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SUMMARY

Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing

are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE

Aircraft). The analysis was validated against published results for divergence and flutter of swept

wings and found to be in excellent agreement with the experimental results of the classical wing

of Goland. Moreover, modal frequencies and damping obtained for the Goland wing were found in

excellent agreement with published results based on a new continuum-based unsteady aerodynamic

formulation. Gravity for this class of wings plays an important role in flutter characteristics. In the

absence of aerodynamic and gravitational forces and without an engine, the kinetic energy of the

first two modes are calculated. Maximum and minimum flutter speed locations coincide with the

area of minimum and maximum kinetic energy of the second bending and torsion modes. Time-

dependent dynamic behavior of a turboshaft engine (JetCat SP5) is simulated with a transient engine

model and the nonlinear aeroelastic response of the wing to the engine’s time-dependent thrust and

dynamic excitation is presented. Below the flutter speed, at the wing tip and behind the elastic

axis, the impulse engine excitation leads to a stable limit cycle oscillation; and for the ramp kind

of excitation, beyond the flutter speed, at 75% span, behind the elastic axis, it produces chaotic

oscillation of the wing. Both the excitations above the flutter speed are stabilized, on the inboard

portion of the wing.

Effects of engine placement and sweep on flutter characteristics of a backswept flying wing resem-

bling the Horten IV are explored using NATASHA. This aircraft exhibits a non-oscillatory yawing

instability, expected in aircraft with neither a vertical tail nor yaw control. More important, how-

ever, is the presence of a low frequency body-freedom flutter mode. The aircraft center of gravity

was held fixed during the study, which allowed aircraft controls to trim similarly for each engine

location, and minimized flutter speed variations along the inboard span. Maximum flutter speed

occurred for engine placement just outboard of 60% span with engine center of gravity forward of

the elastic axis. The body-freedom flutter mode was largely unaffected by the engine placement

except for cases in which the engine is placed at the wing tip and near the elastic axis. In the

absence of engines, aerodynamics, and gravity, a region of minimum kinetic energy density for the
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first symmetric free-free bending mode is also near the 60% span. A possible relationship between

the favorable flutter characteristics obtained by placing the engines at that point and the region of

minimum kinetic energy is briefly explored.

Effects of multiple engine placement on a similar type of aircraft are studied. The results showed

that multiple engine placement increases flutter speed particularly when the engines are placed in

the outboard portion of the wing (60% to 70% span), forward of the elastic axis, while the lift to drag

ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two

cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for

the clean wing case, which disappears as the engines are placed on the wings. In neither case is there

any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory

unstable roots with very small amplitude, apparently originating with flight dynamics. For the

clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum

kinetic energy density for the first and third bending modes are located around 60% span. For the

second mode, this kinetic energy density has local minima around the 20% and 80% span. The

regions of minimum kinetic energy of these modes are in agreement with calculations that show a

noticeable increase in flutter speed at these regions if engines are placed forward of the elastic axis.

High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time

if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase

solar energy absorbency. An example of the kind of morphing considered in this thesis requires the

wings to fold so as to orient a solar panel to be hit more directly by the sun’s rays at specific times of

the day. In this study solar powered HALE flying wing aircraft are modeled with three beams with

lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following

the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA

was extended to include the ability to simulate morphing of the aircraft into a “Z” configuration.

Because of the “long endurance” feature of HALE aircraft, such morphing needs to be done without

relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to

substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped

configuration and back again.
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Chapter I

INTRODUCTION

1.1 Flying wing aircraft

A flying wing is a tailless fixed-wing aircraft with no definite fuselage, with most of the crew, payload

and equipment being housed inside the main wing structure [23]. They may have various small

protuberances such as pods, nacelles, blisters, booms, vertical stabilizers (tail fins), or undercarriage.

Flying wings may achieve significant drag reduction due to a smooth outer surface. Consequently,

the performance of such aircraft may increase significantly relative to conventional configurations of

the same size. The flying wing configuration was studied extensively in the 1930s and 1940s, notably

by Jack Northrop and Cheston L. Eshelman in the United States, and Alexander Lippisch and the

Horten brothers in Germany [82]. They may exhibit body-freedom flutter when the short-period

mode of the aircraft couples with the first symmetric elastic bending-torsion mode [20, 38, 51, 59,

7, 6, 69]. Due to the lack of vertical tail, a static flight dynamic instability, which involves the

yawing motion of the aircraft in the horizontal plane, is usually captured in stability analyses and

suppressed by control systems of the aircraft [20, 51, 57, 74, 59]. Although the lack of a vertical tail

and instability of the kind mentioned above is rarely experienced in conventional aircraft [20], the

potential increase of performance for this class of aircraft has inspired aeroelasticians to design a

new generation of aircraft based on a flying wing configuration.

1.2 Aeroelasticity of flying wing aircraft

Aeroelasticity is the science that studies the interactions among inertial, elastic, and aerodynamic

forces [12, 42, 21, 31]. It was defined by Arthur Roderick Collar in 1947 as “the study of the

mutual interaction that takes place within the triangle of the inertial, elastic, and aerodynamic

forces acting on structural members exposed to an airstream, and the influence of this study on

design” [21]. Classical aerodynamic theories provide a prediction of aerodynamic forces for a given
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shape, theories of elasticity provide a prediction of the shape of an elastic body under a given load

and finally dynamics predicts the effect of inertial load on the body. Interaction of all three of them

is called is called dynamic aeroelasticity [42]. Other terminologies are involved in the occurrence

of the interaction of the two of them such as static aeroelasticity when there is no inertial load

involved, flight dynamics when elastic deformation is not considered and structural dynamics when

aerodynamic forces are not considered [12, 31]. Flexible high-aspect-ratio flying wings typically

undergo large deflections and aeroelastic analysis of this class of aircraft requires geometrically

nonlinear theories [63].

1.3 Engines and follower force

Follower forces are forces that will adjust their orientation so that it is always acting in the same

direction relative to the geometry as shown in Fig. 1. Since the work done by this class of forces are

path dependent, they are classified as non-conservative forces. As pointed out by Bolotin [14, 15], the

study of the stability of structures under follower forces apparently started with work by Nikolai in

late 1920s [70]. In order to ascertain whether systems subjected to follower force are stable requires

a kinetic analysis of stability [70]. Engines of aircraft, rockets, and missiles behave similarly to

follower forces and thus require a similar stability analysis as systems subjected to follower forces.

Figure 1: Schematic of beam undergoing compressive axial follower force

1.4 Morphing of flying wing aircraft

Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt

to a changing mission environment during flight [78, 76]. For example, a solar-powered morphing

flying wing can maximize the energy absorption of solar panels on the wing surfaces by changing its
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configuration such that the panels have highest exposure to the sun. This change in the geometry

of the flying wing is highly effective in energy absorption during times just before sunset and just

after sunrise, and consequently the aircraft can endure longer flight. The energy efficiency and

aerodynamic performance of High Altitude Long Endurance (HALE) flying wing usually accompany

each other. In addition, limitations on the weight of the aircraft and the sources of energy make the

aeroelastic design very challenging. Use of solar energy is a novel method that eliminates one of the

design constraints to a considerable extent by removing the limitation on the source of energy.
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Chapter II

LITERATURE REVIEW

2.1 Aeroelastic analysis of flying wing aircraft

High-aspect-ratio flying wings may undergo large deflections, which leads to geometrically nonlinear

behavior [63]. Previous studies by Hodges and Patil [63, 66, 64] showed the inaccuracy of linear

aeroelastic analysis and the importance of nonlinear aeroelastic analysis. NATASHA (Nonlinear

Aeroelastic Trim And Stability of HALE Aircraft) is a computer program [64, 19] used for this

study. It is based on nonlinear composite beam theory [39] that accommodates the modeling of

high-aspect-ratio wings. NATASHA uses the aerodynamic theory of Peters et al. [67] and assesses

aeroelastic stability using the p method.

Previous comparisons by [73] showed that results from NATASHA are in excellent agreement

with well-known beam stability solutions [77, 70], the flutter problem of [35], experimental data

presented by [24], and results from well-established computer codes such as DYMORE [9, 10],

and RCAS [68]. Sotoudeh, Hodges and Chang [73] presented additional parametric studies using

NATASHA primarily for the purpose of validation. However, neither the effects of sweep nor of

engine placement were included in these studies.

Present contribution in chapter 4 1, uses the classical cantilever wing model of Goland [36] and

compares the first four modes with results obtained from the continuum model of Balakrishnan [5].

In this approach the modal damping and frequency of those modes are compared, and excellent

agreement is obtained for all modes, both stable and unstable, and both above and below the flutter

speed. In section 4.2.2, the suitability of modeling sweep with NATASHA using the same Goland

model is investigated. For the effect of sweep on divergence NATASHA’s results are compared with

an approximate closed-form formula presented in the book by Hodges and Pierce [43]. In case of

flutter, results are compared with work done by Lottati [50], and in both cases results were in

1Based on a journal article accepted for publication by Journal of Aircraft, [52].
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excellent agreement.

2.2 Effect of follower force in aeroelastic problem

Effects of follower forces on dynamic instability of beams were studied formerly [11, 13, 22, 81, 29].

Despite engine thrust being a follower force, few studies included this effect along with aeroelastic

effects until the work of Hodges et al. [41] that presented a case in which the effects of thrust were

maximized because the thrust vectors (from massless engines) were placed on the outboard portion

of the wings of an aircraft with high aspect ratio. They concluded that increasing the thrust of

the engines can have either a stabilizing or destabilizing effect and flutter speed and frequency were

highly dependent on the ratio of bending stiffness and torsional stiffness of the wing. Fazelzadeh

et al. [28] studied the effect of a follower force and mass arbitrarily placed along a long, straight,

homogeneous wing. Their results emphasize the effect of follower forces along with the external mass

magnitude and location on the flutter characteristics. Lottati [27], Karpouzian and Librescu [45],

and Mazidi et al. [28] studied the effect of sweep on flutter boundaries, but none of them studied

this effect using the geometrically exact equations for beams.

The dynamic response of cantilevered thin-walled beams carrying externally mounted stores and

exposed to time-dependent external excitations was investigated by Na and Librescu [60]. They

showed how the oscillation due to the external excitation can be suppressed by a control system.

Young et al. [83] studied the dynamic response of a cantilevered beam subject to a random follower

force at the tip of the beam using Gaussian white noise. Marzocca et al. [53], studied the effect

of elasticity in the aeroelastic response of a two-dimensional lifting surface in incompressible flow

subject to time-dependent external excitations and later he studied the aeroelastic response of a

two-dimensional airfoil in a compressible flow field and exposed to blast loading [54]. Librescu et al.

[48] investigated flutter suppression system of a two-dimensional wing excited by external pulses in

incompressible flow by means of active flap control and in later works [49] they studied the dynamic

aeroelastic response of a swept wing aircraft swept exposed to gust and explosive loads. Na et al.

[61] studied the aeroelastic response of a composite beam exposed to explosive loading and gusts.

So far in the literature, many studies have shown that linear analysis are incapable to simulate
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the response of the structure [62, 63, 66, 64, 65] and nonlinear analysis are required to comport with

experimental evidence [62, 25]. Beams, in particular flexible high-aspect-ratio wings with gravity are

statically nonlinear due to sufficiently large static deformation [25]. Patil, Hodges and Cesnik [65]

studied the limit cycle oscillation in high-aspect-ratio wings but they neither consider the effect of

gravity nor modeled the engine with mass, angular momentum. The effect of gravity is negligible for

conventional wings, but for HALE wings it becomes important because it affects the trim solution

in a non-neglible way. Consequently, with highly flexible wings such as those of HALE aircraft, one

should expect load factor to have an influence on flutter, unlike the case of conventional aircraft. The

present work in chapter 5 2, studies the effects of engine placement on flutter characteristics of a very

flexible high-aspect-ratio wing using the code NATASHA. This approach shows that gravity for this

class of wings plays an important role in flutter characteristics. In the absence of aerodynamic and

gravitational forces and without an engine, the kinetic energy of the first two modes are calculated.

Maximum and minimum flutter speed locations coincide with the area of minimum and maximum

kinetic energy of the second bending and torsion modes. Time-dependent dynamic behavior of

a turboshaft engine (JetCat SP5) is simulated with a transient engine model and the nonlinear

aeroelastic response of the wing to the engine’s time-dependent thrust and dynamic excitation is

presented. Below the flutter speed, at the wing tip and behind the elastic axis, the impulse engine

excitation leads to a stable limit cycle oscillation; and for the ramp kind of excitation, beyond the

flutter speed, at 75% span, behind the elastic axis, it produces chaotic oscillation in the wing. Both

the excitations above the flutter speed are stabilized, on the inboard portion of the wing.

The present work in chapter 6 3 studies the effect of two-engine placement on nonlinear aeroelastic

trim and stability of a flying wing the geometry of which was similar to that of the Horten IV. The

engines are modeled as a rigid body with a mass, an inertia matrix, a thrust vector, and a value of

angular momentum. The result of this study shows that the maximum flutter speed occurs when the

engines are just outboard of 60% span; also the minimum flutter speed occurs for engine placement

at the wing tips. Both minima and maxima occurred when the c.g. of the engine was forward of

2Based on a journal article currently under review by Journal of Nonlinear Dynamics.
3Based on a journal article accepted for publication by Journal of Aircraft[52].
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the wing elastic axis. In this approach, in the absence of aerodynamic and gravitational forces and

before mounting the engines, NATASHA found that the minimum kinetic energy region is very near

60% span for the first symmetric elastic free-free bending mode. This location coincides with the

region where the maximum flutter speed was observed.

