
A PRODUCT FAMILY DESIGN METHODOLOGY EMPLOYING PATTERN
RECOGNITION

A Thesis
Presented to

The Academic Faculty

by

Dane F. Freeman

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
December 2013

Copyright © 2013 by Dane F. Freeman

A PRODUCT FAMILY DESIGN METHODOLOGY EMPLOYING PATTERN
RECOGNITION

Approved by:

Prof. Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Gunnar Holmberg
Saab Aerosystems
Saab AB

Prof. Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Dongwook Lim
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Brian German
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 21 August 2013

To my parents

iii

ACKNOWLEDGEMENTS

The Ph.D. process is long and arduous and I owe much to those who have helped me along the way.

I want to begin with thanking my committee members Dr. Mavris, Dr. Holmberg, Dr. German,

Dr. Schrage, and Dr. Lim for their challenging questions and feedback to help produce the final

product.

I would like to thank Dr. Mavris for giving me the opportunity to grow academically at the

Aerospace Systems Design Laboratory. ASDL is a unique environment with many projects and

people to learn from. I also want to call special attention to Dr. Holmberg and Saab’s support for the

past few years as I have worked towards completing this dissertation. Additionally, I want to thank

Dr. Lim and Dr. Garcia for their guidance and supervision of my research over the years. I would

also like to thank Philippe Ranque for his contributions to the aircraft modeling and simulation

environment.

I also want to acknowledge a few of my colleagues at ASDL: Curtis Iwata, James Arruda,

Evan Anzalone, Carl Johnson, Elizabeth Tang, Matt Daskilewicz, Jonathan Murphy, and Chung

Lee. I appreciate their time and effort listening to me sounding out my research ideas and found

their insight irreplaceable. My time in graduate school was much more meaningful through their

friendship and support.

Most importantly, I would like to acknowledge my loving family, my parents who have helped

instill in me a life long love of learning, and my sister Danielle and her husband Michael for being

there when I needed them.

Finally, with my document complete, I look forward to enjoying everyone’s company again.

Thank you.

iv

Contents

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF NOMENCLATURE . xiv

SUMMARY . xvi

I PRODUCT FAMILY OVERVIEW . 1

1.1 Product Families . 1

1.1.1 Advantages of Product Families . 2

1.1.2 Disadvantages of Product Families . 3

1.1.3 Aerospace Examples of Product Families 5

1.2 Product Family Design Challenges . 9

1.3 Research Focus and Overview . 12

1.3.1 Outline . 17

II CURRENT PRODUCT FAMILY DESIGN METHODS 20

2.1 Combinatorial Configuration Complexity . 23

2.2 Product Definition . 25

2.3 Product Design . 28

2.3.1 Commonality . 31

2.3.2 Optimization Approaches . 33

2.3.3 Visualization / Hybrid Approaches . 37

2.4 Gaps and Hypotheses . 40

III DEVELOPMENT OF NEW PRODUCT FAMILY DESIGN METHODOLOGY . 45

3.1 Family Design Methodology . 45

3.1.1 Step 1: Establish the Need . 48

3.1.2 Step 2: Define Family Architectures . 50

3.1.3 Step 3: Establish Value Objectives . 51

v

3.1.4 Step 4: Generate Feasible Alternatives 52

3.1.5 Step 5: Commonality Identification . 54

3.1.6 Step 6: Evaluate Alternatives and Make Decision 59

3.1.7 Remarks . 60

IV CLUSTERING APPROACH FORMULATION . 62

4.1 Cluster Analysis . 63

4.1.1 Fuzzy Clustering . 64

4.1.2 Module Similarity . 66

4.2 Design Space Exploration . 69

4.3 Clustering Approach . 73

V PROBABILISTIC APPROACH FORMULATION 76

5.1 Surrogate Modeling . 76

5.2 Probabilistic Graphical Models . 80

5.2.1 Bayesian Networks . 81

5.2.2 Inference . 88

5.3 Similarity Measures . 93

5.4 Bayesian Network Applications . 95

5.5 Bayesian Network Approach . 96

VI FEASIBILITY OF BAYESIAN NETWORK SURROGATE 101

6.1 Conditional Density Estimation . 101

6.2 Bayesian Network Surrogate Model Example Application 112

6.3 Implementation . 122

6.4 Conclusions . 126

VII DESIGN OF AN ELECTRIC MOTOR FAMILY 128

7.1 Motor Model . 128

7.2 Product Family Design Problem . 132

7.3 Testing Commonality Identification Approaches 138

7.3.1 Experiment 1 . 141

7.3.2 Experiment 2 . 158

7.3.3 Experiment 3 . 160

vi

7.3.4 Experiment 4 . 166

7.4 Conclusions from Electric Motor Experiment 177

VIIIDESIGN OF AN AIRCRAFT FAMILY . 179

8.1 Establish the Need . 180

8.2 Define Family Architectures . 185

8.3 Establish Value Objectives . 187

8.4 Generate Feasible Alternatives . 188

8.4.1 Modeling and Simulation . 188

8.4.2 Integrated Simulation Environment . 189

8.4.3 Model Verification . 194

8.5 Commonality Identification . 203

8.5.1 Fuzzy Clustering Approach . 204

8.5.2 Commonality Probabilistic Approach 206

8.5.3 Comparison of Criteria . 211

8.6 Evaluate Alternatives and Make Decision . 217

8.7 Conclusions from Aircraft Family Demonstration 219

IX SUMMARY AND CONCLUDING REMARKS . 224

9.1 Contributions . 230

9.2 Recommendations and Future Work . 232

Appendix A — BAYESIAN NETWORK LIBRARY 234

References . 261

vii

List of Tables

1 Characteristics of Six Widely Used Commonality Indices [121] 32

2 Example Fuzzy Equivalence Relation . 68

3 Example Fuzzy Equivalence Relation α-cut of .8 69

4 Options for Each Stage of Surrogate Modeling[166] 78

5 Number of Possible DAGs for a Given Number of Variables 84

6 DoE Ranges . 113

7 Universal Motor Nomenclature . 129

8 Constants used in Universal Motor Model . 129

9 Universal Motor Variable Bounds . 132

10 Platform and Design Variable Settings from Dai and Scott[33] 137

11 Implemented Model Platform and Variable Settings 138

12 L Binary Fuzzy Similarity Relation . 143

13 L Fuzzy Equivalence Matrix . 143

14 RRMSD of the MC Design Space Exploration . 152

15 Platform and Design Variable Settings . 154

16 Expanded MC RRMSD . 156

17 Platform and Design Variable Settings from Simpson[148] 162

18 RRMSD for Experiment 3 . 165

19 Bayesian Network RRMSD . 172

20 Method Comparison . 177

21 Mission Specific Characteristics . 184

22 Comparisons of ABM and DES . 189

23 Aircraft DOE Ranges . 196

24 Criteria for Filtering . 204

25 Filtered Subset Data Size from Original DoE . 204

26 Summary of Hypothesis Tests . 231

viii

List of Figures

1 Product Family Distinctiveness Trade-off[128] . 5

2 Boeing 737 Family . 6

3 F-35 Commonality [56] . 8

4 Fundamental Family Trade-off . 10

5 Product Family Approach . 12

6 Thesis Overview . 19

7 Product Design . 21

8 A Holistic View of Product Family Design and Development 22

9 Hasse Diagram Showing p the Partially Ordered Set of Partitions of {1,2,3,4} [143] 24

10 Continuum of Solutions . 27

11 Classification of Product Family Optimization Formulations [82] 31

12 Dai Example of Sensitivity Clustering[33] . 39

13 Example hypergraph . 40

14 Product Family Hierarchy . 43

15 The Georgia Tech IPPD Methodology . 47

16 Generic Product Family Design Methodology using IPPD 49

17 Satisfaction of Different Functional Requirements 51

18 Needs of the Modeling and Simulation Environment 53

19 Space Exploration . 54

20 Filtered Design Space . 56

21 Pattern Identification . 57

22 Platform Commonality Identification . 57

23 Bayesian Network Process . 59

24 Evaluate Architectures . 61

25 Comparison of Traditional Clustering (left) Versus Fuzzy Clustering (right) 63

26 Example Equivalence Class (sharing partition) Dendrogram 69

27 Pareto Frontier Example . 71

28 Platform Commonality Identification . 74

29 Directed Graph Example . 82

ix

30 Markov Blanket . 83

31 Inference Techniques[58] . 89

32 Example of node Reduction[27] . 90

33 Example Importance Sample with CPT[27] . 92

34 Bayesian Network Process . 97

35 Pareto Frontier . 99

36 Isotropic Gaussian (left), Anisotropic Gaussian (right) 102

37 Pareto Front of Test Function . 104

38 Network Structure for Pareto Frontier of Test Function 105

39 Isotropic Kernel Sample . 107

40 ZDT1 Sample from Bayesian Network using Anisotropic Kernels 111

41 Comparison between NSGA-II (left) and PMBGA (right) 112

42 Breguet Range Equation DOE . 114

43 Bayesian Network Structure for the Breguet Range Equation DOE 115

44 Joint Probability Distribution Sample of the Bayesian Network 116

45 Training Data (top) Sampled Data (bottom) . 118

46 P(Breguet.Range|FuelFrac = .5,LD = 17,Velocity = 400,T SFC = 1) 119

47 P(Velocity|Breguet.Range = 4713,FuelRac = .5,LD = 17,T SFC = 1) 119

48 Breguet Goodness of Fit . 121

49 Breguet Expected Value of Range Convergence for Various Ranges 122

50 Breguet Range Sparsity . 123

51 Multivariate View of the Top-Down Decision Making Process for Inverse Design [15]127

52 Universal Motor Model [148] [20] . 129

53 Three Dimensional Pareto Frontier for all Motors 135

54 Mass and Efficiency Pareto Frontier for all Motors 135

55 Variation of Motor Variant Design Variables Along Pareto Frontier 136

56 PMBGA Final Front . 137

57 Baseline Family . 139

58 XB Index of Each Module for Different Number of Clusters 142

59 Awa Partitions . 144

60 r Partitions . 144

x

61 Aw f Partitions . 144

62 t Partitions . 144

63 L Partitions . 145

64 Ns Partitions . 145

65 Nc Partitions . 145

66 1,000,000 Filtered MC . 148

67 1,000,000 Filtered MC with Aw f and t Common 149

68 1,000,000 Filtered MC Aw f , t, and L platforms 150

69 1,000,000 Filtered MC Aw f , t, L ,Nc, and Ns platforms 151

70 Feasible Subset Platform Histograms for MC Exploration 153

71 Comparison of Objective. Only performance (left), with design variable partitions
(right) . 154

72 Refined MC 1,000,000 Filtered MC . 155

73 Comparison of Objective . 156

74 Feasible Subset Platform Histograms for Expanded MC Exploration 157

75 MC left, LHC right . 158

76 Expanded MC left, LHC right . 159

77 Design Variable Prediction Errors using PMBGA History 160

78 PMBGA Parallel plot . 161

79 Comparison of Objective for the PMBGA . 162

80 New performance requirements overlaid on Pareto Frontier of all Motors 163

81 Experiment 3 Parallel plot using MC database . 164

82 Experiment 3 Comparison of Objective . 165

83 Feasible Subset Platform Histograms for Experiment 3 165

84 PMBGA Final Front Network Structure . 167

85 Sample from PMBGA Final Front database . 168

86 Objective Space Sample from Bayesian Network Models 168

87 Module Marginal Distributions . 169

88 Module Posterior Distributions Inferred using Performance Targets 171

89 Platform Posterior Distributions . 172

90 Module Posterior Distributions using Awa and t platform posterior distributions and
performance targets . 173

xi

91 Platform Posterior Distributions for Aw f , t, and L 174

92 Module Posterior Distributions using Aw f , t, and L platform distributions 175

93 Posterior Platform Distributions using Bayesian Network Inference 176

94 Product Family Domains Diagram . 180

95 Norwegian Coast . 181

96 Area of Greece under Consideration . 182

97 Mission Hierarchy . 185

98 Maritime Architecture One . 186

99 Maritime Architecture Two . 187

100 Integrated Modeling and Simulation Environment 191

101 Flight Profile of Drop Aircraft . 192

102 Logic of Simulating Environment[125] . 193

103 Aerial Firefighting ABM Frontend[125] . 194

104 Searching Algorithm Cost Function Visual Representation[125] 195

105 Firefighting Neural Network Contour Plot . 196

106 Burnt Land and Drop Aircraft Capability for Varying Numbers of Drop Aircraft . . 197

107 Burnt Land and Drop Aircraft Capability for Varying Numbers of Aircraft 198

108 Burnt Land vs Total Firefighting Scenario Cost 199

109 Total Search and Rescue Time Envelope vs Program Cost 200

110 Time Between Two Detections Envelope vs Program Cost 200

111 Total Time to Detect Oil Spill Envelope vs Program Cost 201

112 Time Between two Detections Radar Performance 201

113 Probability to Identify Polluter . 202

114 Search and Rescue Time vs Time to Clean Oil Spill for Different numbers of Aircraft 203

115 Fuselage Module Space. Criteria 1 (left) and Criteria 2 (right) 205

116 Aircraft Module Similarity . 205

117 Aircraft Module Similarity . 206

118 Firefighting Scenario Bayesian Network Structure 207

119 Maritime Scenario Bayesian Network Structure 207

120 Basis Function BIC Score . 208

121 Maritime Scenario Original left, Samples from Bayesian Network right 210

xii

122 Firefighting Scenario Original left, Samples from Bayesian Network right 210

123 Burnt Land Comparison Original left, Bayesian Network right 211

124 Parallel Plot of Samples for First Filtering Criteria 213

125 Module Posterior for First Filtering Criteria . 215

126 Module Similarity for First Filtering Criteria . 215

127 Parallel Plot of Inference Samples for Second Filtering Criteria 216

128 Module Posterior For Second Filtering Criteria 218

129 Module Similarity for Second Filtering Criteria 218

130 Aircraft Type Distributions . 219

131 Posterior Platform Distributions for First Filtering Criteria 220

132 Posterior Distributions of the Scenario Mission Performances using First Filtering
Criteria . 221

133 Simplified Library Structure . 236

xiii

NOMENCLATURE

x̄ Vector of x

E(x) Expected Value of a Random Variable

N (µ,σ) Normal Distribution for a Random Variable

P Set of Products in a Family

µ Mean

φ (x,x′) Kernel Basis Function

Σ Covariance Matrix

σ Standard Deviation

b Number of Basis Functions

P(x,y) Joint Distribution of x, y

P(x) Probability of a Random Variable x

Rpq
i j Binary relation variable indicating sharing design variables

between products p and q

XB Xie Beni Index

BIC Bayesian Information Criterion

CDE Conditional Density Estimation

CDF Cumulative distribution function

Component A piece of a product that may be indivisible or composed

of two or more interrelated sub-components

xiv

DAG Directed Acyclic Graph

DoE Design of Experiments

EMD Earth Movers Distance

FCM Fuzzy C-Means

LHC Latin Hypercube

LSCDE Least Squares Conditional Density Estimation

MC Monte Carlo

Module A physical or conceptual grouping of components that share

some characteristics

MoE Measure of Effectiveness

MOGA Multiobjective Genetic Algorithm

PDF Probability density function

PMBGA Probabilistic Model Building Genetic Algorithm

Product Family A set of similar products that are derived from common

platforms and yet still possess specific features or function-

ality to meet particular customer requirements

Product Platform A set of subsystems and interfaces developed to form a

common structure from which a stream of derivative prod-

ucts can be efficiently developed and produced

SAR Search and Rescue

SoS System-of-systems

UAVs Unmanned Air Vehicles

xv

SUMMARY

To remain competitive in the marketplace, companies must offer their products at competitive

prices. If they create many products to fulfill similar but different market niches, then there are

implied similarities between these products. The company can then attempt to leverage those sim-

ilarities and create a family of products to streamline design, improve manufacturing, and facilitate

maintenance.

Sharing components, called platforms, between different products can minimize duplication of

effort, thereby lowering family costs. Additional cost savings comes through economies of scale as

the same component has now multiple end products. However, if the products’ requirements are too

dissimilar, sharing components may compromise the end product; such variance will lead to lower

end products being overdesigned and/or higher end products being underdesigned. It is critical for

a successful family to identify which components are similar, so that sharing does not compromise

the individual products’ performances.

Most existing product family design methods make decisions a priori about platforms; restrict-

ing platforms to be used by every product in the family. Methods that simultaneously optimize

component sharing and design variable settings have the potential to find better families. However,

allowing components to be shared between any subset of products leads to a very large combi-

natorial problem. Considering large product families can be difficult to explore because of high

computationally complexity.

In addition to the combinatorial problem, the computational complexity is also driven by the

scope of the family and their operating environment. Existing methods focus on families with a set

of well defined requirements. However, these requirements are not known at the conceptual design

phase for many problems. This is especially true when the products in the family operate coopera-

tively to achieve mission objectives. Products operating in this system-of-systems manner require

more complex analysis models which have longer execution times. System-of-systems problems are

xvi

also usually stochastic which requires again increasing the number of evaluations and model com-

plexity. A system-of-systems product family with unknown component sharing quickly becomes

intractable.

A new generic product family design methodology is proposed, which attempts to lessen the

combinatorial problems by identifying possible sets of commonality inherent to the family. By

having a commonality approach that can reduce the combinatorial problem allows for more fam-

ily alternatives to be considered. The methodology needs to balance cost savings and performance

compromises due to component commonality and should address product growth potential, tech-

nology evolution, and uncertainty. Also, it should be possible to determine the platform sensitivity

to changing requirements. This research formulates and tests two commonality identification ap-

proaches.

The first, a clustering approach, is based on the pattern recognition technique of fuzzy c-means

clustering in domain subspaces. While these domains exist across the entire scope of product family

design, this dissertation focuses on component subspaces. If components from different products are

similar enough to be grouped into the same cluster, then those components could possibly become

the same platform. Fuzzy equivalence relations that show the binary relationship from one prod-

ucts’ component to a different products’ component can be extracted from the cluster membership

functions.

The second, a probabilistic approach, focuses on treating the results of a design space explo-

ration as a joint probability distribution. This joint probability distribution is then encoded by a

continuous nonparametric Bayesian network. The Bayesian network acts as a surrogate model

of the design space. However, unlike traditional surrogate models the network captures more in-

formation about the interactions between the design variables. Additionally, the Bayesian network

provides a robust evaluation framework of statistical inference using importance sampling. Through

inferences, posterior distributions of the design variables can be obtained by conditioning on a set

of product performances and component constraints. Finally, the posterior design variable dis-

tributions are processed using a similarity metric like the earth mover distance to identify which

products’ components are similar to another’s.

xvii

To understand the applicability and limits of these commonality identification approaches a se-

ries of experiments and a practical demonstration problem are presented. The experiments consist of

a family design problem of universal electric motors. From these experiments, the fuzzy clustering

was found to be a sound approach to extract commonality. However the approach scales poorly with

large complicated designs requiring complex models with long execution times. These experiments

found the probabilistic approach to be more accurate and scalable to large complex product design

spaces.

Finally, a practical aircraft family design problem is presented demonstrating the generic prod-

uct family design methodology and both commonality identification approaches. These aircraft

operate together to perform a variety of missions across two unique scenarios. This requires the im-

plementation of a system-of-systems model for each scenario. The first scenario is a set of maritime

monitoring missions in the Norwegian Exclusive Economic Zone (EEZ). The second scenario is an

aerial firefighting mission where the aircraft find and extinguish the fire. The goal is to determine

whether the commonality approaches can detect changes in component similarities using different

design criteria.

The design of product families requires solving a large combinatorial problem. An approach

to quantify component similarities serves to decrease this combinatorial problem by pruning poor

options from consideration and provides valuable feedback for designers. Although the fuzzy clus-

tering approach can be limited to small problems, probabilistic approach using Bayesian networks

is a robust technique for assessing commonality. Furthermore, the use of Bayesian networks as a

source for encoding the joint probability distribution of a design space has implications well beyond

the study of product families.

xviii

Chapter I

PRODUCT FAMILY OVERVIEW

Customers desire low cost products that satisfy their needs. For a manufacturer to capture a signif-

icant market share, it must offer a variety of products each satisfying targeted customer niches in

a timely and inexpensive manner. To accomplish this goal, manufacturers can either design each

product independently or as a group. If several targeted customer market niches are similar enough,

then there could be some commonality between different products and they could share common

components. Groups of similar products that share common components are called product families.

Sharing components between different products can minimize duplication of effort, thereby lower-

ing family costs. Efficiency in design, through careful development of product families, increases

revenue for both manufacturer and customer.

1.1 Product Families

This thesis analyzes the relationship of product families and individual products with respect to

shared components. A product, in this instance, is defined as a component which is offered to a

customer[150]. In general, a product may be a service, a process, or anything which is offered to

the market. This thesis, however, is concerned with physical products, rather than processes, that

are comprised of physical components. A component refers to an object and may be indivisible

or composed of two or more interrelated sub-components. The distinction between products and

components is fuzzy and depends on perspective, because what is sold as a product by one supplier

may become a component of a subsystem of another company.

A product family is a set of similar products that are derived from common platforms but possess

specific features or functionality to meet particular customer requirements [101]. The concept of a

product family, however, is not limited to only the physically existing products. This concept can

also encompass other variants, such as possible future products[150].

Individual products in a family are thus defined by their composition of shared components

(product platforms) and unique components. A product platform is defined as a set of subsystems

1

and interfaces developed to form a common structure from which a stream of derivative products can

be efficiently developed and produced [101]. It is the common set of design variables around which

a family of products can be developed [150]. The idea of platforms also extends to manufacturing

technologies and processes employed in production [101].

Product platform design theory came from the mass customization paradigm of the late 1980s

[31]. Mass customization refers to the ability to provide products, tailored to the needs of multiple

customer niches, by reusing components common across a family of products[35]. Firms who

manage a product portfolio one single product at a time fail to embrace commonality, compatibility,

and standardization[101]. This failure to embrace commonality misses an opportunity for a better

performing family because it leads to the development of several unique but similar product specific

sub-components [101]. The single product focus is common with evolutionary product approaches.

One example of a manufacturer rectifying their evolutionary family is in the 1970s when Black &

Decker effectively redesigned their hand held tools by treating the family as a whole[101]. As a

result, the newly designed set of products were based on similar components which lowered costs.

1.1.1 Advantages of Product Families

There are several benefits of product platforms. The primary benefit is lower life cycle costs. The

majority of the cost savings associated with product platforms is derived from the manufacturer’s

ability to reduce redundant effort and waste. Moreover, because components are used between

products, there is a greater capitalization on economies of scale [57]. Economies of scale, in

turn, increase cost-efficiency by reducing the fixed cost per unit as the volume of production in-

creases. Even if the whole products themselves do not lead to economies of scale because of the

need to maintain product variety, it is believed that at least the shared elements could enable similar

economies of scale effects.

Product platforms also reduce maintenance costs and logistical problems because of a simplified

supply chain. Because of the commonality between products fewer unique replacement components

need to be stocked. Also maintenance personnel are more versatile and efficient as training can be

applied to all of the similar products. Personnel can better maintain products because they are very

familiar with normal behavior expected from wear and tear, and can replace or maintain components

2

based on a set of reliable tested criteria.

In addition to lower life cycle costs, product families can be more reliable because component

designers can focus more attention on components shared across the platform. Specifically, product

reliability is further bolstered because fewer components allow design analysis to focus in more

detail on how the part will be used and anticipate possible failure modes.

Platforms can also be leveraged in future products, making them vital to future core capabilities

[100]. For instance, an aircraft manufacturer can add a fuselage plug increasing the interior volume

for the next generation of aircraft. Thus, development time is also shortened on derivative products

because manufacturers can use existing components should another product be desired and is within

the capability range of the current family.

Another added benefit is the increased ability to upgrade an end product because a product

platform can be easily modified through the addition, substitution, and exclusion of modules [147].

A module refers to a physical or conceptual grouping of components that share some characteristics

[161]. Components that all operate the same way can easily be upgraded and improved upon. This

adds flexibility, which is the ability of a design to satisfy changing requirements that occur after the

system has been fielded[132]. Flexibility also extends product life by providing more options for

upgradeability[163].

1.1.2 Disadvantages of Product Families

Product platforms have a few limitations and may not always offer the best means to reach the

market [88]. The fixed development costs for a product platform can be as much as 10 times greater

compared to single product development, primarily because of added complexity associated with

coupling product platforms with the interfaces necessary between components[162].

Costs of platform-based product development inhibit its use for high levels of non-platform

scale economies, or extreme levels of market diversity [88]. If the manufacturer will produce a

large number of products which already enable economies of scale, then the added investment in

platforms may not yield much of a portfolio improvement.

3

Extreme levels of market diversity means there is a large gap in requirements between the high-

est end products to the lowest end. The excess capability from a component designed for the con-

straining product may lead to a much more expensive lower end product than if it had been a unique

component [47]. Increases to lower performance products’ cost limit the amount of ideal common-

ality in product families. For example, a particular product’s performance may degrade because of

component sharing. Consider the design of an automobile family that employes a common engine

across a high performance sports car and a lower performing fuel efficient car. Sharing the engine

requires a trade study because the vehicles’ performances are drastically opposing each other and

the final performance is closely coupled to the engine. If the shared engine was designed primarily

for use in the sports car, the fuel efficient car would have more excess power but also suffer from

poorer fuel economy. If the engine was designed for the fuel efficient car and used in the sports car,

the sports car would probably suffer a decrease in performance. Any engine designed to meet the

middle of the road must trade-off fuel efficiency and excess power, but the end products may not sat-

isfy the consumer market niches. Therefore, when determining the extent of platform development,

care must be taken to maximize the benefit to the family while sacrificing the least performance.

This merging of product performances can also reduce customer perception of product differ-

entiation. Distinctiveness is a difficult quality to predict and relates to consumer perception of the

product. Figure 1 shows the trade-off between distinctiveness versus commonality for different

architecture characteristics. Products that have no common parts are very distinctive. However,

as sharing increases, products become less distinctive. The loss of distinctiveness is different for

various product architectures. When deciding on a product architecture, some alternatives are less

sensitive to this loss and may allow for better component commonality without sacrificing too much

distinctiveness.

Eventually, no matter the architecture, as commonality increases, product performances within

the family become more similar and may decrease compared to the highly optimized independent

product with no commonality, e.g. the car example.

4

100

Very distinctive

Less distinctive

Common Parts (%)
100

Products are
very distinctive,

but share few
common parts

Products are
less

distinctive,
but share

many parts

Scenario where
products

are not distinctive
and share few

parts

Products are
very distinctive,

and share
many parts

Architecture 1

Architecture 2

Architecture 3

O
B
JE

C
TIV

E

Figure 1: Product Family Distinctiveness Trade-off[128]

1.1.3 Aerospace Examples of Product Families

There are several examples of product families in the aerospace industry. In aerospace, the products

being designed are inherently complex due to highly coupled components necessary for meeting

functional requirements. There is also high risk with large costs associated with their development.

With current complex systems the trend is to design these products for increasingly longer lifetimes

[132]. However, as products experience longer life cycles, they should be adaptable to changing

requirements [66].

Because the risks and design investment are high, aerospace families tend to be product driven

redesigns. One example of this kind of flexibility occurring in the aerospace industry comes from

Holmes study of platform design in medium lift helicopters [67]. It details the upgradeability of the

Sikorsky S-70/UH-60 and how it has been able to adapt to new customer requirements due to the

flexibility in its baseline architecture.

In addition to aerospace families being flexible for long life cycles, there is a recent trend to

make reconfigurable products. A reconfigurable system is designed to maintain a high level of

5

Figure 2: Boeing 737 Family

performance by changing its configuration to meet multiple functional requirements or a change in

operating conditions[112]. This results in the system being able to perform multiple functions over

time but not concurrently, to adapt into future configurations, and to still partially operate despite

some component failures[46].

There is much ongoing research considering the use of Unmanned Air Vehicles (UAVs) as

reconfigurable families [115]. This is because they do not have the same constraints as traditional

manned aircraft on geometry, structures, and pilot survivability.

Observation 1

Aircraft have long life cycles and need to be flexible to changes in requirements. One method

to remain flexible is by modularizing components to make the aircraft easily reconfigurable.

The virtues of long-life cycles and reconfigurability are well illustrated by the examples of the

Boeing 737 and the F-35 Joint Strike Fighter (JSF).

1.1.3.1 Boeing 737

The Boeing 737, figure 2, is an example of a family driven redesign approach typical with the kinds

of long life cycle designs characteristic in the aerospace industry. The 737 has had three different

sets of products: the Original series, the Classic series, and the Next Generation series. Currently,

there are plans to produce another derivative generation dubbed the MAX and is to be introduced in

2017.

Within each series there are a variety of product variants each targeting different passenger

6

and range requirements. However, most of the variants share common wings and employ fuselage

plugs which act as a scaling platform between the variants. A scaling platform uses scaling design

variables to stretch or shrink the platform. For example the fuselage plug increases the length of the

fuselage without affecting the diameter. Scaling platforms can be considered a subset of module-

based platforms[52].

The current series the Boeing 737 Next Generation has four variants 600/-700/-800/-900. Re-

cently Boeing announced that it would produce another series of 737 instead of a new “clean sheet

design.” This Boeing 737 MAX series will use a larger, more efficient engine and have a slightly

modified 737 Next Generation airframe with the same fuselage lengths and door configurations.

There are three variants planned to be part of the MAX series: 737 MAX 7, 737 MAX 8, and 737

MAX 9 to replace the 737-700, -800, and -900ER.

1.1.3.2 F-35 Joint Strike Fighter

The F-35 Joint Strike Fighter (JSF) is an example of a military aircraft family. The program was

established in 1994 by the Secretary of Defense with the objective of bringing the different branches

of the military (Navy, Air Force, and Marine Corps) together to collaborate on future strike warfare

concepts[39]. Military planners hoped to reduce costs by maturing advanced technologies, compo-

nents, and processes. The F-35 family, figure 3, is comprised of three variants: F-35A conventional

take off and landing (CTOL), F-35B short take off and vertical landing (STOVL), F-35C carrier

based (CV).

Each branch, along with the United Kingdom royal Navy incorporated different

requirements to the next generation fighter they were seeking to replace [152]:

• Navy: A CV for first-day-of-the-war, survivable strike fighter to complement the

F/A-18E/F

• Air Force: A CTOL multirole aircraft (primary air-to-ground) to replace the F-16

and A-10 and to complement the F-22

• Marine Corps: A STOVL aircraft to replace the AV- 8B and the USMC F/A-18

• United Kingdom Royal Navy: A STOVL aircraft to replace the Sea Harrier.

7

Figure 3: F-35 Commonality [56]

The canopy, radar and most of the avionics are common to the three variants [1]. The marine

variant of the JSF is very similar to the air force variant but with a slightly shorter range because

some of the space used for fuel is used for the lift fan of the STOVL propulsion system.

The main differences between the naval variant and the other versions of the JSF are associated

with the carrier operations. The internal structure of the naval version is very strong to withstand

the high loading of catapult-assisted launches and tailhook arrested landings. The aircraft has larger

wing and tail control surfaces for low-speed approaches for carrier landing. Larger leading edge

flaps and foldable wingtip sections provide a larger wing area, which provides an increased range

and payload capacity.

While still in development, The F-35 total development funding is now estimated at $56.4 billion

to be completed in 2018. This is a 26 percent cost increase and a 5-year schedule slip from the

current baseline established in 2007. Affordability for the U.S. and its partners is challenged by a

near doubling in average unit prices since the program started and by higher estimated life cycle

costs. Going forward, the JSF requires unprecedented funding levels in a period of more austere

defense budgets [156].

The STOVL variant has significant technical problems and deficient flight test performances. To

address these technical problems and test deficiencies of the STOVL variant, the DOD significantly

8

scaled back its procurement quantities and directed a 2-year period for evaluating and engineering

technical solutions to inform future decisions on this variant. DOD also “decoupled” STOVL testing

from the other two variants so as not to delay them and to allow all three to proceed at their own

speeds. Lockheed Martin must turn around the F-35B within two years or expect its termination

[19].

The difficulties experienced with the F-35 program are not uncommon with the development of

new aerospace products. However, this program does reinforce one key observation about product

families.

Observation 2

If products requirements are too divergent, the case for common components becomes weaker.

1.2 Product Family Design Challenges

There is a fundamental trade-off in product families, offering variety to satisfy the needs of different

customers versus enabling cost savings through component commonality, figure 4. If there is no

commonality between the different products, each design is independent and may result in higher

family costs due to duplicated effort. If every component is common, then there is only one unified

design that may have high costs due to added complexity and may compromise performance to such

a degree as to no longer be able to satisfy customer requirements.

9

F
am

il
yv

O
pt

im
al

it
y

DegreevofvCommonality

HighvCost
DuplicatedvEffort

Performance
Contstraints

Independentv
Design

Unifiedv
Design

Optimal
Commonality

HighvCost
AddedvComplexity

LessvDistinctive
PerformancevPenality

Figure 4: Fundamental Family Trade-off

Observation 3

Platform specification trade-off between product performance and cost should be carefully and

fully investigated. Determining the optimal extent of component sharing between products is

paramount for the product family to be successful.

In product family design there are three critical areas of study [89]:

1. Market analysis is required to identify the appropriate family architecture, to estimate the

number of products to be manufactured, and to specify the requirements for each product.

2. Platform selection is necessary to determine the number of shared platforms and how these

platforms are used in the final products.

3. Design optimization is required to identify settings of the design parameters, to maximize

the portfolio profit, and to minimize the change in each product’s performance from their

individual ideal given all of the family constraints.

In the generalized product family design problem the platform configuration is not known. This

results in many discrete options to define all the possible configurations and leads to a large combi-

natorial space.

10

The large combinatorial nature can limit the usefulness of traditional optimization algorithms

because the space can be non-convex and filled with many local optima. Most combinatorial op-

timization problems are NP-hard. This means there is not an efficient algorithm that can be used

to solve this type of problem within polynomially bounded computation times [3], ergo the time it

takes to solve the problem does not scale polynomially with the number of variables. Also due to this

combinatorial space, it is also too computationally expensive to evaluate every possible alternative.

In addition to these three critical areas of study, product family design can be divided into four

approaches, figure 5 inspired from Jiao et al[72]. These approaches depend on if the product family

is a new design or based around existing products and components and if the design is product

or family driven. Product driven approaches tend to design products sequentially with subsequent

designs using components designed for the prior products. Family driven approaches tend to design

products in parallel. The risk associated with the different approaches increases from the product

driven redesigns to family driven new designs. This is because in new family driven designs there

is less known at the start as well as more than one product being developed, increasing the initial

investment and resources required for the design. However, because production has not started,

new family driven approaches have the potential to return a better family because platforms are

optimized given all the products’ constraints.

Another factor that can complicate product family design is when the products operate coopera-

tively, such as when several different aircraft perform a set of interrelated missions. In this example,

the capabilities of different aircraft can be traded against each other while maintaining the same

overall mission effectiveness. Some of these trades in a surveillance mission could be increasing

aircraft detection range, higher speed, or increasing the number of aircraft.

Analyzing these kinds of system-of-systems (SoS) problems brings several additional chal-

lenges. Because the systems are connected, models need to be created that accurately reflect the

behaviors between the systems. The rules governing the behaviors may be difficult to know and en-

code yet are pivotal to the analysis. For example, in a given mission there could be several different

sequences of tasks to accomplish the mission. Finally when these systems interact, there can be an

overall emergent behavior in how the systems perform. Additionally, a SoS problem is inherently

a stochastic process where a given set of inputs yields a distribution of outputs, rather than a single

11

Family Driven

New Market
New technology (UAVs)

Large change in customer needs
Longer time to market

Better family performance (commonality)

Products released sequentially
Family performance may suffer
Makes decisions about platforms
before family is fully developed

Products released sequentially
Makes decisions about platforms
before family is fully developed

Evolutionary

Family release
Longer time to market

Better family performance (commonality)
Evolutionary

Product Driven

New Design

Redesign

R
is
k

Figure 5: Product Family Approach

value. The exploration of the SoS design space needs to be able to capture the mean trend as well

as the output distributions.

The model’s ability to capture these interactions raises the overall complexity, and results in

increasing the analysis time. This increase in time is compounded by an increase in the number of

cases necessary to capture the output distributions. These models are computational demanding and

further complicate an already difficult product family design problem. Exploration of a SoS design

space is an active area of research, and critical for a system-of-systems product family design.

1.3 Research Focus and Overview

This section concisely establishes the link between key research questions and hypotheses as well

as provides an overview of the experiments performed. It is understood from the introduction to

product families that component commonality is paramount to determining a good family. The

main research question is derived from observation 3.

12

Research Question 1

In a product family design problem that has system-of-systems elements, how can common-

ality information be better incorporated to identify the relationship between product perfor-

mances and cost?

To begin to answer this primary research question chapter 2 surveys current product family

design methods. Based on the literature review, there are opportunities for a new product family

method to solve product family design problems when commonality is not predetermined and all the

design parameters are unknown. Problems with unknown commonality have the potential to yield

higher performing families but are more difficult to solve because both the platform configuration

and design parameter settings are unknown, figure 5. This leads to the main hypothesis that a new

product family design methodology is needed.

Hypothesis 1

Incorporating knowledge about potential family platforms into a larger product family de-

sign methodology can focus computational resources away from considering poor platforms,

making the design process more efficient, and helping to identify the ideal trade-off between

product performances and portfolio costs.

Chapter 3 formally introduces a generic product family design methodology based off of the

Generic Integrated Product and Process Development (IPPD) as a framework. Hypothesis 1 is

difficult to test but can be decomposed into two sub-hypotheses.

Sub-Hypothesis 1.1

If poor component combinations can be eliminated from consideration, then design resources

can focus on identifying the ideal trade-off between product performances and portfolio costs.

This sub-hypothesis is easily tested with a simple thought experiment. In the case of the general

product family design problem the ideal sharing is not known and that the number of combinations

to investigate can be prohibitively high. As with other design problems with high dimensionality,

a screening test reveals which design parameters would most affect the solution. In an analogous

13

way for a discrete space, pruning poor choices frees more computational resources for analyzing

the remaining important options. The other sub-hypothesis 1.2, relies specifically on observation 3.

Sub-Hypothesis 1.2

If combining components that are more similar makes a better family platform, than combining

dissimilar components, then a method to extract these patterns will aid in the formulation of

the family.

This sub-hypothesis leads to an additional research question.

Research Question 2

How can family platform opportunities be systematically identified?

Existing literature comments that simultaneous optimization of the product family subject to the

platform configuration and all of the design variables can lead to better performing family. Many of

these methods also require making decisions about the platform configuration to lessen the combina-

torial explosion of options. Unfortunately, if these decisions prune good options, then the resulting

family will be less than ideal.

The product family hierarchy, figure 14, suggests that points that are in close proximity to each

other in a given subspace would form a better platform than if they were grouped with points that

were more dissimilar. Methods to extract these similarities must be found. To that end, two more

hypotheses are put forward centering around alternative approaches. The first explores capturing

similarity using a data mining approach, chapter 4.

Sub-Hypothesis 2.1

If a sufficiently accurate and dense database can be generated, then a machine learning pattern

recognition technique like fuzzy clustering could be used to help identify component com-

monality and potentially form a platform.

The major challenge with the fuzzy clustering approach is that the design database is sufficiently

dense in the feasible design regions. Because this requires a large number of cases to be generated,

14

this limits its applicability to fast executing design codes. To address this scalability limitation,

the other approach also attempts to capitalize on all of the evaluated points by creating a surrogate

model of the design database’s joint probability distribution.

Sub-Hypothesis 2.2

If a model can be generated that encodes the joint probability distribution, then component

similarities can be inferred given performance constraints.

From the study of example aerospace families, products with long life cycles will need to meet

changing requirements, observation 1. In other words, for a successful aircraft family the aircraft

should be flexible to changing requirements. This then leads to an additional research question.

Research Question 3

How can these two approaches capture the family commonality sensitivity to changing re-

quirements?

The clustering approach effectively extracts component commonality relationships from feasible

subsets. Alternative requirements like those that may be placed on the family in the future then will

yield a different subset for the clustering approach to process.

Sub-Hypothesis 3.1

If the design constraints are changed, then using the new feasible subset from the design

database and performing the pattern recognition will reveal the sensitivity of component shar-

ing.

The probabilistic approach extracts component commonality relationships through the com-

parison of posterior distributions of design variables. Using statistical inference, these posterior

distributions are conditioned to the relevant requirements.

15

Sub-Hypothesis 3.2

If the design constraints are changed, then any changes to the posterior distributions from the

probabilistic model will reveal the sensitivity of component sharing.

This generic product family design methodology can utilize either of the proposed approaches to

help guide the family commonality exploration and selection. Although the generic methodology

cannot be tested directly, several experiments are performed to test the various hypotheses.

Experiment 1 tests the effectiveness of the fuzzy clustering approach by comparing the equiv-

alent hierarchy and family platform variable estimates to a baseline electric motor study. Using

the platform configuration from the baseline study, the fuzzy clustering approach can give a sta-

tistical estimate of the platform study. The general accuracy of the fuzzy clustering approach is

then assessed by comparing the estimated platform variables to those of the baseline. If the method

is unable to recover the values then sub-hypothesis 2.1 can be rejected, provided the method was

initialized with a sufficiently accurate database.

Experiment 2 tests the robustness of the fuzzy clustering approach and the required accuracy of

the design database for the motor family by generating the database using three different methods:

a Latin Hypercube design of experiments (DoE), a uniform Monte Carlo exploration, and an evolu-

tionary algorithm. Additionally, the number of design cases is varied for databases generated using

the Latin Hypercube DoE and the Monte Carlo exploration. Increasing the density of points in the

database should enable better estimates of the platform design variables as there are more points

closer to the baseline study.

Experiment 3 uses a different electric motor design study to test sub-hypothesis 3.1. In general,

flexibility can be seen as meeting alternative sets of requirements. This then can be translated into

constraints that yield a new feasible subset. So by using a different study with different require-

ments the design cases that violate these new constraints are removed. This new subset is then

processed using the clustering and pattern recognition technique to determine the platform configu-

ration changes.

Experiment 4 builds a Bayesian network model of the design database using data generated from

a multiobjective genetic algorithm for the electric motor. This experiment supports sub-hypothesis

16

2.2 by again using the baseline electric motor study from Experiment 1. Furthermore, the output of

the probabilistic approach can be benchmarked against the fuzzy clustering approach.

Finally an aircraft family design problem with system-of-systems elements is considered to

demonstrate the entire proposed generic product family design methodology. This demonstration

problem involves two scenarios each with two interacting types of aircraft. One scenario is an aerial

firefighting using two types of unmanned aircraft: one patrolling for fires and one to extinguish.

While the other scenario is a maritime surveillance set of unmanned aircraft performing missions

that include search and rescue, polluter identification, and oil spill response. Both the fuzzy cluster-

ing approach and probabilistic approach are used to attempt to identify similar components.

1.3.1 Outline

Chapter 1 : Introduction Introduces the importance of product families and supplies a few ex-

amples relevant to the aerospace industry. These examples allow a few key observations to be made

that help drive this research.

Chapter 2 : Design Method Review Presents a review of the current design methods that are used

for product families problems. This chapter also identifies the challenges encountered in designing

product families and notes a few opportunities of a new method. This chapter reiterates the main

research questions and main hypothesis.

Chapter 3 : Product Family Methodology Proposes the integrated product family design method-

ology using the Generic IPPD design process as the framework. In the proposed methodology the

component commonality can be captured with either approach.

Chapter 4 : Clustering Approach Formulation Introduces the theory behind using the pattern

recognition technique of fuzzy clustering and arrives at hypothesis 2.1 and hypothesis 3.1. The

importance of the design database accuracy and the scaling limitation of this approach are also

noted.

Chapter 5 : Probabilistic Approach Formulation Introduces probabilistic graphical models

and how they may be employed as a probabilistic surrogate model hypothesis 2.2 and by extension

17

hypothesis 3.2. The background supporting the use of Bayesian networks is put forward along with

a few other applications of Bayesian networks.

Chapter 6 : Probabilistic Approach Feasibility Presents a study of the feasibility of using the

Bayesian network as a surrogate model. First a small optimization was run to test the network’s

reliance on the kernel basis functions. Another example is presented showing the ability of the

Bayesian network to capture the design space of the Breguet range equation.

Chapter 7 : Electric Motor Family Study Presents the common family design problem of uni-

versal electric motors. Experiments 1-3 tests various aspects of the clustering approach. Experiment

4 tests the efficacy of the probabilistic approach.

Chapter 8 : Aircraft Family Study Demonstrates the product family design methodology on

the design of a family of aircraft. The models and challenges necessary to analyze the family are

discussed. The commonality approaches are tested by comparing an expected commonality change

between two different feasibility criteria.

Chapter 9 : Summary and Contributions Summarizes the work performed for this dissertation

and recounts the contributions made.

18

Chapter 1
Product Family

Introduction

Chapter 2
Product Family Design

Methods Review

Chapter 4
Clustering Approach

Development

Chapter 5
Probabilistic Approach

Development

Chapter 6
Feasibility of Probabilistic

Approach

Chapter 7
Electric Motor Family

Study

Chapter 8
Aircraft Family Study

Chapter 3
Product Family

Methodology

Chapter 9
Summary

M
et

h
o
d
o

lo
g
y

B
ac

k
g
ro

u
n
d

T
es

ti
n
g

S
u

m
m

ar
y

Motivation and

Research Overview

Investigate

Current Design

Methods

Establish Theory

for Commonality

Clustering

Introduce Probabilistic

Graphical Models

Bayesian Networks

Validate Bayesian

Networks

Methods

Formulate Holistic

Product Family

Design Method

Experiments to

Validate Hypothesises

Methodology

Demonstration

Aircraft Family

Contributions and

Conclusions

Figure 6: Thesis Overview

19

Chapter II

CURRENT PRODUCT FAMILY DESIGN METHODS

The previous chapter establishes the benefits of product families and the trade-off that is made by

sharing components. Observation 3 comments that the fundamental trade-off in product families

stems from the commonality decisions of the family. This observation drives the following primary

research question.

Research Question 1

In a product family design problem that has system-of-systems elements, how can common-

ality information be better incorporated to identify the relationship between product perfor-

mances and cost?

To begin to answer this question, the state of the art methods in product family design need to

be understood. This chapter surveys the different current methods utilized at the various stages in

product family design. First a description is given for product design, then a mathematical overview

of the combinatorial issue of platform configuration in product family design. Next various methods

for approaching the different classes of product family design problems are considered. Then a

few visualization approaches for families are considered that help designers understand the trade-

offs involved in platform specification. Finally a few gaps are noted that establish the need for an

additional design methodology.

In designing a single product there are several processes that must occur . Figure 7 shows an

overview of the general processes of product design. At the start, a market analysis should be

performed to better establish target specifications that the product must meet to satisfy customer

needs. Without a thorough assessment of the consumer market, correct design requirements cannot

be accurately specified. If the set of requirements passed to designers fails to satisfy customers, then

the product is doomed to failure. Once requirements are identified, designers can begin to formulate

different potential product architectures.

20

Figure 7: Product Design

Each architecture can be radically different from one another and must be traded against each

other until a tractable number of alternatives remain for additional analysis. The alternatives can

then be further explored with higher fidelity, eventually including the interactions between the prod-

uct design and the manufacturing processes. As more information is collected about each alterna-

tive, it is possible to down-select to the best economically performing candidates. This process is

iterated until the product is both technically feasible and economically viable. Ultimately, success

depends not only on the final product but also on designing for the right market.

Like the process for product design, family design combines business and marketing strategies

with engineering ranging from technological aspects of design to manufacturing and support. The

difference now is the coupling of the products together through the use of platforms[121]. Figure 8

provides a holistic view of the fundamental product family design process inspired from Jiao [72].

Similar to axiomatic design from Suh [155], the process can be viewed as different coupled design

domains with mappings across them.

Jiao, Simpson, and Siddique describe these separate domains [72]:

Customers Needs (CNs) Domain characterizes groups of customer needs representing

markets niches products should target. These niche requirements then cascade trough

the other product family domains

Functional Requirements (FRs) Domain translates the CNs into the set of engineering

21

Figure 8: A Holistic View of Product Family Design and Development

requirements that the different product designs must meet

Design Parameters (DPs) Domain determines the physical design parameters and prod-

uct platforms to meet the FRs

Process Variables (PVs) Domain contains the manufacturing and production planning,

tooling, setup, equipment details associated for the product assembly

Logistics Variables (LVs) Domain addresses issues related to supply chain with details

into resource allocation and supplier management

The mapping between the domains is as important as the domains themselves. For example,

the product portfolio is the mapping between different products in the functional domain to each

different market niche in the customer domain. Market segmentation occurs in the Customer Needs

domain by deciding which customer needs are most similar and how many products need to be

produced to capture the specific markets. The product platform specification is the mapping be-

tween the functional domain and the design parameter domain. This family platform configuration

mapping is the primary focus for this research.

Family platforms are not only restricted to product components and can include manufacturing

processes and supply chains to maximize the advantages of commonalities. It is important to note

22

that all the different domains have feedback loops, manufacturing and logistics concerns could

strongly affect the optimal commonality decisions. For example, the family may fail if a component

is unable to be manufactured or if the supply chain limits access to critical materials.

The main stages in family design are [121, 72]:

1. Product Definition - Market segmentation and determining the product portfolio

2. Product Design - Platform specification and determining the values for all of the shared and

unique component design variables

3. Process Design - Process planning and manufacturing concerns

4. Logistics Design - Supply chain design and maintenance issues

The supply chain is the process that connects all of the companies together from the raw materials to

the delivery and maintenance of the final product. When the supply chain becomes a significant part

of controlling operational costs it should be included as soon as possible in the design process[91].

However, this dissertation focuses on the earlier product definition and product design phases.

This is because coupling those domains with the upfront issues of determining product architec-

ture, portfolio, and component platforms causes the design problem to become too complex. There

are some methods that discuss process and logistic design but they are not the focus of this thesis

work.

The studies in this literature review begins with a discussion on the combinatorial problem of

family platform specification. Then current design methods are presented organized by the stage

of family design on which they focus and by the general techniques they employ. Because of the

primary focus of this research, most methods presented will focus on product definition and design

with a few example studies on process and logistic design.

2.1 Combinatorial Configuration Complexity

Prior to analyzing alternative product family design methods it is important to understand the mag-

nitude of the combinatorial problem at the heart of product family design. Specifically the configu-

ration of the family platforms which specifies how components are shared between the products.

23

1 2 3 4

1 ÈÈ 2 3 4 1 2 ÈÈ 3 4 1 3 4 ÈÈ 2 1 2 3 ÈÈ 4 1 4 ÈÈ 2 3 1 2 4 ÈÈ 3 1 3 ÈÈ 2 4

1 ÈÈ 2 ÈÈ 3 4 1 ÈÈ 2 3 ÈÈ 4 1 ÈÈ 2 4 ÈÈ 3 1 2 ÈÈ 3 ÈÈ 4 1 3 ÈÈ 2 ÈÈ 4 1 4 ÈÈ 2 ÈÈ 3

1 ÈÈ 2 ÈÈ 3 ÈÈ 4

Figure 9: Hasse Diagram Showing p the Partially Ordered Set of Partitions of {1,2,3,4} [143]

The platform configuration platform can be formalized using set theory, where it is described as

a “partitioning problem.” A partition of a set is defined as a division of the set into non-overlapping

and non-empty subsets. These subsets are collectively exhaustive and mutually exclusive with re-

spect to the set being partitioned.

Sets can be partitioned many different ways. A Hasse diagram, figure 9, illustrates all the

different ways to partition a set of four members. The nodes in the graph represent different unique

divisions of the set. Edges in the graph show that one node is a finer partition of the connected

nodes. A partition, p1, is finer than another partition, p2, if all of the elements in p1 are subsets of

p2. For example, {1|2,3|4} is a finer partition of {1|2,3,4} but not {1,2,4|3}. The top graph node

shows the coarsest partition where all four elements are together, and the bottom shows the finest

partitioning where each element is by itself.

