (5.5) 

This condition can also be obtained from Eq.(3.42), using the characteristic functions for 

the assumed flow field and forcing: 2
,2( ) 2 cosg s St sπ ψ Ω=  and 2( ) cos cs St sϕ ψ= . Note 

that this equation is valid only for swirling flows ( ,2 0StΩ ≠ ). In case of non-swirling 

flows, Eq.(5.5) becomes 2cSt St= , similar to that derived by Preetham et al. [44]. 

Similarly, it can be shown that this same helical mode, m0, leads to the largest 

fluctuations in local flame surface area, proportional to ( )m̂ rξ ′∂ ∂ . Thus, for a general 

swirling flow ( ,2 0StΩ ≠ ), a non-axisymmetric mode dominates the flame response 

amplitude when the axial phase speed of the vortex is different from the mean flow 

velocity, 2cSt St≠ . This is significant given the fact that from Eq.(3.43), only the 

axisymmetric mode contributes to the global flame area.  Thus, different measures of the 

flame response (local wrinkling/heat release and global heat release) have very different 

sensitivities to different azimuthal modes.  

The corresponding flame motion for 0Lχ =  is:  
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 (5.6) 

The flame response variation is shown in Figure 31 for a spatially damped, neutrally 

stable, and growing disturbance mode.   

 
Figure 31 : Radial variation of the flame wrinkling amplitude for spatially damped, 
neutrally stable, and growing disturbance modes, for 0Lχ = . 
 

Consider the case of 0α =  (neutrally stable), for which we have: 

 2
2

ˆ ( )
cos

ci St r
m

rr e πξ
ψ

−′ = 



  (5.7) 

Note that, for this case, the flame response amplitude grows monotonically downstream 

in a linear manner and the flame response mode depicts a solid body rotation of a tilted 

conical flame surface. The degree of off-axis rotation is a function of the excitation 

amplitude.  In this case, there is no interference between wrinkles excited along the flame 

at different times and spatial locations - rather, they constructively superpose to cause the 

magnitude of flame wrinkling to grow monotonically with downstream distance. The 

radial phase depends only on the parameter c f cSt fL U= . We may also rewrite Eq.(5.4) 

as, 

 ( ),2 0L St m mχ Ω= −  (5.8) 
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This representation of the parameter better aids in understanding the flame's relative 

sensitivity to different co- and counter-rotating helical modes.  Simply put, mode 

numbers closer to the value 0m  would give a lower value of Lχ and hence a higher flame 

motion response amplitude. For example, consider the case where 2cSt St> , i.e., 

,c t zU U< , which implies that 0 0m > . For this case, a counter-swirling helical mode, 

m+ , has a corresponding lower value of  Lχ  compared to its co-swirling mode, m− , 

leading to larger magnitude of flame wrinkling.  The opposite behavior occurs if the axial 

phase speed of the helical disturbance is greater than the axial component of the mean 

tangential velocity, i.e., ,c t zU U> .  Finally, the flame responds identically to co- or 

counter-swirling modes when the flow is either not swirling, or when ,c t zU U= . 

 
Figure 32 : Radial variation of flame response amplitude with Lχ for 0α = , from 
Eq.(5.2).  

 

We next present several plots to illustrate these results.  The spatial variation of 

the flame response amplitude is shown in Figure 32. As the value of Lχ  increases, the 

amplitude modulates in space and its maxima decreases as 1 Lπχ . Note that negative 

values of Lχ  show the exact same behavior as their corresponding positive values.  

Equation (5.2) shows that the flame response amplitude depends only upon Lχ  and the 
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flame angle ψ , while the phase of the flame response depends on both Lχ  and cSt . At a 

given azimuthal location, the axial/radial phase varies linearly with downstream distance 

with a slope given by 2L cStπχ π− . Thus, for the limiting case of 2L cStχ = , the flame 

response fluctuations at all radial locations (for a given azimuthal location on the flame 

surface are in phase with each other. When 2L cStχ > , the phase roll-off is positive, 

indicating an apparent negative phase speed. These spatial phase characteristics in the 

radial direction for different values of L cStχ  are shown in Figure 33.  

 
Figure 33 : Phase variation for flame wrinkling (from Eq.(5.2)) for different values 
of L cStχ with 0α = . 
 

 
Figure 34 : Amplitude dependence upon radial location for different modes for 

24oψ = , 0.9ck = , 0α = , 0.45St = , 0.4σ = , where 0 1m = − . 

 84 



 
(a)       (b) 

 
(c)       (d) 

Figure 35 : Flame surface plots over different instants in a time period, showing the 
wrinkling due to different helical modes: (a) t/T = 0.0, (b) t/T = 0.3; (c) t/T = 0.6; (d) 
t/T = 0.9; for 24oψ = , 0.5ck = , 0α = , 1.25St = , 0.6σ = . Surface wrinkling has been 
exaggerated to highlight features.  
 
Finally, let us consider the three-dimensional spatial wrinkle pattern on the flame surface 

for different mode numbers, and their respective amplitudes. Figure 34 shows the 

amplitude variation for the different modes for a case where 0 1m = − , and as expected the 

co-swirling modes dominate their counter-swirling counterparts. Figure 35 shows 
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instantaneous plots of the flame surfaces for the different modes, at different instances in 

a periodic cycle. It shows the different wrinkling patterns and wavelengths excited on the 

flame by the different helical modes. Next, we consider explicit solutions for sound 

generation. 

5.2  Sound Generation 

For the illustrative results in this section, the helical flow disturbance example of the 

previous section is considered. Before proceeding, we define the following for ease of 

notation: 

 ( ) ( )
0

0
0 0 0

sinˆ ˆ , , ,
2m m ikR

Rx
e
ψθ φ ω ω

π
′ ′=

pP  (5.9) 

For the purpose of this study, we shall be using a negligible center-body radius in order to 

depict the qualitative features of the generated sound. Thus, using Eq.(5.9) and Eq.(3.47), 

we have: 
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 (5.10) 

Some general inferences can be drawn from these equations. The axisymmetric 0m =  

mode radiates far-field sound that is independent of swirl, whereas the pressure field 

radiated by the helical modes ( 0m ≠ ) is a function of swirl number.  For these helical 

modes, the bias due to the direction of swirl can be seen in the differences it introduces in 

the values of Lχ  and, hence, on the far-field pressure. The effects of different physical 

time-scales, swirl and helical mode number are all contained in the parameter Lχ ,defined 

in Eq.(5.4). 
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(a)      (b) 

Figure 36 : Dependence of maximum pressure amplitude variation 
max

ˆ m ′P  upon 

compactness parameter fkL  for several modes, for 24oψ = , 0.5ck = , 0.1M = , (a) 
0.6σ = , where 0 1m = +  and (b) 0.3σ = , where 0 2m = + .  Note that 0φ  value where 

the plotted maximum pressure amplitude occurs varies with fkL . 
 

There are significant differences in both peak sound emissions, 
max

ˆ m ′P , and directivity 

for the different modes. We start by consider the peak sound emissions, by plotting the 

magnitude of the unsteady pressure at the angle, 0φ , where its magnitude peaks as a 

function of compactness parameter, fkL .  In this calculation, the Mach number 

( 0M U c= ), swirl parameter (σ ω= Ω ), flame angle (ψ ) and 0c ck U U=  are kept 

constant as fkL  varies, implying that all Strouhal numbers increase proportionally to 

fkL . This is in contrast to, for example, fkL  varying at fixed St. Results are shown for 

two different conditions, corresponding to 0 1m = +  and 0 2m = + , respectively, in Figure 

36. Both plots show that the 0m =  mode dominates the far-field pressure for fkL <<1, 

since all other modes provide zero net unsteady heat release.  The magnitudes of the first 

and second helical modes rise monotonically as fkL  and ( )2

fkL  respectively, as can also 
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be anticipated by the multi-pole expansion discussed earlier. The far-field sound from the 

0m =  mode asymptotes to: 

 1
0 max

1ˆ
2

fkL
m

<<
=′ →P  (5.11) 

Returning to Figure 36(a), while the 0m =  mode dominates for very small fkL , for 

2 0.2fkL π > , the dominant far-field pressure mode becomes m= +1, which equals 0m  

(dominant flame wrinkling, see Eq.(5.5)) for the parameter values used in this case. Note 

also the fact that the counter-swirling modes ( 0m > ) dominate their co-swirling ( 0m < ) 

counterparts. This again, is because of the fact that for these parameters, the dominant 

flame response mode 0 1m = +  is a counter-swirling mode. These features are reinforced 

by the second example shown in Figure 36(b) where parameter values are selected so that 

0 2m = + . In this case, the 2m = +  mode dominates the far-field pressure for 

2 0.4fkL π > . However, note also that the dominant mode is a function not only of 0m , 

but also of fkL .  For fkL <<1, the m=0 mode similarly dominates, while for an 

intermediate fkL  range, the m=1 mode dominates.  These points illustrate that far-field 

sound radiation is a function of local source strength and acoustic interference 

phenomenon.  Thus, since the m=0 mode creates the least destructive interference, it 

dominates the far-field sound in the fkL <<1 case, even though its local source strength is 

not as strong as the m=1 or 2 modes.  In contrast, though the m=2 mode, by virtue of its 

equality with mo for this example, has the largest local source strength by virtue of having 

the largest magnitudes of local heat release fluctuations, cancelation makes it a weak 

sound radiator for fkL <<1.  Only when fkL ~O(1), does this strong local source 
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dominate the far-field pressure. Also, because of the dependence of the sound radiation 

on multiple parameters, including fkL , St, and m0, the dependence of the character of 

these curves at fkL >>1 upon the assumed relationship between these quantities should 

be emphasized.  Thus, the oscillatory behavior and low sound emissions that are evident 

at higher fkL  values in this plot occurs because the corresponding Strouhal number is 

associated with a node in global heat release at that particular fkL  value. 

 

 

 
Figure 37 : Directivity plots showing modal dependence of the normalized far-field 
pressure amplitude in the spherical coordinate direction 0φ  for different values of 

2fkL π  with 24oψ = , 0.5ck = , 0.1M = , 0.6σ = . The axial flow direction is from left 
to right in each of the polar plots. 
 

Next, consider the directivity of sound for different helical modes. Figure 37 

shows the variation in far-field pressure amplitude 
max

ˆ ˆ  m m′ ′P P  as a function of the 

spherical coordinate 00 φ π< < , for different values of fkL . Note that there is no 

directivity along the coordinate 0θ , since it only controls the phase. For compact flames, 

the 0m =  mode radiates sound nearly omni-directionally, as suggested by Eq.(3.51).  The 

1m = ±  modes radiate sound as 0sinφ  and so peak in sound emissions at 0 90oφ = , since 
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they are dominated by the dipole component shown in Eq.(3.54).  Similarly, the 2m = ±  

modes radiate sound as 2
0sin φ , as shown in Eq.(3.69), and also peak in sound emissions 

at 0 90oφ = .  For each of the modes, the directivity pattern changes as dimensionless 

frequency increases, and exhibits angles of local maxima and minima due to phase 

interference effects. 

 
Figure 38 : Variations in sound pressure amplitude for 1fkL   at two polar angles, 

0φ , excited by the 0m =  mode with 24oψ = , 0.5ck = , 0.1M =  and 0.6σ = . 
 

Next, consider the high frequency, 1fkL   limit. The limiting behavior on and 

off axis must be considered separately.  For on-axis sound radiation, i.e., 0 0,φ π= , the 

Bessel function is zero when 0m ≠  and thus we confine attention to the 0m = case. In 

this case, high frequency, on-axis sound radiation from the axisymmetric mode, m=0 

mode scales as ( ) 1

fkL
−

, as also shown in Figure 38 for the 0 0φ = . Helical modes do not 

radiate on-axis sound.  Off-axis sound radiation limiting behavior can be evaluated using 

methods for rapidly oscillating integrals and the limiting behavior of the Bessel function 

for large arguments: 
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 (5.12) 

This can be used to show that high frequency, off-axis sound radiation from all modes, 

axisymmetric and non-axisymmetric, scales as ( ) 3/2

fkL
−

, as also shown in  Figure 38. 

Finally, consider the total sound power radiated by these flames. Based on the 

transformations in Eq.(3.27) and Eq.(5.9), the normalized sound power computed here is 

given by: 
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Using Eq.(5.10) in Eq.(5.13): 
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 (5.14) 

where 
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1 0 2 02 2

costan sin                1
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cos cos
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 (5.15) 

Typical results of numerical quadrature of Eq.(5.14) are shown in Figure 39 for the same 

conditions used in Figure 36.  Most of the trends shown here mirror those shown in 

Figure 36.  The 0m =  mode dominates the compact flame sound emissions, with an 

asymptotic limit given by: 

 1
0

1
2

fkL
m= →P  (5.16) 
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(a)      (b) 

Figure 39 : Sound power variation mP  with compactness parameter fkL  and 
different mode numbers, for 24oψ = , 0.5ck = , 0.1M =  and (a) 0.6σ = , where 

0 1m = +  and (b) 0.3σ = , where 0 2m = + . 
 

Similarly, the total sound power scales as ( )2
fkL and ( )4

fkL  for |m|= 1 and 2 modes, 

respectively.  Note how both positive and negative m values of the same index converge 

to the same limit at low fkL , but then diverge as the flame becomes non-compact. The 

total sound power peaks at some intermediate fkL  value and then starts to roll off.  The 

1fkL >>  limits can be evaluated to show that the total sound power scales as ( ) 3
fkL

− for 

all m values, as depicted in Figure 39.  Finally, the oscillatory behavior and low sound 

power emissions at higher fkL  values in this plot occurs for the same reasons as 

discussed in the context of Figure 37 - namely, that the corresponding Strouhal number at 

that particular fkL  value is associated with a zero global flame area response. 