In chapter 7 4, the analysis is extended for the effect of multiple engine placement for flying wing

configuration and the results show that engine placement does not have any significant effect on

the lift to drag ratio. However, a noticeable increase in flutter speed is observed when engines are

placed forward of the elastic axis. For these cases, as one of the engines is placed at the outboard

portion of the span, flutter speed increases. For engine placement behind the elastic axis, flutter

speed increases when both engines are close to the root. The area of minimum kinetic energy for

the first and third bending modes is located approximately at 60% span. For the second bending

mode, this area has local minima around 20% and 80% span. The areas of minimum kinetic energy

for these modes are in agreement with flutter calculations, which show noticeable increases in flutter

speed when engines are placed in these regions forward of the elastic axis.

2.3 Morphing of the aircraft

A morphing flying wing can maximize the energy absorption of solar panels on the wing surfaces

by changing its configuration such that the panels have highest exposure to the sun. The morphing

flying wing concept could be either based on wing morphing systems or airfoil morphing systems,

or a combination of both [33]. So far in the literature, several morphing concepts and systems have

been developed based on altering various geometric parameters of the wing (such as span, chord,

camber, sweep, twist and even airfoil thickness distribution) to make the aircraft suitable for different

missions and flight conditions [33, 37].

There are many examples in airfoil morphing, such as inflatable wings with new materials for

roll control using nastic structures, bump flattening, or trailing-edge deflection [17, 71, 33]; hyper-

elliptic wings with variable camber/span that use a quaternary-binary link configuration mechanism

4Based on journal article currently accepted for publication with minor revisions by Journal of Fluids and
Structures.
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for actuation [75, 33]; wing morphing similar to the folding wing concept of Lockheed Martin with

efficient loiter and fast dash configurations [47, 72, 16, 51, 44]; the bat wing design of NextGen with

high lift and efficient loiter configurations [30, 3, 34, 33]; and many other examples using smart

structures and shape memory alloys [33]. In all these examples the weight of actuators and the

actuation power that the morphing mechanisms require to perform their task are the problematic

parts of the design [33], in particular when it comes to morphing of flying wing and/or HALE

aircraft.

The folding wing configuration has been analyzed using linear aeroelastic models [80, 79, 26]

and nonlinear aeroelastic models [4].So far in the literature neither a geometrically exact beam

formulation has been used in morphing analysis nor a area of passive morphing has been touched.

In this study, in chapter 8 5, a solar powered High Altitude, Long Endurance (HALE) flying wing

aircraft is considered to morph into a “Z” configuration to allow for sustained uninterrupted flight.

Energy absorption of this aircraft is maximized if the sun exposure of the solar panels distributed

on the wings is maximized; see Fig. 2. For this purpose a three-wing HALE flying wing follows the

sun and morphs passively (without actuators at the hinges and only making use of aerodynamic

force and thrust) into a Z shaped configuration, while the bending moments about hinge lines at the

beam connections are zero. To capture these phenomena, NATASHA has been augmented with new

equations to analyze aeroelastic trim, stability and time marching of such aircraft. Local bending

moments are zeroed out at the beam connection points while the hinges are locked and are kept

at zero while the aircraft morphs. The morphing motion is brought to a stop before the hinges

are again locked. The aim of this study is to detail the various processes pertaining to the passive

morphing of a flying wing with Z configuration.

2.4 Motivations behind this study

The fully intrinsic nonlinear composite beam theory [39] presents exact and rigorous beam equations

which accommodate large deflections. The importance of using nonlinear composite beam theory

5Based on a journal article currently accepted for publication with minor revisions by Journal of Fluids and
Structures.
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Figure 2: Schematic view of the flying wing morphing and the sun position

in aeroelastic analysis of high-aspect-ratio wings is accentuated in sections 1.2 and 2.1. Traditional

aeroelastic analysis of high-aspect ratio wings do not consider effect of gravity and while this effect

plays an important role in flutter characteristics. Effects of follower force on dynamic behavior

of beam-like structure have been studied in former literature listed in section 2.2. However it is

noteworthy that none of them considered this effect either using a geometrically exact nonlinear

composite beam theory or for the flying wing configuration. One aspect of this research explores

various effects of follower force on nonlinear aeroelastic behavior of the flying wing aircraft using the

geometrically exact beam theory of Hodges [39] along with finite-state induced flow aerodynamic

model of Peters et al. [67]. Section 2.3 reviews the former works on morphing aircraft. As of the

up to date knowledge of the author, in all of the former morphing aircraft, actuators of different

kinds were used to make the change in the shape of the structure, i.e. morphing the structure;

which naturally increases the mass and uses a considerable amount of electric power. However,

optimization and conservation of energy is crucially important in solar-powered HALE aircraft and

particularly in flying wing aircraft that are designed for long endurance and uninterrupted flight.

Another aspect of this research demonstrates the possibility to morph a folding wing configuration

without relying on actuators and using only the flight-control flaps and the aerodynamic forces. An

example of the kind of morphing studied in this research requires the wings to fold so as to orient a

solar panel to be hit more directly by the suns rays at specific times of the day. Because of the long
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endurance feature of HALE aircraft, such morphing needs to be done with as near zero energy cost

as possible.
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Chapter III

THEORY

3.1 Nonlinear composite beam theory

The fully intrinsic nonlinear composite beam theory [39] is based on first-order partial differential

equations of the motion. These equations have neither displacement nor rotation variables, and

they avoid singularities caused by to finite rotations. They contain variables that are expressed in

the bases of the undeformed beam reference frame, b(x1), and the deformed beam frame, B(x1, t);

see Fig. 3. These geometrically exact equations use force, moment, angular velocity and velocity

variables, with maximum degree nonlinearity of order two. The equations of motion are

F ′B + K̃BFB + fB = ṖB + Ω̃BPB

M ′B + K̃BMB + (ẽ1 + γ̃)FB +mB = ḢB + Ω̃BHB + ṼBPB

(1)

where the generalized strains and velocities are related to stress resultants and moments by the

structural constitutive equations 
γ

κ

 =

 R S

ST T



FB

MB

 (2)

and the inertial constitutive equations
PB

HB

 =

µ∆ −µξ̃

µξ̃ I



VB

ΩB

 . (3)

Finally, the strain- and velocity-displacement equations are used to derive the intrinsic kinematical

partial differential equations [39], which are given as

V ′B + K̃BVB + (ẽ1 + γ̃)ΩB = γ̇

Ω′B + K̃BΩB = κ̇

(4)

In this set of equations, FB and MB are column matrices of cross-sectional stress and moment

resultant measures in the B frame, respectively; VB and ΩB are column matrices of cross-sectional
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Figure 3: Sketch of beam kinematics

frame velocity and angular velocity measures in the B frame, respectively; PB and HB are column

matrices of cross-sectional linear and angular momentum measures in the B frame, respectively; R,

S, and T are 3×3 partitions of the cross-sectional flexibility matrix; ∆ is the 3×3 identity matrix; I

is the 3×3 cross-sectional inertia matrix; ξ is b0 ξ2 ξ3cT with ξ2 and ξ3 the position coordinates of

the cross-sectional mass center with respect to the reference line; µ is the mass per unit length; the

tilde (̃ ) denotes the antisymmetric 3×3 matrix associated with the column matrix over which the

tilde is placed; ˙( ) denotes the partial derivative with respect to time; and ( )′ denotes the partial

derivative with respect to the axial coordinate, x1. More details about these equations can be found

in Nonlinear Composite Beam Theory [40]. This is a complete set of first-order, partial differential

equations. To solve this complete set of equations, one may eliminate γ and κ using Eq. ( 2) and

PB and HB using Eq. ( 3). Then, 12 boundary conditions are needed, in terms of force (FB),

moment (MB), velocity (VB) and angular velocity (ΩB). The maximum degree of nonlinearities

is only two, and because displacement and rotation variables do not appear, singularities caused

by finite rotations are avoided. If needed, the position and the orientation can be calculated as
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post-processing operations by integrating

r′i = Cibe1

ri + u′i = CiB(e1 + γ)

(5)

and

(Cbi)′ = −k̃Cbi

(CBi)′ = −(k̃ + κ̃)CBi
(6)

3.2 Finite-state induced flow model of Peters et al.

Two-dimensional finite state aerodynamic model of Peters et al. [67] is an state-space, thin-airfoil,

inviscid, incompressible approximation of infinite state actual aerodynamic loads that accounts for

wake (induced flow) effects and apparent mass effects using known airfoil parameters. It accom-

modates large frame (airfoil) motion as well as small deformation of the airfoil in this frame, e.g.,

trailing edge deflection. Although the two-dimensional version of this theory does not count for the

wing tip effect but former studies[73, 67, 52] and new research explained in section 4.2 show this

theory is an excellent choice for approximation of aerodynamic loads acting on high-aspect ratio

wings. The lift, drag and pitching moment at the quarter-chord are given by:

Laero = ρb ((Cl0 + Clββ)VTVa2 − Clα V̇a3b/2− ClαVa2(Va3 + λ0 − Ωa1b/2)− Cd0VTVa3) (7)

Daero = ρb (−(Cl0 + Clββ)VTVa3 + Clα(Va3 + λ0)2 − Cd0VTVa2) (8)

Maero = 2ρb ((Cm0 + Cmββ)VT − CmαVTVa3 − bClα/8Va2Ωa1 − b2ClαΩ̇a1/32 + bClα V̇a3/8) (9)

where

VT =
√
Va2 + Va3 . (10)

sinα =
−Va3
VT

(11)
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αrot =
Ωa1b/2

VT
(12)

and Va2 , Va3 are the measure numbers of Va and β is the angel of flap deflection.

The effect of unsteady wake (inflow) and apparent mass appear as λ0 and acceleration terms in

the force and moment equation. The finite-state induced flow model of Peters et al. [67] is included

to calculate λ0 as:

[Ainflow] {λ̇}+

(
VT
b

)
{λ} =

(
−V̇a3 +

b

2
Ω̇a1

)
{cinflow} (13)

λ0 =
1

2
{binflow}T {λ} (14)

where λ is a vector of inflow states, and [Ainflow], {cinflow}, {binflow} are constant matrices derived in

[67].
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Chapter IV

NATASHA AND VALIDATIONS

1

4.1 Nonlinear Aeroelastic Trim and Stability of HALE Aircraft (NATASHA)

Nonlinear Aeroelastic Trim and Stability of HALE Aircraft (NATASHA) is a computer program de-

veloped in our group at Georgia Tech. NATASHA is based on a geometrically exact composite beam

formulation [40] and finite-state induced flow aerodynamic model of Peters et al. [67]. The governing

equations for structural model are geometrically exact, fully intrinsic and capable of analyzing the

dynamical behavior of a general, nonuniform, twisted, curved, anisotropic beam undergoing large de-

formation. The partial differential equations’ dependence on x1 is approximated by a spatial central

differencing presented by the work of [64]. The resulting nonlinear ordinary differential equations are

linearized about a static equilibrium state. The equilibrium state is governed by nonlinear algebraic

equations, which NATASHA solves in obtaining the steady-state trim solution using the Newton-

Raphson procedure; see [64]. This system of nonlinear aeroelastic equations, when linearized about

the resulting trim state, leads to a standard eigenvalue problem which NATASHA uses to analyze

the stability of the structure. NATASHA is also capable of time marching the nonlinear aeroelastic

system of equations using a schedule of the flight controls, which may be obtained from sequential

trim solutions.

4.2 Validations

Former comparisons showed that NATASHA’s results are in excellent agreement for the onset of

instability [73], but behavior of the system eigenvalues below and above the flutter speed and effects

of sweep on divergence and flutter speed were never validated.

1The content of this chapter is based on a journal article accepted for publication by Journal of Aircraft
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4.2.1 Validation of NATASHA on the behavior of the eigenvalues

In order to study the behavior of the eigenvalues at pre- and post-stability, the classical cantilever

wing model of Goland [36] was used, and the first four modes were compared with the continuum

model presented by Balakrishnan [5]. Figures 4 and 5 compare the modal damping and frequency of

these modes, and the results show excellent agreement for all stable modes as well as the unstable

modes both below and above the flutter speed.

Figure 4: Real part of the roots from NATASHA compared with continuum model

Figure 5: Imaginary part of the roots from NATASHA compared with continuum model
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4.2.2 Validation of NATASHA on the effects of sweep

The effect of sweep with NATASHA was studied and the same model of Goland was considered for

divergence (a static instability) and flutter [36]. In case of divergence, the results show excellent

agreement (see Fig. 6) with the approximate closed-form formula, Eq. ( 15), given in [42] as

qD
qD0

=
1 + tan2 Λ

1− 3π2

76
GJ
EI2

l
e tan Λ

(15)

where in Eq. ( 15), divergence dynamic pressure (qD) is normalized with its value at zero sweep

angle (i.e., qD0), l is the span, e is the distance between elastic axis and aerodynamic center and

Λ is the sweep angle. For the case of flutter, results are compared in Fig. 7 with numerical results

obtained by Lottati, where U is the component of velocity vector in B2 direction, normalized with

Uref = 400 MPH [50].

4.3 Epilogue

NATASHA’s results for the pre- and post-instability behavior of the eigenvalues were validated and

the results are in excellent agreement. For the case of sweep effects, NATASHA showed an excellent

agreement both in divergence and flutter speed for the classical Goland wing.

