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SUMMARY

One of the biggest challenges in the development of a space or launch vehicle is

predicting a vehicle’s final performance during the initial phases of design. These predic-

tions are difficult due to the high degree of uncertainty surrounding a conceptual design.

Optimistic predictions have led to expensive weight-reduction programs, decreased vehicle

capability, and the cancellation of development programs.

A significant driver contributing to the reduction of a space or launch vehicle’s perfor-

mance capability is weight growth. While mass growth will affect nearly all programs, the

amount of mass growth is subject to high uncertainty– the historical record shows a large

variance in the amount of growth experienced by development programs.

In order to address the uncertainty surrounding mass growth, program managers add an

extra mass allotment to the dry mass of a vehicle– this extra allotment is known as a design

margin. The design margin is allocated early in the development process. Furthermore,

the decision as to how much design margin to allocate is a critical design decision– too

much margin will lead to an over-sized system while too little margin leave a development

program susceptible to not meeting performance requirements.

A promising method used in different industries to make this decision is known as range

estimating. This method involves breaking a project down by its work breakdown structure

and assigning a range of uncertainty to each subitem; the sum of each subitem will represent

the collective uncertainty for the total system. However, recent research into this method

has shown that range estimating is only appropriate for well-defined programs and would

not be applicable during early design phases when a vehicle baseline is subject to change.

In order to account for all relevant uncertainties, a hybrid method of forecasting mass

is developed. This hybrid methodology merges two separate styles of analyzing a develop-

ment program’s uncertainties. Because range estimating has been established as a mature

methodology in multiple fields, it will be used in the hybrid methodology as the bottom-up
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analysis. Because range estimating is being used unmodified, the new focus of research

focuses on creating a top-down methodology which accounts for baseline changes without

double-counting estimates from range estimating.

In order to account for potential baseline changes in a vehicle two problems must be

solved: alternative configurations must be identified, and the performance differences rela-

tive to the original baseline must be identified. The problem of identifying potential alterna-

tive configurations can be solved through the use of morphological analysis. Morphological

analysis has been proven to be a method to generate a large number of possible alternatives.

However, extracting quantitative data from this large number of possible alternatives is a

challenging problem.

In order to extract quantitative information from a morphological analysis, an exten-

sion, known as executable morphological analysis (EMA), is developed. The central idea

behind EMA is that by including small pieces of information about each condition in the

morphological field, then quantitative information can be easily extracted from each com-

bination.

EMA is composed of two data structures: the executable matrix of alternatives and

the relationship matrix. The executable matrix of alternatives is an extension of the mor-

phological field. In this extension, each condition contains attributes; specifically it must

contain attributes which describe the condition’s effect on the model’s output and the con-

dition’s likelihood of being selected. Similarly, the relationship matrix is an extension of

the cross-consistency matrix. The relationship matrix contains relationships between the

conditions of the model and implements incompatibilities.

For the specific implementation of EMA for addressing the problem of forecasting mar-

gins, each condition will have three pieces of information: a likelihood, a multiplicative

effect, and an additive effect. The likelihood value is a specified chance of a condition being

selected relative to the other conditions in the same parameter; these likelihood values are

constrained so that the sum of all likelihood values in a single parameter is equal to unity.

The multiplicative effect acts as a scalar multiplier to the total dry weight of a vehicle, and

the additive effect acts as a simple addition to the dry weight.
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EMA is implemented through an object-oriented design. This object-oriented frame-

work acts as an enabler of EMA and represents an advancement over matrix-based im-

plementations of traditional morphological analysis because EMA requires state-dependent

functionality and new attributes and methods in each level of the data structures. Further-

more, the object-oriented framework can easily enable future applications of EMA through

subclassing the abstract classes.

In order to evaluate the computational requirements of evaluating an EMA model, a se-

ries of Monte Carlo simulations varying the size of the executable matrix of alternatives and

the interconnectedness of the relationship matrix was conducted. This experiment found

that the number of Monte Carlo simulation cases necessary to generate accurate probabilis-

tic results is relatively constant with the size of the executable matrix of alternatives and the

complexity of the relationship matrix. For the largest fields tested, the expected value and

80% quantile measurements converged in 1250-1500 Monte Carlo cases. This result shows

that useful quantitative information can be extracted from an executable morphological

analysis without significant computational effort.

With EMA algorithms and data structures developed, sample problems were used to

demonstrate EMA’s effectiveness as a forecasting methodology. Two sample problems are

conducted. The first focuses on the use of EMA to predict changes in a the Space Shuttle

Orbiter’s dry weight while utilizing historical information and forecasts. The second sam-

ple problem focuses on demonstrating the hybrid methodology on the FAST RFS F, an

advanced launch vehicle technology demonstrator.

The Space Shuttle Orbiter problem tests the use of EMA as a method of forecasting

baseline changes. By using a predetermined percentage to model in-scope mass growth,

this sample probem isolates the predictive effect of EMA on forecasting mass growth asso-

ciated with baseline changes. In order to construct the EMA model for this problem, the

historical record of proposed Orbiter designs was used to create a morphological field. The

mass-impacts of each potential baseline change was determined by utilizing original mass

properties reporting documents from the Orbiter program; the use of estimates based on

original documents mitigates hindsight bias and ensures that this experiment produces a
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new forecast based on the input of 1970’s experts. The output of the EMA model produced

very good predictions of the Orbiter’s final flight weight.

The second sample problem uses the complete hybrid methodology is used to estimate

the design margin for a novel concept– the FAST RFS F technology demonstration vehicle.

This sample problem utilized mass properties data from FAST program contractors to

inform a weight breakdown structure. This weight breakdown structure formed the basis of a

range estimating analysis. This range estimating analysis was augmented with an extensive

EMA model; the EMA model for this sample problem was broken into three separate

sections: programmatics, technology development programs, and vehicle alternatives. The

Monte Carlo simulation output of this EMA model was used to conduct a probabilistic

analysis on the total vehicle and subsystem weights as well as a sensitivity analysis and

a what-if analysis. Finally, the results of both range estimating and EMA were used to

examine the weight growth of the FAST RFS F.

The FAST RFS F sample problem demonstrates the use of morphological analysis to

generate alternative vehicle baseline scenarios and demonstrates the use of a hybrid method

with both a top-down and a bottom-up analysis component for analyzing vehicle develop-

ment programs. Finally, this sample problem demonstrates the use of EMA and range

estimating as a way to quantitatively analyze uncertainties surrounding a novel project;

this demonstration shows that the original research motivation has been addressed and

that a hybrid analysis method consisting of range estimating and EMA is a useful tool for

analyzing uncertainties and assigning a design margin.
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CHAPTER I

INTRODUCTION

In today’s world, space-based assets are critical infrastructure– satellites provide communi-

cations, remote sensing, radio-based navigation through the global positioning system, and

world-wide, coordinated timing. However, before a satellite can perform its mission, it must

be carried into orbit on a launch vehicle.

1.1 Launch Vehicles

Modern launch vehicles trace their existence back to the initial research done by Wernher

von Braun for the German V-2 program during World War II. After the war, von Braun and

117 other German scientists went to the United States and formed the basis of American

research into rocketry. This group conducted research programs on American soil with

captured V-2s and their engines. This program led to the development of engines for the

XLR83 engine which served as the basis of many future rocket engines which powered the

Saturn V, Delta, and Atlas launch vehicles; the propulsion program also led to the founding

of the Rocketdyne division of North American Aviation, one of the primary rocket engine

manufacturers in the United States. This technological foundation served as the basis for

U.S. launch vehicles until the Space Shuttle and the EELV programs. [149]

1.1.1 Current Launch Vehicles

1.1.1.1 Active Vehicles

The current mainstays of the U.S. launch vehicle fleet are the Atlas V and the Delta IV,

the two elements of the Evolved Expendable Launch Vehicle (EELV) program. The EELV

program emerged in 1995 as a response to the state of U.S. launchers in the 1980s and early

1990s where national security payloads originally intended to be launched by the space

shuttle were relegated to legacy expendable launch vehicles. [62, 61] The EELV program

was intended to replaced these legacy launchers with two new families of launch vehicles.
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Furthermore, this new program was supposed to reduce costs and improve operational

flexibility. Finally, the development of two different launch vehicle families was meant to

lead to assured access to space as two independent vehicles acts provides a mutual backup

capability. [105]

As part of the overall cost savings, the original EELV program was jointly funded be-

tween the government and the two winning prime contractors, Lockheed Martin and The

Boeing Company. The government provided a total of $1 billion ($500 billion to each con-

tractor) in development money while Lockheed Martin spent $1.6 billion and Boeing spent

$2.3 billion. The prime contractors would recoup their investment by launching commercial

satellites. The launching of commercial satellites would also help pay for overhead and

launch site operations costs. However, the commercial satellite market did not materialize,

and the government was stuck paying wholly for the operations of two families of launch

vehicles while the prime contractors wrote down large portions of their investment as losses.

[105]

Today, the EELV program is ongoing with both the Atlas V and the Delta IV being

manufactured and operated by the United Launch Alliance (ULA), a joint venture between

Lockheed Martin and Boeing formed in an effort to reduce costs. However, EELV launch

costs are ever increasing, and ULA is currently negotiating a block buy agreement with the

government in an attempt to reign in costs. [87] While launch vehicle pricing is extremely

difficult to estimate, [105] recent estimates place an Atlas V launch cost in the range of

$150–$180 million per launch (not including additional subsidies) [87] or approximately

$3,500–$5,000 per pound to low earth orbit. [71] Similarly, a Delta IV medium has a cost

of approximately $4,000–$6,800 per pound to low earth orbit. [71]

While the EELV cost savings have not met initial projections, [71] the vehicles have

produced an improvement in reliability. Historically, the reliability of launch vehicles is .

[118] In comparison, the Atlas V has successfully launched 27 out of 28 missions (the single

non-successful mission ended with the two payload satellites reaching target orbits with

on-board propulsion) [38], similarly the Delta IV has 27 out of 28 successful missions– its

only failure was a demonstration mission of the Delta IV heavy configuration.[39]
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1.1.1.2 Vehicles Under Development

Because current vehicles are expensive and require extensive processing before launch, the

U.S. Air Force has identified a reusable booster system (RBS) as a replacement system for

the current EELV fleet. This new system currently has a planned initial operating capability

in the year 2025. [51]. This new system will have the economic requirements such as a 50%

cost reduction compared to current expendable vehicles as well as operability requirements

such as 24-48 hour turnaround, 2-8 hour call-up, and flexible basing.[55] These requirements

represent a dramatic shift from what is traditionally thought of as launch vehicle operations

which are characterized by lumbering operations and expendability. Furthermore, these op-

erational advancements will enable national security missions such as satellite constellation

reconstitution.

The current approach is a hybrid launch system-a reusable first stage and an expendable

upper stage.[51] An illustration of this system can be seen in Figure 1. During a nominal

launch, the combined system launches vertically, the first stage burns alone or in parallel

with an upper stage, the two stages separate, and the first stage carriers out a return

to launch site (RTLS) maneuver. The current baseline RTLS maneuver is a rocketback

maneuver where the reusable first stages rocket engines are used impart enough energy to

the system to enable a glide back to the launch site.[20]

1.1.2 The Physics of Space Launch

Launch vehicles are expensive and risky to operate because space launch is a very difficult

process due to the physical demands placed upon a launch vehicle and payload. The mission

of a launch vehicle is to place a satellite in a desired orbit. Fundamentally, this is a mission

to add a substantial amount of energy to the spacecraft; the chemical energy stored in the

launch vehicle’s fuel tanks is used to accelerate the system to the desired orbit. [71] This

chemical energy is transfered into kinetic energy through the use of rocket engines while

potential energy is gained throughout the ascent trajectory.[10, 29]

A standard way of expressing the energy of an orbit is through the specific orbital energy–

the sum of the potential and kinetic energy per unit mass of the vehicle. The expression

3



Figure 1: U.S. Air Force Reusable Booster Concept [51]
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for specific orbital energy, ε, can be seen in equation 1. [10] Within this equation, the first

term, v2/2, represents the specific kinetic energy, and the second term, −µ/r, represents

the specific potential energy where µ is the gravitational constant of the planet in question.

For Earth, the gravitational constant is 1.40765 × 1016ft3/s2. [49] Within this potential

energy formulation, the datum for zero potential energy is considered to be where an object

is no longer in Earth’s sphere of influence. For non-thrusting orbits, equation 1 can be

reduced to equation 2; within this equation a represents the length of the semimajor axis

of the orbital ellipse; for circular orbits, the semimajor axis length is equal to the radius of

the circular orbit. [29]

ε =
v2

2
− µ

r
(1)

ε = − µ

2a
(2)

While specific orbital energy is a good measure for conventional satellites in orbit around

a single body, a similar measurement, C3 or characteristic energy, is used to describe the

energy required to send a spacecraft on an interplanetary trajectory. [29] For an interplan-

etary mission, a spacecraft launched from earth must enter a hyperbolic orbit which, upon

leaving Earth’s sphere of influence, enters the correct sun-centered interplanetary transfer

orbit. The velocity of the spacecraft when it leaves Earth’s sphere of influence is known as

the hyperbolic excess speed or v∞. [10] Unlike traditional satellites where the specific orbit

required can be analytically determined years ahead of time, the v∞ is a function of the

geometry of the solar system at the time of launch. Because of this issue, interplanetary

mission designers use C3 to measure launch vehicle capability. C3, as expressed in equation

3, measures the maximum energy that a launch vehicle can impart to a payload of a given

mass and is equal to twice the specific orbital energy. [29]

C3 = v2
∞ (3)

Many orbits of interest and their corresponding physical characteristics can be seen in
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Table 1: Specific Orbital Energies of Common Orbits
Orbit Altitude Orbital Speed Specific Orbital Energy

(at apogee) (at apogee)

Low Earth 100 miles [29] 25,615 ft/s −3.28× 108ft · lb/slug
600 miles [29] 24,171 ft/s −2.92× 108ft · lb/slug

Molniya 25,000 miles [29] 4865 ft/s −8.02× 107ft · lb/slug
Semi-synchronous 12,570 miles [120] 12,698 ft/s −8.06× 107ft · lb/slug
Geostationary 22,241 miles [29] 10,086 ft/s −5.08× 107ft · lb/slug

Table 1. The lowest energy orbit is that of a ballistic missile which have an orbit that

intersects the surface of the earth at the intended target. [10] Low earth orbit (LEO)

describes the family of orbits between 100 and 600 statute miles [29]– below the Van Allen

radiation belts. [143] These orbits are used by the space shuttle and international space

station as well as a large number of earth-observing satellites.[10, 143] Spacecraft, such

as the GPS satellite constellation, which complete two orbits of the earth per day are

in semi-synchronous orbits.[69] Geosynchronous orbits have an orbital period equal to a

single sidereal day. A special case of geosynchronous orbits is the geostationary orbit;

geostationary orbits have 0◦ orbital inclination allowing them to remain fixed over a specific

point on the equator. This characteristic makes geostationary orbit a very popular orbit

for communications and earth observing satellites. However, geostationary orbits do not

provide good coverage of high latitude regions of Earth, such as the Russian Federation.

[143] In order to solve this problem Russian (formerly Soviet) engineers placed satellites

in a Molniya orbit. Molniya orbits are highly elliptical and have a 63.4◦ inclination; this

inclination allows the apse line, the central line of an ellipse, to remain stationary with

respect to the ground. [29]

Because missions to place objects in specific orbits involve accelerating a payload to

the point where it has sufficient orbital energy, the primary measure of a launch vehicle’s

performance is the amount of acceleration it can provide– the total acceleration is also

known as the change in velocity or ∆V. [57, 143] Typical missions place a payload into a

parking orbit– usually in LEO. From this parking orbit, the upper stage of the launch vehicle

conducts a second burn to place the vehicle in a transfer orbit. Finally, once the spacecraft

reaches its desired orbit uses it onboard propulsion systems to perform a circularizing burn
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and conduct an orbital plane change maneuver (if necessary). Each one of these burns

changes the specific energy of the spacecraft and therefore requires a specific ∆V. Depending

on the mission, trades can be done between the ∆V required to perform orbital transfers and

the time necessary to perform orbital transfers. [143, 29] Furthermore, the desire for launch

sites to be located as close to the equator as possible can be seen from this formulation. As

the orbital speed is calculated in the Earth-fixed celestial frame, the initial velocity of the

launch site due to the Earth’s rotation contributes to the velocity required to reach orbit

reducing the ∆V requirement of the launch vehicle. [127] The maximum initial velocity

which can be attained is 1,522 ft/s at an equatorial launch site. As the United States

Eastern Range in Florida is at 28.5◦ N, vehicles launching from this range have an initial

velocity of 1,337 ft/s.

1.1.2.1 The Rocket Equation

The transfer of a rocket’s chemical potential energy into ∆V can be mathematically modeled

by the rocket equation. [49, 57, 143] This equation captures the structural efficiency of the

vehicle, the amount of fuel burned, and the efficiency of the propulsion system. The simplest

form of this equation, the modeling of a single stage rocket or a single burn of an in-space

propulsion system, can be seen in equation 4. [116, 49]

∆Veffective = g0Isp ln
minitial

mfinal
(4)

Equation 4 is an analytical expression for the total effective ∆V generated by a single

burn, but the effective ∆V can be broken down into the ideal ∆V and ∆V losses as can

be seen in equation 5. The ideal ∆V represents the ∆V required to change orbits or

conduct an in-space maneuver such as an orbital plane change. [143] Losses are introduced

into the burn through three mechanisms: aerodynamic drag, gravity, and thrust control.

Drag losses occur when the vehicle is flying through the atmosphere and has to use a

portion of the rocket’s thrust overcoming atmospheric drag. Gravity losses occur because a

vehicle launches vertically and needs to use its thrust overcoming Earth’s gravity. Both of

these losses can be mitigated through selection of the vehicle’s thrust-to-weight ratio and
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Table 2: Typical Values of Isp [143]

Propellant Combination Isp (sec)

O2 and RP-1 350
O2 and H2 450
N2O4 and N2H4 330
Solid Motors 280-300

optimization of ascent trajectory. [57, 143] For most launch vehicles gravity losses tend to

be from 2,460 ft/s to 4,900 ft/s while drag losses tend to be between 65 and 130 ft/s. [143]

Thrust losses occur when the trust vector is not aligned with the velocity vector as is the

case when the guidance system is actively steering the vehicle. [49]

∆Veffective = ∆Videal + ∆Vthrust losses + ∆Vdrag losses + ∆Vgravity losses (5)

Within equation 4, Isp is the specific impulse of the vehicle. This term represents the

efficiency of the propulsion system. Isp is mathematically modeled by equation 6; based on

this equation, the efficiency captured by Isp is the thrust of the propulsion system per unit

mass flow through the rocket nozzle. For engineering purposes, the thrust per unit mass

flow rate is then normalized by the gravitational acceleration of earth. [57, 49] The Isp of

typical propellant combinations can be seen in 2. It is worth noting that current chemical

propulsion is on the order of 97-98% efficient, and future improvements in efficiency will

come at great expense. [71]

Isp =
T

ṁg
(6)

The mass ratio, minitial/mfinal, represents the total amount of fuel used during a burn. If

all of the propellant is used, as would be the case during a launch vehicle’s mission, the mass

ratio also represents the mass efficiency of the vehicle. [116] Within the rocket equation,

taking the natural log of the mass ratio represents the fact that thrust applied towards

the end of a burn when propellant has been burned off will have a much greater impact

on ∆V when compared to thrust applied towards the beginning of a burn. Additionally,
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the response of the natural log heavily penalizes inefficient mass use– as the mass ratio

decreases, the ∆V penalty increases exponentially. [49, 57, 143]

Structural mass efficiency can be represented through the structural coefficient as seen

in equation 7; another key measure is the payload ratio– the ratio of the payload weight to

the structural and propellant weights, equation 8. Using both the structural coefficient and

the payload ratio, the mass ratio can be expressed by equation 9. Based on this equation, a

trade between payload weight and structural weight exists because both the payload ratio

and the structural efficiency coefficient appear in the denominator of equation 9. [49]

ε =
mstructure

mpropellant +mstructure
(7)

λ =
mpayload

minitial −mpayload
(8)

MR =
1 + λ

ε+ λ
(9)

While the terms in the rocket equation can be analyzed separately, the impact on per-

formance due to propulsion efficiency and mass efficiency are highly coupled. For example,

inefficiencies in the propulsion system will require more propellant to provide the same

amount of ∆V as an originally closed vehicle. This increase in fuel will in turn require an

increase in the mass of the propellant tank structure in order to accommodate the additional

propellant. This increase in total mass will require additional propellant in order to lift the

additional structure and propellant mass– this feedback loop will continue until the vehicle

re-closes. Additionally, this increase in mass may require a change to the propulsion system

in order to increase the thrust-to-weight ratio of the vehicle; a change to the propulsion

system will likely also increase the dry mass of the vehicle. These positive feedback loops

can quickly increase the gross liftoff weight of a vehicle and are the primary reason why

single-stage-to-orbit vehicles are infeasible at the existing level of technology. [116, 36]
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1.1.2.2 Staging

Because of this sensitivity to mass, it is advantageous to use multi-stage rockets. A single

stage of a launch vehicle is compromised of rocket engines, propellant tanks, and the neces-

sary subsystems required to operate the propulsion system (vehicle-wide functions such as

avionics are shared by all stages). The total propellant necessary to lift a given payload is

effectively distributed throughout the stages of a launch vehicle, and a stage is jettisoned

when its propellant has been used. The jettisoning of stages minimizes the total mass

required to be accelerated to orbital speed. [49, 143]

In addition to the benefits to the overall mass ratio, multi-stage launch vehicles benefit

from the ability to use different propulsion systems on different stages. First stages which

are responsible for liftoff and initial acceleration require large amounts of thrust to achieve

a sufficient thrust-to-weight ratio. Propulsion systems capable of producing this amount of

thrust, typically solid rocket motors and O2/RP-1 liquid engines, are far less efficient than

the O2/L2 powered upper stages. [49, 143]

When analyzing a multi-stage vehicle, the rocket equation can be applied to each in-

dividual stage. For a given stage, the payload is the remainder of the launch vehicle in

addition to the payload to be delivered to orbit; the equation for a stage’s payload ratio can

be seen in Equation 10. The given mass ratio for a single stage burn can be approximated

using this payload ratio and a stage’s structural coefficient, Equation 11, as inputs to Equa-

tion 12. Finally, this result can be used in Equation 13 to get the total ∆V generated by a

rocket stage; the total ∆V generated by the launch vehicle is the sum of the ∆V produced

by each stage. [49]

λn =
minitialn+1

minitialn −minitialn+1

(10)

εn =
mstructuren

minitialn −minitialn+1

(11)

MRn =
minitialn

mfinaln

' 1 + λn
εn + λn

(12)
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∆Veffectiven = g0Ispn lnMRn (13)

While these equations model a traditional multi-stage rocket such as a Saturn I or Titan

II, modern launch vehicles take advantage of parallel staging. In parallel staging, two or

more stages of the rocket will burn concurrently and will burn out at different times. This

approach can provide many benefits such as allowing the upper stage engine to be started

on the ground (Space Transportation System) or adding strap-on solid rocket motors to

increase the total impulse of the vehicle (Delta II, Delta IV, and Atlas V). An example of

a modern parallel staging launch vehicle’s flight profile can be seen in Figure 2. [49]
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Figure 2: Atlas V 521 Launch Profile [134]
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1.2 Uncertainty in Space and Launch Vehicles Performance Prediction

As was shown in section 1.1.2.1 the ability of a launch vehicle or satellite to achieve an

orbit or perform a mission is due to the mass efficiency and propulsion efficiency of a

vehicle. However, during conceptual design when vehicles and space missions are being

designed, the uncertainty surrounding performance parameters and weight estimations is

high. History has shown that early predictions of mass efficiency or propulsion efficiency

tend to be optimistic. [116]

1.2.1 Mass Growth in Space and Launch Vehicles

1.2.1.1 Launch Vehicle Mass Growth

A report from NASA’s Marshall Space Flight Center (MSFC) details the mass growth of

MSFC-led launch vehicles. [23] This data can be seen in Table 3. This data covers the

major development programs in human spaceflight history– the Saturn booster series and

the Space Transportation System. Within this list, the Saturn series and the ET are liquid

systems while the SRB and the IUS are solid rockets; additionally, all of these systems

except for the STS SRB are designed to be expendable. For the Saturn V stages, #501 is

the first Saturn V launched while #506 is the rocket used for the Apollo 11 mission after

having undergone a weight reduction program.

Within this list, the largest sources of growth occur in subsystem layouts for the STS.

The IUS’s airborne support equipment more than doubled in size while the SRB subsystems

increased by 45%. Individual stages had less overall growth, but still experienced a large

variation in percentage growth– between 3% and 24%. Furthermore, the large growth in

the STS systems shows that predicting mass growth has not greatly improved between the

Saturn and STS programs.

1.2.1.2 Space Vehicle Mass Growth

Heineman out of NASA’s Johnson Space Center (JSC) reported the mass growth of JSC-

lead manned spacecraft. The percentage mass growth with respect to the initial estimate

at conceptual design. [54] As with the list of launch vehicles, this list contains both the first
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Table 3: Launch Vehicle Historical Mass Growth [23]
Launch Vehicle Percentage Mass Growth

Saturn I, S-1 Stage 16 %
Saturn I, Interstage 24 %
Saturn I, S-IV Stage 16 %
Saturn V, S-1C Stage #501–7 % #506–3 %
Saturn V, S-II Stage #501–32 % #506–19 %
Saturn V, S-IVB Stage #501–33 % #506–24 %
Space Transportation System, ET (SWT) 13 %
Space Transportation System, SRB (with-
out DFI)

13 %

Space Transportation System, SRB Sub-
systems

43 %

Space Transporation System, Interim Up-
per Stage (IUS)

11 %

Space Transporation System, Interim Up-
per Stage Airborne Support Equipment

122 %

Table 4: Manned Spacecraft Historical Mass Growth [54]
Vehicle Percentage Mass Growth

Mercury Capsule 28 %
Gemini Capsule 18 %
Apollo Command Module 22 %
Apollo Lunar Module 50 %
Skylab 56 %
Space Transportation System Orbiter 25 %

attempts at manned spacecraft as well as Orbiter. Similar trends can be seen from this list–

a wide range of possible mass growth (ranging from 18% to 56%) as well as no significant

improvement between early programs and the Orbiter.

Hawkins reported the mass property information of fourteen U.S. Air Force satellites,

one U.S. Navy satellite, two commercial satellites, and a NATO satellite. The dry mass as

a function of program completion can be seen in Figure 3. [53] Like the launch vehicles

and manned spacecraft, this chart shows a large spread of potential mass growth (13% to

55%). A similar study was conducted by Bitten et al. which reported on the mass growth

experienced by NASA science missions. The growth curves for each individual mission as

well as the average mass growth can be seen in Figure 4. [16] The space missions in this

figure launched between the years 2000 and 2009 making this data significantly more recent

than Hawkins’s study. However, the trends in mass growth are nearly identical even though
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Figure 3: Dry Mass Growth of Satellites [53]

these space vehicles are generations ahead of the vehicles reported in Hawkins’s study.

This supports the conclusion that even though technology has progressed, the ability to

successfully predict mass growth has not improved with time.

1.2.1.3 Advanced Concept Mass Growth

Another area where mass growth has been very visible is in advanced programs. Table 5

contains a list of four historical space plane concepts which experienced mass growth. [130]

The first concept on this list is the X-20 Dyna-Soar, an Air Force space plane designed

to conduct lifting re-entry research. The original design called for it to be launched on a

man-rated Titan II booster. However, mass growth due led to the need to switch to the

newly designed Titan III rocket; this launch vehicle switch would require an expensive series

of tests to man-rate the Titan III. This new expense partially led to the cancellation of the

X-20 program in 1963. [145]

Perhaps the greatest example of mass growth is the X-30, National Aerospace Plane

(NASP)– a single stage to orbit (SSTO) development program. Originally estimated at a

gross mass 50,000 lbs, development cycles led to a gross mass of 450,000 lbs. This massive
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Figure 4: Dry Mass Growth of Space Missions [16]

mass growth in conjunction with technological hurdles led to the cancellation of this program

in 1990. [130]

The next program working towards an SSTO was the X-33 program. This was a demon-

strator vehicle designed to test technologies such as composite propellant tanks, metallic

thermal protection systems, and aerospike engines. Ultimately, the mass-reducing tech-

nologies did not perform as expected– for instance, composite propellant tanks failed and

needed to be replaced with heavier tanks. The X-33 program eventually ended with 75%

of the vehicle assembled in March of 2001.[76, 130]

The only member of this list to actually become operational is the X-37. This reusable

spaceplane has made two flights to orbit after being lofted by an Atlas V 501 launch vehicle.

This vehicle, like the X-20, serves as a testbed for technologies related to reusable spacecraft

as well as operations necessary to the turnaround of reusable vehicles; additionally the

spaceplane serves as a satellite bus to test new sensors and equipment. The first flight of

the X-37b orbital test vehicle in 2010 demonstrated an autonomous landing after a 224 day

orbital mission. [145, 48]

1.2.1.4 Rocket Engine Mass Growth

While much can be gained by looking at completed vehicles, additional insight can be gained

by looking at particular subsystems. The most complicated subsystem on a launch vehicle
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Table 5: Advanced Concept Mass Growth [130]
Vehicle Percentage Mass Growth

X-20 33 %
X-30 800 %
X-33 45 %
X-37 25 %

Table 6: Rocket Engine Historical Mass Growth [144]
Engine Percentage Mass Growth

F-1 59 %
J-2 69 %
SSME 14 %
RS-68 13 %

is the rocket engine. During large scale development programs, the engine development is

usually run as a separate development program to the stage on which it will be mounted.

Furthermore, engine development can be started before its stage is conceived, and engines

can be used on multiple stages.[148, 14]

White reported on the historical growth of Rocketdyne engines. [144] Within this sample

of engines, the J-2 and F-1 engines were initially developed independently of their stages

and suffered mass penalties due to requirements changes and vehicle integration issues.

Furthermore, each engine underwent weight reduction programs resulting in a 13% to 16%

reduction in weight. The final percentage increases in mass over proposal mass properties

can be seen in Table 6. [144, 148, 14]

1.2.1.5 Mechanisms of Mass Growth

The previous sections have demonstrated that mass growth is a ubiquitous problem in the

development of space vehicles. It is also useful to examine exactly why this growth occurs

in the context of a vehicle development program.

The AIAA Mass Properties Control Standard has nine standardized categories which

can be used to describe a change in the mass properties of a vehicle.[6] These nine categories

and their descriptions can be seen in Table 7. In addition to the AIAA standard, other

authors have made similar categorizations of mass growth; both Hawkins [53] and Mathews
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Table 7: AIAA Mass Change Codes and Definitions [6]
Category Description

1) Better Definition of Design Changes that occur as the design progresses be-
yond the proposal stage and the design criteria
and requirements become better defined. These
changes are generally early in the program (prior
to drawing release).

2) Out of Scope Changes Scope changes caused by the procuring authority
adding new or changing existing requirements.

3) Redesign Changes to the original component or subsystem
design due to repackaging, failure of a component
during testing, impact of other subsystem changes,
etc.

4) Maturing Component Design Updated mass analysis due to the drawing revi-
sions at or after original release. (Item #1 gener-
ally relates to mass analysis prior to drawing re-
lease.)

5) Error in Previous Estimate Changes due to errors in the mass calculations for
an original or later estimate.

6) Uncontrolled Vendor Changes If none of the other change codes apply, then this
category is a catchall for supplier mass changes
over which the contractor has very little control.

7) Mass Reduction Activity Changes due to official mass reduction efforts.

8) Measured vs. Calculated Changes due to actual measured mass of compo-
nents being different from the latest calculated val-
ues.

9) Cost Reduction or Schedule
Reduction, Added Mass

Mass increases that were incurred to save time
and/or money, e.g., substitution for expensive
exotic materials, redesign of elaborate machined
parts and cutouts to reduce machinery costs, etc.

[82] have ten and eight point categorizations of mass growth respectively. Additionally,

these large lists can be broken down into two generalized sources of growth: out-of-scope

and in-scope growth. [130, 82]

The first overarching category identified as a mechanism of mass growth is out-of-scope

changes; these are simply defined as a change in requirements by the procuring authority.[6]

These changes can demand a vehicle with more capability. Additional capability will require

a mass allocation for the instrument or payload, and the mass of the vehicle will also increase

as this capability will require additional power, fuel, and structure to accommodate this new

requirement.
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A more complicated category of growth mechanisms is in-scope growth or design uncer-

tainties. The class of growth describes seven of the nine AIAA-defined categories of mass

growth (Table 7 numbers 1,3,4,5,7,8, and 9).[6] Another sub-categorization of this category

was created by Williams who defined four sub categories: growth due to design specifics

(i.e. changes to geometry), growth due to immature technology, and growth due to un-

known problems (unknown unknowns). [147] Williams’s categorization is more general and

focused on explaining the nature of mass growth; therefore this categorization can be used

as a starting point to further explore the nature of mass growth due to design changes.

The first category of in-scope growth is due to changes in the design. Specifically,

Williams describes this category by posing the question, “How firm are the geometry, area,

thicknesses, etc.?” [147] Put another way, this category of growth occurs because not all

parts of the vehicle reach the same level of maturity at the same time. Subsystems which

may only be sketched out during the initial mass estimations change as designers fully define

these systems. Similarly, subsystems which have underwent preliminary design during early

mass estimations are subject to redesign to accommodate newly-defined subsystems.

Another aspect of design maturation concerns the knowledge of the design and the

induced environment. Initial mass estimations are made when the knowledge of the design

is at a minimum, and the vehicle’s design will have to change as more detailed analyses are

conducted. These more detailed analyses will define loading conditions, heating rates, total

heat soak, aerodynamic performance, etc. These analyses can result in additional mass due

to the need for beefier structures, additional TPS, or redesigned aerodynamic surfaces.

A third category of in-scope growth pertains to the planned inclusions of new technolo-

gies in a design. New technologies, defined as technologies which have not yet been deployed

in an operational vehicle, are included in a design to add capability or save on overall cost,

mass, or power. Because of the inclusion of new technologies, a portion of the development

effort will be spent on increasing the technology readiness level (TRL) and manufacturing

readiness level (MRL). [81, 33] As the new technologies increase in TRL and MRL, the

originally estimated benefits tend to fall short of the original, optimistic estimates. [130]

A realization of a technology which does not deliver the intended performance benefits will
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result in a net increase in mass.

Another aspect of including new technologies in a vehicle is the development cost to

bring up to a TRL of 9 and an MRL of 10. Studies have shown that vehicles which include

new technologies tend to encounter development difficulties which inflate the cost of a

development program. In order to control costs, some technologies may be omitted from a

vehicle design during the development process. [136, 137, 138] The omission of technologies

will lead to a mass increase as more mature options will not be as mass efficient; this act

of adding mass to account for cost and schedule increases is specifically called out in the

AIAA Mass Properties Control Standard (#9 in Table 7). [6]

A final category of growth related to the design of a vehicle involves growth due to

unknown problems. [147] While unknown unknowns are present in all development projects,

they are exacerbated in novel development programs. As problems arise, it is likely that a

mass allocation will be necessary to mitigate the issue.

1.2.2 Propulsion

While not as well documented as mass growth, uncertainty in propulsion has both first and

second order effects on the predicted performance of a launch vehicle. As seen in equation

4, the Isp of a propulsion system has a large influence in the effective ∆V produced by a

rocket. A deficiency in the predicted Isp will significantly impact the ability to deliver mass

to orbit or, in the case of satellites, decrease the lifespan of a satellite.

A prominent historical example of a development program overpredicting Isp is the space

transportation system (STS) program or space shuttle. The space shuttle has two main

propulsion systems– the space shuttle main engines (SSME) and the solid rocket boosters

(SRB). The vehicle configuration is that of a two stage to orbit (TSTO). The first stage

involves a parallel burn of both the SSMEs and two SRBs; after two minutes, the SRBs

are jettisoned and the orbiter and external tank continue to ascend under SSME power.

The next staging event occurs when the external tank is jettisoned and the SSMEs are shut

down. The second stage of the TSTO configuration involves the orbital maneuvering system

of the orbiter performing a circularizing burn.[61] Of these main propulsion systems, the
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SSME’s Isp was 2.5 s and the SRB’s Isp was 1.5 s short of of the original estimation [115]

[116]

Second order effects involve the thrust output of rocket engines and motors. A deficiency

in predicted thrust will result in lower thrust-to-weight ratio of the vehicle at launch. This

lower ratio will increase ∆V losses due to gravity because the vehicle will spend more time

during ascent fighting the effect of gravity during vertical launch and ascent.

1.2.3 The Use of Margin

As has been shown, vehicles will grow in mass throughout the development process. This

mass growth leads to non-trivial decreases in the performance of space systems due to the

physics of spaceflight. While it is known that a vehicle will increase in mass or otherwise

not meet conceptual level performance predictions, the degree of this under-performance

is very uncertain. In order to deal with this uncertainty, program managers add an extra

mass allotment to the overall dry mass of a space vehicle– this extra allotment is known as

the design margin. [5, 6, 32, 23, 125, 150, 131, 130, 89]

A design margin is defined as: “an unallocated portion of a quantifiable, allocable re-

quirement value that is used by design engineers and management to avoid and resolve

problems that arise in a system development.” [47] A similar term, often used interchange-

ably, is contingency. Contingency is defined:

Weight factor included to account for lack of detail or unknowns in the design.
It is a function of design maturity and will reduce to near zero when all design
details become either calculated or actual weights. Can also be considered as a
measure of the error of the weight estimate. [121]

The AIAA Recommended Practice for Mass Properties Control for Satellites, Missiles,

and Launch Vehicles defines a mass growth allowance as:

The Mass Growth Allowance is the predicted change to the Basic Mass Proper-
ties of an item based on an assessment of the design and the fabrication status
of the item, along with an estimate of the design changes that may occur. The
design changes may be implemented in order to satisfy the contracted design
requirements during the development process. The Mass Growth Allowance as-
sociated with these design changes compensates for the lack of design maturity.
Configuration changes driven by major contract or requirements changes are not
included in the mass growth allowance. [5]
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Figure 5: Margin and Weight Growth vs. Time During a Development Program [6]

Within the AIAA’s nomenclature, this definition is complimentary with the term “design

mass margin.” The AIAA Standard for Mass Properties Control for Space Systems defines

design mass margin as: [6]

The mass margin is meant to mitigate potential mass increases from omissions or
refinement of existing design requirements. Mass margin must cover the upper
limit of the sum of the predicted mass and the mass uncertainty. [6]

An example of a development program which follows the AIAA nomenclature can be

seen in the Mass vs. Time plot in Figure 5. The top horizontal line of this chart is the

mission limit weight (also known as not-to-exceed weight); this weight limit is usually defined

by the customer but can also represent derived requirements due to technical performance

measures. The next horizontal line is the allowable mass– this is the limit to which all

margins are calculated. This limit is defined early on in the requirements process and is

intended to remain constant throughout the development program. The design margin and

mass growth allowance are also called out on this plot; the relationship between the basic

mass, allowable mass, design margin, and mass growth allowance is expressed in Equation

14. [6, 121]
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MGA%+Margin% =
MGA+Margin

Basic Mass
×100% =

Allowable Mass−Basic Mass

Basic Mass
×100%

(14)

The terms design margin, contingency, and mass growth allowance all refer to the same

general concept of adding an additional mass allocation to a vehicle’s empty weight to

account for uncertainty. Additionally, terms such as “management reserve” represent addi-

tional mass allocations which are also added to the empty weight. [121] For the remainder of

this document the term “design margin” will be used to refer to the total margin between

the current best estimate (CBE) of mass and the allowable mass. The design margin is

defined by Equation 15. [131] This design margin accounts for both in-scope growth due to

design maturity and out-of-scope growth due to changes in the design or requirements.

%margin =
allowable mass− CBE

CBE
× 100% (15)

While the design margin is a system-level metric, individual parts and subsystems have

portions of the design margin allocated to them.[131] This withholding of margin on a

subsystem level allows the design to progress as individual teams can work with specific

mass allocations when sizing structures, power systems, or hydraulic systems.

A key aspect of design margin is that it should be depleted by the end of the program.

As seen in Figure 5, the design margin is depleted to within a few percentage points as the

vehicle enters production. However, margin depletion to within 1% is an idealized case.

Thompson has shown that 30% of historical programs exceed the AIAA recommended

design margin. [130] Exceeding the design margin may require depleting the customer

reserve– this leads to not being able to fulfill the original requirements of the program.

Another alternative to depleting customer reserve is to enact a system-wide mass control

(and possible mass reduction) program; these programs are often expensive and significantly

delay the development of a new vehicle.[124]

While a mass overrun can lead to an expensive weight control program or possibly even

act as a showstopper, the solution to mass overruns is not to allocate a liberal design margin.

23



Figure 6: System Commitment, Ease of Change, System-Specific Knowledge, and Cost
Incurred vs. Time During a Development Program [17]

As outlined in Section 1.1.2.1, the additional empty weight percentage accounted for in the

margin will lead to additional propellant and structural weight. This can quickly lead to a

very large system. [77, 36] Systems with a large design margin can be oversized compared

to the customer’s original mission requirements. These oversized systems will likely be more

expensive to a customer over a vehicle’s lifecycle than a weight control/reduction program.

[124]

Because a development program has consequences for both underestimating and over-

estimating design margin, the decision as to how much design margin to carry during de-

velopment is one of the most important decisions that program management can make. At

the same time, this decision is made early on in the requirements development phase when,

as can be seen in Figure 6, knowledge of the vehicle’s future configuration and performance

is at a minimum.[17]

This decision can be categorized as risky. Risk in this case can be defined as “the im-

plications of the existence of significant uncertainty about the level of project performance
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achievable.” [25] In this definition, the term ’implications’ refers to the potential conse-

quences of the risk– in this case an over or under-estimation of design margin. The second

part of this definition refers to the uncertainty in the total level of performance attainable.

1.2.4 Observations

This discussion of the nature of mass growth and design margin motivates an observation

about the nature of mass growth:

Observation 1: The decision to determine how much design margin is carried
is a critical design decision which can significantly contribute to the success or
failure of a mass-sensitive vehicle.

The first major part of this observation is that the amount of design margin carried can

significantly contribute to the success or failure of a vehicle. Successful vehicles such as the

Saturn V family were able to achieve the necessary performance through a combination of

ample margin and weight-reduction programs. The performance of this system eventually

allowed much more capable missions to be flown towards the end of the Apollo program;

these missions featured longer surface durations and a lunar rover.

A lack of design margin has contributed to the cancellation of programs. Most recently

this can be seen with the Constellation program– the Ares I/Orion stack did not have the

design margin necessary to facilitate the original development plans. This led to additional

cycles of redesign adding additional cost and time delays to the program. [11] Similarly, the

Ares V underwent a significant redesign during its conceptual phase to account for mass

growth. This redesign added an additional half-segment to the solid rocket boosters and

added a 6th RS-68 engine. [89] Eventually, the Constellation program and the corresponding

Ares rocket family was canceled due to the growing costs of the architecture.

The second part of this observation is that the amount of margin to carry is a critical

design decision. The criticality of this decision is partially a result of the fact that the

amount of margin carried can lead to the success or failure of programs. Furthermore,

the design margin assumptions will directly contribute to the sizing of the vehicle because

the design margin represents additional mass which must be taken into account. Finally,

the decision as to how much design margin is carried is made during the earliest phases
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of a development program. Figure 5 shows that a margin should be in place at authority

to proceed (ATP); an allocation of margin at ATP is also called out in several standards.

[6, 32, 150] Decisions made at this early stage of design will be subject to high amounts of

uncertainty.

While this is a critical design decision in traditional satellite or launch vehicle devel-

opment programs, the decision becomes even more important when working with novel

concepts. With novel concepts, the uncertainty surrounding the decision is higher as there

is no experience base. Furthermore, novel concepts in space transportation vehicles tend

to focus on re-usability (Shuttle, X-20, X-30, X-33, X-37), and these vehicles are more sen-

sitive to additional mass than expendable launch vehicles or single-use satellites. As was

shown in Section 1.2.1.3, many novel development programs were canceled in part due to

mass growth. The failures of these novel development programs leaves the state-of-the-art

of launch systems to expendable launch vehicles that can trace their lineage to the original

development programs of the 1950s and 1960s.

The Space Transportation System is an example of a novel concept development program

which produced a flight vehicle. However, like many other novel development concepts, the

lack of margin on the Shuttle contributed to problems with the vehicle. At authority to pro-

ceed, the Orbiter had just over 10,000 lbs of mass margin; this margin was depleted in 1975

while the system mass continued to grow. [54] This led to a degradation of performance–

the original payload goal of 60,000 lbs to a 100 nm circular orbit at 28.5◦ inclination was

reduced to 55,250 lbm. [61] This eventually led to the complete redesign of the external

tank in order to deliver ISS modules to a 51.6◦ orbital inclination. [103]

This history of novel concept development motivates observation 2-A:

2-A. A lack of design margin in previous novel concept development programs
has led directly to increased costs and can lead to the cancellation of a program.

The contrapositive of this observation provides further insight into the nature of mass

growth and mass margin: in order to avoid cancellation or increased costs, a novel concept

development program should have ample design margin. In this phrasing, the word “ample”

is used to denote the idea that the amount of design margin should be in proportion to the
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mass growth that occurs– too much design margin can lead to an unaffordable system.

However, as a development program cannot know the eventual mass growth a priori, the

mass margin should match a forecast of the anticipated mass growth. These ideas lead to

observation 2-B:

2-B. In order for a novel program to be successful, the amount of mass growth
must be successfully forecast so as to avoid a gross overallocation or underallo-
cation of design margin.

These observations of the necessity of a successful forecast motivate the research objec-

tive of this thesis.

Research Objective: to create a methodology for estimating the overall system
technical performance uncertainty through the forecasting of potential perfor-
mance shortfalls for a novel concept such as a reusable booster system

In order to further examine these forecasts, chapter 2 will discuss the nature of un-

certainty and the sources of uncertainty that directly affect a novel development program.

Chapter 3 will document the current ways that margin is estimated across different indus-

tries and disciplines. Chapter 4 will outline a proposed methodology for forecasting mass

growth and determining design margin, and Chapter 5 will outline the example problem to

be used to examine this methodology.
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CHAPTER II

UNCERTAINTIES IN SPACE AND LAUNCH VEHICLES

Chapter 1 established that while space and launch vehicles will experience mass growth

and performance shortfalls, the degree of this mass growth and performance shortfall is

subject to uncertainty. Mass margins as established in Chapter 1 are intended to mitigate

the technical and programmatic risk manifested by this uncertainty. Before evaluating

methods of estimating design margin, the nature of the underlying uncertainty must be

explored.

The word uncertainty has evolved to be a common term for a large number of concepts.

One common use of the term uncertainty is when referring to games of chance and similar

situations which involve calculable odds. Additionally, the concept of uncertainty can apply

to situations of incomplete knowledge. These two distinct concepts, both of which are forms

of uncertainty, are known as aleatory and epistemic uncertainty respectively. [132]

Uncertainty due to the inherent randomness of a physical system or the environment is

known as aleatory uncertainty. [50] This type of uncertainty is traditionally represented as

probability distributions applied to uncertain variables. Aleatory uncertainty is also known

as randomness, stochastic uncertainty, and irreducible uncertainty. [152, 30] Examples of

this type of uncertainty include weather patterns, games of chance, and manufacturing

variability.

Uncertainty due to one’s lack-of-knowledge of the state of a system is known as epistemic

uncertainty. This includes uncertainty due to measurement devices, lack of data, and anal-

ysis model assumptions. [108, 152, 99] This term is derived from Greek word for knowledge,

episteme. [132] This type of uncertainty is also known as reducible uncertainty. As knowl-

edge of the underlying system increases, the epistemic uncertainty will be reduced. The

distinction is made from aleatory or irreducible uncertainty because epistemic uncertainty

is theoretically reducible. [30]
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This chapter examines these uncertainties from two perspectives. The first section

approaches uncertainty from a development program perspective. Next, uncertainties in

other engineering and scientific disciplines are examined. Ideas from these disciplines are

then synthesized into a taxonomy of uncertainty specific to the development of space and

launch vehicles.