5.3  Effects of Mean Flame Asymmetry 

In this section, we consider the same example used in Section 5.1, to: (i) illustrate 

the effect of weak non-axisymmetries on the flame response results earlier in this thesis, 
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and (ii) illustrate the effect of strong asymmetries. Consider the following non-

axisymmetric flow field (following Eq.(4.1)): 

 

( ),

0
2 ( ) 2
1

r

z z

U
U St r St r
U U

θ

η

π ω π σ

η θ

=

= Ω =

= +

 (5.17) 

Here, the mean flow asymmetries are considered only in the axial flow for illustration 

purposes. This mean flow asymmetry can be expressed in terms of its asymmetric modes 

as: 

 ( ), , ,0 , , , ,
0

, ( ) ( ) cos ( )sinu u u
z z z n z n

n
U r A r A r n B r nη η η ηθ θ θ

≥

= + +∑  (5.18) 

From Eq.(3.75), we have: 

 ( )0 ( ) cotr r R rξ ψ= − =   (5.19) 

Using Eq.(3.76), the governing equation for the mean flame asymmetry is given by: 

 ( ),cos ,L zs St U r
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η η

η

ξ ξ
ψ θ

θΩ

∂ ∂
+ =

∂ ∂
 (5.20) 

The solution is given by: 
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Where 
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and 2
,2 0cosSt St ψΩ Ω= . Now consider the axial velocity fluctuation given by (from 

Eq.(5.1) with 0α = ): 

 ,
2 Stˆ ( , ) expz m flame

c

iu r r im
k
πθ θ

 
′ = − + 

 
   (5.23) 

The leading order local flame wrinkling solution for Eq.(3.77) is given by: 
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2 ,22 2
0, 2

sin1ˆ ( , )
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The parameters in this equation have been defined earlier in Eq.(5.3). In order to 

determine the correction to the leading order flame wrinkling behavior, Eq.(3.78) must be 

solved using Eqs.(5.22)-(5.24) as inputs. First the forcing function in the RHS needs to be 

determined. The three terms in the RHS need to be evaluated individually before the total 

forcing function is calculated. For the first term: 
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 (5.25) 

For the second term: 
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 (5.26) 

For the third term: 

 ( )( ) 2 0 0
0 2
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 (5.27) 

In order to evaluate the third term above, consider only the n-th mode asymmetry in the 

mean flame shape (Eq.(5.21)) and the m-th mode flame response in the leading order 
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flame wrinkling (Eq.(5.24)). We shall denote this interaction by ,n mRHS  . We can rewrite 

Eq.(5.21), in the form: 

 ( ) , ,0 , , , ,
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1, ( ) ( ) ( ) ( )
2

in
z z n z n

n
r A r A r sign n iB r eξ ξ ξ θ
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 = + + ∑  (5.28) 

Using this, we have: 
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 (5.29) 

The resulting flame response correction due to this forcing function can be expressed as 

, ,
ˆ

n mηξ ′ , where (from Eq.(3.78)): 

 ( ), , , , ,
ˆ ˆ2 ( )n m t n m n mi St U r RHSη ηπ ξ ξ′ ′+ ⋅∇ =





 (5.30) 

Note that this corresponds to a system where the forcing function has a combined 

azimuthal mode ( )n m+ . Note that Eq.(3.77), Eq.(3.78) and Eq.(5.30) are similar in their 

operators in their respective LHS. Hence, their mathematical behavior for their respective 

RHS would also be similar for the same forcing function. We have seen earlier (Chapter 

3) that only the symmetric mode of the forcing function contributes finitely to the global 

flame response. Hence for cases where 0n m+ = , the global response is finite. This 

implies that the asymmetries in the mean flow ( 0n ≠ ) can interact with helical modes in 

the disturbance field ( 0m ≠ ) leading to changes in the global flame response. Thus, for 

asymmetric mean flames, helical modes are important from a global flame response 

perspective. The importance of a particular helical mode is dictated by the presence of a 

corresponding mode of opposite sign in the asymmetric mean flame/flow. 

For the purposes of illustration, consider an example flow field where: 
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From a global flame response perspective, only the cases where 0n m+ =  are considered. 

Hence, we first consider the asymmetric modes n m= −  in Eq.(5.22): 
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 (5.32) 

Using Eq.(5.24), Eq.(5.29) and Eq.(5.32) in Eq.(5.30), we have the solution: 

 ( ) ( )2

2
2 0

, , 1 2 3 4 5 6
tanˆ

4
i St r

m m
L

ime r I I I I I I
St

π
η

ψξ
π χ−

Ω

′ = + + + + +

  (5.33) 

The integrals are defined as: 
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Where 
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And 
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(5.41) 

Using these solutions for weak asymmetries, we apply them to example flames shapes 

that have: (i) Elliptic cross-section and (ii) Square cross-section. These are performed 

using a numerical solver, detailed in Appendix B, where the numerical methods and the 

parallel system used for its computations are detailed. 

The effects of mean flame asymmetry are understood by comparing the Flame Transfer 

Function (FTF) which in these examples is defined as: 

 Â AFTF
ε
′

=  (5.42) 

5.3.1 Example Calculations: Elliptic cross-section 

Single flames in axisymmetric geometries are axisymmetric. However, when such a 

flame is confined in a non-axisymmetric combustor, like those with rectangular cross-

sections, flame asymmetries are possible. Specifically if the confinement is significant in 
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one direction compared to the other, the single flame shapes can deviate from a circular 

cross-section to that of an ellipse. The asymmetric mean flame for this example is given 

by: 

 2
0( , ) ( ) 1 cosr rξ θ ξ η θ= −   (5.43) 

Here, 0 ( )r rξ =   from Eq.(5.19). The azimuthal variation in position is shown in Figure 40 

for different values of the asymmetry parameter η . Note that for 0η =  we retrieve the 

axisymmetric mean flame given by Eq.(5.19). As this value is increased, the cross-section 

eccentricity increases. Note that the elliptic cross-section is valid only for 0 0.5η< ≤ . 

For 0.5 1.0η< ≤ , the flame shape is akin to that of two interacting flames. In this 

analysis, we shall focus on 0.5η < . 

 

Figure 40 : Elliptic flame cross-section denoted by 0( , ) ( )r rξ θ ξ   for varying η . 

For the case of weak asymmetries, the mean flame shape correction can be expressed as 

(using Taylor expansion to first order): 

 1 1( , ) cos 2
4 4

r rηξ θ θ = − − 
 
  (5.44) 

Hence, we have: 

 98 



 , ,0 , , 2

, , 0,2 , ,

1( ) ( )
4

( ) ( ) 0         0

z z n

z n z n

A r A r r

A r B r n

ξ ξ
η η

ξ ξ
η η

=

≠

= = −

= = ∀ ≥

  

 

 (5.45) 

Since we are specifying the mean flame shape here, the mean flow field can be obtained 

using Eq.(5.20): 
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This results in the following asymmetric mode coefficients: 
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 (5.47) 

These equations show that for a weakly asymmetry flame with an elliptic cross-section, 

there exists only the asymmetric modes: 0, 2n = ± . For a symmetric mode 0m =  in the 

disturbance field, the global flame response is corrected due to the 0n =  mode in the 

mean non-axisymmetry. The 2n = ±  mode in the mean flow/flame asymmetry interacts 

with the helical modes 2m =   in the flow disturbance, leading to a finite global flame 

response. For the example calculations presented next, we consider three cases: (i) Effect 

of η  on the FTF amplitude, (ii) Effect of swirl ( StΩ ) on the FTF amplitude and (iii) 

Effect of Flame angle on the FTF amplitude 
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Figure 41 : Comparison of FTF amplitude for an elliptic flame computed using 
analytical solution in Eq.(5.33) (black curve) and numerical solver (pink circles) for 
increasing values of η . Flow disturbance contains the 2m =  mode with 2 2.0St =  
and 0.8ck = . Note that 2

2 0 cosfSt fL U ψ= . 
 
First consider the effect of η  on the FTF as shown in Figure 41. The flow disturbance 

comprises of a helical mode of 2m = . As seen in the figure, for low values of η , the 

FTF amplitude is low as expected and increases with increasing value of η . For values of 

0.1η < , there is a reasonable match between the FTF obtained using the numerical solver 

and that obtained using the asymptotic solution shown in Eq.(5.33). 

 
Figure 42 : Comparison of FTF amplitude for an elliptic flame, for different values 
of StΩ  for an elliptic flame with 0.5, 15oη ψ= = , in response to a flow disturbance 
helical mode of 2m =  and 0.8ck = . Note that 2

2 0 cosfSt fL U ψ= . 
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Next, consider the effect of swirl number on the FTF amplitude. This is shown in Figure 

42 for the elliptic flame of 0.5η = . The solid curves denote the response of this 

asymmetric flame to a symmetric flow disturbance (m=0). Note that the low Strouhal 

number transfer function begins from unity and then decreases with increasing Strouhal 

number. In the case of perfectly axisymmetric mean flames, we showed earlier (Chapter 

3) that the swirl component had no effect on the global FTF amplitude. However, for the 

case of asymmetric mean flames, this is not true. This is shown by the comparison of the 

FTF amplitude for two different values of StΩ . The non-swirling case is indicated by the 

solid red curve and the swirling case ( 0.6StΩ = ) is indicated by the solid green curve. As 

the value of 2St  is increased, the FTF amplitudes deviate from each. This deviation 

indicates both a change in the interference Strouhal numbers and also a change in the 

amplitude. This can be attributed to the change in interference effects introduced by the 

transport of wrinkles on the asymmetric flame surface by the swirling flow. Finally, the 

effect of flame angle on the results is shown in Figure 43. 

 
(a)      (b) 

Figure 43 : Effect of Flame angle on the FTF amplitude variation for an elliptic 
flame with 15 , 0.5, 0.5, 2o St mψ ηΩ= = = =  and 0.8ck = . (a) Variation with 

2
2 0 cosfSt fL U ψ=  and (b) Variation with 0RSt fR U= . 
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5.3.2 Example Calculations: Square cross-section 

In this sub-section, we consider example calculations for a flame with a square cross-

section. Such an asymmetry is possible in the case of flame-flame interactions, such as 

shown earlier in Figure 18. The asymmetric mean flame for this example is given by: 

 ( ) ( ) ( )
1

2 2 2 2 2 2
0( , ) ( ) cos sinr r η η ηξ θ ξ θ θ+ + + = +    (5.48) 

Here, 0 ( )r rξ =   from Eq.(5.19). Note that η  must be an integer for the expression to be 

valid. Hence, unlike the elliptic flame case, a weak asymmetry analysis cannot be 

performed for this flame due to the analytical nature of Eq.(5.48). A representative 

asymmetric mean flame shape is shown in Figure 44 for 1η = . 

 
(a)      (b) 

Figure 44 : Flame surface for 1η = , showing (a) view along the axial flow direction 
and (b) isometric view from the side, with surface shading indicating the asymmetry 
of the mean flame surface. The hole in the center corresponds to the centerbody rim. 
The outer radial extent of the domain is 10 times the centerbody radius. 
 

The azimuthal variation is shown in Figure 45(a). Note that the periodicity is of order 

4n = . This is also reflected in Figure 45(b) which shows the modal coefficients. Note 

that modes that are multiples of 4n =  have dominant amplitudes compared to the other 

modes. 
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(a)      (b) 

Figure 45 : Square flame with 1η =  showing (a) Azimuthal variation of the mean 
flame shape and (b) Asymmetric modal coefficients. 
 
The modal coefficients are given by: 
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 (5.49) 

Note that only the 0n =  and 4n =  modes are significant and all other modes are an order 

of magnitude lower or more.  

For a symmetric mode 0m =  in the disturbance field, the global flame response is 

corrected due to the 0n =  mode in the mean non-axisymmetry. The 4n = ±  modes in the 

mean flow/flame asymmetry interacts with the helical modes 4m =   (and its multiples 

respectively) in the flow disturbance, leading to a finite global flame response. In the 

example calculations we consider only the 1.0; 0,4mη = =  modes.  

Figure 46 shows the effect of swirl on the FTF amplitude for an axisymmetric flow 

disturbance (m=0). As the value of StΩ  is increased, the FTF amplitude shows little 

difference. However, in comparison with the reference case, the asymmetric mean flame 

case shows a shift in the interference location. This change is attributed directly to the 

asymmetry of the mean flame interacting with the swirl transport of wrinkles. 
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Figure 46 : Comparison of FTF amplitudes for a square flame responding to a 
symmetric flow disturbance, for different values of swirl parameter StΩ  and 

0.8ck = . Note that 2
2 0 cosfSt fL U ψ= . 

 
Figure 47 : Comparison of FTF amplitudes for a square flame responding to helical 
flow disturbance of mode m=4, for different values of swirl parameter StΩ  and 

0.8ck = . Note that 2
2 0 cosfSt fL U ψ= . 

In contrast, consider the comparison shown in Figure 47. This figure shows the FTF 

amplitude under the presence of a helical flow disturbance ( 4m = ). As mentioned in 

earlier chapters, the asymmetric mode helical flow disturbance has no finite FTF 

amplitude for axisymmetric flames. However, the plots clearly show the finite FTF 

amplitudes. As the swirl number is increased, the interference pattern in Strouhal space is 

changed. Specifically there is a shift in the curves to the left and a decrease in amplitude. 

Depending upon the Strouhal number in question, the FTF amplitude is comparable to 
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the reference case, indicating the importance of helical modes in controlling global FTF 

of asymmetric mean flames. Finally, the effect of flame angle on the results is shown in 

Figure 48. 

 
(a)      (b) 

Figure 48 : Effect of flame angle of a square flame on the FTF amplitude variation 
for 0.5, 1, 4St mηΩ = = =  and 0.8ck = . Note that 2

2 0 cosfSt fL U ψ= . (a) Variation 

with 2
2 0 cosfSt fL U ψ=  and (b) Variation with 0RSt fR U= . 
 

These results clearly indicate the variation of the FTF amplitude due to different 

helical modes in the disturbance field for different control parameters. For low Strouhal 

number, the symmetric contribution to the FTF is dominant and the contribution from the 

asymmetric helical modes is negligible. However for intermediate Strouhal numbers, 

these asymmetric helical modes in the flow disturbance lead to significant FTF that are 

comparable to that due to the symmetric flow disturbance. Additionally, the FTF 

interference patterns are affected by the extent of swirl in the mean flow. 

Having considered example calculations using the model, we now proceed to 

applying this model to experimental data in order compare predictions with measured 

values. This comparison study is divided into two chapters with Chapter 6 focusing on 

local flame response and Chapter 7 focusing on global flame response. 
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CHAPTER 6 

COMPARISON WITH EXPERIMENTS:  

LOCAL FLAME RESPONSE PREDICTIONS 

In this chapter we consider the application of the model in capturing local flame response 

characteristics. A transversely forced, two-dimensional bluff-body stabilized flame is 

considered since both flame and flow data is available with both spatial and temporal 

resolution, which facilitates a local flame response comparison. The details of the 

experimental setup and diagnostics are mentioned in Ref. [150]. The data were obtained 

by researchers at Energy Research Consultants and analyzed by Benjamin Emerson at the 

Georgia Tech Combustion Lab. This chapter presents the use of this data to compare 

measurements and model predictions. The rest of this chapter shall first detail the features 

of the experiment, the physics of the flow and the flame and finally, the comparison 

study.  

The experiment measured the response of bluff body stabilized flames to 

transverse acoustic waves, with specific focus on modeling the relationship between the 

unsteady flow field and flame response. The transverse acoustic motions both directly 

perturb the flame, and lead to asymmetric rollup of the two shear layers separating from 

the bluff body. The velocity induced by these concentrated regions of high vorticity leads 

to synchronized roll-up of the flame sheet and heat release oscillations. A number of 

studies have shown the significance of the shear layer vortices in exciting instabilities in 

bluff-body stabilized flames [67, 68, 151, 152]. The general picture that has emerged 

from these is shown in Figure 49 [153], showing the flame being wrinkled by flow 

perturbations arising from both vortical disturbances and acoustic waves. 
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Figure 49 : Physical processes by which acoustic sources lead to flow oscillations 
that cause flame area (and hence heat release) fluctuations. Reproduced from Ref. 
[150]. 
 