Figure 6: Effect of sweep on divergence speed using Goland model
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Figure 7: Effect of sweep on flutter speed using Goland model
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Chapter V

NONLINEAR AEROELASTICITY OF HIGH-ASPECT-RATIO

WINGS EXCITED BY TIME-DEPENDENT THRUST

1

5.1 Case study: flexible high-aspect ratio wing

5.1.1 Wing

A very flexible high-aspect-ratio wing (clamped-free) which displays geometrically nonlinear behavior

is modeled with 20 elements; see Table 1.

Table 1: Wing and properties (SI units)

Length 16

Torsional stiffness 104

Out-of-plane bending stiffness 2× 104

In-plane bending stiffness 4× 106

Mass per unit length 0.75

Mass polar moment of inertia per unit length 0.1

Chord, c 1

Offset of aerodynamic center from elastic axis, e 0.25

Lift-curve slope, clα 2π

Drag coefficient, cd0 0.01

Gravity, g 9.8

Air density, ρ 0.0889

1The content of this chapter is based on a journal article currently under review by Journal of Nonlinear Dynamics.
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5.1.2 Engine

Design of high altitude long endurance aircraft (HALE) requires aircraft’s components and equip-

ments to be as light as possible. In this study, a light weight turboshaft engine, JetCat SPT5,

appropriate for this class of aircraft is selected; see Table 2. The JetCat SPT5 engine transient

model was used for two fuel profile inputs to generate realistic time-dependent thrust and angular

momentum of engine.

Table 2: JetCat SPT5 turboshaft engine specifications [1, 2]

Shaft Power 8.2 (kW)

Thrust 245 (N)

Service Life 25 (hrs)

Low Pressure Spool Speed 1500-7000 (RPM)

High Pressure Spool Speed 50-170000 (RPM)

Core Pressure Ratio 2:1

Outer Diameter and Length 83 × 365 (mm)

High pressure spool inertia 4 ×10−5 (kg-m2)

Low pressure spool inertia 0.0216 (kg-m2)

Mass of the engine 3 (kg)

5.2 Flutter characteristics

As explained in section 4.1, linearized perturbation about equilibrium state leads to a standard

eigenvalue problem which NATASHA solves to find the flutter characteristics of the wing. In this

study, the behavior of the eigenvalues for the clean wing with and without gravity, and the wing

with the engine at 75% span forward of the elastic axis is presented. The present work considers the

effect of drag.
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5.2.1 Clean wing without gravity

In the absence of engine and gravity the wing flutters at 32.1 m/s with a frequency of 22.534 rad/sec.

The associated mode is a first bending-torsion mode and divergence occurs at 34.6 m/s. The behavior

of the eigenvalues are shown in Figs. 8 and 9. Comparison between the result in present work and

previously published work [65] shows that drag does not have a significant effect.

Figure 8: Normalized real part of eigenvalue for clean wing neglecting gravity

Figure 9: Normalized imaginary part of eigenvalue for clean wing neglecting gravity

5.2.2 Clean wing with gravity

NATASHA captures a hump flutter mode when effect of gravity (g=9.8 m/s2) is considered. The

hump mode contains motion of first bending and torsion mode, and flutters at 22.4 m/s with a
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frequency of 12.199 rad/sec. This result is used to normalize flutter characteristics presented in this

study. At a higher speed this mode returns to being stable and at 45 m/s second bending-torsion

mode with a frequency of of 27.406 becomes unstable; see Figs. 10 and 11.

Figure 10: Normalized real part of eigenvalue for clean wing with gravity

Figure 11: Normalized imaginary part of eigenvalue for clean wing with gravity

5.2.3 Wing with engine

Engine placement at 75% span, one meter forward of the elastic axis, i.e., r = 1, ψ = 0, significantly

increases flutter speed up to 76.4 m/s. The flutter mode is a combination of first and second bending

with a frequency of 1.9637 rad/sec. Slightly above this speed, another mode becomes unstable. The

motion of this mode is a combination of first and second edgewise bending, first flatwise bending,

and second torsion modesThe behavior of eigenvalues are shown in Figs. 12 and 13.
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Figure 12: Normalized real part of eigenvalue for clean wing neglecting gravity

Figure 13: Normalized imaginary part of eigenvalue for clean wing neglecting gravity

5.3 Effect of engine placement on flutter characteristics of the wing

In order to study the effect of engine placement, a turboshaft engine (JetCat SP5) with known thrust,

mass, moments of inertia, and angular momentum which operates at cruise condition is placed along

the span. The engine mount is offset from the elastic axis in the plane of cross section while the

engine orientation is maintained; see Fig. 14. The engine offsets from the elastic axis are presented

in polar coordinates with (r, ψ). r is radial offset of the engine from the elastic axis, normalized

by chord, ψ is the polar angle and η is the dimensionless length in the b1 direction, along which
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the engine is located. It is to be noted that this study does not take into account the flexibility of

engine’s mount and nacelle as well as effects of wing and propeller aerodynamic interaction.

Figure 14: Schematic view of the wing with engine

5.3.1 Neglecting effects of gravity

Some aeroelastic analyses do not consider the effect of gravity [65, 28]. Figures 15 – 18 show the

contour of the normalized flutter speed and frequency for engine placement along span in normal and

chordwise direction ignoring the gravity effect. Engine placement between 60% to 80% span, offset

forward of the elastic axis increases flutter speed; see Fig. 15. For engine placement between 70% to

95% span, offset in normal direction increases the flutter speed by 75% (see Fig. 17) while moving

the engine toward the tip decreases the flutter frequency; see Fig. 18. The plane of symmetry in the

contour of flutter speed and frequency is due to absence of gravity; see Figs. 17 – 18.
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Figure 15: Contour of normalized flutter speed for engine placement in chordwise direction, i.e., b2;

neglecting gravity

Figure 16: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b2; neglecting gravity
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Figure 17: Contour of normalized flutter speed for engine placement in normal direction, i.e., b3;

neglecting gravity

Figure 18: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b3; neglecting gravity

5.3.2 Considering effects of gravity

Gravity (g = 9.8 m/s2) plays an important role in flutter characteristics of flexible high-aspect-ratio

wings. The effect of gravity is negligible for conventional wings, but for HALE wings it becomes

important because it affects the trim solution in a non-neglible way. Consequently, with highly

flexible wings such as those of HALE aircraft, one should expect load factor to have an influence

on flutter, unlike the case of conventional aircraft. This effect significantly appears for the cases

where the equilibrium states are distinct from those obtained without considering gravity. If they

are distinct, stability is affected since the perturbation about the equilibrium state is changed.
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For engine placement in the chordwise direction, offset forward of the elastic axis, this effect slightly

changes the flutter speed, the trend of the contours of flutter speed is unaffected since the equilibrium

state and the perturbation about equilibrium state slightly changes. However, one needs to note that

an analysis in which gravity is neglected does not predict drop of flutter speed for engine placement

on the inboard portion of the wing, behind elastic axis; compare Figs. 15 and 19. As it is expected,

the contours of normalized flutter frequency show that presence of gravity increases flutter frequency;

see Figs. 16 and 20. For engine placement along the span in normal direction, i.e., b2, the trend of

flutter speed and frequency changes (see Figs. 18 and 22). These results show that flutter analysis

without gravity is not capable to predict the drop of flutter speed at 35% to 55% span; see Figs. 17

and 21. In both cases of engine placement, i.e., in-plane and out-plane, neglecting effect of gravity

does not predict the drop of flutter speed at 35% to 55% span but it can capture the area where

maximum flutter speed occurs. It is noteworthy that these areas coincide with the area of maximum

and minimum kinetic energy density of the second bending and torsion modes of the wing which is

presented in section 5.5.

Figure 19: Contour of normalized flutter speed for engine placement in chordwise direction, i.e., b2;

considering gravity, g = 9.8 m/s2
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Figure 20: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b2; considering gravity, g = 9.8 m/s2

Figure 21: Contour of normalized flutter speed for engine placement in normal direction, i.e., b3;

considering gravity, g = 9.8 m/s2
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Figure 22: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b3; considering gravity, g = 9.8 m/s2

Effects of finite variation of engine’s inertial and dynamical parameters on flutter characteristics

was briefly explored. It was noticed that the flutter characteristics vary nonlinearly with respect to

these parameters and the location of the engine. This requires further investigations and parametric

studies.

5.4 Effect of load factor and engine placement on flutter characteristics

Aircraft experience different load factors as they maneuver or undergo different flight conditions.

For instance, the aircraft’s wing will experience a higher load factor when it flies at a different bank

angle. At straight level flight, load factor is one and in turning flight the load factor is normally

greater than one and follows the following equation:

n =
1

cosφ
(16)

where φ represents the aircraft’s bank angle and n is the load factor. In this study, effect of load

factor is modeled with change in the magnitude of gravity vector, i.e., g. To investigate this effect,

contours of the flutter speed for engine placement in normal and chordwise direction for bank angles

equal to 30◦, 45◦ and 60◦ is presented in Figs. 23 – 34.

For load factors of 1.2 and 1.4 (which correspond to bank angles of approximately 30◦ and 45◦),

flutter characteristics still have the same behavior compared to straight level flight, i.e., zero bank
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angle. At 60◦, load factor increases to two, and the effects become significant in flutter speed and its

sensitivity to engine placement; see Fig. 31 and 33. At this load factor, NATASHA’s results show

that flutter speed decreases (see Figs. see Figs. 24 – 34), and for engine placement between 20% to

60% span, offset forward of the elastic axis, i.e., in the chordwise direction, one can attain a higher

flutter speed; see Fig. 31, and for engine placement in normal direction, flutter speed increases on

the inboard portion of the wing and flutter characteristics are independent of the offsets from elastic

axis at each span-wise location; see Figs. 33 – 34.

Figure 23: Contour of normalized flutter speed for engine placement in chordwise direction, i.e., b2,

when load factor is 1.2

Figure 24: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b2, when load factor is 1.2
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Figure 25: Contour of normalized flutter speed for engine placement in normal direction, i.e., b3,

when load factor is 1.2

Figure 26: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b3, when load factor is 1.2
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Figure 27: Contour of normalized flutter speed for engine placement in chordwise direction, i.e., b2,

when load factor is 1.4

Figure 28: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b2, when load factor is 1.4
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Figure 29: Contour of normalized flutter speed for engine placement in normal direction, i.e., b3,

when load factor is 1.4

Figure 30: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b3, when load factor is 1.4
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Figure 31: Contour of normalized flutter speed for engine placement in chordwise direction, i.e., b2,

when load factor is 2

Figure 32: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b2, when load factor is 2
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Figure 33: Contour of normalized flutter speed for engine placement in normal direction, i.e., b3,

when load factor is 2

Figure 34: Contour of normalized flutter frequency for engine placement in chordwise direction, i.e.,

b3, when load factor is 2

5.5 Area of minimum kinetic energy density of the mode

Engine placement at certain location has the potential to increase the flutter speed in two ways.

One is the location where lower frequency flutter mode could be relegated to a higher frequency

mode and the other is the location where the fluid structure interaction is decreased. Both criteria

could be met at the area of minimum kinetic energy of the mode. In other words, engine placement

at the area of minimum kinetic energy of the modes has the potential to decrease fluid structure
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interaction and enforce the structure to flutter at a higher mode. To further explore this possibility,

the area of minimum kinetic energy density of the first two bending and torsion modes of the wing,

in the absence of engine, gravitational and aerodynamic forces is presented in Figs. 35 – 38. For the

first bending and torsion this area is minimum at the root of the wing; see Figs. 35 – 37. For the

second bending mode the area of minimum kinetic energy density of the mode has a local minima

outboard 85% span and for second torsion modes this minimum moves to the region between 70%

to 90% span; see Figs. 36 – 38. For engine placement forward of the elastic axis, the unstable mode

contains a combination of first and second bending along with second torsion; and when the engines

are placed around 50% to 70% span, there is a noticeable increase in flutter speed. This is close to

the area of minimum kinetic energy of the second bending and torsion modes; see Figs. 36 – 38.

Figure 35: Normalized kinetic energy of the first bending mode of the wing
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Figure 36: Normalized kinetic energy of the second bending mode of the wing

Figure 37: Normalized kinetic energy of the first torsion mode of the wing
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Figure 38: Normalized kinetic energy of the second torsion mode of the wing

5.6 Nonlinear aeroelastic response

Effects of engine placement with time-dependent engine thrust and dynamics on nonlinear aeroelas-

tic response of the high-aspect-ratio wing are studied by the second-order, central-difference, time

marching algorithm with high frequency damping in NATASHA [64]. An appropriate time step is

0.05 seconds. The transient behavior of the engine, i.e., thrust and angular momentum of spools, for

two fuel input profiles is simulated using JetCat SP5 engine simulator [1, 2]. At an air velocity of

20 m/s, the aeroelastic response of the wing excited by time-dependent thrust, for engine placement

along the span (25%, 50%, 75% span and at the tip of the wing) and with offset from the elastic

axis of the order of a chord length is studied for two types of excitations.

5.6.1 Response to impulse excitation

A sudden momentarily increase in the fuel flow may be caused by pilot command, an error in the

engine control system, or even wear and tear of engine components. Although the fault detection sys-

tem typically removes these errors, an aeroelastically stable engine placement will increase the safety

factor and always protect the wing from the dramatic consequences of these sorts of instabilities.

In this simulation, the fuel flow rate experiences a rectangular pulse type of input from cruise

to maximum level during two seconds and returns to cruise throttle condition again; see Fig. 39.

This fuel profile leads to realistic sudden increase of thrust which resembles an impulse kind of

engine excitation; see Fig. 40. The transient engine model shows that effects of engine dynamics
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are significant and one needs to take into account the effect of angular momentum of low and high

pressure engine spool in calculation; see Figs. 41 and 42.

