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SUMMARY

The interaction between an entry vehicle and an atmosphere during the hy-

personic phase of flight results in a high-temperature flowfield around the forebody

surface of the vehicle. A Thermal Protection System (TPS) is required to protect

the vehicle from such severe environments. There are significant uncertainties in the

tools and models currently used for the prediction of entry aeroheating and TPS

material response such as the level of heating augmentations due to turbulent flow

and catalytic effects, TPS recession and material properties. Experimental data can

significantly reduce these uncertainties. Analysis of TPS ground and flight data has

been traditionally performed in a direct fashion. Direct analyses involve comparison

of the computational model predictions to data. Qualitative conclusions about model

validity may be drawn based on this comparison and a limited number of model pa-

rameters may be adjusted to obtain a better match between predictions and data.

For example, in past work, the reconstruction of surface heating has been limited to

simple scaling of the predicted heating profile.

The goal of this research is to develop a more rigorous methodology for the recon-

struction of surface heating and TPS material response using inverse estimation the-

ory. Built on theoretical developments made in related fields, the developed method-

ology enables the estimation of uncertainties in both the aeroheating environment and

material properties from subsurface TPS temperature measurements. This method-

ology is composed of two parts: the multi-parameter estimation framework and the

surface heating function estimation framework. The former is aimed at the estimation

of multiple constant parameters such as material properties, while the latter is aimed
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at the time-dependent estimation of surface heating profiles. Additionally, a ther-

mocouple (TC) driver approach is developed and employed to decouple the surface

heating and in-depth heat transfer problems. In this approach, shallow thermocouple

data is first used as the true boundary condition and the heat transfer problem is

solved for the remaining TPS material under the thermocouple. This technique en-

ables the independent application of both frameworks to flight data to estimate both

material parameters and surface heating profiles.

In this thesis, the methods and tools required for inverse estimation of aeroheat-

ing and TPS material response are developed. These tools have been developed for

application to flight data obtained from thermocouples embedded in the Mars Science

Laboratory (MSL) heatshield during its August 6, 2012 hypersonic entry; however,

in this manuscript they are employed in multiple test problems to demonstrate their

feasibility and applicability for other functions. First, the multi-parameter estimation

framework is applied to a relevant arc jet dataset. This framework performs nominal,

uncertainty and sensitivity analyses to select the set of parameters and the range of

measurements that should be used in the estimation process. Next, the feasibility

of the surface heating estimation framework is demonstrated through application to

simulated MSL data and Mars Pathfinder flight data. Ultimately, both frameworks

are applied to MSL flight data to estimate its surface heating profile and TPS ma-

terial performance. A discussion of how findings from MSL data may influence TPS

design margin policies follows. Recommendations regarding possible improvements

to heatshield instrumentation for future missions are also presented.

The evolved inverse estimation methodology is a significant advance relative to

past aerothermal and TPS material response reconstruction methods. The benefits

of this methodology goes beyond the applications demonstrated in this thesis. The

tools and frameworks introduced here can be applied to all future flight and ground

data as a complementary analysis approach to the traditional direct approach.
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CHAPTER I

MOTIVATION AND BACKGROUND

1.1 Motivation

Mars has been and will continue to be a frequent destination in space exploration

efforts. Starting with the Mars Viking program in 1970s, the United States National

Aeronautics and Space Administration (NASA) has successfully landed seven space-

craft on the surface of Mars. Most recently on August 6, 2012, the Mars Science

Laboratory (MSL) landed on the surface of Mars. The MSL rover, Curiosity, is the

largest mass ever delivered to the surface of Mars.

When spacecraft travel to other planetary surfaces or when they return to Earth

upon the completion of their missions, they typically enter the planet’s atmosphere

at high velocity. During flight between the atmospheric interface and surface, called

Entry, Descent and Landing (EDL), spacecraft use a wide range of technologies to

reduce the vehicle’s velocity to levels safe for landing. Mars EDL is a challenging

problem mainly due to the fact that Mars’ atmosphere is thick enough to cause

significant heating, but not thick enough to slow down the spacecraft to a safe terminal

velocity. [1] Figure 1 shows the MSL EDL sequence illustrating a combination of

heatshield, hypersonic guidance, supersonic parachute, propulsive descent and landing

technologies used to safely place the rover on the surface of Mars. [2]

An important and enabling system used in most EDL missions is the heatshield.

During entry, the interaction between the spacecraft and the planet’s atmosphere

will generally dissipate more than 90% of the entry system’s initial kinetic energy,

mostly in the form of heat. The heatshield must keep the aeroshell interior safe from

these extreme environments. The Thermal Protection System (TPS) material is
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Figure 1: MSL EDL sequence illustrating the advanced technologies used to land the
Curiosity rover on Mars.

responsible for rejecting most of this incoming heat and minimizing heat conduction

to the payload. Since the TPS is critical to mission success, the physics of entry

aeroheating and TPS material response have to be understood accurately. This is

accomplished with a combination of ground and flight testing and computational

modeling.

There have been significant advancements in the analytical models used for pre-

dicting aeroheating and TPS response; however, substantial uncertainties remain.

Uncertainties exist in the modeling of the heating augmentation due to flow turbu-

lence, roughness effects and surface catalysis for ablative materials. Figure 2 from

Ref. [3] shows how different catalysis and turbulence models result in significantly

different centerline heating predictions for the MSL vehicle. Besides aeroheating

modeling, there are also large uncertainties in our ability to accurately predict TPS
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material recession and estimate certain TPS thermophysical properties such as char

thermal conductivity. These uncertainties have a significant effect on the TPS ma-

terial selection and total heatshield mass, and therefore affect our ability to design

more capable and robust EDL systems.

Figure 2: Substantial uncertainties in MSL centerline heating augmentation due to
catalysis and turbulence.

Flight data can help engineers reduce these uncertainties thus improving or vali-

dating the computational tools. During the past few decades, there have been numer-

ous entry missions that were equipped with instruments to collect aeroheating and

TPS performance data, primarily in support of the Apollo program. [4] Lessons have

been learned from these efforts, but some of the returned data have either not been

critically evaluated or were not sufficient for code validation. A majority of these

instrumented missions have occurred in the Earth atmosphere. To date, Viking and

Pathfinder have been the only Mars missions equipped with forebody TPS instru-

ments. [5] The need for Martian flight data is further justified since the experimental

facilities on Earth are not capable of fully recreating Mars flight conditions.

The MSL entry vehicle is instrumented with aerodynamic and aeroheating sen-

sors. The MSL aeroshell is a 4.5-meter diameter spherically-blunted 70-deg half-angle

cone with a triconic afterbody. [6] MSL’s heatshield is made of an ablative material
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called Phenolic Impregnated Carbon Ablator (PICA). [7] The MSL Entry, Descent,

and Landing Instrumentation (MEDLI) [8] suite includes pressure sensors, called

Mars Entry Atmospheric Data System (MEADS) and temperature sensors called

MEDLI Integrated Sensor Plug (MISP) placed at different locations on the heat-

shield. There are seven MISP plugs, each containing four subsurface thermocouples

and one isotherm sensor. The MEDLI dataset will provide the first non-Earth entry

aeroheating data since the Pathfinder mission and will provide more EDL data than

all of the previous Mars missions combined. [8] Figure 3 shows the completed MSL

heatshield with MEDLI sensors installed. [9]

Figure 3: Completed MSL heatshield and underside with MEDLI system installed.

The flight data acquired by MISP will help answer fundamental questions related

to aeroheating and TPS performance while also addressing the uncertainties associ-

ated with current tools. A systematic post-flight data analysis strategy is required to

maximize the benefits of the MISP data. Traditionally, flight and ground TPS data

were analyzed in a direct fashion. [5] Model predictions were directly compared to the

flight data and general conclusions were made regarding the accuracy of the modeling

tools. Some parameters were manually changed to investigate if an adjustment in the

model could result in a better match with the data. The time-dependent surface

heating profile was simply scaled until a close qualitative match with the data was

obtained.
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The main goal of this research is to develop a more rigorous methodology for

application to MISP data based on Inverse Parameter Estimation (IPE) theory. The

set of methodology and tools created in this work use inverse estimation methods to

reconstruct both MSL’s surface heating and PICA in-depth material response from

MISP data. This will enable targeting the uncertainties in both the aeroheating en-

vironment prediction and material properties and performance. Unlike past analyses,

the methodology developed here is capable of estimating multiple parameters and

reconstructing the complete time-dependent surface heating profile in an automated

fashion. While this work is motivated by the analysis of MISP data, the methodology

and tools developed for this purpose are applicable to future TPS flight and ground

experimental data.

The development of a methodology for the inverse analysis of aeroheating and

TPS experimental data is a multi-disciplinary topic involving aerothermal heating,

TPS material response, flight instrumentation and inverse estimation. Therefore,

the background research provided in this chapter is divided into sections. The first

section provides a review of the current aerothermal modeling efforts for Mars entry

environments. The second section discusses the current modeling techniques used in

the field of ablative material thermal response. The third section provides a summary

of past relevant TPS flight data and a detailed description of the MEDLI instrument

with a focus on the MISP subsystem. These sections are followed by a discussion

of the contributions of this thesis and a brief outline of the document. Chapter 2

will provide background on inverse problems and methods employed to solve these

problems focusing mainly on the inverse problems encountered in the heat transfer

field and the methods devised to tackle Inverse Heat Transfer Problems (IHTP).
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1.2 Mars Entry Aerothermal Modeling

The aerothermal environment of an entry vehicle is modeled with continuum or non-

continuum (rarefied) fluid dynamics at different parts of the entry trajectory depend-

ing on the size of the vehicle, its entry velocity and the density of the atmosphere. [10]

For most missions of interest using rigid aeroshells, the majority of the heat pulse oc-

curs in flow regimes where continuum flow physical models are valid. For this reason,

the discussion presented here focuses solely on continuum flow physics during Martian

entry.

Wright et al. [3] and Hollis et al. [11] provide reviews of the status of contin-

uum aerothermal modeling for Mars entry missions. References [12, 13] also discuss

aerothermal modeling challenges for entry missions at Earth and other planetary

bodies. Material from these works are widely used in this review. While rarefied

flow is not a focus of this research, Moss et al. provide an excellent summary of

Direct Simulation Monte Carlo (DSMC) techniques that are normally used for the

analysis of rarefied flows. [14] The following sections review the best-practice Martian

entry aerothermal physical models. Different sources of uncertainty in the models are

discussed.

1.2.1 Physical Models

The Mars atmosphere is composed of approximately 97% CO2 and 3% N2 by vol-

ume. During the hypersonic phase of the entry, a strong bow shock forms in front

of the vehicle creating a high-temperature flowfield in the region between the shock

and the vehicle’s surface. As the gas heats up, energy is transferred between different

modes resulting in a vibrationally excited gas. Molecules dissociate, ionize and ra-

diate while undergoing chemical reactions. This high-temperature flowfield interacts

with the vehicle’s surface resulting in surface reradiation, ablation and pyrolysis gas

blowing. Figure 4 from Wright [15] shows a schematic of the aerothermal phenomena
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that occur during a blunt body’s atmospheric entry. Computational Fluid Dynam-

Figure 4: Schematic of a blunt body’s aerothermal environment during atmospheric
entry.

ics (CFD) tools are normally used to solve the Navier-Stokes equations governing the

flow physics. [16] These flows are usually modeled in thermochemical non-equilibrium.

Gnoffo et al. provide a review of the relevant conservation equations and physical

models used to describe hypersonic flows in thermochemical non-equilibrium. [12, 17]

These models use a two-temperature formulation that assumes the vibrational and

electronic modes of the gas are in equilibrium, but not with the translational and ro-

tational components. [18] Vibrational relaxation times for most species are obtained

from works by Millikan and White,[19] Camac,[20] and Park et al. [21] The thermody-

namic properties for component species are taken from Gordon and McBride [22] and

a recent work by Capitelli et al. [23] A reduced 8-species, 13-reaction mechanism from

Mitcheltree and Gnoffo [24] is used to model the non-equilibrium chemical kinetics of

7



the shock layer. The modeling of transport properties of a reacting gas mixture and

the required input collision integrals are reviewed in detail by Wright et al. [25, 26].

1.2.2 Turbulence

Turbulent heating has not been an important issue for past Mars entry missions since

small blunt aeroshells were used. However, for larger aeroshells or high Lift/Drag

(L/D) slender entry vehicles, the flow is expected to transition to turbulent and

the resulting heating augmentation will be significant. Hypersonic turbulent flow is

modeled using methods ranging from simple algebraic models to the more complicated

and general Direct Numerical Simulation (DNS) techniques. Traditionally for Mars

entries, simulations have been performed using either the Baldwin-Lomax algebraic

model [27] or the two-equation Shear Stress Transport (SST) model. [28] Both models

have been corrected for compressibility effects and while Baldwin-Lomax is frequently

used for the design purposes, the SST model has proved to be more accurate for

many applications. [29] The heating levels predicted by these models is sensitive to

the turbulent Schmidt number (ScT ) used in the simulations; therefore, Reynolds-

Averaged Navier-Stokes (RANS) models that allow a variable Schmidt number can

be beneficial for Martian entry simulations. [3] Other models such as Large Eddy

Simulation (LES) or Detached Eddy Simulation (DES) can provide better results;

however, they are computationally expensive for flight full-vehicle analysis.

The onset of turbulent transition has been traditionally modeled using simple

geometry-based correlations such as a critical value for the momentum thickness

Reynolds number (Reθ). [6, 30] Once such criterion is reached, the entire vehicle

is assumed to be completely turbulent to be conservative for design purposes. Chang

et al. [31] give a more detailed overview of the transition analysis that was performed

for the MSL entry vehicle. However, this simple smooth-wall criterion is not suffi-

cient. New transition criteria have to be developed that account for transition due
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to the ablation-produced roughness effects [32] or blowing of pyrolysis gas into the

boundary layer. [33] The existing and future flight and ground data [34, 35] for entry

vehicles will contribute significantly to developing representative transition models.

Due to the lack of relevant Martian flight data, current turbulence models have

not been well-validated. This was not an issue for previous Mars missions as they

flew mostly laminar trajectories. However, for larger vehicles, the uncertainties in our

turbulence models are crucial. Transition to turbulence was expected for the MSL

entry vehicle and it experienced moderate turbulent heating augmentation. This is

due to a combination of large aeroshell size, high ballistic coefficient and large angle of

attack. Figure 2 shown earlier illustrates how turbulence can result in a factor of two

heating augmentation for the MSL peak heating. Ground testings [36, 37] had also

confirmed the heating augmentation predicted by computational models. However,

flight conditions can not be completely matched in such ground testings. Therefore,

flight data analysis is critical to validating these models.

1.2.3 Surface Catalysis

The exothermic recombination of dissociated species at the TPS surface can augment

the convecting heating experienced by the reentry vehicle. Such catalytic processes

are poorly understood due to the lack of relevant measurements in representative

environments. The heating transferred to the surface by catalytic recombination

depends on catalytic efficiency, γN (fraction of incident atoms that recombine at

the surface), and energy accommodation coefficient, β (fraction of recombination

energy that is transferred to the surface). Catalytic efficiency depends mainly on the

TPS material. Stewart has studied the catalytic properties of several TPS materials

in air. [38] However, TPS catalysis experiments in dissociated CO2 have not been

performed as extensively. [39, 40]

Four simplified catalytic mechanisms are commonly used in the literature. [3]
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The simplest model is “non-catalytic” which assumes no recombination of incident

atoms. The other extreme is the “supercatalytic” wall model which assumes the

recombination of all atoms to the lowest chemical enthalpy state (CO2/N2). This

is the model commonly used in design because it represents the limiting case of

highest heating even though it is not physically based. Another catalysis mechanism

was developed during the Mars Pathfinder program by Mitcheltree [24, 41] which

assumes that CO2 recombination happens in a two-step reaction with two parallel

paths. This model results in lower heat flux predictions than the supercatalytic

model when significant amounts of O2 are present in the boundary layer edge. [3]

The last model, called “catalytic to N2 & O2” assumes that CO2 does not recombine

for Martian entry conditions based on the results of related ground experiments. [40]

This model results in significantly lower heating than the previous models. Figure 2

illustrates how surface catalysis assumptions result in a factor of three difference in

MSL peak heating.

Figure 5 from Ref. [42] compares the results of CFD simulations with the T5 hy-

pervelocity shock tunnel data for expected laminar and turbulent cases. The simula-

tions were performed using two NASA-developed codes, Data Parallel Line Relaxation

(DPLR) [43] and Langley Aerothermal Upwind Relaxation Algorithm (LAURA). [44]

It can be observed that for the laminar case (plot a), the data match the CFD simu-

lations with the supercatalytic model; however, for the case of leeside turbulent flow

(plot b), the data are closer to the turbulent simulations with non-catalytic assump-

tion. These results, combined with other ground test results, show that there are still

large uncertainties in our surface catalysis modeling approaches.

1.2.4 Additional Topics

When the surface of an ablative heatshield meets the high-temperature flowfield of

the shock layer, it ablates and forms a porous and rough char layer. The surface
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(a) Laminar Case (b) Turbulent Case

Figure 5: Comparison of CFD simulations with T5 shock tunnel data.

roughness has a significant effect on transition to turbulence and results in high

levels of heating augmentation. Furthermore, the material pyrolyzes in-depth and the

resulting pyrolysis gas convects through the char layer and blows into the boundary

layer. This can reduce the convective heat transfer through transpiration, and reduce

the heating augmentation caused by the TPS surface roughness. [3]

There has been extensive experimental and theoretical work done to character-

ize the combined effect of roughness heating and blowing cooling;[45, 46] however,

transpiration effects are currently not modeled in CFD methods and are treated us-

ing simple correlation methods within the TPS thermal response solvers. [47] These

methods reduce the surface heat transfer coefficient computed from flow solvers using

a blowing correction factor. Additionally, the blowing of ablation products and pyrol-

ysis gas can alter the catalytic properties of the TPS surface. A coupled flow-solver

and material response-solver is required to capture these phenomena. While there

has been some work done in this area [48, 49, 50], more experimental data is required

for the identification of the related surface mechanisms and rates.

The level of heating due to shock layer radiation has been minimal for the Mars
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entry missions so far. However, as future missions will demand higher entry veloc-

ities and larger aeroshells, radiative heating may become a significant contributor.

Diatomics such as CO and CN that are formed in the high-temperature flowfield

have strong radiative properties. [13] There has been substantial work in literature

in developing radiation models for Earth entries; however, no validated model exists

for shock layer radiation in a CO2 environment. [3] Some experimental data has been

recently obtained for CO2 shock layer radiation modeling. [51] Radiative heating for

MSL entry vehicle is expected to be minimal.

This review focused on forebody heating prediction, but the uncertainties in the

afterbody heating prediction are much larger. Large margins are typically applied

to mitigate for this uncertainty; however, such margins affect the choice of afterbody

TPS material and overall mass significantly. Wright et al. provided a survey of

available afterbody experimental and flight data for code validation and discussed

the main uncertainties in predicting afterbody heating. [4] Analysis was also done

to estimate the level of afterbody aeroheating experienced by the Pathfinder,[24]

Pheonix [52] and MSL [53] missions. Another source of uncertainty is singularity

heating due to localized effects from heatshield penetrations or Reaction Control

System (RCS) thrusters. Reference [3] provides a summary of some of the missions

that dealt with such singularities in the heatshield and the simulations that were

performed to predict the amount of localized heating they caused.

Finally, it should be noted that validation efforts involve the use of ground testing

techniques which are not capable of matching all the flight conditions exactly an

cannot match all the flght parameters simultaneously. This introduces a ground to

flight traceability issue meaning that the current uncertainties in the tools can be

ultimately reduced only using flight data. This motivates active instrumentation

on missions and flight test programs. MEDLI will return valuable data for code

validation. Accurate estimation of surface heating from flight data is a crucial step
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in reducing the uncertainties in our computational aerothermal models.

1.3 Ablative Material Thermal Response Modeling

Heatshield materials are employed to protect the entry vehicle against the harsh

aeroheating environments. Two types of materials are typically used: passive and

ablative. Passive materials are reusable and rely on surface reradiation to reject the

incoming heat. These systems normally have low thermal conductivity which mini-

mizes the penetration of the heat in-depth. However, these materials are limited by

reusable surface temperatures and heat fluxes. On the other hand, ablative materials

are typically used for the higher heating conditions. These material combine reradi-

ation with ablation and pyrolysis for heat rejection, but are not reusable. Figure 6

from Ref. [54] provides a schematic of ablative material thermal response both at

surface and in-depth.

Figure 6: Ablative material surface and in-depth thermal response.

As the TPS material heats up, it ablates. Ablation is defined as the absorption of

energy using the removal of surface material by a combination of different processes

such as melting, vaporization, sublimation or chemical reaction. Mechanical removal
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of material is also possible and is called spallation (spallation is not desirable because

it does not absorb a significant amount of energy). Ablation results in the surface of

the material receding. Most ablative materials are pyrloyzing. These materials are

typically composed of two main components: (1) a substrate material such as car-

bon or glass that can withstand high temperatures and have favorable ablation and

reradiation performance, and (2) organic resins such as phenolics that can absorb en-

ergy through pyrolysis. Other components such as microballoons, cork or honeycomb

can also be added to provide structural integrity or density and thermal conductivity

control. In addition to surface reactions, as these materials heat up, they decompose,

meaning that the resin component generates gas and leaves carbon residue. This pro-

cess is called pyrolysis and involves endothermic reactions which absorb energy. The

pyrolysis gas convects though the char material above it and blows into the boundary

layer. This creates three regions in the material as can be seen in Figure 6. On top,

there is a char layer which consists of fully decomposed material. Virgin material

with no decomposition is on the bottom. The area in between is called the pyrolysis

zone where the material is partially decomposed.

TPS material selection and modeling is affected by a range of factors. Surface

heat rates drive the TPS material selection while the TPS thickness is greatly de-

pendent on the heat load integrated over the vehicle’s trajectory. In addition to the

heating conditions, other factors such as the severity of the shear environment, the

size of aeroshell and manufacturability of the TPS also affect TPS design choices.

Depending on the ablative and insulative requirements, different ablative TPS ma-

terials have been used for planetary missions, including AVCOAT, carbon phenolic,

carbon-carbon, Super-Light Ablator (SLA) and PICA. For example carbon phenolic

is a good ablator and can withstand high heat rates but is not a good insulator due

to its high density. This material has been used for Venus and Jupiter missions that

experienced heat rates in the excess of 10000 W/cm2. [55, 56]
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On the other hand, SLA is a good insulator with a low density. It experiences

thermal and mechanical failure at heat rates above 200 W/cm2. [57] This material

was used for all Mars missions except MSL. The high heating and shear expected for

MSL resulted in the selection of PICA as its TPS material. [7] PICA is a low den-

sity material that is a good insulator and can withstand heat rates as high as 1500

W/cm2. [58, 59] It was also employed as the TPS material for the Stardust sample

return mission and was one of the two possible candidates for the Crew Exploration

Vehicle (CEV) heatshield. [60] The general approach employed in heatshield design

is to select a material that provides reliable performance for the expected heating

conditions, and then size its thickness such that the aeroshell/heatshield bondline

temperature does not exceed a specified value. Validation of these requirements is

achieved with a combination of theoretical modeling and experimental efforts. Physi-

cal models are developed to characterize the material thermal response both at surface

and in-depth. These models are then validated and calibrated by testing in ground

facilities such as arc jets.

1.3.1 Early Ablation Modeling

References [54, 61] provide a detailed description of ablation modeling and the tech-

nology advances made over the past few decades. The modeling objective is to char-

acterize the TPS response in-depth and its surface energy performance given the

incoming heating conditions at the surface. Ablation modeling started in the 1950’s

and early 60’s and involved coupling one-dimensional heat conduction calculations to

heat of ablation models to calculate recession. [62, 63] Initially, these in-depth heat

conduction models did not include decomposition or pyrolysis gas flow. The heat of

ablation methods were simple correlation models that attempted to simplify the more

detailed surface energy balance equation using a steady state ablation assumption.

This model assumed that recession did not start until a specified ablation temperature
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was reached.

Munson and Spindler [64] introduced thermal response modeling for the decompo-

sition of organic resin composite materials. The density decomposition was modeled

with a single Arrhenius relation. In 1963, Kratsch et al. [65] modified these equations

to include a fiber-resin decomposition model and expressed some chemical parameters

in terms of enthalpy. They also integrated the work done by Lester Lees [66] to treat

the surface energy balance equation using the transfer coefficient approach. This for-

mulation assumed that the heat and mass transfer coefficients were equal, and the

Lewis and Prandtl numbers were equal to unity. Non-dimensional ablation rates, B′,

were introduced into the surface energy balance equation. Later, Kendall et al. [67]

and Moyer et al. [68] modified these equations to include unequal heat and mass

transfer coefficients and non-unity Lewis and Prandtl numbers. They also included

the work by Goldstein [69] to describe the decomposition of organic resin composites

using a three-reaction Arrhenius equation model. Modeling for the convection and

generation of the pyrolysis gas within the solid was added to the in-depth energy

conservation equation. The equations were also modified to account for grid motion

due to surface recession.

These efforts resulted in the introduction of the Charring Material thermal re-

sponse and Ablation program (CMA) [70], which was used as the leading ablation

code within industry and NASA for decades. More recently, Milos and Chen [47, 71]

from NASA Ames Research Center developed the Fully Implicit Ablation and Ther-

mal response program (FIAT), based on the same theory as CMA. FIAT uses a fully

implicit finite difference formulation which enhances numerical stability and conver-

gence compared to CMA, and thus is more suitable for possible coupling to flow solver

codes. Since its introduction in 1999, FIAT has become the primary analysis tool in

industry and for many recent NASA missions.
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1.3.2 Fully Implicit Ablation & Thermal Response Program (FIAT)

FIAT is used for the simulation of one-dimensional transient thermal energy trans-

port in a multilayer stack of isotropic materials that can ablate from a front surface

and decompose in-depth. The equations in FIAT solve the in-depth heat transfer

problem and the surface energy balance problem. In-depth modeling involves solv-

ing the internal energy balance, internal decomposition and internal mass balance

equations. [47] Internal energy balance is characterized using the transient thermal

conduction equation with additional terms for internal radiation and pyrolysis shown

in Eq. (1).
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The y-coordinate is a stationary coordinate system along the thickness of the

TPS material with the origin placed at the initial location of the TPS surface. The

x-coordinate moves with the receding surface (shown in Figure 6). The individual

terms in the above equation are: rate of storage of sensible energy, net rate of thermal

conductive and radiative heat fluxes, pyrolysis energy consumption rate, convection

rate of sensible energy due to coordinate system movement, and net rate of energy

convected by pyrolysis gas. The pyrolysis gas enthalpy, hg, is a function of temper-

ature and pressure and is calculated using multi-species equilibrium solvers such as

the Multi-component Ablation Thermochemistry (MAT) code [72] or the Aerotherm

Chemical Equilibrium (ACE) code. [73] Specific heat and thermal conductivity are

inputs in the material database and are defined as a function of temperature for both

the fully virgin and char states. These properties at any given location in the py-

rolysis zone are calculated using a linear density interpolation of the virgin and char

properties as shown in Eq. (2).

cp = τcpv + (1− τ) cpc (2)

The weight variable, τ , is the mass fraction of the virgin material and is defined
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using Eq. (3) while the partial heat of charring, h̄, is defined using Eq. (4).

τ = (1− ρc/ρ) (1− ρc/ρv) (3)

h̄ =
ρvhv − ρchc
ρv − ρc

(4)

Internal decomposition of the material is characterized using a three-component

model. The resin filler is assumed to contain two components (A, B) while the third

component (C) is the reinforcing material. The density of the material at any given

time is given by Eq. (5).

ρ = (1− φ) [Γ (ρA + ρB) + (1− Γ) ρC ] (5)

Variable Γ is the specified volume fraction of resin while φ is the porosity for the

material. Each component can decompose independently according to an Arrhenius-

type reaction model as described in Eq. (6). Parameters Bi, Ei and Ψi describe the

reaction for each component and are determined via the curve fitting of the data

obtained from Thermo Gravimetric Analysis (TGA) testing.

∂ρi
∂t

∣∣∣∣
y

= −Bie
−Ei/Tρvi

(
ρi − ρci
ρvi

)Ψi

, i = A,B,C (6)

Internal mass balance accounts for the convection of pyrolysis gas through the ma-

terial generated from internal decomposition. Assuming quasi-steady one-dimensional

flow, conservation of mass can be written using Eq. (7). Variable ṁg is the mass flux

rate of the generated pyrolysis gas which is transferred to the surface and blown into

the boundary layer.