It has generally been hypothesized that the acoustic velocity disturbances are not the 

leading order cause of flame wrinkling.  Rather, it is the vortical disturbances, which are 

themselves excited by the sound waves that disturb the flame [123]. The results from this 

study are consistent with this general picture, but we do show that the acoustic velocity 

disturbances do exert a non-negligible effect on the flame response. Moreover explaining 

certain features of the measured flame dynamics, such as the short length scale 

undulations in flame wrinkle amplitude, requires incorporating acoustic velocity field 

effects. These features shall be shown using the measured data in a later section of this 

chapter. 

6.1 Experimental Data 

Before we consider details of the model equations and the comparison study, it is 

important to understand the key experimental features. The mean flow considered was 50 

and 100m/s with a preheating temperature for the mixture ranging from 477-755K. Both 

uniform and stratified mixtures were considered with stratification in the transverse 

direction to the main flow. 

6.1.1 General Features of the Flame and Flow 

This section presents representative characteristics of the measured flame and flow 

dynamics. Results have been reproduced from Emerson et al. [150]. Start with the time 
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averaged flow field features. Typical axial velocity profiles are shown in Figure 50(a). 

The figure plots the axial variation of the velocity at transverse locations corresponding 

to the bluff body symmetry centerline and at an offset of one bluff body diameter.  At the 

offset location, the axial velocity is seen to be roughly uniform. At the centerline, the 

recirculation zone is evident through the negative velocity which persists for 3 diameters 

downstream. Further downstream, the centerline velocity monotonically increases.  

Figure 50(b) also plots the transverse variation of the axial velocity at several axial 

stations inside and downstream of the recirculation zone.  These data show the high 

gradients in flow velocity near the flow separation point which smooth out with 

downstream distance, which is a typical feature of the wake behind a bluff-body. 

 
(a) 

 
(b) 

Figure 50 : Variations in the time averaged axial velocity along (a) axial and (b) 
transverse cuts, for 477K approach flow at 50 m/s, 450Hz out of phase forcing and 
uniform fuel. Reproduced from Ref. [150]. 
 

Figure 51 plots the spatial distribution of the axial and transverse unsteady velocity 

and Figure 52 provides a cut of the magnitude and phase of the transverse velocity at a 

fixed transverse position. The figures show large axial velocity fluctuations very close to 

the bluff-body in the shear layers that decay quickly downstream. The transverse velocity 
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component dominates over the bulk of the flow, as shown in Figure 51(b).  Also, there is 

an interesting, non-monotonic spatial distribution of the transverse velocity amplitude, 

particularly evident in Figure 52(a).  Finally, the axial phase roll-off in Figure 52(b) 

indicates the convective nature of the velocity disturbances. 

 
(a) 

 
(b) 

Figure 51 : Contours of unsteady (a) axial velocity magnitude and (b) transverse 
velocity magnitude for 477K approach flow at 50 m/s, 450Hz out of phase forcing 
and uniform fuel.  The five contour values for |u’|/U0 and |v’|/U0  range evenly from 
0.05 to 0.2. Reproduced from Ref. [150]. 
 

 
(a) 

 
(b) 

Figure 52 : (a) Magnitude and (b) phase of the unsteady, transverse velocity at y/D = 
0.5 for 477K approach flow at 50 m/s, 450Hz out of phase forcing and uniform fuel. 
Reproduced from Ref. [150]. 
 

These points are important from a flame response viewpoint, as understanding the 

velocity disturbance field is critical to understanding the velocity-coupled flame 
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response.  The PIV data have shown that the transverse acoustic waves result in axial 

velocity disturbances, as well as an undulating pattern of transverse velocity disturbances.  

Furthermore, the fact that the velocity disturbances are convecting downstream 

demonstrates that the disturbance field is not purely acoustic.  In fact the acoustic field 

stimulates the unsteady hydrodynamic response of the flow.  The downstream convection 

of the resulting vortical structures turns out to be largely responsible for the interference 

patterns in the transverse velocity. 

 
(a) 

 
(b) 

Figure 53 : (a) Magnitude and (b) phase of the unsteady vorticity at y/D = 0.5 for 
477K approach flow at 50 m/s, 450Hz out of phase forcing and uniform fuel. 
Reproduced from Ref. [150]. 
 

Further insight into the vortical field features can be obtained from Figure 53, 

which plots the axial dependence of the unsteady vorticity amplitude and phase at the 

forcing frequency.  Note that vorticity rises and peaks shortly behind the bluff body, and 

then decays downstream.  Also, note the nearly linear decrease of the phase with axial 

position, which shows that the unsteady vorticity is convecting downstream.  Finally, the 

interference pattern shown in the transverse velocity disturbance in Figure 52(a) is not 

present in the unsteady vorticity alone.  Again, it is the superposition of the vortically 
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induced velocity field with the acoustic field that causes the interference pattern in the 

velocity, as shown later in this chapter. We next consider the flame dynamics, using the 

nomenclature presented in Figure 54. 

 

Figure 54 : Co-ordinate system and schematic of a bluff-body stabilized flame. 

 Figure 55 overlays the ensemble averaged velocity vectors with the ensemble 

averaged flame position, as well as the up and downstream extent of the flame brush for 

both velocity data sets.  The slower widening of the flame brush in the 100 m/s case is 

evident from these data.  The velocity field along this upstream edge of the flame brush 

will be used as inputs to the flame response model.   

 
(a) 

 
(b) 

Figure 55 : Sample ensemble averaged fields obtained from PIV with flame brush 
and phase-averaged flame position overlaid. Conditions shown were (a) 477K 
approach flow at 50 m/s, 450Hz out of phase forcing and (b) 755K approach flow at 
100 m/s, 450 Hz out of phase forcing. Reproduced from Ref. [150]. 
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The much longer convective wavelength of the flame wrinkle in the 100 m/s case than 

in the 50 m/s case is also clearly evident in Figure 55.  This reflects the fact that the 

length scale of harmonically forced, convecting flow features scales inversely with flow 

velocity. 

 
(a)      (b) 

Figure 56 : Spectrum of flame sheet fluctuations at different downstream locations 
for (a) 50 m/s, 477K and (b) 50 m/s, 644K. The x-coordinate corresponds to the 
downstream axial location, where x = 0 corresponds to the bluff body trailing edge. 
Reproduced from Ref. [150]. 

 

Typical spatial characteristics of flame-front position spectra (both amplitude and 

phase) under the influence of acoustic excitation are shown in Figure 56. The axial 

coordinate is normalized by the convective wavelength, 0 0c U fλ = , where 0U  is the 

characteristic mean flow velocity calculated as: 

 bluff-body lip
0

bluff-body lip

( 0, )u x y dy
U

dy

=

=
∫

∫
 (6.1) 

The convective wavelength is the distance that a disturbance propagating at the mean 

flow velocity travels in one acoustic period.  The figures also indicate the spatial 

envelope of the flame response at 0f f= , as well as at several harmonics and the sub-

harmonic, 0 2f f= , 02 f , and 03 f . At locations closer to the bluff body (located at 
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0cx λ = ), the flame responds mainly at the frequency of excitation, 0f . Moving 

downstream, the response at 0f f=  grows, reaches a maximum, and then begins to 

oscillate.  Note that the viewing window is not long enough at these much higher 

velocities to see the downstream decay of the flame response at 0f  due to nonlinear 

effects.  These data also show the growing magnitude of the sub-harmonic and first 

harmonic. 

(a) (d)  

(b) (e)  

(c) (f)  
Figure 57 : Overlays of flame response for 450 Hz forcing at all flow conditions, 
showing (a) gain from out of phase forcing, (b) phase from out of phase forcing, (c) 
convective velocity from out of phase forcing, (d) gain from in-phase forcing, (e) 
phase from in-phase forcing, (f) convective velocity from in-phase forcing. Error 
bars not shown for clarity on this plot. Reproduced from Ref. [150]. 
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Figure 57(a) and Figure 57(b) overlay a number of gain plots at different velocities, 

inlet temperatures, and speaker excitation phasing at the forcing frequency. Most of these 

flame response data suggest an interference pattern, reflected in the ripple in the 

amplitude plots, discussed later in this chapter.  Most curves show similar qualitative 

behavior for both amplitude and phase. In addition, the 100 m/s and 755K preheating 

case show a near-field behavior that is distinct from all the other cases, as well as 

previously reported trends in the literature.  Specifically, the flame response amplitude 

rises with downstream distance, peaks, falls to nearly zero at about half a convective 

wavelength downstream, and then grows monotonically. As shown later in this chapter, 

these are a manifestation of the simultaneous excitation of the flame by acoustic and 

vortical velocity disturbances, which are of comparable magnitudes near the bluff body. 

Because these two velocity disturbance sources have very different axial phase 

characteristics, they lead to a “node” in the flame response [154].   

We next turn to the axial character of the phase. Figure 57(b) and Figure 57(e) overlay 

the corresponding axial dependence of the flame edges.  From this plot it is clear that all 

the phase results have, for the most part, a roughly constant axial phase slope. This 

suggests an approximately constant convective velocity for flame wrinkle disturbances.   

An effective propagation speed of the flame wrinkle, which should not be confused with 

the propagation speed of the vortical disturbance or mean flow, can be computed from 

the relation ( ), 0
ˆ2c fU f d L dxπ  ′= ∠  . These plots are shown in Figure 57(c) and Figure 

57(f) showing that the flame wrinkles move downstream at a velocity of roughly 00.7U . 

Several observations from this data set should be made.  First, it reinforces the notion 

that transverse flow excitation leads to excitation of a convecting train of vortical flow 

 114 



features.  Indeed, while acoustic flow oscillations may be ultimately responsible for the 

flow oscillations, it is the vortices that they excite that dominate the flow field.  Next, 

these data show that the flow oscillations excite wrinkles on the flame that convect 

downstream, with a magnitude that varies spatially.  Specifically, the wrinkles start with 

low amplitude and grow with downstream distance before reaching a maximum.  The 

wrinkle amplitude can then be modulated with downstream distance as it decays.  Very 

significantly, these flame dynamics results show important similarities to the flame 

dynamics observed in much lower velocity, even laminar cases and in flames with much 

higher density ratios.  This shows that while critical flow dynamics may change strongly 

with flow velocity and flame density ratio, that the flame response features do not. In the 

next section, we focus on the specifics of the velocity at the flame location. 

6.1.2 Flow Disturbances at the Flame 

Of particular interest to solving the flame dynamics equations are the disturbance velocity 

values just upstream of the flame front.  As such, this section particularly focuses on the 

velocity disturbance features along the upstream edge of the flame brush indicated in 

Figure 55 (note that measurements of the fluctuating velocity at the time averaged flame 

position biases the upstream disturbance velocity estimate, because the time averaged 

flame position lies in locations that lie in the hot products at some time instants).  

Specifically, we determined the velocity at each phase of the cycle directly from its value 

just upstream of the ensemble averaged flame from the measurements, i.e., 

( , ( ) ( , ), )nu x y L x L x t t′= + . 
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(a)      (b) 

Figure 58 : Normal component of velocity fluctuations as experienced by the flame 
(input to the linear model) from PIV measurement showing (a) magnitude and (b) 
phase, grey straight line indicates a phase roll-off at Uc,v/U0 = 0.67. 
 
Typical results showing the axial dependence of the non-dimensional normal velocity 

disturbance, 0ˆnu U′ are shown in Figure 58. The velocity field magnitude is quite small 

near the flameholder and grows with downstream distance.  This presumably reflects the 

amplification of the disturbances in the convectively unstable shear layer.  Farther 

downstream, the velocity field magnitude varies in a non-monotonic manner, as 

previously discussed in the context of Figure 52.  These undulations in magnitude suggest 

interference effects.  The phase rolls off monotonically at a nearly constant slope.  For 

reference, a line is drawn in corresponding to the phase variation of a disturbance 

propagating at a constant velocity of , 0 0.67c vU U = . 

These interference patterns in velocity magnitude appear to be a manifestation of the 

superposition of acoustic and vortical velocity disturbances, which have substantially 

different axial phase speeds.  To demonstrate, consider the sum of the following two 

disturbances, one with uniform axial phase and the second associated with a disturbance 

convecting axially at a velocity of ,c vU :  
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 ( )
,

cos 2 cos 2n
a o v o v

o c v

u xf t f t
U U

ε π ε π ψ
  ′

= + − +      
 (6.2) 

Using trigonometric identities, this can be written as: 

 

( )

2 2
0

,

0
,1

0
,

( ) cos 2 ( )

where

( ) 2 cos 2

sin 2
( ) tan

cos 2
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o

o
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u x f t x
U

xx f U

xf U
x

xf U

π ϕ

ε ε ε ε ψ π

ε ψ π
ϕ

ε ε ψ π

−

′
= +

 = + + − 
 

  −    =
  + −    

A

A  (6.3) 

Thus, the velocity magnitude varies spatially as ( )xA . The interference wavelength is 

given by , 0c vU f  and the depth of modulation in amplitude (peak to peak) is 

( )a v a vε ε ε ε+ − − . The local maxima are located at: 

 ,

2
c v v

c o

Ux n
U

ψ
λ π

= −  (6.4) 

where 0n ≥  are integers. Following this idea, we can fit the velocity data to the more 

general form shown in Eq.(6.5), which allows for spatial variation in amplitude of the 

acoustic and vortical disturbance. 

 
,

ˆ
( ) ( ) exp 2n

a v v o
o c v

u xx x i i f
U U

ε ε ψ π
 ′

= + −  
 

 (6.5) 

We next present two examples from the 50 m/s data where we fit this expression to the 

velocity data.   The requisite parameters were determined in the following manner:  The 

phase velocity ,c vU  value was extracted from the measured axial phase variation of the 

unsteady vorticity.  The phase vψ  was determined from the location of the interference 
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maxima/minima, following Eq.(6.4).  The amplitudes aε  and vε  were then manually 

determined in order to yield the best fit.  

(i) Uniform mixture, 50 m/s, 477K approach flow, Out of phase forcing 

 
(a) 

 
(b) 

(ii) Stratified mixture, 50 m/s, 644K approach flow, Out of phase forcing 

 

(a) 
 

(b) 
Figure 59 : Velocity decomposition based fitting of predicted velocity field for cases: 
(i) Uniform mixture, 50 m/s, 477K approach flow, Out of phase forcing and (ii) 
Stratified mixture, 50 m/s, 644K approach flow, Out of phase forcing. Comparisons 
for (a) magnitude and (b) phase. 
 