Figure 39: Fuel flow rate profile for impulse excitation

Figure 40: JetCat SP5 engine thrust simulation for impulse fuel profile

39



Figure 41: JetCat SP5 engine high pressure angular momentum simulation for impulse fuel profile

Figure 42: JetCat SP5 engine low pressure angular momentum simulation for impulse fuel profile

– 25% span: Stability analysis with engine thrust and angular momentum at cruise level show

that engine placement with no offset and at r = 1 and ψ = 90◦, 135◦ and 180◦, the above

considered air speed is above flutter speed and other locations are aeroelastically stable in a

linearized analysis. The time march results show that excitation at this locations attenuate

quickly.

– 50% span: It can be gleaned from the stability analysis that most of engine placements at these

locations are sub-critical and the excitation dies out whereas for two cases where the engine

placements are supercritical; case(a) engine placement at r = 1 and ψ = 90◦, the excitation
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still dies out and case(b) at r = 1 and ψ = 135◦ where the excitation leads to a stable Limit

Cycle Oscillation (LCO); see Figs. 43 – 48.

– 75% span: The results from the linearized stability analysis demonstrate that engine placement

at r = 1, ψ = 90◦ and 180◦ is supercritical; in both cases the excitation dies out. Engine

placement at r = 1, ψ = 135◦ is supercritical and leads to a stable LCO; see Figs. 49 – 54.

Other engine placements at this location are within subcritical regime and the excitations die

out.

– 100% span: For engine placement at the tip of the wing, only engine placement at r = 1,

ψ = 180◦ is supercritical and excitation at this location leads to stable LCO. When engine

is placed offset forward of the elastic axis, i.e., r = 1, ψ = 0◦, 45◦, 90◦, 270◦ and 315◦, the

excitation dies out and when engine is place at r = 1, ψ = 135◦ excitation leads to a stable

LCO and after 50 seconds it quickly dies out; see Figs 55 – 57. When the engine is offset at

r = 1, ψ = 225◦, excitation below flutter speed leads to stable LCO; see Figs. 58 – 63.

Figure 43: Wing tip position along b1 vs. time, for engine placement at 50% span with r = 1 and

ψ= 135◦
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Figure 44: Wing tip position along b2 vs. time, for engine placement at 50% span with r = 1 and

ψ= 135◦

Figure 45: Wing tip position along b3 vs. time, for engine placement at 50% span with r = 1 and

ψ= 135◦
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Figure 46: Normalized wing tip position vs. velocity in b1 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦

Figure 47: Normalized wing tip position vs. velocity in b2 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦
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Figure 48: Normalized wing tip position vs. velocity in b3 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦

Figure 49: Wing tip position along b1 vs. time, for engine placement at 75% span with r = 1 and

ψ= 135◦
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Figure 50: Wing tip position along b2 vs. time, for engine placement at 75% span with r = 1 and

ψ= 135◦

Figure 51: Wing tip position along b3 vs. time, for engine placement at 75% span with r = 1 and

ψ= 135◦
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Figure 52: Normalized wing tip position vs. velocity in b1 direction, for engine placement at 75%

span with r = 1 and ψ= 135◦

Figure 53: Normalized wing tip position vs. velocity in b2 direction, for engine placement at 75%

span with r = 1 and ψ= 135◦
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Figure 54: Normalized wing tip position vs. velocity in b3 direction, for engine placement at 75%

span with r = 1 and ψ= 135◦

Figure 55: Wing tip position along b1 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦
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Figure 56: Wing tip position along b2 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦

Figure 57: Wing tip position along b3 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦
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Figure 58: Wing tip position along b1 vs. time, for engine placement at 100% span with r = 1 and

ψ= 225◦

Figure 59: Wing tip position along b2 vs. time, for engine placement at 100% span with r = 1 and

ψ= 225◦
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Figure 60: Wing tip position along b3 vs. time, for engine placement at 100% span with r = 1 and

ψ= 225◦

Figure 61: Normalized wing tip position vs. velocity in b1 direction, for engine placement at 100%

span with r = 1 and ψ= 225◦
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Figure 62: Normalized wing tip position vs. velocity in b2 direction, for engine placement at 100%

span with r = 1 and ψ= 225◦

Figure 63: Normalized wing tip position vs. velocity in b3 direction, for engine placement at 100%

span with r = 1 and ψ= 225◦

5.6.2 Response to ramp excitation

The increase of thrust from cruise to maximum level is typically required to increase the speed or

go through different maneuvers. Flutter analysis is incapable of study the effects of large excitation
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about the equilibrium state and can only predict the stability of the wing at a given thrust, angular

momentum and air speed; it does not convey any information regarding the transition from one trim

condition to another. This fact that engine excitation is of the kind of excitation in the large, the

aeroelastic stability of such systems requires time domain analysis to convey correct information in

that regard. In this simulation, the fuel flow rate profile increases linearly within 5 seconds from

cruise to maximum level and remains at that rate for the rest of simulation; see Fig. 64. JetCat

SP5 engine model simulates thrust and engine dynamics for this input; see Figs. 65 – 67, and the

nonlinear aeroelastic response of the structure to this kind of excitation is studied in the following

section.

Figure 64: Fuel flow rate profile for ramp excitation

Figure 65: JetCat SP5 engine thrust simulation for ramp fuel profile
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Figure 66: JetCat SP5 engine high pressure angular momentum simulation for ramp fuel profile

Figure 67: JetCat SP5 engine low pressure angular momentum simulation for ramp fuel profile

Stability analysis while engine operates at cruise condition is explained in section 5.6.1.

– 25% span: The time march results show that engine placement at this location is stable.

– 50% span: The time march results show that engine placement at r = 1, ψ = 90◦ and 135 ◦ lead

to stable limit cycle oscillation and excitations for other engine placements at this location do

not affect stability of the wing.

– 75% span: At r = 1 and ψ = 45◦, at subcritical, the excitations lead to oscillations with growing

amplitude; see Figs. 68 – 70, and at ψ = 45◦ and 180◦, at supercritical it leads to stable LCO.

For engine placement at r = 1 and ψ = 135◦, at supercritical regime, excitation introduces

53



chaotic oscillations to the structure; see Fig. 71 – 76, and all other engine placements are

unaffected by this excitation other than a change in static deflection.

– 100% span: Effect of this excitation at this location leads to a very large amplitude oscillation

and for the case of r = 1, ψ = 180◦ the large amplitude oscillation is a stable LCO.

Figure 68: Wing tip position along b1 vs. time, for engine placement at 100% span with r = 1 and

ψ= 45◦

Figure 69: Wing tip position along b2 vs. time, for engine placement at 100% span with r = 1 and

ψ= 45◦
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Figure 70: Wing tip position along b3 vs. time, for engine placement at 100% span with r = 1 and

ψ= 45◦

Figure 71: Wing tip position along b1 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦
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Figure 72: Wing tip position along b2 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦

Figure 73: Wing tip position along b3 vs. time, for engine placement at 100% span with r = 1 and

ψ= 135◦
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Figure 74: Normalized wing tip position vs. velocity in b1 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦

Figure 75: Normalized wing tip position vs. velocity in b2 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦
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Figure 76: Normalized wing tip position vs. velocity in b3 direction, for engine placement at 50%

span with r = 1 and ψ= 135◦

5.7 Epilogue

Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing are

investigated using the code NATASHA. Gravity for this class of wings plays an important role

in flutter characteristics. In the absence of aerodynamic and gravitational forces and without an

engine, the kinetic energy of the first two modes are calculated. Maximum and minimum flutter

speed locations coincide with the area of minimum and maximum kinetic energy of the second

bending and torsion modes. Time-dependent dynamic behavior of a turboshaft engine (JetCat SP5)

is simulated with a transient engine model and the nonlinear aeroelastic response of the wing to

the engine’s time-dependent thrust and dynamic excitation is presented. At subcritical regime, at

the wing tip and behind the elastic axis, the impulse engine excitation leads to a stable limit cycle

oscillation; and for the ramp kind of excitation, in supercritical regime, at 75% span, behind the

elastic axis, it produces chaotic oscillation in the wing. Both the excitations at supercritical are

stabilized, on the inboard portion of the wing.
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Chapter VI

EFFECT OF ENGINE PLACEMENT ON NONLINEAR

AEROELASTIC TRIM AND STABILITY OF FLYING WING

AIRCRAFT

1

6.1 Case study: two-engine flying wing aircraft

The geometry of the flying wing studied in this thesis resembles the HORTEN IV[38, 59]; see Fig. 77.

It was modeled using 70 elements. Each wing linearly tapers with 30 elements; and the middle part of

the aircraft, which accommodates a hypothetical pilot or cargo, was modeled using 10 elements and

a lumped mass whose center lies in the plane of symmetry of the aircraft. Two engines with varying

placement along the span, and a set of flaps distributed on the wings comprise the main components

of the aircraft control system. As shown in Fig. 77 (and Fig. 78 below), η is the dimensionless length

in the b1 direction, along which the engine is located. The model properties vary linearly from the

root to the tip of each wing, and the middle portion of the aircraft is treated as a rigid body with

constant aerodynamic and inertia properties equal to those at the wing root. For a flight condition

at sea-level, the properties were tuned such that the aircraft experiences body-freedom-flutter with

the frequencies close to those of the body-freedom flutter frequency obtained from interviews with

HORTEN IV pilots[59]; see Tables 9, 8 and 6 in the appendix.

1The content of this chapter is based on a journal article accepted for publication by Journal of Aircraft.
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Figure 77: Geometry of the flying wing

Figure 78: Schematic view of the two-engine flying wing
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6.2 Body freedom flutter characteristics

Figure 79: Non-oscillatory yawing mode shape of the flying wing

Figure 80: Body freedom flutter mode shape of the flying wing

The Flutter analysis showed that this aircraft experienced body-freedom flutter at 85.5 MPH with

2.9 Hz. The flutter analysis for the aircraft with clean wings (i.e. η = 0) exhibits a real eigenvalue

(indicative of a static instability) of 0.0514 rad/sec at all speeds that involve rotation of aircraft

in the horizontal plane, which is associated with flight dynamics and is a non-oscillatory yawing

instability; see Fig. 79. There is also an unstable aeroelastic mode that involves the symmetric first

elastic bending and torsion modes coupled with the aircraft short-period mode with a frequency

of approximately 2.9 Hz, which is a so-called body-freedom flutter mode; see Figs. 80 - 86. This

mode becomes unstable at 85.5 MPH, at which speed the flap deflection is -2.15◦ and the thrust is
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10.96 lb. The latter flutter results were normalized using these results and cross-sectional dimension

was normalized using the average semi-chord value of 18.36 inches. NATASHA captures another

symmetric bending mode with an eigenvalue with a small imaginary part that is right on the stability

boundary (-0.0003±0.5i rad/sec). This mode becomes most apparent when the engines are offset

farthest from the elastic axis and at the wingtips.

Figure 81: Normalized angular velocity of the body-freedom flutter mode in B1 direction
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Figure 82: Normalized angular velocity of the body-freedom flutter mode in B2 direction

Figure 83: Normalized angular velocity of the body-freedom flutter mode in B3 direction
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Figure 84: Normalized velocity of the body-freedom flutter mode in B1 direction

Figure 85: Normalized velocity of the body-freedom flutter mode in B2 direction
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Figure 86: Normalized velocity of the body-freedom flutter mode in B3 direction

6.3 Minimum kinetic energy region and flutter characteristics

Figure 87: Normalized kinetic energy of the free-free mode of the flying wing

In the absence of engines and aerodynamic and gravitational forces NATASHA is used to analyze the

mode shapes and the natural frequencies of the aircraft. The important aspect of this analysis is that

one finds the region where the kinetic energy reaches its minimum for the lowest frequency symmetric
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elastic free-free bending mode. The nodes in this region are termed as the minimum kinetic energy

nodes and, as shown later in this study, may represent ideal locations to place engines. Coupling

between bending and torsion modes is a common effect in swept composite wings[42]. Figure 87

depicts the kinetic energy distribution of the symmetric free-free mode of the bare wing for the case

study presented in section 6.1. One can see that the point of the minimum kinetic energy is just

outboard of 60% span. As expected the absence of engines increases the frequency of that mode.

6.4 Effect of aft sweep on flutter characteristics of the flying wing

Figure 88: Flutter speed vs. sweep angle for the flying wing

The effect of aft sweep for the flying wing with engines at root, middle and tip of the wing with zero

offset from the elastic axis is presented in Fig. 88. Flutter speeds were normalized using the flutter

speed of the unswept wing without an engine, which was 67.8 miles/hour. As is known, aft sweep

generally increases flutter speed [12, 58, 55, 56, 46, 8].

6.5 Effects of engine placement on nonlinear trim and stability of flying
wing aircraft

Two identical engines with known mass, moments of inertia, and angular momentum were symmet-

rically moved along the span, i.e., in the b1 direction; and the engine mounts were displaced with
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an offset from the elastic axis in the plane of the wing cross section, i.e. b2,b3, while orientations

of the engines were maintained; see Fig. 78.

Figure 89, is a representative result of engine placement along the span with two cases of engine

offsets from the elastic axis. The first case, when the engines are placed along the span with no

offset from the elastic axis, shows a significant increase in flutter speed as the engines are placed

between 50% to 70% span. The second case is for engine placement along the span while the offset

is forward from the elastic axis up to the order of the mean semi-chord. Similar to the first case, a

significant increase in flutter speed is observed when engines are placed between 40% to 80% span.