∂ṁg

∂y
=
∂ρ

∂t
(7)

The surface conditions are defined through distinct back face and front face bound-

ary conditions. The back-face boundary can be specified as a known temperature

history or using a fluid convection boundary condition. Often in TPS design, an in-

sulated boundary condition is used for the back-face. There are multiple options for
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the front-face boundary condition. It can be set simply to a known temperature his-

tory or defined as a non-ablating surface with incoming convective and radiative heat

flux balanced by reradiation. Often, for ablative materials, a more complex Surface

Energy Balance (SEB) is used that accounts for the chemical reactions occurring at

the surface during ablation. The SEB employed in FIAT is a transfer coefficient type

and can be written using Eq. (8), assuming equal diffusion coefficients (CM = Ch).

ρeueCh(Hr − hw) + ṁghg + ṁchc − (ṁc + ṁg)hw

+αwqrad − Fσεw(T 4
w − T 4

∞)− qcond = 0

(8)

In this equation, Ch is the Stanton number. The term ρeueCh is the convective

heat transfer coefficient denoted with the symbol CH (input to FIAT from flow solvers)

while Hr is the recovery enthalpy. Figure 7 provides a schematic showing the physical

phenomena at the surface that are modeled in the SEB equation. The black line

represents the receding surface of the material. The first term in the above equation

Figure 7: Schematic of different thermal terms in FIAT SEB equation.

represents the sensible convective heat flux. The sum of the second, third and fourth

terms define the total chemical energy at the surface due to the ablation products

and pyrolysis gas. The fifth and sixth terms are the incoming radiative heat flux

absorbed by the material and the reradiation to the environment. The last term in

Eq. (8) represents the rate of heat conduction into the TPS material. This equation

can be rewritten as Eq. (9) by combining some terms and defining the dimensionless
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mass blowing rates, B′, shown in Eq. (10).

ρeueCh(Hr − (1 +B′)hw) + ṁghg + ṁchc

+αwqrad − Fσεw(T 4
w − T 4

∞)− qcond = 0

(9)

B′ = B′g +B′c =
ṁg + ṁc

ρeueCM
(10)

As mentioned before, the blowing of pyrolysis gas into the boundary layer results

in the reduction of incoming convective heating due to the transpiration effect. A

simple engineering model, shown in Eq. (11), is used within FIAT to reduce the heat

transfer Stanton number calculated by flow solvers. [74] The variable λ is the blowing

correction parameter which is normally taken to be 0.5 for laminar flow and between

0.2 and 0.4 for turbulent flow. Ch1 is the unblown heat transfer Stanton number

predicted by flow solvers, while Ch is the heat transfer Stanton number corrected for

blowing effects.

Ch
Ch1

=
ln (1 + 2λB′)

2λB′
(11)

FIAT operates using three input files that provide the run settings, initial con-

ditions, back-face boundary conditions, the front-face heating environment and the

material database. For each material in the TPS stack-up, the material database

includes virgin and char densities for each component, the volume fraction of resin,

porosity, decomposition kinetics coefficients, thermophysical properties as function of

temperature and pressure (char and virgin specific heat, thermal conductivity and

emissivity), pyrolysis gas enthalpy and B′ tables calculated externally using a multi-

species equilibrium solver such as MAT or ACE. Given the composition of the bound-

ary layer gas, pyrolysis gas, surface char and thermodynamic data, these equilibrium

solvers create tables which relate Tw and hw to P , B′g and B′c. Each entry in a B′

table represents a chemical solution to a specific ablation problem. At each time step

in a FIAT solution, P , ρeueCh, Hr and T∞ are known from the input environment

and B′g is calculated from the computed ṁg. The tables are iteratively interpolated
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using P and B′g to find the values of B′c and associated Tw and hw that result in

the convergence of the SEB equation. This equation and the internal heat transfer

equations are strongly coupled and are solved implicitly within FIAT. The grid can

be manually imported or automatically generated. For problems with ablation, the

computational grid is compressed to account for surface recession.

1.3.3 Advanced Modeling Efforts

FIAT has been successfully used for many NASA missions and is currently the stan-

dard tool in industry. However, some of the simplifying assumptions used in FIAT

can add uncertainty to its prediction of recession and thermal response. There is ex-

tensive research within the ablation community for higher-fidelity methods that rely

on fewer assumptions. Some models employ the same theories as CMA and FIAT

while adding new equations to relax assumptions used in FIAT. Others have tried to

look at the ablation problem with new approaches and theories. Lachaud et al. [75]

provide a summary of more than 25 ablation solvers that are currently in use and

discuss the main modeling differences between them. Laub [76] also gives a review

of current and future modeling enhancements and efforts and discusses some of the

issues hindering full validation of the more advanced approaches.

Milos and Chen have developed two-dimensional (TITAN) and three-dimensional

(3dFIAT) [77, 78] versions of FIAT that more accurately model cross flow or multi-

dimensional material property variations. These multi-dimensional codes allow the

analysis of the entire vehicle unlike the point-analysis approach used by FIAT. Fur-

thermore, heatshield features such as penetrations or highly curved areas are not one-

dimensional in nature and their analysis requires multi-dimensional capability. These

added features and the higher accuracy come at a cost of computational resources and

lower stability. Dec and Braun [54, 79] have developed a three-dimensional ablation

and thermal response code using the finite element method. Finite element methods
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may be better-suited for three-dimensional analysis and complex geometries and are

more compatible with finite element discretization used in modern design and analysis

tools. Unlike FIAT which makes an equilibrium assumption for the in-depth pressure,

these techniques use Darcy’s Law to model the flow of the pyrolysis gas through the

ablative material obtaining a better prediction of the in-depth pore pressure due to

pyrolysis. Reference [54] also solves the equations for linear elasticity which allow

simultaneous calculation of thermal stress in addition to thermal response.

Other research advances include adding models to calculate the surface thermo-

chemical ablation as a part of the thermal response code, eliminating the use of B′

tables. This has been implemented in a few ablation tools [80] and the most recent

versions of FIAT and TITAN. There has also been extensive effort to model pyrolysis

gas in more detail by adding gas-species conservation equations and using finite-rate

reaction kinetics. [80, 81] The pyrolysis gas movement through the porous material

has been modeled using simplifications of the volume-averaged momentum conserva-

tion equation (Darcy’s law, Klinkenberg and Forchheimer corrections). [81, 82] The

modeling of surface ablation chemistry using non-equilibrium finite-rate reaction ki-

netics has been also attempted; [48, 83] however, the decomposition and reaction rate

data required for the validation of these models is scarce. Other research areas in-

volve the inclusion of models that characterize surface catalysis, roughness and mass

injection effects in the thermal response codes. Coupling with flow-solvers has also

been studied to some extent. [48] Mansour et al. [81] have developed the high-fidelity

Charring Ablator Thermal response (CAT) code that consists of species conservation

equations in addition to the mass and energy conservation equations. It is tightly

coupled to a chemistry model that enables use of equilibrium as well as finite-rate

chemistry.

Lachaud et al. [84] have recently developed a multi-scale approach to model the

ablation of porous materials. Unlike most other tools that treat recession as a surface
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process, they allow the diffusion of boundary layer species within the char layer and

allow ablation to occur in volume. This model was able to explain the unexpected

drop in char-layer density observed in the post-flight analysis of Stardust sample

return capsule PICA heatshield. [60] While these higher-fidelity models show great

promise and provide a more accurate characterization of the physics of the problem,

more sophisticated experiments and diagnostic techniques are required to acquire the

data needed for their validation.

1.3.4 Ground-Based Testing

While there have been many advances in ablation and pyrolysis modeling efforts over

the past decades, experimental testing has been required to provide material prop-

erty and pyrolysis reaction rate data. In addition to providing input parameters for

thermal modeling, experimental methods have been used for many years to calibrate

or validate these models and qualify the TPS material for use in a flight vehicle.

Many different lab tests are performed to characterize the material thermophys-

ical properties and its pyrolysis performance. Reference [85] provides a summary of

some of these lab tests. TGA testing measures the residual mass fraction of the TPS

material as a function of temperature at low temperature rise rates. The obtained

data are fit to determine the decomposition kinetic constants for the Arrhenius re-

action model. Digital Scanning Calorimeter (DSC) experiments are also performed

to provide heat of reaction for pyrolysis as a function of temperature. The elemental

composition of the virgin material is measured using mass spectrometry. Elemental

composition of the char is determined from the known constituents and the char yield

data. Heat of combustion of the virgin material is measured and the heat of formation

is derived. For the char, the heat of formation is derived from the known constituents

and other existing data.
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For pyrolysis gas, the elemental composition of the gas is derived, and the pyrol-

ysis gas enthalpy is determined using a combination of thermochemical equilibrium

models and measured heat of pyrolysis data. The virgin specific heat and thermal

conductivity of the material are measured in specialized lab tests as function of tem-

perature. The specific heat of char is derived from known compositions using method

of mixtures. The optical properties of the char can be also determined experimentally.

The char thermal conductivity is one of the most uncertain material properties. It

can be measured at lower temperatures; however for higher temperatures, it is often

determined using thermocouple data from arc jet testing.

There are no ground facilities that can produce all aspects of the flight environ-

ment, specifically Mars-like environments. Radiative facilities (radiant lamps, lasers),

combustion facilities and arc plasma facilities have been traditionally used for test-

ing of ablative TPS materials. [86] Arc jet facilities are the most versatile and have

been used for the testing of candidate TPS material for planetary entry for over 50

years. [87] Material coupons are instrumented with thermocouples and are exposed

to the high-heating nozzle exhaust environment of the arc jet. These facilities can

produce a wide range of flight-like heat flux, enthalpy, pressure and shear for long du-

rations; however, they can not simultaneously match all these conditions with flight.

Some arc jets can provide low enthalpy, high pressure and high heat flux conditions

while others can simulate high enthalpy, low pressure and low-moderate heat flux en-

vironments. [61] Figure 8 illustrates pre-test and post-test pictures of PICA samples

containing MISP plugs that were used in MSL qualification arc jet testing. A picture

of a PICA coupon being tested in the arc jet environment is also shown.

Even though arc jets are the most flexible TPS testing facilities, they still have

many limitations. Currently there are no arc jet facilities in the United States that

can operate on CO2 and create conditions similar to the Mars atmosphere. Arc

jets are also limited by the sample size and only sub-scale material coupons can be
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Figure 8: MSL qualification arc jet testing for PICA coupons containing MISP plugs.

tested. Furthermore, combined effects of radiative and convecting heating can not

be investigated. Time-varying trajectory-like conditions are also difficult to simulate

in arc jets. The freestream conditions of the nozzle exhaust are not always well-

characterized and there is often significant uncertainty with the measured enthalpy

and heat flux and their distribution along the testing coupon.

Radiative facilities are another class of TPS ground testing techniques. The Sandia

solar tower [88] can produce up to 200 W/cm2 of concentrated solar radiation on

very large models. However, this facility is only appropriate for system level testing

because flight-like conditions are not matched due to a lack of flow. The Laser-

Hardened Materials Evaluation Laboratory (LHMEL) testing facility [89] can be also

used to expose a defined spot size of material to very high laser-produced heat fluxes.

Testing can be done in CO2 environments; however, because there is no flow, the

convective conditions of the reentry can not be simulated. While ground facilities

can provide useful information, flight data is ultimately the best experimental data

for code calibration and validation. Relevant flight testing in Earth’s atmosphere or

instrumentation on planetary entry missions remains the gold standard for reducing

the substantial uncertainties in our aerothermal and TPS response models.
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1.4 Heatshield Flight Data

1.4.1 Past Flight Data

While MEDLI represents the most Mars aeroheating data ever returned by a planetary

mission, a few other entry missions at Mars, Jupiter, Venus and Earth provided

ablative TPS temperature data or other means for the assessment of their heatshield

performances. However, most of the post flight analyses were concerned mainly with

a direct comparison of the model predictions to the temperature data for the purpose

of code validation. An inverse estimation analysis, such as the work proposed in this

document, was not performed for these entry missions.

1.4.1.1 Mars Entry Data

Viking I and II landers employed 70 degree aeroshells with SLA-561V forebody heat-

shields. They entered the Martian atmosphere after orbit insertion partly due to

concerns about the severity of their heating environment. No forebody TPS thermo-

couples were used for these missions; however, each vehicle was equipped with two

surface-mounted backshell thermocouples on the fiberglass inner cone and the alu-

minum skin of the outer cone. Pre-flight estimates predicted the backshell heat flux

to be about 3% of the forebody nose laminar value while the flight data indicated

heating as high as 5%. [90] The surface heat flux was derived from the thermocouple

measurements based on analytical techniques which made simplifying assumptions

about the thickness and thermal response of the backshell material. [91] Early analy-

sis suggested that the high level of heating and slope changes in the data was evidence

for turbulent transition on the base. Figure 9 from Ref. [91] illustrates the observed

slope change in the derived heat flux for Viking I. The aftbody heat flux is shown as

a percentage of the computed stagnation heat flux.

Recently, Edquist et al. [92] performed a more detailed analysis and obtained

Navier-Stokes solutions of the wake flowfield with LAURA and DPLR CFD codes.

26



Figure 9: Viking I aftbody heat flux derived from flight temperature data.

The surface heat flux was derived from the flight temperature data using a one-

dimensional heat balance formulation which included estimates of material properties,

internal heat source and trajectory uncertainties. Based on these uncertainties, lower

and upper bounds were obtained for the derived heat flux. The CFD simulations

predicted that the wake flowfield was unsteady. Figure 10 from Ref. [92] shows that

the averaged CFD-calculated heat flux under predicts the heat flux inferred from

flight data. This study also showed that the slope change in the normalized heat flux

(observed in the previous study) might not be due to turbulent transition. The slope

change could have been exaggerated by the normalization of a rising aftbody heat

flux with a declining stagnation point heat flux.

The Mars Pathfinder entry vehicle was a 70 degree sphere-cone with a SLA-561V

heatshield equipped with six forebody and three aftbody thermocouples at different

locations and depths. Milos et al. [5] performed aerothermal and TPS response anal-

yses for the entry vehicle and compared their results with flight data. In general,

the data indicated a good qualitative match with the analysis except at the bondline

thermocouples. More recently, Mahzari et al. [93] performed an updated aerother-

mal and TPS analysis for the entry vehicle, and used inverse methods to reconstruct

surface heating profiles for stagnation and shoulder locations that resulted in a much

closer match with the data. The details of the Pathfinder instrumentation and the

conducted inverse analysis are explained in Chapter 3.
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Figure 10: Computed Viking I aftbody heat flux compared to flight-derived values.

Viking and Pathfinder represented the only Mars entry aeroheating flight data.

Prior to the work proposed here, a comprehensive inverse analysis of this data was

not performed. The previous analyses focused mainly on a direct comparison between

model predictions and data, or using simple techniques to analytically derive heat flux

from measured temperatures. The application of inverse methods will provide a more

accurate reconstruction of the aerothermal and TPS performance.

1.4.1.2 Venus and Jupiter Entry Data

The Pioneer Venus program included four entry probes that descended through the

Venusian atmosphere along different trajectories. They were 45 degree sphere-cones

with carbon phenolic heatshields. Each probe was equipped with two subsurface fore-

body thermocouples. [94] These thermocouples were located at the nose and along

the conical frustum. The probes were expected to experience high convective and

radiative heat rates in the excess of 7,000 W/cm2. Wakefield and Pitt compared the

flight data with temperature calculations from the CMA code based on predicted

heating conditions (shown in Figure 11). For the day probe, the predicted and mea-

sured temperature rise times were offset by several seconds. This is deemed to be due

to the uncertainty in the vehicle’s trajectory which was one of the main challenges
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of the post-flight analysis. Not considering the time offset, the magnitude and the

curvature of the analytical predictions matched the flight data very well. For the

night probe, the shoulder predictions agreed well with the thermocouple data but the

nose predictions were conservative. [95]

Figure 11: Analytical predictions compared with flight data for Pioneer Venus probes.

The Jupiter Galileo probe was also a 45 degree sphere-cone and the heatshield was

made of carbon phenolic. Galileo entered the Jovian atmosphere at a velocity of 47

km/s and experienced the most severe heating environment by any planetary entry

capsule. The vehicle was equipped with ten Analog Resistance Ablation Detector

(ARAD) sensors that were designed to measure the TPS recession. Four resistance

thermometers, two on the forebody and two on the aftbody, were also placed inside

the structure which provided temperature measurements. [56] The temperature mea-

surements were recorded every 8 seconds, and six samples were stored in memory

overwriting previous measurements. The temperature acquisition was designed to

stop after the end of recession data acquisition; however, a software problem resulted

in the temperature data acquisition to continue, overwriting the data from the early

phase of the entry.

Since the thermometers were inside the structure, they were not strongly affected

by surface heating. The nose cap thermometer did not show any response because
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the heat pulse was not expected to penetrate the heatshield thickness within the ac-

quisition period. The frustum thermometer showed a 30 K temperature rise. Milos

et al. used a combination of the ablation sensor measurements, FIAT and a one-

dimensional heat conduction model for the thermometer to show that the recession

and temperature data were consistent with 13,400 W/cm2 peak heating at the frus-

tum.

The ablation sensor performed poorly and an accurate transient heatshield shape

analysis was not possible due to the oscillations and noise in the returned ARAD

data. Milos et al. performed a direct comparison of the analytical predictions and

the ablation sensor data. The main conclusion was that while the stagnation point

recession was less than predicted, ablation at the shoulder was significantly greater

than predicted. [96] The reasons for this discrepancy are still not known.

1.4.1.3 Earth Entry Data

The Genesis sample return capsule entered the Earth atmosphere in 2004. The en-

try vehicle was protected with a carbon-carbon heatshield. The parachute failed to

open during the descent which resulted in the spacecraft crash landing in Utah. The

aeroshell was damaged significantly; however, a portion of the heatshield was un-

damaged and recovered for analysis. [97] Figure 12 shows that the heatshield region

downstream of the forebody attachment points exhibited a more intense charring and

streak patterns which are indicative of higher heating. Tang et al. [98] performed

laminar and turbulent CFD simulations for the Genesis capsule and concluded that

the higher heating in these regions may be caused by turbulent transition.

The Stardust sample return capsule entered the Earth atmosphere in 2008 and was

protected with a PICA heatshield. Even though there was no instrumentations in the

TPS, the heatshield was recovered (shown in Figure 12) and samples from its nose,

flank and shoulder were analyzed in the lab. [60] Different tests were performed to
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examine the TPS density profile, surface emissivity profile and recession. The results

showed that analytical models tend to overpredict recession which can be partly

explained by the equilibrium assumption used in those models. The PICA material

density profile generally agreed with model predictions except an unexpected observed

drop in the char layer. This can be explained if recession is not treated only as a

surface phenomenon and is modeled as a volume process. [84]

Figure 12: Recovered Genesis and Stardust capsule heatshields.

In addition to these missions, there have been numerous instances of flight data

returned by Earth entry vehicles. Some examples are calorimeters and radiometers

from the Mercury, Gemini and Apollo 1-3, 4 and 6 missions. Fire II was equipped

with forebody calorimeters, radiometers and aftbody thermocouples. Early Space

Shuttle missions included heat transfer sensors. Recently, infrared imagery of the

Space Shuttle tiles during hypersonic entry was successfully attempted and provided

useful data regarding turbulent transition and roughness effects. [99] Other examples

include projects Reentry F, MIRKA and ARD. [4] In some instances, the heatshields

were recovered for further analysis. A discussion of all the analysis done for these

missions is beyond the scope of this work; however, the majority of data analysis

work included direct comparisons to investigate model validity. A comprehensive

inverse reconstruction, such as the work proposed here for the MEDLI dataset, was
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not performed for those datasets. Reference [4] provides a complete review of the

data related to afterbody heating predictions.

1.4.2 MEDLI

The MSL entry vehicle landed on Mars in August 2012. It had a 4.5 meter PICA

heatshield which was equipped with forebody temperature and pressure sensors called

MEDLI. [8] MEDLI provided more TPS data than all the data from Viking and

Pathfinder missions combined. MEDLI consists of seven pressure ports and seven

PICA plugs at different locations on the MSL heatshield. The suite consists of

three subsystems: MISP temperature/isotherm sensors, MEADS pressure sensors,

and Sensor Support Electronics (SSE). MISP sensors are installed into PICA plugs

that are flush-mounted to the flight heatshield. The MISP plugs (Figure 13, T labels)

are strategically placed to cover a broad range of heat flux environments, while the

MEADS locations (Figure 13, P labels) are concentrated in the higher pressure and

lower heat flux region near the stagnation point and the nose region. The data from

the MISP sensors are the focus of this research.

Figure 13: Location of MEDLI sensors on MSL heatshield.
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Each MISP plug is 33 mm in diameter with a total depth of 29 mm, and contains

four type-K U-shaped thermocouples. The thermocouples are at nominal design

depths of 2.54, 5.08, 11.43, and 17.78 mm (0.10, 0.20, 0.45, 0.70 inch) from the

surface of the plug. X-ray measured thermocouple depths are shown in Table 1. The

top two thermocouples are intended primarily for aerothermodynamic reconstruction,

while the two deeper thermocouples are primarily intended for material property

reconstruction. The science measurement range requirement for each thermocouple

is 100 to 1300 K with an accuracy of ± 2.2 K or 2.0% below 273 K and ± 1.1 K

or 0.4% above 273 K. The top thermocouple is sampled at 8 Hz while the deeper

thermocouples are sampled at 1 or 2 Hz depending on the location. The bottom

two thermocouples at plugs 5 and 7 are not wired due to data channel limitations.

Figure 14 shows a schematic and an image of a finished MISP plug. [9]

Figure 14: Schematic and image of finished MISP plug.

Table 1: X-ray measured depths of MISP plugs thermocouples.

Ideal (in) Plug 1 Plug 2 Plug 3 Plug 4 Plug 5 Plug 6 Plug 7
TC1 0.100 0.104 0.106 0.103 0.097 0.099 0.108 0.094
TC2 0.200 0.200 0.203 0.193 0.212 0.192 0.203 0.193
TC3 0.450 0.452 0.456 0.456 0.446 0.461 0.460 0.442
TC4 0.700 0.704 0.700 0.693 0.706 0.703 0.695 0.699
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Each MISP plug also contains an isotherm sensor called Hollow aErothermal Ab-

lation and Temperature (HEAT). [100, 101] It is an improved version of a similar

sensor that was used for the Galileo entry probe to determine surface recession.[96]

However, at the lower heat rates experienced during Martian entry, it is not expected

to provide any information on recession. The sensor elements are conductive, so

as the char layer-virgin material interface advances, these elements become shorter

and the voltage output decreases. The voltage measurements can be correlated with

the sensor length which can then be correlated with char depth. Figure 15 shows

a schematic and an image of a finished HEAT sensor. [101] The MSL data analysis

study presented in this document focuses mainly on the thermocouple data.

Figure 15: Schematic and image of finished HEAT sensor.

Table 2: MISP science objectives.

Objective Accuracy
Reconstruct aeroheating ± 30 W/cm2

Determine leeside turbulent heating levels ± 30 W/cm2

Determine time of boundary layer transition onset 2 seconds
Determine presence, if any, of stagnation point heating
augmentation

± 30 W/cm2

Measure subsurface material temperature response ± 12%
Determine total TPS recession ± 0.635 cm

Measure depth of isotherm in TPS
720◦C ± 80◦C
and ± 0.8 mm

Table 2 shows a list of the MISP instrument science objectives as defined by the

MEDLI project. [102] Reconstruction of surface heating will allow investigation of tur-

bulent and catalytic heating augmentation, onset of transition and stagnation point
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heating augmentation. The isotherm sensor data is expected to indicate information

about TPS total recession.

1.5 Summary of Contributions

The objective of this thesis is to develop an inverse estimation methodology to im-

prove knowledge extracted from aerothermal and TPS data. Significant uncertainty

remains in both the surface heating predicted by aerothermal models and TPS ma-

terial performance. Application of the developed methodology will allow accurate

estimation of material properties and reconstruction of the complete surface heating

profile from experimental data. Sometimes, estimation parameters are constant in

time while other parameters could be time-dependent. When parameters are con-

stant, the inverse problem is a parameter estimation problem. Conversely, if the es-

timation parameters are time-dependent the problem becomes a function estimation

problem. These problems have their own unique challenges and are most effectively

treated separately. Therefore, the inverse methodology presented in this thesis is

divided into two sections: a multi-parameter estimation framework and a surface

heating function estimation framework.

The multi-parameter estimation framework focuses on estimation of multiple con-

stant parameters such as material properties or constant arc jet heating parameters

from TPS experimental data. The simultaneous estimation of these parameters is not

straightforward. From a large set of possible material and heating parameters, one

must first identify a smaller subset that contribute the majority of the uncertainty in

TPS response prediction. Some of the input parameters might also be correlated and

not simultaneously observable from the data. Therefore, one must also investigate the

degree of linear dependency between the parameters prior to performing an inverse

estimation. Data quality is another area of concern. Errors in the data can make the

estimation process unstable and lead to incorrect estimation results. Consequently, it
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is crucial that the framework developed identifies what parameters can be estimated

from the experimental data and what range of measurements should be used.

The surface heating function estimation framework provides a means to perform

time-dependent estimation of the complete surface heating profile from TPS subsur-

face temperature data. This framework is appropriate for heating reconstruction in

a flight application where surface properties vary in time along the trajectory. Func-

tion estimation problems are ill-posed. Small errors in the data or model can cause

significant oscillation in the estimated heating profile. Regularization techniques are

used to alleviate these oscillations. The framework developed in this work introduces

techniques and guidelines for accurate reconstruction of surface heating.

When subsurface temperature data is available at multiple depths, a thermocouple

(TC) driver approach can be used to decouple the surface heating problem from the

in-depth material response problem. This enables application of both frameworks to

the complete dataset to estimate both the material properties and time-dependent

surface heating. First, the surface heating profile is estimated from the shallowest TC

data using the function estimation framework. Then, the data from the shallowest TC

is used as the truth boundary conditions and the heat conduction problem is solved for

the TPS block below that TC. In this manner, knowledge of surface heating conditions

are not required for the in-depth heat transfer problem. This allows application of

the multi-parameter estimation framework to estimate material properties from the

remaining deeper TC data.

In this thesis, the multi-parameter estimation framework is first applied to an

arc jet dataset. Next, the surface heating function estimation framework is applied

to Mars Science Laboratory (MSL) simulated data and Mars Pathfinder flight data.

Finally, both frameworks are applied to MSL flight data. The work presented in this

thesis is motivated by the goals of the MSL aerothermal environment and heatshield

reconstruction efforts. However, the scope of this work is not limited to MSL. The
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inverse methodology and tools developed for this purpose can be also applied to other

flight projects and ground testing data. The contributions of the work proposed herein

are summarized below:

(1) Development of a Multi-parameter Estimation Framework for Ap-

plication to Atmospheric Entry TPS Experimental Data: This framework

employs nominal, uncertainty and sensitivity analyses before inverse estimation to

assess the quality of the data, identify the parameters that contribute the most to

prediction uncertainty and select the parameters that are simultaneously observable

from the data. These analyses provide the prerequisite information for a successful

and accurate inverse analysis. Material properties and aerothermal constants are esti-

mated with this framework. The framework is validated with the use of MSL-related

arc jet data. This multi-parameter estimation approach provides better results and

more flexibility than traditional methods. This framework is also employed to esti-

mate PICA material properties from MSL data using a TC driver approach.

(2) Development of a Surface Heating Function Estimation Framework

for Application to Atmospheric Entry TPS Temperature Data: Techniques

and guidelines are introduced for estimation of time-dependent surface heating from

subsurface TPS temperature data. Traditionally, the nominal surface heating profile

was simply scaled to provide a reasonable qualitative match with flight data. The

analysis presented here allows a more accurate estimation of the time-dependent sur-

face heating profile. This framework is validated by application to simulate data.

The effect of model and measurement errors on the accuracy of surface heating es-

timation is investigated. Previous inverse analyses of this kind were concerned with

simpler materials and heating conditions. This investigation is the first to develop

and apply these techniques specifically for a relevant ablative, pyrolyzing TPS at

flight conditions.
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(3) First Application of Inverse Techniques to Reconstruct a Mars En-

try Vehicle’s Aerothermal Environment and TPS Material Response from

Heatshield Flight Data: Investigation of TPS flight data has been traditionally

performed in a direct fashion, where the model predictions are directly compared to

the flight data. In this investigation, inverse methods are used to reconstruct surface

heating and TPS material properties from Mars flight data. This is completed for

both the Mars Pathfinder and MSL missions. In the case of Pathfinder, the flight

thermocouples were only available at one depth. As such, only the surface heating

profile is estimated. For the MSL vehicle, the TC driver approach is used to estimate

both TPS material response and surface heating from flight data.