Using product family terminology this figure shows how a particular component could be shared

across four different products. If products are in the same subset then they have a common com-

ponent. To fully understand impact of the platform configures all 15 different options must be

considered and evaluated. For each option, the optimum platform design parameters and product

specific design parameter settings would have to be found. The number of combinations to evaluate

grows rapidly as the number of products in the family increases. With some arbitrary number of

products n the number of combinations is counted by the Bell number, Eq 1.

24

B(n) =
n

∑
k=0

1
k!

k

∑
j=0

(−1)k− j

 k

j

 jn (1)

Product families are comprised of multiple modules, each with their own sharing space. The

total number of combinations, T , of each module’s sharing, multiply according to Eq 2

T =
|Ml|

∏
m

B(nm) (2)

where |Ml| represents the number of elements in the module space, and nm is the number of

products that could share the mth module. For a large number of products with many modules, the

platform configuration space becomes too large to enumerate all of the feasible combinations and

fully analyze them. Most of these combinations are infeasible or dominated by better combinations

of common components. Engineering intuition and company heritage are most commonly used to

help down-select from all the different component sharing possibilities to only a few alternatives

around which to perform a trade study. Now that the magnitude of the combinatorial platform

configuration space is understood the next section starts to analyze current product family design

methods.

2.2 Product Definition

The first step in product definition is market analysis. This entails describing the customer needs

and identifying target market segments. These processes are coupled with the product positioning

problem which focuses on increasing variation and diversity in the offered products. Product po-

sitioning attempts to assign the strategy of products to market segments and can possibly include

understanding competing firms and the evolution of the products overtime.

Data mining methods like fuzzy clustering, heuristic search algorithms, and conjoint analysis

have been increasingly used to solve the family positioning problem [121]. Data mining methods

are methods that typically employ historical data sets to identify and group common elements. For

example, a historical database of customer requirements can be mined to partition the space and

identify unique groups of customers known as market segments. One market segmentation method

25

took a transactional database of functional requirements and customer needs, and it generated as-

sociation rules using fuzzy relations generated from fuzzy clustering [170]. Another example of a

market segmenting study was done by Kazemazadeh et al [78]. They use conjoint analysis to study

how customers develop their product preferences. Then using quality function deployment (QFD),

a cluster analysis identified groups for different segments. Their test case results in the sponsor

company developing a product family rather than a generic product enabling a cost reduction along

with increased customer satisfaction. Agard also performs a product positioning study using exist-

ing databases of industrial customer preference, part descriptions, and manufacturing processes to

extract association rules for segmenting the market as well as standardizing family platforms [4].

Companies can significantly improve their future products by collecting and maintaining detailed

information for use in developing the next generation.

After segmenting the market, customer needs are translated into functional requirements. Here

the architecture is developed. A family architecture is concerned with modularity and functional

breakdown and describes both the product architecture as well as the commonality between the

different products [72]. Similar to family architecture, product architecture can be defined as the

scheme that translates the functional elements of a product into physical components and the way

in which these components interact [161]. Product architectures greatly influence optimal platform

configurations and product variety. The idea of modules and modularity are central in constructing

versatile product architectures [161]. Modules are independent parts of a product that can be treated

as logical self-contained units with standardized interfaces and allow composition of products by

combination [110, 103]. There are a variety of ways to implement functional requirements and an

efficient functional breakdown allows for better standardization between the modules.

In considering a family it is important to analyze alternative architectures. There are instances

of family problems where the exact requirements for individual products may not be known which

further complicates the selection of family architecture and market segmentation.

For example, there could be multiple ways of accomplishing a particular mission like aerial

reconnaissance. The customer could purchase a single aircraft with long range sensors or more air-

craft with lower performing sensors. Both options may be able to accomplish that mission but there

could be family implications as the number of aircraft are varied. Figure 10 shows the continuum

26

High

Modular family
aircraft designed for

single mission

Special aircraft
designed for their
respective mission

Very specialized
aircraft performing
multiple missions

Modular family
aircraft designed for

multiple missions

N
u

m
b

er
 o

f
A

ss
et

s

High

Low

Commonality

Low

Figure 10: Continuum of Solutions

of family architectures potentially developed that trade-off product commonality and the numbers

of products to be produced. This coupling of family architecture and product commonality further

increases the combinations to consider when performing the family design. Analyzing this trade

requires the development of system-of-systems models.

For a given architecture, a functional decomposition can take place when translating customer

needs to functional requirements. There are several methods for translating functional requirements

to modules which can be described by design parameters.

One method is articulated by Rai and Allada[122]. They use four steps in their module iden-

tification using functional decomposition. First, a functional representation generates the modules

via the function architecting process and provides a rich description of the function-module map-

ping, modules and their relationships. Second, a Pareto-optimization generates the Pareto design

solutions while satisfying all the design requirements through proper module configuration. Third,

a higher-level decision making can be used to solve various problems related to modular designs

using the information gathered from the Pareto optimal solutions.

Another method is proposed by Stone et al. [153]. Here their method introduces three heuristics

to create a systematic module identification approach. A function flow may pass through a product

27

unchanged, it may branch, forming independent function changes, or it may be converted to a

different form. According to their study, the choice of which module to implement is not obvious

and these rules help to keep modules easily identifiable with a particular function.

Moon, Kumara, and Simpson identify modules by using a fuzzy c-means clustering on the

functional breakdown which represent all of the functions the product must do to meet the customer

needs [104]. Effectively, they use data mining to determine product architectures by grouping com-

ponents based on function chains.

Dabbeeru, Deb, and Mukerjee perform product selection by analyzing Pareto optimal designs

and then perform a clustering to identify groups in the design space[32]. They go a step further

and identify the lower dimensional manifold in which these potential products lie to help visualize

the clusters in the design space. The design team can then use that information to decide which

products constitute the product family.

Sichani divides family design problem into simpler subproblems to optimize[142]. Additionally,

through the use of game theory, marketplace competition between two firms can be included.

Haubelt introduces hierarchical graph modeling to describe the product architecture[60]. This

hierarchical model allows for efficient exploration of the flexibility and cost tradeoff curve. System

flexibility is accounted for by ensuring the system is able to operate with a complete set of different

applications. Similar to Haubelt, Umeda et al. develop a methodology to support generational

families [163]. They do this by also developing a functional behavior state modeling scheme to

identify an upgradeable design that can adapt to future requirements.

Once the product architecture and product modules are defined, the products can be codified

by sets of physical design parameters. Modules themselves are described as subsets of the overall

product design parameters.

2.3 Product Design

Product design occurs after the set of products and the product portfolio is described. The goal at this

stage is to identify the component configuration and design parameters as well as all of the product

specific design parameters. Common methods employed in this step use some sort of optimization

algorithm to determine the design parameter settings to maximize the family performance while

28

minimizing the cost.

Fujita suggests there are three classes of product design optimization problems: Class I, Class

II, and Class III[51]. In Class I design problems, the design parameters are optimized given a fixed

platform configuration. For example, knowing which components are shared and only optimizing

each product based on the unique and shared components would be considered a Class I problem.

Nelson et al. proposed for a multicriteria optimization formulation for Class I[109]:

maximize product ’performance’

with respect to product design variables

subject to product requirements

component commonality constraints

In a Class II family design problem, the design variables are fixed and the sharing decision

variables select the product components from an existing library. Products are still optimized but

under the discrete decision variables that constrain components to the predefined candidates:

maximize product ’performance’

component commonality

with respect to sharing decision variables

subject to product requirements

component commonality constraints

Finally in a Class III design problem, both design parameters and the platform configuration

are simultaneously optimized. Class III problems are the most difficult problem class because both

sharing or design parameters are unknown:

maximize product ’performance’

component commonality

with respect to product design variables

sharing decision variables

subject to product requirements

component commonality constraints

29

Fellini formalizes the optimization mathematically for the product family design problem as

maximizing the performances and commonality for each product p in the family P[43]:

maximize


f p (xp)

∑i jpq Rpq
i j

∀p ∈ P; p < q

with respect to
x̄ =

{
x1,x2, ...,xm

}
R

m = |P|

subject to gp (xp)≤ 0

hp (xp) = 0

Rpq
i j

(
xp

i − xq
j

)
= 0

Rpq
i j ∈ {0,1}

(i, j) ∈ Spq

where:

x̄ is set of all the product design variables;

Spq is the design variables between product p and product q that are possible to share;

Rpq
i j binary relation variable indicating sharing design variables between products;

m number of members in family P.

Khajavirad [82] expands these problem classifications to account for restricted versus general-

ized commonality, figure 11. Restricted commonality limits platforms and allows them to be shared

across the entire set of products, Ri j. There is a need for product family methods able to deal with

the high computational costs of Class III problems with generalized commonality, Rpq
i j [82].

Of the three classes, Class III problems are the most difficult because the design parameter

optimization process is coupled with the combinatorial problem of platform configuration. The

problem complexity is further increased while considering generalized platform configurations in

families with more than one possible platform. The advantage of Class III problems is that by

simultaneously optimizing both design parameters and platform configuration, designers can find a

potentially better family.

30

Figure 11: Classification of Product Family Optimization Formulations [82]

2.3.1 Commonality

Frequently, in forming the optimization problem, the objective function incorporates commonality

indices. Commonality indices are used as a surrogate for direct calculation of cost savings based on

commonality [83]. Although direct calculation of costs due to commonality are desired, some cost

models are filled with rough estimations that only add to the difficulty of using them without gain

in accuracy. Pirmoradi compiled six widely used commonality indices[121], table 1. The basic idea

behind using these indices is to aggregate of the total the degree of commonality that is included for

a particular platform configuration.

Unfortunately, at times commonality indices can be “misleading for large family assessments”

or limited to particular platform types (scalable or modular) [121]. Again this is because the desire

of a family is to reduce costs and these indices do not incorporate any cost estimates. The benefit

of using commonality indices instead of cost estimates is there can be significant error in cost

estimates especially during the conceptual design phase when the family would be architected.

Selection of a commonality index unsuited for the family being optimized can negatively impact

overall performance.

31

Table 1: Characteristics of Six Widely Used Commonality Indices [121]

32

2.3.2 Optimization Approaches

This section describes several direct optimization approaches for solving product family design

problems. Identifying shared common components in a product family is not a trivial task and is

the subject of many studies. Two approaches that start using set theory come from Siddieque and

Newcomb. Siddique and Rosen develop a Product Family Reasoning System (PFRS) to treat the

combinatorial nature of configuration design at all levels in a product family which is comprised

strongly from set theory [143]. Newcomb et al[110] also rely on the use of set theory to describe

modularity in product families. The use of set theory as a starting point helps to create a robust

framework for computation.

The Product Family Extension Configuration Design (PFECD) put forward by Zhao et al. is

another approach to improve the efficiency of configuration design. PFECD is in the initial stage of

development but attempts to solve contradictory problems in configuration structure using a knowl-

edge base and rule system [171].

Once the platform configuration is decided in Class I or in the case of Class III problems remain-

ing coupled, optimization is used. Product family design methodology studies typically make some

sort of platform configuration assumption a priori to decrease the complexity of the problem[72].

These assumptions typically restricting them to Class I problems or a set of Class I problems if a

trade study is being performed on two or more competing sharing configurations. Methods focusing

on Class III problems will restrict the commonality so platforms can either be used by every product

in the family, or not at all. This restriction is done to limit the combinatorial space so the problem

is tractable.

Variation-Based Platform Design Methodology (VBPDM) is an example of a two stage method

that picks the platform configuration by comparing variation of the input variables then uses vari-

ables with low variation as the platform across the whole family[107]. The second stage uses that

platform and optimizes the family.

However, there have been several papers that try to analyze a product family while allowing the

platform configuration to change. Methods that simultaneously optimize component sharing and

design variable settings have the potential to find better families because product subsets may be

33

more similar to each other than to other subsets of products. The majority of methods that attempt

to solve Class III problems use stochastic methods, either genetic algorithms, simulated annealing,

or particle swarm. Most of the product family design methods that try and solve the Class III

problem use multiple stages[144]. In these kinds of methods, the first stage identifies the platform

variables then simplifies the problem to a Class I problem. Messac et al. mentions a single stage

approach is better because two stage approaches tend toward suboptimal solutions[98].

Some methods also approach Class III problems from a Multidisciplinary Optimization (MDO)

perspective. In multidisciplinary optimization the system to be optimized is decomposed into sub-

systems which are typically different disciplines. Coupling variables link the different subsystems

together transferring information.

Ferguson uses a multilevel MDO approach to optimize a reconfigurable racecar for different

conditions [45]. This MDO approach is successful in finding the reconfigurable racecar performance

improvements over the baseline racecar. For the top level optimizer, a genetic algorithm is used

to determine the values for the coupling platform variables. However, this approach though was

locked and considered a set of Class I problems because each MDO was done with the platform

configuration fixed between the different scenarios.

Another approach for solving Class I type problems is Analytical Target Cascading (ATC). In

ATC top level design targets are cascaded down through the hierarchy of models[102]. This is done

with four steps i) specify the overall product targets, ii) propagate the product targets to the system

and component levels, iii) design the system and components to achieve their respective subtargets,

and iv) verify the top level targets are met. Kokkolaras et al. extend the ATC methodology for Class

I problems[86]. Here separate sub-problems come from each product and commonality is enforced

by using subsystems with common parents.

Khajavirad and Michalek[81] demonstrate a multistage gradient based method for solving the

Class III joint platform selection and design parameter optimization problem. This method restricts

component commonality to either be entirely shared or entirely unique across the family.

Khire et al. [84] introduce Selection-Integration Optimization (SIO) which integrates the plat-

form configuration selection and design parameter optimization to be able to solve restricted Class

III problems. SIO uses a Variable Segregating Mapping Function (VSMF) to transform the discrete

34

platform configuration problem into a continuous problem. However SIO requires platforms to be

shared completely, or not at all.

Williams [168] extends the original Product Platform Constructal Theory Method (PPCTM)

proposed by Hernandez [64] to be able to address uneven demand across the different market seg-

ments and include multiple objectives. However, determining which platform configurations are

most advantageous is not guided by a systematic process and is left to the designer.

More recently, Chowdhury et al. [28], building on ideas from SIO, created the Comprehensive

Product Platform Planning (CP3) framework. CP3 formulates the generalized commonality prod-

uct family design problem as a Mixed Integer Non-Linear Programming (MINLP) problem. The

framework combines another mapping function to convert the discrete platform configuration prob-

lem into a continuous domain, while allowing platforms to be formed across any subset of products.

A cost function was also implemented to account for platform sharing of different component com-

plexity. A particle swarm optimizer was used because stochastic algorithms are better behaved on

the multimodal product family problem than gradient based algorithms.

Genetic algorithms have also been used to address the joint family optimization problem where

platform sharing is not initially specified by modifying the chromosome string to include sharing in-

formation. Multi-Objective Evolutionary Algorithms (MOEAs) have been demonstrated to address

the high dimensionality of the single stage computational challenges [139]. Simpson [149] uses a

genetic algorithm approach from the restricted commonality Class III problem, requiring platforms

to have 100 percent commonality for the whole family. Simpson notes that seeding their initial

population yields a richer Pareto set in fewer generations. Ölvander, Tarkian, and Feng also employ

the use of the NSGA-II with a traditional chromosome string of both discrete (to control sharing)

and continuous design variables, to find a Pareto optimal front showing the tradeoff between the

degree of commonality in a family of industrial robots [114]. They note that including the degree

of commonality in the objective function creates difficulty for the algorithm. Difficulties that are

compounded when discrete combinatorial commonality variables couple with the continuous design

variables.

To be able to solve generalized Class III problems, Khajavirad [82] uses a generalized 2D com-

monality chromosome with modified crossover and mutation operators to allow subsets of products

35

to share components. Their changes were implemented on top of NSGA-II from Deb and can find

a Pareto optimal set of solutions in a reasonable time [37]. The top level GA finds the optimal plat-

form configuration while each lower GA optimizes a subset of products. When considering more

products, the 2D chromosome representation scales better than previous approaches that only use a

single level.

Shah et al. uses the ε-NSGA-II algorithm to explore the design space of a family of general

aviation aircraft and then use visual analytics to facilitate the interaction between the designers and

the optimization algorithm [139].

Dabbeeru, Deb and Mukerjee have a method employing the NSGA-II to find the Pareto frontier

and then find its embedding in the lower dimension manifold[32]. They then use the embedding

and specify a number of clusters to partition the objective space. By then inspecting the cluster

centers they can find a set of target product performances for the family that would equally cover

the performance space.

One potential problem with genetic algorithms for large Class III product family problems with

generalized commonality is the chromosome. In the genetic algorithm metaphor, the chromosome is

a collection of all the design parameters. With generalized commonality in product families, sharing

variables are added to the chromosome. Effectively these act as switches that when evaluated tell

the product models which parts of the chromosome is active for that case. Back in the genetic

metaphor, these duplicate genes are called allele and only the dominate trait surfaces. Over many

generations due to “genetic drift” the deactivated or recessive allele are passed to future generations

but without contributing to the goodness. If suddenly the sharing activates the allele the performance

of that point could be quite poor while the remainder of the products are evaluated on the basis of

quality genetic material. Due to the breeding selection in genetic algorithms, the point will probably

be dropped from the gene pool because of the poor performance from a recessive trait suddenly

being active after many generations of drift. Loss in population fitness due to genetic drift has a

direct effect on the performance of the genetic algorithm[130]. To alleviate any problems from

genetic drift larger populations should be used or a modification to the selection process may be

needed[130].

36

2.3.3 Visualization / Hybrid Approaches

In addition to pure optimization methods, there are studies that employ data mining for the platform

specification problem which then may be coupled with some optimization to solve for the design

parameter settings. With pure optimization, the final result can often be less informative than a

design space exploration[92]. Including humans in the optimization process can improve the results

of hard optimization problems[136]. While optimization is a useful tool, there are instances when

the optimizer will fail to provide helpful information or arrive at an unusual point by exploiting

some unknown constraints.

While humans can help guide the optimization, they also present difficulties. For humans to be

helpful, they must be able to make an informed decision about the current state of the exploration.

This is especially challenging for high dimensional problems like in product family design. To help

humans understand these behaviors, several visualization techniques can be useful for presenting

the bulk design space exploration data.

In family design visualization, the goal for the visualization is to showcase the similarity be-

tween the different modules for the different products. There are several applicable multivariate

visualization techniques. Parallel coordinates is a visualization technique for embedding each point

the high dimensional data set as line segment across several equally spaces axes [71]. Shah uses

visual analytics, powered scatter plot analysis and parallel coordinates to help understand the results

of a multiobjective optimization and commonality trade-offs[139]. They note that designers would

benefit from having a visual analytics technique to help identify platform variables.

Khire uses multiobjective optimization coupled with additional visualization techniques[83].

This approach allows designers to iteratively and intuitively arrive at family platforms. Critical to

this is their multiobjective optimization to find a band of solutions along the Pareto frontier. The

band along the Pareto frontier is important because the performance penalty from component com-

monality prevents family products from being Pareto optimal. Including only the final converged

front, limits the possible overlap that could be found. The Pareto bands are then displayed using

various scatter plots. The decision maker can assess commonality by filtering points and inspecting

the overlapping regions.

37

Slingerland proposes a hybrid approach for discovering appropriate commonality for a product

family [151]. The study starts with the two family extremes where the components are all common

and the other where all the components are unique. Then the parallel coordinate plots can show

the trade-offs as commonality varies. One key benefit of using a parallel coordinate plot is that the

bandwidths of different design variables become evident. Here, the bandwidth refers to the area that

a particular design covers as it crosses an axis. If a particular product crosses at a wide section of the

axis then it can indicate that the product is less sensitive to that design variable. Narrow bandwidths

indicate a strong reliance on that design variable setting. As part of the Slingerland study they note

difficulty in using parallel coordinates for discrete data as it is difficult to denote the actual propor-

tions of points if they all overlay. To remedy this, Bendix generalized parallel coordinates to display

multidimensional categorical data[11]. This modified presentation incorporates the frequency of in-

dividual data points by increasing the bin sizes and supports analysis of large and complex discrete

data sets.

In addition to needing to display the multidimensional design variables of the family, it is im-

portant to be able to visualize similarity of a particular module space for which there are several

options. The following approaches attempt to visualize the discrete partitioning decision variables

that indicate family platforms. The main challenge of these techniques is to accurately capture the

spectrum of partitions not just the all or nothing approach to sharing.

The first being dendrograms which visualize a hierarchy of nested partitions where the most

similar items are grouped together first. Pedersen uses dendrograms showing the results of clus-

tering together existing products to identify possible areas for future standardization [119]. Chen

and Wang arrive at a dendrogram representation using a clustering analysis and Shannon’s entropy

theory on the multiple platform design problem[23]. Shannon entropy helps to select the platform

variables once a clustering analysis is performed on individually designed products. Local cluster-

ing is performed for each platform to identify which subsets of products are more similar to each

other than to others. Hölttä looks at using a dendrogram for the product architecting phase by cre-

ating a distance matrix between different components where the distance matrix was derived from

functional requirements[68].

38

7 8 6 10 2 5 3 4 9 1
No.

group3

groupB

group2

groupA

group1

0

2

4

6

8

10

12

In
d

ex
 o

f
D

is
si

m
il

a
ri

ty

Figure 12: Dai Example of Sensitivity Clustering[33]

Dai and Scott[33] perform a hierarchical cluster analysis on design variables selected to be-

come platforms based on sensitivity information from individually optimized products. Once the

platforms are selected, the product variants are optimized to determine the values of the product

specific design variables. If the performance loss due to the platform decisions is not acceptable,

then a different product grouping is selected and the optimization process is repeated. Heuristics

driven from the clustering results and trial-and-error were used to guide the platform configura-

tion decisions leading to an optimized family. A dendrogram, figure 12, shows how the clustering

results can be used to guide the selection of alternative partitions for the platform variables. For

example, this dendrogram can be read by saying for an index of dissimilarity of 6 suggests three

platforms be used. Furthermore, products {7,8,6,10} should use one common component, prod-

ucts {2,5,3,4,9} should use a different common component, and product 1 should use a completely

unique component.

The primary benefit of using a dendrogram is that for a given level of similarity, there is a clear

indication of the different partitions. Dendrograms can be limiting because they are only able to

represent a hierarchy of nested partitions. This is undesirable because the best grouping may involve

swapping one item from one group to another while changing the threshold, which could cause a

large splitting of the partition. Fortunately, there are a few other visualization techniques to display

39

Figure 13: Example hypergraph

these possibilities. Hypergraphs, figure 13, can show families of sets and are a generalization of

graphs in that an edge can include multiple vertices. In this case, a vertex is a product’s component

and vertices that are connected by an edge could be considered a platform. Obviously, to form a

partition, several cuts through edges may need to be made.

Wei formalizes a hypergraph model for a product family’s platform structure [167]. Unfor-

tunately as the number of edges and products increase, the hypergraph may be complicated and

difficult to generate[76]. To remedy this more traditional graph theory can be used with the edges

weighted by the similarity between the different vertexes (components). Additionally heatmaps can

also be used to show the pairwise strengths in a similarity matrix.

2.4 Gaps and Hypotheses

The literature review provides an understanding of the magnitude of the combinatorial problem

faced in family design and shows that there are a variety of methods for trying to solve the multitude

of issues in product family design. These methods can be categorized by the different classes of

product family design problems they attempt to solve.

Class I problems are more traditional optimization problems because they do not include binary

decision variables and solve only for the design parameters. This kind of problem arises when

there is significant prior knowledge about the family. For example, in designing a new generation

from products, it may be known which components worked well being shared or did not work well.

40

Making configuration decisions early helps simplify the product family problem by removing the

combinatorial problem.

Class II problems involve only discrete decision variables that describe how components are

shared across the different products. This kind of problem occurs when there already exists a library

of components either from a previous generation of products or provided by suppliers. Because this

class essentially needs to solve for the configuration of the family, the optimization is NP-hard[73].

Class III problems are even more difficult, because they require solving for the design parame-

ters and the decision variables describing the platform configuration. In general the trend of research

is toward solving the most difficult class of product families design problems. This class of prob-

lems requires identifying both the sharing of components across any subset of products in the family

and all of the platform and unique design variables. Class III problems occur when there is little

or no knowledge and many degrees of freedom to the design of the family. For example, this can

happen when developing a new product family without the benefit of previous generations or when

it is not immediately obvious which products would need similar components.

To make solving Class III problems simpler, most design methods will restrict commonality

so that shared components are common across the entire set of products. Whereas, generalized

commonality problems allow components to be shared across any subset of products but the com-

binatorial space quickly grows as the number of products being considered increases. The benefit

of including generalized commonality is that it can yield a better performing family.

Methods for solving these classes of product family problems can be divided into two types:

optimization and data mining. Optimization methods are critical to exactly specifying the ideal

values of the design variables and the platform configuration of the family. However, because of

the huge combinatorial space pure optimization approaches can be difficult. Frequently, this is

done either in a multilevel optimization, or preferably, in a single stage if the problem is small

enough [33]. Data mining methods using data either through a design space exploration or an

optimization method are successful at identifying commonality in the family. More so, when a

human is included during the exploration through proper visualization and understanding of the

design space. However, many of these existing methods do not consider the complexity of SoS or

are more qualitative in determining potential platform opportunities.

41

Many authors note the need for more product family methods to be able to deal with the high

computational costs of Class III problems with generalized commonality. Moreover, none of the

methods surveyed by the author include looking at a combined product family design problem

that has system-of-systems elements. To help close the gap in assessing these complex system-of-

systems product families, hypothesis 1 is put forth.

Hypothesis 1

Incorporating knowledge about potential family platforms into a larger product family design

methodology can focus computational resources away from considering poor platforms mak-

ing the design process more efficient and helping to identify the ideal tradeoff between product

performances and portfolio costs.

This hypothesis needs to be further decomposed into more easily tested sub-hypotheses.

Sub-Hypothesis 1.1

If poor component combinations can be eliminated from consideration, then design resources

can be focused on identifying the ideal trade-off between product performances and portfolio

costs.

Sub-hypothesis 1.1 can be tested with a small thought experiment. The combinatorial problem

is prohibitively large for a brute force approach to identify the best sharing of components. How-

ever, identifying the most dissimilar may be relatively easy. In an analogous way to a traditional

screening test to remove unimportant variables, pruning obviously poor choices allows computa-

tional resources to concentrate in important regions. This then helps to identify the best trade-off

between product performances and overall family costs. The other sub-hypothesis 1.2, relies specif-

ically on observation 3.

Sub-Hypothesis 1.2

If combining components that are more similar makes a better family platform than combining

dissimilar components, then a method to extract these patterns will aid in the formulation of

the family.

42

Component 1 Component 2 Component 3

Platforms

Product 1

Product 2

Product 3

Module Space

Design

Parameters

(DPs)

Product Space Design

Parameters (DPs)

Functional Requirements Space

(FRs)

Customer Needs Space (CNs)
Top Level

Capabilities

Functional

Requirements

Allocation

Products

Components

Figure 14: Product Family Hierarchy

This sub-hypothesis then leads to an additional research question.

Research Question 2

How can family platform opportunities be systematically identified?

To help guide the solution formulation, we begin by investigating part of the breakdown of the dif-

ferent aspects in product family design. Figure 14 presents a hierarchy of domains based on the

holistic view of figure 8. The top space of this hierarchy depicts the customer need niches that prod-

ucts must target to be successful. Below the customer needs space is the functional requirements

space that each product must meet. The third layer is the product space where each product is de-

fined by physical design parameters. The lowest level is the module spaces. Each module space is

described by its own subset of design parameters from the product design parameters. Like in the

holistic view, the mapping between the customer needs space and the functional requirements space

is the product portfolio; mapping between the functional space and the product space is the product

architecture; mapping between the module subspaces and the product space is the platform sharing

configuration. There are three products represented in this hierarchy. The platforms can be seen in

the Component 2 and Component 3 module spaces between Product 2 and Product 3.

43

This product family hierarchy is useful because it depicts the possibility of identifying fam-

ily platform opportunities by recognizing patterns in the module spaces. Assuming a method for

identifying commonality can be formulated, the next chapter proposes a generic product family

methodology that provides context for extracting knowledge about alternative family platform con-

figurations. This methodology addresses the gaps discussed above and is generic so that it can

be used for any product family design problem, including those that begin with only the minimal

amount of information, such as the customer’s broad needs. Moreover, the family being considered

can include products interacting at the system-of-systems level.

Once the methodology has been formulated, two different commonality identification approaches

are formulated. Chapter 4 brings together a data mining clustering approach to recognize component

commonality patterns. Chapter 5 utilizes a probabilistic graphical model as a basis for identifying

patterns in component commonality.

44

Chapter III

DEVELOPMENT OF NEW PRODUCT FAMILY DESIGN METHODOLOGY

3.1 Family Design Methodology

The last chapter discusses the general types of family design problems, and establishes the need

for a generic design methodology for product families with generalized commonality. There is an

additional need for this methodology to address interactions between the products at a system-of-

system level. This then extends the general Class III product family design problem to include

family ’performance’, F (x̄). So the goal becomes to maximize the family performance, the product

performance, and the component commonality with respect to the design variables and the sharing

decision variables subject to the product requirements and component commonality constraints.

maximize



F (x̄)

f p (xp)

∑i jpq Rpq
i j

∀p ∈ P; p < q

with respect to
x̄ =

{
x1,x2, ...,xm

}
R

m = |P|

subject to gp (xp)≤ 0

hp (xp) = 0

Rpq
i j

(
xp

i − xq
j

)
= 0

Rpq
i j ∈ {0,1}

(i, j) ∈ Spq

where x̄ is the set of all the product design variables and Spq is the design variables between

product p and product q possible to be shared. The commonality relationships, Rpq
i j , are the source

45

of the large combinatorial problem. The direct optimization approach is not feasible for these prob-

lems because they include generalized commonality and system-of-systems which greatly increase

complexity. Generalized commonality increases product family design combinatorial space, while

system-of-systems increase analysis model complexity. The complexity of these combined prob-

lems is difficult to overstate. In the generic SoS product family, trades occur between the products

while maintaining the same customer need (CN). Different alternatives for accomplishing the same

CN will have different family platform opportunities which may benefit more from commonality.

The key element then is to understand the implications of commonality in the large SoS family

problem, hypothesis 1.

Hypothesis 1

Incorporating knowledge about potential family platforms into a larger product family de-

sign methodology can focus computational resources away from considering poor platforms,

making the design process more efficient and helping to identify the ideal trade-off between

product performances and portfolio costs.

This methodology then needs to contain all of the steps and formalize alternative techniques nec-

essary to system-of-systems family design starting with no or very little, knowledge. For a general

framework, this product family design methodology uses the generic Integrated Product and Process

Development, or IPPD, figure 15[134]. The IPPD methodology is formulated as an overarching um-

brella covering the major development activities. The main set of decision making activities is down

the center of the chart. This top-down design decision support process is facilitated with a computer

integrated environment. The boxes to the left and right indicate possible tools that can be utilized

for particular steps with arrows linking interactions and iterations between the different tools. The

main iteration loop flows between generating and evaluating alternatives through the use of robust

design and multidisciplinary design optimization. The methodology finishes with a selected design

alternative that has proven capable of satisfying the problem objectives.

Using the generic IPPD methodology as a framework for a product family design methodology

provides a robust framework for developing products. Similar to the IPPD, there is a main sequence.

First the customer needs are established. Because this is also a SoS problem, details requirements for

46

QUALITY ENGINEERING
METHODS

COMPUTER-INTEGRATED
ENVIRONMENT

TOP-DOWN DESIGN
DECISION SUPPORT PROCESS

SYSTEMS ENGINEERING
METHODS

Figure 15: The Georgia Tech IPPD Methodology

47

the different products are not known but different market niches can still be identified. Next, using

the general CNs, designers can begin formulating alternative means to accomplish these needs.

Once there is an idea of how the products operate and combine to meet the CNs then the general

family value objects can be described. This also requires defining the module spaces and their

parametrization through design variables.

For each product in the family, feasible alternatives are then generated using a modeling and

simulation environment. Next platform opportunities are identified using a commonality identifica-

tion approach. Through the course of this dissertation two approaches are developed to recognize

the similarities between components. The first approach, chapter 4, is based on iteratively filtering

and clustering the component subspaces to recover component partitions. The second approach,

formulated in chapter 5, focuses on building a probabilistic model capable of encoding the joint

distribution of the design space exploration and then using an inference process and earth movers

distance to calculate similarity between component subspaces.

Once the platform alternatives are identified, additional trades can be performed to understand

the product performance implications of the different possible family platforms. Finally, once the

products and platforms have been identified and evaluated, the designer can make an informed

family decision. As the steps are discussed in more detail below, connections will be made back to

the formal problem description.

3.1.1 Step 1: Establish the Need

As with the product development process in figure 7, customer needs are critical and must be iden-

tified. If the niches are not well understood, the requirements allocated to the different products will

not yield marketable results.

Part of this market understanding comes from examining the operating environment. For in-

stance, a surveillance mission in mountainous terrain brings different functional requirements than

a maritime surveillance mission. When predicting the product performance as it would be in the

real world, the performance will have some variability. Analyzing the environment may reveal

additional parameters that affect the stochasticity of the products’ operating performance.

In addition to the original tools of the generic IPPD process, the family planner needs to be

48

QUALITY ENGINEERING
METHODS

COMPUTER-INTEGRATED
ENVIRONMENT

TOP-DOWN DESIGN
DECISION SUPPORT PROCESS

SYSTEMS ENGINEERING
METHODS

Figure 16: Generic Product Family Design Methodology using IPPD

49

able to segment the different customer needs either through extensive background research, market

analysis or customer interactions. Ultimately the set of customer needs should be translatable into

sets of Measures of Effectiveness (MoEs). For example, one customer may care about several

related protection missions for the maritime personnel and environment, while a different customer

may need to minimize damage from fires. These missions then can be described as sets of MoEs.

These MoEs then serve as a basis for the SoS family evaluation F (x̄).

3.1.2 Step 2: Define Family Architectures

The goal of this step is to translate customer needs into engineering requirements and describe the

set of functions each product needs to perform.

Family architecture can be defined as the allocation of functions (missions) to particular prod-

ucts and the corresponding product’s modules[72]. The first step is to formulate and identify al-

ternative functional or mission breakdowns for accomplishing the customer needs. In effect, the

family architecture, therefore, describes the problem each product in the family needs to satisfy.

Figure 17 shows three example architectures for a simple search and rescue mission. Architecture

one uses an aircraft type for each mission, one for searching and a different kind of aircraft for res-

cuing. Architecture two uses one aircraft for both searching and rescuing. Finally, the architectures

can also include different vehicle types like architecture three which has an aircraft searching and a

helicopter rescuing.

To help guide the family architecture process, customer needs have been identified and, through

market segmenting, grouped into target niches. With those target niches in mind, a system decom-

position can be performed establishing the set of functions for the products. Once the functional

breakdown is completed different family architectures can be developed. The family architecture

relates the different functions back to physical systems. For complex systems there is no unique

mapping between functions and systems resulting in additional trades to consider.

This is a complex step and may require iterations between functional allocation, defining the

family architecture, the market segmentation, and the final objectives for each product.

50

Figure 17: Satisfaction of Different Functional Requirements

The selection of the family architecture is not trivial and has important implications to the prod-

uct and function breakdowns and components within each product. For instance, the set of com-

ponents used in an aircraft are drastically different that the set of components used in a helicopter.

Also alternative family architectures can have different numbers of products. All of these factors

can significantly change the set of family platforms and sharing across the products.

3.1.3 Step 3: Establish Value Objectives

This step sets the requirements on both the products and the family. It attempts to answer which

products are the most critical and which products and requirements are less important. These are

relevant in determining the amount of acceptable trade-offs between the various products for the

benefit of the family.

In addition to creating the function to system mappings, an individual product’s modules should

be identified, Spq. The module is a subsystem that can be treated as an individual product block

and will be used later when looking for similarities between the different products in the family.

One example is the determination of whether the family analysis considers the aircraft fuselage

51

length and width to be a module or just the fuselage width. If the fuselage width is considered, then

products may still differentiate their fuselages by adding plugs to extend them.

3.1.4 Step 4: Generate Feasible Alternatives

There needs to be a modeling and simulation environment to generate and evaluate product alterna-

tives when there does not already exist any historical documents, like in the case of a new product

family. The goal of the modeling and simulation environment is to calculate the impacts of low level

component design parameters on high level customer needs. As an example, consider an airborne

firefighting scenario where a customer is greatly concerned with the quantity of burnt land. In this

scenario, the low level component design parameters may include fuselage length and width for the

aircraft performing the mission, whereas the high level customer needs include the size of burnt

land.

This new modeling and simulation environment is based off of models that adhere to the re-

quirements placed on the systems found from the previous steps of identifying customer needs and

family architecture, figure 18. Depending on the customer needs and how they are quantified, many

different models may need to be created.

This modeling and simulation environment is typically decomposed into several different and

more focused models. It can be easier to build these smaller models that have more well defined

bounds. These smaller models output new parameters that act as inputs for higher level models.

For example, a general vehicle performance model will output performance metrics like speed, fuel

capacity, and fuel consumption. Those outputs are put into a SoS model to determine how effective

the aircraft is in meeting the customer needs. Smaller models can also be more flexible, which

allows them to be more easily reused in other modeling and simulation environments.

The models are typically physics-based and represent the physical processes involved. When

creating the system models, care should be taken to address appropriate levels of fidelity. For

instance, building a complex computational fluid dynamics model to predict the aerodynamic char-

acteristics can yield more accuracy in the results. However, if the design space is too large, it is not

feasible to perform the analysis. Typically, as physics based codes increase in fidelity, their compu-

tation time also increases greatly. One technique then is to build a surrogate model and replace the

52

Figure 18: Needs of the Modeling and Simulation Environment

slower code. A surrogate model, like neural networks or response surface equations, are tuned to the

underlying physics based models, capturing the relevant variability and can be executed in a fraction

of the time. This speedup allows for a more densely explored design space useful for statistical anal-

ysis techniques. One difficulty in fitting surrogate models to complex and stochastic simulations is

maintaining high prediction accuracy. If the physics are significantly complex, then the appropriate

surrogate models may be as complex as the original model, preventing any evaluation speedups.

The end result of this step is to have a modeling and simulation environment that is able to

capture the impacts of product components on high level customer MoEs. After the modeling envi-

ronment is created, the product database is populated using a design space exploration technique like

design of experiments (DoE), adaptive sampling, or optimization. This population of the database

can be visualized on the product family domain hierarchy, figure 19. Here each dot would represent

a product alternative.

The design space exploration depends on the class of the product family problem as well as

any relevant engineering knowledge. Properly scoping the exploration through reasonable design

variable ranges helps to improve the efficiency and accuracy of the results. If the family is a Class

I problem, the platform configuration is known so the design space exploration can focus on gen-

erating design alternatives with the relevant component design variables linked across the products.

In a Class II problem, the component design variables are known but the configuration is not. The

exploration then needs to draw from these known component design variables when generating

analysis cases. In Class III problems, both components and commonality are unknown making the

exploration of the design space much more difficult. This research suggests exploring the design

variables without component sharing and attempt to post process component similarity using one of

53

Figure 19: Space Exploration

the commonality identification approaches.

This exploration step is critical because this generates the database of product design alterna-

tives. If the database proves to be too sparse and fails to capture feasible points, then additional

sampling schemes must be employed. Optimizers or adaptive samplers improve the database ac-

curacy but these methods bias the design space exploration which may introduce artifacts in the

database. Any patterns identified may be these artifacts instead of natural groups due to the physics

and constraints of the family design problem.

3.1.5 Step 5: Commonality Identification

As stated previously, this methodology addresses Class III product family design problems with

system-of-systems elements. So far, the steps in this methodology have been to build a simulation

environment capable of exploring this complex family design space. Once the database is generated,

there needs to be a technique to identify patterns in the module spaces. These patterns aid the plat-

form selection by guiding detailed family exploration. Addressing this commonality identification

need is research question 2.

54

Research Question 2

How can family platform opportunities be systematically identified?

The main goal for this step is to process the different module spaces and identify similarities be-

tween the products. It has been observed that if two components are more similar they will combine

to form a better platform then if two dissimilar components are combined. To extract component

similarity relationships, Rpq
i j , this dissertation formulates two possible approaches. The first is a data

mining fuzzy c-means clustering approach, Chapter 4, applied on the individual module spaces.

The second is a probabilistic approach, Chapter 5, and builds a probabilistic surrogate model of

the design space exploration to then evaluate component similarities. The majority of the exper-

iments, Chapter 7, performed for this dissertation are focused on testing these two commonality

identification approaches and their effectiveness in extracting component similarity for use in this

methodology. Also note, because components are similar does not necessarily mean they should be

shared. Additional evaluations are needed to determine the performance penalty particular platforms

introduce in the products.

3.1.5.1 Clustering Approach

The clustering approach is formulated and discussed in chapter 4 but will be included here for

completeness.

Filter Design Space Once the database has been populated it can be post processed with different

constraints to select the best design alternatives. These requirements can represent customer needs,

feasibility constraints, viability constraints, and/or technical constraints, figure 20. Products that

fail to meet their required customer needs are pruned and not considered in the pool of points to be

clustered. The database is biased to the physics of the problem and filtering biases it to the problem

constraints.

Identify Patterns in Component Design Spaces Once the database is filtered, the module spaces

can be inspected to look for natural groupings in the design parameters. The goal is to be able to

identify if any products are similar to one another for each module space. In figure 21, these notional

55

Figure 20: Filtered Design Space

groupings would be between the middle product and the right product in the engine, fuselage, and

radar spaces. Extracting these patterns can be done with a fuzzy c-means clustering for each module

space. The fuzzy membership functions are then processed to yield component similarities between

the different products.

Iterate The component sharing in one module space should affect the clustering and component

sharing in a different module space. This interaction is captured by repeating the clustering with a

new subset that modified the weights of the points with the cluster centroids for a given platform.

The process converges once the weights of the subset do not change. The output of the process

gives an indication of the platforms for each module and the centroid can give an estimate for the

platform value.

3.1.5.2 Probabilistic Approach

This section gives an overview for the probabilistic approach to extracting component commonality

but is formulated and discuessed in detail in chapter 5. A Bayesian network model is first trained

to a database and attempts to encode the joint probability distribution of the design space. Once the

model is trained it can be used for a Bayesian inference given different requirements.

56

Figure 21: Pattern Identification

Product
Database

For Each Module
Performance
Constraints

Converged

Yes

No

Subset

Extract Module
Design Parameters

Fuzzy C-Means
Clustering

Aggregate
Membership fuctions

Fuzzy Similarity
Relations

Equivalence Hierarchy

Module
Cluster
Centroids

Figure 22: Platform Commonality Identification

57

Bayesian Network Training The Bayesian network again requires access to a database of design

alternatives. The database can be generated using any design space exploration technique. Using

the database, the network structure is learned to extract the relationships between the different prob-

lem variables. Structure learning is performed using a greedy search algorithm that calculates the

Bayesian Information Criterion (BIC) score to help limit unimportant connections between vari-

ables. A metric like the BIC score requires the likelihood of the data for the given structure and

conditional density so the conditional density of the nodes needs to be estimated. To help find a

representative network structure, domain knowledge from subject experts can be included to prune

bad edges or connect known variable interactions.

The network also needs to estimate the conditional distributions. There are several options

but the one proposed for the experiments in this dissertation uses the Least Squares Conditional

Density Estimation (LSCDE). It has been found to be a reasonably robust and quick method. There

are two hyperparameters that are determined with a grid search to select the best score from a cross

validation of the training data. The main purpose of building the Bayesian network is to perform

inference and determine possible component commonality.

Commonality Reasoning Commonality reasoning attempts to determine similar components and

likely platform values. This is done by performing importance sampling to infer the posterior dis-

tributions for the different design parameters.

These posterior distributions represent the likely values of those module design parameters that

would give the product the desired performance. To calculate the module similarity, the earth movers

distance is used calculate the pairwise distances between the posterior distributions. The result is a

set of module similarity relations not unlike what the fuzzy similarity relations using the clustering

approach.

The designer can then use these similarity relations to make informed decisions about the possi-

ble platforms in the family. The other benefit then is once the platform configuration is determined

the platform posterior distribution can be calculated by combining the individual module posteriors

that make up the partition. Finally this process of commonality reasoning can be iterated by repeat-

ing the Bayesian inference with product performance constraints and and platform distributions.

58

Product
Database

Performance
Constraints

Inspect

Yes

No

Importance
Sampling

Module
Similarity Relations

Train Bayesian Network

Determine
Structure

Conditional Density
Estimation

Platform
Distributions

Figure 23: Bayesian Network Process

The posterior represents the distribution of that variable conditioned on the set of problem con-

straints. From the family perspective, if two products’ components have a similar posterior distri-

bution, then they would generate a better platform than if they were dissimilar. The earth movers

distance is calculated between each product for each module space. These new module similarity

relations ow can be visualized and inspected by a decision maker to select possible family platforms.

The outputs of the method are the inter-product similarities for the components. In addition, the

results of the Bayesian inference enable some additional visualizations that can aid the designers in

making informed commonality decisions. Finally with these decisions the impact of the platform

configuration can be assessed and more easily traded against other alternatives with performance

estimates obtained through subsequent inferences. Unlike the clustering approach, the probabilistic

approach does not require successively filtering and reclustering subsets of the data as the variable

interactions have already been encoded in the network structure and conditional densities.

3.1.6 Step 6: Evaluate Alternatives and Make Decision

Assuming that potential platforms are identified, this step will take the alternative and proceed

with higher fidelity models to increase the family planners knowledge. This knowledge enables

59

the designer to make an informed decision and select the best family. Also now that platform

similarities have been identified, the Class III problem has been reduced to trading several Class I

problems against each other. The main benefit of this generic product family design methodology is

that it takes knowledge extracted from the physics of the design space rather than knowledge from

subject matter experts. Again, it was assumed in the beginning that there was not any knowledge

about component similarities.

This step validates the family and architectural design space using different component sharing

suggested by the preceding commonality detection. The end goal is to identify which architecture

and family should be carried forward into more detailed design and analysis. Because the com-

monality decisions are guided by components that perform similarly, there should be less wasted

computational effort on poor areas in the design space, which allows better searching in the pre-

ferred regions. From the notional examples above, sharing the engine, fuselage, or radar between

aircraft one and aircraft two and three is not recommended. This is based off of clustering those

module spaces and finding that product one was more different than product two and three.

It is also critical to evaluate the precise trade-off between cost and performance due to sharing

in order to verify the suggested commonalities. The final objective is to arrive at a complete prod-

uct family portfolio that maximizes the amount of cost savings while minimizing the performance

penalties. Ultimately, this trade-off is what decision makers will use to select the family. Returning

to the notional example of the aircraft, figure 24suggests that the trade-off in performance is not

worth the cost savings for sharing a fuselage between aircraft two and three, but the performance

penalty is not so great for the engine and radar components.

3.1.7 Remarks

This proposed generic product family methodology is needed because there is a gap in addressing

complex system-of-systems product families where the component commonality is unknown. Be-

cause there is minimal knowledge about the product family provided, a sequence of generic steps

are needed to formulate potential solutions. The crucial step in this methodology is the extraction of

potential family platform configurations. Narrowing the number of alternatives for the family plat-

forms, controls the combinatorial explosion of options and focuses computational resources into the

60

Figure 24: Evaluate Architectures

important regions of the design space. Although this methodology assumes limited prior knowl-

edge, if additional knowledge were available, the problem becomes easier and the appropriate steps

can be simplified.

61

Chapter IV

CLUSTERING APPROACH FORMULATION

This chapter reiterates the chief difficulty in product family design and develops a machine learning

pattern recognition approach to identify commonalities between products in the family. From the

fundamental product family trade-off, individual product performance decreases relative to their

ideal as more components are shared. However, these shared components then reduce total family

costs. If two optimized components are similar, then the performance penalty is smaller when

making them a family platform. Therefore, if points are more similar to each other in a subspace

then they will combine to make a better platform than if they were to form a platform with points

that are more dissimilar.

Inspecting the hierarchy of product family domains, illustrated in figure 14, we can detect some

similarities in the module subspace. Two products appear that have very similar component 3s and

components 2s. This similarity may then be a useful commonality heuristic to further exploration

of the product family. Human beings are very good at identifying patterns but are limited to smaller

and lower dimensional problems. A method to extract these patterns will aid in the formulation of

the family. Formally, pattern recognition is a process to analyze and extract possible similar features

from data and is a significant role in many machine learning problems[141].

Machine learning is a broad field in computer science that specializes in algorithms that can

automatically detect patterns in data[106]. The goal then is for these extracted patterns to be used

to make predictions. The set of methods that machine learning can be organized into supervised

learning, unsupervised learning, and reinforcement learning. In supervised learning algorithms

takes a training set of labeled data and creates a classifier that can then predict the correct label

for any new data. Unsupervised learning attempts to discover natural patterns inside the unlabeled

data. Reinforcement learning algorithms are useful for applications that require rewarding positive

behavior and penalizing negative behavior. Identifying commonality between components of the

family is not a task with known labels or suited to rewarding behavior, which leaves unsupervised

62

Cluster 1

Cluster 3

Cluster 2

Cluster 1

Cluster 3

Cluster 2

Points not well
represented by a
particular cluster

Points are assigned a
membership value to every
cluster based on distance

Figure 25: Comparison of Traditional Clustering (left) Versus Fuzzy Clustering (right)

learning.

Inside the branch of unsupervised learning, there are many methods for extracting structure from

the data but can be divided into dimensionality reduction and clustering methods. Dimensionality

reduction methods attempt to collapse the problem onto the most relevant subspace and include

principal component analysis. Clustering methods sets out to divide data set so that the most similar

points are in the same group (cluster) and will serve as a starting point for the product family

component data mining approach.

4.1 Cluster Analysis

Clustering analysis is a “collective term covering a wide variety of techniques for delineating natural

groups [7].” There are two branches of clustering methods, hard and fuzzy clustering. In hard

clustering each point in the data set is clearly assigned to one cluster or another while in fuzzy

clustering each point is given a likelihood to all the clusters [159]. This likelihood is called a

membership function but can be thought of as the probability that point belongs to a particular

cluster. Figure 25 shows a comparison between traditional crisp clustering and fuzzy clustering.

In the domain of product family design it is unlikely that the database is dense. This means that

the points are only near good platform settings and not exactly on them. Furthermore, in a generic

product family design problem the product may operate in a noisy environment. Consequently, the

points would then be further distributed around the idea platform settings. Because the data is less

63

crisp and imperfect, fuzzy clustering would be more robust in identifying points that are not strongly

represented by any particular cluster. This is a good property for a starting point in developing the

background for a pattern recognition product family design methodology.

Sub-Hypothesis 2.1

If a sufficiently accurate and dense database can be generated, then a machine learning pattern

recognition technique like fuzzy clustering could be used to help identify component com-

monality and potentially form a platform.

4.1.1 Fuzzy Clustering

Fuzzy clustering is beneficial for trying to identify relationships in noisy data sets because it captures

the fuzziness that exists in the clustering process and design space in the membership function. The

membership function, U =
{

ui j|{i, j} ∈ c×n
}

, encodes the fuzziness of the problem where c is the

number of clusters specified a priori, and n is the number of design points being clustered.