These results are in good agreement with the result presented in the book by Y. C. Fung [32]. In

both cases, the flutter speed increase at the area of minimum kinetic energy density and decreases as

the engines are placed at the wing tip. Flutter speed experiences small fluctuation when the engines

are placed at the inner portion of the wing. To further investigate the area where the flutter speed

reaches its maximum and minimum, contour plots of flutter speed for these areas are presented.

Figure 90 is the contour of flutter speed where the maximum flutter speeds occurs, at η = 0.65.

These results show that as the engines are placed forward of the elastic axis the flutter speed increases

by a factor of two while the flutter mode is unaffected by this change; see Fig. 91. Examination of

the eigenvectors has shown that the flutter mode shape is also unaffected. By further investigations

of the flutter results, one sees that flutter speed drops when the engines are placed at the tip of the

wings, i.e., where η = 1. In contrast with the location where the maximum flutter speed is reported

(η = 0.65), a higher flutter speed is attained at this location while the engines are moved aft and

above the elastic axis; see Fig. 92. This is caused by a nose-down pitching moment induced by the

engines at the tip of the wings. Stability analysis shows that the unstable mode and its frequency

are unaffected for the locations at which higher flutter speeds were captured; but for the region

where lower flutter speeds are reported, the flutter frequency dramatically increases. This increase

is mostly for the engine placements aft and close to the elastic axis; see Fig. 93.

At η = 0.65, for engine placement forward of the elastic axis, the flap deflection counteracts the

nose-up pitching moment induced by the engines thrust; see Fig. 94. NATASHA trims the aircraft
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for equality of the lift to the weight and of the drag to the thrust. As flutter speed increases,

the aircraft requires more thrust to trim at higher speeds, which leads to higher drag. This effect

dramatically increases the thrust; see Fig. 95. It is noteworthy that the thrust follows the same

pattern as the flutter speed; see Fig. 90.

Placing the engines at the wing tips one sees that patterns of the control (i.e., flap and thrust)

contours at the point where instability occurs have very similar behaviors to those of flutter speed

and frequency, respectively; see Figs. 92, 93, 96 and 97. When the engines are at the tip of the

wings, forward of and below the elastic axis, flaps play a significant role in trimming the aircraft and

counteracting the nose-up moment induced in the wing; see Fig. 96. The trimming moments from

the flaps must counteract the moment created by the offset thrust. Figure 96 shows that when the

engines are aft and above the elastic axis, flutter speed increases and requires more thrust to trim.

Figure 89: Flutter speed for engine placement along the span for two values of chordwise offset
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Figure 90: Contour of normalized flutter speed at η = 0.65

Figure 91: Contour of normalized flutter frequency at η = 0.65
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Figure 92: Contour of normalized flutter speed at η = 1

Figure 93: Contour of normalized flutter frequency at η = 1
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Figure 94: Contour of normalized flap at flutter at η = 0.65
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Figure 95: Contour of normalized thrust at flutter at η = 0.65

Figure 96: Contour of normalized flap at flutter at η = 1
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Figure 97: Contour of normalized thrust at flutter at η = 1

6.6 Effects of engine placement with constant aircraft c.g. location

Placement of engines toward the outboard portion of the wings caused the aircraft center of gravity

(c.g.) to migrate aft. This effect was counteracted by the larger response in the aircraft controls

(flap and thrust). NATASHA was able to trim the aircraft with larger values of thrust and flap

deflections. However, in some cases, especially when the engines were closer to the wing tip, the flap

deflections exceeded the range of validity for the aerodynamic model, which requires small flap angles

(±6◦). In order to overcome this problem, a concentrated mass representing the pilot or a piece of

equipment was displaced, such that the aircraft center of gravity remained constant at (0, -32.1 ,

-3.7) inches with respect to the reference point; see Fig. 98. This change not only helped to keep the

flap deflections in the linear range, but also smoothed out variations in the flutter speed, increasing

it along the span. Figure 99 shows a sample case of this effect where the engines were placed at zero

offset from the elastic axis. As shown, this setup is very useful for the case of engines being placed

at the tips of the wings. Figure 100 shows the effect of keeping the aircraft c.g. constant on flutter
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speed as the engines were displaced in the wings’ cross-sectional plane at η = 0.65. Comparing these

results with the ones shown in Fig. 90, one sees that the flutter speed aft and above the elastic

axis has increased, while flutter frequencies monotonically decrease as the engines move from aft to

forward of the elastic axis; see Fig. 101. Results presented in Fig. 92 showed that flutter speed is

at the lowest value with engines at the tips of the wings. Figure 102 shows that keeping the c.g. of

the aircraft constant increases the flutter speed in particular for engine placement above the elastic

axis. Figure 103 shows that the flutter frequencies stay in the same range, whereas in the previous

result flutter frequencies exhibited a large increase; see Fig. 93. Note that keeping the c.g. of a flying

wing aircraft fixed can help keep the control settings within linear bounds. This, together with the

results presented here, are important factors for placement of the engines in order to achieve good

performance and fuel-efficient design.

Figure 98: Aircraft mass balance
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Figure 99: Effect of engine placement and aircraft center of gravity with zero offset from the elastic

axis

Figure 100: Contour of normalized flutter speed at η = 0.65, keeping aircraft c.g. constant
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Figure 101: Contour of normalized flutter frequency at η = 0.65, keeping aircraft c.g. constant

Figure 102: Contour of normalized flutter speed at η = 1, keeping aircraft c.g. constant
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Figure 103: Contour of normalized flutter frequency at η = 1, keeping aircraft c.g. constant

6.7 Epilogue

Effects of engine placement and sweep on flutter characteristics of an aft-swept flying wing resembling

the Horten IV are investigated using NATASHA. This aircraft exhibits a non-oscillatory yawing

instability, expected in aircraft with neither a vertical tail nor yaw control. More important, however,

is the presence of a low frequency “body-freedom flutter” mode. The aircraft center of gravity was

held fixed during the study, which allowed aircraft controls to trim similarly for each engine location,

and minimized flutter speed variations along the inboard span. Maximum flutter speed occurred for

engine placement just outboard of 60% span with engine center of gravity forward of the elastic axis.

The body-freedom flutter mode was largely unaffected by the engine placement except for cases in

which the engine is placed at the wing tip and near the elastic axis. In the absence of engines,

aerodynamics, and gravity, a region of minimum kinetic energy density for the first symmetric free-

free bending mode is also near the 60% span. A possible relationship between the favorable flutter

characteristics obtained by placing the engines at that point and the region of minimum kinetic

energy is briefly explored.
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Chapter VII

EFFECT OF MULTIPLE ENGINE PLACEMENT ON AEROELASTIC

TRIM AND STABILITY OF FLYING WING AIRCRAFT

1

7.1 Case study: four-engine flying wing aircraft

The geometry of the flying wing studied in this section resembles the HORTEN IV as described by

[38], [59], and [52]; see Fig. 104. This aircraft is modeled using 45 elements. Each wing is constructed

with 19 elements; and the middle part of the aircraft, which accommodates a hypothetical pilot or

cargo, is modeled using six elements and a lumped mass whose center lies in the aircraft plane of

symmetry. Four engines with varying placement along the span and a set of flaps distributed on the

wings comprise the main components of the aircraft flight control system. As shown in Figs. 104

and 118, η1 and η2 are the dimensionless distances along b1, along which the engines are located on

the right wing; r1 and r2 are radial offsets of the engines from the elastic axis, normalized by the

maximum radial offset from the elastic axis, rnominal = 0.3 meters; ψ1 and ψ2 are the polar angles,

with ψn = 0 (n = 1, 2) pointing upstream. As the engines were placed further outboard along the

span, the aircraft c.g. migrated aft. In order to counteract this effect, the concentrated mass in the

aircraft plane of symmetry was displaced such that the c.g. was held constant at (0, -1, -0.1) meters

with respect to the reference point.

1The content of this chapter is based on a journal article accepted for publication with minor revision by Journal
of Fluids and Structures.
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The aerodynamic properties of the wing vary linearly from root to tip; see Table 9 in the Ap-

pendix. The model properties vary from root to tip of the wings using these relations:

µ = µroot

(
c

croot

)
ξ = ξroot

(
c

croot

)
[R] = [R]root

(
c

croot

)
[S] = [S]root

(
c

croot

)2

[I] = [I]root

(
c

croot

)3

[T ] = [T ]root

(
c

croot

)3

(17)

These relationships are derived empirically from the Variational Asymptotic Beam Section (VABS)

for sections with different chord lengths; see [18] and [85, 84]. The middle portion of the aircraft

is treated as a rigid body with constant aerodynamic and inertia properties equal to those at the

wing root. Detailed sectional properties of the wing can be found in Table 8; these properties were

tuned such that the aircraft experiences body-freedom-flutter with the frequencies close to those of

the body-freedom flutter frequency obtained from HORTEN IV pilots as described by [38], [59], and

[52]. See Table 3.

7.2 Effects of engine placement on lift to drag ratio

Lift to drag ratio analysis is done by calculating the ratio of the equivalent forces, namely weight

and total thrust. Weight of the aircraft is assumed to be constant, and at constant speed (50 m/s)

while the aircraft c.g. was held constant, NATASHA calculated the total thrust for different engine

placements along the span, including offsets from elastic axis. In this analysis, for example, the first

engine on the right wing is fixed at η1 with a particular offset from the elastic axis, and the second

engine on the right wing is further out along the span but with the same offset from the elastic

axis. It was observed that engine placement along the span does not significantly affect L/D of

the aircraft; see Figs. 105 – 112. The small variation of L/D can be attributed to the small static

deflections of the wings as the engines are moved along the span – not due to considerations of the

engine aerodynamics. Figure 113 shows the contour of L/D for varying the offset of the engines

from elastic axis while fixing their span wise location; i.e., η1 = 0.1 and η2 = 0.3. It is shown that

the change in L/D is not large.
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Figure 104: Top view of the flying wing

Figure 105: Lift to drag ratio for r1 = r2 = 0.3 and ψ1 = ψ2 = 0◦
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Figure 106: Lift to drag ratio for r1 = r2 = 0.3 and ψ1 = ψ2 = 45◦

Figure 107: Lift to drag ratio for r1 = r2 = 0.3 and ψ1 = ψ2 = 90◦
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Figure 108: Lift to drag ratio for r1 = r2 = 0.3 and ψ1 = ψ2 = 135◦

Figure 109: Lift to drag ratio for r1 = r2 = 0.3 and ψ1 = ψ2 = 180◦

82



Figure 110: Lift to drag ratio for r1 = r2= 0.3 and ψ1 = ψ2= 225◦

Figure 111: Lift to drag ratio for r1 = r2= 0.3 and ψ1 = ψ2= 270◦
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Figure 112: Lift to drag ratio for r1 = r2= 0.3 and ψ1 = ψ2= 315◦

Figure 113: L/D contour for η1 = 0.1 and η2= 0.3

7.3 Body freedom flutter characteristics

The behavior of the sub- and supercritical eigenvalues was studied for two cases of engine placement,

both with zero offset from the elastic axis: (a) η1 = 0 and η2 = 0.5, and (b) η1=0.6 and η2=0.9.

For the first case, body-freedom flutter occurred at 40.8 m/s with a frequency of 9.560 rad/s while
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the first symmetric bending mode of the wings couples with the aircraft short-period mode; see Fig.

115. In the supercritical regime, as the speed increases, the modal damping peaks and then returns

to the stable region (a so-called hump mode) and another mode becomes unstable; see Fig. 114.

The second case experienced flutter at 88 m/s with frequency 47.12 rad/s. The unstable mode is

a mixed motion of in- and out-of-plane bending coupled with torsion and the aircraft short-period

mode.

As the engines are placed further outboard, i.e., case (b), the low-frequency oscillatory mode

presented in case (a) remains stable; see Fig. 116. Instability occurs at a higher speed (88 m/s).

There was no apparent coalescence between the unstable mode of the aircraft and other modes at

the point where instability occurred; see Fig. 117. In both cases, NATASHA captured other non-

oscillatory unstable roots of flight dynamic origin with very small magnitude. The results at the

onset of instability for case (a) are presented in Table 3 and are used for normalization of other

results.

Figure 114: Real part of the eigenvalues for η1=0 and η2=0.5
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Figure 115: Imaginary part of the eigenvalues for η1=0 and η2=0.5

Figure 116: Real part of the eigenvalues for η1=0.6 and η2=0.9
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Figure 117: Imaginary part of the eigenvalues for η1=0.6 and η2=0.9

Table 3: Flutter characteristics of the base model

Engine locations Speed (m/s) Eigenvalues (rad/s) Thrust (N) Flap (deg.)
r1 = r2 = ψ1 = ψ2 = 0

η1=0, η2=0.5
40.8

0.022
0.0006± 9.560i

23.02 1.257

7.4 Effect of multiple engine placement on body freedom flutter

Four identical engines with known mass, moments of inertia, and angular momentum are symmet-

rically placed along the span (i.e., in the b1 direction), and the engine mounts are offset from the

elastic axis in the plane of the wing cross section (i.e., along b2 and b3), while the engine orienta-

tions are maintained; see Fig. 118. The engine offsets from the elastic axis are presented in polar

coordinates with (rn, ψn) where n is the engine number. Figures 119 – 127 show the variation in

flutter speed for different engine placements along the span with different offsets from the elastic

axis while one of the engines was kept fixed in a particular location and the other one moves along

the span. It is to be noted that the variability of flutter speed with engine location is primarily the

result of thrust, angular momentum and inertial properties of the engines rather than aerodynamic

effects due to their deformation of the wing.
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Figure 118: Schematic view of the flying wing

When engines are placed along the span with no offset from the elastic axis, a higher flutter speed

is obtained when the second engine is placed at the outer portion of the wing and the first engine

is at an area between 50% to 70% span; see Fig. 119. This region continues to exhibit high flutter

speeds as engines are placed forward of the elastic axis (i.e. ψ is in the first and fourth quadrant).