Figure 59 illustrates the actual predicted velocity field, as well as the fit values of aε  

and vε . The prediction methodology is described later in this chapter. Note how the 

acoustic and vortical disturbance fits have similar magnitudes near the bluff body, but 

that the vortical disturbance is roughly twice the acoustic farther downstream.  Thus, the 
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vortical component dictates the overall magnitude of the velocity fluctuations, but the 

acoustic component is needed to understand the modulation in amplitude. Moreover, 

although the vortical disturbances are dominant, the acoustic disturbances are not 

negligible.  We will return to this point to interpret the similar presence of undulations in 

the flame gain curves. 

Thus, this decomposition validates the general idea put forth in the introduction that 

the dominant source of flow fluctuations at the excitation comes from the convecting 

vortical field.  While these vortical oscillations are excited by the acoustic field, which 

serves as the "clock", the convectively unstable shear layer responds strongly to this 

excitation and leads to synchronized rollup of the shear layer at this frequency. 

6.2 Model Equations 

In this section, we derive the model equations that are used for the comparison study. 

Using the coordinate system described in Figure 54, the following transformation is 

applied to the G-equation (Eq.(3.4)): 

 ( , , ) ( , )G x y t L x t y= −  (6.6) 

Hence, substituting in Eq.(3.4), we have: 

 
2

1L
L L Lu v s
t x x

∂ ∂ ∂ + − = + ∂ ∂ ∂ 
 (6.7) 

This equation describes the simultaneous wrinkling of the flame by broadband turbulent 

fluctuations and harmonic oscillations.  In order to focus on the flame response at the 

forcing frequency, this equation needs to be ensemble averaged.  First, each fluctuating 

variable is expanded in a triple decomposition; e.g., for the axial velocity:  

 u u u u′= + +   (6.8) 
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where u  denotes the time average, u u u′ = − , the fluctuating ensemble average and  u  

denotes the randomly oscillating component, whose time and ensemble averages are both 

zero, i.e. ( ) 0u u= =  .  Applying this to Eq.(6.7), we have: 

 
2

1T

L L L
u v s

t x x
∂ ∂  ∂ 

+ − = + ∂ ∂ ∂ 
 (6.9) 

This equation is essentially a definition of the turbulent flame speed, Ts  [155]. The 

reader is referred to several focused treatments of this subject for further discussion on 

this approach and the relationship of this turbulent flame speed to that obtained in the 

absence of harmonic forcing [127, 156, 157]. 

 As discussed earlier, acoustic disturbances ( au′ ) lead to the synchronized rollup of 

the separating shear layer into concentrated vortices.  These vortical fluctuations ( vu′ ) 

propagate in the flow direction at a velocity that is proportional to the mean flow 

velocity. The associated flame response is then influenced by this disturbance field 

through three parameters: (1) the spatial amplitude of the respective disturbances, 

0a au Uε ′=  and 0v vu Uε ′= , (2) the frequency of the disturbance, 0f , and (3) the velocity 

of the disturbances, c and ,c vU .  There are two additional parameters that influence the 

flame response and are directly associated with the flame itself. The first is the angle of 

the flame front with respect to the mean velocity, θ . The second parameter is the 

response of the flame attachment point to the excitation. Based upon the visualization 

results obtained, it has been assumed that the flame remains firmly attached to the bluff 

body separation point and does not oscillate in response to the excitation, i.e., 

( 0, ) 0L x t′ = = . 
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Prior work has shown that the flame dynamics are linear in disturbance amplitude near 

the attachment point and that nonlinear effects grow in prominence with increasing 

amplitude of excitation and downstream distance [158]. These nonlinear effects are due 

to "kinematic restoration" [159], and reflect the propagation of the flame normal to itself 

at the local burning velocity.  In the prior study by Shanbhogue et al. [158] with similar 

viewing windows using flow velocities in the 2-5 m/s range, nonlinear effects had 

sufficient time to accumulate and had to be accounted. While nonlinear effects are 

certainly important at axial locations on the flame that are sufficiently far downstream, 

they are negligible over the residence times for which the flame wrinkles are in the 

viewing window. The non-linear contributions to the dynamics are compared with the 

linear contributions later in this chapter, to illustrate their relative roles. 

The linearized flame dynamics can be determined by expanding the ensemble 

averaged velocity into its time average and fluctuating component: 

 

( , ) ( ) ( , )

( , ) ( ) ( , )

( , ) ( ) ( , )

u x t u x u x t

v x t v x v x t

L x t L x L x t

′= +

′= +

′= +

 (6.10) 

Using this decomposition in Eq.(6.9), and linearizing, we obtain the following equations 

for the mean and fluctuating components:  

 ( )sin ( ) ( ) cos ( ) ( )Tu x x v x x s xθ θ− =  (6.11) 

 ( , )( , ) ( , )( ) cos ( )
cos ( )

n
t

u x tL x t L x tu x x
t x x

θ
θ

′′ ′∂ ∂
+ =

∂ ∂
 (6.12) 

Where it has been assumed that Ts  is not varying in time (see discussion and limitations 

of this assumption in Shin and Lieuwen [155]). Fuel/air ratio stratification effects are 
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implicitly incorporated in the analysis through the measured time averaged quantities in 

these two equations, such as the local flame angle ( )xθ .  

The following definitions are used: 

 ( ) tan ( )dL x x
dx

θ=  (6.13) 

 ( ) ( ) cos ( ) ( )sin ( )tu x u x x v x xθ θ= +  (6.14) 

 ( , ) ( , ( , ) , ) cos ( , ) ( , ( , ) , ) sin ( , )nu x t v x y L x t t x t u x y L x t t x tθ θ ′′ ≡  = − =    (6.15) 

These terms nu′ , tu , θ , and ( , )L x t  are also depicted in Figure 54. The time averaged 

equation, shown in Eq.(6.11), states that the turbulent flame speed Ts  matches the local 

normal component of the mean velocity field. The unsteady equation, shown in Eq.(6.12)

, describes axial disturbance convection on the left side and the excitation due to 

disturbances on the right. This operator shows that wrinkles on the flame propagate at the 

tangential mean velocity tu , shown in Eq.(6.14). The wrinkles are generated by the 

normal component of the fluctuating velocity nu′  shown in Eq.(6.15) . The cosθ  term is 

an artifact of the coordinate system, and is the angle between the chosen coordinate 

system and a local flame-fixed coordinate system.  

 Since the analysis is performed for data at the forcing frequency, it is useful to 

consider the equations in the Fourier domain. The Fourier transform of Eq.(6.12) is given 

by: 

 ( )
( )

( )0 0

0 0

ˆ ˆ, , ˆ12 cos
cos

c ct n

c c c

L x f L x fu udi
U d x U

λ λ
π θ

λ λ λ θ

   ′ ′  ′
+ =             

 (6.16) 

where the over-hats “^”, denote the corresponding complex quantity in the frequency 

domain, and 0U  is calculated using Eq.(6.1). This equation is a two-dimensional version 
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of Eq.(3.16), and will serve as the key tool for comparison of measured and predicted 

flame response characteristics. 

There are two ways in which data and measurements can be compared using this 

equation. First, the measured flame edge data, ( )0
ˆ ,cL x fλ′ , can be used as an input to the 

left side of Eq.(6.16) to predict a value for the normal velocity component, ˆnu′ . 

 





( )
2

0

ˆ ˆˆ
2 cos cosn t

c o c c

predicted

measuredmeasured measured

u uL d Li
U U d x

π θ θ
λ λ λ

    ′ ′ ′
= +    

     




 (6.17) 

While from a practical point of view, prediction of flame position from a known (or 

assumed) velocity field is the more interesting scenario, this approach of predicting the 

velocity from the measured flame position is more useful for model validation purposes. 

The reason for this is that Eq.(6.17) directly relates the local flame position and slope to 

the local velocity field.  Thus, errors/uncertainties in the flame position and velocity field 

at other locations do not corrupt predictions/data at the point of comparison.  

Alternatively, the measured fluctuating velocity field is used as an input on the right 

side of Eq.(6.16) to predict the flame edge response. This is given by: 

 


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0 0

ˆ ˆ ( )2 2exp exp
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∫ ∫
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xs
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λ

=

=
∫ (6.18) 

This is the more interesting comparison because generally it is the flame position which 

must be calculated. However, from a validation point of view, this approach is 

problematic because the predicted flame position is a convolution of velocity field 
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disturbances at all upstream positions. Thus, errors in measurement at one point (i.e., near 

the bluff body) corrupt the predicted flame position not only at that point, but also at all 

downstream positions. 

6.3 Comparison of Measurements and Model 

This section presents comparisons of the measured flame and flow field 

characteristics using the linear flame dynamics model. Before we proceed to discussing 

the comaprisons, an important point regarding the experimental data and its usage must 

be mentioned. The measurements for both velocity and flame edge are prone to large 

errors close to the edge of their respective image boundaries at the edge of the laser sheet.  

Where the flame edge data is used as input, the predictions use only local data and the 

velocity field prediction is only shown farther downstream.  Where the velocity field is 

used as an input, the flame edge prediction is initiated at the bluff-body. The velocity data 

in the region x/λc<0.1, is extrapolated from points close to x/λc>0.1 based on a 

polynomial fit of their behavior. These extrapolated values are not used for the local 

comparison in the velocity field validation study. 

6.3.1 Application of Linear Model 

Recall that either velocity or flame position can be used as model inputs.  These two 

approaches present different perspectives on the same measured data sets and 

comparisons are presented using both in Figure 60 and Figure 61. Subplots (a) and (b) in 

each figure use the flame edge as input and the velocity field magnitude and phase is the 

prediction.  Subplots (c) and (d) use the velocity field as the input to predict the 

gain/phase of the flame. 
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Uniform mixture, 50 m/s, 477K approach flow, In phase forcing  
(a) 

 

(b)  

 

(c)  

 

(d)  

 
Figure 60 : Velocity validation study for Uniform mixture, 50 m/s, 477K approach 
flow, In phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 
 

Start with Figure 60, which corresponds to a spatially uniform reactant mixture, in-

phase forcing case.  Uncertainty bars are also indicated for both the direct measurement 

of velocity or flame position, as well as the propagated uncertainty that, for example, the 

measured flame position leads to for predicted velocity, and vice-versa.  The figure 

shows the monotonically growing uncertainty in measured flame position, due to growing 

three dimensional effects. Note the one spot with large propagated uncertainty in the 

predicted unsteady velocity field occurs near the flame holder (a).  This large uncertainty 

is due to the low amplitude of flame wrinkling (c) near the bluff body.  As shown in 

Shanbhogue et al. [158], the slope of this magnitude curve in (c) is directly proportional 
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to the fluctuating velocity in (a).  As such, the small uncertainty in flame position leads to 

a large uncertainty in slope, ˆd L dx′ , and, therefore, velocity near the flame holder.   

Comparing the predictions and measurements shows that the agreement is very good. 

For example, the key features of the disturbance velocity field, such as its general spatial 

character, and the location and magnitude of the peak, are well predicted in Figure 60(a).  

Similarly, the velocity phase roll-off is captured very well.  The corresponding flame 

features in (c) and (d) are also well captured.  In this particular case, the flame wrinkling 

amplitude monotonically rises with downstream distance.  Both this general feature, as 

well as the slope of the rise is well captured by the predicted result.  Similarly, the 

monotonic rolloff in phase of flame wrinkling, as well as its slope, is well captured.  

Consider next Figure 61, which corresponds to a spatially uniform reactant mixture, 

out of phase forcing case.  The qualitative agreement is similarly good in this case, 

although there are larger quantitative differences observed downstream.  For example, the 

general spatial character of the disturbance velocity amplitude and phase are well 

predicted.  The quantitative agreement is quite good over the first half of the 

measurement window as well, although downstream of the velocity amplitude peak the 

results show a growing quantitative difference in phase, although the amplitude 

agreement continues to be good.  Similarly, the corresponding flame magnitude and 

phase features in (c) and (d) are also well captured qualitatively.  Similar to the velocity 

phase, the flame magnitude results show a growing difference between predictions 

downstream of the velocity amplitude peak.  The monotonic rolloff in phase of flame 

wrinkling as well as its slope is well captured. Similar comparisons were performed at all 

other conditions as well and are shown in Appendix C. 

 126 



Uniform mixture, 50 m/s, 477K approach flow, Out of phase forcing  
(a)  

 

(b)  

 
(c)  

 

(d)  

 
Figure 61 : Velocity validation study for Uniform mixture, 50 m/s, 477K approach 
flow, Out of phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 
 

6.3.2 Flame Response Content 

The decomposition of the flow field into acoustic and vortical components was presented 

in Section 6.1.2. We now show how this velocity field decomposition provides a useful 

interpretation of the flame response and its sensitivity to the axial phase characteristics of 

the disturbance field. This is obtained by calculating the flame wrinkling induced by the 

calculated acoustic and vortical components. 

Figure 62 plots the actual measured flame data, the flame wrinkling associated 

with the 2-wave fit, and then the contributions from the acoustic and vortical component.  

Mirroring the discussion of the velocity field, these results show that the undulation in the 
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gain is due to the acoustic component, but that the majority of the flame response can be 

understood by simply considering the vortical component. The phase of the flame 

response is modeled accurately and is seen to be roughly the same as that of the vortical 

component. The acoustic contribution creates a short length scale interference pattern due 

to its large phase speed, while the vortical contribution creates a much larger scale pattern 

due to a phase speed that is roughly of the order of the mean flow velocity. 

(i) Uniform mixture, 50 m/s, 477K approach flow, Out of phase forcing 

 
(a) 

 
(b) 

(ii) Stratified mixture, 50 m/s, 644K approach flow, Out of phase forcing 

 
(a)  

(b) 
Figure 62 : Flame response prediction from analytical solution of Eq.(6.18) for cases 
shown as (i) Uniform mixture, 50 m/s, 477K approach flow, Out of phase forcing  
and (ii) Stratified mixture, 50 m/s, 644K approach flow, Out of phase forcing, 
comparing (a) amplitude and (b) phase. 
 

In order to explain the interference "wavelength" of wrinkles on the flame, 

consider a velocity disturbance field of the form: 
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Where 0c U fλ =  is the convective wavelength and ,c vU  is the phase speed of the 

disturbance. The flame response to this disturbance, in a constant mean flow field U0 

(flame angle θ is constant) is given by (using Eq.(6.18)): 
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(6.20) 

From this expression, we can see that the flame wrinkling wavelength, is given by: 
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 (6.21) 

Consider an acoustic disturbance, where , ~ ( )c vU O c .  In the case where 0 1M U c=  , 

we have flame cλ λ≈ .  In contrast, a vortical disturbance, where ( ), 0c vU O U  leads to a 

much longer wavelength; e.g., , 00.67c vU U=  (mentioned earlier). Both of these points are 

clearly evident in Figure 62. This result - a broad peak with a length scale encompassing 

several convective wavelengths, which has shorter length scale undulations superposed 

upon it, provides insight into data from a number of other studies in the literature.  To 

illustrate, Figure 63 reproduces data from experiments by Shanbhogue et al. [158, 160] at 

lower flow velocities, showing similar features, again suggesting that the wrinkles are 

due to a smaller amplitude, fast propagating acoustic field superposed upon a larger 

amplitude vortical disturbance field.  For those studies, the mean velocity was an order of 
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magnitude smaller than used here, leading to an even larger disparity in wrinkling 

wavelengths on the flame. 