Fuzzy clustering can be further broken down into different algorithms each with different varia-

tions on how to perform the update procedure and how to calculate the cluster centroids and slightly

modified objective functions. In Fuzzy C-Means (FCM), clustering the objective function J, to

minimize is[36]

J (Ml,U,V) =
c

∑
i=1

n

∑
j=1

um
i jd

2
i j (3)

Where m is a fuzziness parameter, as m increases, the boundaries between clusters becomes

more fuzzy; di j is a similarity measure from the jth point to the ith cluster’s centroid. There are

several different types of similarity measures that could be used to calculate the strength of the

closeness [77]. Santini summarized similarity measures (or dissimilarity) to a distance in some

metric space[133]. There are four properties necessary for a similarity measure d. First there is self

similarity:

d (A,A) = d (B,B)

Minimality:

64

d (A,B)≥ d (A,A)

Third symmetric:

d (A,B) = d (B,A)

Triangular inequality:

d (A,B)+d (B,C)≥ d (A,C)

It is too long to list all similarity measures but the most common tend to be: euclidean distance,

Manhattan distance, and cosine distance. For each iteration, the membership function U is updated

using equ 4, and cluster centroids V = {v1, . . . ,vi, . . . ,vc} are recalculated using Equation 5 [36]

ui j =
d
− 2

m−1
i j

∑
c
i=1 d

− 2
m−1

i j

(4)

vi =
∑

n
j=1 um

i jx j

∑
n
j=1 um

i j
(5)

where x j is the jth point’s design parameters representing module Ml. During the update pro-

cedure, two constraints are applied, Equation 6 and 7

n

∑
j=1

ui j > 0, ∀i ∈ {1, . . . ,c} (6)

c

∑
i=1

ui j = 1, ∀ j ∈ {1, . . . ,n} (7)

Together, they ensure that no cluster is empty, and that the sum of the membership of any data

point to each cluster is one. Because the memberships are [0,1] and their sum is one, the membership

function can be interpreted as the probability of that data point belongs to that particular cluster.

In FCM, the number of clusters is specified a priori and should be varied to find the highest

compactness with the furthest cluster separation. Results of the clustering can be tested using va-

lidity indices which measure the compactness and separation. Compactness is a measure of the

65

variation the data has within each cluster, and separation measures inter-cluster similarity[36]. One

such validity index is the Xie and Beni index [36].

XB(c) =
∑

c
i=1 ∑

n
j=1 (ui j)

m ||x j− vi||2

n ·mini, j ||v j− vi||2
(8)

The optimal number of clusters is the one where the XB index is the lowest and is the one

whose membership functions are used. Effectively the membership functions relate each data point

to each cluster. However for this to apply to family commonality both points and clusters are only

an intermediate step. Points from the database are only possible designs from a design space ex-

ploration method but are still representative of a particular product with that products performance.

The clusters are an intermediate container for then processing the membership functions to extract

the similarity between the modules.

4.1.2 Module Similarity

After clustering, the membership functions relate each data point to each cluster but not the global

similarities of one module to other. In other words after the clustering, we know in which clusters

products appear but not the similarity from one product to another product.

To identify similarities across different products, more processing is necessary. The following

sets up the theory for extracting binary similarity relations from the bulk membership functions.

These steps are similar to a market segmentation method for product family positioning based on

fuzzy clustering is presented by Zhang [170].

Given the membership functions an average membership function is agglomerated by product.

The average membership function U∗ =
{

u∗ip|{i, p} ∈ c×F
}

describes the likelihood product p

belongs to cluster j is equ 9 [135]

u∗ip =
1
|Fp|

|Fp|

∑
j

w jui j ∀ j ∈ Fp (9)

where w j is the weight of the design alternative and j would be all of the rows in the database

that represent product p. The weighting is there so that points that are better performing design

alternatives have a stronger weight, and affect the total product’s membership function more than

points that perform poorly.

66

After finding the average membership function based on natural grouping in the database,

the next step is to identify the similarity between product components. The product-to-cluster

membership matrix is then used to generate a binary similarity relation between all the prod-

ucts. Fuzzy similarity relations can be used to quantify these similarities. Fuzzy binary relations,

R =
{

ri j ∀{i, j} ∈ F×F
}

can be generated through several different fuzzy operations. The most re-

strictive fuzzy operation involves summing the minimum between the average membership function

of two different products across all of the clusters equ 10 [48, 13].

ri j = ∑
z∈c

min
(
u∗zi,u

∗
z j
)

(10)

In effect, if two products appear in the same clusters, then they are more similar to each other

than to a third product that does not appear in the same clusters. There are two main properties of

fuzzy similarity relations, equ 11-12 [77].

Reflexive:

Rii = 1, ∀i ∈ F (11)

Symmetric:

Ri j = R ji, ∀{i, j} ∈ F×F (12)

This summing operation yields numbers that are between zero and one with one being identical

and zero being independent. However the binary similarity relationship is not transitive. Transitivity

is a useful property because the relationship product one and product two share and the relationship

product two and product three share, is the same as the relationship between product one and product

three. By making them transitive a fuzzy equivalence relations is generated. Being transitive also

allows the visualization of the fuzzy equivalence relation with a dendrogram.

A transitive closure is accomplished by equ 13.

R∗ ⊆ R◦R...R (13)

Where the composition R◦R

67

Table 2: Example Fuzzy Equivalence Relation
1 2 3 4

1 1 .2 .6 .2
2 .2 1 .2 .8
3 .6 .2 1 .2
4 .2 .8 .2 1

R◦R = max
j

(
Ri j t R jk

)
∀{i, j,k} ∈ F×F×F (14)

The process for creating the fuzzy equivalence is by repeatedly taking the R ◦R composition,

equ 14, until the resulting relation converges with the input relation. In this equation t represents

a (triangular-norm) or t-norm. A t-norm is a common operation in fuzzy logic and is the fuzzy

equivalent of the triangular equality. One of the most restrictive t-norms is the max-min equ 15.

Rik ≥max
j

{
min

[
Ri j,R jk

]}
, ∀{i, j,k} ∈ F×F×F (15)

Fuzzy equivalence relations R∗ =
{

r∗i j ∀{i, j} ∈ F×F
}

, are still r∗i j→ [0,1], reflexive, and sym-

metric. The fuzzy equivalence relations can be made crisp by assigning elements equal to one if

they are above a threshold. This α-cut similarity threshold is given by equ 16.

ri j (α) =


1 r∗i j ≥ α

0 r∗i j < α

(16)

Finally, by inspecting the elements of R∗ (α), the equivalence classes representing unique parti-

tions are extracted. Equivalence classes are subsets of F that are all like elements.

a = {b ∈ F/R∗ (α) = 1,α ∈ [0,1]} (17)

By taking different α-cuts different equivalence classes are created from the fuzzy equivalence

relations. These different equivalence classes form a nested hierarchy of partitions of the different

product modules. If α > β , then R∗ (α) yields a finer partitioning than R∗ (β).

As an example, consider the fuzzy equivalence relation in table 2. Products two and four are the

most similar followed next by one and three.

68

Table 3: Example Fuzzy Equivalence Relation α-cut of .8
1 2 3 4

1 1 0 0 0
2 0 1 0 1
3 0 0 1 0
4 0 1 0 1

2 4 1 3
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Module

λ

Figure 26: Example Equivalence Class (sharing partition) Dendrogram

Table 3 shows an α-cuts of α = 0.8. Values in the original fuzzy equivalence relation below 0.8

have been zeroed.

We can identify the nested sharing hierarchy represented by this fuzzy equivalence relation

graphically by taking the resulting equivalent classes using cuts at α = {0,0.2,0.6,0.8,1}, figure

26. The y axis of the dendrogram shows the partitions for each α cut. At high, α = 1, all of the

products are independent and as α decreases the platforms are created. This can be used in a similar

way to figure 12 [33]. Product 1 and 3 are more similar to each other than product 2 and 4. As a

heuristic this can guide further exploration of the family exploration process to at least not include

certain combinations.

4.2 Design Space Exploration

One critical aspect of this data mining approach to identify product family commonality that has

not already been discussed is the origin of the data. Because this is for a generic product fam-

ily design problem there may not be any historical database to mine. However through the use of

69

modeling and simulation, the impacts of the design parameters can be seen on the relevant output

performance metrics. From a philosophical standpoint, how the input design parameter combina-

tions are generated is important. The entire purpose of this approach is to identify patterns, but what

if the patterns originate from the method used to explore the design space? The exploration should

be unbiased to ensure the patterns result from the physics of the design problem and the customer

requirements rather than artifacts from the exploration. To understand the impact of the database on

the formulated clustering approach, the experiment two will use different databases generated from

alternate methods. These methods are a Design of Experiments (DoE), Monte Carlo simulation,

and a multiobjective evolutionary optimizer.

Design of experiments are defined as “a systematic, rigorous approach to engineering problem-

solving that applies principles and techniques at the data collection stage so as to ensure the gener-

ation of valid, defensible, and supportable engineering conclusions [111].” There have been numer-

ous different kinds of design of experiments generated each with different pros and cons. They all

attempt to generate the combination of cases to be analyzed in such a way as to try and maximize

the information gathered.

In design space exploration, space filling DoEs are most commonly used. Of these are full

factorial, Latin Hypercubes (LHC), sphere packing, and Hammersley sequence. Recently it has been

found that the Hammersley sequence provides a more uniform coverage[146] than Latin Hypercube

designs which are the most common.

Monte Carlo is a design of experiments where the cases are purely random generated by treat-

ing the input parameters as random variables with particular distributions (usually uniform between

lower and upper bounds). In Monte Carlo simulation the input samples are generated quickly so

large numbers of points can be generated. Biltgen demonstrates how Monte Carlo simulation com-

bined with fast models allow for bulk data examination [14].

Exploring the design space with either a DoE or a Monte Carlo simulation will not likely be

focused near the Pareto frontier and will include many dominated solutions. Unless there is a huge

family cost savings for having common components that compromise the product’s performance,

the products still will remain near their Pareto optimal. So if the DoE and MC databases are low in

sample size then they will have poor coverage near the frontier and be of low quality. Which means

70

that any patterns identified could be far from the ideal family commonality.

To that end a multiobjective evolutionary algorithms (MOEAs) can be useful for generating a

database with better quality. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is one

such algorithm for identifying a set of non-domination solutions along the Pareto frontier unlike

traditional optimizers that only return a point solution based on a single objective function [37]. An

example of a Pareto frontier is shown in figure 27. This set represents the best possible designs

which means that to improve in one objective requires a trade-off in another.

Figure 27: Pareto Frontier Example

The key to the NSGA-II is the dominance sorting. If a member in the population is better than

another member in all objective dimensions it is said to dominate the other member. The algorithm

for the NSGA-II dominance sorting is as follows [37]. For each point in the population compare

it to every other point. If p dominates q then add q to the set of points dominated by p. However,

if q dominates p then increment the domination counter of p. Once all of the population has been

compared, if the domination counter of p is zero then it can be added p to the first front.

71

Algorithm 1 NSGA-II Dominance Sorting
for each pεP do

Sp = /0

np = 0

for each qεP do

if p≺ q then

Sp = Sp
⋃
{q}

else if q≺ p then

np = np +1

end if

end for

if np = 0 then

prank = 1

Front1 = Front1
⋃
{p}

end if

end for

After the dominance sorting is done and the first front is found, the next front is found by

looking at the set of points dominated by the points in the first front. If no other points dominate

a member other than those belonging to the first front, then that point belongs to the next front.

This process then continues until all of the points are assigned into a front. Like traditional genetic

algorithms, the NSGA-II uses a mating mechanism where mating preference is given to the less

dominated members of lower fronts. Once the new population has been generated and evaluated,

both the original mating population and the new population are sorted based on dominance and

only the lower fronts are kept. Eventually the lowest front will converge to the Pareto frontier. The

NSGA-II can also be adapted for use with constraints. This is done by expanding the definition of

the non-dominated sorting. When taking into account constraints, dominance sorting proceeds as

before but infeasible points are automatically dominated by the feasible set of points [37].

Although the NSGA-II will find the Pareto frontier the points were generated in a guided manor

and are not uniform. Recall then that any patterns found could then be the result of the exploration

72

method and may suffer accordingly.

4.3 Clustering Approach

This chapter began with a study into pattern recognition methods to extract component relationships

in a product family. From these methods, a fuzzy c-means clustering approach maintains a finer level

of information about the data using membership functions. Fuzzy operations can then process the

membership functions to generate a hierarchy of partitions similar to the dendrogram in figure 26.

A product database needs to be generated so it can be mined for information. In the previous

section there are several methods to explore the design space and to and populate the initial design

database. After the database is populated, the module spaces can be extracted to look for natural

groupings in the design parameters. Knowing which design parameters represent each module space

is part of the product architecture process. Each of the design parameters should be normalized to

prevent dimensions of large magnitude from skewing the clustering results. Then a fuzzy clustering

algorithm can be used on each component space with care being taken in determining the number

of clusters used.

At this stage the clustering in one module space should affect the clustering in a different module

space. This interaction is captured by repeating the clustering with a new subset that modified the

weights of the points with the cluster centroids for a given partition. The process converges once

the weightings of the subset does not change. The output of the process gives an indication of the

platforms for each module and the centroid can give an estimate for the platform value.

Now that the clustering approach has been formulated, recall one of the key observations about

the motivating aerospace product families. Observation 1 finds aerospace products with their long

life-cycles especially susceptible to the need to adapt to future requirements. This fundamental need

to incorporate flexibility into a product family can be captured if the component sharing sensitivity

can be calculated.

Sub-Hypothesis 3.1

If the design constraints are changed then using the new feasible subset from the design

database and performing the pattern recognition will reveal the sensitivity of component shar-

ing

73

Product
Database

For Each Module
Performance
Constraints

Converged

Yes

No

Subset

Extract Module
Design Parameters

Fuzzy C-Means
Clustering

Aggregate
Membership fuctions

Fuzzy Similarity
Relations

Equivalence Hierarchy

Module
Cluster
Centroids

Figure 28: Platform Commonality Identification

There are three experiments using an electric motor family design as a benchmark. The first ex-

periment is to test the validity of this clustering approach. It is noted that this clustering approach

relays heavily on the quality of the design database to be able to accurately determine the platforms.

This experiment included a second refined exploration using narrowed design variable ranged found

from a courser Latin Hypercube DoE.

Experiment two is formulated to test which method of exploration is most efficient and how sen-

sitive the clustering approach is to the initial size of the database. In this experiment it is believed

that the predicted error for the platforms predicted from the clustering will decrease as the popula-

tion size of the design database increases. This is because there should be more points around the

family solution in the benchmark study. Furthermore, the ability of an evolutionary algorithm is also

included in this convergence study. It is postulated that an evolutionary algorithm may introduce

bias in the design database skewing the results of the clustering.

The third experiment uses a different benchmark study to understand how changing the perfor-

mance requirements changes the commonality relations.

74

Finally it may not be possible to generate a design database that has enough resolution to accu-

rately predict the platform variables. This is especially possible for more a complex family where

the analysis codes have longer run times. The following chapter 5 introduces a competing method

for extracting commonality using a probabilistic surrogate approach to detect patterns. It is hoped

that build a representation of the database which can be interrogated more quickly will scale to more

difficult problems better.

75

Chapter V

PROBABILISTIC APPROACH FORMULATION

Probabilities play a central role in modern pattern recognition[17], and this chapter builds a novel

probabilistic approach to the family platform configuration problem. This probabilistic approach

attempts to build a surrogate model of the design space exploration by using a Bayesian network to

capture the joint probability distribution. Training a Bayesian network requires learning the network

structure and then estimating the conditional distributions of the network nodes given their parents.

After training, Product performance requirements can then be applied as evidence to the net-

work. Using statistical inference techniques, this evidence propagates through the network and

yields the posterior distributions for the component design variable nodes. In effect, these posterior

distributions indicate the likely values for the design variables given the requirements.

Identifying product component commonality relies on comparing the similarity between the

conditional distributions of component design variables. If two products’ components have a similar

distribution, then they could be combined to become a family platform. The platform design variable

distribution can then be estimated by combining the component design variable distributions from

the relevant products.

5.1 Surrogate Modeling

For a generic system-of-systems product family design problem there are very many dimensions

and because of the SoS nature possibly stochastic. This adds many restrictions onto the kinds of

acceptable surrogate models for representing the point cloud of the product family design space

exploration.

A model is an abstraction of reality and is not a perfect representation of that reality[61]. When-

ever a model is created, only some aspects of reality can be incorporated and others must be re-

moved. Part of the science of surrogate modeling is understanding which dimensions have the most

impact. Imagine reality being a truth model where some function f maps the domain x into the

range y

76

y = f (x)

Because this function is unknown a surrogate model would find some estimate, ŷ, of y being

y = ŷ+ ε

ŷ = g(x)

where ε represents approximation error and measurement (random) errors and g is is the model[145].

Because the surrogate is usually significantly faster to execute than the original function, it can be

used to understand the relationship between x and y. In creating a surrogate model there are four

steps:

1. Experimental design - generates the combinations of input parameters to explore the design

space

2. Model choice - selects the type of surrogate model

3. Model fitting - trains the relevant hyperparameters of the selected model to the data set

4. Model accuracy - verifies that the model is likely by testing the prediction accuracy against

the data

Table 4 shows part of the huge variety of sampling methods, model choice and method of fitting de-

cisions that are made for a surrogate. In the experimental design column there are numerous choices

but space filling experiments have been found to generate the most accurate surrogate models[146].

Specifically Simpson notes that Hammersley sequences tend to be more evenly distributed in all

the dimensions compared to Latin Hypercubes which are only uniform in 1-D projections[146].

However the most common designs include orthogonal arrays, Latin Hypercube designs, Hammer-

sley sequences, and uniforms designs[166]. Kernstine notes that the use of traditional exploration

methods may not be well suited for SoS simulations[75]. SoS simulations are usually inherently

probabilistic and that it tends to require significant computational resources which limits the ability

to run many points.

77

Table 4: Options for Each Stage of Surrogate Modeling[166]
Experimental
Design

Surrogate Model
Choice

Model Fitting

- Classic methods
* (Fractional)
factorial
* Central
composite
* Box-Belinken
*Alphabetical
optimal
* Plackett-Burman
- Space-filling
methods
* Simple Grids
* Latin Hypercube
* Orthogonal
Arrays
* Hammersley
sequence
* Uniform designs
* Minimax and
Maximin
- Hybrid methods
- Random or
human selection
- Importance
sampling
- Directional
simulation
- Sequential or
adaptive methods

- Polynomial
(linear, quadratic,
or higher)
- Splines (linear,
cubic, NURBS)
- Multivariate
Adaptive
Regression Splines
(MARS)
- Gaussian Process
- Kriging
- Radial Basis
Functions
(RBF)
- Least
interpolating
polynomials
- Artificial Neural
Network
- Knowledge Base
or Decision Tree
- Support Vector
Machine
(SVM)
- Hybrid models

- (Weighted) Least
squares regression
- Best Linear
Unbiased Predictor
(BLUP)
- Best Linear
Predictor
- Log-likelihood
- Multipoint
approximation
(MPA)
- Sequential or
adaptive
metamodeling
- Back propagation
(for ANN)
- Entropy
(inf.-theoretic for
inductive learning
on decision tree)

78

The choice of surrogate model is the most critical step. It is possible that the type of model

selected is incapable of being satisfactorily trained to the data. For example a linear model would not

be able to fit a design space with discrete jumps. The model choices from above all are regression

techniques that regress to the mean of the data and would be well suited for capturing the joint

distribution of a stochastic point cloud. Mosteller and Turkey note that this is only imparts a piece

of the understanding of the problem and that understanding the distribution of the output yields a

more complete picture[105]. With a probabilistic regression the goal is to find the probability of y

conditioned on x.

P(y|x)

Probability of y given a value of x is analogous to f (x). It can still be beneficial to have a point

value of y and in that case the estimate is to take the expectation of y given x.

ŷ = E(y|x = x̂)

=

ˆ
P(y|x = x̂)ydy

There are a few choices for estimating this conditional probability. Quantile Regression from

Koenker and Bassett attempts to regress specific quantiles from the data that can be used to given

an idea of the conditional distribution [85]. They argue regressing the quantiles yields a substantial

improvement for linear models with non-Gaussian noise.

Takeuchi modified Quantial Regression with a nonparametric kernel formulation[157]. Kernel

quantile regression (KQR) can be used to generate the conditional distribution by solving for all the

quantiles. However, the computation can be unstable for some problems.

Bishop proposed the mixture density network (MDN) as a class of neural network extended

to represent arbitrary conditional probabilities [16]. The neural network outputs an intermediate

parameter vector that is used in a mixture model to output the conditional probability. MDN works

well, although its training is time-consuming and limited to only local optimal solutions.

Gaussian processes typically assumes the data as being normally distributed but Tresp intro-

duces a mixture of Gaussian processes to estimate the conditional density[160]. They find it possible

79

to train faster and that it can be used as building blocks in a graphical model.

Sugiyama et al. applied their earlier density ratio estimation to conditional probability[154].

By estimating the conditional distribution directly, they find the Least-Squares Conditional Density

Estimation (LSCDE) performed the best against other techniques. All of these density estimation

methods look at predicting only a single dimensional output against some number of inputs.

5.2 Probabilistic Graphical Models

Learning a high dimensional joint probability distribution directly is typically not practical and

suffers from the curse of dimensionality. Probabilistic graphical models solve this issue by find-

ing an appropriate factorization of the joint probability distribution such that only relevant variable

interactions are captured. They offer an intuitive representation of dependencies and compact rep-

resentation of the joint probability distribution [27]. Again the surrogate model choice needs to be

able to handle large dimensions, noisy or probabilistic data that is expected with a generic system-

of-systems product family. Graphical models may be a viable alternative to the classical regression

approach [165].

Sub-Hypothesis 3.1

If a model can be generated that encodes the joint probability distribution, then component

similarities can be inference given performance constraints.

In a probabilistic graphical model, there is a set of nodes (vertices) connected by links (also called

edges or arcs)[17]. The graphical representation of probabilistic relationships allows for efficient

representation of the dependencies between variables [27]. Conditional independence is captured

through the appropriate graph edges between nodes. Due to practicality, the links are limited to only

consider strong dependencies between the variables. Furthermore, Probabilistic graphical models

confer several advantages over pure algebraic manipulations due to the use of statistical inference

techniques.

In creating a probabilistic graphical model there are two steps. First the structure, or how the

nodes are connected, must be estimated. Second using the found structure, the conditional proba-

bilities of the various nodes must be learned.

80

There are two main types of probabilistic graphical models, directed graphs (Bayesian networks)

and undirected graphs (Markov random fields). Directed graphs are useful for expressing causal

relationships between random variables. Undirected graphs are better suited to expressing soft

constraints between random variables[17]. The main distinction between the two is that directed

graphs are restricted to exclude all closed paths (called cycles). Markov random fields require more

advanced sampling methods when performing statistical inference like Markov Chain Monte Carlo

(MCMC), Gibbs sampling, or the Metropolis-Hastings Algorithm. Bayesian networks offer a better

starting point for understanding the mechanics of probabilistic graphical models.

5.2.1 Bayesian Networks

The term Bayesian networks was introduced by Pearl[117] as it provides a convenient structure

for performing Bayes rule. Bayes rule codifies the update of existing beliefs with new observed

evidence, equ 18[10]

P(A|B) = P(B|A)P(A)
P(B)

(18)

There are a variety of subclasses of Bayesian networks: recursive graphical models, Bayesian

belief networks, belief networks, causal probabilistic networks, causal networks, and influence

diagrams[34]. All Bayesian networks attempt to mimic human’s inferential reasoning. Human

knowledge is comprised of low-order marginal and conditional probabilities. For instance how

likely the grass is wet given that it rained today. A Bayesian network can be considered a proba-

bilistic expert system where the encoded knowledge is contained in the topology of the network and

the conditional distributions of each node[58]. Guo notes one of the main uses of the knowledge

base is to use it to infer posterior distributions from a particular set of domain queries[58].

Bayesian networks are compact and provide intuitive representation of relationships between the

variables[118]. In Bayesian networks the joint distribution has been factored such that the directed

links between nodes indicate parent child relationships where the child node has been conditioned

on the values from all of it’s parents. As an example consider a joint probability distribution of three

variables a, b, and c being P(a,b,c). From the product rule for probability this joint distribution

may be factored as [17]

81

Figure 29: Directed Graph Example

P(a,b,c) = P(c|a,b)P(a,b)

= P(c|a,b)P(b|a)P(a) (19)

Graphically, this factoring is shown in figure 29, and represents the joint probability distribution.

Each node is the conditional distribution given the values of their parents (all the other nodes that

point into this node). An important qualification is that a different factoring of the joint distribution

would show a different graph and may be a more accurate representation of the data.

In general for a network with K variables in the domain the joint distribution is Equ 20[17].

P(x̄) =
K

∏
k=1

P(xk|pak) (20)

where pak denotes the parents of xk and x̄ = {x1, ...,xk}. With Bayesian networks there is the

idea of conditional independence. For instance, two sets of variables xa and xb are conditionally

independent given a third set of variables xc if

P(xa,xb|xc) = P(xa|xc)P(xb|xc) ∀xc (21)

is equivalent to:

P(xa|xb,xc) = P(xa|xc) ∀xc (22)

Conditional independence allows for simplifying both the structure of the model and the com-

putations needed to perform inference and learning under that model[17]. A node is conditionally

82

Figure 30: Markov Blanket

independent of all other nodes in the network given its Markov blanket. The Markov blanket in-

cludes all of the node’s parents, children, and children’s parents, figure 30.

Hierarchical modeling is fundamental to Bayesian statistics[158]. Hierarchical Bayesian net-

works (HBN) are an extension of Bayesian networks whereby the nodes are aggregations of simpler

nodes. In fact, every node could itself be another HBN[59]. A typical example of hierarchical

Bayesian model is when the node’s distribution includes hyperparameters like a normal distribu-

tion’s mean and standard deviation. These hyperparameters then may be described by other nodes

with may have additional hyperparameters to describe their shape. The benefit of HBN is the higher

order nodes can be decomposed by their hyperparameters until it reaches the atomic level where the

hyperparameter can be represented with a simple marginal distribution[158]. The ability to decom-

pose the network down to simpler levels may eventually yield hyperparameters that have operational

meaning and help in fitting the model.

Another class of Bayesian networks is Dynamic Bayesian networks (DBN). DBN capture tem-

poral processes by constraining the structure to specify how variables change in time[34]. Networks

of this type have been applied to control problems.

5.2.1.1 Graphical Model Structure Learning

As mentioned previously the structure of the network is critical. Having only the critical links allows

probabilistic graphical models to represent large joint distributions more compactly. Incorporating

insignificant connections leads to over fitting of the model while failing to have the important con-

nections leads to a network that does not accurately model reality.

83

Table 5: Number of Possible DAGs for a Given Number of Variables
Number of variables in DAG Number of possible DAGs

1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1,138,779,265
8 783,702,329,343
9 1,213,442,454,842,881
10 4,175,098,976,430,598,100

The problem of learning the network structure is shown to be NP hard[25]. This is due to

another huge combinatorial space. Robinson gives the number of possible DAGs combinations for

the structure space of n nodes[129]:

f (n) =
n

∑
i=1

(−1)i+1Cn
i 2i(n− i) f (n− i) (23)

Table 5 show how quickly the possible DAG combinations grows. Because of the large com-

binatorial structure space, brute force methods are computationally prohibitive requiring heuristic

methods to find a reasonable network candidates[17].

An exhaustive search brute force approach would find the global optimal structure. However

it requires the enumeration and testing all possible graphs and is infeasible on all but the smallest

networks. Fortunately there are a variety of methods to learn the structure of the network. Daly

divides these methods into three main if slightly overlapping methods: dynamic programming,

heuristic score and search, constraint-based[34]. In dynamic programming, a score is calculated for

all small numbers of variables and combine these models.

Heuristic score and search methods are the most widely used methods. All of the heuristic al-

gorithms are comprised of[34]: a space of allowable states each representing a possible network

structure, a mechanism to encode these states, a mechanism to transition from state to state in the

space, and a scoring function to compare states against each other. The most basic heuristic algo-

rithm is the greedy search. The greedy search is analogous to a hill climbing optimizer. Links are

added and removed until the score is improved over the current value. This process continuous until

84

no link changes yield a score improvement. Another famous heuristic method is the K2 algorithm

introduced by Cooper and Herskovits[29]. The K2 algorithm uses a hill climbing approach but is

restricted by the order of the nodes. The node order denotes preceding nodes as possible parents to

later nodes. This restriction can be useful but in the product family design a good node order may

not be known. Other heuristic optimization methods like genetic algorithms, simulated annealing,

particle swarm optimization can also successfully identify Bayesian network structure. Chicker-

ing shows combining random restarts with the greedy search produces better results than simulated

annealing for the same computational time[26].

Constraint-based methods determined the Bayesian network structure through the use of depen-

dency tests. These tests then can serve to limit the number of possible links to evaluate. There are

many statistical tests that could be used to calculate the dependency, χ2, maximum likelihood sta-

tistical significance or G-test, mutual information, and conditional mutual information[124]. Con-

ditional independence tests allows edges to be removed from the network making it easier to train.

No matter the condition independence test, constraint-based methods have some overlap with the

heuristic score and search. A scoring function is still needed to compare alternative structures.

In order to determine what is a “good” network, a scoring metric is used. This measures the

quality of the network and is typically proportional to the likelihood function and a penalty that

grows for the number of links (limit complexity)[120]. The metric could also include results from

statistical tests on independence. Although the structure of the network does not directly depend on

the choice of node’s conditional distribution, that choice could affect the selected scoring function.

The simplest scoring metric is the maximum likelihood score. Because the likelihood involves

multiplying many small numbers it can encounter numerical problems. This is helped by working

on the log of the likelihood so given data D and model Bs with hyperparameters θ the log likelihood

assuming each data sample generated independently is

logP(D|θ ,Bs) = log
k

∏
j=1

n

∏
i=1

P
(
xi j|Paxi j ,θ ,Bs

)
(24)

where n is the number of variables in the network and k is the number of samples in D and

Paxi j is the parents of xi j. This score though has a tendency to include more links than necessary

85

resulting in over fitting. To modify this there is the Bayesian information criterion (BIC) among

others. These metrics typically still calculate the likelihood but add some penalty for increasing

model complexity.

BIC (Bs,D) = logP(D|θ ,Bs)−
d
2

log(n) (25)

where θ is the maximum likelihood of the parameters in the network Bs, d is the number of

parameters in the node, n is the sample size. The Minimum description length (MDL) is a modified

BIC with yet another penalty for complexity[30].

MDL(Bs,D) = logP(D|θ ,Bs)−
d
2

log(n)+Ck (26)

where Ck =∑
k
i=1 (1+ |Paxi |) logk, and |Paxi | is the number of parents for node xi and k is the total

number of variables. To complicate structure learning, not all of the variables may be known for

some general Bayesian networks. These latent variables or hidden variables can be crucial to some

models[6]. A popular method of determining the conditional probabilities of the latent variables is

the EM-algorithm [38]. Daly points out that it always converges to at least a local optimum[34].

5.2.1.2 Conditional Density Estimation

Once a network structure has been established the second step for fitting a Bayesian network is to

find the condition densities for every node. In general, a node could be either continuous or discrete.

If a Bayesian network has both types of nodes then it is a mixed or hybrid Bayesian network.

Discrete networks are based on multinomial distributions and can be generated by calculating a

conditional probability table (CPT). The CPT is calculated by counting the number of instances that

variable’s outcome happens given it’s parents. Continuous Bayesian networks are more difficult

than discrete networks and it is not uncommon to discretize a continuous domain. One difficulty

with discretization is the loss of information, and that if the resolution is too fine for the number

of samples, there will not be any outcomes in the bin to count. This can be a significant problem

for higher dimensional nodes. This state space explosion does not happen if the domain remains

continuous.

86

Instead of a simple counting problem, the difficult problem of conditional density estimation

is created. Now that the conditionals are more difficult to calculate than CPT, some additional

decisions must be made. If the kind of distribution is known (e.g. normal) then all that is required

is to fit the parameters of the distributions. However, these parametric techniques can be restrictive

if the data does not follow a traditional distribution (as in the case for SoS problems). Because

the distribution is not known a priori, nonparametric techniques maybe applied which make less

assumptions about the density of the data[50]. Ickstadt discusses nonparametric Bayesian networks

using mixtures of distributions[70]. Formally, the conditional distribution of y given x is

P(y|x) = P(x,y)
P(x)

(27)

Given the way the conditional density is calculated, quotient-shaping is an approach that esti-

mates P(x,y) and P(x) independently and then divide the result[50]. This simple approach tends to

magnify errors in the resulting conditional density.

Another nonparametric conditional density estimation approach is the quantile-copula proposed

by Faugeras[42]. A copula is a description of the cumulative multivariate distribution function. To

accomplish this the variables are represented by their marginal distributions and the copula describes

their interaction. Elidan extensively uses copulas in learning Bayesian networks[40]. The benefit

by using copulas is the probability distributions can be efficiently sampled using transformation

sampling. Because the CDF varies uniformly between 0 and 1 in transformation sampling can

generate a value between 0 and 1 then use the CDF to find the corresponding value for the variable.

As mentioned previously it has been found that LSCDE outperformed other conditional density

estimation techniques, although it has not been compared with copulas. In this dissertation, LSCDE

will be used as a nonparametric technique to estimate the condition distributions for the nodes

in a continuous Bayesian network. The following formulation is from Sugiuama and recreated

here for the purposes of completeness[154]. In LSCDE, instead of estimating the numerator and

denominator independently, it is considered proportional to the density ratio

P(y|x) = P(x,y)
P(x)

∝ r (x,y) (28)

The density ratio, r (x,y), is a linear model of

87

r (x,y) = α
T

φ̄ (x̂,y) (29)

where φ (x,y) are basis functions and α are their associated weights. These weights, α̃ , are

calculated as the solution to minimize the squared error.

α̃ =
(
Ĥ +λ Ib

)−1 ĥ (30)

where

Ĥ =
1
n

n

∑
i=1

Φ(xi) (31)

ĥ =
1
n

n

∑
i=1

φ̄ (xi,yi) (32)

Φ(x) =

ˆ
φ̄ (x,y) φ̄ (x,y)T dy (33)

Because the density ratio must be positive any negative weights α̃ are pruned.

α̂ = max(0, α̃) (34)

Finally, the conditional probability is equal to the normalized density ratio

P(y|x = x̂) =
α̂T φ̄ (x̂,y)´
α̂T φ̄ (x̂,y)dy

(35)

The kernel used for the basis functions φ (x,y) will be discussed in the next chapter. Once both

the network structure is learned and the node conditional distributions are estimated the training

is complete. In other words, the completed Bayesian network has been fit to the joint probability

distribution of the training data.

5.2.2 Inference

The purpose of building this probabilistic surrogate is to find the design variables probability distri-

butions given other nodes are set to certain values. This is similar to traditional functional surrogate

models, y = f (x), where the goal is to calculate y for various values of x. Inference is the process

88

Differential Method

Stochastic Sampling

Symbolic

Elimination

Arc Reversal

Conditioning

Clustering

Polytree Algorithm

Model Simplification

Search-Based

Loopy Propagation

Approximate
Inference

Exact
Inference

Figure 31: Inference Techniques[58]

to determine node posterior distributions conditioned on a set of evidence nodes[108]. However in-

ference in a Bayesian network is much more flexible because the evidence nodes can be any subset

of the network’s nodes. Consider the following conditional probability query[87]

P(X|E = e) (36)

where E are the evidence nodes with observed values e, and X are the network nodes being

queried. In effect, the evidence nodes are “clamped” to their respective values e while the other

network nodes will reflex the likely values that correspond to the evidence. There are numerous

different techniques for performing the inference but can be divided into two main branches exact

and approximate, figure 31.

Exact inference methods yield an exact distribution for the variables. These methods usually

attempt to simplify the network by removing unimportant nodes, collapsing several nodes, and

reversing the parent child relationships. In arc reversal, the direction of the edges are adjusted so

that the evidence nodes are treated as parents. Node reduction is a method to remove nodes that are

highly dependent on neighboring nodes thereby simplifying the network. For example in figure 32,

node b is highly correlated with node c and could be summed out.

It can be difficult to compute the posterior distributions exactly either because of high dimen-

sionality, the continuous variables, or required integrations may not have closed form analytical

solutions. In general the problem of inference in Bayesian networks is NP hard which makes exact

89

Figure 32: Example of node Reduction[27]

inference inefficient or impossible for large scale networks[108]. Thus if exact inference cannot be

performed, then approximate inference must be used. Most commonly used approximate inference

technique are stochastic Monte Carlo sampling methods.

In these methods, samples are simulated from the network according to the probabilities of the

conditional probability query. The frequencies of these samples then serve as an approximation

for the posterior distributions. These sampling methods can be relatively slow to converge, but

exact given an infinite amount of computation time. It is imperative to speed up the convergence

rate of this class of methods in order for them to find more practical applications[21]. Interest-

ingly, the convergence rate for these sampling methods asymptotically is 1
n1/2 where n is the number

samples[94].

The most basic form of stochastic approximate inference sampling is the logic sampling also

known as ancestor sampling or forward sampling[27]. Logic sampling, similar to rejection sam-

pling, generates a samples from the network node i given its parents P(xi|pai), even if that node

is in the evidence set and has P(Ei). To correct for this, some samples get rejected according to

u < P(Ei|pai)
M P(si|pai)

where the rejection rate u is uniformly distributed between 0 and 1.

In performing logic sampling the nodes in the Bayesian network are sorted topologically. First

the lowest numbered node, the one with no parents, is sampled. The network nodes are then pro-

gressively sampled so that all of the parents of a node are known first so that nodes conditional

density can be evaluate. Because evidence nodes are not locked to the observed values, samples are

continually generated until they agree with the evidence nodes. Samples that do not agree will be

discarded. Algorithmically logic sampling for the Bayesian network Bs is:

90

Algorithm 2 Logic Sampling
Topologically sort nodes in network Bs

for each node i ∈ Bs do

si← P(xi|pai) {Generate a test x for node i from the conditional distribution}

if i ∈ E node is in the set of evidence then

u←U [0,1] {Rejection rate si}

if u < P(Ei|pai)
M P(si|pai)

then

si ∈ S {Add node sampled to the sample set}

end if

else

si ∈ S

end if

end for

Logic sampling is only efficient when the evidence is very likely and the evidence nodes have

few parents. One method, backwards sampling, helps improve the efficiency by reversing network

arcs so that connections flow away from any evidence nodes[53]. However, depending on the struc-

ture and the number of evidence nodes it may not be possible to eliminate all of the evidence nodes’

parents. Because samples are discarded, an inordinate number of simulations may be needed to

generate one instance conforming to the evidence[63].

To overcome this difficulty it is beneficial to sample directly from the evidence nodes’ ob-

served values. Effectively the samples are going to be generated in more likely or important

regions[97]. However sampling from the evidence nodes directly requires the introduction of sam-

ple weights[108]. These weights, wi, correct for sampling from the evidence instead of the net-

work. Shachter and Fung first used likelihood weightings from Simulation approaches for network

inference[137, 54].

91

Figure 33: Example Importance Sample with CPT[27]

Algorithm 3 Importance Sampling
Topologically sort nodes in network

for each node i ∈ Bs do

if i ∈ E node is in the set of evidence then

si← P(Ei) {Generate a test x for node i from the conditional distribution}

else

si← P(xi|pai) {Generate a test x for node i from the conditional distribution}

end if

si ∈ S

ŵi =
P(xi|pai)

P(Ei)
{Cooresponding score of sample i}

end for

wi =
ŵi

∑i ŵi
{Normalize sample weights }

Likelihood weighting can still reject cases if the weighting is zero. An example is shown in

figure 33. In the sampling procedure, a would be sampled and then b would be sampled. However,

if both are zero and since c = 1 the sample weight would also be 0. This is because there is no

chance the network could have generated it and it would be rejected, P(c = 0|a = 0,b = 0) = 0.

Because all the samples are used the predicted distribution converges more quickly compared to

logic sampling. However it is still possible for unlikely evidence to have most of the sample weights

be zero except and the occasional large weighted sample dominating the other samples[169]. This

92

is especially an issue for high dimensional problems, complex conditional distributions, extremely

unlikely evidence, and when low numbers of samples are taken[126].

Importance sampling works because the samples are drawn from “information packed” sample

space[21]. There are several studies that show improvements compared to basic importance sam-

pling by further refining the ability to target this informative space. Cheng and Druzdzel propose an

Adaptive Importance Sampling for Bayesian networks (AIS-BN)[24]. Their key to speeding up the

convergence is to iteratively sample while updating the sampling distributions and eventually the

sampling distribution converges to the correct posterior. The AIS-BN introduces different sample

weights depending on the different learning stages and the sampling distribution is updated[58].

Another improvement to importance sampling is self importance sampling SIS[137]. The other

approximate inference algorithms like Loopy Belief Propagation can be expressed in terms of the

propagation of local messages around the graph [17]. These kinds of message passing inference

algorithms begin by creating a factor graph. A factor graph is a undirected graph where nodes

either represent the variables or the edges in the original DAG. These new edge node types serve as

factors and help control the algorithms message passing. The benefit of message passing is unlikely

evidence can back propagate more easily but can also cause the network to oscillate between states

as conflicting evidence is passed around. Yuan proposes an evidence prepropagation importance

sampling EPIS-BN[169]. In this they use a two stages, first a loopy belief propagation to initialize

the network then an epsilon cutoff heuristic to prune unlikely probabilities. Overall this improves

the sampling importance function and increases accuracy in the posterior distributions.

5.3 Similarity Measures

In the context of family design these posterior distributions for the design variables represent the

likely design variable settings for the different components. To compare the different products com-

ponents then there needs to be some similarity metric between different module posterior distribu-

tions. There has been much work into the area to measure the similarity between two probability

distributions.

To reiterate from the similarity measure in the previous chapter there are several properties that

93

a metric needs to possess. It must be symmetric, and obeys the triangle inequality. The Kullback-

Leibler and Jeffrey divergences are information theory based. The KL divergence measures how

well one distribution represents another. However the KL divergence is not symmetric. Jeffery

divergence is a modification from the Kullback-Leibler divergence

d (P,Q) =

ˆ
(P(x)−Q(x))(lnP(x)− lnQ(x))dx (37)

The Hellinger distance is another metric for evaluating how far one probability distribution is to

another[49].

h(P,Q) =
1√
2
·
ˆ √

P−
√

Q (38)

h(P,Q) =
1√
2
·
ˆ (√

f (x)−
√

g(x)
)2

dx (39)

Benefit is that distance 0≤ h(P,Q)≤ 1. zero for identical and 1 for no commonality. This metric

also satisfies the triangle inequality. The Hellinger distance is closely related to of the Bhattacharya

coefficient which lacks satisfying the triangular equality.

Rubner introduces the earth movers distance (EMD) as a metric for comparing multidimensional

distributions[131].

minimize WORK (P,Q,F) =
m

∑
i=1

n

∑
j=1

fi jdi j

with respect to F =
{

fi j
}

subject to fi j ≥ 0 1≤ i≤ m,1≤ j ≤ n
n

∑
j=1

fi j ≤ wpi 1≤ i≤ m

m

∑
i=1

fi j ≤ wq j 1≤ j ≤ n

m

∑
i=1

n

∑
j=1

fi j = min

(
m

∑
i=1

wpi ,
n

∑
j=1

wq j

)
where:

D = [di j] ground distance matrix

94

F = [fi j] flow between the two probability distributions

Effectively, this describes the minimum amount of work needed to transfer one pile of dirt into

another pile of dirt. The final distance then is normalized:

EMD(P,Q) =
∑

m
i=1 ∑

n
j=1 fi jdi j

∑
m
i=1 ∑

n
j=1 fi j

(40)

Because there is a linear programming step the computational cost for the EMD is high. The

EMD is a flexible metric that outperforms other dissimilarity measures[131].

Levina and Bickel find that the EMD is equivalent to the mallows distance but is more robust

implementation[93]. EMD has been used with different methods of calculating the ground distance

matrix[8].

5.4 Bayesian Network Applications

Now that Bayesian networks have been introduced along with the theory of building and using them,

this section serves to introduce current uses. Computational resources continue to improve allowing

more Bayesian networks to be used in more complicated problems.

Bayesian networks have been used in a type of optimization algorithm called Evolutionary Dis-

tribution Algorithms (EDA). EDA construct a probability distribution over the search space of an

optimization problem and adaptively learn while driving the search process[79]. One particular type

of EDA is the Probabilistic Model Building Genetic Algorithm or PMBGA. In a PMBGA the pro-

cess of mutation and crossover is replaced with generating a probabilistic model that can be sampled

from to generate the next generation.

The end result of the PMBGA is a probabilistic model that can be sampled to generate all global

optima[120]. Frequently a subject matter expert has significant knowledge of their problem domain.

It would be wasteful for the optimization not to include and exploit this knowledge. Fortunately,

probabilistic models provide a flexible framework for any incorporation of prior knowledge. One

way this can be accomplished is with biasing the initial sample population[120]. Additionally hav-

ing prior knowledge about the interactions between variables can lead to improved structure quality

and better improve the efficiency of the optimization. Furthermore, the structure of the probabilistic

model does not have to be retrained with every new generation and can build on previously learned

95

structures.

Another interesting application is presented by Gallagher[55]. Here Bayesian inference is per-

formed between the iterations to help guide the evolution by combining the probabilistic model

with prior distributions and improve the optimization convergence. Ahn introduces a MultiObjec-

tive Real coded Bayesian Optimization algorithm (MrBOA)[5]. In this study the NSGA-II method

of determining dominance is used to help progress the optimization to the Pareto frontier.

Outside of optimization, Bayesian networks are used extensively as knowledge bases. Most

commonly as medical diagnoses. One recent study in the field of engineering by Kestner et al. uses

exact inference on discrete Bayesian network for complex conceptual systems[80]. In the study,

they performed a trade study and subsystem design of directed energy system.

5.5 Bayesian Network Approach

This section will now establish the Bayesian network process that will be used in the product family

design methodology. The end goal is to identify component commonality between a set of prod-

ucts. This approach was formulated due to some limitations noted with the previous data mining

approach. These issues include the requirement of a large exploration of the design space. This

exploration needs to not add any artificial groupings of points so that the clustering approach finds

relationships between the different product variants that exist solely because of the physics of the de-

sign problem. The need to not bias the database limits the kinds of explorations; adaptive sampling

and other evolutionary optimization strategies build new data from those previously found better

performing designs. Unbiased explorations would be Design of Experiments and random Monte

Carlo approaches. The downside of these exploration methods is that a significant amount of effort

is spent computing regions of the design space that is either infeasible or significantly dominated

instead of regions of interesting trade-offs.

To remedy these limitations, a probabilistic approach is formulated. This approach attempts to

build a probabilistic Bayesian Network model of the Joint Probability Distribution of a design space

exploration. The method used for finding the network structure is to use the BIC with a greedy

search. Like the previous fuzzy clustering approach, the design space needs to be explored first.

The options available for this can the same as the clustering approach.

96

Product
Database

Performance
Constraints

Inspect

Yes

No

Importance
Sampling

Module
Similarity Relations

Train Bayesian Network

Determine
Structure

Conditional Density
Estimation

Platform
Distributions

Figure 34: Bayesian Network Process

After the space has been explored the Bayesian network needs to be created. To learn the

network structure this approach proposes to use a greedy search algorithm that uses the BIC score

to help limit excess links between the nodes. The BIC score requires the likelihood of the data for

the given structure and conditional density so the nodes need to be fitted as well. This does add to the

training time however and there could be some benefit to including some statistical independence

tests to help guide the search. The greedy search was chosen because it will at least yield a local

optimum and can be restarted with different initial conditions to help select better final structure.

If there is a subject matter expert available, they can provide feedback as to which structures have

justifiable links between the variables and can prune away or add as necessary.

Once the structure is learned, this approach proposes to estimate the conditional distributions

using the LSCDE process outlined above. It is a reasonably robust and quick method that yields

better final fits comparing to several other alternative methods. There is a hyperparameter search

that will be discussed in further detail in the following chapter. The main purpose of building the

Bayesian network is to perform inference. Performance constraints can be applied as evidence and

the inference propagates these through the network and yields the posterior distributions for the

nodes.

97

The posterior represents the distribution of that variable given the set of evidence. From the

family perspective if two products’ components have a similar posterior, then they would generate a

better platform than if there were dissimilar. The earth movers distance is calculated between each

product for each module space. These new module similarity relations now can be visualized and

inspected by a decision maker on possible family platform.

The outputs of the method are inter-product similarity for the components. In addition the re-

sults of the Bayesian inference enable some additional visualizations that help the designers make

informed commonality decisions. Finally with these decisions the impact of the platform configu-

ration can be assessed and more easily traded against other alternatives with performance estimates

obtained through subsequent inferences. Additionally to assess the flexibility of a proposed platform

the inference can be adjusted as described in sub-hypothesis 3.2.

Sub-Hypothesis 3.2

If the design constraints are changed, then any changes to the posterior distributions from the

probabilistic model will reveal the sensitivity of component sharing

The Bayesian approach appears to be superior to the fuzzy clustering approach as was formulated

because of the identified possible limitations from the initial pattern recognition fuzzy clustering

approach. Because the Bayesian Network provides a robust framework for inference, it allows the

model to be utilized like traditional surrogate models to move along the frontier. Unlike the refilter-

ing and reclustering necessary in the previous data mining approach, the Bayesian inference already

has the module variables coupled and is a more direct framework for product family reasoning.

As components are combined, decision makers must accept a trade-off of individual product’s

performances. The ideal amount of this trade-off is going to be problem specific and will be deter-

mined by market forces, i.e. how much money can be saved by making a component common and

where exactly the other products must be changed.

In the aerospace industry, the products are large and expensive with the life cycle costs domi-

nated by operational activities. Lowering acquisition costs through better component commonality

is important but not while sacrificing individual product performances to a degree that increases

operational costs. For instance, an airliner is not going to accept a huge performance penalty in fuel

98

0.0 0.2 0.4 0.6 0.8 1.0
Objective1

0.0

0.2

0.4

0.6

0.8

1.0

O
bj
ec
ti
ve

2

Figure 35: Pareto Frontier

economy if there is only a marginal acquisition cost benefit or maintenance benefit. For these types

of products the best families are ones that exploit commonality while minimizing the individual

products deviation from their respective Pareto frontiers. Furthermore, the kinds of problems at the

conceptual aircraft design level are inherently probabilistic due to limited knowledge of operations

for example fuel cost or variations to the mission requirements. This means that even with shared

components, the aircraft remain near their respective Pareto front.

The scalability issue that limits the clustering approach stems from the ability to get a large

number of points that meet several different filtering criteria. Furthermore, the use of static DoEs

to explore the design space leads to significant computational effort spent on regions that are either

dominated or infeasible points, figure 35. Because many points fail to lie near the Pareto frontier,

they will not contribute to the commonality identification effort and offer little usable information.

The data needs to be concentrated in the region of interesting trade-offs. Even with focusing of

the Pareto frontier, the clustering approach still requires the space to be dense and care needs to be

taken so that groups found through the clustering are natural rather than artifacts of the method to

generate the Pareto frontier.

However, if a model can be generated that accurately captures the space, then that model can be

evaluated instead of using the precalculated design cases. This interpolation may then be processed

to identify patterns in an analogous method to the previous approach and serves as a basis for the

probabilistic approach. While there still needs to be sufficient exploration of the design space, the

probabilistic model should prove to be more accurate.

99

In a family that needs to exploit commonality without sacrificing significant individual perfor-

mance, like in aerospace, the individual performances will remain near their Pareto frontier.

Also the ability to build a probabilistic surrogate capable of capturing the joint probability dis-

tribution of a design space has far reaching affects. One other limitation of traditional methods is

they are a mapping from a set of inputs to a set of outputs. In a design problem, frequently there is

a particular performance desired while the combination of input design variables is not known. In-

verse design problem has been solved using surrogates by generating many points and filtering away

undesirable points to understand the regions of the feasible design space[14]. The next Chapter 6

discusses in more detail the applicability of generating and using a Bayesian Network surrogate as

well as some implementation details.