When the engines are placed behind the elastic axis (i.e. ψ is in the second and third quadrant)

there is no significant peak in the flutter speed, and maximum flutter speed occurs mostly when both

engines are closer to the root of the wing; see Figs. 120 – 127. It should be noted that normalized

flutter speeds greater than 3 are beyond the incompressibility assumption in the aerodynamic model

used in NATASHA. The results in this regime of flow cannot be trusted, but they could be used as

an indication of how the trend of flutter speed might change.

For engine placement forward of the elastic axis, the unstable mode associated with the area with

noticeable increase in flutter speed, i.e. 50% to 70% span, contains motion of a first bending-torsion

coupled mode with second and third bending modes; see Figs. 119, 120, 121, 122, and 127.

On the other hand, for engine placement behind the elastic axis, although the trim solution is
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symmetric, the unstable mode is antisymmetric – a first bending-torsion mode; see Figs. 123, 124

and 125. This is caused by excitations from an antisymmetric flight dynamic mode.

Figure 119: Normalized flutter speed for r1 = r2= 0 and ψ1 = ψ2= 0◦

Figure 120: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 0◦
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Figure 121: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 45◦

Figure 122: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 90◦

90



Figure 123: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 135◦

Figure 124: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 180◦
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Figure 125: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 225◦

Figure 126: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 270◦

The maximum fluctuation of the flutter speed appears to be when the second engine is at 80%

span and the first engine is between 50% to 70%. To further investigate this area, contour plots of the

flutter speed and frequency are presented in Figs. 128 – 133, which show the contour of normalized

flutter speed and frequency when the first engine is at 50% span and the second at 80% span. For
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Figure 127: Normalized flutter speed for r1 = r2= 0.3 and ψ1 = ψ2= 315◦

engine placement forward of the elastic axis, normalized flutter speed increases while there is little

change in normalized flutter frequency. The same behavior was observed in flutter speed as the first

engine is moved toward the outboard portion of the wing – closer to the second engine. However,

there is a rapid increase in flutter frequency accompanied by a change in the unstable mode shape;

see Figs. 130 – 133.

Figure 128: Normalized flutter speed contour for η1 = 0.5 and η2 = 0.8
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Figure 129: Normalized flutter frequency contour for η1 = 0.5 and η2 = 0.8

Figure 130: Normalized flutter speed contour for η1 = 0.6 and η2 = 0.8
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Figure 131: Normalized flutter frequency contour for η1 = 0.6 and η2 = 0.8

Figure 132: Normalized flutter speed contour for η1 = 0.7 and η2 = 0.8
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Figure 133: Normalized flutter frequency contour for η1 = 0.7 and η2 = 0.8

Another comparison is done for the case when the first engine is at 10% span while the second

engine is moved outboard (i.e. 50% to 70% span). Contours of flutter speed and flutter frequency

are presented in Figs. 134 – 139. When the second engine is placed at 50% span, as engines are

moved forward of the elastic axis the flutter speed increases and flutter frequency changes slightly;

see Figs. 134 and 135. Placement of the second engine at 60% span increases the flutter speed to a

higher range, and flutter frequency experiences a rapid change as the unstable mode shape changes;

see Figs. 136 and 137. When the second engine is placed farther outboard from the first (i.e. 70%),

the flutter speed and frequency increase to higher values; see Figs. 138 and 139. In these cases,

engine placement forward of the elastic axis increases the flutter speed.
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Figure 134: Normalized flutter speed contour for η1 = 0.1 and η2 = 0.5

Figure 135: Normalized flutter frequency contour for η1 = 0.1 and η2 = 0.5
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Figure 136: Normalized flutter speed contour for η1 = 0.1 and η2 = 0.6

Figure 137: Normalized flutter frequency contour for η1 = 0.1 and η2 = 0.6
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Figure 138: Normalized flutter speed contour for η1 = 0.1 and η2 = 0.7

Figure 139: Normalized flutter frequency contour for η1 = 0.1 and η2 = 0.7

7.5 Area of minimum kinetic energy

In the absence of aerodynamics, gravitational force, and engines, NATASHA was used to calculate

the kinetic energy of the modes of the aircraft; see Figs. 140 – 142. This analysis was done in order

to find the region where the kinetic energy reaches its minimum for the first three lowest frequency

elastic free-free bending modes. Thus, the area of minimum kinetic energy for the first and third

bending modes is located around 60% span; see Figs. 140 and 142. For the second mode, this area

has a local minima at 20% and 80% span; see Fig. 141.

For engine placement forward of the elastic axis, the unstable mode contains a combination of
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first, second, and third bending modes; and when the engines are placed around 60% to 80% span,

there is a noticeable increase in flutter speed. This area is close to the area of minimum kinetic

energy of the first three bending modes; see Figs. 140 – 142.

Figure 140: Normalized kinetic energy of the symmetric first free-free mode of the flying wing

Figure 141: Normalized kinetic energy of the symmetric second free-free mode of the flying wing
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Figure 142: Normalized kinetic energy of the symmetric third free-free mode of the flying wing

7.6 Epilogue

Effects of multiple engine placement on flutter characteristics of a backswept flying wing resembling

the HORTEN IV are investigated using the code NATASHA. Four identical engines with defined

mass, inertia, and angular momentum are placed in different locations along the span with different

offsets from the elastic axis while fixing the location of the aircraft c.g. The aircraft experiences body

freedom flutter along with non-oscillatory instabilities that originate from flight dynamics. Multiple

engine placement increases flutter speed particularly when the engines are placed in the outboard

portion of the wing (60% to 70% span), forward of the elastic axis, while the lift to drag ratio is

affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases

of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the

clean wing case, which disappears as the engines are placed on the wings. In neither case is there

any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory

unstable roots with very small amplitude, apparently originating with flight dynamics. For the

clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum

kinetic energy density for the first and third bending modes are located around 60% span. For the

second mode, this kinetic energy density has local minima around the 20% and 80% span. The
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regions of minimum kinetic energy of these modes are in agreement with calculations that show a

noticeable increase in flutter speed if engines are placed forward of the elastic axis at these regions.
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Chapter VIII

PASSIVE MORPHING OF FLYING WING AIRCRAFT

1

8.1 Passive morphing of flying wing aircraft: Z configuration

In this study a solar powered High Altitude, Long Endurance (HALE) flying wing aircraft is consid-

ered to morph into a “Z” configuration to allow for sustained uninterrupted flight. Energy absorp-

tion of this aircraft is maximized if the sun exposure of the solar panels distributed on the wings is

maximized.For this purpose a three-wing HALE flying wing follows the sun and morphs passively

(without actuators at the hinges and only making use of aerodynamic force and thrust) into a Z

shaped configuration, while the bending moments about hinge lines at the beam connections are

zero. To capture these phenomena, NATASHA has been augmented with new equations to analyze

aeroelastic trim, stability and time marching of such aircraft. Local bending moments are zeroed

out at the beam connection points while the hinges are locked and are kept at zero while the aircraft

morphs. The morphing motion is brought to a stop before the hinges are again locked. The emphasis

of this study is to demonstrate the systematic processes required for passive morphing of a flying

wing with Z configuration.

8.2 Theory behind passive morphing

NATASHA and Nonlinear Composite Beam Theory [40] were explained in sections 4.1 and 3.1,

respectively. In this section, the theory behind NATASHA was extend to include the capability of

aeroelastic analysis and simulation of passive morphing of flying wing aircraft.

1The content of this chapter is based on a journal article accepted for publication with minor revision by Journal
of Fluids and Structures.
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8.2.1 Trimming

The trim condition of the aircraft can be found by finding a steady-state solution of the aeroelastic

equations from which with all time derivatives have been removed. NATASHA trims the aircraft for

equality of lift to weight and thrust to drag by finding the controls of the aircraft (flap angles and

individual engine thrusts) for a prescribed speed and climb angle. The symmetric trim equations at

the aircraft reference node are [64]

ĝ2V̂2 + ĝ3V̂3 − tanφ(ĝ3V̂2 + ĝ2V̂3) = 0

V̂ 2
2 + V̂ 2

3 − V̂ 2
∞ = 0.

(18)

As the aircraft morphs into an asymmetric configuration, a new set of trim equations at the reference

node of the aircraft is required to trim the aircraft. These equations for zero flight path angle are:

Vref · gref = 0

Ωref = 0

V1
ref = 0

|Vref | − V∞ = 0.

(19)

In order to passively (i.e., avoiding actuators) morph the flying wing using aerodynamic forces and

thrust, another set of equations in addition to the former trim equations is required to trim the

aircraft. It is noted that these forces should fold the wings in a quasi-static morphing process so as

to avoid inducing vibrations. It is also required that the moment about the folding hinge stays zero

at each prescribed fold angle. For this purpose, a unit vector along the hinge line (h) is introduced

in the direction in which the hinges are designed to fold. The scalar product of the hinge vector and

the total moment at the hinge location needs to be maintained zero, so that there is no resistance

while folding occurs; thus,

Mn · hn = 0 n = 1, 2, . . . . (20)

Finally, for each hinge, a new equation is added to the system of aeroelastic equations along with a

new set of flaps to the unknowns. A detailed explanation on the aeroelastic equations and variables

for non-morphing configuration is available in the work done by [64]. The effects of hinge stiffness
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and damping are neglected for the present study, but their addition is planned for a later work

to enhance the realism of the model. The addition of hinge damping will allow energy dissipation

to be taken into account, and it is expected that incorporation of a spring-restrained hinge may

facilitate passive morphing. When the system of nonlinear aeroelastic equations is then linearized

about the trim state, one obtains a generalized eigenvalue problem that NATASHA uses to assess

stability. Because the velocity field is expressed in terms of the state variables of the problem in

a geometrically exact manner, it means that the instantaneous velocity of the wing surface during

morphing is taken into account in the stability (flight dynamic and aeroelastic) analyses.

8.2.2 Time marching

NATASHA is capable of time marching the aeroelastic system of equations using the scheduled

control of the aircraft that comes from the trim solution [64]. When time marching the morphing

process, four aircraft controls (a value for all engines and three flap settings) with prescribed location

are scheduled to morph the aircraft over a suitable time period and time steps. The fold angles are

the unknown variables in the state vector of the time marching, whereas in the trim solution they

were prescribed. During the morph process, the morph speed (the time rate of the change of the

fold angle) at each hinge is governed by

(Ω̂l,n − Ω̂r,n) · hn = θ̇n n = 1, 2, ... (21)

where for the nth hinge, Ω̂l,n and Ω̂r,n are the nodal left and right value for the angular velocity in

the B basis and θ̇ is the time rate of change of the nth fold angle.

8.3 Case study: solar powered flying wing

8.3.1 Flying wing configuration

In this study a very high aspect ratio flying wing is modeled with three beams connected to each

other with two hinges about which folding takes place. Each beam has 12 elements and the length of

each element on the middle beam is 15 ft, and on the side beams is 8 ft with a constant semi-chord

value of 4 ft. The two terminal elements have a dihedral of 2◦. The aspect ratio of the flying wing

is 50.3 which makes it suitable to use the two-dimensional finite-state induced flow aerodynamic
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Table 4: Flying wing cross-sectional properties

Elastic axis (reference line) 25% chord
Torsional stiffness 0.4× 108 lb-ft2

In-plane bending stiffness 2.5× 108 lb-ft2

Out-of-plane bending stiffness 30× 108 lb-ft2

Mass per unit length 3 slug/ft
Mass of each engine 0.3 slug
Angular momentum of engine 10 slug-ft2/sec
Wing cross-sectional center of mass location 25% chord

Centroidal mass moments of inertia
About the x1 axis (torsional) 30 slug-ft
About the x2 axis 5 slug-ft
About the x3 axis 25 slug-ft

Sectional aerodynamic coefficients at 25% chord
clα 2π
clδ 1
cd0 0.02
cm0 0.0005
cmα 0.01
cmδ -0.25

model of [67]. There are four identical engines with prescribed mass, inertia and angular momentum

placed at outer portion of the beams with zero offset from elastic axis; see Fig. 143. Three sets of

flaps are distributed on the wings: one set (set 1) is on the side wings; the middle beam was divided

into equal portions for the two other sets of flaps (sets 2 and 3); see Figs. 143 and 144. Table 4

describes the cross-sectional properties of the flying wing.

Figure 143: Geometry of the flying wing
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Figure 144: Schematic front view of the morphed configuration of the flying wing

8.3.2 Morphing process

The flying wing with distributed solar panels on the upper surface of the wings is scheduled to

morph and change its geometry by folding the side wings from 0◦ to 45◦. This change in geometry

will lead to a Z-shaped configuration that maximizes the solar panel exposure to the sun (see Fig.

2) and consequently the solar energy absorbency, which provides power for sustained flight.