 
Figure 63 : Experimental data reproduced from Refs. [158, 160], showing |L’(x)| for 
cases where  (a) D = 12.7mm, f0 = 150Hz, U0 = 2.27m/s, u’ = 0.021m/s; (b) D = 
9.52mm, f0 = 150Hz, U0 = 3.37m/s, u’ = 0.016m/s, ϕ = 0.77. 
 

The interference effects which are explicitly shown in Eq.(6.20), also lead to substantially 

different sensitivities of the flame response to slight variations in axial phase 

characteristics of these two disturbance modes. Specifically, a change or uncertainty in 

the phase speed, ,c vU∆ , leads to a change/ uncertainty in the flame response of: 

 
( )

( ) ( )( )
2

0
2

,, , 0 ,

ˆ ˆ cos1
1 cos c vc v c v c v

L L U
UU U U U

θ
θ

′ ′∆  
−   ∆ −  

  (6.22) 

In the case of a fast propagating acoustic disturbance (low Mach number), the 

change/uncertainty in the flame response is small, since it is directly proportional to the 

Mach Number,  0 1M U c=  . On the contrary, changes/uncertainties in the vortical 

disturbance are amplified substantially in terms of the flame response, as the 

( )( )2
0 ,1/ 1 cosc vU U θ−

 
term has very large values when U0 and Uc,v are of same order.  
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In turn, these results show the required accuracy needed for velocity measurement for a 

given degree of predictive fidelity and, moreover, that these accuracy requirements differ 

substantially between the acoustic and vortical components.  In particular, they show 

huge sensitivities of the flame response to errors in velocity field in case where 

2
, 0 cosc vU U θ= . 

6.3.3 Estimation of Non-linear Terms 

Since we have used a linear framework for the comparison of model and 

experimental data, an analysis of the relative magnitudes of the neglected nonlinear terms 

relative to the linear terms is required. Start by expanding Eq.(6.9) in terms of time 

averaged and fluctuating components using Eq.(6.10), and subtract the time averaged 

terms to obtain Eq.(6.23). Note that Ts  is calculated from measured data using Eq.(6.11). 

The different terms in the above equation are: (1) flame motion, (2) linear convection, (3) 

non-linear convection, (4) linear forcing and (5) linear kinematic restoration, (6) non-

linear kinematic restoration.  Note that Terms 1,2,4 and 5 form the linear model shown in 

Eq.(6.12). 
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Using the measured velocity and flame fluctuation data, the magnitude of each of these 

terms is plotted in Figure 64 as a function of the axial coordinate for two representative 

conditions. Data near the bluff body is not shown for the reasons discussed earlier.  The 

figure shows that the non-linear terms are one to two orders of magnitude smaller than 

the linear terms. This validates the assumption of neglecting these non-linear terms in 

framing the linear model. 

(i)  (ii)  

  
Figure 64 : Comparison of non-linear and linear terms as per Eq.(6.23) for the 
experimental cases (i) Uniform mixture, 50 m/s, 477K approach flow, In phase 
forcing  and (ii) Stratified mixture, 100 m/s, 755K approach flow, In phase forcing, 
where, (1) unsteady term, (2) linear convection, (3) non-linear convection, (4) linear 
forcing, (5) linear kinematic restoration and (6) non-linear kinematic restoration. 
 

Having considered the strength of level-set modeling for local flame response 

comparison for a two-dimensional flame, in the next chapter we consider a three-

dimensional swirling lifted flame case. 

 132 



CHAPTER 7 

COMPARISON WITH EXPERIMENTS:  

GLOBAL FLAME RESPONSE PREDICTIONS 

 

In this chapter we consider the application of the model to a three dimensional swirling 

lifted flame. Unlike the previous chapter which considered local flame response 

comparisons, in this chapter we consider the global flame response of the flame subjected 

to transverse acoustic forcing. 

 
Figure 65 : Possible flow and flame configurations for two different vortex 
breakdown bubble structures where black dotted lines indicate edge of 
recirculation. (a) the bubble is lifted, (b) the bubble is merged with the centerbody 
wake, (c) no centerbody wake. Reproduced from Ref. [117]. 
 

The experiment considered in this chapter corresponds to the configuration sketched 

in Figure 65, where there is no wake region behind the centerbody and the VBB is lifted. 

The experiments were performed by Michael Malanoski and Michael Aguilar at the 

Georgia Tech Combustion Lab. The experimental configuration and details of the 

diagnostics are mentioned in Refs. [117, 118]. The key contribution of this chapter in the 

thesis has been comparison of predictions to these measurements and so the discussion 

below borrows content from these references. The swirling flow is setup using a DACRS 

nozzle (Dual Annular Counter Rotating Swirler). The lifted configuration is the result of 
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the low profile centerbody and coaxial jet along the centerline that develops into an 

annular jet around the VBB. The lifted VBB introduces a significant additional degree of 

freedom to the flame response problem, as described in Malanoski et al.[118]. The whole 

breakdown bubble and the stagnation point oscillate both axially and transversely due to 

the inherent flow instabilities in the VBB.  Moreover, this region is globally unstable, 

meaning that it exhibits intrinsic oscillations, and so its sensitivity to external forcing is 

strongly amplitude dependent [161]. If the leading edge of the flame is stabilized by the 

stagnation point of the breakdown bubble, this also implies that the flame leading edge 

oscillates significantly in response to forcing. Indeed, prior investigations on a similar 

geometry attributed some characteristics of the unsteady heat release to the dynamics of 

the stagnation point and bubble motion [60, 61, 64, 65, 162]. Initial studies using this 

experiment have shown that the global, spatially integrated heat release response is 

controlled by three factors – vortical disturbances, acoustic flow disturbances, and flame 

leading edge motion [118]. The vortical flow motions dominate the flame response, and 

the flame leading edge motion is a minor contributor to the overall heat release response. 

This is an important result, as it shows that the significant motions of the flame leading 

edge actually have little dynamical significance for understanding the spatially integrated, 

forced response of the flame. Hence, in the model presented later in this chapter, the 

dynamics of the leading edge are not used for predictions. In the next section, we first 

consider the results from the experiment, before proceeding to model predictions. 

7.1 Experimental Data 

In Chapter 2, we discussed the dynamics of helical flow disturbances where the 

flow-field data from this experiment has been discussed. In this section, we discuss 
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details of the flame shape and the flow-field not discussed earlier. The results have been 

borrowed from Refs. [117, 118]. Before we discuss the results, a brief mention must be 

made of the data measurement locations. Two different planes were used for the velocity 

field measurements, obtained by visualizing through the front window and the other 

through the top window between the exhaust ports. During the first measurement, the 

laser sheet entered the experiment through the top window in a plane, termed the y-z 

plane, parallel to the axial flow direction (along the z coordinate). For the second 

measurement, the laser sheet entered the experiment through the front window in a plane, 

termed the r-θ plane, perpendicular to the flow direction. Two r-θ measurements were 

taken at 0.14D and 0.5D downstream from the nozzle exit. 

 
Figure 66 : Time average global flame shape with an overlay of the time average 
flame edge contour for unforced (right plane) and 400 Hz transverse acoustic 
excitation (left plane). Data reproduced from Ref. [117]. 

7.1.1 Time Averaged Behavior 

Figure 66 presents a time averaged image of the flame under nominal and forced 

conditions.  Note the lifted nature of the flame and the minimal impact of forcing on its 

time averaged character. The flame has a symmetric bowl shape with a time average 

standoff distance to the flame leading edge of 0.17D. The red contour denotes the time 

average flame edge which was extracted via image processing. The location of this flame 
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edge was used as an index in the velocity field to extract the velocity fluctuations along 

the surface of the flame. The velocity fluctuations were transformed into flame normal 

and tangential components using the time average flame angle. These are used as inputs 

for the model predictions presented later. 

 
Figure 67 : Time average y-z velocity vector field in left plane and time average 
vorticity in right half plane. Solid white line traces time average zero velocity 
contour. Dotted white line traces time average minimum vorticity and dotted black 
line traces time average maximum vorticity. Data reproduced from Ref. [117]. 

The time average velocity field in the y-z plane from this counter-swirling nozzle 

shown in Figure 67 exhibits the expected swirl flow features illustrated in Figure 65. The 

velocity field, depicted on the left, and vorticity, depicted on the right, are symmetric 

about the centerline. The color scale on the left indicates the magnitude of the velocity 

normalized by a bulk nozzle exit velocity of 25 m/s. The red regions in the coaxial jet 

core, 0 to 0.5D downstream, approach 25 m/s before decelerating and stagnating 

upstream of the recirculated flow located about 1.5D downstream. On either side of the 

annular jet, regions of high vorticity develop from the shear between the recirculated and 

quiescent flow to the jet.  The vorticity in the inner shear layer evolves in the counter-

clockwise direction and clockwise in the outer shear layer. The time averaged centerline 
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stagnation point is also evident.  As with the time average flame, no substantial changes 

occurred in the time average field for the excitation amplitudes considered here. 

 
(a)   (b) 

Figure 68 : Time average r-θ velocity vectors for z=0.14D plane (a) and z=0.5D plane 
(b). Data reproduced from Ref. [117]. 
 

Unforced, time average velocity vector fields for two r-θ planes at axial distances of 

z=0.14D and z=0.5D are plotted in Figure 68. The velocity magnitude is again 

normalized by the nominal bulk velocity of 25 m/s. The spatial coordinates are 

normalized by the nozzle diameter. The bulk swirl motion, S=0.62, in the clockwise 

direction is evident from both of these planes. The radial divergence of the annular jet is 

evident by comparing between the 0.14D and 0.5D r-θ planes. The high swirl region is 

concentrated within a half diameter for the 0.14D plane and has expanded to nearly 1 

diameter by the 0.5D plane. 

7.1.2 Unsteady Behavior 

In this section, we consider the unsteady dynamics in the experiment. First we 

consider the dynamics of the leading edge of the flame since this is a lifted flame in 

question. Figure 69 illustrates a number of instantaneous images of the upstream region 

of the flame, with an approximate location of the flame leading edge drawn in from 

image processing. A projection of the leading point location, the circular dot, on a 

circular pattern is included as well as the instance in time during the captured sequence. 
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The strong axial and transverse motion of the flame is evident from these images. The 

images indicate that the flame leading edge propagates nearly to the nozzle exit in some 

images and is clearly downstream in others. Additionally, the images indicate that the 

leading point of the flame appears to rotate around the nozzle. The image at 3 ms shows 

the leading edge of the flame on the right of the nozzle, while it is located on the left of 

the nozzle in the image at 6 ms. 

 

 

 

 

 
Figure 69 : Time sequence of instantaneous unforced flame leading edge. Data 
reproduced from Ref.[118]. 
 

The axial and transverse location of the flame leading point, defined as the 

farthest forward axial position of the flame edge, ( , )b r zξ ′ , was extracted from these 

images. The RMS of the total motion is about 5-10 times greater than the forced motions. 

This indicates that the flame leading point motion is dominated by its natural motion, 

presumably tracking with the natural precession of the flow stagnation point. Because of 

 138 



this, the overall RMS displacement exhibits negligible sensitivity to disturbance 

amplitude. 

The formulation in Chapter 3 showed that if the mean flame shape is axisymmetric then 

bulk transverse disturbances produce significant local heat release oscillations and flame 

wrinkling, but no net heat release fluctuation; as the disturbances on each side of the 

flame are out of phase and cancel each other.  Similarly, the radial oscillations in flame 

base position excite local wrinkling, but no global heat release oscillations.  As such, it is 

the axial flame base motions which are of particular dynamical significance for the global 

heat release fluctuations. In this experiment, these axial motions are significantly smaller 

than the radial ones. Further analysis of the flame dynamics by Malanoski et al. [118] has 

showed that the contributions of flame base motion to the global heat release response 

was negligible in comparison to that due to acoustic motions, and vortical motions. 

 
Figure 70 : Sequence of instantaneous y-z velocity vector fields for unforced reacting 
flow. Contour denotes line of zero axial velocity. The double concentric circle 
represents the time average position of the velocity stagnation point. The sequence is 
top to down in the left column, followed by the same in the right column. Data 
reproduced from Ref. [117]. 
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Now consider the unsteady behavior of the flow-field in the axial direction (y-z 

plane). A sequence of instantaneous velocity vectors from the y-z plane are shown in 

Figure 70. Positive axial velocity is denoted by the grey to light color with black vectors 

while black regions with white vectors indicate regions of reversed flow. The boundary 

between these regions is indicated by the dotted white contour mapping the instantaneous 

zero axial velocity contour. The location of the instantaneous velocity stagnation point is 

the leading point in the reversed flow region. The time average position of the velocity 

stagnation point is shown with the double concentric circle at 1.4D downstream along the 

centerline. The difference between the time average location and instantaneous location 

of the velocity stagnation point is clear from these images and is a manifestation of the 

precessing, helical nature of the vortex breakdown region.  

(a)  

(b)  
Figure 71 : Axial evolution of y–z plane ensemble averaged transverse velocity 
fluctuations along (a) centerline (a) and along the left VBB time average boundary 
(b) for unforced reacting flow. Data reproduced from Ref. [117]. 
 

Ensemble averaged spectra of the transverse velocity fluctuations along the centerline 

and along the left side of the time average zero velocity contour are plotted in Figure 71 
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as a function of downstream distance and Strouhal number. The Strouhal number is 

defined as 0St f f=  where 0 0f SU Dπ= . 

There are significant fluctuations in the frequency range below 400 Hz, or St<2.6. 

The transverse velocity fluctuations along the centerline shown in Figure 71(a) are 

stronger closer to the nozzle exit with a peak response around 150 Hz or St=0.96. The 

axial velocity fluctuations, not shown here, also exhibit a spectral peak at St=0.96. The 

transverse fluctuations along the left VBB boundary depicted in Figure 71(b) also exhibit 

a significant response below 400 Hz and the peak at St=0.96 is still present, though its 

magnitude does decay with downstream distance. Given that this peak response occurs 

nearly at St=1 suggests that the peak response is related to the precession of structures 

around the nozzle and the decay in magnitude suggest that these structures become less 

coherent further downstream from the nozzle exit. An additional peak occurs along the 

boundary of the VBB farther downstream between 20-40 Hz. The helical mode behavior 

of the unsteady flow has already been detailed in Chapter 2, Section 2.3 and shall not be 

discussed in this chapter. Next, we shall discuss the inputs to the model framework before 

they are used for predictions. 