100

Chapter VI

FEASIBILITY OF BAYESIAN NETWORK SURROGATE

The previous chapter introduced Bayesian network probabilistic graphical models and formulated

how they can be used to perform inference and detect commonality for a family of products. This

chapter expands on the theory and discusses the implementation details for learning the Bayesian

network structure, fitting the conditional density estimates, and performing inferences. Two test

problems are presented that test the ability of the Bayesian network to act as a surrogate model. The

first test is an optimization problem that demonstrates the Bayesian network’s ability to find and

encode the joint distribution of a Pareto frontier. The second test problem uses a Bayesian network

to capture the joint distribution of the Breguet range equation applied to design space exploration.

This problem also serves to demonstrate the capabilities of importance sampling inference.

6.1 Conditional Density Estimation

As mentioned in the previous chapter, each node in the Bayesian network are conditioned on its

parents. Although for the product family design problem the platform configuration is discrete, the

design parameters that describe the components is continuous. Frequently in continuous domain

Bayesian networks, the nodes are discretized so the traditional conditional probability table can be

used. This table is calculated by binning the state space of that node to some allowable resolution

and counting the frequency of points that fall into each bin. However, as the node’s dimensionality

and resolution increase the size of the state space can become large and the number of points that fall

into a particular bin become fewer. Too fine of a resolution can limit the accuracy of this method.

Another common method of working with continuous variables in Bayesian networks is to as-

sume the data is from a known parametric distribution such as Gaussian, Poisson, or Dirichlet. This

has several drawbacks if the type of distribution is not known or is not from a traditional distribution;

like in the case of complicated system-of-systems models. Fortunately, there are a myriad of non-

parametric models that have the ability to accurately represent these complicated distributions[70].

The one selected from the last chapter is the Least Squares Conditional Density Estimation (LSCDE)

101

Figure 36: Isotropic Gaussian (left), Anisotropic Gaussian (right)

method from Sugiuama et al[154]. LSCDE estimates directly the density ratio p(x,y)/p(x) which

is the conditional distribution of y given x, equ 27. The density ratio is modeled using a mixture of

kernel basis functions, equ 29. A kernel function is a real-valued function of two arguments φ (x,x′)

and is typically symmetric and positive[106]. Perhaps the most recognizable kernel function is the

Gaussian kernel[41]. The general anisotropic form is

φ
(
x̄, x̄′
)
= exp

(
−1

2
(
x̄− x̄′

)T
Σ
−1 (x̄− x̄′

))
(41)

where Σ is the covariance. If the covariance is diagonal, the kernel becomes isotropic and

simplifies to

φ
(
x̄, x̄′
)
= exp

(
−1

2

d

∑
i=1

(xi− x′i)
2

σ2
i

)
(42)

Figure 36 shows a comparison between the shapes of the isotropic and anisotropic Gaussian

kernel. The anisotropic kernel is more focused along the direction of the covariance.

For Sugiuama’s implementation of the LSCDE, the isotropic Gaussian kernel is selected, equ

43[154]. The major benefit of using an isotropic Gaussian is that the integrals in equ 33 and equ 35

can be analytically evaluated and leads to faster computation times.

φl (x,y) = exp

(
−‖x−ul‖2

2σ2

)
exp

(
−‖y− vl‖2

2σ2

)
(43)

To understand the implications of this kernel choice, the following optimization problem will

be used. ZDT1 is a multiobjective problem function that allows the testing of the kernel used for

102

the density ratio estimation in the Bayesian network approach[22]. One of the benefits of this test

function is it can be scaled to some number of input x̄ dimensions n.

maximize ZDT 1. f1 (x̄) = x1

ZDT 1. f2 (x̄) = g(x̄)
(

1−
√

x1

g(x̄)

)
with respect to x̄ = {x1,x2, ...,xi}

subject to g(x̄) = 1+9
n

∑
i=2

xi

n−1

0 < xi < 1

It has been observed that even with the product family commonality trade-off, the products

are still approximately Pareto optimal. This means that the joint probability density function the

Bayesian network may need to encode is the Pareto frontier. To represent the Pareto frontier, here

are a few behavioral properties that are necessary for the Bayesian network to capture. Specifically,

along the Pareto frontier, there can be strong correlations between the different variables. This

behavior will guide the selection of the kernel basis function used in the LSCDE.

If the Bayesian network can be used in a PMBGA to find the Pareto frontier and it can be

sampled from to recreate the Pareto frontier, it supports the feasibility of the Bayesian network

approach for product family commonality. The goal of this test optimization is not to prove that the

Bayesian PMBGA is the fastest executing optimization, or that it converges in fewer generations

than other methods. Instead, the goal is to support the claim that selecting the correct kernel function

allows the Bayesian PMBGA to recreate a Pareto frontier.

Before using the PMBGA, the kernel functions need to be tested. To do that, the ZDT1 function

is optimized using a standard NSGA-II. The result of this optimization is shown in figure 37. The

scatterplot matrix shows the Pareto frontier between f1 and f2. The main features of this data set

are not only the strong relationships between x1 and the objective functions f1 and f2 but also the

values of x2, x3 and x4 all being small. The Bayesian network with isotropic Gaussian kernels is fit

using the found Pareto frontier data.

The first step is to identity the key relationships between the different nodes in the network. This

103

Figure 37: Pareto Front of Test Function

104

ZDT1.f1

ZDT1.f2

Figure 38: Network Structure for Pareto Frontier of Test Function

is again done using a greedy search with several random restarts and calculating the BIC score to

limit overfitting. Figure 38 shows the resulting learned network structure. As expected, the main

relationship is accurately accounted for with the links from f1 to f2 and f2 to x1.

Now that the network structure has been determined, the following conditional densities need

to be calculated from the data: P(f1), P(f2| f1), P(x1| f2), P(x4), P(x3|x1,x4), and P(x2| f1,x1,x4).

The LSCDE training for each of these conditional densities with isotropic Gaussian kernels involves

two hyperparameters λ and σ in addition to selecting a specified number of basis functions from

the data. The first hyperparameter λ comes from equ 30. This equation is used to find the basis

kernel function weights and λ acts as a regularization parameter. The other hyperparameter is σ and

comes from the isotropic Gaussian kernel function, equ 42, where sigma acts as a bandwidth and

controls how far basis function strength extends. For this simple test function, each node is assumed

to be sufficiently modeled with 50 basis functions and a gird search is performed for the hyperpa-

rameters λ and σ . With the grid search, Sugiuama suggests using cross-validation and selecting the

combination of hyperparameters that have the best Kullback-Leibler (KL) divergence[154].

Once the LSCDE training is complete for each node, the Bayesian network representation is

105

complete. The resulting Bayesian network is then sampled using simple logic sampling because

there is no evidence. The results of this sampling should follow the joint probability distribution of

the original, effectively recreating the Pareto frontier, figure 39. In the figure the marginals are seen

to compare well back to the input data set in figure 37.

However there is one significant issue. The values of f1, f2 and x1 are all highly correlated in the

training data set and along the Pareto frontier. The logic sampling shows that while the general trend

was captured, the resulting distributions are not a crisp representation of the Pareto frontier. This

means the Bayesian network was not able to capture the joint distribution with as much accuracy as

needed for the product family design inferences.

Because of the failure of this Bayesian network on this simple problem, changes need to be

performed before attempting the Bayesian approach on a more complicated design space. The

Pareto frontier is an example of a lower dimensional surface embedded in a higher dimensional

design space. A manifold can be thought of as a space that locally, but not globally, like a Euclidean

space[96]. This means that the distance between two points is not what a Euclidean calculation

would produce. Instead distance between two points in the manifold is called a geodesic where

the distance is the shortest path between the two along the surface. The tangent vector along this

manifold describes the local directions of the manifold.

Manifold learning is an area of much research in computer science and machine learning, pro-

ducing many methods to extract the low dimensional structure in the high dimensional space. In

manifold learning, statistical and heuristic techniques are typically applied in an attempt to answer

questions about geometry from bulk data. There has been significant research resulting in a multi-

tude of different techniques: Isomap, Local linear embedding, Laplacian Eigenmaps, Local Tangent

Space Alignment, Hessian Eigenmaps, and Diffusion Maps[69]. Typically these algorithms begin

by building a nearest neighbor network graph. This mesh-like structure then serves as a basis for

the manifold structure. Geodesics can be approximated by the distance between two points along

the graph. Once the graph is created, the various methods apply differing techniques to generate the

embedding of the manifold points.

To apply this to the development of the Bayesian network approach, the embeddings and the

ability to capture geodesics are not paramount. However, preserving the local manifold structure

106

0.8

0.6

0.4

0.2

1.2

0.6

0.8

0.6

0.4

0.2

0.012

0.008

0.004

0.003

0.002

0.001

0.001 0.002 0.003

0.001 0.002 0.003

0.004 0.008 0.012

0.2 0.4 0.6 0.8

0.6

0.2 0.4 0.6

Figure 39: Isotropic Kernel Sample

107

is useful. One technique to accomplish this is to revisit the kernel function and attempt to use the

anisotropic kernel function, equ 41. It is believed that the covariance matrix can incorporate local

information to stretch the kernel strength along the local tangent space of the manifold[18].

Now the need is to calculate the covariance matrix. For the anisotropic Gaussian kernel func-

tions, the covariance must be local for each basis function instead of using the global covariance

for all of the data. One approach would be to begin in a similar manner to the manifold learning

technique by building a nearest neighbor graph and using the closest k points to calculate the co-

variance. Similarly the covariance could be calculated by incorporating all of the points within a

specified radius ε . However, both of these methods can encounter issues for data that is not evenly

spaced across the entire manifold. Vincent proposes a more robust technique by weighting closest

points more heavily for the covariance calculation[164]

Cφl =
∑

b
j=1, j 6=l φ (xl,x j)(xl− x j)⊗ (xl− x j)

∑
b
j=1, j 6=l φ (xl,x j)

(44)

where (xi− x j)⊗ (xi− x j) is the outer product and φ (xl,x j) is a kernel function. If a uniform

kernel is used this calculation becomes the global covariance. The evaluation of the anisotropic

Gaussian kernel function requires the covariance to be inverted. This inverse may not exist for some

data sets, like linear manifolds. Another factor δ introduced along the diagonal can make inverting

the covariance possible

Σl =Cφl +δ
2I (45)

The original isotropic Gaussian kernels were selected because they could be analytically inte-

grated which improves calculation efficiency. Using the anisotropic Gaussian kernel in the LSCDE

fitting requires reevaluating the integrals in equ 33 and equ 35. Repeating equ 33

Φl,l′ (x̄) =

ˆ
φl (x̄,y)φl′ (x̄,y)

T dy

=
(√

2σ

)
exp
[
−

ξl,l′ (x̄)
4σ2

]
(46)

ξl,l′ (x̄) := 2
∥∥x̄− ūl

∥∥2
+2
∥∥x̄− ūl′

∥∥2
+
∥∥vl− vl′

∥∥2 (47)

And repeating equ 35

108

ˆ
α̂

T
φ (x̄,y)dy =

(√
πσ
) b

∑
l=i

α̂l exp

(
−
∥∥x̄− ūl

∥∥2

2σ2

)
(48)

To help simplify the integral problem some notation is introduced where

 x̄

y

 is the point to

evaluate and

 ul

vl

 is the basis l location so that ql =

 ul

wl

 =

 x̄− ūl

y− vl

. Additionally the

covariance matrix can be written as a block matrix Σ
−1
l = Ml =

 U0l Vl

V T
l W0l

. Now equ 33 can be

rewritten as

Φl,l′ (x) =
ˆ

exp
[
−1

2
(
qT

l Mlql +qT
l′Ml′ql′

)]
dy (49)

Φl,l′ (x) = exp
[
−1

2

(
(x̄− ūl)

T Ul (x̄− ūl)+(x̄− ūl′)
T Ul′ (x̄− ūl′)+NT

l,l′S
−1
l,l′Nl,l′

)]
(50)

·
ˆ

exp

[
−1

2

(
y−µl,l′

)
σ2

l,l′

]
dy

where

Ul =U0l −VlW−1
0l

V T
l

σ2
l,l′ =W0l +W0l′ ,

µl,l′ =−W−1
0l

V T
l (x̄− ūl)− vl +W−1

0l′
V T

l′ (x̄− ūl′)− vl′ ,

Sl,l′ =W−1
0l

+W−1
0l′

Nl,l′ = wl−wl′

Finally because of the need to limit the design variable ranges, the integration limits introduce

the error function, erf.

ˆ y2

y1

exp

[
−1

2

(
y−µl,l′

)
σ2

l,l′

]
dy =

√
π

2
σl,l′

[
erf

(
y2−µl,l′√

2σl,l′

)
− erf

(
y1−µl,l′√

2σl,l′

)]
(51)

The other integral, equ 35 is the integral to normalize the kernel density ratio estimate to make

it a probability and becomes equ 52

109

ˆ y2

y1

α̂
T

φ (x̄,y)dy =
b

∑
l=i

α̂l

√
π

2W0l

[
erf

(
y2−µl√

2W0l

)
− erf

(
y1−µl√

2W0l

)]
(52)

· exp
[
−1

2
(x̄− ūl)

T Ul (x̄− ūl)

]
where µl = vl−W−1

0l
V T

l (x̄− ūl). Now the Bayesian network can be refitted using the anisotropic

kernel function equ 41 and replacing the original integrals with equ 49 and equ 52. The base struc-

ture of the network does not change, however the conditional densities of the nodes are significantly

more focused along the Pareto frontier. There are still two hyperparameters that are used to fit the

densities, λ and σ . λ controls the regularization of the basis weights to help stabilize the calcula-

tion. However, the meaning of σ is different. Before, σ was the kernel bandwidth of the isotropic

kernels and now is the isotropic Gaussian kernel bandwidth for calculating the covariance in equ

44. As with before, the best combination of λ and σ is selected using a grid search to determine the

best KL-error using cross-validation of data. Figure 40 shows the logic sampling from the Bayesian

network trained with the anisotropic kernel function. There has been a significant improvement with

this networks ability to capture strong correlations among variables.

The LSCDE, modified to use the more flexible anisotropic kernel, is able to accurately capture

the behavior of this simple Pareto frontier. Archambeau and Verleysen have another study using

anisotropic kernels to output ordinary Gaussian mixtures when applied to manifolds[9]. They note

the failure of ordinary Gaussian mixtures because of a discrepancy between the Euclidean space

and the geodesic distance of the manifold. Nonstandard kernels allow for accurate depicting of

manifolds[41]. This is because the probability density of the kernel needs to adequately reflect the

local structure of the tangent space on the manifold. Bengio, Larochelle, and Vincent note that the

prediction of the anisotropic kernel may not be as smooth as the underlying manifold[12]. Their

recent work adds an additional assumption that the distribution in one area could be informative

about the shape in a nonadjacent region to help predict where data may be sparse. However this is

not necessarily a good assumption for a heteroscedastic SoS density approximation.

The final test with the ZDT1 function involves using the Bayesian network in a PMBGA. The

goal is to verify that the Bayesian network continues to learn from previous generations and builds

a model of the nondominated members of the population. If this is true, then the PMBGA will be

110

ZDT1.f1

ZDT1.f2

0.8

0.6

0.4

0.2

1.0

0.6

0.8

0.6

0.4

0.2

0.006

0.004

0.002

0.015

0.010

0.005

0.001 0.002 0.003

0.001 0.010 0.015

0.002 0.004 0.06

0.2 0.4 0.6 0.8

0.6 1.0

0.2 0.4 0.6 0.8

Figure 40: ZDT1 Sample from Bayesian Network using Anisotropic Kernels

111

Figure 41: Comparison between NSGA-II (left) and PMBGA (right)

able to converge to the Pareto frontier. Figure 41 shows the final generation using the PMBGA. The

biggest difference between the two is the PMBGA front found the max value of f2 to be 4 compared

to the NSGA-II max value of 1. This indicates the PMBGA may have prediction limitations near

the edges of the space making f2 converge more slowly. However, even though the PMBGA Pareto

frontier is identical, the Bayesian network using the anisotropic Gaussian kernels has been able

to converge to the majority of the behavior of the Pareto frontier. Now with the kernel selection

finalized, one can use the Bayesian network to perform inference to test its prediction accuracy.

6.2 Bayesian Network Surrogate Model Example Application

The purpose of this section is to illustrate the ability of the Bayesian network to encode the joint

probability distribution of a typical aerospace problem by using it to perform statistical inferences.

If the network is able to accurately predict the output distributions for a simple problem then it sup-

ports its use in a large and more complicated product family design problem. To test the inference

capability this Bayesian network will be trained to a design space exploration of the Breguet range

equation. The Breguet range equation calculates the range an aircraft can fly as a function of several

variables

R =
V ·L/D
T SFC

ln
(

1
1−ζ

)
(53)

112

Table 6: DoE Ranges
Lower Bound Upper Bound

V [km/h] 350 450
T SFC[kg/h/N] 0.7 1.3

L/D 10 20
f rac .3 .8

where:

R - range

V - aircraft velocity

L/D - lift to drag ratio

T SFC - Thrust specific fuel consumption

ζ - Fuel fraction

The equation combines elementary properties of the aircraft to predict range. These properties

are aggregated characteristics of the aircraft. The T SFC incorporates many low level properties of

the aircraft’s propulsion system, i.e. more efficient engines will increase the range of the aircraft.

Lift to drag is representative of the aircraft’s aerodynamic properties and geometry. The aircraft

velocity is an operational mission parameter. Lastly, the fuel fraction is a relationship based on

material properties, the weight breakdown of the aircraft to fuel, structure, and payload.

Although this is not the most complicated design code available, it is still reasonably challenging

to visualize because of the five dimensions. Figure 42 shows a scatterplot matrix where some trends

are easily visible. As expected given the domain of the variables, table 6, range is strongly correlated

with the fuel fraction and to lesser extent L/D and TSFC.

The next step is to encode the joint probability distribution of this “high” dimensional point

cloud with a Bayesian network. The first step is to determine the structure of the network. The

converged-to network structure for the Breguet range equation is shown in figure 43. The structure

confirms the interactions between the variables. None of the variables are conditionally independent.

There is only one degree of freedom and all but one of the variables must be specified to determine

the last.

After the LSCDE has found an estimate for the nodes, the network can be used for inference.

113

Figure 42: Breguet Range Equation DOE

114

Range

FuelFrac

L/D

TSFC

Velocity

Figure 43: Bayesian Network Structure for the Breguet Range Equation DOE

The easiest test for the network is to verify that the network has properly captured the joint distri-

bution of the training set. For this test, simple logic sampling is performed because there are no

“observed” evidence nodes. The first step in logic sampling is to arrange the nodes in topological

order. In this case

1. Marginal of Range - P(Range)

2. Conditional of Fuel fraction - P(ζ |Range)

3. Conditional of L/D - P(L/D|Range,ζ)

4. Conditional of TSFC - P(T SFC|Range,ζ ,L/D)

5. Conditional of Velocity - P(Velocity|Range,ζ ,L/D,T SFC)

These conditional distributions are then sampled in order until the number of desired samples are

generated. Figure 44 shows the results of 2,000 samples from the Bayesian network. Ideally, if

the network has properly captured the joint distribution, this figure should compare well to the

scatterplot matrix from the DOE in figure 42. Indeed the general magnitudes of the variables are the

same, the marginal distributions are roughly equivalent, and the strong trends are the same as well.

115

Figure 44: Joint Probability Distribution Sample of the Bayesian Network

116

Upon deeper inspection, the scatterplot alone does not clearly show all of the structure of the

relationships that exist between the different variables. Perhaps a better visual indication of the

quality of the Bayesian network comes from the use of parallel axis plots. Figure 45 gives a side by

side comparison of the variable interactions. The top parallel axis plot uses the DoE training data

and the bottom uses the 2,000 samples from the network. Both parallel axis plots have the points

colored by the range. This figure is much more revealing of the internal structure that has been

captured in the Bayesian network.

Now that the network is shown to encode the variable interactions, additional tests can be per-

formed to gain addition confidence into the feasibility of the Bayesian network as a probabilistic

surrogate model. To demonstrate the accuracy and power of Bayesian inference using importance

sampling, one can pose the following question. What is the likely aircraft range given the aircraft

has a fuel fraction of .5, L/D of 17, TSFC of 1[kg/h/N] and flies at a velocity of 400[km/h]? From

the Breguet range equation equ 53, this can be calculated directly:

Breguet.Range(FuelFrac = .5,LD = 17,Velocity = 400,T SFC = 1[kg/h/N]) = 4713.4km

However the purpose is to test the trained network. So this question is mathematically formulated

as:

P(Breguet.Range|FuelFrac = .5,LD = 17,Velocity = 400km/h,T SFC = 1[kg/h/N])

Because of the evidence nodes the inference is performed on the Bayesian network using im-

portance sampling. This evidence then is assumed to be uniformly distributed around the target

values mentioned above with a tight tolerance. When executing the importance sampling the evi-

dence nodes are sampled using the assumed distributions while any unobserved nodes are sampled

once all other parents have been sampled. This requires the samples to be weighted to correct for

unlikely values from the evidence. However this method remains significantly faster than pure logic

sampling in the presence of evidence. Figure 46 shows the resulting posterior distribution of this

weighted sample. Each variable’s expected value is recorded as well as the evidence distributions

117

Figure 45: Training Data (top) Sampled Data (bottom)

118

×10-3 +9.98 ×10-10.
2

0.
4

0.
6

+3.996 ×102

ObservedVariables

:U(0.5 ± 0.00144)
L/D :U(17 ± 0.0289)

Velocity :U(400 ± 0.289)
TSFC :U(1 ± 0.00173)

(Velocity)=400

1 2 3

(TSFC)=1

0.
02

0.
04

0.
06

+1.696 ×101

()=17

0.
49
9

0.
50
0

0.
50
1

()=0.5

45
00

50
00

[
Range
km]

(Range)=4.73e+03

Velocity [km
h
] TSFC [

kg

h N
]

Figure 46: P(Breguet.Range|FuelFrac = .5,LD = 17,Velocity = 400,T SFC = 1)

Velocity [km
h
] TSFC [

kg

h N
]

+1.696 ×101 Range
[km]

38
0

40
0

ObservedVariables

:U(0.5 ± 0.00144)
L/D :U(17 ± 0.0289)
TSFC :U(1 ± 0.00173)

Range :U(4.71e+03 ± 25.8)

(Velocity)=399

1 2 3
×10-3 +9.98 ×10-1

(TSFC)=1

0.
02

0.
04

0.
06

(L/D)=17

0.
49
9

0.
50
0

0.
50
1

()=0.5

47
00

47
20

(Range)=4.71e+03

Figure 47: P(Velocity|Breguet.Range = 4713,FuelRac = .5,LD = 17,T SFC = 1)

and bounds. Using the range equation the value is 4713 km and the results of the inference show an

expected value for the range to be 4,729.4 km with a standard deviation of 194.6 km.

The power of the Bayesian Network inference comes from its ability to change the form of the

question. For example, what is/should be the velocity:

P(Velocity|Breguet.Range = 4713,FuelFrac = .5,LD = 17,T SFC = 1)

From before, the Velocity is known to be be 400 [km/h]. In general, to modify the inputs and

outputs of the Breguet range equation would either require an algebraic manipulation to rearrange

the terms or an iterative solver. However for importance sampling, the procedure remains the same

as before with the exception that the evidence nodes include range and velocity is now unobserved.

The posterior distribution of this importance sampling is shown in figure 47. The expected value

now for the aircraft’s velocity is 398.9 km/h with a standard deviation of 5.89 km/h.

Now that the network appears to have successfully captured the joint distribution and impor-

tance sampling inference returns reasonable values the next test is to predict a variety of points.

There are typically two measures in goodness of fit tests, the model fit error (MFE) and the model

representation error (MRE). With the MFE the model is tested to see how well it predicts the training

data. Similarly the MRE tests the predicted model against data the model was not trained against.

119

To calculate the model prediction value for a set of data:

Data =


e11 ... e1m

... ei j ...

e1n ... emn


The predicted values are

Predicted = xi,Predicted∀i ∈ {1, ...,m}

where the inferences are performed many times with the variable to be predicted being omitted

from the evidence.

xi,Predicted =
{
E
(
xi|xk j = ei j

)
∀ j ∈ {1, ...,n} i 6= k

}
xi,Actual =

{
ei j ∀ j ∈ {1, ...,n}

}
This process relies on taking the expected value of the posterior and fails for multimodal distri-

butions. Fortunately this Breguet range equation is simple. Figure 48 shows the actual by predicted

plots for all of the variables. Overall it reveals the model to be reasonably fit with the exception that

high range values have larger residuals compared to low range values.

Because the inference sample requires sampling, the results are sensitive to the number of sam-

ples. Figure 50 shows a convergence test for several different range settings. One problem is the

high range setting has a converged value with a greater error than the others.

Figure 50 shows that there are relatively few design cases that have an aircraft range greater

than 120,000 km. This adds further evidence that the Bayesian network will have difficulties near

the edges of the design space or where there are fewer design cases. In reality this is not unexpected

behavior. Sparse regions of the design space are going to carry less penalty for poorer fits. In

training the network, there are two hyperparameters that are found using a grid search to sweep

over a range of possible values. The combination of hyperparameters that yields the best score are

120

0.97631
0.91383

360 380 400 420 440
Actual

360

380

400

420

440

P
re
di
ct
ed

Velocity

MRE
MFE

R2=
R2=

0.99555
0.99914

0.2 0.4 0.6 0.8 1.0 1.2
Actual 1e4

0.2

0.4

0.6

0.8

1.0

1.2

P
re
di
ct
ed

1e4 Range

MRE
MFE

R2=
R2=

0.99638
0.99883

0.4 0.5 0.6 0.7
Actual

0.4

0.5

0.6

0.7

P
re
di
ct
ed

MRE
MFE

R2=
R2=

0.99405
0.98972

12 14 16 18
Actual

12

14

16

18

P
re
di
ct
ed

L/D
MRE
MFE

0.99821R2=

0.9921R2=

0.8 0.9 1.0 1.1 1.2
Actual

0.8

0.9

1.0

1.1

1.2

P
re
di
ct
ed

TSFC

MRE
MFE

R2=
R2=

Figure 48: Breguet Goodness of Fit

121

100 101 102 103

Number of Samples

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

N
or

m
al

iz
ed

(B
re
gu
et
.R
a
n
ge

)

1.226e+04
6311

7528
6946

Figure 49: Breguet Expected Value of Range Convergence for Various Ranges

selected which means the majority of points well fit but low density regions may appear as outliers

and not be as accurately represented. Additionally, the covariance calculation for the edges of the

design space are going to have a more difficult time capturing the tangent space compared to regions

that are evenly covered in all directions.

6.3 Implementation

This section discuses the implementation in more detail, specifically the analysis for the Bayesian

network in Python. Python is a high level programming language with dynamic typing which al-

lows for rapid generating and prototyping of a code. Combined with quality development envi-

ronments and a growing community base makes Python a healthy ecosystem for scientific comput-

ing. Additionally, Python has many well developed and maintained scientific libraries: SciPy[74],

NumPy[113].

Another promising Python library for scientific computing and engineering analysis is OpenMDAO[62].

OpenMDAO is a project currently under development at NASA Glenn Research Center. OpenM-

DAO is a flexible framework for multidisciplinary design analysis and optimization methods. It

122

0.3 0.4 0.5 0.6 0.7 0.8

Fuel Fraction ζ

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
an

ge
 [k
m

]

Figure 50: Breguet Range Sparsity

allows for designers to integrate many disciplinary design codes into a more complex environment.

The library is still being actively developed but has much of the needed capability already imple-

mented. Currently it is capable of switching driving algorithms like DoEs and optimizers without

modifying design codes. OpenMDAO also has several preexisting extensions to other Python li-

braries for optimization in addition to native implementations.

Another key reason for developing in Python is the Python Environment for Bayesian Learn-

ing (Pebl). This open source library was designed for learning Bayesian network structure from

data and prior knowledge[138]. Pebl is published under the MIT license with the desire for addi-

tional academic research into Bayesian network algorithms. Unfortunately it was last updated in

2011 and only handled discrete variables requiring the discretization of continuous domains and

possible space state explosion. Additionally, Pebl does not natively have any inference or sampling

capabilities. However Pebl was a useful starting point for this research.

The first step in the implementation was to fit the continuous densities using LSCDE. As ex-

plained previously, the fitting of the LSCDE requires a grid search over two hyperparameters. Sig-

nificant development effort was on computational speed issues encountered as many repetitions are

required before an accurate fit is determined. Part of this code optimization involved converting

expensive function calls into Cython. Cython is a compilable language that understands Python

123

syntax and enables near C speeds. Combined with Gaussian mixture sampling described below, this

allows the improved Pebl library to operate on continuous domains and has reasonable execution

times on networks with at least 30 to 40 variables.

The last key to reasonable inference times is being able to efficiently generate points from the

LSCDE. The LSCDE models the density ratio using a mixture of kernel functions and in this case,

anisotropic Gaussian kernels.

P(y|x̄) = α
T

φ (x̄,y)

= αi

n

∑
i=1

1

2π det(Σ)1/2 exp

−1
2

 y− vi

x̄− ūi


T

Σ
−1

 y− vi

x̄− ūi


 (54)

Σ =

 Σ11 Σ12

Σ21 Σ22

 (55)

The density ratio can be thought of as a weighted sum of univariate Gaussian distributions that

slice through the multivariate density function and some value x̄ using manipulations similar to the

analytical evaluation for the LSCDE integrals[140][123]

P(y|x̄ = x̃) =
n

∑
i=1

wiN (µi,σi) (56)

where:

wp
i = αi exp

(
−1

2 (x̃− ūi)
T [Σ22]

−1 (x̃− ūi)
)

(57)

µi = xi +Σ12Σ
−1
22 (x̃− ūi) (58)

σi = Σ11−Σ12Σ
−1
22 Σ21 (59)

Finally the basis function weights can be normalized.

wi =
wp

i

∑
n
i=1 wp

i
(60)

124

Depending on the number of samples needed, the active basis functions can be determined by

sampling from a multinomial distribution with the given basis weights. Now that the active basis

functions have been determined, the process of sampling from the conditional density for node has

now simplified to sampling from a normal distribution. The last issue to overcome is that normal

distributions are unbounded but it is necessary that the Bayesian network simulate variables same

within the design variable ranges.

While sampling from the unbounded Gaussian mixture in the form above is sufficient for most

variables there are times when a basis function is selected near the bounds of the design space. The

naive solution is to resample the basis function and reject all that are outside the bounds. This can

cause a sampling slowdown as many samples are generated that would need to be discarded before

one is found inside the design space. Robert provides a remedy for this with an improved algorithm

for sampling from truncated normal variables[127]. The normal distribution bounded on [µ−,µ+]

can be described by:

f
(
x|µ,µ−,µ+,σ

)
=

e−(x−µ)2/2σ2

√
2π [erf((µ+−µ)/σ)− erf((µ−−µ)/σ)]

(61)

The process for simulated samples from this distribution is

Algorithm 4 Truncated Normal Sampling
for each sample from the active basis function do

Sample z U [mul,muu] {Generate a value uniformly between the lower and upper bounds}

ρ (z) =



e−z2/2 i f 0 ∈ [µ−,µ+]

e
(
(µ+)

2−z2
)
/2 i f µ+ < 0

e
(
(µ−)2−z2

)
/2 i f 0 < µ−

u←U [0,1] {Accept Rate}

if u <= p(z) then

x=z {Accept the value}

end if

end for

With the implementation of truncated normal sampling on top of Gaussian mixture sampling it

125

becomes computationally efficient to simulate large samples from the condition density estimates

of the continuous nodes in the Bayesian network.

6.4 Conclusions

This chapter expanded the description of the Bayesian network needed for the probabilistic approach

for identifying product family commonality. One of the primary goals of this chapter was to gain

confidence in the ability for the Bayesian network to represent the joint distribution of continuous

design spaces. To test its accuracy, two problems were used.

The first tested the implications of the kernel function used to estimate the conditional densities.

It was found that for the Bayesian network to represent Pareto frontiers, the kernel function needs

to be able to concentrate its predictive power along the local manifold space. This Pareto frontier

test problem also was useful for establishing the ability of the Bayesian network to be used inside a

PMBGA to converge to the Pareto frontier.

The second test problem focused on the Bayesian networks ability to represent a design space

exploration of an elementary equation exemplifying aerospace problems. This test problem also

served as a testbed for understanding Bayesian inference and determining its accuracy and applica-

bility.

These two test problems have shown the Bayesian network to be a promising technique for

capturing Pareto frontiers. Furthermore, the flexibility provided by the importance sampling allows

for inference that may be useful in inverse design problems. Forward design is the typical analysis of

components. For example, given a known set of design variables that describe a system what is that

system’s performance. In inverse design the goal is to start with a desired performance capability

and arrive at a system; graphically this is shown in figure 51[15]. Currently this is frequently

accomplished building surrogate models that allow more design cases to be executed. Bayesian

inference enables a robust inverse design.

The third goal of this chapter was to discuss briefly the implementation of the Python library and

the lower level sampling needed to be able to efficiently draw samples from the node conditional

density estimates. This efficiency is critical to the use of Bayesian network modeling on higher di-

mensional problems to prevent runtimes from becoming prohibitively large. Now that the Bayesian

126

Figure 51: Multivariate View of the Top-Down Decision Making Process for Inverse Design [15]

network has been shown to work in principle on small test problems it can now be used in the com-

plicated high dimensional product family experiment in chapter 7 and in the demonstration problem

in chapter 8. The next chapter will now elaborate on the generic product family methodology by

identifying component commonality.

127

Chapter VII

DESIGN OF AN ELECTRIC MOTOR FAMILY

This chapter presents a series of experiments testing the two proposed commonality identification

approaches on a product family of universal electric motors. The electric motor example was in-

troduced by Simpson where a detailed description of the theory behind the analysis model can be

found[148]. This example product family design problem has since become a common test case

for benchmarking product family methods[65, 107, 148, 98, 99]. The electric motor problem is a

useful benchmark because it is a challenging Class III product family problem. The product require-

ments and analysis model are already specified. The objective of the problem is to design a product

family of ten universal electric motors where each motor targets unique torque requirements, while

maximizing the common components shared across the different motors. The experiments in this

chapter allow for some conclusions to be drawn about the two proposed commonality identification

approaches’ effectiveness.

7.1 Motor Model

The universal electric motor model is described by a set of equations defining the relationships

between the input and output parameters. These equations can be manipulated to solve for different

variables. The model implementation presented here is from Hernandez[65]. This implementation

was selected because the motor equations have been manipulated to have the target power and torque

included as inputs and iteratively solves for the current, and stack length. This then allows for fast

model execution because the torque and power are known for each motor.

The diagram of the universal electric motor is found in figure 52, as well as the input and output

variables for this implementation. The relevant electric motor nomenclature is further described in

table 7 with symbols, descriptions, and units.

The electric motor implementation takes the following variables as inputs
{

Nc,Ns,Awa,Aw f ,r, t
}

.

In addition to these variables each electric motor product in the family has a target power output and

unique torque target. There are also a few physical constants, table 8, that the motor model requires.

128

Figure 52: Universal Motor Model [148] [20]

Table 7: Universal Motor Nomenclature
Symbol Description Units

Nc number of wire turns on the armature
Ns number of wire turns on the field pole

Awa cross sectional area of the armature wire mm2

Aw f cross sectional area of the field wire mm2

r radius of the motor m
t thickness of the stator m
i current draw of the motor Amp
L stack length m
P power W
T torque Nm
M mass kg
η efficiency

Table 8: Constants used in Universal Motor Model
Symbol Description Value

lgap Gap between rotor and stator 0.7 mm
Np Number of poles 2
Vt Voltage 115 Volts
α 2 Volts
µa Relative permeability of air 1
µo Permeability of free space 4π×10−7 Henry/m
ρ Resistivity of copper 1.68×10−8 Ohm ·m

ρcopper Density of copper 8960 kg/m3

ρsteel Density of steel 7850 kg/m3

129

The analysis of an electric motor begins by calculating the values of C, D, E, and F which are

given in Eqs 62 - 65:

C =
NcNs

π
µo

[
lc

2 · t ·µs
+

1
µs

+
lgap

lr ·µa

]−1

(62)

D = Vt −α (63)

E = −4ρ

[
(r− t)

(
Nc

Awa
+

NpNs

Aw f

)
−

lgapNc

Awa

]
(64)

F = −2ρ

[
Nc

Awa
+

NpNs

Aw f

]
(65)

Where µs is relative permeability of steel and depends on magnetizing intensity, H:

µs =



0.2279H2 +52.411H +3115.8 H ≤ 220

11633.5−1486.33 · ln(H) 220 < H ≤ 1000

1000 H > 1000

(66)

Equ 67 allows the calculation of the magnetizing intensity:

H =
Nci

ls +da +2lgap
(67)

Where ls and da are the mean path length within the stator and the diameter of armature respec-

tively and are determined by:

lc =
π

2
(2r+ t) (68)

da = 2(r− t− lgap) (69)

In the original electric motor studies, a programming error doubled the output of the magnetizing

intensity, equ 67. Because the purpose of including the electric motor is to benchmark against other

research, the error is maintained for this analysis. Also note that equ 67 depends on the value of the

motor current, i. This implementation of the electric motor problem has the torque and power as

input parameters so the equ 70 and equ 71 can be rearranged, to solve for i as a function of torque

and power, equ 72.

130

T = C · i2L (70)

P = D · i+E · i2 +F · i2L (71)

i(T,P) =
−CD+

√
C2D2 +4C2EP−4CEFT

2CE
(72)

Equ 72 requires an iterative process due to the circular dependence between C and i. This

is accomplished by iterating equ 62 through equ 72 to converge to the correct value of i. After

converging, the stack length of the motor can be determined, equ 73:

L(T,P) =
T

C · [i(T,P)]2
(73)

Equ 73 also indicates that the stack length is directly proportional to the motor’s torque which

is the main product differentiator in this study. Finally, the mass, equ 74, and efficiency, equ 75, of

the motor can be calculated:

m = A+B ·L (74)

µ =
D+E · i+F · i ·L

D
(75)

Where:

A = 4ρcopper [(r− t)(NcAwa +2NsAw f)− lgapNcAwa] (76)

B = πρsteel
[
r2−2(r− t) lgap + l2

gap
]

(77)

Chamberlain offers several observations about the electric motor design variables and their im-

portance in family commonality[20]. For instance, the number of wire turns on the field or the

armature are integer values, but there may be little value to having the number of turns be common

within the family since the manufacturing process to wind the coils is easily changed. On the other

hand, the gauge of the wires Awa and Aw f would be beneficial to share, because each time the gauge

131

Table 9: Universal Motor Variable Bounds

Symbol Description Lower
Bound

Upper
Bound Units

Nc

Number of wire
turns on the

armature
100 1500

Ns

Number of wire
turns on the field

pole
1 500

Awa

Cross-sectional
area of the

armature wire
0.01 1.0 mm2

Aw f

Cross-sectional
area of the field

wire
0.01 1.0 mm2

r Radius of the motor 0.01 0.1 m

t
Thickness of the

stator
0.0005 0.01 m

i
Current draw of the

motor
0.1 6 Amp

L Stack length 0.001 .1 m

changes, the winding machines need to be stopped to change spools, which slows down manufac-

turing. Also, if the family requires a number of different wire gauges, then they must be stored in

a warehouse, adding to operating cost. The r and t are stator dimensions and commonality could

be considered valuable. Additionally the stack length, L, has a strong influence on the family and

would require many smaller design changes if it were to change. Lastly, the current is external to

motor and it not really considered as a platform variable.

7.2 Product Family Design Problem

Now that the electric motor model has been described, the family design problem can be posed.

First, table 9 gives the ranges for the relevant design parameters, which are consistent with other

product family design studies.

In the formulation of the product family design problem, the current drawn is a state variable,

adjusted, so the output power matches the customer requirements. There are seven physical design

parameters to consider as platform modules,
{

Nc,Ns,Awa,Aw f ,r, t,L
}

. As there are ten different

132

motors being considered, there are a total of 115,975 different sharing combinations of any partic-

ular module. If we consider each of the design parameters as describing its own module space, then

there are a total of 115,9757 different platform configurations for the family.

Formally, the electric motor family design problem can be stated as minimizing the mass, and

maximizing the efficiency for each of the ten motors in the family while trying to maximize the

commonality in the family. The optimization is performed with respect to six design variables (note

stack length, L, is determined for each motor) and is subject to several constraints. In addition to

the variable bounds, each motor has a specified target torque, T , while maintaining an output power

of 300 Watts. Furthermore, if the magnetizing intensity is too high or the radius is greater than the

thickness, the motor is infeasible.

133

maximize :



−Mp mass

η p efficiency

∑i jpq Rpq
i j commonality

p = {1,2, ..,10}

with respect to:

{
Nc,Ns,Awa,Aw f ,r, t

}p design variables

R commonality relations

subject to: Variable Bounds Table 9

T p =
{0.05,0.1,0.125,0.15,0.2,

0.25,0.3,0.35,0.4,0.5}
Nm

P = 300 Watts

H ≤ 5,000 Amp · turns/m

η ≥ 15%

r > t

M ≤ 2 kg

Rpq
i j

(
xp

i − xq
j

)
= 0 for p,q ∈ P; p < q

Rpq
i j ∈ {0,1}

(i, j) ∈ Spq

To help understand the full Pareto frontier of the electric motor design space, all three objectives,

mass, efficiency, and torque, were allowed to vary. The final converged three dimensional Pareto

frontier, as found with the PMBGA, is displayed in figure 53 The iso-torque lines that represent

the ten different electric motors in the family are overlaid on this figure as well. This optimization

serves as a baseline for variant performance before introducing family commonality.

Perhaps clearer is the two dimensional Pareto frontier for each of the electric motors, figure 54.

Also included in this figure is the final motor mass and efficiency performances from the Dai and

Scott baseline study[33].

In addition to understanding the trade-off between the mass and efficiency for the 10 motors, it is

134

Mass [kg] 0.5
1.0

1.5

Ef
fic

ie
nc

y

0.5
0.6

0.7

0.8

0.9

T
or

qu
e

[N
m

]

0.1

0.2

0.3

0.4

0.5

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

Figure 53: Three Dimensional Pareto Frontier for all Motors

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

Figure 54: Mass and Efficiency Pareto Frontier for all Motors

135

Figure 55: Variation of Motor Variant Design Variables Along Pareto Frontier

important to understand the variation of the design parameters that also occurs along these frontiers,

figure 55. For each of the motor Pareto frontiers, the cases were sorted by low efficiency and

low mass to high efficiency and high mass. The design variables can then be plotted against their

position along their Pareto frontier. This figure demonstrates how smoothly the design variables

vary along the frontier. For example, given Pareto optimality and either mass or efficiency all of the

other design variables are determined.

In other words, as you move along the frontier, there is a unique mapping back to the combi-

nation of Pareto optimal design variables. This helps to demonstrate that there are relatively few

degrees of freedom when constrained onto the frontier. Finding significant commonality in the fam-

ily requires a performance sacrifice from the product’s Pareto optimal. Another view of the Pareto

frontier is shown in figure 84. This parallel axis plot confirms the strong trend along the Pareto

frontier and also reveals some of the intervariable dependance.

The baseline study comes from Dai and Scott[33]. In their study, the motors are optimized indi-

vidually. Each motor’s sensitivity to particular design variables is then determined. This sensitivity

136

Figure 56: PMBGA Final Front

is clustered and used to construct a dendrogram to help facilitate platform configuration decisions.

For benchmarking purposes, the baseline study’s platform configuration, design variables settings,

and motor performances are shown in table 10.

In the baseline study, Dai and Scott use a slightly different electric motor implementation where

the current is not solved for iteratively. Because of this difference in implementation, the design

variable settings are evaluated using the Hernandez model and yield slightly different objective

values, as seen in table 11. This discrepancy is not an issue, because the commonality approaches

Table 10: Platform and Design Variable Settings from Dai and Scott[33]
Motor Design Variables Objectives

No. Nc Ns Aw f Awa r t L i η M T
1

1,051

62

0.279

0.315 15.18

6.99

20.69

3.03 86.2 .347 .05
2 0.19 18.24 3.66 71.3 .338 .10
3 0.208 20.79 3.73 70.0 .425 .125
4 0.211 22.44 3.89 67.1 .479 .15
5

75

0.222 23.65 3.95 66 .534 .2
6 0.239 24.07 24.43 4.03 64.8 .637 .25
7 0.248 24.88

26.39

4.16 62.6 .717 .3
8

1,246
0.294 24.76 4.14 63.0 .826 .35

9 0.296 25.83 4.33 60.3 .879 .4
10 0.305 27.78 4.66 56.0 .988 .5

137

Table 11: Implemented Model Platform and Variable Settings
Motor Design Variables Objectives

No. Nc Ns Aw f Awa r t L i η M T
1

1,051

62

0.279

0.315 15.18

6.99

20.69

2.97 87.9 .356 .05
2 0.19 18.24 3.57 73.1 .351 .10
3 0.208 20.79 3.63 71.8 .440 .125
4 0.211 22.44 3.78 69.0 .496 .15
5

75

0.222 23.65 3.84 67.9 .556 .2
6 0.239 24.07 24.43 3.91 66.6 .663 .25
7 0.248 24.88

26.39

4.04 64.5 .749 .3
8

1,246
0.294 24.76 4.02 64.8 .861 .35

9 0.296 25.83 4.19 62.2 .920 .4
10 0.305 27.78 4.50 58.0 1.039 .5

can be benchmarked using the performance objective requirements from the new implementation. If

the approaches are able to recover the platform variables estimates near the targets, then it supports

the clustering approach’s commonality identification usefulness in the generic product family design

methodology.

The variables settings from table 11 can be visualized with a parallel coordinate plot discussion

of family visualization, figure 57. One interesting trend for motor 1 is that it has a very high value

of Awa compared to other low torque motors.

7.3 Testing Commonality Identification Approaches

This dissertation proposes two novel commonality identification approaches for use in the generic

product family design methodology. The first is the cluster approach, which uses fuzzy c-means

clustering to create component fuzzy similarity relationships for each module space. The sec-

ond is the probabilistic approach, which uses statistical inference on a Bayesian network surro-

gate model to extract component similarity relationships. The universal electric motor problem,

described above, is a particularly useful tool to test the effectiveness of these novel approaches in

identifying component commonality (etc). Specifically, four experiments are performed to allow

observations to be made about the two approaches. This section will briefly each experiment.

Sub-hypothesis 2.1

138

Figure 57: Baseline Family

Sub-Hypothesis 2.1

If a sufficiently accurate and dense database can be generated, then a machine learning pattern

recognition technique like fuzzy clustering could be used to help identify component com-

monality and potentially form a platform.

The general ability of the fuzzy clustering approach to capture commonality is tested in Exper-

iment 1. The experiment uses a baseline product family study of a set of universal electric motors.

If the clustering can predict the baseline platform values then it helps to support sub-hypothesis

2.1. One key factor in determining the applicability of the clustering approach is to understand its

prediction capability as a function of the database.

Experiment 2 tests the found platform values using three different design space exploration tech-

niques while also varying their sampling density. It is expected that the MC or LHC explorations

will perform identically for large numbers of samples as the average density of points will be ap-

proximately identical. However for a low number of design points, the LHC will probably have

139

more consistent platform prediction ability while the MC may get “lucky” and have many points

near the target product performance ideals. There is another hypothesis relating to the fuzzy cluster-

ing approach and it is driven from the observation that product families with long life-cycles need

to be flexible to change requirements.

Sub-Hypothesis 3.1

If the design constraints are changed, then using the new feasible subset from the design

database and performing the pattern recognition will reveal the sensitivity of component shar-

ing.

Experiment 3 tests this idea of platform sensitivity using a set of different performance targets.

If the method can find accurate platform values with different performance targets and partitioning,

then it helps to support sub-hypothesis 3.1. Because of the possible scalability issues identified at

the end of chapter 4, another commonality identification approach is formulated, sub-hypothesis

2.2.

Sub-Hypothesis 2.2

If a model can be generated that encodes the joint probability distribution, then component

similarities can be inferred given performance constraints.

Experiment 4 again uses the same product family design study used in experiment 1 and builds

a Bayesian network representation of the Pareto frontier. This Bayesian network can use the de-

sign studies performance targets and platform configuration as a starting point for the commonality

reasoning. If the probabilistic approach yields design variable values with expected values near the

baseline study, then it supports sub-hypothesis 2.2. Similarly with the clustering approach, the prob-

abilistic approach needs to be able to identify flexible commonalities for the family, sub-hypothesis

3.2.

Sub-Hypothesis 3.2

If the design constraints are changed, then any changes to the posterior distributions from the

probabilistic model will reveal the sensitivity of component sharing

140

Hypothesis 3.2 is supported though the Bayesian networks ability to accurately capture the

design space joint distribution and further tested in the aircraft family demonstration problem.

7.3.1 Experiment 1

Experiment 1 benchmarks the clustering approach to the above referenced baseline study. The first

part is a qualitative comparison of the equivalence hierarchy to the baseline dendrograms. The

second part uses the baseline platform configuration to make a quantitative comparison between

the estimated design variable settings and the baseline targets. This comparison uses a database

generated by a uniform Monte Carlo (MC) design space exploration. The MC exploration generated

10,000 cases for each motor for a total database size of 1,000,000 design cases.

The database is then filtered using the motor target η and M objective values from table 11.

Filtering the database yields a feasible subset of only the best design alternatives based on the

highest fitness to the target objective values. This prunes the inferior generated designs so they

do not affect the clustering results. The fitness for point i, equ 78, is determined by its Euclidean

distance to the target values θ for all of the dimensions d.

Using the best design alternatives subset, each design’s weight, wi, is calculated by normalizing

the fitness and then dividing by the sum, equ 80:

f itness i =

√√√√ d

∑
j

(
θ̂ j−θ j

)
(78)

w∗i =
f itness−min(f itness)

max(f itness)−min(f itness)
(79)

wi =
w∗i

∑
n
i w∗i

(80)

where n is the number of design alternatives per product remaining in the database.

Next, each module space, S =
{
{Nc} ,{Ns} ,{Awa} ,

{
Aw f
}
,{r} ,{t} ,{L}

}
, is extracted from

the database. While a module can, in general, be described by any number of design parameters,

depending on the functional breakdown and product architecture, each design parameter in this

problem is its own module.

Because the number of clusters in each module subspace is not known, each subspace undergoes

a series of fuzzy c-means clusterings using a varying number of clusters. Figure 58 shows the Xie

141

Figure 58: XB Index of Each Module for Different Number of Clusters

Beni (XB) cluster validity index of all of the different number of clusters for each module. The

circled points show the lowest XB index for each module and corresponds to the optimal number of

clusters to use to extract product fuzzy similarity relations.

Using the membership functions with the optimal number of clusters for each module, the

weighted average product-to-cluster membership functions are calculated, equ 9. Fitness based

weighting ensures that better performing design alternatives contribute more of their membership

function to the average. This step is needed to collapse all of the different design alternatives for a

given product into a single membership function.

For each module, binary product fuzzy relationships are calculated using equ 10. The binary

fuzzy relationship is highest between those products with a high membership in the same clusters.

As an example, table 12 shows the binary fuzzy relationship of L.

To be able to extract equivalence classes, the binary fuzzy relationship matrices are made tran-

sitive. Using the transitive closures, equ 15, an example of the binary equivalence relationship for

module L can be seen as an example in table 13.