8.3.2.1 Aeroelastic trim and stability of passive morphing

The time independent schedule of the controls (thrusts and angle of flaps) of the flying wing, which

morphs between two aeroelastically stable configuration with zero climb angle and unit load factor

at 30 ft/sec, is obtained from the following trim conditions:

Trim condition 1 – Initial locked condition This is the initial trim condition where the aircraft

is trimmed with zero fold angle, i.e. θ = 0◦, while the hinges are locked and completely loaded

with connection moments and forces. The geometry of the aircraft still has a plane of symmetry
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consequently the aircraft is trimmed using Eq. ( 18). Each thrust value is 15.9 lb., and all of

the flaps equally deflect to the angle of 0.218◦. Stability analysis shows that this configuration

of the flying wing has directional instability with lead-lag motion with 0.027 rad/sec.

Trim condition 2 – Unloading and unlocking condition Before unlocking the hinges, one needs

to remove the bending loads on the hinges so that it can be conveniently unlocked. For this

purpose NATASHA is programmed to linearly decrease the moment about the fold direction

from the value at the locked condition to zero, while the fold angle is maintained at zero

(θ = 0◦). Theoretically, all steady state equilibrium equations are unchanged except Eq. (

20). For these trim conditions the right hand side of the Eq. ( 20) is equal to the amount

of the desired moment for each unloading condition of the hinges. In these conditions, the

aircraft is trimmed with four trim variables (a set of thrust and three sets of flaps) while the

geometry of the aircraft remains unchanged, and the aircraft still has a plane of symmetry.

The thrusts remain unchanged, but the flap angles slightly change (from 0.218◦ to −0.5◦ for

the middle beam, and to 0.8734◦ for side beams). Stability analysis shows that the unstable

non-oscillatory flight dynamic mode is unaffected by this change.

Trim condition 3 – Morphing condition In the third condition the trim and stability of the

aircraft are studied while it morphs from 0◦ to 45◦. The new configuration is asymmetric

and requires asymmetric trim equations; i.e., Eq. ( 19). In these trimmed conditions, thrust

remains unchanged, and the three sets of flaps are found to follow another schedule: to trim the

aircraft such that the moment about the hinge stays zero while the aircraft’s angular velocity

and sideslip velocity remain zero. Note that the load factor of the aircraft (the magnitude of

ĝ) remains unity. Although the new configuration is asymmetric, Eq. ( 19) dictates that the

aircraft’s angular and sideward velocity remain zero. Figure 145 shows the thrust requirement

and Fig. 146 shows the flap requirement for this maneuver. As expected, the change in required

thrust is insignificant because the primary source of drag for high-aspect ratio aircraft is the

profile drag and skin-friction drag. This drag does not change as the aircraft morphs and the

loss in lift is recovered by increase in the aircraft’s angle of attack; see Fig. 147. Stability
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analyses in these trim conditions capture the same unstable non-oscillatory flight dynamics

mode the amplitude of which changes with no apparent regularity.

Trim condition 4 – Locking and loading condition In the fourth trim condition the fold angle

reaches its final value (45◦), and the geometry of the aircraft changes into Z-shaped configu-

ration. When this configuration is attained, morphing stops and hinges could be locked and

gradually loaded. It is necessary to load the hinges very gradually without any acceleration,

so as to avoid impact and damage to the hinges. For gradual loading, the moment on the

right hand side of Eq. ( 20) linearly increases to its final value obtained from the final locked

condition. The angular velocity and sideslip velocity of the reference frame of the aircraft

remain zero. Thrust remains unchanged, and the flaps change to 0.2◦. NATASHA’s stability

analysis captures the same unstable flight dynamic mode the magnitude of which changes very

slightly with no apparent regularity.

Trim condition 5 – Final locked condition In the final trim condition the aircraft is in the Z-

shaped configuration with locked and loaded hinges. NATASHA trims the aircraft with its

non-morphing aeroelastic equations [64] where the angle of the deflection of all flaps and the

magnitude of all thrusts are the only two unknown trim variables of the problem. Stability

analysis shows that the non-oscillatory unstable flight dynamics mode from the former trim

conditions is accompanied with another non-oscillatory flight dynamic mode with eigenvalue

0.0310 rad/sec. The angular velocity and velocity of the aircraft reference frame have the same

characteristics as in former trim conditions.

8.3.2.2 Aeroelastic stages of passive morphing

For maximum exposure of the solar cells to the sun, for instance from noon to evening twilight, the

morphing maneuver needs to take place approximately within six hours; see Fig. 2. This requires the

aircraft to morph gradually from 0◦ to 45◦. This kind of morphing is referred to as “quasi-static”

because changes in the structural configuration between time steps are very small, and the aircraft is

always close to a trim solution. That is, the quasi-static process ensures that the system goes through
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Figure 145: Each engine thrust vs. angle of morph

Figure 146: Deflection of flaps vs. angle of morph

a sequence of states that are infinitesimally close to trim solutions. Since this maneuver is assumed to

be prolonged enough that meets the criteria for an ideal quasi-static maneuver, time dependent terms

disappear from the equations. Without this assumption, it would have been necessary to time march

and calculate the amount of required time to reach to a quasi-static process. NATASHA is capable of

such time-marching to simulate this maneuver in the actual time period using second-order, central-

difference, time-marching algorithm with high frequency dissipation [64]. This approach is, however,

quite computationally expensive since a time step ∆t of the order of 10−5 seconds is needed. For the

purpose of saving time and cost in computations and considering the fact that the trim solutions are

aeroelastically stable (i.e. small perturbations about the equilibrium states do not grow), one can
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Figure 147: Angle of attack vs. angle of morph

introduce quasi-static simulation stages. One can then time march during each stage and simulate

this maneuver with combinations of successive stages. In order to accomplish this, the flight controls

are obtained from a sequence of trim conditions. These were curve-fitted to experience the following

time-marching phases over the actual simulation time, and the state variables were evaluated at

each converged time-marching solution for one time step during every stage of this maneuver. It was

verified that increasing the number of stages does not affect the simulation since the equations are

independent of time between the stages. One should take as many stages as necessary to accurately

simulate this process. It should be noted that this scheme of simulation is different from an actual

time marching scheme and, as such, can only be used for quasi-static maneuvers where the structure

is always in the vicinity of equilibrium.

If it is required to morph the aircraft faster, then an active control system may be required to

provide the aircraft flight-control schedule. For faster maneuvers, the design of this active control

system can be achieved by noting the difference between the desired response and actual response

for the pertinent time period. Once the actual response is known then the parameters of the

active control system can be ascertained so as to bring the the actual solution in tune with the

desired solution. However, for the current idealized problem, as mentioned previously, the quasi-

static solution and its subsequent stages is sufficient since the morphing process takes place very

gradually.
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Phase 1 – Initial locked phase The first phase consists of 10 stages, while the flying wing is

unfolded and hinges are locked and loaded. The schedule of the control of the aircraft is

obtained from the sets of trim variables obtained from the first trim condition.

Phase 2 – Unloading phase As formerly mentioned, in order to avoid impact and shock to the

structure which may lead to uncontrollable vibration it is required to remove the load in the

direction in which the hinge is desired to fold and then unlock (removing a hypothetical pin

from the hinge). The second phase is considered to gradually remove the bending moment

about the folding hinge, and its associated trim condition is the second trim condition that

schedules the thrust and the three sets of flaps such that the hinges are unloaded within 10

stages, while the fold angles are still zero. It was noticed while time marching the unloading

phase, it is not required to set the right hand side of Eq. ( 20) to the amount of desired

decreasing moment. In other words, the schedules of the control of the aircraft are set in a

way that they enforce the loads on the hinge to decrease linearly in this phase.

Phase 3 – Unlocking phase Having the hinges unloaded, the aircraft reaches the state where the

hinges could be unlocked. In this phase, the aircraft maintains its configuration such that the

time rate of the change of the fold angles at 0◦ remains zero, i.e. dθn/dt = 0 (n = 1, 2) for 10

stages. The schedules of the controls of the aircraft are the extension of the last trim condition

obtained from unloading and unlocking trim condition over the corresponding stages.

Phase 4 – Morphing phase The main change in the geometry of the aircraft happens in morphing

phase within a maneuver of 46 stages. During this phase, the aircraft morphs from a fold

angle of 0◦ to 45◦ and changes its geometry into the Z-shaped configuration while the bending

moment along the direction in which the hinges are folding is maintained zero.

Phase 5 – Locking phase In order to lock the hinge, it is necessary to keep dθn/dt = 0 when

θn = 45◦, (n = 1, 2). The schedule for this phase is the extension of the last trim condition

over 10 stages.

Phase 6 – Loading phase When the hinge is locked at a fold angle of 45◦, it will be loaded
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gradually within 10 stages, using the schedule of the controls from the fourth trim condition,

which was obtained by equating the right hand side of the Eq. ( 20) to the amount of the linearly

increasing moment for each unloading condition. Like unloading phase, it is not required to

change the right hand side of Eq. ( 20) over the pertinent stages.

Phase 7 – Final locked phase The final phase is comprised of 10 stages, while the hinges are

locked and loaded. The aircraft is in Z-shaped configuration with a fold angle of 45◦.

Figure 148: Schedule of angle of flap for set 1 vs. stages

Figure 149: Schedule of angle of flap for set 2 vs. stages

Figure 152 depicts a schematic of the morphing process and Fig. 153 shows the change of the fold
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Figure 150: Schedule of angle of flap for set 3 vs. stages

Figure 151: Schedule of thrust vs. stages

angle during all the time marching phases of the aircraft over 106 stages. Figures 154 – 156 show

the beam connection moment at the second hinge for the entire morphing process in the B basis

normalized with the amplitude of the beam connection moment at zero time. It is noteworthy that

coming back to the original configuration (i.e., unfolded configuration) is straightforward, requiring

one to time-march the aeroelastic equations by reversing the schedule of aircraft’s controls obtained

earlier from the trim solutions.
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8.4 Epilogue

HALE aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing

morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An

example of the kind of morphing considered in this chapter requires the wings to fold so as to

orient a solar panel to be hit more directly by the sun’s rays at specific times of the day. In this

study solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge

connections. Such aircraft are shown to be capable of morphing passively, following the sun by

means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA was extended

to include the ability to simulate morphing of the aircraft into a “Z” configuration. Because of the

“long endurance” feature of HALE aircraft, such morphing needs to be done without relying on

actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially

demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration

and back again.

Figure 152: Passive flying wing morphing
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Figure 153: Fold angle vs. stages

Figure 154: Connection moment in B1 direction vs. stages
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Figure 155: Connection moment in B2 direction vs. stages

Figure 156: Connection moment in B3 direction vs. stages
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Chapter IX

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

NATASHA’s results for the pre- and post-instability behavior of the eigenvalues were validated and

the results are in excellent agreement. For the case of sweep effects, NATASHA showed an excellent

agreement both in divergence and flutter speed for the classical Goland wing.

In subsonic flow, a very flexible high-aspect-ratio wing which displays geometrically nonlinear

behavior is analyzed using NATASHA. For the the case of clean wing, the behavior of the eigenvalues

at pre- and post instability in two conditions, with and without gravity is studied. In the absence

of gravity, the wing flutters at 32.1 m/s with an frequency of 22.534 rad/sec. The associated mode

is a first bending-torsion mode and divergence occurs at 34.6 m/s. NATASHA’s result is in good

agreement with previously published work. When the effect of gravity is considered, the wing flutters

at 22.4 m/s with a hump first bending-torsion mode with a frequency of 12.199 rad/sec which returns

to the stability region at higher speeds. At 45 m/s the second bending-torsion with a frequency of

27.406 becomes unstable.

For stability analysis, a light weight small class thrust engine (JetCat SP5) operating at cruise

condition is considered. Effect of engine placement along the span with offsets from elastic axis

are studied for two cases, with and without gravity. Stability analysis without gravity shows that

engine placement at 60% to 80% span forward of the elastic axis increase the flutter speed more

than three times of the base model while engine placement between 70% to 95% span, offset in

normal direction increases the flutter speed up to 75% of the base model. A plane of symmetry

in the results was observed which was due to neglecting the effect of gravity. NATASHA’s result

for flutter characteristics with gravity captures significant increase in flutter speed, more than three

times of the base model, for engine placement at 60% to 80% span forward of the elastic axis. In

stability analysis with gravity, significant decrease in flutter speed is observed for engine placement
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at 30% to 50% span backward elastic axis, i.e., in b2 direction, and upward the elastic axis, i.e., in

b3 direction. These low flutter speed zones were not captured when gravity was neglected.

Effect of load factor on aeroelastic stability of the wing for engine placement along the span with

offsets from elastic axis is studied by change in the magnitude of the gravity vector, i.e., g. Three

cases of load factor which occur while an aircraft undergoes bank angles of 30◦, 45◦ and 60◦ are

presented. While bank angle is 30◦ or 45◦, i.e., load factor of 1.2 and 1.4, flutter characteristics still

have the same behavior compared to straight level flight, i.e., zero bank angle. At 60◦ of bank angle,

load factor increases to two, and the effects become significant in flutter speed and its sensitivity to

engine placement. At this load factor, NATASHA’s results show that flutter speed decreases, and

higher flutter speed is attained for engine placement between 20% to 60% span, forward offset the

elastic axis in chordwise direction. This zone has 30% decrease in flutter speed compared to the

base model. Flutter speed increases on the inboard portion of the wing for engine placement in

normal direction, the results at this load factor show that flutter characteristics are independent of

the offsets from elastic axis at each span wise location.

For the clean wing without gravity and aerodynamic forces, the area of minimum kinetic energy

density of the first two elastic bending and torsion modes are calculated. The second bending mode

has a local maxima at 45% to 55% span and a local minima at 80% to 90% span and the second

torsion mode has these extremums at 30% to 40% and 65% to 75% span. The stability analysis for

engine placements (with and without gravity) show that engine placements forward of the elastic

axis at the area of minimum kinetic energy of the second modes increase flutter speed and significant

decrease in flutter speed is observed when effect of gravity is considered. In this case, flutter speed

decreases for engine placement behind or upward the elastic axis at the area of maximum kinetic

energy of the second modes.