2.1 Endogenous and Exogenous Sources of Uncertainty

The initial approach to the uncertainties affecting the development of a space or launch

vehicle is from a program office-centric view. Previous work into categorizing cost and weight

growth has made a distinction between factors within a project’s control and factors outside

of the project’s control. [44, 85, 130, 151] A similar distinction will be made with regard

to uncertainties affecting development programs. Endogenous sources of uncertainties are

uncertainties which can be traced to sources within a program office’s control while external

sources of uncertainty can be traced to sources outside of a project’s control.

2.1.1 Endogenous Sources of Uncertainty

Endogenous sources of uncertainty can be traced to within the development program of-

fice. Three factors traditionally account for endogenous uncertainties– assumptions about

the performance of new technologies, optimistic assumptions during early design, and the

omission of subsystems during early design. [130]

In order to meet more demanding performance objectives, programs often incorporate

new technologies into space and launch vehicles. Programs are often initiated while tech-

nologies are still in development leading to assumptions of technology impacts being made

during early design. These assumptions are often optimistic leading to eventual perfor-

mance shortfalls when the optimistic predictions fail to materialize. Examples of programs

that experienced significant technological uncertainty include the X-33 and the National

Aerospace Plane. [130]

A larger endogenous uncertainty can be attributed to the immaturity of the design

during conceptual design. During early design, initial estimations and assumptions have to

be made in order to begin the iterative cycles of design. Furthermore, as the vehicle has
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not been fully defined yet, analyses during early design are often limited to lower-fidelity

codes. The history of vehicle development has shown that these initial estimations and

assumptions are often optimistic. As the design progresses, the initial estimations and

assumptions are replaced with more detailed designs. Additionally, heritage components or

subsystems slated for use with a new design can also be found to be inadequate requiring

new subsystem designs. Additionally, while less significant than other design uncertainties,

some subsystems might be omitted from initial designs. [130]

In addition to the gradual growth due to the increased definition of design, development

programs will encounter technical problems which may require a component or subsystem

redesign. Any potential need for a component or subsystem redesign introduces additional

uncertainty into a subsystem or vehicle. Examples of vehicle subsystems in recent history

which required redesigns due to technical problems include the Boeing 787 composite wing-

box and the Ares I Upper Stage which required redesign due to thrust oscillation. [83, 11]

2.1.2 Exogenous Sources of Uncertainty

Sources of uncertainty whose origins can be traced to outside of a program development

office can be classified as exogenous uncertainties. Primarily this refers to uncertainties in

requirements, but this can also refer to externally mandated changes due to interfacing with

other aspects of an integrated architecture. [130]

The largest source of exogenous uncertainties appears in the form of requirements un-

certainty. While a program office can work with the customer to influence requirements,

ultimately, the responsibility for requirements changes lies outside of the program office.

[130] Requirements changes can come in two flavors: through changes in scope as well as

changes in constraints. Changes in scope refer to increasing demands on the system un-

der design beyond the original proposal. Constraints refer to requirements which limit the

design space; an example of a design change due to a constraint is a change in the Space

Shuttle External Tank’s foam insulation formula which was required to no longer contain

freon. [101]

Another source of exogenous uncertainties stems from interactions within an architecture
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or system. In the case of a vehicle’s development, changes may be mandated so that

the vehicle can work within a larger architecture; changes may also be mandated so that

one vehicle can overcome shortcomings of other parts of an architecture in development.

Examples of this type of uncertainty can be found in the Apollo lunar architecture. [130] If

one is looking at integrating a subsystem with a larger vehicle, externally mandated changes

can apply to subsystems to fix integration issues. Examples of this can be found in Section

1.2.1.4 where rocket engine masses had to grow to account for stage integration issues.

2.1.3 The Effects of Both Endogenous and Exogenous Uncertainties

Both endogenous and exogenous sources of uncertainty can have significant impacts on

a development program. Documenting these effects is problematic as most past vehicle

programs only document bulk mass numbers– differentiating between internally versus ex-

ternally motivated growth is impossible. [130]

One program which tracked the sources of weight growth was Skylab, the United States’

first space station. Figure 7 shows the mass growth of the program due to both the de-

sign maturation (endogenous sources) as well as mission requirements (exogenous sources).

From this figure, the spacecraft suffered approximately 17% mass growth due to mission re-

quirements and 23% mass growth due to design maturation for a total of 40% mass growth.

[54]

While it is impossible to specify the relative magnitude of endogenous versus exogenous

uncertainties a priori, the Skylab case study shows that it is possible for the effects of

both sources to be on the same order of magnitude. Neither source can be neglected in an

analysis of uncertainties and the resulting design margin estimate.

2.2 Treatment of Uncertainties in Literature

While Section 2.1 provided a treatment of uncertainties by looking at vehicle development

programs, many other scientific and engineering disciplines also have treatments of uncer-

tainty. In this section, taxonomies of uncertainties from other disciplines will be examined.
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Figure 7: Dry Mass Growth of Skylab [54]
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Figure 8: Taxonomy of Uncertainties in Ecology [108]

2.2.1 Ecology and Conservation Biology

In the field of Ecology and Conservation Biology, Regan et al. differentiate uncertainty into

epistemic and linguistic uncertainties. Epistemic uncertainties in this classification include

uncertainties due to a lack of knowledge as well as aleatory uncertainties. Linguistic uncer-

tainties arise due to the use of natural language. The complete taxonomy of uncertainty by

Regan et al. can be seen in Figure 8. [108]

2.2.1.1 Epistemic Uncertainties

Within this taxonomy, epistemic uncertainties are subdivided into measurement error, sys-

tematic error, natural variation, inherent randomness, model uncertainty, and subjective

judgment.[108]

Measurement error refers to uncertainty due to the underlying equipment and observa-

tional techniques used for making observations. Measurements of an underlying value will

vary around a mean; statistical treatments utilizing multiple measurements and confidence

intervals have been developed to handle this type of uncertainty. An example of measure-

ment uncertainty in ecology is estimating the population size of a particular species.[108]

Systematic error is formally defined as “the difference between the true value of the

quantity of interest and the value to which the mean of the measurements converges as
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sample sizes increase.” This source of error can stem from both the intentional judgment of

a scientist or the calibration of a piece of equipment. The proscribed solution to systematic

bias is to carefully examine an experimental procedure in an attempt to find biases. [108]

Within this taxonomy, natural variation and inherent randomness are types of epistemic

uncertainty. While both of these uncertainties could be classified as Aleatory uncertainty,

they are classified as epistemic by Regan et al. Natural variation refers to the idea that a

parameter of interest is subject to change over time and space; for example the population

of a species will naturally change with time. Inherent randomness refers to the idea that

a system is not deterministic. Inherent randomness is only included within this taxonomy

for completeness as biological systems are not expected to be truly random– randomness

within biology stems from the idea of natural variation. [108]

Model uncertainty results from the abstractions used to represent biological and physical

systems. First, model uncertainty arises due to the compromise between model fidelity and

model complexity– only the parameters which are seen to be relevant to the problem at

hand are included in the model. This selection of parameters could introduce uncertainty

due to possible interactions and higher order terms. Another source of model uncertainty

comes from using a mathematical relationship to model observed phenomena. For example,

the rate of change of a population is modeled with a mathematical derivative, but the

underlying phenomena of birth, death, and migration are not mathematical in nature. In

practice, model uncertainty is impossible to eliminate and difficult to quantify. [108]

The final source of epistemic uncertainty in this taxonomy is due to subjective judgment.

This occurs due to the need to make statements about a subject for which there exists little

empirical evidence. This type of uncertainty is traditionally addressed by having an expert

express a degree of belief. This degree of belief makes use of subjective probabilities as a

way to quantify the uncertainty surrounding a parameter of interest. [108]

2.2.1.2 Linguistic Uncertainties

Within this taxonomy, linguistic uncertainties are subdivided into vagueness, context de-

pendence, ambiguity, underspecificity, and the indeterminacy of theoretical terms.[108]
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The most important type of linguistic uncertainty is vagueness. Vagueness occurs be-

cause the words used in natural language allow borderline cases. This type of uncertainty

leads to several problems and can lead to problems in the management task of assigning

resources. While attempts have been made to eliminate vagueness by adding new, techni-

cal words with specific meanings, vagueness still occurs leading to the conclusion that it is

impossible to eliminate. While impossible to eliminate, the proscribed methods of handling

this type of uncertainty involve reducing the terms to multi-dimensional measures which

can be used with numerical analysis. [108]

A second type of linguistic uncertainty is context dependence; this arises when a re-

searcher or author fails to specify the context in relation to the terms being used. The

obvious solution to this type of uncertainty it to explicit specify the context within which

terms are intended. [108]

Ambiguity occurs due to the fact that a word can have several meanings. Another nec-

essary condition for ambiguity is that, within the context of the word’s usage, the intended

meaning is not clear. Ambiguity is occasionally confused with vagueness, but this taxonomy

holds that vagueness only applies to borderline cases. The proscribed solution to ambiguity

is to explicitly specify the intended meaning. [108]

Another source of linguistic uncertainty is due to underspecificity or unwanted generality.

This occurs when statements fail to provided the desired level of specificity. Again, the term

“vague” has been used to describe things that are underspecific, but this taxonomy seeks

to differentiate vagueness as due to borderline cases. [108]

The final source of linguistic uncertainty is due to the indeterminacy of theoretical terms.

One source of this uncertainty is due to the potential future definitions of current technical

terms– potential future ambiguities. Another source of this uncertainty comes from the fact

that definitions of certain terms are not agreed upon by the relevant communities. This

situation typically occurs in emerging fields which have not had the necessary time to settle

definitions of theoretical terms. [108]
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Figure 9: Taxonomy of Uncertainties in Civil Engineering [7]

2.2.2 Civil Engineering

In their chapter, “Uncertainty Modeling in Civil Engineering with Structural and Reliability

Applications,” Ayyub and Chao specify a taxonomy of uncertainty for civil engineering.

Their taxonomy focuses on the idea that a model of a system drives uncertainty. As can

be seen in Figure 9, this taxonomy is broken down into three primary classifications of

uncertainty: uncertainties due to model abstractions, uncertainties independent of a model’s

abstraction, and unknown unknowns. [7]

Abstracted uncertainties stem from the fact that engineers conduct analyses on a model

of a real system– an abstraction of reality. This category of uncertainty can be further

subdivided into non-cognitive and cognitive sources of abstracted uncertainty. Cognitive,

abstracted uncertainties “arise from mind-based abstractions of reality;” this type of un-

certainty can be subdivided into human errors, vaguely defined parameters and relations,

deviation between a model and a real system, and conflict and confusion in information.

Because these uncertainties pertain to the act of creating a model, probability and statis-

tics cannot properly model the effects of these uncertainties. In contrast, non-cognitive,

abstracted uncertainties are primarily modeled by probability distributions. This type of

uncertainty can be subdivided into physical randomness, statistical uncertainty, and model

uncertainty. [7]
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Figure 10: Taxonomy of Uncertainties in Structural Engineering [84] adapted from [132]

Non-Abstracted uncertainties are uncertainties due to the assumptions made when de-

ciding which aspects of a system do not need to be abstracted into a model. Traditionally

the distinction between abstracted and non-abstracted uncertainties is due to the choices

made by analysts when determining the fidelity level required of a model. These uncertain-

ties include physical randomness, vaguely defined parameters and relations, human errors,

and conflict and confusion in information. These sources of uncertainty are much more

difficult than abstracted uncertainties to quantify because they arise from the ability of a

model to mimic a real system. [7]

The final type of uncertainty identified in this taxonomy is due to the unknown aspects

of a system and refers to aspects of reality not accounted for by models. These unknowns

can manifest themselves through three mechanisms: physical randomness, human errors,

or a lack of knowledge. While human errors appear in other portions of this taxonomy,

within this branch, human errors refer to failure modes or aspects of a model intentionally

left out of a system. Similarly, physical randomness in this branch refers to randomness

not accounted for by the model. Finally, a lack of knowledge is fundamental to this branch

of uncertainty as incomplete knowledge can lead to substantial unknowns in a development

project. [7]

2.2.3 Structural Engineering

In his book, Structural Reliability Analysis and Prediction, Robert Melchers develops a

taxonomy of uncertainty for the field of structural engineering. This taxonomy can be seen

in Figure 10. [84]

The first main type of uncertainty in this taxonomy is phenomenological uncertainty.

This form of uncertainty refers to ’unimaginable’ phenomenon which can cause failures.
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Melchers defines phenomenological uncertainty as arising “whenever the form of construc-

tion or the design technique generates uncertainty about any aspect of the possible be-

haviour of the structure under construction, service and extreme conditions.” This form of

uncertainty is of particular importance when projects seek to advance the state of the art.

[84]

The second form of uncertainty within this taxonomy is decision uncertainty. The deci-

sion in question within this taxonomy is that of whether a limit state violation has occurred.

Typically these decisions involve questions of crack widths and deflections. Furthermore,

this type of uncertainty can be expressed as a relative loss of structural usefulness. [84]

Modeling uncertainty is the uncertainty associated with using a simplified relationship (a

model) to represent the ’real’ phenomenon of interest. Typically this uncertainty has to do

with a lack of knowledge and will be reduced through research or the increased availability

of data. [84]

The fourth type of uncertainty within this taxonomy is that of prediction uncertainty.

This uncertainty refers to the accuracy of a prediction of a future state given the present

state of information. As development progresses, new information will allow better esti-

mations and predictions– new information becomes known up through construction and

operation which allow for the best possible reliability predictions. [84]

Physical uncertainty within this taxonomy is concerned with the inherent random na-

ture of certain variables. While some physical uncertainty can be reduced through greater

knowledge, most sources of physical uncertainty cannot be reduced. Typically this uncer-

tainty is not known a priori and must be empirically assessed or estimated subjectively.

[84]

Statistical uncertainty stems from using sample statistical estimators to represent a

random variable with a probability density function. The observations used to construct

these estimators usually contain some degree of bias, and this bias leads to uncertainty. This

uncertainty can be treated in a reliability analysis by assigning ranges to the parameters

which describe the probability density function. [84]

The final form of uncertainty considered within this taxonomy is that of uncertainties due
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to human factors. Melchers subdivides this category into uncertainties due to human error

and uncertainties due to human intervention. Human error is specifically included in this

taxonomy due to the historical cases of human errors leading to structural failure. Human

errors can further be subdivided into errors which occur during accepted engineering and

maintenance practices and those which occur due to ignorance or due to a lack of adherence

to established procedures. Human intervention refers to the actions of humans during the

design, documentation, construction, and usage of structures. These interventions can be

institutional through standardized inspections or informal resulting from an observation

that ’something is wrong.’ [84]

2.2.4 Systems Engineering

Within the field of Systems Engineering, uncertainty is traditionally looked upon in terms

of risk. The definition of risk in the NASA Systems Engineering Handbook has two parts:

the probability of an undesired event and the consequences of the undesired event. The first

part of this definition deals with uncertainty therefore the systems engineering taxonomy

of risk is also a taxonomy of uncertainty. [92, 132]

Uncertainties within systems engineering are broken down into technical, schedule, cost,

and programmatic uncertainties. Technical is uncertainty associated with the ability of

the system to meet technical requirements and meet stakeholder expectations; these un-

certainties stem from the evolution of the design of a program. Schedule uncertainties are

associated with the adequacy of the time allocated for the completion of a task or tasks.

Cost uncertainties refer to both the funding allocated to program development as well as

the ability of the system under development to meet cost objectives. Finally, programmatic

uncertainties are uncertainties which originate from outside of the development office which

are realized as impacts on technical performance, cost, and schedule. [92]

2.2.5 Modeling and Simulation

Oberkampf et al. seek to differentiate between traditional uncertainties and error in their

taxonomy of uncertainty. This taxonomy, seen in Figure 11, characterizes uncertainties as

either being aleatory, epistemic, or being due to error in the modeling and simulation. [99]
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The classifications of epistemic and aleatory uncertainty in this taxonomy are consistent

with the definitions provided in the introduction to this chapter. Aleatory uncertainty refers

to the inherent variation of the subject under consideration. Epistemic uncertainty is defined

as “a potential inaccuracy in any phase or activity of the modeling process that is due to a

lack of knowledge.” [99]

The key distinction in this taxonomy is the use of the term ’error.’ Error is defined

“as a recognizable inaccuracy in any phase or activity of modeling and simulation that is

not due to lack of knowledge.” Errors are further broken down into acknowledged and

unacknowledged errors. Acknowledged errors are errors that an engineer or analyst has

an idea of the relative impact of errors; for example, a lack of precision in a floating point

number is an acknowledged error. Conversely, unacknowledged errors are inaccuracies which

are not recognized by an analyst or engineer but which are recognizable. [99]

2.2.6 Space Architectures and Systems

As part of his PhD thesis, Myles Walton introduced a taxonomy of uncertainty as applied

to space architectures and systems. This taxonomy acts as a lens to focus on the stages of a

space system’s lifecycle. Uncertainties are broken down into development, operational, and

model uncertainties. This breakdown was chosen to highlight the operational uncertainties

inherent in a space system. The entirety of the taxonomy can be seen in Table 8. [142]

2.2.7 Design of Complex Systems

As part of his PhD thesis, Daniel Thunnissen created a taxonomy of uncertainties as ap-

plied to the design of complex systems. As his thesis examines uncertainties surrounding

system development and later establishes a methodology for estimating a design margin,
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Table 8: Taxonomy of Uncertainties for Space Architectures and Systems [142]
Development Uncertainty Operational Uncertainty

Political Uncertainty– uncertainty of de-
velopment funding instability

Political Uncertainty– uncertainty of op-
erational funding instability

Requirements Uncertainty– uncertainty of
requirements stability

Lifetime Uncertainty– uncertainty of per-
forming to requirements in a given lifetime

Development Cost Uncertainty– uncer-
tainty of developing within a given budget

Obsolescence Uncertainty– uncertainty of
performing to evolving expectation in a
given lifetime

Development Schedule Uncertainty– un-
certainty of developing within a given
schedule profile

Integration Uncertainty– uncertainty of
operating within other necessary systems

Development Technology Uncertainty–
uncertainty of technology to provide per-
formance benefits

Operations Cost Uncertainty– uncertainty
of meeting operations cost targets

Market Uncertainty– uncertainty in meet-
ing demands of an unknown market

Model Uncertainty

his taxonomy of uncertainty can provide insight into the nature of uncertainties in space

and launch vehicles. This taxonomy, pictured in Figure 12, features four primary types of

uncertainty: ambiguity, epistemic uncertainty, aleatory uncertainty, and interactions. [132]

The first main type of uncertainty in this taxonomy is ambiguity where uncertainty

results from the use of imprecise terms. Ambiguity is also known as imprecision, design

imprecision, linguistic imprecision, and vagueness. This type of uncertainty can be reduced

through linguistic conventions and careful definitions, but it will always be present due to

the nature of human discourse. [132] This classification is similar to linguistic uncertainty

which is more fully developed by Regan et al.; a summary of Regan et al. can be found in

Section 2.2.1.2.

Another fundamental uncertainty is aleatory uncertainty. The definition of aleatory

uncertainty within this taxonomy is consistent with the definition presented in the intro-

duction of this chapter. Thunnissen defines aleatory uncertainty as “the inherent variation

associated with a physical system or environment.” [132]

A third primary type of uncertainty within this taxonomy is uncertainty due to interac-

tions. This uncertainty arises due to potential unanticipated interactions of events, systems,

and/or disciplines. These interactions are, in theory, foreseeable, but the complex nature
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Figure 12: Taxonomy of Uncertainties in the Design of Complex Systems [132]

of the problem makes these uncertainties difficult to predict. [132]

2.2.7.1 Epistemic Uncertainties

The largest set of uncertainties in this taxonomy falls under epistemic uncertainty. Thun-

nissen’s definition of epistemic uncertainty is similar to the definition from earlier in the

chapter– he defines epistemic uncertainty as “any lack of knowledge or information in any

phase or activity of the modeling process.” He further breaks epistemic uncertainty down

into model, phenomenological, and behavioral uncertainty. [132]

Model uncertainty is defined as “the accuracy of a mathematical model to describe an

actual physical system of interest.” This type of uncertainty falls under the category of

epistemic uncertainty because models are simplifications of reality used to represent actual

phenomena. Model uncertainty can be further broken up into approximation, numerical,

and programming errors. Approximation errors refer to the use of lower-fidelity tools to

represent reality; this uncertainty can be reduced by using higher fidelity tools. Numerical

errors occur because a computer system cannot represent real numbers, only a floating point

approximation. Programming errors are blunders in a piece of code. [132]

The second category of epistemic uncertainty is phenomenological uncertainty. This

category covers uncertainties which can be classified as “unknown unknowns.” These un-

knowns traditionally refer to information that cannot be known at the time of making
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decisions. Furthermore, these uncertainties are particularly important when considering

the development of novel concepts. [132]

The third subcategory of epistemic uncertainty is behavioral uncertainty. This category

encompasses uncertainties which result from the actions or organizations or individuals.

This category if further subdivided into design uncertainty, requirement uncertainty, vo-

litional uncertainty, and human errors. Design uncertainty occurs because designers have

a design decision which has not yet been decided. Requirements uncertainty occurs when

stakeholders independent of the program office change requirements. Volitional uncertainty

is uncertainty about what individuals or program offices at any level of a contractual hi-

erarchy will decide in the future; within this taxonomy volitional uncertainty is separated

from design uncertainty as it refers to the decisions that entities make when performing

non-design tasks such as estimating performance. Finally, human errors are blunders by

the program’s staff. [132]

2.3 Taxonomy of Uncertainty

Section 2.2 explored taxonomies of uncertainties in scientific and engineering fields. In

each of these fields, the specific taxonomy of uncertainty acted as a lens to focus on the

uncertainties most pertinent to the respective field. In this case, a taxonomy that focuses

on the development of space and launch vehicles is needed. This taxonomy should capture

the relevant sources of uncertainty which affect mass growth and performance.

The complete taxonomy can be seen in Figure 13. The first distinction of uncertainties is

between aleatory and epistemic uncertainty. Aleatory uncertainty (also known as irreducible

uncertainty) is defined as the inherent randomness of a physical system or environment. [50]

This uncertainty will only manifest itself during manufacturing or operation. For example,

the specific dimensions of a manufactured part or the day-of-launch wind profile is subject

to uncertainty. Because these uncertainties only manifest themselves during the later stages

of a system’s lifecycle, aleatory uncertainties contribute very little to the total uncertainty

encountered during a development program.

Epistemic, or reducible, uncertainty is due to a lack of knowledge. [108, 152, 99] As can
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Figure 13: Taxonomy of Uncertainties in the Development of Space and Launch Vehicles

be seen by Thunnissen’s taxonomy in Figure 12, types of epistemic uncertainties dominate

the uncertainty of complex systems. [132] Similarly, epistemic uncertainties are dominant for

space and launch vehicles. Examples of epistemic uncertainties can include the assumptions

used in the models used to initially size a vehicle, assumptions about new technologies used

in a vehicle, or the requirements that will ultimately dictate the size of the vehicle.

As epistemic uncertainty dominates the uncertainty of space and launch vehicles, the key

aspect of this taxonomy is how it differentiates between different epistemic uncertainties.

This taxonomy focuses on how uncertainty affects a program from the point of view of a pro-

gram office because the program office is responsible for conducting risk management and

mitigation programs as well as being ultimately responsible for determining the amount of

design margin carried in a design. Risk management programs have an “ownership” phase

in order to distinguish which risks and associated responses are managed by the program

office and which are managed by other organizations. [25] Based on this need to distinguish

ownership, epistemic uncertainties can be subdivided into endogenous and exogenous un-

certainties. Endogenous uncertainties are uncertainties whose origin can be traced to within

the authority of the program office; exogenous uncertainties are uncertainties whose origin

can be traced to outside of the program office.
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This distinction can be used on all levels of a program’s contractor tree. Subcontractors

trying to identify epistemic uncertainties can use this taxonomy as a guide to distinguish

between factors that they are responsible for and factors under the prime contractor’s control

which will impact the subcontractor. Similarly, a prime contractor can distinguish between

uncertainties under its control and factors which the customer or government is responsible

for.

2.3.1 Endogenous Uncertainties

Endogenous uncertainties arise from within the authority of a program office. As these are

epistemic uncertainties, the program office can invest resources in reducing these uncertain-

ties as part of a risk mitigation program or as a natural occurrence during the progression

of the design. Endogenous uncertainties can be further divided into phenomenological un-

certainties, human errors, and design uncertainties.

2.3.1.1 Phenomenological Uncertainty

A key type of uncertainty when dealing with novel concepts is phenomenological uncer-

tainty. [132, 109] Within this taxonomy, phenomenological uncertainty is defined as un-

certainty due to an acute lack of knowledge of phenomena, physical or otherwise; this lack

of knowledge is characterized by the inability to recognize potential risks or opportunities.

Specific phenomenological uncertainties are also referred to as “unknown unknowns.”

Phenomenological uncertainty is central to the development of novel concepts featuring

fundamentally new designs and concepts of operation because a goal of these programs is

to reduce uncertainty for future development programs. These development programs will

have to make design decisions under uncertainty because relevant knowledge of the system

cannot be known, even in principle, at the time of making decisions. [132]

History has numerous examples of phenomenological uncertainties in novel concepts.

The first U.S. satellite, Explorer I, began to nutate away from its axis of rotation due to

unimagined physical phenomena.
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2.3.1.2 Human Errors

Another source of uncertainty in the development of space and launch vehicles is human

error. Human errors are defined as blunders occurred in the design, manufacture, test, or

operation of a system. Errors can lead to corrective redesigns, manufacturing rework, or

the loss or partial loss of parts during operation. This uncertainty can be reduced by active

programs to catch errors quickly.

2.3.1.3 Design Uncertainties

A large subcategory of endogenous uncertainty is made up of design uncertainties. Design

uncertainties can be traced to a lack of knowledge in the design of the system in question.

This lack of knowledge has two forms: uncertainty due to assumptions made during early

design activities and uncertainty due to yet-to-be-determined design decisions. Design un-

certainties can further be decomposed into model uncertainties, volitional uncertainties, and

technological uncertainties.

The first form of design uncertainty is model uncertainty. Traditionally, this term is

used to refer to epistemic uncertainties resulting from the fidelity level of the analysis tools

used to conduct analyses. [84, 108, 132] Within this taxonomy, model uncertainty not only

refers to the fidelity level of analysis tools, but also the fidelity level of the engineers’ and

designers’ mental model of the system under development. This mental model contains

numerous assumptions about the nature of the vehicle manifest themselves as inputs of

analysis tools. Because the fidelity of analysis tools is directly related to the fidelity of the

inputs (the garbage in, garbage out phenomena), uncertainties due to the overall fidelity

level of the design is categorized as model uncertainty.

Another form of design uncertainty related to assumptions made during early design is

technological uncertainty: uncertainty stemming from the incorporation of new technologies

in a system. These uncertainties can take different forms throughout the development cycle

of a concept. The most common form of this uncertainty is through unrealized performance

gains or cost reductions when optimistic projections fall short. Another form of uncertainty
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is where new technologies fail to work and subsystems must be replaced with more con-

ventional alternatives as was the case with the composite LH2 tank on the X-33. Finally,

new technologies may work in terms of technical performance while requiring additional

resources to maintain during operations e.g. the Orbiter’s thermal protection system.

The third form of design uncertainty within this taxonomy is volitional uncertainty:

uncertainty due to the decisions of actors within the design process of the system. Within

this taxonomy, this primarily refers to future design decisions which can manifest itself in

two ways. The first is through future design decisions which will add detail to a low-fidelity

or low-resolution design; while these decisions usually add detail which results in a higher-

fidelity vehicle within the original design assumptions, occasionally these decisions add new

subsystems or subsystems which were omitted during earlier phases of design. The second

form is through decisions which fundamentally change the design of the system in question.

These changes can be in response to decreasing technical performance or in response to the

results of higher-fidelity analyses. A historical example of fundamental changes over the

development of a system can be seen with the Orbiter which experienced changes in its

wing planform, overall length, and provisions for air breathing engines. [61]

2.3.2 Exogenous Uncertainties

Exogenous uncertainties are uncertainties whose origin can be traced to outside of the

influence of the development program office. While these uncertainties will be reduced

throughout the course of program execution, unlike endogenous uncertainties, the program

office cannot expressly conduct risk reduction programs to explore this uncertainty. Exoge-

nous uncertainties can be subdivided into requirements uncertainty, political uncertainty,

and integration uncertainty.

2.3.2.1 Requirements Uncertainties

A large source of exogenous uncertainty comes in the form of requirements uncertainty.

While program offices are able to give input into requirements at nearly all phases of the

design, requirements uncertainty is classified as exogenous because the ultimate authority

in specifying requirements lies with a customer or government. Requirements uncertainty
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is defined as uncertainty due to the ambiguity of specified requirements or due to an unex-

pected change in customer requirements. Requirements uncertainty can take three forms:

scope uncertainty, constraint uncertainty, and linguistic uncertainty.

The first form of requirements uncertainty has to do with the scope of the project.

Many programs experience scope creep– an increase in the demanded technical performance

of a system over the originally agreed upon requirements. [73] This form of uncertainty

deals directly with the technical performance requirements of a system, otherwise known as

functional requirements. [27]

The second type of requirements uncertainty is associated with the constraints placed

on the system under development. Unlike uncertainty associated with scope, constraint

uncertainty does not deal with technical performance requirements, but instead deals with

non-functional system requirements, requirements which are attributes or constraints on

a system. [27] An example of a change in a constraint for a program is from the Space

Shuttle Program– the External Tank’s foam insulation was constrained to no longer con-

tain freon. [101] Additionally, non-functional requirements can specify safety, reliability,

maintainability, etc. thresholds which can further constrain development.

A third type of requirements uncertainty is due to the natural language used to spec-

ify requirements. Regan et al. in their taxonomy of uncertainties relating to ecology and

conservation biology recognized that linguistic uncertainty contributes to the overall uncer-

tainty in situations which involve policy and decision making. [108] In the context of space

and launch vehicle development, uncertainty in language will appear in the requirements

specification. This uncertainty can lead to misunderstandings between a program office and

a customer or government; these misunderstandings can result in wasted effort and schedule

slippage while the contractor and customer work to understand one another.

2.3.2.2 Political Uncertainties

In his taxonomy of uncertainty for space architectures and systems, Walton introduced the

concept of political uncertainty defined as the uncertainty of development funding insta-

bility. [142] This concept is incorporated in this taxonomy of uncertainty as an exogenous
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source of uncertainty. Political uncertainty can have far reaching effects into vehicle devel-

opment both through design decisions and the effort expended on a program.

Programs facing funding uncertainty may choose to mitigate this risk by making design

decisions which are lower-cost in the short term at the expense of lifecycle costs; this can

result in the omission of promising technologies in exchange for proven systems. An example

of this is the decision for the Space Shuttle stack to use solid rocket motors instead of liquid

boosters because of lower development cost of solid rockets. [61]

Another manifestation of political uncertainty is in the level of effort able to be put

into vehicle development. If a company is not assured of future funding, it will not actively

hire or reassign additional workers to a development project in anticipation of a funding

reduction. Even if a funding reduction never occurs, the uncertainty associated with a

possible funding reduction will increase the cost and create a schedule slippage as necessary

additional workers cannot immediately work on a project.

2.3.2.3 Integration Uncertainties

A third exogenous uncertainty stems from issues inherent in integrating a system or sub-

system within a larger system, architecture, or system of systems. This uncertainty stems

from the idea that individual projects or subsystems within a larger system or architecture

will develop at different rates; in some cases, such as with propulsion systems, subsystem

development can occur independently of vehicle or architecture development. This asyn-

chronicity in development leads to integration issues where the subsystem with more design

freedom will be required to make changes to accommodate the more mature system. An

example of this would be a launch vehicle’s thrust structure being changed to accommodate

the loads of the propulsion system. Another instance where integration issues introduce

uncertainty is through asynchronous weight growth and performance losses where one sub-

system will have to make design changes to accommodate performance losses in other parts

of the system. An example of this occurred during the development of the Saturn V rocket

where the S-II stage had to make design and manufacturing process decisions to minimize

weight because the S-IV B stage was already in production. [14]
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Integration uncertainty is the same as a design uncertainty, but the difference is in

the level and contractual relationships of the program which is conducting an analysis.

For instance, the integration issues between a propulsion system and a stage represent

the same uncertainty. If the relationship between the propulsion contractor and stage

integrator is that of a prime contractor and subcontractor which is designing an engine

to prime contractor requirements, then integration issues represent a design uncertainty

(subclass of model uncertainty) to the prime contractor and an integration uncertainty to

the propulsion subcontractor. Another contractual relationship may give the propulsion

system subcontractor more independence; for example, the subcontractor may design the

same engine for use in multiple stages. In this case, integration issues will be an exogenous,

integration uncertainty for both parties.

2.4 Uncertainty Elicitation

As the taxonomy presented in Section 2.3 is intended to guide organizations in identifying

uncertainties in programs, the next step in an uncertainty identification and quantification

exercise is to elicit forecasts for the impacts of uncertainties. These uncertainty forecasts are

then used to drive a design margin estimation. Based on this taxonomy of uncertainty, three

families of elicitation are used to forecast uncertainties: traditional engineering analysis,

programmatic risk and opportunity analysis, and technical risk and opportunity analysis.

2.4.1 Traditional Engineering Analyses

For the purposes of this classification, traditional engineering analysis refers to the physics-

based analysis of a vehicle. This set of analyses focuses on answering the question, “given

a baseline vehicle conceptual design, what are its ultimate characteristics?” The most im-

portant part of this question is the fact that it assumes a baseline– traditional engineering

analyses can only answer questions about how a design will evolve assuming no funda-

mental changes to a design. This form of analysis can address aleatory, model, and some

technological uncertainties.

Aleatory uncertainties manifest themselves during the manufacturing and operation of

space and launch vehicles; it is the role of traditional engineering analyses to determine
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the likely impacts of this uncertainty. These impacts are then incorporated into the design

through two mechanisms: updated weight estimations and performance margin. In this

case, updated weight estimations will account for the stochastic nature of manufacturing

accounted for by tolerances on part designs. As this occurs during detailed design, man-

ufacturing uncertainties have little to no impact in the determination of design margin.

A performance margin is used to account for aleatory uncertainties in the operation of a

vehicle–for example, a launch vehicle will need ample performance to account for day-of-

launch winds and other trajectory dispersions. The performance margin is a requirement

and is independent of the design margin.

Model uncertainties are defined as uncertainties due to a lack of design fidelity and are,

by definition, subject to traditional engineering analyses as a way to estimate uncertainty.

These analyses focus on bounding the model uncertainty, and these bounds are then used to

help determine and appropriate design margin. Similarly, technological uncertainties can be

examined in the same fashion where the engineering analysis is used to bound the potential

of a new technology. However, engineering analysis is only applicable for forecasting bounds

of a technology to be used; it fails in the event that the technology is not included in the

eventual production version of the vehicle.

2.4.2 Programmatic Risk and Opportunity Analyses

The second fundamental method of eliciting uncertainty forecasts has to do with looking

outside of the development effort to characterize exogenous uncertainties. This class of prob-

lems is addressed with a programmatic risk and opportunity analysis. This type of analysis

is fundamentally different from traditional engineering analysis and addresses both techni-

cal and non-technical issues which affect the vehicle. Fundamentally, this analysis looks for

possible changes in the vehicle baseline due to externally motivated factors. This analysis

can cover all types of exogenous uncertainties: requirement, political, and integration.

2.4.3 Technical Risk and Opportunity Analyses

Technical risk and opportunity analysis is similar in nature to programmatic risk and oppor-

tunity analysis, but the focus of technical risk and opportunity analysis lies in characterizing
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endogenous uncertainties not covered by traditional engineering analyses. The goal of this

analysis is to identify potential vehicle baseline changes motivated by technical reasons.

This analysis covers phenomenological uncertainty, volitional uncertainty, human errors,

and technological uncertainties which result in removing the technology in question from

the vehicle baseline.

2.4.4 Observation

As was noted in Observation 2-B, the success of many novel concepts can be traced to

the successful forecast of a margin estimation. The subsequent taxonomy of uncertainty

delineated the underlying uncertainties which need to be addressed by a margin forecast, and

these sources of uncertainty were further grouped into three distinct families of forecasting

problem. This progression leads to Observation 3:

3. In order to fully address the underlying uncertainties relevant to a space or
launch vehicle, a margin estimation technique must include forecasts for mass
growth due to increased definition of an existing design as well as forecasts for
potential design changes motivated by endogenous and exogenous sources of
uncertainty.

This observation will guide the examination of the state of the art methodologies for

estimating margin across different industries. This examination is the subject of Chapter

3.
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CHAPTER III

METHODS OF ESTIMATING DESIGN MARGIN

As outlined in Chapter 1, launch and space vehicle designers address uncertainty in perfor-

mance through the use of a design margin. However, this practice is not limited to the space

and launch vehicle industry– the concept of a design margin is applied in several fields.

The shipbuilding industry also rigorously tracks mass and accounts for mass growth

with a design margin. For surface ships, weight engineers track both the total weight and

the vertical moment; for submarines, the total equilibrium of the ship is tracked. For each

of these dimensions of mass properties, a design margin can be assigned. Unlike launch

and space vehicle design margins, the margins for naval vessels also need to take mid-life

refits into account adding another dimension of uncertainty to the problem. Finally, for the

case of submarines, the design margin physically manifests itself as ballast– any mid-life

refits must be offset by a change in the ballast so that the boat maintains equilibrium.

[19, 122, 126]

Cost engineering is another discipline in which the use of margins is ubiquitous. Within

this community, a margin is applied to a project’s estimated cost to make up for likely cost

over-runs; costs in a project tend to increase over time just as the mass of a space or launch

vehicle increases over the design cycle. Because construction projects occur more often than

the development of a space or launch vehicle, this community has far greater experience in

different methods used to estimate margin. From this large experience base, this community

has been able to conduct studies into the relative accuracy of various methods of margin

estimation. [1, 9, 21, 59, 80]

A third discipline which utilizes the concept of margin is the estimation of project

schedules. [37] Schedules are more complicated than cost or mass estimates because of the

direct dependencies between activities– tree structures must be used to represent elements

of a project to identify possible critical paths. Additionally, margin must be assigned to
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individual project elements so that lead items can be ordered in anticipation of a start date.

[8]

When looking at the problem of estimating the design margin for a novel concept, it

is necessary to look at the methods used for estimating margin across these communities.

Across all of these communities four general categories of estimating design margin have

been identified: predetermined percentage, historical regression, expert opinion, and sim-

ulation analysis. [1, 60, 59, 21] These four methods can be used stand-alone or as hybrid

methods by combining different aspects of each, but hybrid methods will inherit both the

advantages and disadvantages of the parent techniques. The remainder of this chapter will

look at these four categories of methods to determine which families of methods are most

promising for use with a novel concept. First, the necessary qualities of a margin estimation

technique will be examined, and then each of these four methods will be formalized and

examined for gaps in their ability to address the desired principles for a margin estimation

technique.

3.1 Principles for Design Margin Estimating Techniques of a Novel
Concept

Before one can evaluate existing design margin estimating techniques, general principles

which should be followed by these techniques must be established. The cost engineering

community has developed several principles with which margin estimating techniques should

comply. These principles should then be examined to determine their applicability to novel

concepts. Finally, any new principles for margin estimation techniques which apply to novel

concepts must be identified and justified.

3.1.1 AACE Recommended Practice

The Association for the Advancement of Cost Engineering International (AACE) recom-

mended practice lists several principles which should be followed by contingency estimating

techniques: [1]

• Meet client objectives expectations and requirements

• Part of and facilitates an effective decision or risk management process
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• Fit-for-use

• Starts with identifying the risk drivers with input from all appropriate parties

• Methods clearly link risk drivers and cost/schedule outcomes

• Avoid iatrogenic (self-inflicted) risks

• Employs empiricism

• Employs experience/competency

• Provides probabilistic estimating results

The first three items of this list deal with the interaction between the overall margin

estimation technique and the management of the organization which is developing a new

project. First of all, the estimation technique must meet the requirements of the organiza-

tion; these requirements are characterized by specific data deliverables (point estimates or

ranges) and resource availability (schedule and effort). The second principle is that a margin

estimation technique should fit into the organization’s larger risk management process. The

third aspect is that the specific technique undertaken must work within the organization–

organization-specific knowledge that may or may not be affect estimating must be taken

into account when assessing particular estimation techniques.[1]

The next three items on this list deal with the process of estimating the risks. First,

any margin estimation technique should begin with identifying risk drivers. Next, these risk

drivers should be connected to potential outputs. These steps ensure that the estimation

process is straightforward. The third part of this section involves avoiding self-inflicted

risks– “the estimation process itself should not introduce new risks.” [1] Examples of new

risks include having too many risks or cost items as well as having and overstated or

understated risk estimate. [1]

The next two items on this list address particular inputs to the margin estimating

technique. The first is that methods to estimate margin should employ empiricism. This

can mean that it directly employs historical regressions or it can utilize lessons learned,
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benchmarking, or validating against historical data. The other principle is to utilize expe-

rience/competency. A lack of experience in the estimators increases the iatrogenic risks of

the project. Furthermore, experience becomes more critical to the success of the estimation

if the methodology employed utilizes a smaller amount of empiricism. [1]

The final item addresses the output of the process. In order to facilitate decision mak-

ing, probabilistic estimate outputs provide more information than point estimates. This

additional information ensures that the consequences of the decision are more readily

understood– probabilistic information will allow a decision maker to understand the likeli-

hood of a margin being overrun. [1]

The AACE recommended practice recognizes that all four families of margin estimation

techniques can be made to fit these principles. Table 14 lists each of these principles

versus the families of margin estimation techniques. Within this table, each family of

estimating methods satisfies most of these principles. There are two exceptions to the

overall satisfaction of these principles. First, expert judgment, predetermined guidelines,

and simulations analyses do not necessarily employ empiricism and an inherent feature of

the method. Second, expert judgment and predetermined guidelines do not necessarily

provide a probabilistic result. [1]

3.1.2 Principles Necessary for Novel Concept Margin Estimation

The principles laid out by the AACE recommended practice provide a good starting point

for principles which can be used to evaluate margin estimation methods for a novel con-

cept. However, these principles were written by the cost engineering community under the

assumption that most every estimation will occur for a non-novel project. This assumption

needs to be re-examined. Furthermore, because the subject of the estimation is a novel

concept, new principles to which estimation methods should adhere to can be derived.

One principle which must be re-examined is the idea that an estimation method should

employ empiricism. Explicit empiricism, basing estimates for a new project on similar pre-

vious projects, is not applicable due to the lack of previous projects. However, the key idea
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Figure 14: Principles of Estimation Techniques vs. Standard Techniques [1]
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behind the use of an empirical estimating technique is that estimates should be as objec-

tive as possible and based on previous experience; this can be seen by the suggestion that

methods which do not explicitly employ empirical estimates can be made to use empirical

data through the use of lessons learned. [1] This requirement for objectivity exists because

studies have shown the existence of significant optimism bias when individuals make con-

ventional predictions about a future state of a project. [68, 67] This bias can be mitigated

by taking an “outside” view of the project– asking and answering questions about a class

of concept instead of a specific concept. [43] This leads to the principle which should be

employed for novel concepts: a margin estimation technique should maximize objectivity

and seek to take an “outside” view of the problem.

Another principle that must be included in this analysis is the flexibility of an estimation

method to account for novel concepts. Novel concepts represent fundamentally new vehicles

and concepts of operations, and a margin estimation technique needs to be able to account

for this departure from the existing experience base.

A third principle for margin estimation is that a margin estimation technique should

account for all of the relevant sources of uncertainty as identified in Chapter 2. If an

estimation technique does not account for all sources of uncertainty, then the program risks

potential mass growth or performance losses due to omitted uncertainties.

A final principle necessary for a novel concept is the same as an AACE principle– the

need for providing probabilistic estimating results. Deterministic estimates and predictions

provide an illusion of certainty in a decision maker’s mind. By comparison, probabilistic

estimates communicate the relative uncertainty of a prediction to the decision maker. This

output helps ensure that a decision maker is aware of the potential consequences of the

decision at hand. As explained in Chapter 1, the decision as to the amount of design

margin to carry forward in the development of a novel concept is critical to the success

of a program; therefore, the information used in making this decision should be expressed

probabilistically. [1, 72]

In the following sections, each family of margin estimation technique will be described in

detail and evaluated with respect to these four principles as well as their historical accuracy.
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3.2 Predetermined Percentage

3.2.1 Description

The simplest, and most common, method of determining a design margin is to add a

predetermined percentage of margin to an existing performance or schedule estimate. [129,

128] In this method, the project team simply refers to a relevant standard or company policy

and uses the appropriate design margin for a class of project. Numerous organizations such

as the AIAA, NASA, and individual contractors have developed mass property standards.

[6, 150] Because standards are put together as part of an effort to codify lessons learned,

using a predetermined percentage is a simple way to make an estimate based on previous

program experience. [21, 1]

The most basic application of this method imparts a single scalar value for design margin

during requirements development or conceptual design. [1] More advanced standards go

further. The AIAA standard, Figure 5, and the JPL standard, Figure 15, both specify a

burndown rate of design margin throughout the phases of program development. [6, 93, 150]

Further complications of this method involve specifying design margin estimations and

depletion schedules for individual subsystems; this additional feature takes into account

the fact that certain vehicle subsystems will experience additional mass growth and mature

more slowly during the development process. [6, 102]

3.2.2 Evaluation

The standards published by numerous organizations are the result of studying historical

projects and employing lessons learned. Through this development, this method satisfies the

original AACE principle of employing empiricism. Furthermore, predetermined percentages

give the design staff limited flexibility in the ultimate choice for a margin estimate. This

limited choice ensures that this method takes an “outside” view and maximizes objectivity.

While the limited flexibility inherent in this method ensures objectivity, it severely limits

the options of a design team in accounting for a novel concept. The use of historical data

limits the use of this method to concepts within the dataset; its use on a novel concept would
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Figure 15: Jet Propulsion Laboratory Mass Growth Standard [150]

represent an extrapolation from existing experience. As Section 1.2.1 demonstrated, differ-

ent classes of vehicle have different ranges of mass growth; applying an existing percentage

from an existing class of vehicle could have a negative impact on a new vehicle.

Predetermined percentage methods do account for the all of the underlying sources

of uncertainty. Because the guidelines are built up from lessons learned and historical

programs, these programs experienced growth from all sources of uncertainty. Guidelines

based on historical growth and lessons learned will therefore account for all sources of

uncertainty as well.

Standards used to estimate margin either specify a specific percentage to be used, or

specify a range of percentages. Standards which provide ranges meet the AACE principle

for providing probabilistic results. While these ranges provide additional information to the

decision maker, they fail to show the underlying sensitivities of the estimation uncertainty.

Additionally, most standards or company policies only provide a single point estimate.

These singular point estimates can imply an unjustified degree of certainty and, within the

construction industry, have been described as “an educated guess at best.” [80]

A study conducted on the accuracy of the AIAA Mass Properties Control for Space Sys-

tems Standard as applied to the historical record of space development projects has shown
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that 30% of historical program exceeded the recommended growth allowance of 32.5%. Fur-

thermore, another 20% of historical projects incurred significantly smaller growth, 20% or

less, than the AIAA recommended allocation. [130]

Due to the lack of flexibility in its ability to adapt to novel concepts, its limited ca-

pability to provide probabilistic estimations, and its historical inaccuracy, a predetermined

percentage should not be used as a margin estimation technique for a novel concept. Efforts

to address these shortcomings would either require more analysis or require the existence

of a historical database of similar vehicles. Extending this method by adding more analysis

would work against its strengths of being an easy-to-use, objective method for arriving at

an estimation by adding additional analysis and decisions.

3.3 Historical Regression

3.3.1 Description

A more mathematically rigorous way of utilizing lessons learned from past projects is

through the use of parametric historical regressions. Current design methods for most

types of vehicles utilize historical regressions as a way to generate initial estimates. These

parametric equations are known as mass estimating relationships (MERs); when used for

cost estimation, parametric equations are known as cost estimating relationships (CERs).

[34, 54, 74, 143, 107, 114] These relationships can take on a number of mathematical forms–

linear or quadratic equations, neural networks, or logarithmic relationships. [4] The indi-

vidual parameters within a relationship can be a function of almost any design parameter

of interest as long as there is a statistically significant relationship. For example, Figure 16

presents the regression for spacecraft mass as a function of the number of man-days spent

in space; the individual data points of historical NASA missions used in this regression can

be seen on the chart.