It is difficult to understand the equivalence relationships matrix directly. However, the equiv-

alence hierarchies can be shown as dendrograms where α corresponds to the degree of similarity

in the fuzzy equivalence relationship matrix, figures 59-65. Again a family platform configuration

142

Table 12: L Binary Fuzzy Similarity Relation
Product

Product 1 2 3 4 5 6 7 8 9 10
1 1.000 0.967 0.916 0.899 0.810 0.764 0.584 0.538 0.512 0.420
2 0.967 1.000 0.949 0.932 0.843 0.797 0.618 0.572 0.545 0.453
3 0.916 0.949 1.000 0.983 0.894 0.848 0.669 0.623 0.596 0.504
4 0.899 0.932 0.983 1.000 0.911 0.865 0.686 0.640 0.613 0.521
5 0.810 0.843 0.894 0.911 1.000 0.954 0.774 0.728 0.702 0.610
6 0.764 0.797 0.848 0.865 0.954 1.000 0.820 0.774 0.748 0.656
7 0.584 0.618 0.669 0.686 0.774 0.820 1.000 0.954 0.928 0.836
8 0.538 0.572 0.623 0.640 0.728 0.774 0.954 1.000 0.974 0.882
9 0.512 0.545 0.596 0.613 0.702 0.748 0.928 0.974 1.000 0.908
10 0.420 0.453 0.504 0.521 0.610 0.656 0.836 0.882 0.908 1.000

Table 13: L Fuzzy Equivalence Matrix
Product

Product 1 2 3 4 5 6 7 8 9 10
1 1.000 0.967 0.949 0.949 0.911 0.911 0.820 0.820 0.820 0.820
2 0.967 1.000 0.949 0.949 0.911 0.911 0.820 0.820 0.820 0.820
3 0.949 0.949 1.000 0.983 0.911 0.911 0.820 0.820 0.820 0.820
4 0.949 0.949 0.983 1.000 0.911 0.911 0.820 0.820 0.820 0.820
5 0.911 0.911 0.911 0.911 1.000 0.954 0.820 0.820 0.820 0.820
6 0.911 0.911 0.911 0.911 0.954 1.000 0.820 0.820 0.820 0.820
7 0.820 0.820 0.820 0.820 0.820 0.820 1.000 0.954 0.954 0.908
8 0.820 0.820 0.820 0.820 0.820 0.820 0.954 1.000 0.974 0.908
9 0.820 0.820 0.820 0.820 0.820 0.820 0.954 0.974 1.000 0.908
10 0.820 0.820 0.820 0.820 0.820 0.820 0.908 0.908 0.908 1.000

143

 8 10 7 4 5 6 9 2 3 1
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 59: Awa Partitions

 8 9 10 6 7 3 4 5 1 2
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 60: r Partitions

 1 3 4 2 5 6 9 7 8 10
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 61: Aw f Partitions

 4 5 3 6 10 7 8 9 1 2
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 62: t Partitions

can be generated by taking the appropriate α-cuts on the fuzzy equivalence relations. In analyzing

the different equivalence hierarchies, it is expected that products are most similar to products that

have similar torque requirements. For example, low number motors have low torque requirements

and we would expect to see them more closely linked to each other. Additionally, the α-cuts shows

information about how tightly coupled different components are together. Groups that remain un-

changed over large ranges of α are stronger than groups that change rapidly over small ranges of

α .

The partition hierarchy dendrograms can be compared to the hierarchy clustering from the sen-

sitivity analysis work done by Dai and Scott[33]. The motor family was very sensitive to Awa and

r causing them to be unique for each motor. Aw f and t were the most insensitive modules they

144

 3 4 1 2 5 6 7 8 9 10
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 63: L Partitions

 8 10 6 9 7 5 2 3 4 1
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 64: Ns Partitions

 2 8 1 3 4 5 9 6 10 7
1

0.95

0.9

0.85

0.8

0.75

Motor

α

Figure 65: Nc Partitions

145

found, so it was decided to share them across the whole family. Ns,Ns, and L are in between the two

extremes and are platforms shared across subsets of the family.

Likewise, the clustering approach formulated in this dissertation also identifies that the products

are highly sensitive to armature wire cross section area Awa and motor radius r; figure 58 shows a

high number of clusters needed, and the partition hierarchies in figures 59 and 60 require a relatively

low threshold (.92) before products start to get grouped.

The field wire cross section area Aw f and the stator thickness t, shown in figures 61 and 62

respectively, seem to be insensitive to the different products as they are pretty much fully grouped

around α = 0.9. Figure 63 showing the stack length L also closely corresponds to the dendrograms

presented in the baseline study. The largest difference is in motor six which seems to be strongly

grouped with motors one through five rather than independent. The number field turns Ns, figure

64, shows three strong partitions, {{1},{2,3,4},{5,6,7,8,9,10}} which is similar to the sharing used

in the baseline study. The number of armature wire turns Nc, figure 65, appears to have a very

low total grouping threshold like Aw f and t which does not conform as well as the other modules’

results. This could be due to the database not being densely sampled enough around the target motor

settings.

Overall, results seem similar and behave as expected with the dendrograms presented by the

baseline study. These sharing hierarchies offer insight into product component configurations, and

can be used to aid decision makers in further exploration of the family. For example, studying

product families that share stack length, radius, or field windings across the whole family will

probably lead to the worst individual product performances. Sharing the other design variables, on

the other hand, will probably cause the least performance trade-offs.

Next, using the specified baseline platform configuration, the clustering approach steps will

be shown in sequence, using the database created from a uniform Monte Carlo sampling over the

entire design ranges noted in table 9. For each of the ten motors 100,000 cases are generated for a

total database size of 1,000,000 points. The database is filtered using objective target performance

requirements from table 11.

The design cases are then filtered using a Euclidean distance fitness to select the closest points to

the target motor performances. Figure 66 shows this feasible subset from the database on a parallel

146

coordinate plot. Additionally, the more opaque the point, the closer it is to its target. The use of the

parallel coordinate plot allows visual feedback into the bandwidths of particular design variables for

each motor. For instance, the plot confirms the motors are rather insensitive to the variables Aw f and

t. This agrees with Dai and Scott, who use those variables as a platform across the whole family.

As part of the fuzzy clustering approach, figure 28, the weighted and filtered data is clustered and

processed to yield similarity relations. To the right of the parallel plot is a weighted graph showing

these fuzzy similarity relationships. The darker the line the stronger the relationship is between

those products in that module space. The weighted graphs again confirm that the products are rather

similar across the module space because there are more connections across the products.

Because of the insensitivity of the variables Aw f and t to the motor performance, they are made

platform variables. The database is refiltered and weighted to select the points closest to the per-

formance requirements and the platform average values of Aw f and t. This new weighted subset is

again clustered and processed to try and identify the impact of making Aw f and t common, figure

67. This new parallel plot shows a slightly different subset and has decreased the bandwidth for

both Aw f and t. In doing so, the clustering reveals some slightly different similarity relationships in

the weighted graph. There appears to be a strong partitioning for the stack length according to the

baseline study {{1,2,3,4,5},{6},{7,8,9,10}}.

By making L a platform variable the process is again repeated, figure 68. The new database

subset does appear to change the similarity relationship. However, the weighted graph alone does

not indicate obvious, crisp partitionings. In general, though, trends in the weighted graph do seem

to follow the expected behavior. Motors are differentiated by their torque requirement and motors

with more similar torque appear to have design parameters that are more similar than those with

more dissimilar torque.

To complete the final baseline platform configuration, the partitionings for the Nc, and Ns vari-

ables are included, figure 69. Again, the structures appear to have the appropriate trends, but the

bandwidth of the design variables remains large.

To compare baseline target values, a single value that indicates the relative closeness of the feasi-

ble subset is used. To calculate this estimate, the Relative Root Mean Squared Deviation (RRMSD)

is used, equ 81:

147

Figure 66: 1,000,000 Filtered MC

148

Figure 67: 1,000,000 Filtered MC with Aw f and t Common

149

Figure 68: 1,000,000 Filtered MC Aw f , t, and L platforms

150

Figure 69: 1,000,000 Filtered MC Aw f , t, L ,Nc, and Ns platforms

151

Table 14: RRMSD of the MC Design Space Exploration
Motor Design Variables

No. Nc Ns Aw f Awa r t L
1

0.160

0.235

0.492

0.187 0.312

0.298

0.442
2 0.220 0.275
3 0.184 0.259
4 0.172 0.189
5

0.203

0.147 0.159
6 0.200 0.116 0.276
7 0.147 0.154

0.310
8

0.147
0.101 0.203

9 0.137 0.131
10 0.112 0.120

RRMSD
(
θ̂
)
=

√
∑

n
i=1 wi(θ̂i−θ)

2

∑
n
i=1 wi

θ
(81)

The RRMSD compares the design variable value θ̂ to the baseline design variable target θ for

each point i in the weighted feasible subset of the database. Lower values indicate that the “bundle”

of design alternatives is near the target with a small spread. The RRMSD of the feasible subset of

the 1,000,000 MC database to the baseline target values is shown in table 14. More detail of this

estimate can be found in figure 74. These histograms show the distribution of the feasible subset

for the different platforms. The platform distributions are shown to be centered around the baseline

target values, θ .

It is hypothesized that the clustering approach requires a dense and high quality design database.

Figure 79 shows the comparison of the feasible subset objective space, using only performances

(left) and then effect of including the average of the design variables for the platform estimate

(right). This figure helps to demonstrate the sparsity of the design space exploration. On the left,

the points that are included in the subset of points to be clustered are not all that tightly grouped

around their performance target. When subsequent variables are partitioned and included in the

criteria for subset selection, the sparsity problem becomes much worse as shown on the right.

Because the design database is sparse, another uniform Monte Carlo exploration is performed

using refined design variable settings obtained using the feasible subset ranges of the original filtered

MC exploration. The new database uses an additional 100,000 cases per motor to yield a denser

152

0.5 1.0
Awf[m

2] ×10-6

θAwf=2.79e−07

0.005 0.010
t[m]

θthick=0.00699

500 1000 1500
Nc

θNc=1051

500 1000 1500
Nc

θNc=1246

200 400
Ns

θNs=62

200 400
Ns

θNs=75

0.05 0.10
L[m]

θmotor.L=0.02069

0.05 0.10
L[m]

θmotor.L=0.02443

0.05 0.10
L[m]

θmotor.L=0.02639

Figure 70: Feasible Subset Platform Histograms for MC Exploration

153

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

Figure 71: Comparison of Objective. Only performance (left), with design variable partitions
(right)

Table 15: Platform and Design Variable Settings
Motor Design Variables

No. Nc Ns Aw f Awa r t L
1

986

69

0.382

0.308 16.68

5.99

18.44
2 0.188 20.49
3 0.203 21.97
4 0.201 24.13
5

75

0.212 24.50
6 0.232 25.32 23.94
7 0.244 24.28

28.18
8

1,265
0.292 24.55

9 0.295 25.51
10 0.301 27.48

sampling of points around the target performance values.

Applying the same partitioning for the design variables as the baseline study again yields a

much better understanding of the partition values, figure 72. The banded overlapping of the product

components are clearly visible because the design variable bandwidths are reduced.

The tightness of the points in the objective space shows how much denser the refined bounds

yielded, figure 73. The left half shows the objective space with many more sample points near the

target values; the right half shows the final subset by including the platform variables in the selec-

tion. While the data could be more densely sampled the spread of the data has been significantly

improved with the refined bounds.

The estimate for the platform variables using the clustering approach for the refined MC explo-

ration are shown in table 15.

154

Figure 72: Refined MC 1,000,000 Filtered MC

155

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

Figure 73: Comparison of Objective

Table 16: Expanded MC RRMSD
Motor Design Variables

No. Nc Ns Aw f Awa r t L
1

0.072

0.122

0.393

0.039 0.105

0.154

0.168
2 0.030 0.125
3 0.038 0.066
4 0.056 0.084
5

0.040

0.052 0.044
6 0.044 0.056 0.096
7 0.026 0.040

0.077
8

0.032
0.030 0.027

9 0.025 0.027
10 0.025 0.028

Table 16 shows the design variables’ RRMSD of the expanded MC feasible subset to the base-

line targets. Overall the lower RRMSD values indicate the feasible subset is closer than the original

MC. However Aw f remains high and is probably caused by it being a weak influence on the over-

all motor performance. The platform histograms using the feasible subset are shown in figure 74.

Similar to the previous platform histograms, these indicate a much tighter grouping of points in

the subset with the distributions near the baseline targets, θ . Notably, the histogram for Aw f and t

appears shifted from their baseline targets.

The results of this experiment indicate that the fuzzy clustering approach can capture common-

ality between the different components, and that increasing the design space exploration sampling

density can make these relationships clearer. Experiment 2 expounds upon the clustering approach’s

dependency on the quality and density of database.

156

0.5 1.0
Awf[m

2] ×10-6

θAwf=2.79e−07

0.005 0.010
t[m]

θthick=0.00699

500 1000 1500
Nc

θNc=1051

500 1000 1500
Nc

θNc=1246

200 400
Ns

θNs=62

200 400
Ns

θNs=75

0.05 0.10
L[m]

θmotor.L=0.02069

0.05 0.10
L[m]

θmotor.L=0.02443

0.05 0.10
L[m]

θmotor.L=0.02639

Figure 74: Feasible Subset Platform Histograms for Expanded MC Exploration

157

103 104 105 106

Database Size

0.0

0.2

0.4

0.6

0.8

1.0
R

R
M

S
D

Awa

Awf

Nc

Ns

L

r

t

103 104 105 106

Database Size

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

D

Nc

Ns

Awf

Awa

r

t

L

Figure 75: MC left, LHC right

7.3.2 Experiment 2

From experiment 1, the clustering approach seems to be sensitive to the size of the database. This ex-

periment compares three design space exploration methods: Latin Hypercube (LHC), Monte Carlo,

and a multiobjective genetic algorithm (MOGA). Using a structured space filling DoE like the LHC,

may yield better coverage of the design space when compared to the MC exploration and have more

consistent platform estimates. Alternatively, the MOGA should increase the density of points in the

database near the Pareto frontier. Figure 54 confirms that the motors’ performances in the baseline

family remains near their Pareto optimal.

Using the platform estimating process as performed in Experiment 1, figure 75 shows a side by

side comparison of each modules average RRMSD for the LHC and MC as the database increases

in size. One interesting effect with the MC is a large improvement in the RRMSD at around 20,000

cases. This dip is caused by the MC cases getting “lucky” with a dense sampling of points near the

target performances. The LHC trend is more consistent, with a general improvement in error as the

number of cases increase. However, once the database gets up to 1,000,000 points both explorations

have around the same RRMSD.

It was learned in Experiment 1 that the design variable ranges may need to be refined, figure

76. The left figure shows another MC exploration using the refined bounds. Here the LHC has

158

103 104 105 106

Database Size

0.0

0.2

0.4

0.6

0.8

1.0
R

R
M

S
D

Nc

Ns

Awf

Awa

r

t

L

103 104 105 106

Database Size

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

D

Nc

Ns

Awf

Awa

r

t

L

Figure 76: Expanded MC left, LHC right

improved RRMSD and a more consistent improvement compared to the expanded MC exploration.

When the database size reaches 1,000,000 points both methods yield similar errors.

From these explorations, it is learned that the unguided exploration using the full design variable

ranges leads to a wide platform variable estimate using the clustering approach. The estimated

distributions are much tighter when the database density increases.

Unlike the unguided LHC and MC explorations, the MOGA PMBGA builds on knowledge of

previous good solutions to determine where to explore next. Figure 77, shows the feasible subset

RRMSD repeated using the iteration history of the PMBGA. The RRMSD tends to jump with

relatively few generations being evaluated. However, as the population continues to evolve the front

is converged and the RRMSD settles. After the database grows to around 100,000 cases, there is

an indication that the RRMSD for NS stop decreasing and start increasing. This is because the

population continues to improve the Pareto optimal and move past the design variable region of the

commonality needed for the family. In other words, the family members are “near” the frontier

while not being exactly on it.

In all of the explorations, the RRMSD of Aw f is significantly higher than the other design vari-

ables especially for the the unguided explorations. However, using the PMBGA, the RRMSD for

Aw f falls to around 0.3 and is more consistent with the other modules.

159

103 104 105 106

Database Size

0.0

0.2

0.4

0.6

0.8

1.0

R
R

M
S

D

Nc

Ns

Awf

Awa

r

t

L

Figure 77: Design Variable Prediction Errors using PMBGA History

The subset for the final generation is shown in the parallel plot, figure 78. The parallel plot also

shows the same general trend as the baseline family parallel plot, figure 57. However, it is not as

clearly shown as in the parallel plot for the refined MC exploration, figure 72

Figure 79 shows the change in the spread of the feasible subset used for clustering. On the left

is the subset using only the performance targets to select the points. The right shows the subset of

the data with all of the baseline partition configurations active. Now if the target performance points

were farther from the Pareto frontier, the PMBGA database would result in a poor ability to find

commonality. In other words, if the database does not contain the needed information, then data

mining will not recover it.

7.3.3 Experiment 3

The previous experiments reveal the ability of the clustering approach to capture component com-

monality. However, to help show how this approach could be used for a design product family

flexibility study a different baseline design case is used. By using a different design study with dif-

ferent targets can test whether the clustering approach is generalizable. Additionally, the flexibility

argument, sub-hypothesis 3.1, requires the clustering approach to yield an accurate partitioning for

different performance requirements. This alternative baseline comes from Simpson, table 17[148].

Overall, the procedure for this experiment is similar to Experiment 1. This new design study also

160

Figure 78: PMBGA Parallel plot

161

Figure 79: Comparison of Objective for the PMBGA

Table 17: Platform and Design Variable Settings from Simpson[148]
Motor Design Variables Objectives

No. Nc Ns Aw f Awa r t L i η M T
1 1104 40

0.376 0.241 2.590 0.666

1.122 3.393 0.769 0.435 .05
2 1120 68 1.223 3.500 0.745 0.479 .10
3 1126 79 1.272 3.551 0.735 0.499 .125
4 1131 87 1.339 3.605 0.724 0.520 .15
5 1119 84 1.719 3.758 0.694 0.599 .2
6 1091 81 2.116 3.906 0.668 0.676 .25
7 1060 77 2.527 4.074 0.640 0.753 .3
8 1025 74 2.926 4.242 0.615 0.826 .35
9 987 71 3.333 4.421 0.590 0.898 .4

10 909 65 4.147 4.826 0.541 1.037 .5

162

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

Figure 80: New performance requirements overlaid on Pareto Frontier of all Motors

demonstrates the consequences of having commonality across the entire set of products, figure 80.

Each motor’s performance takes a significant penalty when compared to its individually optimized

Pareto frontier.

Using the alternative performance objective targets and the platform configuration, figure 81

shows the parallel coordinate plot of the feasible subset and its resulting fuzzy similarity relations.

A few of these similarity relationships could be useful for the designer when selecting platform

alternatives to evaluate. However, this experiment focuses on calculating the RRMSD to the baseline

target values.

Table 18 shows the resulting design variable errors using this new baseline study. Overall, the

RRMSD is lower then the original LHC or MC database in Experiment 1 baseline study.

Finally, the general database sparsity can be show in figure 82. This experiment used the

database of 1 million points and, figure 83 shows the platform estimates to be widely distributed

around the baseline targets.

Overall there are still very large estimates associated with this commonality approach. Perhaps

163

Figure 81: Experiment 3 Parallel plot using MC database

164

Table 18: RRMSD for Experiment 3
Motor Design Variables

No. Nc Ns Aw f Awa r t L
1 0.225 0.787

0.396 0.193 0.143 0.209

0.377
2 0.179 0.202 0.644
3 0.121 0.140 0.291
4 0.164 0.175 0.579
5 0.198 0.214 0.629
6 0.184 0.250 0.261
7 0.149 0.206 0.387
8 0.233 0.291 0.265
9 0.189 0.153 0.221

10 0.266 0.163 0.236

Figure 82: Experiment 3 Comparison of Objective

0.5 1.0
Awa[m

2] ×10-6

θAwa=2.41e−07

0.5 1.0
Awf[m

2] ×10-6

θAwf=3.76e−07

0.05 0.10
r[m]

θr=0.0259

0.005 0.010
t[m]

θthick=0.00666

Figure 83: Feasible Subset Platform Histograms for Experiment 3

165

another DoE could be performed refining the design bounds, but it would result in excessive pro-

cessing to make this approach competitive against other product family design methodologies. The

next experiment tests the probabilistic approach’s ability to capture component commonality.

7.3.4 Experiment 4

From Experiment 1, the baseline family is known to be near the Pareto frontier. Unless there is huge

family cost savings that drives commonality, the family products will remain near their nondomi-

nated solutions. Experiment 4 tests the probabilistic approach using a Bayesian network trained to

the electric motors’ Pareto frontier. The first step is to find the Pareto frontier which has already

been shown above with the PMBGA design space exploration. The next step is to use the Pareto

frontier database to build a Bayesian network model. Figure 84 shows the Bayesian network struc-

ture found using a greedy search with random restarts. As expected the network is rather highly

connected because the analysis model has all of these variables related.

The next part in building the network is to estimate each of the node condition densities. With

this done the network has been trained to the joint probability distribution. This process is re-

peated for each of the ten motors in the family. The next step in surrogate modeling is to verify

the model. Figure 85, shows the result from performing logic sampling for each of the electric

motor Bayesian network models. Because there are no evidence nodes, a pure logic sampling is

performed. Close comparison with the original data, figure 56, reveals the two structures to be very

similar and supports the accuracy of the trained network models. Additionally, the objective space

can be successfully recreated by sampling from the network, figure 86.

Figure 87 shows the resulting marginal distributions for each of the modules in the motor family.

This distribution matrix is a useful breakdown of the overlap of likely component values for each

product in the family.

With the now verified Bayesian networks, inferences can be performed to identify component

commonality. First, the performance objective targets from the baseline family are used as evidence

for each of the motors. Figure 88 shows the resulting posterior distributions for all of the modules

in the motor family and generated by importance sampling. Because of an extremely high corre-

lation between efficient and current, the current values are used as the performance targets. The

166

Figure 84: PMBGA Final Front Network Structure

167

Figure 85: Sample from PMBGA Final Front database

0.0 0.5 1.0 1.5 2.0
Mass [kg]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ff

ic
ie

n
cy

Torque [Nm]

0.05
0.1
0.125
0.15
0.2

0.25
0.3
0.35
0.4
0.5

Figure 86: Objective Space Sample from Bayesian Network Models

168

Motor1

(Nc)=618 (Ns)=87.8 (Awa)=4.51e-07 (Awf)=4.37e-07 (r)=0.0201 (t)=0.00651 (L)=0.0181 (I)=2.83 (Eff)=0.922 (Mass)=0.45

Motor2

(Nc)=778 (Ns)=101 (Awa)=5.06e-07 (Awf)=5.11e-07 (r)=0.0237 (t)=0.00835 (L)=0.0212 (I)=2.9 (Eff)=0.902 (Mass)=0.728

Motor3

(Nc)=849 (Ns)=97.1 (Awa)=4.77e-07 (Awf)=5.1e-07 (r)=0.0235 (t)=0.00754 (L)=0.023 (I)=3 (Eff)=0.875 (Mass)=0.782

Motor4

(Nc)=890 (Ns)=99.5 (Awa)=4.72e-07 (Awf)=4.78e-07 (r)=0.0245 (t)=0.00756 (L)=0.024 (I)=3.05 (Eff)=0.861 (Mass)=0.855

Motor5

(Nc)=973 (Ns)=101 (Awa)=4.56e-07 (Awf)=4.83e-07 (r)=0.0257 (t)=0.00804 (L)=0.0257 (I)=3.19 (Eff)=0.829 (Mass)=0.98

Motor6

(Nc)=1.06e+03 (Ns)=98.8 (Awa)=3.99e-07 (Awf)=4.36e-07 (r)=0.0263 (t)=0.00778 (L)=0.0261 (I)=3.31 (Eff)=0.796 (Mass)=0.996

Motor7

(Nc)=1.1e+03 (Ns)=106 (Awa)=4.51e-07 (Awf)=4.69e-07 (r)=0.028 (t)=0.00865 (L)=0.0272 (I)=3.28 (Eff)=0.802 (Mass)=1.21

Motor8

(Nc)=1.18e+03 (Ns)=95.8 (Awa)=3.97e-07 (Awf)=4.2e-07 (r)=0.0271 (t)=0.00798 (L)=0.0287 (I)=3.57 (Eff)=0.742 (Mass)=1.16

Motor9

(Nc)=1.21e+03 (Ns)=98.4 (Awa)=4.01e-07 (Awf)=4.23e-07 (r)=0.0285 (t)=0.00827 (L)=0.0286 (I)=3.64 (Eff)=0.728 (Mass)=1.25

50
0

10
00

15
00

Nc

Motor10

(Nc)=1.24e+03

50 10
0

Ns

(Ns)=96.7

0.
5

1.
0

Awa
[m2]

×10-6

(Awa)=3.97e-07

0.
5

1.
0

Awf
[m2]

×10-6

(Awf)=4.06e-07

0.
02

0.
03

0.
04

r
[m]

(r)=0.0297

0.
00

4
0.

00
6
0.

00
8
0.

01
0

t
[m]

(t)=0.00831

0.
01

0.
02

0.
03

0.
04

L
[m]

(L)=0.0305

3 4 5 6
I

(I)=3.84

0.
4

0.
6

0.
8

1.
0

Eff

(Eff)=0.691

0.
5

1.
0

1.
5

Mass
[kg]

(Mass)=1.38

Figure 87: Module Marginal Distributions

169

similarity between two products in the module space uses these posterior design variable distribu-

tions to calculate the earth movers distance (EMD) between them. This similarity score can then be

shown graphically in the weighted graph similar to the fuzzy similarity relations from the clustering

approach. The darker edges in the graph indicate strong relationships between the components.

Compared to the fuzzy clustering similarity relations, this EMD appears to yield better and

clearer representations of component similarity. The weighted graphs indicate strong overlap of all

of the components for Aw f and t. Given a component partitioning and the motor posterior distri-

butions, figure 91, shows the calculated platform posteriors distributions. The platform posterior

distribution shows the likely values for the associated design variable. These posterior distributions

can be applied as evidence for the next Bayesian network inference importance sampling.

Performing Bayesian inference with the motor performance targets combined with the above

referenced platform posterior distributions yields new module posterior distributions, figure 92.

These new module posteriors are processed again for similarity. The weighted graph structure shows

a pretty clear partition for the L modules of the family. However, to compare with the baseline,

the platform configuration will use {{1,2,3,4,5},{6},{7,8,9,10}} again. However, if this were an

interactive design one may consider {{1,2,3,4},{5,6,7,8,9,10}}.

Using the component partitioning again, the platforming posteriors are found, figure 91.

With these new likely platform distributions as evidence, the Bayesian inference is repeated

again, figure 92. The component similarities can be calculated once more to see if there are still any

probability distributions overlapping. From the weighted graph, there appears to be some structure

in the Nc and Ns modules.

Using the baseline platform partitioning for Nc and Ns yields new platform posterior distribu-

tions. Because of the knowledge encoded by the Bayesian network, the predicted platform distri-

butions are much tighter to the target baseline design variables, figure 93. Finally to compare the

probabilistic approach to the clustering approach, the importance sampling can be used to calculate

the RRMSD, table 19.

170

Motor1
I :U(2.97±0.177)

(Nc)=662 (Ns)=84.5 (Awa)=3.35e-07 (Awf)=3.41e-07 (r)=0.0198 (t)=0.00626 (L)=0.0167 (I)=2.89 (Eff)=0.904 (Mass)=0.365

Motor2
I :U(3.57±0.177)

(Nc)=938 (Ns)=77.9 (Awa)=1.87e-07 (Awf)=2.71e-07 (r)=0.0224 (t)=0.0074 (L)=0.0159 (I)=3.53 (Eff)=0.74 (Mass)=0.36

Motor3
I :U(3.63±0.177)

(Nc)=986 (Ns)=80.7 (Awa)=1.99e-07 (Awf)=2.95e-07 (r)=0.0235 (t)=0.00739 (L)=0.0165 (I)=3.57 (Eff)=0.731 (Mass)=0.421

Motor4
I :U(3.78±0.177)

(Nc)=1.06e+03 (Ns)=76.8 (Awa)=2.15e-07 (Awf)=2.79e-07 (r)=0.0232 (t)=0.00699 (L)=0.0177 (I)=3.72 (Eff)=0.702 (Mass)=0.462

Motor5
I :U(3.84±0.177)

(Nc)=1.11e+03 (Ns)=79.3 (Awa)=2.34e-07 (Awf)=3.08e-07 (r)=0.0243 (t)=0.00698 (L)=0.0205 (I)=3.77 (Eff)=0.692 (Mass)=0.582

Motor6
I :U(3.91±0.177)

(Nc)=1.11e+03 (Ns)=82.7 (Awa)=2.46e-07 (Awf)=3.57e-07 (r)=0.0261 (t)=0.00755 (L)=0.0213 (I)=3.85 (Eff)=0.678 (Mass)=0.687

Motor7
I :U(4.04±0.177)

(Nc)=1.16e+03 (Ns)=83.5 (Awa)=2.63e-07 (Awf)=2.93e-07 (r)=0.0272 (t)=0.00812 (L)=0.0219 (I)=4.02 (Eff)=0.649 (Mass)=0.759

Motor8
I :U(4.02±0.177)

(Nc)=1.2e+03 (Ns)=82.9 (Awa)=2.83e-07 (Awf)=3.44e-07 (r)=0.0269 (t)=0.00756 (L)=0.0248 (I)=4.01 (Eff)=0.651 (Mass)=0.866

Motor9
I :U(4.19±0.177)

(Nc)=1.26e+03 (Ns)=79.7 (Awa)=2.93e-07 (Awf)=3.73e-07 (r)=0.0271 (t)=0.00708 (L)=0.0259 (I)=4.15 (Eff)=0.628 (Mass)=0.941

50
0

10
00

Nc

Motor10
I :U(4.5±0.177)

(Nc)=1.27e+03

60 80 10
0

Ns

(Ns)=83

2 3 4 5
Awa
[m2]

×10-7

(Awa)=2.94e-07

2 4 6
Awf
[m2]

×10-7

(Awf)=3.65e-07

0.
02

0
0.

02
5

0.
03

0

r
[m]

(r)=0.0301

0.
00

4
0.

00
6

0.
00

8

t
[m]

(t)=0.00835

0.
01

0.
02

0.
03

L
[m]

(L)=0.0246

3 4
I

[Amp]

(I)=4.45

0.
6

0.
7

0.
8

0.
9

Eff

(Eff)=0.586

0.
5

1.
0

Mass
[kg]

(Mass)=1.05

Figure 88: Module Posterior Distributions Inferred using Performance Targets

171

Figure 89: Platform Posterior Distributions

Table 19: Bayesian Network RRMSD
Motor Design Variables

No. Nc Ns Aw f Awa r t L
1

0.147

0.259

.225

0.196 0.308

.125

0.214
2 0.059 0.207
3 0.107 0.138
4 0.034 0.026
5

0.08

0.022 0.033
6 0.040 0.071 0.135
7 0.079 0.084

0.120
8

0.033
0.041 0.082

9 0.035 0.060
10 0.046 0.081

172

Motor1
Awf :kde
t :kde

I :U(2.97±0.177)

(Nc)=641 (Ns)=85.1 (Awa)=3.64e-07 (Awf)=3.63e-07 (r)=0.0197 (t)=0.00623 (L)=0.0176 (I)=2.85 (Eff)=0.916 (Mass)=0.388

Motor2
Awf :kde
t :kde

I :U(3.57±0.177)

(Nc)=965 (Ns)=77 (Awa)=1.95e-07 (Awf)=2.63e-07 (r)=0.022 (t)=0.00725 (L)=0.016 (I)=3.5 (Eff)=0.745 (Mass)=0.361

Motor3
Awf :kde
t :kde

I :U(3.63±0.177)

(Nc)=1.01e+03 (Ns)=81.3 (Awa)=2.09e-07 (Awf)=3.08e-07 (r)=0.0234 (t)=0.00742 (L)=0.0163 (I)=3.52 (Eff)=0.741 (Mass)=0.429

Motor4
Awf :kde
t :kde

I :U(3.78±0.177)

(Nc)=1.06e+03 (Ns)=76.8 (Awa)=2.17e-07 (Awf)=2.72e-07 (r)=0.023 (t)=0.00695 (L)=0.0183 (I)=3.68 (Eff)=0.708 (Mass)=0.466

Motor5
Awf :kde
t :kde

I :U(3.84±0.177)

(Nc)=1.12e+03 (Ns)=77.3 (Awa)=2.31e-07 (Awf)=3.23e-07 (r)=0.0235 (t)=0.00693 (L)=0.0217 (I)=3.77 (Eff)=0.692 (Mass)=0.578

Motor6
Awf :kde
t :kde

I :U(3.91±0.177)

(Nc)=1.12e+03 (Ns)=82.3 (Awa)=2.53e-07 (Awf)=3.45e-07 (r)=0.0257 (t)=0.00755 (L)=0.0224 (I)=3.8 (Eff)=0.687 (Mass)=0.701

Motor7
Awf :kde
t :kde

I :U(4.04±0.177)

(Nc)=1.17e+03 (Ns)=83.6 (Awa)=2.68e-07 (Awf)=2.96e-07 (r)=0.0271 (t)=0.00802 (L)=0.022 (I)=4 (Eff)=0.652 (Mass)=0.766

Motor8
Awf :kde
t :kde

I :U(4.02±0.177)

(Nc)=1.21e+03 (Ns)=83.2 (Awa)=2.91e-07 (Awf)=3.58e-07 (r)=0.0266 (t)=0.00757 (L)=0.0253 (I)=3.95 (Eff)=0.66 (Mass)=0.883

Motor9
Awf :kde
t :kde

I :U(4.19±0.177)

(Nc)=1.26e+03 (Ns)=81.1 (Awa)=2.98e-07 (Awf)=3.64e-07 (r)=0.0273 (t)=0.0072 (L)=0.0253 (I)=4.13 (Eff)=0.631 (Mass)=0.946

50
0

10
00

Nc

Motor10
Awf :kde
t :kde

I :U(4.5±0.177)

(Nc)=1.27e+03

80 10
0

Ns

(Ns)=83.2

2 3 4 5
Awa
[m2]

×10-7

(Awa)=2.96e-07

2 4 6
Awf
[m2]

×10-7

(Awf)=3.61e-07

0.
02

0
0.

02
5

0.
03

0

r
[m]

(r)=0.0301

0.
00

4
0.

00
6

0.
00

8

t
[m]

(t)=0.0083

0.
01

0.
02

0.
03

L
[m]

(L)=0.0247

3 4
I

[Amp]

(I)=4.44

0.
6

0.
7

0.
8

0.
9

Eff

(Eff)=0.588

0.
5

1.
0

Mass
[kg]

(Mass)=1.06

Figure 90: Module Posterior Distributions using Awa and t platform posterior distributions and
performance targets

173

Figure 91: Platform Posterior Distributions for Aw f , t, and L

174

Motor1
Awf :kde
t :kde

I :U(2.97±0.0295)
L :kde

(Nc)=711 (Ns)=81.1 (Awa)=2.64e-07 (Awf)=3e-07 (r)=0.0196 (t)=0.00608 (L)=0.0153 (I)=2.96 (Eff)=0.882 (Mass)=0.312

Motor2
Awf :kde
t :kde

I :U(3.57±0.0295)
L :kde

(Nc)=1e+03 (Ns)=77.3 (Awa)=1.85e-07 (Awf)=3.14e-07 (r)=0.0224 (t)=0.00805 (L)=0.0147 (I)=3.56 (Eff)=0.733 (Mass)=0.347

Motor3
Awf :kde
t :kde

I :U(3.63±0.0295)
L :kde

(Nc)=1.03e+03 (Ns)=79.5 (Awa)=1.87e-07 (Awf)=3.05e-07 (r)=0.0236 (t)=0.0073 (L)=0.0154 (I)=3.63 (Eff)=0.719 (Mass)=0.403

Motor4
Awf :kde
t :kde

I :U(3.78±0.0295)
L :kde

(Nc)=1.08e+03 (Ns)=74.1 (Awa)=2.08e-07 (Awf)=2.92e-07 (r)=0.0231 (t)=0.00703 (L)=0.0174 (I)=3.8 (Eff)=0.687 (Mass)=0.45

Motor5
Awf :kde
t :kde

I :U(3.84±0.0295)
L :kde

(Nc)=1.11e+03 (Ns)=76.2 (Awa)=2.2e-07 (Awf)=3.66e-07 (r)=0.0236 (t)=0.00726 (L)=0.0213 (I)=3.84 (Eff)=0.679 (Mass)=0.556

Motor6
Awf :kde
t :kde

I :U(3.91±0.0295)
L :kde

(Nc)=1.12e+03 (Ns)=80.2 (Awa)=2.4e-07 (Awf)=3.36e-07 (r)=0.0256 (t)=0.00739 (L)=0.0214 (I)=3.92 (Eff)=0.666 (Mass)=0.661

Motor7
Awf :kde
t :kde

I :U(4.04±0.0295)
L :kde

(Nc)=1.19e+03 (Ns)=83.4 (Awa)=2.65e-07 (Awf)=3.25e-07 (r)=0.0274 (t)=0.00818 (L)=0.0211 (I)=4.03 (Eff)=0.647 (Mass)=0.764

Motor8
Awf :kde
t :kde

I :U(4.02±0.0295)
L :kde

(Nc)=1.22e+03 (Ns)=81.7 (Awa)=2.84e-07 (Awf)=3.51e-07 (r)=0.0267 (t)=0.00743 (L)=0.0246 (I)=4.02 (Eff)=0.649 (Mass)=0.862

Motor9
Awf :kde
t :kde

I :U(4.19±0.0295)
L :kde

(Nc)=1.27e+03 (Ns)=79.7 (Awa)=2.91e-07 (Awf)=3.56e-07 (r)=0.0272 (t)=0.0072 (L)=0.025 (I)=4.19 (Eff)=0.623 (Mass)=0.923

10
00

Nc

Motor10
Awf :kde
t :kde

I :U(4.5±0.0295)
L :kde

(Nc)=1.28e+03

70 80 90

Ns

(Ns)=82.2

2 3
Awa
[m2]

×10-7

(Awa)=2.93e-07

2 4 6
Awf
[m2]

×10-7

(Awf)=3.42e-07

0.
02

0
0.

02
5

0.
03

0

r
[m]

(r)=0.0299

0.
00

4
0.

00
6

0.
00

8

t
[m]

(t)=0.00852

0.
01

0.
02

0.
03

L
[m]

(L)=0.0245

3 4
I

[Amp]

(I)=4.5

0.
6

0.
7

0.
8

Eff

(Eff)=0.58

0.
5

1.
0

Mass
[kg]

(Mass)=1.03

Figure 92: Module Posterior Distributions using Aw f , t, and L platform distributions

175

500 1000 1500
Nc

θNc=1051{
1 2 3 4 5 6 7

}

500 1000 1500
Nc

θNc=1246{
8 9 1 0

}

200 400
Ns

θNs=62{
1 2 3 4

}

200 400
Ns

θNs=75{
5 6 7 8 9 1 0

}

0.5 1.0
Awf[m

2] ×10-6

θAwf=2.79e−07{
1 2 3 4 5 6 7 8 9 1 0

}

0.005 0.010
t[m]

θthick=0.00699{
1 2 3 4 5 6 7 8 9 1 0

}

0.05 0.10
L[m]

θmotor.L=0.02069{
1 2 3 4 5

}

0.05 0.10
L[m]

θmotor.L=0.02443{
6
}

0.05 0.10
L[m]

θmotor.L=0.02639{
7 8 9 1 0

}

Figure 93: Posterior Platform Distributions using Bayesian Network Inference

176

Table 20: Method Comparison
Average RRMSD

MOGA 0.270
LHC 0.434
MC 0.306

LHC Expanded 0.174
MC Expanded 0.183

Bayesian Network 0.137

7.4 Conclusions from Electric Motor Experiment

This chapter uses the universal electric motor problem to test the efficacy of the clustering and prob-

abilistic commonality approaches proposed in this dissertation. This problem is particularly useful,

because it has been used widely in other product family design studies, which makes it a useful

benchmark for the proposed commonality identification approaches. It is important to benchmark

these approaches on a known problem to calibrate their utility before extending them to a generic

product family. As part of this comparison, the effectiveness of the predictions relies on selecting a

feasible subset and quantitatively comparing it to the baseline values using the RRMSD. Table 20 is

an average from the corresponding methods RRMSD and enables an easy final comparison between

the approaches. Again lower values of RRMSD indicate that the subset is close to the baseline

target.

Experiment 1 validates the ability to predict the platform design variables of the clustering

approach. However, it also shows the estimates to be strongly linked to the size of the database.

While it was shown that the equivalence hierarchy is similar to other studies, the platform estimate

histograms can be wide, making it difficult to resolve component commonality groups. Refining the

design variable ranges can improve the platform estimates.

Experiment 2 uses different design space exploration techniques with varying database sizes.

The general trends again conform to the expectation that more cases and higher densities lead to

better estimates.

Experiment 3 is an attempt to validate the clustering approach in a product family with flexi-

bility requirements. Flexible products are capable of meeting alternative sets of requirements. By

using a different electric motor product family design study with alternative performance objective

177

targets and platform configuration, it is possible to assess the accuracy of the clustering approach.

If the database is too sparse then the platform estimates are wide and the resolution is too poor for

flexibility requirements sensitivity.

Together experiment 1, 2, and 3 show that while the fuzzy clustering approach can reveal the

structure of component similarities, the platform estimates are wide. They can be improved with

more cases but this may be prohibitive for anything but the fastest design codes. The fuzzy clustering

approach does appear to be logically sound, if poorly suited to sparse databases. These experiments

are designed to test sub-hypothesis 2.1 and sub-hypothesis 3.1, and to support the clustering ap-

proach as part of a larger product family design methodology. However, the sub-hypothesis 2.1 and

sub-hypothesis 3.1 are difficult to accept because the number of design cases needed to be able to

have a fine resolution with platform estimates is prohibitively large. Flexibility already assumes that

performance requirement changes will occur over small ranges, and thata wide platform estimate

will not be acceptable.

Experiment 4 tests sub-hypothesis 2.2 by taking the Pareto frontier of the baseline family from

Experiment 1 to train a Bayesian network. This experiment shows an ability for the Bayesian net-

work to be trained to a midsized design problem with 10 dimensions and accurately recreate the

Pareto frontier. The experiment also finds that the platform prediction errors are much more ac-

curate. This experiment supports the use of a continuous Bayesian network to capture the joint

distribution of the design space and to perform inferences that adhere to the Pareto frontiers. Fur-

thermore, this experiment supports the use of the probabilistic approach to perform module com-

monality identification.

178

Chapter VIII

DESIGN OF AN AIRCRAFT FAMILY

This chapter presents a product family design study of an aircraft family operating as a system-of-

systems across two scenarios. One scenario uses unmanned aircraft to perform a set of maritime

monitoring missions while the other uses unmanned aircraft to perform an aerial firefighting mis-

sion. These scenarios can take advantage of commonality opportunities to create a useful product

family. This is a Class III product family problem because there is neither a prior configuration

knowledge , nor an existing library of components. However, this problem is more complex than

other Class III problems, because the aircraft act cooperatively to achieve the system-of-systems

customer needs.

Additionally, this chapter also serves to demonstrate elements of the generic product family de-

sign methodology. This serves to further test the effectiveness of the two commonality identification

methods, the fuzzy clustering approach, and the probabilistic approach, which are also tested in the

previous chapter. Observations can be made about their practical ability to guide product family

design using an aircraft family with no existing knowledge or constraints.

To help understand the aircraft product family a breakdown showing hierarchy between the dif-

ferent domains in the aircraft product family is shown in figure 94. On the figure, the lowest domain

is the individual module spaces for each component in all of the products. In this example, only the

engine, fuselage, and radar is shown but in reality there can be many components considered. The

next higher domain is the product space where each product is composed of all of their shared com-

ponents as well as any unique components. Using the various physics-based performance models,

the products’ performances are evaluated and shown in the functional requirements space. Exam-

ples of performances that belong to the functional requirements space are vehicle speed, payload

capacity, and sensor detection range. Finally, the highest domain is the customer needs space. At

this level, it is possible to see how well different sets of products are able to fulfill important cus-

tomer needs, like price and effectiveness in minimizing damage from fires. The mapping from

179

Figure 94: Product Family Domains Diagram

functional space to the customer needs space can be done with various types of SoS models.

8.1 Establish the Need

The first step of the generic product family design methodology is to articulate the customer’s needs.

In this case, the customer wants a set of aircraft that can perform in two unique scenarios. The first

scenario (called “the maritime monitoring scenario”) is a set of unmanned aircraft the patrolling

the Norwegian maritime Exclusive Economic Zone (EEZ). The EEZ extends 200 nautical miles

from the Norwegian coastline and is a complicated environment with a plethora of commercial and

private vessels. It falls under the responsibility of the Norwegian Coast Guard to safeguard the

mariners at sea and enforce maritime laws and sovereignty.

Figure 95 shows an actual map of the vessels off the coast of Norway using the Automatic

Identification System (AIS). Each of the colors represent a different type of vessel[2]. The map

illustrates high densities of vessels in certain areas near the coast. Because the maritime environment

is so heavily traveled, it is inevitable that maritime accidents will occur. To that end one major

concern for this scenario and the region in general is the protection of the lives of the sailors. The

aircraft must be capable of assisting in any search and rescue operations which includes having an

aircraft capable of identifying persons in the water as well as another able to drop aid.

180

Figure 95: Norwegian Coast

Much of Norway’s economy relies on aquaculture and its offshore petroleum industry. More-

over, these aspects of Norway’s economy are particularly vulnerable to environmental degradation.

Such ecological damage may be caused by many elements of local industry, most importantly over-

fishing and, particularly, illegal oil discharge. One study in a similar maritime environment demon-

strates that much of the oil discharged comes from numerous small intentional events[116]. Oil

discharge may occur several ways such as discharge of ballast water, tank washing, and engine

room effluent discharge [116]. Protecting the maritime environment from illegal and unregulated

fishing as well as illegal oil discharge from shipping is vital to sustaining the economy.

To maintain the safety and health of this region there must be a mechanism in place that is

capable of monitoring the illegal discharge of oil slicks, and the required dispersion and clean-up of

these slicks. Moreover, pursuant to the customer need to protect the lives of sailors in the region,

this mechanism must also monitor the safety of distressed vessels in need of rescuing. Currently

there are several manned assets that perform these missions, but in the future there is an opportunity

for unmanned aerial vehicles to perform these duties.

The second scenario (called “the firefighting scenario”) is the monitoring and mitigation of fires

181

Figure 96: Area of Greece under Consideration

on islands in the Aegean Sea. Housing of local firefighting equipment is both expensive and difficult

because the islands in the Aegean are geographically disperse with large distances between then and

limited infrastructure. Thus, with hot summers, dry conditions, and human negligence, combined

with high winds make fires on these remote mountainous islands a real threat.

Real time surveillance with high altitude aircraft is particularly useful to meet the customer need

of minimizing fire damage. When the fires do appear, these surveillance aircraft provide continuous

coverage of the site as aerial tankers drop fire retardants. Here, there is also the opportunity for

unmanned aircraft to perform these missions, since these systems are always vigilant. Figure 96

shows the a map of the Aegean used to develop SoS model.

Using these identified customer needs, a functional breakdown is performed. In this case, the

functional breakdown describes, at a high level, the missions or tasks that need to be performed

to satisfy the customer needs. For the functional breakdown, background research identifies six

missions for the maritime monitoring scenario and two missions for the firefighting scenario. For the

maritime monitoring scenario the missions of interest are: (1) patrol of fishing and oil platforms, (2)

ship tracking, (3) environmental monitoring, (4) oil spill response, (5) search for distressed vessels,

182

and (6) rescue and provide aid to sailors on distressed vessels.

The fishery patrol and ship tracking missions help to provide maritime domain awareness to the

Norwegian Coast Guard in its task of maintaining security and enforcing sovereignty. Environmen-

tal monitoring is also critical to the protection of the Norwegian coastline from maritime polluters

who dump bilge and wash oil tanks in the open sea. The primary goal of this mission is to detect and

verify oil slicks while collecting sufficient evidence for legal action. Once an appropriately large

spill is detected, there is a need to respond. The oil spill response mission needs to be capable of

delivering the means to quickly combat the slick, such as oil dispersants to breakup the slick before

it interferes with wildlife.

In addition, occasionally there are ships that require assistance. The aircraft needs to be able to

search for and locate distressed vessels and monitor the situation until additional assistance arrives.

Once finding the distressed vessels, a rescue mission is executed to deliver emergency aid, such as

a life raft.

In the firefighting scenario, the missions considered are: (1) fire monitoring, and (2) firefighting.

In the fire monitoring mission, aircraft mustprovide expansive coverage of the fire prone land. Once

a fire is detected, a firefighting mission is performed to drop fire retardants that aid in extinguishing

the fire.

Table 21 shows the different requirements for each of the identified missions. It is possible to see

areas of overlap between the different missions that can serve as a basis for the family architecture.

The similarities and differences of these two problems are clear. Both of these problems ex-

hibit strong need for a persistent patrol, which is better conducted at higher altitudes where aircraft

benefit from improved fuel efficiency. Additionally, these scenarios need vehicles with low altitude

capabilities to deliver time sensitive support. The use of aerial vehicles in both of these mission

types is not common, but there is an opportunity to develop unmanned aircraft family for these

missions[44, 90].

In summary, customer needs for the aircraft product family are identified through background

review. In the maritime monitoring scenario, the customer needs are to locate possible oil spills and

patrol Norway’s EEZ. Examples of some resulting MoEs to determine how well these needs are met

include how long it takes to detect an oil spill, and whether the polluter is caught spilling. For the

183

Table 21: Mission Specific Characteristics

184

Figure 97: Mission Hierarchy

firefighting scenario, the MoE includes the total burnt land and system cost. These two scenarios

require a stochastic SoS model to understand the effectiveness of potential aircraft in meeting the

customer needs. This problem also has potential family benefits from sharing aircraft components.

Because this is a Class III product family problem, the next step is to formulate alternative family

architectures.

8.2 Define Family Architectures

The appropriate allocation of different missions to particular aircraft is one way to help define

family architecture. In the maritime scenario, the missions are grouped into two types: information

gathering, and time sensitive delivery, figure 97. The reconnaissance mission is treated as a superset

of the patrol, environmental monitoring, and search missions. Information gathering missions also

trigger the delivery missions of spill response and rescue once their respective targets are found.

After inspecting the mission hierarchy, different high level family architectures are developed.

Figure 98 shows the first architecture being considered. Here, there is one aircraft that performs all

of the information gathering missions and a different aircraft that is called to perform the special

delivery missions. Simple mission profiles are included for each of the different missions and are

used to help develop aircraft mission performance models.

The second architecture that could be considered is shown in Figure 99. Here, the information

gathering missions are combined with their unique delivery segments. For example, for the search

185

Figure 98: Maritime Architecture One

and rescue missions, one aircraft performs the searching and then is capable of delivering aid to

distressed vessels.

The firefighting scenario only has two missions: reconnaissance, and delivery of a fire retardant.

Again, there are two main ways of combining these missions: having one aircraft searching and

dropping, or having unique aircraft types for both roles.

Given no existing information or preferences, it is not clear which family architecture would

be superior to meeting the customer needs at the lowest costs and best family commonality. In a

full design study, models for these unique architectures would need to be developed to evaluate the

alternatives.

For further development of this study, and to focus on testing the component identification ap-

proaches, the main family architectures that are considered are the ones that separate time sensitive

dropping missions from the long endurance, persistent missions. However, the models created will

be flexible enough to allow for alternative architectures to be evaluated in the future.

186

Figure 99: Maritime Architecture Two

8.3 Establish Value Objectives

At this point in the family design process, a family solution has been architected that can meet

the customer needs. This step helps to establish the specific importance of the customer needs in

relation to each other. Without these preferences, it is not possible to arrive at a final ideal family.

For this demonstration problem, there have been a number of measures of effectiveness (MoEs) that

describe the aircraft family’s overall performance. In the maritime monitoring scenario the overall

MoEs are the family costs, the time it takes to search and rescue, the time to detect an oil spill, the

time to cleanup the oil spill, and, finally, the probability of identifying the polluter. The MoEs for

the firefighting scenario are the size of the burnt land and the cost of the family.