7.2 Model Predictions 

In this section we detail the procedure for predictions from the model using experimental 

data as input. First, we briefly reiterate the model equations. An axisymmetric flame/flow 

assumption is used in this study. The mean flame shape is governed then by: 

 

1
2 2

1r z fu u s
r r
ξ ξ  ∂ ∂
= − +  ∂ ∂   

 (7.1) 
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The fluctuating flame position (in frequency domain) is governed by: 

 ,
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Here,  
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where ne  is the local unit normal vector, pointing from the time averaged flame surface 

into the products. The flame position fluctuations can be decomposed into its azimuthal 

modes as: 
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As mentioned in Chapter 3, for axisymmetric mean flames, a helical mode in the 

fluctuating flow field leads to the same mode in the flame response. The global heat 

release for axisymmetric mean flames can be written as: 
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Here Rh  is the heat release per unit mass of reactants consumed, which is spatially 

constant due to its dependence only on equivalence ratio. ( )fs r  is a spatially varying 

displacement speed which is obtained from the mean flow and mean flame shape using 

Eq.(7.1). For non-axisymmetric modes ( 0m ≠ ), the integral over θ  is zero, which 

implies that only the axisymmetric ( 0m = ) mode contributes to the global flame area. An 

important implication of this result is that helical modes, while introducing substantial 
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wrinkling of the flame front, actually lead to no fluctuations in flame surface area in 

axisymmetric flows, a result that is also consistent with experimental observations from 

Moeck et al.[64]. This has important implications when it comes to the use of flow field 

data from experiments as inputs to the model.  

In the next three sub-sections we shall detail the use of experimental data to 

obtain inputs to the model. This has been shown with the 400Hz In-Phase (IP) case as an 

example. The procedure detailed can be applied to the other frequencies. 

7.2.1 Mean Flame Shape 

The flame response model requires inputs only at the mean flame location, based 

on the linear analysis. In this sub-section, we present the time-averaged flame shape and 

hence the locations at which the model inputs are extracted. The CH* chemiluminescence 

technique is used to capture the flame heat release [117]. The chemiluminescence images 

obtained are averaged, from which an intensity threshold is used to obtain the flame edge.  

Figure 72 plots the extracted flame shapes, showing that the time-averaged flame 

shape is essentially the same for all forcing conditions, and also nearly symmetric. Hence, 

the flame shape is fit with a polynomial, also shown in the figure as the input to the 

model. Along with the flame shape input, the flame location coordinates are used to 

extract the flow field inputs to the model. Next we shall discuss the spatial distribution of 

the mean flow field and how this translates to its input at the flame. 
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Figure 72 : Time-averaged flame edge obtained from time-averaged 
chemiluminescence images for the different forcing conditions in the experiment. 
Sample polynomial fit to the flame shape for use with the model shown as dashed 
black line. The red rectangular box indicates the flow field analysis domain. 
 

7.2.2 Mean Flow 

The mean flow field is critical to the model as they control wrinkle convection 

along the flame.  We first quantify their degree of non-axisymmetry by expanding as: 

 , ,,0
1

( , , ) ( , ) ( , )cos ( , )sini c i m s i mi
m

u r z H r z H r z m H r z mθ θ θ
∞

=

  = + +∑  (7.6) 

where the subscript i denotes the coordinate direction. The quantity ,0 ( , )iH r z  denotes the 

symmetric content in the velocity field and the quantities , ,( , ) & ( , )c i m s i mH r z H r z  denote 

non-axisymmetric contributions. 

Earlier, we mentioned the use of the axisymmetric mean flow/flame model for 

predicting the dynamics. We shall next consider the validity of this assumption by 

comparing the spatial RMS amplitudes of these coefficients. For the axisymmetric 

contribution, this spatial RMS is defined as: 
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where the subscript S is for symmetric. And for the non-axisymmetries, the spatial RMS 

is defined as: 
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Where the subscript AS is for asymmetries. Note that in Eq.(7.7) and Eq.(7.8), the 

respective RMS values are a function of the axial location, z. Hence, this comparison is 

performed at the two axial locations z/D=0.14 and z/D=0.5 where r-θ PIV data was 

obtained. 

 
Figure 73 : RMS Amplitude comparison from time-averaged flow field of 400Hz IP 
(circles) and 400Hz OP (squares) cases. Symmetric contribution of radial velocity is 
shown in black, azimuthal velocity is shown in red and non-axisymmetric 
contributions are shown in magenta and blue, respectively. Estimation using 
Eqs.(7.7)-(7.8) applied to PIV data measured in two different planes located at 
z/D=0.14 and z/D=0.5. 
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Figure 74 : Spatial variations of the time-averaged velocity components, for 400Hz 
IP case. (a) Axial velocity obtained directly from r-z PIV, (b) radial velocity and (c) 
azimuthal velocity, both generated using interpolation detailed in Appendix D. 
 

An example comparison is shown in Figure 73. These plots show that, in general, 

the axisymmetric contribution (shown in black) is 4-10 times higher than the non-

axisymmetric components. For his reason, we proceed for the rest of this discussion using 

the axisymmetric assumption, implying that we only need to keep ,0 ( , )iH r z . Henceforth, 

we shall denote the symmetric contribution ,0 ( , )iH r z  as ( , )iu r z  for convenience of 

notation. 

The symmetric contributions along the r-θ plane are available at two axial 

locations (z/D=0.14 and z/D=0.5) for only the radial and azimuthal components of the 

velocity field. The axial component, ( , )zu r z , is obtained from the r-z plane. However, 

the model requires the complete spatial variations for all radial and axial locations along 

the mean flame for all components. This is generated in a domain bounded by 

0.14<z/D<0.5 and 0<r/D<1.2 as shown in Figure 72 by the red rectangular box. In order 

to generate this data, an approximate interpolation procedure is applied, detailed in 

Appendix D. Using this procedure, the momentum equations for the symmetric mode are 
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used to generate the ensemble averaged flow field between the two planes of 

measurement. A sample result from this procedure is shown in Figure 74 for the 400Hz 

IP case. 

The spatial variation for the time-averaged velocity field is important for the 

convection of wrinkles in the linear model. The displacement speed is equal to the local 

normal component of the time-averaged mean flow along the mean flame surface, 

obtained using the mean flow and mean flame shape. The model inputs are then 

smoothed using an appropriate polynomial fitting, before computations are performed 

using the model for the local flame response and then the Flame Transfer Function (FTF). 

An example variation of these inputs along the flame surface is shown in Figure 75 for 

the 400Hz IP case. Note that the extraction of mean inputs is performed for the flame 

surface between the z/D=0.14 and z/D=0.5 planes as indicated by the red box in Figure 

72. Henceforth, the analysis and extraction of inputs shall be restricted to this region. In 

the next section, we detail the characteristics of the fluctuating flow field and its variation 

along the flame surface. 

 
Figure 75 : Spatial variation of mean flow input parameters along the flame surface 
for the 400Hz IP case. The values of zU  and rU at r/D=0 and r/D=1.2 correspond to 
those from the PIV measurement (z/D=0.14 and z/D=0.5). 
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7.2.3 Unsteady Flow 

The fluctuating flow field and its helical mode decomposition are the focus of this 

section. The nature of the acoustic excitation field in the annulus has a direct influence on 

the dominant helical modes in the flow. For example, O’Connor et al. [45] previously 

reported results from another facility showing that in-phase forcing, which causes the 

nozzle to be located at a pressure antinode and velocity node, excited the symmetric, m=0 

mode near the nozzle.  In contrast, out of phase forcing, which is intrinsically 

asymmetric, excited a strong helical |m|=1 mode. 

 
(a)    (b) 

Figure 76 : Helical mode decomposition for radial velocity fluctuations for 400Hz 
forcing showing (a) IP and (b) OP at z/D=0.14. 
 

As an example, we reproduce several results plotting the radial dependence of the 

first few helical modes extracted from the r-θ measurements described in Chapter 2. 

Figure 76 compares the helical modes for in-phase and out-of-phase forcing at 400Hz at 

z/D=0.14.  Notice the dominance of the m=0 mode in the symmetric case (black curve), 

while the m=0 and |m|=1 modes are of comparable strength in the asymmetric case.  

Recall from an earlier section that the m=0 mode is the only required input to predict the 

FTF from the model under the assumption of axisymmetry of the time averaged flow and 
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flame.  The higher strength of the m=0 mode in the In-Phase forcing case suggests that its 

FTF should be higher than that the out-of-phase case.  However, this result does depend 

on how the m=0 mode evolves axially.  This result also shows that the out-of-phase case 

will be sensitive to the degree of non-axisymmetry of the time averaged flame/flow, as 

helical modes influence the global unsteady heat release in non-axisymmetric flows. 

 

 
Figure 77 : Spatial variations of the symmetric mode amplitude for the velocity 
components ( ,0

ˆ
iB ), for 400Hz IP case. (a) Axial velocity is obtained directly from r-z 

PIV, (b) radial velocity and (c) azimuthal velocity are generated using interpolation 
detailed in Appendix D. 
 
Similar to the time-averaged flow field, the fluctuating flow field (and the symmetric 

mode) is available only at two discrete planes (z/D=0.14, 0.5). Hence, using the 

interpolation method described in Appendix D, the data between the planes can be 

generated. A sample result from this procedure, for the 400Hz in-phase case is shown in 

Figure 77. Again, while this figure shows the complete flow field, these data are only 

used in the model along the time averaged flame location to generate the flame transfer 

function. 
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Figure 78 : Spatial variation of the amplitude of the symmetric mode (m=0) 
fluctuations along the flame for the 400Hz IP case. 
 

As seen in Eq.(7.2), the axial and radial component of fluctuations must be 

specified at the mean flame. As an example, Figure 78 shows the spatial variation of 

these model inputs for the 400Hz in-phase case. 

Using the methods described so far, the model inputs are extracted for all 

available cases and these are then used to obtain the FTF and compare with 

measurements. This is described in the next sub-section. 

7.2.4 Flame Transfer Function: Comparison with Predictions 

The flame transfer function (FTF) is defined as: 

 
( )
( )0

ˆ ( )

ˆ ( )ref

Q Q
FTF

u U

ω

ω

′
=

′
 (7.9) 

Where ˆ ( )Q ω′  and Q  in the numerator are defined in Eq.(7.5) and the reference velocity 

definition and the reference velocity measurement procedure and definition are provided 

in Refs. [117, 118]. Briefly, the reference velocity is defined as the integration of the 

instantaneous transverse velocity along the centerline in the y-z PIV plane from 

1.0<y/D<2.0 from the nozzle exit. The magnitude of the frequency response at the 
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forcing frequency is extracted from the gain of the fast Fourier transformed fluctuations 

of the reference velocity. The corresponding experimental value for the numerator is 

obtained from the global line of sight integrated CH* emissions, where we assume that: 

 
ˆ *

*
Q CH
Q CH

′′
≡  (7.10) 

An example of the ensemble averaged CH* chemilumenescence spectrum is plotted in 

Figure 79. An estimate of the error in the magnitude and the phase in the CH* 

chemiluminescence was generated from confidence intervals based on the t-distribution 

and a 95% confidence bound. 

 
Figure 79 : Ensemble averaged spectrum from the global CH* chemiluminescence 
for the 400Hz IP case (blue) in comparison to the unforced case (red). The black 
circle indicates the response at the forcing frequency. 
 

The comparison between the model prediction and experiments for the amplitude of the 

FTF is shown in Figure 80(a), and for the phase of the FTF is shown in Figure 80(b). In 

general, the model comparisons fare well with the experimentally measured values. 

Notice that the in-phase FTF gains are higher than the out-of-phase FTF amplitudes. As 

mentioned earlier, this is expected from the fact that the in-phase case has dominant 

symmetric modes which contribute to the FTF whereas the out-of-phase case does not 
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have dominant symmetric modes, but still has a large reference velocity, as the nozzle 

lies in a velocity anti-node.  Phase trends are also captured with the results, lying between 

15-70 degrees from measurements. 

 
(a)      (b) 

Figure 80 : FTF (a) amplitude and (b) phase comparison between model prediction 
(circles) and experiments (solid lines with error bar) for both IP (blue) and OP (red) 
forcing at 400Hz. 
 

7.2.5 Remarks 

The previous section presented the results from the comparison of FTFs, however the 

caveats of the different assumptions must be mentioned. 

(i) The mean flame was assumed to be axisymmetric, since three-dimensional spatial 

information was unavailable. Although the axisymmetry assumption was justified with 

the azimuthal mode analysis of the mean flow, this was done only at two measurement 

planes. 

(ii) Axial velocity components were not solved for or helically decomposed. They 

were used directly from the axial measurement plane. 

(iii) As seen from Figure 72, the flame extends beyond the domain denoted by the red 

box, but the analysis in this chapter considers only data within the red box. This 

limitation is due to the availability of experimental data only at extremes of this box. 
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Measurement planes further downstream must be considered to completely consider the 

flame response. 

(iv) The Navier-Stokes interpolation procedure described in Appendix D neglected the 

pressure term since the required data was unavailable. The radial pressure gradients in a 

swirling flow are particularly significant and cannot be neglected. 

(v) Finally, the turbulent flame speed was assumed constant in time, axisymmetric 

but varying in space. However, the turbulent flame speed is a non-axisymmetry 

dynamical quantity and its change in time and azimuthal space must be accounted. 

 

The deviations between model predictions and measurements are not significant as seen 

in Figure 80. This indicates that the above points would lead to corrections that are 

relatively insignificant but non-negligible. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

We now proceed to consider the key contributions to the literature from this thesis, the 

conclusions from the different analysis and finally, recommendations for future work. 

8.1 Concluding Remarks 

8.1.1 Contributions to Modeling  

The first chapter presented the larger picture of thesis and where it fits in the literature. 

The literature survey showed that most models worked with two-dimensional symmetric 

disturbances and that non-axisymmetric disturbances required analytical treatment. In 

Chapter 2, a brief literature review on swirling flows, dynamics of transverse acoustic 

disturbances and helical flow disturbances showed that strong non-axisymmetric 

disturbances dominated such flow-fields. These were used as motivation to develop a 

framework that analytically tracts the response of swirling premixed flames to such flow 

disturbances. 