The same data can be used during early design to estimate a design margin. Because

the MERs are formed from a statistical regression of historical data, the model fit error of

the historical points can be computed where error is defined by Equation 16. This error can

be used to compute a correction factor for the mass estimate– a scalar which multiplies the
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Figure 16: Spacecraft Mass versus Man Days in Space [54]

predicted mass in order to reconcile the actual and predicted mass values . This correction

factor is defined in Equation 17. Because each historical point will have a correction factor,

the sample mean and standard deviation of the correction factors for a given MER can

be computed; Figure 17 shows a plot of a MER with +/- 1 standard deviation for the

correction factor. With these statistics, a Monte Carlo simulation can be conducted which

can produce a cumulative distribution function (CDF) of predicted mass. Given this CDF,

a decision maker can select the necessary dry mass estimate based on relative risk tolerance.

[24]

Error =
Mactual −Mpredicted

Mactual
=
Residual

Mactual
(16)

C =
1

1− Mactual−Mpredicted

Mactual

=
1

1− Error
(17)

Utilizing the statistical data from a MER regression is not the only way to regress

historical data to estimate a design margin. A NASA study into design margins for the

Constellation program collected historical estimates of mass at project SRR and launch.

Based on this data, the study performed a regression where the dry mass at launch is a

function of the SRR dry mass and the error statistics of the regression; the equation used
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Figure 17: Vertical Tail Mass vs. Tail Area with Bounds of 1 Standard Deviation [24]

for this regression can be seen in Figure 18. Within this equation, β is the estimated mass

growth coefficient and εMdry
SRR is the sample error. Within this regression the sample error

is scaled by Mdry
SRR in order to account for the fact that the historical database used for

model creation contains data from both unmanned and manned missions. Because this

regression is used in a probabilistic simulation, the distribution used to generate potential

mass estimates can be seen in Equation 19. [89]

Mdry
launch = βMdry

SRR + εMdry
SRR (18)

Mdry
launch ∼ N( ˆ(betaMdry

SRR,
√
ŝ2(1 + n−1)Mdry

SRR) ∼ N(1.29718Mdry
SRR, 0.1579Mdry

SRR) (19)

Another study was conducted at the Air Force Institute of Technology in order to

determine construction project cost margin. The study utilized data on 243 projects from

a database of Air Force construction projects; of these projects 218 data points were used

for regression and 25 were used for model validation. The resulting regression produced

an equation for the anticipated construction cost margin as a function of ten parameters.

These ten parameters described the project’s overall characteristics, its design, and aspects

63



about the contracting mechanism. [128]

A method known as reference class forecasting, while not utilizing a parametric regres-

sion, falls under this category as it seeks to establish a probability distribution based on

historical data. This method has three steps. First a relevant class of past projects must be

identified; this list must be statistically significant but sufficiently narrow to enable com-

parison. The next step is to establish a probability distribution based on the selected past

projects. This distribution tracks the overall cost overrun of these projects. The third step

in this process is to compare the specific project to the relevant distribution to determine

the necessary margin. [43]

3.3.2 Evaluation

Historical regressions are a more sophisticated way of utilizing historical data in order to

make projections about new development projects. Because historical data is explicitly used

as the sole input, this family of methods employs empiricism satisfying the original AACE

principle.

Historical regressions also account for all of the underlying sources of uncertainty. Like

the methods of predetermined percentage, this family relies on historical data. The in-

dividual projects from which parametric models are built incurred all of the sources of

uncertainty; therefore, any prediction made from these parametric models will also account

for the same sources of uncertainty.

Unlike methods of predetermined percentage, historical regressions enable the use of

probabilistics by decision makers. Because parametric models are statistical regression

models constructed from historical data points, the underlying goodness of fit statistics are

available for these models. For a given prediction, the confidence intervals corresponding to

a desired level of certainty can be calculated. Utilizing this capability, a decision maker can

examine the relative impacts of varying confidence levels to make a more informed decision.

[4]

Estimations based on historical data have shown good predictive capability. The Air

Force Institute of Technology study’s model matched the validation data points very closely.
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[128] Another study found that estimates based on historical estimates had slightly better

predictive capability than the other three families of margin estimation. [21]

The biggest shortcoming of this method is that it relies explicitly on historical data. In

order to make a prediction about a vehicle, previous vehicles of a similar type must have

been previously developed. This requirement breaks down in the case of a novel concept as

there is no historical database of similar concepts. Therefore, this method is not only not

flexible enough to handle novel concepts, but also the lack of historical points makes the

application of this method impossible.

3.4 Expert Opinion

3.4.1 Description

A more flexible alternative to utilizing predetermined percentages or historical regression is

utilizing expert opinion. In this method an organization’s subject matter experts are asked

to use their experience and judgment to determine an appropriate margin estimate. This

estimate can be based on an analysis of a particular project’s specific risk drivers as well as

the completeness of the original estimate. [21, 1]

Expert opinion is also highly leveraged in hybrid methods– most methods used in indus-

try employ some form of expert opinion. Expert opinion can be used in combination with

predetermined percentages where experts can assign risk levels associated with a predeter-

mined contingency allocation. Expert opinion also plays a large part in more structured

organizations where experts provide the estimates for values which can be used as part of

a probabilistic technique. [21, 1]

3.4.2 Evaluation

The biggest strength of expert-based methods is its flexibility. The experts employed in

making these judgments can make recommendations based on the specifics of a novel con-

cept. Free from a reliance on historical data, this family of methods will take into account

the new technologies, designs, and concepts of operations inherent in a novel concept de-

velopment program. The utilization of project-specific factors can lead to more accurate

estimates when compared with methods which ignore project specifics. [21]
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Expert opinion methods can also take into account the relevant sources of uncertainty.

A team of experts will have past experiences with previous projects including projects which

were novel concepts at the time of their development. This experience should provide the

team with a background on the relevant sources of uncertainty that occurred in previous

projects and are likely to occur for a new novel concept development.

Most expert-based methods do not provide probabilistic estimations but rather focus on

determining a deterministic estimate of margin. Like methods of predetermined percent-

ages which provide deterministic values, a deterministic forecast communicates a level of

certainty to the forecast which can misrepresent the underlying uncertainties inherent in a

forecast. Alternatively experts can provide ranges to be fed into a simulation analysis, but

these methods are classified as probabilistic techniques and will be analyzed in the following

section.

The ability of an expert-based method to address project-specific considerations lies in

its subjectivity– this subjectivity is also the main disadvantage in using expert opinion.

[21] This subjectivity has typically led to inaccurate forecasts through two mechanisms–

strategic misrepresentation and optimism bias. Within the world of cost and schedule

estimation, pressure is placed on projects during early design to show favorable numbers in

order to win approval in the face of competition for resources. This leads to the intentional

under-estimation of cost and schedule metrics. [43] Decision makers also fall victim to the

planning fallacy where decisions are based on overestimating benefits and underestimating

costs. This optimism stems from cognitive biases which affect how individuals process

information. [78]

The subjective nature of this method directly leads to another weakness: the reliance

on experts within an organization. For any problem, the number of experts qualified to

make a judgment will be limited. Additionally, the transfer of expertise from experts to

new team members or employees is very difficult. [21] An organization which decides to

maintain the capability of utilizing expert opinion will therefore need to retain the skills of

its subject matter experts even in the absence of new development projects. When taking

into account the need to estimate a margin for a novel concept, the problem only intensifies
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as there will likely be even fewer experts qualified to make a judgment of a novel concept.

This will likely lead to the situation where the same people who made the initial projections

of performance will also be estimating the degree to which those initial projections were

incorrect.

Within the world of cost estimation, margin estimation through expert opinion has

proven to have good predictive capability. [21] However, it is worth noting that this study

involved estimations of relatively routine projects, not novel concepts. Because of its use on

routine projects, the weaknesses due to the subjectivity of expert opinions will be mitigated–

more experts with better knowledge of the project will be available. Furthermore, optimism

bias, while still existent, is tempered because of the lack of new technologies and new

concepts.

Overall, the human element is at the center of both the strengths and weaknesses of

expert-driven methods of estimating design margin. Greater flexibility and applicability

to novel concepts is gained at the expense of probabilistic analysis and objectivity. Un-

like predetermined percentage and historical regression methods, no show-stoppers exist in

implementing an expert-driven method for use with a novel concept.

3.5 Probabilistic Techniques

3.5.1 Description

As a family of methodologies, probabilistic techniques enable the quantitative estimation

of risk and can subsequently provide a risk-informed design margin estimation. These

techniques commonly employ Monte Carlo simulation to generate a statistical distribution

of outcomes. Based on this distribution, a decision maker can determine an appropriate

level of risk and corresponding design margin. [21]

This family of techniques includes the expected value method, range estimating, and

range estimating applied to analysis tools. Additionally, the application of these methods

in aerospace studies will be analyzed.
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3.5.1.1 Expected Value Method

The simplest probabilistic technique used to determine design margin is the expected value

method. In this method, individual risk drivers and corresponding risk events are identified.

For each risk event, the probability of that risk occurring as well as its impact must also be

identified. The expected value of the impact of that event is expressed in Equation 20. [3]

Expected V alue = Probability of Risk Occurring ∗ Impact if It Occurs (20)

This method can be used to provide a risk estimation without the use of a Monte

Carlo simulation. However, the AACE standard recommends the use of a Monte Carlo

simulation to more fully explore the implications of each risk event. When used with a

Monte Carlo, the probability of occurrence as well as the impact can be specified using

probability distributions. Additionally, dependencies between different risk events can be

specified so that events do not have to be independent. [3]

The AACE standard for the contingency determination using the expected value method

warns that this method should not be used alone. The expected value method is very

appropriate for project-specific risks which can be identified and estimated by the project

team. Estimates for systematic risks (risks due to project complexity, technology, culture,

etc.) should be calculated using a different estimation methodology. [3]

3.5.1.2 Range Estimating

A more sophisticated family of probabilistic methods for margin estimation is range esti-

mating. Within this family of methodologies, the vehicle or project under consideration is

broken down into a work breakdown structure. A work breakdown structure subdivides a

vehicle into constituent subsystems or a project into subtasks which much be completed.

Based on this breakdown, the potential weight, cost, or duration of each item can be

estimated– this estimate usually takes the form of a triangular distribution where the esti-

mator can proscribe a minimum, maximum, and most likely value. [2, 26] In the simplest of

these methods, the subitems of the work breakdown structure are considered independent.

[9, 26] Given a distribution for each subitem of the work breakdown structure, a Monte
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Carlo simulation can be conducted to define the overall distribution of the project or ve-

hicle. Based on this output, a nominal design weight or cost as well as a margin can be

determined. [9, 19, 34, 46, 123, 139, 151]

This method has been subsequently refined in the cost engineering community. The first

key refinement redefines the estimation phase. The current AACE recommended practice

for contingency estimation through range estimation states that only critical items within

the WBS should be ranged; critical items are defined as “one whose actual value can vary

from its target, either favorably or unfavorably, by such a magnitude that the bottom line

cost (or profit) of the project would change by an amount greater than its critical vari-

ance.” [2] This recommendation implies an additional step within this family of margin

estimating techniques– performing a sensitivity analysis and identifying critical items. Fur-

thermore, the recommended practice cautions that if non-critical items are ranged, the

resulting estimate will exhibit a narrower predicted range of potential costs and can result

in an understatement of required contingency. [2, 28]

The process of estimating ranges for individual items of the work breakdown structure

has also received refinements. The current recommended practice for determining the three

point estimate recommends that the optimistic and pessimistic estimates should only ac-

count for likely extremes. Highly unlikely outcomes should be omitted from the range as

they can greatly skew results. The recommendation is that the extremes of the range should

represent the 1% and 99% probability limits. In other words, if an estimate has less than

a 1% chance of occurring, then that estimate should be omitted from an individual item’s

range. [2, 28]

In addition to recommendations on the ranges for individual items, additional work has

been done in investigating the probability distributions used for representing ranges. While

the triangular distribution is the most popular distribution, other probability distributions

can change the behavior of the overall risk analysis. If a team wants finer control over the

skewness of the distribution, a double triangular distribution can be used. A double trian-

gular distribution, Figure 18, is comprised of two triangular distributions– one distribution

representing the probability of an overrun and another triangular distribution representing
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Figure 18: Double Triangular Distribution [2]

the probability of an underrun. The AACE recommended practice for range estimating

recommends the use of the double triangular distribution in most cases. [2] In addition to

the double triangular distribution, the PERT distribution has seen use in range estimat-

ing. The PERT distribution is a modified Beta distribution which is a function of three

parameters: the minimum, the most likely, and maximum values. These parameters are the

same parameters which define a triangular distribution which allows for easy integration

into existing methods as only the underlying distribution needs to be changed. A PERT

distribution’s standard deviation is more sensitive to the most likely value than to the min-

imum and maximum values. By comparison, a triangular distribution’s standard deviation

is equally sensitive to the most likely, maximum, and minimum values. Because of this,

PERT distributions have a systematically smaller standard deviation than triangular dis-

tributions especially when the input parameters produce highly skewed distributions. The

use of a PERT distribution in an additive model will result in 10% less uncertainty than an

equivalent model using triangular distributions. [139]

A key assumption in most implementations of range estimating is the assumption that

each line of a work breakdown structure can be simulated independently of one other.

This assumption greatly reduces the effort required for conducting a risk analysis because

the analysis team does not have to define correlations. However, examinations of this

assumption have shown that the modeling of correlation is necessary to improve the accuracy
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of the resulting Monte Carlo simulation because it will likely underestimate the true variance

of the project being analyzed. [60, 26] The most basic way of implementing correlation into

a Monte Carlo simulation is through the use of correlation matrices. A correlation matrix is

a symmetric matrix which maps each item in a Monte Carlo simulation to one another; the

individual elements of this matrix are rank order correlation coefficients. These coefficients

can have a range from -1 to +1 where -1 represents an exact negative correlation, 0 represents

independence, and +1 represents an exact positive correlation. [139]

3.5.1.3 Range Estimating Applied to Schedule Estimation

A similar, but more complicated, methodology can be applied to scheduling. A schedule

can be broken down into its constituent tasks, and the methodology of range estimating

can be applied to the individual tasks. Additionally, the dependencies between tasks must

be explicitly defined. The following dependencies between tasks have been identified: [139]

1. A new task cannot start until another task has completed (finish–start)

2. A new task cannot start until another task has started (start–start)

3. A new task cannot start until another task has been partially completed (start–start

+ lag)

4. An existing task cannot finish until another has finished (finish–finish)

5. An existing task cannot finish until another has reached a certain point in its execution

(finish–finish - lag)

After the problem is defined and a Monte Carlo simulation is performed, a likely critical

path can be identified. The critical path is the sequence of tasks within a schedule which

define the maximum time required to complete a project; in contrast, subcritical paths

contain activities which can be performed in parallel to the critical path and should not

affect the total time required for completion. A margin is only applied to tasks on the

critical path, and the sum total of the individual task margins is equal to the margin for

the entire project. [8]
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3.5.1.4 Range Estimating Applied to Models

Another methodology for margin estimation is formalized by Thunnissen as part of his PhD

thesis. This method begins by identifying tradable parameters– these are parameters which

are important in satisfying the system’s requirements and can be expended to make up

for a deficiencies within this set. The next step in the methodology is to create analysis

models capable of analyzing the necessary tradable parameters. These models will have

numerous inputs whose uncertainty needs to be quantified. These steps differ from other

range estimating techniques because this method involves using probability distributions

as an input to an analysis model. Once this uncertainty is quantified, a Monte Carlo

simulation (or similar stochastic method) is performed on the analysis model. This output

can be further analyzed to determine an acceptable level of risk and a corresponding margin.

[131, 132]

3.5.1.5 Use in Aerospace Applications

While probabilistic methodologies have seen more use in other disciplines, some studies

have been conducted on the probabilistic estimation of margin in space and launch vehicles.

Unlike cost or schedule margin estimates, the design margin of a space or launch vehicle

feeds back into the sizing of the vehicle– the additional weight triggers a scaling up of the

vehicle. This larger vehicle will need to be reclosed by adding additional propellant and

corresponding tanking in order complete the required mission. [36]

In order to examine the effect of uncertainty on a lunar lander, engineers at SpaceWorks

Engineering Inc. performed a study which applied the principles of range estimating. The

sizing tool, Moonraker, allows for input parameters to modify the weight assumptions.

The study utilized a level 1 weight breakdown structure, only delineating the top level of

subsystems. For each subsystem, a triangular distribution of percentage weight growth was

identified, and for all distributions, the likeliest value was set at 0% growth. A Monte Carlo

simulation was then used to quantify the uncertainty, and a design weight corresponding to

a 90% confidence level was selected. This corresponded to a 8.22% and 13.15% growth in

the dry mass of the ascent and descent stages respectively. [140]
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A study examining the effects of uncertainty on single stage to orbit and bimese launch

vehicles was performed by Wilhite et. al. This study utilized the commercially available tool

@Risk and the Launch Vehicle Sizer and Synthesis tool. MERs were used to generate an

initial estimate of component weights, and uncertainty was applied to these estimations as

well as engine Isp, aerodynamic drag, and packaging efficiency. This study utilized uniform

distributions of uncertainty. Utilizing these distributions, @Risk performed a Monte Carlo

simulation through the Launch Vehicle Sizer and Synthesis tool. At a confidence level of

95%, this study showed growth of 25% and 31% for the bimese and single stage concepts

respectively. [146]

In support of the Constellation program, a study was conducted to determine the per-

formance requirements of the Ares V launch vehicle. Because the requirements of the Ares

V depended on the entire architecture of the Constellation program, three separate uncer-

tainties had to be accounted for: the uncertainty of the dry mass of Constellation’s in-space

elements, the performance of the in-space propulsion, and the performance of the Ares V.

The uncertainty of the dry mass was accounted for using historical regression as discribed

in Section 3.3.1. The uncertainty bounds for in-space propulsion elements were modeled

using a triangular distribution for Isp. The uncertainty in Ares V performance was modeled

using a beta distribution; the parameters of this beta distribution were derived by expert

opinion which was informed by model runs of a synthesis and sizing environment. These

three estimations of uncertainty were combined in a single Monte Carlo simulation to de-

termine the total payload that could be landed on the lunar surface for a reference mission.

Unlike the SpaceWorks and Wilhite studies, this study focused on discrete vehicle concepts

as opposed to rubberized vehicles. This study concluded that in order to have sufficient

margin for lunar missions, the Ares V should use 6 RS-68 engines and a 5 or 5.5 segment

solid rocket booster instead of the original design which featured 5 RS-68 engines and a 5

segment solid rocket booster.. [89]
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3.5.2 Evaluation

Probabilistic methods represent a very flexible way to analyze concepts. Common steps

in probabilistic methods are the selection of a work breakdown structure and subsequent

uncertainty estimation. These steps allow a risk analysis team to customize a study to

a particular vehicle. This flexibility allows a team to accommodate novel concepts, new

technologies, and different concepts of operation.

By its nature, probabilistic estimating techniques will produce probabilistic results.

These results will allow decision makers to see the sensitivities of the system to uncer-

tainty. Furthermore, decision makers can select a specific level of confidence in order to

determine the appropriate design margin.

Most probabilistic methods involve the elicitation of expert opinion in order to generate

input probability distributions. Because individuals are involved, the question of subjectiv-

ity and bias arises. The step of breaking down a system into its subsystems and components

mitigates this bias as an expert is forced to think of smaller pieces of the overall system.

This thinking of smaller pieces of the puzzle will also improve the accuracy of the estimate.

When studying subjective cost estimates, it was found that “in general the reliability of the

subjective estimates decreases as the subsystem increases in size and complexity since the

cost estimator is less able to deal with complicated systems than with simple systems.” [26]

A study into the accuracy of probabilistic techniques as applied to cost estimation has

shown that the accuracy of this family of estimating techniques is highly dependent on the

level of project definition. For well-defined projects, probabilistic techniques outperform

expert judgment and predetermined percentages. However, for poorly defined projects,

probabilistic techniques perform poorly– both the median difference of predicted vs. actual

and the corresponding variance are much larger than any other form of estimation. When

the three other families of margin estimating techniques were analyzed by breaking out

well and poorly defined projects, none of the other methods showed a dramatic decrease in

performance. This decrease in performance appears to be unique to probabilistic methods.

[21]
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At first glance it is unclear why probabilistic methods under-perform other margin es-

timation techniques for poorly-defined projects. This is especially interesting when one

considers that the same experts who provide insight for estimations based on expert opin-

ion are likely the same experts who would provide input distributions for a probabilistic

method. However, the answer to this discrepancy is apparent when considering the under-

lying sources of uncertainty as outlined in Section 2.3. The act of splitting a project into its

subsystems and components implies a baseline vehicle or project and focuses the attention

of an estimator on a small portion of that baseline. This breakdown fundamentally changes

the nature of the uncertainties under consideration; the focus on individual components and

subsystems only allows an estimator to consider model uncertainty and some technological

uncertainty. The implicit baseline in the breakdown does not allow estimates to be made on

human errors, changes in technology as well as any source of exogenous, phenomenological,

or volitional uncertainty– uncertainties which would fundamentally change the baseline de-

sign cannot be considered if the system is decomposed into its constituent subsystems and

components.

The observation that range estimation does not account for potential baseline changes

has been noted in the literature. In a study comparing the results of range estimating to

a naval development program, Boze found that the “method will not sufficiently forecast

weight values for unanticipated vehicle physical configuration changes ... or for changes

made to performance specifications.” [18]

Overall, the greatest strengths of this family of estimating methods are their ability

to specify probabilistic results and their flexibility. Furthermore, these methods provide a

way to mitigate the subjectivity of the expert opinions. These advantages are gained at

the expense of being able to account for uncertainties which change the baseline implicit in

the estimations. Current methodologies are more suited for programs which have a more

mature baseline.
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3.6 Gaps

Of the four families of margin estimating techniques, predetermined percentage and histori-

cal regression cannot be applied to a novel concept. For historical regression, as no previous

examples of a new vehicle concept exist, a regression cannot be performed. This lack of

historical data acts as a show-stopper for the utilization of this methodology. In the case

of predetermined percentages, this method is also reliant on historical data; furthermore, it

is incapable of providing probabilistic results or being flexible enough to capture new ideas

inherent in a novel concept. Finally, Thompson showed that predetermined percentages are

not accurate. [130]

In addition to these methods not being suited to novel concepts, not much can be done

to extend these methods to make them more applicable. Regression analyses will always

depend on the underlying data; in the absence of data applicable to a new class of vehicle,

any extensions or changes to this family of methods will not address the problem. Prede-

termined percentages could be applied to a novel concept if one could answer the question,

“what is an appropriate margin estimate for a new class of vehicle?” As with historical

regression, the lack of historical experience makes answering this question impossible.

Expert-based methods showed no show-stoppers; this class of methods can be applied

to novel concepts. Similarly, the analysis of probabilistic methods has shown that this class

of methods can also be applied to novel concepts. However, each family of methods has

unique shortfalls. Expert-based methods cannot provide probabilistic estimates and are

subject to the subjective opinions of experts. Most importantly, the weaknesses of expert-

based methods lie in the ability of a company to develop and retain a core group of employees

qualified to make these judgments. Probabilistic methods employ experts while mitigating

the subjectivity of their opinion by breaking the problem down into individual subsystems

and components. However, this breakdown works to obscure sources of uncertainty which

would have otherwise been addressed by experts.

The drawbacks in expert-based methods and probabilistic methods represent gaps in

current analysis capabilities. These gaps must be addressed so that a margin estimation

technique for a novel concept can embody the principles described in Section 3.1.2.
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The first identified shortcoming of expert-driven methods is a lack of probabilistic esti-

mation capability. Simply asking experts to provide a subjective probability distribution is

not a useful extension because studies have shown that individuals tend to overestimate the

effect of infrequent events. [42] This can be mitigated by breaking the overall estimation

problem into smaller, easier to estimate subproblems, but this is problematic because what

was an expert-based method is now, by definition, a probabilistic method.

If an organization decided that probabilistic estimation capability was not a necessity

and this shortcoming of expert-driven methods could be ignored, this family of methods still

has shortcomings due to the nature of employing experts. The largest problem has to do

with the limited number of experts available within a company to analyze a novel concept.

Due to the lack of experience with untried concepts, the experts available will likely be the

same people that designed the current vehicle. These experts are likely to have an “inside

view” of the problem as they will have invested time and effort as part of the development

team.

These two shortcomings of expert-driven are driven by the fact that, ultimately, individ-

uals are responsible for the method’s success or failure. While an extension could possibly

be made to extract probabilistic outputs from experts, no technical fix can be applied to

address a lack of experts knowledgeable of a novel concept. Given that this is a human

resources problem, probabilistic techniques will be examined to determine if an extension

can address its shortcomings.

The major shortcoming of probabilistic methods is its inability to capture all of the

relevant forms of uncertainty. This shortcoming is summarized in Observation 4.

Observation 4: Probabilistic techniques show promise in their ability to account
for novel concepts, but current techniques do not capture all relevant forms
of uncertainty. Current techniques rely on a bottom-up approach which can-
not address phenomenological, volitional, exogenous uncertainties, and discrete
technological uncertainties.

The shortcoming noted in Observation 4 shows that the existing methods do not com-

pletely cover relevant sources of uncertainty. Unlike expert-driven methods, the underlying

shortcomings of this family of methods are technical. Addressing these shortcomings is the
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subject of Research Question 1.

Research Question 1: How can existing probabilistic margin estimation tech-
niques be augmented to account for sources of uncertainty which are not ade-
quately addressed by a bottom-up formulation?

This research question clarifies the research objective of this thesis. The examination

of existing ways to estimate margin has shown that probabilistic formulations offer the

best starting point for the creation of a methodology to evaluate novel concepts. If the

shortcomings of probabilistic methods can be addressed by an methodological extension,

then the research objective of creating a methodology for estimating the uncertainty of a

novel concept will be achieved.

The proposed extension for probabilistic analysis will be discussed in Chapter 4.

78



CHAPTER IV

EXTENDING PROBABILISTIC ESTIMATION TECHNIQUES

As was described in Section 3.6 and Research Question 1, the family of probabilistic esti-

mating techniques shows promise in its ability to forecast uncertainties with novel concepts.

The shortcoming of this family of methods is that its current formulation does not allow

for it to account for all of the sources of uncertainty that affect space and launch vehicles

as outlined in Section 2.3. This chapter will explore possible extensions to probabilistic

estimating techniques with the potential to address additional forms of uncertainty.

4.1 Application of Range Estimating to Potential Baseline Changes

The most basic extension of range estimating is to apply the method to different potential

baselines. If the configurations to be ranged cover the breadth of potential production

systems, then the forms of uncertainty as described in Section 2.3 will be addressed by this

simple extension.

The key aspect of this extension is the ability to range a large number of configuration

changes; as the capability to examine different configurations decreases, the likelihood that

significant changes will be omitted increases. This aspect of a simple extended method leads

to the following hypothesis.

Hypothesis: If evaluating potential alternative baselines through range estima-
tion is a viable method, then the relevant sources of uncertainty affecting space
and launch vehicles will be addressed by probabilistic methods.

In order to test this hypothesis, a combinatorial study of the historical changes to the

Space Shuttle Orbiter was conducted to determine the level of effort necessary to apply

range estimating to alternative configurations.

4.1.1 Space Shuttle Combinatorial Study

As Section 1.2.4 describes, standards for margin estimation call for a margin to be assigned

at ATP. In order to account for potential baseline changes through range estimation, each

79



potential change to the baseline configuration will need to be examined. Furthermore, as

range estimating requires individual subsystems to be evaluated, for each unique combina-

tion of the morphological matrix, the individual subsystems of the Orbiter which need to

be reexamined will need to be determined.

In order to determine the total number of reexaminations necessary to account for the

Orbiter’s historical changes, two levels of analysis are necessary. First, the major historical

changes to the Orbiter must be documented and complied into a matrix of alternatives

to determine how many possible individual Orbiters can be produced given the potential

design changes. Second, the internal subsystems of the Orbiter must be identified and linked

to the Orbiter’s historical design changes.

4.1.1.1 Changes to Shuttle Baseline design

The Space Shuttle Orbiter experienced a significant number of design changes between ATP

and production. The original Orbiter at ATP included a 3,220 square foot blended delta

wing, payload bay mounted air breathing engines, 2 abort solid rocket motors (ASRM),

4 hydraulic systems, an exposed forward orbital maneuvering system (OMS), a centrally

mounted aft OMS, and a total length of 125.8 feet. The first changes made to the Orbiter

were the removal of the ASRMs and the air breathing engines; additionally, the aft OMS pod

was moved to the shoulder of the aft fuselage and overlapped the payload bay. Another large

redesign of the Orbiter came next as the 150K orbiter was redesigned to have a dry weight

(with growth) of 150,000 lbs. This design came with a new, Lockheed-inspired, double-delta

wing of 2,690 square feet and a slightly shorter fuselage of 125.2 feet. Additionally, the air-

breathing propulsion system reappeared as wing-mounted, removable engines to support

ferry missions. The previously-deleted ASRM system was restored to the baseline. After

this re-design, further changes were made including a reduction in the overall length of

the Orbiter to 122.8 feet accompanied by changes to the wing planform. Final changes

in 1974 included a final removal of the ASRMs and the deletion of air-breathing engine

accommodations. Furthermore, a parachute breaking system was added, the aft OMS pod

was redesigned to accommodate a new payload bay door, the forward OMS system was
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Air‐Breathing Engines  none  Payload Bay Mounted  Wing Mounted 
ASRM  none  two 
AFT OMS Pod  Center‐Fuselage  Fuselage Shoulder/overlapping  Fuselage Shoulder 
Forward OMS  Shrouded  Exposed 
Wing Planform  Blended Delta  150 K double delta  V4/5 Double‐Delta 
Fuselage Length  122.2 O  122.8 O  125.2 O  125.8 O 
Hydraulic Systems  3  4 
Parachute  none  Single 

ATP Baseline System 

Figure 19: Morphological Matrix of Historical Changes to the Orbiter

unshrouded, and the overall fuselage length was reduced to 122.2 feet. [96, 61]

In order to determine the total number of potential designs based on actual historical

design changes, each change was entered into a morphological matrix. A morphological

matrix is a matrix comprised of rows and individual entries. Each row represents a different

category of alternatives, and individual entries belong to a category of alternatives. Selecting

a single entry in each row defines a unique combination of alternatives. The total number

of alternatives is a multiplicative combination of the number of alternatives in each row.

[111, 110] The morphological matrix containing potential Orbiter designs can be seen in

Figure 19; there are 1,728 unique configurations derived from this matrix. However, this

number only identifies the total number of configurations which need to be evaluated; in

order to determine the total number of range estimating reevaluations which need to take

place, individual subsystems need to be considered.

4.1.1.2 Structure of the Orbiter

The Space Shuttle Orbiter has a very large weight breakdown structure covering numerous

subsystems: structures, power, avionics, environmental control/life support, propulsion,

and aerodynamic controls. In order to simplify the analysis, only the structural subsys-

tems will be included in this analysis. The structural subsystem is most relevant because

structures are more likely to be resized in the event of a baseline change. Furthermore, if

reevaluations due to changes in the structural subsystem are too numerous, then the addi-

tional reevaluations of other subsystems will contribute to the result that range estimating
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Table 9: Linkages Between Major Changes and Substructures
Design Change Substructure Affected

Air-Breathing Engines Mid Fuselage* or Wing**
Aft OMS Pod Aft Fuselage
Forward OMS Pod Forward Fuselage
Wing Planform Wing
Fuselage Length Forward Fuselage
Hydraulic Systems Aft Fuselage
Parachute Aft Fuselage

*Payload bay mounted engines
** Wing mounted engines

applied to numerous baseline changes is not viable.

The structural subsystem of the orbiter is primarily divided into three segments: the

forward fuselage, the mid fuselage, and the aft fuselage. The forward fuselage is divided

into upper and lower portion; the upper portion contains the crew compartment while the

lower portion contains the forward OMS pod and the nose gear. The mid fuselage contains

the structures which support the payload bay, payload bay doors, and main landing gear;

the mid fuselage also interfaces with the forward fuselage, aft fuselage, and the forward

section of the wing box. The structure of the wing is supported by the wing box which in

turn interfaces with both the mid and aft fuselage. Finally, the aft fuselage contains the

thrust structure and the aft OMS pods; this portion of the fuselage interfaces with the mid

fuselage and the wing box.[70]

The linkages between the historical design changes described in Section 4.1.1.1 and

the individual substructures can be seen in Table 9. While these linkages will translate

the design changes to individual substructures, additional reevaluations will be necessary

as the design change cascades throughout the vehicle. The total number of reevaluations

necessary will be a function of the design load cases and the connectedness of the Orbiter’s

substructures.

In this study, the assumption will be made that the Orbiter experiences three major

sizing cases– launch, gliding, and landing. During launch, the weight and acceleration of

the Orbiter will be transfered to the thrust structure. During the gliding segment of flight,
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Figure 20: Space Shuttle Launch Loads DAG

Forward 
Fuselage 

Mid 
Fuselage 

A0 
Fuselage 

Thrust 
Structure 

Main 
Gear 

Wing 
Carrythrough 

Crew 
Compartment 

Nose 
Gear 

Wing 

Figure 21: Space Shuttle Gliding Loads DAG

the Orbiter’s weight will be transfered to the wing. Finally, during landing, the landing

loads will be transfered to the landing gear attach points.

Based on these three simple load conditions and the description of the shuttle’s substruc-

ture, three directed acyclic graphs (DAGs) were created to determine the cascading effect of

a change in a single substructure. Figures 20, 21, and 22 show the DAGs for launch, gliding,

and landing respectively. If a single substructure is tagged as needing a reevaluation, then

the additional substructures downstream of the originally triggered structure also require

reevaluation. For an example launch load case, if the wing requires a reevaluation, then the

wing box, mid fuselage, aft fuselage, and thrust structure also require reevaluations.
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Figure 22: Space Shuttle Landing Loads DAG

4.1.1.3 Study Results

In order to determine the total number of reevaluations necessary, the morphological matrix

was stepped through so that every combination of potential alternatives was selected. Each

combination of alternatives represents a unique design. If a design contains an alternative

not in the original baseline, then that alternative’s mapping to the substructure is triggered;

since it is possible for a design to contain multiple selections not in the baseline, the linkage

will be triggered for each alternative not in the original baseline. Each time a linkage

is triggered, the DAGs for each load case will be triggered to determine the number of

subsystems which will need to be reevaluated. If a subsystem is triggered during any of the

three load cases, then it is flagged as needing reevaluation.

This analysis led to the result that 11,868 subsystem reevaluations need to take place in

order to apply range estimating to the alternative baseline concepts identified by historical

shuttle design changes. Assuming that an engineer would spend 15 minutes conducting a

simple analysis to provide a range on a subsystem, the total required effort to apply this

method is 2,967 man-hours. This represents a significant investment in time and effort on

behalf of the project office. Furthermore, 2,967 man hours represents an optimistic lower

bound on the amount of time necessary to complete an analysis because the underlying

assumptions of this combinatorial study have significantly reduced the dimensionality of

the problem. The effort required will likely be far greater as additional configurations, load

cases, and subsystems are considered. Because of the required effort, the hypothesis that
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range estimating can be applied to different baseline configurations is rejected, and a new

method for addressing baseline changes will have to be adopted.

4.2 A Hybrid Methodology

The previous section showed that the sole reliance on range estimating is a non-viable

way to address potential baseline configuration changes. However, the literature search

conducted in Chapter 3 found that the other three methods of estimating design margin

accounted for uncertainties related to baseline configuration changes. The fact that every

other method of estimating margin does not have this shortcoming begs the question, “which

characteristics of these three families of methods make them more able to account for all

relevant uncertainties?”

The answer to this question can be seen in the first principles of these methods. Pre-

determined percentage, historical regression, and expert opinion all take a holistic view of

the program when estimating margin. This top-down view of the problem is what enables

the underlying uncertainties to be characterized. In comparison to these three methods,

range estimating takes a bottom-up approach to estimating margin by breaking the prob-

lem down into its component subsystems and components. As was found in Section 3.5.2,

this bottom-up approach leads to the inability to consider all of the relevant sources of

uncertainty.

The top-down view of the problem shared by other methods enables the consideration

of all forms of uncertainty. In order for a probabilistic methodology to account for baseline

changes, the bottom-up range estimating techniques need to be combined with a top-down

technique that can estimate the effect of baseline changes. This will result in a hybrid

methodology which combines the ability of range estimating to provide a high-quality prob-

abilistic estimate with the ability to account for the relevant forms of uncertainty. This idea

is captured in the following hypothesis:

Hypothesis 1: If a hybrid process is adopted with a bottom-up and a top-down
component, then the relevant sources of uncertainty affecting space and launch
vehicles will be quantified to enable a more complete estimate than can be
constructed via existing methods of design margin estimation.
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This hypothesis serves as the basis for a proposed methodology which can extend tra-

ditional probabilistic techniques to account for all relevant sources of uncertainty. This

hypothesis will be accepted if a sample problem can be used to demonstrate the viability

of this method. This hypothesized method, along with additional hypotheses which help

further define the method, will be developed throughout the remainder of this chapter.

4.2.1 Methodology Development

A hybrid process recognizes that an overall margin allocation requires two different types

of uncertainty analysis: traditional weight engineering which seeks to predict the eventual

weight of a baseline and a risk/opportunity analysis which seeks to determine potential

changes to the program. Noting this distinction, a bottom-up process is necessary for

answering the traditional weight engineering problem while a top-down process focused on

forecasting the uncertainty due to vehicle baseline changes is performed in parallel. Both

methods will create estimates which will ultimately be combined to determine the overall

design margin for a vehicle. An analogy can be made to the AIAA’s Mass Properties Control

for Space Systems Standard where separate estimates are recommended for in-scope and

out-of-scope growth. [6] This hypothesized methodology will use a bottom-up method to

account for in-scope sources of growth due to model and certain technological uncertainties.

A top-down process will attempt to account for all other sources of uncertainty.

Range estimating has been selected to account for model and certain technological un-

certainties within a hybrid methodology because it is an established method that can extract

high quality estimates of a particular vehicle. The estimation produced through range es-

timation will serve as an estimate of the current baseline. Because range estimating was

described in Section 3.5.1.2, no further explanation will be provided in this section as the

proposed methodology does not seek to change the method. Furthermore, utilizing a ma-

ture methodology for the estimation of margin allows the focus of the hybrid methodology

to be on forecasting prospective baseline changes and their respective effects on the initial

estimate. This focus leads to Research Question 2:

Research Question 2: How can significant baseline changes resulting from phe-
nomenological uncertainties, exogenous uncertainties, volitional uncertainties,
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and certain technological uncertainties be identified and quantified?

This research question addresses two distinct analysis gaps. The first gap is the ability

to identify potential baseline changes. The baseline changes identified must cover a large

portion of the possibility space so that potential changes are not left out of a risk/oppor-

tunity analysis. The second gap is the ability to analyze this large number of potential

baseline changes. As Section 4.1.1 shows, there can be far too many potential baselines to

analyze each individually.

Before the second gap can begin to be addressed, a systematic method of identifying

potential baseline changes must be created. Baseline configuration changes are the result

of the underlying uncertainties, both of a technical and programmatic nature, which af-

fect a development program. Therefore, in order to determine potential baseline changes,

the uncertainties which affect the vehicle must be mapped to specific, discreet changes in

the baseline configuration. The process of examining an uncertainty and determining its

potential future effects has been explored in the discipline of scenario analysis.

4.2.1.1 Scenario Analysis

Scenario analysis is a forecasting technique which tries to identify a set of plausible futures

known as scenarios. Scenarios are formally defined as “descriptive narratives of plausible

alternative projections of a specific part of the future.” [41] Scenario analysis differs from

other forecasting techniques in its ability to offer multiple forecasts. Furthermore, providing

multiple forecasts is a cornerstone of scenario analysis because it allows an examination of

the underlying assumptions of each forecast. [119]

Traditional scenario development begins with identifying the driving forces that can

affect a project’s success. Typical categories of driving forces consist of social, economic,

environmental, political, and technological factors (known as the SEEPT framework). Once

the relevant driving forces have been identified, the dimensions within these driving forces

which present the greatest uncertainty must be found. For example, these dimensions could

encompass the price of fuel or labor as well as the projected growth of a target demographic.

The two most important dimensions can then be fed into a scenario matrix. [41, 79, 119]
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Low Dimension 1 
Low Dimension 2 

Figure 23: Sample Scenario Matrix

A scenario matrix is a 2x2 matrix which guides the creation of specific scenarios. An

example scenario matrix can be seen in Figure 23. The two dimensions identified in the

previous step are used as the axes of the matrix. Each quadrant of the matrix defines

a separate scenario. Defining scenarios in this fashion ensures that each of the scenarios

considered is qualitatively different and that the key drivers will be drivers in each of the

selected scenarios. [41]

The scenario matrix results in four separate scenarios. Literature has shown that three

to four scenarios is the recommended number to carry into the next phase of scenario

generation, scenario plot development. [119] Scenario narrative (also known as scenario

plot) development focuses on telling the story of how the world of the present turned into

the world proscribed by the factors as defined in the scenario matrix. These descriptions

of how today’s world changes is a key feature of scenario analysis because they capture

the impacts of the driving factors into an easily communicable and engaging story. This

story makes the scenario more engaging for decision makers who have to consider different

potential futures and consider different potential strategies. [41, 79]

88



4.2.1.2 Shortcomings of Scenario Analysis as Applied to Development Programs

Scenario analysis as practice lends itself towards strategic planning in large organizations.

While it offers a useful method of looking at prospective futures, most of the features of

this method do not apply to problem of looking at specific changes to a vehicle.

The most important feature of traditional scenario analysis, the scenario narrative,

serves to tell an engaging story to communicate the implications of a potential future to

decision makers. The need to develop well-defined scenario narratives drives the selection of

only a few potential scenarios due to the effort required by both the scenario development

team and decision makers to create and understand different visions of the future. Narratives

provide decision makers in other industries the ability to understand how potential futures

come about so that they can gain a better understanding of the impacts of future decisions.

However, in vehicle development, the decision to determine the overall size of a vehicle

and its corresponding margin can only be made once. The end-states of potential vehicle

baseline changes are far more important to the eventual decision of how much margin to

carry than the story documenting how those changes came about. Because this decision

is only based on the scenario end-state, the narrative of how that end-state is reached is

unnecessary.

Current scenario analysis treats all scenarios as equally likely– there is no assumed

baseline. However, implicit in the initial design of a vehicle is a scenario where no baseline

changes occur. In this baseline scenario, range estimating would account for all active

uncertainties rendering a need for scenario analysis moot. A scenario development process

for a vehicle will need to take the original baseline into account.

Another idea that does not carry over from traditional scenario analysis is the idea that

a few key dimensions can describe the problem. Unlike large strategic planning problems

where a few key driving factors can provide dimensions for a scenario matrix, a vehicle

development is subject to a large number of factors which guide its future. For example,

new requirements could be levied if a new stakeholder or stakeholders join the project

after ATP. Technologies incorporated into the design might completely fail due to technical

reasons and be removed from the vehicle, or the same technologies might prove too expensive
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due to either rising costs or an externally-mandated budget reduction. Finally, as the design

progresses, increased modeling fidelity may yield a result which requires a redesign.

While traditional scenario design does not address the first analysis gap identified by

Research Question 2 of identifying potential baseline configuration changes, it does provide

a starting point for a framework that can be specialized. By sacrificing the need to create

in-depth stories focusing on how potential end-states appear, an analysis team can focus on

creating more potential scenarios consisting of differing end states. This larger number of

scenarios will be able to capture the uncertainty due to a larger number of driving factors.

4.2.2 Adapting Scenario-Based Forecasting to Vehicle Design

The problem of forecasting different potential baseline configurations of a vehicle requires a

fundamentally different method of scenario generation and analysis. The scenario generation

process begins by utilizing Kahn and Wiener’s framework for creating scenarios.

In order to make long-term projections about the future, Kahn and Wiener constructed

potential scenarios of hypothetical events leading to the year 2000. The scenario construc-

tion process first involved identifying the basic trends of Western society and using these

trends to create a “surprise-free” projection– the standard world. Given this initial pro-

jection, the authors then identify themes which would lead to an alternative world; from

these themes eight “canonical variations” are created. These nine scenarios are meant to

represent the “range of not implausible developments from existing conditions.” [66, 65]

While Kahn and Wiener were looking at a much larger problem in trying to attempt to

project the state of world powers thirty years out, their basic framework for constructing

scenarios is instructive to the problem of forecasting potential changes to a vehicle base-

line. Kahn and Wiener created a baseline forecast and examined variations of the original

standard world; a vehicle will also have a baseline forecast and potential configuration varia-

tions. With this framework identified, attention must be paid to the generation of potential

alternative scenarios.

The identification of potential alternative scenarios affecting a vehicle requires harness-

ing the creativity and experience of the experts on a project team. Techniques for generating
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potential risks/opportunities or scenarios can be as simple as pondering, defined as a per-

son sitting down with a pen and paper and writing down potential risks or opportunities.

Brainstorming is a similar process which involves a team of six to twelve individuals with a

variety of backgrounds generating potential risks or opportunities. [25]

While these identified techniques are widely used, they are still potentially not ex-

haustive and are not structured. Literature has shown that morphological analysis is an

explorative and exhaustive approach to the generation of a large number of alternatives.

[63, 64, 110, 111]

4.2.2.1 Morphological Analysis

Morphological analysis was developed by Friz Zwicky, a Swiss-American astrophysicist,

in the 1940s. One of the first uses of morphology was to determine the possible design

configurations of propulsion systems. [110, 153] Since this paper, morphological analysis

has been used as a way to generate and collate different design solutions. [40, 94]

Morphological analysis consists of two constructs: the morphological field (also known

as a morphological matrix or a matrix of alternatives) and the cross-consistency matrix. A

morphological field consists of the elements of a system and delineates potential alterna-

tives; an example morphological field can be seen in 24. Each row of the field, known as a

parameter, represents a different element of the system. Members of each row, known as

conditions, represent potential alternatives to an element of the system. [63, 64, 111] The

selection of a condition from each parameter constitutes a single simple configuration; a sim-

ple configuration is defined as “a configuration with one and only one condition designated

under each parameter.” [111] Each simple configuration represents a different alternative

of the problem under consideration. The total number of simple configurations in a given

morphological field is expressed by Equation 21 where n is the total number of parameters

and vi is the total number of conditions in a given parameter. This equation shows that the

number of simple configurations grows geometrically with the number of parameters. [111]

TSC =

n∏
i=i

vi (21)
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Figure 24: Sample Morphological Field

The cross-consistency matrix is a pair-wise comparison matrix which relates conditions

contained within a single parameter to the conditions in every other parameter. Each pair-

wise comparison is used to determine the compatibility between conditions; if two conditions

are incompatible, then no simple configurations can be made using both conditions. [63] An

example cross-consistency matrix can be seen in 25; in this matrix, incompatible pairs are

denoted with an ’x.’ While the morphological field grows geometrically, the cross consistency

matrix grows quadratically where the total number of pairs are determined by Equation 22.

[111]

Ct =
n−1∑
i=1

n∑
j=2

vi · vj (22)

4.2.2.2 Morphological Analysis Applied to Scenario Generation

Morphological analysis can be used to generate potential scenarios resulting in potential

baseline changes. This can be used on two different levels: the generation of vehicle baseline

alternatives and higher level conditions which constrain baseline alternative choices.

In this application, the first level of morphological analysis is the identification of poten-

tial ways in which the concept can be implemented. This will involve performing a physical

decomposition of the vehicle and identifying alternatives for each subsystem. These alter-

natives can include alternate configurations, technologies, or materials.

The next level of potential alternatives concerns conditions which the project may be

subject to which can result in baseline changes. Such conditions are manifestations of ex-

ogenous uncertainties; examples include funding profiles, requirements changes, and the

addition or subtraction of stakeholders. A matrix of alternatives can be used to explore and
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Figure 25: Sample Cross Consistency Matrix

define these conditions. While these conditions do not represent specific alterations to the

vehicle baseline, they will be linked to the design alternatives matrix of alternatives through

the cross-consistency matrix. The cross-consistency matrix enables the external conditions

which affect the development program to explicitly define the alternatives space. Addition-

ally, throughout this step, the morphological field representing the physical decomposition

can be re-visited as new potential alternatives are identified.