There are four aircraft types in the family architecture. While the ideal commonality is not

known between the aircraft components, it is important to identify the components that should be

considered for commonality, i.e. Spq. To simplify the analysis, the aircraft in both scenarios have

a traditional tube and wing configuration and are assumed to be roughly a Medium Altitude Long

Endurance (MALE) UAV. The aircraft are modular so that they share some common geometry

components like the fuselage and wings.

187

The fuselage component is characterized by a length and diameter design variable. However, it

is possible to consider only the diameter and add fuselage plugs for the different aircraft fuselages

as needed. Though the wing module can be described using many parameters, this study focuses

only on the wing area and aspect ratio.

The engine is also considered a significant component and is considered as a possible family

platform. The engine module can also be parametrized with many different design parameters

depending on model fidelity. For example, a high fidelity model of a turbofan engine would enable

the engine to be parametrized by internal geometry and materials. This kind of model would allow

building an engine platform based on core or bypass subcomponents. However, if a low fidelity

model is used it can be sufficient to identify engines based on the required thrust setting.. The low

fidelity model is preferred in circumstances where constraints on time or computational resources

limit model complexity.

Finally, in both scenarios there is a need for a strong sensor suite so that the radar modules will

also be analyzed. In this case, the radar module space will be characterized by the radar detection

range. Higher fidelity models and interactions in the SoS model allow the impacts of radar operating

frequency or other similar parameters to be traded.

The choices in objective values and module spaces are not trivial and have far reaching impacts.

For instance, the cost objective requires an associated cost model while the firefighting scenario re-

quires understanding how the size of the burnt land is calculated. Changing the objectives or altering

the model space parametrization may require updating the modeling and simulation environment if

those variables are not satisfactorily included in the initial models.

8.4 Generate Feasible Alternatives

To be able to generate feasible alternatives, a suitable modeling and simulation environment needs

to be created. This environment is driven by models that capture the module level design parameter

interactions and impacts on the MoEs.

8.4.1 Modeling and Simulation

This demonstration design study requires a complex modeling environment to be created to generate

the design database which captures everything from the component level to the customer needs

188

Table 22: Comparisons of ABM and DES

level. To be able to capture the customer needs level, a system-of-systems (SoS) model needs to

be created. There are several methods to model and analyze SoS each with their own strengths and

weaknesses. The most common methods for exploring these complex design spaces are discrete

event simulations, and agent based models (ABMs).

To investigate the trade-offs of these two methods, simple test search models are developed using

both techniques. From these tests, a list of benefits of each of the two methods can be determined

and compared to the objectives of this research. Table 22 lists of the pros and cons of the two

methods.

ABM simulations are the best option for this problem. They are more flexible to changing oper-

ational behaviors once the base agent logic is coded. If the MoEs included operational availability

or maintenance metrics then a discrete event or combined simulation would be needed. The full in-

tegrated modeling and simulation environment, includes several system level models. For example,

sensor models and an aircraft sizing model act as inputs for agent capability metrics of the ABM

which then calculate their mission effectiveness.

8.4.2 Integrated Simulation Environment

The development of the integrated simulation environment is the source of ongoing research. This

section reiterates previously published work on testing integrated simulation environments. [125].

189

The sizing and synthesis of aircraft for this integrated environment requires several varying code

disciplines. Because of the similarity between the two scenarios, it is possible to reused analysis

models between the two environments. This helps model development by lessening the duplication

of effort. For this exploration, the aircraft are modeled in FLOPS using the notional medium altitude

long endurance aircraft baseline. From this baseline the dimensions are parametrized so that many

different sizes of aircraft can be generated driven by the payload requirements.

Figure 100, is an image of the modeling and simulation environment for the firefighting scenario.

The appropriate initial inputs are selected from the design of experiments, which is combined with

each aircraft, and sized independently, depending on the needs of the payload volume and the sensor

package. Following the aircraft sizing, the SoS simulation is executed.

Two sensors are considered on the aircraft: radar and IR. Both the radar and IR sensor models are

developed from simple physics and implemented in Matlab. In the maritime monitoring scenario,

radar is used to detect ships at sea, while for the firefighting scenario, radar is used to detect fires by

the return from smoke. For the radar modeling, the basic radar equation is implemented which is

based off of first principles.

IR sensors are used to identify the polluters in the maritime monitoring scenario. In the fire-

fighting scenario, the IR sensor can reveal additional details about the fire. The IR sensor model

implementation is from[95]. In an initial sensitivity study, the IR sensor was dominated by all of

the other components. Therefore, to help limit the number of variables in the model, the IR sensor

model is removed as an independent component.

The volume sizing of the aircraft captures the dependency of the geometry and payload volume.

With this volume sizing approach the internal placement of each of the components is ignored.

This is a conceptual design study it is valuable to find the sub-class of vehicles that are capable

of completing the mission. In the future higher fidelity models that can capture the impact of the

internal component arrangements can be included. These models could be helpful to distinguish

between alternative family platform configurations. Because, internal geometry plays an important

role in the ability to modularize the aircraft. The interfaces between alternative components needs

be standardized but these detailed questions are better addressed after the conceptual design phase.

For the volume sizing, the aircraft configuration selected is a simple tube and wing, and that the

190

Figure 100: Integrated Modeling and Simulation Environment

avionics and other internal components will not increase or decrease in volume from a baseline

aircraft. These two assumptions imply that the changes to the fuselage length directly impact the

size of the payload the aircraft is carrying capable. The inputs for this volume sizing method are the

payload volume, the percentage of the payload carried internally, and the geometry from the MALE

UAV. The outputs are the fuselage length and the payload weight.

The aircraft sizing is conducted using a code known as FLOPS with some of the input geometric

coming from a simple volumetric sizing tool also made in Matlab. The goal of these models is to

make the aircraft as parametric as possible to help explore the design space and look for possible

component commonalities while still having aircraft capable of meeting the customer needs.

Once the fuselage geometry is determined, it and the weight estimates for the sensors are then

used by the FLOPS model to size the two aircraft. As mentioned before, the sizing of the aircraft

is conducted on a rubber aircraft from a state of the art MALE model. Each scenario has a search

aircraft and a drop aircraft with slightly different mission profiles resulting in four unique FLOPS

models. All of the aircraft models use a turboprop engine deck and are based on a rubberized engine

model for a MALE aircraft. The FLOPS model is used to calculate optimal mission conditions,

191

Figure 101: Flight Profile of Drop Aircraft

components and gross weights. The FLOPS model outputs the engine size as well as the wing

geometry, speed, and fuel consumption characteristics.

After the search and drop aircraft are sized, they can then be evaluated in the SoS ABM simu-

lation environment. The ABM takes: high level variables like the numbers of aircraft to operation,

as well as sensor performances like detection range. Additionally, the ABM takes detailed aircraft

flight profile parameters, figure 101, from the FLOPS model to accurately represent the aircraft

while performing the scenario missions. The stochasticity enters into the ABM through the fact that

mission events occur throughout the geographical areas. For instance, the distressed vessels for the

search and rescue mission can be anywhere in the EEZ or the initial location for the fire can happen

anywhere on land.

The logic, shown in figure 102, is similar for both SoS simulations and shows the robustness of

the agent behavior implementation. First, the simulation is initialized and a task manager allocates

aircraft to the needed missions. An example of this allocation is in the firefighting scenario. Once a

fire is detected, the manager identifies an aircraft that is capable of delivering the needed retardant

payload. Within the simulation only a subset of the aircraft are capable of completing this mission,

and thus one of the drop aircraft is selected to complete the mission in lieu of the searching aircraft.

A check is also performed of the aircraft’s ability to successfully complete the mission. Currently,

this check determines whether or not the aircraft has enough fuel to complete the mission. If it does

not, a different aircraft is selected. The benefit of ABM is that the base agent behavior rules can be

updated to account for different analysis mission scenarios.

After all the tasks have been assigned to proper assets, the simulation time is incremented.

192

Figure 102: Logic of Simulating Environment[125]

Aircraft fuel burn is calculated for this time increment as well as updates to other dynamic agent

properties. For instance, in the firefighting scenario, the aircraft payload changes as the retardant

is dropped on the fire. Consequently, this will lighten the aircraft and improve its fuel economy.

Additionally the retardant affects the fire and has partially prevented its spread.

This process of incrementing time and updating the agents continues until an exit criteria has

been reached i.e. the fire extinguished or the maximum simulation time is exceeded. The only

difference between the two scenario simulations in terms of task allocation is in the maritime sce-

nario. Search and rescue mission allocation takes precedence over the oil slick identification and

dispersant missions. This is because the possibility of saving lives is most important.

An image of the simulation environment interface can be seen in figure 103. This interface is a

representation of the firefighting scenario. The map of the islands can be seen in the center. This map

is used to identify which areas of the simulation are capable of hosting a fire. Additionally having

a visual interface allows the designer to playback interesting combinations of design variables and

watch the resulting mission capability unfold.

193

Figure 103: Aerial Firefighting ABM Frontend[125]

One important logic feature needed for realistic aircraft behavior is the control loop to search

the map. Fixed patrol patterns can be given but these are rigid and not flexible to changing events.

The specific patrol algorithm for this simulation has been developed by ASDL to search the area in

a systematic yet flexible matter[125]. For this search function each pixel is set to a cost function

for each of the searching aircraft. The cost function indicates the last time the pixel was seen, the

closeness of the pixel to other aircraft and the closeness of the pixel to the specified aircraft. This

cost function encourages aircraft to explore areas which have not been seen recently as well as

prevents different aircraft from searching the same region.

An image of the cost function can be seen in figure 104. The small circle in the image represents

the the radar detection range of the aircraft while the large circle shows the cost function. The darker

colors show an increased need to search that area. Areas that have recently been searched by the

aircraft are lighter in color while the area that has not been searched, is very dark.

8.4.3 Model Verification

Now that the simulation environment has been implemented, it is important that the environment is

a reasonable representation of reality. It is not possible to validate this modeling and simulation en-

vironment because of its large scope and its use of agent based models. Additionally there does not

exist a current baseline system performing these scenarios to calibrate the models against. However

194

Figure 104: Searching Algorithm Cost Function Visual Representation[125]

it is possible to verify at least that the model has trends that follow reality and that will serve as a

useful basis for performing family trades.

Table 23 shows the design variables and their corresponding ranges for each aircraft type being

considered. A Latin Hypercube design of 60,000 cases was run for the firefighting scenario while

a 120,000 design was used for the maritime scenario. The ratio of failed cases for the maritime

scenario was about twice that of the firefighting scenario so the resulting database is roughly the

same number of successful designs.

The main trends that need to be verified for the firefighting scenario is the size of the burnt land.

One technique is to fit a neural network to the LHC successful cases. This neural network then is

useful for creating visualizations that should display the appropriate trends. Figure 105 shows three

contour plots where the amount of burnt land is shown for different combinations of aircraft types.

The left most contour shows the baseline case. The middle contour plot shows that increasing the

radar detection range reduces the influence of the number of search aircraft on the resulting size of

the burnt land. This is because the search aircraft is more capable and detects the fire sooner so

the air tankers can respond faster. The contour plot on the right shows the result of increasing the

amount of retardant carried by the tanker aircraft. This verifies that a more capable drop aircraft

significantly reduces the overall burnt land. This figure as a whole supports the general verification

of the major trends on the aerial firefighting modeling environment.

195

Table 23: Aircraft DOE Ranges

�����

����

	
�������

����

�����

�
���

	
�������

�
���

�����

����

	
�������

����

�����

�
���

	
�������

�
���

���������������������
��

�������
�
���������
��

�
��� ������� ������� ������� !������

"���#�	
��

������$��%��& ���� '��� ���� (!���� ����� !���� (

$�#���#
��)��%�
�&

"
���*��#���������

���+��)���������,!

-������
�%��,�&

�#�����
���

.
����
���

.���/��##"���$�
���

0����� .���#��%��&

���1������%234&

������
���
������%�&

�
����%�&

����
���5�+���%+&

6

	�##���

�
$
�

��#��
��

-���

 ��

!���

�7'

�'��

 7'

�

6��

�'���

!8��� 8����

�7 8

� �

�7��8 �7!!

 �� ���

 �

�78�

�7

 (

 �������

� (��� (

��� ����

6������

�7 ���8!6�� (

6

�

 ��

�

�	
�	��

Figure 105: Firefighting Neural Network Contour Plot

196

Figure 106: Burnt Land and Drop Aircraft Capability for Varying Numbers of Drop Aircraft

One important trade-off is between the numbers of aircraft and their capability and can be ex-

plored by using this SoS model. For instance, figure 105 indicates that the customer may be able

to operate fewer search aircraft if a better radar is used or fewer drop aircraft if they each can carry

more retardant. The burnt land decreases as payload retardant increases for different numbers of

drop aircraft. Because the SoS agent based model is stochastic, there can be significant variation

in the output metrics given the same input design variables. Even through the stochasticity, the fig-

ure does reveal that for the same number of aircraft, larger more capable aircraft prevent more fire

damage. Interestingly if the required amount of burnt land is less than 250 hectares then for 5 drop

aircraft it takes at least 400 gals of retardant or 500 gals if only 4 drop aircraft are used. In either

case, the total carrying retardant capacity is around 2,000 gals and goes to illustrate the consistency

of the firefighting physics.

The number of search aircraft is another important dimension of the problem, figure 107 shows

the general trades between numbers of aircraft, burnt land, payload volume, and the fire detection

time. This is a complex but useful plot and shows how the burnt land is affected by detection time for

197

Figure 107: Burnt Land and Drop Aircraft Capability for Varying Numbers of Aircraft

all of the combinations of aircraft retardant volume and the number of drop aircraft. For instance,

the top left scatterplot shows the burnt land results vs detection time when using only two drop

aircraft with payload capacity between roughly 100-380 gal. The figure shows for fewer smaller

aircraft the fire is never successfully extinguished while many large aircraft will always extinguish

the fire. The important implication is that there is a trade-off between the numbers of drop aircraft

and their size.

The follow trends have been verified: higher number of surveillance aircraft decrease the time

a fire continues to burn unnoticed, higher numbers of delivery aircraft reduce the burnt area, and

higher payload also reduces the burnt area. The other main objective value for the firefighting

scenario is cost. Figure 108 shows the burnt land verses cost envelopes for different numbers of

drop aircraft. The envelopes are used because there are many dimensions that affect both cost and

burnt land, and at this conceptual stage, the need is to verify the aggregate trend. From the figure,

diminishing returns can be seen that the next increment of drop aircraft continues to raise costs

while yielding progressively less improvement in extinguishing capability.

Now that the modeling and simulation environment has been verified for the firefighting sce-

nario, the maritime scenario modeling and simulation environment needs to be verified. Again the

198

Figure 108: Burnt Land vs Total Firefighting Scenario Cost

objective values found previously from the customer needs for the maritime missions are the cost,

the total search and rescue time (SAR), the time to detect oil spills, and the time between two de-

tections. The time between two detections is a metric showing the general ship tracking ability

by recording the time ships are unobserved. Figure 109 shows the envelope time it takes for the

search and rescue mission for the maritime scenario vs cost for different number of drop aircraft.

There again are diminishing returns where the number of delivery aircraft quickly stop yielding an

improvement in the total SAR time.

Figure 110 shows the envelop of the time between two detections vs cost for various numbers

of search aircraft. The figure indicates using only one search aircraft can not adequately cover the

area necessary. As there are more aircraft searching the average time a ship goes undetected drops.

The last trend to verify for the maritime modeling and simulation environment is the time to

detect oil spill, figure 111. The figure shows the envelop of spill detection time versus program cost

by number of search aircraft. Again as expected, more search aircraft improves the spill detection

but eventually increasing the number of search aircraft does not give a significant performance

improvement.

In addition to verifying the impact of the number of aircraft it is importance to understand the

modeled trends of the radar on mission performance, figure 112. The left half of the figure shows

the improvement of the time between two detections for improved aircraft radar range for different

numbers of surveillance aircraft. As expected increasing the radar performance does improve the

199

Figure 109: Total Search and Rescue Time Envelope vs Program Cost

Figure 110: Time Between Two Detections Envelope vs Program Cost

200

Figure 111: Total Time to Detect Oil Spill Envelope vs Program Cost

Figure 112: Time Between two Detections Radar Performance

detection capability however the magnitude is surprisingly lower than increasing the number of

search aircraft. The right half of the figure shows the distribution of detection time for different

numbers of search aircraft. The interesting trend here is that not only does the detection improve

the distribution is also significantly tighter.

Figure 113 shows the probability to identify the polluter. This trend is more difficult to capture

because the exploration of the design space did not include repetitions. This metric was derived

instead by discretizing the design variables and looking at the relative frequency of times the pol-

luters were identified. Overall the trend is as expected, higher numbers of search aircraft with longer

range sensors have a better change of successfully collecting the evidence needed to prosecute the

201

Figure 113: Probability to Identify Polluter

polluter. Because of the processing to generate this probability and the low number of successful

database cases, the trend is not well converged. For instance, with one search aircraft a long range

radar has a slightly worse probability than short range and reinforces the need for additional cases

in the design space exploration.

The last objective value for the maritime missions is the time to cleanup the oil spill. Figure

114 shows the time to perform the search and rescue vs the time to clean the oil spill for different

combinations of search and drop aircraft. First low numbers of either times of aircraft yield very

poor performance for the missions, and high numbers of both have the best performance. However

after 3 or 4 search aircraft and 3 or 4 drop aircraft the improvement is negligible.

This section processed the design space exploration data through different visualizations to help

verify the trends in the modeling and simulation environments reflect reality. Overall there is a clear

indication that this problem could benefit a design exploration method that focused on the interesting

trade-off regions between the numbers of aircraft. Continuing to explore the corners of the design

variable ranges would continue to yield points that are incapable of achieving the customer needs

either by large program costs or poor mission performances. Running many dominated design cases

only serves to waste computational effort without adding actionable knowledge. A denser sampling

along the Pareto frontier improves the changes of finding meaningful commonality opportunities

202

Figure 114: Search and Rescue Time vs Time to Clean Oil Spill for Different numbers of Aircraft

for aerospace product families.

8.5 Commonality Identification

Now that alternatives have been generated and that the trends of the data has been verified, the

commonality identification approaches can be tested for the aircraft family.

Without a concrete set of preferences to determine the acceptable trade-offs between metrics, it

is not possible to arrive at a final family. However, the purpose at this development stage is to test

the commonality identification approaches formulated in this dissertation. In order to make mean-

ingful observations about the approaches, two different filtering criteria are used which represent a

reasonable set of alternative preferences that yield a very clear commonality change for the aircraft

fuselage. These demonstration filtering criteria are shown in table 24.

The first filtering criteria sets the objective values in an attempt to make the two search aircraft

similar and the two drop aircraft similar. It does this by finding the subset with the lowest cost and

best mission performances. The second filtering criteria attempts to the make the maritime drop

aircraft smaller and more alike to the two search aircraft while making the firefighting tanker larger.

This is done by relaxing the oil dispersant mission and time between detections while relaxing

the cost requirements for the firefighting scenario. By relaxing the costs, the variability of the

burnt land also decreases because design cases with high numbers of large drop aircraft are now

203

Table 24: Criteria for Filtering
Criteria 1 Criteria 2

Maritime
Scenario

Time Between Detections < 80min Time Between Detections < 700min
Total SAR Time < 120min Total SAR Time < 120min
Time to Clean < 430min Time to Clean > 900min
Total Cost < 100,000k$ ID Polluter > 50%

Total Cost < 80,000k$
Firefighting
Scenario

Burnt Land < 10 ha Burnt Land < 10 ha
Total Cost < 100,000k$ Total Cost > 130,000k$

Table 25: Filtered Subset Data Size from Original DoE
Firefighting Maritime

Criteria 1 174 77
Criteria 2 481 57

feasible. By comparing these two criteria, it is possible to test whether the commonality approaches

developed in this dissertation can scale to a realistic product family design problem. For example,

if the commonality approaches can recover this expected change in the family fuselage geometry

similarity then it supports their application to refine the combinatorial space in the generic product

family design methodology.

8.5.1 Fuzzy Clustering Approach

After applying the filtering criteria, there were only a small set of feasible points remaining from

the database, table 25. Figure 115 shows the module space for the resulting aircraft subsets. The left

graph is for filtering criteria one and the right is for criteria two. The change in fuselage geometry

using the different filtering criteria is clear. For criteria two, the density contours for the maritime

drop aircraft are much more similar to the two search aircraft fuselage contours. The fuzzy clus-

tering approach, when processing the clustering similarity, should produce dendrograms that also

reflect the expected change in fuselage similarity.

Following the clustering approach as in figure 28 from chapter 4, the respective module sub-

spaces were extracted and clustered. After the membership functions were processed, the com-

ponent similarity dendrograms are created. Figure 116 shows the dendrogram for the similarity

hierarchy of the module partitions for filtering criteria one. As expected, the fuselage for the two

drop aircraft and the two search aircraft are paired appropriately. Additionally the engine for the air

204

Figure 115: Fuselage Module Space. Criteria 1 (left) and Criteria 2 (right)

Figure 116: Aircraft Module Similarity

tanker is most unlike the others because it is also the heaviest of the aircraft. The radar can be parti-

tioned between the aircraft for the different scenarios. The difficulty with using these dendrograms

is the y-axis scale loses physical meaning with all of the processing necessary to convert the fuzzy

clustering membership functions into an equivalence hierarchy.

Figure 117 shows the module similarity dendrograms for the second filtering criteria. Focusing

only on the expected change for the fuselage, the fire drop aircraft should be most dissimilar however

the dendrogram does not clearly reflect this. This does not invalidate the clustering approach but

indicates the need to include more design cases in the database. It is possible a denser sampling

would yield a more realistic commonality result. In comparison, the electric motor database held 1

205

Figure 117: Aircraft Module Similarity

million points and there were only one hundred eighty thousand DoE points to explore the aircraft

family which also has significantly more noise.

8.5.2 Commonality Probabilistic Approach

The probabilistic approach also uses the same design space exploration database. To create the

probabilistic model, first the structure needs to be learned. The structure learning uses a greedy

search that continues to evolve the network so that the result has a better BIC score. The BIC

score is based on the likelihood of the model representing the data but penalized for having to train

additional connections. This helps ensure only the important variable interactions are taken into

account. Additionally there was human interaction between restarts of the greedy search to help

remove connections that were unreasonable. The overall structure training took days to generate

but was able to arrive at an appropriate network structure. Figure 118 shows the Bayesian network

structure for the firefighting design space exploration and figure 119 shows the structure of the

maritime database. The figures have had their nodes colored based on their association with a

specific aircraft type.

206

AC_Delivery

AC_Surveillance

SA_Radar.range

Out put s.OUT_SizeBurnt Land[0]

DA_payloadVolume

DA_Cost .AircraftCost .t ot al

DA_Cost .Engine

SA_Cost .AircraftCost .t ot alSA_Cost .Engine

SA_Range

Program.Cost .t ot al

SA_AspectRat ioSA_Thrust SA_FuselageLengt h

SA_WingArea

SA_FuselageWidt h

SA_CruiseMach

SA_grow t hVolume

DA_Range

DA_Radar.rangeDA_AspectRat io

DA_WingArea

DA_CruiseMach

DA_grow thVolume

DA_Thrust

DA_FuselageWidt h

DA_FuselageLengt h

DA_Cargo_Dist r ibut ion

1 - Drop Aircraft

2 - Search Aircraft

Figure 118: Firefighting Scenario Bayesian Network Structure

AC_Delivery

Tot al SAR

Median TB2Det ect ion

Time t o Drop Dispersant

DA_payloadVolume

DA_Cost .Aircraft Cost .t ot al

DA_Cost .Engine

AC_Surveillance

SA_Cost .Aircraft Cost .t ot al SA_Cost .Engine Time t o det ect oil Spill

Pict ure Taken

SA_Radar.range

SA_Range

Program.Cost .t ot al

SA_Aspect Rat io

SA_grow t hVolume

SA_ThrustSA_FuselageLengt h

SA_WingArea

SA_FuselageWidt h

SA_CruiseMach

DA_Radar.range

DA_Range

DA_Aspect Rat io

DA_WingArea

DA_CruiseMach

DA_grow t hVolume

DA_Thrust

DA_FuselageWidt h

DA_FuselageLengt h

DA_Cargo_Dist r ibut ion

3 - Drop Aircraft

4 - Search Aircraft

Figure 119: Maritime Scenario Bayesian Network Structure

207

0 50 100 150 200 250 300 350 400 450
Number Basis Functions

-150000

-100000

-50000

0

50000

100000

150000

200000

B
IC

Firefighting
Maritime

Figure 120: Basis Function BIC Score

Interestingly, the resulting structures show the aircraft nodes are organized by type with the

only connections being through the value objective nodes. With this structure, the node conditional

densities can be estimated. In addition to the hyperparameters for each of the conditional den-

sity estimates, the number of basis functions were varied. Figure 120 shows the BIC score of the

networks as the number of basis functions in each node is varied, where low BIC scores are pre-

ferred. For small numbers of basis functions, the node conditional densities found have a very low

likelihood given the database. As the number of basis functions increase, the conditional densities

become more accurate and the overall model likelihood improves. However, as the number of basis

functions increase, the penalty for estimating the extra parameters also increases. Eventually this

penalty outweighs the benefit from the additional basis functions. The BIC score helps to generalize

the network and prevent overfitting. This figure is used to accept the networks trained with 150 basis

functions for both the firefighting and maritime scenarios.

Now that the network structures and node conditional densities are estimated, there is a use-

able Bayesian network surrogate model of the scenario design spaces. Like with traditional sur-

rogate modeling techniques, the next step is to test the Bayesian network model accuracy. Unlike

traditional functional surrogate models, the Bayesian network does not have the same statistical

goodness-of-fit tests. However, the trained Bayesian network already selected the model with the

208

most likely hyperparameters which were found using a grid search. Additionally, the BIC score

helps to prevent overfitting. The remaining model verification involves inspecting the variable in-

teractions encoded by the network. It is accomplished by comparing the training data to a logic

sampling from the Bayesian network.

Figure 121 shows the parallel coordinates of the original database along with data sampled from

the maritime Bayesian network. The left parallel plot shows the original database for the primary

objective variables and types of aircraft. The right parallel plot shows the logic sampling from

the trained network. Again if the network has successfully been trained to the data, then it should

have encoded the relationships between the different variables and the two plots should appear

very similar. Indeed the maritime Bayesian network appears to have captured most of the original

distribution with the exception of the “long tails” for search and rescue time and time between two

detections. This is probably because the conditional densities fit the main body of points as the

likelihood consequence for the tails is smaller.

209

Figure 121: Maritime Scenario Original left, Samples from Bayesian Network right

Figure 122: Firefighting Scenario Original left, Samples from Bayesian Network right

210

0 500 1000 1500 2000 2500
Burnt Land

 [ha]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

P
ro
ba
bi
li
ty

0 200 400 600 800 1000 1200 1400 1600 1800
Burnt Land

[ha]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

P
ro
ba
bi
li
ty

Figure 123: Burnt Land Comparison Original left, Bayesian Network right

In a similar fashion the firefighting Bayesian network can be verified, figure 122. The left

shows the original data from the firefighting design space exploration and the right shows the logic

sampling from the trained network. The structure of the data also appears to be very close to the

original data except for the “long tail” of the burnt land.

This comparison of the burnt land distribution can be seen in more detail in figure 123. The

reason the Bayesian network does not fit the distribution for high values of the burnt land is proba-

bly because the conditional densities are training to the main trend and not placing basis functions

on the outlying points where much of their prediction would be wasted thereby lowering the likeli-

hood. Overall this current limitation of fitting the long tails happens only with design cases that are

undesirable. For instance, design alternatives that have large amounts of burnt land are not going to

be considered successful, so having higher prediction errors is not going to effect the usefulness in

the low burnt land regime.

8.5.3 Comparison of Criteria

With the network models verified, the different filtering criteria can be used to test the commonality

reasoning of the probabilistic approach. Using the first filtering criteria as evidence, an importance

sampling was performed. Figure 124 shows the resulting sample of the different scenarios on sepa-

rate parallel coordinate plots. On the left is the maritime scenario network inference sample and the

right is the firefighting network inference sample. Again parallel coordinate plots are useful for the

product family designer. An important takeaway from these plots is that there are still vary many

combinations of design variables that can achieve the criteria one customer needs. To finalize a

211

family, additional constraints are needed to prune more options which will be reflected in a smaller

bandwidth on the parallel coordinates.

212

Figure 124: Parallel Plot of Samples for First Filtering Criteria

213

Similar to the electric motor, the relevant design variables representing the module spaces can

be inspected. Figure 125 focuses on the posterior module distributions found from the importance

sampling inference. From the filtering criteria there are still rather wide ranges of design variables

that would be able to satisfy the requirements and agrees with the large bandwidths in the parallel

coordinate plots.

However, similarity between these module posterior distributions can calculated using the EMD

to reveal potential platform configurations to evaluate, figure 126. As expected, the fuselage com-

ponent can be divided between the drop aircraft {1,3} and the search aircraft {2,4}. The weighted

graphs also show the relative similarities between the aircraft in the other module spaces. For in-

stance, the radar of the maritime search is very unique which can also be confirmed by inspecting

the parallel coordinate plots.

Now that the first filtering criteria has yielded a baseline component commonality, the common-

ality reasoning inference will be repeated using the second filtering criteria. Figure 127 shows the

resulting scenario importance sampling on the parallel coordinate plots. The left is the maritime

scenario and the right is the firefighting scenario. While parallel coordinate plots are useful, they do

have some limitations. For example, it can be difficult to recognize the change in the maritime drop

fuselage geometry.

214

Mission 1

(Length)=31.7 (Width)=3.92 (Thrust)=5.63e+03 (S)=613 (AR)=14.4 (Radar Range)=5.55e+04

Mission 2

(Length)=30.3 (Width)=3.77 (Thrust)=2.99e+03 (S)=281 (AR)=13.3 (Radar Range)=5.56e+04

Mission 3

(Length)=32.3 (Width)=3.94 (Thrust)=3.95e+03 (S)=427 (AR)=12.9 (Radar Range)=5.74e+04

25 30 35

Length
[ft]

Mission 4

(Length)=30.4

3.
5

4.
0

4.
5

Width
[ft]

(Width)=3.75

0.
5

Thrust
[lbf]

×104

(Thrust)=3.2e+03

50
0

10
00

S

[ft2]

(S)=284

10 15

AR

(AR)=11.9

0.
5

1.
0

1.
5

Radar Range
[km]

×105

(Radar Range)=1.33e+05

Figure 125: Module Posterior for First Filtering Criteria

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Fuselage

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Engine

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Wing

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Radar

Figure 126: Module Similarity for First Filtering Criteria

215

Figure 127: Parallel Plot of Inference Samples for Second Filtering Criteria

216

The fuselage geometry change is also difficult to see with close inspection of the module pos-

terior distributions, figure 128. There is some indication that the drop aircraft for the maritime

scenario (mission 3) seems to appear more similar to the search aircraft for both scenarios but be-

cause there are two dimensions to defining the fuselage module space it is not obvious.

However, using the EMD to calculate the similarities between the module posterior distributions

reflects the expected change in the fuselage platform configuration. The similarity weighted graph

shows the stronger connections between the maritime drop and the two search aircraft {2,3,4},

figure 129.

8.6 Evaluate Alternatives and Make Decision

In the beginning there was no knowledge about which components would make a successful family.

The steps up to this point have been performed to enable the designer to make informed common-

ality decisions that simplify this complex SoS product family problem. This section will describe

some of the other capabilities Bayesian network inference can provide to help guide additional ex-

ploration aircraft problem. However, if a final family were selected, a detailed set of preferences

would need to be known.

Now with the component commonality knowledge extracted with the probabilistic approach, the

design alternatives can be evaluated. The probabilistic approach can be a valuable tool in guiding

the selection of a final family. Returning to the first filtering criteria from the previous section,

importance sampling yields more information about the conditional posterior distributions than just

the module distributions.

The posterior distribution of aircraft that satisfy the criteria are shown in, figure 130. This in-

formation can be useful for helping to narrow the design variable ranges for additional exploration.

Also to help narrow the design variable bandwidths, one additional constraint could be to narrow

the number of aircraft operated in the scenarios. By iteratively and interactively using the poste-

rior distributions and changing the inference evidence, the designer can quickly formulate family

alternatives.

Inspecting the component commonality weighted graphs, in figure 126 the designer can quickly

make some commonality decisions and then combine the relevant module distributions to get a

217

Mission 1

(Length)=31.6 (Width)=3.93 (Thrust)=6.65e+03 (S)=749 (AR)=14.2 (Radar Range)=5.52e+04

Mission 2

(Length)=30.3 (Width)=3.77 (Thrust)=3.3e+03 (S)=291 (AR)=13.2 (Radar Range)=5.54e+04

Mission 3

(Length)=31 (Width)=3.78 (Thrust)=3.77e+03 (S)=453 (AR)=11.9 (Radar Range)=5.63e+04

25 30 35

Length
[ft]

Mission 4

(Length)=30.2

3.
5

4.
0

4.
5

Width
[ft]

(Width)=3.76

0.
5

Thrust
[lbf]

×104

(Thrust)=3.05e+03

50
0

10
00

S

[ft2]

(S)=278

10 15

AR

(AR)=12.3

0.
5

1.
0

1.
5

Radar Range
[km]

×105

(Radar Range)=1.34e+05

Figure 128: Module Posterior For Second Filtering Criteria

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Fuselage

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Engine

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Wing

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Radar

Figure 129: Module Similarity for Second Filtering Criteria

218

1 2 3 4 5 6 7 8 9

Maritime Drop Maritime Search

1 2 3 4 5 6 7 8 9

Fire Drop Fire Search

Figure 130: Aircraft Type Distributions

distribution for the platform variables. For example, assuming the engine could be shared between

all of the aircraft except the fire drop (1), all of the radars are the same except for the one on the

maritime search aircraft (4), and the aircraft fuselage and wings are shared between the drops aircraft

and between the search aircraft. Using this configuration the posterior platform distributions can be

found, figure 131.

The importance sampling also captures the posterior distributions for the performances given

the performance constraints, figure 132. This information could be used iteratively to help guide the

designer into alternative regions of the design space. It is also interesting to inspect how the con-

straints can interact with each other. The main capability of the Bayesian networks is the flexibility

of the inference evidence. If this were the final family, the platform variable distributions could be

narrowed and used as the evidence for an inference. The inference would then yield distributions

of the aircraft family MoEs conditioned on those design variable settings. Alternatively, different

combinations of MoE requirements or design variables can be used as evidence for the Bayesian

network inference. In the final selection of the family, the MoEs using the narrowed platform design

variables would have to be validated using higher fidelity analysis models.

8.7 Conclusions from Aircraft Family Demonstration

The aircraft family design problem is a difficult Class III product family problem mixed with a

complex system-of-systems problem. Because there was no knowledge about the ideal family at the

start of the problem, it was necessary to formulate the generic product family design methodology.

219

25 30 35
Length[ft]

(Length) =32.02

3.5 4.0 4.5
Width[ft]

1 3

(Width) =3.917

25 30 35
Length[ft]

(Length) =30.62

3.6 3.8 4.0
Width[ft]

2 4
(Width) =3.727

0.4 0.6 0.8
Thrust[lbf]×104

1
(Thrust) =5492

200030004000
Thrust[lbf]

2 3 4
(Thrust) =3417

500 1000
S[ft2]

(S) =477.8

10 15
AR

1 3
(AR) =13.86

200 300
S[ft2]

(S) =282.2

10 15
AR

2 4
(AR) =12.54

0.5 1.0 1.5

Radar Range[km]
×105

4
(Radar Range) =

1.29e+05

4 5 6 7

Radar Range[km]
×104

1 2 3
(Radar Range) =

.628e+045

Figure 131: Posterior Platform Distributions for First Filtering Criteria

220

40 60 80 100 120

SAR Time [min]

(SAR Time) =105.1

250 300 350 400

Clean Spill [min]

(Clean Spill) =360.2

200400600800100
0
120
0
140
0
160
0

Detect Spill [min]

(Detect Spill) =245.5

0.2 0.3 0.4 0.5 0.6

Catch Polluter

(Catch Polluter) =0.4545

10 20 30 40 50 60 70 80

Median Detection [min]

(Median Detection) =51.08

2 4 6 8
Burnt Land [ha]

(Burnt Land) =5.343

Figure 132: Posterior Distributions of the Scenario Mission Performances using First Filtering
Criteria

This methodology is grounded in the framework of the generic IPPD methodology and provides a

comprehensive framework for family design problems. The key issue in product family design is

the unknown component sharing that drives both the family benefits and product degradation.

This chapter focus on using the aircraft family demonstration problem to help provide context

to the generic product family design methodology as well as testing the two formulated common-

ality identification approaches developed in this dissertation. These commonality identification

approaches are necessary because they provide a way for the design to make informed decisions

about the family platform configuration.

The aircraft family problem is defined with customer needs at the SoS level where the aircraft

are required to operate in two complex and difference scenarios. To begin to understand these

scenarios, a detailed analysis of the customer needs was performed. This functional breakdown then

identified several possible architectures to formulate the family. The choice of family architecture

has far reaching impacts into the final family and component similarities. However, to evaluate the

different architectures additional models would need to be created for each alternative. To move

221

forward with the demonstration of the family methodology, a family architecture was selected that

involved four aircraft types: one search and one drop aircraft for the fire scenario, and one search

and one drop for the maritime scenario.

To understand the implication of the aircraft components on the scenario MoEs, several models

had to be created and integrated into a larger modeling and simulation environment. These analysis

models range from the component level sensor models like the radar analysis, through integrated

vehicle performance code, to the full agent base simulation to capture the SoS interactions. The

design space was explored using a LHC design of experiments to generate a database of design

alternatives from this modeling and simulation environment. The resulting database and trends from

the modeling and simulation environment were verified by identifying several intuitive relationships

between the input design variables and the output value objectives.

To test the commonality approaches, two different filtering criteria were used with an obvious

change in the fuselage component similarity. Using that database, the clustering approach was

performed to find, try, and recover this expected similarity change. Unfortunately, the commonality

dendrograms resulting from the clustering approach did not reflect the fuselage change. This is in

part due to the sparsity of the design database. The modeling and simulation environment is complex

and slow to execute, so the only way to effectively increase the density of the design database it to

narrow the design variable ranges.

The probabilistic approach was also performed using the same generated LHC design space

exploration database. Two Bayesian networks were trained, one for each scenario. These networks

were trained using a greedy search with random restarts and human interaction to remove known

poor network edges. Once the network structures were learned, the conditional density of the nodes

were estimated using the LSCDE with anisotropic Gaussian kernel basis functions. Using the BIC

score, the number of basis functions were varied to select the appropriate number of basis functions

needed while limiting over fitting. Finally, the networks were verified by using parallel coordinate

plots to compare the training data set variable interactions to a sample generated using the Bayesian

network. There were a few inconsistencies with the tails of the distributions but the significant

trends were the same.

222

The two filtering criteria were used as evidence for the importance sampling to generate pos-

terior module distributions. The similarities between two posterior module distributions were cal-

culated using the EMD and allowed for another weighted graph representation similar to the fuzzy

clusterings similarity relationships. However, unlike the clustering approach, the probabilistic ap-

proach is able to successfully extract the known change in the fuselage similarity between the two

filtering criteria. This helps to support the Bayesian network probabilistic approach for use in the

generic product family design methodology. In the future, a designer can use the trained Bayesian

networks to quickly generate alternative family designs using statistical inference with alternative

input evidence.

223

Chapter IX

SUMMARY AND CONCLUDING REMARKS

In order to capture the largest market share, manufacturers need to offer products to satisfy the

widest range of customer needs possible. The traditional approach then is to develop these products

independently. While this method may allow manufacturers to produce a variety of products to

satisfy a wide range of needs, it is also not without significant disadvantages. For example, prod-

uct designers for different, but similar, products may duplicate their efforts. A potentially better

approach is one that capitalizes on the inter-product similarities by creating modular products ca-

pable of sharing common components. Leveraging commonalities between the products reduces

this duplicated effort and can streamline design, manufacturing, and maintenance for the whole

set of products. However, making components common or a family platform, fundamentally re-

quires a trade-off between the overall family cost benefit and individual product performances. This

trade-off becomes worse when combining components together that are dissimilar. This platform

configuration problem is difficult because it is a large combinatorial space with many possible op-

tions. The platform configuration selection is influential on the overall performance of the product

family.

Existing product family design literature divides product family problems into three classes.

Class I problems involve a given platform configuration, and seek to find design variable values.

These problems are typically the easiest. This class is frequently encountered when there is already

significant knowledge about the product family. Class II problems occur when there is a library of

components that the product family must be built around. In Class III problems both the component

design variables and platform configuration are unknown. This class is the most difficult because

it incorporates the large combinatorial platform configuration space. While there are many existing

design methods, the literature shows there is a need for additional methods for addressing complex

combinatorial Class III product families.

Moreover, none of these classes of problems account for interactions between products at the

224

system-of-systems (SoS) level. This is a significant drawback of this class scheme. Such problems

are even more complex, because now the product requirements are unknown along with the design

variables and platform configuration. This adds an additional layer of complexity when the individ-

ual product requirements can be traded against each other while maintaining the overall customer

needs. Some product family options may meet the customer needs but may limit commonality.

When approaching a new family design without any prior knowledge, assuming a product family

platform configuration may lead to a suboptimal family. Starting from this standpoint of a generic

SoS product family design problem with no existing knowledge, it was hypothesized that the key

was to lessen the platform configuration combinatorial problem by identifying potential product

component similarities, hypothesis 1.

Hypothesis 1

Incorporating knowledge about potential family platforms into a larger product family de-

sign methodology can focus computational resources away from considering poor platforms,

making the design process more efficient, and helping to identify the ideal trade-off between

product performances and portfolio costs.

This is a broad hypothesis and is divided into smaller sub-hypotheses that are more testable.

Sub-hypothesis 1.1, focuses on the question for why finding commonality is key for the methodol-

ogy.

Sub-Hypothesis 1.1

If poor component combinations can be eliminated from consideration, then design resources

can focus on identifying the ideal tradeoff between product performances and portfolio costs.

Sub-hypothesis 1.1 is easily tested with a small thought experiment. In a manner similar to a

continuous space screening test, pruning known poor options from a discrete space frees computa-

tional resources from evaluating unimportant relationships. These resources can then concentrate

on better understanding the main critical relationships. The other part of the main hypothesis is

broken down into sub-hypothesis 1.2.

225

Sub-Hypothesis 1.2

If combining components that are more similar makes a better family platform than combining

dissimilar components, then a method to extract these patterns will aid in the formulation of

the family.

This hypothesis establishes the need to develop an approach for systematically identifying fam-

ily opportunities by identifying component similarities.

This dissertation proposes such a method based on the Integrated Product and Process Design

(IPPD) as a framework. The first step in this method involves identifying the customer needs. In a

family problem this may require segmenting the market by dividing similar customer needs into a

niche. Using these niche customer needs, a detailed functional analysis captures the different tasks

necessary in achieving them. For the case of an SoS of aircraft, this involves defining the relevant

missions. The next step in this method, the family architecture must be defined. The architecture

allocates function to particular products. Once the family architecture is defined, the importance of

the different objective values must be specified as well as the different module space parameters.

This along with the family architecture sets the requirements for the creation of a modeling and

simulation environment capable of seeing the impacts of low level module design parameters on the

high level customer needs.

Next, the design space can be explored to generate a database of feasible alternatives. Then the

database can be inspected to identify commonality that will help reduce the combinatorial problem

involved with the family platform configuration. Finally, these alternate platform configurations can

be explored in additional detail to select the family ideal according to the appropriate preference

scheme selected.

In addition, this dissertation also proposes two alternative approaches to identify component

commonality. The first approach, formulated in chapter 4, employs clustering to identify compo-

nent commonality. Fuzzy clustering is a technique that groups more similar points together. In the

context of clustering product design alternatives, if components from the feasible database subset

are similar, they are grouped into the same clusters. Through a series of fuzzy operations to pro-

cess these clusters, an overall similarity relationship between product components can be found.

226

This binary fuzzy equivalent relationship then indicates the similarity two products have towards

each other. Knowing that combining these similar components yields a better family platform than

combining dissimilar components, this binary fuzzy equivalence relationship can serve as a basis

for identifying family platforms to guide future exploration. Sub-hypothesis 2.1 describes the clus-

tering approach’s commonality identification ability as predicated on the quality and density of the

design space database.

Sub-Hypothesis 2.1

If a sufficiently accurate and dense database can be generated, then a machine learning pattern

recognition technique like fuzzy clustering could be used to help identify component com-

monality and potentially form a platform.

Sub-hypothesis 2.1 is tested using two experiments. Experiment 1 focuses on comparing the

clustering approach to a baseline electric motor product family design study. The first part of this

experiment qualitatively compares the dendrograms found between the two approaches. This com-

parison confirms that the equivalence hierarchy does reflect much of the same component similarity

relationship structures. The second part of this experiment uses the baseline platform configuration

to see how close the feasible subset of the clustering approach compares to the target design variable

settings. This experiment confirms that the fuzzy clustering approach to commonality identification

is able to recover similarities between the different products’ components but is sensitive to the

density of the design space exploration.

Experiment 2 further investigates the reliance on the design space exploration method to gener-

ate the database to be clustered. Three different exploration methods were used: a uniform Monte

Carlo, Latin Hypercube, and a Multiobjective Genetic Algorithm. The number of design cases in the

database for each of the exploration methods were varied as well. Both the LHC and MC methods

perform the same with high numbers of design cases. This is because the density of points near the

baseline target values is roughly the same. When there are very few cases in the design database, the

MC method can “get lucky” and draw several points near the targets. The LHC method gives a more

consistent improvement of the overall quality of prediction for the clustering approach. When the

design ranges were refined, both the MC and LHC explorations performed roughly the same with

227

the LHC slightly better. The multiobjective evolutionary genetic algorithm is included in the de-

sign space exploration experiment because this method intelligently generates points from previous

generations to improve the quality and density of points towards the Pareto frontier. When using an

intelligent exploration method, care needs to be taken that the groups found from the exploration are

natural and not artifacts of the exploration method. For this problem, however, the results derived

from the database from the multiobjective genetic algorithm yield an improvement to the estimate

of the platform variables over the space filling exploration approaches.

Overall this experiment confirms that the clustering approach’s platform prediction estimate

improves with the quality and density of the design database. Together these experiments confirm

that the fuzzy clustering approach is logically sound. However, when the problem is limited by the

number of sample points, like with slow complex analysis codes, the clustering approach has wider

bounds around the estimated platform variables.

One other important criteria for a product family with long life-cycles is the need for long

term flexibility, as noted in observation 1. Sub-hypothesis 3.1 postulates that the fuzzy clustering

could be performed with different feasible subsets centered around alternative filtering criteria which

represent possible future requirements. These two criteria can then be compared with the resulting

extracted commonality relationships to make an informed family platform decision.

Sub-Hypothesis 3.1

If the design constraints are changed, then using the new feasible subset from the design

database and performing the pattern recognition will reveal the sensitivity of component shar-

ing.

Sub-hypothesis 3.1 is tested with an additional experiment. Experiment 3 uses a different elec-

tric motor design study with a different set of performance requirements and a platform configura-

tion. If the clustering approach can accurately identify the platform variable changes between the

studies, then it might be applied to small changes in performance requirements and support sub-

hypothesis 3.1. However, the general estimated platform distributions remain wide, which limits

the applicability for this approach to only small scale problems that can be densely sampled.

The second commonality identification approach, is formulated in chapter 5. This approach

228

builds a surrogate model of the design space exploration database. So instead filtering the database

directly, the surrogate model enables the interpolation between the design alternatives. The kind of

design space being explored is a stochastic SoS, which is difficult for traditional functional surrogate

models to fit. This dissertation focused on applying a continuous nonparametric Bayesian network

to capture the joint probability distribution of the design space exploration database, sub-hypothesis

2.2.

Sub-Hypothesis 2.2

If a model can be generated that encodes the joint probability distribution, then component

similarities can be inferred given performance constraints.

After fitting the Bayesian network, inference techniques use the customer needs and other re-

quirements to find posterior component design variable distributions. These posterior distributions

describe the likely values of the component design variables for the different products. The similar-

ity between product components can be quantified by calculating a similarity metric, like the earth

movers distance, between two posterior component distributions.

Because Bayesian networks are only now being applied to more continuous problems, chapter

6 performs two tests to validate the Bayesian network feasibility as a surrogate model. The first

test looks at the effect that the kernel function choice has on the prediction capability. For high

correlation between design variables, like what happens on a Pareto frontier, an adaptive anisotropic

Gaussian kernel was found to be acceptable. The adaptive anisotropic Gaussian kernel improves the

prediction by incorporating local correlations between the design variables. The other test fits a

Bayesian network surrogate model to the design space exploration of the Breguet range equation.

After training the network, several importance sampling inferences were performed. These tests

help validate the implementation and theory behind using Bayesian networks as a surrogate model

and helps to support their use in the probabilistic approach to identify component commonality.

Experiment 4 then compares the probabilistic approach to the clustering approach using the

electric motor baseline study.

229

Sub-Hypothesis 3.2

If the design constraints are changed, then any changes to the posterior distributions from the

probabilistic model will reveal the sensitivity of component sharing

Finally, the sub-hypothesis 3.2 raises the same requirement for the probabilistic approach to be able

to detect family commonality. This is tested in the aircraft family design demonstration problem

by comparing the commonality changes between two filtering criteria. The demonstration problem

is performed by following the generic product family design methodology that was developed in

chapter 3. In the aircraft demonstration problem, two realistic scenarios are used for the aircraft

mission set. The first scenario is a maritime monitoring mission whereby the unmanned aircraft

need to be able to perform search and rescue, and oil spill monitoring and cleanup. The other

scenario is an aerial firefighting scenario that uses unmanned aircraft to detect the fire and drop

any dispersants. These are complicated scenarios and a set of models were created to be able to

understand the impacts of module level design variables to the high level customer needs. It was

found that the clustering approach was not able to detect the expected commonality change but this

is probably due to the sparsity of the design space exploration of the aircraft family. However using

the same database, the probabilistic approach was able to recover the expected commonality change

between the two filtering criteria. This supports sub-hypothesis 3.2. Overall the demonstration

problem helps to support hypothesis 1. The fuzzy clustering approach is found to scale poorly to

large design problem with wide variable ranges. Table 26 gives and overview of the linking between

the research questions, hypotheses, the experiments, and the results.

9.1 Contributions

One of the major gaps in product family design methodologies is the selection of the platform

configuration. This dissertation proposes a generic product family design methodology for diffi-

cult system-of-systems product family design problems with no prior knowledge. The goal of this

methodology is to integrate existing tools with additional methods to identify component similari-

ties to scope the combinatorial problems that arise. This methodology was demonstrated using the

design of an aircraft product family design. Significant effort and time were devoted to creating the

230

Table 26: Summary of Hypothesis Tests
Research
Question

Hypothesis Tested By Supported?

RQ1
Methodology

1 Sub-Hypotheses Yes
1.1 Simple Experiment Yes

1.2 H2.1 and H2.2
Yes - through

probabilistic approach
RQ2

Commonality
2.1 Ex1 & Ex2 Yes, but can scale poorly
2.2 Ex4 Yes

RQ3
Flexibility

3.1 Ex3 & D
Partially, limited by
database size and

quality
3.2 D Yes

models necessary to enable the analysis of two scenarios. The resulting analysis environments have

already proven a useful capability and been employed in additional research.

This research also develops two possible approaches to fill commonality identification need

in the generic product family design methodology. The first approach is developed using fuzzy

clustering and based on a theory for using fuzzy operators to extract binary similarities relationships.

With these relationships, the hierarchical nature of the component commonalities are graphed and

verified against similar approaches.

The other approach commonality identification approach, formulated for this work, is the proba-

bilistic approach. The probabilistic approach introduces a novel continuous nonparametric Bayesian

network model to encode the joint probability distribution of the product design space. Posterior

distributions of component design variables, conditioned on the product family constraints, can

then be extracted using statistical inference importance sampling. Similarity relationships are then

generated uses these.