(4) Investigation and Improvement of TPS Design Margin Policies: Con-

servative margins have been used in TPS design due to uncertainties in the aerother-

mal environment and TPS material response. These high margins significantly affect

the choice of TPS material and heatshield mass. This work will examine how the

findings from MSL data may be used to modify these design margin policies.

1.6 Thesis Outline

Chapter 2 introduces the estimation methodology developed in this thesis for ap-

plication to aeroheating and TPS experimental data. Both the multi-parameter and

surface heating function estimation frameworks are described. Chapter 3 discusses

the application of the multi-parameter estimation framework to an arc jet dataset.

Chapter 4 applies the surface heating function estimation framework to simulated

MSL data and Mars Pathfinder flight data. In Chapter 5, a detailed inverse analysis

of MSL flight dataset is provided followed by a discussion of possible improvements to

TPS design margin policy in the light of MSL data. Finally, Chapter 6 presents the

conclusions, lessons learned and future design and placement of TPS instrumentation.

Possible augmentations to the methodology are also discussed.

38



CHAPTER II

INVERSE ESTIMATION METHODOLOGY

2.1 Introduction

The inverse estimation tools and frameworks developed for application to aeroheat-

ing and TPS experimental data are examined in this chapter. First, the distinction

between “Direct” and “Inverse” for data analysis problems relating to atmospheric

entry aeroheating and TPS thermal response is discussed. Next, background on in-

verse heat transfer problems and their solution methods is presented. The estimation

methodology presented in this work comprises of two distinct parts. The first part is

a multi-parameter estimation framework developed for inverse problems where mul-

tiple constant parameters need to be estimated. This framework helps identify what

parameters should be estimated and what range of the measurements should be used.

This framework has application to material property estimation or arc jet problems

where surface heating is not time-dependent.

The second part of the methodology is the surface heating estimation framework

which is aimed at problems where the time-dependent surface heating is reconstructed

from in-depth temperature data. Unlike the first part where multiple constant phys-

ical parameters need to be recovered, surface heating reconstruction often involves

the estimation of one parameter as a function of time. These problems are addressed

separately as they each have their own unique challenges. Finally, the last section of

this chapter discusses the “TC Driver” approach which is used to decouple surface

heating estimation and material property estimation problems. This approach will

be most useful for application to flight data where surface heating is not known a

priori.
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2.2 Direct vs. Inverse Analysis

Most engineering problems are posed for direct analysis, where a physical phenomenon

is studied using an analytical model. Model parameters and boundary conditions are

known and the goal is to compute the system response or model outputs. In the

case of TPS response modeling, the heating boundary conditions are known from

aerothermal models and the parameters and material properties defining the thermal

response model are also known. The goal of TPS response modeling is to predict the

TPS thermal response by calculating variables such as recession or the temporal and

spatial distribution of the TPS temperature. This is called the direct problem.

If measurements of a system’s response are available, the problem can be ap-

proached in an inverse fashion. For these problems, the objective is to estimate the

model parameters or boundary conditions from measured outputs. In the case of TPS

response modeling, measurement of temperature as a function of time is available at

a few locations, and the goal is to accurately estimate model parameters and bound-

ary conditions that result in a predicted system response (temperature) that closely

matches the data. This is called the inverse problem.

In the past, all planetary heatshield flight data were analyzed in the direct fash-

ion. Figure 16 illustrates a schematic for direct data analysis. In this approach,

CFD tools are used to calculate time-dependent surface heat rate based on the re-

constructed flight trajectory. Next, surface heating conditions derived from CFD

solutions are fed into a thermal response code such as FIAT. The heatshield in-depth

temperature response is then calculated by FIAT using a set of properties previously

derived for the heatshield material. The analytical temperature response at the ther-

mocouple locations are then compared to flight temperature data. This comparison

will qualitatively indicate how accurate the computational models are with respect

to flight data. A small number of parameters in the material model can be modified

or the calculated surface heating can be manually scaled to provide a better match
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between the computational model predictions and measured temperature data. This

approach assumes the computational models are accurate, providing neither a time-

dependent surface heating profile nor any material properties directly derived from

the flight data. Model or measurement uncertainty must be addressed separately.

Figure 16: Direct approach for TPS data analysis problems.

Unlike the direct approach, inverse data analysis enables the estimation of the sur-

face heating profile and material properties directly from the flight data. Figure 17

illustrates a schematic for inverse data analysis. The CFD-calculated surface heat-

ing and the nominal material model are solely used as initial guesses for the inverse

methods. The surface heating solution and/or material properties that provide the

closest match between the computational model predictions and flight temperature

data are estimated. Model and measurement errors can be easily integrated within

the estimation loop to also calculate the uncertainty associated with the heating or

property estimates. Using an inverse approach, the complete time-dependent func-

tional shape of the surface heating profile can be estimated in addition to multiple

material properties.

Figure 17: Inverse approach for TPS data analysis problems.
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Inverse problems are mathematically ill-posed, meaning that the conditions of

solution existence, uniqueness and stability are not generally satisfied with respect

to the input data. The solution existence problem stems from the fact that there

may be no parameter set that exactly fits the data. This can occur in practice when

the mathematical model of the system physics is approximate or when the data con-

tains significant errors. Furthermore, there is significant uncertainty in many model

parameters and boundary conditions. In addition, in many physical problems, some

input parameters are linearly dependent and have similar effects on the outputs. This

correlation results in those parameters not being simultaneously observable from mea-

surements. Finally, the estimation of a time-dependent boundary condition without

any information on its functional form can be unstable due to the fact that many

dependent parameters have to be estimated. Such instabilities may result in large

oscillations in the estimated boundary conditions.

These challenges have motivated the development of optimization and regulariza-

tion methods for the solution of inverse problems. In this work, estimation frame-

works are developed for application to TPS data analysis problems for both material

property parameter estimation and surface heating function estimation.

2.3 Inverse Problems Background

During the past decades, extensive research has been conducted on the solution of

inverse problems. These problems are encountered in data analysis applications

in a broad range of fields such as heat transfer,[103, 104, 105, 106, 107, 108, 109]

geophysics,[110] trajectory and orbit reconstruction,[111, 112, 113, 114, 115] remote

sensing,[116] medical imaging,[117] mathematics and astronomy. [118] The general

methods used for the solution of inverse problems in these fields are similar. How-

ever, specific solution techniques are modified from one field to another to serve the

purpose of the problem being studied. Since the analysis presented here is concerned
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with aerothermal modeling and ablative TPS material response, this work is focused

on the class of methods used to solve Inverse Heat Transfer Problems (IHTP). For

more details, the reader should consult the work by Orlande [119] which provides a

survey of the methods used to solve IHTPs and current research areas.

IHTPs can be categorized in different ways. [106] They can be classified in accor-

dance with the nature of the dominant heat transfer process: conduction, convection

or radiation. For example, Inverse Heat Conduction Problems (IHCP) involve the

estimation of boundary heating or thermophysical parameters from in-depth tem-

perature measurements while the heat is transferred primarily through thermal con-

duction. Another classification is based on the type of parameters being estimated:

boundary conditions,[104] model parameters (material properties), [103] initial condi-

tions or geometric characteristics. Estimation of the time-dependent surface heating

profile is a function estimation problem while estimation of thermophysical properties

such as specific heat and thermal conductivity is a parameter estimation problem. An-

other classification is based upon the differential equations representing the problem:

linear or nonlinear. The temperature and spatial dependence of material properties

makes the heat conduction problem nonlinear. The inverse methods used for these

problems can also be classified based on the time domain of the measurements used

in the estimation process: whole-time domain or sequential. Other ways of classi-

fication include the dimension of the heat transfer problem (e.g., 1-D, 2-D or 3-D)

and the method of solution of the direct heat transfer problem (e.g., finite difference,

finite element, finite control volume, Duhamel’s theorem). This investigation is con-

cerned with nonlinear Inverse Heat Conduction Problems (IHCP) for the estimation

of MSL’s surface time-dependent heating boundary conditions and PICA material

properties. Therefore, the MSL estimation problem described here is a combination

of both function estimation and parameter estimation problems.

The estimation of surface heating from in-depth temperature is a challenging
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problem because the temperature response is damped and delayed. This means that

a change in the surface heating is felt by the subsurface thermocouples with lower

sensitivity and with time delay. Naturally, the sensors need to be closest to the

surface to minimize this problem; however, this is not always possible due to surface

recession and the operating limits of thermocouples. Figure 18 shows the temperature

sensitivity of in-depth thermocouples to a 10% step change in surface heating at 70

seconds as calculated by FIAT. Here, TC1 is the closest to the surface at a depth of 0.1

inch with TC2-TC4 at depths of 0.2, 0.45 and 0.7 inch. The deeper the thermocouple,

the more delayed and damped its response is.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

T
em

p
. S

en
si

ti
vi

ty
 (

K
)

 

 

TC1

TC2

TC3

TC4

Figure 18: Subsurface temperature sensitivity of 4 thermocouples at depths of 0.1,
0.2, 0.45 and 0.7 inch to a change in surface heating at 70 s.

The main methods used for the solution of IHCPs are the whole-time domain

method and the sequential function specification method. Whole-time domain meth-

ods estimate all of the parameters characterizing the time-dependent boundary con-

dition profile at the same time using all measurements. The time-dependent heating

profile is discretized and treated as multiple control points or parameters. The esti-

mation is done by iterative minimization of an objective function S (ordinary least

square), which is equal to the sum of the square of errors between the measurements
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and the corresponding temperature predictions. The set of parameters that mini-

mize this function is the solution of the inverse problem. The ordinary least-square

objective function is shown in Eq. (12) in both standard and matrix forms.

S (P) = [Y −T (P)]T [Y −T (P)] =
M∑
i=1

(Yi − Ti)2 (12)

P is the vector of parameters being estimated (either material properties or dis-

cretized time-dependent boundary conditions), Y is the thermocouple measurements

in one vector, and T is the corresponding vector of temperature predictions by physi-

cal models. This is an ordinary least squares estimation. Other variations of this func-

tion are possible such as weighted least squares, maximum likelihood and maximum a

posteriori estimation. Different methods can be used to perform the minimization for

a least squares problem such as Gauss-Newton, [103, 107] Levenberg-Marquardt, [106]

Box-Kanemasu [103], variations of the Conjugate Gradient method or more computa-

tionally expensive second order methods. [106] The Gauss-Newton method provides

the fastest convergence of the first-order methods; however, it can be unstable.

As mentioned before, inverse problems are ill-posed and become unstable in the

presence of errors and for small time steps. This results in large oscillations in the

boundary condition estimates as the solution is reached. Regularization approaches

are used in conjunction with the minimization scheme to make the problem bet-

ter posed and more stable. Regularization has a smoothing effect on the parameter

estimates. Russian mathematician Andrey Tikhonov devised a procedure for the reg-

ularization of ill-posed problems. [120, 121] His technique involves the addition of a

penalty function to the ordinary least square function to alleviate oscillations in the

solution. Doing this results in effectively solving a neighboring problem that has a so-

lution close to the solution of the original problem, with the distinction that the new

problem is better posed. The regularization term can take many different forms, but

they all include a parameter that has to be determined to obtain a stable solution. An
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alternative approach used in literature is the Alifanov’s iterative regularization tech-

nique. [105] In this method, the number of iterations plays the role of regularization

and a termination criterion is chosen such that a stable solution is obtained. [122]

Unlike whole-time domain methods, sequential methods estimate a given param-

eter using only a limited range of measurements and continue sequentially in time.

One of the leading methods is the function specification method with future time

algorithm developed by James Beck. [104] It is designed such that the estimation

algorithm efficiently takes advantage of the fact that the subsurface temperature is

lagged compared to the surface heating. [123] In this method, the boundary condition

at a given time is estimated using thermocouple measurements for a limited future

time window. The number of future time steps used in the estimation has the same

effect as the regularization approach for whole-time domain methods. Tikhonov reg-

ularization can also be implemented in this formulation in addition to the future time

approach. This method has the advantage of being more computationally efficient

than whole-time domain methods, but less stable for small time steps. To benefit

from this efficiency, the code used to solve the direct problem must be able to save

and restart the solution in time. Without such option, the entire solution has to be

calculated at every time step.

In addition to the deterministic regularization methods, statistical techniques

within the Bayesian framework are another way to solve sequential inverse prob-

lems. These methods belong to the class of state estimation problems and are based

on sequential estimation of a set of dynamic variables (state). In this case, dynamic

equations are developed to propagate the state and its uncertainty in time. Then,

a statistical filter is used to estimate the state variables at a given time from the

dynamic equation predictions, the measurements and their uncertainties. Kalman

Filter (KF) and other variations such as Extended Kalman Filter (EKF) or Un-

scented Kalman Filter (UKF) are the most popular Bayesian filters. [124, 125, 126]
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While some variations such as EKF address nonlinear problems, the Kalman filter is

mathematically limited to linear problems with additive Gaussian noises. Within the

EDL field, these methods are widely used for atmospheric and trajectory reconstruc-

tion. [111, 112, 113, 114, 115]

Monte Carlo methods use random samples and are not as restrictive as the Kalman

filter. These methods are also known as particle filters and can be applied to non-

linear models with non-Gaussian errors at the expense of higher computational cost.

Researchers have recently started using Bayesian methods for the solution of IHTPs.

Kaipio et al. [127] provides an excellent review of the application of these methods to

heat transfer problems; however, the use of statistical methods for this investigation

requires significant reformulation of the governing equations in the form of dynamic

equations. Furthermore, good knowledge of measurement uncertainties and covari-

ances are required, but are not readily available for thermocouple measurements.

Research in the IHTP field has suggested that regularization techniques provide suf-

ficient and accurate results. For these reasons, statistical methods are not pursued in

this work.

Inverse methods, specifically regularized whole-time domain and statistical Monte

Carlo methods, require solution of the direct problem many times as they iterate to

find the solution to the inverse problem. Also, at each iteration many direct runs are

required to numerically calculate the Jacobian matrix used in estimation algorithms.

Therefore, the solution of inverse problems can be time-consuming if the solution to

the direct problem is computationally expensive. Inverse analyses can only be as

accurate as the direct model used to describe the physical problem. Any structural

uncertainty or deficiencies in the model can not be removed through a simple inverse

estimation.
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2.4 Multi-parameter Estimation Framework

In a complex ablation and conduction problem with pyrolysis, many parameters can

contribute to the overall uncertainty. The goal of this section is to develop a multi-

parameter estimation framework which would address the challenges in accurate esti-

mation of multiple constant parameters from in-depth temperature data. This frame-

work can have application to material property estimation from flight temperature

data or both material property and surface heating estimation from arc jet data where

surface heating is constant in time. The motivation for developing this framework is

explained here and the different steps are briefly explained. Chapter 3 will provide

a more detailed explanation of the steps while applying them to the estimation of

material properties and aerothermal properties from an arc jet dataset.

In order to discuss some of the challenges involved in multi-parameter estimation

problems, consider Eq. (13) as a simple representation of the data analysis problem.

The vector Y is the measurement of the system response (thermocouple measure-

ments), vector η is the true material thermal response, P is a vector of constant

material and/or aerothermal parameters, and G is the physical model (FIAT). It is

assumed that the problem is formulated such that these parameters are constants

and not functions of time. In an inverse data analysis problem, the objective is to

estimate the true input parameters Ptrue from the thermocouple measurements Y.

Y = η + (εrandom + εbias) = G [Ptrue] + εmodel (13)

This equation shows that the measurements are not exactly the same as the true

response due to measurement errors. An example of bias error is thermal lag wherein

there is a lag between the temperature reading of the thermocouple and the actual

temperature of the material. Additionally, measurement errors due to instrument

malfunctions or random noise are possible. The right hand side of the equation shows

that the physical model is not always perfect. Theoretical models provide our best
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understanding of a physical phenomenon, but do not represent the physics exactly.

This difference is called model or structural error. These errors can make inverse

estimation unstable. Additionally, different combinations of input parameters can

result in similar material response if these parameters are linearly dependent. Such

parameters will not be simultaneously observable from the data, making the solution

of the inverse problem non-unique.

For complex problems where different parameters contribute to the uncertainty, a

comprehensive framework is required to yield an accurate multi-parameter estimation.

The results of inverse estimation depend strongly on the range of measurements used

in the analysis and input parameters being estimated. It is crucial that the mea-

surement and parameter selections are performed intelligently prior to the inverse

estimation. The framework developed here proposes guidelines on how to conduct

the parameter estimation via four steps: Nominal Analysis, Uncertainty Analysis,

Sensitivity Analysis, and Inverse Analysis.

The first three steps provide the prerequisite information to set up a successful

inverse estimation. Nominal Analysis examines the quality of the data and provides

a direct comparison between the data and the model predictions. This is analogous

to the direct approaches used historically by the TPS community. The range of

measurements that are reliable for inverse analysis is identified. Uncertainty analy-

sis narrows down the list of material and aerothermal parameters to an appropriate

subset representing the top contributors to the overall uncertainty. Sensitivity Anal-

ysis investigates potential dependencies between the parameters which may lead to

observability challenges. These steps provide a list of parameters to be estimated

and the range of data that must be used in the estimation process. In the last step,

inverse methods are used to estimate the selected parameters from the data.
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2.4.1 Nominal Analysis

Nominal analysis can be thought of as a direct analysis. The goal is to examine the

quality of the data and perform a direct comparison between the data and nominal

model predictions before proceeding with inverse analysis. Model and measurement

errors can lead to inaccurate solution of the inverse problem and introduction of bias

errors in the estimated parameters. Nominal analysis is performed to identify such

errors and determine the range of measurements that are reliable for inverse analysis

by examining the flight data and performing a direct comparison of predictions to

flight data. The objectives and steps of the nominal analysis are as follows:

• Examine the data quality to identity measurement errors, anomalies or sensor

malfunctions.

• Correct for measurement errors, if possible. If not, determine what range of the

data is reliable for inverse analysis.

• Compare the data to the predictions from the physical model based on nominal

parameters.

• Examine the model fidelity by identifying where the data trends are fundamen-

tally different from model predictions.

• Select the measurement range that will be used in the inverse analysis.

2.4.2 Uncertainty Analysis

Uncertainty analysis is performed to identify what parameters need to be estimated

by the inverse method and what range of measurements are most sensitive to these

parameters. This process defines a hierarchy of the aerothermal and material property

parameters based on the largest uncertainty contribution to the in-depth temperature

predictions. This step also provides insight into the direct problem and expected

qualitative trends. The approach employed to accomplish these goals is probabilistic,

and is accomplished with Monte Carlo (MC) simulations. The objective is to start
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with a complete list of material and aerothermal parameters and down select to a

smaller subset containing parameters of most importance.

Historically, aerothermal and TPS design and analysis has been conducted in a

deterministic fashion. One of the first examples of probabilistic TPS design was the

use of MC techniques in determining TPS margins by Dec and Mitcheltree [128] for the

proposed Mars Sample Return Earth Entry Vehicle. However, only a small number

of input parameters were studied. Studies performed by Bose et al. [129] and Wright

et al. [130] also showed the potential of MC simulation as a technique to predict the

uncertainties in aerothermal environments. Chen et al. [131] demonstrated a general

MC technique for establishing appropriate TPS thickness margins and for performing

sensitivity studies, applying this technique to the TPS design for several space entry

vehicles. Building on this work, Sepka and Wright [132] developed a MC analysis

software tool and applied it to the MSL aeroshell TPS design. This tool was used

to determine the parameters that have the greatest influence on the MSL bondline

temperature. Copeland et al. [133] used experimental data for PICA to generate

Probability Distribution Functions (PDF) for its material properties and performed

MC and sensitivity analyses for MSL relevant conditions. Most of the past work

was focused on the use of MC techniques for design margin quantification. In this

work, Monte Carlo techniques are used to identify the most influential parameters in

thermal response modeling, for subsequent use in inverse analysis.

Gaussian distributions are defined for many aerothermal and TPS modeling pa-

rameters. The standard deviations used for these input parameters are generally

derived from material property testing, aerothermal tool uncertainty studies or en-

gineering judgment. The MC simulation involves 10,000 direct FIAT runs with dis-

persed input parameters to ensure statistical accuracy. The temperature response

calculated by FIAT is saved for each MC run.
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Post-processing is traditionally done using linear regression analysis by calculat-

ing the relative contribution of each input’s variability to the overall output variabil-

ity. [132] This is done by calculating the correlation coefficient between the vector

containing all instances of an input parameter and the vector containing the corre-

sponding instances of any output (e.g., predicted thermocouple temperature). The

square of the correlation coefficient is the fractional contribution to the uncertainty

in the output due to the uncertainty in the input parameter. The fractional con-

tribution can be plotted as a function of time for the input parameters at different

thermocouple locations. Examination of these plots lead to the identification of a

smaller subset of parameters which contribute the most to temperature uncertainty,

or in other words, the parameters that are most important to estimate.

2.4.3 Sensitivity Analysis

Sensitivity analysis is used to determine which parameters can be independently es-

timated. Knowledge of the correlation between the input parameters is crucial for

inverse analysis because most inverse algorithms are gradient-based and use sensitivity

coefficients in order to update the parameters. If the magnitudes of these sensitivity

coefficients are small or if they are correlated with each other, it may cause numerical

problems with solution stability and uniqueness of the inverse method. Parameters

that are strongly correlated are not independently observable from the data.

Sensitivity analysis is performed by examining the change in the outputs (tem-

perature predictions at thermocouple locations) due to a small one-by-one change in

each input parameter. The smaller subset of variables identified by the Monte Carlo

analysis is used here. The sensitivity is calculated numerically using central differ-

encing. These values can be then plotted as a function of time for all parameters and

one can examine the level of linear dependency between these traces. In addition to

the graphical method, correlation coefficients between sensitivity coefficient can be

52



calculated. A high correlation coefficient (a value close to 1) indicate high linear de-

pendency between the two parameters, meaning that they can not be independently

estimated from data.

2.4.4 Inverse Analysis

The objective of inverse analysis is to provide a better match between the data and

FIAT predictions through the estimation of the identified input parameters using

inverse methods.

This goal is accomplished by minimizing an objective function containing both

the measured and predicted thermocouple temperatures. The objective function usu-

ally used in parameter estimation problems is the ordinary sum of square of errors

which was shown earlier in Eq. (12). Other variations such as weighted least-squares,

maximum likelihood, and maximum a posteriori are also possible, but not pursued

in this work. Inverse methods iteratively minimize this objective function by adjust-

ing the input parameters (material or aerothermal parameters). This is also called a

nonlinear least-squares problem because the model is nonlinear in terms of the inputs.

Minimization of nonlinear least-squares problems has been conducted with many

methods. Some of the gradient methods used for this minimization are: steepest

descent, conjugate gradient and Gauss-Newton. Levenberg-Marquardt and Box-

Kanemasu methods are variations of the Gauss-Newton method. Second-order meth-

ods such as Newton’s minimization can also be used; however, calculation of second

derivatives can be challenging and time consuming for most problems. In addition

to gradient methods, stochastic methods such as a genetic algorithm or random walk

have been also used for these problems. In this work, three methods are consid-

ered: Levenberg-Marquardt, Box-Kanemasu and conjugate gradient. The Levenberg-

Marquardt method has been successfully used for many parameter estimation prob-

lems in the heat transfer field. It is selected here as the initial reference method.
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Levenberg-Marquardt method was originally derived by Levenberg [134] and later

modified by Marquardt. [135] It was devised for application to nonlinear parameter

estimation problems but has since been successfully applied to a wide range of linear

and nonlinear problems. This iterative technique tends to the Gauss-Newton method

in the neighborhood of the minimum and to the steepest descent method in the neigh-

borhood of the initial guess. This is done using a damping parameter which reduces

oscillations and instabilities due to ill-conditioning. References [103, 106] explain

in detail the derivation of the Gauss-Newton method and the Levenberg-Marquardt

modification. In summary, the method is derived by calculating the gradient of the

objective function S given in Eq. (12), linearizing the vector of predicted tempera-

tures T(P) with a Taylor series expansion around the current solution P and setting

the gradient of S to zero. The iterative algorithm for the estimation of parameters

using this method is given below.

1. Solve the direct problem with the current estimate of parameters Pk to obtain

the predicted temperatures T
(
Pk
)
.

2. Compute the sum of square of errors using Eq. (12).

3. Compute the sensitivity matrix J using the following equation. The sensitivity

coefficients are calculated using central difference approximations.

J =


∂T1
∂P1

· · · ∂T1
∂PN

...
. . .

...

∂TM
∂P1

· · · ∂TM
∂PN

 (14)

4. Solve the following linear system of equations to find the change in parameters

∆Pk, where µk is the Levenberg-Marquardt damping parameter.[
Jk

T

Jk + µkI
]

∆Pk = Jk
T [

Y −T
(
Pk
)]

(15)

5. Compute the new estimate Pk+1.

Pk+1 = Pk + ∆Pk (16)

54



6. Solve the direct problem with the new estimate of parameters Pk+1 to obtain

the predicted temperatures T
(
Pk+1

)
. Compute the new sum of squares of the

errors S
(
Pk+1

)
.

7. If S
(
Pk+1

)
≥ S

(
Pk
)
, replace µk by 10µk and return to step 4.

8. If S
(
Pk+1

)
< S

(
Pk
)
, accept the new estimate Pk+1 and replace µk by 0.1µk.

9. Check the stopping criteria. If the stopping criterion is satisfied, stop the iter-

ative procedure; otherwise replace k by k + 1 and return to step 3.

The iterative procedure is stopped once the change in parameters has stabilized

to a small value. A possible stopping criterion is shown in the equation below.

∥∥Pk+1 −Pk
∥∥ < 10−4 (17)

It should be noted that numerical calculation of the sensitivity matrix J could

be time consuming because it requires multiple solutions of the direct problem. The

µkI term in Eq. (15) is the Levenberg-Marquardt modification term. If this term

is removed, the algorithm transforms into the Gauss-Newton method. One problem

with the Gauss-Newton method is that the matrix JTJ has to be non-singular to

obtain a solution. Problems where the determinant of this matrix is close to zero are

ill-conditioned. Inverse heat transfer problems are generally ill-conditioned near the

initial guess and the application of Gauss-Newton method alone can cause instabilities

and oscillations. The Levenberg-Marquardt modification alleviates such difficulties

by adding the extra term. In practice, this modification has a similar effect as the

Tikhonov regularization technique. First, a small damping parameter is chosen. If the

objective function is not reduced, the damping parameter is increased which makes

the method tend toward the steepest descent method and away from Gauss-Newton.

Another modification of Gauss-Newton is the Box-Kanemasu method. Gauss-

Newton uses a linear approximation and could be ill-conditioned in the region around

initial guess. In the case of a strongly nonlinear problem, the linear assumption is
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valid only for a small region. Therefore, a large step in the minimum direction could

lead to an unwanted increase in the objective function. The Box-Kanemasu method

alleviates this problem by selecting a step size that ensures a reduction in the objective

function. The derivation and algorithm for this method are provided in Ref. [103].

The algorithm is similar to the Levenberg-Marquardt method (without the damping

term) while Eq. (16) is modified to include a step size restriction in addition to the

direction ∆Pk. Interpolation methods using polynomial approximations are employed

to find a step size that guarantees the minimization of the objective function.

The conjugate gradient method is another powerful iterative technique used for

the solution of nonlinear inverse problems. In this method, a suitable step size is

taken along a direction of descent in order to minimize the objective function. The

direction of descent is a linear combination of the negative gradient direction at the

current iteration and the direction of descent of the previous iteration. This linear

combination is such that the angle between the direction of descent and the negative

gradient direction is less than 90 degrees so that minimization is assured. This linear

combination is calculated using a variable called the conjugate coefficient. There are

many different formulations in literature for the calculation of this direction of descent

such as Fletcher-Reeves, Polak-Ribiere or Powell-Beale. [136]

All these methods are valid for the multi-parameter estimation framework. In

Chapter 3, these three methods will be compared when the multi-parameter estima-

tion framework is applied to an arc jet dataset.

2.5 Surface Heating Function Estimation Framework

In the case of flight applications, the vehicle descends through the atmosphere on

a trajectory where freestream conditions such as density, velocity and angle of at-

tack change in time. This causes the resulting aerothermal environment to be a

time-dependent function. In this case, estimation of surface heating from subsurface
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thermocouple data is no longer a straightforward parameter estimation problem. In-

stead, a time-dependent profile for the surface heating needs to be estimated. This is

a function estimation problem.

The inverse methods used to solve parameter estimation and function estimation

problems are similar; however, function estimation problems have their own unique

challenges. Sometimes, they can be simplified by making certain assumptions about

the functional form of the heating profile and using a priori information in the esti-

mation process. However, such information is often not available and could limit the

accuracy with which the surface heating is estimated. In the case where no a priori

information is available, the entire profile needs to be determined.