These two levels define a single matrix of alternatives which describes the range of po-

tential alternative futures. Each unique combination represents a potential future scenario.

One unique scenario must define the baseline case, and, in keeping with Kahn and Wiener’s

framework for scenario generation, every other alternative scenario represents a potential

way for the baseline design to change. The use of a matrix of alternatives as a way to

generate scenarios which define alternative baselines is formalized by Hypothesis 2.

Hypothesis 2: If a morphological approach to scenario generation is taken then
large numbers of possible alternatives for the future baseline configurations can
be identified.

Within a morphological matrix used for generating scenarios, each row of the matrix
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 Al  Al‐Li  Composite 

Figure 26: Notional Matrix of Alternatives

represents a class of an event or design change which can occur, and each entry of a row is

an alternative event or design change. A notional matrix can be seen in 26. In this example,

there are 4 identified funding profiles, and two separate requirements which can be subject

to change. Additionally, two structural subsystems are identified for separate construction

techniques requiring differing levels of technology infusion. The baseline is identified by the

green shaded alternatives.

Scenarios can play out on two different levels. The first level are the exogenous changes

to the program. This is represented by differing funding profiles and potential requirements

changes. A change to one of these scenario alternatives would further constrain the second

level– the impacts to the vehicle. For example, if the scenario involved a funding cut of 20%,

then the money needed to create composite propellant tanks will disappear. This can be

modeled using the cross-consistency matrix. Once the exogenous degrees of freedom have

been specified, potential changes to the baseline can still take place. For this example, if

the baseline funding profiles and requirements are chosen, then the tank and wing could

still have to be made out of Al-Li due to the failure of composite technology or a future

trade study.

Ultimately, this hypothesis can be shown to be correct through a proof of concept. The

act of creating a morphological field for a novel concept is expected to show that a sufficient

number of alternatives which cover potential baseline changes can be identified.
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4.2.2.3 Extending Morphological Analysis

The use of morphology to identify a large number of potential scenarios only address the

first gap called to question by Research Question 2. The next challenge is the ability to

analyze these scenarios quantitatively; this ability will require an extension to traditional

morphological analysis to include additional information about the underlying conditions.

Hypothesis 3 hypothesizes such an extension to a traditional morphological analysis.

Hypothesis 3: If a matrix of alternatives can be extended to include quantitative
information about alternative baseline configurations and potential futures, then
the sources of uncertainty not addressed by range estimating can be quantified.

This hypothesis serves as a frame for the required top-down analysis required by the

methodology hypothesized in Hypothesis 1. This top-down methodology, known as Exe-

cutable Morphological Analysis, will be developed in Chapter 5. Once this extension to

morphological analysis has been developed, it will be part of a larger hybrid methodology

which will be detailed in Chapter 6.
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CHAPTER V

EXECUTABLE MORPHOLOGICAL ANALYSIS DATA STRUCTURES

AND ALGORITHMS

As hypothesized in Section 4.2.2.3, an extension to traditional MA can be used to address

the additional sources of uncertainty not addressed by range estimating. This extension

allows quantitative information to be extracted from individual combinations as well as

the matrix as a whole. This chapter provides an introduction to executable morphological

analysis (EMA) as a general concept and develops the data structures, algorithms, and

implementations specific to the problem domain of forecasting.

5.1 Previous Work into Extending Morphological Analysis

A previous study by Jimenez et al. explored extending a traditional matrix of alternatives

to capture the probability and consequences of potential scenarios for a terrorist attack on

a civil aviation target. Their matrix of alternatives was used to identify alternatives in the

following categories: tactical objectives, point of entry, target, tool, and tool transport. In

order to conduct a successful attack, an attacker will have to bypass security and carry

out a technically feasible attack. To determine the probability of a successful attack, the

cross-consistency matrix was populated using a [0, 1, 3, 9] scale where 0 represented no

possibility of success while a 9 represents a high probability of success. The total success of

a potential scenario was determined by multiplying the 10 cross-consistency matrix values

together. Consequences were determined by assigning values to individual elements of the

matrix, but the authors say that this is a very simple way of determining a consequence

level. [64]

Applying this formulation to the problem of vehicle development is challenging because

scenario elements which describe the course of a vehicle’s development differ from the el-

ements which describe a potential terrorist attack. In Jimenez et al.’s formulation, the

elements which comprised an attack were not independent– a choice of one element directly
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linked to the scenario through the cross-consistency matrix. However, for vehicle develop-

ment, a large number of potential scenario elements are independent of one another. For

example, the probability of levying a new requirement can be independent of the probability

that a technology to be infused will have to be dropped from the vehicle. The presence

of independent events means that probabilities cannot be determined directly through a

modification of the cross-consistency matrix.

While the Jimenez et al. study shows that extending MA can be used to predict the

relative probability of scenario events, it is only applicable for highly coupled problems. In

order to extend MA for vehicle-centric scenario elements, a more comprehensive approach

will be utilized which fundamentally changes both the morphological field and the cross-

consistency matrix.

Payan’s extension of MA created a probabilistic cross-consistency assessment. In this

implementation, a cross-consistency assessment was performed and values between 0 and 1

were issued for each pariwise comparison. The total probability of a configuration would

be the product of each pairwise comparison. This would have the effect of determining how

likely a combination was to occur. [100]

5.2 Generalized Executable Morphological Analysis

The fundamental idea behind EMA is that, by including information about individual

conditions, conclusions can be made about the content of the morphological field as a whole

or about individual combinations of conditions. While the specific implementation of EMA

will be problem-specific, there are general extensions that will be necessary for all classes of

problems. First the morphological field will be extended to include multiple types of data

instead of just representing potential parts of a combination. Specifically, this extension of

the morphological field should include information which describes the relative likelihood

and impact of selecting a condition. The inclusion of data in the morphological field will then

necessitate an expansion of the cross-consistency matrix to define relationships between the

morphological field’s constituent conditions; these relationships will enforce compatibilities

between conditions as well as influence the data contained in each condition.
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Figure 27: A Traditional Matrix of Alternatives

5.2.1 Data Structures of Executable Morphological Analysis

5.2.1.1 Executable Matrix of Alternatives

The primary data structure in traditional MA is the morphological field (also known as a

matrix of alternatives). The morphological field is made up of a set of parameters; these

parameters define an n-dimensional configuration space. Each parameter is in turn made up

of a set of conditions. A single combination can be identified by selecting a single condition

from each parameter. Figure 27 shows an example of a traditional morphological field. [111]

The executable matrix of alternatives is an extension of the morphological field for use

in EMA. In order to extract quantifiable information about the combinations of the matrix,

extensions need to be made on all levels of the morphological field. This section explains

the generalized extension of a morphological field from Figure 27 to the executable matrix

of alternatives of Figure 28.

The lowest level of the morphological field, individual conditions, define discrete choices

available for selection. In order to conduct an analysis over an executable matrix of al-

ternatives, additional information will need to be assigned to each condition. While the

information necessary to add to a condition will be problem specific, at a minimum, two

types of information need to be added to conditions. First, a condition will include an at-

tribute which defines an effect, such as a weight penalty or cost increase, as a consequence

of selection. Second, a condition needs to include information that can be used as an input

to a function which can determine a relative likelihood or preference of one condition versus

the other conditions contained in the parameter.

While extending the conditions in the morphological field is relatively straightforward ,
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Figure 28: A Notional Executable Matrix of Alternatives

an extension to the parameters of the field is more nuanced. Within an executable matrix

of alternatives, the primary function of the parameters is to provide a mechanism for se-

lecting conditions from parent parameters. While the mechanism will be problem-specific,

in general the parameter of the morphological field will have to be extended to support

these mechanisms. For example, a mechanism for selecting a condition can work on the

data contained within a parameter’s conditions; the extension of the parameter will include

constraints for ensuring that the data within the constituent conditions is well-conditioned.

A specific implementation of this example would involve conditions which contain probabil-

ity estimates in the form of probability estimates. In order to maintain a well-conditioned

probability distribution, the parameter will have to be extended to constrain the proba-

bility values of the individual conditions so that the sum of probability values across the

parameter equals unity.

Finally, algorithms will operate on the entire morphological field to extract useful in-

formation from the constituent parameters and conditions. These functions will work in

concert with the extensions made to the parameters to enforce constraints on conditions

during the execution of an algorithm. As with the specific implementation of parameters

and conditions, the extraction algorithms will be problem dependent, but in general the
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Figure 29: A Notional Relationship Matrix

goal of these algorithms is to extract two types of information: trends covering the over-

all executable matrix of alternatives and the identification of noteworthy combinations of

conditions.

5.2.1.2 Relationship Matrix

The cross-consistency matrix is a pairwise comparison matrix which enforces compati-

bility between conditions in traditional MA. [111] This compatibility is a simple binary

relationship– either conditions are compatible or not. As EMA has extended the morpho-

logical field to include more information, the cross-consistency matrix must also be extended

to enable more relationships between conditions. This extension is known as the relation-

ship matrix. A sample relationship matrix can be seen in Figure 29; this sample relationship

matrix corresponds to the sample executable matrix of alternatives found in Figure 28.

The first major extension is in the way that the relationship matrix handles compat-

ibilities. While the ability to enforce a binary relationship must remain, the relationship

matrix will extend a traditional cross-consistency matrix to include continuous compati-

bility relationships. Relationships can make related conditions more or less likely to be
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expressed. These relationships are realized by temporarily altering information contained

in the executable matrix of alternatives; an activation of a relationship can change a con-

dition’s underlying data which may in turn require the enforcement of constraints on the

parameter level.

In addition to continuous compatibilities, the relationship matrix can also contain re-

lationships which change the effects of a selected condition. Relationships can make the

effect of a condition more beneficial or more disadvantageous. As with compatibilities, these

relationships will manifest themselves by temporarily altering the data contained within in-

dividual conditions of the executable matrix of alternatives.

The specifying of relationships in the relationship matrix data structure will be fairly

straightforward. For each pairwise comparison, the relationship matrix will contain values

which describe each potential relationship; a notional implementation of these relationships

can be seen in Figure 29. Each pairwise comparison does not necessarily have to have a

relationship which affects the values in a condition, therefore a specific implementation of

relationships should have values which signify that no change should occur if a relationship

is activated.

5.2.1.3 One-way Relationship Matrix

Traditional MA maintains that two conditions are either mutually compatible or incompat-

ible. As EMA moves away from simple binary (two-way) compatibility relationships. As

explained in Section 4.2.2.1, this assumption is what enables a cross-compatibility matrix

to have fewer total combinations. However, it is possible that a parameter’s conditions may

have one-way relationships with other parameter’s conditions. For example a change in the

funding profile may cause designers to make different design decisions, but designers making

different design decisions will not cause a change in the funding profile. Because situations

like this are common, it is important for EMA to support one-way relationships.

A one-way relationship is defined as a relationship in which only one of the connected

conditions can activate the relationship while only the linked condition can be affected by the

relationship. Both the activating and affected conditions must be specified a priori during
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Figure 30: One-Way Relationship Matrix

the creation of the model. Other than the directionality of effect, one-way relationships are

identical to two-way relationships for any given problem and should have the same methods

of altering condition attributes and enforcing compatibilities.

The one-way relationships in a model can be visualized in a one-way relationship matrix.

For each pair of parameters which can be linked through one-way relationships, an nbym

matrix can be created where n is the number of conditions in the upper matrix parameter

and m is the number of conditions in the lower matrix parameter. This is a one-way

relationship matrix where the selection of a condition of the upper matrix will affect all of

the conditions in the lower matrix. A one-way relationship matrix can be seen in Figure

30. In this figure, the source parameter is listed on the left, and the destination parameter

is listed across the top of the matrix.

5.3 Specific Realization of EMA Data Structures

Section 5.2 introduces the general idea of EMA, its data structures, and the purposes of

each extension to traditional MA. This section will apply these general ideas to an imple-

mentation of EMA specific to the problem of forecasting potential baseline configuration

changes and their respective probabilities and effects.
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5.3.1 Required Information in the Executable Matrix of Alternatives

5.3.1.1 Impact of a Scenario Element

When discussing the impact of a potential baseline change, the metric of interest is a

change in mass relative to the original baseline. This can be modeled in an executable

matrix of alternatives by including two attributes in each condition: an additive effect

and a multiplicative effect. While other problems may have different relationships between

conditions, this thesis will be focusing on using additive and multiplicative effects to model

subsystem or component weights, weight deltas, and vehicle-wide weight changes.

The first effect modeled is a subsystem or component weight. In this case, the baseline

condition will have an additive effect equal to the baseline weight of the subsystem or

component as defined in the WBS. Alternative conditions in each parameter will also have

additive effects which define the total subsystem or component weight.

Another valid implementation of additive effects in this EMA implementation can rep-

resent a change in weight relative to the subsystem or component baseline. In this case,

the condition corresponding to the vehicle’s baseline design will have an additive effect of

0. The conditions representing subsystem alternatives will have an additive effect equal to

the delta-weight of the redesign relative to the subsystem baseline weight.

Both method of implementing additive effects can be used in the same EMA model.

In general, additive effects accounting for the total weight of a component should be used

when the model designer wants to expose the total weight of a subsystem to relationships.

Additive effects which only account for delta-weights should be used when representing

components which are not likely to be affected by other parts of the model.

While a scalar value can account for most scenarios, certain scenarios will affect the

entire vehicle necessitating a percentage change in mass. For example, implementing a

vehicle-wide mass control program can decrease the overall mass of the vehicle compared

to a development program which foregos a mass control program. These changes can be

implemented through a multiplicative effect: a scalar multiplication of the vehicle’s total

mass.

For a given combination of conditions, the total additive effect is equal to the sum of
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the additive effects in each selected condition; this formula is expressed in Equation 23.

Similarly, the total multiplicative effect for a given combination of conditions is equal to

the product of all multiplicative effects; this is expressed in Equation 24. It is expected

that very few conditions will result in the scalar multiplication of the vehicle mass; for all

conditions which do not have a multiplicative effect, the value of the multiplicative effect

should be assigned as unity so that it will not affect the output of Equation 24.

Eadditivecombination
=

n∑
i=1

Eadditivei (23)

Emultiplicativecombination
=

n∏
i=1

Emultiplicativei (24)

Once the total additive and multiplicative effects are known, the next step is to calculate

the total weight of the vehicle. Because additive effects can either represent the baseline

weight or a delta-weight, the remaining weight not accounted for by the EMA model must

be calculated. This remaining weight is calculated according to Equation 25 where the

remaining weight is equal to the WBS baseline weight minus the sum total of all baseline

conditions in the EMA model. Given this remainder, the total weight of the vehicle ac-

counting for both additive and multiplicative effects is calculated according to Equation

26.

Weightremaining = Weightbaseline −
n∑

i=1

Eadditivebaselinei
(25)

Weighttotal = (Weightremaining + Eadditivecombination
) ∗ Emultiplicativecombination

(26)

The output of the EMA model and Equation 26 provides a forecast for the total weight

of the vehicle. In order to extract a design margin from this forecast, the baseline weight

as defined by the WBS must be subtracted from the EMA model output; this relationship

is expressed in Equation 27.

MarginV ehicle = WeightModelOutput −WeightBaseline (27)
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These equations fully explain how to calculate the total weight and margin for a single-

item weight statement, but most problems will have a hierarchal weight statement broken

down into subsystems and components. In EMA, each parameter can be assigned to a

particular level of a weight statement in order to correspond with a vehicle’s WBS.

For a selection of conditions in parameters which correspond to a particular subsystem or

component, the total additive effect is calculated using Equation 28; the total additive effect

for the subsystem or component is simply the sum of the additive effects of the subsystem’s

constituent parameters. Additionally, subsystems are not affected by multiplicative effects

as these multiply the total vehicle baseline and are designed to model vehicle-wide influences;

subsystem-specific multiplicative effects can be modeled through relationships as described

in Section 5.3.2.2.

Eadditivesubsystem =

j∑
i=1

Eadditivei (28)

In order to calculate the total weight of a subsystem, the remaining weight not accounted

for by the EMA model must be calculated. This remaining weight is calculated using

Equation 29; this process is the same as for a single-line WBS except that this would

be repeated for each subsystem modeled. The total subsystem weight can be calculated

using Equation 30. Equation 30 shows that, unlike the total vehicle weight case, the total

subsystem weight is only a function of additive effects. Finally, the total subsystem margin

can be calculated by subtracting the subsystem baseline weight from the model output as

calculated by Equation 30; this margin calculation is shown in Equation 49.

Weightremainingsubsystem = Weightbaselinesubsystem −
j∑

i=1

Eadditivebaselinei
(29)

Weighttotalsubsystem = Weightremainingsubsystem + Eadditivesubsystem (30)

MarginSubsystem = WeightModelOutputSubsystem
−Weightbaselinesubsystem (31)

Because a WBS is hierarchal, the total weight of a system will be equal to the sum of

105



its constituent subsystems. This hierarchal relationship must also hold for the output of

an EMA model; as can be seen in Equation 32, the weight of a system is equal to the sum

of j subsystem weights plus k conditions which only affect the higher-level system and the

remaining weight of the system. The remaining weight of a system is equal to the WBS

baseline weight minus the baseline weights of all constituent subsystems and all parameters

attributed to the system; this is shown in Equation 33 where there are j subsystems and k

system conditions. This remaining weight will account for any constituent subsystems not

specifically modeled through EMA. If all of a system’s subsystems are accounted for in the

EMA model, then the system’s remaining weight should equal 0, and there should be no

conditions which only affect the system level weight statement.

Weightsystem =

j∑
i=1

Weighttotalsubsystem +

k∑
i=1

Eadditivei +Weightremainingsystem (32)

Weightremainingsystem = Weightbaselinesystem − (

j∑
i=1

Weightbaselinei +

k∑
i=1

Eadditivebaselinek
)

(33)

When the system represents the top level of a WBS, Equation 32 will calculate the

(Weightremaining +Eadditivecombination
) portion of Equation 26. At this point the multiplica-

tive effects on the total vehicle should be applied; the added weight due to the multiplicative

effects can be accounted for by an additional high-level line on a WBS unattributable to a

specific subsystem.

5.3.1.2 Probability of a Scenario Element

While a condition can contain a number of attributes which describe a scenario, the attribute

or attributes which can be used to calculate a fitness or scenario probability are more critical

to the goal of determining which combinations are most likely to occur. For this problem,

each condition will have a field which specifies its probability of occurring relative to other

conditions in the same parameter. The direct specification of a probability for conditions

within a parameter was selected for two reasons: it is an explicit measure of the relative
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Figure 31: Example Matrix with Probabilities

Table 10: Joint Probability Distribution for Example Matrix with Probabilities

probabilities, and probability estimates can be elicited using techniques from the field of

subjective probability forecasting.

An explicit measure of probability is very useful as it enables the direct calculation

of statistics; the expected value of the change in mass and percentiles of potential mass

estimates will be available to decision makers. This direct specification is also subject to

constraints on potential values. First of all, all probability values must be ≥ 0. Additionally,

a constraint will need to be placed on the individual conditions of a parameter; the sum total

of the probabilities in a parameter’s constituent conditions must sum to unity. By ensuring

that the probabilities of the conditions in each parameter sum to unity, the total matrix

represents n jointly distributed discrete random variables where n is equal to the number

of parameters. Therefore, the specification of probability values for a given parameter is

directly specifying the marginal distribution of a parameter. [58, 141]

An example probability matrix can be seen in Figure 31. As this represents two jointly

distributed discrete random variables, the joint probability distribution can be seen in Table

10. For the basic definition of probabilities, each parameter can be modeled as an inde-

pendent variable. Therefore, the generalized calculation for the combined probability for

a combination of condition selections is expressed by Equation 34; the total probability is

equal to the product of the combination’s constituent probability values.
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Pcombination =

n∏
i=1

Pi (34)

An additional consideration in selecting the direct specification of probability is the act

of eliciting a value during the construction of this data structure. In order to assign a

specific probability value, the experts consulted to make an elicitation will have to decide

on a specific number to assign for a probability– a common problem in the fields of risk

analysis and forecasting. Because it is a common problem, this is an active area of research

with several documented methods of eliciting subjective probability estimates.[52, ?, 86, 88]

An organization employing EMA would be able to choose a suitable method based on their

experience and organizational needs.

5.3.2 Relationships

To complete the realization of EMA for the purposes of forecasting potential vehicle baseline

changes, the relationships which comprise the model need to fully describe the potential

relationships between individual conditions and their constituent data elements. This will

involve three types of relationships: relationships affecting probability values, relationships

affecting additive effects, and relationships affecting multiplicative effects. Additive and

multiplicative effects can be modified through either additive or multiplicative relationships;

this leads to a total of five potential relationships possible in an EMA model.

Pairs of conditions may be linked by all, none, or any combination of the five relation-

ships described in this section. If two conditions are not linked via a relationship, then the

values in the relationship matrix or one-way relationship matrix are defaulted to designated

“no effect” values.

5.3.2.1 Relationships Affecting Probabilities

The probabilities enumerated in Section 5.3.1.2 specify the probability of a condition being

selected relative to the other conditions in a parameter. Another way of looking at the

relative probabilities within a parameter is to examine at the ratios of probabilities. For

the matrix in Figure 32, the ratios of each pair of probabilities can be seen in Table 11.
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Figure 32: Expanded Example Matrix with Probabilities

Table 11: Ratios of Probabilities for Figure 32

These ratios of probabilities are of primary importance when considering relationships be-

cause a straightforward way to express a probability relationship is to specify the change in

probability relative to every other condition in the parameter.

Probability relationships between conditions are defined by Equation 35. In this equa-

tion, Aselected represents the selected condition from parameter A, Btarget represents the

adjoining condition primarily affected by the relationship, and Bother represents other con-

ditions in parameter B. RRelationship is a multiplicative relationship between ratios of prob-

abilities.

P (Badjoining)|Aselected)

P (Bother)|Aselected)
= Rrelationship ∗

P (Badjoining)

P (Bother)
(35)

These probability relationships are implemented in two phases. The first phase is to

multiply the specified probability value in the adjoining condition by the relationship value.

This first step is expressed in Equation 36; if two conditions do not have a probability

relationship, then Rrelationship in this equation will be equal to unity. Once this step has

been carried out for each relationship between the selected condition and the adjoining

parameter, the conditions of the adjoining parameter are normalized so that the sum of all

probability values is equal to unity. This normalization process ensures that Equation 35

holds for all probability ratios.

109



Figure 33: Expanded Example Matrix After Selection of Condition A2

Figure 34: Expanded Example Matrix After Normalization of Parameter B

Pmodified = Pspecified ∗Rrelationship (36)

Pnew =
Pmodified∑
Pmodifiedi

(37)

For the matrix specified in Figure 32 with probability ratios defined by Table 11, the

condition A2 has relationships with B2 and B3 such that the posterior probabilities of B2

and B3 result in the conditions being twice and three times as likely to be chosen given the

selection of A2. Figure 33 shows the state of the matrix immediately after the selection of

A2: P (B2)intermediate = 2 ∗ P (B2) and P (B3)intermediate = 3 ∗ P (B3). The next step is

to apply Equation 37 to parameter B; this change can be seen in Figure 34. The ratios of

probabilities for this matrix can be seen in Table 12. These new values match the definition

of probability relationships as defined by Equation 35: B1/B2 is now equal to 1, B1/B3 is

now equal to 2, and B2/B3 is now equal to 2.

Table 12: Ratios of Probabilities for Figure 34
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Figure 35: Expanded Example Matrix After Selection of Condition A2

Figure 36: Expanded Example Matrix After Normalization of Parameter B

These probability relationships can also be used to implement incompatibilities within

an extended morphological field and maintain the functionality of the cross-consistency

matrix. For two conditions to be incompatible, the probability relationship linking them

should be equal to 0. This will result in the adjoining condition’s probability being equal

to 0 after the application of Equation 36. For example, suppose that A2 and B1 from the

matrix shown in Figure 32 are incompatible. This will result in B1’s probability value being

equal to 0 as seen in Figure 35. After the normalization of parameter B, the final state of

the matrix is as seen in Figure 36, and the corresponding probability ratios are shown in

Table 13. This table shows that this relationship renders A2 and B1 incompatible while

maintaining the original probability ratio between B2 and B3.

Each probability relationship can only be applied once during the process of selection

of an extended morphological field. Once a condition is selected from a parameter, the

probability values for the conditions in that parameter are fixed for the remainder of the

Table 13: Ratios of Probabilities for Figure 36
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selection process. This ensures that Equation 34 accurately reflects the overall probability

of selecting a series of conditions based on the order in which they are selected.

5.3.2.2 Relationships Affecting Condition Attributes

Conceptually, relationships between conditions which affect changes in the expected mass

are much simpler. The expected mass can be linked through either a multiplicative or

additive relationship. However, these relationships can be more complicated to implement

because there are more potential relationships between effects. Both multiplicative and

additive effects on the overall mass of the vehicle can be affected by additive relationships,

multiplicative relationships, or both additive and multiplicative relationships.

Additive effects for a change in mass can be modified by an additive relationship, a

multiplicative relationship, or both additive and multiplicative relationships. The equation

for these relationships can be seen in Equation 38. In this equation, the adjoining condition’s

new effect value is modified by both the multiplicative and additive relationship. Both

additive and multiplicative relationships can be expressed by the same equation because the

default relationship values (0 for additive relationships and 1 for multiplicative relationships)

will result in no change to condition attributes. Furthermore, this equation holds for both

one-way relationships and two-way relationships.

EAdditivenew = (EAdditivespecified ∗Mrelationship) +Arelationship (38)

Multiplicative relationships affecting additive effects are more complicated because the

relationship needs to act on both the selected and adjoining condition in order to maintain

consistency. For example, if condition 1 has an impact of 300 lbs and condition 2 has an

impact of 400 lbs, a multiplicative relationship resulting in an additional 20% growth could

result in an extra 60 or 80 lbs added to the overall mass depending on which condition

was evaluated with the multiplicative relationship. This inconsistency can be avoided by

making the multiplicative relationship propagate backwards upon selection of the original

adjoining condition. When the original adjoining condition is selected, the original selected

condition’s additive effect is multiplied by the multiplicative relationship; this is expressed
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in Equation 39. This equation will only be active in two-way relationships.

EAdditive = EAdditivespecified ∗Mrelationship (39)

In addition to additive effects, this implementation of EMA can also have multiplica-

tive effects which can in turn be subject to both additive and multiplicative relationships.

Equation 40 shows the expression for both additive and multiplicative relationships affecting

multiplicative effects. As with relationships affecting additive effects, relationships affect-

ing multiplicative effects can be expressed through a single equation because the default

relationship values (0 for additive relationships and 1 for multiplicative relationships) will

result in no change to condition attributes. This equation shows the forward propagation

of a relationship and holds for both one-way relationships and two-way relationships.

EMultiplicativenew = (EMultiplicativespecified ∗Mrelationship) +Arelationship (40)

For the case of additive relationships acting on a multiplicative effect, the additive rela-

tionship should act on both the selected and adjoining conditions. This is the opposite of

the way that relationships affecting additive effects are handled because because multiplica-

tive effects are subject to Equation 24 and multiplied together at the end of selection. The

backward propagation of additive relationships affecting multiplicative effects is expressed

in Equation 41. This evaluation of this equation is triggered when the original adjoining

condition is selected during the execution of an EMA model; upon selection, the originally

selected condition’s multiplicative effect will be modified by the additive relationship. Fur-

thermore, this equation only holds for two-way relationships defined in the relationship

matrix.

EMultiplicativenew = EMultiplicativespecified +Arelationship (41)

5.4 Specific Realization of EMA Algorithms

Section 5.2 talks about the need to implement problem-specific algorithms for extracting

information from EMA data structures as defined in Section 5.3. Specifically, algorithms
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will be used to quantify the effect and probability data contained in these data structures;

furthermore this quantification should take the form of a probability distribution so that

the results can syngerize with bottom-up estimates made by range estimating. In addition

to working directly with range estimating, search algorithms will be needed to extract

individual combinations which are of interest to designers– the most likely cases, adverse

conditions, or a combination of high probability and adversity.

This section covers all aspects of extracting information from EMA data structures.

First, the act of selecting a single combination, an act common to both search and prob-

ability distribution generating algorithms, is discussed. Next, the direct calculation of a

probability mass function from an executable matrix of alternatives is shown; this leads to

Experiment 1 which shows that a Monte Carlo simulation is a useful method of construct-

ing a continual distribution function of the information contained in an executable matrix

of alternatives. The final section discusses a search algorithm which can find interesting

combinations in the executable matrix of alternatives.

5.4.1 Selecting a Combination

Before one can synthesize an algorithm to extract trends from the executable matrix of

alternatives as a whole, the process for selecting a single potential alternative must be

discussed. This section walks through a sample selection of a group of conditions in order

to determine how to calculate a combination’s total probability and total effect.

For the purposes of this example, the sample executable matrix of alternatives can

be found in Figure 37. The corresponding relationship matrix can be found in Figure 38.

This relationship matrix only contains additive and multiplicative relationships which affect

additive effects; the relationships which affect multiplicative effects are not listed in Figure

38 because they are trivial and express no change in effect. This example will only discuss

updates to the probabilities and the additive effects of the members of Figure 37.
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Figure 37: Executable Matrix of Alternatives used for Selection Example
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Figure 38: Relationship Matrix used for Selection Example
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The selection of a specific combination from an executable matrix of alternatives utilizes

the equations derived in Section 5.3.2, specifically Equations 36, 37, 38 and 39. In this

example the following conditions are selected from Figure 37 in order: A1, B4, Γ4, ∆1, and

E1.

The first condition selected from this matrix is condition A1. A1 has relationships with

B4, Γ4, ∆1, and E1. Figure 39 shows the consequences of selecting A1 where B4, Γ4, ∆1,

E1,and Z1 have all been updated through the application of Equations 36 and 38 to the

original values and relationships found in Figure 38. After the application of relationships,

the probability values for each parameter violate the constraint that the sum of probabilities

across a parameter must equal one. In order to address this violation, Equation 37 is applied

to each parameter; the resulting executable matrix of alternatives after a normalization can

be see in Figure 40.

These two figures illustrate the application of additive relationships to the additive

effect as well as the probability relationships which change the relative probabilities within

a parameter. Because the selections of B4 and Γ4 also only involve additive relationships,

the example will continue after their selections, but before the selection of ∆1 which involves

a multiplicative relationship with E1. The state of the executable matrix of alternatives

before the selection of ∆1 can be see in Figure 41.

Figure 42 shows the state of the matrix after the selection of ∆1 and the normalization

of each parameter’s probabilities. The additive effects of E1, E2, and E3 are modified by

their multiplicative relationships with ∆1 through equation 38.

After E1 is selected, Equation 39 is applied. This triggers the multiplicative relationship

with ∆1 and ∆2. The final state of the extended matrix after the selection of condition

E1 can be seen in Figure 43. This illustrates the idea developed in Section 5.3.2.2 that a

multiplicative relationship will affect both of the conditions linked through a multiplicative

relationship.

After the individual conditions are selected, the overall probability and effect for the

combination can be calculated. The overall probability of a combination is the product of

the individual probabilities of the combinations constituent conditions (the multiplicative
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Figure 39: The Selection of Condition A1 and the Activation of Relationships
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Figure 40: The Selection of Condition A1 and the Normalization of Probabilities
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Figure 41: The State of the Executable Matrix of Alternatives after the selections of A1,
B4, and Γ4
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Figure 42: The State of the Executable Matrix of Alternatives after the selections of A1,
B4, Γ4, and ∆1
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Figure 43: The State of the Executable Matrix of Alternatives after the selections of A1,
B4, Γ4, ∆1, and E1
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rule [58, 141]); this relationship is expressed in Equation 34 where n is equal to the number

of parameters in the morphological field. The additive and multiplicative effects will be

summed and multiplied respectively to calculate the overall effects for the combination as

expressed in Equations 23 and 24. Finally, the overall effect on the baseline system is

achieved by adding the additive effect and multiplying that sum with the multiplicative

effect; this is expressed in Equation 26. This example selection will have a probability of

.000661, a multiplicative effect of unity, and a total additive effect of 1,847.

In order to illustrate the use of subsystems, assume that parameters alpha and gamma

are assigned to subsystem 1, and delta and epsilon are assigned to subsystem 2. The

total weight of each subsystem would be calculated according to Equation 28 because the

remaining weight value in Equation 30 is equal to 0. In this case subsystem 1 (alpha and

gamma) has a total weight effect of -50 lbs, and subsystem 2 (delta and epsilon) has a total

weight effect of 1,547 lbs. Equations 32 and 33 can be applied to calculate the total weight

of the system. In this case, the remaining weight is equal to 350, the value of B.4. This

leads to a total system weight of 1847, equal to the total additive effect for the full matrix.

This vale would then be multiplied by the total multiplicative effect for the matrix which

in this example is equal to unity.

5.4.2 Potential Options

While Section 5.4.1 examines the selection of a single combination of a matrix, the evalu-

ation of the entire matrix to generate trends is required in order to make a forecast. An

algorithm which evaluates the entire matrix will need to provide utility for decision makers

and synergize with the results of range estimating.

Previous studies into probabilistic design and margin estimation have shown that the

cumulative distribution function (CDF) is a key function which can be used by decision

makers. [31, 132] The focus of an algorithm used to extract data from the executable matrix

of alternatives should be on generating a CDF, or a probability mass function (PMF) which

could be integrated to generate a CDF. [58, 141]

The first potential method of generating a PMF would be from the evaluation of every
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potential alternative in the executable matrix of alternatives. This would involve cycling

through every potential combination and following the selection process as outlined in Sec-

tion 5.4.1. As each selection would yield a feasible alternative with both a probability and

an effect, the totality of all potential selections would yield a PMF. This PMF could then

be integrated to form a CDF.

Another potential option would be performing a Monte Carlo simulation over the exe-

cutable matrix of alternatives. This Monte Carlos simulation would randomly select com-

binations based on the probability values contained within the individual combinations.

These random selections could then be used to construct an empirical CDF.

The presence of two options necessitates a choice in how to proceed forward with the

algorithm to extract probabilistic information from the executable matrix of alternatives.

A direct calculation of the PMF would yield a very accurate calculation, but Equation 21

shows that the number of potential combinations grows at an extremely fast rate. Previous

studies have also shown that morphological analysis can create extremely large numbers

of potential combinations to the point where comprehensive analysis would be impractical.

[40] The combinatorial problem in EMA is further exacerbated because the order in which

conditions are chosen from the executable matrix of alternatives will create multiple different

combination outcomes compared to the analogous case in traditional MA which would only

yield a single combination. Because of the possibility of an untenable number of potential

combinations, the preferred algorithm should be Monte Carlo simulation. This is expressed

in Hypothesis 3a.

Hypothesis 3a: A Monte Carlo simulation run over an Executable Matrix of
Alternatives will yield an equilibrium distribution which describes the impact of
the alternative combinations derived from the morphological field. This equilib-
rium distribution will require less computational resources to compute compared
to a total sum of all potential combinations.

This hypothesis will be approached from two sets of analyses. First, the properties

of the executable matrix of alternatives will be examined. This section will explain how

a PMF can be directly calculated from an executable matrix of alternatives, and it will

examine the necessary computational requirements for this calculation. In comparison,
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an experiment will be performed to determine how many Monte Carlo simulation runs are

necessary to find an equilibrium distribution based on the executable matrix of alternatives.

If the computational requirements for CDF generation via Monte Carlo simulation are less

strenuous than those required for the direct calculation of the PMF, then the hypothesis is

accepted.

5.4.3 Direct Calculation of PMF

The most basic option for calculating the PMF of an executable matrix of alternatives

would be the evaluation of every possible combination of conditions. In order for the direct

calculation of a PMF to work, combinations must generate a specific effect and probability,

and the executable matrix of alternatives must behave as n jointly distributed discrete

random variables where n is the number of parameters in the matrix.

An executable matrix of alternatives will act as a discrete joint probability distribution

if the probability values follow the rules as laid out in Equation 42. [58] Rule number one is

enforced by the constraint that individual probability values must be ≥ 0; if all probability

values are ≥ 0 then the product of probability values will also be ≥ 0. Rule number three

is satisfied because Equation 34 defines the probability of a combination as a function of

the selections of a combination.

1. f(x, ..., n) ≥ 0 for all (x, ..., n)

2.
∑

x ...
∑

n f(x, ..., n) = 1

3. P (X = x, ..., N = n) = f(x, ..., n)

(42)

Rule number 2, the summation of all discrete probabilities to unity, is dependent on the

definition of the executable matrix of alternatives. For the simplest implementations, a rela-

tionship matrix can omit all relationships between the probabilities of individual conditions.

In this case, the executable matrix of alternatives can be thought of as n independent vari-

ables where n is the number of parameters in the matrix. In this case, the total probability

that a combination of conditions will occur will follow the multiplicative rule, Equation 34.

[58, 141] As the constituent conditions of each parameter are constrained to sum to unity,

the sum of every combination of conditions will also sum to unity.
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Figure 44: Two Different Orderings of Selecting A2 and B2 from Figure 32

The PMF for a matrix with no relationships can be calculated by directly evaluating

every combination of conditions. Each combination will have a corresponding probability

and effect as defined by Equations 34 and 26 respectively.

Many problems will involve a relationship matrix which affects the probabilities of in-

dividual conditions within a matrix. In this case, Equation 37 enforces a normalization

of each parameter after the application of relationships. This normalization enforces this

rule of probability to ensure that the sum of all potential combinations will sum to unity.

However, the fact that probability relationships only propagate to unselected parameters

introduces an order dependency to the selection of conditions. This effect can be seen

through the selection example in Figure 44. In the left hand column of this figure, A2 is

selected triggering a doubling of B2’s probability relative to B1 and B3. In the right hand

column, B2 is selected triggering a doubling of A2’s probability relative to A1, A3, and A4.

The selection of A2 and B2 from the left hand column has a probability of 0.23 while the

selection of A2 and B2 from the right hand column has a probability of 0.2.

Order dependence results in n! potential ways of selecting a combination where n is

equal to the number of parameters in the extended morphological field. This will in turn
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result in n! potential probability values for each selection of conditions. Simply selecting

each permutation of each combination of conditions will result in a set of selections whose

probability values sum to n! because each method of selecting will result in an extended

matrix whose total probability will sum to unity. In order satisfy rule number 2 from

Equation 42 and generate a PMF from the selection of each permutation, the probabilities

of each selection need to be adjusted to account for the n! ways of choosing a combination

from the matrix. The probabilities of each permutation are adjusted using Equation 43;

after applying this equation, the summation of the probabilities generated by summary

evaluation of all permutations of all combinations will be equal to unity and satisfy rule

number 2. A PMF can then be generated using these adjusted probability values and the

effect values for each permutation of combinations. The direct calculation of a PMF requires

n! ∗
∏n

i=i vi evaluations of combinations from the morphological field.

Pnew =
Pcombination

n!
(43)

5.4.4 Experiment 1– Monte Carlo Simulation of EMA

As cycling through every potential combination of an executable matrix of alternatives is

an expensive operation, an alternative is to randomly select a subset of combinations via

Monte Carlo simulation– the histogram of the Monte Carlo simulation will resemble the

PMF of the fully-sampled executable matrix of alternatives. Hypothesis 3a states that a

Monte Carlo simulation can yield appropriate results for less computational cost than a

summary evaluation. Hypothesis 3a will be substantiated if a Monte Carlo simulation can

adequately reproduce key statistics from the CDF in fewer combination evaluations than a

summary evaluation of the matrix.

The key statistics to be tracked in this experiment are the expected value and the 80%

quantile. The expected value will be tracked as that is a measure of central tendency which

will determine which effect is most likely. The equation for the expected value can be seen in

Equation 44. The 95% confidence interval is also calculated in order to track the probability

bounds for the estimate; this interval utilizes the square root of the variance or standard
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deviation (Equation 45) to calculate the 95% confidence interval (Equation 46). [58, 141]

x̄ =
1

n

n∑
i=1

xi (44)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (45)

x̄± ta/2
s√
n

(46)

The 80% quantile is tracked because it is a recommended value to use when forecasting

margins. [2] This value represents a conservative value while not being overly risk averse.

This estimate utilizes order statistics for both the quantile estimate and the confidence in-

tervals; the quantile measurement and confidence interval equations can be see in Equations

47 and 48 respectively. [75, 133]

x̂q = Xdnqe (47)

P (X(r) ≤ xq ≤ X(s)) ≥ 1− α

r = dnq − z1−a/2

√
nq(1− q)e

s = dnq + z1−a/2

√
nq(1− q)e

(48)

5.4.4.1 Monte Carlo Process

The Monte Carlo simulation procedure is visualized in Figure 45. When a new case begins,

the first step involves selecting the parameter which from which a condition will be selected;

this order must be randomized because the order of selection matters for fields with hetero-

geneous relationship matrices. Each parameter has an equal chance of being chosen from a

random number generated via a uniform distribution (0,1).

The second step is selecting a specific condition from the parameter selected in the previ-

ous step. In order to select a parameter, a random number from a uniform distribution (0,1)

is generated. This random number is used to select the condition based on the probability
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Figure 45: Monte Carlo Procedure for EMA Models
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value of the conditions in the parameter. After a condition is selected, the relationships are

activated to modify the other parameters of the executable matrix of alternatives.

If there are remaining unselected parameters in the list, then the previously selected

parameter is removed from the list of parameters and the parameter selection process starts

anew with the updated list. A Monte Carlo simulation case is completed when conditions

from all parameters have been selected; after case completion, the selected conditions are

saved too the simulation output.

After every completed Monte Carlo case, there is a check to determine if the simula-

tion is complete. This process will continue until the specified number of cases have been

completed.

5.4.4.2 Monte Carlo Applied to Example Matrix

The first step in evaluating Hypothesis 3a is making a comparison between the direct

calculation of a PMF and CDF and calculation via Monte Carlo simulation. In order

to make this comparison, a small morphological field must be chosen to avoid excessive

computational complexity. For this test case, the morphological field from Figure 37 and

its corresponding relationship matrix in Figure 38 are evaluated.

The first step in this comparison is calculating the CDF for this matrix for the test case

where relationships between parameters are omitted. The directly calculated CDF can be

seen in Figure 46; this calculation yielded an expected value of 1,286 and an 80% quantile

of 1,869.

The CDF for the direct simulation can be compared with the CDF computed via Monte

Carlo simulation as seen in Figure 47; this Monte Carlo simulation replicates the CDF

calculated via direct-calculation. The Monte Carlo simulations evaluations of these values

can be seen for the expected value and 80% quantile in Figures 48 and 49 respectively.

In both figures, the value of the statistic if plotted versus the number of Monte Carlo

simulation cases used to calculate the statistic; additionally the 95% confidence interval

is plotted to bound the expected error in the statistic. The expected value and the 80%

quantile values converge after approximately 1,500 and 1,000 Monte Carlo simulation cases
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Figure 46: The directly computed CDF for the small example matrix without relationships

131



−500 0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Figure 47: The CDF for the small example matrix without relationships computed via
Monte Carlo simulation

132



500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

Number of Monte Carlo Cases

V
al

ue
 o

f 
E

xp
ec

te
d 

V
al

ue

 

 
Expected Value
95% Confidence Interval
Actual Expected Value

Figure 48: Expected value and confidence interval versus number of Monte Carlo simula-
tions for the small example matrix without relationships
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Figure 49: 80% quantile value and confidence interval versus number of Monte Carlo
simulations for the small example matrix without relationships
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Figure 50: The directly calculated CDF for the example matrix with relationships

respectively. While this is computationally more expensive than a direct calculation, it

serves as a benchmark from which the computational complexity required of larger and

more complicated matrices can be compared

The next step in this analysis is to add the relationships as depicted in Figure 38. The

direct calculation of the CDF will require evaluating every permutation of selections. The

directly calculated CDF is shown in Figure 50; this yielded an expected value of 1,690 and

an 80% quantile of 2,576. However, in order to generate these results, 43,200 combinations

needed to be evaluated.

In comparison to the direct evaluation of every potential combination, a Monte Carlo

simulation was used to generate a CDF. The CDF that results from a 5,000 case Monte Carlo

simulation can be seen in Figure 51. This CDF has approximately the same granularity

as Figure 50 despite requiring only 5,000 evaluations instead of 43,200 evaluations. This

calculation Monte Carlo simulation is an order of magnitude less expensive to compute
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Figure 51: The CDF for the small example matrix with relationships calculated via Monte
Carlo simulation

compared to the summary evaluation.

Figures 52 and 53 present the number of Monte Carlo cases versus the key statistics

for the case with active relationships. The Monte Carlo simulation converges on the key

statistics to within 5% of the direct calculation in approximately 1,500 cases and converges to

the actual value in approximately 2,500 even though this matrix has an order of magnitude

more combinations. This result further supports Hypothesis 3a in that 2,500 function

evaluations is much less than the 43,200 required to fully evaluate the executable matrix of

alternatives.

5.4.4.3 Monte Carlo Simulation for Larger Morphological Fields

The evaluation of the Small Matrix has made it clear that a Monte Carlo is less expensive

than evaluating the entirety of the executable matrix of alternatives. The next step is to see

how the computational expense required to calculate the key statistics scales with the size of
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Figure 52: Expected value and confidence interval versus number of Monte Carlo simula-
tions for the small example matrix with relationships
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Figure 53: 80% quantile value and confidence interval versus number of Monte Carlo
simulations for the small example matrix with relationships
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Figure 54: Medium-sized executable matrix of alternatives

the morphological field. This will be determined by conducting Monte Carlo simulations on

a medium-sized, 12 morphological parameters, and a large, 24 morphological parameters,

executable matrix of alternatives.

The medium-sized executable matrix of alternatives used for this experiment can be

seen in Figure 54. This experiment will use pre-defined probabilities, randomly generated

additive effects, and randomly generated relationship matrix. The pre-defined probabilities

for each condition are shown in Figure 54. The randomly generated relationship matrix has

a 80% probability of an additive relationship, a 50% chance of a multiplicative relationship,

a 50% chance of an incompatibility, a 50% chance of a probability relationship.

The CDF of the medium-sized executable matrix of alternatives can be seen in Figure
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Figure 55: The CDF for a medium-sized morphological field with relationships calculated
via Monte Carlo simulation for the medium-sized executable matrix of alternatives

55. This CDF was generated using 5000 Monte Carlo simulation cases; the expected value

and 80% quantile values computed after 5000 cases are also highlighted.

Figures 56 and 57 show the plots of the expected value and 80% quantile value versus the

number of Monte Carlo simulations respectively. These figures show that the key statistics

reach an equilibrium after approximately 1,250-1,500 cases. This result shows that even

though this executable matrix of alternatives is much larger, the required number of Monte

Carlo cases required is relatively stable. In order to confirm this finding, a 24 parameter

morphological field will be run through a similar test.

The 24 parameter morphological field used for this experiment can be seen in Figure 58.

As with the medium-sized executable matrix of alternatives, the effects and relationship

matrix are randomly generated; the randomly generated relationship matrix has a 80%

probability of an additive relationship, a 50% chance of a multiplicative relationship, a 50%
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Figure 56: Expected value value and confidence interval versus number of Monte Carlo
simulations for the medium-sized executable matrix of alternatives
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Figure 57: 80% quantile value and confidence interval versus number of Monte Carlo
simulations for the medium-sized executable matrix of alternatives
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chance of an incompatibility, a 50% chance of a probability relationship.

A Monte Carlo simulation was run over this large matrix for 5,000 cases; the resulting

CDF can be seen in Figure 59. The larger number of cases was chosen because it is possible

that the larger matrix would require more cases to reach an equilibrium. However, the

results of this experiment show that the additional cases were not required. Figures 60

and 61 show the plots of the expected value and the 80% quantile value versus the number

of Monte Carlo cases respectively for the large matrix. These figures show that the key

statistics tend to converge in 1250-1500 Monte Carlo cases; this result confirms the trend

shown in the medium-sized case: the number of Monte Carlo cases necessary to explore an

executable matrix of alternatives is insensitive to its size.