This study also tested the continuous nonparametric Bayesian networks, to support its use

as a robust probabilistic surrogate modeling technique. These tests revealed the need to include

anisotropic Gaussian kernels in the nonparametric node Least Squares Conditional Density Estima-

tion (LSCDE). Including these anisotropic Gaussian kernels required updating an existing method

with a more flexible kernel function. Furthermore, by using the anisotropic Gaussian kernels this

method can be applied to represent a manifold, like the Pareto frontier. This then introduces the

capability of effectively creating a probabilistic model of the Pareto optimal design region with

231

interesting future applications.

Bayesian networks are computationally demanding, so it was paramount to have an efficient

implementation. This thesis work involved heavily extending Pebl, an existing Python library, to be

able to perform the training needed for continuous anisotropic LSCDE needed in the probabilistic

approach. Additionally the capability was added to perform importance sampling which aids in the

inferences necessary to make conclusions with the Bayesian network.

Finally several experiments were performed to understand the platform prediction capabilities

of the approaches. As previously stated the fuzzy clustering approach is limited by the ability to

explore large design spaces. However the experiments do indicate that the fuzzy clustering approach

can find commonality, if the database is dense enough with high enough quality. These experiments

also validate the use of the probabilistic approach to represent the design space explorations and

that through the use of importance sampling module similarities can be calculated.

9.2 Recommendations and Future Work

The clustering approach is best used when the analysis codes are fast to execute and when the design

database has a high quality and near the appropriate design region. If the design space is too high

dimensional with wide variable ranges the number of cases needed for an accurate estimate may be

prohibitive for complex codes. However, if accurate is not as big of an issue it may be beneficial

to continue to use the clustering approach. For example, if the goal is to scope the family design

problem down, it may be useful to identify the dissimilar components and to narrow the design

variable ranges.

The probabilistic approach requires encoding the joint probability distribution of the design

space. This is a difficult problem when the number of dimensions is high. For comparison, the

aircraft family had a network size of 30 dimensions. If there is no knowledge about the variable

interactions to help guide the structure learning the factored distribution could be suboptimal or miss

important variable connections making the inferences less accurate. The LSCDE process is not as

difficult but still can be time consuming because it involves a grid search to find the hyperparameters.

Also the evaluation of the network of inference can be computationally demanding. For example

100,000 samples may need to be generated to yield an accurate importance sampling. With high

232

correlations between nodes that limit back propagation, or with unlikely evidence it may take a

larger importance sample.

To continue to improve on this inference capability, especially in the presence of unlikely evi-

dence, the library could be further expanded in the future to include alternative sampling techniques

like MCMC (Gibbs sampling, or Metropolis-Hastings), or message passing sampling techniques.

In addition to a more efficient sampling technique, the implementation can be expanded to uti-

lize distributed computing. Many of the Bayesian network processes needed for the training and

inference are embarrassingly parallel and distributed computing would yield large speedups. An-

other improvement for the library could be a more flexible kernel implementation allowing other

nonstandard kernels to be used in the LSCDE.

From the product family design standpoint the next step is to use the probabilistic approach inter-

actively to explore the family design alternatives and to verify the final family with additional eval-

uation cases using the modeling and simulation environment. Any enhancements to the Bayesian

network inference capability will translate into improve performance for family studies.

With increasing computing power, Bayesian networks and other probabilistic graphical models

become reasonable surrogate modeling techniques. As this research shows, combining the fast

and efficient Python implementation, importance sampling inference can be employed to extract

the encoded knowledge inside the Bayesian network. However, this method can be extended in

the future for other complex Pareto frontier design problems. To the author’s knowledge this has

not previously been applied to engineering design and could have important implications in design

problems well beyond product families and is worthy of further study.

233

Appendix A

BAYESIAN NETWORK LIBRARY

A.1 Library Overview

For this dissertation, there was extensive code development. Python was chosen as the programming

language because of its ability to rapidly prototype as well as its healthy ecosystem of libraries.

This ecosystem includes several scientific computing libraries that simplify the needed code devel-

opment. The Python Environment for Bayesian Learning (Pebl) is an open source library with many

implemented classes and methods. Pebl’s original purpose was for learning the Bayesian network

structure for discrete variables. The base library already had the network object as well as multino-

mial conditional probability distribution object for calculating the conditional probability table for

the discrete nodes. To learn the network structure, Pebl has several alternative learning algorithms

implemented, but the Greedy Learner was used for this work.

The original Pebl library did not use continuous variables or have importance sampling infer-

ence capabilities. As discussed in Chapter 5 and Chapter 6, the method of Least-Squares Condi-

tional Density Estimation using adaptive anisotropic Gaussian kernels was selected to estimate the

conditional densities of the nodes. The LSCDE implemented here was based off of the original

Matlab code from Sugiuama[154]. The original implementation uses isotropic Gaussian kernels

which helps to simplify several of the necessary integrals. To be able to efficiently estimate the

conditional node densities using the anisotropic kernels, several of the computationally intensive

functions were implemented using Cython. Cython is a language similar to Python but with the

ability to declare variable types which enables a compiler to convert the code down to C. This has

the effect of significantly speeding up the computation time. The network training is complete once

the structure is learned and the conditional densities are estimated using the LSCDE.

To use the completed network, an inference engine module was developed. This module com-

bines one or more trained networks with a collection of inferences which are intern a collection of

234

observed evidence target nodes. These targets can be either normal distributions or uniform distri-

butions. The engine is responsible for organizing the different networks and calling the associated

inference object’s sample method. This method then will perform the importance sampling as de-

scribed in Chapter 5. If the node is part of the observed, then the importance sample is drawn using

the evidence target distributions. If the node is not observed, then the sample is drawn using the

anisotropic Gaussian mixture model with the truncated normal Cython method. Figure 133 shows

a simplified structure of the extended Pebl library to showcase the relevant objects and flow.

Once all a sufficient number of the samples are taken, the engine can compare the posterior

probability distributions between the resulting sample objects. Using these posterior pdfs, the engine

can plot the marginal distributions and generate a pairwise similarity for the different module spaces.

It is this comparison that serves as a basis for the component similarity relations. The entire source

code for the extended library is too extensive to include in this document. However, the modified

anisotropic Gaussian Kernel module and Cython helper functions are included. The full extended

library code is available upon request.

235

Figure 133: Simplified Library Structure

236

A.2 Anisotropic Gaussian Kernel
1 from __future__ import division

2 import numpy as np

3 import math

4 import matplotlib.pyplot as plt

5 import time

6 from scipy.spatial.distance import cdist

7 from scipy.special import erf

8 from kde import kde

9 from sklearn.cluster import KMeans

10 from scipy.interpolate import interp1d

11 from collections import OrderedDict

12 import mypebl.distributions.c_kcde

13 from mypebl.distributions import c_kcde

14 from mypebl.distributions import dist

15 from myMDAO.lib.plot.api import scattermatrix

16 import logging

17 root = logging.getLogger()

18 root.setLevel(logging.DEBUG)

19 root.addHandler(logging.FileHandler("info.log"))

20

21

22 mylogger = logging.getLogger('mylogger')

23 mylogger.addHandler(logging.StreamHandler())

24 mylogger.setLevel(logging.ERROR) # <-- that's the default level, actually

25 mylogger.setLevel(logging.NOTSET) # <-- that's the default level, actually

26

27

28 def mahalanobis2(z, w, Vi=None):

29 '''Squared Mahalanobis Distance

30 Calculate q.T*M*q between point n and basis b

31

32 xa : [dy+dx,n] points

33 xb : [dy+dx,b] basiss

34 cov : [b][dy+dx,dy+dx] list of covariance matrices

35 vi : [b][dy+dx,dy+dx] list of inverse covariance matrices

36

37 return : [b,n]

38 '''

39

40 d_z = z.shape[0]

41 n_basis = w.shape[1]

42 if d_z != w.shape[0]:

43 raise Exception('Dimension Error : d_z %s and w.shape[0] %s' % (d_z, w))

44

45 dist2 = dist.mahalanobis2_blas(z.T, w.T, Vi).T

46

47 if np.any(np.isnan(dist2)):

48 raise Exception('Error dist NAN')

49 return dist2

50

51

52 def kern(x, y, w, Vi=None):

53 '''Anisotropic Kernel'''

54 z = np.vstack([x, y])

55

56 d_z = z.shape[0]

57 if d_z != w.shape[0]:

58 raise Exception('Dimension Error : d_z %s and w.shape[0] %s' % (d_z, w))

59

60 q_dist = mahalanobis2(z, w, Vi=Vi)

61 return np.exp(-0.5 * q_dist)

62

63

64 def approx(f, lower, upper, n=100, err=.1, levels=4, args={'varname': None}):

65 '''Adaptive Function Approximation

66

237

67 Progressivly refine a function if the average between two values is greater than err

68

69 lower : lower bound of x

70 upper : upper bound of x

71 n : initial number of samples in the domain

72 levels : number of refinements

73 args = dict of arguments to pass to the function

74 args['varname'] = name of the variable expected by the function

75 Return

76 x : domain variable

77 y : f(x) range variable

78 '''

79

80 x = np.linspace(lower, upper, n)

81 arguments = {}

82 for key, arg in args.iteritems():

83 if key != 'varname':

84 arguments[key] = arg

85 else:

86 arguments[arg] = x

87 y = f(**arguments)

88 level = 0 # level of refinement

89 y = np.reshape(y, x.shape)

90 tot = np.sum(y[:-1] * (x[1:] - x[:-1]))

91

92 while level < levels:

93 #refinement loop

94 rel_err = np.abs(((y[2:] + y[:-2]) / 2 - y[1:-1])) / tot

95 idx = np.where(rel_err > err * np.max(tot))[0]

96

97 new_x = (x[idx] + x[idx + 1]) / 2.

98 arguments = {}

99 for key, arg in args.iteritems():

100 if key != 'varname':

101 arguments[key] = arg

102 else:

103 arguments[arg] = new_x

104 if new_x.shape[0] > 0:

105 new_y = f(**arguments)

106 else:

107 new_y = np.array([])

108 level = levels

109

110 x = np.insert(x, idx + 1, new_x)

111 y = np.insert(y, idx + 1, new_y)

112 level += 1

113 return x, y

114

115

116 def rolling_avg(x, window=2):

117 '''Rolling Average'''

118 weightings = np.repeat(1.0, window) / window

119 return np.convolve(x, weightings)[window - 1:-(window - 1)]

120

121

122 class cpd(object):

123 '''Conditional Probability Distribution'''

124 cc = np.spacing(1)

125

126 def __init__(self, data=None, *args, **kwargs):

127

128 self.max_v = float('inf')

129 self.min_v = -float('inf')

130 self._data = data

131 self._bounds = None

132 self._ymean = None

133 self._yscale = None

134 pass

238

135

136 @property

137 def yscale(self):

138 if self._yscale is None:

139 if self._data is not None:

140 self._yscale = np.std(self._data[0, :], 1)

141 else:

142 return 1.0

143 return self._yscale

144

145 @yscale.setter

146 def yscale(self, value):

147 self._yscale = value

148

149 @property

150 def ymean(self):

151 if self._ymean is None:

152 if self._data is not None:

153 self._ymean = np.mean(self._data[0:1, :], 1)

154 else:

155 return 0.0

156 return self._ymean

157

158 @ymean.setter

159 def ymean(self, value):

160 self._ymean = value

161

162 @property

163 def stdbounds(self):

164 '''Bounds of the scaled range'''

165 bounds = self.bounds

166 return (bounds - self.ymean) / self.yscale

167

168 @stdbounds.setter

169 def stdbounds(self, value):

170 val = np.array(value)

171

172 self.bounds = value * self.yscale + self.ymean

173

174 @property

175 def varnames(self):

176 if not hasattr(self, '_varnames'):

177 varnames = ['Y']

178 try:

179 xnames = ['X%s' % x for x in range(self._d_x)]

180 except:

181 xnames = []

182

183 for name in xnames:

184 varnames.append(name)

185 return varnames

186 else:

187 return self._varnames

188

189 @varnames.setter

190 def varnames(self, value):

191 self._varnames = value

192

193 @property

194 def bounds(self):

195 '''Return the most restricting bounds in nonscaled range'''

196 if self._bounds is None:

197 self._bounds = np.array([self.min_v, self.max_v]) * self.yscale + self.ymean

198

199 return self._bounds

200

201 @bounds.setter

202 def bounds(self, value):

239

203 self._bounds = np.array(value, dtype='d')

204

205 def __getstate__(self):

206 '''Get State For Pickling'''

207 return self.__dict__

208

209 def __setstate__(self, _dict):

210 '''Set State For Unpickling'''

211 self.__dict__ = _dict

212

213 def likelihood(self, Y, X=None):

214 likelihood = self.evaluate(Y, X)

215 return likelihood

216

217 def sample(self, X=None, n=1, method=None):

218 '''General Sampling'''

219 bounds = self.bounds

220

221 if self._d_x == 0:

222 samples = self.kde.sample(X=X, n=n)

223 else:

224 scaleX2 = (X - self._xmean) / self._xscale

225

226 mi = np.min(scaleX2, 1)

227 ma = np.max(scaleX2, 1)

228

229 samples = c_kcde.cdf_sample(scaleX2, self._yscale, self._ymean,

230 self.s11, self.s12, self.s22i, self.U,

231 self._w[0, :], self._u, bounds, self.alphah, n)

232 return samples

233

234

235 def loglikelihood(self):

236 """Calculates the loglikelihood of the data.

237

238 This method implements the log of the g function (equation 12) from:

239

240 Cooper, Herskovitz. A Bayesian Method for the Induction of

241 Probabilistic Networks from Data.

242 """

243 self.fit()

244 return -self.score

245

246 def fit(self, data=None, max_iter=None):

247 '''Fit a kernel estimate to the data

248 1D estimates are done with scipy gaussian kde

249 Multidimensional estimates are done by LSCDE

250 '''

251

252 if data is not None:

253 self.data = data

254 data = self._data

255 elif self._data is not None:

256 data = self._data

257 else:

258 raise('data not set')

259 if max_iter is None:

260 max_iter = self.max_iter

261 else:

262 self.max_iter = max_iter

263

264 if data.shape[0] == 1:

265 self._d_y = d_y = 1

266 self.n = n = data.shape[0]

267

268 elif data.shape[0] > 1:

269 self._d_y = d_y = 1

270 self._d_x = d_x = data.shape[0] - d_y

240

271 self.n = n = data.shape[1]

272

273 if self._d_x == 0:

274 self.max_v = max_v = np.max(self._scaled_data) + 3

275 self.min_v = min_v = np.min(self._scaled_data) - 3

276 self.kde = kde(self._data, self.bounds)

277 ph_cv = self.evaluate(Y=self._data)

278 #KL Loss

279 self.score = -np.mean(np.log(ph_cv + self.cc))

280 else:

281 score = float('inf')

282 old_score = float('inf')

283 i = 1.

284 while i <= max_iter:

285 relax = (max_iter - i + 1) / (max_iter + 1)

286 failed_counter = 0

287 while score == float('inf') or score == old_score or (old_score ==

288 float('inf')):

289 #FIXME Loop logic needs to be cleaned up. Awkward

290 if self.sigma is not None and self.lambd is not None:

291 sig = self.sigma

292 lam = self.lambd

293 old_score = score

294 self.sigma = ((1 + relax * np.linspace(-1, 1, 2)) *

295 self.sigma)

296 self.lambd = ((1 + relax * np.linspace(-1, 1, 2)) *

297 self.lambd)

298 alpha = np.sort(self.alphah, 0)

299 index = math.floor(self.number_basis * (.5 / (max_iter)

300 * (i - max_iter) + 1))

301

302 score = self.LSCDE()

303 sigma_lambd_original = [self.sigma, self.lambd]

304

305 if score == float('inf'):

306 if old_score == float('inf'):

307 failed_counter += 1

308 self.lambd = self.lambd * 10

309 else:

310 self.sigma = sig

311 self.lambd = lam

312 self.score = score = old_score

313 break

314

315 if failed_counter > max_iter + 3:

316 self.plot()

317 raise Exception('Error in fitting node')

318 if score <= old_score:

319 sigma = self.sigma

320 lambd = self.lambd

321 old_score = score

322 else:

323 self.sigma = sig

324 self.lambd = lam

325 score = old_score

326 i += 1

327 self.alpha_h(self.sigma, self.lambd)

328

329 if len(np.where(self.alphah>0)[0]) == 0:

330 pass

331 else:

332 #Prune basis functions that are zero

333 self.updateBasis(number_basis=np.count_nonzero(self.alphah),

334 mask=np.where(self.alphah>0)[0])

335

336 def quantile(self, quantiles=[.5], evidence=None, n=100,

337 levels=10, err=.01):

338 '''Quantiles '''

241

339 quantiles = np.atleast_1d(quantiles)

340 ans = []

341 for i in range(evidence.shape[0]):

342 ccdf, y = self.cdf(evidence[[i]][:, np.newaxis], n, levels, err)

343

344 quant = interp1d(ccdf, y)

345 ans.append(quant(quantiles))

346

347 ans = np.array(ans)

348 return ans

349

350 def cpdf(self, X=None, n=100, levels=5, err=.1):

351 '''Conditional Probability Distribution Function evaluated at X'''

352 bounds = self.bounds

353 #1D

354 if self._d_x == 0:

355 Y, pdf = approx(self.evaluate, bounds[0], bounds[1], n, err=err,

356 levels=levels, args={'varname':'Y'})

357 #Multidimensional

358 else:

359 #test to see if there is a sigma

360 if self.alphah is None:

361 raise Exception('LSCDE not run yet')

362 bounds = self.bounds

363 Y = np.linspace(bounds[0], bounds[1], n)

364 pdf = self.evaluate(Y, X)[0]

365 if any(np.isnan(pdf)):

366 raise ValueError('NAN in pdf')

367 binwidth = Y[1:] - Y[:-1]

368 c = np.sum(binwidth * ((pdf[1:] + pdf[:-1]) / 2))

369 pdf = pdf / c

370 return pdf, Y # likelihood, cumulative value, expected value

371

372 def cdf(self, X=None, n=2000, levels=5, err=.1, Both=False, samp=10000):

373 '''Cumulative Distribution Function'''

374 t1 = time.time()

375 pdf, Y = self.cpdf(X, n, 1, err)

376

377 binwidth = Y[1:] - Y[:-1]

378 cdf = np.cumsum(binwidth * ((pdf[1:] + pdf[:-1]) / 2))

379 cdf = np.insert(cdf, 0, 0)

380 cdf = cdf / cdf[-1]

381

382 return cdf, Y # likelihood, cumulative value, expected value

383

384 def plot(self, evidence=None, fig=None, display=['data', 'hist', 'kde',

385 'basis', 'contours'], alphah=None, domain=None,

386 quantiles=None, quantileEvidence=None):

387 '''Plot the data and condition density

388 domain : [d_x,2] domain for plotting the contours

389 '''

390 num_vars = self._d_x + self._d_y

391 plotshow = False

392 if fig is None:

393 fig = plt.figure(figsize=(3 * num_vars, 3 * num_vars))

394

395 ##

396 #plot setup for no evidence variable

397 if self._d_x == 0:

398 ax = plt.gca()

399 #plot base data

400 if self._data is not None:

401 if 'hist' in display:

402 ax.hist(self._data.T)

403 #plot the probability distribution

404 if 'kde' in display:

405 ph = self.cdf()

406 ax2 = ax.twinx()

242

407 bounds = self.bounds

408 ax2.plot(ph[1], ph[0])

409

410 ###

411 #plot setup for one dimension evidence variable

412 if self._d_x == 1:

413 ax = fig.add_subplot(111)

414 bounds = self.bounds

415 activeBasis = (self.alphah > 0)

416 basisX = self._u[:, activeBasis] * self._xscale + self._xmean

417 #plot data

418 if 'data' in display:

419 ax.plot(self._data[1, :], self._data[0, :], '.')

420 #show basis functions

421 if 'basis' in display:

422 ax.plot(basisX, self._v[:, activeBasis] * self.yscale + self.ymean,

423 'o', color='0', markerfacecolor='None', markersize=15,

424 markeredgewidth=1)

425 plt.ylim([bounds[0], bounds[1]])

426 #plot contours

427 if 'contours' in display:

428 if domain is None:

429 domain = [basisX.min(), basisX.max()]

430 n = 500

431 x = np.linspace(domain[0], domain[1], n)

432 y = np.linspace(self.bounds[0], self.bounds[1], n + 5)

433 X, Y = np.meshgrid(x, y)

434 Z = self.evaluate(y, x[np.newaxis, :])

435 plt.contourf(x, y, Z, alpha=.3)

436 plt.colorbar()

437

438 #plot the conditional distribution

439 if evidence is not None:

440 evidence = np.atleast_1d(evidence)

441 num_evidence = evidence.shape[0]

442 for x in evidence:

443 ph, Y = self.cpdf(np.array([[x]]), n=500)

444

445 _scale = 1.0 / num_evidence

446 if self._u.shape[0] > 1:

447 cdf_scale = ((np.max(self._u) - np.min(self._u)) /

448 np.max(ph) * self._xscale[0,:] * _scale)

449 elif domain is not None:

450 cdf_scale = (domain[1] - domain[0]) * _scale / np.max(ph)

451 else:

452 cdf_scale = ((bounds[1] - bounds[0]) * _scale /

453 np.max(ph) / self._xscale[0, :])

454 ax.fill_betweenx(Y, x, x + ph * cdf_scale, alpha=.5, color='g')

455 #Plot quantiles

456 if quantiles is not None:

457 if quantileEvidence is None:

458 quantileEvidence = np.linspace(bounds[0], bounds[1], 20)

459 quantiles = np.atleast_1d(quantiles)

460 eV = self.quantile(quantiles, quantileEvidence, n=1000)

461 for q in range(quantiles.shape[0]):

462 d = 10 - 30 * (quantiles[q] - .5) ** 2

463 plt.plot(quantileEvidence, eV[:, [q]], 'k--',

464 label=str(quantiles[q] * 100) + '% Quantile',

465 linewidth=2, dashes=(d, 2 * d))

466

467 #For higher dimensions

468 if self._d_x > 1:

469 datadict = OrderedDict(zip(self.varnames, self._data))

470 scattermatrix(datadict, fig, display=display)

471 if 'basis' in display:

472 activeBasis = (self.alphah.T > 0)

473 basisdict = OrderedDict(zip(self.varnames,

474 self._data[:, activeBasis]))

243

475 scattermatrix(basisdict, fig, display=display, marker='o')

476 if plotshow == True:

477 plt.show()

478

479 def plotCDF(self, evidence=None):

480 '''Plot Conditional Distribution

481 '''

482 fig = plt.figure()

483 ax = fig.add_subplot(111)

484

485 if evidence is not None:

486 evidence = np.atleast_2d(evidence)

487 for x in evidence:

488 ph = self.cdf(x)

489 bounds = self.bounds

490 ax.plot(np.linspace(bounds[0], bounds[1], ph.shape[1]), ph[0, :])

491

492 plt.show()

493

494 def plotHist(self, evidence=None, fig=None):

495 '''Plot a histogram and pdf'''

496 if fig is None:

497 plt.figure()

498 # testX = np.array([[0.25]])

499 bounds = self.bounds

500 testX = (evidence - self._xmean) / self._xscale

501 samples = c_kcde.cdf_sample(testX, self._yscale, self._ymean, self.s11,

502 self.s12, self.s22i, self.U, self._w[0, :],

503 self._u, bounds, self.alphah, 100)

504

505 ax = plt.gca()

506 pdf, Y = self.cpdf(evidence, n=1000)

507 plt.plot(Y, pdf)

508 ax2 = ax.twinx()

509 plt.hist(samples, normed=True, alpha=.5)

510 ax.set_xlabel(evidence)

511

512

513 class anisokcde(cpd):

514 def __init__(self, data=None, config={}, *args, **kwargs):

515 """Conditional Density Estimate Based on Anisotropic Gaussian Kernel

516 * Example Formatting

517 - 2nd level

518 """

519 super(anisokcde, self).__init__(*args, **kwargs)

520 #precision

521 self.dtype = np.float96

522 #validation setup

523

524 self.validation = 'kfold' # kfold or test

525 self.folds = 5

526 self._number_basis = 300

527 self.loss_type = "KL" # Either 'KL' or 'SQ'

528

529 self.logging = 2 # c ontrol the logging

530

531 self.sigma = None

532 self.lambd = None

533 self.score = None

534

535 self._u = None

536 self._v = None

537 self.max_v = float('inf')

538 self.min_v = -float('inf')

539

540 self.alphah = None

541 self.basis_index = None

542 self._neighborhood = None

244

543 self._epsilon = .1 # size of the neighborhood

544 self._cov = None

545 self.M = None

546 self.U = None

547 self.detW0 = None

548

549 self._d_y = 1 # a data setter would update this

550 self._d_x = 0 # a data setter would update this

551

552 self.max_iter = 10

553 # self.data = data #set data

554

555 for key, value in config.iteritems(): # take input config dictionary

556 try: # if attribute already exists. Protects setters and getters

557 self.__setattr__(key, value)

558 except AttributeError:

559 self.__dict__[key] = value # new key

560 self.data = data # set data

561

562 @property

563 def epsilon(self):

564 return self._epsilon

565

566 @epsilon.setter

567 def epsilon(self, value):

568 self._epsilon = value

569 self._cov = None

570

571 @property

572 def data(self):

573 return self._data

574

575 @data.setter

576 def data(self, value):

577 '''Set data and Standardize'''

578 self._d_y = d_y = 1

579 self._d_x = d_x = value.shape[0] - d_y

580

581 self.n = value.shape[1] # number of data points

582

583 ytrain = value[0:d_y, :]

584 xtrain = value[d_y:d_y + d_x, :]

585

586 #standardization

587 self._xscale = xscale = np.atleast_2d(np.std(xtrain, 1)).T

588 self._xmean = xmean = np.atleast_2d(np.mean(xtrain, 1)).T

589 if xscale.any() == 0:

590 self._xscale = xscale = np.ones([d_x, 1])

591

592 self.yscale = yscale = np.std(ytrain) # *0+1

593 self.ymean = ymean = np.mean(ytrain) # *0

594 if yscale == 0:

595 self._yscale = yscale = np.ones([d_y, 1])

596 x_train = (xtrain - xmean) / xscale

597 y_train = (ytrain - ymean) / yscale

598

599 self._data = value

600 self._scaled_data = np.vstack([y_train, x_train])

601

602 self.neighborhood = mypebl.distributions.c_kcde.neighborhood()

603 self.neighborhood.data = self._scaled_data.T

604 self.updateBasis(number_basis=self.number_basis)

605

606 @property

607 def number_basis(self):

608 return self._number_basis

609

610 @number_basis.setter

245

611 def number_basis(self, value):

612 self._number_basis = value

613 self.updateBasis(number_basis=value)

614

615 def updateBasis(self, number_basis=None, mask=None):

616 ## Select Basis

617 if hasattr(self, 'data') and hasattr(self, 'n'):

618 if mask is None:

619 # Number of kernel bases

620 self._number_basis = b = min(number_basis, self.number_basis, self.n)

621 ####### Choose kernel centers w=(u,v) for z=(x,y)

622 #kmeans to selected basis locations

623 cluster = KMeans(n_clusters=self._number_basis, n_jobs=1)

624 cluster.fit(self._scaled_data.T)

625 self.basis_index = np.ravel(self.neighborhood.tree.query(

626 cluster.cluster_centers_, return_distance=False))

627 self.alphah = 1. / b * np.ones([b, 1])

628 else:

629 if number_basis is not None:

630 self._number_basis = number_basis

631 b = max(number_basis, mask.shape[0])

632 newBasis = abs(b - self.number_basis)

633 if newBasis > 0:

634 if self.n > self.number_basis:

635 #add new basis

636 oldBasis = set(self.basis_index)

637 totalN = set(range(self.n))

638 possibleBasis = totalN.difference(oldBasis)

639 addBasis = np.random.permutation(list(possibleBasis))[0:newBasis]

640

641 mask = np.hstack([self.basis_index[mask], addBasis])

642 self.basis_index = mask

643

644 else:

645 #No new basis function needed only prune

646 self.alphah = self.alphah[mask]

647 self._cov = self._cov[mask]

648 self.U0 = self.U0[mask]

649 self.Wi = self.Wi[mask]

650 self.U = self.U[mask]

651 self.M = self.M[mask]

652 self.V = self.V[mask]

653 self.W0 = self.W0[mask]

654 self.detW0 = self.detW0[mask]

655 self.sig = self.sig[mask]

656 self.s11 = self.s11[mask]

657 self.s12 = self.s12[mask]

658 self.s22i = self.s22i[mask]

659 self.basis_index = self.basis_index[mask]

660

661 y_train = self._scaled_data[0:self._d_y, :]

662 x_train = self._scaled_data[self._d_y:self._d_y + self._d_x, :]

663 self._u = u = x_train[0:, self.basis_index]

664 self._v = v = y_train[0:, self.basis_index]

665 self._w = np.vstack([v, u])

666 self._z = np.vstack([y_train, x_train])

667

668 self.min_v = np.min(self._v) - 3 * self._yscale

669 self.max_v = np.max(self._v) + 3 * self._yscale

670 self._number_basis = self.basis_index.shape[0]

671 self.neighborhood.basis_index = self.basis_index

672

673 @property

674 def distances(self):

675 data_frac = min(100, np.ceil(.6 * self._z.shape[1]))

676 XA = self._z[:, 0:data_frac].T

677

678 dists = cdist(XA, XA) # euclidean distances

246

679 return dists[np.triu_indices(dists.shape[0], 1)]

680

681 @property

682 def cov(self):

683 '''Local Covariance for the basis functions using their nearest neighbors'''

684 if self._cov is None:

685 (self.U0, self.Wi, self.U, self.M, self.V, self.W0, self.detW0,

686 self._cov, self.s11, self.s12, self.s22i) = mypebl.distributions.c_kcde.cov(

687 self._scaled_data, self.basis_index,

688 self.neighborhood, self.epsilon)

689 self.sig = self.W0

690 return self._cov

691

692 def LSCDE(self, data=None):

693 if self.sigma is None:

694 dists = self.distances

695 min_d = np.min(dists)

696 max_d = np.max(dists)

697 drange = max_d - min_d

698 lower = min_d or .01 * drange

699 upper = max_d - 0.5 * drange

700

701 sigma_list = np.logspace(np.log10(lower), np.log10(upper), 7)

702 sigma_list = np.logspace(np.log10(lower), np.log10(upper), 7)

703 else:

704 sigma_list = self.sigma

705 if self.lambd is None:

706 # Candidates of regularization parameter

707 lambda_list = np.logspace(-1, 1.25, 5)

708 else:

709 lambda_list = self.lambd

710 num_sigma = sigma_list.size

711 num_lambda = lambda_list.size

712

713 #Standardize data

714 if data is not None:

715 self.data = data

716 elif self.data is None:

717 raise Exception('Data Not Set')

718

719 n = self.n

720 d_y = self._d_y

721 d_x = self._d_x

722

723 y_train = self._scaled_data[0:d_y, :]

724 x_train = self._scaled_data[d_y:d_y + d_x, :]

725

726 ################################

727

728 fold = self.folds # Number of folds of cross-validation

729 cv_fold = np.r_[0: fold]

730 cv_index = np.random.permutation(n)

731 cv_split = np.floor(np.r_[0:n] * fold / n)

732

733 if self.validation == 'kfold':

734 fold = self.folds

735

736 elif self.validation == 'test':

737 fold = 1 # only use one fold as validation

738

739 cc = np.spacing(1)

740 w = self._w

741 z = self._z

742 b = self.number_basis

743 score_cv = np.zeros([num_sigma, num_lambda])

744 Phibar_cv = np.empty([b, b, self.folds])

745 dt = time.time()

746

247

747 ##############################START HyperParm Sweep##################

748 for sigma_index in range(sigma_list.size):

749 self.sigma = sigma = sigma_list[sigma_index]

750 self.epsilon = sigma

751 self.cov

752

753 qx_dist = dist.mahalanobis2_blas(x_train.T, self._u.T, self.U).T

754 WW = 1.0 / (self.Wi[:, np.newaxis] + self.Wi[:, np.newaxis].T)

755 W0 = np.tile(self.W0[:, np.newaxis], [1, self.number_basis])

756

757 tmp2 = np.sum((self.V[:, 0] * self._u.T), 1)

758 vv = -1 / self.W0[:, np.newaxis] * tmp2[:, np.newaxis] - self._v.T

759 q = (vv - vv.T)

760 v_dist = q * q * WW

761

762 Wl = self.W0[:, np.newaxis] + self.W0[:, np.newaxis].T

763 sqrtWl = np.sqrt(Wl)

764 c = math.sqrt(math.pi / 2.) / sqrtWl * 2.

765

766 w_bar = self.W0[:, np.newaxis] * vv

767 mu = (w_bar + w_bar.T) / Wl

768 lower, upper = self.stdbounds

769

770 c = math.sqrt(math.pi / 2.) / sqrtWl * (erf((upper - mu) * sqrtWl /

771 math.sqrt(2.)) - erf((lower - mu) * sqrtWl / math.sqrt(2.)))

772 p = (erf((upper - mu) * sqrtWl / math.sqrt(2.)) -

773 erf((lower - mu) * sqrtWl / math.sqrt(2.)))

774

775 phi_qx = np.exp(-0.5 * qx_dist)

776 phi_vv = np.exp(-0.5 * v_dist)

777

778 phi_zw = np.exp(-0.5 * dist.mahalanobis2_blas(z.T, w.T, Vi=self.M)).T

779

780 #K-fold Precalc Phibar

781 for k in range(self.folds):

782 tmp = phi_qx[:, cv_index[cv_split == k]]

783 Phibar_cv[:, :, k] = c * phi_vv * np.dot(tmp, tmp.T)

784

785 #Lambda Loop

786 for lambda_index in range(lambda_list.size):

787 lambd = lambda_list[lambda_index]

788 score_tmp = np.zeros([1, fold])

789 for k in range(fold):

790 H_hat = (np.sum(Phibar_cv[:, :, cv_fold != k], 2) /

791 sum(cv_split != k) + lambd * np.eye(b))

792 h_hat = np.mean(phi_zw[:, cv_index[cv_split != k]], 1)

793 try:

794 alphat_cv = np.linalg.solve(H_hat, h_hat)

795

796 alphah_cv = np.maximum(0, alphat_cv)

797 normalization_cv = self.normalization(alphah_cv,

798 phi_qx[:, cv_index[cv_split == k]],

799 x_train[:, cv_split == k])

800 ph_cv = np.dot(alphah_cv, phi_zw[:,

801 cv_index[cv_split == k]]) / normalization_cv

802 score_tmp[0, k] = -np.mean(np.log(ph_cv + cc))

803 except Exception as E:

804 print E

805 score_cv[sigma_index, lambda_index] = float('nan')

806 break

807

808 cond_num = np.linalg.det(H_hat)

809 mean_score = np.mean(score_tmp)

810 # penalize anwers with poor condition numbers

811 if abs(cond_num) < 1e-20 or np.isnan(cond_num):

812 mean_score = float('inf')

813 score_cv[sigma_index, lambda_index] = mean_score

814

248

815 dt2 = time.time() - dt

816

817 mylogger.info('Score %s' % score_cv)

818

819 a = np.nanargmin(score_cv)

820 lambda_index = a % lambda_list.size

821 sigma_index = math.floor(a / lambda_list.size)

822

823 if not math.isnan(sigma_index) and not math.isnan(lambda_index):

824 self.lambd = lambd = lambda_list[lambda_index]

825 self.sigma = sigma = sigma_list[sigma_index]

826 self.score = score_cv[sigma_index, lambda_index]

827 else:

828 self.score = float('inf')

829

830 if self.logging > 0:

831 mylogger.debug('sig list %s' % sigma_list)

832 mylogger.debug('lam list %s' % lambda_list)

833 mylogger.debug('%s, %s, score: %s lambda %s sigma %s number basis %s '%(

834 sigma_index, lambda_index,

835 score_cv[sigma_index, lambda_index], lambd,

836 sigma, np.count_nonzero(self.alphah)))

837 return score_cv[sigma_index, lambda_index]

838

839 def alpha_h(self, sigma, lambd):

840 '''Solve Basis function weights

841 sigma - standard deviation of the kernel

842 lambd - stability factor

843 '''

844 self.epsilon = sigma

845 self.cov

846 ##Solve for final alpha

847 d_y = self._d_y

848 d_x = self._d_x

849 y_train = self._scaled_data[0:d_y, :]

850 x_train = self._scaled_data[d_y:d_y + d_x, :]

851

852 qx_dist = dist.mahalanobis2_blas(x_train.T, self._u.T, Vi=self.U).T

853 WW = 1.0 / (self.Wi[:, np.newaxis] + self.Wi[:, np.newaxis].T)

854 W0 = np.tile(self.W0[:, np.newaxis], [1, self.number_basis])

855

856 tmp2 = np.sum((self.V[:, 0] * self._u.T), 1)

857 vv = -1 / self.W0[:, np.newaxis] * tmp2[:, np.newaxis] - self._v.T

858 q = (vv - vv.T)

859 v_dist = q * q * WW

860

861 Wl = self.W0[:, np.newaxis] + self.W0[:, np.newaxis].T

862 sqrtWl = np.sqrt(Wl)

863 c = math.sqrt(math.pi / 2.) / sqrtWl * 2

864 w_bar = self.W0[:, np.newaxis] * vv

865 mu = (w_bar + w_bar.T) / Wl

866 lower, upper = self.stdbounds

867 c = math.sqrt(math.pi / 2.) / sqrtWl * (erf((upper - mu) * sqrtWl /

868 math.sqrt(2.)) - erf((lower - mu) * sqrtWl / math.sqrt(2.)))

869

870 self.c = c

871 self.v_dist = v_dist

872 #FIXME: Exponent correct

873 phi_qx = np.exp(-0.5 * qx_dist)

874 self.phi_vv = phi_vv = np.exp(-0.5 * v_dist)

875

876 phi_zw = np.exp(-0.5 * mahalanobis2(self._z, self._w, Vi=self.M))

877 Phibar = self.c * phi_vv * np.dot(phi_qx, phi_qx.T)

878 H_hat = Phibar / self.n + lambd * np.eye(self.number_basis) # h_hat

879 h_hat = np.mean(phi_zw, 1) # H_hat

880

881 alphat = np.linalg.solve(H_hat, h_hat)

882 self.alphah = np.maximum(0, alphat)

249

883

884 def normalization(self, alpha, phi_qx, scaleX):

885 Const2 = c_kcde.normalization(alpha, phi_qx, scaleX, self.Wi,

886 self.V[:, 0, :], self._u, self._v[0, :],

887 self.number_basis, self.stdbounds,

888 self.sig)

889

890 return Const2

891

892 def evalPhi(self, scaleX, scaleY):

893 scaleX = np.atleast_2d(scaleX)

894 scaleY = np.atleast_2d(scaleY)

895 if scaleX.shape[1] == scaleY.shape[1]:

896 if self._d_x > 1:

897 pass

898 phi = kern(scaleY, scaleX, self._w, Vi=self.M)

899 else:

900 raise Exception('Dim Mismatch (X:%s, Y:%s)' % (scaleX.shape, scaleY.shape))

901 Phi = np.dot(self.alphah.T, phi)[0]

902 return Phi

903

904 def evaluate(self, Y=None, X=None):

905 '''Evaluate The Density

906 Y = [number of Y] vector of Y values

907 X = [X dimensions, number of X]

908 '''

909

910 if X is None and self._d_x == 0:

911 s = self.kde.evaluate(Y)

912 return s

913

914 X = np.asanyarray(X, np.float64)

915 Y = np.asanyarray(Y, np.float64)

916 if not X.flags['C_CONTIGUOUS']:

917 X = np.ascontiguousarray(X, dtype=np.float64)

918 if not Y.flags['C_CONTIGUOUS']:

919 Y = np.ascontiguousarray(Y, dtype=np.float64)

920 a = np.array(c_kcde.evaluate(Y, X, self.alphah, self.Wi,

921 self.V[:, 0, :], self.U, self.M, self.sig,

922 self._w, self._v[0, :], self._u,

923 self._ymean, self._yscale,

924 self._xmean[:, 0], self._xscale[:, 0],

925 self.stdbounds))

926 return np.nan_to_num(a)

927

928 def invserse(self, y):

929 if self._d_x == 1:

930 if not hasattr(self, '_evalInverse'):

931 # basisSort = np.sort([self._v[0], self._u[0]])

932 indexSort = np.argsort(self._v[0])

933

934 yBasis = self._v[0, indexSort]

935 xBasis = self._u[0, indexSort]

936 self._evalInverse = interp1d(yBasis, xBasis,

937 bounds_error=False, fill_value=0)

938 else:

939 raise ValueError

940 stdy = (y - self.ymean) / self.yscale

941 return self._xscale[0] * self._evalInverse(stdy) + self._xmean[0]

942

943

944 def weight(self, X):

945 '''Basis weights at scaled location X'''

946 phi_qx = np.exp(-0.5 * dist.mahalanobis2_blas(X, self._u.T, self.U))

947 pval = self.alphah * phi_qx[0]

948 tot = np.sum(pval)

949 kval = pval / tot

950 return kval

250

951

952

953 def cdf_sample(self, X, n=50000):

954 yscale = self._yscale

955 ymean = self._ymean

956 kval = weight(self, X)

957 k = np.random.multinomial(n, kval)

958

959 samples = np.array([])

960 for i in range(self.number_basis):

961 n = k[i]

962 if n > 0:

963 s11 = self.cov[i, 0, 0]

964 s12 = self.cov[i, [0], self._d_y:]

965 s22 = self.cov[i, self._d_y:, self._d_y:]

966 s22i = np.linalg.inv(s22)

967 mu = self._w[0, i] + np.dot(np.dot(s12, s22i),

968 (X - self._u[:, i]))[0, 0]

969 s = s11 - np.dot(s12.T, np.dot(s22i, s12))[0, 0]

970 mu = mu * yscale + ymean

971 s = s ** .5 * yscale

972 while n > 0:

973 sample = np.random.normal(mu, s, n)

974 ind = np.where(sample < self.bounds[1])[0]

975 ind = np.where(sample[ind] > self.bounds[0])[0]

976 n -= len(ind)

977 samples = np.hstack([samples, sample[ind]])

978 return samples

A.3 Cython Helper Functions
1 #cython: embedsignature=True

2 #cython: boundscheck=False

3 #cython: wraparound=False

4 #cython: cdivision=True

5 #cython: profile=True

6

7 import numpy as np

8 import math

9 import time

10 from scipy.spatial.distance import cdist

11 from sklearn.neighbors import BallTree, radius_neighbors_graph, kneighbors_graph

12 from myMDAO.lib.plot.api import scattermatrix

13 import matplotlib.pyplot as plt

14 import time

15 from scipy.integrate import ode

16 import warnings

17 from itertools import izip

18

19 cimport cython

20 cimport numpy as np

21 from cython.parallel import prange, parallel, threadid

22 from libc.math cimport erf, sqrt

23 from ceygen.lu cimport det, inv, iinv

24 from ceygen.core cimport dot_vv, dot_mv, dot_vm, dot_mm

25 from ceygen.elemwise cimport add_vs, multiply_ms, multiply_vs

26

27 from libc.stdlib cimport malloc, free

28 from libc.math cimport exp, sqrt

29

30 from cython.view cimport array

31 cimport random

32 cimport cblas

33 cimport dist

34

35 np.import_array()

36

251

37 DTYPE = np.float64

38 ctypedef np.float64_t DTYPE_t

39

40 ITYPE = np.int32

41 ctypedef np.int32_t ITYPE_t

42

43 cpdef np.ndarray[DTYPE_t, ndim=2] evalPhi(double [:] Y, double [:,:] X,

44 double [:] alphah, double [:,::1] W,

45 double [:,:,::1] Vi):

46

47 cdef:

48 int d_x, nX, n, k

49 int d_y = 1

50 int nY = Y.shape[0]

51

52 int i, j, c, l

53 int d = W.shape[0]

54 int b = W.shape[1]

55 np.ndarray[DTYPE_t, ndim = 2] z

56 np.ndarray[DTYPE_t, ndim = 2] phi

57 double [:, ::1] Wt

58 double [:, :] Phi2

59

60 if X is not None:

61 d_x = X.shape[0]

62 nX = X.shape[1]

63 if nX == nY:

64 n = 1

65 else:

66 n = nX

67 else:

68 d_x = 0

69 nX = 1

70 n = 1

71 assert d == d_x + 1

72 assert d == Vi.shape[1]

73 assert d == Vi.shape[2]

74 assert b == Vi.shape[0]

75 Phi2 = np.empty([n, nY], dtype=DTYPE)

76

77 z = np.empty([nY, d_x + 1], dtype=DTYPE, order='c')

78 Wt = np.asarray(W.T, dtype=DTYPE, order='c')

79 phi = np.zeros([nY, b], dtype=DTYPE, order='c')

80

81 for i in range(nY):

82 z[i, 0] = Y[i]

83 for j in range(n):

84 if nX == nY:

85 for i in range(nX):

86 for k in range(d_x):

87 z[i, k + 1] = X[k, i]

88 else:

89 for k in range(d_x):

90 z[:, k + 1] = X[k, j]

91 dist.mahalanobis_cdist(z, Wt, Vi, phi)

92 for k in range(nY):

93 for l in range(b):

94 phi[k, l] = exp(-.5 * phi[k, l])

95 dot_vm(alphah, phi.T, Phi2[j])

96 return np.asarray(Phi2.T, order='c')

97

98

99 cpdef double[:,::1] phi_qx(double [:,:] X, double [:,:] ux, double [:,:,::1] U):

100

101 cdef:

102 double [:, ::1] phi

103 double [:, ::1] retPhi

104 int b = U.shape[0]

252

105 int num_d = U.shape[1]

106

107 double [:,::1] uxt = np.asarray(ux.T, dtype=DTYPE, order='c')

108 double [:,::1] Xt = np.asarray(X.T, dtype=DTYPE, order='c')

109 int num_X

110

111 assert num_d == U.shape[2]

112 assert num_d == Xt.shape[1]

113 assert num_d == uxt.shape[1]

114 assert b == uxt.shape[0]

115

116 num_X = Xt.shape[0]

117

118 phi = np.zeros([num_X, b], dtype=DTYPE, order='c')

119 retPhi = np.zeros([b, num_X], dtype=DTYPE, order='c')

120 dist.mahalanobis_cdist(Xt, uxt, U, phi)

121

122 for j in range(num_X):

123 for i in range(b):

124 retPhi[i, j] = exp(-.5 * phi[j, i])

125 return retPhi

126

127

128 def cdf_sample(double[:,:] x, double yscale, double ymean, double [:] s11,

129 double [:,:,:] s12, double [:,:,:] s22i, double [:,:,::1] U,

130 double [::1] _w, double[:,:] _u, double [:] bounds, double [::1] alphah,

131 int num_samples=1):

132 cdef:

133 int num_basis = _w.shape[0]

134 unsigned int *k = <unsigned int *>malloc(num_basis * sizeof(unsigned int))

135 int n, i, j, c

136 int d = x.shape[0]

137 int num_X = x.shape[1]

138 double [:] q = np.empty(d)

139 np.ndarray[DTYPE_t, ndim=2] samples

140 double sigma, mu, s, tot = 0, tmp, lower, upper

141

142 random.gsl_rng *r = random.gsl_rng_alloc(random.gsl_rng_mt19937)

143

144 double [:, ::1] qx

145 double [:] kval = np.empty(num_basis)

146 double [:] tmp2 = np.empty(d)

147 double [:] tmp3 = np.empty(d)

148 double [:, :] si

149

150 assert num_basis == alphah.shape[0]

151 assert num_basis == s11.shape[0]

152 assert d == _u.shape[0]

153 assert num_basis == _u.shape[1]

154 assert d == x.shape[0]

155 assert num_basis == U.shape[0]

156 assert d == U.shape[1]

157 assert d == U.shape[2]

158 assert d == _u.shape[0]

159 assert num_basis == _u.shape[1]

160

161 if num_samples == num_X:

162 num_samples = 1

163 samples = np.empty([num_samples, num_X])

164 qx = phi_qx(x, _u, U)

165

166 for c in range(num_X):

167 tot = 0

168 for l in range(num_basis):

169 tmp = alphah[l] * qx[l, c]

170 kval[l] = tmp

171 tot += tmp

172

253

173 for l in range(num_basis):

174 kval[l] = kval[l] / tot

175

176 random.multinomial(r, kval.shape[0], num_samples, &kval[0], &k[0])

177 j = 0

178

179 for l in range(num_basis):

180 n = k[l]

181 if n > 0:

182 for i in range(d):

183 q[i] = x[i, c] - _u[i, l]

184 tmp3[i] = s12[l, 0, i]

185 si = s22i[l]

186 dot_vm(tmp3, si, tmp2)

187 mu = _w[l] + dot_vv(tmp2, q)

188 dot_mv(si, tmp3, tmp2)

189 s = s11[l] - dot_vv(tmp3, tmp2)

190

191 mu = mu * yscale + ymean

192 sigma = sqrt(s) * yscale

193

194 while n > 0:

195 sample = random.gaussian(r, sigma) + mu

196

197 if (sample < bounds[1]) and (sample > bounds[0]):

198 samples[j, c] = sample #save the points between the bounds

199 n -= 1

200 j += 1

201 else:

202 #Missed

203 if (mu < bounds[0]) or (mu > bounds[1]):

204 lower = (bounds[0] - mu) / sigma

205 upper = (bounds[1] - mu) / sigma

206 while n > 0:

207 sample = truncatedStdNorm(r, lower, upper)

208 samples[j, c] = (sample * sigma + mu)

209 n -= 1

210 j += 1

211 random.gsl_rng_free(r)

212 free(k)

213 return samples

214

215

216 cdef double truncatedStdNorm(random.gsl_rng *r, double lower, double upper) nogil:

217 'Generate n samples from Truncated Standard Normal Distribtion between lower and upper'

218 # assert lower<upper

219 cdef:

220 double sample

221 double u, p, z

222 int n = 0

223

224 while n < 1:

225 z = random.uniform(r, lower, upper)

226 if upper < 0:

227 p = exp((upper ** 2 - z ** 2) / 2.)

228 elif lower > 0:

229 p = exp((lower ** 2 - z ** 2) / 2.)

230 else:

231 p = exp(-.5 * z ** 2)

232 u = random.uniform(r, 0, 1)

233

234 if u <= p: # accept Rate

235 return z

236

237

238 def evaluate(double [::1] Y, double [:, ::1] X,

239 double [:] alphah, double [:] Wi, double [:, :] V,

240 double [:, :, ::1] U, double [:, :, ::1] M, DTYPE_t [:] sig,

254

241 double [:, ::1] _w, double [:] _v, double [:, :] _u,

242 double ymean, double yscale, double [:] xmean, double[:] xscale,

243 DTYPE_t [:] bounds):

244 cdef:

245 int dx = X.shape[0]

246 int num_x = X.shape[1]

247 int num_y = Y.shape[0] # number of y locations

248 int num_basis = alphah.shape[0]

249 int i, j, c, b

250 np.ndarray phi

251 double [:, ::1] tmp

252 double [:, ::1] qx

253 double [:, ::1] Phi

254 double [::1] scaleY = np.zeros(num_y)

255 double [:, ::1] scaleX = np.zeros([dx, num_x])

256 double [:, :] scaleX2 = np.zeros([dx, 1])

257 double [:, :] qx2 = np.zeros([num_basis, 1])

258 double [:] const = np.zeros(num_x)

259

260 assert dx == xscale.shape[0]

261 assert dx == xmean.shape[0]

262

263 for i in range(num_y):

264 scaleY[i] = (Y[i] - ymean) / yscale # goes from 1d to 2d here. Needed?