Effects of engine placement with time-dependent engine thrust and dynamics on nonlinear aeroe-

lastic response of the high-aspect-ratio wing are studied by the second-order, central-difference, time

marching algorithm with high frequency damping in NATASHA. The appropriate time step is 0.05

seconds. The transient behavior of the engine, i.e., thrust and angular momentum of spools, for
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rectangular pulse and ramp fuel profile, both from cruise to maximum level is simulated using Jet-

Cat SP5 engine model. At air velocity of 20 m/s, the aeroelastic response of the wing excited by

time-dependent thrust, for engine placements along the span (25%, 50%, 75% span and at the tip of

the wing) with offset from elastic axis in the order of chord is studied for two types of excitations.

In the case of rectangular pulse, fuel input, thrust, and angular momentum resemble a realistic

impulse excitation. For engine placement at 25% span, stability analysis with engine thrust and

angular momentum at cruise level shows that engine placement with no offset and at r = 1 and ψ =

90, 135◦ and 180◦ is supercritical and other locations are subcritical. The time march results show

that excitation at this locations attenuate quickly. It can be gathered from the stability analysis that

most of engine offsets at 50% span are aeroelastically stable in linearized analysis and the excitation

dies out. On the other hand, for two cases where the engine placements are supercritical; engine

placement at r = 1 and ψ = 90◦, the excitation still dies out, and at r = 1 and ψ = 135◦ where the

excitation results in a stable LCO.

For engine placement at 75% span, linearized stability analysis show that engine placement at

r = 1, ψ = 90◦ and 180◦ is supercritical; in both cases the excitation dies out. Engine placement at

r = 1, ψ = 135◦ is supercritical and leads to a stable LCO. Other engine placements at this location

are aeroelastically stable in linearized analysis and the excitations die out. For engine placement

at the tip of the wing, i.e., 100% span, only at r = 1, ψ = 180◦ is supercritical and excitation

at this location leads to stable LCO. When engine is placed offset forward of the elastic axis, i.e.,

r = 1, ψ = 0◦, 45◦, 90◦, 270◦ and 315◦, the excitation dies out and when engine is place at r = 1,

ψ = 135◦ excitation leads to a stable LCO and after 50 second it quickly dies out. When engine

is offset at r = 1, ψ = 225◦, excitation at subcritical leads to stable LCO. In case of the ramp

excitation, the time march results for engine placement at 25% span show that engine placement at

this location is stable and for engine placement at 50% span, at r = 1, ψ = 90◦ and 135 ◦ stable

limit cycle oscillation is observed and excitations for other engine placements at this location do not

affect stability of the wing. For engine placement at 75% span, at r = 1 and ψ = 45◦, at subcritical,

excitation leads to oscillations with growing amplitude and at ψ = 45◦ and 180◦, at supercritical
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leads to stable LCO. Engine placement at r = 1 and ψ = 135◦, at supercritical, the excitation

introduces a chaotic oscillation to the structure and all other engine placements are unaffected by

this excitation; barring a change in the static deflection. The effect of this excitation for engine

placement at the tip of the wing leads to a very large amplitude oscillation and for the case of r = 1,

ψ = 180◦ the large amplitude oscillations is a stable LCO.

An anisotropic flying wing was considered, with geometry similar to the Horten IV properties

of which were linearly varying along its span with two identical engines with mass and angular

momentum. This flying wing, for the clean wing case, fluttered at 85.5 MPH, with the unstable

modes being the aeroelastic body-freedom mode with a frequency of 2.9 Hz, and a non-oscillatory

yawing instability with a small real eigenvalue of 0.05 rad/s that caused the aircraft to rotate in the

horizontal plane. NATASHA captured another symmetric bending mode on the stability boundary

with a frequency of 0.08 Hz, appearing when the engines were at their farthest offsets from the

elastic axis and at the tip of the wings but with no apparent regularity. The effect of aft sweep for

this flying wing with three different engine locations along the span showed the increase of flutter

speed, as expected. The effect of engine placement along the span with varying offsets up to the

order of mean semi-chord from the elastic axis showed that the maximum flutter speed occurs when

the engines are just outboard of 60% span. The minimum flutter speed occurs for engine placement

at the wing tips. Both minima and maxima occurred when the c.g. of the engine was forward of

the wing elastic axis. The effect of engine placement with constant aircraft c.g. not only kept the

control response of the aircraft unchanged and in the linear range, but it increased the flutter speed

significantly while also smoothing out its variation along the span.

In the absence of engines and aerodynamic and gravitational forces, NATASHA found that the

minimum kinetic energy region is very near 60% span for the first symmetric elastic free-free bending

mode. It is interesting that this location coincides with the region where the maximum flutter speed

was observed. Whether or not knowledge of the minimum kinetic energy region has any potential to

help the designer place the engines requires further investigation, but if a connection were established

it could lead to significant savings in computational effort.
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The aeroelastic trim and stability of a flying-wing aircraft with four engines was analyzed. The

aircraft model had a geometry similar to that of the Horten IV with the addition of four identi-

cal engines of specified mass, moments of inertia, and angular momentum. The four engines are

symmetrically moved along the span with offsets from the elastic axis while fixing the location of

aircraft c.g. For the clean wing case, the aircraft experiences body freedom flutter at 40.8 m/s with

a frequency of 9.560 rad/s. The behavior of sub- and supercritical eigenvalues was studied for two

cases of engine placement, both with zero offset from the elastic axis but with different locations

along the span. The clean-wing case experiences a hump-mode flutter, and as the engines are moved

toward the outer portion of the wing the unstable mode contains a combination of the first, second,

and third bending along with torsion and the aircraft short period mode. In this case, the hump-

mode is not unstable. In both cases, there is no apparent coalescence between the unstable modes.

NATASHA also captures other non-oscillatory unstable roots from flight dynamics origin.

This study shows that engine placement does not have any significant effect on the lift to drag

ratio. However, a noticeable increase in flutter speed is observed when engines are placed forward

of the elastic axis. For these cases, as one of the engines is placed at the outboard portion of the

span, flutter speed increases. For engine placement behind the elastic axis, flutter speed increases

when both engines are close to the root.

In the absence of aerodynamics, gravitational force, and engines, the area of minimum kinetic

energy for the first and third bending modes is located at approximately 60% span. For the second

mode, the kinetic energy has local minima around 20% and 80% span. The areas of minimum kinetic

energy for these modes are in agreement with flutter calculations, which show a noticeable increase

in flutter speed if engines are placed forward of the elastic axis at these regions.

The analysis underlying NATASHA was extended to include the ability to simulate morphing of

the aircraft using a new set of trim and kinematical differential equations. An example of the kind

of morphing considered in this study requires the wings to fold so as to orient a solar panel to be hit

more directly by the sun’s rays at specific times of the day. Because of the “long endurance” feature

of HALE aircraft, such morphing needs to be done with as near zero energy cost as possible, i.e.,
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without relying on actuators at the hinges, but instead making use of aerodynamic forces and engine

thrust. The three-wing solar powered HALE aircraft morphs passively into a Z-shaped configuration

while local bending moments are zeroed out at the beam connection points, but with the hinges

locked and held at zero while the aircraft morphs. The morphing motion is brought to a stop

before the hinges are again locked. Systematic processes for trim and time-marching for a passively

morphing flying wing are presented. The schedule of the control of the aircraft for morphing was

obtained from the trim conditions and was curve-fitted over 106 stages. The stability analysis of

the trim conditions showed that this aircraft is aeroelastically stable and the instabilities are flight

dynamics modes with very small non-oscillatory eigenvalues. The nonlinear algebraic aeroelastic

time-marching solution was found by the Levenberg-Marquardt scheme, and the appropriate time

step which met the criteria of the equilibrium condition of this configuration was 10−5 sec.

9.2 Future work

For the problem of passive wing morphing the effects of hinge stiffness and damping are neglected

for the present study, but their addition is planned for a later work to enhance the realism of the

model. The addition of hinge damping will allow energy dissipation to be taken into account, and

it is expected that incorporation of a spring-restrained hinge may facilitate passive morphing and

gust response of the aircraft during the morphing phases. Other recommendations for future studies

include addition of the 3D Peters aerodynamic model to account for moderate aspect-ratio wings

and axial flow. Such an aerodynamic model will extend the validity of analysis done by NATASHA

to rotary wings.

In the present study the effect of engine aerodynamics has been considered. Explicit formulation

of the same would require the use of 3D Computational Fluid Dynamic (CFD) model. At this

present moment, to the best of the author’s knowledge accurate simulation of the engine aerody-

namics will retain the qualitative aspect of the current analysis but might lead to some quantitative

improvements. Another aspect worthy of future investigation is to account for the flexibility of the

engine nacelle and mount. It will be interesting to outline whether consideration of their flexibility

and the resulting dynamics affects the aeroelastic behavior of the aircraft. In the present work the
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inertial properties and flexibilities of control surfaces are not studied, including those in NATASHA

facilitates the simulations.
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Chapter X

APPENDIX

10.0.1 Case study: two-engine flying wing

Table 5: Air density and sectional aerodynamic properties of the wing

Air density (lb sec2 in−4) ρair = 1.1463× 10−7

cl0 clα (rad−1) clδ (rad−1) cd0 cdα2 (rad−2) cdδ2 (rad−2) cm0 cmα (rad−1) cmδ (rad−1)

Wing root 0.10695 6.9476 4.2891 0.00582 0.08638 - 0.111 0.01125 -0.113 -0.62243
Wing tip 0.00550 6.9981 4.3288 0.00674 0.27027 0.083 -0.00024 -0.083 -0.72767

Table 6: Properties of the engines and pilot

Mass of pilot (lb sec2 in−1) µ̂pilot = 0.9

Pilot position, non-fixed c.g. (in) ξ̂pilot = (0,−10,−10)T

Mass of each engine (lb sec2 in−1) µ̂engine = 0.03

Angular momentum of engine (lb sec in) Ĥengine = (0, 51.169, 0)T

Engine mass moment of inertia: (lb sec2 in) Îengine =

2.6 0 0
0 2.6 0
0 0 2.6


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Table 7: Sectional properties of the wing

Wing mass per unit span (lb sec2

in−2)†

µroot = 0.003962 µtip = 0.00040422

Position of reference point with

respect to mid-chord (in)

(0,−0.15, 9.42)T (0,−0.21,−0.50)T

Position of elastic axis with re-

spect to sectional c.g. (in)

ξroot = (0, 5.29,−0.594)T ξroot = (0,−1.644,−0.563)T

Position of aerodynamic center

with respect to sectional c.g. (in)

yacroot = (0, 5.434, 0)T yactip = (0, 0.2102, 0)T

Wing initial twist per unit span

(rad/in)

kroot = (0.0001, 0, 0)T ktip = (0.0001, 0, 0)T

Wing cross-sectional inertia per

unit span (lb sec2)

Iroot =


67 0 0

0 2.7 0

0 0 66.2

× 10−2 Itip =


0.2 0 0

0 0.014 0

0 0 0.18

× 10−2

Wing structural flexibility ma-

trix (lb−1)

Rroot =


3.09 0 0

0 0 0

0 0 0

× 10−10 Rtip =


7.59 0 0

0 0 0

0 0 0

× 10−8

Wing structural flexibility ma-

trix (in−1 lb−1)

Sroot =


7.54 1.83 7.83

18.34 0 0

7.83 0 0

× 10−12 Stip =


2.24 5.23 0.03

5.23 0 0

0.03 0 0

× 10−8

Wing structural flexibility ma-

trix (in−2 lb−1)

Troot =


3.63 0 −0.092

0 5.7 0.017

−0.092 0.017 0.13

× 10−11 Ttip =


105.46 56.26 8.81

56.26 20.10 1.68

8.81 1.68 10.36

× 10−9

† Note the system of measurement used in this study is inches, seconds and pounds for length, time, and

force, respectively.
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10.0.2 Case study: four-engine flying wing

Table 8: Sectional properties of the wing

Elastic axis (reference line) 25% chord
Axial stiffness 1.162× 108 kg/s2

Torsional stiffness 1.883× 105 kg-m2

In-plane bending stiffness 1.349× 107 kg-m2

Out-of-plane bending stiffness 1.660× 105 kg-m2

Mass per unit length 9.193 kg/m
Initial Curvature 1.70× 10−3/rad
Mass offset −0.285 m

Wing inertias per unit span:
About the b1 axis 1.0132 kg-m
About the b2 axis 0.0303 kg-m
About the b3 axis 0.9829 kg-m

Table 9: Sectional aerodynamic properties of the wing

root tip
cl0 1.07× 10−1 5.5× 10−3

clα 6.9476 rad−1 6.9981 rad−1

clδ 4.2891 rad−2 4.3288 rad−2

cd0 5.82× 10−3 6.74× 10−3

cm0
1.13× 10−2 −2.4× 10−4

cmα −1.13× 10−2 rad−1 −8.3× 10−2 rad−1

cmδ −6.224× 10−1 rad−1 −7.276× 10−1 rad−1

Aerodynamic coefficient at 25% chord

Table 10: Properties of the engines

Mass of each engine 10 kg
Angular momentum of engine 5.829 kg-m2/s

Engine mass moment of inertia:
About the b1 axis 0.3 kg-m2

About the b2 axis 0.3 kg-m2

About the b3 axis 0.3 kg-m2
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