5.4.4.4 Conclusions from Experiment 1

The first portion of Experiment 1 presented a direct comparison between calculating all

potential combinations of an executable morphological matrix and conducting a Monte

Carlo simulation. The results showed that a Monte Carlo simulation required less compu-

tational effort than a summary evaluation of a matrix with relationships while maintaining

a high level of accuracy. The results of the second part of this experiment further confirm

this notion. Larger morphological fields showed an insensitivity to the number of Monte

Carlo cases required to generate an accurate CDF. Based on these results, Hypothesis 3a

is confirmed: a Monte Carlo simulation is the preferred algorithm to extract probabilistic

information from an executable matrix of alternatives. This conclusion comes with a single

caveat; for smaller executable matrices of alternatives with homogeneous relationship matri-

ces, a summary evaluation may be computationally inexpensive. When a full computation

is inexpensive, it should be used to avoid statistical error.

The most important conclusion which can be reached from this experiment is that useful

quantitative information can be extracted from an executable matrix of alternatives without

significant computational effort. Whereas previous literature on morphological analysis

emphasizes the infeasibility of evaluating different concepts, this result allows EMA to be

used for analyzing entire concept spaces. [40]
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Figure 58: Large executable matrix of alternatives
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Figure 59: The CDF for a large morphological field relationships calculated via Monte
Carlo simulation
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Figure 60: Expected value value and confidence interval versus number of Monte Carlo
simulations for the large executable matrix of alternatives
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Figure 61: 80% quantile value and confidence interval versus number of Monte Carlo
simulations for the large executable matrix of alternatives
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5.5 Implementation of EMA Data Structures

The previous sections focused on the equations and algorithms which formulate EMA but

did not discuss a specific implementation. Previous computerized implementations of tra-

ditional MA and extensions of MA have focused on a matrix-based formulation. These

implementations are efficient at computing compatible combinations and results based on

extensions of the cross-compatibility matrix. [40, 64, 100, 111] However, none of the pre-

vious extensions incorporate heterogeneous data, constraints, algorithms, and multifaceted

relationships. In order to achieve this extension, an object-oriented approach toward EMA

data structures should be used. This is formalized in Hypothesis 3b.

Hypothesis 3b: The inclusion of data, constraints, and complex relationships
should be implemented using and object-oriented approach.

This section documents the object-oriented implementation of EMA and show how an

object-oriented design acts as an enabler for the extensions required by EMA. The code for

this implementation was written in object-oriented MATLAB; the code for the implemen-

tations discussed in this section is listed in Appendix A.

5.5.1 Object Oriented Formulation

The fundamental principle behind object-oriented (OO) analysis and design is that the

data is the primary consideration taken when designing software; the functional behavior

of the software is of secondary importance. [104] For EMA, the central pieces of data are

the executable matrix of alternatives, the matrix’s constituent parameters, the parameters’

constituent conditions, and the relationships between conditions.

5.5.1.1 Generic Implementation

Because EMA was originally formulated as a generic extension to traditional MA, the

OO formulation of EMA begins with a generic implementation from which the specific

implementation for a weight forecasting problem can be extended. The generic class diagram

can be seen in Figure 62.

The central class in this implementation is the ExecutableMatrix. This class repre-

sents the entire executable matrix of alternatives and is responsible for holding a list of
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parameters, the relationship matrix, and all methods which operate on the entire matrix.

The ExecutableMatrix has seven methods which operate on the class. The delete function

is the destructor method. The addParameter and setupRelationships methods are called

during the initialization of the matrix; addParameter adds a parameter to the list of param-

eters, and setupRelationships initializes the relationship matrix. In order to select a single

combination, the selectCombination takes in a vector of condition selections; in order to

select all combinations, the totalCombinations method would be called while making use of

the helper function selectCompatibleCombinations. During the selection of a combination,

enforceAllConstraints is used to cycle through each Parameter and call Parameter-level

functions which enforce model constraints. Finally, when the selection of a single combi-

nation is complete, the resetMatrix method returns both the relationship matrix and all

parameters and conditions to their original states.

The Parameter class models a single parameter of an EMA model. This class is pri-

marily responsible for keeping a list of constituent conditions. Additionally, this class has

a string which contains the name of the Parameter. This class contains two methods for

manipulating the list of conditions. The getCondition method takes in an integer index

value and returns the specified condition from the condition list; this method is called by

the selectCombination method in the ExecutableMatrix class. The addCondition method

adds a condition to the end of the Parameter list; this method is called during the initial

definition of the problem. The resetParameter method works is called by the resetMatrix

method in ExecutableMatrix in order to reset the state of the model; disconnect also works

with the destructor of the ExecutableMatrix class. The most important method in this class

is enforceConstraints; this abstract method is responsible for enforcing parameter-level con-

straints and changing condition properties. This feature of the OO implementation allows a

single EMA model to have heterogeneous parameters with different constraints in the same

model with minimal code changes.

The Condition class models an individual condition. It includes its name, a list of

relationships with other conditions, and a boolean to indicate its modified status. This

boolean is necessary for state-dependent relationships. Problem-specific implementations
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of a condition will be responsible for adding the data necessary for the problem under

consideration. The condition class contains two methods for handling deletion: the delete

deconstructor and the disconnect method. The addRelationship method is used by the

setupRelationships function during initialization or can be manually called when setting up

one-way relationships. The isEqual method returns true if two conditions are equal and

false if not equal. The select method calls all of the relationships in the relationship list

and activates each relationships. Finally, the resetCondition method is an abstract method

which resets the condition to its originally defined state.

The RelationshipMatrix class is a simple class which models a relationship matrix and

contains a matrix of Relationship objects. This class is initialized at startup by the se-

tupRelationships method in ExecutableMatrix and has a complicated constructor method.

It also contains methods for resetting the relationship states and deconstruction.

The final two classes in the OO implementation are the Relationship and Combination.

Because the generic superclasses of ExecutableMatrix and Condition directly use these two

final classes, a factory design pattern is used. The factory pattern allows for “creating fam-

ilies of related or dependent objects without specifying their concrete classes.” [45] In this

implementation, the RelationshipMatrix creates relationships through a RelationshipFac-

tory, and the ExecutableMatrix creates combinations through the CombinationFactory. At

startup, the appropriate problem-specific factories are passed to these classes which then

use the interfaces to the generic combination and relationship classes.

The Relationship class, created by a RelationshipFactory, represents a relationship be-

tween two conditions. This class knows if it has previously been activated through a boolean;

it also knows if the relationship is empty and part of the upper right-hand portion of the

relationship matrix. Additionally, it also contains pointers to the two Conditions which are

linked by the relationship. Problem-specific attributes will have to be subclassed out for

specific implementations. The Relationship class has constructors as required by the Re-

lationshipFactory; it also has deconstructor methods. Most importantly, it has a method,

resetRelationship, to reset the state of the relationship, and an abstract method, activateRe-

lationship, which modifies the relationship’s constituent conditions and applies the specific
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relationship.

The Combination class does not model a specific part of an EMA model. Instead, it

is a class to represent output data from a single selection from the executable matrix of

alternatives. Primarily, this class contains a list of Condition objects which represent the

selection. The methods in this class enable the creation of a Combination object and the

addition of a Condition object. The generic Combination class also provides an isEqual

method for comparison purposes and an isFeasible method which check to see if the overall

probability of the selected Combination is greater than 0.
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Figure 62: Generic Object-Oriented Implementation
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5.5.1.2 Specific Implementation

The previous section documented the generic implementation of EMA data structures from

which specific implementations can be subclassed. This section documents the extensions to

the generic implementation which make up the EMA model used to solve weight forecasting

problems. This specific implementation can be seen in Figure 63.

The ForecastingExecutableMatrix extends the generic ExecutableMatrix. The primary

extensions for the weight forecasting problem are methods which extract information from

the executable matrix of alternatives. The first method included is expectedValue; this

method calculates the expected value of an executable matrix of alternatives with a ho-

mogeneous requirements matrix through summary evaluation. Similarly, the generateCDF

function generates a CDF of an executable matrix of alternatives with a homogeneous re-

quirements matrix through summary evaluation. Finally, the monteCarlo method conducts

a Monte Carlo simulation of the model.

The ForecastingParameter class extends the Parameter class. This extended class con-

tains a string for identifying the subsystem associated with the parameter; this piece of

information is critical if a goal of the forecasting analysis is to analyze weight growth by

subsystem. The subMonteCarlo works with the monteCarlo method in ForecastingExe-

cutableMatrix to run a Monte Carlo simulation; this method selects an individual condition

from the parameter for selection. Finally, the enforceConstraints method overrides the

superclass’s method in order to implement Equation 37.

The ForecastingCondition class extends the Condition class. This extension includes the

probability, additiveEffect, and multiplicativeEffect attributes for the implementation of this

problem-specific EMA. There are three other attributes, modifiedProbability, modifiedAd-

ditiveEffect, and modifiedMultiplicativeEffect, provide a mechanism for the attributes to

change during model execution. At the end of an EMA model execution, the modified

attributes represent the final state of the attributes and are used to calculate overall prob-

abilities and effects. The resetCondition method is called when the executable matrix of

alternatives needs to be reset to the initial, as defined state; this method simply copies the

original, assigned probability and effects to the attributes labeled as ‘modified’ and resets

153



the modified boolean. Finally, the isEqual method provides an updated method to establish

equality; specifically, it compares the original, unmodified attributes.

The ForecastingRelationship class extends the generic Relationship class and is produced

in a ForecastingRelationshipFactory. The ForecastingRelationship includes attributes to

implement the five relationships described in Section 5.3.2. Constructors are implemented

for use with the factory pattern. Finally, the activateRelationship method is overridden to

implement the equations described in Section 5.3.2.

The final extension creates the ForecastingCombination class to extend the Combination

class. This class is created by the ForecastingCombinationFactory in accordance with the

factory pattern. The addCondition method is overridden in this subclass adds the input

Condition object to the combination by making a copy of the contents of the original object.

Additionally, the ForecastingCombination subclass adds methods for calculating the total

probability of the selected combination and the total effect of the combination.
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Figure 63: Specific Object-Oriented Implementation for a Weight Forecasting Problem
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5.5.2 Running EMA

5.5.2.1 Problem Setup

The first step in defining an EMA forecasting problem is to define the conditions in the

model. For forecasting problems, ForecastingCondition is the subclass of Condition that

is used. Each ForecastingCondition must be initialized in a setup script. For each defined

condition, the name, additive effect, and multiplicative effect should be defined. All other

attributes in this class are used during the execution of the model.

Once the conditions of the model have been defined, they need to be added to param-

eters. First, parameters need to be created in the setup script. Each condition should be

added to the parameter via the addCondition method in the ForecastingParameter class. In

addition to adding constituent conditions, the name of each parameter may also be defined.

Furthermore, if the problem wants to track subsystem weights, the subsystem assignment

needs to be defined in each ForecastingParameter.

Once each parameter is defined and filled with constituent conditions, the parameters

of the model need to be added to the ForecastingExecutableMatrix. This begins with defin-

ing a ForecastingExecutableMatrix in the setup script. Next, each parameter should be

added to the ForecastingExecutableMatrix through the use of the addParameter method.

Once the parameters have been added to the ForecastingExecutableMatrix, the factories for

combinations and relationships need to be created. For this problem, a ForecastingCombi-

nationFactory and ForecastingRelationshipFactory are defined. The ForecastingCombina-

tionFactory is added to the ForecastingExecutableMatrix. Finally, the setupRelationships

method is called, and the pointer to the ForecastingRelationshipFactory is passed to the

method; this method sets up the relationship matrix, defines relationships, and assigns

relationships to each condition.

The setupRelationships method defines all of the relationships present in the relation-

ship matrix to have default ’no effect’ values. The next step in the definition of an EMA

forecasting problem is to assign relevant values to the attributes of the previously created

relationships. This will involve specifying probability, multiplicative, and additive relation-

ships which affect the attributes in ForecastingConditions.
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Finally, any one-way relationships which are present in the model should be created.

This involves defining a ForecastingRelationship independently of the relationship matrix.

ConditionOne in a ForecastingRelationship should point to the condition to be selected,

and ConditionTwo should point to the adjoining condition. The empty boolean should be

set to false. Once these attributes have been set, the relevant relationship values can be set

to the new relationships. Once a relationship is created, it should be added to the list of

oneWayRelationships in the ForecastingExecutable matrix.

5.5.2.2 Execution of EMA Model

In order to generate quantitative results from the EMA model, the ForecastingExecutableMa-

trix class provides methods which will execute the EMA model. This primarily consists of

three method: monteCarlo, generateCDF, and expectedValue. Each method accepts the

Weightremaining value from Equation 26. The expectedValue method outputs the expect-

edValue of the matrix by summarily selecting all potential permutations of combinations,

calculating the effect of each selection, and using Equation 20 to calculate the expected

value. In order to generate the probabilistic data necessary to calculate quantiles and dis-

play a CDF, the monteCarlo and generateCDF methods are needed. The generateCDF

method directly calculates a CDF through summary evaluation of all permutations of com-

binations; once the effect and probability have been calculated for every potential option,

this method then sorts this information to output a table of data containing the CDF.

Finally, the monteCarlo method executed a Monte Carlo simulation over the data structure

as described in Section 5.4.4.1; the output of this method is a table containing the output

values and the selections of each Monte Carlo case.

While monteCarlo and generateCDF will output tables of probabilistic data. If only a

single combination is desired, the selectCombination method accepts an array of integers

corresponding to the desired conditions in each parameter and outputs an array of the

permutations of the desired selection. This method can be used as a standalone method

if a user wishes to see the impacts of a single combination. Additionally, this is used as a

helper method for generateCDF and expectedValue.
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Each of these methods relies on selecting a condition. The selection process starts

by calling the select method in the desired condition object; this method in turn iterates

through all of the relationships involving the selected condition and activates each rela-

tionship. The activation of each relationship uses the activateRelationship method in the

ForecastingRelationship class; this method applies the relationship values and updates the

state of both the relationship and condition to reflect the activated condition. Updated

condition attributes are assigned to the modified attributes in the ForecastingCondition.

Once the relationships have been applied, the enforceAllConstraints method is called in the

ForecastingExecutableMatrix. This method cycles through each parameter and calls the

enforceConstraints method which applies Equation 37. This process is repeated for each

subsequent condition selection until a condition has been selected from each parameter. In

the course of executing a Monte Carlo simulation or a summary evaluation, the matrix will

need to be reset; the resetMatrix method in ForecastingExecutableMatrix cycles through

each object in the data structure and restores it to its original state.

5.5.3 Specific Enablers of EMA

As formulated in Sections 5.3 and 5.4, the implementation of EMA requires a much more

capable approach than previous matrix-based implementations. The OO implementation

used in this thesis addresses the requirements of EMA and provides an elegant and capable

implementation of EMA data structures and algorithms.

The most fundamental requirement of EMA is the ability of conditions to hold addi-

tional pieces of information other than its name. While this requirement could be satisfied

via additional matrices or structures, the OO implementation is more elegant because it

stores data at a level where it can be accessed by appropriate methods. For example, the

activateRelationship method in ForecastingRelationship makes use of its internal activated

boolean state, the relationship attributes stored in the ForecastingRelationship class, and

the attributes stored in both ForecastingCondition classes. This implementation also allows

for parts of the model to have attributes which would normally be overlooked in previous

implementations; for example, each parameter can know the subclass to which it is assigned

158



for later post-processing.

The key feature of EMA enabled by the OO design is the relationship system. In this

system, each condition knows its relationships with other conditions, and each relationship

knows which conditions it links. This also allows for one-way relationships which exist

outside of the relationship matrix. In this system, relationships are activated by a condition

object; the act of selecting a condition triggers the condition object to cycle through its

list of relationships activating each one. When a relationship is activated, the relationship

object can detect the calling condition and both conditions’ states; this information can

then be used to calculate modifications to each condition. This results in far more elegant

algorithms compared to trying to perform the same operations utilizing a large number of

different matrices.

Another strength of this implementation is the ability to generalize it to other problems.

The generic EMA implementation was specifically designed to be subclassed out in order to

handle a wide variety of problems; the forecasting of weight is just one potential application

for this concept.

The specific feature of EMA which combines all of the above features of OO design is

the constraint system. Each parameter is allowed to enforce constraints on its constituent

conditions. This requires a method in the parameter class which has access to information

contained in all of its constituent conditions and the ability to modify the states of said

conditions. The implementation of this system is enabled by the OO design. Furthermore,

this design would allow for a single executable matrix of alternatives to have heterogeneous

parameters with different constraints because the ExecutableMatrix class only operates on

abstract parameters.

All of these examples show that EMA’s implementation is enabled by an OO design.

Therefore, Hypothesis 3b is substantiated– the OO implementation is an advancement over

previous extensions of traditional MA.
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CHAPTER VI

METHODOLOGY DEVELOPMENT

The data structure and algorithms defined in Chapter 5 provide the analytical tools neces-

sary to analyze potential configuration changes. However, to maximize effectiveness, these

tools must be used as part of a larger, structured methodology. This structured methodol-

ogy takes the form of a hybrid methodology as hypothesized by Hypothesis 1 and combines

range estimating and EMA. This hybrid methodology is designed to be used during the

later phases of conceptual design.

This chapter develops the steps necessary to conduct the hybrid methodology combining

range estimating and EMA. The complete hybrid methodology is shown in Figure 6. As

range estimating is a well-developed method (developed in Section 3.5.1.2), the focus of this

chapter will be on the development of EMA as part of the hybrid methodology. The first

section of this chapter describes the inputs necessary for both range estimating and EMA.

The second section describes the steps necessary to create and analyze an EMA model. The

final section of this chapter describes how to use the output of EMA and range estimating

to calculate desired weight and margin values.

6.1 Problem Setup

The hybrid methodology begins with setting up the forecasting problem. The first thing

that needs to be established during the problem setup is vehicle’s WBS and baseline weight

breakdown. This WBS will be used in both range estimating and EMA. In range esti-

mating, the WBS will serve as the basis for the range estimating analysis. In EMA, the

WBS will inform the identification or model parameters and condition attributes. In this

hybrid methodology, the WBS should serve as a unifying document behind both range

estimating and EMA— the subsystem and total weight forecasts from both parts of this

hybrid methodology should be directly tractable to the original WBS in order to enable

more effective program risk management.
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Figure 64: Hybrid Forecasting Method

While range estimating primarily requires the vehicle baseline WBS, EMA requires

more information from the vehicle development team. At its core, EMA is a structured

way of managing subsystem alternatives for the purposes of risk management. During

the development of the vehicle baseline, both the vehicle and subsystem offices conduct

trade studies examining subsystem alternatives; this information can be leveraged during

all phases of the creation of an EMA model.

In addition to studies into subsystem alternatives, EMA requires knowledge about the

assumptions which led to the baseline. This can take the form of the original require-

ments, technology assumptions, and funding profile. These assumptions describe specific

uncertainties which can affect the vehicle program— requirements, technology, and political

uncertainty respectively. Because these assumptions can change during the course of the

development program, a vehicle program office will have likely performed risk impact and

mitigation studies. The output of these studies can be incorporated into the EMA model

to allow for unified risk and alternative management.
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6.2 Forecasting Utilizing Executable Morphological Analysis

EMA has five steps as outlined in Figure 6: the identification of model parameters, the

identification of conditions, the identification of condition attributes, the identification of

relationships, and analysis. Figure 6 shows that all of these steps are iterative. While this

section focuses on a linear progression of the method, in practice, previous steps should be

revisited to ensure the most complete model.

6.2.1 The Identification of Parameters and Conditions

The first two steps of forecasting utilizing executable morphological analysis mirror the first

phase of creating a traditional morphological model, the analysis phase; this phase involves

the development of the morphological field. According to Ritchey, this is the most important

phase of creation of morphological models because this phase shapes the potential problem

space. The analysis phase begins by identifying the important dimensions of the problem;

these dimensions become the parameters of the morphological field. Once the parameters

have been established, the next step in this phase is to assign alternatives to each dimension:

the identification of conditions. [110, 111] This section discusses the specifics of creating a

traditional morphological model for the purposes of incorporating it into an EMA model

for mass forecasting and risk mitigation.

6.2.1.1 Identification of Model Parameters

The first step of building an EMA model is the identification of the forecasting model’s pa-

rameters. The goal of this phase is to define the parameters which will account for all forms

of uncertainty. Because range estimating accounts for some forms of model uncertainty, the

focus of EMA should be on technological, political, requirements, volitional, phenomenolog-

ical, integration, and any model uncertainties which result in baseline changes (see Section

2.3 for a description of these uncertainties).

The first step in defining the parameters for an EMA model is to perform a physical

decomposition of the vehicle. A physical decomposition involves decomposing the vehicle

into sub-assemblies and components; this decomposition should allow a one-to-one mapping
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between range estimating sub-assemblies and EMA parameters. In addition to subsystems

identified by the WBS, any subsystem or component not included on the existing on the

WBS but identified as a possible necessity based on risk mitigation studies should be in-

cluded. These additional parameters will enable the EMA model to account for systems

which would be unaccounted for by range estimating.

When a series of parameters which can describe the underlying vehicle has been estab-

lished, the immediate next step is to identify categories of scenarios which will affect the

vehicle development program. These categories should describe things which fall outside

the direct control of the traditional vehicle development office; these can include changes

in requirements, funding profile, schedule, etc. These scenarios can also be used to model

technology development programs necessary for the vehicle.

A final step in the identification of model parameters is optional. If the goal of the study

is to assign margins to specific subsystems, then each parameter should be labeled with its

parent subsystem. If a parameter cannot be assigned to a single subsystem, then it should

be assigned to a category representing the entire vehicle; for example direct increases in

mass due to budget cuts cannot be assigned to a subsystem and should be attributed to

the entire vehicle. These labels will be used during the Monte Carlo simulation to generate

subsystem-specific CDFs.

6.2.1.2 Identification of Conditions

The next step in EMA is a continuation of the analysis phase from traditional MA. Now

that the model parameters have been defined, the conditions for each parameter need to

be defined. The first sub-step in this process is to define the current baseline for all of the

parameters identified in the previous step of EMA. This will serve as a basis from which

additional configurations can be identified.

The next sub-step involves identifying conditions for the parameters which describe the

external influences on the vehicle development program. This sub-step can leverage any risk

mitigation studies conducted by the vehicle development office. It may also require expert

elicitation from customer or government representatives to describe potential alternative
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requirements. The completion of this sub-step will result in a morphological field which

models discrete external influences that can reasonably influence the program.

The vehicle analysis portion should start by thinking of alternative development sce-

narios based on the current design fidelity level– which portions of the design may require

redesign due to increased model fidelity? This will involve examining technology assump-

tions, design decisions, and analyses concerning the more extreme portions of the vehicle’s

design envelope. This re-examination of the design should set the stage for brainstorming of

alternative conditions which may be necessary to overcome shortcomings in model fidelity.

These alternative conditions also need to manifest the result of technology development

programs.

The analysis of vehicle alternatives continues by leveraging previous trade studies con-

ducted by the vehicle office and subsystem offices. Alternatives previously ruled-out by trade

studies should be included as conditions in EMA if there is a reasonable chance of revisiting

previous trade studies. As with the previous sub-step, the conditions which describe differ-

ing funding levels and customer priorities should be reflected in these analyses. Changes in

requirements can directly lead to different design decisions— any alternate design decisions

motivated by different requirements should be explicitly modeled.

Because the sub-steps in this portion of EMA are interdependent, iteration will be

necessary. The end result of this step is a morphological field which describes both the

development program and vehicle. Furthermore, the alternative scenarios describing the

overall vehicle development program (budget, requirements, technologies, etc.) should have

vehicle-level conditions which will directly result from changes to the development program.

These conditions will be used explicitly during the identification of relationships.

6.2.2 Identification of Condition Attributes

Once the analysis phase of traditional MA has been completed, the next step is EMA

specific: identifying the attributes of conditions. For each condition, the probability, mul-

tiplicative effect, and additive effect will have to be identified.

The first attribute which must be assigned for each condition is its probability value. As
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described in Section 5.3.1.2, the probability of a given condition must be specified in concert

with the other conditions in its constituent parameter— the probability values across the

parameter should reflect the relative chances of occurrence and sum to unity. Furthermore,

the assignment of probability is subjective, therefore expert elicitation should be used to

determine the ratios of probabilities between conditions in a parameter.

The next attribute which should be assigned to each condition is the additive effect.

This effect describes a scalar addition or subtraction to a baseline weight. In practice,

this value can refer to a difference in weight relative to a baseline weight or a subsystem

weight value. If a delta-weight is used, then the value of the additive effect in the condition

corresponding to the current vehicle baseline would equal 0. If a subsystem weight value

is used, then the value of the additive effect in the condition corresponding to the current

vehicle baseline would equal the weight allocation in the WBS. These decisions must be

documented in order to generate the Weightremaining input to Equation 26; this input is

calculated according to Equation 25 where the Weightremaining input to Equation 26 is equal

to the WBS total weight minus the sum of additive effects in conditions corresponding to

the WBS baseline.

Weightremaining = Weightbaseline −
n∑

i=1

Eadditivebaselinei
(25)

Etotal = (Weightremaining + Eadditivecombination
) ∗ Emultiplicativecombination

(26)

The third attribute necessary for this analysis is a multiplicative effect. As defined by

Equation 26, this acts as a scalar multiplication on the weight of the entire vehicle. Be-

cause this can represent a dramatic change in mass across the entire vehicle, comparatively

few conditions will have an active multiplicative effect. Examples of conditions which may

express a multiplicative effect include alternative performance requirements or the imple-

mentation of a weight control program.

Unlike the identification of probability attributes, the additive and multiplicative effects

can be traced directly to previous design trade studies and risk mitigation efforts carried
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out by a vehicle or subsystem office. The results of these studies can be used to inform

these attributes and save the information created during earlier phases of design. For most

problems, there will be options examined during the creation of an EMA model which have

not previously been examined. In order to determine these attributes, a risk manager can

assign a ’tiger team’ to perform a quick study and generate a high quality result. If the

program is lacking on budget or time for additional studies, expert elicitation can be used

to determine these attributes.

Many conditions will have no first order effect on the weight of the vehicle. These

conditions will have second order effects which will affect the weight of the vehicle through

relationships. These relationships are addressed in the next step of the methodology.

6.2.3 Identification of Relationships

The next step in the development of an executable matrix of alternatives extends the syn-

thesis phase of traditional morphological analysis. In the synthesis phase, the total number

of simple configurations, the “problem space,” is trimmed down to a smaller “solution

space” of compatible combinations. In order to reduce the original problem space, a cross

consistency assessment is performed on the original morphological field. This assessment

consists of pair-wise compatibility assessments between individual conditions. As described

in Section 4.2.2.1, this process is enabled by the quadratic growth of pair-wise combinations

compared to the geometric growth of simple configurations. [110, 111]

While the synthesis phase in traditional MA only dealt with binary compatibility rela-

tionships, the identification of relationships phase in EMA must identify continuous compat-

ibilities and relationships affecting multiplicative and additive effects. While it is possible

to have a model with no relationships, only probability relationships, only effectual rela-

tionships, or any combination of the above, the most powerful models will have all three

types of relationships.

The identification of relationships has three distinct substeps. First, the parameters

must be broken into sub-matrices of alternatives; this is meant to organize the problem in

such a way as to minimize further analysis. Once a set of matrices has been determined,
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one-way relationships can be mapped between conditions of separate matrices. Finally, the

two-way relationships within each sub-matrix can be identified.

6.2.3.1 Organization of Parameters

For the specific problem of trying to investigate potential baseline configuration changes, a

large and diverse set of scenarios exists. Many of these scenarios, such as changes to the

political environment surrounding a development program, do not have a first order effect on

potential baseline configuration changes. However, such scenarios do have a second order

affect on the development of a vehicle. In EMA, these second-order effects are modeled

through one-way relationships. While one-way relationships are necessary to address all

relevant forms of uncertainty, they make analyses much more complicated because they

dramatically increase the effort necessary to define relationships between conditions.

Minimizing one-way relationships is a necessary step in the setup of a forecasting problem

that utilizes EMA. For this problem, the observation can be made that there are two

different types of scenarios which can play out: scenarios which affect the environment

surrounding the vehicle development program, and scenarios which affect the development

of certain vehicle subsystems. Scenarios affecting the conditions surrounding the program

would include events such as budget cuts, requirements changes, or other external influences.

Scenarios which affect the development of vehicle subsystems would primarily concern the

implementation of specific subsystems, the implementation of a mass-saving technology, or

a design change due to higher-fidelity analyses.

Given these two categories of scenario elements, another observation can be made: two-

way relationships will likely not exist between the two categories, and one-way relationships

from subsystem development to higher-level scenarios will be nearly non-existent. The ma-

jority of relationships between the two categories will be one-way relationships of program-

level scenarios which affect vehicle-level scenario elements. Based on these observations, the

assumption can be made that vehicle-level scenarios will not affect program-level scenarios.

This assumption allows the forecasting problem to be set up in a way to minimize one-way

relationships because the only one-way relationships would be from program-level elements
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Figure 65: A Two-Level Executable Matrix of Alternatives

to vehicle-level elements.

Because it is assumed that the selection of vehicle-level scenario elements cannot affect

program-level scenario elements through the relationship matrix, the forecasting problem

can be treated as separate executable matrices of alternatives; an example of this is visu-

alized in Figure 65. In this step, model parameters should be hierarchically organized into

sub-matrices which have related parameters. Each sub-matrix can be treated as an indepen-

dent problem with its own internal set of relationships; furthermore, one-way relationships

originating from each sub-matrix can only affect other sub-matrices at a lower level in the

hierarchy. In Figure 65, the upper executable matrix of alternatives is at a higher level and

can have one-way relationships affecting the lower matrix.

This sub-step ends when the model parameters have been organized into sub-matrices.

For some problems, this step will result in a single matrix if all model parameters have a

first order effect and can be related to every other parameter via two-way relationships.

For most problems, this step will end with two or more sub-matrices each with its own
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internal relationship matrix. The next two sub-steps involve identifying one-way and two-

way relationships.

6.2.3.2 Identifying One-Way Relationships

With the problem divided into two or more executable matrices of alternatives, the next step

is to identify the one-way relationships between conditions of different matrices. Because

these matrices should be organized in a hierarchal form where higher-level matrices influence

lower-level matrices, for the purposes of this subsection, the higher-level matrix will be

referred to as the upper matrix while the lower-level matrix will be referred to as the lower

matrix.

This identification of one-way relationships should be done in two steps. First, the pa-

rameters of the upper matrix should be compared with every parameter in the lower matrix

to determine if a relationship might exist. This reduces the analytical effort required since

the number of comparisons between parameters is far less than the number of comparisons

between individual conditions. For each parameter pair, it must be determined if a potential

relationship exists between the parameters. If and only if a potential relationship exists,

the parameter pair is brought forward into the next phase of this step.

Once the unnecessary parameter pairs have been eliminated, the analysis can focus

on parameters pairs for which relationships will exist. One-way relationship matrices, as

defined in Section 5.2.1.3 can be created for each parameter pair. After the one-way re-

lationship matrices are created, the focus moves to identifying the relationships between

conditions. As with the previous steps, the program office should leverage previous trade

studies and risk mitigation studies to inform the creation of one-way relationships. Expert

elicitation can also be used to augment existing knowledge or fill in any potential gaps.

Some matrix elements will contain default ‘relationship does not impact’ values for poten-

tial relationships. For example, a baseline choice in an upper matrix will not have impact

the baseline value in a lower matrix. The result of this sub-step will be the identification

of all relevant one-way relationships between relevant parameter pairs.
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6.2.3.3 Identifying Two-Way Relationships

The final substep is the identification of two-way relationships within each sub-matrix.

This will involve completing a relationship matrix (Section 5.2.1.2) for each sub-matrix. A

cross-consistency assessment must be performed to identify continuous incompatibilities and

assess all effectual relationships. This analysis can be informed through expert elicitation

and utilizing results of previous studies.

As with traditional MA, a cross-consistency assessment is performed to address in-

compatibilities. The relationship matrix implements this by giving incompatible pairs a

probability relationship of 0 and fully compatible pairs a probability relationship of 1.

Additionally, a continuous compatibility is implemented through the relationship matrix:

values between 0 and 1 mean that two conditions are less likely to be chosen together while

values over 1 mean that two conditions are more likely to be chosen together.

The final analysis of this step is to identify effectual relationships in each relationship

matrix. Unlike one-way relationships where one is analyzing the effects of a higher-level

condition on a lower-level condition, two-way effectual relationships involve mutual effects.

Two-way relationships describe combinations of conditions which, when selected together,

are mutually more mass efficient or mass inefficient.

6.2.4 Analysis

The first four steps of EMA concentrated on building the EMA model. The final step of

EMA is to conduct analysis on this model to extract information. Three types of analysis

can be conducted on this model. First, a probabilistic analysis can be conducted in order

to extract relevant weight growth trends. The outputs of this probabilistic analysis can be

used to inform a sensitivity analysis. Finally, this data can be analyzed to play what-if

games by creating alternative development scenarios.

6.2.4.1 Probabilistic Analysis

The goal of probabilistic analysis is to extract a CDF of likely weight values. This will enable

decision makers to decide how much margin to carry forward in the design by looking at
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the CDF and specifying a percentile value.

As discussed in Section 5.4.3, the summary evaluation of an executable matrix of al-

ternatives should only take place under certain circumstances– only small matrices with

limited relationships should be fully evaluated. The summary evaluation will produce a

probability mass function which can be integrated to form a CDF.

For most problems, a Monte Carlo simulation as described in Section 5.4.4.1 can be used.

However, if the problem is organized into a hierarchy of matrices as described in Section

6.2.3.1, then a different procedure should be followed. This procedure involves executing the

Monte Carlo process sequentially. A single Monte Carlo run will involve randomly selecting

conditions from the highest level matrix followed by the next matrix in the hierarchy; this

process continues until conditions have been selected from all matrices in the hierarchy.

6.2.4.2 Sensitivity Analysis

Another analysis which can be performed on the Monte Carlo simulation output data looks

at the sensitivity of the weight predictions to each parameter. This allows analysts and

decision makers to better understand which parameters and condition selections most in-

fluence the predicted weight. There are many ways to do this such as calculating the main

effects or conducting a multivariate regression.

The main effect of a factor is defined as the difference between the averages of the

response at the extreme settings of the response; larger main effects will have larger effects

on the overall response. [90] In order to perform a main effects analysis on Monte Carlo

simulation outputs, first the average response (total weight) for each condition in the matrix

needs to be calculated. Knowing these average weights, the conditions in each parameter

which provide the highest and lowest average response should be readily apparent– the main

effect of each parameter is simply the difference between the highest and lowest average

response.

Another analysis method which enables sensitivity analysis is multivariate regression;

this analysis should be performed using statistical analysis software such as JMP. Multi-

variate regression will create an equation in which the Monte Carlo output weights are
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functions of the EMA model input parameters and conditions. In a regression, the input

parameters and conditions should be treated as categorical variables. While direct calcu-

lation using the EMA model is best for calculating individual combinations, the regression

allows visualization of main effects and, more importantly, the visualization of of slopes and

derivatives. This information is displayed through a prediction profiler which visualizes the

total derivative of each regression. [117]

6.2.4.3 What-If Scenarios

The sensitivity analysis allows decision makers to better understand which parameters and

which conditions influence the overall output of the model. However, in order to make

use of this information, decision makers need to play what-if games with the data. These

what-if games enable decision makers to select specific alternative scenarios of development

and immediately see results. This analysis is most useful when looking at which scenarios

present the greatest impacts on weight growth. While adding design margin is one method of

mitigating uncertainties, program managers have other methods of mitigating uncertainties

such as additional funding or development time; EMA allows decision makers to see the

prospective benefits of alternative mitigation factors before committing to a specific course

of action.

The specific methodology for performing a what-if analysis is a filtered Monte Carlo.

[15] In a filtered Monte Carlo, data filters are applied to the output of a Monte Carlo

simulation. For the case of an EMA model simulation output, filters could include specific

cutoffs of weight or selecting certain conditions. For example, an analyst may want to

look at the expected value after excluding the top 5% of weight responses in order to re-

evaluate the expected value of the sample. Another example would be excluding all cases

which involve the selection of a certain condition which greatly influences weight. After the

necessary filters are applied, probabilistic analysis should be re-run in order to recalculate

the statistics of interest.

If a risk/opportunity workshop plans to use these techniques, then additional Monte

Carlo simulation cases will be necessary. While Section 5.4.4.4 shows that a standard
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probabilistic analysis can be adequately completed with approximately 1,500 to 2,000 cases,

a multiple of this number should be run so that most case-exclusion scenarios will still yield

ample cases from which to complete a probabilistic analysis. Approximately 10,000 cases

should be a good number for most problems.

6.3 Combined Margin Analysis

The output from both range estimating and EMA will be a forecast of the dry weight

of a vehicle. This can be converted into a margin by subtracting the vehicle baseline

weight as defined by the WBS as seen in Equation 27; this equation holds for both the

output of range estimating and EMA because both models should be calibrated versus the

original WBS. Similarly, if a subsystem margins are desired, the subsystem outputs of both

range estimating and EMA can be converted to subsystem level margins by subtracting the

subsystem baseline from the model output as seen in Equation 49.

MarginV ehicle = WeightModelOutput −WeightBaseline (27)

MarginSubsystem = WeightSubsystemModelOutput −WeightSubsystemBaseline (49)

Once margins have been extracted from the model output, the final step of the hybrid

methodology is to combine the outputs from both range estimating and EMA to decide on

an overall program margin. This can be done by allocating a separate margin during EMA

and range estimating and combining the two at a top level. Another option would be to

combine the underlying simulation data before performing data analysis.

If decision makers decide to allocate a margin based on the independent results of EMA

and range estimating, then the final step of this method is very straightforward. In this

case, decision makers would set separate margins for in-scope growth based on the results

of range estimating and out-of-scope growth based on the results of EMA. This would be

analogous to setting separate margins for mass margin and mass growth allowance in the

AIAA Mass Properties Control for Space Systems Standard. [6] Another potential option

for decision makers would be to allocate individual subsystem margins independently.
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Decision makers also have the option of combining the resulting simulation data. In this

case, the Monte Carlo simulation data from both range estimating and EMA would have to

be converted into the predicted margins. This converted data can then be added together

to get a single distribution for total predicted margin; because this involves combining two

separate Monte Carlo simulations, it is recommended to perform additional simulation cases

in order to guarantee a good sample size. Finally, an overall margin can be determined

by looking at the output data. If decision makers wish to allocate based on individual

subsystems, then the results of both simulations will have to be added together based on

the identified subsystems from Section 6.2.1.1.
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CHAPTER VII

SPACE SHUTTLE ORBITER STUDY

In order to fully substantiate hypotheses 1 and 2, the hybrid methodology comprised of

EMA and range estimating must be demonstrated as able to predict the final weight of

a novel vehicle. However, this form of substantiation is very expensive and difficult as it

would require a large development program. In the absence of a novel development program

willing to implement this method, the substantiation of hypotheses 1 and 2 will take the

form of two experiments carried out in this chapter and Chapter 8.

This chapter focuses on the ability of EMA to evaluate prospective baseline changes;

specifically, the baseline changes and their corresponding, prospective weight impacts. Be-

cause the focus is on EMA, range estimating will not be performed for the shuttle; instead,

a predetermined percentage will be used to represent in-scope weight growth. If EMA can

successfully “predict” the Space Shuttle Orbiter final weights based on early 1970s data,

then this will provide evidence that EMA is a forecasting tool and help substantiate hy-

potheses 1 and 2.

7.1 Space Shuttle Orbiter Design Changes

7.1.1 ATP Orbiter

The NASA design of MSC-040C was the official design of record when the Orbiter program

was granted the authority to proceed in March of 1972. [61] While this design would undergo

many changes before production, it would serve as a basis from which future design changes

were made. The ATP orbiter was projected to have a dry weight of 170,000 lbs including

margin or 156,000 lbs not including margin. [61, 96, 95, 97]

The ATP orbiter, Figure 66, was built around a 3,220 sq. ft. blended delta wing with

a leading edge sweep of 50◦. This delta wing would allow a 170,000 lb Orbiter carrying

a 40,000 lb payload to have a landing speed of 150 kts. Furthermore, this wing had to

have a suitable hypersonic L/D ratio to accommodate Air Force requirements to land at
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Vandenberg Air Force Base. Additional design considerations included hypersonic trim and

reentry heating. The straight trailing edge contained elevons, and a body flap provided

pitch control while shielding the main propulsion system from reentry heating. [61, 56]

Two additional propulsion systems were also included in the ATP Orbiter: air-breathing

engines and abort solid rocket motors (ASRM). Two air-breathing engines were placed in

the Orbiter’s payload bay; the engine inlet was located at the base of the vertical stabilizer,

and the nozzles were located just below the main propulsion system. This system was sized

to be used during nominal reentry and ferry missions. The ASRM system consisted of two

30 ft long, 386,000 lb thrust solid rocket motors mounted on the side fuselage of the orbiter

just above the wing. In the event of a failure in the early phases of flight, the motors would

be used to boost the Orbiter to an altitude from which it could safely glide back to a runway

near the launch site. Nominally, the ASRMs would be jettisoned from the Orbiter; later

studies examined a nominal burn of these motors for additional impulse.[61, 56]

7.1.2 Program Readiness Review Orbiter

The Orbiter immediately underwent design refinement. The baseline design as of the pro-

gram readiness review (PRR) can be seen in Figure 67. The orbital maneuvering system

was moved from the side of the fuselage to the shoulders. The forward section of the fuse-

lage was repackaged to improve aerodynamics. Additionally, small changes were made to

the wing and wing/body fillet. [61]

The most significant changes at this stage were to the propulsion systems. The ASRMs

were evaluated to determine if they could be used during boost, and concerns arose because

deleting the ASRMs would require a redesign of the solid rocket boosters (SRB) to equip

them with thrust vector controls. The trade study resulted in the decision to delete the

ASRMs from the Orbiter because it was only useful for 30 seconds after ignition at the

expense of added complexity; this added complexity added additional failure modes to the

overall Space Shuttle stack which could result in a loss of mission. [56] In addition to the

loss of the ASRM system, the air-breathing propulsion system was deleted from the Orbiter

baseline. [61]
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Figure 66: The Space Shuttle Orbiter at Authorization to Proceed [61]
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Figure 67: The Space Shuttle Orbiter at its Program Readiness Review [61]
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7.1.3 150K Orbiter

The most substantial evolution of the Orbiter occurred after PRR as weight and cost savings

played a more important role in the design decisions governing the Orbiter baseline. The

previous two designs were expected to weigh 170,000 lbs including growth, but a series of

redesigns were able to save an expected 20,000 lbs resulting in what is historically known

as the 150k Orbiter. This new baseline can be seen in Figure 68. [61]

This substantial weight savings was driven by a complete redesign of the wing planform.

While the main focus of Orbiter development was on the blended delta wing, NASA had

also been studying the prospects of using a double-delta wing on the Orbiter. After PRR, it

was decided that the double-delta wing would offer superior performance. The new double-

delta planform had 79◦ and 45◦ sweep on its inner and outer sections respectively. This

new wing had an area of 2,690 sq. ft.– 5/6ths the size of the original blended delta. This

smaller wing drove a large reduction weight but required a relaxation of the landing speed

requirement; the Orbiter now touched down at 165 knots up from 150 knots. [61, 56]

In addition to significant aerodynamic design changes, both the air-breathing engines

and ASRMs returned to the design. The ASRM system was brought back by adding provi-

sions to carry two ASRMs on the side of the Orbiter. The air-breathing propulsion system

was very different from earlier Orbiters. On the 150k orbiter, five TF33-P7A turbofans and

a payload-bay mounted fuel tank would only be installed for ferry flights. While the actual

turbofans would not be accounted in the Orbiter dry mass, the hard points and plumbing

would need to be carried into space. [61]

7.1.4 Vehicle 3/4 Orbiter

After the 150k orbiter redesign, the Orbiter’s design continued to evolve throughout 1973.

The biggest change involved the deletion of a docking hatch from the baseline; this deletion

also resulted in a shortening of the fuselage by 3 ft. The aerodynamics design of the Orbiter

also under went iteration. The sweep of the forward section of the double-delta wing was

increased to 81◦, and other changes were made to the incidence angle, airfoil shape, and

wing mounting position to optimize for aerodynamic and aerothermal performance. Finally
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Figure 68: The 150k Orbiter [61]
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the robotic arm was moved from its own fairing to be packaged in the payload bay. This

updated Orbiter can be seen in Figure 69. [61, 56]

7.1.5 Vehicle 5/6 Orbiter

The design of the Orbiter continued to evolve throughout 1974. Most work consisted of

mostly minor design changes compared to the previous redesigns. The biggest change to

this Orbiter was a redesign of the OMS pods which enabled the payload bay door to be

simplified from a 4 piece door to a single piece door. The forward fuselage was tweaked

resulting in a slight reduction in fuselage length, a redesign of the forward RCS system,

and the removal of doors meant to shield the forward RCS system during launch and

reentry. The ASRMs were deleted again saving $300 million in development cost, and the

provisions for the air-breathing propulsion system were removed from the design. In order

to reduce complexity and weight, a redundant hydraulic system was removed bringing the

total number of hydraulic systems from four to three. Finally, a parachute was added to

reduce the landing field length. [61]

7.2 Analyzing the Space Shuttle Orbiter

The Orbiter makes an ideal sample problem to demonstrate EMA– it was a novel concept

which experienced a large number of design changes throughout its early development. Fur-

thermore, original mass reporting documents exist to provide impact estimates of historical

design changes. These historical design changes also represent potential weight savings

and can demonstrate the method’s applicability to not only downside risks but also upside

opportunities.

This study will start at the Orbiter’s ATP and try to project the final flight weight. The

Orbiter’s ATP occured in early 1972 before the contract award to Rockwell. [56] Because

this occurs before contract award, the study will simulate an internal NASA study which

could be used to inform requirements generation and derive the ultimate program weight

requirement.

The first section of this study involves estimating baseline-specific growth. A pre-

determined percentage will be used so that the overall probabilistic results at the end of
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Figure 69: The Vehicle 3/4 Orbiter Configuration [61]
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Figure 70: The Final Space Shuttle Orbiter Configuration [61]
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the study will only reflect the output of EMA. The second section walks through each step

of EMA as applied to the Orbiter problem. Finally, the last section discusses the results of

the study.

7.2.1 Baseline-Specific Growth

While this sample problem primarily focuses on forecasting the impact of the Orbiter’s

baseline changes, the overall hybrid methodology requires an estimate of baseline-specific

growth. In order to isolate the effects of EMA’s forecast on the weight forecast, a predeter-

mined percentage is used to account for baseline-specific growth.

Because many margin standards call for a margin to be in place at ATP, a relevant

predetermined percentage compatible with this level of design fidelity must be used. The

AIAA Mass Properties Control for Space Systems provides recommended allowances for

in-scope growth as a function of design maturity level. The corresponding maturity level

for ATP is roughly equivalent to an early conceptual design. The recommended value for

large subsystems such as structures and propulsion is 15% while other subsystems such as

electrical components, wire harnesses, and instrumentation can range up to 30%. [6]

The original Orbiter’s dry weight at ATP was estimated to be 156,000 lbs. [96, 95, 97]

To account for baseline-specific growth, a 20% margin is applied. A 20% margin is selected

based on the ranges of the AIAA recommended values– the 20% margin is large enough to

account for both large subsystems and electrical components while not over-allocating due

to the margin recommendations for lighter subsystems. The final result is an Orbiter ATP

weight allocation of 187,200 lbs– a 31,200 lb margin.

7.2.2 EMA

7.2.2.1 Identification of Model Parameters

For the Orbiter example problem, the model parameters used in EMA should reflect the

historical record of baseline changes. While this problem could include other parameters

which are not reflective of historical design changes, only historical design changes are

considered because mass estimates for each design iteration can be derived from historical

Orbiter mass properties reports.
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The morphological field used for this problem can be seen in Figure 71. In order to cap-

ture the largest design changes to the Orbiter, the morphological field contains parameters

for modeling the air-breathing engine subsystem, the ASRMs, the wing planform, and the

fuselage length. Additionally, the morphological field includes some of the smaller additions

and subtractions by including the number of hydraulic systems and a drag chute for landing.

7.2.2.2 Identification of Conditions

The air-breathing engines went through different designs during the evolution of the Orbiter.

The three air-breathing conditions in Figure 71 represent the three distinct design options

developed for this system: system non-inclusion, a payload bay mounted propulsion system,

and wing mounted engines for ferry missions. The figure indicates that the original ATP

Orbiter had payload bay mounted air-breathing engines.