Typically, function estimation problems can be solved by decomposing the time-

dependent variable into multiple discrete points in time and treating each point as

a separate parameter. In this approach, since the parameters are only related in

time and are not correlated with each other, the non-uniqueness problem, which

is common for parameter estimation problems and was discussed in the previous

section, does not exits. However, since many points have to be estimated to recover

the time-dependent function at a reasonable resolution, some unique challenges arise.

For example, if one needs to estimate surface heating for a 150-second trajectory at

1-Hz resolution, the problem involves the estimation of 151 parameters. Problems

that require the estimation of many parameters are sensitive to measurement and

model errors and can become unstable. Often, this results in large oscillations in

the estimated heat rate profile. As mentioned before, regularization techniques are

typically used to make these problems better posed.

In the following subsections, the components of the time-dependent surface heat-

ing estimation framework are discussed with specific application to subsurface tem-

perature data collected from the ablative heatshield of a planetary entry vehicle.

Chapter 4 will discuss the application of this framework to MSL simulated heatshield

57



data and Mars Pathfinder heatshield flight data.

2.5.1 Temperature Data

In most experimental settings, whether it is an arc jet test or a flight experiment,

thermocouples are used to record the subsurface temperature of the TPS material at

different locations on the heatshield. A surface thermocouple is not generally used

for ablative materials because the surface recedes and its temperature rises above

the operating range of most available thermocouples. In some experiments, only

one subsurface thermocouple is used at a given location while in other experiments

multiple thermocouples are inserted at varying depths to record the material response

throughout the TPS thickness. For the purpose of surface heating estimation, the

data from the shallowest thermocouple should be used due to the delayed and damped

nature of heat transfer. As was shown in Figure 18, the deeper the thermocouple the

less sensitive the material temperature response is to a change in surface heating.

Additionally, the shallowest thermocouple is the least affected by uncertainties in

material model.

The only exception to this rule is when the data from the shallowest thermocouple

is not reliable or not available for the entire estimation period. For example, if the

surface recedes past the shallowest thermocouple in the middle of the trajectory and

it ceases to provide data, then data from the second shallowest thermocouple should

be used. However, the deeper the thermocouple, the more lagged and damped the

temperature response is compared to any change in surface heating, which reduces

the accuracy of surface heating estimation and the stability of inverse methods. This

is discussed in more detail in Chapter 4 for the simulated MSL data test problem.

Often, there is uncertainty in measured temperature data which should be taken

into consideration in surface heating estimation. To mitigate this situation, the ma-

jor sources of uncertainty are identified and their effects on the heating estimation
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results are quantified. One example is the thermocouple location uncertainty. Once

thermocouples are inserted into the material, their accurate depths are measured

using an X-ray technique. While this method is accurate, there is a small level of

uncertainty associated with it which could be significant due to high temperature

gradients close to surface. Another source of error is random noise. Sometimes ther-

mocouple measurements have some inherent noise which could affect the estimation

results and stability. Thermal lag is another source of uncertainty which is defined as

the difference between thermocouple reading and actual TPS material temperature.

Thermocouple temperature often lags the actual TPS temperature due to its thermal

mass. The effect of these uncertainties on the estimated surface heating have to be

quantified.

In this work, the NASA code FIAT will be used to simulate the in-depth TPS

temperature and material response. There is always some level of uncertainty in the

computational code and the material model. The effect of these uncertainties on the

heating estimation results must also be quantified in a surface heating estimation

problem.

2.5.2 Estimation Parameters

For an ablative material, surface heat rate is not a direct input to FIAT. As shown

earlier, surface heating is modeled with a surface energy balance equation which

represents many physical phenomena that occur at the surface of an ablative material.

This equation (called “option 1” in FIAT) is:

CH(Hr − hw) + ṁghg + ṁchc − (ṁc + ṁg)hw

+αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0

(18)

The first term represents the sensible convective heat rate. The sum of the second,

third and fourth terms defines the total chemical energy at the surface due to the abla-

tion products and pyrolysis gas. The fifth and sixth terms are the incoming radiative
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heat rate absorbed by the material and the reradiation to the environment. The last

term in Eq. (18) represents the rate of heat conduction into the TPS material. The

nominal surface heating is calculated by CFD tools assuming radiative equilibrium

wall and certain catalytic and turbulence models. Based on CFD solutions, the total

recovery enthalpy, Hr, and wall enthalpy, hw, can be determined. Knowing these val-

ues and the CFD-predicted convective heat flux, the surface heat transfer coefficient,

CH , is calculated. CH , Hr, surface pressure, and the blowing reduction parameter are

input to FIAT as functions of time. It should be noted that the CFD heat transfer

coefficient values are unblown, and FIAT corrects the input CH for heating reduction

due to pyrolysis gas blowing. [47] Pre-calculated equilibrium wall chemistry solutions

(B′ tables) are input to FIAT for a given material and the surface energy balance is

solved iteratively using the boundary condition inputs from CFD and the B′ tables.

In doing so, FIAT calculates its own wall enthalpy and temperature which are often

not equal to the CFD-calculated values due to the usage of different surface energy

balance approaches.

Many of the parameters in Eq. (18) can affect the subsurface thermocouple tem-

perature and the surface heating estimate. Some of these parameters are inputs to

FIAT while others are calculated internally by FIAT. While it is desirable to have

accurate knowledge of all these terms, they are not all directly observable from flight

data and any attempt to simultaneously estimate multiple parameters leads to non-

unique solutions. In this work, the inverse problem is defined as the estimation of the

time-dependent heat transfer coefficient profile, CH . Inverse methods are used to es-

timate heat transfer coefficient as a function of time while keeping recovery enthalpy

fixed to the CFD-calculated value and allowing FIAT to internally calculate surface

ablation chemistry and material decomposition. Once the heat transfer coefficient is

estimated, the resulting heat rate can be calculated using the other parameters. The

net surface heat rate is the sum of the first four terms in Eq. (18) which includes the
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convective and chemical heating contributions.

Since heat transfer coefficient is time-dependent, it is estimated by discretization

in time. The estimation frequency is a balance between the desired resolution and

computational resources. Higher estimation frequency results in the reconstruction of

surface heating at a higher time resolution; however, it requires more computational

resources. Surface heating is usually estimated at a frequency of 0.2-1 Hz depending

on the desired resolution for a given problem and available computational resources.

It should also be noted that the estimation problem must be over-determined meaning

that there must be always more data points available than estimation parameters.

For example, if the temperature measurements are available at only 1 Hz, the surface

heating has to be estimated at a frequency lower than 1 Hz.

However, in some applications, there are certain limitations with the surface heat

transfer coefficient estimation approach. This approach relies on FIAT equilibrium

models for the calculation of surface chemistry terms. As long as the material ablation

model is accurate, the heat transfer coefficient estimation is reliable. However, the

equilibrium chemistry model is not accurate for some materials at certain heating

conditions and results in inexact calculation of wall enthalpy. In the absence of

validated finite-rate chemistry models, an alternative surface energy balance option,

implemented in FIAT (called “option 3”), is used which can be reformulated into the

following equation:

qs + αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0 (19)

The first term in this equation represents heating at surface and is analogous to

the sum of the first four terms in Eq. (18) which includes the convective heat flux and

chemical heating contributions. The surface heating can be directly estimated using

this equation. This approach does not require the calculation of surface chemistry

terms, therefore, it does not have the limitation of heat transfer coefficient estimation

approach. However, use of this equation implies that surface recession can not be
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calculated and must be assumed zero. Chapter 5 discusses the application of this

approach to MSL flight data.

2.5.3 Inverse Methods

The inverse methods used for surface heating estimation are similar to the methods

used for parameter estimation. In this work, the Gauss-Newton method is used in

conjunction with Tikhonov regularization to estimate surface heating.

The Gauss-Newton algorithm is widely used to solve nonlinear least squares prob-

lems. It is a modification of Newton’s method which does not require the knowl-

edge of second derivatives. The algorithm for this method is very similar to the

Levenberg-Marquardt method described earlier. Gauss-Newton iteratively minimizes

the ordinary least square objective function, S, shown in Eq. (12). The algorithm is

developed by deriving the gradient of the objective function, linearizing the vector

of predicted temperatures with a Taylor series expansion around the current solution

and setting the gradient of S to zero. The expression can be rewritten to derive the

change in parameters, ∆P, required to minimize S:

JkT

Jk∆Pk = JkT [
Y −T

(
Pk
)]

(20)

This equation is similar to Eq. (15) shown earlier for the Levenberg-Marquardt

method. J is the Jacobian matrix which is equal to the derivative of the predicted

TC temperatures to estimation parameters (discretized points along the CH profile)

shown earlier in Eq. (14). The calculation of this Jacobian matrix is computationally

expensive because its numerical approximation requires many solutions of the direct

problem.

2.5.3.1 Tikhonov Regularization

Surface heating estimation problems require identification of many parameters in time

which cause instabilities in the estimation process and large oscillation in surface
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heating estimates. The Tikhonov technique is used to regularize the ill-posed inverse

problem and alleviate non-physical oscillations that occur in the boundary condition

estimates. [104, 120] This technique involves addition of a penalty function to the

ordinary least-squares objective function to alleviate oscillations in the solution. This

penalty term is composed of a squared difference function of the surface heating profile

estimation points and can take various forms (0th,1st and 2nd order), shown in the

generalized form in Eq. (21). For example, the zero-order function is equal to the sum

of squares of estimation points while the first-order function is equal to the sum of

squared differences of consecutive estimation points. By assigning appropriate values

to the weighting parameters (W0, W1 and W2), the order of regularization can be

controlled. First-order Tikhonov regularization (W0 = W2 = 0,W1 = 1) has proved

to be the most effective for the surface heating estimation problems and is therefore

used as the baseline method in this work. Equations (12) and (20) need to be modified

accordingly:

S = [Y −T]T [Y −T] + µ
[
W0(IP)TIP +

W1(H1P)TH1P +W2(H2P)TH2P
] (21)

[
JTJ + µ(W0I +W1H1

TH1 +W2H2
TH2)

]
∆P = JT [Y −T] (22)

H1 =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 −1 1 0

0 · · · 0 0 −1 1

0 0 · · · 0 0 0


H2 =



1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 1 −2 1

0 0 · · · 0 0 0

0 0 · · · 0 0 0


(23)
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The level of regularization can also be adjusted using the regularization parameter,

µ. Small values of µ ensure rapid minimization of the ordinary least squares function,

but result in large oscillations in the CH profile. Larger values of µ reduce oscillations,

but slow down the minimization of the objective function. In this work, a small value

of µ is used initially and increased until the obtained estimate is satisfactory and

the degree of oscillation is reduced sufficiently. Qualitatively, a good solution is a

solution that traces through the unregularized oscillatory solution. Both regularized

and unregularized surface heating estimation results will be shown and compared for

the problems described in Chapters 4 and 5.

2.6 Thermocouple Driver Approach

The multi-parameter estimation framework is applied to an arc jet dataset to estimate

constant material and aerothermal parameters in Chapter 3. In Chapter 4, the surface

heating estimation framework is applied to simulated MSL data. Mars Pathfinder

surface heating will also be reconstructed using the same framework.

The MSL entry vehicle was well instrumented, providing subsurface temperature

data at different depths. This will enable estimation of both material properties

and surface heating in a decoupled fashion. First, the surface heating estimation

framework is applied to reconstruct the MSL time-dependent surface heating from

the shallowest thermocouple data (TC1). A technique called the thermocouple driver

(TC driver) approach is then applied to decouple the surface heating and material

property estimation problems. This technique enables the estimation of material

properties from the deeper thermocouple data (TC2-4) without the knowledge of

surface heating. The analysis of MSL flight data through this approach is discussed

in more detail in Chapter 5.

In the past, a TC driver approach has been used with arc jet data in cases where

the surface boundary conditions were not well characterized. In this approach, the
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data from the thermocouple closest to the surface is used as the wall temperature

boundary condition and the in-depth heat transfer and pyrolysis problem is solved

for the material stack beneath that thermocouple. This technique removes the effect

of surface heating on the subsurface thermal response.

The diagram in Figure 19 shows the TC driver approach that will be used to esti-

mate PICA thermal response and MSL surface heating from flight data. The top box

in Figure 19, denoted as the “Surface Heating Problem”, represents the application of

the time-dependent surface heating estimation framework. The MSL time-dependent

surface heating will be estimated from TC1 data using inverse methods and the nom-

inal PICA material model. The effect of material model uncertainty on the surface

heating estimation results is examined separately.

Figure 19: Flow diagram illustrating the TC driver approach that will be used for
the reconstruction MSL surface heating and material response from MISP data.

The bottom box in Figure 19, denoted as the “TC Driver Problem”, is where TC1

flight data is used as the true wall boundary condition and the material response
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is calculated for the material stack below TC1 using FIAT. The multi-parameter

estimation framework, described earlier in this chapter, can be used to identify what

material response parameters should be estimated from the deeper thermocouple data

(TC2-4).

2.7 Summary

The inverse estimation methodology and tools developed in this thesis for applica-

tion to TPS material experimental data were described in this chapter. A discussion

of direct vs. inverse analysis was presented illustrating the advantages of inverse

data analysis. A background review of inverse heat transfer problems was also given.

The inverse estimation methodology is comprised of two parts: the multi-parameter

estimation framework and the surface heating function estimation framework. The

multi-parameter estimation framework is developed for application to problems where

multiple constant aerothermal and material properties have to be estimated from

TPS temperature data. Within this framework, multiple supporting analyses are

performed to identify what parameters should be estimated and what range of mea-

surements should be used. This framework can be applied to heating parameters only

when they are constant in time, as is usually the case in arc jet experiments.

In a flight mission, surface heating is time-dependent and its reconstruction be-

comes a function estimation problem. A surface heating function estimation frame-

work is developed for application to such problems. This framework identifies the

temperature data and the surface heating parameters that are appropriate for these

estimation problems. Inverse methods and regularization techniques used in func-

tion estimation problems were also discussed. Finally, the TC driver approach which

enables independent estimation of material properties and time-dependent surface

heating for flight missions is discussed. The following chapters will present multi-

ple studies where the feasibility and applicability of the developed inverse estimation
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frameworks are tested for applications relevant to atmospheric entry ablative heat-

shields. These frameworks will be used to estimate surface heating and material

properties from measured or simulated subsurface temperature data.
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CHAPTER III

APPLICATION OF THE MULTI-PARAMETER

ESTIMATION FRAMEWORK TO ARC JET DATA

3.1 Introduction

The multi-parameter estimation framework, introduced in Chapter 2, will be applied

to an arc jet dataset relevant to MSL design conditions. The objective is to estimate

multiple constant material properties and aerothermal variables from subsurface tem-

perature measurements of a PICA test coupon exposed to arc jet flow.

Traditionally, arc jet experiments have been used for material qualification or

model validation where at most, one material parameter is manually adjusted to pro-

vide a qualitative match between model predictions and experimental data. However,

in a complex ablation and pyrolysis problem, many parameters can contribute to the

overall uncertainty, and a multi-parameter estimation capability is required to ac-

curately estimate material properties. Furthermore, the surface heating conditions,

despite being constant in time, are not always well-characterized and uncertainty can

lead to incorrect estimation of material properties. One needs to also consider the

simultaneous estimation of constant aeroheating parameters in order to ensure that

the estimated material parameters are accurate.

The developed multi-parameter estimation framework is a four-step process which

performs supporting analyses prior to inverse analysis in order to identify which pa-

rameters can be estimated from data and what range of measurements should be used

in the estimation process. The nominal analysis examines the data quality and com-

putational model fidelity by performing a direct comparison of the data and model

predictions. This step will determine the range of measurements that is reliable for
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inverse analysis. Uncertainty analysis identifies the parameters that contribute the

most to temperature prediction uncertainty. These are the parameters that need to be

estimated to reduce uncertainty. Sensitivity analysis examines the linear dependency

between the parameters to determine which parameters are simultaneously observ-

able and can be estimated independently. Finally, inverse methods will be used to

estimate the selected constant material and aerothermal parameters.

For the current analysis, FIAT will be used to solve the ablation and thermal

response problem. Refer to Chapter 1 for more information on the underlying equa-

tions in FIAT and its limitations. The aerothermal boundary conditions and material

performance parameters are inputs to this program. The uncertainty and sensitivity

analyses will be conducted using FIAT based on the nominal estimates for these pa-

rameters. In inverse analysis, a wrapper code will be used with FIAT to perform an

estimation of the material and aerothermal parameters resulting in a better match

between FIAT predictions and measured data.

3.2 Arc jet Test Case

Multiple tests were performed at the NASA Ames arc jet facilities in support of

MSL heatshield development and qualification. Some of these tests were specific to

qualification and characterization of the MISP instrument. The test selected for this

investigation is from the IHF-205 MISP qualification arc jet test series conducted

in October and November of 2008 at the NASA Ames Interaction Heating Facility

(IHF). The specific test used here is run-4, identified by model number MQ08-2.

The test model was a 6-inch flat face coupon with a PICA thickness of 1.25 inches.

The use of a 6-inch coupon minimizes two-dimensional and lateral heat conduction

effects, and thus makes a one-dimensional tool like FIAT appropriate for the analysis.

A 0.8-inch MISP plug was inserted in the center of the PICA test model. The MISP

plug was equipped with four subsurface thermocouples at X-ray measured depths of
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0.1027, 0.1841, 0.4473 and 0.6959 inch. Figure 20 provides a diagram and a picture

of the test model illustrating its key components.

Figure 20: Diagram and picture showing key components of the arc jet test model.

The test was designed to experience a cold wall heat flux of 175 W/cm2, a heat

load of 4712 J/cm2 and surface pressure of 0.28 atm for 31 seconds. However, there

is significant uncertainty with arc jet aerothermal conditions, therefore this work

will consider the estimation of some aerothermal parameters in addition to material

properties. The MISP plug thermocouple temperature measurements will be used in

this work to perform the estimation.

3.3 Nominal Analysis

As mentioned in Chapter 2, the nominal analysis can be thought of as a direct analysis.

The quality of the data is examined by performing a direct comparison between the

data and nominal model predictions before proceeding with inverse analysis. Model

and measurement errors can lead to inaccurate solution of the inverse problem and

introduction of bias errors in the estimated parameters. The nominal analysis can

identify such errors and determine the range of measurements that are reliable for

inverse analysis. The plot in Figure 21 shows the arc jet PICA coupon subsurface

temperature measurements at the four thermocouple locations compared to the cor-

responding FIAT predictions using facility heating estimates and the nominal PICA

material model.
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Figure 21: Arc jet temperature measurements at 4 TC locations compared to corre-
sponding FIAT nominal predictions.

It can be seen that while the general trends match, there is significant difference

between the data and FIAT predictions. Overall, FIAT calculations overpredict the

arc jet data. In this step, the focus remains on data features and errors that can not be

modeled with our theoretical model. Fortunately, the level of random noise in the data

is very low; however, some data anomalies were observed for this arc jet test case which

are highlighted in Figure 22. The data is down sampled to provide measurements at

0.5 second intervals. This provides some inherent smoothing; however, if significant

random noise exists in the data, smoothing techniques such as a simple moving average

method can be used to smooth the data before inverse analysis.

In Figure 22a, it can be seen that TC1 stops giving useful data around 20 s. This is

due to the fact that the recession front has reached or is very close to TC1. Examining

the slope changes, it can be seen that any temperature provided by TC1 after the

time of 15 seconds is likely not reliable and should not be used for inverse analysis.

Figure 22b shows the initial temperature for the TC and FIAT predictions. The TCs
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(c) Deep TC preheating effect

Figure 22: Arc jet data and FIAT prediction comparison highlighting identified data
anomalies (see the previous figure for TC labeling).

have different initial temperatures since they are located at different depths. It will

be shown in the uncertainty analysis that the initial temperature has a significant

effect on the temperature profile, especially for the deeper TCs. However, in FIAT

different initial temperatures cannot be specified for different thermocouples. Initial

temperature can only be specified for a block of material. Therefore, in order to have

the best match with the data, the PICA coupon is divided into two separate blocks

with different initial temperatures in FIAT. The first block, 0.3 inch in thickness, is

set to the average of TC1 and TC2 initial temperatures while the second block, 0.5
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inch in thickness, is set to the average of TC3 and TC4 initial temperatures. Another

way to approach this problem would be to use a manual grid and provide an estimated

initial temperature for each grid point.

Figure 22c shows an unexpected trend seen in TC3-4 data in the 290-360 K tem-

perature range. The measured temperature abruptly rises, then changes slope and

shows no resemblance to the predictions. This unusual TC pre-heating behavior

has been seen in many arc jet tests, thermal flash tests and Pathfinder flight data.

Modelers have not been able to fully understand this phenomenon, but it has been

attributed to either the evaporation of absorbed moisture [137] or direct transmis-

sion of thermal radiation to the bondline. [5] For inverse analysis, our current model,

FIAT, cannot recreate this behavior; therefore, including this range of data will only

add bias error to the estimation process. For the purpose of this analysis, the data in

this range will not be used. Furthermore, type-K TCs used in this test are calibrated

only up to 1500 K. This is not a concern in this case because the TC1-2 data used

for inverse analysis are below this limit.

Based on the nominal analysis performed here, the recommended data range that

should be used for inverse analysis is given in Table 3. This data range is selected to

minimize the effect of model and measurement errors on the accuracy of parameter

estimation.

Table 3: The measurement range selected through nominal analysis.

TC1 TC2 TC3 TC4
Start time (s) 2 4 20 50
End time (s) 15 150 150 150

3.4 Uncertainty Analysis

The nominal analysis provided the range of reliable data for inverse analysis. An

uncertainty analysis is performed to identify what parameters need to be estimated
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by the inverse method and what range of measurements are most sensitive to these

parameters. The objective is to start with a complete list of material and aerother-

mal parameters and down select to a smaller subset containing parameters of most

importance. As explained in Chapter 2, this is accomplished through Monte Carlo

simulation and linear regression analysis of the simulation results. Monte Carlo anal-

ysis also provides insight into the direct problem and expected qualitative trends,

which is a prerequisite for any inverse analysis.

In this investigation, the software tool used to perform Monte Carlo simulations

is called McFIAT [132] which is a PERL-scripted code for use with FIAT. These

simulations are performed for specified uncertainties in aerothermal variables and

material properties. Gaussian distributions are used for the input parameters. Ten

thousand runs are performed to ensure statistical accuracy. The nominal values used

in this study for the input parameters are the current design values for PICA material

properties and CFD predictions of the arc jet heating parameters. The material

property uncertainties are primarily determined via expert judgment and results from

past experiments. [138] The aerothermal uncertainties are based on previous work on

the probabilistic analysis of the uncertainties in the CFD models. [130] Table 4 shows

the 2σ uncertainty values normalized by the nominal value, (∆), for both aerothermal

and material input parameters varied in this Monte Carlo study. Uncertainty in virgin

density is included to account for localized variability in material density. While the

material bulk density can be measured prior to testing, the localized density can vary

slightly due to non-uniform manufacturing of PICA.

One modification was made to McFIAT for this study. In McFIAT, the uncertainty

values are independently defined and the code does not take into account correlations

between the different parameters. Furthermore, the code has a built-in check to

ensure that the random value generated for char density is always less than the value

generated for virgin density. In doing so, the code creates artificial skewness in the
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Table 4: Normalized 2σ uncertainties for the input parameters in the Monte Carlo
analysis.

Material Parameter ∆ Aerothermal Parameter ∆
Virgin density, ρv 0.05 Surface pressure, Pw 0.15
Char density, ρc correlated Blowing reduction, λ 0.20
Virgin specific heat, Cpv 0.05 Heat transfer coefficient, CH 0.15
Char specific heat, Cpc 0.10 Recovery enthalpy, Hr 0.20
Virgin conductivity, κv 0.15
Char conductivity, κc 0.15
Virgin emissivity, εv 0.03
Char emissivity, εc 0.05
Pyrolysis gas enthalpy, hg 0.20
Resin decomposition rate, A 0.20
Char recession rate, B′c 0.04
Initial material temp., Tinitial 0.05

char density distribution. Figure 23a shows the virgin and char density scaling factors

(with respect to the defined nominal values) as generated by a Monte Carlo run with

the original McFIAT; this skewness can be clearly seen. A skewed distribution for an

input parameter invalidates the normal distribution assumption used in the analysis

of the results. Since these two material properties are not physically independent and

are correlated, correlations were implemented in McFIAT for these parameters. Many

tests have been conducted to measure virgin and char densities of PICA samples.

The results from these tests were fit with a linear regression equation with added

uncertainty bars. Using this information, random values of virgin density can be

generated and the char density can be calculated from the derived equation with

added random uncertainty. This capability was added to McFIAT. Figure 23b shows

the virgin and char density scaling factors as generated by a Monte Carlo run with

the modified version of McFIAT.

The Monte Carlo post-processing is traditionally done using linear regression anal-

ysis by calculating the relative contribution of each input’s variability to the overall

output variability. [132] This is done by calculating the correlation coefficient between
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(a) Uncorrelated (b) Correlated

Figure 23: Addition of correlation to McFIAT removes the skewness problem.

the vector containing all instances of an input parameter (any of the parameters in

Table 4) and the vector containing all corresponding instances of any output (e.g.,

predicted thermocouple temperature). The square of the correlation coefficient is the

fractional contribution to the uncertainty in the output due to the uncertainty in the

input parameter. Traditionally, a pie chart is used to illustrate the percent contribu-

tion of the input parameters for a certain output. This illustration is useful when the

outputs are single-valued numbers such as final bondline temperature or final reces-

sion. This has been the case in the Monte Carlo work done in literature. However, a

thermocouple measures the temperature as a function of time and it is important to

show the time evolution of these uncertainty contributions. Therefore, in this work,

for the first time, this regression analysis is done in a time-dependent manner. To

illustrate time dependent results, area charts (sand charts) are used instead of pie

charts. Each vertical slice of the area chart represents a pie chart. These charts help

determine what parameters are the most important parameters and what time range

is most sensitive to those parameters. The Monte Carlo results for the arc jet test

problem are shown in Figure 24. The plot for TC1 does not cover the entire time

range due to the fact that it burns out early.

When interpreting these plots, it is important to know the state of the material
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Figure 24: Uncertainty analysis results for the four subsurface thermocouples.

at each thermocouple as a function of time. Different input parameters become

important whether the thermocouple is in the char zone, pyrolysis zone or virgin

zone. Figure 25 shows the time-evolution of the recession, char and virgin fronts as

predicted by FIAT for this arc jet case. Looking at this plot, the Monte Carlo results

shown in Figure 24 can be put in the context of material state. Note that the same

trend shifted in time is seen across all the thermocouples. This is indicative of the

time that it takes for the heat to transfer in the material.
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Figure 25: Time evolution of recession, char and virgin fronts as predicted by FIAT.

For each thermocouple in Figure 24, it can be seen that the initial material tem-

perature is the top contributor in the beginning. This parameter is not important for

inverse analysis, because it is known from the data and as it was shown in the nominal

analysis it can be approximately set for the TPS block. As the time increases, the

virgin properties become important. Initially, the material is mainly virgin and the

heat transfer is therefore governed mainly by these parameters. In particular, the

virgin conductivity and density are the top contributors (15-40s for TC3). These two

parameters control the thermal diffusivity and the material’s heat absorption.

As expected the heating-related parameters such as heat transfer coefficient, recov-

ery enthalpy and char emissivity become more important, especially for the shallower

thermocouples. In addition, the char properties, specifically char thermal conductiv-

ity and specific heat, are significant (40-100s for TC3). At this point, the material is

charring from the top and pyrolyzing in the middle. This creates char and pyrolysis

zones in the material in addition to the virgin zone. The pyrolysis zone material

properties depend on both virgin and char properties which explain why the char
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properties are more important. Figure 25 for TC3 demonstrates the connection be-

tween the material state and the Monte Carlo results clearly. TC3 enters the pyrolysis

zone some time around 35 seconds. Now, if the area chart for TC3 is examined in Fig-

ure 24, it is evident that char thermal conductivity’s contribution becomes significant

around the same time. Additionally, it can be seen that in general the deeper ther-

mocouples are more affected by material properties while the shallower ones depend

more on heating parameters.

From the Monte Carlo results, 9 parameters are identified as the top contributors

to output uncertainty: virgin density ρv, char density ρc, virgin specific heat Cpv,

char specific heat Cpc, virgin thermal conductivity κv, char thermal conductivity

κc, char emissivity εc, heat transfer coefficient CH and recovery enthalpy Hr. While

the percent contribution of these parameters is sensitive to the input uncertainties

used in the Monte Carlo analysis, the list of parameters identified as top contributors

does not change if these input uncertainties are slightly perturbed. For example, if

the uncertainty for char conductivity is increased, its relative contribution will also

increase. However, the top 9 parameters will not change.