265

266 for i in range(dx):

267 for j in range(num_x):

268 scaleX[i, j] = (X[i, j] - xmean[i]) / xscale[i]

269 qx = phi_qx(scaleX, _u, U)

270

271 Phi = evalPhi(scaleY, scaleX, alphah, _w, M)

272

273 const = normalization(alphah, qx, scaleX, Wi, V, _u, _v, num_basis, bounds, sig)

274

275 for i in range(Phi.shape[0]):

276 for j in range(Phi.shape[1]):

277 Phi[i, j] = Phi[i, j] / const[j]

278

279 if num_y == Phi.shape[1] or num_x == 1:

280 return Phi.T

281 elif num_y == Phi.shape[0]:

282 return Phi

283

284

285 cdef void covariance_matrix(double [:,::1] X_buf, double[:,::1] out):

286 """Algorithms for computing the sample variance: Analysis and recommendations"""

287 cdef:

288 unsigned int i, j, d = X_buf.shape[0], n = X_buf.shape[1]

289 double mean, s

290 unsigned int LDA, LDB, LDC, M, N, K

291 out[:, :] = 0

292

293 M = d # Number of rows in matrices A and C.

294 N = d # Number of columns in matrices B and C.

295 K = n # Number of columns in matrix A; number of rows in matrix B.

296 LDA = n

297 LDB = n

298 LDC = d

299

300 for i in range(d):

301 mean = 0

302 for j in range(n):

303 mean += X_buf[i, j]

304

305 s = -mean / n

306 add_vs(X_buf[i], s, X_buf[i])

307 mean = 0

308

255

309 cblas.dgemm(cblas.CblasRowMajor, cblas.CblasNoTrans, cblas.CblasTrans, M,

310 N, K, 1.0, &X_buf[0,0], LDA, &X_buf[0,0], LDB, 0.0, &out[0,0], LDC)

311 if n > 2:

312 s = 1.0 / (n - 1.0)

313 for i in range(d):

314 for j in range(d):

315 out[i, j] = s * out[i, j]

316

317

318 def cov(np.ndarray[double, ndim=2] data, np.ndarray[int, ndim=1] basis_index,

319 neighborhood, epsilon, weighted=True):

320 '''Local Covariance for the basis functions using their nearest neighbors'''

321 cdef:

322 unsigned int number_basis = basis_index.shape[0] # input

323 unsigned int l, i, b, j, d_y, d_x, d, u, done, num_indices

324 unsigned int num_data, neighbors

325 double s = .05 # used to streach a singular covariance matrix

326 double cov_det

327 d_y = 1 # self._d_y number y dimensions

328 d = data.shape[0] # number x dimensions

329 num_data = data.shape[1] # number of data points

330 d_x = d - d_y # number problem dimensions

331

332 #print 'basis #',number_basis

333

334 #numpy version

335 cdef:

336 np.ndarray[double, ndim=3] np_M = np.empty(dtype='d', shape=(number_basis, d, d))

337 np.ndarray[double, ndim=1] np_W0 = np.empty(dtype='d', shape=(number_basis))

338 np.ndarray[double, ndim=3] np_U0 = np.empty(dtype='d', shape=(number_basis, d_x, d_x))

339 np.ndarray[double, ndim=3] np_V = np.empty(dtype='d', shape=(number_basis,d_y,d_x))

340 np.ndarray[double, ndim=3] np_Vt = np.empty(dtype='d', shape=(number_basis, d_x, d_y))

341 np.ndarray[double, ndim=3] np_U = np.empty(dtype='d', shape=(number_basis, d_x, d_x))

342 np.ndarray[double, ndim=1] np_Wi = np.empty(dtype='d', shape=(number_basis))

343 np.ndarray[double, ndim=3] np_cov = np.empty(dtype='d', shape=(number_basis, d, d))

344 np.ndarray[double, ndim=2] np_covariance = np.empty(dtype='d', shape=(d, d))

345 np.ndarray[double, ndim=2] np_tmp = np.empty(dtype='d', shape=(d, d))

346 np.ndarray[double, ndim=2] np_tmp2 = np.empty(dtype='d', shape=(d_x, d_x))

347 np.ndarray[double, ndim=1] np_detW0 = np.empty(dtype='d', shape=(number_basis))

348

349 np.ndarray[double, ndim=1] np_s11 = np.empty(dtype='d', shape=(number_basis))

350 np.ndarray[double, ndim=3] np_s12 = np.empty(dtype='d', shape=(number_basis, d_y, d_x))

351 np.ndarray[double, ndim=2] np_s22 = np.empty(dtype='d', shape=(d_x, d_x))

352 np.ndarray[double, ndim=3] np_s22i = np.empty(dtype='d', shape=(number_basis, d_x, d_x))

353

354 cdef:

355 double [:, :, :] M = np_M

356 double [:] W0 = np_W0

357 double [:, :, :] U0 = np_U0

358 double [:, :, :] V = np_V

359 double [:, :, :] Vt = np_Vt

360 double [:, :, :] U = np_U

361 double [:] Wi = np_Wi

362 double [:, :, :] _cov = np_cov

363 double [:, ::1] covariance = np_covariance

364 double [:, :] tmp = np_tmp

365 double [:, :] tmp2 = np_tmp2

366 double [:] detW0 = np_detW0

367

368 double [:, ::1] X_buf = np.empty(dtype='d', shape=(data.shape[0], data.shape[1]), order='C')

369 double [:] s11 = np_s11

370 double [:, :, :] s12 = np_s12

371 double [:, :] s22 = np_s22

372 double [:, :, :] s22i = np_s22i

373

374 if weighted:

375 neighborhood_indices = neighborhood.query(100)

376 else:

256

377 neighborhood_indices = neighborhood.query(epsilon)

378 for l in xrange(number_basis):

379 indices = neighborhood_indices[l]

380

381 if weighted:

382 b = basis_index[l]

383 indices = [i for i in indices if i != b]

384 X = data[:, indices]

385 X -= data[:, [b]]

386 distances = np.sum(X ** 2, 0) ** .5

387 weights = np.exp(-.5 * distances / epsilon)

388 X = weights * X

389 covariance = np.dot(X, X.T) / np.sum(weights)

390 else:

391 num_indices = len(indices)

392 X_buf = data[:, indices].copy()

393 covariance_matrix(X_buf[:, :num_indices], covariance)

394 cov_det = det(covariance)

395 done = 0

396 neighbors = 1 + num_indices

397 i = 0

398 while i <= d and neighbors <= num_data:

399 #Verify diagonal does not have nonzero entries

400 if covariance[i, i] == 0:

401 #add more nearest neighbors

402 indices = neighborhood.query(epsilon, basis=l, k=neighbors)[0]

403 num_indices = len(indices)

404 X_buf = data[:, indices].copy()

405 covariance_matrix(X_buf[:, :num_indices], covariance)

406 neighbors += 1

407 i = 0

408 else:

409 i += 1

410 while det(covariance) < 1e-10 and done < 10: # det close to zero, singular covariance

411

412 for i in range(0,d):

413 covariance[i,i] += s * covariance[i,i]

414 done = done + 1

415

416 s11[l] = covariance[0, 0]

417 s12[l] = covariance[0, d_y:]

418 s22 = covariance[d_y:, d_y:]

419 s22i[l] = inv(s22, tmp2)

420

421 _cov[l] = covariance

422

423 inv(_cov[l], tmp)

424 M[l, :, :] = tmp[:, :]

425 W0[l] = M[l, 0, 0]

426 U0[l] = M[l, d_y:, d_y:]

427 V[l] = M[l, :d_y, d_y:]

428 Vt[l] = M[l, d_y:, :d_y]

429 Wi[l] = 1 / W0[l]

430

431 tmp[:, :] = 0

432 cblas.dger(cblas.CblasColMajor, d, d, 1, &Vt[l, 0, 0], 1,

433 &V[l, 0, 0], 1, &tmp[0, 0], d)

434 for i in range(d_x):

435 for j in range(d_x):

436 U[l, i, j] = U0[l, i, j] - Wi[l] * tmp[i, j]

437 detW0[l] = sqrt(W0[l])

438 return np_U0, np_Wi, np_U, np_M, np_V, np_W0, np_detW0, np_cov, np_s11, np_s12, np_s22i

439

440

441 @cython.initializedcheck(False)

442 def normalization(double [:] alpha, double [:,:] phi_qx, double [:,:] scaleX,

443 double [:] Wi, double [:,:] V, double [:,:] _u, double [:] _v,

444 ITYPE_t number_basis, DTYPE_t [:] bounds, DTYPE_t [:] sig):

257

445 cdef:

446 double pi = 3.14159265359

447 unsigned int n, d, l = 0, i = 0, j = 0

448 double red, s, mu, lower, upper, c

449 double [:,:] C

450 double cc = 2.22044604925e-16

451 np.ndarray[DTYPE_t, ndim=1] Const2

452 lower = bounds[0]

453 upper = bounds[1]

454 n = scaleX.shape[1]

455 d = scaleX.shape[0]

456 C = np.empty([number_basis, n])

457 Const2 = np.empty(n)

458 assert d == _u.shape[0]

459 assert d == V.shape[1]

460 assert n == phi_qx.shape[1]

461

462 for l in prange(number_basis, nogil=True):

463 for i in xrange(n):

464 red = 0

465 for j in xrange(d):

466 red = red + V[l, j] * (scaleX[j, i] - _u[j, l])

467

468 mu = _v[l] - Wi[l] * red

469

470 s = sqrt(sig[l])

471 c = (sqrt(pi / 2.) / s * (erf(s * (mu - lower) / sqrt(2.)) -

472 erf(s * (mu - upper) / sqrt(2.))))

473 C[l, i] = c * phi_qx[l, i]

474

475 #finally matrix multiply

476 dot_vm(alpha, C, Const2)

477

478 for i in range(n):

479 if Const2[i] < cc:

480 Const2[i] = cc

481 return Const2

482

483

484 class neighborhood(object):

485 def __init__(self, data=np.empty(0), b_index=None, leaf_size=500):

486 self.leaf_size = leaf_size

487 self.data = data.T

488 self.basis_index = b_index

489 @property

490 def basis_index(self):

491 if self._basis_index is not None:

492 return self._basis_index

493 return range(len(self.data))

494

495 @basis_index.setter

496 def basis_index(self, value):

497

498 self._basis_index = value

499 if hasattr(self, '_basis_distances'):

500 del self._basis_distances

501

502 @property

503 def number_basis(self):

504 return len(self.basis_index)

505

506 @property

507 def tree(self):

508 if not hasattr(self, '_tree'):

509 self._tree = BallTree(self.data, self.leaf_size)

510 return self._tree

511

512 @property

258

513 def basis_distances(self):

514 if not hasattr(self, '_basis_distances'):

515 if self.number_basis > 3:

516 basisPoints = self.data[self.basis_index]

517 self._basis_tree = BallTree(basisPoints, leaf_size=3)

518 self._basis_distances = np.array([np.mean(self._basis_tree.query(

519 basisPt, k=3, return_distance=True

520)[0]) for basisPt in basisPoints])

521 else:

522 self._basis_distances = np.ones(self.basis_index)

523 return self._basis_distances

524

525 @tree.setter

526 def tree(self, value):

527 self._tree = value

528

529 def query(self, double epsilon, basis=None, int k=3):

530 """Query Ball Tree

531 basis : index of basis functions to query for neighbors

532 epsilon : size of nearest neighbor ball

533 k : minimum nearest neighbors

534 """

535 cdef:

536 int num_basis, i

537 basis_dist = self.basis_distances

538

539 if basis is not None:

540 assert basis <= self.number_basis

541 b = self.basis_index[[basis]]

542 num_basis = b.size

543 basis_dist = np.array([basis_dist[basis]])

544 else:

545 b = self.basis_index

546 num_basis = self.number_basis

547 radius = epsilon * basis_dist

548 radius = np.tile(epsilon, num_basis)

549 indices = [self.tree.query_radius(basis[np.newaxis, :], r=r,

550 return_distance=False)[0] for basis, r in izip(

551 self.data[b, :], radius)]

552 for i in xrange(num_basis):

553 if len(indices[i]) < k:

554 indices[i] = self.tree.query(self.data[self.basis_index[i]],

555 k=k, return_distance=False)[0]

556 return indices

557

558 def __getstate__(self):

559 d = {}

560 d['data'] = self.data

561 d['_basis_index'] = self._basis_index

562 d['basis_distances'] = self.basis_distances

563 if hasattr(self, '_tree'):

564 d['_tree'] = self._tree

565 return d

566

567 def __setstate__(self, d):

568 self.data = d['data']

569 self._basis_index = d['_basis_index']

570 if '_tree' in d:

571 self._tree = d['_tree']

1 #!python

2 #cython: cdivision=True

3 #cython: boundscheck=False

4 #cython: wraparound=False

5 #cython: profile=True

6 #cython: embedsignature=True

7 import multiprocessing

8 from cython.parallel import prange, parallel, threadid

259

9 from libc.stdlib cimport abort, malloc, free

10 cimport openmp

11 from cython.view cimport array

12 import numpy as np

13 cimport numpy as np

14 cimport cython

15

16 DTYPE = np.float64

17 ctypedef np.float64_t DTYPE_t

18 ITYPE = np.int32

19 ctypedef np.int32_t ITYPE_t

20 np.import_array()

21 cdef int num_threads

22

23 @cython.boundscheck(False)

24 @cython.wraparound(False)

25 @cython.initializedcheck(False)

26 cdef api void mahalanobis_cdist(

27 double [:,::1] X1,

28 double [:,::1] X2,

29 double [:,:,::1] VI,

30 double [:,::1] Y):

31 """Mahalanobis Distance

32 Y=(X1-X2).T*VI*(X1-X2)

33 """

34 cdef:

35 unsigned int i1, i2, m1, m2, n

36 double [:,:, ::1] tmp

37 double [:,:,::1] q

38 double res

39 unsigned int i, j, p1=0, p2=0, inc1=1, inc2=1, threads=1, thread_id

40

41 m1 = X1.shape[0]

42 m2 = X2.shape[0]

43 d = VI.shape[1]

44 n = X1.shape[1]

45 assert d == VI.shape[2]

46 assert d == X1.shape[1]

47 assert d == X2.shape[1]

48 assert m1 == Y.shape[0]

49 assert m2 == Y.shape[1]

50

51 if p2 > 60:

52 num_threads = 6

53 else:

54 num_threads = 2

55

56 q = np.zeros((num_threads, n, m1), dtype=DTYPE, order='c')

57 tmp = np.zeros((num_threads, n, m1), dtype=DTYPE, order='c')

58

59 for p2 in prange(m2, nogil=True, num_threads=num_threads, schedule='dynamic'):

60

61 thread_id = threadid()

62 tmp[thread_id, :, :] = 0

63 for p1 in xrange(m1):

64 for i in xrange(n):

65 q[thread_id, i, p1] = -X2[p2, i]

66 for i in xrange(n):

67 matrix_add(X1[:, i], q[thread_id, i, :], 1)

68 matrix_mult(VI[p2], q[thread_id], tmp[thread_id])

69 for p1 in xrange(m1):

70 res = 0.0

71 for i in xrange(n):

72 res = res + q[thread_id, i, p1] * tmp[thread_id, i, p1]

73 Y[p1, p2] = res

74

75 cdef void matrix_add(double [:] A, double [:] B, double alpha) nogil:

76 cdef:

260

77 ITYPE_t N, incA, incB

78 N = A.shape[0] #num rows in A

79

80 incA = A.strides[0] // sizeof(double)

81 incB = B.strides[0] // sizeof(double)

82

83 cblas.daxpy(N, alpha, &A[0], incA, &B[0], incB)

84

85

86 cdef inline void matrix_mult(double [:, ::1] A, double [:, ::1] B, double [:, ::1] C) nogil:

87 cdef:

88 int M, N, K, incA, incB, incC

89 M = A.shape[0] #num rows in A and C

90 N = B.shape[1] #num col in B and C ##actually taking transpose of B in blas

91 K = A.shape[1] #num cols in A also num rows in B

92

93 incA = A.strides[0]//sizeof(double)

94 incB = B.strides[0]//sizeof(double)

95 incC = C.strides[0]//sizeof(double)

96

97 cblas.dgemm(cblas.CblasRowMajor, cblas.CblasNoTrans, cblas.CblasNoTrans, M, N, K,

98 1, &A[0,0], K, &B[0,0], N,

99 0, &C[0,0], N)

100

101

102 def mahalanobis2_blas(np.ndarray[DTYPE_t, ndim=2] x1, np.ndarray[DTYPE_t, ndim=2] x2,

103 np.ndarray[DTYPE_t, ndim=3] Vi):

104 '''Mahalanobis**2 Distance'''

105 cdef:

106 int m1, m2

107 np.ndarray[DTYPE_t, ndim=2] Y

108

109 m1 = x1.shape[0]

110 m2 = x2.shape[0]

111

112 x1 = np.asarray(x1, dtype=DTYPE, order='c')

113 x2 = np.asarray(x2, dtype=DTYPE, order='c')

114 Y = np.zeros((m1, m2), dtype=DTYPE, order='c')

115

116 mahalanobis_cdist(x1, x2, Vi, Y)

117 return Y

261

REFERENCES

[1] “Airforce technology website, http://www.airforce-technology.com/projects/jsf/.”

[2] “Marine traffic, http://www.marinetraffic.com/ais.”

[3] AARTS, E. H. L., ANDERSON, E. J., GENDREAU, M., GLASS, C. A., HERTZ, A.,

HONKALA, I. S., JOHNSON, D. S., KINDERVATER, G. A. P., KORST, J. H. M.,

LAARHOVEN, P. J. M. V., LAPORTE, G., and LENSTRA, J. K., Local Search in combi-

natorial Optimization. John Wiley & Sons Ltd, 1997.

[4] AGARD, B. and KUSIAK, A., “Standardization of components, products and processess

with data mining,” in International Conference on Production Research Americas, (Santiago,

Chile), 2004.

[5] AHN, C. W. and RAMAKRISHNA, R. S., “Multiobjective real-coded bayesian optimization

algorithm revisited: Diversity preservation,” in Genetic and Evolutionary Computation Con-

ference, pp. 593–600, July 7-11 2007.

[6] ANANDKUMAR, A., HSU, D., ADEL JAVAMARD, and KAKADE, S., “Learning linear

bayesian networks with latent variables,” in Proceedings of the 30th International Confer-

ence on Machine Learning, 2013.

[7] ANDERBERG, M., “Cluster analysis for applications,” tech. rep., OFFICE OF THE ASSIS-

TANT FOR STUDY SUPPORT KIRTLAND AFB N MEX, 1973.

[8] ANDERSON, D., ZARE, A., and PRICE, S., “Comparing fuzzy, probabilistic and possibilistic

partitions using the earth mover’s distanc,” IEEE Transactions on Fuzzy Systems, 2012.

[9] ARCHAMBEAU, C. and MICHEL VARLEYSEN, “Manifold constrained finite gaussian mix-

tures,” Computational Intelligence and Bioinspired Systems, pp. 820–828, 2005.

262

[10] BAYES, T., “An essay towards solving a problem in the doctrine of chances,” Phil. Trans. of

the Royal Soc. of London, vol. 53, pp. 370–418, 1763.

[11] BENDIX, F., KOSARA, R., and HAUSER, H., “Parallel sets: Visual analysis of categorical

data,” IEEE Symposium on Information Visualization (InfoVis), pp. 133–140, 2005.

[12] BENGIO, Y., LAROCHELLE, H., and VINCENT, P., “Non-local manifold parzen windows,”

Advances in Neural Information Processing Systems, pp. 115–122, 2005.

[13] BEZDEK, J. C. and HARRIS, J. D., “Fuzzy partitions and relations; an axiomatic basis for

clustering,” Fuzzy, vol. 1, pp. 111–127, 1978.

[14] BILTGEN, P., Capability-Based Technology Evaluation for Systems-of-Systems. PhD thesis,

Georgia Institute of Technology, 2007.

[15] BILTGEN, P., ENDER, T., and MAVRIS, D., “Development of a collaborative capability-

based tradeoff environment for complex systems architectures,” in 44th AIAA Aerospace Sci-

ences Meeting and Exhibit, 2006.

[16] BISHOP, C., “Mixture density networks,” tech. rep., Neural Computing Research Group,

1994.

[17] BISHOP, C. M., Pattern Recognition and Machine Learning. Springer, 2006.

[18] BROX, T., ROSENHAHN, B., CREMERS, D., and SEIDEL, H.-P., “Nonparametric density

estimation with adaptive, anisotropic kernels for human motion tracking,” in Proceedings

of the 2nd conference on Human motion: understanding, modeling, capture and animation,

pp. 152–165, 2001.

[19] BUTLER, A., “JSF tests slips again, purchase to be slashed,” Aviation Week, January 2011.

[20] CHAMBERLAIN, M. K., An approach to Decision Support for Strategic Redesign. PhD

thesis, Georgia Institute of Technology, 2007.

[21] CHANG, K. C. and TIAN, Z., “Efficient inference for mixed bayesian networks,” in Pro-

ceedings of the 5th ISIF/IEEE International Conference on Information Fusion, 2002.

263

[22] CHASE, N., RADEMACHE, M., GOODMAN, E., AVERILL, R., and SIDHU, R., “A bench-

mark study of multi-objective optimization methods,” tech. rep., Red Cedar Technology.

[23] CHEN, C. and WANG, L., “Product platform design through clustering analysis and informa-

tion theoretical approach,” International Journal of Production Research, vol. 46, pp. 4259–

4284, 2008.

[24] CHENG, J. and DRUZDZEL, M. J., “Adaptive importance sampling in bayesian networks,”

Journal on Artificial Intelligence, vol. 13, pp. 155–188, 2000.

[25] CHICKERING, D. M., “Learning bayesian networks is np-complete,” in Learning from Data:

Artificial Intelligence and Statistics V (FISHER, D. and LENZ, H. J., eds.), 1996.

[26] CHICKERING, D., “Learning equivalence classes of bayesian network structures,” in Pro-

ceedings of the Twelfth Annual Conference on Unvertainty in Artificial Intelligence, pp. 150–

157, 1996.

[27] CHIN, H. and COOPER, G., “Bayesian beliefy network inference using simulation,” Uncer-

tainty in Artificial Intelligence, vol. 3, pp. 129–147, 1989.

[28] CHOWDHURY, S., MESSAC, A., and KHIRE, R., “Comprehensive product platform

planning (cp3) framework: Presenting a generalized product family model,” in 51st

AIAA/ASME/ASCE/AHS/ASC Structures, Structual Dynamics, and Materials Conference,

2010.

[29] COOPER, G. and HERSKOVITS, E., “A bayesian method for the induction of probabilistic

networks from data,” Machine Learning, vol. 9, pp. 309–347, 1992.

[30] CRUZ-RAMIREZ, N., ACOSTA-MESA, H. G., BARRIENTOS-MARTNEZ, R. E., and NAVA-

FERNANDEZ, L. A., “How good are the bayesian information criterion and the minimum

description length principle for selection? a bayesian network analysis,” in Proceedings of

the Fifth Mexican International Conference on Artificial Intelligence, 2006.

264

[31] DA SAILVERIA, G., BORENSTEIN, D., and FOGLIATTO, F. S., “Mass customization: Liter-

ature review and research directions,” Internation Journal of Production Economics, vol. 72,

pp. 1–13, 2001.

[32] DABBEERU, M. M., DEB, K., and MUKERJEE, A., Multi-objective Evolutionary Optimi-

sation for Product Design and Manufacturing, ch. Product Portfolio Selection of Designs

Through an Analysis of Lower-Dimensional Manifolds and Identification of Common Prop-

erties, pp. 161–187. Springer, 2011.

[33] DAI, Z. and SCOTT, M. J., “Product platform design through sensitivity analysis and cluster

analysis,” Journal of Intellegent Manufacturing, vol. 18, pp. 97–113, 2007.

[34] DALY, R., SHEN, Q., and AITKEN, S., “Learning bayesian networks: Approaches and is-

sues,” The Knowledge Engineering Review, vol. 26, no. 2, pp. 99–157, 2011.

[35] DAVIS, S., “From future perfect: mass customizing,” Planning Review, vol. 17, pp. 16–21,

1989.

[36] DE OLIVEIRA, J. V. and PEDRYCZ, W., eds., Advances in Fuzzy Clustering. Wiley, 2007.

[37] DEB, K., PRATAP, A., AGARWAL, S., and MEYARIVAN, T., “A fast elitist multiobjective ge-

netic algorithm nsaga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 187–

197, 2002.

[38] DEMPSTER, A. P., LAIRD, N. M., and RUBIN, D. B., “Maximum likelihood from incom-

plete data via the em algorithm,” Journal of the Royal Statistical Society, vol. 39, no. 1,

pp. 1–38, 1977.

[39] DEUTCH, J. M., WIDNALL, S. E., and DALTON, J. H., “Charter for the joint advanced

strike technology (jast) program,” August 1994.

[40] ELIDAN, G., “Lighting-speed structure learning of nonlinear continuous networks,” in Pro-

ceedings of the 15th International Conference on Artificial Inteligence and Statistics, 2012.

[41] FASSHAUER, G., “Positive definite kernels: Past, present and future,” Dolomite Research

Notes on Approximation, vol. 4, pp. 21–63, 2011.

265

[42] FAUGERAS, O. P., “A quantile-copula approach to conditional density estimation,” Journal

of Multivariate Analysis, vol. 100, no. 9, pp. 2083–2099, 2009.

[43] FELLINI, R., KIM, H. M., KOKKOLARAS, M., MICHELENA, N., and PAPALAMBROS, P.,

“Target for design of product families,” in Proceedings of the Fourth World Congress of

Structural and Multidisciplinary Optimization, June 4-8 2001.

[44] FERGUSON, S., Aerial Obervation of Oil Pollution at Sea. Cedre, english translation ed.,

2006. The Centre of Documentation, Research and Experimentation on Accidental Water

Pollution.

[45] FERGUSON, S., KASPRZAK, E., and LEWIS, K., “Designing a family of reconfigurable

vehicles using multilevel multidisciplinary design optimization,” Structural and Multidisci-

plinary Optimization, vol. 39, pp. 171–186, 2009.

[46] FERGUSON, S., SIDDIQI, A., LEWIS, K., and DE WECK, O. L., “Flexible and reconfig-

urable systems: Nomenclature and review,” Proceedings of the ASME 2007 International

Design Engineering Technical Conferences and Computers Information in Engineering Con-

ference, 2007.

[47] FISHER, M., RAMDAS, K., and ULRICH, K., “Component sharing in the management of

product veriety: A study of automotive braking systems,” Management Science, vol. 45,

no. 3, pp. 297–315, 1999.

[48] FOULLOY, L. and BENOIT, E., “Building a class of fuzzy equivalence realations,” Fuzzy Sets

and Systems, vol. 157, pp. 1417–1437, 2006.

[49] FRASCA, M. and LIBERATI, R., “Riemann manifolds from hellinger distnace,” Tyrrhenian

Workshop on Advances in Radar and Remote Sensing (TyWRRS), 2012.

[50] FRENO, A. and TRENTIN, E., Hydrid Random Fields. Spring, 2011.

[51] FUJITA, K., “Product variety optimization under modular architecture,” Computer Aided

Design, vol. 34, pp. 953–965, 2002.

266

[52] FUJITA, K. and YOSHIDA, H., “Product variety optimization: simultaneous optimization of

module combination and module attributes,” in ASME Design Engineering Technical Con-

ferences and Computers and Information in Engineering Conference, (Pittsburgh, PA), 2001.

[53] FUNG, R. and DEL FAVERO, B., “Backward simulation in bayesian networks,” in Proceed-

ings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 102–109,

1994.

[54] FUNG, R. and CHANG, K.-C., “Weighting and integrating evidence for stochastic simulation

in bayesian networks,” Uncertainty in Artificial Intelligence, vol. 5, pp. 209–219, 1989.

[55] GALLAGHER, M., WOOD, I., KEITH, J., and SOFRONOV, G., “Bayesian inference in esti-

mation of distribution algorithms,” in Proceedings IEEE Congress on Evolutionary Compu-

tation, pp. 127–133, 2007.

[56] GLOBALSECURITY, “F-35 joint strike fighter (JSF) commonality,” www.GlobalSecurity.org.

[57] GONZALEZ-ZUGASTI, J., OTTO, K., and BAKER, J., “Assessing value in platformed prod-

uct family design,” Research in Engineering Design - Thoery, Applications, and Concurrent

Engineering, vol. 13, pp. 30–41, 2001.

[58] GUO, H. and HSU, W., “A survey of algorithms for real-time bayesian network inference,”

AAAI Technical Report WS-02-15, 2002.

[59] GYFTODIMOS, E. and FLACH, P. A., “Hierarchical bayesian networks: an approach to clas-

sification and learning for structured data,” Methods and Applications of Artificial Intelli-

gence, vol. Springer Berlin Heidelberg, pp. 291–300, 2004.

[60] HAUBELT, C. and RICHTER, K., “System design for flexibility,” In Proceedings of Design,

Automation and Test in Europe, 2002.

[61] HAZELRIGG, G. A., “On the role and use of methematical models in engineering design,”

Journal of M, vol. 131, pp. 336–341, 1999.

267

[62] HEATH, C. and GRAY, J., “Openmdao: Framework for flexible multidisciplinary design,

analysis and optimization methods,” in 8th AIAA Multidisciplinary Design Optimization Spe-

cialist Conference (MDO), pp. 1–13, 2012.

[63] HENRION, M., “Propagating uncertainty in bayesian networks by probabilistic logic sam-

pling,” Uncertainty in Artificial Intelligence, vol. 3, pp. 161–173, 1988.

[64] HERNANDEZ, G., Platform Design for Customizable Products as a Problem of Access in

Geometric Space. PhD thesis, G.W. Woodruff School of Mechanical Engineering Georgia

Institute of Technology, 2001.

[65] HERNANDEZ, G., ALLEN, J. K., and MISTREE, F., “Design of hierarchic platforms for

customizable products,” in Proceedings of DETC’02 ASME Design Automation Conference,

2002.

[66] HOLMBERG, G., On aircraft development- managing flexible complex systems with long life

cycles. PhD thesis, LinkÃ¶ping University, 2003.

[67] HOLMES, C., “Effective platform designs for medium lift helicopters,” Master’s thesis, Mas-

sachusetts Institute of Technology, 1999.

[68] HOLTTA, K., TANG, V., and SEERING, W., “Modularizing product architectures using den-

drograms,” 2003.

[69] HOU, X., NI, X. S., and SMITH, A. K., Mining of Enterprise Data, ch. A Survey of

Manifold-Based Learning Methods. 2007.

[70] ICKSTADT, K., BORNKAMP, B., GRZEGORCZYK, M., WIECZOREK, J., SHERIFF, M. R.,

GRECCO, K., and ZAMIR, E., “Nonparametric bayesian networks,” in BAYESIAN STATIS-

TICS (BERNARDO, J., BAYARRI, M., BERGER, J., DAVID, A., HECKERMAN, D., SMITH,

A., and WEST, M., eds.), vol. 9, 2010.

[71] INSELBERY, A., “The plane with parallel coordinates,” The Visual Computer, vol. 1, pp. 69–

91, 1985.

268

[72] JIAO, J., SIMPSON, T. W., and SIDDIQUE, Z., “Product family design and platform-based

product development: a state-of-the-art review,” Journal of Intellegent Manufacturing, 2007.

[73] JIAO, J., ZHANG, Y., and WANG, Y., “A generic genetic algorithm for product family de-

sign,” Journal of Intellegent Manufacturing, vol. 18, pp. 233–247, 2007.

[74] JONES, E., OLIPHANT, T., and OTHERS, “Scipy: Open source scientific tools for python,”

[75] JR, K. H. K., Design Space Exploration of Stochastic System-Of-Systems Simulations Using

Adaptive Sequential Experiments. PhD thesis, Georgia Institute of Techgnology, 2012.

[76] JUNGHANS, M., Visualization of Hyperedges in Fixed Graph Layouts. PhD thesis, Branden-

bury University of Technology Cottbus, 2008.

[77] KANDEL, A., Fuzzy Techniques in Pattern Recognition. John Wiley & Sons, 1982.

[78] KAZEMZADEH, R., BEHZADIAN, M., AGHDASI, M., and ALBADVI, A., “Integration of

marketing research techniques into house of quality and product family design,” International

Journal of Advanced Manufacturing Technology, vol. 41, pp. 1019–1033, 2009.

[79] KERN, S., MÜLLER, S., HANSEN, N., BÜCHE, D., OCENASEK, J., and KOUMOUTSAKOS,

P., “Learning probability distributions in continuous evolutionary algorithms - a comparative

review,” Natural Computing, vol. 3, pp. 77–112, 2004.

[80] KESTNER, B., MARTIN, K., PERULLO, C., SCHUTTE, J., and MAVRIS, D., “Integrated

system design using bayesian belief networks,” in 51st AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition, 2013.

[81] KHAJAVIRAD, A. and MICHALEK, J. J., “A decomposed gradient-based approach for gen-

eralized platform selection and variant design in product family optimization,” Journal of

Mechanical Design, vol. 130, 2008.

[82] KHAJAVIRAD, A., MICHALEK, J. J., and SIMPSON, T. W., “An efficient decomposed mul-

tiobjective genetic algorithm for solving the joint product platform selection and product

family design problem with generalized commonality,” Structural & Multidisciplinary Opti-

mization, vol. 39, no. 2, pp. 187–201, 2009.

269

[83] KHIRE, R., WANG, J., BAILEY, T., and SIMPSON, T., “Product family commonality selec-

tion through interactive visualization,” International Design Engineering Technical Confer-

ences & Computers and Information in Engineering Conference, pp. 1–11, 2008.

[84] KHIRE, R., MESSAC, A., and SIMPSON, T. W., “Selection-integrated optimization (sio)

methodology for adaptive systems and product family optimization,” in 11th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, 2006.

[85] KOENKER, R. and BASSETT, G., “Regression quantiles,” Econometrica, vol. 46, pp. 33–50,

1978.

[86] KOKKOLARAS M, FELLINI R, K. H. M. N. P. P., “Extension of the target cascading formu-

lation to the design of product families,” Structural Multidisciplenary optimization, vol. 24,

pp. 293–301, 2002.

[87] KOLLER, D. and FRIEDMAN, N., Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, 2009.

[88] KRISHNAN, V. and GRUPTA, S., “Appropriateness and impact of platform based product

development,” Management Science, vol. 47, no. 1, pp. 52–68, 2001.

[89] KUMAR, D., CHEN, W., and SIMPSON, T. W., “A market-driven approach to the deisgn

of platform-based product families,” in 11th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, 2006.

[90] KUMAR, M. and COHEN, K., “Wild land fire fighting using multiple uninhabited aerial

vehicles,” in AIAA Infotech@Aerospace Conference, April 2009.

[91] LAMOTHE, J., HADJ-HAMOU, K., and ALDANONDO, M., “An optimization model for se-

lecting a product family and designing its supply chain,” European Journal of Operational

Research, vol. 169, 2006.

[92] LEE, C., Bayesian Collaborative Sampling: Adaptive Learning for Multidisplinary Design.

PhD thesis, Georgia Institute of Technology, 2011.

270

[93] LEVINA, E. and BICKEL, P., “The earth mover’s distance is the mallows distance: Some

insights from statistics,” in International Conference on Computer Vision, pp. 251–256, 2001.

[94] LIU, J. S., Monte Carlo Strategies in Scientific Computing. New York: Springer Verlag,

2001.

[95] LOMHEIM, T., MILNE, E., KWOK, J., and TSUDA, A., “Performance sizing relation-

ships for a short-wave mid-wave infrared scanning point-source detection space sensor,” in

Aerospace Conference, pp. 113–138, 1999.

[96] LZENMAN, A. J., Modern Multivariate Statistical Techniques Regression, Classification,

and Manifold Learning. Springer, 2008.

[97] MARSHAL, A., “The use of multi-stage sampling schemes in monte carlo computations,” in

Symposium on Monte Carlo Methods (MEYER, M., ed.), pp. 123–140, 1956.

[98] MESSAC, A., MARTINEZ, M. P., and SIMPSON, T. W., “Effective product family design

using physical programming,” Engineering Optimization, vol. 34, no. 3, pp. 245–261, 2002.

[99] MESSAC, A., MARTINEZ, M. P., and SIMPSON, T. W., “A penalty function for product

family design using physical programming,” ASME Journal of Mechanical Design, vol. 124,

no. 2, pp. 164–172, 2002.

[100] MEYER, M. and UTTERBACK, J., “The product family and the dynamics of core capability,”

Sloan Management Review, pp. 29–47, Spring 1993.

[101] MEYER, M. H. and LEHNERD, A. P., The power of product platform - building value and

cost leadship. New York: Free Press, 1997.

[102] MICHELENA, N., KIM, H. M., and PAPALAMBROS, P., “A system partitioning and opti-

mization approach to target cascading,” International Conference on Engineering Design,

1999.

[103] MILLER, T. D. and ELGAARD, P., “Structuring principles for the designer,” International

Design Seminar: Integration of Process Knowledge into Design Support Systems, 1999.

271

[104] MOON, S. K., KUMARA, S. R., and SIMPSON, T. W., “Data mining and fuzzy clustering to

support product family design,” in Proceedings of IDETC/CIE 2006, 2006.

[105] MOSTELLER, F. and TUKEY, J., Data Analysis and Regression. Addison-Wesley Publishing

Company, 1977.

[106] MURPHY, K. P., Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[107] NAYAK, R. U., CHEN, W., and SIMPSON, T. W., “A variation-based method for product

family design,” Engineering Optimization, vol. 34, no. 1, pp. 65–81, 2002.

[108] NEAPOLITAN, R., Learning Bayesian Networks. Pearson Prentice Hall, 2004.

[109] NELSON, S., PARKINSON, M., and PAPALAMBROS, P., “Multicriteria optimization in prod-

uct platform design,” Journal of Mechanical Design, vol. 123, no. 2, pp. 199–204, 2001.

[110] NEWCOMB, P. J., BRAS, B., and ROSEN, D. W., “Implications of modularity on product

design for the life cycle,” Journal of Mechanical Design, vol. 120, pp. 483–490, 1998.

[111] NIST/SEMATECH, “e-handbook of statistical methods,” Online at

http://www.itl.nist.gov/div898/handbook/, 2006. Updated July 18, 2006.

[112] OLEWNIK, A., BRAUEN, T., FERGUSON, S., and LEWIS, K., “A framework for flexible

systems and its implementation in multiattribute decision making,” ASME Journal of Me-

chanical Design, vol. 126, pp. 412–419, 2004.

[113] OLIPHANT, T., Guide to numpy. http://www.tramy.us/numpybook.pdf, Dec 2006.

[114] OLIVANDER, J., TARKIAN, M., and FENG, X., “Multi-objective optimization of a familly

of industrial robots,” in Multi-Objective Evolutionary Optimization for Product Design and

Manufacturing (WANG, L., NG, A. H. C., and DEB, K., eds.), Springer, 2011.

[115] PATE, D. J., PATTERSON, M. D., and GERMAN, B. J., “Methods for optimizing a family of

reconfigurable aircraft,” 11th AIAA Aviation Technology, Integration, and Operations (ATIO)

Conference, including the AIA, September 2011.

272

[116] PAVLAKIS, P. and TARCHI, D., “On the monitorying of illicit vessel dischares using

spaceborne sar remote sensing-a reconnaissance study in the mediterranean sea,” Annals of

Telecommunications, pp. 700–718, 2001.

[117] PEARL, J., “Bayesian networks: A model of self-activated memory for evidential reasoning,”

in Proceedings of 7th Conference of the Cognitive Science Society, 1985.

[118] PEARL, J., Probabilistic Reasoning in Intelligence Systems: Networks of Plausible Inference.

Morgan Kaulmann Publishing, Inc, 1988.

[119] PEDERSEN, K., Designing platform families: an evolutionary approach to developing engi-

neering systems. PhD thesis, Georgia Institute of Technology, 1999.

[120] PELIKAN, M., Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of

Evolutionary Algorithms. Springer, March 2005.

[121] PIRMORADI, Z. and WANG, G. G., “Recent advancements in product family design and

platform-based product development: A literature review,” in Proceedings of the ASME 2011

International Design Engineering Technical Conferences & Computers and Information in

Engineering Conference, 2011.

[122] RAI, R. and ALLADA, V., “Modular product family design: agent-based pareto-optimization

and quality loss function-based post-optimal analysis,” Internation Journal of Production

Research, vol. 41, pp. 2075–4098, 2003.

[123] RAJAGOPALAN, B., LALL, U., TARBOTON, D. G., and BOWLES, D. S., “Multivariate

nonparametric resampling scheme for generation of daily weather variables,” Stochastic Hy-

drology and Hydraulics, vol. 11, pp. 65–93, 1997.

[124] RAMIREZ, N. C., Building Bayesian Networks from Data: a Constraint-based Approach.

PhD thesis, The University of Sheffield, 2001.

[125] RANQUE, P., FREEMAN, D., KERNSTINE, K., LIM, D., GARCIA, E., and MAVRIS, D.,

“Stochastic agent-based analysis of uav mission effectiveness,” in 11th AIAA ATIO Confer-

ence, 2011.

273

[126] REICHERT, P., SCHERVISH, M., and SMALL, M., “An efficient sampling technique for

bayesian inference with computationally demanding models,” American Statistical Associ-

ation and the American Society for Quality, vol. 44, pp. 318–327, 2002.

[127] ROBERT, C. P., “Simulation of truncated normal variables,” Statistics and Computing, vol. 5,

pp. 121–125, 1995.

[128] ROBERTSON, D. and ULRICH, K., “Planning for product platforms,” Sloan Manage, vol. 39,

pp. 19–31, 1998.

[129] ROBINSON, R. W., “Counting labeled acyclic digraphs,” in New Directions in the Theory of

Graphs (HARARY, F., ed.), p. 2390272, New York: Academic Press, 1973.

[130] ROGERS, A. and PRUGEL-BENNETT, A., “Genetic drift in genetic algorithm selection

schemes,” IEEE Transactions of Evolutionary Computation, 1999.

[131] RUBNER, Y., TOMASI, C., and GUIBAS, L., “The earth mover’s distance as a metric for

image retrieval,” International Journal of Computer Vision, vol. 40, pp. 99–121, 2000.

[132] SALEH, J. H., HASTINGS, D., and NEWMAN, D., “Flexibility in system design and impli-

cations for aerospace systems,” Acta Astronautica, vol. 53, pp. 927–944, 2003.

[133] SANTINI, S. and FELLOW, R., “Similarity measures,” in IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 1999.

[134] SCHRAGE, D., “Technology for rotorcraft affordability through inintegrated product/process

development (ippd),” in Presented at the American Helicopter Society 55th Annual Forum,

(Montreal, Canada), May 25-29 1999.

[135] SCOTT, M. J. and ANTONSSON, E. K., “Aggregation functions for engineering design trade-

offs,” Fuzzy Sets and Systems, vol. 99, no. 3, pp. 253–264, 1998.

[136] SCOTT, S., LESH, N., and KLAU, G., “Investigating human-computer optimization,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2002.

274

[137] SHACHTER, R. and PEOT, M., “Simulation approaches to general probabilistic inference on

belief networks,” Uncertainty in Artificial Intelligence, vol. 5, pp. 221–231, 1989.

[138] SHAH, A. and WOOLF, P., “Python environment for bayesian learning: Inferring the struc-

ture of bayesian networks from knowledge and data,” Journal of Machine Learning Research,

vol. 10, pp. 159–162, 2009.

[139] SHAH, R., REED, P., and SIMPSON, T., “Many-objective evolutionary optimisation and

visual analytics for product family design,” in Multi-Objective Evolutionary Optimization for

Product Design and Manufacturing (WANG, L., NG, A. H. C., and DEB, K., eds.), Springer,

2011.

[140] SHARMA, A., TARBOTON, D. G., and LALL, U., “Steamflow simulation: A nonparametric

approach,” Water Resources Research, vol. 33, pp. 291–308, 1997.

[141] SHAWE-TAYLOR, J. and CRISTIANINI, N., Kernel Methods for Pattern Analysis. Cambridge

University Press, 2004.

[142] SICHANI, P. K., Separating Product Family Design Optimization Problems. PhD thesis,

University of Maryland, 2010.

[143] SIDDIQUE, Z. and ROSEN, D. W., “On combinatorial design spaces for the configuration de-

sign of product families,” Artificial Intelligence for Engineering Design, Analysis and Man-

ufacturing, vol. 15, pp. 91–108, 2001.

[144] SIMPSON, T., “Methods for optimizing product platforms and product families: overview

and classification,” in Product platform and product family design: methods and applications

(SIMPSON, T., SIDDIQUE, Z., and JIAO, J., eds.), pp. 133–156, Springer, 2005.

[145] SIMPSON, T. W., PEPLINSKI, J. D., KOCH, P. N., and ALLEN, J. K., “Metamodels for

computer-based engineering design: Survey and recommendations,” Engineering with Com-

puters, vol. 17, pp. 129–150, 2001.

275

[146] SIMPSON, T., LIN, D., and CHEN, W., “Sampling strategies for computer experiments:

Design and analysis,” International Journal of Reliability and Application, vol. 2, pp. 209–

240, 2001.

[147] SIMPSON, T., MAIER, J., and MISTREE, F., “Product platform design: method and ap,”

Research Engineering Design, vol. 13, pp. 2–22, 2001.

[148] SIMPSON, T. W., A concept exploration method for product family design. PhD thesis,

Georgia Institute of Technology, 1998.

[149] SIMPSON, T. W. and D’SOUZA, B., “Assessing variable levels of platform commonality

within a product family using a multiobjective genetic algorithm,” Concurrent Engineering-

Research and Applications, vol. 12, no. 2, pp. 119–129, 2004.

[150] SIVARD, G., A Generic Information Platform for Product Families. PhD thesis, Royal Insti-

tute of Technology, 2000.

[151] SLINGERLAND, L. A., “A product family optimization approach using multidimensional

data visualization,” Master’s thesis, Pennsylvania State University, 2010.

[152] STEDLE, C. E., “The joint strike fighter program,” Johns Hopkins APL Technical Digest,

vol. 18, 1997.

[153] STONE, R. B., WOOD, K. L., and CRAWFORD, R. H., “A heuristic method for identifying

modules for product architectures,” Design Studies, vol. 21(5), pp. 5–31, 2000.

[154] SUGIUAMA, M., TAKEUCHI, I., SUZUKI, T., KANAMORI, T., HACHIYA, H., and

OKANOHARA, D., “Least-squares conditional density estimation,” IEICE Transaction on

Information and Systems, vol. E93-D, pp. 583–594, 2010.

[155] SUH, N. P., Axiomatic Design: Advances and Applications. Oxford University Press, 2001.

[156] SULLIVAN, M., Joint Strike Fighter Restructuring Should Improve Outcomes, but Progress

Is Still Lagging Overall. United States Government Accountability Office, March 2011.

276

[157] TAKEUCHI, I., LE, Q., SEARS, T., and SMOLA, A., “Nonparametric quantile estimation,”

Journal of Machine Learning Research, vol. 7, pp. 1231–1264, 2006.

[158] TEH, Y. W. and JORDAN, M., “Hierarchical bayesian nonparametric models with appli-

cations,” in Bayesian Nonparametrics: Principles and Practice, pp. 158–207, Cambridge

University Press, 2010.

[159] THEODORIDIS, S. and KOUTROUMBAS, K., Pattern Recognition 3rd Edition. Academic

Press, 2006.

[160] TRESP, V., “Mixtures of gaussian processes,” Advances in Neural Information Processing

Systems, vol. 13, pp. 654–660, 2001.

[161] ULRICH, K., “The role of product architecture in the manufacturing firm,” Research Policy,

vol. 24, pp. 419–440, 1995.

[162] ULRICH, K. and EPPINGER, S., Product Design and Development. McGraw-Hill, 2nd

ed. ed., 2000.

[163] UMEDA, Y., KONDOH, S., SHIMOMURA, Y., and TOMIYAMA, T., “Development of de-

sign methodology for upgradable products based on function-behavior-state modeling,” Arti-

ficial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 19, pp. 161–182,

2005.

[164] VINCENT, P. and BENGIO, Y., “Manifold parzen windows,” Advances in Neural Information

Processing Systems, pp. 825–832, 2002.

[165] VOGEL, K., RIGGELSEN, C., NUEHAN, N., and SCHERBAUM, F., “Graphical models as

surrogates for complex ground motion models,” in EGU General Assembly, 2012.

[166] WANG, G. G. and SHAN, S., “Review of metamodeling techniques in support of engineering

design optimization,” Journal of Mechanical Design, 2006.

[167] WEI, X., WANG, W., ZHIJIE LI, and LIU, X., “Hypergraph model of product family structre

for mass customization,” in International Conference on Management of e-Commerce and

e-Government, 2010.

277

[168] WILLIAMS, C., ALLEN, J., ROSEN, D., and MISTREE, F., “Designing platforms for cus-

tomizable products and processes in markets of nonuniform demand,” Concurrent Engineer-

ing, vol. 15, pp. 201–216, 2007.

[169] YUAN, C., Importance Sampling for Bayesian Networks: Principles, Algorithms, and Per-

formance. PhD thesis, University of Pittsburgh, 2006.

[170] ZHANG, Y., JIAO, J., and MA, Y., “Market segmentation for product family positioning

based on fuzzy clustering,” Journal of Engineering Design, vol. 18, no. 3, pp. 227–241,

2007.

[171] ZHAO, Y., ZHANG, M., SU, N., and CHEN, J., “Product family extension configuration

design: The theory and method,” 2nd International Conference on Computer and Automation

Engineering (ICCAE), pp. 321–326, 2010.

278

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Nomenclature
	Summary
	Chapter 1 — Product Family Overview
	Product Families
	Advantages of Product Families
	Disadvantages of Product Families
	Aerospace Examples of Product Families

	Product Family Design Challenges
	Research Focus and Overview
	Outline

	Chapter 2 — Current Product Family Design Methods
	Combinatorial Configuration Complexity
	Product Definition
	Product Design
	Commonality
	Optimization Approaches
	Visualization / Hybrid Approaches

	Gaps and Hypotheses

	Chapter 3 — Development of New Product Family Design Methodology
	Family Design Methodology
	Step 1: Establish the Need
	Step 2: Define Family Architectures
	Step 3: Establish Value Objectives
	Step 4: Generate Feasible Alternatives
	Step 5: Commonality Identification
	Step 6: Evaluate Alternatives and Make Decision
	Remarks

	Chapter 4 — Clustering Approach Formulation
	Cluster Analysis
	Fuzzy Clustering
	Module Similarity

	Design Space Exploration
	Clustering Approach

	Chapter 5 — Probabilistic Approach Formulation
	Surrogate Modeling
	Probabilistic Graphical Models
	Bayesian Networks
	Inference

	Similarity Measures
	Bayesian Network Applications
	Bayesian Network Approach

	Chapter 6 — Feasibility of Bayesian Network Surrogate
	Conditional Density Estimation
	Bayesian Network Surrogate Model Example Application
	Implementation
	Conclusions

	Chapter 7 — Design of an Electric Motor Family
	Motor Model
	Product Family Design Problem
	Testing Commonality Identification Approaches
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions from Electric Motor Experiment

	Chapter 8 — Design of an Aircraft Family
	Establish the Need
	Define Family Architectures
	Establish Value Objectives
	Generate Feasible Alternatives
	Modeling and Simulation
	Integrated Simulation Environment
	Model Verification

	Commonality Identification
	Fuzzy Clustering Approach
	Commonality Probabilistic Approach
	Comparison of Criteria

	Evaluate Alternatives and Make Decision
	Conclusions from Aircraft Family Demonstration

	Chapter 9 — Summary and Concluding Remarks
	Contributions
	Recommendations and Future Work

	Appendix A — Bayesian Network Library
	Library Overview
	Anisotropic Gaussian Kernel
	Cython Helper Functions

	References