The ASRM system was another highly-debated subsystem in the Orbiter. The morpho-

logical field in Figure 71 shows that ASRMs can either be on the Orbiter or deleted from

the system. The highlighted “two” condition reflects the ATP baseline.

The Orbiter had two separate wings during the course of its development: the 50◦

blended delta and the double-delta. Both of these options are listed as possible choices in

Figure 71 with the baseline blended delta wing highlighted as part of the baseline.

Figures 66 through 70 list four separate fuselage lengths. The drop from 125.2 ft to

122.8 ft was the most significant drop which occurred when the docking hatch was removed

from the Orbiter, but two other reductions were made in the process of design maturation.

All four options are included in Figure 71; the option for 125.8 ft is highlighted to indicate

the original ATP Orbiter baseline.

Two of the changes made in the later stages of design are also included in Figure 71.

The option of reducing the number of redundant hydraulic systems and adding a parachute

are included in this model. The four redundant hydraulic systems and a lack of drag chute

is highlighted in Figure 71 as the ATP Orbiter baseline.
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Air‐Breathing 
Engines  None 

Payload Bay 
Mounted 

Wing 
Mounted 

ASRM  None  Two 
Wing 
Planform 

Blended 
Delta  Double‐Delta 

Fuselage 
Length  122.2 E  122.8 E   125.2 E  125.8 E 
Hydraulic 
systems  3  4 
Parachute  none  Single 

Baseline 

Figure 71: Space Shuttle Orbiter Design Change Morphological Field

7.2.2.3 Identification of Condition Attributes

A key reason for selecting the Orbiter as a sample problem was the existence of historical

mass properties reports. For the task of identifying the effects for each condition, the

original documents provide a key aspect of this study– the elimination of hindsight bias.

This will allow the study to effectively “predict” the final flight weight based on original

estimates. Therefore, when possible, the condition effects will be derived from these original

documents. A graph of the original CBE Orbiter mass estimates from July 1973 can be

seen in Figure 72.

For this study, each condition has a probability and an additive effect. Multiplicative

effects are omitted because each parameter identified in Section 7.2.2.1 corresponds to a

specific change to a portion of the vehicle and is not a vehicle-wide effect. While probability

values would normally be derived from expert input at a risk/opportunity workshop, the

author will act as a surrogate for a workshop and assign probabilities for each condition.

As a general rule, the baseline conditions always have at least a 25% chance of occurring,

and options which save mass are assigned higher probabilities. These higher probabilities
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Figure 72: Space Shuttle Mass Changes as of July 1973[95]

are meant to simulate the need to save mass from early Orbiter designs.

Figure 72 consists of three large drops in weight during the calendar year 1973. The

first drop from approximately 155,500 lbs to 150,000 lbs corresponds to incorporating the

deletion of the air-breathing engines and ASRMs into the official mass estimates. The

second drop in weight corresponds to the 150k orbiter redesign, this brought the CBE to

approximately 140,000 lbs. The next 3,000 lb drop in mass should correspond to the deletion

of the Orbiter’s docking hatch and the reduction of fuselage length by 3 ft. [95]

The deletion of air-breathing engines is assumed to account for most of the drop from

a 155,500 lb Orbiter to a 150,000 lb orbiter in early 1973 in Figure 72. Based on this

information, the difference between the payload by mounted propulsion system and the

complete deletion of the air-breathing engines is assumed to account for a weight savings

of 4,000 lbs. Because the wing-mounted system only requires additional hard points and

plumbing, it is assumed to only cost 250 lbs compared to the complete removal of the system.

The ATP baseline is assumed to have a 25% chance of occurring. The complete removal

of the system represents a large weight savings and is assumed to have a 50% chance of
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selection. Finally, the wing-mounted option claims the remaining 25% probability. These

values are summarized in Figure 73.

Because the air-breathing propulsion system takes up 5,000 lbs of the 5,500 lb drop, the

ASRM system is assumed to occupy the remaining 500 lbs. This 500 lbs would account for

the additional structure, hard points, and mechanisms related to the ASRMs– as the ASRMs

are jettisoned, they would not be accounted for in the Orbiter’s dry weight statement. The

baseline option is assumed to have a 25% probability of selection while the weight-saving

deletion of the ASRM system is assumed to have a 75% probability of selection.

The wing planform has two conditions: the original blended delta and the 150k double-

delta. Because the blended delta represents the original baseline, the effect value is 0 lbs,

and it is assumed to have a 25% probability of occurring. The double-delta is assumed to

represent the 10,000 lb reduction in weight as seen in Figure 72, therefore has an effect of

10,000 lbs of weight reduction. A 75% probability is assigned to this because it represents

a likely design change due to the NASA and Lockheed double-delta studies. [61]

The immediate drop of 4,000 lbs in mid-1973 is assumed to account for the shortening

of the fuselage by 2.4 ft and the elimination of the docking hatch Of these 4,000 lbs,

3,000 lbs are assumed to be fuselage related, and 1000 lbs are assumed to be part of the

docking mechanism. Based on these assumptions, the forward fuselage can be calculated

to approximately weigh 1,250 lbs per foot. This assumption allows the effects in fuselage

length to be approximated. First the 125.8 ft fuselage has a 0 lb effect as it represents the

baseline. The first reduction from 125.8 ft to 125.2 ft is a reduction in 0.6 ft and assumed

to be a reduction of 750 lbs relative to the baseline. From there, the reduction of 4,000 lbs

as noted in Figure 72 occurs leading to an effect of a total reduction of 4,750 lbs. The final

option in fuselage length is a reduction to 122.2 ft; this 0.6 ft reduction will be assumed to

weigh 750 lbs less than the 122.8 ft fuselage length option resulting in a total reduction of

5,500 lbs relative to the baseline.

According to the ground rules for this experiment, the baseline condition for fuselage

length is assigned a probability of 25%. Because the reduction to 122.2 ft and 122.8 ft

represents significant weight savings, the probabilities are biased in their favor as can be
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Air‐Breathing Engines 

None 
P(0.5), 
Effect = ‐5000 lbs 

Payload Bay Mounted 
P(0.25), Effect = 0 lbs 

Wing Mounted 
P(0.25),  
Effect = ‐4750 lbs 

ASRM 

None 
P(0.75),  
Effect = ‐500 lbs 

Two 
P(0.25), Effect = 0 lbs 

Wing Planform 

Blended Delta 
P(0.25) 
Effect = 0 lbs 

Double‐Delta 
P(0.25), Effect = ‐10000 lbs 

Fuselage Length 

122.2 O 
P(0.35) 
Effect = ‐5500 lbs 

122.8 O  
P(0.25), Effect = ‐4750 lbs 

125.2 O 
P(0.15) 
Effect = ‐750 lbs 

125.8 O 
P(0.25), 
Effect = 0 lbs 

Hydraulic systems 

3 
P(0.5) 
Effect = ‐400 lbs 

4 
P(0.5), Effect = 0 lbs 

Parachute 

None 
P(0.5) 
Effect = 0 lbs 

Single 
P(0.5) 
Effect = 500 lbs 

Baseline 

Figure 73: Space Shuttle Orbiter Design Change Executable Matrix of Alternatives

seen in Figure 73. Finally, the reduction to 125.2 ft is given a probability of 15%– the

remainder of the available probability for the parameter.

The final two parameters in Figure 73 represent the changes made at the end of the

Orbiter’s early design. Because of this, the probability is listed as 50% for each condition.

As the number of hydraulics systems is reduced from three to four, the weight savings will be

approximately 3/4ths of the July 1973 weight statement for hydraulics (400 lbs reduction).

[95] Finally, the parachute system and associated structural strengthening to accommodate

parachute loads are assumed to be 2/3rds of the SRB parachute weight (500 lbs addition).

7.2.2.4 Identification of Relationships

The next step in the creation of the EMA model is conducting a cross-consistency assessment

and identifying any relationships between conditions. Because this is a simple model with

each parameter modeling a disparate subsystem, each parameter will be assumed to be

independent of one another– there are no incompatibilities in this model. Additionally,

each condition is assumed to not influence the additive effects of every other conditions–

there are no effectual relationships in this model. These assumptions simplify this analysis
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Table 14: Orbiter Dry-Weight Predictions
Expected Value Case 80% Case

Baseline Dry Weight 156,000 lbs 156,000 lbs
Baseline-Specific Growth 31,200 lbs 31,200 lbs
EMA Adjustment -14,700 lbs -10,250 lbs

Predicted Dry Weight 172,500 lbs 176,950 lbs

and produce a “blank” relationship matrix.

7.2.2.5 Analysis

Since the Orbiter study is a small problem with only 192 potential combinations, a summary

evaluation of all simple combinations is possible. The CDF of this summary evaluation can

be seen in Figure 74.

In this figure, two values are specifically called out: the expected value and the 80%

value. The expected value is of interest because it is an important statistic of the distribu-

tion; the expected outcome of these potential baseline changes is a weight savings of 14,738

lbs (rounded to 14,700 lbs). Additionally, it can be seen that the expected value represents

the 65.8% quantile. The 80% quantile is a recommended choice for choosing a conservative

estimate in range estimating literature, therefore it is an interesting number to pull from

the EMA CDF. [2] The 80% quantile prediction in this problem represents a weight sav-

ings of 10,250 lbs. Table 14 presents a summary of the Orbiter’s original dry weight, the

baseline-specific mass growth allowance, the adjustment in mas due to EMA, and the final

predicted dry weight for both the expected value and 80% quantile predicted adjustments.

7.3 Results and Conclusions

Because the potential baseline changes to the Orbiter represented a potential weight savings

compared to the ATP Orbiter, the goal of EMA in this problem is to forecast the likely

weight savings to the ATP Orbiter. To test EMA’s forecast, the final flight weight of each

orbiter can be compared to the expected value and 80% probability forecast; the roll out

weight, space shuttle main engine weight, and total dry weight for each orbiter can be seen

in the first three rows of Table 15.

190



−20000 −15000 −10000 −5000 0 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Projected Weight Change, lbs

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Figure 74: CDF of Projects Changes to Orbiter Weight

Combining the original ATP Orbiter dry weight estimate (156,000 lbs), 20% mass growth

allowance (31,200 lbs), and the expected value weight savings (-14,700 lbs) yields a total

predicted weight of 172,500 lbs. The fifth row of Table 15 shows both the absolute and

percentage comparison of the expected value prediction to each orbiter flight weight. As

can be seen in the table, the less conservative expected value predictions are off by a few

percentage points on earlier orbiters (Challenger and Columbia), but very closely predict

the final flight weights of the three later orbiters (Discovery, Atlantis, and Endeavour).

Similarly, combining the original ATP Orbiter dry weight estimate (156,000 lbs), 20%

mass growth allowance (31,200 lbs), and the expected value weight savings (-10,250 lbs)

yields a total predicted weight of 176,950 lbs. The last row of Table 15 shows both the

absolute and percentage comparison of the expected value prediction to each orbiter flight

weight. The more conservative 80% quantile prediction is more successful. This prediction

closely predicts the first two Orbiters off of the production line within a single percent

accuracy. While it does not closely predict the three later orbiters, the forecast does provide

an ample design margin.
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Table 15: Comparisons Between Flight-Weight Orbiters and Predicted Weights
Orbiter Challenger Columbia Discovery Atlantis Endeavour

OV-099 OV-102 OV-103 OV-104 OV-105

Roll Out Weight
(lbs)[61]

155,400 158,289 151,419 151,315 151,205

SSME Weight (lbs)[91] 20,626 20,626 20,626 20,626 20,626

Total Dry Weight (lbs) 176,026 178,915 172,045 171,941 171,831

Predicted Weight of Ex-
pected Value (lbs)

172,500 172,500 172,500 172,500 172,500

Difference From Ex-
pected Value (lbs,%)

-3,526 -6,515 455 559 669

-2.0% -3.6% 0.26% 0.33% 0.39%

Predicted Weight of
80% Quantile Predic-
tion (lbs)

176,950 176,950 176,950 176,950 176,950

Difference From 80%
Quantile Prediction
(lbs,%)

924 -1,965 4,905 5,009 5,119

0.52% -1.1% 2.9% 2.9% 3.0%

The results of this experiment show that EMA can be used to accurately predict changes

in predicted weight due to baseline changes. This experiment used original design changes

and the corresponding estimated weight savings from the Orbiter program to make a suc-

cessful forecast of the final flight weight. This successful experiment substantiates EMA’s

use as a forecasting technique and substantiates hypotheses 1, 2, and 3.
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CHAPTER VIII

FAST PROGRAM PROOF OF CONCEPT

The previous chapter illustrated EMA as applied to the historical example of the Space

Shuttle Orbiter. While this experiment successfully predicted the flight mass of the Orbiter,

it only partially substantiated hypotheses 1 and 2. In order to fully substantiate these

hypotheses, a full demonstration of the hybrid methodology combining range estimating

and EMA is needed. This chapter documents a sample problem from the Air Force Research

Laboratory’s future-responsive access to space technologies program.

8.1 Future-Responsive Access to Space Technologies Program

The future-responsive access to space technologies (FAST) program is a set of technol-

ogy development studies initiated by the Air Force Research Laboratory (AFRL) in 2007.

These studies covered three technology areas necessary for future boost vehicles: design and

operability, advances structures and structural health monitoring, and adaptive guidance

navigation and control. [12, 13, 135] These projects were awarded to Northrop Grumman,

Lockheed Martin, and Honeywell, respectively. [12]

A central feature of the FAST program was that each technology development program

would be coordinated with one another; each contractor would utilize a common reference

flight system (RFS) as a basis for each individual program. This coordination is part of

a phased development approach where the individual programs focus on both technology

development and integration. [106]

The development of the FAST RFS was driven by vehicle-level measures of merit. These

included rocket-back test flight performance, single stage vehicle performance, aerothermal

capability, and operational goals such as call-up time and turnaround time. [135] After

three design cycles, configuration F, shown in Figure 75, was agreed upon as a common

baseline for the three technology development programs.

Because the FAST RFS F is a novel concept brought into a late conceptual design
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Figure 75: FAST RFS F [12]

level of maturity, it serves as a good sample problem for margin estimation using the hybrid

methodology combining range estimating and EMA. This chapter details the analysis of the

RFS F. Section 8.2 documents the range estimating analysis including the WBS generation,

assignment of ranges, and simulation. Section 8.2 documents EMA as applied to the RFS F

including the creation of executable matrices of alternatives, its corresponding relationship

matrices, and the subsequent analysis.

8.2 Range Estimating

8.2.1 Work Breakdown Structure

The first step in conducting a range estimating analysis is determining a baseline WBS. For

this problem, there are two sources of mass properties data: Northrop Grumman conceptual

estimates and Lockheed Martin subsystem estimates. The Northrop Grumman estimates

were derived during the RFS conceptual design process while the Lockheed Martin estimates

were derived from the initial design of the advanced structures technology demonstrator.

For this sample problem, the two sources of data were combined into a single WBS. Because

Lockheed Martin estimates were indicative of the technology demonstration program, they

wre used in place of Northrop Grumman estimates wherever possible. The WBS used for
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this sample problem can be seen in Table 16. [98]

8.2.2 Estimate Ranges for Individual Subsystems

The establishment of a baseline WBS provides a point estimate of subsystem mass prop-

erties. In order to conduct a range estimating analysis, weight engineers assigned to each

subsystem would produce low, likely, and high weight estimates for each subsystem. How-

ever, as this is a sample problem to illustrate the utility of the method, the estimates by

individual weight engineers will be replaced with percentage offsets based on the WBS sub-

system point estimates. These percentage offsets will enable the generation of a defensible

low, likely, and high estimate for FAST RFS F subsystems based on published margin

recommendations.

The AIAA standard for space systems mass properties control recommends a mass

growth allowance based on the type of subsystem and design maturity level. [6] The sub-

systems in the FAST RFS F WBS correspond to the following categories in the AIAA

standard: structures, thermal control, propulsion, and electrical components. Furthermore,

the FAST RFS F was developed to a design maturity level equivalent to layout draw-

ings. These two pieces of information yield the AIAA standard’s recommended margin.

Structural and propulsion subsystems should receive 15% margin while thermal control and

electrical components (assumed to be in the standard’s 5-15 kg category) should receive

20% margin. [6]

Next, the AIAA recommended margins can be used to inform a low, likely, and high

weight estimate which can then be used to create a triangular distribution. For each type

of subsystem, the weight corresponding to the recommended margin is taken to be the

high estimate. The most likely estimate will be assumed to be 5% less than the AIAA

recommended margin. Finally, the low weight estimates for each subsystem are assumed to

be 2.5% less than the original weight estimate. The percentage offsets for each subsystem

type are summarized in Table 17. These offsets are applied to each subsystem listed in Table

16 to create the low, likely, and high numbers for the subsystem triangular distributions.
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Table 16: FAST RFS F Weight Breakdown Structure
Mass(lbm) Mass(lbm) Mass(lbm)

Structure 8891

Wing Group 3831
Exposed + Carry Thru 3240
Wing Fairing 382
Hot Elevon Structure 209

Vertical Fins 285
Basic Vertical Fin 135
Rudder- Hot Structure 150

Body Group 3496
Integral Fuel Tank

Structure- Tank 662
Integral Oxidizer Tank

Structure- Tank 867
Structure- Common Bulkhead 109
Insulation- Tank 252

Secondary Structures
Forward Fuselage 442
Mid Body Fairings 355
Aft Fuselage 326

Thrust Structure 258
Body Flap 225

Landing Gear Group 1279
Main Gear 1087
Nose Gear 192

Induced Environmental Protection 1161

Wing Group TPS 276.2
Tail Group TPS 67.1
Body Group TPS 714.5
Internal Insulation 79
Hazardous Gas Detection 25

Propulsion 2759

Main Engines 1500
Press + Feed System 890
Gimbal Actuation 102
Purge System 159
Engine Heat Shield 108

RCS 459

Systems and Equipment 3810

Prime Power System 888
Electrical System 543
Flight Control System 472
Avionics System 611
Flight Termination System 25
Flight Test Instrumentation 600
Environmental Control System 671

Total Dry Weight 17080
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Table 17: Percentage Offsets for Range Estimating

Subsystem Low Likely High

Structures -2.5% 10% 15%

TPS -2.5% 15% 20%

Propulsion -2.5% 10% 15%

Electrical -2.5% 15% 20%

8.2.3 Identify Dependencies

The next step of range estimating is to identify dependencies within the ranged subsystems.

Ordinarily, this would involve performing a pairwise comparison to establish a correlation

matrix. However, for this sample problem, a weight engineering team is unable to provide

these correlations. In order to proceed with range estimating, the assumption of indepen-

dence will have to be made. This assumption is reasonable because it does not substantially

change the methodology used to analyze the RFS F; this assumption will only change the

numeric output of the range estimating Monte Carlo simulation.

8.2.4 Simulation

A 10,000 case Monte Carlo simulation was performed over the range estimating model. The

output of this model estimated the probable weight of the FAST RFS F baseline. A CDF

of the probable weights can be seen in Figure 76. As with the shuttle study, the FAST RFS

F study tracks the expected value and 80% quantile in the output of each simulation; these

values are illustrated in Figure 76. The range estimating model predicts an expected value

of 18,529 lbs and an 80% quantile level of 18,677 lbs.

While looking at the overall predicted mass is informative, the margin to apply to

the vehicle is the quantity of interest. The original baseline weight of 17,080 lbs must be

subtracted from the distribution in order to determine the margin due to design maturation;

a CDF of this value can be seen in Figure 77. The model predicts an expected value of

1,448 lbs and an 80% quantile level of 1,596 lbs.
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Figure 76: CDF of Total Vehicle Weight from Range Estimating
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Figure 77: CDF of Total Margin from Range Estimating
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8.3 EMA

8.3.1 Identification of Model Parameters

The first step in analyzing the FAST RFS F is to define the domains of the parameters

needed to model the development program. All programs are subject to outside program-

matic risks and opportunities, therefore the model should have parameters which reflect

these programmatic issues. Additionally, the FAST program is technology-centric; the

individual technology development programs which affect the dry weight should also be

modeled. Finally, a physical decomposition can be used to model the vehicle. This subsec-

tion describes the individual parameters used in the completed morphological field which

can be seen in Figure 78.

The first parameters which are identified describe the external influences on the de-

velopment program which manifest exogenous uncertainties. The most obvious external

influence which can influence a development program is the budget– this will affect the

underlying technology development programs and the available engineering hours used by

the program to optimize the design. In addition to the program’s budget, the requirements

are also often degrees of freedom. For the FAST RFS F, three requirements are identified as

parameters for the model. The first of these requirements is the aerothermal performance.

One reference trajectory for the RFS F is a mission which stresses the TPS; adjusting this

requirement will directly affect the sizing of the required TPS. [98] The next requirement

describes the overall single-stage vehicle performance; this requirement sizes the overall

vehicle. Finally, a transverse G-limit requirement determines the loads necessary for the

sizing of structures and places a constraint on the reference trajectories.

The next set of parameters describe the technologies relevant to the dry weight of the

vehicle and the corresponding technology uncertainty. Three structural technology devel-

opment programs, part of the Lockheed Martin project, develop a reduced depth wing box,

composite fuel and oxidizer tanks, and a composite common bulkhead. [12] Each of these

three technologies is a parameter of the model. Finally, an additional parameter is used for

mechanically fastened TPS materials. Technology programs are modeled independently to
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model the progress of the development program. Each technology has corresponding pa-

rameters in the vehicle physical decomposition to model the integration of the technology

on the final vehicle.

The vehicle parameters used in this model follow a physical decomposition of the vehicle

which is driven by the WBS in Table 16; these parameters describe model uncertainties

inherent in early-phase design which are not covered by the range estimating analysis.. The

structural subsystems of the RFS F are modeled by a total of 17 parameters. The wing group

is modeled by two parameters; one describes the wing shape/design while another describes

load-case scenarios. The vertical tail is also described by two parameters; one parameter sets

the location of the tail while another describes its construction. The elevon and body flap

each receive their own parameters, and an additional parameter allows canards to be added

to the vehicle. The body group is modeled by parameters which describe the fuel tank,

oxidizer tank, and secondary structures. Both tanks have an identical parameterization;

one parameter describes the load requirements, one parameter describes the structural

design, and the third parameter describes the construction material. A separate parameter,

tank attachment structure, models the common bulkhead or intertank. Finally, the nose

structure, (mid-body and aft) secondary structures, and thrust structure each receive their

own parameters.

An additional four parameters are used to model the TPS systems of the RFS F. Separate

parameters are used for the wing group, tail group, and body group external TPS. Finally,

an additional parameter is used to model the propellant tank thermal insulation. These

four parameters were chosen in order to correspond to the WBS in Table 16; hazardous gas

detection was omitted from this section because this subsystem would likely be made from

off-the-shelf parts and subject far less uncertainty than the other four TPS parameters.

A final five parameters are used to model alternatives for the propulsion system. One

parameter is used to model alternative engines which could be used to power the RFS F.

Another parameter models the way that the engines are integrated into the vehicle’s aft

structure. A third parameter represents the different alternative methods of constructing the

oxidizer feedline which connects the forward-mounted oxidizer tank to the main propulsion
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Table 18: Organization of Parameters by Subsystem

Subsystem Parameters

Propellant Tanks Composite Tank Technology,
Common Bulkhead Technol-
ogy, Fuel Tank, Fuel Tank De-
sign, Fuel Tank Construction,
Oxidizer Tank, Oxidizer Tank
Design, Oxidizer Tank Con-
struction, Tank Attachment
Structure, and Oxidizer Feed-
line

Structures Wing Box Technology, Nose,
Thrust Structure, Secondary
Structures, Wing Shape,
Wing Structure, Hot Elevon
Structure, Canards, Vertical
Tail Location, Vertical Tail
Design, and Body Flap

TPS Aerothermal Performance,
TPS Technology Effective-
ness, Wing Group TPS, Tail
Group TPS, Body Group
TPS, and Insulation

Propulsion Engine Selection, Engine Inte-
gration, Pressurant, and RCS

Vehicle-Wide Budget, Single-Stage Vehicle
Performance, and G-limit

system. Finally, two more parameters model alternative chemical systems which would be

used for tank pressurant and the RCS system.

The final step in the identification of parameters is assigning each parameter to a subsys-

tem group for later analysis. For this problem four subsystems are being tracked: propellant

tanks, vehicle structures, TPS, and propulsion systems. Additionally, certain parameters

such as budget and single-stage vehicle performance affect the entire vehicle; these param-

eters are placed in a separate category for parameters which describe the total vehicle-wide

margin. The assignment of parameters to categories is documented in Table 18.
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Figure 78: Morphological Field for FAST RFS F
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8.3.2 Identification of Conditions

The next step of EMA is to complete the morphological field by identifying the alternative

conditions for each parameter. The alternatives defined in this section represent alterna-

tives studied in design studies which would have been conducted during earlier phases of

design or alternatives which would have been examined by systems engineers performing a

risk/opportunity analysis in the vehicle program office. The complete morphological field

can be seen in Figure 78; because the overall hybrid method assumes a baseline as part

of the analysis, the conditions corresponding to the FAST RFS F baseline are highlighted

in green. This section details the identification of conditions used to describe the baseline

alternatives for the RFS F.

8.3.2.1 Programmatics

The programmatic parameters make up the first four parameters in Figure 78. In order to

represent political uncertainties over funding issues, the budget has four different options–

the baseline budget, a slight increase in budget, and two varying degrees of budget reduc-

tions. Two levels of budget reduction representing a slight and significant reduction are

included to allow program managers to define discrete levels of risk mitigation in the face

of growing budget cuts.

Requirements uncertainty is modeled in the through aerothermal performance, vehicle

performance, and g-limit requirements. The conditions defined in this section represent

options which were present during the initial requirements exploration stages of the FAST

program. The aerothermal performance parameter is given a baseline requirement, a more

stringent version of the requirement, and two varying degrees of requirement relaxation.

Two degrees of requirements relaxation are offered because the aerothermal requirements

will directly drive the material selection of the TPS, a discreet baseline change unable to be

modeled by range estimating. Requirements uncertainty is further modeled through single-

stage vehicle performance; this requirement is represented by its baseline requirement and

increased or decreased performance thresholds. Finally, the g-limit requirement has options

of 3, 4.5, and 6 gees; these g-limits considered during the program’s evolution and early
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design studies. [22]

8.3.2.2 Technologies

The next four parameters in Figure 78 model the technology development programs. For

each technology development program, conditions were assigned to enable each program

to meet the program threshold, not meet the threshold, exceed the threshold, or meet the

objective. For the case of composite tanks, the option for a failed technology development

is included; the selection of this option will make it impossible for the model to select a

composite tank construction or common bulkhead in the vehicle physical decomposition.

8.3.2.3 Vehicle Structures

The modeling of the structural subsystems accounts for the next several parameters. This

can be further broken down into tankage structures, aerodynamic structures, and sec-

ondary/thrust structures. Many of the options discussed in this subsection represent alter-

natives studied in early design and risk mitigation studies of the FAST program.

Three parameters describe the propellant tanks; both the fuel and oxidizer tanks have

the same conditions because they are similar structures. The parameter for the tank de-

scribes the loading requirements for the tank. These requirements include the baseline

requirements or different increased loading requirements. The construction parameter in-

cludes options for construction material. The composite baseline is available along with

options for metallic structures. Finally, the design parameters specify the structural design

philosophy– the externally stiffened baseline, a monocoque, or an orthogrid. In addition to

the parameters which describe the individual tanks, the parameter for the tank attachment

structure allows the selection of a common bulkhead or an intertank.

The main wing is modeled by two parameters. The wing structure parameter includes

options for the baseline load case along with the over and under-estimation of loads. The

wing shape parameter enables options for two different wings– a standard wing and a L/D

wing which was baselined into the RFS F. [22, 98] The baseline L/D is highlighted in green;

from there options allow redesigns for both the standard wing and high L/D wing. The

option to redesign the wing exists because an experimental vehicle like this is known to
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have issues with pitch trim stability. [113, 112] Finally, an option exists to add stiffness to

account for flutter.

The vertical tail is also modeled using two parameters. The parameter governing the

vertical tail location allows the stabilizer to be placed on the wing tip, mid-wing, or on the

fuselage. This tail can be redesigned to increase tail size in order to increase directional

stability, to add stiffness for flutter, or both.

The control surfaces are modeled using the hot elevon structure, body flap, and canard

parameters. Both the body flap and elevon parameters present options for the baseline or

larger control surface to improve control power. Similarly, the option to add canards exists

because of the possibility of requiring more control power.

The secondary/thrust structures are made up of the nose, trust structure, secondary

structure, and control surface parameters. Each of these parameters has a baseline option

and options which will trigger a redesign. Both the thrust structure and secondary struc-

tures have options which would trigger a mass gain or a mass savings while the nose only

has an option which will trigger mass growth.

8.3.2.4 Vehicle TPS

Each parameter modeling the TPS has identical conditions. Each has a condition repre-

senting the baseline technology level and a condition representing reduced technology effec-

tiveness. These conditions are meant to work with the aerothermal requirement parameter

and TPS technology effectiveness parameter through relationships.

8.3.2.5 Vehicle Propulsion

Propulsion is modeled by five parameters which reflect propulsion studies carried out during

the development of the RFS F. The engine selection parameter allows the choice between

the existing new engine design, an off-the-shelf SpaceX Merlin engine, or a new engine with

additional mass growth; this option for additional mass growth on top of the mass grow

predicted by range estimated was added to account for the fact that it is a new engine. The

engines can be mounted on the aft fuselage as part of a tradition boat tail or on nacelles; the

nacelle concept was incorporated as a way to improve the maintainability of the propulsion
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system. [35] The oxidizer feedline can be an simple external feedline, or two different designs

for feedline which runs through the fuel tank. Finally, pressurants can be either helium or

nitrogen while the RCS system can be either hydrazine based, LOX/ethanol, or a new green

RCS technology.

8.3.3 Identification of Condition Attributes

The next step in EMA is the identification of condition attributes. For this problem, each

condition will have a likelihood, multiplicative effect, and additive effect. As with the

Orbiter example problem in Section 7.2.2.3, the probabilities are estimated by the author

with a bias on probability values placed on baseline conditions. Additionally, while each

condition has potential values for both additive and multiplicative effects, some conditions

will not have a first order effect– a multiplicative effect of 1 and an additive effect of 0 do

not affect the modeled weight. Instead, these conditions will trigger relationships which will

impart a second order effect on the modeled weight. Finally, baseline elements highlighted

in green have no impact on the modeled weight compared to the original WBS in Table 16.

The programmatics matrix can be seen in Figure 79. The first item covered in this

matrix is the budget outlay for the program. A reduction in budget would affect the overall

weight of the vehicle because it would hinder a mass control program; similarly, a bud-

get increase can enhance a mass control program resulting in a reduction in weight. This

first order effect is modeled through multiplicative relationships. Similarly, the single-stage

vehicle performance has a first order effect on the vehicle as it represents the overall re-

quired performance; a decreased requirement threshold will lead to less required margin

while an increased threshold will require additional margin. Finally, both the requirements

on aerothermal performance and transverse G-limit have no first order effects on the ve-

hicle weight. The conditions in these parameters affect the weight of the vehicle through

relationships.

The matrix describing the technology development programs can be seen in Figure 80.

None of the technology development programs listed in this matrix have first order effects.

All technology development programs will affect the individual parameters in the vehicle
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Figure 79: Programmatics Matrix

physical decomposition through relationships.

The matrix describing the structural subsystems can be seen in Figure 81. As each of

these parameters only describe subsystems, the multiplicative effect is unity. The addi-

tive effect for baseline conditions mirrors the baseline weight from Table 16. The decision

to model baseline conditions’ additive effect as the original weight estimation allows the

full subsystem weight to subsequently be modified via multiplicative relationships. For ex-

ample, the common bulkhead structural weight can be multiplied by a factor depending

on which common bulkhead technology development program condition is chosen. In ad-

dition to modification through relationships, each parameter contains alternative baseline

configuration conditions whose additive effects reflect a percentage offset from the original

weight.

In this decomposition, there are several structural subsystems described by multiple

parameters. Specifically, both propellant tanks, the wing, and vertical tail are modeled

using multiple parameters. In each of these cases, only one of the parameters carries the

full weight allocation for the subsystem from Table 16. In order to avoid double-counting

weight changes, the other parameters have no first order effect on the vehicle weight; instead,

these additional parameters will affect the primary parameter’s additive effect through

relationships.
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Figure 80: Technology Development Matrix

The matrix describing the TPS conditions can be seen in Figure 82. Each baseline

condition has a probability of 60%, and each reduced technology effectiveness condition has

a probability of 40%. The additive effect of each baseline condition reflects the original

estimated weight of each TPS subsystem in Table 16. The additive effect for each parame-

ter’s reduced technology effectiveness conditions is a 5% increase in weight over the baseline

conditions. These condition attributes are intended to be modified by relationships during

the execution of the model; specifically, the technology development program parameters

will modify these parameters as necessary.

The final set of parameters, the propulsion elements, can be seen in Figure 83. Unlike

the structures and TPS portions of the overall matrix, most propulsion elements are only

represented by their delta from the original baseline. This change is made for propulsion

elements because there are few relationships from other parts of the model which will need

to modify the full weight of these subsystems. Additionally, the engine integration, oxidizer

feedline, and RCS subsystems’ mass impacts are assumed representative weights to complete

the model. The weight impact of the pressurant is based on the weight savings which could

be accomplished by using helium instead of nitrogen. [143]

The final step as part of the identification of effects is determining the value of the

baseline weight used in Equation 26. Because many of the baseline conditions contain
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Figure 81: Structural Subsystem Matrix
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Figure 82: TPS Matrix

Figure 83: Propulsion Matrix
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weight estimates, the baseline weight used for Equation 26 is not equal to the dry weight

listed in Table 16. For this problem, the number used is 7,465 lbs– the combined mass of

all subsystem weight estimates not accounted for by matrix parameters.

8.3.4 Identification of Relationships

8.3.4.1 Organization of Parameters

The first part of the relationship identification phase is to define necessary sub-matrices in

order to minimize one-way relationships. For this problem, three sub-matrices are used:

programmatics, technology development, and vehicle decomposition. These three matrices

create a hierarchy of one-way relationships. One-way relationships from the programmat-

ics matrix can affect the technology development programs and the vehicle, and one-way

relationships from the technology development matrix can only affect the vehicle matrix.

The programmatics matrix can be seen in Figure 79 and contains the budget and re-

quirements parameters. Similarly, the technology development matrix is seen in Figure 80.

The vehicle matrix is a concatenation of the matrices contained in Figures 81, 82, and 83.

8.3.4.2 Identifying One-Way Relationships

The one-way probability relationships between different funding profiles and the technol-

ogy development programs can be seen in Figure 84; this figure omits the four relation-

ships which could affect multiplicative and additive effects because these entries are trivial.

Smaller funding profiles lead to less effective technology development programs. Simi-

larly, a budget increase will increase the chances of technologies meeting or exceeding their

thresholds. The one-way probability relationships between the different funding profiles

and alternative vehicle baseline options can be seen in Figure 85; similarly, this figure omits

the four relationships which could affect multiplicative and additive effects because these

entries are trivial. These relationships model the idea that budget reductions will lead to

more conventional design decisions; for example, a smaller budget could lead to choosing

aluminum tanks and an intertank instead of composite tanks with a common bulkhead.

The one-way relationships between requirements parameters and vehicle options can
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Figure 84: Probability Relationships Between Budget Alternatives and Technology Devel-
opment Projects

Figure 85: Probability Relationships Between Budget Alternatives and Vehicle Subsystems
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Figure 86: Additive Effect, Multiplicative Relationships Between Aerothermal Require-
ments and Vehicle TPS

be seen in Figures 86 and 87. Figure 86 shows multiplicative relationships with the ad-

ditive effects of the TPS group parameters. Increased aerothermal requirements lead to

additional TPS weight and vice-versa. All other relationships between aerothermal require-

ments and TPS vehicle options are trivial. Similarly, higher G-limit requirements drive

increased weight allocations for load bearing parts of the vehicle structure. Figure 87 shows

that probability relationships and multiplicative relationships affecting additive effects ex-

ist between G-limit requirements and vehicle structural subsystems; an increase in g-limit

requirements increases the chances of a redesign for increased tank stiffness. The additive

relationship for the additive effect and relationships affecting the multiplicative effect of

structural conditions are omitted from Figure 87 because they contain trivial ’no effect’

entries.

The one-way relationships between technology development programs and vehicle op-

tions can be seen in Figures 88, 89, 90, and 91; these figures omit relationships which do

not affect vehicle options. These technologies affect vehicle weights through multiplica-

tive relationships. A more successful technology development program will result in lower

weights and vice-versa. Additionally, probability relationships exist which could trigger

design changes to less mass efficient design options if technology development programs

progress poorly. These probability relationships implement a central design feature of the

model– design options and technology development programs are modeled separately. This
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Figure 87: Relationships Between G-limit Requirements and Vehicle Substructures

decision is intended to note the difference between technology development and integra-

tion; a technology development program may develop technologies which are impractical,

expensive, or fruitless to include on a vehicle.

8.3.4.3 Identifying Two-Way Relationships

The programmatics relationship matrix can be seen in Figure 92. This figure only contains

probability relationships because there are no relationships affecting multiplicative or ad-

ditive effects. The major relationships in this matrix stem from interactions between the

budget outlays and requirements. In this model, if the budget is reduced, then it is more

likely that requirements will be relaxed. Similarly, if the budget is increased, it is more

likely that additional aerothermal and vehicle performance requirements will be levied.

There are no relationships between members of the technology development matrix.

There can be no relationships affecting non-existent effects because none of the conditions

have a multiplicative or additive effect on the vehicle mass. Furthermore, there are no

probability relationships because each technology development program is assumed to be

independent.
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Figure 88: Additive Effect, Multiplicative Relationships Between Wing Box Technology
Development and the Wing Structure

Figure 89: Relationships Between Composite Tank Technology Development and the Pro-
pellant Tanks
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Figure 90: Relationships Between Common Bulkhead Technology Development and Vehicle
Structures

Figure 91: Relationships Between TPS Technology Development and Vehicle TPS
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Figure 92: Programmatics Relationship Matrix

The vehicle relationship matrix is very large (69x68) and cannot be fully reproduced in a

single figure. Furthermore, the matrix is very sparse. This matrix only contains probability

and multiplicative relationships for additive effects; all other relationships are trivial and

are omitted from these figures. Furthermore, these figures will omit many of the ’non

effect’ entries in matrices to improve the readability of larger figures. The remainder of this

section documents the portions of the relationship matrix which has interesting probability

and multiplicative relationships.

The relationship matrix in Figure 93 highlights a portion of the probability relationships

in the vehicle matrix. This sub-matrix highlights the relationships between tank construc-

tion and design as well as correlations between the oxidizer and fuel tanks. The first thing

to highlight in this matrix is that composite construction and orthogrid design are incom-

patible. The next trend is monocoque and orthogrid designs are more likely to occur with

aluminum and aluminum lithium construction. Finally, there is a link between both the

oxidizer and fuel tank sections– if one material or design is chosen for a single thank, then
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Figure 93: Tank Structures Probability Relationship Matrix
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Figure 94: TPS Probability Relationship Matrix

the other tank is more likely to have a similar design and construction.

Figure 94 shows probability relationships between TPS choices. This figure illustrates

the correlations in probability between TPS choices. If a baseline condition is chosen for

one TPS parameter, then it is more likely that additional baseline conditions will be chosen

within the TPS group. Similarly, if one ends on reduced technology effectiveness, then the

other TPS parameters will also have a higher chance of a reduced technology effectiveness.

In addition to the probability relationships between tank structures and TPS, there are

sparse probability relationships which model correlations due to the loading of the structure.

Probability relationships exist between the wing structures, secondary structures, and the

thrust structure. If the a structures loads are chosen to be under-estimated, then it is

likely that the other parameters’ selection will end up as under-estimated. Similarly, an

over-estimation of loads will result in other over-estimations to account for the new loading.

Another probability relationship exists between the tail design and the wing shape. A

stronger tail will in turn require a stronger wing to accommodate the additional wing load.

The multiplicative relationships between additive effects in the vehicle matrix can be
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Figure 95: Tank Additive Effect, Multiplicative Relationship Matrix

220



Figure 96: Wing Additive Effect, Multiplicative Relationship Matrix

seen in Figure 95 and 96. Figure 95 shows how different choices in the design and con-

struction of propellant tanks affects the structural weight of the tank. Figure 96 shows

the interaction between tail design choices, wing design choices, control surfaces, and TPS

weights.

8.3.5 Analysis

The analysis of this EMA model begins by running a 10,000 case Monte Carlo simulation.

While Section 5.4.4.4 shows that a limited amount of Monte Carlo cases are necessary to

create a defensible probabilistic analysis, 10,000 cases were chosen in order to carry out

analyses described in Section 6.2.4 which require addition cases. This section carries out

the three types of analysis detailed in Section 6.2.4: probabilistic analysis of prospective
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Figure 97: Monte Carlo Results for Vehicle Weight

weights, sensitivity analysis, and what-if analysis.

8.3.5.1 Probabilistic Analysis

The CDF reflecting the results of the 10,000 case Monte Carlo simulation can be seen in

Figure 97. The results of the model run provide total weight estimates of the RFS based

on potential baseline configuration changes. As with the previous CDFs, both the expected

value and 80% quantile value are illustrated. This model produces an expected value weight

of 17,561 lbs and an 80% quantile value of 18,790 lbs.

In order to get margins out of this data, the original 17,080 lb baseline dry weight must

be subtracted. This results in a CDF which can be seen in Figure 98. This figure highlights

the expected value margin of 481 lbs, and 80% quantile value of 1,711 lbs.

While top-line weight and margin estimations are useful, many decision makers would

prefer to specify subsystem-level margins which would then add up to a total vehicle margin.

Because the parameters of the EMA model were labeled as parts of subsystems, the Monte

Carlo simulation can provide information about subsystem margin estimates. The expected

value and 80% quantile value for each subsystem identified in Section 8.3.1 can be seen in
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Figure 98: Monte Carlo Results for Vehicle Margin

Table 19: Subsystem Margin Estimation from EMA

Subsystem Expected Value (lbs) 80% Quantile (lbs)

Propellant Tanks 368 561

Structures 383 876

TPS 244 318

Propulsion -212 2

Vehicle-Wide -303 471

Sum 481 2,230

Table 19, and the CDF for each subsystem can be seen in Figure 99 through 103. If each

subsystem is allocated via the 80% quantile criterion, then this method results in a more

conservative margin estimate by 518 lbs.

These two different methods of looking at margin can have different results because

the weight estimates are correlated. Figure 104 shows a scatterplot matrix where each

subsystem margin and total margin is plotted against each other. In this matrix, the

correlations between estimates can be visualized; additionally, the correlation matrix can

be seen in Table 20. From this information, the fact that the structures and propellant tank
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Figure 99: Monte Carlo Results for Tank Structures Margin
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Figure 100: Monte Carlo Results for Structures Margin
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Figure 101: Monte Carlo Results for TPS Margin
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Figure 102: Monte Carlo Results for Propulsion Margin
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Figure 103: Monte Carlo Results for Vehicle-Wide Margin

weights are correlated is apparent.

These correlations can help decision makers determine how much importance is placed

on subsystem estimates compared to total weight estimates. Figure 104 illustrates a filtered

Monte Carlo of different estimation priorities. The green dots illustrate cases with sufficient

margin when using the 80% value based on the total vehicle margin (Figure 98). Blue dots

represent cases which have sufficient margin when both the propellant tank and structures

margins are allocated using the subsystem 80% value–the structures and tankage are chosen

because these two margins are correlated. Finally, purple dots represent cases which pass

both total margin and subsystem margin criterion, and black dots fail all criterion. The

different criterion are readily apparent on this plot– the total margin criterion is visualized

through a straight line through the bottom and right-hand rows of the matrix while the

subsystem criterion cuts out the lower left-hand corner of the propellant tank margin versus

structures margin plot. Because purple dots meet both criteria, any remaining green dots

represent vehicles which exceed subsystem margins while remaining blue dots exceed total

vehicle margin.
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Figure 104: Scatterplot for Subsystem Margins

Table 20: Subsystem Margin Correlations

Tanks Structures TPS Propulsion Vehicle-Wide Total

Propellant Tanks 1.0000 0.3952 0.0145 -0.0336 -0.0051 0.3295

Structures 0.3952 1.0000 0.0259 0.0170 -0.0038 0.4892

TPS 0.0145 0.259 1.0000 -0.0123 0.0010 0.4767

Propulsion -0.0336 0.0170 -0.0123 1.0000 -0.0236 0.1623

Vehicle-Wide -0.0051 -0.0038 0.0010 -0.0236 1.0000 0.6983

Total 0.3295 0.4892 0.4767 0.1623 0.6983 1.0000
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Figure 105: Scatterplot Matrix for Subsystem Margins Highlighting Thresholds
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Table 21: Total Margin Estimation

Expected Value (lbs) 80% Quantile (lbs)

Dry Weight 17,080 17,080

Range Estimating Margin 1,448 1,596

EMA Margin 481 1,711

Margin Sum 1,929 3,307

Predicted Dry Weight 19,009 20,387

8.4 Margin Selection

The final step of the hybrid methodology is to assign the final margin to be used by the

program. As stated in Section 6.3, this can be done in two general methods: allocating a

separate margin based on the results of range estimating and EMA separately or combining

the simulation results into a single CDF. For this section, the analysis will take place on

the entire data set with no excluded cases due to what-if scenarios; if a program decides to

proceed with a what-if scenario, the analysis would proceed as hereafter described with the

only change being the adjusted data set with excluded cases.

The first method of assigning a margin involves utilizing the results of range estimat-

ing and EMA separately. The results of range estimating are discussed in Section 8.2.4;

these simulations resulted in an expected margin and 80% quantile margin of 1,448 lbs and

1,596 lbs respectively. Similarly EMA simulations resulted in an expected margin and 80%

quantile margin of 481 lbs and 1,711 lbs respectively. As indicated in Table 21, the total

predicted weight will have an expected value 19,009 lbs and an 80% quantile of 20,387 lbs.

This represents a 11.3% margin for the expected value case and a 19.3% margin for the 80%

quantile case.

Another way of allocating margins separately is by looking at individual subsystems.

For this analysis, the outputs of range estimating are divided into the subsystem categories

defined in Section 8.3.1; as the full WBS contains electrical subsystems not covered by these

parameters, all other subsystems are listed in the “Other” category. The full breakdown

of subsystem margin by both range estimating and EMA can be seen in Table 22. While

the expected total margin is equivalent to the estimated margin obtained by looking at the
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Table 22: Total Margin Estimation via Subsystems

Subsystem Expected Value (lbs) 80% Quantile (lbs)

Dry Weight 17,080 17,080

Propellant Tanks (Range Estimating) 143 186
Propellant Tanks (EMA) 368 561

Structures (Range Estimating) 504 619
Structures (EMA) 383 876

TPS (Range Estimating) 123 157
TPS (EMA) 244 318

Propulsion (Range Estimating) 241 301
Propulsion (EMA) -212 2

Other (Range Estimating) 435 500
Other (EMA) N/A N/A

Vehicle-Wide (Range Estimating) N/A N/A
Vehicle-Wide (EMA) -303 471

Margin Sum (Range Estimating) 1,446 1,763
Margin Sum (EMA) 481 2,230

Predicted Weight 19,007 21,073

total weight, the 80% quantile is far more conservative.

Margin can also be analyzed by combining the Monte Carlo simulations. In order to do

this, the range estimating and EMA simulation outputs were converted to deltas from the

baselines weights. In the case of subsystem evaluations, they were converted to deltas from

the underlying subsystem baseline weights. These deltas can be added together to result

in a case-by-case delta from the baseline. These cases are then analyzed to produce a new

CDF for weight and margin (Figures 106 and 107).

The results for margin analysis through a combined analysis can be seen in Table 23.

The expected value for the predicted dry weight of the FAST RFS F is equivalent to all

other estimations made by calculating the expected value. However, the 80% quantile value

is slightly less than the previous estimate made by analyzing the total vehicle.