The identified parameters are used in the sensitivity and inverse analyses. It

should be noted that scaling factors of these parameters normalized by the nominal

values are used in the following analyses. Additionally, virgin and char density are

combined into one parameter for the inverse analysis so that virgin density always

remains greater than char density. The use of one scaling factor for both density vari-

ables makes intuitive sense because a PICA block with lower virgin density is expected

to have a similarly lower char density (also evidenced by the linear relation between

the two parameters shown earlier from PICA sample measurements, Figure 23b).
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3.5 Sensitivity Analysis

While Monte Carlo analysis helps determine what parameters need to be estimated,

sensitivity analysis identifies what parameters can be independently estimated by

examining the linear dependency between parameters. The parameters that are highly

correlated are not simultaneously observable from the data and can not be estimated

independently.

The sensitivity analysis is performed by examining the change in the outputs

due to a small one-by-one change in each input parameter. The smaller subset of

variables identified by the Monte Carlo analysis is used here. The sensitivity is calcu-

lated numerically using central differencing. The plots in Figure 26 show the change

in FIAT-predicted TC temperatures for a 1% change in each input parameter. Exam-

ining the shape and magnitude of these plots provides insight about the effect of each

input variable on the outputs and also the degree of correlation between the input

parameters. In addition to the sensitivity plots, the same results can be calculated in

terms of correlation coefficients between the traces seen on the plots. For the sake of

brevity, only the correlation table for TC1 (Table 5) has been provided here.

The magnitude of the sensitivity traces are lower for the deeper thermocouples and

their maximum values happen at a later time. This is an indication of the damped

and delayed nature of heat conduction problems. Examining the sensitivity plots and

the correlation tables, a strong correlation between many parameters is observed.

Some of these correlations are: between virgin specific heat and virgin conductivity

and between char specific heat and char conductivity. There is also strong correlation

between density and virgin specific heat and conductivity for the deeper TCs, and

between density and char specific heat and conductivity for the top TCs. The reason

for this behavior is that the heat transfer through the material is mainly driven by

thermal diffusivity which is directly proportional to the thermal conductivity and

80



Figure 26: Sensitivity analysis results for the four subsurface thermocouples.

inversely proportional to the specific heat and density. In the FIAT governing equa-

tions, thermal conductivity always shows up as a quantity that is divided by the

specific heat and density. Therefore increasing one or reducing the other one will

have the same effect on the TC response. These strong correlations mean that in

the presence of measurement errors these parameters cannot be simultaneously es-

timated. Different combinations of these parameters can result in similar objective

functions in inverse analysis, specifically in the presence of noise.

It should be noted that the correlation trends observed here are problem dependent

and the analysis has to be repeated for other applications. For example, if the surface
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Table 5: Correlation coefficients showing the linear dependency between different
parameters.

TC1 CH Hr Cpv Cpc ρ κv κc εc
CH 1
Hr 0.6913 1
Cpv 0.6708 0.6576 1
Cpc -0.6285 -0.7220 -0.4245 1
ρ -0.8383 -0.8917 -0.3386 0.8745 1
κv -0.7243 -0.7299 -0.9850 0.5700 0.4679 1
κc 0.6492 0.7406 0.4721 -0.9978 -0.8710 -0.6131 1
εc -0.9971 -0.9862 -0.7128 0.6097 0.8090 0.7596 -0.6347 1

heat rate was higher, recession and decomposition would be more significant than the

conduction effects resulting in a smaller correlation between specific heat and thermal

conductivity.

3.6 Inverse Analysis

The purpose of inverse analysis is to provide a better match between the data and

FIAT predictions through the estimation of certain input parameters. This is ac-

complished by minimizing the sum of square of errors objective function using the

inverse methods discussed in Chapter 2. The estimation results using the Gauss-

Newton, Levenberg Marquardt, Box-Kanemasu and Conjugate Gradient methods

will be compared. The parameters used here are the scaling factors for the subset

of parameters identified by the previous steps (dimensional values normalized by the

nominal value). Estimation of scaling factors instead of dimensional values is useful

because it clearly shows the change from the nominal values without disclosing the

actual values of restricted PICA material properties.

There are many different options for the range of the data to be used in the esti-

mation process and the variables that should be estimated. The previous steps helped

with intelligent selection of the data range and the estimation parameters. Consid-

ering the correlation between the specific heat and thermal conductivity observed in
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the sensitivity analysis, these parameters can’t be estimated simultaneously. Specific

heat is typically known with more confidence than thermal conductivity since it is

more difficult to measure thermal conductivity. Therefore, in this work it is assumed

that specific heat is known with good confidence and thermal conductivity is esti-

mated. There is also a strong correlation between material density and heat transfer

coefficient. Since the density of material is straightforward to measure and typically

known with more confidence, heat transfer coefficient is estimated while fixing density.

Table 6 shows multiple inverse analyses that were performed using different sets

of estimation variables. In all cases, the initial guess for the parameters was the

nominal values and then an inverse algorithm is employed to obtain a better estimate

of these parameters by reducing the objective function. The sum of the square of

errors objective function, S shown earlier in Eq. (12), can be also calculated in terms

of the root-mean-square (RMS) error as shown in Eq. (24).

RMS =

√√√√ 4∑
i=1

M∑
j=1

(Yij − Tij)2

4M
(24)

RMS error has a more intuitive physical meaning because it has the units of Kelvin

and is of the same order as the average difference between the TC temperatures and

FIAT predictions. The RMS error is given for each inverse analysis. As shown in

Table 6, the RMS error for the initial set of parameters (the nominal set) is about

51 K. The results show that this RMS error decreases through the estimation of the

parameters.

It can be clearly seen from cases 1-6 that different parameter estimates can be

obtained depending on what parameters are estimated. In Cases 1 and 2, only the

heating parameters are estimated. The estimation of CH alone in case 1 results in a

significant reduction in the RMS value to about 20 K. In a single-parameter estimation

approach, this might lead to the incorrect conclusion that an accurate estimation is

obtained for the value of heat transfer coefficient. However, it is evident in case 2 that
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Table 6: Inverse analysis results showing different parameter set estimations.

Case Parameters Method Estimates RMS (K)
Initial [1 · · · · · · 1] 50.905

1 [CH ] Leven [0.7645] 19.892
2 [CH , Hr] Leven [0.8855, 0.8059] 17.050
3 [κc] Leven [0.7306] 14.476
4 [κv, κc] Leven [0.9377, 0.7380] 13.330
5 [CH , κv, κc] Leven [0.9013, 0.9059, 0.8282] 9.705
6 [CH , Hr, κv, κc] Leven [0.9021, 0.9844, 0.9016, 0.8375] 9.675
7 [CH , Hr, κv, κc] Conj [0.9028, 0.9756, 0.8996, 0.8445] 9.687
8 [CH , Hr, κv, κc] Box [0.9028, 0.9802, 0.9012, 0.8398] 9.676
9 [CH , Hr, κv, κc] Gauss [0.9040, 0.9808, 0.9032, 0.8375] 9.678

once recovery enthalpy is simultaneously estimated, a further reduction is achieved

in the RMS value and the parameter estimates change. Cases 3 and 4 show the same

results but for the estimation of material properties alone. Case 3 illustrates the

traditional approach that scales char thermal conductivity in order to match the arc

jet data. Once aerothermal and material properties are simultaneously estimated in

cases 5 and 6, the RMS value is reduced even further and the parameter estimates

change.

These results clearly show the advantage of a comprehensive methodology for the

intelligent selection of parameters and data range. Furthermore, the advantage of a

multi-parameter estimation as opposed to the traditional single-parameter estimation

is clear. Cases 7, 8 and 9 are the same as case 6, but the estimation is performed us-

ing the conjugate gradient, Box-Kanemasu and Gauss-Newton methods. These cases

show that the estimation results are consistent across a range of minimization meth-

ods. Additionally, similar results are obtained if the estimation starts at a different

initial guesses for the parameters.

The plots in Figure 27 and Figure 28 show the results for case 6. Figure 27

illustrates the TC measurements compared to FIAT predictions for both the nominal

parameters and the best estimate parameters. Figure 28 shows the temperature
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Figure 27: A closer match between the data and FIAT predictions is achieved through
the inverse analysis.

residuals between FIAT predictions and TC measurements at the four thermocouple

locations. A closer match with the data is obtained through the inverse estimation of

parameters. The residuals for TC1 have been reduced from the original maximum of

150 K to within 30 K. The examination of residual plots is very important in inverse

analysis. [103] The distribution of the residual errors provides information on model

fidelity and sufficiency. If residuals are random and have no specific shape or bias, it

is an indication that the model is sufficient and the errors are related to instrument

measurement random errors. However, the presence of bias in the residuals indicates

significant model structural error. For example, it is not a surprise that the residuals

in Figure 28 are not random and have a biased shape, as it is known that FIAT has

significant model error.
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Figure 28: Nominal and best estimate residuals between data and FIAT predictions.

3.7 Summary

In this chapter, the developed multi-parameter estimation methodology is applied to

a set of MISP-relevant arc jet data. Multiple analyses are performed in preparation

for the inverse analysis. These steps provide the prerequisite information required in

a successful inverse analysis. In the nominal analysis, the quality of the data is exam-

ined and possible sources of measurement errors are identified and corrected where

possible. The nominal model predictions are compared to the data through a direct

analysis to assess model error and identify areas where the model is fundamentally

different than the experimental data. Based on these analyses, the region of validity

for inverse analysis is determined.

In the uncertainty analysis, the contribution of many aerothermal parameters and
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material properties to the uncertainty in the subsurface temperature prediction is

calculated through a Monte Carlo analysis. This allows determination of a hierarchy

of parameters and down selection from the original list to a subset of parameters

that are significant for the inverse analysis. Simultaneous estimation of all these

parameters can lead to incorrect results due to linear dependency between some pa-

rameters. Therefore, a sensitivity analysis is performed to determine the correlation

between these parameters and identify which parameters can be simultaneously es-

timated. Finally, based on the information provided by these prerequisite steps, an

inverse analysis is performed to obtain an accurate match between the model predic-

tions and the data through the estimation of input parameters. The inverse analysis

was performed for many different parameter subsets to illustrate the advantage of

the multi-parameter estimation methodology as compared to the traditional single-

parameter analyses.
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CHAPTER IV

APPLICATION OF THE SURFACE HEATING

ESTIMATION FRAMEWORK TO MARS HEATSHIELD

DATA

4.1 Introduction

In arc jet environments, the surface heating conditions are often constant during the

testing. However in a flight case, the vehicle aerothermal environment vary as a func-

tion of time. In this case, estimation of surface heating from subsurface thermocouple

data is no longer a straightforward parameter estimation problem. The entire time-

dependent profile for the surface heating needs to be estimated. This is a function

estimation problem.

In this chapter, the surface heating function estimation framework, introduced

earlier in Chapter 2, will be applied to simulated and flight Mars heatshield data.

The objective is to demonstrate the feasibility of the developed framework in recon-

structing time-dependent surface heating of entry vehicles. First, the estimation of

MSL surface heating from simulated MISP data is investigated. Because the true

solution is known for simulated problems, this analysis allows the examination of

the effect of measurement and model errors on the accuracy of the estimated surface

heating profile. Next, the same methods are applied to the Mars Pathfinder flight

heatshield temperature data as a proof of concept with relevant Mars flight data.
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4.2 Investigation of MSL Surface Heating Estimation from
Simulated MISP Data

In this section, the estimation of MSL time-dependent surface heating from simulated

MISP data is investigated. Multiple cases are examined where different types of

model and measurement errors are simulated to determine the effect of such errors

on the accuracy of the estimated heating profile. A known heating profile is used to

generate the simulated data. Similar to all inverse problems, the MSL surface heat

rate estimation problem has three parts: direct model, estimation parameters, and

simulated data. Like the previous analyses, the direct model used in this work is

FIAT.

4.2.1 Estimation Parameters

As described earlier in Chapter 2, heat rate is not a direct input to FIAT for ablative

materials. Therefore, the time-dependent surface heat transfer coefficient profile,

CH , is estimated from the temperature data. Once the heat transfer coefficient is

estimated, the surface heat rate can be calculated using other parameters in the

surface energy balance. Please refer to Chapter 2 to review the discussion of surface

energy balance terms for ablative material modeling.

In this study, the time-dependent CH profile is discretized every 1 second. This

discretization is a balance between the desire to have a higher resolution CH profile,

computational resources and the stability of the inverse methods. Figure 29 shows

a plot of the nominal heat rate and heat transfer coefficient for two plug locations,

T2 and T4 (highest and lowest heating) for the entire MSL trajectory. These surface

conditions were calculated using the CFD code DPLR from MSL’s nominal design

trajectory. [9] This study limits the estimation of the surface conditions for the time

range where heat rate is approximately greater than 1 W/cm2, which corresponds to

the time range shown with the black vertical lines (20-150 s).
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Figure 29: The nominal CFD-calculated surface heating conditions for T2 and T4
locations showing the estimation range.

4.2.2 Simulated Data

MISP consists of seven plugs at different locations on the heatshield each containing

four thermocouples (TC) and an isotherm sensor. In this work, the analysis is limited

to the plugs that are expected to experience the highest and lowest surface heating,

T2 and T4 respectively, to bound the range of surface heating expected by MISP

plugs in flight. The top two TCs are closest to the surface and therefore are most

sensitive to the boundary conditions. Furthermore, the actual flight data will carry

some bias due to the uncertainty in the material properties. The deeper TCs are

affected more by the material properties. For these reasons, only the top two TCs

are used in this work for estimation of surface conditions. For plug T2, the recession

front reaches the top TC; therefore, the simulated data for this TC is only used up

to the vicinity of the burnout point.

Figure 30a shows a plot of the simulated measurements as a function of time for

both plug locations. These measurements were simulated using FIAT and the current

nominal heating and material parameters for the MSL vehicle. This plot shows the

measurement without any noise/errors. Simulated random and bias noises can be
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added to the data to study their effect on the estimation results. Random errors are

sampled from a normal distribution with a mean of zero and standard deviation of

0.5% of TC temperature, and are added to the simulated data. Figure 30b shows an

example of simulated noisy data for the T4 location.
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Figure 30: Simulated TC measurements for the two plug locations.

An example of data bias error is TC thermal lag. Thermal lag is implemented

by lagging the simulated TC temperatures using a simple lump capacitance model

for an infinitely long wire. At any time step, given the current temperature of the

host material (original simulated TC temperature) and the initial wire temperature,

the heat transferred from the host material to the wire can be calculated for a given

contact conductance, hc, wire properties, volume and surface area. The change in

wire temperature for the current time step is then solved using the equation below:[
ρCPV

∆T

∆t

]
wire

= hcAs (Thost − Twire) (25)

For this problem, the properties of a type-K thermocouple are used for the wire

properties. Figure 31 shows the lagged TC measurements for different contact con-

ductance values for plug T4. It can be seen that higher contact conductance, hc,

results in smaller thermal lag in the TC measurements. In this work, whenever ther-

mal lag is added to the data, a nominal contact conductance of 350 W/m2K is used.
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The effect of varying this parameters on the estimation results are shown later for

plug T4.

Figure 31: Implementation of TC thermal lag using a simple lump capacitance model
for plug T4.

4.2.3 Investigation Process

The TC measurements are simulated using the nominal surface conditions and PICA

material response model. The surface CH profile that generates this data is taken to

be the truth or known solution. A simple Gaussian function is used for the initial

guess. As shown in Figure 32, this initial guess looks very different from the known

solution and it does not have some of the asymmetry present in the known solution

curve. The effect of using a different initial guess is shown later for one of the cases.

The investigation process begins with simulation of the TC measurements using

the nominal CH profile and nominal material response model. The simulated data

are then used either in this form or with added noise and thermal lag. Once the

data is generated, the inverse method starts with the initial guess and estimates the

CH profile that achieves the best match between the TC temperature predictions

and simulated data. This is done by iterative minimization of the sum of square

of errors between the TC predictions and simulated measurements. This process is
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Figure 32: Initial guess compared to the known solution for plug T2.

continued until convergence is reached and the best-estimate CH profile is obtained. In

addition to random noise and thermal lag, the effect of material property bias on the

estimation results is also investigated. This is done by simulating the measurements

with a perturbed material response model while performing the estimation using the

nominal model. It simulates the situation where our knowledge of material properties

is inaccurate, which is expected for flight data. For this study the material response

model is perturbed by increasing PICA density (all components) by 10% or decreasing

thermal conductivity by 10%.

The estimated CH profiles and the corresponding reconstructed surface heat rate

are compared to the known solutions. Another criterion used for comparison is the

Normalized Absolute Difference (NAD), which is the absolute difference between the

known solution and best-estimate CH profiles as a percentage of the peak CH value

(shown in Eq. (26)). This criterion is used instead of percent error because a small

absolute error when the CH value is small itself could lead to a large percent error.

This criterion can be similarly defined for surface heat rate. Another criterion used

for comparison is the Relative Integrated Error (RIE) which is the integrated square

of differences between the nominal (known solution) and best-estimate CH profiles as
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a percentage of the integrated square of the nominal CH profile (shown in Eq. (27)).

This criterion can be similarly defined for the surface heat rate.

Normalized Absolute Difference = 100×
(
CBE
H − CNom

H

)
max (CBE

H )
(26)

Relative Integrated Error = 100×
∫ (

CBE
H − CNom

H

)2
dt∫

(CBE
H )

2
dt

(27)

4.2.4 Inverse Estimation Method

A discussion of the inverse methods used for the estimation of time-dependent surface

heating is provided in Chapter 2. Here, the Gauss-Newton method is employed to

minimize the sum of square of errors objective function. Tikhonov first-order regular-

ization technique is used to make the problem better posed and alleviate oscillations

in the estimated heat rate profile.

The minimization procedure is continued until a stopping criterion is reached. A

range of convergence criteria can be used for this problem. Iteration can be stopped

when S reaches a small number or when the percent or absolute change in S is small.

Another criterion could be to stop the iteration once the absolute or percent change

in estimation parameters is smaller than a specified value. A maximum number of

iteration is another termination criterion. In this investigation, the iterations are

continued for a specified maximum number and the best estimate is taken when the

solution is stable. The maximum number of iterations is set to 200 to make sure that

a converged solution is reached. The regularization parameter values, µ, that worked

for this problem ranged from 109 to 1012. This might seem large compared to the

values seen in literature, but most of the work in literature involves the estimation

of heat rate which is orders of magnitude greater than CH . In the case of simulated

data with no noise, regularization was not needed and an almost perfect estimate was

obtained using the Gauss-Newton method alone.
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4.2.5 Implementation and Results

Figure 33 shows the estimation results for the simulated data without any noise.

Only normalized absolute difference is shown here because the best estimate profile is

almost the same as the known solution. It is evident that the CH profile is estimated

very well and the normalized absolute difference is very close to zero across the profile,

with errors in the order 10−5 %.
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Figure 33: Error in the best estimate CH profile for the case of simulated data without
noise.

These results are obtained with the Gaussian initial guess. In order to study the

effect of the initial guess on the estimated profile, the estimation is also repeated for

a constant CH initial guess (10% of the peak CH value) for the T2 location. Figure 34

compares the estimation results and convergence behavior for these two initial guesses.

The Gaussian initial guess is labeled as “Gaussian IG” while the constant 10% initial

guess is labeled as “Constant IG”. It is evident that in both cases the estimated

profile is close to the known solution and similar estimates are obtained. However, as

expected, a more difficult initial guess takes longer to converge. The right plot shows

that the Gaussian initial guess case takes 7 iterations to converge while the constant

initial guess case takes 24 iterations.
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(b) Convergence behavior

Figure 34: The effect of initial guess on the estimation results and convergence be-
havior.
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Figure 35: Estimation in the case of simulated data with random noise with no
regularization.

Figure 35 shows the estimation result for the case of simulated data with ran-

dom noise for both plug locations. Without regularization, the solution is oscillatory.

Figure 36 shows the results for the same estimation performed with Tikhonov regu-

larization. The oscillations have been substantially reduced and the best-estimate CH

profile is very close to the known solution. Figure 36b shows the residuals between

best estimate temperature predictions and the measurements. As expected, it can

be seen that the difference in temperatures after estimation is random around zero,
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and with similar distribution as the added random noise to the data. Figures 36c &

d illustrate the normalized absolute difference between the best-estimate and known

solution CH profiles for both plug locations. It is clear that even in the presence of

relatively substantial random noise the estimation results are within 1% of the peak

value.
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(b) T2 Temperature Residuals
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(c) T2 error
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(d) T4 error

Figure 36: Estimation results in the case of simulated data with random noise with

regularization.

In Figure 37, the effect of regularization parameter on the estimated profile for

plug T2 is presented. The estimation is performed for two values: 109 and 1011.
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It can be observed that the estimate for the higher regularization parameter is less

oscillatory. Comparing these results with the unregularized estimate (µ = 0) shown

in Figure 35, it is clear that increasing µ reduces the oscillations in the solution.

However, it should be noted that there is a diminishing return where high values of µ

over-penalize the solution and substantially slow down the reduction of the objective

function and solution convergence. Therefore, a good strategy for the selection of the

regularization parameter is to increase it until the oscillations in the final estimate

have been reduced enough and the estimate still traces the general trend of the un-

regularized estimate closely. The results for the remaining cases are shown only for

the regularized estimates, but the same trend is observed.
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Figure 37: The effect of regularization parameter on the estimation results for Plug

T2.

Figure 38 demonstrates the estimation results for the case of simulated data with

thermal lag for both plugs. The simulated data are lagged with a thermal conductance

of 350 W/m2K. Thermal lag in the data is a bias error and it can be observed that

there is a bias error in the estimated CH profile. The estimated profile lags the

original CH curve the same way the simulated TC measurements lag the original
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TC measurements. The lag is more pronounced on the decreasing half of the CH

curve because the effective heat rate is lower compared to the increasing side (see

Figure 29).
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Figure 38: Estimation results in the case of data with thermal lag.

In Figure 39, the estimation is performed for the simulated data with thermal lag

at plug T4 for three different values of contact conductance. This is done to show

the effect of the magnitude of thermal lag on the estimated CH profile. It was shown

earlier that the thermal lag in the simulated data increases with a lower contact

conductance (Figure 31). As expected, the higher lag in the subsurface thermocouple

data results in a larger bias error in the estimated surface CH profiles. The estimated

profile lags the original one in the same way that the lagged data lags the original

simulated data. Estimated CH is initially lower than original CH and then it crosses

over and exceeds the original curve after about 80 s. The results from Figures 38 and

39 confirm that a large thermal lag in the TC data could result in a large error in

the estimated profile. Therefore, in the case of the analysis of flight data, it is best to

model TC lag as accurately as possible, either implementing this effect within FIAT

or correcting the data.
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Figure 39: The effect of contact conductance in lag modeling on estimation results
for plug T4.
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Figure 40: Estimation results in the case of data with PICA density perturbation.

Figure 40 demonstrates the effect of the PICA density perturbation on estimation

results for both plugs. In this case, the data is simulated using a perturbed PICA

thermal response model with 10% higher density (all components for virgin and char)

and then the nominal response model is used in the estimation of CH curve. CH and
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material density have similar but opposite effects on the in-depth material tempera-

ture response. Generally, higher surface CH results in higher subsurface temperatures

while higher material density results in lower subsurface temperatures. Therefore, if

a lower density material model is used in the estimation process compared to the one

used to generate the data, the predicted subsurface temperatures will be higher, and

the estimated CH will need to be lower to compensate for the higher subsurface tem-

peratures. This is exactly what is seen in the estimation results, showing that a strong

linear dependency between CH and material density results in a direct translation of

the bias error in material density to a bias error in estimated CH profile.

Figure 41 shows the effect of the PICA thermal conductivity perturbation on the

estimation results for both plugs. The simulated data are generated with a material

model with 10% lower conductivity (virgin and char) and then the original material

model (higher conductivity) is used in the estimation process. Higher conductivity
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Figure 41: Estimation results in the case of data with PICA conductivity perturba-
tion.

results in higher predicted subsurface temperatures and a bias error in the estimated

CH profile should be expected. However, CH and thermal conductivity are not as

linearly dependent as CH and density; therefore, even though there is a bias error
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in the estimated profile, this bias is not as large as in the density perturbation case.

In other words, due to the lower linear dependency between CH and conductivity, a

large reduction in CH profile does not completely compensate for the bias error in

the data, and the estimated profile is closer to the original curve.

Figures 42 and 43 show the estimation results for both plugs for the simulated

data with random noise, thermal lag (hc = 350 W/m2K) and material property bias

(density perturbation). The estimated CH profile shows a combination of lag and

material property biases. These errors result in a CH profile that is not exactly the

same as the profile used to generate the data.

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time(s)

C
H
 (

K
g

/m
2 .s

)

 

 
Known Sol.

Best Est.

(a) Plug T2

20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time(s)

C
H
 (

K
g

/m
2 .s

)

 

 

Known Sol.

Best Est.

(b) Plug T4

Figure 42: Estimated CH profile in the case of data with combined errors.

Surface heat transfer coefficient is the parameter that is estimated in this study

because the surface heat rate is not a direct input for ablation modeling in FIAT. All

the results above were shown for the reconstructed CH profile. Once the surface CH

is estimated, the heat rate can be calculated by adding the surface convective heating

term and the chemical heating term from FIAT outputs (as shown in Eq. (18)). The

reconstruction of the surface heat rate is of the primary concern for the MEDLI

post-flight analysis and the reconstruction accuracy requirements are stated for heat
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Figure 43: Estimated CH normalized absolute difference in the case of data with
combined errors.
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Figure 44: Estimated surface heat rate for the case of combined errors.

rate not CH . Therefore, in this study, the final accuracy criteria will be given for

the surface heat rate. Figures 44 and 45 show the reconstructed surface heat rate

for the case with combined errors for both plugs (corresponding to CH estimation

in Figure 42). The difference between the known solution and best estimate profiles

look somewhat different from the trends observed for CH profiles mainly due to the

fact that the peak times are shifted for these two variables. Based on these results,

it can be stated that the errors in heat rate profile are smaller than CH profile.

103



20 40 60 80 100 120 140
−12

−10

−8

−6

−4

−2

0

2

4

Time(s)

N
or

m
al

iz
ed

 A
bs

ol
ut

e 
D

iff
er

en
ce

 (
%

)

(a) Plug T2

20 40 60 80 100 120 140
−12

−10

−8

−6

−4

−2

0

2

Time(s)

N
or

m
al

iz
ed

 A
bs

ol
ut

e 
D

iff
er

en
ce

 (
%

)

(b) Plug T4

Figure 45: Estimated surface heat rate normalized absolute difference for the case of
combined errors.

Table 7: Accuracy of surface heat rate estimation in the presence of different types
of errors.

Plug T2 Plug T4
NAD Range (%) RIE (%) NAD Range (%) RIE (%)

No Noise [-6 e-5, 1 e-5] 2.0 e-12 [-1 e-5, 5 e-5] 2.0 e-13
Random Noise [-1.2, 1.5] 0.0070 [-0.7, 1.0] 0.0061
Thermal Lag [-4.0, 3.0] 0.1727 [-3.5, 3.5] 0.1143
ρ Perturbation [-7.5, 0.5] 0.5230 [-8.0, 0.5] 0.4986
κ Perturbation [-5.0, 1.2] 0.1076 [-3.5, 0.5] 0.0909
Combined Errors [-10.5, 2.5] 0.9151 [-11.0, 2.0] 0.6084

Table 7 provides a summary of the accuracy of the heat rate estimation results.

These estimation accuracy criteria are shown for both plugs for the six cases studied:

no error, random noise, TC thermal lag, density perturbation, conductivity pertur-

bation and the combined error cases. In addition to the observations made for each

case, it can be seen that the estimation results for T2 are generally less accurate than

T4. This is expected due to the fact that the top TC burns around 95 seconds for T2

and less thermocouple data is available for the rest of the period. Because the lower

thermocouples are deeper and less sensitive to the surface conditions, T2 estimation

is more prone to uncertainty than T4. The heat rate error for the combined case is
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in the order of 10%. In this case, multiple measurement and model errors are added

to the estimation process which results in their individual effects to compile.

4.2.6 Summary

The estimation of MSL surface heat transfer coefficient from simulated subsurface

temperature data was investigated. The whole-time domain Gauss-Newton least

square minimization method in conjunction with Tikhonov first-order regularization

was used to perform the estimation. The performance of the inverse method and the

accuracy of the estimated boundary conditions were investigated in the presence of

measurement errors such as random noise, TC thermal lag and model bias errors such

as TPS material density and thermal conductivity perturbation. These study results

inform the level of accuracy with which the surface conditions can be reconstructed

from subsurface temperature measurements using inverse techniques.