 In Chapter 3, a general framework is presented using the level-set equation to 

capture premixed flame dynamics. The level-set equation was used since a thin, thermo-

diffusively stable laminar premixed flame was assumed. This assumption works in the 

corrugated flamelet regime shown in the Borghi diagram. The flame was assumed to be 

attached at its base, however the effects of flame base motion on the governing equation 

was presented in Appendix A. The flow disturbances were imposed in the analysis and 

feedback from the flame onto the flow was not considered. An important assumption 

made was that of small amplitude perturbations. This allows for a linear analysis where 

the time-averaged behavior is decoupled from the dynamics of the fluctuations. This 

 154 



allowed for analytical treatment of the G-equation. Under these assumptions, a general 

solution was obtained which was used for later simplifications. This general solution is an 

important contribution of this thesis, since it has not been presented in the literature 

earlier. It serves as a simplified starting point for solutions to a generalized mean 

flow/flame subjected to a generalized non-axisymmetric disturbance. This then allows to 

obtain local flame wrinkling, local heat release, global heat release and sound generation 

characteristics. The sound generation model makes use of the local unsteady heat release 

as source term to a linear wave equation and the pressure field was then obtained using 

the Green’s function method. 

Using the general solution, simplifications were made to better understand the physics 

from the mathematics. The first simplification presented was the axisymmetric mean 

flow/flame. In such a case, the helical modes were shown to greatly influence the local 

flame wrinkling and hence local heat release. Specifically, a dominant mode 0m  was 

identified that corresponds to the mode that resulted in the maximum local flame 

response. In general, it was shown that this mode is non-axisymmetric and could be either 

co- or counter-rotating relative to the mean swirl. However, it was shown that all 

asymmetric helical modes cancelled out their local heat release when the globally 

integrated heat release was considered. This implied that irrespective of which mode was 

dominant, its global heat release was zero and that only the symmetric mode 0m =  

contributed to the global heat release. This is a significant contribution from this thesis, 

since it emphasized the fact that despite vigorous flame flapping for the dominant mode, 

0m , if 0 0m ≠ , it still implied that the global flame response was zero. Hence, the 

sensitivity of the flame to the helical modes was seen to be different. The sound 
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generation results also show a different sensitivity to the helical modes. Specifically, the 

additional parameter of importance is fkL , which is a measure of flame compactness in 

reference to the acoustic wavelength. For the sound radiation in the far-field, the analysis 

showed that the pressure in the far-field can be directly related to a weighted moment 

contribution of the fluctuating change in flame surface area. This implies that even if a 

particular helical mode does not lead to a change in global flame area, it does contribute 

to the far-field pressure due to imperfect phase cancellation effects that are a function of 

fkL . For small values of this parameter, it is convenient to decompose the far-field 

pressure using a multi-pole expansion into its monopole, dipole, quadrupole, etc. 

contributions. The symmetric mode 0m =  was the sole contributor to the leading order, 

monopole contribution, which is directly proportional to the global flame surface area. 

The 1m =  and 2 modes contribute to the dipole and quadrupole moments, respectively. 

This implies that the helical mode dominating the farfield sound is a function not only of 

mo, but also fkL . In the 1fkL   limit, the symmetric mode dominates the far-field 

pressure with the mode m  contribution increasing as ( )m
fkL , as would be expected base 

on classical multi-pole scaling. For ~ (1)fkL O , the mode dominating the farfield 

pressure is also a function of the dominant flame wrinkling response mode 0m . In the 

1fkL >>  limit, the pressure radiated by the m=0 and |m|>0 helical modes scale as ( ) 1
fkL

−  

and ( ) 3/2
fkL

−
, respectively.  Similar results were obtained for the total sound power 

radiated by the flame, with the key difference being that the mode contributing to the 

dominant sound power emissions from the flame is a different function of fkL  than the 
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local pressure field.  For example, the mode leading to the dominant pressure amplitude 

at some spherical angle could be different from the one leading to the maximum sound 

power radiation. The overall sound power scales as ( )2 m

fkL  in the 1fkL  limit, while 

all modes scale equally as ( ) 3

fkL
−

in the 1fkL >>  limit. 

8.1.2 Understandings from Explicit Calculations 

In Chapters 4 and 5, explicit calculations were performed for example flow fields and 

these illustrated the general features. First, in Chapter 4, example calculations explicitly 

showed the features of local flame response characteristics for a premixed flame excited 

by transverse acoustic disturbances. This work shows the effects of swirl on a 

transversely forced flame, which introduces an additional degree of freedom for wrinkle 

motion. The presence of swirl along with the upstream axial velocity creates a helical 

spiral motion of the wrinkles. This leads to distinctive interference patterns on the flame 

surface that changes the effective wrinkling wavelength. The flame surface wrinkling 

also shows a strong sensitivity to the ratio between the swirling time scale and the 

acoustic excitation time scale, specifically seen in the apparent direction of wrinkle 

motion and the wrinkling wavelength. In case of axisymmetric flows, swirl was seen to 

have a local effect only. The global flame dynamics are independent of swirl regardless 

of the acoustic forcing mechanism, in the linear regime. Finally, these results provide 

some insight into the relative role of direct transverse excitation of the flame by acoustic 

waves during transverse instabilities.  Specifically, they suggest that the local flame 

response to transverse waves is strong, and of similar magnitude to its response to the 

other processes. The comparison of flame transfer functions between a transversely 

forced flame and a longitudinally forced flame showed their relative roles for different 

 157 



values of the control parameters. Specifically, it showed that a combination of flame 

compactness, flow Mach number and the Strouhal number was an important deciding 

factor. 

In Chapter 5, example calculations were performed for premixed flames excited by 

helical flow disturbances. Unlike the transverse acoustic case, these disturbances are 

vortical. As mentioned earlier, a key finding from this work is that helical modes 

influence the flame wrinkling amplitude and heat release fluctuations differently.  

Starting with flame wrinkling characteristics, the analysis showed that for a general non-

axisymmetric flame, a given helical mode number in the fluctuating flow field generates 

flame wrinkling with a different azimuthal dependence. For an axisymmetric flame, the 

helical modes in the fluctuating flow field generate an identical azimuthal dependence in 

the flame wrinkling behavior.  Thus, an axisymmetric excitation field can excite a helical 

flame disturbance in a non-axisymmetric, swirling flow and vice-versa.  In addition, it 

was shown that the dominant helical mode, mo, is a function of swirl number, flow 

velocity, frequency, and vortex phase speed.  Moving then to unsteady heat release, only 

the axisymmetric contribution of the flame wrinkling behavior contributes to the global 

area of axisymmetric flames. This stems from the simple mathematical fact that non-

axisymmetric modes in the fluctuating flame response lead to area cancellation due to the 

2π  periodicity of these modes. This implies that in case of axisymmetric mean flames, 

only the axisymmetric, m=0 mode in the fluctuating flow field contributes to changes in 

global flame area. This implies that even if the dominant wrinkling flame response mode 

is non-axisymmetric, it does not contribute to the global unsteady heat release of 

axisymmetric flames.  Thus significantly different sensitivities may be observed in single 
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and multi-nozzle flames in otherwise identical hardware, due to the near axisymmetry in 

one case and the strong non-axisymmetry in the other.  In order to answer this question, 

analytical results were derived for weak asymmetries and a numerical solver was used to 

strong asymmetries in the mean flame/flow. Two example cases were considered: (i) 

Elliptic cross-section and (ii) Square cross-section. In both these cases, results showed 

that for a linear analysis, the asymmetry modes in the mean flame/flow interact with the 

same but opposite modes in the flow disturbance to lead to a finite global flame response. 

This effect is compounded especially when non-compact flames are considered, wherein, 

the global unsteady heat release is not considered. In this case, the Rayleigh criterion 

requires the local unsteady heat release to be multiplied with the local unsteady pressure 

before the Rayleigh Index is calculated.   

8.1.3 Comparison with Experimental Data 

Having considered the theoretical framework and example calculations, the level-

set model is used for making predictions that are then compared with experimental 

measurements. For this, two different experiments are considered with different 

objectives: (i) two-dimensional bluff body stabilized flame for local flame response 

predictions and (ii) swirl stabilized lifted flame for global flame response predictions.  

For the two-dimensional bluff body flame case, a key contribution is the 

demonstration that calculations based upon first principles, using measured 

velocity/flame fluctuations as inputs, can be used to quite accurately predict the spatio-

temporal flame dynamics in a high turbulence flow. These are the first predictions of 

theory and experiment at these types of velocities/temperatures and the agreement is very 

encouraging.  However, it is also clear that accurate prediction of flame response requires 
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accurate prediction of the disturbance velocity field. For example, the data clearly 

indicate the simultaneous presence of both acoustic and vortical disturbances whose 

relative magnitudes and phases change with operating conditions. The analysis of these 

data also shows the relative role of the transverse acoustic waves in leading to flame 

fluctuations.  These transverse waves also excite longitudinal acoustic disturbances due to 

the fluctuating pressure drop they induce across the flow delivery system. Their primary 

role is in exciting the separating shear layer, leading to convected vortical disturbances 

which rollup the flame and lead to a longer length-scale pattern on the gain of the flame 

wrinkling.  In addition, the transverse acoustic disturbances also directly disturb the 

flame, although with an amplitude that is about 1/2 that of the vortically-induced velocity 

disturbances.  However, it is the superposition of these two types of disturbances that 

leads to the undulating character of the flame gain which is clearly shown in the data.  

For the swirling flame case, global flame response predictions were made. Due to 

the complex three-dimensional nature of the flame and flow, simulataneous 

measurements were not available. However, the motive of this study was to not only to 

demonstrate the use of level-set models, but also to demonstrate the use of an incomplete 

data set in generating model inputs. An important conclusion from this result is that, with 

appropriate knowledge of the disturbance field, the unsteady characteristics of the flame 

response can be predicted. The data was available at discrete locations and the “gaps” 

were filled using a Navier Stokes interpolation procudure that solved the momentum 

equations. The mean flame shape and mean flow were assumed to be axisymmetric and 

this assumption was validated by comparing the symetric mode amplitude with the 

contribtions from the asymmetric modes. As mentioned in Chapter 3, the strongly helical 
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character of the disturbance field, while having important local influences on the flame, 

do not influence the global unsteady heat release of axisymmetric flames. This allowed 

for an important simplification wherein, despite the availability of the azimuthal data 

field, the symmetric mode was the only mode used in the analysis. In the cases 

considered in this thesis, this assumption was shown to provide a good comparison 

between predicitions and measurements. 

 

8.2 Recommendations 

This thesis provided a valuable understanding of premixed flame response to non-

axisymmetric disturbances. However, several key assumptions need to be addressed. 

8.2.1 Non-linear Analysis 

The model presented in this thesis makes use of a linear perturbation framework. 

The results presented are thus only valid within this framework. However, for larger 

amplitudes, non-linear analysis is required and the results are susceptible to change. 

Firstly, the swirl parameter was shown to strongly affect the length scale of wrinkling. 

When nonlinear terms arising from kinematic restoration are introduced in the model, this 

will result in fast smoothing of shorter length-scale disturbances as the flame propagates 

normal to itself.  Similarly, small length-scale, small curvature wrinkles will be more 

strongly influenced by flame stretch.  As such, inclusion of either of these effects will 

cause swirl to have a greater influence on the global flame response than that is presented 

in this thesis. Secondly, the linear analysis showed that asymmetric modes in the mean 

flow interact only with helical modes of opposite sign in the flow disturbance to cause 

global flame response. However, in the case of non-linearity, this restriction is not valid. 
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Different mode numbers in the asymmetric mean flow and helical flow disturbances can 

interact with each other causing global flame response. This implies that the helical 

modes in the disturbance flow are not restricted by those in the mean flow. Finally, non-

linearity in the flame response model is important in capturing limit cycle behavior. All 

of these features can be captured using the Numerical solver detailed in Appendix B. This 

can also be coupled with a linear acoustic solver (Helmholtz solver) where the unsteady 

heat release source is obtained from the flame response numerical solver. 

8.2.2 Flame Speed Variations 

Next, the constant flame speed assumption must be relaxed. First, this needs to be 

addressed by considering flame stretch. This brings in the flame curvature and Markstein 

number into the problem and thus become important control parameters. The previously 

mentioned changes to flame wrinkling wavelength is further affected by interactions 

between large disturbance amplitudes and the Markstein length.  

The second, and very important factor is the consideration of turbulent flame 

speed effects. Swirling flows are highly turbulent in nature and hence a significant effect 

of turbulent flow on the flame speed must be accounted for. These require the use of a 

numerical level-set solver to track the flame front dynamics. Earlier work by Shin et al. 

[155] considered a bluff body stabilized flame in a non-swirling flow. In that framework, 

the laminar flame speed was used for instantaneous flame propagation with many 

different realizations available. Using this data, the turbulent flame speed could be 

computed. This framework can be expanded to a three dimensional swirl stabilised flame 

with a swirling mean flow and its corresponding turbulent flow field. 
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Finally, the effect of equivalence ratio fluctuations is important since these affect 

the flame speed greatly and hence the unsteady heat release. The role equivalence ratio 

fluctuations for an axisymmetric flame subjected to an axisymmetric disturbance was 

consdiered by Shreekrishna [125]. However, this work needs to be expanded to the 

framework in this thesis that considers a non-axisymmetric disturbance field. The 

interactions between the non-axisymmetry in the flow disturbances and the equivalence 

ratio fluctuations further adds to its importance. 

8.2.3 Role of Azimuthal Flow Fluctuations 

The axisymmetric flame model showed that the azimuthal flow fluctuations have 

no direct influence on the flame response. However, azimuthal flow fluctuations can 

couple with other flow component disturbances to indirectly cause flame response. These 

azimuthal flow disturbance are generated at the swirler in the nozzle annulus when axial 

flow fluctuations traverse the vanes of the swirler. The generated azimuthal flow 

fluctuations, its amplitude and phase are dependent on the geometry of the swirler vanes, 

frequency of forcing and the amplitude of axial flow fluctuations. For non-axisymmetric 

mean flames, the azimuthal flow fluctuations have a direct effect on the flame response. 

Apart from this direct effect, the asymmetries in the mean flow also result in differences 

in the way flow components couple with each other. These swirler dynamics cannot be 

modeled and required the use of Computational Fluid Dynamics simulations of the 

swirler annulus geometry. Additionally, these azimuthal flow fluctuations have a direct 

influence on the flame response of non-axisymmetric flames and this is also captured 

using CFD studies of a model combutor in conjunction with the swirler annulus section. 
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8.2.4 Comparison with Experiments 

The application of model to experimental data, in order to make predictions was 

an important step in strengthening the validity of the theoretical models. In the bluff body 

flame case, due to spatial and temporal resolution of the data, local flame response 

predictions could be made. However, such a benefit was not possible for the swirling 

flame case. A key next step is to consider local measurements that are both spatially and 

temporally well resolved in multiple planes. Experimental data of both the flow and 

flame would provide valuable insight into the azimuthal variations in the flame response 

characteristics in each of the measurement planes. Another key step, is to further extend 

the validation to a flow field/flame shape that is more strongly-non axisymmetric.  In 

such a non-axisymmetric configuration, the flames global heat release will be sensivitive 

to the asymmetric helical modes as well. 
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APPENDIX A 

FORMULATION FOR FLAME BASE MOTION EFFECTS 

 

The formulation presented in Chapter 3 considers a flame firmly attached to the 

centerbody. In this appendix, a formulation for including flame base motion effects is 

presented. 