Similarly, the Monte Carlo simulation data for individual subsystems can be combined to

produce total distributions for each subsystem. Table 24 shows the values for each combined

subsystem. As expected, the expected value prediction is equivalent to the previous three

methods of analyzing this data. However, the 80% quantile measurement is slightly different

from the previous methods proving a less conservative estimate of margin when compared
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Figure 106: Monte Carlo Results for Combined Total Weight
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Figure 107: Monte Carlo Results for Combined Total Margin
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Table 23: Total Margin Estimation

Expected Value (lbs) 80% Quantile (lbs)

Dry Weight 17,080 17,080

Design Margin 1,929 3,157

Predicted Dry Weight 19,009 20,237

Table 24: Total Margin Estimation via Subsystems

Subsystem Expected Value (lbs) 80% Quantile (lbs)

Dry Weight 17,080 17,080

Propellant Tanks 511 707

Structures 888 1,401

TPS 367 449

Propulsion 29 288

Other 435 500

Vehicle-Wide -303 471

Margin Sum 1,929 3,819

Predicted Weight 19,009 20,899

to the previous subsystem-centric analysis method.

Ultimately, the main difference between these analysis techniques is not the final margin

values but rather the ability for a decision maker to evaluate separate portions of the model

output. Looking at EMA and range estimating results separately gives a different view

of the problem to a decision maker compared to a simple CDF of total predicted weight.

Similarly, breaking the problem down into subsystem estimates provides a different view

than looking at the total predicted weight. Ultimately, it is up to the decision makers in

the program under analysis to decide on which data views are most useful. This example

problem is intended to show how these views can be used to make decisions.

8.5 Additional Use Cases for EMA

In addition to using EMA as part of the hybrid methodology to estimate a vehicle or

subsystem design margin, a vehicle program office or subsystem office can use the EMA

model as a way to validate the EMA model, examine sensitivities, explore design decisions,

and perform risk mitigation. This section uses the FAST RFS F EMA model to explore
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alternate use cases of EMA.

8.5.1 EMA Model Validation

After the creation of a vehicle-level EMA model, the program office will want to validate

the output of the model versus the experience of the experts, design teams, and subsystem

offices which contributed to the creation of the model. This use case will show how the

structures subsystem office can validate the output of the structures portion of the EMA

model.

This analysis starts by running a 10,000 case Monte Carlo simulation of just the struc-

tures portion of the FAST RFS F EMA model. The structures portion consists the struc-

tures subsystem matrix as defined in Figure 81; these conditions correspond to the structures

portion of the WBS defined in Table 16 with the exception of three items: oxidizer tank

insulation, landing gear, and wing fairing. To account for this difference, the output of the

Monte Carlo simulation will have 1,913 lbs (the total baseline weight of the oxidizer tank

insulation, landing gear, and wing fairing) added to the simulation results.

The first thing that should be looked at is the raw output of the Monte Carlo simulation.

The structural subsystem weight CDF can be seen in Figure 108; the difference between the

simulation output weight and the structures subsystem weight can be seen in Figure 109.

The first thing that should be checked on these curves is that the baseline weight, 8891 lbs,

is within the bounds of the CDF. As can be seen in weight difference curve (Figure 108), the

value of 0 lbs appears as a valid value therefore the model encompasses the original baseline

value. The next thing that can be seen in the curve is that the majority of cases represents

mass growth, and relatively few cases represent mass savings. This result is also consistent

with the construction of the model where most selections will result in mass growth while

very few selections would result in a mass savings.
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Figure 108: Monte Carlo Results for Structural Subsystems
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Figure 109: Monte Carlo Results for Structural Subsystem Margin
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Figure 110: Prediction Profiler for Structural Subsystems–Baseline Requirements
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Given this Monte Carlo simulation, the results can be regressed into a linear statistical

model. [90] This model can yield a prediction profiler which visualizes the total derivative

of each regression; this prediction profiler can be seen in Figure 110. [117] The slope

of the lines in each box of the prediction profiler characterizes both the sensitivity and

directionality of the weight response to the alternatives in the EMA model. This can

provide insights into engineers looking to validate the EMA model because the derivatives

are readily visualized; this enables an easy method of checking the model versus the intuition

of subsystem engineers. For example, if the prediction profiler showed that a response

thought to provide a weight savings actually incurs a weight penalty, then an engineer can

flag that part of the model for further study.

Another view of the model which can be used for validation is a scatterplot matrix of

the selected conditions; a scatterplot matrix plots every selected dimension versus every

other selected dimension. A scatterplot matrix of the selected fuel and oxidizer tank condi-

tions can be seen in Figure 111; this figure visualizes the frequency of each combination of

selections— the density of each plot represents the relative frequency of selection. Visual-

izing this information allows for the validation of the original probability assignments and

probability relationships. For example, the incompatibility between composite construction

and orthogrid design can be validated using this view.

8.5.2 Subsystem Sensitivity

Another fundamental question which can be answered on a subsystem level is ’how sensitive

is the baseline weight of the structures subsystem to baseline changes.’ First, the global

sensitivity can be determined by plotting the scaled estimates calculated during the linear

regression. This plot can be seen in Figure 112. Based on these scaled estimates, the

wing design choices and vertical tail have placement have the largest impact. The wing

is the largest structural subsystem, therefore wing design choices will have large impacts.

Similarly, the vertical tail can be placed on the wing tip or mid-wing; this placement will

result in an overall higher wing structural weight to support the vertical tail.

The next level of sensitivity of use to a vehicle designer is the local sensitivity around
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Figure 111: Scatterplot Matrix for Selected Fuel and Oxidizer Tank Conditions
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Figure 112: Tornado Plot for Structural Subsystem Design Choices
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the baseline. This will show which excursions from the baseline will immediately impact the

structural weight. These local sensitivities can be visualized using the prediction profiler in

Figure 110. This prediction profiler illustrates local sensitivities because the baseline design

is chosen for each potential input. This profiler shows that the current baseline design is

very sensitive to changes in the wing shape, the addition of canards, vertical tail placement,

and tail design changes. Propellant tank choices have lesser impacts. Finally, this prediction

profiler shows that weight is insensitive to the secondary structures options.

8.5.3 Subsystem Design Decisions

The maturation of a vehicle from conceptual design to preliminary design is an iterative

process in which higher-fidelity analyses motivate design decisions. The system design

matures as this series of decisions is made. As shown in Section 2.3.1.3, this series of design

decisions represents volitional uncertainty as risk managers must account for future design

decisions. However, EMA allows for risk managers to examine the sensitivity of design

decisions to the overall vehicle weight.

In order to examine design decisions, trends in acceptable designs must be observed.

Figure 113 shows a scatterplot matrix of propellant tank options, and Figure 114 shows

a scatterplot matrix of wing and vertical tail options. In each figure, blue dots represent

designs which would not meet the 80% quantile structures and propellant tank margin of

1,437 lbs as defined in Section 8.3.5.1. These blue dots are very hard to see in Figure 113

because they are almost uniformly scattered throughout each box; this uniformity shows

that propellant tank design decisions are insensitive to meeting the set margin. However,

Figure 114 shows a high clustering of blue dots defining vertical tail placement; this indicates

that the placement of the vertical tail on the wing is a high-risk design decision. This risk

is further compounded if the original analysis in sizing the tail and wing structures

Knowing this information, a vehicle office may want to hold off on making high-risk

design decisions until further study can be completed. For this example, a vehicle office can

decide to go forward with composite designs for both the fuel and oxidizer tank as well as

the baseline wing. An updated CDF with these designs chosen can be seen in Figure 115.
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Figure 113: Scatterplot Matrix for Structures Subsystem Condition Selections Highlighting
Cases With Mass Growth of More than 1,437 lbs
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Figure 114: Scatterplot Matrix for Structures Subsystem Condition Selections Highlighting
Cases With Mass Growth of More than 1,437 lbs
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Figure 115: Structural Subsystem Margin Having Decided on Composite Tanks and Base-
line Wing

These decisions marginally reduce uncertainty while maintaining the option to place the

vertical tail on the body or mid-wing in order to save weight.

Alternatively, a vehicle office could decide to buy extra design margin by moving the

vertical tail to the body. The CDF for these cases can be seen in Figure 116. This CDF

shows a much greater probability of producing a vehicle within the original specified design

margin. Furthermore, a program could then decide to proceed with lower-cost options for

other portions of the vehicle such as the propellant tanks, thrust structure, and secondary

structures.

By performing trades such as those shown in this section, EMA can be used as a way

to map out design decisions and determine which system analyses are on the critical path.

By addressing volitional uncertainty, this will ultimately give more information about the

vehicle’s sensitivity to design decisions to risk managers and can lead to more successful

development programs.
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Figure 116: Structural Subsystem Margin Having Decided on Vertical Tail Placement on
Body

8.5.4 Subsystem Risk Analysis

8.5.4.1 6 G-limit Requirements Change

The structural subsystem can also be subject to requirements uncertainty as defined in

Section 2.3.2.1. In this model, the primary requirement which defines potential structural

weights is the g-limit requirement. EMA can be used to examine a scenario in which the 6

gee limit is chosen as the requirement.

A separate 10,000 case Monte Carlo simulation was conducted for structural subsystem

conditions in which the 6 gee limit was selected. The CDF for the total structural weight

and weight difference from baseline can be in Figures 117 and 118 respectively. The first

thing that can be observed is that the baseline weight of the subsystem is not present on

either curve. Furthermore, the program has less than a 20% chance of producing a vehicle

which weighs less than or equal to the assigned structural subsystem margin of 1,437 lbs as

defined in Section 8.3.5.1.

In order to look at risk mitigation options, a vehicle manager can select all of the design
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Figure 117: Monte Carlo Results for Structural Subsystems, 6 g Limit
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Figure 118: Monte Carlo Results for Structural Subsystem Margin, 6 g Limit
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Figure 119: Scatterplot Matrix for Structures Subsystem Condition Selections Highlighting
Acceptable Designs, 6 g Limit

selections which meet the original design margin; cases which meet the 1,437 lb design

margin are highlighted in Figure 119. This scatterplot shows the wing and tail design

options. This figure shows that very few baseline wing and tail configurations will meet the

margin. In order to mitigate risk, a change to the baseline must be made. Two options are

apparent. As in Section 8.5.3, a mass savings can be found by moving the vertical tail to the

body or mid wing. Another mitigating choice which can preserve a wingtip mounted wing

is changing the wing shape from its current high L/D configuration to an earlier ’standard’

wing considered in earlier iterations of the RFS F design.
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8.5.4.2 Composite Technology Failure

Because the structural subsystem is the focus of technology development programs, it is

subject to technology uncertainty as defined in Section 2.3.1.3. Furthermore, it is subject

to discrete technology uncertainties which are unable to be modeled through range estimat-

ing. This discrete technological uncertainty takes the form of the failure of the composite

propellant tank and composite common bulkhead programs. This scenario can be modeled

through EMA.

A 10,000 case Monte Carlo simulation is run through structural conditions of the FAST

RFS F EMA model. Before each run, the ’non-inclusion’ conditions for both the composite

tank and common bulkhead technology development programs were selected triggering an

incompatibility with the corresponding vehicle design options. The CDF for the total struc-

tural weight and weight difference from baseline can be in Figures 120 and 121 respectively.

Figure 122 shows the difference between the baseline model run and the run eliminating

composite technologies; the elimination of composite options shifts the entire curve slightly

to the right of the baseline and shows the sensitivity of the structural subsystem to this

technology uncertainty.

8.5.5 Requirements Risk Mitigation

A similar sensitivity analysis to the one carried out in Section 8.5.2 can be carried out for

the entire vehicle. This can identify which condition selections have the overall highest

impact on the RFS F vehicle weight. The tornado plot for the total sensitivity analysis can

be seen in Figure 123; this plot clearly shows that the transverse G-limit and single-stage

vehicle performance have the highest overall impact on vehicle weight. This is expected as

these top-level requirements will drive the required performance of subsystems.

Knowing that more stringent G-limit and single-stage vehicle performance requirements

drive the overall system weight, decision makers may decide to allocate resources other than

weight toward mitigating these risks. In order to determine if allocating program resources

is worth a mass savings, what-if scenarios need to be played out in order to determine the

impact on the vehicle weight.
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Figure 120: Monte Carlo Results for Structural Subsystems, Composite Technologies Elim-
inated
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Figure 121: Monte Carlo Results for Structural Subsystem Margin, Composite Technologies
Eliminated
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Figure 122: Comparison Between Baseline Monte Carlo Simulation and Eliminated Com-
posite Technologies

This scenario is analyzed by performing through filtering the Monte Carlo output data.

All output cases which feature either a 6 g requirement or an increased single-stage vehicle

performance threshold are highlighted in red in Figure 124. As can be seen in this figure,

these highlighted cases contain most of the highest required margins as well as most of the

highest tankage and structures subsystem margins. Overall, there are 1,874 cases out of the

original 10,000 case Monte Carlo which have these heightened requirements. The remaining

8,126 cases provide an adequate sample size for probabilistic analysis.

The probabilistic results for total weight and margin for the filtered Monte Carlo sim-

ulation can be seen in Figures 125 and 126 respectively. A scenario in which program

management allocates resources and avoids increased G-limit and single stage performance

requirements results in an expected weight of 17,185 lbs and an 80% quantile weight of

18,201 lbs. This results in an expected margin of 105 and an 80% quantile margin of 1,121

lbs. This scenario has the effect of trimming 380 lbs from the expected margin and 475 lbs

from the 80% quantile margin as defined in Table 21.
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Figure 123: Prediction Profiler
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Figure 124: Scatterplot Matrix with 6g Limit and Increased Single-Stage Vehicle Perfor-
mances Cases Highlighted
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Figure 125: Monte Carlo Results for Total Weight Excluding Demanding Requirements
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Figure 126: Monte Carlo Results for Total Margin Excluding Demanding Requirements
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This section illustrated an example of a single what-if analysis. This analysis should be

repeated for many what-if scenarios to determine the best use of a program’s risk-mitigating

resources. While this analysis can provide insight into potential weight savings as a result

of risk-mitigating efforts, ultimately it is up to decision makers to decide on appropriate

mitigating strategies.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

This work began by examining the impact of mass growth on space and launch vehicles;

specifically, its effects on novel concepts. This examination shows that the physics of space

launch leads to an exponential decline in technical performance due to mass growth, and

many x-vehicles and novel concepts were either canceled, delayed, or otherwise hampered by

mass growth. Furthermore, in order to mitigate mass growth, the uncertainty surrounding

the final flight mass must be predicted at a very early stage in the design process. These

facts motivated the research objective of this thesis.

Research Objective: to create a methodology for estimating the overall system
technical performance uncertainty through the forecasting of potential perfor-
mance shortfalls for a novel concept such as a reusable booster system

In order to begin addressing this research objective, a literature review on uncertain-

ties was conducted. This lead to an examination of the uncertainties which affect space

and launch vehicles and a subsequent taxonomy of uncertainties affecting development pro-

grams. This understanding of uncertainty would play a central role in the evaluation of

methods used to evaluate weight uncertainty and ascertain design margin in space and

launch vehicles.

Of the four methods that are commonly used to address uncertainty and estimate a

design margin, two methods, predetermined percentage and historical regression, are ill-

suited to the problem of evaluating a novel concept because of data requirements. Of

the remaining two methods, expert opinion and range estimating, range estimating was

selected as a prospective method for extension because its shortcomings stem from not

addressing all forms of uncertainty. Specifically, a bottom-up estimation technique like

range estimating cannot account for baseline changes. These observations led to the central

research hypothesis which outlines the hybrid forecasting methodology developed in this
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thesis.

Hypothesis 1: If a hybrid process is adopted with a bottom-up and a top-down
component, then the relevant sources of uncertainty affecting space and launch
vehicles will be quantified to enable a more complete estimate than can be
constructed via existing methods of design margin estimation.

This hybrid methodology merges two separate styles of analyzing a development pro-

gram’s uncertainties. Because range estimating has been established as a mature methodol-

ogy in multiple fields, it will be used in the hybrid methodology as the bottom-up analysis.

Because range estimating is being used unmodified, the new focus of research focuses on cre-

ating a top-down methodology which accounts for baseline changes without double-counting

estimates from range estimating.

Two distinct analyses need to occur in order to evaluate the effect of prospective baseline

changes to the weight of a vehicle. These changes need to be both identified and quantified.

These are the two gaps which must be addressed in the development of a new top-down

analysis methodology. Furthermore, there is a dependency in these two gaps: prospective

changes must be identified before they can be quantified.

First, the baseline changes need to be identified. This lead to an investigation of scenario

analysis as a way to identify prospective scenarios which would in turn lead to discrete

baseline changes. However, traditional scenario analysis as described in literature only

leads to the creation of small numbers of scenarios. Further literature search led to the

usage of morphological analysis for scenario generation. Morphological analysis is powerful

because it enables the generation of large numbers of alternatives in a way that is both

explorative and exhaustive. Based on this literature review, it is decided that morphological

analysis should form the basis for the top-down assessment methodology; this is formalized

in Hypothesis 2.

Hypothesis 2: If a morphological approach to scenario generation is taken then
large numbers of possible alternatives for the future baseline configurations can
be identified.

The selection of morphological analysis solves the first of the two analysis gaps: the

identification of prospective baseline changes. Next, attention is focuses on the second gap
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of quantifying these alternatives. Because morphological analysis produces a large number

of potential alternatives, it is infeasible to individually analyze each prospective alternative.

Therefore, an extension to traditional morphological analysis must be developed to enable

the rapid analysis of alternatives. This idea leads to Hypothesis 3.

Hypothesis 3: If a matrix of alternatives can be extended to include quantitative
information about alternative baseline configurations and potential futures, then
the sources of uncertainty not addressed by range estimating can be quantified.

This hypothesis is addressed by the creation of Executable Morphological Analysis

(EMA) as an extension from traditional morphological analysis. The central idea behind

EMA is that by including small pieces of information about each condition in the morpho-

logical field, then quantitative information can be easily extracted from each combination.

EMA is composed of two data structures: the executable matrix of alternatives and

the relationship matrix. The executable matrix of alternatives is an extension of the mor-

phological field. In this extension, each condition contains attributes; specifically it must

contain attributes which describe the condition’s effect on the model’s output and the con-

dition’s likelihood of being selected. Similarly, the relationship matrix is an extension of

the cross-consistency matrix. The relationship matrix contains relationships between the

conditions of the model and implements incompatibilities.

For the specific implementation of EMA for addressing the problem of forecasting mar-

gins, each condition will have three pieces of information: a likelihood, a multiplicative

effect, and an additive effect. The likelihood value is a specified chance of a condition being

selected relative to the other conditions in the same parameter; these likelihood values are

constrained so that the sum of all likelihood values in a single parameter is equal to unity.

The multiplicative effect acts as a scalar multiplier to the total dry weight of a vehicle, and

the additive effect acts as a simple addition to the dry weight.

This extension establishes the data structures of EMA. However, data structures alone

are insufficient to address Hypothesis 3. EMA must be implemented as a computerized

model for rapid analysis, and the analysis algorithms must be determined. These two,

lower-level gaps in the implementation of EMA are formalized in Hypotheses 3a and 3b.
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Hypothesis 3a: A Monte Carlo simulation run over an Executable Matrix of
Alternatives will yield an equilibrium distribution which describes the impact of
the alternative combinations derived from the morphological field. This equilib-
rium distribution will require less computational resources to compute compared
to a total sum of all potential combinations.

Hypothesis 3b: The inclusion of data, constraints, and complex relationships
should be implemented using and object-oriented approach.

Hypothesis 3a was tested through Experiment 1– conducting a series of Monte Carlo

simulations while varying the size of the executable matrix of alternatives and the in-

terconnectedness of the relationship matrix. This experiment found that the number of

Monte Carlo simulation cases necessary to generate accurate probabilistic results is rela-

tively constant with the size of the executable matrix of alternatives and the complexity of

the relationship matrix. For the largest fields tested, the expected value and 80% quantile

measurements converged in 1250-1500 Monte Carlo cases. This result confirms Hypothesis

3a and shows that useful quantitative information can be extracted from an executable

morphological analysis without significant computational effort.

Hypothesis 3b was substantiated through the object-oriented design and implementa-

tion of the data structure. Because EMA requires state-dependent functionality and new

attributes and methods in each level of the data structures, the object-oriented framework

acts as an enabler of EMA and represents an advancement over matrix-based implemen-

tations of traditional morphological analysis. Furthermore, the object-oriented framework

can easily enable future applications of EMA through subclassing the abstract classes.

Together, the substantiation of Hypotheses 3a and 3b show that the data structures of

EMA can be implemented as a model to extract probabilistic information. This in turn

partially substantiates Hypothesis 3 in that a matrix of alternatives can in fact be extended

to provide quantitative information.

With EMA data structures and algorithms substantiated through experiment and imple-

mentation, the focus of the research shifts toward proving that EMA is a useful forecasting

tool. Hypotheses 1, 2, and 3 will be addressed through sample problems. The first sample

problem seeks to use original source material to produce a weight forecast of the Space
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Shuttle Orbiter, and the second sample problem seeks to demonstrate all aspects of the

hybrid analysis methodology on a novel concept.

The Space Shuttle Orbiter problem tests the use of EMA as a method of forecasting

baseline changes. By using a predetermined percentage to model in-scope mass growth,

this experiment isolates the predictive effect of EMA on forecasting mass growth associ-

ated with baseline changes. In order to construct the EMA model for this problem, the

historical record of proposed Orbiter designs was used to create a morphological field. The

mass-impacts of each potential baseline change was determined by utilizing original mass

properties reporting documents from the Orbiter program; the use of estimates based on

original documents mitigates hindsight bias and ensures that this experiment produces a

new forecast based on the input of 1970’s experts. The output of the EMA model produced

very good predictions of the Orbiter’s final flight weight. This experiment fully substanti-

ates Hypothesis 3 in that the uncertainties associated with baseline changes are accounted

for in this method. Furthermore, Hypotheses 1 and 2 are partially substantiated because a

form of a hybrid methodology utilizing morphological analysis was able to produce useful

forecasts.

In order to fully substantiate Hypotheses 1 and 2, demonstrate the completion of the

research objective, and address the original motivation of this thesis, a sample problem

utilizing the complete hybrid methodology is used to estimate the design margin for a

novel concept– the FAST RFS F technology demonstration vehicle. This sample problem

utilized mass properties data from FAST program contractors to inform a weight breakdown

structure. This weight breakdown structure formed the basis of a range estimating analysis.

This range estimating analysis was augmented with an extensive EMA model; the EMA

model for this sample problem was broken into three separate sections: programmatics,

technology development programs, and vehicle alternatives. The Monte Carlo simulation

output of this EMA model was used to conduct a probabilistic analysis on the total vehicle

and subsystem weights as well as a sensitivity analysis and a what-if analysis. Finally, the

results of both range estimating and EMA were used to examine the weight growth of the

FAST RFS F.
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The FAST RFS F sample problem demonstrates the use of morphological analysis to

generate alternative vehicle baseline scenarios and demonstrates the use of a hybrid method

with both a top-down and a bottom-up analysis component for analyzing vehicle develop-

ment programs. Therefore, both Hypotheses 1 and 2 are substantiated. Finally, this sample

problem demonstrates the use of EMA and range estimating as a way to quantitatively an-

alyze uncertainties surrounding a novel project; this demonstration shows that the original

research objective has been satisfied and that a hybrid analysis method consisting of range

estimating and EMA is a useful tool for analyzing uncertainties and assigning a design

margin.

9.2 Future Work

The first area of future work is derived from the generalized development of EMA. EMA,

as developed in this thesis, is primarily a forecasting technique looking at specific baseline

changes. However, EMA was designed to be a much more extensible methodology; the OO

design allows it to be easily extended into other problem areas. For example, a different

extension of EMA could be used to evaluate high-level architecture design problems for

which there is no viable modeling and simulation solution.

The next area of future work involves re-evaluating decisions made in the current for-

mulation of EMA. Specifically, the formulation of two-way relationships and one-way re-

lationships. The decision to have a hierarchy of matrices to limit the number of one-way

relationships was made to minimize the time spent in workshops performing pairwise com-

parisons of conditions. However, EMA models would be far more flexible if all relationships

were one-way and two-way relationships were a special type of relationship. This requires

more study and implementation on sample problems in order to determine the best practices

for usage in a risk/opportunity workshop.

The final area of future work is extending the existing form of EMA to account for

schedule and cost. This extension would only require adding cost and schedule attributes

to the conditions of an EMA model. This extension would make the methodology far more

powerful; decision makers would be able to trade off mass properties, cost, and schedule
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when evaluating margins for all of the above. This would also enable better risk mitigation

strategies by more easily identifying appropriate alternative development paths.

9.3 Contributions

This work provided several contributions to the fields of uncertainty analysis and aerospace

systems engineering. The first contribution is the creation of a taxonomy of uncertainty

for vehicle development programs which distinguishes between exogenous and endogenous

sources of uncertainty. This is a key feature over previous taxonomies of uncertainty which

makes it more relevant to a development program office. By making a key distinction

between exogenous and endogenous sources of uncertainty, this taxonomy focuses thought

on the distinction between uncertainties inside and outside the influence of a program

office. This distinction should enable a better understanding of uncertainties and allow for

the employment of better mitigation strategies.

Another contribution of the taxonomy of uncertainty is its application to methods of

forecasting margin. This taxonomy provides a direct explanation for the shortcomings

of range estimating as a method to quantify uncertainties. Furthermore, the taxonomy

provides a theoretical basis for the hybrid analysis methodology used to evaluate vehicle

development programs.

The next contribution is the extension of traditional morphological analysis to create

EMA. The idea of representing each condition of a morphological field as an object greatly

extends the capability of morphological analysis. This extended capability not only allows

the enumeration of compatible alternatives but also allows for the quantitative analysis of

alternatives and the total alternatives space. The object-oriented implementation developed

in this thesis also enables more robust morphological models through the creation of state-

dependent relationships and dynamic constraints.

After the extension of morphological analysis into EMA, EMA was then applied to the

specific forecasting problem of predicting a space or launch vehicle’s flight weight. EMA

allows the evaluation of a large number of alternative future scenarios; additionally, ex-

perimental evidence shows that most sizes of an executable matrix of alternatives can be
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evaluated through an inexpensive Monte Carlo simulation. Furthermore, this forecasting

methodology was shown to effectively account for baseline changes in the Space Shuttle

Orbiter problem.

Finally, EMA was used in conjunction with range estimating to create a hybrid prob-

abilistic methodology for evaluating the design margin of a novel concept. This hybrid

methodology addresses the shortcomings in range estimating as demonstrated by the tax-

onomy of uncertainty. Furthermore, this methodology was demonstrated on a realistic

sample problem in order to demonstrate how it can be applied to a vehicle development

program. This hybrid methodology should be used to address the yet-unsolved problem of

forecasting vehicle weight in order to achieve more complete and traceable forecasts.
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APPENDIX A

CODE FOR OBJECT-ORIENTED IMPLEMENTATION

1 c l a s s d e f ExecutableMatrix < handle

2 %Executab leMatr ix Highest− l e v e l o b j e c t in OO EMA implementat ion

3 % This o b j e c t i s r e s p on s i b l e f o r ho l d ing a l i s t o f parameters and

4 % func t i on s which opera te on an en t i r e e x e cu t a b l e matrix o f

5 % a l t e r n a t i v e s

6

7 p r op e r t i e s

8

9 l i s tOfParamete r s ;

10

11 r e l a t i o n s h i p s ; %a Re la t i onsh ipMatr i x o b j e c t

12

13 oneWayRelationships ;

14

15 combinationFactory ;

16

17 end

18

19 methods

20

21 function delete ( obj )

22 %de s t r u c t o r method−− must manual ly c l ean up r e cu r s i v e

23 %re f e r enc e s due to problems wi th Matlab garbage c o l l e c t i o n

24

25 %remove l i n k s from the l i s t o f Parameters

26 %disp ( ’ d i s connec t ing r e l a t i o n s h i p s from cond i t i ons ’ ) ;

27

28 for i =1: s ize ( obj . l i s tOfParameters , 1 )

29

30 obj . l i s tOfParamete r s { i , 1 } . d i s connec t ;
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31

32 end

33

34 %remove l i n k s from the r e l a t i o n s h i p matrix

35 %disp ( ’ d i s connec t ing cond i t i on s from r e l a t i o n s h i p s ’ ) ;

36 obj . r e l a t i o n s h i p s . d i s connec t ;

37

38

39 end

40

41 function addParameter ( obj , newParameter )

42

43 i f ( i s c e l l ( obj . l i s tOfParamete r s ) == 0)

44 %t h i s i s not i n i t i a l i z e d as a c e l l array t h e r e f o r e i t i s

45 % empty

46 obj . l i s tOfParamete r s {1 ,1} = newParameter ;

47

48 else

49 %c e l l array e x i s t s t h e r e f o r e the array i s not empty

50 l o c a l S i z e = s ize ( obj . l i s tOfParameters , 1) ;

51 obj . l i s tOfParamete r s { l o c a l S i z e + 1 , 1} = newParameter ;

52

53 end

54

55 end

56

57 function addOneWayRelationship ( obj , newRelat ionship )

58

59 i f ( i s c e l l ( obj . oneWayRelationships ) == 0)

60 %t h i s i s not i n i t i a l i z e d as a c e l l array t h e r e f o r e i t i s

61 % empty

62 obj . oneWayRelationships {1 ,1} = newRelat ionship ;

63

64 else

65 %c e l l array e x i s t s t h e r e f o r e the array i s not empty
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66 l o c a l S i z e = s ize ( obj . oneWayRelationships , 1) ;

67 obj . oneWayRelationships{ l o c a l S i z e + 1 , 1} =newRelat ionship ;

68

69 end

70

71 end

72

73 function r e se tMatr ix ( obj )

74 % t h i s f unc t i on w i l l i t e r a t e through a l l c ond i t i on s r e s e t t i n g

75 % them to t h e i r o r i g i n a l va l u e s b e f o r e any s e l e c t i o n s are made

76

77 obj . r e l a t i o n s h i p s . r e s e tMatr ix ;

78

79 for i =1: s ize ( obj . l i s tOfParameters , 1 )

80

81 obj . l i s tOfParamete r s { i , 1 } . r e setParameter ;

82

83 end

84

85 for i =1: s ize ( obj . oneWayRelationships , 1 )

86

87 obj . oneWayRelationships{ i , 1 } . r e s e tRe l a t i o n sh i p ;

88

89 end

90

91 end

92

93 function s e tupRe l a t i on sh ip s ( obj , r e l a t i on sh i pFac t o r y )

94 % This func t i on i n i t i a l i z e s the r e l a t i o n s h i p s between a l l

95 % members o f an Executab leMatr ix

96 %

97 % This w i l l a l s o erase a l l d e f i ned r e l a t i o n s h i p s w i th in a

98 % de f ined matrix

99 %

100 %Run t h i s f unc t i on a f t e r ALL en t r i e s have been added to an
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101 %Executab leMatr ix

102

103

104 obj . r e l a t i o n s h i p s = Relat ionsh ipMatr ix ( . . .

105 obj . l i s tOfParameters , r e l a t i on sh i pFac t o r y ) ;

106

107 %re s e t the execu tab l eMat r i x so t ha t a l l modi f i ed va l u e s are

108 %equa l to the i n i t i a l i z e d va l u e s

109 obj . r e s e tMatr ix

110

111 end

112

113 function s e l e c t i o n s = se lectCombinat ion ( obj , cho i c e s )

114 % This func t i on s e l e c t s a combination from the Execu tab l e Matrix

115 %

116 % choices−− a 1xn array o f cho i c e s where n i s equa l to the

117 % number o f morpho log ica l parameters . Each entry

118 % of t h i s array r ep r e s en t s a cond i t i on s e l e c t i o n from

119 % the corresponding parameter .

120 %

121

122

123 %error check to be sure t ha t the number o f cho i c e s e qua l s

124 % the number o f parameters o f the e x e c u t b l e matrix

125

126

127

128 toReturn = obj . combinationFactory . constructNewCombination ;

129

130 p e rm i n i t i a l i z a t i o n = 1 : s ize ( obj . l i s tOfParameter s , 1 ) ;

131 perm array = perms ( p e rm i n i t i a l i z a t i o n ) ;

132

133

134 s e l e c t i o n s = c e l l ( 0 , 0 ) ;

135 count array = ones (1 , 1 ) ;
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136

137 %cyc l e through permutat ion array

138 for j = 1 : s ize ( perm array , 1 )

139

140 o r d e r o f s e l e c t i o n = perm array ( j , : ) ;

141

142 %i t e r a t e through the l i s t o f parameters , s e l e c t i n g each

143 %chosen cond i t i on

144 for i = 1 : s ize ( obj . l i s tOfParameter s , 1 )

145

146 %f ind po in t e r to s e l e c t e d paramter

147 s e l e c t e d i nd e x = o r d e r o f s e l e c t i o n (1 , i ) ;

148 parameterChosen = . . .

149 obj . l i s tOfParamete r s { s e l e c t ed i ndex , 1 } ;

150

151 %ge t s the s p e c i f i c number o f the cond i t i on wi th in the

152 %parameter

153 condit ionChosen = cho i c e s ( s e l e c t ed i ndex , 1 ) ;

154

155 %f ind po in t e r to s e l e c t e d cond i t i on

156 conditionToAdd = . . .

157 parameterChosen . getCondit ion ( condit ionChosen ) ;

158

159 %s e l e c t the cond i t i on in the matrix−− t h i s f unc t i on

160 %t r i g g e r s the r e l a t i o n s h i p s a s s o c i a t e d wi th t h i s

161 %cond i t i on

162 conditionToAdd . s e l e c t ;

163

164 %renormal i ze parameters

165 obj . en f o r c eA l lCon s t r a i n t s ;

166

167 end %end fo r i = 1 : s i z e ( ob j . l i s tOfParameters , 1 )

168

169 %add cond i t i on s to combination s e l e c t i o n−− must do t h i s

170 %a f t e r each s e l e c t i o n has been chosen by the a l gor i thm
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171

172 for i = 1 : s ize ( obj . l i s tOfParameter s , 1 )

173

174 %f ind po in t e r to s e l e c t e d paramter

175 s e l e c t e d i nd e x = o r d e r o f s e l e c t i o n (1 , i ) ;

176 parameterChosen = . . .

177 obj . l i s tOfParamete r s { s e l e c t ed i ndex , 1 } ;

178

179 %ge t s the s p e c i f i c number o f the cond i t i on wi th in the

180 %parameter

181 condit ionChosen = cho i c e s ( s e l e c t ed i ndex , 1 ) ;

182

183 %f ind po in t e r to s e l e c t e d cond i t i on

184 conditionToAdd = . . .

185 parameterChosen . getCondit ion ( condit ionChosen ) ;

186

187 %adds a copy o f the s e l e t e d cond i t i on to the re turn l i s t

188 toReturn . addCondition ( conditionToAdd ) ;

189

190 end

191

192

193 %check to see i f the s e l e c t e d combination i s unique

194

195 %check to see i f s e l e c t i o n s has been i n i t i a l i z e d

196 i f ( s ize ( s e l e c t i o n s , 1 ) == 0)

197 %s e l e c t i o n s has not been i n i t a l i z e d

198

199 %add combination to the l i s t o f s e l e c t i o n s

200 s e l e c t i o n s {1 ,1} = toReturn ;

201 %se t the f i r s t par t o f the count array to 1

202 count array (1 , 1 ) = 1 ;

203

204 %re s e t toReturn

205 toReturn = obj . combinationFactory . constructNewCombination ;
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206

207 else

208

209

210 l o c a l S i z e = s ize ( s e l e c t i o n s , 1) ;

211 s e l e c t i o n s { l o c a l S i z e + 1 , 1} = toReturn ;

212

213 count array ( l o c a l S i z e + 1 ,1) = 1 ;

214

215 %re s e t toReturn

216 toReturn = obj . combinationFactory . constructNewCombination ;

217

218 end

219

220

221 %re s e t the matrix to i t s o r i g i n a l s t a t e

222 obj . r e s e tMatr ix ;

223

224 end %end fo r j = 1 : s i z e ( perm array , 1 )

225

226

227 end

228

229 function combinat ions=tota lCombinat ions ( obj )

230 % This func t i on c a l c u l a t e s the t o t a l combinat ions in an

231 % exe cu t a b l e matrix

232 %

233

234

235 %pr e a l l o c a t e memory to c a l c u l a t e t o t a l combinat ions

236

237 simple combs = obj . s impleCombinations ;

238

239 permutat ions = f a c t o r i a l ( s ize ( obj . l i s tOfParameter s , 1 ) ) ;

240
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241 combinat ions = c e l l ( ( s imple combs .∗ permutations ) ,1 ) ;

242

243 %i t e r a t e through each p o s s i b l e combination o f the e x e cu t a b l e

244 % matrix

245

246

247 %t h i s counter goes through the p o s s i b l e input combinat ions

248 %in the e x e cu t a b l e matrix

249 inputValues = ones ( s ize ( obj . l i s tOfParameters , 1 ) , 1 ) ;

250

251 %run combination func t i on f o r i n i t i a l case

252 temp combs1 = se lectCombinat ion ( obj , inputValues ) ;

253 temp combs1 = se lectCompat ib leCombinat ions ( temp combs1 ) ;

254 t o t a l = 0 ;

255

256 g l oba l c oun t e r = 1 ;

257

258 i f s ize ( temp combs1 , 1 ) > 0

259 %error check

260

261 for i =1: s ize ( temp combs1 , 1 )

262

263 %ass i gn index

264 combinat ions { g l oba l counte r , 1} = temp combs1{ i , 1 } ;

265 %increment counter

266 g l oba l c oun t e r = g l oba l c oun t e r + 1 ;

267

268 end

269

270 end

271

272 %t o t a l

273

274 %re s e t index

275 i = 1 ;
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276

277 while i <= s ize ( obj . l i s tOfParameter s , 1 ) ;

278

279 %increment the l o c a l counter

280 inputValues ( i , 1 ) = inputValues ( i , 1 ) + 1 ;

281

282 %check to see i f index exceeds number o f cond i t i on s

283 i f inputValues ( i , 1 ) > . . .

284 obj . l i s tOfParamete r s { i , 1 } . s izeOfParameter

285

286 %re s e t the counter o f the curren t index

287 inputValues ( i , 1 ) = 1 ;

288

289 %increment index so t ha t the next parameter i s

290 % incremented on the next pass

291 i = i + 1 ;

292

293 else

294

295 %This e l s e b l o c k r ep r e s en t s the f a c t t h a t a new

296 %input va lue combination has been found

297

298 %ge t the t o t a l combinat ions based on the input va l u e s

299 tempCombinations= se lectCombinat ion ( obj , inputValues ) ;

300

301 %check temporary combinat ions to see i f they are

302 %f e a s i b l e

303

304 tempCombinations = . . .

305 se lectCompat ib leCombinat ions ( tempCombinations ) ;

306

307 i f s ize ( tempCombinations , 1 ) > 0

308 %error check to see i f t h e r e i s a l i s t o f

309 %combinat ions ready to add

310
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311

312 for i =1: s ize ( tempCombinations , 1 )

313

314 %ass i gn index

315 combinat ions { g l oba l counte r , 1} =. . .

316 tempCombinations{ i , 1 } ;

317 %increment counter

318 g l oba l c oun t e r = g l oba l c oun t e r + 1 ;

319

320 end

321

322

323 %add the number o f s u r v i v i n g combinat ions to the

324 %t o t a l

325 t o t a l = t o t a l + s ize ( tempCombinations , 1 ) ;

326

327 end

328

329 %re s e t counter to i t e r a t e through the f i r s t

330 %parameter again

331 i = 1 ;

332

333 end %end i f s ta tement

334

335 end %end wh i l e i <= s i z e ( ob j . l i s tOfParameters , 1 )

336

337 end %end func t i on

338

339 function t o t a l=numberOfTotalCombinations ( obj )

340 % This func t i on c a l c u l a t e s the t o t a l number o f combinat ions in

341 % an ex e cu t a b l e matrix

342 %

343

344

345
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346 %i t e r a t e through each p o s s i b l e combination o f the e x e cu t a b l e

347 % matrix

348

349

350 %t h i s counter goes through the p o s s i b l e input combinat ions

351 %in the e x e cu t a b l e matrix

352 inputValues = ones ( s ize ( obj . l i s tOfParameters , 1 ) , 1 ) ;

353

354 %run combination func t i on f o r i n i t i a l case

355 temp combs1 = se lectCombinat ion ( obj , inputValues ) ;

356 temp combs1 = se lectCompat ib leCombinat ions ( temp combs1 ) ;

357 t o t a l = 0 ;

358

359 i f s ize ( temp combs1 , 1 ) > 0

360 %error check

361 combinat ions {1 ,1} = temp combs1 { : , 1 } ;

362 t o t a l = s ize ( combinations , 1 ) ;

363

364 end

365

366 %re s e t index

367 i = 1 ;

368

369 while i <= s ize ( obj . l i s tOfParameter s , 1 ) ;

370

371 %increment the l o c a l counter

372 inputValues ( i , 1 ) = inputValues ( i , 1 ) + 1 ;

373

374 %check to see i f index exceeds number o f cond i t i on s

375 i f inputValues ( i , 1 ) > . . .

376 obj . l i s tOfParamete r s { i , 1 } . s izeOfParameter

377

378 %re s e t the counter o f the curren t index

379 inputValues ( i , 1 ) = 1 ;

380
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381 %increment index so t ha t the next parameter i s

382 % incremented on the next pass

383 i = i + 1 ;

384

385 else

386

387 %This e l s e b l o c k r ep r e s en t s the f a c t t h a t a new

388 %input va lue combination has been found

389

390 %ge t the t o t a l combinat ions based on the input va l u e s

391 tempCombinations= se lectCombinat ion ( obj , inputValues ) ;

392

393 %check temporary combinat ions to see i f they are

394 %f e a s i b l e

395

396 tempCombinations = . . .