It was observed that regularization was crucial in reducing oscillations in the esti-

mated CH profiles. Regularization was required in order to obtain a smooth estimate

in all cases, except the case without any errors. A good estimate was obtained in

the case of data with random noise. Bias errors in the data such as TC thermal lag

resulted in a large bias in the estimated boundary conditions. This demonstrates the

necessity of implementing accurate lag models in FIAT or correcting the TC data for

thermal lag.

A simple capacitance model was used in this study to simulate TC lag; never-

theless, this analysis can be repeated once more accurate Finite Element Analysis

(FEA) lag modeling or experimental lag data is available for the MISP plugs. Bias

error in the model, such as PICA density or conductivity perturbations, resulted in

a bias in the estimated surface CH profile. Such bias is larger in the case of density

perturbations compared to conductivity perturbations. This is due to the stronger

linear dependency between CH and material density.
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4.3 Mars Pathfinder’s Surface Heating Estimation from its
Heatshield Flight Data

In this section, the developed methods are applied to the Mars Pathfinder flight

temperature data. Unfortunately in the case of Pathfinder, thermocouple data were

available only at a single depth at different locations on the heatshield. As a result,

this analysis is limited to estimation of time-dependent surface heating from the

subsurface temperature data, excluding the estimation of material parameters.

Mars Pathfinder entered the atmosphere of Mars on July 4, 1997. The entry ve-

hicle was a 70◦ spherecone with a 46.6◦ conical backshell. The forebody heatshield

material was SLA-561V, with a nominal thickness of 1.90 cm. The aeroshell was

equipped with nine type-K thermocouples and three platinum resistance thermome-

ters at different depths and locations in the heatshield and backshell. Milos et al. [5]

performed Navier-Stokes heating calculations for the Pathfinder entry vehicle using

the CFD code GIANTS. They calculated the heatshield material response using three

different one-dimensional charring models and directly compared the subsurface tem-

perature flight data and the material response results. The main conclusion of that

work was that the stagnation point temperature data was consistent with CFD as-

suming about 85% of fully catalytic laminar heating. Also, the shoulder temperature

data was consistent with fully catalytic laminar heating with early onset of turbulence.

The bondline temperature data were not of good quality for quantitative analysis and

differed greatly from the model predictions.

Building on the work of Ref. [5], the Pathfinder entry vehicle’s aerothermal heat-

ing is reconstructed here using updated modeling tools and approaches in both direct

and inverse manners. In the direct analysis, a newly estimated trajectory is used

which is believed to be closer to the flight trajectory. Based on this new trajectory,

updated CFD calculations are performed to characterize the vehicle’s heating con-

ditions. The heating boundary conditions are then used with FIAT to calculate the
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in-depth material response at TC locations. In the inverse analysis, Pathfinder’s heat

transfer coefficient profile is estimated at the stagnation and shoulder locations from

the thermocouple data using the methods described in the previous section. This

work advances our knowledge of the Mars Pathfinder aerothermodynamic environ-

ment and TPS material response by employing: (1) a newly reconstructed trajectory

and associated CFD simulations, (2) updated SLA thermal response and ablation

model and (3) inverse analysis in addition to direct comparison.

4.3.1 Description of the Mars Pathfinder Flight Instrumentation

The Mars Pathfinder Aeroshell contained nine type-K thermocouples (TC1-TC9) and

three platinum resistance thermometers (PRT1-PRT3). Figure 46 from Ref. [5] shows

a profile view of the aeroshell and the location of the TCs and the PRTs. The PRTs

were attached to aluminum blocks and served as isothermal reference junctions for the

nine TCs. The TCs were placed at different locations and depths in the TPS material.

Reference [5] provides tables detailing the material stack-up at each TC location.

There are a number of challenges in the application of this flight data. TC1, TC7

Figure 46: Pathfinder instruments locations and depths.

and TC8 did not return any usable data. In addition, the temperature data returned

from TC2-6 are known to be incorrect due to the fact that PRT2 measurements were

pegged at the low-temperature cutoff of the calibration curve and were used for the
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TC data reduction. Reference [5] explains how results from the solar thermal vacuum

tests were used to correct the TC data. The conclusion was to uniformly subtract 18

± 2 K from the temperature measurements for TC2-TC6. The analysis done by Milos

et al. [5] suggests that the data returned from the bondline thermocouples (TC3, 4

and 6) did not match the temperature profiles predicted by the thermal response

models. The measured temperature abruptly rises, then changes slope and shows no

resemblance to the predictions. As mentioned in the previous chapter, this unusual

TC pre-heating behavior has also been seen in arc jet and thermal flash tests and

can be attributed to evaporation of absorbed moisture [137] or direct transmission of

thermal radiation to the bondline. [5] As a result, the focus of this study will be on

the mid-TPS thermocouples at the nose, TC2, and at the shoulder, TC5.

4.3.2 Direct Analysis

The previous Mars Pathfinder analysis performed in Ref. [5] employed a trajectory

reconstructed by Spencer et al. [111] In this work, a new three degree-of-freedom

reconstructed trajectory by Dutta et al. [113] is used. This reconstruction is based

on a backward estimation approach which processes the data from sensors with lower

uncertainty such as the altimeter earlier in the estimation. The backward estimation

also has the advantage of not containing the discontinuity jumps that are typically

observed in forward trajectory estimations when the altimeter data becomes available.

Based on this trajectory, CFD simulations are performed for the vehicle using

the DPLR code and current models for the Martian entry (explained in Chapter 1).

The CFD simulations presented here were performed by Todd White from NASA

Ames Research Center [93] using a similar methodology as described in Refs. [9, 139].

DPLR is a modern, parallel, structured non-equilibrium Navier-Stokes flow solver de-

veloped and maintained at NASA Ames Research Center. [43, 140] The code employs

a modified Steger-Warming flux-splitting scheme, for higher-order differencing of the
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inviscid fluxes, and is used here with 2nd order spatial accuracy and to steady-state

1st order in time. [9] DPLR has been validated over a wide spectrum of flight and

ground-based experimental simulations. The flow around the heatshield is modeled

as thermochemical non-equilibrium flow, using the Mitcheltree and Gnoffo 8-species

12-reactions Mars model (CO2, CO, N2, O2, NO, C, N , and O). [24] The Mars atmo-

sphere is modeled as 97% CO2 and 3% N2 by mass. The TPS surface is modeled as an

unblown non-slip radiative equilibrium wall with constant emissivity and Mitcheltree

surface catalycity model. [41] Species diffusion is modeled using the Self-Consistent

Effective Binary Diffusion (SCEBD) method. [141] Turbulent flow is simulated via

Menter’s SST vorticity-based turbulence model. [28] The Wilcox blended compress-

ibility correction [46, 29] is used.

A total of 21 points along the trajectory are used for CFD analysis, spanning

the time range of 25 s to 150 s. Early in the trajectory the flow is expected to be

non-continuum; therefore, Navier-Stokes solutions are not obtained earlier than 25

seconds. The freestream temperature is taken from a separate atmospheric recon-

struction done by the Atmospheric Structure Investigation/Meteorology (ASI/MET)

experiment science team. [142] For the following analysis, the flow is solved axisym-

metrically which enforces a zero angle of attack and sideslip. The grid employed has

160 cells along the body, and 128 from the surface to the freestream. Each simulation

includes several grid alignments to adapt the shock to the strong bow-shock. Fig-

ure 47 shows the flowfield temperature distribution at the peak heating point, and

laminar and turbulent surface heating predictions. Heating from shock-layer radia-

tion at the stagnation point is calculated using the same technique as Refs. [5, 143],

and is neglected at the shoulder.

Surface conditions for material response simulations are extracted from the CFD

solutions at the stagnation point and shoulder locations (wetted lengths of 0.00 and

138.0 cm, respectively). These quantities are then fit in time with tight monotonic

109



(a) Flowfield temperatures (b) Surface heat flux

Figure 47: Pathfinder heat flux at peak heating (t = 65 sec).

cubic splines, and provided as inputs to the FIAT material response code at half

second intervals. As noted in Ref. [5], it is difficult to reliably model convective

cooling later in the vehicle’s trajectory (t > 100s). While the overall heating is low,

CFD simulations were performed after 100 s to provide an initial guess for the inverse

analysis. For the current analysis, the recovery enthalpy (Hr) for FIAT is defined at

each CFD point as the free-stream total enthalpy, as shown in Figure 48. Since the

formation enthalpy of CO2 at 0 K is negative (-8.93 MJ/kg), the freestream total

enthalpy becomes negative as the vehicle slows down, and the velocity component of

enthalpy decreases.

These heating boundary conditions are used with FIAT to calculate the in-depth

material response at TC locations. An important advancement of this work compared

to the previous Pathfinder data analysis done by Milos et al. is that an updated ther-

mal response and ablation model is used for SLA-561V. This higher-fidelity model

was developed by Laub et al. based on data taken from extensive testing conducted
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Figure 48: Pathfinder nominal heating extracted from DPLR simulations.

in the NASA Ames IHF and AHF arc jet facilities during 2004-2005. [57] The up-

dated model consists of two elements: a thermal response model to predict in-depth

temperature response and a surface ablation model to predict surface temperature

and surface recession.

The material stack up and thicknesses given in Ref. [5] for both nose and shoulder

locations are used in this study. Most of the inside surface of the spacecraft structure

was covered by a multilayer blanket insulation; therefore, the back face boundary

condition is taken to be insulated with a heat transfer coefficient of zero. The flight

data shows variations in initial temperature from one location to another; however,

the temperature gradient across the TPS thickness at a given location is negligible.

Therefore, the initial thermocouple measurement from the flight data is used as the

initial temperature of the entire TPS block at each location. Reradiation is mod-

eled to an environment with an effective temperature of 180 K (consistent with the

reconstructed atmospheric temperature). A spherical geometry with radius equal to

the nose radius is used for the nose location while a cylindrical geometry with radius

equal to the corner radius is used for the shoulder location. A blowing correction pa-

rameter of 0.5 is used for the nose which is consistent with the laminar assumption.
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The blowing parameter is switched to 0.3 for the shoulder to account for transition

to turbulence.

Figure 49 shows the subsurface FIAT temperature predictions compared to the

flight data for the nose and shoulder locations. For the nose, in the current analysis,

the FIAT predictions exceed the flight data for the entire time span; while in the

previous analysis by Milos et al., FIAT underpredicts the data up to about 100 s and

then rises abruptly. This behavior is partly due to the fact that in the analysis by
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Figure 49: Pathfinder’s subsurface temperature predictions compared to flight data.

Milos et. al. the heat transfer coefficient was extrapolated to zero at 20 s and 101 s

while in this study they are spline interpolated to a small value at 0 s and 186 s. In

the same figure, the subsurface FIAT temperature predictions can be seen compared

to the flight data for the shoulder location. The same trends observed for the nose can

be also seen for the shoulder location. However, at the shoulder, the previous analysis

overpredicts the data more than the current analysis. It should be noted that there

remains some uncertainty with the substructure aluminum honeycomb properties at

the shoulder location. In addition, these results may be impacted by the validity of

using 1-D conduction at shoulder. Overall the nose FIAT predictions are within 35

K of the flight data while the shoulder predictions are within 25 K of the data. The
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RMS residuals for the nose and shoulder temperature response with respect to flight

data are respectively 19.97 K and 15.33 K.

4.3.3 Inverse Analysis

The heat transfer coefficient, CH , is discretized every 2.5 seconds and is estimated

here at the stagnation and shoulder locations from the TC data. The flight data

is available from 0 to 186 seconds; therefore, the estimation is performed for the

same range of CH profile. The plots in Figures 50 and 51 show the CH estimation

results for the nose location. The red and blue traces correspond to the nominal

CFD-calculated heating conditions and the inversely estimated heating conditions.

Figure 50 shows the CH profile and the corresponding surface heat rate profile for

both nominal and reconstructed environments. Figure 51(a) compares the nominal

and estimated in-depth temperature predictions with the flight data at the nose TC

location. Figure 51(b) shows the residual of in-depth temperature response at the

nose with respect to the flight data for the nominal and reconstructed environments.
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(b) Heat rate profile

Figure 50: Comparison of Pathfinder’s stagnation nominal and inversely estimated
heating environments at the nose.

Figure 51 shows that after the inverse estimation of CH , FIAT predictions match
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(a) TPS temperature at TC2 location
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(b) Residual from flight data

Figure 51: Inversely estimated environments result in a much closer match between
FIAT and TC2 flight data.

the data. The maximum difference is reduced to within 7 K of the flight data. The

temperature response RMS residual with respect to flight data is reduced to 2.50 K

from the previous 19.97 K. The objective function (sum of square of errors between

FIAT temperatures and flight data) is reduced by almost two orders of magnitude.

In Figure 50(a), it is evident that in order to achieve an agreement with the data,

the estimator attempts to reduce CH to small values in the pre-pulse and post-pulse

regions of the CH profile while slightly increasing it in the rising region of the heat

pulse.

Figures 52 and 53 show the CH estimation results for the shoulder location. Fig-

ure 53 shows that after the inverse estimation of CH , FIAT predictions match the

data. The maximum difference is reduced to within 5 K of the flight data from the

previous 25 K. The temperature response RMS residual with respect to flight data

is reduced to 2.20 K from the previous 15.33 K. The objective function is reduced

by almost a factor of 40. Figure 52(a) shows that in order to match the data, the

estimator reduced the pre-pulse CH to small values and reduced the rising region of

the pulse by about 5%. The decreasing regions of the pulse and the post-pulse CH
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region have not been changed significantly from CFD predictions. However, there is

higher uncertainty at the shoulder due to uncertainty in the substructure material

properties and limitations of 1-D conduction effects in this high-gradient region. It

should be noted that the results achieved through inverse estimation for both shoul-

der and stagnation point (±5K, ±7K) are better than matches between the new

SLA-561V model and arc jet data it is based on, particularly in cool-down (see TC3

and TC4 in Ref. [57], Figures 23 and 24).
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(b) Heat rate profile

Figure 52: Comparison of Pathfinder’s shoulder nominal and inversely estimated
heating environments.

In Figures 54 and 55, inversely estimated and nominal environments from this

study are compared to digitized environments from Ref. [5] at the nose (TC2) and

shoulder (TC5) locations. For the nose location, the nominal thermal response from

new CFD simulations overpredicts the temperature, whereas both the inverse estimate

and Ref. [5] environments result in a good match with the data. Visually, these

CH profiles appear similar, though there are other differences in these environments

besides just CH , such as the trajectory and the enthalpy profile. It is thought that

some differences in the enthalpy profile are due to limitations in older versions of

FIAT that constrained the recovery enthalpy to be positive. However, our conclusion

115



0 50 100 150
200

250

300

350

400

450

500

Time (s)

T
em

p
er

at
u

re
 (

K
)

 

 

Data

Nominal

Estimate

(a) TPS temperature at TC5 location

0 50 100 150
−5

0

5

10

15

20

25

30

Time (s)

R
es

id
ua

ls
 (

K
)

 

 

Nominal

Estimate

(b) Residual from flight data

Figure 53: Inversely estimated environments result in a much closer match between
FIAT and TC5 flight data.

is that the Milos et al. [5] environments, combined with the new SLA-561V material

model match the TC2 data well without any scaling of the surface heat rate profile.

Furthermore, the inversely estimated environment results in a better match with the

data, particularly for the period between 50-75 seconds.
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(b) TPS temperature at TC2 location

Figure 54: CH estimation results for the nose location, including predictions from
Milos et al.

At the shoulder location (Figure 55), it can be seen that the inversely estimated

environments result in the best match with the data, with a reduction of pre-pulse
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CH , and peak reduction of around 5%.
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(b) TPS temperature at TC5 location

Figure 55: CH estimation results for the shoulder location, including predictions from
Milos et al.

4.3.4 Summary

The Mars Pathfinder aerothermal environment and heatshield material response were

reconstructed using updated modeling tools and approaches. A newly computed

reconstructed trajectory was used which is expected to be closer to the true trajectory.

Updated CFD simulations were performed using DPLR for selected points along

the reconstructed trajectory to characterize the vehicle’s heating environment. The

shoulder environments employed a turbulence model with transition. The heating

boundary conditions were used with the thermal response code FIAT to calculate

the forebody heatshield in-depth temperature response at the location of nose and

shoulder mid-depth thermocouples. An updated thermal response and ablation model

for the TPS material, SLA-561V, was used in this study. The direct FIAT predictions

match the general trend of the flight data with a maximum difference of 35 K for the

nose and 25 K for the shoulder locations.

In addition to this direct comparison, an inverse analysis was also completed. A

Gauss-Newton minimization algorithm in conjunction with Tikhonov regularization
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technique was employed to reconstruct the time-dependent unblown heat transfer

coefficient. The estimator was able to reconstruct the CH profile such that the corre-

sponding temperature response was a good match with the flight data. The maximum

difference was reduced to 7 K for the nose and 5 K for the shoulder. In order to

achieve this close match for the nose location, the estimator reduced the pre-pulse and

post-pulse CH profile to small values while slightly increasing it in the rising region

of the pulse. This demonstrates an advantage of inverse methods where the surface

properties can be estimated as a function of time and are not limited by a simple uni-

form scaling. In order to match the TC data at the shoulder location, the estimator

reduced the pre-pulse CH to small values while maintaining the post-pulse CH and

slightly decreasing the peak value. This inverse solution at the shoulder is plausible.

However, there is higher uncertainty here due to uncertainty in the substructure ma-

terials and the limitations of the 1-D conduction effects in this high-gradient region.

In general, the CFD models perform a good job of predicting the heating condi-

tions in the high heat pulse region, but are not as accurate in the off-pulse regions.

Furthermore, the starting and ending values used in spline interpolation for CFD

should be revisited as they can result in an overestimation of the heating conditions

in the off-pulse regions. It should be noted that in the previous analysis by Milos et

al. this interpolation was not done and the heat transfer coefficient was set to zero

in the beginning and end regions of the trajectory. Considering this, it can be con-

cluded that the updated SLA ablation and thermal response model combined with the

inverse solution techniques result in improved agreement with the Mars Pathfinder

flight data.

Iterative coupling between CFD and current material response codes may improve

the match between CFD predictions and inverse reconstructed environments. Also,

blowing of ablation products could be included in the DPLR simulations, though this

would substantially increase the complexity and computational cost of the inverse

118



analysis process. Inverse analysis revealed a strong dependence of the reconstructed

shoulder environment to substructure properties. In addition to material uncertain-

ties, 1-D conduction modeling may not be sufficient for the shoulder region where

there is both high curvature and strong heat rate gradients along the surface. An

inverse analysis process coupled with a 2-D material response code could increase con-

fidence in the shoulder results, though with an associated increase in computational

cost.
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CHAPTER V

APPLICATION TO MSL HEATSHIELD FLIGHT

DATASET

5.1 Introduction

The Mars Science Laboratory successfully landed the Curiosity rover on the Martian

surface on August 6, 2012. The MSL aeroshell was a 4.5-meter diameter spherically-

blunted 70-degree half-angle cone with a PICA forebody heatshield. As mentioned

in Chapter 1, the MSL heatshield was instrumented with a comprehensive set of

pressure and temperature sensors called MEDLI. The aeroheating subsystem, MISP

PICA plugs, provided subsurface temperature measurements of the TPS material at

four depths and at 7 locations on the heatshield. Refer to Chapter 1 for a more

detailed explanation of MISP instruments and their locations.

In this chapter, the tools and methodologies developed in Chapter 2 will be applied

to the MSL heatshield flight data. First, the flight data are presented followed by a

discussion of turbulent transition observed directly from the data. A direct analysis

is performed where FIAT temperature predictions based on nominal CFD heating

environments are compared with the flight data. Next, the surface heating function

estimation framework is employed to reconstruct MSL’s time-dependent surface heat-

ing at plug locations from the shallowest thermocouple flight data. The sensitivity

of the estimated surface heating profile to estimation tuning parameters, measure-

ment errors, recession uncertainty and material property uncertainty is investigated.

A Monte Carlo analysis is conducted to quantify the uncertainty bounds associated

with the nominal estimated surface heating. Next, the TC driver approach is em-

ployed to apply the multi-parameter estimation framework to conduct PICA material
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property estimation from the deeper thermocouple data.

In the final section of this chapter, the margin methodology that was used in the

MSL heatshield design is reviewed. A discussion of how findings from MSL flight

data may improve the margin process for future missions follows.

5.2 Heatshield Flight Data

The MEDLI data were recorded and stored successfully during the atmospheric entry.

A limited part of the data was transmitted in real-time and the full dataset was

received from the rover within a week after landing. The thermocouples behaved

as expected and the data contained a low amount of noise. The HEAT sensor did

not behave as expected and the recorded transient data were very noisy. [144, 145]

For this reason, the analysis of HEAT data is not pursued in this work. Figure 56

shows the MISP thermocouple flight data at all 7 plug locations. Time zero is the

entry interface time based on a spacecraft time (SCLK) of 397501714.953125 seconds.

Thermocouple temperatures at this time ranged from 170 to 203 K depending on TC

depth and plug location.

Peak temperatures for the shallowest thermocouple (TC1) ranged from 1094 K

at plug 4 to 1322 K at plug 7. Note that having the highest temperature does

not necessarily mean that plug 7 experienced the highest heating as there is some

variation in TC1 depth across different plugs (see Table 1 from Chapter 1 for X-ray

measured thermocouple depths). Peak temperatures for the deepest thermocouple

(TC4) ranged from 393 K at plug 4 to 402 K at plug 2. However, it should be noted

that TC3 and TC4 were not wired at plugs 5 and 7 due to data channel limitations.

Figure 57a shows TC1 temperature plotted as a function of time for all the plug

locations. Examination of the TC1 temperature profile across different plugs provides

insight regarding the aeroheating environment distribution along the surface of the

heatshield. It can be seen that up to 65 seconds, plug 5 has the highest temperature
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Figure 56: The MISP flight thermocouple data at different locations and depths on
the heatshield.

followed closely by plugs 7, 1 and 4, while plugs 2, 3 and 6 are at lower temperatures.

This trend matches the surface heating distribution expected for laminar flow. After

this time, transition to turbulence for plugs 2, 3, 6, and 7 can be clearly observed

from the sudden slope change in the temperature data (seen also in Figure 57b). A

later transition at plug 5 can also be seen. Transition causes the TC1 temperature

at these plugs to rise rapidly and eventually reach higher peak values. Specifically,

since plug 7 was already at a high level of laminar heating, its temperature increased
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to be the highest peak after transition.

Figure 57b illustrates the TC1 temperature rise rate as a function of time for

these plugs. Sharp increases can be observed in the temperature rise rates during the

63-66 s time period. Plug 3 becomes turbulent around 64 seconds, followed by plug

2 at 65 seconds, and plugs 6 and 7 at 66 seconds, and plug 5 later at 74 s. It should

be noted that these transition times are based on the slope changes observed in the

subsurface thermocouple data. In-depth temperature response lags somewhat behind

any changes in the surface heating; therefore, the actual surface turbulent transition

times are likely 1-2 seconds earlier than the numbers reported here. In the inverse

analysis section, a better estimate of transition time is provided based on surface

heating reconstruction results. The transition front moved quickly from plugs 2 and

3 at the shoulder to plugs 6 and 7. Pre-flight predictions indicated transitions times

of 52, 57, and 70 seconds for plugs 2 (3), 6, and 7 respectively. These predictions are

based on a smooth wall momentum thickness Reynolds number threshold of 200. It

is currently believed that the observed quick motion of the transition front is due to

roughness-induced transition. See Refs. [145, 146] for more information on this topic.
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Figure 57: Transition to turbulence can be seen from TC1 data for plugs 2, 3, 5, 6
and 7.
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In Figure 58, it can be seen that there is an unexpected slope change (“hump”) in

the temperature profile for the deeper thermocouples (TC3-4) at plug 2. The hump

happens in the 200-400 K temperature range. This trend is observed consistently

for all plug locations. Similar behavior has also been seen in the MISP qualification

arc jet dataset, arc jet testing for some other materials, and also for Mars Pathfinder

bondline thermocouples flight data. This phenomenon is not well understood at

present and current analysis tools are not able to model this behavior. Therefore, a

match between the data and model predictions should not be expected for this part

of the data.
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Figure 58: The “hump” observed in TC3 and TC4 flight temperature data.

5.3 Direct Analysis

The purpose of the direct analysis is to compare the FIAT temperature predictions

based on the nominal heating environments with the flight temperature data. In or-

der to predict the vehicle’s aeroheating environment, CFD simulations are performed

using the DPLR code along the Best Estimated Trajectory (BET) incorporating

MEADS and Inertial Measurement Unit (IMU) flight data. [147] These CFD solutions

were generated by Todd White from NASA Ames Research Center. Refs. [148, 145]

provide more details on the models and assumptions used in CFD simulations. The
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Mitcheltree and Gnoffo model [41] is used for surface catalytic reactions while the

wall is assumed to be at radiative equilibrium. Turbulent flow is simulated with

the Baldwin-Lomax algebraic model. [27] Turbulent transition is modeled based on a

smooth wall momentum thickness Reynolds number, Reθ, threshold of 200. Surface

heating for the periods before 25 seconds and after 115 seconds is set to zero. Ra-

diative heating is assumed to be zero for this analysis, consistent with assumptions

made during design.

As discussed in Chapter 1, surface heat rate is not a direct input to FIAT for abla-

tive materials. Surface boundary conditions such as pressure, heat transfer coefficient

and recovery enthalpy are extracted from the CFD solutions at each plug location.

These quantities are then fit in time with tight monotonic cubic splines, and provided

to the FIAT material response code. The surface energy balance equation (Eq. (18)

from Chapter 2) is solved in FIAT using the PICA equilibrium chemistry model.

Reradiation is modeled with an effective temperature of 180 K. A manual grid is

employed to specify the initial temperature distribution of the PICA block according

to the flight data initial temperatures. The blowing reduction parameter is assumed

to be 0.5 for laminar flow and 0.3 for turbulent flow. PICA material model version

3.3 is used in this analysis.

In the following plots, FIAT temperature predictions at all plugs are shown against

the flight data. It should be noted that while the temperature predictions are shown

at all TC depths for the sake of completeness, the focus will be mainly on how the

top thermocouple results compare as it is the closest to the surface and most sensitive

to surface heating.

Figure 59 shows the FIAT temperature predictions compared with flight data at

plugs 1 and 4. These plugs are on the heatshield windside and close to the stagnation

point. It is evident that the analytical models underpredict the flight data peak

temperature. Possible causes for this difference could be radiative heating or low
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levels of flow turbulence due to pyrolysis gas injection. Additionally, arc jet tests

have shown that molten Silica from the RTV bonding used around the plugs can flow

on the surface of a plug and result in lower emissivity, and therefore lower reradiation.
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Figure 59: FIAT predictions compared with flight data for plugs 1 and 4.

Figure 60 shows the comparison with flight data for plugs 2 and 3. These plugs are

close to the leeside shoulder. Being farthest from stagnation point, they were expected

to see the highest heating augmentations due to turbulent transition. It is evident

that model predictions significantly overpredict peak temperature and temperature

rise for these plugs. This is due to the fact that transition to turbulence happened

later than expected and for that reason the surface heating did not have as much time

to increase. Therefore, the turbulent temperature augmentation at these locations

was less than model predictions. FIAT predictions also show that TC1 was expected

to burn out because of recession. This did not occur in flight because of the lower

than expected heating levels and also possibly because the equilibrium models used

in FIAT for gas/surface interactions are known to overpredict recession at the range

of heat rates experienced by the MSL vehicle. [83] The only information that can be

obtained from flight data regarding recession is that it was less than TC1 depth ('
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0.1 inch) for all plugs.
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Figure 60: FIAT predictions compared with flight data for plugs 2 and 3.
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Figure 61: FIAT predictions compared with flight data for plugs 5 and 7.

Model predictions and flight data are compared in Figure 61 for plugs 5 and 7.

These plugs are close to the heatshield apex. Similar observations as for plugs 1 and

4 can be made for plug 5. Laminar heating is underpredicted, possibly because of

the lower reradiation due to lower surface emissivity caused by Silica flow. Plug 7

experienced higher than expected heating because of earlier transition to turbulence

as compared with CFD predictions. In CFD environments, transition happens quite
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late in the trajectory for plug 7; therefore, heating does not rise to very high levels.

Figure 62 shows the comparison between flight data and FIAT predictions for

plug 6. Similar observations as for plugs 2 and 3 can be made. Based on CFD

environments, transition to turbulence was expected to happen earlier in the trajec-

tory (58 seconds). However, since flight transition happened later, the temperature

augmentation was not as much as the model predictions.
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Figure 62: FIAT predictions compared with flight data for plug 6.