The flame base motion is assumed to be in both the radial direction from the circular 

base/holder  as well as in the axial direction above the base/holder. These are a function 

of time and the azimuthal angle at the base and hence given by , ( , )b r tξ θ  and , ( , )b z tξ θ , 

respectively. The subscript b,i denotes the base motion along the i direction. The flame 

position as measured from the fixed base, in the lab-fixed coordinate system is given by 

( , , )t rξ θ . We now transform to a coordinate system in which the base is fixed. This is 

given as: 
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 (A.1) 

The level set equation in its implicit form can be converted to an explicit form using the 

relation: 

 ( , , ) ( ( , , ), , )G z z t r r t tθ ξ θ θ= −


  (A.2) 

This implies the following conversion relations: 
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The flame base motion in time can also be expressed as flame base velocities based on 

their time derivatives as: 
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Using these in the level-set equation (Eq.(3.4)) results in the following form: 
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For the steady state flame, there is no change in time and there is no flame base motion 

and so the following definitions and assumptions are valid: 
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This leads to the following equation for the mean flame shape: 
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θ θ
   ∂ ∂ ∂ ∂

+ + + + =   ∂ ∂ ∂ ∂   
 (A.11) 

The dynamics under the linear assumption leads to the form: 

 , , , ,
,

t t b z b r
t r flow base

U U
U u u

t r r r r
θ θ ξ ξξ ξ ξ ξ

θ θ θ
∂ ∂′ ′ ′  ∂ ∂ ∂ ∂′+ + = − − − ∂ ∂ ∂ ∂ ∂ ∂ 

  



 (A.12) 
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Where the wrinkle convection velocities are defined as: 

 , 2 2
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 (A.13) 
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 (A.14) 

And the forcing terms are given by: 

 flow z r
uu u u

r r
θξ ξ

θ
′ ∂ ∂′ ′ ′= − − ∂ ∂ 

 (A.15) 

 , ,base b z b ru u u
r
ξ ∂

= − ∂ 
 (A.16) 

The LHS of Eq.(A.12) is similar to equations derived in Chapter 3. In the RHS, the first 

forcing term given by flowu′  is due to flow disturbances. The second term corresponds to 

disturbances generated at the base due to the base motion velocity. These appear as an 

addition to the flow disturbance terms and are of opposite sign due to the sign convention 

chosen for base motion. The last term corresponds to the generation of wrinkles due to 

tangential transport of asymmetries in the base motion. The solution procedure for the 

equation is similar to that described in Chapter 3. 
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APPENDIX B 

NUMERICAL SOLVER 

 

In this appendix, we present the numerical methods used in the solver used for obtaining 

Flame Transfer Functions for the mean flame asymmetry cases presented in Chapter 5. 

Consider the 2D Hamilton-Jacobi (HJ) equation of the form: 

 ( , , , , ) 0rH r t
t θθ∂Φ
+ Φ Φ =

∂
 (B.1) 

Let ( , )i jr θ  be the (i, j) node in the 2D r θ−  grid space. Define the following: 

 
,

, 1, ,

, , 1,

( , )i j i j

r i j i j i j

r i j i j i j

r θ
+

+

−
−

Φ = Φ

∆ Φ = Φ −Φ

∆ Φ = Φ −Φ

 (B.2) 

Denote the derivatives as: r rΦ = ∂Φ ∂ . The Weighted Essentially Non-Oscillatory 

(WENO) approximations to the derivatives can then be expressed as: 

 

2, 1, , 1,
, ,

2, 1, , 1,

1 7 7
12

                   , , ,

r i j r i j r i j r i j
r i j

r r i j r r i j r r i j r r i jWENO

r r r r

r r r r

+ + + +
− − +±

− + − + − + − +
± ±

 ∆ Φ ∆ Φ ∆ Φ ∆ Φ
Φ = − + + −  ∆ ∆ ∆ ∆ 

 ∆ ∆ Φ ∆ ∆ Φ ∆ ∆ Φ ∆ ∆ Φ
±Φ   ∆ ∆ ∆ ∆ 



 (B.3) 

Where 

 0 2
1 1 1( , , , ) ( 2 ) ( 2 )
3 6 2
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And 
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 (B.6) 

Here, 610ε −
  is a small number chosen for preventing a zero denominator. This scheme 

results in a fifth order spatial accuracy for the derivative. 

This form of the derivative is used in the following form of Eq.(B.1): 

 ,
, , , , , , , , ,( , , , , , , , )i j

i j i j r i j r i j i j i jH r t
t θ θθ + − + −∂Φ

= − Φ Φ Φ Φ Φ
∂



 (B.7) 

Note that: 

 ( , , , , , , , ) ( , , , , , )H r t h h g g H r t h gθ θΦ = Φ


 (B.8) 

In order to evaluate the RHS, the Local Lax-Friedrichs (LLF) scheme is used: 

( , , , ) , ( , ) ( , )
2 2 2 2

LLF h h g g h h g gH h h g g H h h h h
+ − + − + − + −
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 (B.9) 

Where 
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Here, 
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[ ]( , ) min( , ),max( , )

h
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g
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θ
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=
∂ Φ

∂
=
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=

 (B.11) 

Now, the time stepping is performed using a third order Total Variation Diminishing 

(TVD) scheme: 
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 (B.12) 

Here, ( )nΦ  corresponds to the value at the n-th time step. Note that this time-stepping 

solver was created with a much larger goal of capturing non-linear effects. However, in 

this thesis, this numerical solver has been used for low amplitude linear cases where a 

single frequency is present in the flow and flame disturbances.  

These numerical methods are applied to Eq.(3.6) where: 
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2 2 2

2

1 1r L z
uH u s u

r r r r
θ

ξ

ξ ξ ξ ξ
θ θ
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 ∂ ∂ ∂ ∂   ≡ + + + + −    ∂ ∂ ∂ ∂     

 (B.13) 

 

The radial/azimuthal grid used in this analysis is comprised of between 500,000 and 1 

million mesh points. The OpenMP code is used to simulate this domain on parallel 

computing systems offered under the National Science Foundation’s XSEDE program 

(eXtreme Science and Engineering Discovery Environment). Specifically, the systems 

used were:  

(i) Nautilus, at the University of Tennessee that comprises of 1024 cores with 

4TB memory. 

(ii) Blacklight, at the Pittsburgh Supercomputing Center that comprises of 2048 

cores and 16TB of memory. 
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Each of these systems comprised of a global shared memory in a single system image 

architecture that was suitable for hybrid parallel computations. The single node/blade 

configuration comprised of 16 computational cores. Based on scaling studies for the 

developed code, the scaling for OpenMP communication and the mesh size of the 

problem, the analysis was parallelized across 48 cores. 
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APPENDIX C 

ADDITIONAL RESULTS FOR LOCAL FLAME RESPONSE PREDICTIONS 

 

This appendix section presents the remainder of the results obtained from the local flame 

response prediction study presented in Chapter 6. Specifically, the results correspond to 

the 100 m/s cases and are shown in Figure 81 to Figure 84 These results also show 

qualitative agreement between predictions and measurements in all cases (with one 

exception noted below). This series of figures show that the slope of the initial rise in 

gain, the presence of undulations or local maxima and minima, and the number of local 

maxima and minima are all well captured. Most cases where quantitative disagreements 

are present correspond to results which exhibit local maxima/minima in magnitude of 

velocity or flame wrinkling. Good examples of this are shown in Figure 82 and Figure 

84. As discussed earlier in Chapter 6, these local maxima/minima correspond to locations 

of destructive or constructive interference between disturbance sources with different 

phases.  In addition, qualitative disagreement, namely an almost 180 degree difference in 

phase, was observed between the predicted and measured flame wrinkling phase in the 

100 m/s, stratified mixture, in-phase forcing case, which is reproduced in Figure 83. 

Interestingly, for this same case, the flame wrinkling magnitude compares quite well, as 

well as the phase predictions for the velocity. 
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Uniform mixture, 100 m/s, 755K approach flow, In phase forcing 
(a)  

 

(b)  

 
(c)  

 

(d)  

 
 
Figure 81 : Velocity validation study for Uniform mixture, 100 m/s, 755K approach 
flow, In phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 
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Uniform mixture, 100 m/s, 755K approach flow, Out of phase forcing 

(a)  

 

(b)  

 
(c)  

 

(d)  

 
 
Figure 82 : Velocity validation study for Uniform mixture, 100 m/s, 755K approach 
flow, Out of phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 

 174 



 
Stratified mixture, 100 m/s, 755K approach flow, In phase forcing 

(a)  

 

(b)  

 
(c)  

 

(d)  

 
Figure 83. Velocity validation study for Stratified mixture, 100 m/s, 755K approach 
flow, In phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 
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Stratified mixture, 100 m/s, 755K approach flow, Out of phase forcing 

(a)  

 

(b)  

 
(c)  

 

(d)  

 
Figure 84. Velocity validation study for Stratified mixture, 100 m/s, 755K approach 
flow, Out of phase forcing, using Eq.(6.17) with flame edge as input : (a) amplitude 
comparison, (b) corresponding phase comparison; Flame edge validation study 
using Eq.(6.18) with velocity as input : (c) amplitude comparison, (d) corresponding 
phase comparison. 
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APPENDIX D 

NAVIER-STOKES INTERPOLATION PROCEDURE 

 

This section describes the procedure used to interpolate the time averaged and 

fluctuating disturbance flow fields in between the measurement planes in Chapter 7.  

Since the symmetric mode is of importance for the axisymmetric model, the data outside 

of measurement planes can be obtained using a few assumptions: 

1. Density is assumed to not change with time. 

2. Pressure gradients are neglected. This assumption is appropriate for the linearized 

disturbance equations, as vortical disturbances do not excite a leading order pressure 

disturbance [124].  This assumption is most problematic for the mean radial velocity 

equation, where swirl leads to significant pressure gradients.   

3. Linearized analysis: Fluctuations are assumed to be smaller than time-averaged 

quantities. This allows for the time-averaged behavior to be generated first 

independently and then used to generate the fluctuations. 

4. In case of the asymmetries, the non-linear terms can still lead to a symmetric 

contribution. For example, in the non-linear term, a negative mode -m in one 

component can interact with the corresponding positive mode +m in the other 

component leading to a symmetric term ( 1im ime eθ θ− + = ). Hence the governing 

equations for the symmetric mode can involve the asymmetric modes as well. 

However, these interactions between non-asymmetries are neglected. Only the 

symmetric components of the time-averaged quantities are considered. This implies 
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that we only solve for the symmetric component and hence there is no azimuthal 

dependence. This reduces the domain to an r-z plane. 

5. The axial velocity as measured in the r-z data is used in this model without change as 

( , )zU r z  and ,0
ˆ ( , )zB r z .  

We shall first consider the time-averaged velocity field generation. The time-averaged 

radial momentum equation is given by: 

 
2 2

2 2

1r r r r r
r z

UU U U U UU U r
r z r r r r z r

θ ν
  ∂ ∂ ∂ ∂∂

+ − = + −  ∂ ∂ ∂ ∂ ∂  
 (D.1) 

The time-averaged azimuthal (swirl) momentum equation is given by: 
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1r
r z

U U U U U U UU U r
r z r r r r z r
θ θ θ θ θ θν

  ∂ ∂ ∂ ∂∂
+ + = + −  ∂ ∂ ∂ ∂ ∂  

 (D.2) 

The fluctuating part of the radial momentum equation, for the symmetric mode is given 

by: 
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,0 ,0 ,0 ,0

2
,0 ,0 ,0

2 2

ˆ ˆ 2ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1

r rr r
r r r z z

r r r

B B UU Ui B U B U B B
r r z z r
B B B

r
r r r z r

θ
θω

ν

∂ ∂∂ ∂
+ + + + −

∂ ∂ ∂ ∂
  ∂ ∂∂

= + −   ∂ ∂ ∂   

 (D.3) 

The fluctuating part of the azimuthal momentum equation, for the symmetric mode is 

given by: 
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 (D.4) 

The above equations are solved in an r-z rectangular domain and require boundary 

conditions. These are obtained from the measured data. Note that each of the unknowns 
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require two boundary conditions at the outer extents of the rectangular domain, since the 

governing equations are second order (due to the viscous terms). 

 The viscosity, ν is obtained using the equivalence ratio and preheating 

temperature for the CH4/air mixture. The reactant and product values are kept constant at 

their respective grid points across the flame location. Below is a summary of the 

measured data and how it shall serve as the boundary conditions, either directly or 

through some assumptions: 

1. The r-z data provides ( , )zU r z  and ,0
ˆ ( , )zB r z  everywhere in the domain and this is 

directly used for the convection terms. 

2. On the centerline (r=0), the time-average flow boundary conditions are: 

( 0, ) 0U r zθ = =  and ( 0, ) 0rU r z= = . 

The symmetric mode in the fluctuating flow has the following boundary 

conditions. The azimuthal component is zero for both the in-phase case and the 

out-of-phase case: ,0
ˆ ( 0, ) 0B r zθ = = . The radial component is zero for the in-

phase case (due to wave cancellation at the centerline): ,0
ˆ ( 0, ) 0rB r z= = , but for 

the out-of-phase case this is obtained from the centerline transverse velocity in the 

r-z PIV measurement. 

3. The r-θ data is measured at z/D=0.14 and z/D=0.5. The symmetric modes of the 

radial and azimuthal velocity in this plane are the boundary conditions at these 

two axial locations. i.e., ( , 0.14 ,0.5 )rU r z D D= , ( , 0.14 ,0.5 )U r z D Dθ =  and 

,0
ˆ ( , 0.14 ,0.5 )rB r z D D= , ,0

ˆ ( , 0.14 ,0.5 )B r z D Dθ = . 
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4. The helical mode amplitudes of the asymmetric modes decay radially, and so at 

the outer extent of the radial domain the velocity between the two planes 

(z/D=0.14 and z/D=0.5) is not very different. A linear interpolation between the 

values is used on this boundary (r=Router). 

These PDEs are solved in the r-z domain using simple finite differencing. The time-

average equations (Eqs.(D.1) & (D.2)) are solved first and independent of the velocity 

dynamics. These time-average solutions are then used as inputs to solve for the 

symmetric mode of the fluctuations (Eqs.(D.3) & (D.4)). An upwind scheme is used for 

the first derivative and a central difference is used for the second derivatives. A time-

marching based method was used to obtain steady-state convergence with an appropriate 

CFL number based fixed time-step.  
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