397 se lectCompat ib leCombinat ions ( tempCombinations ) ;

398

399

400 %add the number o f s u r v i v i n g combinat ions to the

401 %t o t a l

402 t o t a l = t o t a l + s ize ( tempCombinations , 1 ) ;

403

404

405

406 %re s e t counter to i t e r a t e through the f i r s t

407 %parameter again

408 i = 1 ;

409

410 end %end i f s ta tement

411

412 end %end wh i l e i <= s i z e ( ob j . l i s tOfParameters , 1 )

413

414 end

415
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416 function en f o r c eA l lCon s t r a i n t s ( obj )

417 % t h i s f unc t i on c a l l s the en force c on s t r a i n t s f unc t i on f o r each

418 % parameter in the e x e cu t a b l e matrix

419 for i =1: s ize ( obj . l i s tOfParameters , 1 )

420

421 obj . l i s tOfParamete r s { i , 1 } . e n f o r c eCons t r a i n t s ;

422

423 end

424

425 end

426

427 function i n i t i a l i z eC o n d i t i o n s ( obj )

428 % t h i s f unc t i on c a l l s the i n i t i a l i z ePa r ame t e r f unc t i on f o r each

429 % parameter in the e x e cu t a b l e matrix

430 for i =1: s ize ( obj . l i s tOfParameters , 1 )

431

432 obj . l i s tOfParamete r s { i , 1 } . i n i t i a l i z ePa r ame t e r ;

433

434 end

435 end

436

437 function un I n i t i a l i z eCond i t i o n s ( obj )

438 % t h i s f unc t i on c a l l s the i n i t i a l i z ePa r ame t e r f unc t i on f o r each

439 % parameter in the e x e cu t a b l e matrix

440 for i =1: s ize ( obj . l i s tOfParameters , 1 )

441

442 obj . l i s tOfParamete r s { i , 1 } . un In i t i a l i z ePa rame t e r ;

443

444 end

445 end

446

447

448 function t o t a l = simpleCombinations ( obj )

449 %t h i s f unc t i on c a l c u l a t e s the t o t a l number o f s imp le

450 %combinat ions f o r the morpho log ica l f i e l d
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451

452 t o t a l = 1 ;

453

454 for i =1: s ize ( obj . l i s tOfParameters , 1 )

455

456 t o t a l = t o t a l .∗ obj . l i s tOfParamete r s { i , 1 } . s izeOfParameter ;

457

458 end

459

460 end

461

462 function SQ = so lu t i onQuot i en t ( obj )

463

464 simpleCombinations = obj . s impleCombinations ;

465

466 f ea s ib l eCombinat i ons = obj . numberOfTotalCombinations ;

467

468 SQ = feas ib l eCombinat i ons . / simpleCombinations ;

469

470

471 end

472

473 end %end pu b l i c methods

474

475 methods ( Abstract )

476

477 tab l e=monteCarlo ( obj , ba s e l i n e , numRuns)

478

479

480 end

481

482 end

483

484

485 %Helper sub−f unc t i on s
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486

487 function updatedList = se lectCompat ib leCombinat ions ( l i s tOfCombinat ions )

488 %t h i s f unc t i on i s a he l p e r f unc t i on f o r to ta lCombinat ions−− i t s j ob i s

489 %to re turn only members o f the input l i s t which are compat i b l e ( have a

490 %p r o b a b i l i t y > 0 )

491 %

492 % l i s tOfCombina t ions : a 1xn c e l l array o f Combination ob j e c t s−− t h i s shou ld

493 % repre s en t the combinat ions which were y i e l d e d by se l ec tCombinat ion

494

495 s izeOfUpdatedList = 0 ;

496

497 updatedList = c e l l ( 0 , 0 ) ;

498

499 for i =1: s ize ( l i s tOfCombinat ions , 1)

500

501 i f l i s tOfCombinat ions { i , 1 } . i s F e a s i b l e == 1

502 %t h i s means t ha t a combination i s f e a s i b l e , add i t to the

503 %updated l i s t

504

505 %increment counter

506 s izeOfUpdatedList = s izeOfUpdatedList + 1 ;

507

508 %ac t u a l l y add the combination to the l i s t

509 updatedList { s izeOfUpdatedList , 1} = l i s tOfCombinat ions { i , 1 } ;

510

511 end%end i f s ta tement

512

513 end %end fo r loop

514

515

516 end

1 c l a s s d e f Parameter < handle

2 %PARAMETER Represents a s i n g l e parameter o f a morpho log i ca l f i e l d

3

4
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5 p r op e r t i e s

6

7 name ;

8

9 l i s tO fCond i t i on s ;

10

11 s izeOfParameter = 0 ;

12

13 s e l e c t e d = 0 ;

14

15 end

16

17 methods

18

19 function addCondition ( obj , newAlternat ive )

20

21 newAlternat ive . parentParameter = obj ;

22

23 i f ( i s c e l l ( obj . l i s tO fCond i t i on s ) == 0)

24 %t h i s i s not i n i t i a l i z e d as a c e l l array t h e r e f o r e i t i s

25 % empty

26 obj . l i s tO fCond i t i on s {1 ,1} = newAlternat ive ;

27

28 %update s i z e o f ca tegory

29 obj . s izeOfParameter = 1 ;

30 else

31 %c e l l array e x i s t s t h e r e f o r e the array i s not empty

32 l o c a l S i z e = s ize ( obj . l i s tO fCond i t i on s , 1) ;

33 obj . l i s tO fCond i t i on s { l o c a l S i z e + 1 , 1} = newAlternat ive ;

34

35 %update s i z e o f ca tegory

36 obj . s izeOfParameter = obj . s izeOfParameter + 1 ;

37 end

38

39 end
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40

41 function cond i t i on = getCondit ion ( obj , index )

42 %re turns a po in t e r to the s p e c i f i e d a l t e r n a t i v e in a ca tegory

43

44 i f ( index <= 0) && ( index > obj . s izeOfParameter )

45 cond i t i on = NaN;

46 else

47 cond i t i on = obj . l i s tO fCond i t i on s { index , 1} ;

48 end

49

50 end

51

52

53 function i n i t i a l i z ePa r ame t e r ( obj )

54 %i n i t i a l i z e s each o f the cond i t i on s w i th in a parameter

55

56 %i t e r a t e through each s e t cond i t i on in the parameter

57 for i =1: s ize ( obj . l i s tO fCond i t i on s , 1)

58 obj . l i s tO fCond i t i on s { i , 1 } . i n i t i a l i z eC o n d i t i o n ;

59 end

60

61 %make sure t ha t the parameter i s we l l−cond i t i oned a f t e r

62 %i n i t i a l i z a t i o n

63 obj . en f o r c eCons t r a i n t s ( ) ;

64

65 end

66

67 function un In i t i a l i z ePa rame t e r ( obj )

68 %un− i n i t i a l i z e s each o f the cond i t i on s w i th in a parameter

69

70 %i t e r a t e through each s e t cond i t i on in the parameter

71 for i =1: s ize ( obj . l i s tO fCond i t i on s , 1)

72 obj . l i s tO fCond i t i on s { i , 1 } . u n I n i t i a l i z eCond i t i o n ;

73 end

74
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75 end

76

77

78 function resetParameter ( obj )

79 %re s e t s each o f the cond i t i on s w i th in a parameter

80

81 obj . s e l e c t e d = 0 ;

82

83 %i t e r a t e through each s e t cond i t i on in the parameter

84 for i =1: s ize ( obj . l i s tO fCond i t i on s , 1)

85 obj . l i s tO fCond i t i on s { i , 1 } . r e s e tCond i t i on

86 end

87

88 end

89

90 function d i s connec t ( obj )

91 %re s e t s each o f the cond i t i on s w i th in a parameter

92

93 %i t e r a t e through each s e t cond i t i on in the parameter

94 for i =1: s ize ( obj . l i s tO fCond i t i on s , 1)

95 obj . l i s tO fCond i t i on s { i , 1 } . d i s connec t

96 end

97

98 end

99

100

101 end

102

103 methods ( Abstract )

104

105 en f o r c eCons t r a i n t s ( obj )

106

107 end

108

109 end
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1 c l a s s d e f Condit ion < handle

2 %CONDITION Represents a s i n g l e Condit ion

3 % Contains the in format ion necessary f o r a s i n g l e Condit ion

4

5 p r op e r t i e s

6

7 %standard p r o p e r t i e s which do not change once s e t

8 name ;

9

10 %a l i s t o f the r e l a t i o n s h i p s t ha t t h i s cond i t i on has wi th o ther

11 % cond i t i on s in the r e l a t i o n s h i p matrix

12 l i s tO fR e l a t i o n s h i p s ;

13

14

15

16

17 modi f i ed ; % t h i s i s a boo lean f l a g s e t to t rue i f a mod i f i ca t i on

18 % opera tor has occured to t h i s−− u s e f u l f o r r e s e t t i n g the

19 % s t a t e o f the cond i t i on

20

21

22 end

23

24

25

26 methods

27

28 function delete ( obj )

29 %de s t r u c t o r func t i on

30 obj . d i s connec t ;

31 end

32

33 function d i s connec t ( obj )

34 %must d e l e t e r e f e r en c e s to r e l a t i o n s h i p s to avoid weird memory

35 %i s su e when c l e a r i n g data

279



36

37 obj . l i s tO fR e l a t i o n s h i p s = [ ] ;

38

39 end

40

41 function s e l e c t ( obj )

42 %t h i s f unc t i on ” s e l e c t s ” a cond i t i on −− t h i s r e q u i r e s t ha t a l l

43 %r e l a t i o n s h i p s t ha t are par t o f t h i s cond i t i on be a c t i v a t e d

44 %

45

46 for i =1: s ize ( obj . l i s tO fRe l a t i o n sh i p s , 1 )

47 %load member o f the l i s t

48 tempRelat ionship = obj . l i s tO fR e l a t i o n s h i p s { i , 1 } ;

49

50 %execu te the r e l a t i o n s h i p

51 tempRelat ionship . a c t i v a t eRe l a t i on sh i p ( obj ) ;

52

53 end %end fo r i =1: s i z e ( ob j . l i s tO fRe l a t i o n s h i p s , 1 )

54

55

56 end

57

58 function r e s e tCond i t i on ( obj )

59 %t h i s r e s e t s the modi f i ed p r o b a b i l i t y and modi f i ed e f f e c t s to

60 %be equa l to the o r i g i n a l input va l u e s

61 %

62 % t h i s shou ld be run a f t e r a s e l e c t i o n run

63

64 obj . modi f i ed = f a l s e ;

65

66

67 end

68

69 function addRelat ionsh ip ( obj , newRelat ionship )

70
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71 i f ( i s c e l l ( obj . l i s tO fR e l a t i o n s h i p s ) == 0)

72 %t h i s i s not i n i t i a l i z e d as a c e l l array t h e r e f o r e i t i s

73 % empty

74 obj . l i s tO fR e l a t i o n s h i p s {1 ,1} = newRelat ionship ;

75

76 else

77 %c e l l array e x i s t s t h e r e f o r e the array i s not empty

78 l o c a l S i z e = s ize ( obj . l i s tO fRe l a t i o n sh i p s , 1) ;

79 obj . l i s tO fR e l a t i o n s h i p s { l o c a l S i z e + 1 , 1} =newRelat ionship ;

80

81 end

82

83 end

84

85 function equa l i t y = isEqua l ( obj , cond i t i on2 )

86

87 %s t r i n g compare the names

88 i f strcmp ( obj . name , cond i t i on2 . name) == 0

89 equa l i t y = 0 ;

90 end

91

92 end

93 end

94 end

1 c l a s s d e f Combination < handle

2 %COMBINATION Contains the in format ion o f s e l e c t e d cond i t i on s

3 %

4

5 p r op e r t i e s

6

7 %This l i s t must a lways be so r t ed in order o f the e x e cu t a b l e matrix

8 %parameters wi th a s i n g l e cond i t i on from each parameter

9 l i s tO fS e l e c t e dCond i t i o n s ;

10

11
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12 end

13

14 methods

15

16 function obj = Combination ( vararg in )

17

18 i f s ize ( vararg in , 1 ) > 0

19 obj . l i s tO fS e l e c t e dCond i t i o n s = c e l l ( vararg in {1 ,1} , 1 ) ;

20 else

21 obj . l i s tO fS e l e c t e dCond i t i o n s = c e l l ( 0 , 0 ) ;

22 end

23

24 end

25

26 end

27

28 methods ( Abstract )

29

30 addCondition ( obj , conditionToAdd , vara rg in )

31

32 equa l i t y = isEqua l ( obj , combination2 )

33

34 f e a s i b i l i t y = i s F e a s i b l e ( obj )

35

36 end

37

38 end

1 c l a s s d e f CombinationFactory

2 %COMBINATIONFACTORY Factory Class f o r Combination Factory des i gn

3 %pat t e rn

4 %

5

6 p r op e r t i e s

7 end

8
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9 methods ( Abstract , S t a t i c )

10

11 combination = constructNewCombination ( s i zeOfParameterL i s t )

12

13 end

14

15 end

1 c l a s s d e f Re lat ionsh ipMatr ix

2 %RELATIONSHIPMATRIX Representa t ion o f the r e l a t i o n s h i p s matrix

3 % Contains the a c t ua l r e a l t i o n s h i p s as w e l l as necessary func t i on to

4 % opera te and cons t ruc t the Re l a t i on sh i p Matrix

5

6 p r op e r t i e s

7

8 ma t r i x o f r e l a t i o n s h i p s % the matrix o f r e l a t i o n s h i p s

9

10 r e l a t i o n sh i p Fa c t o r y % fac t o r y c l a s s f o r c r e a t i n g s p e c i f i c t ype s o f

11 % r e l a t i o n s h i p s

12

13 end

14

15 methods

16

17 function obj = Relat ionsh ipMatr ix ( l i s tOfParameters , . . .

18 r e l a t i o n sh i p Fa c t o r y )

19 % This func t i on i n i t i a l i z e s the r e l a t i o n s h i p s between a l l

20 % members o f an Executab leMatr ix

21 %

22 % This w i l l a l s o erase a l l d e f i ned r e l a t i o n s h i p s w i th in a

23 % de f ined matrix

24 %

25 %Run t h i s f unc t i on a f t e r ALL en t r i e s have been added to an

26 %Executab leMatr ix

27

28 %se t r e l a t i o n s h i p Fa c t o r y
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29 obj . r e l a t i o n sh i p Fa c t o r y = r e l a t i o n sh i p Fa c t o r y ;

30

31 %re s e t r e l a t i on s h i pMa t r i x

32 obj . ma t r i x o f r e l a t i o n s h i p s = . . .

33 r e l a t i o n sh i p Fa c t o r y . constructNewRelat ionsh ip ;

34

35 %determine the t o t a l number o f c a t e g o r i e s in the matrix

36 number o f ca t ego r i e s = s ize ( l i s tOfParameters , 1) ;

37

38 for i =2: number o f ca t ego r i e s

39 %outer loop to d e f i n e 1 :1 r e l a t i o n s h i p matrix

40 %s t a r t wi th the 2nd row and i t e r a t e u n t i l the f i n a l row

41

42 cu r r en t ca t ego ry = l i s tOfParamete r s { i , 1 } ;

43 for i i =1: cu r r en t ca t ego ry . s izeOfParameter

44 %i t e r a t e through each cond i t i on o f the curren t ca tegory

45

46 cond i t i on = cur r en t ca t ego ry . getCondit ion ( i i ) ;

47

48 for j =1:( i −1)

49 %i t e r a t e through the o ther s i d e c r ea t i n g 1 :1

50 %r e l a t i o n s h i p s f o r each pa i r o f cond i t i on s

51

52 cu r r e n t c a t e g o r y j = l i s tOfParamete r s { j , 1 } ;

53

54 for j j =(1: c u r r e n t c a t e g o r y j . s izeOfParameter )

55 %cyc l e through each member o f the new ca tegory

56

57 c o nd i t i o n j=cu r r e n t c a t e g o r y j . getCondit ion ( j j ) ;

58

59 %Fina l l y , c r ea t e a new r e l a t i o n s h i p

60 toadd = . . . .

61 r e l a t i o n sh i p Fa c t o r y . constructNewRelat ionsh ip (

condi t ion , c o nd i t i o n j ) ;

62
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63 %add r e l a t i o n s h i p to the two cond i t i on s

64

65 %add r e l a t i o n s h i p to o r i g i n a l cond i t i on

66 cond i t i on . addRelat ionsh ip ( toadd ) ;

67 %add r e l a t i o n s h i p to second cond i t i on

68 c o nd i t i o n j . addRelat ionsh ip ( toadd ) ;

69

70 %add the r e l a t i o n s h i p to the r e l a t i on s h i pMa t r i x

71

72 %ca l c u l a t e necessary row

73 row index = 0 ;

74

75 %add up t o t a l number o f cond i t i on s in c a t e g o r i e s

76 % already covered by the a l gor i thm

77 for i x = 2 : ( i −1)

78 row index = row index + . . .

79 l i s tOfParamete r s { i x , 1 } . s izeOfParameter ;

80 end

81

82 % add the current index number to the t o t a l

83

84 row index = row index + i i ;

85 %ca l c u l a t e necessary column

86 column index = 0 ;

87

88 %add up t o t a l number o f cond i t i on s in the column

89 for j y = 1 : ( j−1)

90 column index = column index + . . .

91 l i s tOfParamete r s { j y , 1 } . s izeOfParameter ;

92

93 end

94

95 %add the curent index number to t o t a l

96 column index = column index + j j ;

97
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98 %add r e l a t i o n s h i p to the matrix

99 obj . ma t r i x o f r e l a t i o n s h i p s ( row index , . . .

100 column index )= toadd ;

101

102 end %end fo r j j =(1: cu r r en t c a t e g o r y su b . s i z e )

103

104 end %j =1:( i−1)

105

106 end %end fo r i i =1: cu r r en t ca t e go r y . s i z e

107

108 end %end i =2: number o f ca t e go r i e s

109

110 end

111

112

113 function r e se tMatr ix ( obj )

114

115 %cyc l e through each row

116 for i =1: s ize ( obj . ma t r i x o f r e l a t i o n s h i p s , 1 )

117

118 %cyc l e through the non−empty par t s o f the r e l a t i o n s h i p

119 %matrix

120 for j = 1 : s ize ( obj . ma t r i x o f r e l a t i o n s h i p s , 2 )

121

122

123 %i f the counter has reached an empty f i e l d , break the

124 %loop ; i t was implemented t h i s way to avoid the case

125 %where j > the dimensions o f the r e l a t i o n s h i p matrix

126 i f obj . ma t r i x o f r e l a t i o n s h i p s ( i , j ) . empty == 1

127 break

128 end

129

130 obj . ma t r i x o f r e l a t i o n s h i p s ( i , j ) . r e s e tRe l a t i o n sh i p ;

131

132 end

286



133

134 end

135

136

137 end

138

139 function d i s connec t ( obj )

140 %di sconnec t s a l l r e f e r en c e s

141

142 for i =1: s ize ( obj . ma t r i x o f r e l a t i o n s h i p s , 1 )

143

144 for j = 1 : s ize ( obj . ma t r i x o f r e l a t i o n s h i p s , 2 )

145

146 obj . ma t r i x o f r e l a t i o n s h i p s ( i , j ) . d i s connec t ;

147

148 end

149

150 end

151

152 end

153

154 end

155

156 end

1 c l a s s d e f Re la t ionsh ipFactory

2 %RELATIONSHIPFACTORY Abs trac t Implementation o f Re l a t i on sh i p Factory

3 %

4

5 p r op e r t i e s

6

7 end

8

9 methods ( Abstract , S t a t i c )

10

11 r e l a t i o n s h i p = constructNewRelat ionsh ip ( end1 , end2 )
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12

13 end

14

15 end

1 c l a s s d e f Re la t i on sh ip < handle

2 %RELATIONSHIP This r ep r e s en t s a r e l a t i o n s h i p between two cond i t i on s

3 % of an e x e cu t a b l e matrix o f a l t e r n a t i v e s

4 %

5

6 p r op e r t i e s

7

8

9 ac t i va t ed = 0 ; %boolean to make sure t ha t each r e l a t i o n s h i p i s

10 %only a c t i v a t e d once

11

12 empty = 1 ; %t h i s i s a boo lean t ha t says t ha t t h i s i s an empty

13 %r e l a t i o n s h i p . This i s needed because matlab does not

14 %l i k e empty c e l l s in an array .

15

16

17 end

18

19 p r op e r t i e s ( SetAccess = pr ivate , GetAccess = pub l i c )

20 one ;

21 two ;

22

23 end

24

25 methods

26

27 function d i s connec t ( obj )

28 %disconnec t the cond i t i on l i n k a g e s f o r memory management

29 %purposes

30 obj . one = [ ] ;

31 obj . two = [ ] ;
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32 end

33

34 function delete ( obj )

35 %de s t r u c t o r func t i on

36 %must d e l e t e r e f e r en c e s to cond i t i on s to avoid weird memory

37 %i s su e when c l e a r i n g data

38

39 obj . d i s connec t ;

40

41 end

42

43 function obj = Re la t i on sh ip ( vararg in )

44

45 i f s ize ( vararg in , 1 ) > 0

46 obj . one = vararg in {1 ,1} ;

47 obj . two = vararg in {1 ,2} ;

48 obj . empty = 0 ; %dec l a r e s t ha t t h i s i s not empty

49 end

50 end

51

52 function r e s e tRe l a t i o n sh i p ( obj )

53

54 obj . a c t i va t ed = 0 ;

55

56 end

57

58

59 end

60

61 methods ( Abstract )

62

63 a c t i v a t eRe l a t i on sh i p ( obj , a c t i va t ingCond i t i on )

64

65

66 end
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67

68 end

1 c l a s s d e f Forecast ingExecutableMatr ix < ExecutableMatrix

2 %FORECASTINGEXECUTABLEMATRIX Sp e c i f i c implementat ion an

3 %Executab leMatr ix f o r f o r e c a s t i n g problems

4 % Contains f unc t i on s f o r c a l c ua t i n g an expec ted value , conduct ing a

5 % Monte Carlo s imula t ion , and the d i r e c t c a l c u l a t i o n o f the CDF

6

7 p r op e r t i e s

8 end

9

10 methods

11

12

13 function value=expectedValue ( obj , b a s e l i n e )

14

15 combinat ions = obj . tota lCombinat ions ;

16 value = 0 ;

17

18 %reappor t ion p r o b a b i l i t i e s

19

20 prob sum = 0 ;

21

22 for i =1: s ize ( combinations , 1 )

23

24 prob sum = prob sum + combinat ions { i , 1 } . t o t a lP r ob ab i l i t y ;

25

26 end

27

28

29 for i =1: s ize ( combinations , 1 )

30

31 combinat ions { i , 1 } . overRiddenProbab i l i ty = . . .

32 combinat ions { i , 1 } . t o t a lP r ob ab i l i t y . / prob sum ;

33
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34 end

35

36

37 for i =1: s ize ( combinations , 1 )

38

39 [ add mult ] = combinat ions { i , 1 } . t o t a l E f f e c t ;

40

41 l o c a l e f f e c t = ( ba s e l i n e + add ) .∗ mult ;

42

43 value = value + . . .

44 combinat ions { i , 1 } . overRiddenProbabi l i ty .∗ l o c a l e f f e c t ;

45

46 end

47

48

49 end

50

51 function t ab l e=monteCarlo ( obj , ba s e l i n e , numRuns)

52

53 tab l e = ones (numRuns , 2 ) ;

54

55

56

57 %for loop through the number o f runs

58 for i =1:numRuns

59 %need to randomize the s e l e c t i o n o f parameters because the

60 %order in which parameters are chosen matters

61

62 tankage va lue = [0 1 ] ;

63 s t r u c t u r e s v a l u e = [0 1 ] ;

64 tp s va lu e = [0 1 ] ;

65 p ropu l s i on va lu e = [0 1 ] ;

66

67

68 %determine p o t e n t i a l indexes f o r s e l e c t i o n
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69 i n d i c i e s = 1 : s ize ( obj . l i s tOfParameter s , 1 ) ;

70 s e l e c t e d i n d i c e s = ones ( s ize ( obj . l i s tOfParameter s , 1 ) , 1 ) ;

71

72 %crea t e a new v a r i a b l e f o r the va lue f o r an i n d i v i d u a l

73 %Monte Carlo run

74 a l l v a l u e = [0 1 ] ;

75 %for loop through each ca tegory

76 for j =1: s ize ( obj . l i s tOfParameters , 1)

77

78 %r o l l d i c e to see which index i s chosen

79 random index = . . .

80 1 + f loor (mod(10 ∗ rand ( 1 , 1 ) , s ize ( i n d i c i e s , 2 ) ) ) ;

81

82 index va lue = i n d i c i e s ( random index ) ;

83

84 %execu te the Monte Carlo sim on the parameter

85 [ s e l e c t i o n i n d e x ] = . . .

86 obj . l i s tOfParamete r s { index va lue , 1 } . subMonteCarlo ;

87

88 %enforce c on s t r a i n t s

89 obj . en f o r c eA l lCon s t r a i n t s ;

90

91 s e l e c t e d i n d i c e s ( index va lue , 1 ) = s e l e c t i o n i n d e x ;

92

93

94 %remove index from the l i s t o f i n d i c e s

95 i n d i c i e s ( random index ) = [ ] ;

96

97

98 end%end fo r j =1: s i z e ( ob j . l i s tOfParameters , 1)

99

100 %ex t r a c t s e l e c t e d cond i t i on s

101

102 for j =1: s ize ( obj . l i s tOfParameters , 1)

103
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104 %load l o c a l parameter

105 loca lParameter = obj . l i s tOfParamete r s { j , 1 } ;

106

107 %load l o c a l cond i t i on

108 l o c a l c o n d i t i o n = . . .

109 loca lParameter . getCondit ion ( s e l e c t e d i n d i c e s ( j , 1 ) ) ;

110

111 %ex t r a c t cond i t i on in format ion

112 subsystem = loca lParameter . subsystemAssignment ;

113 add = l o c a l c o n d i t i o n . mod i f i edAdd i t i v eE f f e c t ;

114 mult = l o c a l c o n d i t i o n . mod i f i e dMu l t i p l i c a t i v eE f f e c t ;

115

116 switch ( subsystem )

117 case Subsystems . tankage

118 tankage va lue (1 , 1 ) = tankage va lue (1 , 1 ) + add ;

119 tankage va lue (1 , 2 ) = tankage va lue (1 , 2 ) .∗mult ;

120 case Subsystems . s t r u c t u r e s

121 s t r u c t u r e s v a l u e (1 , 1 ) = . . .

122 s t r u c t u r e s v a l u e (1 , 1 ) + add ;

123 s t r u c t u r e s v a l u e (1 , 2 ) = . . .

124 s t r u c t u r e s v a l u e (1 , 2 ) .∗ mult ;

125 case Subsystems . tps

126 tp s va lu e (1 , 1 ) = tp s va lu e (1 , 1 ) + add ;

127 tp s va lu e (1 , 2 ) = tp s va lu e (1 , 2 ) .∗ mult ;

128 case Subsystems . p ropu l s i on

129 p ropu l s i on va lu e (1 , 1 ) = . . .

130 p ropu l s i on va lu e (1 , 1 ) + add ;

131 p ropu l s i on va lu e (1 , 2 ) = . . .

132 p ropu l s i on va lu e (1 , 2 ) .∗ mult ;

133 case Subsystems . a l l

134 a l l v a l u e (1 , 1 ) = a l l v a l u e (1 , 1 ) + add ;

135 a l l v a l u e (1 , 2 ) = a l l v a l u e (1 , 2 ) .∗ mult ;

136

137 end % end swi t ch

138
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139 end

140

141 %t a b l e ( i , 1 ) = tankage va l u e (1 ,1) ;

142 %t a b l e ( i , 2 ) = tankage va l u e (1 ,2) ;

143 %t a b l e ( i , 3 ) = s t r u c t u r e s v a l u e (1 ,1) ;

144 %t a b l e ( i , 4 ) = s t r u c t u r e s v a l u e (1 ,2) ;

145 %t a b l e ( i , 5 ) = t p s v a l u e (1 ,1) ;

146 %t a b l e ( i , 6 ) = t p s v a l u e (1 ,2) ;

147 %t a b l e ( i , 7 ) = p ropu l s i on va l u e (1 ,1) ;

148 %t a b l e ( i , 8 ) = p ropu l s i on va l u e (1 ,2) ;

149

150 tab l e ( i , 1 ) = a l l v a l u e (1 , 1 ) ;

151 tab l e ( i , 2 ) = a l l v a l u e (1 , 2 ) ;

152

153 %re s e t the matrix

154 obj . r e s e tMatr ix ;

155

156 end%end fo r i =1:numRuns

157

158 %app ly b a s e l i n e va lue

159 tab l e = ( ba s e l i n e + tab l e ( : , 1 ) ) .∗ t ab l e ( : , 2 ) ;

160

161 end %end func t i on monteCarlo

162

163

164

165 function [ f x ] = generateCDF ( obj , b a s e l i n e )

166 %t h i s f unc t i on w i l l g enera te a CDF t a b l e by genera t ing every

167 %po s s i b l e combination o f the matrix

168 %

169 % base l i n e−− the b a s e l i n e va lue f o r which mu l t i p l i c a t i v e

170 % r e a l t i o n s h i p s w i l l be app l i e d

171

172 %ge t a l l combinat ions

173 combinat ions = obj . tota lCombinat ions ;
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174

175

176

177 %reappor t ion p r o b a b i l i t i e s

178

179 prob sum = 0 ;

180

181 for i =1: s ize ( combinations , 1 )

182

183 prob sum = prob sum + combinat ions { i , 1 } . t o t a lP r ob ab i l i t y ;

184

185 end

186

187

188 for i =1: s ize ( combinations , 1 )

189

190 combinat ions { i , 1 } . overRiddenProbab i l i ty = . . .

191 combinat ions { i , 1 } . t o t a lP r ob ab i l i t y . / prob sum ;

192

193 end

194

195

196 %pr e a l l o c a t e memory

197 cdfTable = ones ( s ize ( combinations , 1 ) ,2 ) ;

198

199 %load in format ion in to a t a b l e

200 for i =1: s ize ( combinations , 1 )

201

202 [ a dd i t i v eE f f e c t mu l t i p l i c a t i v eE f f e c t ] = . . .

203 combinat ions { i , 1 } . t o t a l E f f e c t ;

204

205 e f f e c t = ( ba s e l i n e + add i t i v eE f f e c t ) .∗ . . .

206 mu l t i p l i c a t i v eE f f e c t ;

207

208 cdfTable ( i , 1 ) = e f f e c t ;
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209 cdfTable ( i , 2 ) = combinat ions { i , 1 } . overRiddenProbabi l i ty ;

210

211

212 end

213

214 %sor t by p r o b a b i l i t y ; ˜ i gnore s output

215 [ ˜ , I ] = sort ( cdfTable ( : , 1 ) ) ;

216

217 cdfTable = cdfTable ( I , : ) ;

218

219 %se t va l u e s

220 x = cdfTable ( : , 1 ) ;

221

222 %repea t f i r s t va lue f o r the 0 chance p r o b a b i l i t y to complete CDF

223 x = [ x (1 , 1 ) ; x ( : , 1 ) ] ;

224

225

226 %genera te cont inuous d i s t r i b u t i o n

227 f (1 , 1 ) = 0 ;

228

229 for i =2:( s ize ( cdfTable , 1 ) + 1)

230

231 f ( i , 1 ) = f ( i −1 ,1) + cdfTable ( i −1 ,2) ;

232

233 end

234

235 end

236

237 end

238

239 end

1 c l a s s d e f Forecast ingParameter < Parameter

2 %FORECASTINGPARAMETER Sp e c i f i c implementat ion o f a parameter f o r a

3 %weigh t f o r e c a s t i n g problem

4 %
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5

6 p r op e r t i e s

7

8 subsystemAssignment =Subsystems . a l l ; % Subsystem to which t h i s

parameter be l ong s to

9

10 end

11

12 methods

13

14 function en f o r c eCons t r a i n t s ( obj )

15 %t h i s f unc t i on w i l l renormal i ze the modi f i ed e f f e c t s f o r t h i s

16 %parameter so t ha t the sum t o t a l o f the modi f i ed e f f e c t s e qua l s

17 %1

18

19 %pr e a l l o c a t e memory

20 p r o b a b i l i t i e s = ones ( obj . s izeOfParameter , 1) ;

21

22 %load the p r o b a b i l i t i e s o f the cond i t i on s in t o the vec t o r

23 for i =1: obj . s izeOfParameter

24 cond i t i on = obj . getCondit ion ( i ) ;

25 p r o b a b i l i t i e s ( i , 1 ) = cond i t i on . mod i f i edProbab i l i t y ;

26 end

27

28 %normal ize p r o b a b i l i t i e s

29 vector sum = sum( p r o b a b i l i t i e s ) ;

30 p r o b a b i l i t i e s = p r o b a b i l i t i e s / vector sum ;

31

32

33 %load the p r o b a b i l i t i e s o f the v ec t o r back in t o the cond i t i on s

34 for i =1: obj . s izeOfParameter

35 cond i t i on = obj . getCondit ion ( i ) ;

36 cond i t i on . mod i f i edProbab i l i t y = p r o b a b i l i t i e s ( i , 1 ) ;

37 end

38
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39 end

40

41 function [ s e l e c t i o n i n d e x name]=subMonteCarlo ( obj )

42 % [ s e l e c t i o n i n d e x subsystem name]=subMonteCarlo ( ob j )

43 %subsystem = ob j . subsystemAssignment ;

44

45

46 %draw random va lue

47 randomValue = rand ( 1 , 1 ) ;

48

49

50 %determine which a l t e r n a t i v e to p i c k

51 cumu la t i v e p robab i l i t y = 0 ; %va r i a b l e to ac t as a datum fo r

52 %p r o b a b i l i t i e s

53 for i =1: s ize ( obj . l i s tO fCond i t i on s , 1)

54

55 %update cumula t ive p r o b a b i l i t y

56 cumu la t i v e p robab i l i t y = cumu la t i v e p robab i l i t y + . . .

57 obj . l i s tO fCond i t i on s { i , 1 } . mod i f i edProbab i l i t y ;

58

59 i f randomValue < cumu la t i v e p robab i l i t y

60 %we have found the co r r e c t a l t e r n a t i v e

61

62 %s e l e c t the cond i t i on

63 obj . l i s tO fCond i t i on s { i , 1 } . s e l e c t ;

64

65

66 %return the co r r e c t va lue

67

68 s e l e c t i o n i n d e x = i ;

69

70 name = . . .

71 obj . l i s tO fCond i t i on s { i , 1 } . name ;

72

73 %break the f o r loop
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74 break

75 end %end i f s ta tement

76

77 end %end fo r loop

78

79 end %end func t i on subMonteCarlo

80

81

82 end

83

84 end

1 c l a s s d e f Forecas t ingCondi t ion < Condit ion

2 %FORECASTINGCONDITION Sp e c i f i c implementat ion o f a Condit ion f o r a

3 %weigh t f o r e c a s t i n g problem

4 % This i n c l u d e s problem−s p e c i f i c p r o p e r t i e s and methods

5

6 p r op e r t i e s

7

8 %standard p r o p e r t i e s which do not change once s e t

9 p r obab i l i t y = 1 ;

10 add i t i v eE f f e c t = 0 ;

11 mu l t i p l i c a t i v eE f f e c t = 1 ;

12

13 % modi f ied parameters based on r e l a t i o n s h i p s from other

14 % ( pe r v i o u s l y s e l e c t e d ) cond i t i on s

15 mod i f i edProbab i l i t y = 1 ;

16 mod i f i edAdd i t i v eE f f e c t = 0 ;

17 mod i f i e dMu l t i p l i c a t i v eE f f e c t = 1 ;

18

19 end

20

21 methods

22

23

24 function equa l i t y = isEqua l ( obj , cond i t i on2 )
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25 %two cond i t i on s w i l l be deemed equa l i f they have the same

26 %e f f e c t and p r o b a b i l i t y

27 %

28 % return va lue :

29 % 0 means t ha t two cond i t i on s are not equa l

30 % 1 means t ha t both cond i t i on s are equa l

31 %

32 %Modif ied e f f e c t and modi f i ed p r o b a b i l i t y do not matter s ince

33 %the s e are t r a n s i t i o n a l s t a t e s dur ing the s e l e c t i o n o f a s i n g l e

34 %combination . At the conc lu s ion o f a s e l e c t i o n process , new

35 %cond i t i on o b j e c t s are made to be par t o f combinations , and the

36 %o r i g i n a l e x e cu t a b l e matrix i s r e s e t

37

38 %s t a r t o f f wi th the assumption t ha t i t w i l l be equal , any

39 %in e q u a l i t y w i l l change t h i s f l a g to 0

40 equa l i t y = 1 ;

41

42 i f obj . p r obab i l i t y ˜= cond i t i on2 . p r obab i l i t y

43 equa l i t y = 0 ;

44 end

45

46 i f obj . a dd i t i v eE f f e c t ˜= cond i t i on2 . a dd i t i v eE f f e c t

47 equa l i t y = 0 ;

48 end

49

50 i f obj . mu l t i p l i c a t i v eE f f e c t ˜= cond i t i on2 . mu l t i p l i c a t i v eE f f e c t

51 equa l i t y = 0 ;

52 end

53

54 %s t r i n g compare the names

55 i f strcmp ( obj . name , cond i t i on2 . name) == 0

56 equa l i t y = 0 ;

57 end

58

59 end
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60

61

62 function r e s e tCond i t i on ( obj )

63 %t h i s r e s e t s the modi f i ed p r o b a b i l i t y and modi f i ed e f f e c t s to

64 %be equa l to the o r i g i n a l input va l u e s

65 %

66 % t h i s shou ld be run a f t e r a s e l e c t i o n run

67

68 obj . mod i f i edProbab i l i t y = obj . p r obab i l i t y ;

69 obj . mod i f i edAdd i t i v eE f f e c t = obj . a dd i t i v eE f f e c t ;

70 obj . mod i f i e dMu l t i p l i c a t i v eE f f e c t = obj . mu l t i p l i c a t i v eE f f e c t ;

71 obj . modi f i ed = f a l s e ;

72

73

74 end

75

76

77 end

78

79 end

1 c l a s s d e f Forecast ingCombination < Combination

2 %FORECASTINGCOMBINATION Sp e c i f i c implementat ion o f a combination f o r a

3 %weigh t f o r e c a s t i n g problem

4 %

5

6 p r op e r t i e s

7

8 overRiddenProbabi l i ty ;

9

10 end

11

12 methods

13

14 function obj = Forecast ingCombination ( vararg in )

15
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16

17 %c a l l the s up e r c l a s s cons t ruc t o r

18 % n . b . : vararg in { :} c r ea t e s a comma−s epear t ed l i s t from the

19 % c e l l array t ha t i s vararg in

20 obj = obj@Combination ( vararg in { :} ) ;

21 end

22

23

24 function addCondition ( obj , conditionToAdd , vararg in )

25

26 numvarargs = length ( vararg in ) ;

27

28 i f numvarargs > 0

29

30 po s i t i o n = vararg in {1} ;

31

32 %de f i n e a cond i t i on c l a s s to add to the combination

33 newCondition = Forecas t ingCondi t ion ;

34

35 %copy the data from the cond i t i on to a new o b j e c t

36 newCondition . name = conditionToAdd . name ;

37 newCondition . p r obab i l i t y = . . .

38 conditionToAdd . mod i f i edProbab i l i t y ;

39 newCondition . a dd i t i v eE f f e c t = . . .

40 conditionToAdd . mod i f i edAdd i t i v eE f f e c t ;

41 newCondition . mu l t i p l i c a t i v eE f f e c t = . . .

42 conditionToAdd . mod i f i e dMu l t i p l i c a t i v eE f f e c t ;

43

44 obj . l i s tO fS e l e c t e dCond i t i o n s { pos i t i on ,1} = . . .

45 newCondition ;

46

47 else

48

49 %de f i n e a cond i t i on c l a s s to add to the combination

50 newCondition = Forecas t ingCondi t ion ;
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51

52 %copy the data from the cond i t i on to a new o b j e c t

53 newCondition . name = conditionToAdd . name ;

54 newCondition . p r obab i l i t y = . . .

55 conditionToAdd . mod i f i edProbab i l i t y ;

56 newCondition . a dd i t i v eE f f e c t = . . .

57 conditionToAdd . mod i f i edAdd i t i v eE f f e c t ;

58 newCondition . mu l t i p l i c a t i v eE f f e c t = . . .

59 conditionToAdd . mod i f i e dMu l t i p l i c a t i v eE f f e c t ;

60

61 i f ( i s c e l l ( obj . l i s tO fS e l e c t edCond i t i o n s ) == 0)

62 %t h i s i s not i n i t i a l i z e d as a c e l l array t h e r e f o r e i t i s

63 % empty

64 obj . l i s tO fS e l e c t e dCond i t i o n s {1 ,1} = newCondition ;

65

66 else

67 %c e l l array e x i s t s t h e r e f o r e the array i s not empty

68 l o c a l S i z e = s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1) ;

69 obj . l i s tO fS e l e c t e dCond i t i o n s { l o c a l S i z e + 1 , 1} =. . .

70 newCondition ;

71

72 end

73 end

74 end

75

76

77 function value = expectedValue ( obj )

78 %old implementation , depreca ted

79 value = 0 ;

80

81 %i t e r a t e through each cond i t i on o f the ca tegory

82 for i =1: s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1 )

83 loca lProb = obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . p r obab i l i t y ;

84 l o c a l E f f e c t = obj . l i s tO fS e l e c t edCond i t i o n s { i , 1 } . e f f e c t ;

85
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86 value = value + loca lProb .∗ l o c a l E f f e c t ;

87

88 end

89

90 end

91

92 function prob = to t a lP r ob ab i l i t y ( obj )

93 % This func t i on c a l c u l a t e s the t o t a l p r o b a b i l i t y o f the

94 % combination be ing s e l e c t e d−− t h i s i s the product o f each

95 % condi t ion ’ s i n d i v i d u a l p r o b a b i l i t y

96 %

97

98 prob = 1 ;

99

100 %i t e r a t e through each cond i t i on o f the ca tegory

101 for i =1: s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1 )

102 loca lProb = obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . p r obab i l i t y ;

103

104 prob = prob .∗ l o ca lProb ;

105

106 end

107

108 end

109

110 function [ a dd i t i v eE f f e c t mu l t i p l i c a t i v eE f f e c t ] = t o t a l E f f e c t ( obj )

111 % This func t i on c a l c u l a t e s the t o t a l e f f e c t o f the

112 % combination be ing s e l e c t e d−− t h i s i s the sum of each

113 % condi t ion ’ s i n d i v i d u a l e f f e c t

114 %

115

116 add i t i v eE f f e c t = 0 ;

117 mu l t i p l i c a t i v eE f f e c t = 1 ;

118

119 %i t e r a t e through each cond i t i on o f the ca tegory

120 for i =1: s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1 )
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121 l o c a lAE f f e c t = . . .

122 obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . a dd i t i v eE f f e c t ;

123

124 loca lMEf f e c t = . . .

125 obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . mu l t i p l i c a t i v eE f f e c t ;

126

127 add i t i v eE f f e c t = add i t i v eE f f e c t + l o c a lAE f f e c t ;

128

129 mu l t i p l i c a t i v eE f f e c t = mu l t i p l i c a t i v eE f f e c t .∗ . . .

130 l oca lMEf f e c t ;

131 end

132

133 end

134

135

136

137 function equa l i t y = isEqua l ( obj , combination2 )

138

139 equa l i t y = 1 ;

140

141 for i =1: s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1)

142

143 equa l i t y = equa l i t y ∗ . . .

144 obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . i sEqua l ( . . .

145 combination2 . l i s tO fS e l e c t e dCond i t i o n s { i , 1} ) ;

146

147 end

148

149 end

150

151 function f e a s i b i l i t y = i s F e a s i b l e ( obj )

152 % t h i s f unc t i on w i l l check to see i f t h i s combination i s

153 % f e a s i b l e : whether or not i t has a p r o b a b i l i t y g r ea t e r than 0

154

155 f e a s i b i l i t y = 1 ;
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156

157 for i =1: s ize ( obj . l i s tO fS e l e c t edCond i t i on s , 1 )

158

159 %i f a s i n g l e member o f the combination has a p r o b a b i l i t y o f

160 %0 then the combination i s i n f e a s i b l e

161 i f obj . l i s tO fS e l e c t e dCond i t i o n s { i , 1 } . p r obab i l i t y == 0

162 f e a s i b i l i t y = 0 ;

163 end

164

165 end%end fo r loop

166

167 end

168

169

170 end

171

172 end

1 c l a s s d e f Forecast ingCombinat ionFactory < CombinationFactory

2 %FORECASTINGCOMBINATIONFACTORY Concrete I n s t a n t i a t i o n o f a Combination

3 %Factory f o r Forecas t ing Problems

4 %

5

6 p r op e r t i e s

7 end

8

9 methods ( S t a t i c )

10

11 function combination = constructNewCombination ( s i zeOfParameterL i s t )

12

13 i f nargin > 0

14

15 nargin

16

17 combination = Forecast ingCombination ( s i zeOfParameterL i s t ) ;

18
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19 else

20 combination = Forecast ingCombination ( ) ;

21 end

22

23

24 end

25

26 end

27

28 end

1 c l a s s d e f Fo r e ca s t i ngRe l a t i on sh ip < Re la t i on sh ip

2 %FORECASTINGRELATIONSHIP Sp e c i f i c implementat ion o f a Re l a t i on sh i p f o r

3 % a weigh t f o r e c a s t i n g problem

4 %

5

6 p r op e r t i e s

7 p r obab i l i t y = 1 ; %de f a u l t e d to no change in p r o b a b i l i t y

8 add i t i v eRe l a t i on sh i p = 0 ; %de f a u l t e d to no change in e f f e c t

9 mu l t i p l i c a t i v eRe l a t i o n s h i p = 1 ; %de f a u l t e d to no change in e f f e c t

10

11 add i t i v e t oMu l t Re l a t i on sh ip = 0 ; %decau l t ed to no change in e f f e c t

12 mu l t i p l i c a t i v e t oMu l t Re l a t i o n sh i p = 1 ;%decau l t ed to no change in

e f f e c t

13

14

15 end

16

17 methods

18

19 function obj = Fore ca s t i ngRe l a t i on sh ip ( vararg in )

20 % This cons t ruc t o r can be used to i n s t a n t i a t e a b lank

21 % r e l a t i o n s h i p ( i . e . wi th no connec t ions ) or one wi th two

22 % cond i t i on s f o r ends

23

24 %c a l l the s up e r c l a s s cons t ruc t o r
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25 % n . b . : vararg in { :} c r ea t e s a comma−s epear t ed l i s t from the

26 % c e l l array t ha t i s vararg in

27 obj = obj@Relat ionsh ip ( vararg in { :} ) ;

28

29

30 end

31

32 function a c t i v a t eRe l a t i on sh i p ( obj , a c t i va t ingCond i t i on )

33 %t h i s f unc t i on w i l l a c t i v a t e the r e l a t i o n s h i p from one end o f

34 %the l i n k

35 %

36 %ac t i v a t i n gCond i t i on i s a Condit ion o b j e c t o f the Condit ion

37 %which has been s e l e c t e d ; t h i s f unc t i on w i l l change the

38 %modi f ied p r o p e r t i e s o f the cond i t i on on the oppo s i t e end o f

39 %the ac t i v a t i n gCond i t i on

40

41 %dec l a r e the v a r i a b l e t oAc t i v a t e ou t s i d e o f the i f / then scope

42 toAct ivate = NaN;

43

44 %de t e c t which handle to a c t i v a t e−− t h i s opera t e s on check ing

45 %the e q u a l i t y o f the handle

46

47 ac t i va t ed1 = 0 ;

48 ac t i va t ed2 = 0 ;

49

50 i f obj . one == act i va t ingCond i t i on

51 toAct ivate = obj . two ;

52

53 ac t i va t ed2 = 1 ;

54 e l s e i f obj . two == act i va t ingCond i t i on

55 toAct ivate = obj . one ;

56

57

58 ac t i va t ed1 = 1 ;

59 end
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60

61 i f ( a c t i va t ed1 + act iva t ed2 ) <= 0

62

63 disp ( ’ Error in r e l a t i o n s h i p d e f i n i t o n ’ )

64 s t r =[ ac t i va t ingCond i t i on . name , ’ s e l e c t e d ; ’ , . . .

65 obj . one . name , ’ and ’ , obj . two . name , . . .

66 ’ are the cond i t i on s in the r e l a t i o n s h i p s ’ ]

67 disp ( s t r )

68

69 end

70

71

72

73

74 %%% Act i va t e P r o b a b i l i t y Re l a t i on sh i p %%%

75 i f ˜ toAct ivate . parentParameter . s e l e c t e d

76 %only a c t i v a t e i f t a r g e t ’ s parent parameter has not

77 %pre v i o u s l y been s e l e c t e d in the a l gor i thm

78

79

80 %mu l t i p l i c a t i v e opera t ion on the p r o b a b i l i t y

81 toAct ivate . mod i f i edProbab i l i t y = . . .

82 toAct ivate . mod i f i edProbab i l i t y .∗ obj . p r obab i l i t y ;

83 end

84

85 %%% Act i va t e Re l a t i on sh i p s A f f e c t i n g Add i t i v e E f f e c t s %%%

86

87 %in order o f opera t ions , m u l t i p l i c a t i v e r e l a t i o n s h i p i s app l i e d

88 %f i r s t

89

90 %The mu l t i p l i c a t i v e e f f e c t i s app l i e d to both cond i t i on s

91 i f ac t i va t ed1

92 obj . one . mod i f i edAdd i t i v eE f f e c t = . . .

93 obj . one . mod i f i edAdd i t i v eE f f e c t .∗ . . .

94 obj . mu l t i p l i c a t i v eRe l a t i o n s h i p ;
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95 end

96

97 i f ac t i va t ed2

98 obj . two . mod i f i edAdd i t i v eE f f e c t = . . .

99 obj . two . mod i f i edAdd i t i v eE f f e c t .∗ . . .

100 obj . mu l t i p l i c a t i v eRe l a t i o n s h i p ;

101 end

102

103 % Addi t i v e r e l a t i o n s h i p i s on ly app l i e d once

104 i f ˜ obj . a c t i va t ed

105 toAct ivate . mod i f i edAdd i t i v eE f f e c t = . . .

106 toAct ivate . mod i f i edAdd i t i v eE f f e c t + . . .

107 obj . add i t i v eRe l a t i on sh i p ;

108 end

109

110 %%% Act i va t e Re l a t i on sh i p s A f f e c t i n g Mu l t i p l i c a t i v e E f f e c t s %%%

111

112 %mu l t i p l i c a t i v e r e l a t i o n s h i p i s on ly app l i e d once

113 i f ˜ obj . a c t i va t ed

114 toAct ivate . mod i f i e dMu l t i p l i c a t i v eE f f e c t = . . .

115 toAct ivate . mod i f i e dMu l t i p l i c a t i v eE f f e c t . ∗ . . .

116 obj . mu l t i p l i c a t i v e t oMu l t Re l a t i o n sh i p ;

117 end

118

119 %The a d d i t i v e e f f e c t i s app l i e d to both cond i t i on s

120 i f ac t i va t ed1

121 obj . one . mod i f i e dMu l t i p l i c a t i v eE f f e c t = . . .

122 obj . one . mod i f i e dMu l t i p l i c a t i v eE f f e c t + . . .

123 obj . add i t i v e t oMu l t Re l a t i on sh ip ;

124 end

125

126 i f ac t i va t ed2

127 obj . two . mod i f i e dMu l t i p l i c a t i v eE f f e c t = . . .

128 obj . two . mod i f i e dMu l t i p l i c a t i v eE f f e c t + . . .

129 obj . add i t i v e t oMu l t Re l a t i on sh ip ;
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130 end

131

132

133 %%% Update the Re la t ionsh ip ’ s S ta t e to Act i va ted %%%

134 obj . a c t i va t ed = true ;

135 end

136

137 function RE = ca l c u l a t eR e l a t i o n s h i pE f f e c t ( obj , b a s e l i n e )

138

139 %dec l a r e re turn va lue

140 RE = Re l a t i on sh i pE f f e c t ;

141

142 %check to see i f t h i s i s an empty r e l a t i o n s h i p

143 i f obj . empty

144 RE. empty = 1 ;

145 else

146 RE. empty = 0 ;

147

148 %ca l c u l a t e p r o b a b i l i t y−− each cond i t i on t imes the

149 %r e l a t i o n s h i p

150

151 RE. p r obab i l i t y = obj . one . p r obab i l i t y .∗ . . .

152 obj . two . p r obab i l i t y .∗ obj . p r obab i l i t y ;

153

154 %ca l c u l a t e e f f e c t

155

156 %mu l t i p l i c a t i v e e f f e c t

157

158 totalME = ( obj . one . mu l t i p l i c a t i v eE f f e c t .∗ . . .

159 obj . two . mu l t i p l i c a t i v eE f f e c t .∗ . . .

160 obj . mu l t i p l i c a t i v e t oMu l t Re l a t i o n sh i p ) + . . .

161 obj . add i t i v e t oMu l t Re l a t i on sh ip ;

162

163 %add i t i v e e f e c t

164
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165 totalAE = obj . mu l t i p l i c a t i v eRe l a t i o n s h i p .∗ . . .

166 ( obj . one . a dd i t i v eE f f e c t + . . .

167 obj . two . a dd i t i v eE f f e c t ) + obj . add i t i v eRe l a t i on sh i p ;

168

169 RE. e f f e c t = totalME .∗ ( b a s e l i n e + totalAE ) ;

170

171 %ca l c u l a t e the expec ted va lue

172

173 RE. expectedValue = RE. p r obab i l i t y .∗ RE. e f f e c t ;

174

175 %ass i gn the names

176

177 RE. name1 = obj . one . name ;

178 RE. name2 = obj . one . name ;

179

180

181 end

182

183 end

184

185

186 end

187

188 end

1 c l a s s d e f Foreca s t ingRe la t i onsh ipFacto ry < Relat ionsh ipFactory

2 %FORECASTINGRELATIONSHIPFACTORY Sp e c i f i c implementat ion o f a f a c t o r y

3 %des ign pa t t e rn to genera te For e ca s t i n gRe l a t i on sh i p s

4 %

5 p r op e r t i e s

6 end

7

8 methods ( S t a t i c )

9

10 function r e l a t i o n s h i p = constructNewRelat ionsh ip ( end1 , end2 )

11
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12 i f nargin >0

13 r e l a t i o n s h i p = Fore ca s t i ngRe l a t i on sh ip ( end1 , end2 ) ;

14

15 else

16 r e l a t i o n s h i p = Fore ca s t i ngRe l a t i on sh ip ( ) ;

17 end

18

19

20

21 end

22

23 end

24

25 end
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