One important observation that was made in the comparisons between the data

and model predictions for all plugs was that the temperature pulse in the data was

wider than model predictions. In other words, analytical models predict TC1 to cool

down at a faster rate than flight. There are two possible reasons for this observation.

First, the PICA equilibrium chemistry model in Martian atmosphere is known to

be inaccurate for MSL heating conditions which results in an overprediction of wall

enthalpy leading to lower heating. Second, even though radiative heating was assumed

to be zero in this analysis, recent simulations have shown that MSL radiative heating

is non-negligible. Radiative heating peaks after the convective heating which will

contribute to widening the overall heat pulse and therefore the in-depth temperature

pulse.
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5.4 Aerothermal Reconstruction

In this section, the surface heating function estimation framework is used to recon-

struct MSL’s surface heating at MISP plug locations from the flight temperature data.

The shallowest thermocouple data (TC1) is utilized for the purpose of surface heating

estimation as it is the most sensitive to surface heating and least affected by subsur-

face material property uncertainty. Heating estimation is performed every 1 second

(1 Hz) using flight data at a frequency of 2 Hz. The effect of the estimation and data

frequency on the results is also investigated. The estimation is performed by mini-

mizing an objective function containing the sum of squared of errors between FIAT

temperature predictions and flight data. The Gauss-Newton minimization method in

conjunction with Tikhonov first-order regularization technique are used for estima-

tion. Please refer to Chapter 2 for a more detailed description of the framework and

inverse methods used here.

As mentioned earlier, surface heat rate is not a direct input to FIAT for ablative

materials. Two distinct approaches are used for this analysis. The first approach

reconstructs the surface heating by estimating heat transfer coefficient at an ablating

surface with surface recession. Due to the limitations of this approach for MSL heat-

ing conditions, a second approach is also employed which directly estimates surface

heating of a non-receding surface with no ablation.

5.4.1 Heat Transfer Coefficient Estimation of an Ablating Surface

This approach was used for the inverse analysis of simulated MISP data and Mars

Pathfinder data discussed in Chapter 4. Inverse methods are employed to estimate

heat transfer coefficient, CH , as a function of time while keeping recovery enthalpy,

Hr, fixed to the CFD-calculated value and allowing FIAT to internally calculate

surface ablation chemistry and material decomposition (see Eq. (28)). Once the heat

transfer coefficient profile is estimated, the surface heating is reported as the sum of
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the first four terms in Eq. (28), which is equal to convection and chemical heating

contributions.

CH(Hr − hw) + ṁghg + ṁchc − (ṁc + ṁg)hw

+αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0

(28)

Figure 63 shows the estimated surface heating profiles at all MISP locations using

the heat transfer coefficient approach. Both unregularized and regularized solutions

are shown. The unregularized solution results in a better match with the in-depth

temperature data. This will be illustrated later when the effect of regularization

parameter on estimation results is investigated (Figure 67b). However, it is evident

that regularization reduces the oscillations and provides a more physically realistic

heat rate profile. Comparison of the heat rate profiles for different plugs leads to the
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Figure 63: Reconstructed surface heat rate profiles at MISP locations using the CH
estimation approach.

observation that MISP5 has the highest heating up to about 65 seconds followed by

plugs 1, 4 and 7, while the plugs close to the shoulder (2, 3, and 6) remain at a low

level of heating. This trend matches the laminar heating predictions by CFD tools

at the apex region (plugs 5 and 7) and stagnation region (plug 1 and 4) which were
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expected to experience the highest laminar heating. However, the onset of Boundary

Layer Transition (BLT) can be observed around the 63-65 second period for plugs 3,

2, 6 and 7. BLT results in much higher turbulent heating levels for these plugs. Plugs

2, 3 and 6 match the trends predicted by CFD tools; however, plug 7 significantly

exceeds CFD predictions. This can be attributed to heating augmentation due to

surface roughness or shock-layer radiation. The small spike in plug 5’s surface heating

around 74 seconds may also be BLT. Similar to plug 7, surface heating at plug 5 also

exceeded the CFD predictions. Plugs 1 and 4 remained laminar throughout the

trajectory, but slightly exceeded the CFD predictions. Preliminary analysis shows

that the observed difference can be partially explained by radiative heating in the

stagnation region, although more work is needed. [146]

Some limitations and uncertainties exist in the heat transfer coefficient approach

for MSL heating conditions. This approach relies on equilibrium models for the calcu-

lation of surface chemistry terms. As long as the material ablation model is accurate,

the heat transfer coefficient estimation is reliable. However, the equilibrium chem-

istry model employed in FIAT for PICA is known to be inaccurate at the low heating

conditions experienced by MSL (< 100 W/cm2) and it tends to overpredict the reces-

sion. [83] As a matter of fact, the model’s recession prediction for the nominal MSL

heating environment exceeds TC1 depth. This is clearly not accurate because flight

data demonstrates that recession was less than 0.10 inch (as the shallow thermocouple

survived at all plugs).

Figure 64 compares the nominal CFD-calculated recovery enthalpy and FIAT-

calculated wall enthalpy profiles at plugs 1 and 2. This wall enthalpy is calculated

by FIAT’s PICA equilibrium model and does not match the CFD-calculated wall

enthalpy. It can be observed that the two enthalpy profiles approach one another

around 80-85 seconds. This leads to convective heat rate (first term in Eq. (28))

approaching zero which results in the loss of in-depth temperature sensitivity to CH .
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For this reason, in the heat transfer coefficient approach, estimation is ceased around

85 seconds as a close match between the FIAT temperature predictions and TC1

flight data can not be achieved through CH iteration after this time.
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Figure 64: Recovery enthalpy and FIAT wall enthalpy compared at plugs 1 and 2.

5.4.2 Heat Rate Estimation of a Non-Receding Surface

No validated finite-rate models exist for PICA gas-surface chemistry in the Martian

atmosphere. Consequently, the observed lack of substantial recession in flight and the

known overprediction by FIAT equilibrium chemistry models motivate the application

of another bounding approach where surface heating is estimated without recession.

Recession can not simply be turned off in Eq. (28) without regenerating the chemistry

solutions; therefore, CH estimation is not possible for this approach. An alternative

surface energy balance option is implemented in FIAT (called “option 3”) which can

be reformulated into the following equation:

qs + αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0 (29)

The first term in this equation is analogous to the sum of the first four terms in

Eq. (28) (reported as the surface heat rate in the previous section) which includes

the convective heat flux and chemical heating contributions. This approach allows
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suppression of surface recession, thus estimating a non-receding surface heat rate using

the inverse methods described earlier. Being independent of FIAT surface chemistry

models, this approach enables more accurate estimation of the surface heating profile

for the entire time period. The estimation is not limited to 0-85 seconds as it was

with the CH approach. Figure 65 shows the unregularized and regularized surface

heating estimates at all MISP plug locations. The estimation was performed in the

same manner as previous section by using the Gauss-Newton method in conjunction

with Tikhonov regularization technique. Only TC1 data were used.
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Figure 65: Estimated non-receding surface heat rate profiles at MISP locations.

The same laminar and turbulent heating trends observed in the first approach

(Fig. 63) can be seen here. In general, the estimated surface heating is higher for

this approach. In the absence of recession, the surface is farther away from TC1 and

consequently higher incoming heating is required to achieve the same in-depth tem-

perature. This figure also shows that the regularized solutions provide smoother and

more physically realistic heating profiles than the unregularized solutions. Nonethe-

less, the unregularized solutions match the data more accurately. Some uncertainties

are associated with these estimates due to numerical issues, measurement errors, re-

cession uncertainty and material property variations. The next sections examine the
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effect of these uncertainties on the estimated non-receding surface heat rate profile

mainly at plug 2 (highest heating case). Similar results are expected at other loca-

tions.

5.4.2.1 Numerical Sensitivity

A numerical sensitivity study shows that the estimated heat rate profiles are stable

and robust to numerical parameters. Four parameters are examined: regularization

order, regularization parameter, data frequency and heat rate estimation frequency.

Figure 66 shows the effect of regularization order. As mentioned before, regularization

has a smoothing effect on the estimated heating profile. Minor differences can be

observed in the peak region (67-74 seconds) in Fig. 66a. Lower order of regularization

results in higher level of damping. In Fig. 66b, it can be seen that the match between

the data and FIAT predictions is similar for all three cases. First-order regularization

is typically used in literature for surface heating estimation problems and is applied

in this analysis.

50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Time (s)

H
ea

t 
R

at
e 

(W
/c

m
2 )

 

 
Zero Order
First Order
Second Order

(a) Estimated heat rate profile

50 60 70 80 90 100
−4

−2

0

2

4

6

8

Time (s)

T
em

p.
 R

es
id

ua
l w

.r
.t.

 D
at

a 
(K

)

 

 
Zero Order
First Order
Second Order

(b) FIAT TC1 temperature residual w.r.t. data

Figure 66: Effect of regularization order on surface heating estimation results.

The plots in Fig. 67 show the effect of the regularization parameter, which is a

scaling factor that controls the level of smoothing. Estimation without regularization

results in a good match between FIAT TC1 temperature predictions and the flight
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Figure 67: Effect of regularization parameter on surface heating estimation results.

TC1 data. The difference is within 1 K as shown in Fig. 67b. However, Fig. 67a shows

that the reconstructed heat rate profile includes oscillations around the peak heating

time. As the regularization parameter is increased, the oscillations are reduced and

the estimated heat rate profile takes a shape which is more similar to CFD-generated

profiles. It is evident that regularization dissipates the sharp rise due to turbulent

transition and that a higher parameter value results in a worse match between FIAT

temperature predictions and TC data (Fig. 67b). Consequently, a baseline regular-

ization parameter of 102 was selected in this work as a balance between smoothing

and data matching.

For most plugs, the TC1 temperature data are available at 8 Hz. However, selec-

tion of the data frequency used in the inverse analysis should be approached carefully.

Using the original 8 Hz data in the estimation would require significant computer time

as FIAT simulations would have to be performed and saved at a high rate. A lower

data frequency is desirable because it lowers the computational cost in addition to

providing an inherent smoothing of the data through interpolation. However, one

needs to ensure that the estimation problem remains over-determined, meaning that

there should be more measurement points than estimation parameters. Figure 68a
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illustrates the effect of data frequency on estimated surface heating profile. Data

frequency does not have a significant effect on the surface heating estimation results.

However, a mild smoothing effect is evident as the data frequency is reduced. This is

related to the inherent smoothing of the data that occurs when the original data are

interpolated at a lower frequency.
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Figure 68: Effect of data frequency on surface heating estimation results.

Figure 69 shows the effect of estimation frequency. Higher estimation frequency

results in the reconstruction of surface heating at a higher time resolution; however,

it requires more computational resources. For higher estimation frequency, turbulent

transition is captured only slightly more accurately than for the lower estimation fre-

quency case. The temperature residual with respect to flight data is smaller; however,

the overall effect is still minimal.

This numerical sensitivity analysis showed that the estimated heat rate profiles

are robust with respect to numerical parameters. Therefore, the rest of the analysis

in this work use the first order regularization with a parameter of 102, data frequency

of 2 Hz and estimation frequency of 1 Hz. This will allow obtaining numerically

accurate smooth solutions at reasonable computational cost.
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Figure 69: Effect of estimation frequency on surface heating estimation results.

5.4.2.2 Measurement Error Sensitivity

Two types of possible measurement errors are examined here: TC depth uncertainty

and thermal lag. Accurate flight heatshield TC depths using X-ray measurement are

available; however, this measurement technique can have a ±2σ uncertainty of ±0.003

inch. Figure 70a shows the effect of this uncertainty on the estimated heating profile

at plug 2. The deviation resulting from this uncertainty is bounded by ±4 W/cm2 at

the peak.
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Figure 70: Effect of measurement errors on surface heating estimation results.
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Additionally, the TC temperature readings may contain a thermal lag bias error.

Thermal lag is caused by the thermal mass of the thermocouple and is defined as

the difference between the material temperature and the thermocouple reading. Fig-

ure 70b shows the surface heating profile estimated from temperature data corrected

for a constant 1-second lag (partially based on ground testing of MISP instrumen-

tation). It is clear that the thermal lag correction results in a 1-second shift in the

estimated heating profile.

5.4.2.3 Recession Sensitivity

The heat rate estimation approach used in this section assumes zero surface recession

because the nominal PICA ablation model significantly overpredicts recession for

MSL conditions. The only information obtained from flight data regarding recession

is that it was less than 0.10 inch (TC1 depth) as the shallowest thermocouples did

not burn out. Therefore, it is desirable to examine the effect of surface recession on

the estimated heating profile.

Once the non-receding surface heat rate profile is estimated at plug 2, the complete

in-depth material response is known. The temperature and heat conduction are

known as functions of time at any depth between the original surface and the TC1

location. If the surface is assumed to be at a specific depth at a given time, the

required surface heat rate which would maintain the same in-depth thermal response

can be calculated. In equation 29, all the parameters in the second, third and fourth

terms are known at any location and time; therefore, the first term can be readily

calculated for the entire time and depth domain, thus creating an estimated surface

heat rate map for varying surface locations (Fig. 71a). The surface heat rate can

then be estimated for a pre-defined recession profile using this map. One approach

for choosing such a recession profile is to scale the recession profile calculated by

the nominal PICA ablation model for the nominal heating environments. Recession
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Figure 71: Effect of surface recession uncertainty on heating estimation results.

profiles scaled to 25% and 50% are overlayed on the surface heat rate map shown

in the same figure. Figure 71b shows the estimated surface heat rate for these pre-

defined recession profiles. It can be seen that increased surface recession results in a

lower estimated surface heating because the surface becomes closer to TC1, requiring

a lower surface heating to maintain the same in-depth temperature response. It can

also be observed that the recession sensitivity is not significant in the first 65 seconds

when surface recession is small.

It should be noted that this analysis only shows the conduction effect of recession.

Chemical processes that happen during recession can have additional effects on the

surface heating. This analysis demonstrated the significant effect that recession un-

certainty has on the estimated surface heating profile and provides a motivation for

the developement of a recession sensor for future flight experiments.

5.4.2.4 Material Property Sensitivity

Figure 72 shows the sensitivity of the estimated surface heating profile at plug 2 to

perturbations in different PICA material properties. For this sensitivity analysis, a

fixed ±10% perturbation is applied to both virgin and char properties. Figure 72a
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shows that an increase in material density results in higher estimated surface heating

for the entire time period. Higher density means a higher material thermal mass

and consequently a higher surface heating is required to maintain the same temper-

ature response. The effect is most visible around the peak region. Pre-flight density
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Figure 72: Effect of PICA material property perturbations on heating estimation
results.

measurement of the MISP plugs indicate only a ±1.5% variation in virgin density;

therefore, the effect of density uncertainty on estimated surface heating is expected

to be small. Figure 72b shows the effect of thermal conductivity perturbation. It

can be observed that a higher thermal conductivity leads to higher heat conduction

into the material, resulting in a lower surface heating required to maintain the same
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temperature response. Figure 72c shows the effect of specific heat perturbation. Sim-

ilar to density, higher specific heat leads to a higher thermal mass which results in a

higher estimated surface heating. However, the sensitivity to specific heat is far less

than sensitivity to density. Finally, Fig. 72d shows the effect of surface emissivity

perturbation. Higher surface emissivity leads to higher reradiation and lower heat

conduction into the material. Consequently, higher incoming heating is required to

maintain the same in-depth response. It can also be observed that the estimation sen-

sitivity to emissivity is significant only during the peak and post-peak regions when

significant reradiation is expected due to higher wall temperature.

5.4.2.5 Uncertainty Quantification

A Monte Carlo analysis was performed on the inverse estimation procedure to quantify

the uncertainty associated with the estimated surface heating profiles. Each Monte

Carlo iteration performs a surface heating estimation for a set of input parameters.

Eight input parameters are varied in the simulation using Gaussian distributions.

Table 8 provides the standard deviation for these parameters. These values are derived

based on engineering judgment and material property characterization experiments

conducted on material samples from the same PICA billets that the MISP flight

plugs originated from. For example, the virgin density of the flight MISP plugs is

measured to be within ±1.5% of the nominal PICA density. Assuming that this

interval represents ±2σ bounds, the standard deviation is estimated to be 0.75% of

the nominal value. The standard deviations for other parameters are estimated in

a similar manner. Char density is correlated to virgin density by using a fixed char

yield value (with a 1% standard deviation) to derive the char density from virgin

density. Virgin and char thermal conductivity are also correlated.

The Monte Carlo analysis is conducted for 2000 iterations. Then, the standard

deviations are calculated as functions of time for the estimated surface heat rate
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Table 8: Standard deviation for Monte Carlo simulation parameters.

Par. Std. Dev. (% of nominal) Par. Std. Dev. (% of nominal)
ρv 0.75% Char yield 1% (corr.)
Cpv 4% Cpc 1%
κv 7.5% κc 10% (corr.)
εv,c 1.5% TC1 depth error 0.0015 inch

profiles obtained from the Monte Carlo results. After about 1000 iterations, the peak

heat rate standard deviation stabilized and did not change significantly, affirming

the analysis convergence. Figure 73 shows the 95-percentile bounds (±1.96σ) for the

estimated heat rate profiles at plugs 1, 2, 5 and 7.
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Figure 73: Estimated heat rate 95-percentile bounds at plugs 1, 2, 5 and 7 derived
from the Monte Carlo analysis.
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Figure 74 shows the surface heat rate standard deviation for all plugs derived from

the Monte Carlo results. It is evident that the plugs with higher nominal heating also

have a higher uncertainty. The maximum heat rate standard deviation for plug 2

happens around the peak heating time and is about 7 W/cm2 which is almost 10%

of the nominal surface heating value. The maximum heat rate standard deviation

for plug 4 is less than 2 W/cm2 which is about 6% of its peak heating value. It

should be noted that this Monte Carlo analysis does not include the effect of recession

uncertainty because the recession sensitivity is determined based on post-estimation

computations and relies on an arbitrarily predefined recession profile. The recession

sensitivity analysis performed earlier provides an indication of the expected level of

uncertainty due to recession.
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Figure 74: Heat rate estimation standard deviation derived from the Monte Carlo
analysis.

5.5 Material Property Estimation

As mentioned in Chapter 2, simultaneous estimation of material properties and time-

varying surface heating is a challenging problem because the surface energy balance

and the in-depth material response problems are tightly coupled. In this situation,
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the thermocouple (TC) driver approach is used to estimate PICA material properties

from MISP flight data. In this approach, the data from the thermocouple closest to

the surface (TC1) is used as the temperature boundary condition at that thermo-

couple location and the in-depth heat transfer and pyrolysis problem is solved for

the material stack beneath that thermocouple. As such, this approach effectively

decouples the in-depth heat transfer and surface heating problems, allowing the ap-

plication of inverse methods to estimate material properties from TC2-4 temperature

data without requiring knowledge of surface heating conditions.

A multi-parameter estimation framework was developed in Chapter 2 and applied

to arc jet data in Chapter 3. In this section, this framework is employed to estimate

PICA material properties from MSL heatshield temperature data using the TC driver

approach. This framework proposes guidelines on how to conduct the parameter

estimation via four steps: nominal analysis, uncertainty analysis, sensitivity analysis,

and inverse analysis. The first three steps provide the prerequisite information to

set up a successful inverse estimation. In the last step, inverse methods are used to

estimate the selected parameters from the data. For the sake of brevity, the analysis

presented here will focus on material property estimation at plug 2. Similar analyses

can be performed for other plugs.

5.5.1 Nominal Analysis

In the TC driver approach, the temperature data from the shallowest thermocouple

(TC1) is used as the true boundary condition and the thermal response for the under-

lying material is calculated using FIAT and nominal PICA properties. It should be

noted that while TC1 data can be deemed as the true material temperature at TC1

depth, there is a ±0.003 inch uncertainty in the location of thermocouples (±2σ).

In this analysis, two bounding scenarios are considered in addition to the nominal

TC depths to account for their location uncertainty. In one scenario, TC1 depth is
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offset by +0.003 inch while TC2-4 depths are offset by −0.003 inch. This will lead

to the farthest possible separation between the driver thermocouple and the under-

lying ones, thus resulting in a lower bound for temperature predictions. In another

scenario, TC1 depth is offset by −0.003 inch while TC2-4 depths are offset by +0.003

inch leading to the closest distance between TC1 and TC2-4 and thus a higher bound

for temperature predictions. In this work, results from these scenarios are respectively

labeled as “lower” and “upper” bounds.
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Figure 75: FIAT predictions compared to flight temperature data using a TC1 driver
approach at plug 2.

Figure 75 shows the comparison between the FIAT predictions and TC2-4 flight

temperature data using a TC1 driver approach at plug 2. The lower and upper-bound

FIAT predictions are presented in addition to the nominal predictions. It can be

observed that the nominal FIAT solutions slightly overpredict the flight data at TC2

location; however, the flight temperatures are close to the lower bound of the FIAT

temperature predictions. At TC3-4 locations, all three FIAT solutions significantly

overpredict the flight data. Considering the fact that TC3-4 are mainly in the virgin

material, this overprediction is indicative of inaccuracies in virgin material properties.

As mentioned earlier, there is an unexpected slope change (“hump”) in the TC3-4
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temperature profiles. The hump happens in the 200-400 K temperature range. This

trend is observed consistently for all plug locations. Current analysis tools are not able

to model this behavior; therefore, a match between the data and model predictions

should not be expected for this part of the data. For this reason, the TC3-4 data

range used here in inverse analysis is limited to the time after the clearance of this

slope change. This corresponds to the time period after about 92 and 195 seconds for

TC3 and TC4 respectively.

5.5.2 Uncertainty and Sensitivity Analysis

The goal of uncertainty analysis is to define the material properties that contribute

the most to the uncertainty in the heatshield material in-depth thermal response.

The approach employed to accomplish this goal is probabilistic, and is accomplished

with Monte Carlo simulations. This process starts with a complete list of material

parameters which are then down-selected to a smaller subset containing parameters

of most importance that should be estimated by inverse methods. This analysis

should not be confused with the Monte Carlo analysis presented in the previous

section which was performed around the inverse analysis procedure to determine

uncertainties in the estimated surface heating. Unlike that analysis, this Monte Carlo

simulation is performed around the forward analysis by varying material properties

and recording the material in-depth temperature response. The input probability

distributions shown in Table 8 for material properties are also used here with the

addition of pyrolysis gas enthalpy, hg. A Gaussian distribution with a standard

deviation of 7.5% of the nominal value is applied for this parameter. [132] To ensure

statistical accuracy, 10,000 runs are performed. Upon completion of the Monte Carlo

simulations, a linear regression analysis of the results is conducted to calculate the

uncertainty contribution of the material properties to in-depth temperature response.

Figure 76 shows the uncertainty contribution of different properties to TC2 and TC3
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temperature as a function of time. The results for TC4 are not shown here because

they are very similar to TC3 results. It is evident that the virgin and char thermal

conductivity are the top contributors to both TC2 and TC3 temperature uncertainty

followed by the virgin and char specific heat.
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Figure 76: Material property contribution to in-depth temperature uncertainty at
plug 2.

Before any attempt to estimate these parameters, a sensitivity analysis must be

performed to examine the level of linear dependency among them. In this analy-

sis, each parameter is perturbed independently by a small amount (±0.5%) and the

change in in-depth temperature is recorded. Figure 77 shows the results of this sensi-

tivity analysis for TC2 and TC3 locations at plug 2. Only the parameters that have

been identified as the top uncertainty contributors are included in this step. Exam-

ination of the shape and magnitude of these plots gives an indication of the level of

correlation between these parameters. There is a strong correlation between specific

heat and thermal conductivity. The reason for this behavior is that the heat transfer

through the material is mainly driven by thermal diffusivity which is directly pro-

portional to the thermal conductivity and inversely proportional to the specific heat.

Therefore increasing one or reducing the other one will have the same effect on the

in-depth temperature response. This strong correlation means that in the presence
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of measurement errors these parameters cannot be estimated simultaneously as they

are not independently observable from the flight temperature data.
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Figure 77: Plug 2 in-depth temperature sensitivity to one-by-one perturbations in
material properties.

5.5.3 Inverse Analysis

Uncertainty and sensitivity analyses helped determine that virgin and char thermal

conductivity are not linearly dependent and contribute the most to in-depth tem-

perature uncertainty. Through nominal analysis, it was also identified the range of

TC2-4 measurements that should be used in the inverse analysis. Now, inverse pa-

rameter estimation methods are applied to the TC driver problem to estimate these

two parameters leading to a better match between FIAT temperature predictions

and TC2-4 flight data. Similar to heating reconstruction, the estimation is done by

minimizing an objective function comprised of the sum of squared differences be-

tween FIAT predictions and flight data. The minimization is performed using the

Levenberg-Marquardt method. The detailed algorithm for this method can be found

in Chapter 2.

The inverse analysis is performed for the lower and upper bound scenarios in ad-

dition to the nominal TC depths. This will enable the determination of the expected
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range of parameter estimates due to TC depth uncertainty. Table 9 shows the es-

timates for PICA virgin and char conductivity at plug 2. The estimates given here

are scaling factors multiplied by the entire temperature-dependent thermal conduc-

tivity curve. For example, a value of 0.9 would mean a 10% reduction in the thermal

conductivity nominal value at all temperatures.

Table 9: Material property estimation results for plug 2.

Parameter Estimate Lower-Bound Est. Upper-Bound Est.
Virgin Conductivity 0.7902 0.8079 0.7749
Char Conductivity 0.7878 0.8714 0.7051

The inverse estimation requires about 20% reduction in both virgin and char

thermal conductivity to provide a better match with the flight data. This reduction

is within the 3σ uncertainty bounds for these parameters. It can be seen that the

sensitivity of char conductivity estimate to TC depth uncertainty is much greater than

virgin conductivity. Figure 78 shows the comparison of TC2-4 flight temperature data

with the nominal and post-estimation FIAT predictions. These plots are generated

for the nominal TC depth scenario. It is clear that a better match between FIAT

predictions and flight data is achieved after inverse estimation of virgin and char

thermal conductivity. The root mean square of errors is reduced by a factor of almost

four.

It should be noted that the material property estimation analysis presented here

can easily be extended to other plugs and other thermocouple driver possibilities.

For example, one can conduct this analysis for a TC2 or TC3 driver at plug 1 to

focus mainly on virgin properties. In each one of these cases, a separate uncertainty

and sensitivity analysis can be performed to identify the properties that should be

estimated. Unfortunately, all these possibilities currently can not be explored due to

the observed slope change (“hump”) in the TC3-4 data which significantly reduces

the confidence in the inverse estimates. Further material property estimation work
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Figure 78: Flight temperature data compared with the nominal and post estimation
FIAT predictions for plug 2 TC1 driver.

should be pursued once this behavior is understood and modeled in the analytical

tools. Furthermore, the current analysis estimated the virgin and char conductivity

by uniformly scaling their temperature-dependent curve. In future, temperature-

dependent estimation of these properties can also be pursued to obtain more accurate

conductivity curves.

5.6 Modification of TPS Design Margin Policies

5.6.1 MSL Heatshield Design Margin Methodology

The MSL heatshield was designed and sized using a more rigorous thermal margins

policy as compared with previous missions. The margin methodology employed for

MSL is explained in Refs. [149, 150] in detail. Figure 79 from Ref. [149] highlights

the margin process, which evaluates uncertainties due to entry trajectory dispersions,

aerothermal environments, material response, and recession rate. First, the trajectory

analysis team generated Monte Carlo dispersed trajectories for the mission. Bounding

(+3σ) heat load and heat rate trajectories were then selected for detailed aerothermal
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and TPS analysis. The laminar and turbulent aeroheating environments were charac-

terized using CFD tools such as LAURA or DPLR. In the case of MSL, only the fully

turbulent environments were used in the sizing process because predictions indicated

boundary-layer transition early in the trajectory. The heating environments were

calculated using conservative assumptions such as supercatalytic wall which results

in peak heating levels as high as about 200 W/cm2. [149] The uncertainties associ-

ated with these predictions including turbulence model and roughness augmentation

uncertainties were also calculated.

Figure 79: Flowchart of the TPS margin process employed for MSL.

The margin process is then performed by calculating the required TPS thickness

to maintain a bondline temperature of 250 ◦C, the limiting temperature for the RTV

bonding used between the TPS and substructure. The TPS thickness calculation

was done using the NASA code FIAT and is performed in three separate branches of

the Figure 79 flowchart. The first branch used the nominal heating with the nominal

material response model. The second branch applied the aerothermal uncertainties to
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the nominal heating environment. The third branch applied a margin to the bondline

temperature used in the sizing. This margin accounts for TPS and substructure

material variability and is calculated using a separate FIAT Monte Carlo analysis

with a dispersed material model. [132] Finally, these uncertainties are combined in a

Root Sum Squared (RSS) process to arrive at the baseline thickness.

The next step was to apply the recession margin. During arc jet testings of PICA

in shear environments (non-stagnation), it was observed that the material ablation

model in FIAT underpredicted the measured recession by an average 50%. [151] How-

ever in some cases, the recession mismatch was as high as 150%. Furthermore, at heat

rates higher than about 100 W/cm2, PICA recession is diffusion-limited and depends

directly on oxygen availability and indirectly on recovery enthalpy. In a Martian dis-

sociated CO2 turbulent flow, the available oxygen is higher and the recovery enthalpy

is lower than Earth atmosphere. [149] Therefore, the project decided at the time to

apply an extremely conservative 150% recession bias to the FIAT-calculated reces-

sion and add this bias to the baseline thickness. Analysis performed since then has

shown that some of the recession mismatch was due to the arc jet model design which

resulted in a much more oxygen-rich boundary layer than expected in flight. [152]

Finally, the recession-biased thickness is multiplied by a program-imposed factor of

safety in addition to manufacturing tolerances to arrive at the final TPS thickness.

Due to a late change of TPS material, the heatshield had to be built while the

design was still ongoing. As a result, the MSL process was unlike a traditional design

process where the as-built thickness is based on the final TPS sizing. Instead, the TPS

thickness of 1.25 inch was selected based on the maximum amount of available mass.

The process shown in Figure 79 was still used, except that designers instead were

left to demonstrate that the heatshield thickness would be sufficient. Fortunately,

the TPS margin process ultimately showed that 1.25 inch of TPS was more than

sufficient. The difference between the as-built and the final thickness was treated as
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an “extra thickness”.

Figure 80 from Ref. [149] shows the result of that sizing process for the critical

location on the heatshield, where the margined TPS thickness was the greatest. Each

of the contributors in the margins process flowchart are shown in terms of their

contribution to the as-built TPS thickness. Starting from the bottom, the zero margin

thickness is the largest contributor. This represents the nominal branch of TPS sizing

without any explicit margin added. It is roughly 60% of the total thickness. The next

contributor is the “heating margin” which is margin added to cover uncertainties in

the aerothermal environments. It is considerably smaller than the nominal thickness,

and is less than 10% of the overall thickness. The thermal margin follows, which

similar to the heating margin has a small contribution. The “recession margin” is

the largest margin contributor. This is due to the extremely conservative bias which

makes the margin process recession-dominated. The final component is the “extra

margin” which accounts for the difference between the final margined design thickness

and the as-built TPS thickness.

Figure 80: Components of as-built heatshield forebody TPS thickness.
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5.6.2 Contributions of MSL Data to Design Margin Policy Improvement

Improvements to the heatshield design process have often been hampered by a lack of

flight data. Fortunately, the MSL heatshield was instrumented, and valuable aerother-

mal environment and heatshield performance data were gathered. The inverse analy-

sis performed in this chapter provided great insight into the aerothermal environment

experienced by MSL and its TPS response. This section presents a discussion of how

findings from MSL raw data and post-flight analysis may improve the TPS design

margin policies.

As discussed in the previous section, TPS sizing is driven by a bondline tempera-

ture limit, which was 250 ◦C for MSL mission. The measurement of the flight vehicle

bondline temperature at the depth of 1.25 inch would be very useful in assessing TPS

performance. However, TC4 (nominal depth of 0.75 inch) is the deepest direct TPS

temperature measurement available from the MSL flight data. Figure 81 shows TC3
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Figure 81: MISP TC3-4 flight data compared to the bondline temperature limit.

and TC4 flight data as a function of time for all plugs. It is clear that the temperature

at TC4 did not reach the bondline temperature limit at all plug locations. Temper-

ature at TC3 (nominal depth of 0.45 inch) reached this limit for some of the plugs.

This trend was expected because the design margins used in the sizing process were

very conservative. Unfortunately, TC3-4 data at plugs 5 and 7 are not available due
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to data channel limitations.

The bondline temperature can be estimated using the TC driver approach, intro-

duced earlier. The flight temperature data from the deepest thermocouple is applied

as the boundary condition and FIAT is employed to calculate the thermal response for

the underlying TPS with the nominal material model. Since TC3-4 data are not avail-

able at plugs 5 and 7, TC2 data is used as the driver temperature. This will ensure

consistency among all plugs. Figure 82 shows the estimated bondline temperature

profile at all plugs. It should be emphasized that due to material model uncertainties

this calculation is only an estimate of the flight bondline temperature. Clearly, none

of the plugs experienced anything approaching the design bondline temperature limit

of 250 ◦C prior to heatshield ejection at 268 seconds.
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Figure 82: Estimated MSL bondline temperature at MISP locations.

Plugs 5, 7 and 1 had the highest rise in bondline temperature while plugs 2

and 3 had the lowest. This might seem counter-intuitive because analysis in the

previous chapter showed that plug 2 had the highest peak heating. However, a closer

examination of the estimated heating profiles reveals that plugs 5, 7 and 1 experienced

higher laminar heating than plugs 2 and 3 before transition to turbulence, resulting

in a higher heat load for these plugs. Due to the delayed nature of heat transfer, the
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bondline temperature was still rising when heatshield was jettisoned and had not yet

reached its peak. Additionally, the TPS substructure at plugs 2 and 3 was made of

a denser aluminum honeycomb. These two reasons, combined, explain for the lower

temperature rise at plugs 2 and 3.

In addition to estimating the bondline temperature, a nominal unmargined TPS

sizing can be performed using the TC driver approach. TC2 temperature is applied

as boundary condition and FIAT is used to calculate the TPS thickness required to

maintain the bondline temperature below 250 ◦C at 268 seconds when the heatshield is

jettisoned. Then, this calculated thickness is added to TC2 depth to arrive at the total

required TPS thickness. Table 10 shows the required unmargined TPS thickness at all

plug locations. It is evident that less than half of the design thickness was required to

shield the spacecraft. Of course, heatshield designers must ensure payload safety and

have to address many unknowns, particularly when working with challenging entry

conditions, new mission concepts, and TPS materials. The successful landing of

Curiosity and the thermocouple data returned demonstrates that the MSL heatshield

was conservatively designed and performed well.

Table 10: Unmargined TPS thickness required at plug locations for MSL as-flown
trajectory (Flight heatshield was 1.25 inch thick).

Plug Thickness (inch)
MISP1 0.463
MISP2 0.346
MISP3 0.338
MISP4 0.407
MISP5 0.515
MISP6 0.420
MISP7 0.506

5.6.2.1 Aerothermal Design Improvements

In the current MSL margin process shown in Figure 79, the margins for aeroheating

analysis stem from trajectory dispersions and environment prediction uncertainty.
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Reducing trajectory dispersions is not the focus of this work. A better knowledge

of atmosphere, planetary gravity field and vehicle’s navigation and aerodynamic pa-

rameters are required for lower trajectory dispersions. However, aerothermal envi-

ronment prediction currently involves conservative assumptions and biases such as

fully turbulent flow, supercatalytic wall, roughness-induced heating augmentations

and stagnation region augmentation. [6] Some of these assumptions and biases can

be reconsidered in the light of MSL flight and ground test data.

Turbulent transition was observed in the MSL flight data and an accurate tran-

sition time was derived from the estimated surface heating profiles. Flight observa-

tions did not match the model predictions of transition time based on a smooth-wall

momentum thickness Reynolds number threshold. Predictions based on roughness

Reynolds number showed a much better agreement with the data, indicating that

MSL transition was likely induced by roughness. However, the roughness height used

in this analysis was considerably higher than PICA average distributed roughness

height observed in ground testing, implying that transition was caused by a discrete

roughness element such as the fencing of RTV bond between PICA tiles. For future

missions similar to MSL using PICA, roughness-induced transition must be exam-

ined further. However at the current time, our capability of predicting transition

time and location on an ablating body is not mature enough to use transitional en-

vironments in design. If boundary layer transition is suspected, fully turbulent flow

must be assumed for design and sizing purposes. Turbulent flow calculations using

the Baldwin-Lomax algebraic model have shown good agreement with the estimated

environments from MSL, Pathfinder and also ground test data.

A “supercatalytic wall” model is often used in design aerothermal calculations

which assumes the recombination of all atoms to the lowest chemical enthalpy state

(CO2/N2). This assumption is used in design because it represents the limiting
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case of highest heating possible, even though it is not physically based. In prac-

tice, other assumptions such as the Mitcheltree or non-catalytic wall models are also

used. The estimated MSL and Pathfinder surface heating profiles were consistent

with the Mitcheltree model calculations suggesting that this model is likely more

representative of flight heating than the supercatalytic wall assumption. For future

missions, catalycity calculations can be only improved with better ground testing

techniques designed to identify relevant reactions and measure their rates. For exam-

ple, the primary surface reaction for PICA is carbon oxidation; therefore, a validated

finite-rate gas surface interaction model implemented in the CFD tools can greatly

reduce uncertainties in model predictions.

Finally, future sizing and margin processes should include coupled aeroheating

and TPS response analysis for a more accurate calculation of heating environments.

The current process is decoupled and does not accurately capture all the physical

phenomena that occur at the material surface. A coupled analysis will also enable

a more sophisticated uncertainty propagation technique. The current process uses

a simple RSS approach which results in the compounding of multiple uncertainty

contributions.

5.6.2.2 TPS Design Improvements

The margins in TPS material design come from two sources: in-depth thermal re-

sponse and surface recession. The thermal response margin is applied in the form of

a required bondline temperature margin and is due to uncertainties in material prop-

erties and pyrolysis parameters. Although some material properties were estimated

using the framework developed in this work, these results do not necessarily con-

tribute to design margin reduction. The estimated values for material properties are

for a given material sample at a given plug. Due to the variability in PICA material

properties, different estimates can be obtained at other plugs. The number of plugs is
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not high enough to obtain any significant statistical information on the variability of

material properties. Therefore, any attempt to reduce thermal margins should focus

on improving manufacturing capabilities in order to ensure more consistency and less

variability in material properties. Application of the inverse methodology developed

in this work to a wide range of arc jet datasets can be beneficial in obtaining accurate

statistical information on the variability of material properties. Such information

can be later used in a Monte Carlo process to calculate more representative bondline

temperature dispersions and develop more realistic margins.

Recession margin can be reduced substantially. As discussed before, the MSL mis-

sion used a 150% recession bias due to observed higher recession in shear environment

arc jet tests as compared to equilibrium model predictions. Later analysis concluded

that increased recession was due to arc jet model design. [152] MSL data clearly

showed that the flight recession was not higher than model predictions; it was consid-

erably less. Therefore, in future PICA heatshield designs in similar environments, the

recession bias can be completely removed. PICA recession at MSL heating conditions

is not well estimated by equilibrium models and is generally overpredicted. A better

estimate of surface recession can be obtained if validated and accurate finite-rate gas

surface chemistry models are developed and used for PICA.

5.7 Summary

An inverse analysis of the MSL entry vehicle aeroheating environment and thermal

protection system response was performed in this chapter based on heatshield flight

temperature data. The time-dependent surface heating at MISP plug locations was

reconstructed from the shallowest thermocouple flight data using two different ap-

proaches. The first approach estimated the heat transfer coefficient profile while

relying on PICA equilibrium chemistry models to calculate surface ablation terms. A

disadvantage of this approach is the fact that equilibrium chemistry models are known
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to overpredict surface recession at MSL heating conditions. Consequently, another

bounding approach was considered where the surface heating was directly estimated

assuming a non-receding material surface. This work also investigated the effect of

numerical parameters, measurement errors, recession uncertainty, and material prop-

erty perturbations on the estimated surface heating profiles. A Monte Carlo analysis

was performed for all plug locations to determine the uncertainty bounds associated

with the estimated surface heating profiles.

Additionally, significant material properties were inversely estimated using a TC

driver approach. In this approach, the data from the shallowest thermocouple were

used for the true boundary condition and material properties were estimated to match

FIAT predictions with the underlying thermocouple flight data. A four-step method-

ology was utilized to determine which material properties should be estimated and

what range of temperature data should be used in the estimation. An uncertainty

analysis was performed to determine the most important material properties based

on their contribution to in-depth temperature uncertainty. A sensitivity analysis was

conducted to investigate the level of linear dependency among the material properties

to determine which parameters are simultaneously observable from the data. Virgin

and char thermal conductivity were estimated by using inverse methods to match

FIAT predictions with flight data. This analysis was performed for plug 2 on the

MSL heatshield, but can easily be extended to other plugs.

MSL aeroheating reconstruction demonstrated that the estimated heating profiles

for the leeside plugs (2, 3, and 6) match the CFD predictions, although the turbulent

heating augmentation is slightly lower than predictions. Plugs 5 and 7, which are

located around the apex region, experienced significantly higher heating than CFD

predictions. The proximity of these plugs to the location of turbulent transition and

possible shock-layer radiative heating could explain this phenomenon. The estimated

heat rate profile at the stagnation region plugs (1 and 4) are slightly higher than CFD
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predictions which can be explained partially by radiative heating. The estimated

surface heating profiles were shown to be sensitive to surface recession.

The TC driver approach showed that the nominal PICA model overpredicts the

temperature profile at TC3 and TC4 location consistently for all plug locations which

is indicative of inaccuracy of virgin properties. Furthermore, a slope change was

observed in the 200-400 K range in the temperature profiles of TC3 and TC4. This

behavior has been seen in other ground and flight datasets.

Finally, the margin methodology used for the MSL aerothermal and TPS design

was reviewed. A discussion of how findings from MSL data may improve the margin

process for future missions was also presented.
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CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Thesis Summary

There are substantial uncertainties in the current theoretical and computational mod-

els used for the prediction of entry aerothermal heating and TPS material response.

Ground experimental and flight data will help reduce these uncertainties and improve

the current computational capabilities. The MSL rover recently landed on the surface

of Mars and provided valuable flight data. The analysis of TPS experimental data

has traditionally been done in a direct fashion where model predictions are compared

with the data. At best, only high-level qualitative observations regarding TPS per-

formance have been made in the past based on the adjustment of a few parameters or

simple scaling of the surface heating profile. However, an inverse analysis is capable

of identifying the material model parameters from the data and also estimating the

complete time-dependent surface heating profile.

In this thesis, an inverse estimation methodology was developed for the analysis

of TPS experimental data. Application of this methodology was demonstrated using

many test problems. The estimation methodology is comprised of two distinct parts.

The first part is a multi-parameter estimation framework developed for inverse prob-

lems where multiple constant parameters such as material properties need to be esti-

mated. The developed framework performs multiple supporting analyses which help

identify what parameters should be estimated and what range of the measurements

should be used. The second part of the methodology is the surface heating function

estimation framework which is aimed at problems where the time-dependent surface

heating is reconstructed from in-depth temperature data. This framework identifies
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the temperature data and the surface heating parameters that are appropriate for a

given problem and provides guidelines on how to perform the estimation.

Chapter 1 discussed the motivation and provided a background for the topics re-

lated to this work. The techniques currently employed for prediction of entry aerother-

mal environment and ablative TPS material response modeling were reviewed. Sig-

nificant uncertainties in these models were examined and current research areas were

discussed. A review of past heatshield flight data was given and the MEDLI instru-

ment was described in detail focusing on its aeroheating and TPS subsystem, MISP.

Chapter 2 discussed the difference between direct and inverse analyses, provided a

background on inverse heat transfer problems and described the developed inverse

estimation methodology in detail.

In Chapter 3, the multi-parameter estimation framework was applied to MSL-

relevant arc jet test data. Nominal, uncertainty and sensitivity analyses were per-

formed to intelligently select the range of measurements and the set of parameters

used in the inverse estimation process. For the arc jet problem, multiple constant

material and aerothermal parameters were estimated and a good match between the

data and model predictions was achieved. Through application of this framework, the

advantage of an inverse multi-parameter estimation approach over the traditional di-

rect approach was demonstrated. This framework can be easily applied to future arc

jet test data. Furthermore, the concepts and analyses developed for this framework

can be readily extended to multi-parameter estimation problems in other science and

engineering fields.

Unlike the arc jet problem, flight vehicle surface heating is time-dependent and

its estimation is a challenging function estimation problem. In Chapter 4, the surface

heating function estimation framework was demonstrated for two relevant applica-

tions. First, inverse methods were used to estimate MSL time-dependent surface

heating profile from simulated data. In the case of simulated data, the true solution
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was known, therefore, investigation of the effect of model and measurement errors on

the accuracy of surface heating estimation was performed. Additionally, the feasibil-

ity and applicability of these methods were demonstrated through application to Mars

Pathfinder heatshield flight data. Through this analysis, an improved estimation of

Mars Pathfinder surface heating and TPS performance was accomplished.

Chapter 5 discussed the inverse analysis of MSL aerothermal environment and

TPS material performance based on the MSL flight data using the developed inverse

tools and frameworks. The surface heating profile was estimated at the seven plug

locations from the shallowest thermocouple data. The effect of numerical parame-

ters, measurement errors, recession uncertainty, and material property perturbations

on the estimated surface heating profiles was investigated. A Monte Carlo analysis

was performed for all plug locations to determine the uncertainty bounds associated

with the estimated surface heating. A thermocouple driver approach was employed

to apply the multi-parameter estimation framework to PICA material property es-

timation. Through this inverse analysis, accurate estimates of MSL time-dependent

surface heating with associated uncertainties, turbulent transition time and location,

and the PICA material performance at the plug locations were obtained. Also in

Chapter 5, a review of the aerothermal and TPS design margin methodology used

for MSL was presented followed by a discussion of how finding from MSL flight data

may improve the margin process for future missions.

The next sections will provide some closing thoughts. Recommendations for future

heatshield instrumentations will be provided. Certain improvements to the current

suite and additional instruments can greatly improve the information obtained during

post-flight data analysis. Finally, a discussion of possible augmentations to the inverse

methodology is presented.

Table 11 provides a traceability matrix describing what chapters in this thesis

discuss the academic contributions introduced in Chapter 1. The inverse estimation
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methodology developed in this thesis enabled the first inverse analysis of an atmo-

spheric entry heatshield flight dataset. The benefits of this inverse methodology goes

beyond the applications demonstrated in this thesis. The tools and frameworks intro-

duced here can be applied to future flight and ground test data as a complementary

analysis approach to the traditional direct approach.

Table 11: Traceability of academic contributions.

Contribution Ch. 2 Ch. 3 Ch. 4 Ch. 5
Development and Application

X X Xof a Multi-parameter
Estimation Framework

Development and Application
X X Xof a Surface Heating Function

Estimation Framework
First Inverse Analysis of

X Xa Mars Entry Vehicle
Heatshield Flight Data

Improvement of Mars TPS
X

Design Margin Policies

6.2 Recommendations for Future Heatshield Instrumenta-
tion

The MSL MISP instrumentation provided a great improvement to our flight test-

ing capability and provided more entry TPS data than all previous Mars missions

combined. However, the analysis presented in this thesis showed that uncertainties

associated with the instruments and models remain. Improvements to the current in-

struments and additional instrumentation possibilities that could significantly reduce

analysis uncertainties are discussed in this section.

The analysis presented in this work only focused on the thermocouple data. As

mentioned before, the MISP plugs were also a equipped with an isotherm sensor,

called HEAT. This sensor was designed to measure the progression of an isotherm

through the TPS. Previously used on the Galileo probe mission, this measurement was
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correlated to surface recession. However, surface recession is not steady state for MSL

and therefore the HEAT sensor did not provide any information regarding recession.

Pre-flight testing and analysis by the MISP team had showed that the isotherm depth

measured by this sensor can be correlated to PICA char depth. [144] Unfortunately,

the flight data received from HEAT was very noisy and did not behave as expected.

Currently, the team is investigating multiple theories as why HEAT sensor did not

perform nominally and plans to conduct arc jet tests to further examine these issues.

Sensors similar to HEAT are planned for flight on the Crew Exploration Vehicle and

could be used in future Mars missions. Therefore, it is critical to better understand

HEAT’s flight anomalies and any shortcomings must be fixed so that useful data can

be obtained in future missions.

The MISP instrumentation did not provide detailed information on TPS recession

other than it was less than 0.1 inch (TC1 depth). Uncertainty in surface recession

calculation leads to significant uncertainties in surface heating estimation. Therefore,

it would be greatly beneficial to develop a flight sensor with the capability of direct

recession measurement. Over the past decades, multiple instruments using different

measuring techniques have been proposed for recession measurement in both ground

and flight applications. [153, 154, 155, 156] Currently, NASA Ames is developing and

testing an in-house recession sensor based on sapphire tube light pipes. This sensor

functions based on the fact that a recessing heatshield surface opens up an optical

path. The light from the ablative surface is then transmitted by a light pipe and

measured by a photo detector indicating the current location of the surface. These

development efforts will lead to higher technology readiness levels for recession sensors

facilitating their use in future missions.

Another source of analysis uncertainty is heating from shock-layer radiation. Typ-

ically, radiometers and spectrometers are used to obtain flight data for the validation

of radiation codes. The Apollo flight testing program and Project Fire were among
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the first missions that employed radiometers. [4] These sensors might not be bene-

ficial for Martian entries as radiation is not generally high enough to be measured

accurately with radiometers. Such sensors can be useful in Earth entry mission where

radiative heating is more substantial. Additionally, they can be employed in ground

experiments to validate and improve the computational models that are later used

for flight predictions.

A great amount of work went into the development of the MSL MISP instruments.

However, because they had never been used on a heatshield before, the majority of

pre-flight analysis and testing focused on ensuring that the heatshield performance

was not compromised by the plug insertions. Future missions that use similar sensors

must focus more on the actual performance of the instruments. A detailed sensor

measurement uncertainty and error budget analysis can provide significantly more

information on the accuracy of heating and material property estimations. Some

examples are further characterization of thermocouple lag, measurement range and

uncertainty, and thermocouple location. Additionally, improved thermocouple tech-

nologies can be used to reduce these errors. For example, Smart-K thermocouples are

known to have lower thermal lag while type-C thermocouples are known to withstand

higher temperatures.

Optimization of plug and thermocouple placement across the heatshield is another

effort that could lead to better data products and more accurate analysis results. The

location of MISP plugs and thermocouple depths were strategically selected for the

MSL vehicle; however, a more rigorous optimization methodology can be beneficial.

Dutta et al. [157, 158] developed a methodology for the placement optimization of

flush atmospheric data system sensors and obtained optimized solutions for the loca-

tion of MSL MEADS sensors. Similar analyses should be performed for TPS sensors

as well.

Analysis presented in this work also showed that material property uncertainty,
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especially high-temperature char properties, can lead to substantial uncertainty in

surface heating estimation. Therefore, it is extremely valuable to perform a detailed

pre-flight property characterization of the material samples used in the sensors. Sim-

ilar efforts were conducted for the MSL instruments, which helped in deriving ma-

terial property uncertainties relevant to MISP plugs. Future missions must focus on

reducing these uncertainties and also monitoring material samples during design and

manufacturing phases to ensure a low level of uncertainty in flight material proper-

ties. Placement of thermocouples closer to the surface can also reduce the effect of

material property uncertainty on the heating estimation results.

6.3 Potential Augmentations of the Inverse Methodology

6.3.1 Multi-Parameter Estimation Framework

The framework developed here sets the groundwork for a systematic approach that

enables a multi-parameter estimation analysis based on TPS experimental data. This

baseline framework can be augmented in many different ways.

The Monte Carlo analysis performed in the uncertainty analysis is based on normal

distributions for input parameters and a linear regression post-processing. It is pos-

sible to improve the Monte Carlo analysis by constructing more rigorous experiment-

based material property distributions that also account for the dependency between

material properties. This approach can be used in practice as more experimental data

becomes available on material properties. Furthermore, in the case where normal dis-

tributions are not used for input parameters, it is crucial to employ more sophisticated

uncertainty propagation methods such as analysis of variance or Sobol’s sensitivity

indices instead of a simple linear regression. Copeland et al. [133] discuss some of

these methods and their application to Mars-relevant test cases.

The contribution plots generated as a part of the uncertainty analysis provided

valuable insight regarding the time-dependent contribution of the input parameters
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to model prediction uncertainty. In the arc jet application discussed in Chapter 3,

these plots were examined at a high level to determine the parameters that were

most important and the estimation was performed for the entire time range. Future

applications can further use the available time-dependent information to break up

the problem’s time domain into multiple segments. Next, the uncertainty plots can

be employed to identify the top contributors in each segment. Inverse analysis can

then be performed for each segment with a fewer number of parameters. This will

allow a more direct targeting of individual parameters based on their time-dependent

contribution to model prediction uncertainty.

Some material properties such as thermal conductivity and specific heat are tem-

perature dependent properties. In this work, it was assumed that the functional

form of these properties with temperature were known and scaling factors for these

properties were used. When these material properties were changed, the entire tem-

perature dependent curve was shifted up and down. Through this approach, these

properties were treated as constant parameters. It is also possible to consider the tem-

perature dependent estimation of these properties; however, because this approach

will be a function estimation problem, it will not fit well within the parameter es-

timation framework developed here. There has been significant work in the liter-

ature on temperature dependent estimation of thermophysical properties; however,

such analyses for pyrolyzing ablative materials have been rare. [159, 160, 161, 162]

A framework similar to the one developed for time-dependent estimation of surface

heating can be used for the estimation of temperature-dependent material properties.

Temperature-dependent estimation can result in a more accurate characterization of

the TPS material properties and a better match between model predictions and data.

The inverse methods used in this work were based on an ordinary least-squares

objective function and were deterministic. While it is possible to obtain some infor-

mation about the uncertainties in the estimates and calculate confidence intervals,
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such statistical analyses are based on many assumptions that are not valid for this

problem (e.g., additive, normal, random errors). Other objective functions such as

weighted least-squares, maximum likelihood or maximum a posteriori, are possible

and Bayesian estimation methods can also be used. These estimation techniques will

provide more information on estimation uncertainty; however, the use of statistical

techniques for the problem on hand requires accurate characterization of sensor and

model errors as such errors are inputs to these estimation algorithms.

In this work, the multi-parameter estimation framework was applied to one arc

jet test case and one flight plug dataset to illustrate the benefits of the inverse anal-

ysis. The analyses can be similarly performed for other arc jet datasets and future

flight data. Application to multiple arc jet datasets will address material property

variability from one sample to another and provide a better confidence level for the es-

timation results. However, future applications to other test conditions might require

additional analyses to resolve problem-dependent challenges.

6.3.2 Surface Heating Function Estimation Framework

The inverse methods used in this work for surface heating function estimation frame-

work were whole-time domain methods. These methods estimate all the surface

heating estimation points simultaneously using the entire measurement time span.

Sequential estimation methods may be also employed. These methods estimate the

surface heating sequentially in time using only a limited time span of the measure-

ments. While whole-time domain methods are more stable, they are less efficient.

However, in order to benefit from the efficiency of sequential methods, the computa-

tional code used for the direct problem must have the capability of saving solutions

and restarting them in time. Unfortunately, FIAT does not have this capability at

this time. If future versions of FIAT include this capability or if another tool is used

that has this capability, sequential methods can provide similar results at a much
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lower computational cost.

The surface heating estimation methods used in this work belonged to the class

of deterministic regularization methods. Bayesian statistical techniques may be also

used with the added benefit that these methods can provide further information

on estimation uncertainty. To use these methods effectively, a good knowledge of

measurement uncertainties and covariances are required. Such information was not

available for the cases investigated in this work. If future programs perform a more

detailed analysis of instrument measurement error and uncertainty, the prerequisite

statistical information may become available and Bayesian methods can be employed

for surface heating estimation problems.

The CH estimation approach requires the calculation of many surface chemistry

terms internally by FIAT. The equilibrium models used in FIAT for PICA gas-surface

chemistry are not accurate at MSL heating conditions which limited the estimation

of convective surface heating using the CH estimation approach. Since validated

finite-rate gas-surface chemistry models are not currently available for PICA in the

Martian atmosphere, the total surface heating including the chemical contributions

was estimated while assuming zero recession. While this approach provided great

insight into the overall surface heating experienced by the MSL entry vehicle, direct

estimation of CH and the convective surface heating was not possible. In future,

the CH estimation approach must be revisited when PICA finite-rate gas-surface

chemistry models become available and are validated for Martian environments. The

results of that analysis can be more easily compared with CFD convective heating

predictions.

This thesis presented a flexible methodology for preforming inverse analysis of

TPS data independent of the computational tool used for the direct problem. FIAT,

being the standard NASA tool for ablative thermal response modeling, was used here

for the solution of the direct problem. In the future, as higher fidelity codes are
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developed that more accurately model the problem physics, they could substitute

FIAT in this methodology.
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